

CPU12
REFERENCE MANUAL

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. UTypical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
~?sociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
® MOT'OIIOLA is a registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc., 1996

TABLE OF CONTENTS

Paragraph Page

SECTION 1
INTRODUCTION

1.1 CPU12 Features ... 1-1
1.2 Readership .. 1-1
1.3 Symbols And Notation ... 1-2

SECTION 2
OVERVIEW

2.1 Programming Model .. 2-1
2.2 Data Types .. 2-5
2.3 Memory Organization .. 2-5
2.4 Instruction Queue .. 2-6

SECTION 3
ADDRESSING MODES

3.1 Mode Summary ... 3-1
3.2 Effective Address .. 3-2
3.3 Inherent Addressing Mode .. 3-2
3.4 Immediate Addressing Mode .. 3-2
3.5 Direct Addressing Mode .. 3-3
3.6 Extended Addressing Mode .. 3-3
3.7 Relative Addressing Mode .. 3-4
3.8 Indexed Addressing Modes ... 3-5
3.9 Instructions That Use Multiple Modes ... 3-10
3.10 Addressing More Than 64 Kbytes ... 3-12

SECTION 4
INSTRUCTION QUEUE

4.1 Queue Description .. 4-1
4.2 Data Movement in the Queue ... 4-2
4.3 Changes in Execution Flow ... 4-2

SECTION 5
INSTRUCTION SET OVERVIEW

5.1 Instruction Set Description .. 5-1
5.2 Load and Store Instructions .. 5-1
5.3 Transfer and Exchange Instructions ... 5-2
5.4 Move Instructions .. 5-3
5.5 Addition and Subtraction Instructions .. 5-3
5.6 Binary Coded Decimal Instructions ... 5-4
5.7 Decrement and Increment Instructions ... 5--4
5.8 Compare and Test Instructions ... 5-5
5.9 Boolean Logic Instructions .. 5-6
5.10 Clear, Complement, and Negate Instructions ... 5-6

CPU12 MOTOROLA

REFERENCE MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Page

5.11 Multiplication and Division Instructions ... 5-7
5.12 Bit Test and Manipulation Instructions .. 5-7
5.13 Shift and Rotate Instructions ... 5-8
5.14 Fuzzy Logic Instructions .. 5-9
5.15 Maximum and Minimum Instructions ... 5-11
5.16 Multiply and Accumulate Instruction .. 5-11
5.17 Table Interpolation Instructions ... 5-12
5.18 Branch Instructions ... 5-13
5.19 Loop Primitive Instructions .. 5-16
5.20 Index Manipulation Instructions ... 5-19
5.21 Stacking Instructions ... 5-20
5.22 Pointer and Index Calculation Instructions .. 5-20
5.23 Condition Codes Instructions .. 5-21
5.24 Stop and Wait Instructions .. 5-21
5.25 Background Mode and Null Operations : 5-22

SECTION 6
INSTRUCTION GLOSSARY

6.1 Glossary Information ... 6-1
6.2 Condition Code Changes .. 6-2
6.3 Object Code Notation .. 6-2
6.4 Source Forms .. 6-3
6.5 Cycle-by-Cycle Execution ... 6-5
6.6 Glossary .. 6-7

SECTION 7
EXCEPTION PROCESSING

7.1 Types of Exceptions .. 7-1
7.2 Exception Priority .. 7-2
7.3 Resets ... 7-2
7.4 Interrupts ... 7-3
7.5 Unimplemented Opcode Trap ... 7-5
7.6 Software Interrupt Instruction .. 7-6
7.7 Exception Processing Flow ... 7-6

SECTION 8
DEVELOPMENT AND DEBUG SUPPORT

8.1 External Reconstruction of the Queue .. 8-1
8.2 Instruction Queue Status Signals .. 8-1
8.3 Implementing Queue Reconstruction , 8-4
8.4 Background Debugging Mode ... 8-6
8.5 Instruction Tagging .. 8-13
8.6 Breakpoints ... 8-14

MOTOROLA

iv

CPU12

REFERENCE MANUAL

TABLE OF CONTENTS (Continued)

Paragraph Page

SECTION 9
FUZZY LOGIC SUPPORT

9.1 Introduction ... 9-1
9.2 Fuzzy Logic Basics ... 9-2
9.3 Example Inference Kernel. .. 9-7
9A MEM Instruction Details .. 9-9
9.5 REV, REVW Instruction Details .. 9-13
9.6 WAV Instruction Details .. 9-22
9.7 Custom Fuzzy Logic Programming ... 9-26

SECTION 10
MEMORY EXPANSION

10.1 Expansion System Description ... 10-1
10.2 CALL and Return from Call Instructions .. 10-3
10.3 Address Lines for Expansion Memory .. 10-4
10A Overlay Window Controls .. 10-5
10.5 Using Chip-select Circuits ... 10-5
10.6 System Notes .. 10-8

APPENDIX A
INSTRUCTION REFERENCE

A.1 Instruction Set Summary ... A-1
A.2 Opcode Map .. A-1
A.3 Indexed Addressing Postbyte Encoding ... A-1
AA Transfer and Exchange Post byte Encoding .. A-1
A.5 Loop Primitive Postbyte Encoding .. A-1

APPENDIX B
M68HC11 TO M68HC12 UPGRADE PATH

B.1 CPU12 Design Goals .. B-1
B.2 Source Code Compatibility .. B-1
B.3 Programmer's Model and Stacking ... B-3
BA True 16-Bit Architecture .. B-3
B.5 Improved Indexing ... B-6
B.6 Improved Performance .. B-9
B.7 Additional Functions .. B-11

APPENDIX C
HIGH-LEVEL LANGUAGE SUPPORT

C.1 Data Types .. C-1
C.2 Parameters and Variables ... C-1
C.3 Increment and Decrement Operators .. C-3
CA Higher Math Functions .. C-3
C.5 Conditional If Constructs ... C-4

CPU12 MOTOROLA
REFERENCE MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page

C.6 Case and Switch Statements .. C-4
C.? Pointers ... C-4
C.B Function Calls ... C-4
C.9 Instruction Set Orthogonality ... C-5

MOTOROLA

vi

INDEX

SUMMARY OF CHANGES

CPU12

REFERENCE MANUAL

Title

2-1
6-1
7-2
8-1
8-2
8-3
8-4
8-5
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12

CPU12

LIST OF FIGURES

Page

Programming Model .. 2-1
Example Glossary Page .. 6-1
Exception Processing Flow Diagram .. 7-7
Queue Status Signal Timing ... 8-2
BDM Host to Target Serial Bit Timing ... 8-8
BDM Target to Host Serial Bit Timing (Logic 1) .. 8-8
BDM Target to Host Serial Bit Timing (Logic 0) .. 8-9
Tag Input Timing ... 8-13
Block Diagram of a Fuzzy Logic System ... 9-3
Fuzzification Using Membership Functions ... 9-4
Fuzzy Inference Engine .. 9-8
Defining a Normal Membership Function .. 9-10
MEM Instruction Flow Diagram ... 9-11
Abnormal Membership Function Case 1 ... 9-12
Abnormal Membership Function Case 2 ... 9-13
Abnormal Membership Function Case 3 ... 9-13
REV Instruction Flow Diagram .. 9-16
REVW Instruction Flow Diagram ... 9-21
WAV and wavr Instruction Flow Diagram .. 9-25
Endpoint Table Handling ... 9-28

MOTOROLA
REFERENCE MANUAL vii

MOTOROLA

viii

CPU12

REFERENCE MANUAL

Table

3-1
3-2
3-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
7-1
7-2
8-1
8-2
8-3
8-4
8-5
10-1
A-1
A-2
A-3
A-4

CPU12

LIST OF TABLES

Page

M68HC12 Addressing Mode Summary ... 3-1
Summary of Indexed Operations .. 3-6
PC Offsets for Move Instructions .. 3-11
Load and Store Instructions .. 5-2
Transfer and Exchange Instructions ... 5-3
Move Instructions .. 5-3
Addition and Subtraction Instructions .. 5-4
BCD Instructions ... 5-4
Decrement and Increment Instructions ... 5-5
Compare and Test Instructions ... 5-5
Boolean Logic Instructions .. 5-6
Clear, Complement, and Negate Instructions ... 5-6
Multiplication and Division Instructions ... 5-7
Bit Test and Manipulation Instructions .. 5-7
Shift and Rotate Instructions ... 5-8
Fuzzy Logic Instructions .. 5-10
Minimum and Maximum Instructions j 5-11
Multiply and Accumulate Instructions .. 5-12
Table I nterpolation Instructions ... 5-12
Short Branch Instructions .. 5-14
Long Branch Instructions .. 5-15
Bit Condition Branch Instructions .. 5-16
Loop Primitive Instructions .. 5-16
Jump and Subroutine Instructions ... 5-17
Interrupt Instructions ... 5-18
Index Manipulation Instructions ... 5-19
Stacking Instructions ... 5-20
Pointer and Index Calculation Instructions .. 5-21
Condition Codes Instructions .. 5-21
Stop and Wait Instructions .. 5-22
Background Mode and Null Operation Instructions 5-22
CPU12 Exception Vector Map .. 7-1
Stacking Order on Entry to Interrupts .. 7-5
IPIPE[1 :0] Decoding .. 8-2
BDM Commands Implemented in Hardware ... 8-10
BDM Firmware Commands ... 8-11
BDM Register Mapping ... 8-11
Tag Pin Function ... 8-13
Mapping Precedence .. 10-2
Instruction Set Summary ... A-2
CPU12 Opcode Map ... A-20
Indexed Addressing Mode Summary .. A-22
Indexed Addressing Mode Postbyte Encoding (xb) A-23

REFERENCE MANUAL

MOTOROLA

ix

LIST OF TABLES (Continued)

Title Page

A-5 Transfer and Exchange Postbyte Encoding .. A-24
A-6 Loop Primitive Postbyte Encoding (Ib) .. A-25
B-1 Translated M68HC11 Mnemonics ... B-2
B-2 Instructions with Smaller Object Code .. B-3
B-3 Comparison of Math I nstruction Speeds ... B-1 0
B-4 New HC12 Instructions ... B-11

MOTOROLA

x
CPU12

REFERENCE MANUAL

SECTION 1
INTRODUCTION

This manual describes the features and operation of the CPU12 processing unit
used in all M68HC12 microcontrollers.

1.1 CPU12 Features

The CPU12 is a high-speed, 16-bit processing unit that has a programming model
identical to that of the industry standard M68HC11 CPU. The CPU12 instruction
set is a proper superset of the M68HC11 instruction set, and M68HC11 source
code is accepted by CPU12 assemblers with no changes.

The CPU12 has full 16-bit data paths and can perform arithmetic operations up to
20 bits wide for high-speed math execution.

Unlike many other 16-bit CPUs, the CPU12 allows instructions with odd byte
counts, including many single-byte instructions. This allows much more efficient
use of ROM space.

An instruction queue buffers program information so the CPU has immediate ac
cess to at least three bytes of machine code at the start of every instruction.

In addition to the addressing modes found in other Motorola MCUs, the CPU12 of
fers an extensive set of indexed addressing capabilities including:

• Stack pointer can be used as an index register in all indexed operations

• Program counter can be used as an index register in all but auto inc/dec mode

• Accumulator offsets allowed using A, B, or D accumulators

• Automatic pre- or post-, increment or decrement (by -8 to +8)

• 5-bit, 9-bit, or 16-bit signed constant offsets

• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect

1.2 Readership

CPU12

This manual is written for professionals and students in electronic design and soft
ware development. The primary goal is to provide information necessary to imple
ment control systems using M68HC12 devices. Basic knowledge of electronics,
microprocessors, and assembly language programming is required to use the
manual effectively. Because the CPU12 has a great deal of commonality with the
M68HC11 CPU, prior knowledge of M68HC11 devices is helpful, but is not essen
tial. The CPU12 also includes features that are new and unique. In these cases,
there is supplementary material in the text to explain the new technology.

INTRODUCTION

REFERENCE MANUAL

MOTOROLA

1-1

1.3 Symbols And Notation

The following symbols and notation are used throughout the manual. More special
ized usages that apply only to the Instruction Glossary are described at the begin
ning of that section.

1.3.1 Abbreviations for System Resources

A Accumulator A

B Accumulator B

D Double accumulator D (A : B)

X Index register X

Y Index register Y

SP Stack pointer

PC Program counter

CCR Condition codes register

S - STOP instruction control bit
X- Non-maskable interrupt control bit
H - Half-carry status bit
I - Maskable interrupt control bit
N - Negative status bit
Z - Zero status bit
V - Two's complement overflow status bit
C - Carry/Borrow status bit

1.3.2 Memory and Addressing

M

M: M+1 -

M-M+3
M(y)-M(y +3)

M(X)

M(Sp

M(Y+3

PPAGE

MOTOROLA

1-2

Page

XH
XL -
()

$

%

8-bit memory location pointed to by the effective address of the instruction

16-bit memory location. Consists of the location pointed to by the effective ad
dress concatenated with the next higher memory location. The most significant
byte is at location M.

32-bit memory location. Consists of the effective address of the
instruction concatenated with the next three higher memory
locations. The most significant byte is at location M or M(y).

Memory locations pOinted to by index register X

Memory locations pointed to by the stack pointer

Memory locations pointed to by index register Y plus 3, respectively.

Program overlay page (bank) number for extended memory (>64K).

Program overlay page

High-order byte.

Low-order byte.

Content of register or memory location

Hexadecimal value

Binary value

INTRODUCTION CPU12

REFERENCE MANUAL

1.3.3 Operators

+ - Addition

Subtraction.

•
+

x

M

Logical AND

Logical OR (inclusive)

Logical exclusive OR

Multiplication

Division

Negation. One's complement (invert each bit of M)

Concatenate
Example: A : B means: "The 16-bit value formed by concatenating
8-bit accumulator A with 8-bit accumulator B."
A is in the high order position.

=> - Transfer
Example: (A) => M means:
"The content of accumulator A is transferred to memory location M."

~ - Exchange
Example: D ~ X means: "Exchange the contents of D with those of X.

1.3.4 Conventions

CPU12

Logic level one is the voltage that corresponds to the True (1) state.

Logic level zero is the voltage that corresponds to the False (0) state.

Set refers specifically to establishing logic level one on a bit or bits.

Cleared refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal changes
from logic level one to logic level zero when asserted, and an active high signal
changes from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low signal
changes from logic level zero to logic level one when negated, and an active high
signal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus.

DATA is the mnemonic for data bus.

LSB means least significant bit or bits; MSB, most significant bit or bits.

LSW means least significant word or words; MSW, most significant word or words.

A specific mnemonic within a range is referred to by mnemonic and number. A7
is bit 7 of accumulator A. A range of mnemonics is referred to by mnemonic and
the numbers that define the range. DATA[15:8] form the high byte of the data bus.

INTRODUCTION

REFERENCE MANUAL

MOTOROLA

1-3

MOTOROLA

1-4

INTRODUCTION CPU12

REFERENCE MANUAL

SECTION 2
OVERVIEW

This section describes the CPU12 programming model, register set, the data types
used, and basic memory organization.

2.1 Programming Model

CPU12

The CPU12 programming model, shown in Figure 2-1, is the same as that of the
M68HC11 CPU. The CPU has two 8-bit general purpose accumulators (A and 8)
that can be concatenated into a single 16-bit accumulator (0) for certain instruc
tions, two index registers (X and V), a 16-bit stack pointer (SP), a 16-bit program
counter (PC), and an 8-bit condition codes register (CCR).

11
7
5

A 01 7 B

:1

8-BIT ACCUMULATORS A & B
OR

D 16-BIT DOUBLE ACCUMULATOR D

115 IX 01 INDEX REGISTER X

115 IV 01 INDEX REGISTER Y

115 SP 01 STACK POINTER

115 PC 01 PROGRAM COUNTER

I s X H I N Z V C 1 CONDITION CODES REGISTER

HC12 PROG MODEL

Figure 2-1 Programming Model

OVERVIEW

REFERENCE MANUAL

MOTOROLA

2-1

2.1.1 Accumulators

General-purpose 8-bit accumulators A and B are used to hold operands and re
sults of operations. Some instructions treat the combination of these two 8-bit ac
cumulators (A:B) as a 16-bit double accumulator (D).

Most operations can use accumulator A or B interchangeably. However, there are
a few exceptions. Add, subtract, and compare instructions involving both A and B
(ABA, SBA, and CBA) only operate in one direction, so it is important to make cer
tain the correct operand is in the correct accumulator. The decimal adjust accumu
lator A (DAA) instruction is used after binary-coded decimal (BCD) arithmetic
operations - there is no equivalent instruction to adjust accumulator B.

2.1.2 Index Registers

16-bit index registers X and Yare used for indexed addressing. In the indexed ad
dressing modes, the contents of an index register are added to 5-bit, 9-bit, or 16-
bit constants or to the content of an accumulator to form the effective address of
the instruction operand. The second index register is especially useful for moves
and in cases where operands from two separate tables are used in a calculation.

2.1.3 Stack Pointer

The CPU12 supports an automatic program stack. The stack is used to save sys
tem context during subroutine calls and interrupts, and can also be used for tem
porary data storage. The stack can be located anywhere in the standard 64-Kbyte
address space and can grow to any size up to the total amount of memory available
in the system.

The stack pointer holds the 16-bit address of the last stack location used. Normally,
the SP is initialized by one of the first instructions in an application program. The
stack grows downward from the address the SP points to. Each time a byte is
pushed onto the stack, the stack pointer is automatically decremented, and each
time a byte is pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the calling in
struction is automatically calculated and pushed onto the stack. Normally, a return
from subroutine (RTS) or a return from call (RTC) instruction is executed at the end
of a subroutine. The return instruction loads the program counter with the previous
ly stacked return address and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution (REV, REVW,
and WAV instructions can be interrupted, and resume execution once the interrupt
has been serviced), the address of the next instruction is calculated and pushed
onto the stack, all the CPU registers are pushed onto the stack, the program
counter is loaded with the address the interrupt vector points to, and execution con
tinues at that address. The stacked registers are referred to as an interrupt stack
frame. The CPU12 stack frame is the same as that of the M68HC11.

MOTOROLA

2-2

OVERVIEW CPU12

REFERENCE MANUAL

2.1.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of the next in
struction to be executed. It is automatically incremented each time an instruction is
fetched.

2.1.5 Condition Codes Register

This register contains five status indicators, two interrupt masking bits, and a STOP
instruction control bit. It is named for the five status indicators.

The status bits reflect the results of CPU operation as it executes instructions. The
five flags are half carry (H), negative (N), zero (Z), overflow (V), and carry/borrow
(C). The half-carry flag is used only for BCD arithmetic operations. The N, Z, V, and
C status bits allow for branching based on the results of a previous operation.

In some architectures, only a few instructions affect condition codes, so that multi
ple instructions must be executed in order to load and test a variable. Since most
CPU 12 instructions automatically update condition codes, it is rarely necessary to
execute an extra instruction for this purpose. The challenge in using the CPU 12 lies
in finding instructions that do not alter the condition codes. The most important of
these instructions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see APPENDIX A
INSTRUCTION REFERENCE) to check which condition codes are affected by a
particular instruction.

The following paragraphs describe normal uses of the condition codes. There are
other, more specialized uses. For instance, the C status bit is used to enable
weighted fuzzy logic rule evaluation. These specialized usages are described in
the relevant portions of this manual and in SECTION 6 INSTRUCTION GLOSSA
RY.

2.1.5.1 S Control Bit

Setting the S bit disables the STOP instruction. Execution of a STOP instruction
causes the on-chip oscillator to stop. This may be undesirable in some applica
tions. If the CPU encounters a STOP instruction while the S bit is set, it is treated
like a no-operation (NOP) instruction, and continues to the next instruction.

2.1.5.2 X Mask Bit

CPU12

The XIRQ input is an updated version of the NMI input found on earlier generations
of MCUs. Non-maskable interrupts are typically used to deal with major system fail
ures, such as loss of power. However, enabling non-maskable interrupts before a
system is fully powered and initialized can lead to spurious interrupts. The X bit pro
vides a mechanism for enabling non-maskable interrupts after a system is stable.

OVERVIEW

REFERENCE MANUAL
MOTOROLA

2-3

By default, the X bit is set to one during reset. As long as the X bit remains set,
interrupt seNice requests made via the XIRQ pin are not recognized. An instruction
must clear the X bit to enable nonmaskable interrupt service requests made via the
XIRQ pin. Once the X bit has been cleared to zero, software cannot reset it to one
by writing to the CCR. The X bit is not affected by maskable interrupts.

After non-maskable interrupts are enabled, when an XIRQ interrupt occurs, both
the X bit and the I bit are automatically set to prevent other interrupts from being
recognized during the interrupt seNice routine. The mask bits are set after the reg
isters are stacked, but before the interrupt vector is fetched.

Normally, an RTI instruction at the end of the interrupt seNice routine restores reg
ister values that were present before the interrupt occurred. Since the CCR is
stacked before the X bit is set, the RTI normally clears the X bit, and thus re-en
abies non-maskable interrupts. While it is possible to manipulate the stacked value
of X so that X is set after an RTI, there is no software method to re-set X (and dis
able NMI) once X has been cleared.

2.1.5.3 H Status Bit

The H bit indicates a carry from accumulator A bit 3 during an addition operation.
The DAA instruction uses the value of the H bit to adjust a result in accumulator A
to correct BCD format. H is updated only by the ABA, ADD, and ADC instructions.

2.1.5.4 I Mask Bit

The I bit enables and disables maskable interrupt sources. By default, the I bit is
set to one during reset. An instruction must clear the I bit to enable maskable inter
rupts. While the I bit is set, maskable interrupts can become pending and are re
membered, but operation continues uninterrupted until the I bit is cleared.

After interrupts are enabled, when an interrupt occurs, the I bit is automatically set
to prevent other maskable interrupts during the interrupt seNice routine. The I bit
is set after the registers are stacked, but before the interrupt vector is fetched.

Normally, an RTI instruction at the end of the interrupt seNice routine restores reg
ister values that were present before the interrupt occurred. Since the CCR is
stacked before the I bit is set, the RTI normally clears the I bit, and thus re-enables
interrupts. Interrupts can be re-enabled by clearing the I bit within the service rou
tine, but implementing a nested interrupt management scheme requires great care,
and seldom improves system performance.

2.1.5.5 N Status Bit

The N bit shows the state of the MSB of the result. N is most commonly used in
two's complement arithmetic, where the MSB of a negative number is one and the
MSB of a positive number is zero, but it has other uses. For instance, if the MSB
of a register or memory location is used as a status flag, the user can test status
by loading an accumulator.

MOTOROLA

2·4
OVERVIEW CPU12

REFERENCE MANUAL

2.1.5.6 Z Status Bit

The Z bit is set when all the bits of the result are zeros. Compare instructions per
form an internal implied subtraction, and the condition codes, including Z, reflect
the results of that subtraction. The INX, DEX, INY, and DEY instructions affect the
Z bit and no other condition flags. These operations can only determine = and of.

2.1.5.7 V Status Bit

The V bit is set when two's complement overflow occurs as a result of an operation.

2.1.5.8 C Status Bit

The C bit is set when a carry occurs during addition or a borrow occurs during sub
traction. The C bit also acts as an error flag for multiply and divide operations. Shift
and rotate instructions operate through the C bit to facilitate multiple-word shifts.

2.2 Data Types

The CPU12 uses the following types of data:

• Bits
• 5-bit signed integers

• 8-bit signed and unsigned integers

• 8-bit, 2-digit binary coded decimal numbers

• 9-bit signed integers

• 16-bit signed and unsigned integers

16-bit effective addresses

32-bit signed and unsigned integers

Negative integers are represented in two's complement form.

5-bit and 9-bit signed integers are used only as offsets for indexed addressing
modes.

16-bit effective addresses are formed during addressing mode computations.

32-bit integer dividends are used by extended division instructions. Extended mUl
tiply and extended multiply-and-accumulate instructions produce 32-bit products.

2.3 Memory Organization

CPU12

The standard CPU12 address space is 64 Kbytes. Some M68HC12 devices sup
port a paged memory expansion scheme that increases the standard space by
means of predefined windows in address space. The CPU 12 has special instruc
tions that support use of expanded memory. See SECTION 10 MEMORY EXPAN
SION for more information.

OVERVIEW
REFERENCE MANUAL

MOTOROLA

2-5

8-bit values can be stored at any odd or even byte address in available memory.
16-bit numbers are stored in memory as two consecutive bytes; the high byte oc
cupies the lowest address, but need not be aligned to an even boundary. 32-bit
numbers are stored in memory as four consecutive bytes; the high byte occupies
the lowest address, but need not be aligned to an even boundary.

All va and all on-chip peripherals are memory-mapped. No special instruction syn
tax is required to access these addresses. On-chip registers and memory are typ
ically grouped in blocks which can be relocated within the standard 64-Kbyte
address space. Refer to device documentation for specific information.

2.4 Instruction Queue

The CPU12 uses an instruction queue to buffer program information. The mecha
nism is called a queue rather than a pipeline because a typical pipelined CPU ex
ecutes more than one instruction at the same time, while the CPU12 always
finishes executing an instruction before beginning to execute another. Refer to
SECTION 4 INSTRUCTION QUEUE for more information.

MOTOROLA

2-6

OVERVIEW CPU12

REFERENCE MANUAL

SECTION 3
ADDRESSING MODES

Addressing modes determine how the CPU accesses memory locations to be op
erated upon. This section discusses the various modes and how they are used.

3.1 Mode Summary

Addressing modes are an implicit part of CPU12 instructions. APPENDIX A IN
STRUCTION REFERENCE shows the modes used by each instruction. All CPU 12
addressing modes are shown in Table 3-1.

Table 3-1 M68HC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description

INST
Inherent (no externally supplied op- INH Operands (if any) are in CPU registers

erands)

INST #oprBi Operand is included in instruction stream
Immediate or IMM

INST #opr16i 8- or 16-bit size implied by context

Direct INST oprBa DIR
Operand is the lower 8-bits of an address

in the range $0000 - $OOFF

Extended INST opr16a EXT Operand is a 16-bit address

INST relB An 8-bit or 16-bit relative offset from the current
Relative or REL pc is supplied in the instruction INST rel16

Indexed INST oprx5,xysp IDX 5-bit signed constant offset from x. y. sp. or pc (5-bit offset)

Indexed
INST oprx3,-xys IDX Auto pre-decrement x. y. or sp by 1 - 8 (pre-decrement)

Indexed
INST oprx3,+xys IDX Auto pre-increment x. y. or sp by 1 - 8 (pre-increment)

Indexed
INST oprx3,xys- IDX Auto post-decrement x. y. or sp by 1 - 8 (post-decrement)

Indexed INST oprx3,xys+ IDX Auto post-increment x. y. or sp by 1 - 8 (post-increment)

Indexed
INST abd,xysp IDX

Indexed with 8-bit (A or 8) or 16-bit (D)
(accumulator offset) accumulator offset from x. y. sp. or pc

Indexed
INST oprx9,xysp IDX1 9-bit signed constant offset from x. y. sp. or pc

(9-bit offset) (lower 8-bits of offset in one extension byte)

Indexed
INST oprx16,xysp IDX2 16-bit constant offset from x. y. sp. or pc

(16-bit offset) (16-bit offset in two extension bytes)

Indexed-Indirect Pointer to operand is found at...

(16-bit offset) INST [oprx16,xysp] [IDX2] 16-bit constant offset from x. y. sp. or pc
(16-bit offset in two extension bytes)

Indexed-Indirect
Pointer to operand is found al. .. (D accumulator off- INST [D,xysp] [D.IDX]

set) x. y. sp. or pc plus the value in D

CPU12 ADDRESSING MODES

REFERENCE MANUAL

MOTOROLA

3-1

The CPU12 uses all M68HC11 modes as well as new forms of indexed addressing.
Differences between M68HC11 and M68HC12 indexed modes are described in
3.8 Indexed Addressing Modes. Instructions that use more than one mode are
discussed in 3.9 Instructions That Use Multiple Modes.

3.2 Effective Address

Each addressing mode except inherent mode generates a 16-bit effective address
which is used during the memory reference portion of the instruction. Effective ad
dress computations do not require extra execution cycles.

3.3 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or all operands
are in internal CPU registers. In either case, the CPU does not need to access any
memory locations to complete the instruction.

Examples:

NOP ;this instruction has no operands

INX ;operand is a CPU register

3.4 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction stream,
and are fetched into the instruction queue one 16-bit word at a time during normal
program fetch cycles. Since program data is read into the instruction queue several
cycles before it is needed, when an immediate addressing mode operand is called
for by an instruction, it is already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode operand.
One very common programming error is to accidentally omit the # symbol. This
causes the assembler to misinterpret the following expression as an address rather
than explicitly provided data. For example LDAA #$55 means to load the immedi
ate value $55 into the A accumulator, while LDAA $55 means to load the value
from address $0055 into the A accumulator. Without the # symbol the instruction
is erroneously interpreted as a direct addressing mode instruction.

Examples:

LDAA #$55

LDX #$1234

LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing mode. The
size of the immediate operand is implied by the instruction context. In the third ex
ample, the instruction implies a 16-bit immediate value but only an 8-bit value is
supplied. In this case the assembler will generate the 16-bit value $0067 because
the CPU expects a 16-bit value in the instruction stream.

MOTOROLA

3-2

ADDRESSING MODES CPU12

REFERENCE MANUAL

BRSET FOO,#$03,THERE

In this example, extended addressing mode is used to access the operand Faa,
immediate addressing mode is used to access the mask value $03, and relative
addressing mode is used to identify the destination address of a branch in case the
branch-taken conditions are met. BRSET is listed as an extended mode instruction
even though immediate and relative modes are also used.

3.5 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing because it is
used to access operands in the address range $0000 through $OOFF. Since these
addresses always begin with $00, only the eight low-order bits of the address need
to be included in the instruction, which saves program space and execution time.
A system can be optimized by placing the most commonly accessed data in this
area of memory. The eight low-order bits of the operand address are supplied with
the instruction and the eight high-order bits of the address are assumed to be zero.

Examples:

LDAA $55

This is a very basic example of direct addressing. The value $55 is taken to be the
low order half of an address in the range $0000 through $OOFF. The high order half
of the address is assumed to be zero. During execution of this instruction, the CPU
combines the value $55 from the instruction with the assumed value of $00 to form
the address $0055, which is then used to access the data to be loaded into the A
accumulator.

LDX $20

In this example, the value $20 is combined with the assumed value of $00 to form
the address $0020. Since the LDX instruction requires a 16-bit value, a 16-bit word
of data is read from addresses $0020 and $0021. After execution of this instruction,
the X index register will have the value from address $0020 in its high order half
and the value from address $0021 in its low order half.

3.6 Extended Addressing Mode

CPU12

In this addressing mode, the full 16-bit address of the memory location to be oper
ated on is provided in the instruction. This addressing mode can be used to access
any location in the 64-Kbyte memory map.

Example:

LDAA $F03B

This is a very basic example of extended addressing. The value from address
$F03B is loaded into the A accumulator.

ADDRESSING MODES
REFERENCE MANUAL

MOTOROLA

3-3

3.7 Relative Addressing Mode

The relative addressing mode is used only by branch instructions. Short and long
conditional branch instructions use relative addressing mode exclusively, but
branching versions of bit manipulation instructions (BRSET and BRCLR) use mul
tiple addressing modes, including relative mode. Refer to 3.9 Instructions That
Use Multiple Modes for more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit offset con
tained in the byte that follows the opcode. Long branch instructions consist of an
8-bit prebyte, an 8-bit opcode and a signed 16-bit offset contained in the two bytes
that follow the opcode.

Each conditional branch instruction tests certain status bits in the condition code
register. If the bits are in a specified state, the offset is added to the address of the
next memory location after the offset to form an effective address, and execution
continues at that address; if the bits are not in the specified state, execution con
tinues with the instruction immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a specific state.
Various addressing modes can be used to access the memory location. An 8-bit
mask operand is used to test the bits. If each bit in memory that corresponds to a
one in the mask is either set (BRSET) or clear (BRCLR), an 8-bit offset is added to
the address of the next memory location after the offset to form an effective ad
dress, and execution continues at that address; if all the bits in memory that corre
spond to a one in the mask are not in the specified state, execution continues with
the instruction immediately following the branch instruction.

Both 8-bit and 16-bit offsets are signed two's complement numbers to support
branching upward and downward in memory. The numeric range of short branch
offset values is $80 (-128) to $7F (127). The numeric range of long branch offset
values is $8000 (-32768) to $7FFF (32767). If the offset is zero, the CPU executes
the instruction immediately following the branch instruction, regardless of the test
involved.

Since the offset is at the end of a branch instruction, using a negative offset value
can cause the PC to point to the opcode and initiate a loop. For instance, a branch
always (BRA) instruction consists of two bytes, so using an offset of $FE sets up
an infinite loop; the same is true of a long branch always (LBRA) instruction with
an offset of $FFFC.

An offset that points to the opcode can cause a bit-condition branch to repeat ex
ecution until the specified bit condition is satisfied. Since bit condition branches can
consist of four, five, or six bytes depending on the addressing mode used to access
the byte in memory, the offset value that sets up a loop can vary. For instance, us
ing an offset of $FC with a BRCLR that accesses memory using an 8-bit indexed
postbyte sets up a loop that executes until all the bits in the specified memory byte
that correspond to ones in the mask byte are cleared.

MOTOROLA

3-4

ADDRESSING MODES CPU12

REFERENCE MANUAL

3.8 Indexed Addressing Modes

CPU12

The CPU12 uses redefined versions of MC68HC11 indexed modes that reduce ex
ecution time and eliminate code size penalties for using the Y index register. In
most cases, CPU12 code size for indexed operations is the same or is smaller than
that for the M68HC11. Execution time is shorter in all cases. Execution time im
provements are due to both a reduced number of cycles for all indexed instructions
and to faster system clock speed.

The indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension bytes
after the instruction opcode. The postbyte and extensions do the following tasks:

Specify which index register is used.

Determine whether a value in an accumulator is used as an offset.

1. Enable automatic pre or post increment or decrement.
2. Specify size of increment or decrement.
3. Specify use of 5-, 9-, or 16-bit signed offsets.

This approach eliminates the differences between X and Y register use while dra
matically enhancing the indexed addressing capabilities.

Major advantages of the CPU12 indexed addressing scheme are:

• The stack pointer can be used as an index register in all indexed operations.

• The program counter can be used as an index register in all but autoincrement
and autodecrement modes.

• A, S, or D accumulators can be used for accumulator offsets.

• Automatic pre- or post- increment or decrement by -8 to +8

• A choice of 5-, 9-, or 16-bit signed constant offsets.

• Use of two new Indexed-indirect modes.

-Indexed-indirect mode with 16-bit offset

-Indexed-indirect mode with accumulator D offset

Table 3-2 is a summary of indexed addressing mode capabilities and a description
of postbyte encoding. The postbyte is noted as xb in instruction descriptions. De
tailed descriptions of the indexed addressing mode variations follow the table.

All indexed addressing modes use a 16-bit CPU register and additional information
to create an effective address. In most cases the effective address specifies the
memory location affected by the operation. In some variations of indexed address
ing, the effective address specifies the location of a value that points to the memory
location affected by the operation.

Indexed addressing mode instructions use a postbyte to specify X, Y, SP, or PC as
the base index register and to further classify the way the effective address is
formed. A special group of instructions (LEAS, LEAX, and LEA Y) cause this calcu
lated effective address to be loaded into an index register for further calculations.

ADDRESSING MODES

REFERENCE MANUAL
MOTOROLA

3-5

Table 3-2 Summary of Indexed Operations

Postbyte Operand Comments
Code (xb) Syntax

rrOnnnnn ,r 5-bit constant offset
n,r n=-1610+15
-n,r rr can specify X, Y, SP, or PC

111 rrOzs n,r Constant offset (9- or 16-bit signed)
-n,r z- 0= 9-bit with sign in LSB of postbyte (s)

1 = 16-bit
if z = s = 1, 16-bit offset indexed-indirect (see below)
rr can specify X, Y, SP, or PC

111 rr011 [n,r] is-bit offset indexed-indirect
rr can specify X, Y, SP, or PC

rr1pnnnn n,-r Auto pre-decrement !increment or Auto post-decrement/increment;
n,+r p = pre-(O) or post-(1), n = -8 to -1 , +1 to +8
n,r- rr can specify X, Y, or SP (PC not a valid choice)

n,r+

111rr1aa A,r Accumulator offset (unsigned 8-bit or 16-bit)
B,r aa - 00 = A
D,r 01 = B

10 = D (16-bit)
11 = see accumulator D offset indexed-indirect

rr can specify X, Y, SP, or PC

111 rr111 [D,r] Accumulator 0 offset indexed-indirect
rr can specify X, Y, SP, or PC

3_8_1 5-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 5-bit signed offset which is included in the
instruction postbyte. This short offset is added to the base index register (X, Y, SP,
or PC) to form the effective address of the memory location that will be affected by
the instruction. This gives a range of -16 through +15 from the value in the base
index register. Although other indexed addressing modes allow 9- or 16-bit offsets,
those modes also require additional extension bytes in the instruction for this extra
information. The majority of indexed instructions in real programs use offsets that
fit in the shortest 5-bit form of indexed addressing.

Examples:

LDAA a,x

STAB -8, Y

For these examples, assume X has a value of $1000 and Y has a value of $2000
before execution. The 5-bit constant offset mode does not change the value in the
index register, so X will still be $1000 and Y will still be $2000 after execution of
these instructions. In the first example, A will be loaded with the value from address
$1000. In the second example, the value from the B accumulator will be stored at
address $1 FF8 ($2000 - $8).

MOTOROLA

3-6
ADDRESSING MODES CPU12

REFERENCE MANUAL

3.8.2 9-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 9-bit signed offset which is added to the
base index register (X, Y, SP, or PC) to form the effective address of the memory
location affected by the instruction. This gives a range of -256 through +255 from
the value in the base index register. The most significant bit (sign bit) of the offset
is included in the instruction postbyte and the remaining 8 bits are provided as an
extension byte after the instruction postbyte in the instruction flow.

Examples:

LDAA $FF,X

LDAB -20, Y

For these examples assume X is $1000 and Y is $2000 before execution of these
instructions (These instructions do not alter the index registers so they will still be
$1000 and $2000 respectively after the instructions). The first instruction will load
A with the value from address $1 OFF and the second instruction will load B with the
value from address $1 FEC.

This variation of the indexed addressing mode in the CPU12 is similar to the
M68HC11 indexed addressing mode, but is functionally enhanced. The M68HC11
CPU provides for unsigned 8-bit constant offset indexing from X or Y, and use of Y
requires an extra instruction byte and thus, an extra execution cycle. The 9-bit
signed offset used in the CPU12 covers the same range of positive offsets as the
HC11, and adds negative offset capability. The CPU12 can use X, Y, SP or PC as
the base index register.

3.8.3 16-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 16-bit offset which is added to the base in
dex register (X, Y, SP, or PC) to form the effective address of the memory location
affected by the instruction. This allows access to any address in the 64-Kbyte ad
dress space. Since the address bus and the offset are both 16 bits, it does not mat
ter whether the offset value is considered to be a signed or an unsigned value
($FFFF may be thought of as +65,535 or as -1). The 16-bit offset is provided as
two extension bytes after the instruction postbyte in the instruction flow.

3.8.4 16-Bit Constant Indirect Indexed Addressing

CPU12

This indexed addressing mode adds a 16-bit instruction-supplied offset to the base
index register to form the address of a memory location that contains a pointer to
the memory location affected by the instruction. The instruction itself does not point
to the address of the memory location to be acted upon, but rather to the location
of a pointer to the address to be acted on. The square brackets distinguish this ad
dressing mode from 16-bit constant offset indexing.

Example:

LDAA [lO,X]

ADDRESSING MODES

REFERENCE MANUAL

MOTOROLA

3-7

In this example, X holds the base address of a table of pointers. Assume that X has
an initial value of $1000, and that the value $2000 is stored at addresses $100A
and $1 OOB. The instruction first adds the value 10 to the value in X to form the ad
dress $1 OOA. Next, an address pointer ($2000) is fetched from memory at $1 OOA.
Then, the value stored in location $2000 is read and loaded into the A accumulator.

3.8.5 Auto Pre/Post Decrement/Increment Indexed Addressing

This indexed addressing mode provides four ways to automatically change the val
ue in a base index register as a part of instruction execution. The index register can
be incremented or decremented by an integer value either before or after indexing
takes place. The base index register may be X, Y, or SP (auto-modify modes would
not make sense on PC).

Predecrement and preincrement versions of the addressing mode adjust the value
of the index register before accessing the memory location affected by the instruc
tion - the index register retains the changed value after the instruction executes.
Postdecrement and postincrement versions of the addressing mode use the initial
value in the index register to access the memory location affected by the instruc
tion, then change the value of the index register.

The CPU12 allows the index register to be incremented or decremented by any in
teger value in the ranges -8 through -1, or 1 through 8. The value need not be re
lated to the size of the operand for the current instruction. These instructions can
be used to incorporate an index adjustment into an existing instruction rather than
using an additional instruction and increasing execution time. This addressing
mode is also used to perform operations on a series of data structures in memory.

When an LEAS, LEAX, or LEA Y instruction is executed using this addressing
mode, and the operation modifies the index register that is being loaded, the final
value in the register is the value that would have been used to access a memory
operand (premodification is seen in the result but postmodification is not).

Examples:

STAA l,-SP ; equivalent to PSHA

STX 2, -SP ; equivalent to PSHX

LDX 2,SP+ ; equivalent to PULX

LDAA 1,SP+ ; equivalent to PULA

For a "last-used" type of stack like the CPU12 stack, these four examples are
equivalent to common push and pull instructions. For a "next-available" stack like
the M68HC11 stack, PSHA is equivalent to STAA 1 ,SP- and PULA is equivalent to
LDAA 1,+SP. However, in the M68HC11, 16-bit operations like PSHX and PULX
require multiple instructions to decrement the SP by one, then store X, then decre
ment SP by one again.

MOTOROLA

3-8

ADDRESSING MODES CPU12

REFERENCE MANUAL

In the STAA 1 ,-SP example, the stack pointer is pre-decremented by 1 and then A
is stored to the address contained in the stack pointer. Similarly the LDX 2,SP+ first
loads X from the address in the stack pointer then post-increments SP by two.

Example:

MOVW 2,X+,4,+Y

This example demonstrates how to work with data structures larger than bytes and
words. With this instruction in a program loop, it is possible to move words of data
from a list having one word per entry into a second table that has four bytes per
table element. In this example the source pointer is updated after the data is read
from memory (post-increment) while the destination pointer is updated before it is
used to access memory (pre-increment).

3.8.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the values in
the base index register and one of the accumulators. The value in the index register
itself is not changed. The index register can be X, Y, SP, or PC and the accumula
tor can be either of the 8-bit accumulators (A or B) or the 16-bit D accumulator.

Example:

LDAA B,X

This instruction internally adds B to X to form the address where A will be loaded
from. B and X are not changed by this instruction. This example is similar to the
following two instruction combination in an M68HC11.

ABX
LDAA a,x

However, this two instruction sequence alters the index register. If this sequence
was part of a loop where B changed on each pass, the index register would have
to be reloaded with the reference value on each loop pass. The use of LDAA B,X
is more efficient in the CPU 12.

3.8.7 Accumulator D Indirect Indexed Addressing

CPU12

This indexed addressing mode adds the value in the D accumulator to the value in
the base index register to form the address of a memory location that contains a
pointer to the memory location affected by the instruction. The instruction operand
does not point to the address of the memory location to be acted upon, but rather
to the location of a pointer to the address to be acted upon. The square brackets
distinguish this addressing mode from D accumulator offset indexing.

Example:

JMP
GOI
G02
G03

[D,PC]
DC.W
DC.W
DC.W

PLACEI
PLACE2
PLACE3

ADDRESSING MODES

REFERENCE MANUAL
MOTOROLA

3-9

This example is a computed GOTO. The values beginning at G01 are addresses
of potential destinations of the jump instruction. At the time the JMP [D,PC] instruc
tion is executed, PC points to the address G01, and D holds one of the values
$0000, $0002, or $0004, which was determined by the program some time before
the JMP. Assume that the value in D is $0002. The JMP instruction adds the values
in D and PC to form the address of G02. Next the CPU reads the address PLACE2
from memory at G02 and jumps to there. The locations of PLACE1 through
PLACE3 were known at the time of program assembly but the destination of the
JMP depends upon the value in D computed during program execution.

3.9 Instructions That Use Multiple Modes

Several CPU12 instructions use more than one addressing mode in the course of
execution.

3.9.1 Move Instructions

Move instructions use separate addressing modes to access the source and des
tination of a move. There are move variations for most combinations of immediate,
extended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are those with an
immediate mode destination (the operand of an immediate mode instruction is da
ta, not an address). For indexed moves, the reference index register may be X, Y,
SP, or PC.

Move instructions do not support indirect modes and 9-bit and 16-bit offset modes
that require extra extension bytes.There are special considerations when using
PC-relative addressing with move instructions.

PC-relative addressing uses the address of the location that immediately follows
the last byte of object code for the current instruction as a reference point. The
CPU12 normally corrects for queue offset and for instruction alignment so that
queue operation is trahsparent to the user. However, move instructions pose three
special problems.

1. Some moves use an indexed source and an indexed destination.
2. Some moves have object code that is too long to fit in the queue at one time,

so the PC value changes during execution.
3. All moves do not have the indexed postbyte as the last byte of object code.

These cases are not handled by automatic queue pointer maintenance, but it is still
possible to use PC-relative indexing with move instructions by providing for PC off
sets in source code.

Table 3-3 shows PC offsets from the location immediately following the current in
struction by addressing mode.

MOTOROLA

3·10

ADDRESSING MODES CPU12

REFERENCE MANUAL

Table 3-3 PC Offsets for Move Instructions

MOVE Instruction Addressing Modes Offset Value

IMM => lOX +1

EXT => lOX +2

MOVB lOX => EXT -2

lOX => lOX
- 1 for 151 Operand

+ 1 for 2nd Operand

IMM =>IOX +2

EXT => lOX +2

MOVW lOX => EXT -2

lOX => lOX
- 1 for 151 Operand

+ 1 for 2nd Operand

Example:

1000 18 09 C2 20 00 MOVB $2000 2,PC

Moves a byte of data from $2000 to $1009

The expected location of the PC = $1005. The offset = +2.

(1005 + 2 (for 2,PC) + 2 (for correction) = 1009)

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the indexed
postbyte for 2,pc (without correction).

The Motorola MCUasm assembler produces corrected object code for PC-relative
moves (18 09 cO 20 00 for the example shown). Note that, instead of assembling
the 2,PC as C2, the correction has been applied to make it CO. Check whether an
assembler makes the correction before using PC-relative moves.

3.9.2 Bit Manipulation Instructions

CPU12

Bit manipulation instructions use either a combination of two or a combination of
three addressing modes.

The BCLR and BSET instructions use an 8-bit mask to determine which bits in a
memory byte are to be changed. The mask must be supplied with the instruction
as an immediate mode value. The memory location to be modified can be specified
by means of direct, extended, or indexed addressing modes.

The BRCLR and BRSET instructions use an 8-bit mask to test the states of bits in
a memory byte. The mask is supplied with the instruction as an immediate mode
value. The memory location to be tested is specified by means of direct, extended,
or indexed addressing modes. Relative addressing mode is used to determine the
branch address. A signed 8-bit offset must be supplied with the instruction.

ADDRESSING MODES

REFERENCE MANUAL
MOTOROLA

3-11

3.10 Addressing More Than 64 Kbytes

Some M68HC12 devices incorporate hardware that supports addressing a larger
memory space than the standard 64 Kbytes. The expanded memory system uses
fast on-chip logic to implement a transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching scheme
instead of a large linear address space. In systems with large linear address spac
es, instructions require more bits of information to address a memory location, and
CPU overhead is greater. Other advantages include the ability to change the size
of system memory, and the ability to use various types of external memory.

However, the add-on bank switching schemes used in other microcontrollers have
known weaknesses. These include the cost of external glue logic, increased pro
gramming overhead to change banks, and the need to disable interrupts while
banks are switched.

The M68HC12 system requires no external glue logic. Bank switching overhead is
reduced by implementing control logic in the MCU. Interrupts do not need to be dis
abled during switching because switching tasks are incorporated in special instruc
tions that greatly simplify program access to extended memory.

MCUs with expanded memory treat 16 Kbytes of memory space from $8000 to
$BFFF as a program memory window. Expanded-memory devices also have an
8-bit program page register (PPAGE), which allows up to 256 16-Kbyte program
memory pages to be switched into and out of the program memory window. This
provides for up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes CALL and RTC (return from call) instructions,
which greatly simplify the use of expanded memory space. These instructions also
execute correctly on devices that do not have expanded-memory addressing ca
pability, thus providing for portable code.

The CALL instruction is similar to the JSR instruction. When CALL is executed, the
current value in PPAGE is pushed onto the stack with a return address, and a new
instruction-supplied value is written to PPAGE. This value selects the page the
called subroutine resides upon, and can be considered to be part of the effective
address. For all addressing mode variations except indexed indirect modes, the
new page value is provided by an immediate operand in the instruction. For in
dexed indirect variations of CALL, a pointer specifies memory locations where the
new page value and the address of the called subroutine are stored. Use of indirect
addressing for both the page value and the address within the page frees the pro
gram from keeping track of explicit values for either address.

The RTC instruction restores the saved program page value and the return ad
dress from the stack. This causes execution to resume at the next instruction after
the original CALL instruction.

Please refer to SECTION 10 MEMORY EXPANSION for a detailed discussion of
memory expansion.

MOTOROLA

3-12

ADDRESSING MODES CPU12

REFERENCE MANUAL

SECTION 4
INSTRUCTION QUEUE

The CPU12 uses an instruction queue to increase execution speed. This section
describes queue operation during normal program execution and changes in exe
cution flow. These concepts augment the descriptions of instructions and cycle-by
cycle instruction execution in subsequent sections, but it is important to note that
queue operation is automatic, and generally transparent to the user.

The material in this section is general. SECTION 6 INSTRUCTION GLOSSARY
contains detailed information concerning cycle-by-cycles execution of each in
struction. SECTION 8 DEVELOPMENT AND DEBUG SUPPORT contains de
tailed information about tracking queue operation and instruction execution.

4.1 Queue Description

CPU12

The fetching mechanism in the CPU 12 is best described as a queue rather than as
a pipeline. Queue logic fetches program information and positions it for execution,
but instructions are executed sequentially. A typical pipelined CPU can execute
more than one instruction at the same time, but interactions between the prefetch
and execution mechanisms can make tracking and debugging difficult. The CPU 12
thus gains the advantages of independent fetches, yet maintains a straightforward
relationship between bus and execution cycles.

There are two 16-bit queue stages and a 16-bit buffer. Program information is
fetched in aligned 16-bit words. Unless buffering is required, program information
is first queued into stage 1, then advanced to stage 2 for execution.

At least two words of program information are available to the CPU when execution
begins. The first byte of object code is in either the even or odd half of the word in
stage 2, and at least two more bytes of object code are in the queue.

Queue logic manages the position of program information so that the CPU itself
does not deal with alignment. As it is executed, each instruction initiates at least
enough program word fetches to replace its own object code in the queue.

The buffer is used when a program word arrives before the queue can advance.
This occurs during execution of single-byte and odd-aligned instructions. For in
stance, the queue cannot advance after an aligned, single-byte instruction is exe
cuted, because the first byte of the next instruction is also in stage 2. In these
cases, information is latched into the buffer until the queue can advance.

Two external pins, IPIPE[l :0], provide time-multiplexed information about data
movement in the queue and instruction execution. Decoding and use of these sig
nals is discussed in SECTION 8 DEVELOPMENT AND DEBUG SUPPORT.

INSTRUCTION QUEUE
REFERENCE MANUAL

MOTOROLA

4-1

4.2 Data Movement in the Queue

All queue operations are combinations of four basic queue movement cycles. De
scriptions of each of these cycles follows. Queue movement cycles are only one
factor in instruction execution time, and should not be confused with bus cycles.

4.2.1 No Movement

There is no data movement in the instruction queue during the cycle. This occurs
during execution of instructions that must perform a number of internal operations,
such as division instructions.

4.2.2 Latch Data From Bus

All instructions initiate fetches to refill the queue as execution proceeds. However,
a number of conditions, including instruction alignment and the length of previous
instructions, affect when the queue advances. If the queue is not ready to advance
when fetched information arrives, the information is latched into the buffer. Later,
when the queue does advance, stage 1 is refilled from the buffer. If more than one
latch cycle occurs before the queue advances, the buffer is filled on the first latch
event and subsequent latch events are ignored until the queue advances:

4.2.3 Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, and stage 1 is loaded with a
word of program information from the data bus. The information was requested two
bus cycles earlier but has only become available this cycle, due to access delay.

4.2.4 Advance and Load from Buffer

The content of queue stage 1 is advanced to stage 2, and stage 1 is loaded with a
word of program information from the buffer. The information in the buffer was
latched from the data bus during a previous cycle because the queue was not
ready to advance when it arrived.

4.3 Changes in Execution Flow

During normal instruction execution, queue operations proceed as a continuous
sequence of queue movement cycles. However, situations arise which call for
changes in flow. These changes are categorized as resets, interrupts, subroutine
calls, conditional branches, and jumps. Generally speaking, resets and interrupts
are considered to be related to events outside the current program context that re
quire special processing, while subroutine calls, branches, and jumps are consid
ered to be elements of program structure.

During design, great care is taken to assure that the mechanism that increases in
struction throughput during normal program execution does not cause bottlenecks
during changes of program flow, but internal queue operation is largely transparent
to the user. The following information is provided to enhance subsequent descrip
tions of instruction execution.

MOTOROLA

4-2

INSTRUCTION QUEUE CPU12

REFERENCE MANUAL

4.3.1 Exceptions

Exceptions are events that require processing outside the normal flow of instruc
tion execution. CPU12 exceptions include four types of resets, an unimplemented
opcode trap, a software interrupt instruction, X-bit interrupts, and I-bit interrupts. All
exceptions use the same microcode, but the CPU follows different execution paths
for each type of exception.

CPU 12 exception handling is designed to minimize the effect of queue operation
on context switching. Thus, an exception vector fetch is the first part of exception
processing, and fetches to refill the queue from the address pointed to by the vector
are interleaved with the stacking operations that preserve context, so that program
access time does not delay the switch. Please refer to SECTION 7 EXCEPTION
PROCESSING for detailed information.

4.3.2 Subroutines

CPU12

The CPU12 can branch to (BSR), jump to (JSR), or CALL subroutines. BSR and
JSR are used to access subroutines in the normal 64-Kbyte address space. The
CALL instruction is intended for use in MCUs with expanded memory capability.

BSR uses relative addressing mode to generate the effective address of the sub
routine, while JSR can use various other addressing modes. Both instructions cal
culate a return address, stack the address, then perform three program word
fetches to refill the queue. The first two words fetched are queued during the sec
ond and third cycles of the sequence. The third fetch cycle is performed in antici
pation of a queue advance, which may occur during the fourth cycle of the
sequence. If the queue is not yet ready to advance at that time, the third word of
program information is held in the buffer.

Subroutines in the normal 64-Kbyte address space are terminated with a return
from subroutine (RTS) instruction. RTS unstacks the return address, then performs
three program word fetches from that address to refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of addresses
from $8000 to $BFFF as a memory window. An 8-bit PPAGE register switches
memory pages into and out of the window. When CALL is executed, a return ad
dress is calculated, then it and the current PPAGE value are stacked, and a new
instruction-supplied value is written to PPAGE. The subroutine address is calculat
ed, then three program word fetches are made from that address.

The RTC instruction is used to terminate subroutines in expanded memory. RTC
unstacks the PPAGE value and the return address, then performs three program
word fetches from that address to refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space, thus pro
viding for portable code. However, since extra execution cycles are required, rou
tinely substituting CALURTC for JSR/RTS is not recommended.

INSTRUCTION QUEUE

REFERENCE MANUAL

MOTOROLA

4-3

4.3.3 Branches

Branch instructions cause execution flow to change when specific pre-conditions
exist. The CPU 12 instruction set includes short conditional branches, long condi
tional branches, and bit-condition branches. Types and conditions of branch in
structions are described in 5.18 Branch Instructions. All branch instructions affect
the queue similarly, but there are differences in overall cycle counts between the
various types. Loop primitive instructions are a special type of branch instruction
used to implement counter-based loops.

Branch instructions have two execution cases. Either the branch condition is satis
fied, and a change of flow takes place, or the condition is not satisfied, and no
change of flow occurs.

4.3.3.1 Short Branches

The "not-taken" case for short branches is simple. Since the instruction consists of
a single word containing both an opcode and an 8-bit offset, the queue advances,
another program word is fetched, and execution continues with the next instruction.

The "taken" case for short branches requires that the queue be refilled so that ex
ecution can continue at a new address. First, the effective address of the destina
tion is calculated using the relative offset in the instruction. Then, the address is
loaded into the program counter, and the CPU performs three program word fetch
es at the new address. The first two words fetched are loaded into the instruction
queue during the second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during the first cy
cle of the next instruction. If the queue is not yet ready to advance at that time, the
third word of program information is held in the buffer.

4.3.3.2 Long Branches

The "not-taken" case for all long branches requires three cycles, while the "taken"
case requires four cycles. This is due to differences in the amount of program in
formation needed to fill the queue.

Long branch instructions begin with a $18 prebyte that indicates the opcode is on
page 2 of the opcode map. The CPU12 treats the prebyte as a special one-byte
instruction. If the prebyte is not aligned, the first cycle is used to perform a program
word access; if the prebyte is aligned, the first cycle is used to perform a free cycle.
The first cycle for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional cycles make
the effects of byte-sized and misaligned instructions consistent with those of
aligned word-length instructions. Optional cycles are always performed, but serve
different purposes determined by instruction alignment. Program information is al
ways fetched as aligned 16-bit words. When an instruction consists of an odd num
ber of bytes, and the first byte is aligned with an even byte boundary, an optional
cycle is used to make an additional program word access that maintains queue or
der. In all other cases, the optional cycle appears as a free cycle.

MOTOROLA

4-4
INSTRUCTION QUEUE CPU12

REFERENCE MANUAL

In the "not-taken" case, the queue must advance so that execution can continue
with the next instruction. Two cycles are used to refill the queue. Alignment deter
mines how the second of these cycles is used.

In the "taken" case, the effective address of the branch is calculated using the 16-
bit relative offset contained in the second word of the instruction. This address is
loaded into the program counter, then the CPU performs three program word fetch
es at the new address. The first two words fetched are loaded into the instruction
queue during the second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during the first cy
cle of the next instruction. If the queue is not yet ready to advance, the third word
of program information is held in the buffer.

4.3.3.3 Bit Condition Branches

Bit-conditional branch instructions read a location in memory, and branch if the bits
in that location are in a certain state. These instructions can use direct, extended,
or indexed addressing modes. Indexed operations require varying amounts of in
formation to determine the effective address, so instruction length varies according
to the mode used, which in turn affects the amount of program information fetched.
In order to shorten execution time, these branches perform one program word
fetch in anticipation of the "taken" case. The data from this fetch is overwritten by
subsequent fetches in the "not-taken" case.

4.3.3.4 Loop Primitives

The loop primitive instructions test a counter value in a register or accumulator, and
branch to an address specified by a 9-bit relative offset contained in the instruction
if a specified pre-condition is met. There are auto-increment and auto-decrement
versions of the instructions. The test and increment/decrement operations are per
formed on internal CPU registers, and require no additional program information.
In order to shorten execution time, these branches perform one program word
fetch in anticipation of the "taken" case. The data from this fetch is overwritten by
subsequent fetches in the "not-taken" case. The "taken" case performs two addi
tional program word fetches at the new address. In the "not-taken" case, the queue
must advance so that execution can continue with the next instruction. Two cycles
are used to refill the queue. Alignment determines how the second cycle is used.

4.3.4 Jumps

CPU12

JMP is the simplest change of flow instruction. JMP can use extended or indexed
addressing. Indexed operations require varying amounts of information to deter
mine the effective address, so instruction length varies according to the mode
used, which in turn affects the amount of program information fetched. All forms of
JMP perform three program word fetches at the new address. The first two words
fetched are loaded into the instruction queue during the second and third cycles of
the sequence. The third fetch cycle is performed in anticipation of a queue ad
vance, which may occur during the first cycle of the next instruction. If the queue is
not yet ready to advance, the third word of program information is held in the buffer.

INSTRUCTION QUEUE
REFERENCE MANUAL

MOTOROLA

4-5

MOTOROLA

4-6

INSTRUCTION QUEUE CPU12

REFERENCE MANUAL

SECTION 5
INSTRUCTION SET OVERVIEW

This section contains general information about the CPU12 instruction set. It is or
ganized into instruction categories grouped by function.

5.1 Instruction Set Description

CPU12 instructions are a superset of the M68HC11 instruction set. Code written
for an M68HC11 can be reassembled and run on a CPU12 with no changes. The
CPU12 provides expanded functionality and increased code efficiency.

In the M68HC12 architecture, all memory and I/O are mapped in a common 64-
Kbyte address space (memory mapped I/O). This allows the same set of instruc
tions to be used to access memory, I/O, and control registers. General-purpose
load, store, transfer, exchange, and move instructions facilitate movement of data
to and from memory and peripherals.

The CPU 12 has a full set of 8-bit and 16-bit mathematical instructions. There are
instructions for signed and unsigned arithmetic, division and multiplication with 8-
bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD
calculation, and condition code register manipulation. There are also dedicated in
structions for multiply and accumulate operations, table interpolation, and special
ized fuzzy logic operations that involve mathematical calculations.

Refer to SECTION 6 INSTRUCTION GLOSSARY for detailed information about
individual instructions. APPENDIX A INSTRUCTION REFERENCE contains
quick-reference material, including an opcode map and postbyte encoding for in
dexed addressing, transfer/exchange instructions, and loop primitive instructions.

5.2 Load and Store Instructions

CPU12

Load instructions copy memory content into an accumulator or register. Memory
content is not changed by the operation. Load instructions (but not LEA_ instruc
tions) affect condition code bits so no separate test instructions are needed to
check the loaded values for negative or zero conditions.

Store instructions copy the content of a CPU register to memory. Register/accumu
lator content is not changed by the operation. Store instructions automatically up
date the Nand Z condition code bits, which can eliminate the need for a separate
test instruction in some programs.

Table 5-1 is a summary of load and store instructions.

INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

MOTOROLA

5-1

Table 5-1 Load and Store Instructions

Load Instructions

Mnemonic Function Operation

LDAA Load A (M) =>A

LDAB Load B (M) => B

LDD Load D (M : M + 1) => (A:B)

LDS Load SP (M : M + 1) => SP

LDX Load Index Register X (M: M + 1) => X

LDY Load Index Register Y (M: M + 1) => Y

LEAS Load Effective Address Into SP Effective Add ress => SP

LEAX Load Effective Address Into X Effective Address => X

LEAY Load Effective AddRess Into Y Effective Address => Y

Store Instructions

Mnemonic Function Operation

STAA Store A (A) => M

STAB Store B (B) => M

STD Store D (A) => M, (B) => M + 1

STS Store SP (SP) => M : M + 1

STX Store X (X) => M : M + 1

STY Store Y (Y)=>M:M+1

5.3 Transfer and Exchange Instructions

Transfer instructions copy the content of a register or accumulator into another reg
ister or accumulator. Source content is not changed by the operation. TFR is a uni
versaltransfer instruction, but other mnemonics are accepted for compatibility with
the M68HC11. The TAB and TBA instructions affect the N, Z, and V condition code
bits in the same way as M68HC11 instructions. The TFR instruction does not affect
the condition code bits.

Exchange instructions exchange the contents of pairs of registers or accumulators.

The SEX instruction is a special case of the universal transfer instruction that is
used to sign-extend 8-bit two's complement numbers so that they can be used in
16-bit operations. The 8-bit number is copied from accumulator A, accumulator B,
or the condition codes register to accumulator D, the X index register, the Y index
register, or the stack pointer. All the bits in the upper byte of the 16-bit result are
given the value of the MSB of the 8-bit number.

SECTION 6 INSTRUCTION GLOSSARY contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2 is a summary of transfer and exchange instructions.

MOTOROLA

5-2
INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

Table 5-2 Transfer and Exchange Instructions

Transfer Instructions

Mnemonic Function Operation

TAB Transfer A To B (A) => B

TAP Transfer A To CCR (A) => CCR

TBA Transfer B To A (B) => A

TFR Transfer Register To Register (A,B,CCR,D,X, Y,orSP)=>A,B,CCR,D,X, Y,orSP

TPA Transfer CCR To A (CCR) => A

TSX Transfer SP To X (SP) => X

TSY Transfer SP To Y (SP) => Y

TXS Transfer X To SP (X) => SP

TYS Transfer Y To SP (Y) => SP

Exchange Instructions

Mnemonic Function Operation

EXG Exchange Register To Register (A, B, CCR, D, X, Y, or SP) <=> (A, B, CCR, D, X, Y, or SP)

XGDX Exchange D With X (D) <=> (X)

XGDY Exchange D With Y (D) <=> (Y)

Sign Extension Instruction

Mnemonic Function Operation

SEX Sign Extend 8-bit Operand (A, B, CCR) => X, Y, or SP

5.4 Move Instructions

These instructions move data bytes or words from a source (M1, M : M +11) to a
destination (M2, M : M +12) in memory. Six combinations of immediate, extended,
and indexed addressing are allowed to specify source and destination addresses
(IMM => EXT, IMM => lOX, EXT => EXT, EXT => lOX, lOX => EXT, lOX => lOX).

Table 5-3 shows byte and word move instructions.

Table 5-3 Move Instructions

Mnemonic Function Operation

MOVB Move Byte (8-bit) (M1) => M2

MOVW Move Word (16-bit) (M :M+11)=>M:M+12

5.5 Addition and Subtraction Instructions

CPU12

Signed and unsigned 8- and 16-bit addition can be performed between registers or
between registers and memory. Special instructions support index calculation. In
structions that add the CCR carry bit facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed between registers
or between registers and memory. Special instructions support index calculation.
Instructions that subtract the CCR carry bit facilitate multiple precision computa
tion. Table 5-4 shows addition and SUbtraction instructions.

INSTRUCTION SET OVERVIEW

REFERENCE MANUAL
MOTOROLA

5-3

Table 5-4 Addition and Subtraction Instructions

Addition Instructions

Mnemonic Function Operation

ABA Add A To B (A) + (B) =>A

ABX Add B To X (B) + (X) => X

ABY Add B To Y (B) +(Y) => Y

ADCA Add With Carry To A (A) + (M) + C => A

ADCB Add With Carry To B (B) + (M) + C => B

ADDA Add Without Carry To A (A) +(M) => A

ADDB Add Without Carry To B (B) + (M) => B

ADDD Add To D (A:B)+(M: M +1) => A: B

Subtraction Instructions

Mnemonic Function Operation

SBA Subtract B From A (A) -(B) => A

SBCA Subtract With Borrow From A (A) - (M) - C => A

SBCB Subtract With Borrow From B (B) - (M) - C => B

SUBA Subtract Memory From A (A)-(M)=>A

SUBB Subtract Memory From B (B)- (M) => B

SUBD Subtract Memory From D (A:B) (D) - (M : M + 1) => D

5.6 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the half
carry bit in the CCR, then adjust the result with the DAA instruction. Table 5-5 is a
summary of instructions that can be used to perform BCD operations.

Table 5-5 BCD Instructions

Mnemonic Function Operation

ABA Add B To A (A) + (B) => A

ADCA Add With Carry To A (A) + (M) + C => A

ADCB Add With Carry To B (B) + (M) + C => B

ADDA Add Memory To A (A) + (M) => A

ADDB Add Memory To B (B) + (M) => B

DAA Decimal Adjust A (AHa

5.7 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction operations.
They are generally used to implement counters. Because they do not affect the car
ry bit in the CCR, they are particularly well suited for loop counters in mUltiple-pre
cision computation routines. Please refer to 5.19 Loop Primitive Instructions for
information concerning automatic counter branches. Table 5-6 is a summary of
decrement and increment instructions.

MOTOROLA

5-4

INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

Table 5-6 Decrement and Increment Instructions

Decrement Instructions

Mnemonic Function Operation

DEC Decrement Memory (M)-$01 =; M

DECA Decrement A (A) - $01 =; A

DECB Decrement B (B) - $01 =; B

DES Decrement SP (SP) - $0001 =; SP

DEX Decrement X (X) - $0001 =; X

DEY Decrement Y (Y) - $0001 =; Y

Increment Instructions

Mnemonic Function Operation

INC Increment Memory (M) +$01 =; M

INCA Increment A (A) +$01 =; A

INCB Increment B (B) +$01 =; B

INS Increment SP (SP) + $0001 => SP

INX Increment X (X) + $0001 =; X

INY Increment Y (Y) + $0001 => Y

5.8 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or
between a register and memory. The result is not stored, but condition codes are
set by the operation. These instructions are generally used to establish conditions
for branch instructions. In this architecture, most instructions update condition code
bits automatically, so it is often unnecessary to include separate test or compare
instructions. Table 5-7 is a summary of compare and test instructions.

Mnemonic

CBA

CMPA

CMPB

CPO

CPS

CPX

CPY

Mnemonic

TST

TSTA

TSTB

CPU12

REFERENCE MANUAL

Table 5-7 Compare and Test Instructions

Compare Instructions

Function Operation

Compare A To B (A) (B)

Compare A To Memory (A)-(M)

Compare B To Memory (B)-(M)

Compare 0 To Memory (16-bit) (A : B) - (M : M + 1)

Compare SP To Memory (16-bit) (SP) - (M : M + 1)

Compare X To Memory (16-bit) (X) - (M : M + 1)

Compare Y To Memory (16-bit) (Y) - (M : M + 1)

Test Instructions

Function Operation

Test Memory For Zero Or Minus (M) -$00

Test A For Zero Or Minus (A)-$OO

Test B For Zero Or Minus (B)-$OO

INSTRUCTION SET OVERVIEW MOTOROLA

5-5

5.9 Boolean Logic Instructions

These instructions perform a logic operation between an 8-bit accumulator or the
CCR and a memory value. AND, OR, and Exclusive OR functions are supported.
Table 5-8 summarizes logic instructions.

Table 5-8 Boolean Logic Instructions

Mnemonic Function Operation

ANDA AND A With Memory (A). (M) => A

ANDB AND B With Memory (B). (M) => B

ANDCC AND CCR With Memory (Clear CCR bits) (CCR) • (M) => CCR

EORA Exclusive OR A With Memory (A) Ef:l (M)=>A

EORB Exclusive OR B With Memory (B) Ef:l (M) => B

ORAA OR A With Memory (A) +(M) => A

ORAB OR B With Memory (B) + (M) => B

ORCC OR CCR With Memory (Set CCR bits) (CCR) + (M) => CCR

5.10 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an ac
cumulator or in memory. Clear operations set the value to 0, complement opera
tions replace the value with its one's complement, and negate operations replace
the value with its two's complement. Table 5-9 is a summary of clear, complement
and negate instructions.

Mnemonic

CLC

CLI

CLR

CLRA

CLRB

CLV

COM

COMA

COMB

NEG

NEGA

NEGB

MOTOROLA

5-6

Table 5-9 Clear, Complement, and Negate Instructions

Function

Clear C Bit In CCR

Clear I Bit In CCR

Clear Memory

Clear A

Clear B

Clear V bit in CCR

One's Complement Memory

One's Complement A

One's Complement B

Two's Complement Memory

Two's Complement A

Two's Complement B

INSTRUCTION SET OVERVIEW

Operation

O=>C

o => I

$00 => M

$00 => A

$00 => B

o=>v

$FF - (M) => M or (M) => M

$FF - (A) => M or (A) => A

$FF - (B) => M or (B) => B

$00 - (M) => M or (M) + 1 => M

$00 - (A) => A or (A) + 1 => A

$00 - (B) => B or (B) + 1 => B

CPU12

REFERENCE MANUAL

5.11 Multiplication and Division Instructions

I

There are instructions for signed and unsigned 8- and 16-bit multiplication. 8-bit
multiplication operations have a 16-bit product. Sixteen-bit multiplication opera
tions have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor, quotient,
and remainder. Extended division instructions use a 32-bit dividend and a 16-bit di
visor to produce a 16-bit quotient and a 16-bit remainder.

Table 5-10 is a summary of multiplication and division instructions.

Table 5-10 Multiplication and Division Instructions

Multiplication Instructions

Mnemonic Function Operation

EMUl 16 By 16 Multiply (Unsigned) (D) x (Y) => Y : D

EMUlS 16 By 16 Multiply (Signed) (D) x (Y) => Y : D

MUl 8 By 8 Multiply (Unsigned) (A) x (B) => A : B

Division Instructions

Mnemonic Function Operation

(Y: D)+(X)
EDIV 32 By 16 Divide (Unsigned) Quotient => Y

Remainder => D

(Y:D)+(X)
EDIVS 32 By 16 Divide (Signed) Quotient => Y

Remainder => D

FDIV 16 By 16 Fractional Divide
(D) + (X) => X

remainder => 0

IDIV 16 By 16 Integer Divide (Unsigned)
(D) + (X) => X

remainder => 0

IDIVS 16 By 16 Integer Divide (Signed)
(D) + (X) => X

remainder => 0

5.12 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in
an accumulator or in memory. BIT A and BITB provide a convenient means of test
ing bits without altering the value of either operand. Table 5-11 is a summary of Bit
test and manipulation instructions.

Table 5-11 Bit Test and Manipulation Instructions

Mnemonic Function Operation

BClR Clear Bits in Memory (M) • (mm) => M

BITA BitTest A (A). (M)

BITB Bit Test B (B). (M)

BSET Set Bits In Memory (M) + (mm) => M

CPU12 INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

MOTOROLA

5-7

5.13 Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes. All pass
the shifted-out bit through the C status bit to facilitate multiple-byte operations. Be
cause logical and arithmetic left shifts are identical, there are no separate logical
left shift operations. LSL mnemonics are assembled as ASL operations. Table 5-
12 shows shift and rotate instructions.

Mnemonic

LSL
LSLA
LSLB

LSLD

LSR
LSRA
LSRB

LSRD

Mnemonic

ASL
ASLA
ASLB

ASLD

ASR
ASRA
ASRB

Mnemonic

ROL
ROLA
ROLB

ROR
RORA
RORB

MOTOROLA

5-8

Table 5-12 Shift and Rotate Instructions

Logical Shifts

Function Operation

Logic Shift Left Memory

-------Logic Shift Left A ~O
Logic Shift Left B C b7 bO

+- +-
Logic Shift Left D ~O

C b7 A bO b7 B bO

Logic Shift Right Memory ----+
Logic Shift Right A o --.J I I I I I I II---.[]
Logic Shift Right B b7 bO C

-. -.
Logic Shift Right D O~ II I I H>I I I I I~

Arithmetic Shifts

Function

Arithmetic Shift Left Memory
Arithmetic Shift Left A
Arithmetic Shift Left B

Arithmetic Shift Left D

Arithmetic Shift Right Memory
Arithmetic Shift Right A
Arithmetic Shift Right B

Rotates

Function

Rotate Left Memory Through Carry
Rotate Left A Through Carry
Rotate Left B Through Carry

Rotate Right Memory Through Carry
Rotate Right A Through Carry
Rotate Right B Through Carry

INSTRUCTION SET OVERVIEW

b7 A bO b7 B bO C

Operation

+--
[]+-I I I I I I I I ~O
C b7 bO

+- +-
~O
C b7 A bO b7 B bO

QI
~

I I I I I I I---.[]
b7 bO C

Operation

r;.c;:url I I I 1;1
C b7 bO

C; III 1111 ;;:J
b7 bO C

CPU12

REFERENCE MANUAL

5.14 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient processing of
fuzzy logic operations. The descriptions of fuzzy logic instructions that follow are
functional overviews. Table 5-13 summarizes the fuzzy logic instructions. Refer to
SECTION 9 FUZZY LOGIC SUPPORT for detailed discussion.

5.14.1 Fuzzy Logic Membership Instruction

The MEM instruction is used during the fuzzification process. During fuzzification,
current system input values are compared against stored input membership func
tions to determine the degree to which each label of each system input is true. This
is accomplished by finding the y value for the current input on a trapezoidal mem
bership function for each label of each system input. The MEM instruction performs
this calculation for one label of one system input. To perform the complete fuzzifi
cation task for a system, several MEM instructions must be executed, usually in a
program loop structure.

5.14.2 Fuzzy Logic Rule Evaluation Instructions

The REV and REVW instructions perform MIN-MAX rule evaluations that are cen
tral elements of a fuzzy logic inference program. Fuzzy input values are processed
using a list of rules from the knowledge base to produce a list of fuzzy outputs. The
REV instruction treats all rules as equally important. The REVW instruction allows
each rule to have a separate weighting factor. The two rule evaluation instructions
also differ in the way rules are encoded into the knowledge base. Because they re
quire a number of cycles to execute, rule evaluation instructions can be interrupted.
Once the interrupt has been serviced, instruction execution resumes at the point
the interrupt occurred.

5.14.3 Fuzzy Logic Averaging Instruction

CPU12

The WAV instruction provides a facility for weighted average calculations. In order
to be usable, the fuzzy outputs produced by rule evaluation must be defuzzified to
produce a single output value which represents the combined effect of all of the
fuzzy outputs. Fuzzy outputs correspond to the labels of a system output and each
is defined by a membership function in the knowledge base. The CPU12 typically
uses singletons for output membership functions rather than the trapezoidal
shapes used for inputs. As with inputs, the x-axis represents the range of possible
values for a system output. Singleton membership functions consist of the x-axis
position for a label of the system output. Fuzzy outputs correspond to the y-axis
height of the corresponding output membership function.The WAV instruction cal
culates the numerator and denominator sums for a weighted average of the fuzzy
outputs. Because WAV requires a number of cycles to execute, it can be interrupt
ed. The wavr pseudoinstruction causes execution to resume at the point is was in
terrupted.

INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

MOTOROLA

5-9

Table 5-13 Fuzzy Logic Instructions

Mnemonic Function Operation

fl (grade) =} M(y)
(X) + 4 =} X; (Y) + 1 =} Y; A unchanged

if (A) < P1 or (A) > P2, then fl = 0, else
fl = MIN [((A) - P1) x S1, (P2 - (All x S2, $FF]

where:
MEM Membership Function A = current crisp input value

X points to a four byte data structure that describes a trap-
ezoidal membership function as base intercept points
and slopes (P1, P2, S1, S2)

Y points at fuzzy input (RAM location)

See instruction details for special cases

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is larger (MAX)

Rules are unweighted

REV MIN-MAX Rule Evaluation Each rule input is an 8-bit offset from a base address in Y
Each rule output is an 8-bit offset from a base address in Y
$FE separates rule inputs from rule outputs
$FF terminates the rule list

REV can be interrupted

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)

Store to rule outputs unless fuzzy output is larger (MAX)

Each rule input is the 16-bit address of a fuzzy input
REVW MIN-MAX Rule Evaluation Each rule output is the 16-bit address of a fuzzy output

Address $FFFE separates rule inputs from rule outputs
$FFFF terminates the rule list
Weights are 8-bit values in a separate table

REVW can be interrupted

B

Calculates Numerator (Sum of Products) L SiFi=} Y:O
and Denominator (Sum of Weights) for i = 1

WAV Weighted Average Calculation
Results Are Placed In Correct Registers

B

For ED IV immediately After WAV L Fi=}X
i = 1

Resumes Execution Of Recover immediate results from stack
wavr

Interrupted WAV Instruction rather than initializing them to 0.

MOTOROLA

5-10

INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

5.15 Maximum and Minimum Instructions

These instructions are used to make comparisons between an accumulator and a
memory location. These instructions can be used for linear programming opera
tions, such as Simplex-method optimization or for fuzzification.

MAX and MIN instructions use the A accumulator to perform 8-bit comparisons,
while EMAX and EMIN instructions use the ° accumulator to perform 16-bit com
parisons. The result (maximum or minimum value) can be stored in the accumula
tor (EMAXO, EMINO, MAXA, MINA) or the memory address (EMAXM, EMINM,
MAXM, MINM).

Table 5-14 is a summary of minimum and maximum instructions.

Table 5-14 Minimum and Maximum Instructions

Minimum Instructions

Mnemonic Function Operation

EMINO
MIN Of 2 Unsigned 16-bil Values

MIN «0), (M : M + 1)) => 0
Result to Accumulator

EMINM
MIN Of 2 Unsigned 16-bit Values

MIN ((0), (M : M + 1)) => M: M+1
Result to Memory

MINA
MIN Of 2 Unsigned 8-bit Values

MIN ((A), (M» => A
Result to Accumulator

MINM
MIN Of 2 Unsigned 8-bit Values

MIN ((A), (M» => M
Result to Memory

Maximum Instructions

Mnemonic Function Operation

EMAXO
MAX Of 2 Unsigned 16-bit Values

MAX ((0), (M : M + 1)) => 0
Result to Accumulator

EMAXM
MAX Of 2 Unsigned 16-bit Values

MAX ((0), (M: M + 1)) => M: M + 1
Result to Memory

MAXA
MAX Of 2 Unsigned 8-bit Values

MAX «A), (M)) => A
Result to Accumulalor

MAXM
MAX Of 2 Unsigned 8-bit Values

MAX((A), (M» => M
Result to Memory

5.16 Multiply and Accumulate Instruction

CPU12

The EMACS instruction multiplies two 16-bit operands stored in memory and ac
cumulates the 32-bit result in a third memory location. EMACS can be used to im
plement simple digital filters and defuzzification routines that use 16-bit operands.
The WAY instruction incorporates an 8- to 16-bit multiply and accumulate opera
tion that obtains a numerator for the weighted average calculation. The EMACS in
struction can automate this portion of the averaging operation when 16-bit
operands are used. Table 5-15 shows the EMACS instruction.

INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

MOTOROLA

5-11

Table 5-15 Multiply and Accumulate Instructions

Mnemonic Function Operation

EMACS
Multiply And Accumulate (Signed)

((M(x):M(x+1) x (M(y):M(Y+1))) + (M - M + 3) => M - M + 3
16 x 16 Bit => 32 Bit

5.17 Table Interpolation Instructions

The TBL and ETBL instructions interpolate values from tables stored in memory.
Any function that can be represented as a series of linear equations can be repre
sented by a table of appropriate size. Interpolation can be used for many purposes,
including tabular fuzzy logic membership functions. TBL uses 8-bit table entries
and returns an 8-bit result; ETBL uses 16-bit table entries and returns a 16-bit re
sult. Use of indexed addressing mode provides great flexibility in structuring tables.

Consider each of the successive values stored in a table to be y-values for the end
point of a line segment. The value in the B accumulator before instruction execution
begins represents change in x from the beginning of the line segment to the lookup
point divided by total change in x from the beginning to the end of the line segment.
B is treated as an 8-bit binary fraction with radix point left of the MSB, so each line
segment is effectively divided into 256 smaller segments. During instruction exe
cution, the change in y between the beginning and end of the segment (a signed
byte for TBL or a signed word for ETBL) is multiplied by the content of the B accu
mulator to obtain an intermediate delta-y term. The result (stored in the A accumu
lator by TBL, and in the D accumulator by ETBL) is the y-value of the beginning
point plus the signed intermediate delta-y value. Table 5-16 shows the table inter
polation instructions.

Table 5-16 Table Interpolation Instructions

Mnemonic Function Operation

(M : M + 1) + [(B) x «M + 2 : M + 3) - (M : M + 1))] => D

ETBL
16-bit Table Lookup And Interpolate Initialize B, and index before ETBL.

(no indirect addressing modes allowed) <ea> points to the first table entry (M : M + 1)
B is fractional part of lookup value

(M) + [(B) x «M + 1) - (M))] => A

TBL
a-bit Table Lookup And Interpolate Initialize B, and index before TBL.

(no indirect addressing modes allowed.) <ea> points to the first a-bit table entry (M)
B is fractional part of lookup value.

MOTOROLA

5-12

INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

5.18 Branch Instructions

Branch instructions cause sequence to change when specific conditions exist. The
CPU12 uses three kinds of branch instructions. These are Short branches, Long
branches, and Bit-Conditional branches.

Branch instructions can also be classified by the type of condition that must be sat
isfied in order for a branch to be taken. Some instructions belong to more than one
classification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register is
in a specific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned quantities
results in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities results
in a specific combination of condition code register bits.

5.18.1 Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met, a
signed 8-bit offset is added to the value in the program counter. Program execution
continues at the new address.

The numeric range of short branch offset values is $80 (-128) to $7F (127) from
the address of the next memory location after the offset value.

Table 5-17 is a summary of the short branch instructions.

5.18.1.1 Long Branch Instructions

CPU12

Long branch instructions operate as follows. When a specified condition is met, a
signed 16-bit offset is added to the value in the program counter. Program execu
tion continues at the new address. Long branches are used when large displace
ments between decision-making steps are necessary.

The numeric range of long branch offset values is $8000 (-32768) to $7FFF
(32767) from the address of the next memory location after the offset value. This
permits branching from any location in the standard 64-Kbyte address map to any
other location in the map.

Table 5-18 is a summary of the long branch instructions.

INSTRUCTION SET OVERVIEW
REFERENCE MANUAL

MOTOROLA

5-13

Mnemonic

BRA

BRN

Mnemonic

BCC

BCS

BEQ

BMI

BNE

BPl

BVC

BVS

Mnemonic

BHI

BHS

BLO

BlS

Mnemonic

BGE

BGT

BlE

BlT

MOTOROLA

5-14

Table 5-17 Short Branch Instructions

Unary Branches

Function

Branch Always

Branch Never

Simple Branches

Function

Branch if Carry Clear

Branch if Carry Set

Branch if Equal

Branch if Minus

Branch if Not Equal

Branch if Plus

Branch if Overflow Clear

Branch if Overflow Set

Unsigned Branches

Function Relation

Branch if Higher R>M

Branch if Higher or Same R2M

Branch if lower R<M

Branch if lower or Same R~M

Signed Branches

Function Relation

Branch if Greater than or Equal R2M

Branch if Greater Than R>M

Branch if less than or Equal R~M

Branch if less Than R<M

INSTRUCTION SET OVERVIEW

Equation or Operation

1 = 1

1=0

Equation or Operation

C=O

C= 1

Z=l

N = 1

Z=O

N =0

V=O

V = 1

Equation or Operation

C+Z=O

C=O

C= 1

C+Z=l

Equation or Operation

N$V=O

Z+(N $ V) = 0

Z + (N $ V) = 1

N $V=l

CPU12

REFERENCE MANUAL

Table 5-18 Long Branch Instructions

Unary Branches

Mnemonic Function

LBRA Long Branch Always

LBRN Long Branch Never

Simple Branches

Mnemonic Function

LBCC Long Branch If Carry Clear

LBCS Long Branch If Carry Set

LBEQ Long Branch If Equal

LBMI Long Branch If Minus

LBNE Long Branch If Not Equal

LBPL Long Branch If Plus

LBVC Long Branch If Overflow Clear

LBVS Long Branch If Overflow Set

Unsigned Branches

Mnemonic Function

LBHI Long Branch If Higher

LBHS Long Branch If Higher Or Same

LBLO Long Branch If Lower

LBLS Long Branch If Lower Or Same

Signed Branches

Mnemonic Function

LBGE Long Branch If Greater Than Or Equal

LBGT Long Branch If Greater Than

LBLE Long Branch If Less Than Or Equal

LBLT Long Branch If Less Than

CPU12 INSTRUCTION SET OVERVIEW
REFERENCE MANUAL

Equation or Operation

1 = 1

1=0

Equation or Operation

C=O

C= 1

Z=1

N = 1

Z=O

N =0

v=o

V = 1

Equation or Operation

C+Z=O

C=O

Z=1

C+Z=1

Equation or Operation

N EDV=O

Z+ (N ED V) = 0

Z+ (N ED V) = 1

N EDV= 1

MOTOROLA

5-15

5.18.2 Bit Condition Branch Instructions

These branches are taken when bits in a memory byte are in a specific state. A
mask operand is used to test the location. If ali bits in that location that correspond
to ones in the mask are set (BRSET) or cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127) from the ad
dress of the next memory location after the offset value. Table 5-19 is a summary
of bit-condition branches.

Table 5-19 Bit Condition Branch Instructions

Mnemonic Function Equation or Operation

BRCLR Branch if Selected Bits Clear (M)o (mm) =0

BRSET Branch if Selected Bits Set (M)o (mm) =0

5.19 Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The instructions
test a counter value in a register or accumulator (A, B, D, X, Y, or SP) for zero or
nonzero value as a branch condition. There are predecrement, preincrement and
test-only versions of these instructions.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127) from the ad
dress of the next memory location after the offset value. Table 5-20 is a summary
of bit-condition branches.

Mnemonic

DBEQ

DBNE

IBEQ

IBNE

TBEQ

TBNE

MOTOROLA

5-16

Table 5-20 Loop Primitive Instructions

Function

Decrement Counter and Branch if = °
(counter = A, B, D, X, Y, or SP)

Decrement Counter and Branch if", °
(counter = A, B, D, X, Y, or SP)

Increment Counter and Branch if = °
(counter = A, B, D, X, Y, or SP)

Increment Counter and Branch if", °
(counter = A, B, D, X, Y, or SP)

Test Counter and Branch if = °
(counter = A, B, D, X,Y, or SP)

Test Counter and Branch if", °
(counter = A, B, D, X,Y, or SP)

INSTRUCTION SET OVERVIEW

Equation or Operation

(counter) - 1 => counter
If (counter) = 0, then Branch

else Continue to next instruction

(counter) - 1 => counter
if (counter) not = 0, then Branch
else Continue to next instruction

(counter) + 1 => counter
If (counter) = 0, then Branch

else Continue to next instruction

(counter) + 1 => counter
if (counter) not = 0, then Branch
else Continue to next instruction

If (counter) = 0, then Branch
else Continue to next instruction

If (counter) not = 0, then Branch
else Continue to next instruction

CPU12

REFERENCE MANUAL

5.19.1 Jump and Subroutine Instructions

Jump instructions cause immediate changes in sequence. The JMP instruction
loads the PC with an address in the 64-Kbyte memory map and program execution
continues at that address. The address can be provided as an absolute 16-bit ad
dress or determined by various forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a code seg
ment that performs a particular task. A short branch (BSR), a jump (JSR), or an ex
panded-memory call (CALL) can be used to initiate subroutines. There is no LBSR
instruction, but a PC-relative JSR performs the same function. A return address is
stacked, then execution begins at the subroutine address. Subroutines in the nor
mal 64-Kbyte address space are terminated with an RTS instruction. RTS unstacks
the return address so that execution resumes with the instruction after BSR or JSR.

The CALL instruction is intended for use with expanded memory. CALL stacks the
value in the PPAGE register and the return address, then writes a new value to
PPAGE to select the memory page where the subroutine resides. The page value
is an immediate operand in all addressing modes except indexed indirect modes;
in these modes, an operand points to locations in memory where the new page val
ue and subroutine address are stored. The RTC instruction is used to terminate
subroutines in expanded memory. RTC unstacks the PPAGE value and the return
address so that execution resumes with the next instruction after CALL. For soft
ware compatibility, CALL and RTC execute correctly on devices that do not have
expanded addressing capability. Table 5-21 summarizes the jump and subroutine
instructions.

Table 5-21 Jump and Subroutine Instructions

Mnemonic Function Operation

SP-2 ~ SP
BSR Branch to Subroutine RTNH: RTNl ~ M(SP): M(SP+1)

Subroutine address ~ PC

SP-2 ~ SP

RTNH:RTNl ~ M(SP) : M(SP+1)

CALL Call Subroutine in Expanded Memory
SP-1 ~ SP

(pPAGE) ~ M(SP)
Page ~ PPAGE

Subroutine address ~ PC

JMP Jump Subroutine Address ~ PC

SP-2 ~ SP
JSR Jump to Subroutine RTNH: RTNl~ M(SP): M(SP+1)

Subroutine address ~ PC

RTC Return from Call
M(SP): M(SP+1) ~ PCH: PCl

SP+2~ SP

M(SP) ~ PPAGE

RTS Return from Subroutine
SP+ 1 ~ SP

M(SP): M(SP+1) ~ PCH: PCl
SP+2 ~ SP

CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

5-17 REFERENCE MANUAL

5.19.2 Interrupt Instructions

Interrupt instructions handle transfer of control to a routine that performs a critical
task. Software interrupts are a type of exception. SECTION 7 EXCEPTION PRO
CESSING covers interrupt exception processing in detail.

The SWI instruction initiates synchronous exception processing. First, the return
PC value is stacked. After CPU context is stacked, execution continues at the ad
dress pointed to by the SWI vector.

Execution of the SWI instruction causes an interrupt without an interrupt service re
quest. SWI is not inhibited by global mask bits I and X in the CCR, and execution
of SWI sets the I mask bit. Once an SWI interrupt begins, maskable interrupts are
inhibited until the I bit in the CCR is cleared. This typically occurs when an RTI in
struction at the end of the SWI service routine restores context.

The CPU12 uses the software interrupt for unimplemented opcode trapping. There
are opcodes in all 256 positions in the Page 1 opcode map, but only 54 of the 256
positions on Page 2 of the opcode map are used. If the CPU attempts to execute
one of the unimplemented opcodes on Page 2, an opcode trap interrupt occurs.
Traps are essentially interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including interrupt
service routines. RTI first restores the CCR, B:A, X, Y, and the return address from
the stack. If no other interrupt is pending, normal execution resumes with the in
struction following the last instruction that executed prior to interrupt.

Table 5-22 is a summary of interrupt instructions.

Mnemonic

RTI

SWI

TRAP

MOTOROLA

5-18

Table 5-22 Interrupt Instructions

Function Operation

M(sP) => CCR; SP + 1 => SP
M(sP) : M(SP+1) => B : A; SP + 2 => SP

Return from Interrupt M(sP) : M(SP+1) => XH: Xl; SP + 2 => SP
M(sP): M(SP+1) => YH: Yl; SP + 2 => SP

M(sP) : M(SP+1) => PCH: PCl; SP + 2 => SP

SP - 2 => SP; RTNH: RTNl => M(sP): M(SP+1)

SP - 2 => SP; YH: Yl => M(sP): M(SP+1)

Software Interrupt SP - 2 => SP; XH: Xl => M(sP): M(SP+1)

SP - 2 => SP; B : A => M(sP): M(SP+1)

SP - 1 => SP; CCR => M(sP)

SP - 2 => SP; RTNH: RTNl => M(sP): M(SP+1)

SP - 2 => SP; YH: Yl => M(sP): M(SP+1)

Software Interrupt SP - 2 => SP; XH: Xl => M(sP): M(SP+1)

SP - 2 => SP; B : A => M(sP): M(SP+1)

SP - 1 => SP; CCR => M(sP)

INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

5.20 Index Manipulation Instructions

These instructions perform 8- and 16-bit operations on the three index registers
and accumulators, other registers, or memory, as shown in Table 5-23.

Table 5-23 Index Manipulation Instructions

Addition Instructions

Mnemonic Function Operation

A8X Add 8 to X (8) + (X) => X

A8Y Add 8 to Y (8) + (Y) => Y

Compare Instructions
I

Mnemonic Function Operation

CPS Compare SP to Memory (SP) - (M : M + 1)

CPX Compare X to Memory (X)-(M : M + 1)

CPY Compare Y to Memory (Y) - (M : M + 1)

Load Instructions

Mnemonic Function Operation

LDS Load SP from Memory M:M+1=>SP

LDX Load X from Memory (M: M +1) => X

LDY Load Y from Memory (M: M + 1) => Y

LEAS Load Effective Address into SP Effective Address => SP

LEAX Load Effective Address into X Effective Add ress => X

LEAY Load Effective Address into Y Effective Address => Y

Store Instructions

Mnemonic Function Operation

STS Store SP in Memory (SP) => M:M+1
""-

STX Store X in Memory (X) => M: M + 1

STY Store Y in Memory (Y)=>M:M+1

Transfer Instructions

Mnemonic Function Operation

TFR Transfer Register to Register (A, B, CCR, D, X, Y, or SP) => A, B, CCR, D, X, Y, or SP

TSX Transfer SP to X (SP) => X

TSY Transfer SP to Y (SP) => Y

TXS Transfer X to SP (X) => SP

TYS Transfer Y to SP (Y) => SP

Exchange Instructions

Mnemonic Function Operation

EXG Exchange Register to Register (A, B, CCR, D, X, Y, or SP) <=;0 (A, B, CCR, D, X, Y, or SP)

XGDX EXchange D with X (D) <=;0 (X)

XGDY EXchange D with Y (D) <=;0 (Y)

CPU12 INSTRUCTION SET OVERVIEW

REFERENCE MANUAL

MOTOROLA

5-19

5.21 Stacking Instructions

There are two types of stacking instructions, as shown in Table 5-24. Stack pointer
instructions use specialized forms of mathematical and data transfer instructions
to perform stack pointer manipulation. Stack operation instructions save informa
tion on and retrieve information from the system stack.

Table 5-24 Stacking Instructions

Stack Pointer Instructions

Mnemonic Function Operation

CPS Compare SP to Memory (SP) - (M : M + 1)

DES Decrement SP (SP) -1 => SP

INS Increment SP (SP) + 1 => SP

LDS Load SP (M : M + 1) => SP

LEAS Load Effective Address into SP Effective Address => SP

STS Store SP (SP) => M : M + 1

TSX Transfer SP to X (SP) => X

TSY Transfer SP 10 Y (SP) => Y

TXS Transfer X to SP (X) => SP

TYS Transfer Y to SP (Y) => SP

Stack Operation Instructions

Mnemonic Function· Operation

PSHA Push A (SP) - 1 => SP; (A) => M(sP)

PSHB Push B (SP) - 1 => SP; (B) => M(sP)

PSHC Push CCR (SP) - 1 => SP; (A) => M(sP)

PSHD Push D (SP) - 2 => SP; (A: B) => M(sP): M(SP+l)

PSHX Push X (SP) - 2 => SP; (X) => M(sP): M(SP+l)

PSHY Push Y (SP) - 2 => SP; (Y) => M(sP): M(SP+l)

PULA Pull A (M(sP)) => A; (SP) + 1 => SP

PULB Pull B (M(sP)) => B; (SP) + 1 => SP

PULC Pull CCR (M(sP)) => CCR; (SP) + 1 => SP

PULD Pull D (M(sP) : M(SP+l)) => A : B; (SP) + 2 => SP

PULX Pull X (M(sP): M(SP+l)) => X; (SP) + 2 => SP

PULY Pull Y (M(sP): M(SP+l)) => Y; (SP) + 2 => SP

5.22 Pointer and Index Calculation Instructions

The Load Effective Address instructions allow 5-,8-, or 16-bit constants, or the con
tents of 8-bit accumulators A and B or 16-bit accumulator D to be added to the con
tents of the X and Y index registers, the SP, or the PC. Table 5-25 is a summary
of pointer and index instructions.

MOTOROLA

5-20

INSTRUCTION SET OVERVIEW CPU12

REFERENCE MANUAL

Table 5-25 Pointer and Index Calculation Instructions

Mnemonic Function Operation

Load Result Of Indexed Addressing Mode r ± Constant => SP or
LEAS Effective Address Calculation (r) + (Accumulator) => SP

Into Stack Pointer r= X, Y, SP, orPC

Load Result Of Indexed Addressing Mode r ± Constant =>X or
lEAX Effective Address Calculation (r) + (Accumulator) =>X

Into X Index Register r= X, Y, SP, or PC

Load Result Of Indexed Addressing Mode r ± Constant => Y or
lEAY Effective Address Calculation (r) + (Accumulator) => Y

Into Y Index Register r = X, Y, SP, or PC

5.23 Condition Codes Instructions

Condition code instructions are special forms of mathematical and data transfer in
structions that can be used to change the condition codes register. Table 5-26
shows instructions that can be used to manipulate the CCR.

Table 5-26 Condition Codes Instructions

Mnemonic Function Operation

ANDCC logical AND CCR with Memory (CCR) • (M) => CCR

ClC Clear C bit o => C

CLI Clear I bit o => I

ClV Clear V bit O=>V

ORCC logical OR CCR with Memory (CCR) + (M) =;. CCR

PSHC Push CCR onto Stack (SP) - 1 => SP ; (CCR) => M(sP)

PULC Pull CCR from Stack (M(sP) => CCR; (SP) + 1 => SP

SEC SetC bit 1=>C

SEI Set I bit 1 => I

SEV Set V bit 1=>V

TAP Transfer A to CCR (A) => CCR

TPA Transfer CCR to A (CCR) => A

5.24 Stop and Wait Instructions

CPU12

As shown in Table 5-27, there are two instructions that put the CPU12 in an inac
tive state that reduces power consumption.

The STOP instruction stacks a return address and the contents of CPU registers
and accumulators, then halts all system clocks.

The WAIT instruction stacks a return address and the contents of CPU registers
and accumulators, then waits for an interrupt service request; however, system
clock signals continue to run.

INSTRUCTION SET OVERVIEW
REFERENCE MANUAL

MOTOROLA

5-21

Both STOP and WAIT require that either an interrupt or a reset exception occur be
fore normal execution of instructions resumes. Although both instructions require
the same number of clock cycles to resume normal program execution after an in
terrupt service request is made, restarting after a STOP requires extra time for the
oscillator to reach operating speed.

Table 5-27 Stop and Wait Instructions

Mnemonic Function Operation

SP - 2 =} SP; RTNH : RTNL =} M(sP): M(SP+l)
SP - 2 =} SP; YH : YL =} M(sP) : M(SP+l)

STOP Stop
SP - 2 =} SP; XH : XL =} M(sP) : M(SP+l)

SP - 2 =} SP; B : A =} M(sP) : M(SP+l)
SP - 1 =} SP; CCR =} M(sP)

STOP CPU Clocks

SP - 2 =} SP; RTNH : RTNL =} M(sP) : M(SP+l)

SP - 2 =} SP; YH : YL =} M(sP): M(SP+l)

WAI Wait for Interrupt SP - 2 =} SP; XH : XL =} M(sP): M(SP+l)

SP - 2 =} SP; B : A =} M(sP) : M(SP+l)
SP - 1 =} SP; CCR =} M(sP)

5.25 Background Mode and Null Operations

Background debugging mode is a special CPU12 operating mode that is used for
system development and debugging. Executing BGNO when BOM is enabled puts
the CPU12 in this mode. For complete information refer to SECTION 8 DEVELOP
MENT AND DEBUG SUPPORT.

Null operations are often used to replace other instructions during software debug
ging. Replacing conditional branch instructions with BRN, for instance, permits
testing a decision-making routine without actually taking the branches.

Table 5-28 shows the BGNO and Nap instructions.

Table 5-28 Background Mode and Null Operation Instructions

Mnemonic

BGND

BRN

LBRN

NOP

MOTOROLA

5-22

Function Operation

If BDM enabled, enter BDM;
Enter Background Debugging Mode

else, resume normal processing

Branch Never

Long Branch Never

Null operation

INSTRUCTION SET OVERVIEW

Does not branch

Does not branch

-

CPU12

REFERENCE MANUAL

SECTION 6
INSTRUCTION GLOSSARY

This section is a comprehensive reference to the CPU12 instruction set.

6.1 Glossary Information

CPU12

The glossary contains an entry for each assembler mnemonic, in alphabetic order.
Figure 6-1 is a representation of a glossary page.

MNEMONIC

SYMBOLIC DESCRIPTION
OF OPERATION

DETAILED DESCRIPTION
OF OPERATION

EFFECT ON
CONDITION CODES REGISTER

STATUS BITS

DETAILED SYNTAX
AND

CYCLE-BY-CYCLE
OPERATION

LDX
(M:M+1)=}X

Description:

Condition Codes and Boolean Form

S X H

I - I - I ~

N: Set" MSB of resu.

Z: Set" result is $00

V: 0; Cleared.

Addressing Modes, Machine Code, an

Source Form

LOX #oprl6i
LOX oprBa
LOX oprl6a
LDX oprxO_xysp
LDX oprx9,xysp
LOX oprxl6,xysp
LOX [O,xysp]
LOX {oprxI6,xysp]

Address Mode

Figure 6-1 Example Glossary Page

INSTRUCTION GLOSSARY

EXGLO PG

REFERENCE MANUAL
MOTOROLA

6-1

Each entry contains symbolic and textual descriptions of operation, information
concerning the effect of operation on status bits in the condition codes register, and
a table that describes assembler syntax, cycle count, and cycle-by-cycle execution
of the instruction.

6.2 Condition Code Changes

The following special characters are used to describe the effects of instruction ex
ecution on the status bits in the condition codes register.

- ~ Status bit not affected by operation.

o ~ Status bit cleared by operation.

1 ~ Status bit set by operation.

L1 ~ Status bit affected by operation.

V. ~ Status bit may be cleared or remain set, but is not set by operation.

11 ~ Status bit may be set or remain cleared, but is not cleared by operation.

? ~ Status bit may be changed by operation but the final state is not defined.

! ~ Status bit used for a special purpose.

6.3 Object Code Notation

The digits a to 9 and the upper case letters A to F are used to express hexadecimal
values. Pairs of lower case letters represent the 8-bit values as described below.

MOTOROLA

6-2

dd ~ 8-bit direct address $0000 to $OOFF. (High byte assumed to be $00).

ee ~ High-order byte of a 16-bit constant offset for indexed addressing.

eb ~ ExchangefTransfer post-byte.

ff - Low-order 8 bits of a 9-bit signed constant offset for indexed addressing, or low
order byte of a 16-bit constant offset for indexed addressing.

hh - High-order byte of a 16-bit extended address.

ii - 8-bit immediate data value.

jj - High-order byte of a 16-bit immediate data value.

kk - Low-order byte of a 16-bit immediate data value.

Ib - Loop primitive (DBNE) post-byte.

II - Low-order byte of a 16-bit extended address.

mm - 8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

pg - Program overlay page (bank) number used in CALL instruction.

qq - High-order byte of a 16-bit relative offset for long branches.

tn - Trap number $30-$39 or $40-$FF.

rr - Signed relative offset $80 (-128) to $7F (+127).
Offset relative to the byte following the relative offset byte, or
Low-order byte of a 16-bit relative offset for long branches.

xb - Indexed addressing post-byte.

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

6.4 Source Forms

GPU12

The glossary pages provide only essential information about assembler source
forms. Assemblers generally support a number of assembler directives, allow def
inition of program labels, and have special conventions for comments. For com
plete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Assemblers are typically very flexible about the use of spaces and tabs. Often, any
number of spaces or tabs can be used where a single space is shown on the glos
sary pages. Spaces and tabs are also normally allowed before and after commas.
When program labels are used, there must also be at least one tab or space before
all instruction mnemonics. This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic characters, is
literal information which must appear in the assembly source file exactly as shown.
The initial 3 to 5 letter mnemonic is always a literal expression. All commas, pound
signs (#), parentheses, square brackets ([or]), plus signs (+), minus signs (-),
and the register designation ° (as in [0, ...), are literal characters.

Groups of italic characters in the columns represent variable information to be sup
plied by the programmer. These groups can include any alphanumeric character
or the underscore character, but cannot include a space or comma. For example,
the groups xysp and operxO_xysp are both valid, but the two groups operxO xysp
are not valid because there is a space between them. Permitted syntax is de
scribed below.

The definition of a legal label or expression varies from assembler to assembler.
Assemblers also vary in the way CPU registers are specified. Refer to assembler
documentation for detailed information. Recommended register designators are a,
A, b, S, ccr, CCR, d, 0, x, X, y, Y, sp, SP, pc, and PC).

abc - Anyone legal register designator for accumulators A or B or the GGR.

abcdxys - Anyone legal register designator for accumulators A or B, the GGR, the double
accumulator D, index registers X or Y, or the SP. Some assemblers may accept
t2, T2, t3, or T3 codes in certain cases of transfer and exchange instructions, but
these forms are intended for Motorola use only.

abd - Anyone legal register designator for accumulators A or B or the double accumu
lator D.

abdxys - Anyone legal register designator for accumulators A or B, the double accumulator
D, index register X or Y, or the SP.

dxys - Anyone legal register designation for the double accumulator D, index registers X
or Y, or the SP.

mskB - Any label or expression that evaluates to an 8-bit value. Some assemblers require
a # symbol before this value.

operBi - Any label or expression that evaluates to an 8-bit immediate value.

oper16i - Any label or expression that evaluates to an 16-bit immediate value.

INSTRUCTION GLOSSARY
REFERENCE MANUAL

MOTOROLA

6-3

operBa - Any label or expression that evaluates to an 8-bit value. The instruction treats this
8-bit value as the low order 8-bits of an address in the direct page of the 64K ad
dress space ($OOxx).

oper16a - Any label or expression that evaluates to a 16-bit value. The instruction treats this
value as an address in the 64-Kbyte address space.

operxO_xysp - This word breaks down into one of the following alternative forms that assemble
to an 8-bit indexed addressing postbyte code. These forms generate the same ob
ject code except for the value of the postbyte code, which is designated as xb in
the object code columns of the glossary pages. As with the source forms, treat all
commas, plus signs, and minus signs as literal syntax elements. The italicized
words used in these forms are included in this key.
operx5,xysp
operx3,-xys
operx3,+xys
operx3,xy:r
operx3,xys+
abd,xysp

operx3 - Any label or expression that evaluates to a value in the range +1 to +8.

operx5 - Any label or expression that evaluates to a 5-bit value in the range -16 to + 15.

operx9 - Any label or expression that evaluates to a 9-bit value in the range -256 to +255.

operx16 - Any label or expression that evaluates to a 16-bit value. Since the CPU12 has a
16-bit address bus, this can be either a signed or an unsigned value.

page - Any label or expression that evaluates to an 8-bit value. The CPU12 recognizes
up to an 8-bit page value for memory expansion but not all MCUs that include the
CPU 12 implement all of these bits. It is the programmer's responsibility to limit the
page value to legal values for the intended MCU system. Some assemblers re
quire a # symbol before this value.

relB - Any label or expression that refers to an address that is within -256 to +255 loca
tions from the next address after the last byte of object code for the current instruc
tion. The assembler will calculate the S-bit signed offset and include it in the object
code for this instruction.

rel9 - Any label or expression that refers to an address that is within -512 to +511 loca
tions from the next address after the last byte of object code for the current instruc
tion. The assembler will calculate the 9-bit signed offset and include it in the object
code for this instruction. The sign bit for this 9-bit value is encoded by the assem
bler as a bit in the looping postbyte (Ib) of one of the loop control instructions
OBEQ, OBNE, IBEQ, IBNE, TBEQ, or TBNE. The remaining eight bits of the offset
are included as an extra byte of object code.

rel16 - Any label or expression that refers to an address anywhere in the 64K address
space. The assembler will calculate the 16-bit signed offset between this address
and the next address after the last byte of object code for this instruction, and in
clude it in the object code for this instruction.

frapnum - Any label or expression that evaluates to an 8-bit number in the range $30-$39 or
$40-$FF. Used for TRAP instruction.

MOTOROLA

6-4

xys - Anyone legal register designation for index registers X or Y or the SP.

xysp - Anyone legal register designation for index registers X or Y, the SP, or the PC.
The reference point for PC relative instructions is the next address after the last
byte of object code for the current instruction.

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

6.5 Cycle-by-Cycle Execution

CPU12

This information is found in the tables at the bottom of each instruction glossary
page. Entries show how many bytes of information are accessed from different ar
eas of memory during the course of instruction execution. With this information and
knowledge of the type and speed of memory in the system, a user can determine
the execution time for any instruction in any system.

A single letter code in the column represents a single CPU cycle. Upper case let
ters indicate 16-bit access cycles. There are cycle codes for each addressing
mode variation of each instruction. Simply count code letters to determine the ex
ecution time of an instruction in a best-case system. An example of a best-case
system is a single-chip 16-bit system with no 16-bit off-boundary data accesses to
any locations other than on-chip RAM.

Many conditions can cause one or more instruction cycles to be stretched, but the
CPU is not aware of the stretch delays because the clock to the CPU is temporarily
stopped during these delays.

The following paragraphs explain the cycle code letters used and note conditions
that can cause each type of cycle to be stretched.

f - Free cycle. This indicates a cycle where the CPU does not require use of the
system buses. An f cycle is always one cycle of the system bus clock. These
cycles can be used by a queue controller or the background debug system to
perform single cycle accesses without disturbing the CPU.

g - Read 8-bit PPAGE register. These cycles are only used with the CALL instruc
tion to read the current value of the PPAGE register, and are not visible on the
external bus. Since the PPAGE register is an internal8-bit register, these cycles
are never stretched.

Read indirect pointer. Indexed indirect instructions use this 16-bit pointer from
memory to address the operand for the instruction. These are always 16-bit
reads but they can be either aligned or misaligned. These cycles are extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit pro
grammed for slow memory. These cycles are also stretched if they correspond
to misaligned access to a memory that is not designed for single-cycle mis
aligned access.

- Read indirect PPAGE value. These cycles are only used with indexed indirect
versions of the CALL instruction, where the 8-bit value for the memory expan
sion page register of the CALL destination is fetched from an indirect memory
location. These cycles are stretched only when controlled by a chip-select circuit
that is programmed for slow memory.

n - Write 8-bit PPAGE register. These cycles are only used with the CALL and RTC
instructions to write the destination value of the PPAGE register and are not vis
ible on the external bus. Since the PPAGE register is an internal 8-bit register,
these cycles are never stretched.

INSTRUCTION GLOSSARY

REFERENCE MANUA~
MOTOROLA

6-5

MOTOROLA

6-6

o - Optional cycle. Program information is always fetched as aligned 16-bit words.
When an instruction consists of an odd number of bytes, and the first byte is mis
aligned, an 0 cycle is used to mal\e an additional program word access (P) cycle
that maintains queue order. In all other cases, the 0 cycle appears as a free (f)
cycle. The $18 prebyte for page two opcodes is treated as a special one-byte
instruction. If the prebyte is misaligned, the 0 cycle is used as a program word
access for the prebyte; if the pre byte is aligned, the 0 cycle appears as a free
cycle. If the remainder of the instruction consists of an odd number of bytes, an
other 0 cycle is required some time before the instruction is completed. If the 0
cycle for the prebyte is treated as a P cycle, any subsequent 0 cycle in the same
instruction is treated as an f cycle; if the the 0 cycle for the prebyte is treated as
an f cycle, any subsequent 0 cycle in the same instruction is treated as a P cy
cle.Optional cycles used for program word accesses can be extended to two
bus cycles if the MCU is operating with an 8-bit extemal data bus and the pro
gram is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory.
Optional cycles used as free cycles are never stretched.

P - Program word access. Program information is fetched as aligned 16-bit words.
These cycles are extended to two bus cycles if the MCU is operating with an 8-
bit external data bus and the program is stored externally. There can be addi
tional stretching when the address space is assigned to a chip-select circuit pro
grammed for slow memory.

r - 8-bit data read. These cycles are stretched only when controlled by a chip-select
circuit programmed for slow memory.

R - 16-bit data read. These cycles are extended to two bus cycles if the MCU is op
erating with an 8-bit external data bus and the corresponding data is stored in
external memory. There can be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow memory. These cycles
are also stretched if they correspond to misaligned accesses to memory that is
not designed for single-cycle misaligned access.

s - Stack 8-bit data. These cycles are stretched only when controlled by a chip-se
lect circuit programmed for slow memory.

S Stack 16-bit data. These cycles are extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the SP is pointing to external mem
ory. There can be additional stretching if the address space is assigned to a
chip-select circuit programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses to a memory that is not de
signed for single cycle misaligned access. The internal RAM is designed to allow
single cycle misaligned word access.

w - 8-bit data write. These cycles are stretched only when controlled by a chip-se
lect circuit programmed for slow memory.

W - 16-bit data write. These cycles are extended to two bus cycles if the MCU is op
erating with an 8-bit external data bus and the corresponding data is stored in
external memory. There can be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow memory. These cycles
are also stretched if they correspond to misaligned access to a memory that is
not designed for single cycle misaligned access.

u - Unstack 8-bit data. These cycles are stretched only when controlled by a chip
select circuit programmed for slow memory.

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

U - Unstack 16-bit data. These cycles are extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the SP is pointing to external rnem
ory. There can be additional stretching when the address space is assigned to
a chip-select circuit programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses to a memory that is not de
signed for single-cycle misaligned access. The internal RAM is designed to al
low single-cycle misaligned word access.

V - Vector fetch. Vectors are always aligned 16-bit words. These cycles are extend
ed to two bus cycles if the MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for
slow memory.

8-bit conditional read. These cycles are either data read cycles or free cycles,
depending upon the data and flow of the REVW instruction. These cycles are
only stretched when controlled by a chip-select circuit programrned for slow
memory.

T - 16-bit conditional read. These cycles are either data read cycles or free cycles,
depending upon the data and flow of the REV or REVW instruction. These cy
cles are extended to two bus cycles if the MCU is operating with an 8-bit external
data bus and the corresponding data is stored in external memory. There can
be additional stretching when the address space is assigned to a chip-select cir
cuit programmed for slow memory. These cycles are also stretched if they cor
respond to misaligned accesses to a memory that is not designed for single
cycle misaligned access.

x - 8-bit conditional write. These cycles are either data write cycles or free cycles,
depending upon the data and flow of the REV or REVW instruction. These cy
cles are only stretched when controlled by a chip-select circuit prograrnmed for
slow memory.

Special Notation for Branch Taken/Not Taken Cases

PPP/P - Short branches require three cycles if taken, one cycle if not taken. Since the
instruction consists of a single word containing both an opcode and an 8-bit off
set, the not-taken case is simple-the queue advances, another program word
fetch is made, and execution continues with the next instruction. The taken case
requires that the queue be refilled so that execution can continue at a new ad
dress. First, the effective address of the destination is determined, then the CPU
performs three program word fetches from that address.

OPPP/OPO - Long branches require four cycles if taken, three cycles if not taken. Optional cy
cles are required because all long branches are page two opcodes, and thus in
clude the $18 prebyte. The CPU12 treats the prebyte as a special1-byte
instruction. If the prebyte is misaligned, the optional cycle is used to perform a
program word access; if the prebyte is aligned, the optional cycle is used to per
form a free cycle. As a result, both the taken and not-taken cases use one op
tional cycle for the prebyte. In the not-taken case, the queue must advance so
that execution can continue with the next instruction, and another optional cycle
is required to maintain the queue. The taken case requires that the queue be
refilled so that execution can continue at a new address. First, the effective ad
dress of the destination is determined, then the CPU performs three program
word fetches from that address.

6.6 Glossary

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-7

ABA
Operation:

Description:

(A) + (B) => A

Add Accumulator B To
Accumulator A ABA

Adds the content of accumulator B to the content of accumulator A and
places the result in accumulator A. Accumulator B is not changed. This
instruction affects the H status bit so it is suitable for use in BCD arith
metic operations (see DAA instruction for additional information).

Condition Codes and Boolean Formulas:

S X H N Z v C

H: A3. 83 + 83 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MS8 of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7. 87. R7 + A7. 87. R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

MOTOROLA

6-8

INH 18 06

INSTRUCTION GLOSSARY

00

CPU12

REFERENCE MANUAL

ABX
Operation:

Description:

(B) + (X) =:} X

Add Accumulator B to
Index Register X ABX

Adds the 8-bit unsigned content of accumulator B to the content of index
register X considering the possible carry out of the low-order byte of X;
places the result in index register X. Accumulator B is not changed.

This mnemonic is implemented by the LEAX B,X instruction. The LEAX
instruction allows A, B, D, or a constant to be added to X. For compati
bility with the M68HC11, the mnemonic ABX is translated into the LEAX
B,X instruction by the assembler.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

'A:""Eix translates to ...
lOX lA E5 2 ppl

LEAX B,X
-~

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-9

ABY
Operation:

Description:

(8) + (Y) =? Y

Add Accumulator B to
Index Register Y ABY

Adds the 8-bit unsigned content of accumulator 8 to the content of index
register Y considering the possible carry out of the low-order byte of Y;
places the result in Y. Accumulator 8 is not changed.

This mnemonic is implemented by the LEAY 8,Y instruction. The LEAY
instruction allows A, 8, D, or a constant to be added to Y. For compati
bility with the M68HC11, the mnemonic A8Y is translated into the LEAY
8,Y instruction by the assembler.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

ABY translates to ... lOX 19 ED 2 ppl
LEAY B,Y

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

MOTOROLA

6-10

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

ADCA Add with Carry to A ADCA
Operation:

Description:

(A) + (M) + C ::::} A

Adds the content of accumulator A to the content of memory location M,
then adds the value of the C bit and places the result in the same accu
mulator. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations (see DAA instruction for additional informa
tion).

Condition Codes and Boolean Formulas:

S X H N Z v C

H: X3. M3 + M3. R3 + R3. X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: X7.M7+M7.R7+R7.X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

ADCA #opr8i
ADCA opr8a
ADCA opr16a

I ADCA oprxO_xysp

I
ADCA oprx9,xysp

I ADCA oprx16,xysp I I ADCA [D,xysp] I
i ADCA [oprx16,xysp] I

CPU12

REFERENCE MANUAL

Address Mode Object Code

IMM 89 ii

DIR 99 dd

EXT B9 hh 11

IDX I A9 xb

IDX1 I A9 xb ff
IDX2 I A9 xb ee ff

[D,IDX] A9 xb

[IDX2] I A9 xb ee ff

INSTRUCTION GLOSSARY

Cycles

1

3
3
3
3
4
6
6

Access Detail

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

MOTOROLA

6-11

I

ACCB Add with Carry to B ACCB
Operation:

Description:

(B) + (M) + C => B

Adds the content of accumulator B to the content of memory location M,
then adds the value of the C bit and places the result in the same accu
mulator. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations (see DAA instruction for additional informa
tion).

Condition Codes and Boolean Formulas:

S X H N Z V C

H: X3. M3 + M3. R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:
~-

Source Form

ADCB #oprBi
ADCB oprBa
ADCB opr16a
ADCB oprxOJYsp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

MOTOROLA

6-12

Address Mode Object Code

IMM ! C9 ii
DIR I D9 dd

I
EXT I F9 hh 11
IDX I E9 xb

IDX1 E9 xb ff

IDX2 E9 xb ee ff
[D,IDX] E9 xb

[IOX2] E9 xb ee ff

INSTRUCTION GLOSSARY

--------- ----- -

Cycles Access Detail

1
3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

CPU12

REFERENCE MANUAL

ADDA Add without Carry to A ADDA
Operation:

Description:

(A) + (M) => A

Adds the content of memory location M to accumulator A and places the
result in the same accumulator. This instruction affects the H status bit,
so it is suitable for use in BCD arithmetic operations (see DAA instruction
for additional information).

Condition Codes and Boolean Formulas:

S X H N Z V C

H: X3. M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7. M7. R7 + X7 • M7. R7
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

ADDA #oprBi IMM 8B ii 1 P
ADDA oprBa DIR 9B dd 3 rfP
ADDA opr16a EXT BB hh 11 3 rOP
ADDA oprxOjysp IDX AB xb 3 rfP
ADDA oprx9,xysp IDX1 AB xb ff 3 rPO
ADDA oprx16,xysp IDX2 AB xb ee ff 4 frPP
ADDA [D,xysp] [D,IDX] AB xb 6 fIfrfP
ADDA [oprx16,xysp] [IDX2] AB xb ee ff 6 fIPrfp

J

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-13

ADDB Add without Carry to B ADDB
Operation:

Description:

(B) + (M) =? B

Adds the content of memory location M to accumulator B and places the
result in the same accumulator. This instruction affects the H status bit,
so it is suitable for use in BCD arithmetic operations (see DAA instruction
for additional information).

Condition Codes and Boolean Formulas:

S X H N Z V C

-I-I~ -I~ ~ ~ ~

H: X3. M3 + M3. R3 + R3. X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: X7.M7+M7.R7+R7.X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and ExecuUon Times:

Source Form
ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprxO_xysp
ADDB oprx9,xysp

I ADDB oprx16,xysp

I AD DB [D,xysp]
AD DB [oprx16,xysp]

MOTOROLA

6-14

Address Mode Object Code
IMM CB ii
DIR DB dd
EXT FB hh 11
lOX EB xb

IDX1 EB xb ff
IDX2 EB xb ee ff

[D,IDX] EB xb

[IDX2] EB xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

1
3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

CPU12

REFERENCE MANUAL

ADDD Add Double Accumulator ADDD
Operation:

Description:

(A : B) + (M : M+ 1) ::::} A : B

Adds the content of memory location M concatenated with the content of
memory location M+ 1 to the content of accumulator D and places the
result in the same accumulator. Accumulator A is the high-order half of
16-bit double accumulator D; accumulator B is the low-order half.

Condition Codes and Boolean Formulas:

S X H N Z v C

-J-J-J-JL1 L1 L1 L1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 015. M15. R15 + 015. M15. R15
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: 015. M15 + M15. R15 + R15. 015
Set if there was a carry from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

ADDD #opr16i
ADDD oprBa
ADDD opr16a
ADDD oprxO_xysp
ADDD oprx9,xysp

I

ADDD oprx16,xysp
ADDD [D.xysp]
ADDD [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code

IMM C3 jj kk

DIR D3 dd

EXT F3 hh 11

IDX E3 xb

IDX1 E3 xb ff

IDX2 E3 xb ee ff

[D,IDX] E3 xb

[IDX2] E3 xb ee ff

INSTRUCTION GLOSSARY

Cycles

2
3
3
3
3
4
6
6

Access Detail

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP

MOTOROLA

6-15

ANDA Logical AND A ANDA
Operation: (A). (M) ~ A

Description: Performs logical AND between the content of memory location M and
the content of accumulator A. The result is placed in accumulator A.
After the operation is performed, each bit of A is the logical AND of the
corresponding bits of M and of A before the operation began.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z:

V:
Set if result is $00; cleared otherwise.

0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
ANDA #oprBi
ANDA oprBa
ANDA opr16a
ANDA oprxOjYsp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [O,xysp]
ANDA [oprx16,xysp]

MOTOROLA

6-16

I
I

Address Mode Object Code
IMM 84 ii
DIR 94 dd
EXT B4 hh 11
IDX A4 xb

IDX1 A4 xb ff
IDX2 A4 xb ee ff

[D,IDX] A4 xb
[IDX2] A4 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail
1
3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfp
fIPrfp

CPU12

REFERENCE MANUAL

ANDB Logical AND B ANDB
Operation: (B) • (M) => B

Description: Performs logical AND between the content of memory location M and
the content of accumulator B. The result is placed in accumulator B.
After the operation is performed, each bit of B is the logical AND of the
corresponding bits of M and of B before the operation began.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -
1

-
1 -I A A 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

! ANDB #oprBi IMM C4 ii
I ANDB oprBa DIR D4 dd

ANDB opr16a EXT F4 hh 11
ANDB oprxO_xysp IDX E4 xb

ANDB oprx9,xysp IDX1 E4 xb ff

ANDB oprxl6,xysp IDX2 E4 xb ee ff
ANDB [O,xysp] [O,IOX] E4 xb

ANOB [oprxI6,xysp] [IDX2] E4 xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles
1
3
3
3
3
4
6
6

Access Detail

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

MOTOROLA

6-17

ANDCC Logical AND CCR with Mask ANDCC
Operation: (CCR) • (Mask) ~ CCR

Description: Performs logical AND between the content of a mask operand and the
content of the CCR. The result is placed in the CCR. After the operation
is performed, each bit of the CCR is the logical AND of the corresponding
bits of the mask and of the CCR before the operation began. To clear
one or more CCR bits, make the corresponding bit(s) of the mask equal
to zero. CCR bits corresponding to ones in the mask are not changed by
the ANDCC operation.

If the I mask bit is cleared, there is a one cycle delay before the system
allows interrupt requests. This prevents interrupts from occurring
between instructions in the sequences CLI, WAI and CLI, SEI (CLI is
equivalent to ANDCC #$EF).

Condition Codes and Boolean Formulas:

S X H N Z v C

Condition codes bits are cleared if the corresponding bit was zero before
the operation or if the corresponding bit in the mask is zero.

Addressing Modes, Machine Code, and Execution Times:

Source Form

ANDCC #oprBi

MOTOROLA

6-18

Address Mode Object Code

IMM 10 ii

INSTRUCTION GLOSSARY

Access Detail
p

CPU12

REFERENCE MANUAL

ASL
Operation:

Description:

Arithmetic Shift Left Memory
(same as LSL)

@]I-<II ... :---------il b7 - - - - -- bO 114 ... ~-®

ASL

Shifts all bits of memory location M one bit position to the left. Bit 0 is
loaded with a zero. The C status bit is loaded from the most significant
bit of M.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -I-I-IA A A A

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N (jJ C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: M7
Set if before the shift, the MSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles

ASL opr16a EXT 78 hh 11 4
ASL oprxO_xysp lOX 68 xb 3
ASL oprx9,xysp IOX1 68 xb ff 4

I ASL oprx16,xysp IOX2 68 xb ee ff 5
I ASL [O,xysp] [O,IOX] 68 xb 6

ASL [oprx16,xysp] [IOX2J 68 xb ee ff 6
-

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

MOTOROLA

6-19

ASLA Arithmetic Shift Left A
(same as LSLA) ASLA

Operation:

Description:

@]f-oooII ... f------I1 b7 -- -- -- bO ~I ... :-----I@

Shifts all bits of accumulator A one bit position to the left. Bit 0 is loaded
with a zero. The C status bit is loaded from the most significant bit of A.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N E!3 C = [N • C] + [f'J. C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: A7
Set if before the shift, the MSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

ASLA

MOTOROLA

6-20

Address Mode Object Code

INH 48

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

ASLB
Operation:

Arithmetic Shift Left B
(same as LSLB)

[£]foIII ... :---------I1 b7 - - - h - bO foIIIl"'---j@

ASLB

Description: Shifts all bits of accumulator B one bit position to the left. Bit 0 is loaded
with a zero. The C status bit is loaded from the most significant bit of B.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -1- 11 11 11 11

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N EB C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared other
wise (for values of Nand C after the shift).

C: B7
Set if before the shift, the MSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code

ASLB INH 58

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-21

ASLD Arithmetic Shift Left Double Accumulator
(same as LSLD) ASLD

Operation:

Description:

. ~.~~-

@]fooI4IIII(f-----I1 b 7 - -- - - - bO H b 7 - - -- -- bO f-ooIIl.:------1@
A B

Shifts all bits of D one bit position to the left. Bit 0 is loaded with a zero.
The C status bit is loaded from the most significant bit of D.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: N E!) C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: 015
Set if before the shift, the MSB of 0 was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail
ASLD ---+----~IN~H~----~59~-----------+----~--1-o~------~

MOTOROLA

6-22
INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

ASR
Operation:

Description:

Arithmetic Shift Right Memory ASR

Shifts all bits of memory location M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two's complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N Ell C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared other
wise (for values of Nand C after the shift).

C: MO
Set if before the shift, the LSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles
I ASR opr16a EXT 77 hh 11 4
I ASR oprxOjYsp IDX 67 xb 3

ASR oprx9,xysp IDX1 67 xb ff 4
ASR oprx16,xysp IDX2 67 xb ee ff 5
ASR [D,xysp] [D,IDX] 67 xb 6
ASR [oprx16,xysp] [IDX2] 67 xb ee ff 6

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

MOTOROLA

6-23

ASRA Arithmetic Shift Right A ASRA
Operation:

Description:

c:Lb7 - ---~- bO ~0
Shifts all bits of accumulator A one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two's complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

S X H N Z V C

[-1-1- -I~I~I~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N EB C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: AO
Set if before the shift, the LSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

ASRA

MOTOROLA

6-24

Address Mode Object Code

INH 47

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

ASRB Arithmetic Shift Right B ASRB
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is held
constant. Bit a is loaded into the C status bit. This operation effectively
divides a two's complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N EEl C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: BO
Set if before the shift, the LSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles
ASRB INH 57

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-25

Bee
Operation:

Description:

Branch if Carry Cleared
(Same as BHS)

If C = 0, then (PC) + $0002 + Rei ~ PC

Simple branch

Tests the C status bit and branches if C = o.

Bee

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BCC rel8 REL I 24 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT
r~m BGE

r=m BEQ

r~m BLE

r<m BLT

r>m BHI

r~m BHS/BCC

r=m BEQ
r~m BLS

r<m BLO/BCS

Carry

Negative
Overflow

r=O

Always

MOTOROLA

6-26

BCS

BMI

BVS

BEQ

BRA

2E

2C

27

2F

2D

22
24

27

23
25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N EB V) = 0 r~m BLE 2F Signed

NEBV=O r<m BLT 2D Signed

Z=1 r*m BNE 26 Signed

Z + (N EB V) = 1 r>m BGT 2E Signed

NEBV=1 r~m BGE 2C Signed

C+Z=O r~m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z = 1 r*m BNE 26 Unsigned

C+Z=1 r>m BHI 22 Unsigned
C=1 r~m BHS/BCC 24 Unsigned

C=1 No Carry BCC 24 Simple

N=1 Plus BPL 2A Simple

V=1 No Overflow BVC 28 Simple

Z=1 r*O BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BClR Clear Bits in Memory BClR
Operation: (M) • (Mask) => M

Description: Clear multiple bits in location M. The bit(s) to be cleared are specified by
ones in a mask byte. Mask bytes can be located at PC + 2, PC + 3, or
PC + 4, depending on addressing mode used. All other bits in Mare
rewritten to their current state.

Condition Codes and Boolean Formulas:

S X H N Z V C

1-1- -1- 8 8 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared. Set if MSB of result is set; cleared otherwise

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode 1 Object Code Cycles

BelR opr8a, msk8 DIR 4D dd rom 4
BelR opr16a, msk8 EXT ID hh 11 rom 4
BelR oprxO_xysp, msk8 IDX OD xb rom 4
BelR oprx9,xysp, msk8 IDX1 OD xb ff rom 4
BelR oprx16,xysp, msk8 IDX2 OD xb ee ff rom 6

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

rPOw
rPPw
rPOw
rPwP
frPwOP

MOTOROLA

6-27

BCS
Operation:

Description:

Branch if Carry Set
(Same as BLO)

If C = 1, then (PC) + $0002 + Rei ~ PC

Simple branch

Tests the C status bit and branches if C = 1.

BCS

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- -1- -1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BCS rel8 REl 25 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT
r;"m BGE

r=m BEQ
rSm BlE

r<m BlT

r>m BHI
r;"m BHS/BCC

r=m BEQ

rSm BlS

r<m BlO/BCS

Carry

Negative

Overflow

r=O

Always

MOTOROLA

6-28

BCS

BMI

BVS

BEQ

BRA

2E

2C

27

2F

2D

22

24
27

23
25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z+ (N Ell V) = 0 rSm BlE 2F Signed

NEllV=O r<m BlT 2D Signed

Z=1 r;"m BNE 26 Signed

Z + (N Ell V) = 1 r>m BGT 2E Signed

NEllV=1 r;"m BGE 2C Signed

C+Z=O rSm BlS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z=1 r;"m BNE 26 Unsigned

C+Z=1 r>m BHI 22 Unsigned

C = 1 r;"m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N=1 Plus BPl 2A Simple

V= 1 No Overflow BVC 28 Simple

Z = 1 r;"O BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BEQ Branch if Equal BEQ
Operation: If Z = 1, then (PC) + $0002 + Rei =:} PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

BEQ relB REL 27 rr 3/1 ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E

r2m BGE 2C

r=m BEQ 27

r~m BLE 2F

r<m BLT 20

r>m BHI 22
r2m BHS/BCC 24

r=m BEQ 27

r~m BLS 23

r<m BLO/BCS 25

Carry BCS 25
Negative BMI 2B

Overflow BVS 29

r=O BEQ 27
Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N EEl V) = 0 r~m BLE 2F

NEElV=O r<m BLT 20

Z=1 r;tm BNE 26

Z + (N EEl V) = 1 r>m BGT 2E

NEElV=1 r2m BGE 2C

C+Z=O r~m BLS 23

C=O r<m BLO/BCS 25

Z=1 r;tm BNE 26

C+Z=1 r>m BHI 22

C = 1 r2m BHS/BCC 24

C = 1 No Carry BCC 24

N = 1 Plus BPL 2A

V=1 No Overflow BVC 28

Z=1 r;tO BNE 26
- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed
Signed

Signed
Signed

Signed

UnSigned

Unsigned

UnSigned

Unsigned

UnSigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-29

BGE
Operation:

Description:

Branch if Greater than or Equal to Zero BGE
If N EB V = 0, then (PC) + $0002 + Rei ~ PC

For signed two's complement values
if (Accumulator) :2': (Memory), then branch

If the BGE instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the signed two's complement number in the
accumulator was greater than or equal to the signed two's complement
number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BGE rel8 REL 2C rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch
Test Mnemonic Opcode

r>m BGT
r~m BGE

r=m BEQ
r~m BLE

r<m BLT

r>m BHI
r~m BHS/BCC

r=m BEQ

r~m BLS
r<m BLO/BCS

Carry

Negative

Overflow

r=O

Always

MOTOROLA

6-30

BCS

BMI

BVS

BEQ

BRA

2E

2C

27

2F

2D

22

24

27

23

25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N EEl V) = 0 r~m BLE 2F Signed

NEElV=O r<m BLT 2D Signed

Z = 1 r;<m BNE 26 Signed

Z + (N EEl V) = 1 r>m BGT 2E Signed

NEElV=1 r~m BGE 2C Signed

C+Z=O r~m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z=1 r;<m BNE 26 UnSigned

C+Z=1 r>m BHI 22 Unsigned

C = 1 r~m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N = 1 Plus BPL 2A Simple

V= 1 No Overflow BVC 28 Simple

Z=1 r;<Q BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BGND Enter Background Debug Mode BGND
Description: BGNO operates like a software interrupt, except that no registers are

stacked. First, the current PC value is stored in internal CPU register
TMP2. Next, the BOM ROM and background register block become
active. The BOM ROM contains a substitute vector, mapped to the
address of the software interrupt vector, that points to routines in the
BOM ROM that control background operation. The substitute vector is
fetched, and execution continues from the address that it points to.
Finally, the CPU checks the location that TMP2 points to. If the value
stored in that location is $00 (the BGNO opcode), TMP2 is incremented,
so that the instruction that follows the BGNO instruction is the first
instruction executed when normal program execution resumes.

For all other types of BOM entry, the CPU performs the same sequence
of operations as for a BGNO instruction, but the value stored in TMP2
already points to the instruction that would have executed next had BOM
not become active. If active BOM is triggered just as a BGNO instruction
is about to execute, the BOM firmware does increment TMP2, but the
change does not effect resumption of normal execution.

While BOM is active, the CPU executes debugging commands received
via a special single-wire serial interface. BOM is terminated by the
execution of specific debugging commands. Upon exit from BOM, the
background/boot ROM and registers are disabled, the instruction queue
is refilled starting with the return address pointed to by TMP2, and
normal processing resumes.

BOM is normally disabled to avoid accidental entry. While BOM is
disabled, BGNO executes as described, but the firmware causes execu
tion to return to the user program. Refer to SECTION 8 DEVELOPMENT
AND DEBUG SUPPORT for more information concerning BOM.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
BGND INH 00

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

VfPPP

MOTOROLA

6-31

BGT
Operation:

Description:

Branch if Greater than Zero BGT
If Z + (N EB V) = 0, then (PC) + $0002 + Rei ~ PC

For signed two's complement values
if (Accumulator) > (Memory), then branch

If the BGT instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the signed two's complement number in the
accumulator was greater than the signed two's complement number in
memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1- -1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

BGT rel8 REL 2E rr 3/1 ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT

r~m BGE

r=m BEQ

r:<=;m BLE

r<m BLT

r>m i BHI

r~m BHS/BCC

r=m BEQ
r:<=;m BLS

r<m BLO/BCS

Carry BCS
Negative BMI

Overflow BVS

r=O BEQ

Always BRA

MOTOROLA

6-32

2E

2C

27

2F

2D

22

24

27

23

25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N (!) V) = 0 r:<=;m BLE 2F Signed

N(!)V=O r<m BLT 2D Signed

Z=1 r,em BNE 26 Signed

Z+ (N (!) V) = 1 r>m BGT 2E Signed

N(!)V=1 r~m BGE 2C Signed

C+Z=O r:<=;m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z = 1 r,em BNE 26 Unsigned

C+Z= 1 r>m BHI 22 Unsigned

C=1 r~m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N = 1 Plus BPL 2A Simple

V= 1 No Overflow BVC 28 Simple

Z = 1 r,eO BNE 26 Simple

- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BHI
Operation:

Descri ption:

Branch if Higher BHI
If C + Z = 0, then (PC) + $0002 + Rei ~ PC

For unsigned values, if (Accumulator) > (Memory), then branch

If the BHI instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBS, orSUBD, a
branch occurs if and only if the unsigned binary number in the accumu
lator was greater than the unsigned binary number in memory. Generally
not useful after INC/DEC, LD/ST, TST/CLR/COM because these
instructions do not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -1-1-1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BHI rel8 REL 22 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E

r~m BGE 2C

r=m BEQ 27
r";m BLE 2F

r<m BLT 2D
r>m BHI 22
r~m BHS/BCC 24

r=m BEQ 27
r";m BLS 23

r<m BLO/BCS 25
Carry BCS 25

Negative BMI 2B
Overflow BVS 29

r=O BEQ 27
Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N EB V) = 0 r";m BLE 2F

NEBV=O r<m BLT 2D

Z = 1 r;"m BNE 26

Z+ (N EB V) = 1 r>m BGT 2E

NEBV=1 r~m BGE 2C

C+Z=O r";m BLS 23

C=O r<m BLO/BCS 25

Z=1 r;"m BNE 26

C+Z=1 r>m BHI 22

C= 1 r~m BHS/BCC 24

C = 1 No Carry BCC 24
N = 1 Plus BPL 2A

V=1 No Overflow BVC 28

Z=1 r;"O BNE 26

- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed
Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple
Simple

Simple

Simple

Unconditional

MOTOROLA

6-33

BHS
Operation:

Description:

Branch if Higher or Same
(Same as BCC)

If C = 0, then (PC) + $0002 + Rei => PC

BHS

For unsigned values, if (Accumulator) ~ (Memory), then branch

If the BHS instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the unsigned binary number in the accumu
lator was greater than the unsigned binary number in memory. Generally
not useful after INC/DEC, LD/ST, TST/CLR/COM because these
instructions do not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BHS refS REL 24 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT

r~m BGE

r=m BEQ
r$m BLE

r<m BLT

r>m BHI

r~m BHS/BCC

r=m BEQ

r~m BLS

r<m BLO/BCS

Carry

Negative

Overflow

r=O
Always

MOTOROLA

6-34

BCS

BMI

BVS

BEQ

BRA

2E

2C

27

2F

2D

22

24

27

23

25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N E!) V) = 0 r$m BLE 2F Signed

NE!)V=O r<m BLT 2D Signed

Z=1 r",m BNE 26 Signed

Z + (N E!) V) = 1 r>m BGT 2E Signed

NE!)V=1 r~m BGE 2C Signed

C+Z=O r$m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z=1 r",m BNE 26 Unsigned

C+Z=1 r>m BHI 22 Unsigned

C = 1 r~m BHS/BCC 24 Unsigned

C=1 No Carry BCC 24 Simple

N = 1 Plus BPL 2A Simple

V = 1 No Overflow BVC 28 Simple

Z=1 ro'O BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BITA
Operation:

Description:

Bit Test A BITA
(A) • (M)

Performs logical AND operation on the content of accumulator A and the
content of memory location M, and modifies the condition codes accord
ingly. Each bit of the result is the logical AND of the corresponding bits
of the accumulator and the memory location. Neither the content of the
accumulator nor the content of the memory location is affected.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1-ILl Ll 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: . Set if result is $00; cleared otherwise.

v: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
!

Address Mode Object Code ~cles
BITA #oprBi IMM 85 ii 1
BITA oprBa DIR 95 dd 3
BITA opr16a EXT 85 hh 11 3

I BIT A oprxD_xysp IDX A5 xb 3
BITA oprx9,xysp IDX1 A5 xb ff 3
BITA oprx16,xysp IDX2 A5 xb ee ff 4

I BITA [D,xysp] [D,IDX] A5 xb 6
BITA [oprx16,xysp] [IDX2] AS xb ee ff 6

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

MOTOROLA

6-35

BITB
Operation:

Description:

Bit Test B BITB
(8) • (M)

Performs logical AND operation on the content of accumulator 8 and the
content of memory location M, and modifies the condition codes accord
ingly. Each bit of the result is the logical AND of the corresponding bits
of the accumulator and the memory location. Neither the content of the
accumulator nor the content of the memory location is affected.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -IA A 01-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:
_

Source Form

BITB #oprBi
BITB oprBa
BITB opr16a
BITB oprxO_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

MOTOROLA

6-36

Address Mode Object Code

IMM C5 ii

DIR D5 dd

EXT F5 hh 11

IDX E5 xb

IDX1 E5 xb ff

IDX2 E5 xb ee ff
[D,IDX] E5 xb

[IDX2] E5 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

1

3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

CPU12

REFERENCE MANUAL

BlE
Operation:

Description:

Branch if Less than or Equal to Zero BlE
If Z + (N EB V) = 1, then (PC) + $0002 + Rei:::::> PC

For signed two's complement numbers
if (Accumulator) .;:; (Memory), then branch

If the BLE instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the two's complement number in the accu
mulator was less than or equal to the two's complement number in
memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1- -1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BLE rel8 REL 2F rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E

r::>m BGE 2C

r=m BEQ 27
r<;m BLE 2F

r<m BLT 2D

r>m BHI 22

r::>m BHS/BCC 24

r=m BEQ 27
r<;m BLS 23

r<m BLO/BCS 25

Carry BCS 25
Negative BMI 2B

Overflow BVS 29

r=O BEQ 27

Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N 81 V) = 0 r<;m BLE 2F

N81V=O r<m BLT 2D

Z = 1 r*m BNE 26

Z + (N 81 V) = 1 r>m BGT 2E

N81V=1 r::>m BGE 2C

C+Z=O r<;m BLS 23

C=O r<m BLO/BCS 25

Z=1 r*m BNE 26

C+Z=1 r>m BHI 22

C=1 r::>m BHS/BCC 24

C = 1 No Carry BCC 24

N = 1 Plus BPL 2A

V = 1 No Overflow BVC 28

Z=1 r*O BNE 26
- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-37

BlO
Operation:

Description:

Branch if Lower
(Same as BCS)

If C = 1, then (PC) + $0002 + Rei =} PC

BlO
For unsigned values, if (Accumulator) < (Memory), then branch

If the BLO instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the unsigned binary number in the accumu
lator is less than the unsigned binary number in memory. Generally not
useful after INC/DEC, LD/ST, TST/CLR/COM because these instruc
tions do not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1-1- -1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BLO rel8 REL 25 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT
r<:m BGE

r=m BEQ
r';;m BLE

r<m BLT

r>m BHI

r<:m BHS/BCC

r=m BEQ
r';;m BLS

r<m BLO/BCS

Carry
Negative
Overflow

r=O

Always

MOTOROLA

6-38

BCS

BMI
BVS

BEQ

BRA

2E

2C

27

2F

2D
22

24

27

23

25

25
2B

29
27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z+ (N E9 V) = 0 r';;m BLE 2F Signed

NE9V=O r<m BLT 2D Signed

Z=1 r;tm BNE 26 Signed

Z + (N E9 V) = 1 r>m BGT 2E Signed

NE9V=1 r<:m BGE 2C Signed

C+Z=O r,;;m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z = 1 r;tm BNE 26 Unsigned

C+Z=1 r>m BHI 22 Unsigned

C = 1 r2m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N=1 Plus BPL 2A Simple

V=1 No Overflow BVC 28 Simple

Z = 1 r;tO BNE 26 Simple

- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BLS
Operation:

Description:

Branch if Lower or Same BLS
If C + Z = 1, then (PC) + $0002 + Rei => PC

For unsigned values, if (Accumulator) ~ (Memory), then branch

If the BLS instruction is executed immediately after execution of CBA,
CMPA, CMPB, CMPD, CPX, CPY, SBA, SUBA, SUBB, orSUBD, a
branch occurs if and only if the unsigned binary number in the accumu
lator was less than or equal to the unsigned binary number in memory.
Generally not useful after INC/DEC, LD/ST, TST/CLR/COM because
these instructions do not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BLS relB REL 23 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E
r~m BGE 2C

r=m BEQ 27
r";m BLE 2F

r<m BLT 2D

r>m BHI 22
r~m BHS/BCC 24

r=m BEQ 27
r,,;m BLS 23

r<m BLO/BCS 25

Carry BCS 25
Negative BMI 2B

Overflow BVS 29

r=O BEQ 27
Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N EtlV) = 0 r";m BLE 2F

NEtlV=O r<m BLT 2D

Z = 1 r*m BNE 26

Z+ (N Etl V) = 1 r>m BGT 2E

N Etl V= 1 r~m BGE 2C

C+Z=O r";m BLS 23

C=O r<m BLO/BCS 25

Z = 1 r*m BNE 26

C+Z=1 r>m BHI 22

C= 1 r~m BHS/BCC 24

C=1 No Carry BCC 24
N = 1 Plus BPL 2A

V=1 No Overflow BVC 28

Z=1 r;tO BNE 26

- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed
Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple
Simple

Simple

Simple

Unconditional

MOTOROLA

6-39

BLT
Operation:

Description:

Branch if Less than Zero BLT
If N El1 V = 1, then (PC) + $0002 + Rei => PC

For signed two's complement numbers
if (Accumulator) < (Memory), then branch

If BLT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two's complement number in the accumulator was less than
the two's complement number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BLT rel8 REL I 2D rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT

r~m BGE

r=m BEQ
r':;m BLE

r<m BLT

r>m BHI

r~m BHS/BCC

r=m BEQ

r:s:m BLS

r<m BLO/BCS

Carry

Negative
Overflow

r=O

Always

MOTOROLA

6-40

BCS

BMI

BVS
BEQ

BRA

2E
2C

27

2F

2D

22

24
27

23

25

25

2B

29
27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N E9 V) = 0 r':;m BLE 2F Signed

NE9V=O r<m BLT 2D Signed

Z=1 r",m BNE 26 Signed

Z + (N E9 V) = 1 r>m BGT 2E Signed

N E9 V= 1 r~m BGE 2C Signed

C+Z=O r,:;m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z=l r",m BNE 26 Unsigned

C+Z=l r>m BHI 22 Unsigned

C=l r~m BHS/BCC 24 Unsigned

C=l No Carry BCC 24 Simple

N=l Plus BPL 2A Simple

V=l No Overflow BVC 28 Simple

Z=l r,.o BNE 26 Simple

- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

8MI Branch if Minus 8MI
Operation: If N = 1, then (PC) + $0002 + Rei => PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Address Mode Object Code Access Detail I Source Form
BMI rel8 REL 2B rr ppp/pl ____ ~ ______________ ~ ________ L_ ________ ~

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E
r2m BGE 2C

r=m BEQ 27

rsm BLE 2F

r<m BLT 20

r>m BHI 22
r2m BHS/BCC 24

r=m BEQ 27

rsm BLS 23
r<m BLO/BCS 25

, Carry BCS 25
Negative BMI 2B
Overflow BVS 29

r=O BEQ 27

Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N EE> V) = 0 rsm BLE 2F

NEE>V=O r<m BLT 20

Z=1 r",m BNE 26

Z + (N EE> V) = 1 r>m BGT 2E

NEE>V=1 r2m BGE 2C

C+Z=O rsm BLS 23
C=O r<m BLO/BCS 25

Z=1 r"'m BNE 26

C+Z=1 r>m BHI 22

C = 1 r2m BHS/BCC 24

C = 1 No Carry BCC 24

N = 1 Plus BPL 2A

V=1 No Overflow BVC 28

Z = 1 r",O BNE 26
- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned
Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-41

BNE Branch if Not Equal to Zero BNE
Operation: If Z = 0, then (PC) + $0002 + Rei ==> PC

Simple branch

Description: Tests the Z status bit and branches if Z = o.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1-1-1
None affected.

AddreSSing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

BNE ref8 REl 26 rr 3/1 ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT

r~m BGE

r=m BEQ

r~m BlE

r<m BlT

r>m BHI

r~m BHS/BCC
r=m BEQ

r~m BlS

r<m BlO/BCS

Carry

Negative

Overflow

r=O

Always

MOTOROLA

6-42

BCS

BMI

BVS

BEQ

BRA

2E

2C

27
2F

2D

22

24

27

23
25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N Et> V) = 0 r~m BlE 2F Signed

N Et>V=O r<m BlT 2D Signed

Z = 1 r;l'm BNE 26 Signed

Z + (N Et> V) = 1 r>m BGT 2E Signed

NEt>V=l r~m BGE 2C Signed

C+Z=O r~m BlS 23 Unsigned

C=O r<m BlO/BCS 25 Unsigned

Z=l r;l'm BNE 26 Unsigned

C+Z=l r>m BHI 22 Unsigned

C=l r~m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N = 1 Plus BPl 2A Simple

V = 1 No Overflow BVC 28 Simple

Z=l r;l'O BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BPL Branch if Plus BPL
Operation: If N = 0, then (PC) + $0002 + Rei => PC

Simple branch

Description: Tests the N status bit and branches if N = O.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

[]-I-I-I-I-I-I-I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BPL ref8 REL 2A rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E
r2m BGE 2C

r=m BEQ 27

r~m BLE 2F

r<m BLT 20

r>m BHI 22
r2m BHS/BCC 24

r=m BEQ 27

r~m BLS 23

r<m BLO/BCS 25

Carry BCS 25
Negative BMI 2B

Overflow BVS 29

r=O BEQ 27

Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N Ei3 V) = 0 r~m BLE 2F

NEi3V=O r<m BLT 20

Z=1 r*m BNE 26

Z + (N Ei3 V) = 1 r>m BGT 2E

NEi3V=1 r2m BGE 2C

C+Z=O r~m BLS 23

C=O r<m BLO/BCS 25

Z=1 r*m BNE 26

C+Z=1 r>m BHI 22

C = 1 r2m BHS/BCC 24

C = 1 No Carry BCC 24

N = 1 Plus BPL 2A

V= 1 No Overflow BVC 28

Z=1 r*O BNE 26

- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-43

BRA
Operation:

Oescri ption:

Branch Always BRA
(PC) + $0002 + Rei::::} PC

Unconditional branch to an address calculated as shown in the expres
sion. Rei is a relative offset stored as a two's complement number in the
second byte of machine code corresponding to the branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

BRA re!8

MOTOROLA

6-44

Address Mode Object Code

REL 20 rr

INSTRUCTION GLOSSARY

Access Detail
ppp

CPU12

REFERENCE MANUAL

BRCLR Branch if Bits Cleared BRCLR
Operation:

Description:

If (M) • (Mask) = 0, then branch

Performs logical AND on memory location M and the mask supplied with
the instruction, then branches if and only if all bits with a value of one in
the mask byte correspond to bits with a value of zero in the tested byte.
Mask operands can be located at PC + 1, PC + 2, or PC + 4, depending
upon addressing mode. The branch offset is referenced to the next
address after the relative offset (rr) which is the last byte of the instruc
tion object code.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1- -1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

1

~---

I

-----,---~---

Source Form Address Mode1
I

Object Code Cycles
i
I BRCLR opr8a, msk8, rel8 DIR 4F dd mm rr 4
lliCLR op"6" m,kB, rol6 EXT lF hh 11 mrn rr 5

BRCLR oprxO_xysp, msk8, rel8 IDX OF xb rmn rr G4
BRCLR oprx9,xysp, msk8, rel8 IDXl OF xb ff mrn rr 6

BRCLR oprx16,xysp, msk8, rel8 IDX2 OF xb ee ff mrn rr ~

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

'---Acces;--
Detail

rPPP

rfPPP

rPPP

rffPPP

frpffppp

MOTOROLA

6-45

BRN Branch Never BRN
Operation: (PC) + $0002 ::::::} PC

Description: Never branches. BRN is effectively a 2-byte NOP that requires one cycle
to execute. BRN is included in the instruction set to provide a comple
ment to the BRA instruction. The instruction is useful during program
debug, to negate the effect of another branch instruction without
disturbing the offset byte. A complement for BRA is also useful in
compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRN branch condition is never
satisfied, the branch is never taken, and only a single program fetch is
needed to update the instruction queue.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

BRN relB

MOTOROLA

6-46

Address Mode Object Code

REL 21 rr

INSTRUCTION GLOSSARY

Access Detail
p

CPU12

REFERENCE MANUAL

BRSET Branch if Bits Set BRSET
Operation: If (M) • (Mask) = 0, then branch

Description: Performs logical AND on the inverse of memory location M and the mask
supplied with the instruction, then branches if and only if all bits with a
value of one in the mask byte correspond to bits with a value of one in
the tested byte. Mask operands can be located at PC + 1, PC + 2, or PC
+ 4, depending upon addressing mode. The branch offset is referenced
to the next address after the relative offset (rr) which is the last byte of
the instruction object code.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode 1 Object Code

BRSET opr8a, msk8, rel8 OIR 4E dd rmn rr
BRSET opr16a, msk8, rel8 EXT lE hh 11 rmn rr
BRSET oprxO_xysp, msk8, rel8 lOX 0-£ xb rrun rr
BRSET oprx9,xysp, msk8, rel8 IOX1 DE xb ff rrun rr
BRSET oprx16,xysp, msk8, rel8 IOX2 OE xb ee ff rrun rr

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

4
5
4
6
8

Access
Detail

rPPP
rfPPP
rPPP
rffPPP
frpffPPP

MOTOROLA

6-47

BSET Set Bit(s) in Memory BSET
Operation: (M) + (Mask) => M

Description: Set multiple bits in memory location M. Bits to be set are specified by
ones in the mask operand in the instruction. All other bits in Mare
rewritten to their current state. The mask byte can be located at PC + 2,
PC + 3, or PC + 4, depending upon addressing mode.

Condition Codes and Boolean Formulas:

S X H N Z v C

-I-I-I-I~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Sourc eForm

, mskB BSET oprBa
BSET opr16
BSET oprxO_
BSET oprx9
BSET oprxl

a, mskB
xysp, mskB

,xysp, mskB
6,xysp, mskB

Notes:

Address Mode 1 1 Object Code

DIR j 4C dd mm
EXT I IC hh 11 mm

lOX _J~_:~ IDX1 OC xb ff mm

IDX2 OC xb ee ff rnm

1. Indirect forms of indexed addressing cannot be used with this instruction.

MOTOROLA

6-48

INSTRUCTION GLOSSARY

--
Cycles Access Detail

4
4
4
4
6

rPOw
rPPw

rPOw

rPwP

frPwCP

CPU12

REFERENCE MANUAL

BSR
Operation:

Description:

Branch to Subroutine

(SP) - $0002 ===> SP
RTNH : RTNL ===> M(SP) : M(Sp + 1)
(PC) + Rei ===> PC

BSR

Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction after the BSR
as a return address.

Decrements the SP by two, to allow the two bytes of the return
address to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -I-I-!-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

BSR re/8

CPU12

REFERENCE MANUAL

-- ---T------ -------~
Address Mode

. Access
Object Code Cycles Detail

REL 07 rr ~ __ ~ __ !PPS ___ ~ --

INSTRUCTION GLOSSARY MOTOROLA

6-49

eve Branch if Overflow Cleared eve
Operation: If V = 0, then (PC) + $0002 + Rei:=:} PC

Simple branch

Description: Tests the V status bit and branches if V = O.

Used after an operation on two's complement binary values, this instruc
tion will cause a branch if there was NO overflow. That is, branch if the
two's complement result was valid.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BVC rel8 REL 28 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT

r<:m BGE

r=m BEQ
r:S;m BLE

r<m BLT

r>m BHI
r<:m BHS/BCC

r=m BEQ
r:S;m BLS

r<m BLO/BCS

Carry

Negative

Overflow

r=O

Always

MOTOROLA

6-50

BCS

BMI

BVS

BEQ

BRA

2E

2C

27
2F

20

22

24

27

23
25

25

2B

29

27

20

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N Ell V) = 0 r:S;m BLE 2F Signed

NEllV=O r<m BLT 20 Signed

Z=1 r*m BNE 26 Signed

Z + (N Ell V) = 1 r>m BGT 2E Signed

NEll V= 1 r<:m BGE 2C Signed

C+Z=O r:S;m BLS 23 Unsigned

C=O r<m BLO/BCS 25 Unsigned

Z=1 r*m BNE 26 Unsigned

C+Z=1 r>m BHI 22 Unsigned

C = 1 r<:m BHS/BCC 24 Unsigned

C = 1 No Carry BCC 24 Simple

N = 1 Plus BPL 2A Simple

V = 1 No Overflow BVC 28 Simple

Z=1 r*O BNE 26 Simple
- Never BRN 21 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

BVS Branch if Overflow Set BVS
Operation: If V = 1, then (PC) + $0002 + Rei => PC

Simple branch

Descri ption: Tests the V status bit and branches if V = 1.

Used after an operation on two's complement binary values, this instruc
tion will cause a branch if there was an overflow. That is, branch if the
two's complement result was invalid.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

BVS rel8 REL 29 rr ppp/pl

Notes:
1. PPPI P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m BGT 2E
r;:o,m BGE 2C

r=m BEQ 27

rsm BLE 2F

r<m BLT 20

r>m BHI 22
r;:o,m BHS/BCC 24

r=m BEQ 27

rsm BLS 23

r<m BLO/BCS 25

Carry BCS 25

Negative BMI 2B
Overflow BVS 29

r=O BEQ 27

Always BRA 20

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N Ell V) = 0 rsm BLE 2F

NEllV=O r<m BLT 20

Z = 1 r"'m BNE 26

Z + (N Ell V) = 1 r>m BGT 2E

NEllV=1 r;:o,m BGE 2C

C+Z=O rsm BLS 23

C=O r<m BLO/BCS 25

Z = 1 r",m BNE 26

C+Z=1 r>m BHI 22

C=1 r;:o,m BHS/BCC 24

C=1 No Carry BCC 24

N=1 Plus BPL 2A

V=1 No Overflow BVC 28

Z=1 r",o BNE 26

- Never BRN 21

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-51

CALL Call Subroutine in Expanded Memory CALL
Operation:

Description:

(SP) - $0002 => SP
RTNH : RTNL => M(SP) : M(Sp + 1)
(SP) - $0001 => SP
(pPAGE) => M(SP)
page => PPAGE
Subroutine Address => PC

Sets up conditions to return to normal program flow, then transfers
control to a subroutine in expanded memory. Uses the address of the
instruction following the CALL as a return address. For code compati
bility, CALL also executes correctly in devices that do not have
expanded memory capability.

Decrements the SP by two, to allow the two bytes of the return
address to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Decrements the SP by one, to allow the current memory page value
in the PPAGE register to be stacked.

Stacks the content of PPAGE.

Writes a new page value supplied by the instruction to PPAGE.

Transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and the PPAGE
value are fetched from memory in the order, M high byte, M low byte, and
new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC instruc
tion, which restores the return address and PPAGE value from the stack.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1-1-1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

I
I CAL
I CAL

CAL
CAL
CAL
CAL

Source Form

L opr16a, page
L oprxO_xysp, page
L oprx9,xysp, page
L oprx16,xysp, page
L [O,xysp]
L [oprx16,xysp]

MOTOROLA

6-52

I

Address Mode Object Code

EXT 4A hh 11 pg

lOX 4B xb pg

IOX1 4B xb ff pg
IOX2 4B xb ee ff pg

[O,IOX] 4Bxb ~
[IOX2] 4B xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

8
8
8
9
10
10

gnfSsPPP

gnfSsPPP

gnfSsPPP

fgnfSsPPP

fIignSsPPP

fIignssPPP_

CPU12

REFERENCE MANUAL

CBA
Operation:

Description:

Compare Accumulators CBA
(A) - (B)

Compares the content of accumulator A to the content of accumulator B
and sets the condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7. B7 • R7 + A7. B7 • R7
Set if a two's complement overflow resulted from the operation; cleared
otherwise.

C: A7. B7 + B7 • R7 + R7 + A7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

'II --S-o-u-rc-e-F-o-r-m---r-Add-r-e-s-s-M-o-d-e-'--O-b-j-e-ct-Code

. CBA ___ .~ ___ IN_H ___ ~_18_1_7 _____ _

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

MOTOROLA

6-53

CLC
Operation:

Description:

Clear Carry CLC
o => C bit

Clears the C status bit. This instruction is assembled as ANDCC #$FE.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLC may be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1- 0

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

CLC translates to ...
ANDCC#$FE

MOTOROLA

6-54

Address Mode Object Code

IMM 10 FE

INSTRUCTION GLOSSARY

Cycles Access Detail

1 P

CPU12

REFERENCE MANUAL

Cli
Operation:

Description:

Clear Interrupt Mask Cli
a => I bit

Clears the I mask bit. This instruction is assembled as ANDCC #$EF.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

When the I bit is cleared, interrupts are enabled. There is a one cycle
(bus clock) delay in the clearing mechanism for the I bit so that, if inter
rupts were previously disabled, the next instruction after a CLI will
always be executed, even if there was an interrupt pending prior to
execution of the CLI instruction.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1 0 -1- -1-1

0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode I Object Code
CLI translates to ...

IMM 110 EF
ANDCC#$EF I

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Cycles

1

Access Detail

p

MOTOROLA

6-55

CLR Clear Memory CLR
Operation: O~M

Description: The content of memory location M is replaced by zeros.

Condition Codes and Boolean Formulas:

S X H N Z V C

I - I -
I

-
I - 0 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

! Source Form

IClR opr16a
ClR oprxO_xysp
ClR oprx9,xysp
ClR oprx16,xysp
ClR [D,xysp]
~rx16,xysp]

MOTOROLA

6-56

Address Mode Object Code

EXT
179 hh 11

IDX 69 xb

IDX1 69 xb ff

IDX2 69 xb ee ff

[D,IDX] 69 xb

[IDX2] 69 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

3
2
3
3

5
5

wOP

Pw

PwO

PwP

PIfPw

PIPPw

CPU12

REFERENCE MANUAL

CLRA Clear A

Operation: O=>A

Description: The content of accumulator A is replaced with zeros.

Condition Codes and Boolean Formulas:

S X H N Z V C

-
I

-
I

-
I

- 0 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

CLRA INH 87

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

CLRA

Access Detail

o

MOTOROLA

6-57

CLRB Clear B

Operation: O:::>B

Description: The content of accumulator B is replaced by zeros.

Condition Codes and Boolean Formulas:

S X H N Z V C

- [- [- [- 0 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
CLRB

MOTOROLA

6-58

Address Mode Object Code
INH C7

INSTRUCTION GLOSSARY

CLRB

Access Detail
o

CPU12

REFERENCE MANUAL

ClV Clear two's complement Overflow Bit ClV
Operation: O::::} V bit

Description: Clears the V status bit. This instruction is assembled as ANDCC #$FD.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1-1- -1- -1 0 1-

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

CL V translates to ...
IMM 10 FD

ANDCC #$FD

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

1

Access Detail

P

MOTOROLA

6-59

CMPA Compare A CMPA
Operation:

Description:

(A) - (M)

Compares the content of accumulator A to the content of memory loca
tion M and sets the condition codes, which may then be used for arith
metic and logical conditional branching. Both operands are unaffected.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

v: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 + X7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form I
~PA
I CMPA

CMPA
CMPA
CMPA
CMPA
CMPA
CMPA

#opr8i
opr8a
opr16a
oprxO_xysp
oprx9,xysp
oprx16,xysp
[D,xysp]
[oprx16,xysp]

MOTOROLA

6-60

I
Address Mode

!
Object Code

IMM 81 ii

DIR 91 dd

EXT Bl hh 11
IDX Al xb

IDX1 Al xb ff
IDX2 Al xb ee ff

[D,IDX] Al xb

[IDX2] Al xb ee ff _._- --

INSTRUCTION GLOSSARY

Cycles I Access Detail

1
3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

--

CPU12

REFERENCE MANUAL

CMPB Compare B CMPB
Operation:

Descri ption:

(B) - (M)

Compares the content of accumulator B to the content of memory loca
tion M and sets the condition codes, which may then be used for arith
metic and logical conditional branching. Both operands are unaffected.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- II L'l L'l L'l

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 + X7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

CMPB #oprBi
CMPB oprBa
CMPB opr16a
CMPB oprxO_xysp
CMPB oprx9,xysp I

CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code Cycles

IMM Cl ii 1
DIR Dl dd 3
EXT Flhhll 3
IDX El xb 3

IDX1

"rl"~
3

IDX2 El xb ee ff 4
[D,IDX] El xb 6
[IDX2] I El xb ee ff 6

INSTRUCTION GLOSSARY

Access Detail

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

MOTOROLA

6-61

COM
Operation:

Description:

Complement Memory COM
(M) = $FF - (M) => M

Replaces the content of memory location M with its one's complement.
Each bit of M is replaced with the complement of that bit. Immediately
after a COM operation on unsigned values, only the BEQ, BNE, LBEQ,
and LBNE branches can be expected to perform consistently. When
operating on two's complement values, all signed branches are avail
able.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- L'l L'l 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1: Set (for M6800 compatibility).

Addressing Modes, Machine Code, and Execution Times:

I Source Form

I COM opr16a

I COM oprxOJYsp
COM oprx9,xysp
COM oprx16,xysp

I COM [D,xysp]
COM [oprx16,xysp]

MOTOROLA

6-62

Address Mode Object Code

EXT 71hh11
IDX 61 xb

IDX1 61 xb ff

IDX2 61 xb ee ff

[D,IDX] 61 xb

[IDX2] 61 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
3
4
5
6
6

rOPw

rPw

rPOw
frPPw

fIfrPw

fIPrPw

CPU12

REFERENCE MANUAL

COMA Complement A COMA
Operation:

Description:

(1\) = $FF - (A) => A

Replaces the content of accumulator A with its one's complement. Each
bit of A is replaced with the complement of that bit. Immediately after a
COM operation on unsigned values, only the BEQ, BNE, LBEQ, and
LBNE branches can be expected to perform consistently. When oper
ating on two's complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1: Set (for M6800 compatibility).

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

COMA INH 41

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-63

COMB Complement B COMB
Operation:

Description:

(8) = $FF - (B) => B

Replaces the content of accumulator B with its one's complement. Each
bit of B is replaced with the complement of that bit. Immediately after a
COM operation on unsigned values, only the BEQ, BNE, LBEQ, and
LBNE branches can be expected to perform consistently. When oper
ating on two's complement values, all Signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- illil 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1: Set (for M6800 compatibility).

Addressing Modes, Machine Code, and Execution Times:

Source Form

COMB

MOTOROLA

6-64

Address Mode Object Code

INH 51

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

CPO
Operation:

Description:

Compare Double Accumulator CPO
(A:B)-(M:M+1)

Compares the content of accumulator 0 with a 16-bit value at the
address specified, and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M + 1)
from accumulator 0 without modifying either 0 or (M : M + 1).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -ILl Ll Ll Ll

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 015 - M15 - R15 + 015 - M15 - R15
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: 015-M15+M15-R15+R15+015
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
CPO #opr16i !
CPO opr8a I

I
CPO opr16a I
CPO oprxO_xysp
CPO oprx9,xysp
CPO oprx16,xysp
CPO [O,xysp]
CPO [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode I Object Code
IMM I 8C jj kk
OIR I 9C dd
EXT I BChhll

I

lOX
lAC xb .

IOX1 AC xb ff
IOX2 ~meeH~

[O,IOX] I AC xb

[IOX2] I AC xb ee ff

INSTRUCTION GLOSSARY

Cycles
2

3
3
3
3
4
6
6

Access Detail
OP
Rfp
ROP
RfP
RPO
fRPP
fIfRfP
fIPRfP

MOTOROLA

6-65

CPS
Operation:

Description:

Compare Stack Pointer CPS
(SP) - (M: M+1)

Compares the content of the SP with a 16-bit value at the address spec
ified, and sets the condition codes accordingly. The compare is accom
plished internally by doing a 16-bit subtract of (M : M+ 1) from the SP
without modifying either the SP or (M : M+ 1).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: S15-M15-R15+S15-M15-R15
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: S15 - M15 + M15 - R15 + R15 + S15
Set if the absolute value of the content of memory is larger than the
absolute value of the SP; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

CPS #opr16i
CPS oprBa
CPS opr16a
CPS oprxO_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

MOTOROLA

6-66

Address Mode Object Code

IMM 8F jj kk

DIR 9F dd

EXT BF hh II

IDX AF xb

IDX1 AF xb ff
IDX2 AF xb ee ff

[D,IDX] AF xb

[IDX2] AF xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
3
3
3
4
6
6

OP
RfP
ROP
RfP
RPO
fRPP
fIfRfP
fIPRfP

CPU12

REFERENCE MANUAL

CPX
Operation:

Description:

Compare Index Register X CPX
(X) - (M: M+1)

Compares the content of index register X with a 16-bit value at the
address specified, and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M+ 1) from
index register X without modifying either index register X or (M : M+ 1).

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- A A A A

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

v: X15. M15. R15 +X15. M15. R15
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: X15. M15 + M15. R15 + R15 +X15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
CPX #opr16i
CPX opr8a
CPX opr16a I
CPX oprxO_xysp !
CPX oprx9,xysp
CPX oprx16,xysp
CPX [O,xysp]
CPX [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code
IMM 8E jj kk
OIR 9E dd
EXT BE hh 11
lOX AE xb

IOX1 AE xb ff

IOX2 AE xb ee ff
[O,IOX] AE xb

[IOX2] AE xb ee ff

INSTRUCTION GLOSSARY

Cycles

2
3
3
3
3
4
6
6

Access Detail

OP
RfP
ROP
RfP
RPO
fRPP
fIfRfP
fIPRfP

MOTOROLA

6-67

Cpy
Operation:

Description:

Compare Index Register Y Cpy
(Y) - (M : M+1)

Compares the content of index register Y to a 16-bit value at the address
specified, and sets the condition codes accordingly. The compare is
accomplished internally by a 16-bit subtract of (M : M+ 1) from Y without
modifying either Y or (M : M+ 1).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- L'11L'1 L'1 L'1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: Y15. M15. R15 + Y15. M15. R15
Set if two's complement overflow resulted from the operation; cleared
otherwise.

C: Y15. M15 + M15. R15 + R15 + Y15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

CPY #opr16i
CPY oprBa
Cpy opr16a
Cpy oprxO_xysp
Cpy oprx9,xysp
Cpy oprx16,xysp
Cpy [O,xysp]
Cpy [oprx16,xysp]

MOTOROLA

6-68

Address Mode Object Code

IMM I 8D jj kk
OIR 19D dd
EXT ED hh 11

lOX AD xb

IOX1 ADxbff
IOX2 AD xb ee ff

[O,IOX] AD xb
[IOX2] AD xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
3
3
3
4
6
6

OP
Rfp
ROP
RfP
RPO
fRPP
fIfRfP
fIPRfP

CPU12

REFERENCE MANUAL

DAA
Description:

Decimal Adjust A DAA
DAA adjusts the content of accumulator A and the state of the C status
bit to represent the correct binary-cod ed-decimal sum and the associ
ated carry when a BCD calculation has been performed. In order to
execute DAA, the content of accumulator A, the state of the C status bit,
and the state of the H status bit must all be the result of performing an
ABA, ADD or ADC on BCD operands, with or without an initial carry.

The table below shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of ABA, ADC, or
ADD operations on BCD operands. The correction factor in column 5 is
added to the accumulator to restore the result of an operation on two
BCD operands to a valid BCD value, and to set or clear the C bit. All
values are in hexadecimal.

1 2 3 4 5 6

Initial Value of Initial Value of Correction Corrected
C Bit Value A[7:4] H Bit Value A[3:0] Factor C Bit Value

a 0-9 a 0-9 00 a
a 0-8 a A-F 06 a
a 0-9 1 0-3 06 a
a A-F a 0-9 60 1

a 9-F a A-F 66 1

a A-F 1 0-3 66 1

1 0-2 a 0-9 60 1

1 0-2 a A-F 66 1

1 0-3 1 0-3 66 1

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -I-I~ ~ ? ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Undefined.

C: Represents BCD carry. See table above.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

DAA ~ INH 18 07 OW
----------~------------~--------~~------~

CPU12

REFERENCE MANUAL
INSTRUCTION GLOSSARY MOTOROLA

6-69

DBEQ Decrement and Branch if Equal to Zero DBEQ
Operation:

Description:

(Counter) - 1 ::::} Counter
If (Counter) = 0, then (PC) + $0003 + Rei::::} PC,

Subtract one from the specified counter register A, B, 0, X, V, or SP. If
the counter register has reached zero, execute a branch to the specified
relative destination. The OBEQ instruction is encoded into three bytes of
machine code including the 9-bit relative offset (-256 to +255 locations
from the start of the next instruction).

IBEQ and TBEQ instructions are similar to OBEQ except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction post byte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code 1 Access Detail
DBEQ abdxys, rel9 REL 04 Ib rr PPP/POP

Notes:
1. Encoding for Ib is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(DBEQ - 0) or not zero (DBNE - 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would
be 0:0 for DBEQ.

Count
Register

A
B

D
X
Y

SP

MOTOROLA

6-70

Bits 2:0

000
001

100
101
110
111

Source Form
Object Code

(if offset is positive)

DBEQ A, rel9 04 00 rr
DBEQ B, rel9 04 01 rr

DBEQ D, rel9 04 04 rr
DBEQ X, rel9 04 05 rr
DBEQ Y, rel9 04 06 rr
DBEQ SP, rel9 04 07 rr

INSTRUCTION GLOSSARY

Object Code
(if offset is negative)

04 10 rr
04 11 rr

04 14 rr
04 15 rr

04 16 rr
04 17 rr

CPU12

REFERENCE MANUAL

DB N E Decrement and Branch if Not Equal to Zero DB N E
Operation:

Description:

(Counter) - 1 =} Counter
If (Counter) not == 0, then (PC) + $0003 + Rei =} PC,

Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has not been decremented to zero, execute a
branch to the specified relative destination. The DBNE instruction is
encoded into three bytes of machine code including a 9-bit relative offset
(-256 to +255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DBNE except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code 1 Access Detail

DBNE abdxys, rel9 REL 04 Ib rr PPP/POP

Notes:
1. Encoding for Ib is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(DBEQ - 0) or not zero (DBNE - 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would
be 0:0 for DBNE.

Count
Bits 2:0

Register

A 000
B 001

D 100
X

I
101

Y 110
sp 111

CPU12

REFERENCE MANUAL

Source Form
Object Code

(if offset is positive)

DBNE A, rel9 04 20 rr
DBNE B, rel9 04 21 rr

DBNE D, rel9 04 24 rr
DBNE X, rel9 04 25 rr
DBNE Y, rel9 04 26 rr
DBNE SP, rel9 04 27 rr

INSTRUCTION GLOSSARY

Object Code
(if offset is negative)

04 30 rr
04 31 rr

04 34 rr
04 35 rr
04 36 rr
04 37 rr

MOTOROLA

6-71

DEC
Operation:

Description:

Decrement Memory DEC
(M) - $01 => M

Subtract one from the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in multiple
precision computations.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -1- ~ ~ ~ -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow occurs if and only if (M)
was $80 before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form

DEC opr16a
DEC oprxO_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp)
DEC [oprx16,xysp)

MOTOROLA

6-72

Address Mode Object Code

EXT 73 hh II

IDX 63 xb

IDX1 63 xb ff
IDX2 63 xb ee ff

[D,IDX) 63 xb

[IDX2) 63 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
3
4
5
6
6

rOPw
rPw
rPOW
frPPw
fIfrPw
fIPrPw

CPU12

REFERENCE MANUAL

DECA Decrement A DECA
Operation:

Description:

(A) - $01 => A

Subtract one from the content of accumulator A.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in multiple
precision computations.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow occurs if and only if (A) was
$80 before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
DECA INH 43

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-73

DECB Decrement B DECB
Operation:

Description:

(B) - $01 ~ B

Subtract one from the content of accumulator B.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in multiple
precision computations.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MS8 of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow occurs if and only if (8) was
$80 before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form

DECB

MOTOROLA

6-74

Address Mode Object Code

INH 53

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

DES Decrement Stack Pointer DES
Operation: (SP) - $0001 ~ SP

Description: Subtract one from the SP. This instruction assembles to LEAS -1 ,SP.
The LEAS instruction does not affect condition codes as DEX or DEY
instructions do.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form J Address Mode I Object Code Cycles Access Detail

! DES translates to ...
I LEAS -1,SP I

lOX ~B9F 2 ppl

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-75

DEX
Operation: .

Description:

Decrement Index Register X DEX
(X) - $0001 => X

Subtract one from index register X. LEAX -1 ,X could be used to accom
plish the same result, except LEA does not affect the Z bit. Although the
LEAX instruction is more flexible, DEX requires only one byte of object
code.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

Z: Set if result is $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

DEX

MOTOROLA

6-76

Address Mode Object Code

INH 09

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

DEY
Operation:

Description:

Decrement Index Register Y DEY
(Y) - $0001 => Y

Subtract one from index register Y. LEAY -1 ,Y could be used to accom
plish the same result, except LEA does not affect the Z bit. Although the
LEAY instruction is more flexible, DEY requires only one byte of object
code.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

-I-I-I-I-I~I- -I

Z: Set if result is $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

~ Source Form

I DEY

CPU12

REFERENCE MANUAL

Address Mode

INH 03

Object Code

INSTRUCTION GLOSSARY

Access Detail

o

MOTOROLA

6-77

EDIV
Operation:

Description:

Extended Divide 32-bit by 16-bit
(Unsigned)

(Y : D) 7- (X) => Y; Remainder => D

EDIV

Divides a 32-bit unsigned divisor by a 16-bit dividend, producing a 16-bit
unsigned quotient and an unsigned 16-bit remainder. All operands and
results are located in CPU registers. The C status bit can be used to
round the result. If an attempt to divide by zero is made, the contents of
accumulator D and index register Y do not change, but the states of the
Nand Z bits in the CCR are undefined.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~I

N: Set if MSB of result is set; cleared otherwise.
Undefined after overflow or division by zero.

Z:
Set if result is $0000; cleared otherwise.
Undefined after overflow or division by zero.

V: Set if the result was> $FFFF; cleared otherwise. Undefined after di
vision by zero.

C: Set if divisor was $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
ED IV

MOTOROLA

6-78

Address Mode Object Code

INH 11

INSTRUCTION GLOSSARY

Access Detail

ffffffffffO

CPU12

REFERENCE MANUAL

EDIVS Extended Divide 32-bit by 16-bit
(Signed) EDIVS

Operation:

Description:

(Y : D) -:- (X) => Y; Remainder => D

Divides a signed 32-bit divisor by a 16-bit signed dividend, producing a
signed 16-bit quotient and a signed 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, the C status bit is set and the contents of accumulator D and index
register Y do not change, but the states of the Nand Z bits in the CCR
are undefined.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1- -I~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.
Undefined after overflow or division by zero.

Z: Set if result is $0000; cleared otherwise.
Undefined after overflow or division by zero.

V: Set if the result was> $7FFF or < $8000; cleared otherwise. Undefined after
division by zero.

C: Set if divisor was $0000; cleared otherwise. (Indicates division by zero).

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

EDIVS INH 18 14

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

OffffffffffO

MOTOROLA

6-79

Extended Multiply and Accumulate
(Signed) EMACS EMACS

Operation:

Description:

16-bit By 16-bit to 32-bit

(M(X) : M(x+ 1) x (M(y) : M(y + 1) + (M - M+3) ~ M - M+3

A 16-bit value is multiplied by a 16-bit value to produce a 32-bit interme
diate result. This 32-bit intermediate result is then added to the content
of a 32-bit accumulator in memory. EMACS is a signed integer opera
tion. All operands and results are located in memory. When the EMACS
instruction is executed, the first source operand is fetched from an
address pointed to by X, and the second source operand is fetched from
an address pointed to by index register Y. Before the instruction is
executed, the X and Y index registers must contain values that point to
the most significant bytes of the source operands. The most significant
byte of the 32-bit result is specified by an extended address supplied
with the instruction.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

V: M31 - 131 - R31 + M31 - i31 - R31
Set if result> $7FFFFFFF (+ overflow) or < $80000000 (- underflow).
Indicates two's complement overflow.

C: M15-115+115-R15+R15-M15
Set if there was a carry from bit 15 of the result; cleared otherwise.
Indicates a carry from low word to high word of the result occurred.

Addressing Modes, Machine Code, and Execution Times:

Source Form 1 Address Mode Object Code Access Detail

EMACS opr16a Special 18 12 hh 11 ORROf ffRRfWWP

Notes:
1. opr16a is an extended address specification. Both X and Y point to source operands.

MOTOROLA

6-80

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

EMAXD Place Larger of Two
Unsigned 16-bit Values

In Accumulator D
EMAXD

Operation:

Description:

MAX ((D), (M : M + 1)) => D

Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in accumulator D to determine which is larger, and leaves the
larger of the two values in accumulator D. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C= 1, the
value in accumulator D has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15.M15.R15+D15.M15.R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: D15.M15+M15.R15+R15.D15
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D - M : M + 1).

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles

EMAXD oprxOjYsp IDX 18 lA xb 4
EMAXD oprx9,xysp IDX1 18 lA xb ff 4
EMAXD oprx16,xysp IDX2 18 lA xb ee ff 5
EMAXD [D,xysp] [D,IDX] 18 lA xb 7
EMAXD [oprx16,xysp] [IDX2] 18 lA xb ee ff 7

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

ORfP
ORPO
OfRPP
OfIfRfP
OfIPRfP

MOTOROLA

6-81

EMAXM Place Larger of Two
Unsigned 16-bit Values

In Memory
EMAXM

Operation:

Description:

MAX ((D), (M : M + 1)) ::::} M : M + 1

Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in accumulator D to determine which is larger, and leaves the
larger of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 0, the
value in accumulator D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- 8 8 8 8

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 015. M15. R15 + 015. M15. R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: 015. M15 + M15. R15 + R15. 015
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = 0 - M : M + 1).

Addressing Modes, Machine Code, and Execution Times:

Source Form

EMAXM oprxO_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
~AXM [oprx16,xysp]

MOTOROLA

6-82

Address Mode Object Code

IDX 18 1E xb

IDX1 18 1E xb ff
IDX2 18 1E xb ee ff

[D,IDX] 18 1E xb

[IDX2] 18 1E xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
5

6
7
7

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

CPU12

REFERENCE MANUAL

EMIND Place Smaller of Two
Unsigned 16-bit Values

In Accumulator 0
EMIND

Operation:

Descri ption:

MIN ((D), (M : M + 1)) => D

Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in accumulator D to determine which is larger, and leaves the
smaller of the two values in accumulator D. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C= 0, the
value in accumulator D has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 - M15 - R15 + D15 - M15 - R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: D15-M15+M15-R15+R15-D15
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D - M : M + 1).

Addressing Modes, Machine Code, and Execution Times:

I Source Form I Address Mode I Object Code Cycles

I EMIND oprxOjYsp

I

IDX 18 1B xb 4
I EMIND oprx9,xysp IDX1 18 1B xb ff 4

I EMIND oprx16,xysp IDX2 18 1B xb ee ff 5
EMIND [D,xysp] [D,IDX] 18 1B xb 7
EMIND [oprx16,xysp] [IDX2] 18 1B xb ee ff 7

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

ORfP
ORPO
OfRPP
OfIfRfP
OfIPRfP

MOTOROLA

6-83

EMINM Place Smaller of Two
Unsigned 16-bit Values

In Memory
EMINM

Operation:

Description:

MIN ((D), (M : M + 1))::::} M : M + 1

Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in accumulator D to determine which is larger, and leaves the
smaller of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

5 X H N Z v C

-1-1-1- A A A A

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 015. M15 - R15 + 015 - M15 - R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: 015-M15+M15-R15+R15-015
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = 0 - M : M + 1).

Addressing Modes, Machine Code, and Execution Times:

Source Form

EMINM oprxO_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [O,xysp]
EMINM [oprx16,xysp]

MOTOROLA

6-84

I

Address Mode Object Code

lOX 18 1F xb
IOX1 18 1F xb ff
IOX2 18 1F xb ee ff

[O,IOX] 18 1F xb
[IOX2] I 18 1F xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
5
6
7
7

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

CPU12

REFERENCE MANUAL

EMUL Extended Multiply
16-bit by 16-bit (Unsigned) EMUL

Operation:

Description:

(D) x (Y) ~ Y : D

An unsigned 16-bit value is multiplied by an unsigned 16-bit value to
produce an unsigned 32-bit result. The first source operand must be
loaded into 16-bit accumulator D and the second source operand must
be loaded into index register Y before executing the instruction. When
the instruction is executed, the value in D is multiplied by the value in Y.
The upper 16-bits of the 32-bit result are stored in Y and the low order
16-bits of the result are stored in D.

The carry flag (C bit) can be used to round the high order 16 bits of the
result.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if the MSB of the result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

C: Set if bit 15 of the result is set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

EMUL INH 13

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

£fa

MOTOROLA

6-85

EMULS Extended Multiply
16-bit by 16-bit (Signed) EMULS

Operation:

Description:

(D) x (Y) ~ Y : D

A signed 16-bit value is multiplied by a signed 16-bit value to produce a
signed 32-bit result. The first source operand must be loaded into 16-bit
accumulator D and the second source operand must be loaded into
index register Y before executing the instruction. When the instruction is
executed, D is multiplied by the value Y. The 16 high-order bits of the 32-
bit result are stored in Y and the 16 low-order bits of the result are stored
in D.

The C status bit can be used to round the high order 16 bits of the result.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -I-Ili li -Ili

N: Set if the MSB of the result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

C: Set if bit 15 of the result is set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail
EMULS

MOTOROLA

6-86

INH 18 13

INSTRUCTION GLOSSARY

3 Of 0

CPU12

REFERENCE MANUAL

EORA Exclusive-OR A EORA
Operation: (A) E8 (M) => A

Description: Performs the logical exclusive OR between the content of accumulator
A and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the corre
sponding bits of M and A before the operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -I-I~ ~ 01-

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
EORA#oprBi

I
IMM 88 ii

EORA oprBa OIR 98 dd

I EORA opr16a EXT B8 hh 11

EORA oprxO_xysp lOX A8 xb

I EORA oprx9,xysp IOX1 A8 xb ff

I EORA oprx16,xysp IOX2 A8 xb ee ff
EORA [O,xysp] [O,IOX] A8 xb

EORA [oprx16,xysp] [IOX2] AS xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

1
3
3
3
3
4
6
6

Access Detail

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

MOTOROLA

6-87

EORB Exclusive-OR B EORB
Operation: (B) $ (M) => B

Description: Performs the logical exclusive OR between the content of accumulator
B and the content of memory location M. The result is placed in B. Each
bit of B after the operation is the logical exclusive OR of the corre
sponding bits of M and B before the operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -I-IL\ L\ 01-

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
EaRB #opr8i
EaRB opr8a
EaRB opr16a
EaRB oprxO_xysp
EaRB oprx9,xysp
EaRB oprxl6,xysp
EaRB [O,xysp]
EaRB [oprxI6,xysp]

MOTOROLA

6-88

Address Mode Object Code

IMM C8 ii

DlR D8 dd

EXT F8 hh 11

lOX E8 xb

IOX1 E8 xb ff

IOX2 E8 xb ee ff
[O,IOX] E8 xb
[IOX2] E8 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP

CPU12

REFERENCE MANUAL

ETBL Extended Table Lookup and Interpolate ETBL
Operation: (M : M+1) + [(B) x ((M+2:M+3) - (M: M+1))] ~ D

Description: The ETBL instruction linearly interpolates one of 256 result values that
fall between each pair of data entries in a lookup table stored in memory.
Data points in the table represent the endpoints of equally-spaced line
segments. Table entries and the interpolated result are 16-bit values.
The result is stored in the D accumulator.

Before executing ETBL, set up an index register so that it points to the
starting point (X1) of a line segment when the instruction is executed. X1
is the table entry closest to, but less than or equal to, the desired lookup
value. The next table entry after X1 is X2. XL is the distance in X
between X1 and X2. Load accumulator B with a binary fraction (radix
point to left of MSB) representing the ratio (XL -X1) + (X2-X1).

The 16-bit unrounded result is calculated using the following expression:

D = Y1 + [(B) x (Y2 - Y1)]
Where

(B) = (XL - X1) + (X2 - X1)
Y1 = 16-bit data entry pointed to by <effective address>
Y2 = 16-bit data entry pOinted to by <effective address> + 2

The intermediate value [(B) x (Y2 - Y1)] produces a 24-bit result with the
radix pOint between bits 7 and 8. Any indexed addressing mode, except
indirect modes or 9-bit and 16-bit offset modes, can be used to identify
the first data point (X1 ,Y1). The second data point is the next table entry.

Condition Codes and Boolean Formulas:

S X H N Z V C

-I-I-I-I~ ~I- ?

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

C: Undefined.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

ETBL oprxO_xysp IDX 18 3F xb

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Cycles

10

Access Detail

ORRffffffP

MOTOROLA

6-89

o

2

3

4

5

6

7

EXG Exchange Register Contents EXG
Operation: See table

Description: Exchanges the contents of registers specified in the instruction as shown
below. Note that the order in which exchanges between 8-bit and 16-bit
registers are specified affects the high byte of the 16-bit registers differ
ently. Exchanges involving D with A or B are ambiguous. Cases
involving TMP2 and TMP3 are reserved for Motorola use, so some
assemblers may not permit their use, but it is possible to generate these
cases by using DC.B or DC.W assembler directives.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1-1-1-1- -I
None affected, unless the CCR is the destination register. Condition codes
take on the value of the corresponding source bits, except that the X mask bit
cannot change from zero to one. Software can leave the X bit set, leave it
cleared, or change it from one to zero, but it can only be set by a reset or by
recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code1 Access Detail

EXG abcdxys,abcdxys INH B7 eb p

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high·order source digit. Rows

represent the low-order destination digit (Bit 3 is a don't-care). Values are in hexadecimal.

8 9

A.", A B.",A

A.",B B.",B

A.",CCR B ¢'> CCR

$OO:A => TMP2 $OO:B => TMP2
TMP2L => A

$OO:A => 0

$OO:A => X

XL => A

$OO:A => Y
YL=> A

$OO:A => SP
SPL => A

MOTOROLA

6-90

TMP2L=> B

$OO:B => 0

$OO:B => X
XL => B

$OO:B => Y
YL => B

$OO:B => SP
SPL => B

A B c

CCR.",A
TMP3L => A B=>A

$OO:A => TMP3 A=>B

CCR.",B
TMP3L => B B=>B

$FF:B => TMP3 $FF => A

CCR ¢'> CCR
TMP3L => CCR B =>CCR

$FF:CCR => TMP3 $FF:CCR => 0

$OO:CCR => TMP2
TMP3 ¢'> TMP2 o ¢'> TMP2

TMP2L =>CCR

$OO:CCR => 0
TMP3 ¢'> 0 D¢'>D

B => CCR

$OO:CCR => X
TMP3 ¢'> X D¢'>X

XL=> CCR

$OO:CCR => Y
TMP3 ¢'> Y D¢'>Y

YL => CCR

$OO:CCR => SP
TMP3 ¢'> SP o ¢'> SP

SPL =>CCR

INSTRUCTION GLOSSARY

o E F

XL => A YL => A SPL => A
$OO:A => x $OO:A => Y $OO:A => SP

XL => B YL => B SPL => B
$FF:B => X $FF:B => Y $FF:B => SP

XL => CCR YL => CCR SPL => CCR
$FF:CCR => X $FF:CCR => Y $FF:CCR => SP

X¢'> TMP2

X¢'> 0

X¢'>X

X¢'>Y

X."SP

Y ¢'> TMP2 SP ¢'> TMP2

Y¢'>D SP ¢'> 0

Y¢'>X SP ¢'> X

Y¢'>Y SP ¢'> Y

Y."SP SP ¢'> SP

CPU12

REFERENCE MANUAL

FDIV
Operation:

Description:

Fractional Divide FDIV
(D) +- (X) ::::} X; Remainder::::} D

Divides an unsigned 16-bit numerator in double accumulator D by an
unsigned16-bit denominator in index register X, producing an unsigned
16-bit quotient in X, and an unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the
same positions, the radix point of the quotient is to the left of bit 15. The
numerator must be less than the denominator. In the case of overflow
(denominator is less than or equal to the numerator) or division by zero,
the quotient is set to $FFFF, and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator by 216 and then
performing 32 x 16-bit integer division. The result is interpreted as a
binary-weighted fraction, which resulted from the division of a 16-bit
integer by a larger 16-bit integer. A result of $0001 corresponds to
0.000015, and $FFFF corresponds to 0.9998. The remainder of an IDIV
instruction can be resolved into a binary-weighted fraction by an FDIV
instruction. The remainder of an FDIV instruction can be resolved into
the next 16-bits of binary-weighted fraction by another FDIV instruction.

Condition Codes and Boolean Formulas:

S X H N Z V C

Z: Set if quotient is $0000; cleared otherwise.

V: 1 if X:O; D
Set if the denominator was less than or equal to the numerator;
cleared otherwise.

C: Xi5 • Xi4 • Xi3 • Xi2 •...• X3 • X2 • Xi • XO
Set if denominator was $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

I FDIV INH 18 11

CPUi2 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

OffffffffffO

MOTOROLA

6-91

IBEQ
Operation:

Description:

Increment and Branch if Equal
to Zero

(Counter) + 1 => Counter
If (Counter) = 0, then (PC) + $0003 + Rei => PC,

IBEQ

Add one to the specified counter register A, B, 0, X, Y, or SP. If the
counter register has reached zero, branch to the specified relative desti
nation. The IBEQ instruction is encoded into three bytes of machine
code including a 9-bit relative offset (-256 to +255 locations from the
start of the next instruction).

OBEQ and TBEQ instructions are similar to IBEQ except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code 1 Cycles Access Detail

IBEQ abdxys, rel9 REL 04 Ib rr 3/3 PPP/POP

Notes:
1. Encoding for Ib is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(IBEQ - 0) or not zero (IBNE - 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 1:0 for IBEQ.

Count
Register

A
B

D
X
Y

SP

MOTOROLA

6-92

Bits 2:0

000
001

100
101
110
111

Source Form
Object Code

(if offset is positive)

IBEQA, rel9 04 80 rr
IBEQ B, rel9 04 81 rr

IBEQ D, rel9 04 84 rr
IBEQ X, rel9 04 85 rr
IBEQ Y, rel9 04 86 rr
IBEQ SP, rel9 04 87 rr

INSTRUCTION GLOSSARY

Object Code
(if offset is negative)

04 90 rr
04 91 rr

04 94 rr
04 95 rr
04 96 rr
04 97 rr

CPU12

REFERENCE MANUAL

IBNE
Operation:

Description:

Increment and Branch if Not
Equal to Zero

(Counter) + 1::::} Counter
If (Counter) not = 0, then (PC) + $0003 + Rei::::} PC

IBNE

Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has not been incremented to zero, branch to the speci
fied relative destination. The IBNE instruction is encoded into three bytes
of machine code including a 9-bit relative offset (-256 to +255 locations
from the start of the next instruction).

DBNE and TBNE instructions are similar to IBNE except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction post byte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code1 Access Detail

IBNE abdxys, rel9 REL 04 Ib rr PPP/POP

Notes:
1. Encoding for Ib is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(IBEQ - 0) or not zero (IBNE -1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 1:0 for IBNE.

Count
Bits 2:1:0 I Source Form

Object Code
Register (if offset is positive)

A 000 IIBNE A, rel9 04 AO rr
B 001 i IBNE B, rel9 04 Al rr

D 100 IIBNE D, rel9 04 A4 rr
X 101 ,IBNE X, rel9 04 A5 rr

l Y 110 IIBNE Y, rel9 04 A6 rr
SP 111 IBNE SP, rel9 04 A7 rr

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Object Code
(if offset is negative)

04 BO rr
04 Bl rr

04 B4 rr
04 B5 rr
04 B6 rr
04 B7 rr

MOTOROLA

6-93

IDIV
Operation:

Description:

Integer Divide IDIV
(D) + (X) ::::} X; Remainder::::} D

Divides an unsigned 16-bit divisor in double accumulator D by an
unsigned 16-bit dividend in index register X, producing an unsigned 16-
bit quotient in X, and an unsigned 16-bit remainder in D. If both the
divisor and the dividend are assumed to have radix points in the same
positions, the radix point of the quotient is to the right of bit zero. In the
case of division by zero, the quotient is set to $FFFF, and the remainder
is indeterminate.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1-1- LllolLl
Z: Set if quotient is $0000; cleared otherwise!

V: 0; Cleared.

C: X15 • X14 • X13 • X12 X3 • X2 • X1 • XQ
Set if denominator was $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
IDIV

MOTOROLA

6-94

INH 18 10

INSTRUCTION GLOSSARY

Access Detail

OffffffffffO

CPU12

REFERENCE MANUAL

IDIVS Integer Divide (Signed) IDIVS
Operation:

Description:

(D) -+- (X) =} X; Remainder =} 0

Performs signed integer division of a signed 16-bit numerator in double
accumulator 0 by a signed 16-bit denominator in index register X,
producing a signed 16-bit quotient in X, and a signed 16-bit remainder in
D. If division by zero is attempted, the values in accumulator 0 and index
register X are not changed, but the values of the N, Z, and V bits in the
CCR are undefined.

Other than division by zero, which is not legal and causes the C status
bit to be set, the only overflow case is:

$8000 = -32,768 = 32768
$FFFF -1 +,

But the highest positive value that can be represented in a 16-bit two's
complement number is 32,767 ($7FFFF).

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.
Undefined after overflow or division by zero.

Z: Set if quotient is $0000; cleared otherwise.
Undefined after overflow or division by zero

V: Set if the result was> $7FFF or < $8000; cleared otherwise.
Undefined after division by zero

C: X15. X14 • X13 • X12 X3 • X2 • X1 • XO
Set if denominator was $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code I Access Detail I

L-ID_IV_S ____________ -L _______ INH -L_l_8_1_5 __________ ~ ________ L-0f_f_f_ff_f_ff_f_fO~

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-95

INC
Operation:

Description:

Increment Memory INC
(M) + $01 => M

Add one to the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in multiple
preCision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform conSistently. When operating on
two's complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two's complement overflow as a result of the opera
tion; cleared otherwise. Two's complement overflow occurs if and
only if (M) was $7F before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form
INC opr16a
INC oprxO_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]

MOTOROLA

6-96

Address Mode I Object Code
EXT 72 hh 11

IDX 62 xb

IDX1 62 xb ff

IDX2 62 xb ee ff

[D,IDX] 62 xb

[IDX2] 62 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

CPU12

REFERENCE MANUAL

INCA
Operation:

Description:

Increment A INCA
(A) + $01 => A

Add one to the content of accumulator A.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in multiple
precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two's complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two's complement overflow as a result of the opera
tion; cleared otherwise. Two's complement overflow occurs if and
only if (A) was $7F before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

INCA

CPU12

REFERENCE MANUAL

INH 42

INSTRUCTION GLOSSARY

o

MOTOROLA

6-97

INCB
Operation:

Description:

Increment B INCB
(B) + $01 => B

Add one to the content of accumulator B.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in multiple
precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two's complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- ~ ~ ~ -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two's complement overflow as a result of the opera
tion; cleared otherwise. Two's complement overflow occurs if and
only if (B) was $7F before the operation.

Addressing Modes, Machine Code, and Execution Times:

Source Form

INCB

MOTOROLA

6-98

Address Mode Object Code

INH 52

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

INS Increment Stack Pointer INS
Operation: (SP) + $0001 => SP

Description: Add one to the SP. This instruction is assembled to LEAS 1,SP. The
LEAS instruction does not affect condition codes as an INX or INY
instruction would.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1-1-1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

INS translates to ...
lOX 2 ppl

LEAS 1,SP
1B 81

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

CPU12

REFERENCE MANUAL
iNSTRUCTION GLOSSARY MOTOROLA

6-99

INX
Operation:

Descri ption:

Increment Index Register X INX
(X) + $0001 ==> X

Add one to index register X. LEAX 1 ,X could be used to accomplish the
same result except LEA does not affect the Z bit. Although the LEAX
instruction is more flexible, INX requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

-[-[-[- -[Ll[-[-

Z: Set if result is $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

INX

MOTOROLA

6-100

Address Mode Object Code

INH 08

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

INY
Operation:

Description:

Increment Index Register Y INY
(Y) + $0001 ::::} Y

Add one to index register Y. LEAY 1 ,Y could be used to accomplish the
same result except LEA does not affect the Z bit. Although the LEAY
instruction is more flexible, INY requires only one byte of object code.

Only the Z status bit is set or cleared according to the result of this oper
ation.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1/\ -1-

Z: Set if result is $0000; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

INY INH 02

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-101

JMP Jump JMP
Operation: Effective Address =::} PC

Description: Jumps to the instruction stored at the effective address. The effective
address is obtained according to the rules for extended or indexed
addressing.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1-1-1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

JMP opr16a
JMP oprxO_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

MOTOROLA

6-102

Address Mode Object Code

EXT 06 hh 11
IDX 05 xb

IDX1 05 xb ff
IDX2 05 xb ee ff

[D,IDX] 05 xb

[IDX2] 05 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

3
3
3
4
6
6

ppp
ppp
ppp

fPPP
fIfPPP
fIfpPP

CPU12

REFERENCE MANUAL

JSR
Operation:

Description:

Jump to Subroutine

(SP) - $0002 :::::} SP
RTNH : RTNL :::::} M(SP) :M(Sp + 1)
Subroutine Address:::::} PC

JSR

Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction following the
JSR as a return address.

Decrements the SP by two, to allow the two bytes of the return
address to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Calculates an effective address according to the rules for extended,
direct or indexed addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
JSR opr8a DIR 17 dd

JSR opr16a EXT 16 hh 11
JSR oprxO_xysp IDX 15 xb

JSR oprx9,xysp IDX1 15 xb ff
JSR oprx16,xysp IDX2 15 xb ee ff
JSR [D,xysp] [D,IDX] 15 xb

JSR [oprx16,xysp] [IDX2] 15 xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

4
4
4
4
5
7
7

Access Detail

PPPS
PPPS
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

MOTOROLA

6-103

LBCC Long Branch if Carry Cleared
(Same as LBHS)

Operation: If C = 0, then (PC) + $0004 + Rei => PC

Simple branch

Description: Tests the C status bit and branches if C = o.

LBCC

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- 1- -1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBCC reJ16 REL 18 24 qq rr OPpp/OPOl

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic

r>m LBGT
r;:o,m LBGE

r=m LBEQ

r:>m LBLE

r<m LBLT

r>m LBHI
r;:o,m LBHS/LBCC

r=m LBEQ
r";m LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI

Overflow LBVS

r=O LBEQ

Always LBRA

MOTOROLA

6-104

Opcode

182E

182C

1827

182F

1820

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z+ (N EB V) = 0 r";m LBLE 182F Signed

NEBV=O r<m LBLT 1820 Signed

Z=1 r;"m LBNE 1826 Signed

Z + (N EB V) = 1 r>m LBGT 182E Signed

NEBV=1 r;:o,m LBGE 182C Signed

C+Z=O r";m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z = 1 r;"m LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C=1 r;:o,m LBHS/LBCC 1824 Unsigned

C = 1 No Carry LBCC 1824 Simple

N = 1 Plus LBPL 182A Simple

V = 1 No Overflow LBVC 1828 Simple

Z=1 r;"O LBNE 1826 Simple
- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBCS Long Branch if Carry Set
(Same as lBlO)

Operation: If C = 1, then (PC) + $0004 + Rei ~ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

LBCS

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBCS ref16 REL 18 25 qq rr OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r~m LBGE 182C

r=m LBEQ 1827
r<;m LBLE 182F

r<m LBLT 182D

r>m LBHI 1822
r~m LBHS/LBCC 1824

r=m LBEQ 1827

rsm LBLS 1823
r<m LBLO/LBCS 1825

Carry LBCS 1825
Negative LBMI 182B
Overflow LBVS 1829

r=O LBEQ 1827

Always LBRA 182O

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N <:B V) = 0 r<;m LBLE 182F

N<:BV=O r<m LBLT 182D

Z=1 r",m LBNE 1826

Z+ (N <:B V) = 1 r>m LBGT 182E

N<:BV=1 r~m LBGE 182C

C+Z=O r<;m LBLS 1823

C=O r<m LBLO/LBCS 1825

Z = 1 r",m LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r~m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N = 1 Plus LBPL 182A

V=1 No Overflow LBVC 1828
Z=1 r",O LBNE 1826

- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-105

LBEQ Long Branch if Equal LBEQ
Operation: If Z = 1, (PC) + $0004 + Rei::::} PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBEO rel16 REL 18 27 qq rr oPPP/oro1

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic

r>m LBGT
r2m LBGE

r=m LBEO
r";m LBLE

r<m LBLT

r>m LBHI

r2m LBHS/LBCC

r=m LBEO
r";m LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI
Overflow LBVS

r=O LBEO
Always LBRA

MOTOROLA

6-106

Opcode

182E

182C

1827

182F

182D

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N E!) V) = 0 r";m LBLE 182F Signed

NE!)V=O r<m LBLT 182D Signed

Z=l r,cm LBNE 1826 Signed

Z+ (N E!) V) = 1 r>m LBGT 182E Signed
N E!) V= 1 r2m LBGE 182C Signed

C+Z=O r";m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z = 1 r",m LBNE 1826 Unsigned

C+Z=l r>m LBHI 1822 Unsigned

C = 1 r~m LBHS/LBCC 1824 Unsigned

C = 1 No Carry LBCC 1824 Simple

N = 1 Plus LBPL 182A Simple

V=l No Overflow LBVC 1828 Simple

Z = 1 r",O LBNE 1826 Simple

- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBGE Long Branch if Greater than or Equal to
Zero

Operation: If N EEl V = 0, (PC) + $0004 + Rei::::} PC

For signed two's complement numbers,
If (Accumulator) ~ Memory), then branch

LBGE

Description: If LBGE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two's complement number in the accumulator was greater
than or equal to the two's complement number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1- -1-1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBGE (e116 REL 18 2C qq rr OPpp/OPOl

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r2"m LBGE 182C

r=m LBEQ 1827
r";m LBLE 182F

r<m LBLT 182D

r>m LBHI 1822

r2"m LBHS/LBCC 1824

r=m LBEQ 1827
r";m LBLS 1823

r<m LBLO/LBCS 1825

Carry LBCS 1825

Negative LBMI 182B
Overflow LBVS 1829

r-O LBEQ 1827

Always LBRA 182O

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N c:B V) = 0 r";m LBLE 182F

Nc:BV=O r<m LBLT 182D

Z=1 r;>om LBNE 1826

Z + (N c:B V) = 1 r>m LBGT 182E

Nc:BV=1 r2"m LBGE 182C

C+Z=O r";m LBLS 1823

C=O r<m LBLO/LBCS 1825
Z = 1 r;>om LBNE 1826

C+Z=1 r>m LBHI 1822

C=1 r2"m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N=1 Plus LBPL 182A

V = 1 No Overflow LBVC 1828
Z=1 r;>oO LBNE 1826

- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned
Unsigned

Unsigned

Unsigned

Simple

Simple

Simple
Simple

Unconditional

MOTOROLA

6-107

LBGT Long Branch if Greater than Zero LBGT
Operation: If Z + (N $ V) = 0, then (PC) + $0004 + Rei => PC

For signed two's complement numbers,
If (Accumulator) > (Memory), then branch

Description: If LBGT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two's complement number in the accumulator was greater
than the two's complement number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBGT relt6 REL 18 2E qq rr OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic

r>m LBGT

r<:m LBGE
r=m LBEQ
r~m LBLE

r<m LBLT
r>m LBHI
r<:m LBHS/LBCC
r=m LBEQ
r~m LBLS
r<m LBLO/LBCS

Carry LBCS
Negative LBMI
Overflow LBVS

r=O LBEQ
Always LBRA

MOTOROLA

6-108

Opcode

182E
182C
1827

182F
1820
1822

1824
1827

1823

1825
1825

182B
1829
1827
1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N E!1 V) = 0 r~m LBLE 182F Signed

N E!1V=O r<m LBLT 1820 Signed

Z=1 r"m LBNE 1826 Signed

Z + (N E!1 V) = 1 r>m LBGT 182E Signed

NE!1V=1 r<:m LBGE 182C Signed

C+Z=O r~m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned
Z = 1 r;em LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C = 1 r<:m LBHS/LBCC 1824 Unsigned
C = 1 No Carry LBCC 1824 Simple

N = 1 Plus LBPL 182A Simple
V = 1 No Overflow LBVC 1828 Simple
Z = 1 r;eO LBNE 1826 Simple

- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBHI Long Branch if Higher LBHI
Operation: If C + Z = 0, then (PC) + $0004 + Rei ~ PC

Description:

For unsigned binary numbers, if (Accumulator) > (Memory), then branch

If LBHI is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. Generally not useful after INCI
DEC, LD/ST, TST/CLR/COM because these instructions do not affect
the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -1-1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBHI rel16 REL 18 22 qq rr OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r2m LBGE 182C

r=m LBEQ 1827

r"m LBLE 182F

r<m LBLT 182D

r>m LBHI 1822
r2m LBHS/LBCC 1824

r=m LBEQ 1827

r"m LBLS 1823

r<m LBLO/LBCS 1825

Carry LBCS 1825
Negative LBMI 182B
Overflow LBVS 1829

r=O LBEQ 1827

Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N EtlV) = 0 r"m LBLE 182F

NEtlV=O r<m LBLT 182D

Z=1 r,em LBNE 1826

Z+ (N EtlV) = 1 r>m LBGT 182E

N EtlV= 1 r2m LBGE 182C

C+Z=O r"m LBLS 1823

C=O r<m LBLO/LBCS 1825

Z=1 r,em LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r2m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N = 1 Plus LBPL 182A

V=1 No Overflow LBVC 1828

Z=1 r,cO LBNE 1826
- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed
Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple
Simple

Simple

Simple

Unconditional

MOTOROLA

6-109

LBHS Long Branch if Higher or Same
(Same as LBCC) LBHS

Operation:

Description:

If C = 0, then (PC) + $0004 + Rei => PC

For unsigned binary numbers, if (Accumulator) ~ (Memory), then branch

If LBHS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
or equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, TST/CLR/COM because these instructions do
not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

,-
I Source Form Address Mode

REL

Object Code Cycles -----rAccess Detail

ILBHS reJ16 18 24 qq rr 4/3 oppp/OPOl

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch
Test Mnemonic
r>m LBGT

r~m LBGE

r=m LBEO

r~m LBLE

r<m LBLT

r>m LBHI
r?m LBHS/LBCC

r=m LBEO

r~m LBLS
r<m LBLO/LBCS

Carry LBCS
Negative LBMI
Overflow LBVS

r=O LBEO

Always LBRA

MOTOROLA

6-110

Opcode
182E

182C

1827

182F

182D

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch
Boolean Test Mnemonic Opcode Comment

Z + (N E9 V) = 0 r~m LBLE 182F Signed

NE9V=O r<m LBLT 182D Signed

Z=l r",m LBNE 1826 Signed

Z + (N E9 V) = 1 r>m LBGT 182E Signed

NE9V=l r~m I LBGE 182C Signed

C+Z=O r~m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z=l r",m LBNE 1826 Unsigned

C+Z=l r>m LBHI 1822 Unsigned

C = 1 r~m LBHS/LBCC 1824 Unsigned

C=l No Carry LBCC 1824 Simple

N=l Plus LBPL 182A Simple

V = 1 No Overflow LBVC 1828 Simple

Z = 1 r",O LBNE 1826 Simple
- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBLE Long Branch if Less than or
Equal to Zero

Operation: If Z + (N EB V) = 1, then (PC) + $0004 + Rei => PC

For signed two's complement numbers,
if (Accumulator) :::; (Memory), then branch

LBLE

Description: If LBLE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two's complement number in the accumulator was less than
or equal to the two's complement number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1- -[-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBLE rel16 REL 18 2F qq rr OPpp/OPOl

Notes:
1. OPPPI OPO indicates this instruction takes lour cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

I Branch

Test Mnemonic Opcode

r>m LBGT 182E

r~m LBGE 182C

r=m LBEQ 1827

r~m LBLE 182F

r<m LBLT 182D

r>m LBHI 1822

r~m LBHS/LBCC 1824

r=m LBEQ 1827
r~m LBLS 1823

r<m LBLO/LBCS 1825

Carry LBCS 1825

Negative LBMI 182B

Overflow LBVS 1829
r=O LBEQ 1827

Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N EB V) = 0 r~m LBLE 182F

NEBV=O r<m LBLT 182D

Z=1 r,tm LBNE 1826

Z + (N EB V) = 1 r>m LBGT 182E

NEBV=1 r~m LBGE 182C

C+Z=O r~m LBLS 1823

C=O r<m LBLO/LBCS 1825
Z = 1 r,tm LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r~m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N = 1 Plus LBPL 182A

V=1 No Overflow LBVC 1828
Z = 1 r,tO LBNE 1826

- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned
Unsigned

Unsigned

Unsigned

Simple

Simple

Simple
Simple

Unconditional

MOTOROLA

6-111

lBlO Long Branch if Lower
(Same as LBCS) lBlO

Operation:

Description:

If C = 1, then (PC) + $0004 + Rei =} PC

For unsigned binary numbers, if (Accumulator) < (Memory), then branch

If LBLO is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was less than the
unsigned binary number in memory. Generally not useful after INC/DEC,
LD/ST, TST/CLR/COM because these instructions do not affect the C
status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

~LB~L_O __ re_11_6 __________ ~ ______ R_E_L _____ ~ __ 18 __ 25~q~q_r_r ______ -L ________ ~_O_P_PP_I_O_PO_l __ ~
Notes:

1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and
three cycles if the branch is not taken.

Branch
Test Mnemonic

r>m LBGT

r::>m LBGE

r=m LBEQ

rsm LBLE

r<m LBLT

r>m LBHI

r::>m LBHS/LBCC

r=m LBEQ

rsm LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI

Overflow LBVS

r=O LBEQ

Always LBRA

MOTOROLA

6-112

Opcode

182E

182C

1827

182F

182D

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N Et> V) = 0 rsm LBLE 182F Signed

N Et>V=O r<m LBLT 182D Signed

Z=1 r,cm LBNE 1826 Signed

Z + (N Et> V) = 1 r>m LBGT 182E Signed

NEt>V=1 r::>m LBGE 182C Signed

C+Z=O rsm LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z=1 r;<m LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C=1 r::>m LBHS/LBCC 1824 Unsigned

C=1 No Carry LBCC 1824 Simple

N=1 Plus LBPL 182A Simple

V=1 No Overflow LBVC 1828 Simple

Z=1 r;<O LBNE 1826 Simple

-- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBLS Long Branch if Lower or Same LBLS
Operation: If C + Z = 1, then (PC) + $0004 + Rei ~ PC

I

Description:

For unsigned binary numbers, if (Accumulator) :s; (Memory), then branch

If LBLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was less than or
equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, TST/CLR/COM because these instructions do
not affect the C status bit.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

(-1- -1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBLS rel16 REL 18 23 qq'--rr ___ ---'--_~ OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r?m LBGE 182C

r=m LBEQ 1827

r5m LBLE 182F

r<m LBLT 1820
r>m LBHI 1822
r?m LBHS/LBCC 1824

r=m LBEQ 1827

r5m LBLS 1823

r<m LBLO/LBCS 1825

Carry LBCS 1825
Negative LBMI 182B
Overflow I LBVS 1829

r=O LBEQ 1827

Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N 8:) V) = 0 r5m LBLE 182F
N8:)V=O r<m LBLT 1820

Z=1 r;tm LBNE 1826

Z+ (N 8:) V) = 1 r>m LBGT 182E

N 8:) V= 1 r?m LBGE 182C

C+Z=O r5m LBLS 1823

C=O r<m LBLO/LBCS 1825

Z = 1 r;tm LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r?m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824
N = 1 Plus LBPL 182A

V=1 No Overflow LBVC 1828

Z=1 r;tO LBNE 1826
- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed
;-

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple
Simple

Simple

Simple

Unconditional

MOTOROLA

6-113

LBLT Long Branch if Less than Zero LBLT
Operation: If N EB V = 1, (PC) + $0004 + Rei ~ PC

For signed two's complement numbers,
If (Accumulator) < (Memory), then branch

Description: If LBLT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs ifand
only if the two's complement number in the accumulator was less than
the two's complement number in memory.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

LBLT rel16 REL 18 2D qq rr 4/3 OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch
Test Mnemonic
r>m LBGT
r;:>m LBGE

r=m LBEQ

rs:m LBLE

r<m LBLT

r>m LBHI
r;:>m LBHS/LBCC

r=m LBEQ

rs:m LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI

Overflow LBVS

r=O LBEQ

Always LBRA

MOTOROLA

6-114

Opcode
182E

182C

1827

182F

182D

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch
Boolean Test Mnemonic Opcode Comment

Z + (N Ell V) = 0 rS:m LBLE 182F Signed

NEllV=O r<m LBLT 182D Signed

Z=1 r;<m LBNE 1826 Signed

Z + (N Ell V) = 1 r>m LBGT 182E Signed

NEllV=1 r;:>m LBGE 182C Signed

C+Z=O rS:m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z=1 r;<m LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C=1 r;:>m LBHS/LBCC 1824 Unsigned

C = 1 No Carry LBCC 1824 Simple

N = 1 Plus LBPL 182A Simple
V=1 No Overflow LBVC 1828 Simple

Z = 1 r;<O LBNE 1826 Simple
- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBMI Long Branch if Minus LBMI
Operation: If N = 1, then (PC) + $0004 + Rei => PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1-1- -[-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBMI rel16 REL 18 2B qq rr OPpp/OPOl

Notes:
1. OPPP/ OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r<:m LBGE 182C

r=m LBEQ 1827

roOm LBLE 182F

r<m LBLT 1820

r>m LBHI 1822
r;;,m LBHS/LBCC 1824

r=m LBEQ 1827

roOm LBLS 1823

r<m LBLO/LBCS 1825
Carry LBCS 1825

Negative LBMI 182B
Overflow LBVS 1829

r=O LBEQ 1827
Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z + (N EB V) = 0 roOm LBLE 182F

NEBV=O r<m LBLT 182D

Z=1 r;tm LBNE 1826

Z + (N EB V) = 1 r>m LBGT 182E

NEBV=1 r<:m LBGE 182C

C+Z=O roOm LBLS 1823

C=O r<m LBLO/LBCS 1825

Z = 1 r;tm LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r<:m LBHS/LBCC 1824

C=1 No Carry LBCC 1824

N=1 Plus LBPL 182A

V = 1 No Overflow LBVC 1828

Z=1 r;tO LBNE 1826
- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple
Simple

Simple

Unconditional

MOTOROLA

6-115

LBNE Long Branch if Not Equal to Zero LBNE
Operation: If Z = 0, then (PC) + $0004 + Rei ==> PC

Simple branch

Description: Tests the Z status bit and branches if Z = O.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBNE rel16 REL 18 26 qq rr OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic

r>m LBGT

r:>-m LBGE

r=m LBEQ
r:<;m LBLE

r<m LBLT

r>m LBHI

r:>-m LBHS/LBCC

r=m LBEQ

r"m LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI
Overflow LBVS

r=O LBEQ
Always LBRA

MOTOROLA

6-116

Opcode

182E

182C

1827

182F

182D

1822

1824

1827

1823

1825

1825

182B

1829

1827

1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N Ei1 V) = 0 r"m LBLE 182F Signed

NEi1V=O r<m LBLT 182D Signed

Z=1 r*m LBNE 1826 Signed

Z + (N Ei1 V) = 1 r>m LBGT 182E Signed

N Ei1 V= 1 r:>-m LBGE 182C Signed

C+Z=O r"m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z=1 r*m LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C=1 r:>-m LBHS/LBCC 1824 Unsigned

C=1 No Carry LBCC 1824 Simple

N=1 Plus LBPL 182A Simple

V=1 No Overflow LBVC 1828 Simple

Z=1 r*O LBNE 1826 Simple

- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBPL Long Branch if Plus LBPL
Operation: If N = 0, then (PC) + $0004 + Rei => PC

Simple branch

Description: Tests the N status bit and branches if N = o.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1- -1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

~LB_P_L __ ro_I_16 __________ ~ _______ R_E_L __ ~ 1_8 __ 2A~q~q~r_r ______ ~ __________ ~O_P_P_P_/O_PO __ l __ ~
Notes:

1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and
three cycles if the branch is not taken.

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r2m LBGE 182C

r=m , LBEQ 1827
r<;m LBLE 182F

r<m LBLT 1820

r>m LBHI 1822

r2"m LBHS/LBCC 1824

r=m LBEQ 1827
r<;m LBLS 1823
r<m LBLO/LBCS 1825

Carry LBCS 1825
Negative LBMI 182B
Overflow LBVS 1829

r=O LBEQ 1827
Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N EEl V) = 0 r<;m LBLE 182F

NEElV=O r<m LBLT 1820

Z=1 r*m LBNE 1826

Z+ (N EEl V) = 1 r>m LBGT 182E

NEElV= 1 r2m LBGE 182C

C+Z=O r<;m LBLS 1823

C=O r<m LBLO/LBCS 1825

Z=1 r*m LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r2m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N=1 Plus LBPL 182A

V=1 No Overflow LBVC 1828

Z=1 r*O LBNE 1826
-- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple
Unconditional

MOTOROLA

6-117

LBRA Long Branch Always LBRA
Operation:

Description:

(PC) + $0004 + Rei => PC

Unconditional branch to an address calculated as shown in the expres
sion. Rei is a relative offset stored as a two's complement number in the
second and third bytes of machine code corresponding to the long
branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled, so execution time is always the larger value.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -[- -1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form

~BRA fel16

MOTOROLA

6-118

T Address Mode Object Code

I REL 18 20 qq rr

INSTRUCTION GLOSSARY

Access Detail
oppp

CPU12

REFERENCE MANUAL

LBRN Long Branch Never LBRN
Operation:

Description:

(PC) + $0004 ::::} PC

Never branches. LBRN is effectively a 4-byte NOP that requires three
cycles to execute. LBRN is included in the instruction set to provide a
complement to the LBRA instruction. The instruction is useful during
program debug, to negate the effect of another branch instruction
without disturbing the offset byte. A complement for LBRA is also useful
in compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRN branch condition is never
satisfied, the branch is never taken, and the queue does not need to be
refilled, so execution time is always the smaller value.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Cycles Access Detail

l __ LB_R_N_~_el_1_6 ___________ ~. ____ R_E_L ____ ~.18 21 qqrr ____ ~ ______ 3 ____ ~OP_O ________ J

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-119

LBve Long Branch if Overflow Cleared LBve
Operation: If V = 0, then (PC) + $0004 + Rei => PC

Simple branch

Description: Tests the V status bit and branches if V = O.

Used after an operation on two's complement binary values, this instruc
tion will cause a branch if there was NO overflow. That is, branch if the
two's complement result was valid.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v c

-1-1-1-1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LBVC felt6 REL 18 28 qq rr OPpp/OPol

Notes:
1. OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch

Test Mnemonic

r>m LBGT

r~m LBGE

r=m LBEQ

r~m LBLE

r<m LBLT

r>m LBHI

r~m LBHS/LBCC

r=m LBEQ

r~m LBLS

r<m LBLO/LBCS

Carry LBCS

Negative LBMI

Overflow LBVS

r=O LBEQ

Always LBRA

MOTOROLA

6-120

Opcode

182E

182C

1827

182F

182D

1822

1824

1827
1823

1825

1825

182B

1829
1827

1820

Complementary Branch

Boolean Test Mnemonic Opcode Comment

Z + (N EEl V) = 0 r~m LBLE 182F Signed

NEElV=O r<m LBLT 182D Signed

Z = 1 r,em LBNE 1826 Signed

Z + (N EEl V) = 1 r>m LBGT 182E Signed

NEElV=1 r~m LBGE 182C Signed

C+Z=O r~m LBLS 1823 Unsigned

C=O r<m LBLO/LBCS 1825 Unsigned

Z=1 r,em LBNE 1826 Unsigned

C+Z=1 r>m LBHI 1822 Unsigned

C = 1 r~m LBHS/LBCC 1824 Unsigned

C = 1 No Carry LBCC 1824 Simple

N=1 Plus LBPL 182A Simple

V = 1 No Overflow LBVC 1828 Simple
Z=1 r;<O LBNE 1826 Simple

- Never LBRN 1821 Unconditional

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LBVS Long Branch if Overflow Set LBVS
Operation: If V = 1, then (PC) + $0004 + Rei:=:} PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

Used after an operation on two's complement binary values, this instruc
tion will cause a branch if there was an overflow. That is, branch if the
two's complement result was invalid.

See 3.7 Relative Addressing Mode for details of branch execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form
LBVS rel16

Notes:

Address Mode
REL

Object Code
18 29 qq rr

Cycles Access Detail

4/3 OPpp/OPol

1, OPPPI OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and
three cycles if the branch is not taken,

Branch

Test Mnemonic Opcode

r>m LBGT 182E

r::>m LBGE 182C

r=m LBEQ 1827

r5m LBLE 182F

r<m LBLT 1820

r>m LBHI 1822

r::>m LBHS/LBCC 1824

r=m LBEQ 1827

r5m LBLS 1823

r<m LBLO/LBCS 1825
Carry LBCS 1825

Negative LBMI 182B

Overflow LBVS 1829

r=O LBEQ 1827

Always LBRA 1820

CPU12

REFERENCE MANUAL

Complementary Branch

Boolean Test Mnemonic Opcode

Z+ (N EB V) = 0 r5m LBLE 182F

NEBV=O r<m LBLT 1820

Z=1 r*m LBNE 1826

Z + (N EB V) = 1 r>m LBGT 182E

NEBV=1 r::>m LBGE 182C

C+Z=O I r5m LBLS 1823

C=O r<m LBLO/LBCS 1825

Z=1 r*m LBNE 1826

C+Z=1 r>m LBHI 1822

C = 1 r::>m LBHS/LBCC 1824

C = 1 No Carry LBCC 1824

N = 1 I Plus LBPL 182A

V= 1 No Overflow LBVC 1828

Z=1 r*O LBNE 1826

- Never LBRN 1821

INSTRUCTION GLOSSARY

Comment

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

6-121

LDAA Load Accumulator A LDAA
Operation: (M) => A

Description: Loads the content of memory location M into accumulator A. The condi
tion codes are set according to the data.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
LDAA #oprBi
LDAA oprBa
LDAA opr16a
LDAA oprxO_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

MOTOROLA

6-122

i

Address Mode Object Code I
IMM 86 ii

I DIR 96 dd

EXT B6 hh II I
I

IDX A6 xb I
IDX1 A6 xb ff I
IDX2 A6 xb ee ff I

[D,IDX] A6 xb

I [IDX2] A6 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

CPU12

REFERENCE MANUAL

LDAB Load Accumulator B LDAB
Operation: (M) ==> B

Description: Loads the content of memory location M into accumulator B. The condi
tion codes are set according to the data.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- Ll Ll 01-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code
! LDAB #opr8i IMM C6 ii

I LDAB opr8a DIR D6 dd

LDAB opr16a EXT F6 hh 11

I LDAB oprxOjYsp IDX E6 xb

I LDAB oprx9,xysp IDX1 I E6 xb ff

I LDAB oprx16,xysp IDX2 I E6 xb ee ff

I LDAB [D.xysp)
,

[D,IDX] i E6 xb I

1 LDAB [oprx16,xysp] L [IDX2] i E6 xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles
1
3
3
3
3
4
6
6

Access Detail

P

rfP

rOP

rfP

rPO

frPP

I fIfrfP
fIPrfp

MOTOROLA

6-123

LDD
Operation:

Description:

Load Double Accumulator LDD
(M : M + 1) => A : B

Loads the contents of memory locations M and M+ 1 into double accu
mulator D. The conditions codes are set according to the data. The infor
mation from M is loaded into accumulator A, and the information from
M+ 1 is loaded into accumulator B.

Condition Codes and Boolean Formulas:

S X H N Z v C

-I-I-I-I~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

LDD #opr16i
LDD oprBa

! LDD opr16a
I LDD oprxO_xysp
i LDD oprx9,xysp

I LDD oprx16,xysp
LDD [D,xysp]

I LDD [oprx16,xysp]

MOTOROLA

6-124

I

I

I

I

Address Mode I Object Code
IMM !CCjjkk

I
DIR : OC dd

EXT !FChhll

IDX I EC xb
IDX1 EC xb ff

IDX2
I
I ECxbeeff

[D,IDX] EC xb

[IDX2] I EC xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP

CPU12

REFERENCE MANUAL

LOS load Stack Pointer LOS
Operation: (M: M+1) =? SP

Description: Loads the most significant byte of the SP from the byte of memory at the
address specified by the program, and loads the least significant byte of
the SP from the next byte of memory at one, plus the address specified
by the program.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- L1 L1 0 -I
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code

! LOS #opr16i IMM CF jj kk

I LOS oprBa OIR DF dd

I LOS opr16a EXT FF hh 11

LOS oprxO_xysp lOX EF xb

I LOS oprx9,xysp IOX1 EF xb ff

! LOS oprx16,xysp IOX2 EF xb ee ff

i LOS [O,xysp) [O,IOX) EF xb

! LOS [oprx16,xysp) [IOX2) EF xb ee ff
..

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles
2

3
3
3
3
4
6
6

Access Detail I
OP I
RfP I
ROP

I

RfP

RPO

fRPP

fIfRfP

fIPRfP

MOTOROLA

6-125

LOX
Operation:

Description:

Load Index Register X LOX
(M: M+1) => X

Loads the most significant byte of index register X from the byte of
memory at the address specified by the program, and loads the least
significant byte of index register X from the next byte of memory at one,
plus the address specified by the program.

Condition Codes and Boolean Formulas:

S X H N Z V C

I - - I - - I ~ ~ 0 I-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form
LOX #opr16i
LOX oprBa
LOX opr16a
LOX oprxO_xysp
LOX oprx9,xysp
LOX oprx16,xysp
LOX [O,xysp]
LOX [oprx16,xysp]

MOTOROLA

6-126

I

Address Mode Object Code
IMM CE jj kk
OIR DE dd
EXT FE hh 11
lOX EE xb

IOX1 EE xb ff
IOX2 EE xb ee ff

[O,IOX] EE xb

[IOX2] EE xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
3
3
3
4
6
6

OP
RfP
ROP
RfP
RPO
fRPP

I
fIfRfP

I fIPRfP

CPU12

REFERENCE MANUAL

LOY Load Index Register Y LOY
Operation: (M: M+1) => Y

Description: Loads the most significant byte of index register Y from the byte of
memory at the address specified by the program, and loads the least
significant byte of Y from the next byte of memory at one, plus the
address specified by the program.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- Ll Ll 0 -I
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

v: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

I Source Form

! LOY #opr16i

I LOY oprBa
LOY opr16a
LOY oprxD_xysp

I LOY oprx9,xysp
LOY oprx16,xysp

I LOY [O,xysp]
I LOY [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode

IMM

OIR

EXT

lOX

IOX1

IOX2

[O,IOX]

[IOX2]

Object Code

CD jj kk

DD dd

I FD hh 11
I

I ED xb
ED xb ff

ED xb ee ff 1 ED xb

I ED xb ee ff

INSTRUCTION GLOSSARY

I

I

I

Cycles
2

3
3
3
3
4
6
6

Access Detail

OP

RfP

Rap

I RfP

RPO

fRPP

fIfRfP

fIPRfP

MOTOROLA

6-127

LEAS Load Stack Pointer with
Effective Address LEAS

Operation: Effective Address:=} SP

Description: The SP is loaded with the effective address specified by the program.
The effective address can be any indexed addressing mode operand
address except an indirect address. Indexed addressing mode operand
addresses are formed by adding an optional constant supplied by the
program or an accumulator value to the current value of X, Y, SP, or PC.
See 3.8 Indexed Addressing Modes for more details.

LEAS does not alter condition codes bits. This allows stack modification
without disturbing CCR bits changed by recent arithmetic operations.

Operation is a bit more complex when LEAS is used with autoincrement
or autodecrement operand specifications and the SP is the referenced
index register. The index register is loaded with what would have gone
out to the address bus in the case of a load index instruction. In the case
of a pre increment or predecrement, the modification is made before the
index register is loaded. In the case of a postincrement or postdecre
ment, modification would have taken effect after the address went out on
the address bus, so post-modification does not affect the content of the
index register.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

LEAS oprxOjYSP
I LEAS oprx9,xysp
I LEAS oprx16,xysp

Noles:

Address Mode

lOX
I

L -----

IOXl
IOX2

Object Code

i 1B xb

i 1B xb ff

I 1B xb ee ff

Cycles - I Access Detail

2
2
2

I
· ppl

PO

Jp_p ____ -"

1. Oue to internal CPU requirements. the program word fetch is performed twice to the same address during this
instruction.

MOTOROLA

6-128

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

I

LEAX Load X with Effective Address LEAX
Operation:

Description:

Effective Address ==> X

Index register X is loaded with the effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value of X, Y, SP,
or PC. See 3.8 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEAX is used with autoincrement
or autodecrement operand specifications and index register X is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed instruc
tion. In the case of a preincrement or predecrement, the modification is
made before the index register is loaded. In the case of a postincrement
or postdecrement, modification would have taken effect after the
address went out on the address bus, so post-modification does not
affect the content of the index register.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- -1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form I Address Mode I Object Code Cycles Access Detail

I LEAX oprxO_xysp

I
lOX I lA xb 2 ppl

IIA xb ff i LEAX oprx9,xysp IDX1 2 PO
I LEAX oprx16,xysp i IOX2 ~A xb ee ff 2 pp

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

CPU12

REFERENCE MANUAL

INSTRUCTiON GLOSSARY MOTOROLA

6-129

LEAY Load Y with Effective Address LEAY
Operation:

Description:

Effective Address =? Y

Index register Y is loaded with the effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value of X, Y, SP,
or PC. See 3.8 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEA Y is used with autoincrement
or autodecrement operand specifications and index register Y is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed instruc
tion. In the case of a preincrement or predecrement, the modification is
made before the index register is loaded. In the case of a postincrement
or postdecrement, modification would have taken effect after the
address went out on the address bus, so post-modification does not
affect the content of the index register.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1-1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode
I

Object Code I Cycles Access Detail

LEA Y oprxO_xysp IDX
119 xb

I

2 ppl

LEA Y oprx9,xysp IDX1 19 xb ff 2 PO
LEAY oprx16,xysp I IDX2 I 19 xb ee ff 2 pp

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.

MOTOROLA

6-130

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

LSL
Operation:

Description:

Logical Shift Left Memory
(Same as ASL)

...
IT] --1 b7nnnbOI -- °

LSL

Shifts all bits of the memory location M one place to the left. Bit 0 is
loaded with zero. The C bit is loaded from the most significant bit of M.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N EEl C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: M7
Set if, before the shift, the LSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:
, .,----:-~--------~-~-.. --.
i Source Form ! Address Mode i Object Code Cycles Access Detail
~ I LSL opr16a i EXT I 78 hh 11 4 i rOPw

I i 68 .xb I rPw LSL oprxOjYSP I lOX 3
LSL oprx9,xysp I IOX1 68 xb ff

I

4 I rPOw

LSL oprx16,xysp

I
IOX2 68 xb ee ff 5 frPPw

LSL [O,xysp] [O,IOX] 68 xb 6 fIfrPw

I LSL [oprx16,xysp] I [IOX2] 68 xb ee ff 6 fIPrPw

I

CPU12

REFERENCE MANUAL
INSTRUCTION GLOSSARY MOTOROLA

6-131

LSLA logical Shift left A
(Same as ASLA) LSLA

Operation:

Description:

IT] --1 b7-nn-bO 1 -- 0

Shifts all bits of accumulator A one place to the left. Bit a is loaded with
zero. The C bit is loaded from the most significant bit of A.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N Etl C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: A7
Set if, before the shift, the LSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form

LSLA

MOTOROLA

6-132

Address Mode Object Code

INH 48

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

LSLB
Operation:

Logical Shift Left B
(Same as ASLB)

m ~ ... --I b7 ----=-bO]~ ... -- 0

LSLB

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded with
zero. The C bit is loaded from the most significant bit of B.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N 81 C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: B7
Set if, before the shift, the LSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

~I _LS_L_B ____________ -L ______ IN __ H i 58

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

MOTOROLA

6-133

LSLD Logical Shift Left Double
(Same as ASLD) LSLD

Operation:

Description:

. ~.~--

[£J '--1 b7 -n-nbo!.--I b7 -n-nbol..-- 0
A B

Shifts all bits of double accumulator D one place to the left. Bit 0 is
loaded with zero. The C bit is loaded from the most significant bit of accu
mulator A.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -I-I~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z:

V:
Set if result is $0000; cleared otherwise.

N $ C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: D15
Set if, before the shift, the MSB of D was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
LSLD

MOTOROLA

6-134

Address Mode Object Code

INH 59

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

LSR
Operation:

Description:

Logical Shift Right Memory LSR
---~

0-----.1 b7 ------ bol--"@]

Shifts all bits of memory location M one place to the right. Bit 7 is loaded
with zero. The C bit is loaded from the least significant bit of M.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- 0 f, f, f,

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N al C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: MO
Set if, before the shift, the LSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form I Address Mode Object Code Cycles

LSR opr16a

I
EXT I 74 hh 11 4

LSR oprxOjYsp lOX I 64 xb 3
LSR oprx9,xysp

I

IOX1 ! 64 xb ff 4
LSR oprx16,xysp IOX2 64 xb ee ff 5
LSR [O,xysp] [O,IOX] 64 xb 6
LSR [oprx16,xysp] [IOX2] 64 xb ee ff 6

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

rOPw
rPw
rPOw
frPPw
fIfrPw
fIPrPw

MOTOROLA

6-135

LSRA Logical Shift Right A LSRA
Operation:

Description:

a ~ I b7 ------ bol ~[IJ

Shifts all bits of accumulator A one place to the right. Bit 7 is loaded with
zero. The C bit is loaded from the least significant bit of A.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N Ei1 C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: AO
Set if, before the shift, the LSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

l Source Form
LSRA

MOTOROLA

6-136

Address Mode Object Code

INH 44

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

LSRB Logical Shift Right B LSRB
Operation:

o -------..1 b 7 -- - - -- bO I-------..@]

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded with
zero. The C bit is loaded from the least significant bit of B.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-[- -1- O!~ ~I~I

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N EB C = [N • C) + [N • C) (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: BO
Set if, before the shift, the LSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

'-.1 _LS_R_B _______ ---L ___ IN_H _5_4 ____ ~ _____ ~_'___ __ _

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-137

LSRD Logical Shift Right Double LSRD
Operation:

Description:

---~ .
o ~I b7------bO�~1 b7------bOI--.[IJ

A B

Shifts all bits of double accumulator 0 one place to the right. Bit 15 (MSB
of A) is loaded with zero. The C bit is loaded from the least significant bit
of 0 (LSB of B).

Condition Codes and Boolean Formulas:

S X H N Z v C

N: 0; Cleared.

Z: Set if result is $0000; cleared otherwise.

V: DO
Set if, after the shift operation, C is set; cleared otherwise.

C: DO
Set if, before the shift, the LSB of D was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
LSRD

MOTOROLA

6-138

Address Mode Object Code

INH 49

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

MAXA Place Larger of Two
Unsigned 8-bit Values

In Accumulator A
MAXA

Operation:

Description:

MAX ((A), (M)) => A

Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
larger of the two values in accumulator A. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator A has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A - M).

Addressing Modes, Machine Code, and Execution Times:

I Source Form I Address Mode I Object Code
! MAXA oprxO_xysp ! IDX ! 18 18 xb

I MAXA oprx9,xysp i IDX1 I 18 18 xb ff I

. MAXA oprx16,xysp i IDX2

I
18 18 xb ee ff

I

I MAXA [D ,xysp]
I

[D,IDX] 18 18 xb

I MAXA [oprx16,xysp] [IDX2] I 18 18 xb ee ff I I

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Cycles

4
4
5
7
7

Access Detail

OrfP

OrPO

OfrPP

OfIfrfP

OfIPrfP

MOTOROLA

6-139

MAXM Place Larger of Two
Unsigned 8-bit Values

In Memory
MAXM

Operation:

Descri ption:

MAX ((A), (M)) =::} M

Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
larger of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 0, the
value in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A - M).

Addressing Modes, Machine Code, and Execution Times:

I Source Form
: MAXM oprxO_xysp
I MAXM oprx9,xysp
I MAXM oprx16,xysp

I MAXM [D,xysp]
MAXM [oprx16,xysp]

MOTOROLA

6-140

Address Mode Object Code

IDX I 18 1C xb
I

IDX1 118 1C xb ff
IDX2 18 1C xb ee ff

[D,IDX] 118 1C xb
[IDX2] 18 1C xb ee ff

INSTRUCTION GLOSSARY

Cycles I Access Detail

4
5
6
7
7

OrPw
OrPwC
OfrPwP
OfIfrPw
OfIPrPw

CPU12

REFERENCE MANUAL

MEM Determine Grade of Membership
(Fuzzy Logic) MEM

Operation: Grade of Membership ~ M(y)
(Y) + $0001 ~ Y
(X) + $0004 ~ X

Description: Accumulator A and index registers X and Y must be set up as follows
before executing MEM.

A must hold the current crisp value of a system input variable.

X must point to a 4-byte data structure that describes the trapezoidal
membership function for a label of the system input.

Y must point to the fuzzy input (RAM location) where the resulting
grade of membership is to be stored.

The 4-byte membership function data structure consists of PoinC 1,
PoinC2, Slope_1, and Slope_2, in that order.

PoinC 1 is the X-axis starting point for the leading side of the trape
zoid, and Slope_1 is the slope of the leading side of the trapezoid.

PoinC2 is the X-axis position of the rightmost point of the trapezoid,
and Slope_2 is the slope of the trailing side of the trapezoid. The
trailing side slopes up and left from Point_2.

A Slope_1 or Slope_2 value of $00 indicates a special case where the
membership function either starts with a grade of $FF at input = PoinC 1,
or ends with a grade of $FF at input = PoinC2 (infinite slope).

When MEM is executed, X points at PoinC 1 and Slope_2 is at X + 3.
After execution, the content of A is unchanged. X has been incremented
by 4 to point at the next set of membership function points and slopes.
The fuzzy input (RAM location) that Y pointed to contains the grade of
membership that was calculated by MEM, and Y has been incremented
by one so it points to the next fuzzy input.

Condition Codes and Boolean Formulas:

S X H N Z V C

- I - ? I - ? ? ? I ? I

H, N, Z, v, and C may be altered by this instruction.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
MEM Special 01

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail
RRfOw

MOTOROLA

6-141

MINA Place Smaller of Two
Unsigned a-bit Values

In Accumulator A
MINA

Operation:

Description:

MIN ((A), (M}) => A

Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in accumulator A. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 0, the
value in accumulator A has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1-1L'l L'l L'l L'l

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A - M).

Addressing Modes, Machine Code, and Execution Times:

Source Form

! MINA oprxOJYsp
IMINA oprx9,xysp

MINA oprx16,xysp
MINA [O,xysp]
MINA [oprx16,xysp]

MOTOROLA

6-142

I

I

Address Mode Object Code

lOX 18 19 xb

IOX1 18 19 xb ff
IOX2 18 19 xb ee ff

[D,IDX]

I

18 19 xb

[IDX2] 18 19 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

4
4
5
7
7

OrfP
OrPO
OfrPP
OfIfrfP
OfIPrfP

CPU12

REFERENCE MANUAL

MINM Place Smaller of Two
Unsigned 8-bit Values

In Memory
MINM

Operation:

Description:

MIN ((A), (M)) => M

Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A - M).

Addressing Modes, Machine Code, and Execution Times:

c::: Source Form
: MINM oprxO_xysp
I MINM oprx9,xysp
I MINM oprx16,xysp
I MINM [D,xyspl
I MINM [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code Access Detail

I~~ ~: ~~ :: ff 5 I ~~!: I

IDX2 18 1D xb ee ff I 6 I OfrPwP I

[D,IDX] 18 1D xb I 7 lOfIfrPw I
----=['--ID_X_2 __ l __ --'---1_8_1D xb e_e_f_f __ -.L __ 7_ OfIPrPw ~

INSTRUCTION GLOSSARY MOTOROLA

6-143

Move Move a Byte of Data
From One Memory Location to Another Move

Operation:

Description: Moves the content of one memory location to another. The content of the
source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM-EXT, IMM-IOX, EXT-EXT, EXT-lOX, IOX
EXT, and lOX-lOX. lOX operands allow indexed addressing mode spec
ifications that fit in a single postbyte including 5-bit constant, accumu
lator offsets, and auto increment/decrement modes - 9-bit and 16-bit
constant offsets would require additional extension bytes and are not
allowed. Indexed indirect modes (for example [O,r]) are also not allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.9 Instructions That
Use Multiple Modes.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form1 I
Address I

Object Code
Mode !

MOVB #oprB, opr16a IMM-EXT 18 OB ii hh 11

MOVB #oprBi, oprxO_xysp IMM-IOX 18 08 xb ii
MOVB opr16a, opr16a EXT-EXT 18 OC hh 11 hh 11

MOVB opr16a, oprxO_xysp EXT-lOX 18 09 xb hh 11

MOVB oprxO_xysp, opr16a lOX-EXT 18 OD xb hh 11

LMOVB oprxO_xysp, oprxO_xysp lOX-lOX 18 OA xb xb

Notes:
1. The first operand in the source code statement specifies the source for the move.

MOTOROLA

6-144

INSTRUCTION GLOSSARY

Cycles
Access
Detail

4 OPwP

4 I OPM)
6 OrPwPO

5 OPrPw

I
5 OrPwP

5 OrPM)

CPU12

REFERENCE MANUAL

MOVW Move a Word of Data
From One Memory Location to Another MOVW

Operation:

Description: Moves the content of one location in memory to another location in
memory. The content of the source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM-EXT, IMM-IOX, EXT-EXT, EXT-lOx' IOX
EXT, and lOX-lOX. lOX operands allow indexed addressing mode spec
ifications that fit in a single postbyte including 5-bit constant, accumu
lator offsets, and auto incremenVdecrement modes - 9-bit and 16-bit
constant offsets would require additional extension bytes and are not
allowed. Indexed indirect modes (for example [O,rJ) are also not allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.9 Instructions That
Use Multiple Modes

Condition Codes and Boolean Formulas:

s X H N Z V C

1-1- -1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form1

I MOVW #opr16i, opr16a
I MOVW #opr16i, oprxO_xysp
I MOVW opr16a, opr16a
II MOVW opr16a, oprxO_xysp

MOVW oprxO_xysp, opr16a
I MOVW oprxO_xysp, oprxO_xysp

Notes:

I Address II

Mode
Object Code

I
! IMM-EXT

IMM-IDX
EXT-EXT

I

EXT-lOX
lOX-EXT
lOX-lOX

I 18 03 j j kk hh 11

I
I 18 00 xb j j kk

18 04 hh 11 hh 11

! 18 01 xb hh 11
I I 18 05 xb hh 11

I 18 02 xb xb

1. The first operand in the source code statement specifies the source for the move.

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Cycles

5
4

6
5
5
5

Access
Detail

OPWPO

OPPW

ORPWPO

I OPRPW

I ORPWP I
I ORPWO

MOTOROLA

6-145

MUL Multiply
8-bit by 8-bit (Unsigned) MUL

Operation: (A) x (B) => A : B

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B, and places the 16-bit unsigned
result in double accumulator D. The carry flag allows rounding the most
significant byte of the result through the sequence: MUL, ADCA #0.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -I-I-I~
C: R7

Set if bit 7 of the result (8 bit 7) is set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
MUL

MOTOROLA

6-146

Address Mode Object Code

INH 12

INSTRUCTION GLOSSARY

Access Detail

ffO

CPU12

REFERENCE MANUAL

NEG
Operation:

Description:

Negate Memory NEG
o - (M) = (M) + 1 =} M

Replaces the content of memory location M with its two's complement
(the value $80 is left unchanged).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • RS • R4 • R3 • R2 • R1 • RO
Set if there is a two's complement overflow from the implied subtraction
from zero; cleared otherwise. Two's complement overflow occurs if and
only if (M) = $80

C: R7 + R6 + RS + R4 + R3 + R2 + R1 + RO
Set if there is a borrow in the implied subtraction from zero; cleared oth
erwise. Set in all cases except when (M) = $00.

Addressing Modes, Machine Code, and Execution Times:

Source Form

NEG opr16a
NEG oprxO_xysp
NEG oprx9,xysp I

NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code
EXT i 70 hh 11
IDX . 60 xb

IDX1 60 xb ff

IDX2 60 xb ee ff

[D,IDX] 60 xb

[IDX2] 60 xb ee ff

INSTRUCTION GLOSSARY

Cycles
4
3
4
5
6
6

Access Detail

' rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

MOTOROLA

6-147

NEGA Negate A NEGA
Operation:

Description:

o - (A) = (A) + 1 ==> A

Replaces the content of accumulator A with its two's complement (the
value $80 is left unchanged).

Condition Codes and Boolean Formulas:

S X H N Z v C

-I-I-I-IL\ L\ L\ L\

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • RO
Set if there is a two's complement overflow from the implied subtraction
from zero; cleared otherwise. Two's complement overflow occurs if
and only if (A) = $80.

C: R7+R6+R5+R4+R3+R2+R1+RO
Set if there is a borrow in the implied subtraction from zero; cleared oth
erwise. Set in all cases except when (A) = $00.

Addressing Modes, Machine Code, and Execution Times:

Source Form

fNEGA

MOTOROLA

6-148

Address Mode Object Code
INH 40

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

NEGB Negate B NEGB
Operation:

Description:

o - (B) = (8) + 1 ~ B

Replaces the content of accumulator B with its two's complement (the
value $80 is left unchanged).

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MS8 of result is set: cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • AT • RO
Set if there is a two's complement overflow from the implied subtraction
from zero; cleared otherwise. Two's complement overflow occurs if and
only if (8) = $80.

C: R7+R6+R5+R4+R3+R2+R1+RO
Set if there is a borrow in the implied subtraction from zero; cleared oth
erwise. Set in all cases except when (8) = $00.

Addressing Modes, Machine Code, and Execution Times:

Source Form

NEGB

CPU12

REFERENCE MANUAL

Address Mode Object Code

INH 50

INSTRUCTION GLOSSARY

Access Detail

o

MOTOROLA

6-149

NOP Null Operation NOP
Operation: No operation

Description: This single-byte instruction increments the PC and does nothing else.
No other CPU registers are affected. NOP is typically used to produce a
time delay, although some software disciplines discourage CPU
frequency-based time delays. During debug, NOP instructions are
sometimes used to temporarily replace other machine code instructions,
thus disabling the replaced instruction(s).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

NOP

MOTOROLA

6-150

Address Mode Object Code

INH A7

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

ORAA Inclusive OR A ORAA
Operation: (A) + (M) ~ A

Description: Performs logical inclusive OR between the content of accumulator A and
the content of memory location M. The result is placed in A. Each bit of
A after the operation is the logical inclusive OR of the corresponding bits
of M and of A before the operation.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- ~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode I Object Code
ORAA#opr8i IMM SA ii

ORAA opr8a DIR 9A dd

ORAA opr16a EXT BA hh 11
ORAA oprxO_xysp IDX AA xb

ORAA oprx9,xysp IDX1 AA xb ff

ORAA oprx16,xysp IDX2 AA xb ee ff

ORAA [D,xysp] [D,IDX] AA xb

ORAA [oprx16,xysp] [IDX2] AA xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles
1

3
3
3
3
4
6
6

Access Detail

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfp

MOTOROLA

6-151

CRAB Inclusive OR B CRAB
Operation: (B) + (M) => B

Description: Performs logical inclusive OR between the content of accumulator Band
the content of memory location M. The result is placed in B. Each bit of
B after the operation is the logical inclusive OR of the corresponding bits
of M and of B before the operation.

Condition Codes and Boolean Formulas:

S X H N Z V C

I - [- I - I- Ll Ll 0 [-
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

DRAB#opr8i
DRAB opr8a

I DRAB opr16a

DRAB oprxOJYsp
DRAB oprx9,xysp
DRAB oprx16,xysp

I DRAB [D,xysp]
I DRAB [oprx16,xysp]

MOTOROLA

6-152

I

Address Mode Object Code I
IMM CA ii
DIR DA dd
EXT FA hh 11
IDX EA xb

I
IDX1 I EA xb ff
IDX2 I EA xb ee ff

[D,IDX] i EA xb I
[IDX2] I EA xb ee f_f ___ .L.

INSTRUCTION GLOSSARY

Cycles Access Detail

1 P
3 rfP
3 rOP
3 rfP
3 rPO
4 frPP
6 fIfrfP

6 ~rf_p __ ~

CPU12

REFERENCE MANUAL

ORee Logical OR CCR with Mask ORee
Operation:

Description:

(CCR) + (M) ~ CCR

Performs logical OR between the content of memory location M and the
content of the CCR, and places the result in the CCR. Each bit of the
CCR after the operation is the logical OR of the corresponding bits of M
and of CCR before the operation. To set one or more bits, set the corre
sponding bit of the mask equal to one. Bits corresponding to zeros in the
mask are not changed by the ORCC operation.

Condition Codes and Boolean Formulas:

S X H N Z V C

It -lit It It It It It

Condition codes bits are set if the corresponding bit was one before
the operation or if the corresponding bit in the instruction-provided
mask is one. The X interrupt mask cannot be set by any software
instruction.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code

~! _O_RC_C __ #o~p_m_i ________ l-_____ IM_M ____ ~.14 ii __________ ~ ____ _

Cycles I :ccess Detail I

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-153

PSHA Push A onto Stack

Operation: (SP) - $0001 ::::> SP
(A) ::::> M(SP)

PSHA

Description: The SP is decremented by one. The content of accumulator A is then
stored on the stack at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- -1- -1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

PSHA

MOTOROLA

6-154

Address Mode Object Code

INH 36

INSTRUCTION GLOSSARY

Access Detail
Os

CPU12

REFERENCE MANUAL

PSHB Push B onto Stack

Operation: (SP) - $0001 => SP
(8) => M(SP)

PSHB

Description: The SP is decremented by one. The content of accumulator 8 is then
stored on the stack at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

I PSHB

CPU12

REFERENCE MANUAL

Address Mode Object Code

INH I 37

INSTRUCTION GLOSSARY

Cycles

2

Access Detail

Os

MOTOROLA

6-155

PSHC Push CCR onto Stack PSHC
Operation:

Descri ption:

(SP) - $0001 ~ SP
(CCR) ~ M(SP)

The SP is decremented by one. The content of the CCR is then stored
on the stack at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail
~P=S~H=C------------~----=IN~H~---4-3~9------------~--~~--~o-s------~

MOTOROLA

6-156

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

PSHD Push Double Accumulator onto Stack PSHD
Operation:

Description:

(SP) - $0002 =:} SP
(A : B) =:} M(SP) : M(Sp+ 1)

The SP is decremented by two. The content of double accumulator D is
then pushed onto the stack at the address the SP points to.

After PSHD executes, the SP points to the value of accumulator A that
was stacked. This stacking order is the opposite of the order in which A
and B are stacked when an interrupt is recognized. The interrupt
stacking order for A and B is backward-compatible with the M6800,
which had no 16-bit accumulator.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -1-1-1-1- -I
None affected.

AddreSSing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

PSHD INH 3B

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

as

MOTOROLA

6-157

PSHX Push Index Register X onto Stack PSHX
Operation: (SP) - $0002 =} SP

(XH : XL) =} M(SP) : M(Sp+ 1)

Description: The SP is decremented by two. The content of index register X is then
pushed onto the stack at the address the SP points to. After PSHX
executes, the SP points to the value of the high order half of X that was
stacked.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form
PSHX

MOTOROLA

6-158

Address Mode Object Code
INH 34

INSTRUCTION GLOSSARY

Access Detail
as

CPU12

REFERENCE MANUAL

PSHY Push Index Register Y onto Stack PSHY
Operation: (SP) - $0002 ::::} SP

(YH: YL)::::} M(SP): M(SP+1)

Description: The SP is decremented by two. The content of index register Y is then
pushed onto the stack at the address the SP points to. After PSHY
executes, the SP points to the value of the high order half of Y that was
stacked.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code

INH 35 I PSHY
~--------------~--------- ~------

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

os

MOTOROLA

6-159

PULA Pull A from Stack PULA
Operation:

Description:

(M(SP)) ~ A
(SP) + $0001 ~ SP

Accumulator A is loaded from the address in the SP. The SP is then
incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1-1-1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

PULA

MOTOROLA

6-160

Address Mode Object Code

INH 32

INSTRUCTION GLOSSARY

Access Detail

ufO

CPU12

REFERENCE MANUAL

PULB Pull B from Stack PULB
Operation:

Description:

(M(SP)) ::::} B
(SP) + $0001 ::::} SP

Accumulator B is loaded from the address in the SP. The SP is then
incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1-1-1-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

PULB INH 33

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

ufO

MOTOROLA

6-161

PULC Pull Condition Codes Register
from Stack PULC

Operation:

Description:

(M(SP)) ~ CCR
(SP) + $0001 ~ SP

The CCR is loaded from the address in the SP. The SP is then incre
mented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto. the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

Condition codes take on the value pulled from the stack, except that
the X mask bit cannot change from zero to one. Software can leave the
X bit set, leave it cleared, or change it from one to zero, but it can only
be set by a reset or by recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

Source Form

PULe

MOTOROLA

6-162

Address Mode Object Code

INH 38

INSTRUCTION GLOSSARY

Access Detail

ufO

CPU12

REFERENCE MANUAL

PULD Pull Double Accumulator
from Stack

Operation: (M(SP) : M(Sp+ 1)) => A : B
(SP) + $0002 => SP

PULD

Description: Double accumulator D is loaded from the address in the SP. The SP is
then incremented by two.

The order in which A and B are pulled from the stack is the opposite of
the order in which A and B pulled when an RTI instruction is executed.
The interrupt stacking order for A and B is backward-compatible with the
M6800, which had no 16-bit accumulator.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -I-I-!-I- -!
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
I PULD INH I 3A

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail
UfO

MOTOROLA

6-163

PULX Pull Index Register X from Stack

Operation: (M(SP) : M(SP+1)) => XH: XL
(SP) + $0002 => SP

PULX

Description: Index register X is loaded from the address in the SP. The SP is then
incremented by two.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-\-1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form

PULX

MOTOROLA

6-164

Address Mode Object Code

INH 30

INSTRUCTION GLOSSARY

Access Detail

UfO

CPU12

REFERENCE MANUAL

PULY Pull Index Register Y from Stack PULY
Operation:

Description:

(M(SP): M(SP+1))::::} YH :YL
(SP) + $0002 ::::} SP

Index register Y is loaded from the address in the SP. The SP is then
incremented by two.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -1- -1-1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

~ourceForm Address Mode Object Code

I PULY INH i 31

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

MOTOROLA

6-165

REV
Operation:

Description:

MOTOROLA

6-166

Fuzzy Logic Rule Evaluation REV
MIN - MAX Rule Evaluation

REV performs an unweighted evaluation of a list of rules, using fuzzy
input values to produce fuzzy outputs. REV can be interrupted, so it does
not adversely affect interrupt latency.

The REV instruction uses an a-bit offset from a base address stored in
index register Y to determine the address of each fuzzy input and fuzzy
output. For REV to execute correctly, each rule in the knowledge base
must consist of a table of a-bit antecedent offsets followed by a table of
a-bit consequent offsets. The value $FE marks boundaries between
antecedents and consequents, and between successive rules. The
value $FF marks the end of the rule list. REV can evaluate any number
of rules with any number of inputs and outputs.

Beginning with the address pointed to by the first rule antecedent, REV
evaluates each successive fuzzy input value until it encounters an $FE
separator. Operation is similar to that of a MINA instruction. The smallest
input value is the truth value of the rule. Then, beginning with the
address pointed to by the first rule consequent, the truth value is
compared to each successive fuzzy output value until another $FE sepa
rator is encountered; if the truth value is greater than the current output
value, it is written to the output. Operation is similar to that of a MAXM
instruction. Rules are processed until an $FF terminator is encountered.

Before executing REV, perform the following set up operations.

X must point to the first a-bit element in the rule list.

Y must point to the base address for fuzzy inputs and fuzzy outputs.

A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

Clear fuzzy outputs to zeros.

Index register X points to the element in the rule list that is being evalu
ated. X is automatically updated so that execution can resume correctly
if the instruction is interrupted. When execution is complete, X points to
the next address after the $FF separator at the end of the rule list.

Index register Y points to the base address for the fuzzy inputs and fuzzy
outputs. The value in Y does not change during execution.

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A, and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. This is the
truth value used during consequent processing. Accumulator A must be
initialized to $FF for the MIN function to evaluate the inputs of the first
rule correctly. For subsequent rules, the value $FF is written to A when
an $FE marker is encountered. At the end of execution, accumulator A
holds the truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to zero in order for processing to
begin with the antecedents of the first rule. Once execution begins, the
value of V is automatically changed as $FE separators are encountered.
At the end of execution, V should equal one, because the last element
before the $FF end marker should be a rule consequent. If V is equal to
zero at the end of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to SECTION 9 FUZZY LOGIC SUPPORT for details.

Condition Codes and Boolean Formulas:

S X H N Z v C

V: 1; Normally set, unless rule structure is erroneous.

H, N, Z and C may be altered by this instruction.

Addressing Modes, Machine Code, and Execution Times:

I Source Form

! REV
~dd if interrupted)

Notes:

Special

Cycles i Access Detail

1. The 3-cycle loop in parentheses is executed once for each element in the rule list. When an interrupt occurs,
there is a 2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last
antecedent or consequent being processed at the time of the interrupt.

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-167

R E VW Fuzzy Logic Rule Evaluation (Weighted) R E VW
Operation: MIN - MAX Rule Evaluation with Optional Rule Weighting

Description: REVW can perform either weighted or unweighted evaluation of a list of
rules, using fuzzy inputs to produce fuzzy outputs. REVW can be inter
rupted, so it does not adversely affect interrupt latency.

MOTOROLA

6-168

For REVW to execute correctly, each rule in the knowledge base must
consist of a table of 16-bit antecedent pointers followed by a table of 16-
bit consequent pointers. The value $FFFE marks boundaries between
antecedents and consequents, and between successive rules. The
value $FFFF marks the end of the rule list. REVW can evaluate any
number of rules with any number of inputs and outputs.

Setting the C status bit enables weighted evaluation. To use weighted
evaluation, a table of 8-bit weighting factors, one per rule, must be stored
in memory. Index register Y points to the weighting factors.

Beginning with the address pointed to by the first rule antecedent,
REVW evaluates each successive fuzzy input value until it encounters
an $FFFE separator. Operation is similar to that of a MINA instruction.
The smallest input value is the truth value of the rule. Next, if weighted
evaluation is enabled, a computation is performed, and the truth value is
modified. Then, beginning with the address pointed to by the first rule
consequent, the truth value is compared to each successive fuzzy output
value until another $FFFE separator is encountered; if the truth value is
greater than the current output value, it is written to the output. Operation
is similar to that of a MAXM instruction. Rules are processed until an
$FFFF terminator is encountered.

Perform these set up operations before execution.

X must point to the first 16-bit element in the rule list.

A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

Clear fuzzy outputs to zeros.

Set or clear the CCR C bit. When weighted evaluation is enabled,
Y must point to the first item in a table of 8-bit weighting factors.

Index register X points to the element in the rule list that is being evalu
ated. X is automatically updated so that execution can resume correctly
if the instruction is interrupted. When execution is complete, X points to
the address after the $FFFF separator at the end of the rule list.

Index register Y points to the weighting factor being used. Y is automat
ically updated so that execution can resume correctly if the instruction is
interrupted. When execution is complete, Y points to the last weighting
factor used. When weighting in not used (C = 0), Y is not changed.

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A, and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. For
unweighted evaluation, this is the truth value used during consequent
processing. For weighted evaluation, the value in A is multiplied by the
quantity (Rule Weight + 1) and the upper 8 bits of the result replace the
content of A. Accumulator A must be initialized to $FF for the MIN func
tion to evaluate the inputs of the first rule correctly. For subsequent rules,
the value $FF is written to A when an $FFFE marker is encountered. At
the end of execution, accumulator A holds the truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to zero in order for processing to
begin with the antecedents of the first rule. Once execution begins, the
value of V is automatically changed as $FFFE separators are encoun
tered. At the end of execution, V should equal one, because the last
element before the $FF end marker should be a rule consequent. If V is
equal to zero at the end of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to SECTION 9 FUZZY LOGIC SUPPORT for details.

Condition Codes and Boolean Formulas:

S X H N Z v C

- I - I? - I? ? A

V: 1; Normally set, unless rule structure is erroneous.

C: Selects weighted (1) or unweighted (0) rule evaluation.

H, N,Z and C may be altered by this instruction.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode I Object Code Cycles

REVW Special 118 38 See note1

(add 2 at end of ins if wts)
(add if interrupted)

Notes:

Access Detail

ORf(tTx)O
(rffRf)
fff + ORft

1. The 3-cycle loop in parentheses expands to 5 cycles for separators when weighting is enabled. The loop is ex
ecuted once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-
cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or consequent being pro
cessed at the time of the interrupt.

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-169

ROL
Operation:

Description:

Rotate Left Memory ROL

Shifts all bits of memory location M one place to the left. Bit 0 is loaded
from the C bit. The C bit is loaded from the most significant bit of M. The
rotate operations include the carry bit to allow extension of the shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, ROL HIGH could
be used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z:

V:

Set if result is $00; cleared otherwise.

N Ef) C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: M7
Set if, before the shift, the MSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

I -R-O--L_oSpor ___ 1u6fa-::-c_e_F_o_rm __ --+_A_d_d_re-;=S,,-;S""M_od_e_-+--::-::---c--:-O_b.,.,ie,-c_t_C_o_d_e_-+I __ c_yc--:-l_e_S_+-A_c_c_eS_S_D_e_t_8_il---l
I EXT 1 75 hh 11 ! 4 rOPw l
I ROL oprxOjYsp lOX 65 xb I 3 rPw I
I ROL oprx9 xysp IOX1 I 65 xb ff 4 rPOw
I! ROL oprx1'6,xysP IOX2 , 65 xb ee ff 5 frPPw
I ROL [O,xysp] [D,IOX] I 65 xb I 6 I fIfrPw

I ROL [oprx16,xysp] ___ '-----_-'[IDX2] ~ 65 xb --=-.-!!.. ____ ---.L ___ 6 ___ --.lE~Pw ___ _

MOTOROLA

6-170

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

ROLA Rotate Left A ROLA
Operation:

Description:

L~-{b7 -- --- - bO I f----.-l

Shifts all bits of accumulator A one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the most significant bit of A. The rotate
operations include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used
where LOW, MID and HIGH refer to the low-order, middle and high-order
bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- 1-1- ~[~I~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N q) C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

c: A7
Set if, before the shift, the MSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
: ROLA INH 45

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-171

ROLB Rotate Left B ROLB
Operation:

Description:

L@]~.---1 b7 -- - - - - bO 1 :-----'

Shifts all bits of accumulator B one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the most significant bit of B. The rotate
operations include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used
where LOW, MID and HIGH refer to the low-order, middle and high-order
bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N EEl C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: B7
Set if, before the shift, the MSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
ROLB

MOTOROLA

6-172

Address Mode Object Code
INH 55

INSTRUCTION GLOSSARY

Access Detail
o

CPU12

REFERENCE MANUAL

ROR
Operation:

Description:

Rotate Right Memory ROR

Shifts all bits of memory location M one place to the right. Bit 7 is loaded
from the C bit. The C bit is loaded from the least significant bit of M. The
rotate operations include the carry bit to allow extension of the shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, ROR LOW
could be used where LOW, MID and HIGH refer to the low-order, middle,
and high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- ~ ~ ~I~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N E!) C = [N • C) + [N • C) (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: MO
Set if, before the shift, the LSB of M was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
I

Cycles Access Detail

ROR opr16a EXT 76 hh 11
I

4 rOPw

ROR oprxOJYsp lOX 66 xb
I

3 rPw

ROR oprx9,xysp IOX1 66 xb ff

I

4 i rPOW
ROR oprx16,xysp IOX2 66 xb ee ff 5 frPPw

ROR [O.xysp] [O,IOX] 166 xb 6 fIfrPw

ROR [oprx16,xysp] [IDX2] 66 xb ee ff 6 fIPrPw

I
I
i

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-173

RORA Rotate Right A RORA
Operation:

Description:

L-------J.~I b7 - - nn bO ~I ~-. [i}J
Shifts all bits of accumulator A one place to the right. Bit 7 is loaded from
the C bit. The C bit is loaded from the least significant bit of A. The rotate
operations include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be
used where LOW, MID and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N E!1 C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: AD
Set if, before the shift, the LSB of A was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
RORA

MOTOROLA

6-174

Address Mode Object Code

INH I 46

INSTRUCTION GLOSSARY

Access Detail
o

CPU12

REFERENCE MANUAL

RCRB Rotate Right B RCRB
Operation:

Description:

,--~--..I b7 ------bOl-I, ----I.~7 I
I I ~

Shifts all bits of accumulator B one place to the right. Bit 7 is loaded from
the C bit. The C bit is loaded from the least significant bit of B. The rotate
operations include the carry bit to allow extension of the shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be
used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N Ell C = [N • C] + [N • C] (for Nand C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth
erwise (for values of Nand C after the shift).

C: BO
Set if, before the shift, the LSB of B was set; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
RORB INH 56

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

MOTOROLA

6-175

RTC Return from Call

Operation: (M(SP)) => PPAGE
(SP) + $0001 => SP
(M(SP) : M(Sp+ 1)) ==> PCH : PCl
(SP) + $0002 => SP

RTC

Description: Used to terminate subroutines in expanded memory invoked by the
CALL instruction. Returns execution flow from the subroutine to the
calling program. The program overlay page (PPAGE) register and the
return address are restored from the stack; program execution continues
at the restored address. For code compatibility purposes, CALL and
RTC also execute correctly in M68HC12 devices that do not have
expanded memory capability.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1- -1- -1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form
I RTC

MOTOROLA

6-176

Address Mode Object Code
INH OA

INSTRUCTION GLOSSARY

Access Detail
uUnPPP

CPU12

REFERENCE MANUAL

RTI
Operation:

Descri ption:

Return from Interrupt

(M(SP)) ~ CCR; (SP) + $0001 ~ SP
(M(SP) : M(Sp+ 1)) ~ B : A; (SP) + $0002 ~ SP
(M(SP) : M(Sp+ 1)) ~ XH : Xl; (SP) + $0004 ~ SP
(M(SP) : M(Sp+ 1)) ~ PCH : PCl; (SP) + $0002 ~ SP
(M(SP): M(SP+1)) ~ YH :Yl; (SP) + $0004 ~ SP

RTI

Restores system context after interrupt service processing is completed.
The condition codes, accumulators B and A, index register X, the PC,
and index register Yare restored to a state pulled from the stack. The X
mask bit may be cleared as a result of an RTI instruction, but cannot be
set if it was cleared prior to execution of the RTI instruction.

If another interrupt is pending when RTI has finished restoring registers
from the stack, the SP is adjusted to preserve stack content, and the new
vector is fetched. This operation is functionally identical to the same
operation in the M68HC11, where registers actually are re-stacked, but
is faster.

Condition Codes and Boolean Formulas:

S X H N Z V C

Condition codes take on the value pulled from the stack, except that the X mask bit
cannot change from zero to one. Software can leave the X bit set, leave it cleared, or
change it from one to zero, but it can only be set by a reset or by recognition of an XIRQ
interrupt.

Addressing Modes, Machine Code, and Execution Times:

r Source Form Address Mode I Object Code I Cycles Access Detail
~I ---------+-I----=IN~H~----~OB-------------~I--~8~--+-u-Umm---PP-p--~

i (with interrupt pending) I I 10 uUUUWfpPP

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-177

RTS Return from Subroutine RTS
Operation: (M(SP) : M(SP+1)) => PCH: PCl; (SP) + $0002 => SP

Description: Restores context at the end of a subroutine. Loads the PC with a 16-bit
value pulled from the stack and updates the SP (incremented by 2).
Program execution continues at the address restored from the stack.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- -1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code

~~ ~~~~~~~~-

MOTOROLA

6-178

INH 3D

INSTRUCTION GLOSSARY

Access Detail
UfPPP

CPU12

REFERENCE MANUAL

SBA Subtract Accumulators SBA
Operation: (A) - (B) => A

Description: Subtracts the content of accumulator B from the content of accumulator
A and places the result in A. The content of B is not affected. For subtrac
tion instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7. B7 • R7 + A7 • B7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: A7. B7 + B7 • R7 + R7 • A7
Set if the absolute value of B is larger than the absolute value of A;
cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

LS_B_A _______ --L.. ___ IN_H __ ._~_1_6 _____ ~ __

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

00

MOTOROLA

6-179

SBCA Subtract with Carry from A SBCA
Operation:

Description:

(A) - (M) - C => A

Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator A. The result is placed in A. For
subtraction instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- 1'1 1'1 1'1 1'1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
SBCA #oprBi
SBCA oprBa

I SBCA opr16a
! SBCA oprxO_xysp
I SBCA oprx9,xysp

SBCA oprx16,xysp
SBCA [O,xysp]
SBCA [oprx16,xysp]

MOTOROLA

6-180

I
I

Address Mode Object Code

IMM ! 82 ii
OIR i 92 dd
EXT I B2 hh 11
lOX A2 xb

IOX1 A2 xb ff
IOX2 A2 xb ee ff

[O,IOX] A2 xb

[IOX2] A2 xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

1

3
3
3
3
4
6
6

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

CPU12

REFERENCE MANUAL

SBCB Subtract with Carry from B SBCB
Operation:

Description:

(B) - (M) - C ~ B

Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator B. The result is placed in B. For
subtraction instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode! Object Code Cycles I Access Detail

I 8BCB #oprBi
I 8BCB oprBa
I 8BCB opr16a

8BCB oprxO_xysp
8BCB oprx9,xysp
8BCB oprx16,xysp
8BCB [D,xysp]

I 8BCB [oprx16,xysp]

CPU12

REFERENCE MANUAL

IMM ! C2 ii I I P
DIR I D2 dd 3 I rfP

EXT
IDX

E2 xb ff 3 rPO IDX1
IDX2

[D,IDX]
[IDX2]

I
I ~~ :: II ~ II :~:

E2 xb ee ff 4 frPP

J ~~_;~~!~ __ ~_ L __ ~ __ l~!~~i ___ J

INSTRUCTION GLOSSARY MOTOROLA

6-181

SEC
Operation:

Description:

Set Carry SEC
1 ~ C bit

Sets the C status bit. This instruction is assembled as ORCC #$01. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1- -1- -I

C: 1; Set.

Addressing Modes, Machine Code, and Execution Times:

Source Form I Address Mode I Object Code I Cycles Access Detail

! SEC translates to... I I I
LI O_R_C_C __ #$_O_1 ________ -LI _______ IM_M _____ ~_4_0 __ 1 __________ ~1 ________ ~_p _________ ,

MOTOROLA

6-182
INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

SEI
Operation:

Descri ption:

Set Interrupt Mask SEI
1 =::} I bit

Sets the I mask bit. This instruction is assembled as ORee #$10. The
ORee instruction can be used to set any combination of bits in the eeR
in one operation. When the I bit is set, all maskable interrupts are inhib
ited, and the epu will recognize only non-maskable interrupt sources or
an SWI.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1 -1-1-1-

I: 1; Set.

Addressing Modes, Machine Code, and Execution Times:

Source Form l Address Mode I Object Code
EI translates to ...

I
IMM I 14 10

Ree #$10
-- I

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

1

Access Detail

p

MOTOROLA

6-183

SEV
Operation:

Description:

Set Two's Complement Overflow Bit SEV
1 => V bit

Sets the V status bit. This instruction is assembled as GRee #$02. The
GRee instruction can be used to set any combination of bits in the eeR
in one operation.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1-1-1-1- -I

V: 1; Set.

Addressing Modes, Machine Code, and Execution Times:

Source Form

SEV translates to ...
ORCC#$02

MOTOROLA

6-184

Address Mode Object Code

IMM 14 02

INSTRUCTION GLOSSARY

Cycles Access Detail

1 p

CPU12

REFERENCE MANUAL

SEX
Operation:

Description:

Sign Extend into 16-bit Register

If r1 bit 7 = 0, then $00 : (r1) ~ r2
If r1 bit 7 = 1, then $FF : (r1) ~ r2

SEX

This instruction is an alternate mnemonic for the TFR r1,r2 instruction,
where r1 is an 8-bit register and r2 is a 16-bit register. The result in r2 is
the 16-bit sign extended representation of the original two's complement
number in r1. The content of r1 is unchanged in all cases except that of
SEX A,O (0 is A : B).

Condition Codes and Boolean Formulas:

S X H N Z V C

1-1- -I-I-I-I-I~
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code 1 Access Detail

SEX abc,dxys INH i B7 eb p

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high-order digit, and rows rep

resent the low-order digit in hexadecimal (MSB is a don't-care).

3

4

5

6

7

CPU12

REFERENCE MANUAL

o 2

I sex:A => TMP2 sex:B => TMP2 sex:CCR => TMP2

sex:A => D ! sex:B => D sex:CCR => D
SEX A,D I SEX B,D SEX CCR,D

sex:A => X I sex:B => X sex:CCR => X
SEXA,X SEX B.X SEX CCR,X

sex:A => Y sex:B => Y I sex:CCR => Y
SEXA,Y SEX B,Y I SEX CCR,Y

sex:A => SP sex:B => SP sex:CCR => SP

I SEXA,SP I SEX B,SP SEX CCR,SP

INSTRUCTION GLOSSARY MOTOROLA

6-185

STAA Store Accumulator A STAA
Operation: (A) => M

Description: Stores the content of accumulator A in memory. The content of A is
unchanged.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -I-I-I~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

STAA oprBa
STAA opr16a
STAA oprxO_xysp

! STAA oprx9,xysp
I STAA oprx16,xysp

I STAA [O.xysp]
i STAA [oprx16,xysp]

MOTOROLA

6-186

I
I
I

I
I

Address Mode Object Code

OIR 5A dd

EXT 7A hh 11

lOX I 6A xb I I

IOX1 I 6A xb ff I
IOX2 I 6A xb ee ff

I [O,IOX] I 6A xb I

[IOX2] I 6A xb ee ff I

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
2
3
3
5
5

Pw

wOP

Pw

PwO

I PwP

I PIfPw

I PIPPw

CPU12

REFERENCE MANUAL

STAB Store Accumulator B STAB
Operation: (8) => M

Description: Stores the content of accumulator 8 in memory. The content of 8 is
unchanged.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ 0 -I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

I STAB opr8a DIR 5B dd

STAB opr16a EXT 7B hh 11

STAB oprxO_xysp IDX 6B xb

STAB oprx9,xysp IDX1 6B xb ff

STAB oprxl6,xysp IDX2 6B xb ee ff

STAB [D,xysp] [D,IDX] 6B xb

STAB [oprxI6,xysp]
i [IDX2] 6B xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

2
3
2
3
3
5
5

Access Detail

Pw
wOP

Pw
PwO

PwP

PIfPw

PIPPw

MOTOROLA

6-187

STD Store Double Accumulator STD
Operation: (A : B) ::::} M : M+ 1

Description: Stores the content of double accumulator D in memory. The content of
D is unchanged.

Condition Codes and Boolean Formulas:

S X H N Z v C

~ ~ 0 J

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

I Source Form

! STD opr8a
I STD opr16a
I STD oprxO_xysp
i STD oprx9,xysp
I STD oprx16,xysp
i STD [D,xysp]
I STD [oprx16,xysp]

MOTOROLA

6-188

I
!
I
I

Address Mode Object Code

DIR 5C dd

EXT 7C hh 11

IDX 6C xb

IDX1 16C xb ff
IDX2 6C xb ee ff

[D,IDX] I 6C xb
[IDX2] ~ 6C xb ee ff

INSTRUCTION GLOSSARY

Cycles Access Detail

2
3
2
3
3
5
5

PW
WOP
PW
PWO
PWP

I I PHPW
I PIPPW
I

CPU12

REFERENCE MANUAL

STOP Stop Processing STOP
Operation: (SP) - $0002::::} SP; RTNH:RTNL::::} (M(Spr M(SP+1))

(SP) - $0002::::} SP; YH:YL::::} (M(SP): M(SP+1))
(SP) - $0002::::} SP; XH:XL::::} (M(Spr M(SP+1))
(SP) - $0002::::} SP; B:A::::} (M(Spr M(SP+1))
(SP) - $0002 ::::} SP; CCR ::::} (M(SP))
Stop All Clocks

Description: When the S control bit is set, STOP is disabled and operates like a two
cycle Nap instruction. When the S bit is cleared, STOP stacks CPU
context, stops all system clocks, and puts the device in standby mode.

Standby operation minimizes system power consumption. The contents
of registers and the states of I/O pins remain unchanged.

Asserting the RESET, XIRQ, or IRQ signals ends standby mode.
Stacking on entry to STOP allows the CPU to recover quickly when an
interrupt is used, provided a stable clock is applied to the device. If the
system uses a clock reference crystal that also stops during low-power
mode, crystal start up delay lengthens recovery time.

If XIRQ is asserted while the X mask bit = 0 (XIRQ interrupts enabled),
execution resumes with a vector fetch for the XIRQ interrupt. If the X
mask bit = 1 (XIRQ interrupts disabled), a two-cycle recovery sequence
changes the SP to compensate for the stacking that took place as STOP
was entered, an a cycle is used to adjust the instruction queue, and
execution continues with the next instruction after STOP.

Condition Codes and Boolean Formulas:

S X H N Z V C

1- -1- -1- -1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Object Code lSource Form ~ Address Mode
I STOP (entering STOP) INH

Access Detail

18 3E OOSSSfSsf

(exiting STOP) +--~===-____ -+-~+--~
(continue) ~-----1-! -- __ -+ 2
(if STOP disabled) ~-I ___ ~-------+---~2--+----

CPU12

REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-189

STS
Operation:

Description:

Store Stack Pointer STS

Stores the most significant byte of the SP in memory at the address
specified by the program, and stores the least significant byte of the SP
at the next location in memory (at one plus the address specified by the
program).

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~I~ 01-

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

'-----'
Source Form I Address Mode I Object Code Cycles Access Detail

STS opr8a
, STS opr16a
I STS oprxO_xysp
I STS oprx9.xysp
I STS oprxl6,xysp
I STS [D,xysp]
L STS [oprxI6,xysp]

MOTOROLA

6-190

I

I
i
I

I

DIR I SF dd 2
EXT I 7F hh 11 3

lOX I 6F xb 2
IDX1 I 6F xb .ff 3

IDX2 I"' "" cc H ~ _l~_3 [D,IDX] 6F xb 5

[IDX2] ~ 6F xb ee ff . 5

INSTRUCTION GLOSSARY

PW
WOP

PW

PWO

PWP

PIfPW
PIPPW

CPU12

REFERENCE MANUAL

STX
Operation:

Description:

Store Index Register X STX

Stores the most significant byte of index register X in memory at the
address specified by the program, and stores the least significant byte
of index register X at the next location in memory (at one plus the
address specified by the program).

Condition Codes and Boolean Formulas:

S X H N Z V C

I - -
I - I

- L'l L'l 0 I -

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

STX opr8a

i STX opr16a
I STX oprxO_xysp
I STX oprx9,xysp
I STX oprx16,xysp
I STX [D,xysp]
I STX [oprx16,xysp]

CPU12

REFERENCE MANUAL

Address Mode Object Code Cycles Access Detail

DIR I SE dd 2 PW

I

EXT I 7E hh 11 I 3 WOP

IDX I 6E xb I 2 PW

L __ [-,--[~:_':_Dt~]]~ __ ---,--I ~[~: __ J L_'-----~_l_:: ___ ~

INSTRUCTION GLOSSARY MOTOROLA

6-191

STY
Operation:

Description:

Store Index Register Y STY
Stores the most significant byte of index register Y in memory at the
address specified by the program, and stores the least significant byte
of Y at the next location in memory (at one plus the address specified by
the program).

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -1- ~ ~ 0 -I
N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code
STY oprBa OIR SD dd

STY opr16a EXT 7D hh 11

STY oprxO_xysp lOX

I

6D xb

STY oprx9,xysp I IOX1 6D xb ff

STY oprx16,xysp I IOX2 I 6D xb ee ff

I
I

! STY [O,xysp] [O,IOX]
I

6D xb

I STY [oprx16,xysp] I [IOX2] 6D xb ee ff
I I

Cycles -lA~cess Detail

2 ! PW
3 I WOP
2

I PW 3 PWO

3 PWP

5 t;!:: 5
I

I

MOTOROLA

6-192
INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

SUBA Subtract A SUBA
Operation:

Descri ption:

(A) - (M) => A

Subtracts the content of memory location M from the content of accumu
lator A, and places the result in A. For subtraction instructions, the C
status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z V C

1-1-1-1- ~ ~ ~ ~

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

I

--;---

Source Form Address Mode Object Code
SUBA #oprBi IMM 80 ii
SUBA oprBa DIR 90 dd
SUBA opr16a I EXT BO hh 11

SUBA oprxO_xysp 1 IDX AO xb i

SUBA oprx9,xysp I IDX1 AO xb ff I
SUBA oprx16,xysp IDX2 AO xb ee ff
SUBA [D,xysp] [D,IDX] AO xb
SUBA [oprx16,xysp] [IDX2] AO xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

1
3
3
3
3 I

4
6
6

Access Detail

P
rfP
rOP
rfP
rPO
frPP
fIfrfP
fIPrfp

MOTOROLA

6-193

SUBB Subtract B SUBB
Operation:

Description:

(B) - (M) ~ B

Subtracts the content of memory location M from the content of accumu
lator B and places the result in B. For subtraction instructions, the C
status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z v C

IT~I-I- ~ ~ ~ ~
I

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: x1. M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

Source Form
SUBB #oprBi
SUBB oprBa
SUBB opr16a
SUBB oprxO_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [O,xysp]
SUBB [oprx16,xysp]

MOTOROLA

6-194

Address Mode Object Code Cycles Access Detail
IMM I co ii 1 P

OIR i DO dd I 3 rfP
EXT

,~::nL
rOP

lOX rfP
IOX1 i EO xb ff 3 rPO
IOX2 I EO xb ee ff 4 frPP

[O,IOX] I EO xb 6 fIfrfP
[IOX2] I EO xb ee ff 6 fIPrfP

------- -- ----------

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

SUBD Subtract Double Accumulator SUBD
Operation:

Description:

(A : B) - (M : M+ 1) ==> A : B

Subtracts the content of memory location M : M+ 1 from the content of
double accumulator 0 and places the result in D. For subtraction instruc
tions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1L1 L1 L1 L1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 015. M15. R15 + 015 - M15. R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise.

C: 015-M15+M15-R15+R15-015
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code
hUBD #opr16i IMM I 83 jj kk

I SUBD opr8a DIR ! 93 dd

I SUBD opr16a EXT I B3 hh II

I SUBD oprxOJYsp lOX i A3 xb

I SUBD oprx9,xyssp IDX1 IA3xbff
I SUBD oprx16.xysp IDX2 A3 xb ee ff

I SUBD [D,xysp] [D,IDX] I A3 xb

i SUBD [oprx16,xysp] [IDX2] I A3 xb ee ff

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles
2
3
3
3
3
4
6
6

Access Detail
OP
RfP
ROP
RfP
RPO
fRpp

fIfRfP
fIPRfP

MOTOROLA

6-195

SWI Software Interrupt

Operation: (SP) - $0002::::} SP; RTNH:RTNL::::} (M(SP): M(SP+1))
(SP) - $0002::::} SP; YH :YL::::} (M(SP): M(SP+1))
(SP) - $0002 ::::} SP; XH : XL ::::} (M(SP) : M(Sp+ 1))
(SP) - $0002 ::::} SP; B : A::::} (M(SP) : M(Sp+ 1))
(SP) - $0001 ::::} SP; CCR ::::} (M(SP))
1 ::::} I
(SWI Vector) ::::} PC

SWI

Description: Causes an interrupt without external interrupt service request. Uses the
address of the next instruction after SWI as a return address. Stacks the
return address, index registers Y and X, accumulators B and A, and the
CCR, decrementing the SP before each item is stacked. The I mask bit
is then set, the PC is loaded with the SWI vector, and instruction execu
tion resumes at that location. SWI is not affected by the I mask bit. Refer
to SECTION 7 EXCEPTION PROCESSING for more information.

Condition Codes and Boolean Formulas:

S X H N Z v c

-1- -1-1-1- -1-
I: 1; Set.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode I Object Code Access Detail

SWI INH 3F VSPSSPSspl
L~N~o~te-s-: ---------~~-------~------ -------------~

1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A
variation of the sequence (VfPPP) is used for resets.

MOTOROLA

6-196
INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

TAB
Operation: (A) => B

Transfer from Accumulator A
to Accumulator B TAB

Description: Moves the content of accumulator A to accumulator B. The former
content of B is lost; the content of A is not affected. Unlike the general
transfer instruction TFR A,B which does not affect condition codes, the
TAB instruction affects N, Z, and V for compatibility with M68HC11.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail

II~AB ___ . INH .___ ________ ~ ____________ ~I_l_8_0_E __________ ~ ______ ~ __________ ~

CPU12

REFERENCE MANUAL
INSTRUCTION GLOSSARY MOTOROLA

6-197

TAP
Operation:

Description:

(A) ~ CCR

Transfer from Accumulator A
to Condition Codes Register TAP

Transfers the logic states of bits 7:0 of accumulator A to the corre
sponding bit positions of the CCR. The content of A remains unchanged.
The X mask bit can be cleared as a result of a TAP, but cannot be set if
it was cleared prior to execution of the TAP. If the I bit is cleared, there
is a one cycle delay before the system allows interrupt requests. This
prevents interrupts from occurring between instructions in the
sequences CLI, WAI and CLI. SEI.

This instruction is accomplished with the TFR A,CCR instruction. For
compatibility with the M68HC11, the mnemonic TAP is translated by the
assembler.

Condition Codes and Boolean Formulas:

S X H N Z v C

Condition codes take on the value of the corresponding bit of accumu
lator A, except that the X mask bit cannot change from zero to one.
Software can leave the X bit set, leave it cleared, or change it from one
to zero, but it can only be set by a reset or by recognition of an XIRQ
interrupt.

Addressing Modes, Machine Code, and Execution Times:

Source Form

TAP translates to ...
TFR A,eeR

MOTOROLA

6-198

Address Mode I Object Code

INH I B7 02
I _

INSTRUCTION GLOSSARY

---" --
Cycles Access Detail

1 p

CPU12

REFERENCE MANUAL

TBA
Operation:

Description:

(B) => A

Transfer from Accumulator B
to Accumulator A TBA

Moves the content of accumulator B to accumulator A. The former
content of A is lost; the content of B is not affected. Unlike the general
transfer instruction TFR B,A, which does not affect condition codes, the
TBA instruction affects N, Z, and V for compatibility with M68HC11.

Condition Codes and Boolean Formulas:

S X H N Z v C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

TBA INH 18 OF

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

00

MOTOROLA

6-199

TBEQ Test and Branch if Equal to Zero TBEQ
Operation:

Description:

If (Counter) = 0, then (PC) + $0003 + Rei::::} PC

Test the specified counter register A, B, D, X, Y, or SP. If the counter
register is zero, branch to the specified relative destination. TBEQ is
encoded into three bytes of machine code including a 9-bit relative offset
(-256 to +255 locations from the start of the next instruction).

DBEQ and IBEQ instructions are similar to TBEQ, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which oper
ation is to be performed.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1-1-1- -I
None affected.

Addressing Modes, Machine Code, and Execution Times:

I Source Form Address Mode Object Code1 Access Detail

~~ abdxys,_re_19 ___ .L ___ I1EL ----~~~':...----
1. Encoding for Ib is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(TBEQ - 0) or not zero (TBNE -1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 0:1 forTBEQ.

Count
Register

A
B

D
X

Y
SP

MOTOROLA

6-200

Bits 2:0

000
001

100
101
110
111

Source Form
Object Code

(if offset is positive)

TBEQ A, rel9 104 40 rr
TBEQ B, rel9 104 41 rr

TBEQ 0, rel9 04 44 rr

TBEQ X, rel9 04 45 rr

1 TBEQ Y, rel9 04 46 rr

ITBEQ SP, rel9 04 47 rr

INSTRUCTION GLOSSARY

Object Code
(if offset is negative)

04 50 rr

04 51 rr

04
04
04
04

54 rr

55 rr

56 rr
57 rr

CPU12

REFERENCE MANUAL

TBl Table Lookup and Interpolate TBl
Operation: (M)+ [(B) x ((M+1) - (M))] ~ A

Description: The TBL instruction linearly interpolates one of 256 result values that fall
between each pair of data entries in a lookup table stored in memory.
Data points in the table represent the endpoints of equally spaced line
segments. Table entries and the interpolated result are 8-bit values. The
result is stored in accumulator A.

Before executing TBL, set up an index register so that it will point to the
starting point (X1) of a line segment when the instruction is executed. X1
is the table entry closest to, but less than or equal to, the desired lookup
value. The next table entry after X1 is X2. XL is the X position of the
desired lookup point. Load accumulator B with a binary fraction (radix
point to left of MSB), representing the ratio (XL-X1) 7- (X2-X1).

The 8-bit unrounded result is calculated using the following expression:

A = Y1 + [(B) x (Y2 - Y1)]

Where

(B) = (XL - X1).;- (X2 - X1)
Y1 = 8-bit data entry pointed to by <effective address>
Y2 = 8-bit data entry pointed to by <effective address> + 1

The intermediate value [(B) x (Y2 - Y1)] produces a 16-bit result with the
radix point between bits 7 and 8. The result in A is the upper 8-bits
(integer part) of this intermediate 16-bit value, plus the 8-bit value Y1.

Any indexed addressing mode referenced to X, Y, SP, or PC, except
indirect modes or 9-bit and 16-bit offset modes, can be used to identify
the first data point (X1 ,Y1). The second data point is the next table entry.

Condition Codes and Boolean Formulas:

S X H N Z v C

illil ?

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

C: Undefined.

Addressing Modes, Machine Code, and Execution Times:

, Source Form
I

Address Mode Object Code

IDX 18 3D xb

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

OrrffffP

MOTOROLA

6-201

TBNE Test and Branch if Not Equal to Zero TBNE
Operation:

Description:

If(Counter) =/- 0, then (PC) + $0003 + Rei => PC,

Test the specified counter register A, B, D, X, Y, or SP. If the counter
register is not zero, execute a branch to the specified relative destina
tion. TBNE is encoded into three bytes of machine code including a 9-bit
relative offset (-256 to +255 locations from the start of the next instruc
tion).

DBNE and IBNE instructions are similar to TBNE, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which oper
ation is to be performed.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1-1-1- -1- -1-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code 1 Access Detail

, TBNE abdxys,rel9 REL 04 lb rr PPP/POP

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero

(TBEO - 0) or not zero (TBNE - 1) versions, and bit-4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 0:1 forTBNE,

Count
Register

A
B

D
X
Y

SP

MOTOROLA

6-202

Bits 2:0

000
001

100
101
110
111

Source Form
Object Code

(if offset is positive)

,TBNE A, rel9 04 60 rr
ITBNE B, rel9 104 61 rr

ITBNE D, rel9 104 64 rr
TBNE X, rel9 104 65 rr
TBNE Y, rel9 04 66 rr
TBNE SP, rel9 104 67 rr

INSTRUCTION GLOSSARY

Object Code
(if offset is negative)

04 70 rr
04 71 rr

04 74 rr
04 75 rr
04 76 rr
04 77 rr

CPU12

REFERENCE MANUAL

TFR
Operation:

Description:

See table

Transfer Register Content
to Another Register TFR

Transfers the content of a source register to a destination register spec
ified in the instruction. The order in which transfers between 8-bit and 16-
bit registers are specified affects the high byte of the 16-bit registers
differently. Cases involving TMP2 and TMP3 are reserved for Motorola
use, so some assemblers may not permit their use. It is possible to
generate these cases by using DC.B or DC.W assembler directives.

Condition Codes and Boolean Formulas:

S X H N Z V C

-1- -1- -I -I -I -I
or

1 L1 1 u L1 1L11L11L11L11L11

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that
the X mask bit cannot change from zero to one. Software can leave
the X bit set, leave it cleared, or change it from one to zero, but it can
only be set by a reset or by recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code1 Access Detail

TFR abcdxys,abcdxys INH B7 eb p

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high-order digit, and rows rep

resent the low-order digit in hexadecimal (MSB is a don't-care).

o

2

3

4

5

6

7

o
.A ='> A

A=,> 8

A=,> CCR

sex:A ='> TMP2

sex:A => D

SEX A,D

sex:A => X

SEXA,X

sex:A => Y

SEX A,Y

sex:A => SP
SEX A,SP

CPU12

B=,>A

B=,>B

8 ='> CCR

sex:B ='> TMP2

sex:8 => D
SEX 8,D

sex:8 => x
SEX 8,X

sex:8 ='> Y

SEX B,Y

sex:8 => SP
SEX B,SP

REFERENCE MANUAL

2 3 4

CCR ='> A TMP3L ='> A 8=,>A

CCR ='> B TMP3L ='> B B=,>8

CCR ='> CCR TMP3L ='> CCR 8 ='> CCR

sex:CCR ='> TMP2 TMP3 ='> TMP2 D ='> TMP2

sex:CCR => D
TMP3 => D D=>D

SEX CCR,D

sex:CCR => X
TMP3 ='> X

SEX CCR,X
D=>X

sex:CCR => Y

SEX CCR,Y
TMP3 ='> Y D=>Y

sex:CCR => SP
SEX CCR,SP

TMP3 => SP D => SP

INSTRUCTION GLOSSARY

5

XL ='> A

XL ='> 8

XL ='> CCR

X=,> TMP2

X=>D

X=>X

X=>Y

X=> SP

6

YL ='> A

YL ='> B

YL ='> CCR

Y ='> TMP2

Y=,>D

Y=>X

Y=>Y

Y => SP

7

SPL ='> A

SPL ='> 8

SPL ='> CCR

SP ='> TMP2

SP ='> D

SP => X

SP => Y

SP => SP

MOTOROLA

6-203

TPA
Operation:

Description:

Transfer from Condition Codes
Register to Accumulator A

(CCR) ~ A

TPA

Transfers the content of the CCR to corresponding bit positions of accu
mulator A. The CCR remains unchanged.

This mnemonic is implemented by the TFR CCR,A instruction. For
compatibility with the M68HC11, the mnemonic TPA is translated into
the TFR CCR,A instruction by the assembler.

Condition Codes and Boolean Formulas:

S X H N Z v C

[- -[-1- -[-1-[-
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form
TPA translates to ...
TFR CCR,A

MOTOROLA

6-204

Address Mode i Object Code

INH I B7 20

INSTRUCTION GLOSSARY

Cycles Access Detail

1 p

CPU12

REFERENCE MANUAL

TRAP Unimplemented Opcode Trap TRAP
Operation: (SP) - $0002::::} SP; RTNH:RTNL::::} (M(SPf M(SP+1))

(SP) - $0002 ::::} SP; YH : YL ::::} (M(SP) : M(SP+1))
(SP) - $0002 ::::} SP; XH : XL ::::} (M(SP) : M(Sp+ 1))
(SP) - $0002 ::::} SP; B : A::::} (M(SP) : M(Sp+ 1))
(SP) - $0001 ::::} SP; CCR ::::} (M(SP))
1 ::::} I
(Trap Vector) ::::} PC

Description: There are opcodes in all 256 positions in the Page 1 opcode map, but
only 54 of the 256 positions on Page 2 of the opcode map are used. If
the CPU attempts to execute one of the unimplemented opcodes on
Page 2, an opcode trap interrupt occurs. Unimplemented opcodes are
essentially interrupts that share the $FFF8:$FFF9 interrupt vector.

TRAP uses the next address after the unimplemented opcode as a
return address. It stacks the return address, index registers Y and X,
accumulators B and A, and the CCR, automatically decrementing the SP
before each item is stacked. The I mask bit is then set, the PC is loaded
with the trap vector, and instruction execution resumes at that location.
This instruction is not maskable by the I bit. Refer to SECTION 7
EXCEPTION PROCESSING for more information.

Condition Codes and Boolean Formulas:

S X H N Z v C

- I - I - I 1 - I - I - - I

I: 1; Set.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code Access Detail
TRAP trapnum INH $18 tnl OfVSPSSPSsP
Notes:

1. The value tn represents an unimplemented page 2 opcode in either of the two ranges $30 to $39 or $40 to $FF.

CPU12
REFERENCE MANUAL

INSTRUCTION GLOSSARY MOTOROLA

6-205

TST
Operation:

Description:

Test Memory TST
(M) - $00

Subtracts $00 from the content of memory location M and sets the condi
tion codes accordingly.

The subtraction is accomplished internally without modifying M.

The TST instruction provides limited information when testing unsigned
values. Since no unsigned value is less than zero, BLO and BLS have
no utility following TST. While BHI can be used after TST, it performs the
same function as BNE, which is preferred. After testing signed values,
all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- !1 !1 00

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

I Source Form

I TST opr16a
I TST oprxO_xysp
I TST oprx9,xysp

TST oprxl6,xysp
TST [O,xysp]
TST [oprxI6,xysp]

MOTOROLA

6-206

I

I

I

I

I Address Mode Object Code

EXT F7 hh 11

lOX E7 xb

IOX1 E7 xb ff

IDX2 E7 xb ee ff
[O,IOX] E7 xb
[IOX2] ------.l E7 xb ee f f

INSTRUCTION GLOSSARY

---- ----------

Cycles Access Detail

3
3
3
4
6
6

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP

CPU12

REFERENCE MANUAL

TSTA TestA TSTA
Operation:

Description:

(A) - $00

Subtracts $00 from the content of accumulator A and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying A.

The TST A instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility following TST A. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1- ~ ~ 0 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode Object Code

INH 97

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Access Detail

o

MOTOROLA

6-207

TSTB Test B TSTB
Operation:

Description:

(B) - $00

Subtracts $00 from the content of accumulator B and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying B.

The TSTB instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BlO and
BlS have no utility following TSTB. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all Signed branches are available.

Condition Codes and Boolean Formulas:

S X H N Z V C

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Addressing Modes, Machine Code, and Execution Times:

Source Form

i TSTB

MOTOROLA

6-208

Address Mode Object Code

INH D7

INSTRUCTION GLOSSARY

Access Detail

o

CPU12

REFERENCE MANUAL

TSX
Operation: (SP) ::::} X

Transfer from Stack Pointer
to Index Register X TSX

Description: This is an alternate mnemonic to transfer the SP value to index register
X. The content of the SP remains unchanged. After a TSX instruction, X
points at the last value that was stored on the stack.

Condition Codes and Boolean Formulas:

S X H N Z v C

1- -1-1- -1-1-1-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form Address Mode I Object Code

TSX translates to ...
INH I B7 75

TFR SP,X i

CPU12 INSTRUCTION GLOSSARY
REFERENCE MANUAL

Cycles

1

Access Detail

p

MOTOROLA

6-209

TSY
Operation: (SP) =} Y

Transfer from Stack Pointer
to Index Register Y TSY

D~scription: This is an alternate mnemonic to transfer the SP value to index register
Y. The content of the SP remains unchanged. After a TSY instruction, Y
points at the last value that was stored on the stack.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1-1-1- -1-1-
None affected.

AddreSSing Modes, Machine Code, and Execution Times:

Source Form

TSY translates to ...
TFRSP,Y

MOTOROLA

6-210

Address Mode Object Code

INH B7 76

INSTRUCTION GLOSSARY

Cycles Access Detail

1 P

CPU12

REFERENCE MANUAL

TXS
Operation: (X) => SP

Transfer from Index Register X
to Stack Pointer TXS

Description: This is an alternate mnemonic to transfer index register X value to the
SP. The content of X is unchanged.

Condition Codes and Boolean Formulas:

S X H N Z v C

-1-1- -1-1- -\-1
None affected.

Addressing Modes, Machine Code, and Execution Times:

Address Mode Object Code Access Detail [Source Form
I TXS translates to ...

LTFR X,SP INH .~-----"I_B_7_57 ______ ---,---___ ~P J

CPU12

REFERENCE MANUAL
INSTRUCTION GLOSSARY MOTOROLA

6-211

TYS
Operation: (Y) :::} SP

Transfer from Index Register Y
to Stack Pointer TYS

Description: This is an alternate mnemonic to transfer index register Y value to the
SP. The content of Y is unchanged.

Condition Codes and Boolean Formulas:

S X H N Z v C

- I - - I - I - I - - I -J
None affected.

Addressing Modes, Machine Code, and Execution Times:

! Source Form

~TYS translates to ...
TFR Y,SP

MOTOROLA

6-212

Address Mode Object Code

INH B7 67

INSTRUCTION GLOSSARY

Cycles I Access Detail

1 I p

CPU12

REFERENCE MANUAL

WAI
Operation:

Description:

Wait for Interrupt

(SP) - $0002::::} SP; RTNH : RTNL::::} (M(SP): M(SP+1))
(SP) - $0002 ::::} SP; YH : YL ::::} (M(SP) : M(Sp+ 1))
(SP) - $0002::::} SP; XH : XL::::} (M(SP) : M(SP+1))
(SP) - $0002 ::::} SP; B : A::::} (M(SP) : M(Sp+ 1))
(SP) - $0002 ::::} SP; CCR ::::} (M(SP))
Stop CPU Clocks

WAI

Puts the CPU into a wait state. Uses the address of the instruction
following WAI as a return address. Stacks the return address, index
registers Y and X, accumulators B and A, and the CCR, decrementing
the SP before each item is stacked.

The CPU then enters a wait state for an integer number of bus clock
cycles. During the wait state, CPU clocks are stopped, but other MCU
clocks can continue to run. The CPU leaves the wait state when it
senses an interrupt that has not been masked.

Upon leaving the wait state, the CPU sets the appropriate interrupt mask
bit(s), fetches the vector corresponding to the interrupt sensed, and
instruction execution continues at the location the vector points to.

Condition Codes and Boolean Formulas:

S X H N Z v C

1-1- -1-1-1-1-1-1
Although the WAI instruction itself does not alter the condition codes,
the interrupt that causes the CPU to resume processing also causes
the I mask bit (and the X mask bit, if the interrupt was XIRQ) to be set
as the interrupt vector is fetched.

Addressing Modes, Machine Code, and Execution Times:

I

I Source Form I Address Mode I Object Code I Cycles

I WAI (before interrupt) I INH , 3E I 8
I (when interrupt comes)

I I I 5

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

Access Detail

OSSSfSsf
VfPPP

MOTOROLA

6-213

WAV
Operation:

Description:

Weighted Average WAV
Perform weighted average calculations on values stored in memory.

Do until 8 = 0, leave SOP in Y : 0, SOW in X

Partial Product = (M pointed to by X) x (M pointed to by Y)
Sum-of-Products (24-bit SOP) = Previous SOP + Partial Product
Sum-of-Weights (16-bit SOW) = Previous SOW + (M pointed-to by Y)
(X) + $0001 => X; (Y) + $0001 => Y
(8) - $01 => 8

WAY uses indexed (X) addressing mode to reference one source
operand list, and indexed (Y) addressing mode to reference a second
source operand list. Accumulator 8 is used as a counter to control the
number of elements to be included in the weighted average.

For each pair of data points, a 24-bit sum of products and a 16-bit sum
of weights is accumulated in temporary registers. When 8 reaches zero
(no more data pairs), the sum of products is placed in Y:D. The sum of
weights is placed in X. To arrive at the final weighted average, divide the
content of Y:D by X by executing an EDIV after the WAY.

This instruction can be interrupted. If an interrupt occurs during WAY
execution, the intermediate results (six bytes) are stacked in the order
SOW[15:0), SOP[15:0), $00:SOP[23:16) before the interrupt is processed.
The wavr pseudo instruction is used to resume execution after an inter
rupt. The mechanism is re-entrant. New WAY instructions can be started
and interrupted while a previous WAY instruction is interrupted.

This instruction is often used in fuzzy logic rule evaluation. Refer to
SECTION 9 FUZZY LOGIC SUPPORT for more information.

Condition Codes and Boolean Formulas:

S X H N Z V C

I - - I ? I - ? I 1 ? ?

Z: 1; Set.

H, N, V and C may be altered by this instruction.

Addressing Modes, Machine Code, and Execution Times:

Source Form i Address Mode I Object Code I Cycles Access Detail
WAY l Special 118 3C ! See note 1 Off (frrfffff)O
(add if interrupted)

I

I
fffrrUUUf

Notes:
1. The a·cycle sequence in parentheses represents the loop for one iteration of SOP and SOW accumulation.

MOTOROLA

6-214

INSTRUCTION GLOSSARY CPU12

REFERENCE MANUAL

XGDX
Operation: (D) ¢:> (X)

Exchange Double Accumulator
and Index Register X XGDX

Description: Exchanges the content of double accumulator D and the content of index
register X. For compatibility with the M68HC11, the XGDX instruction is
translated into an EXG D,X instruction by the assembler.

Condition Codes and Boolean Formulas:

S X H

None affected.

N Z V C
I

-I
I

Addressing Modes, Machine Code, and Execution Times:

1 Source Form

I XGDX translates to ...
I EXG D,X

Address Mode Object Code lCycies -~A-cc-e-s-s-Detail

INH B7 C5

CPU12 INSTRUCTION GLOSSARY

REFERENCE MANUAL

p

MOTOROLA

6-215

XGDY
Operation: (D) ~ (Y)

Exchange Double Accumulator
and Index Register Y XGDY

Description: Exchanges the content of double accumulator D and the content of index
register Y. For compatibility with the M68HC11, the XGDY instruction is
translated into an EXG D,Y instruction by the assembler.

Condition Codes and Boolean Formulas:

S X H N Z v C

None affected.

Addressing Modes, Machine Code, and Execution Times:

Source Form
XGDY translates to ...
EXG D,Y

MOTOROLA

6-216

Address Mode Object Code

INH B7 C6

INSTRUCTION GLOSSARY

Cycles Access Detail

1 P

CPU12

REFERENCE MANUAL

SECTION 7
EXCEPTION PROCESSING

Exceptions are events that require processing outside the normal flow of instruc
tion execution. This section describes exceptions and the way each is handled.

7.1 Types of Exceptions

CPU12

CPU 12 exceptions include resets, an unimplemented opcode trap, a software in
terrupt instruction, X-bit interrupts, and I-bit interrupts. Each exception has an as
sociated 16-bit vector, which points to the memory location where the routine that
handles the exception is located. As shown in Table 7-1, vectors are stored in the
upper 128 bytes of the standard 64-Kbyte address map.

Table 7-1 CPU12 Exception Vector Map

Vector Address Source

$FFFE - $FFFF System Reset

$FFFC - $FFFD Clock Monitor Reset

$FFFA - $FFFB COP Reset

$FFFB - $FFF9 Unimplemented Opcode Trap

$FFF6 - $FFF7 Software Interrupt Instruction (SWI)

$FFF4 - $FFF5 XIRO Signal

$FFF2 - $FFF3 IRO Signal

$FFCO - $FFF1 Device-specific Interrupt Sources

The six highest vector addresses are used for resets and unmaskable interrupt
sources. The remaining vectors are used for maskable interrupts. All vectors must
be programmed to point to the address of the appropriate service routine.

The CPU12 can handle up to 64 exception vectors, but the number actually used
varies from device to device, and some vectors are reserved for Motorola use.
Refer to device documentation for more information.

Exceptions can be classified by the effect of the X and I interrupt mask bits on rec
ognition of a pending request.

Resets, the unimplemented opcode trap, and the SWI instruction are not affect
ed by the X and I mask bits.

Interrupt service requests from the XIRQ pin are inhibited when X = 1, but are
not affected by the I bit.

All other interrupts are inhibited when I = 1.

EXCEPTION PROCESSING
REFERENCE MANUAL

MOTOROLA

7 -1

7_2 Exception Priority

A hardware priority hierarchy determines which reset or interrupt is serviced first
when simultaneous requests are made. Six sources are not maskable. The
remaining sources are maskable, and the device integration module typically can
change the relative priorities of maskable interrupts. Refer to 7_4 Interrupts for
more detail concerning interrupt priority and servicing.

The priorities of the unmaskable sources are:

4. RESET pin
5. Clock monitor reset
6. COP watchdog reset
7. XIRQ signal
8. Unimplemented opcode trap
9. Software interrupt instruction (SWI)

An external reset has the highest exception-processing priority, followed by clock
monitor reset, and then the on-chip watchdog reset.

The XIRQ interrupt is pseudo-non-maskable. After reset, the X-Bit in the CCR is
set, which inhibits all interrupt service requests from the XIRQ pin until the X-bit is
cleared. The X bit can be cleared by a program instruction, but program instruc
tions cannot reset X from a to 1. Once the X bit is cleared, interrupt service re
quests made via the XIRQ pin become non-maskable.

The unimplemented Page 2 Opcode trap (TRAP) and the Software Interrupt In
struction (SWI) are special cases. In one sense, these two exceptions have very
low priority, because any enabled interrupt source that is pending prior to the time
exception processing begins will take precedence. However, once the CPU begins
processing a TRAP or SWI, neither can be interrupted. Also, since these are mu
tually exclusive instructions, they have no relative priority.

All remaining interrupts are subject to masking via the I bit in the CCR. Most
M68HC12 MCUs have an external IRQ pin, which is assigned the highest I-bit in
terrupt priority, and an internal periodic real-time interrupt generator, which has the
next highest priority. The other maskable sources have default priorities that follow
the address order of the interrupt vectors - the higher the address, the higher the
priority of the interrupt. Other maskable interrupts are associated with on-chip pe
ripherals such as timers or serial ports. Typically, logic in the device integration
module can give one I-masked source priority over other I-masked sources. Refer
to the documentation for the specific M68HC12 derivative for more information.

7.3 Resets

M68HC12 devices perform resets with a combination of hardware and software.
Integration module circuitry determines the type of reset that has occurred,
performs basic system configuration, then passes control to the CPU12. The CPU
fetches a vector determined by the type of reset that has occurred, jumps to the
address pointed to by the vector, and begins to execute code at that address.

MOTOROLA

7-2

EXCEPTION PROCESSING CPU12

REFERENCE MANUAL

There are four possible sources of reset. Power-on reset (PaR) and external reset
share the same reset vector. The computer operating properly (COP) reset and the
clock monitor reset each have a vector.

7.3.1 Power-On Reset

The M68HC12 device integration module incorporates circuitry to detect a positive
transition in the VDD supply and initialize the device during cold starts, generally by
asserting the reset signal internally. The signal is typically released after a delay
that allows the device clock generator to stabilize.

7.3.2 External Reset

The MCU distinguishes between internal and external resets by sensing how
quickly the signal on the RESET pin rises to logic level one after it has been
asserted. When the MCU senses any of the four reset conditions, internal circuitry
drives the RESET signal low for 16 clock cycles, then releases. Eight clock cycles
later, the MCU samples the state of the signal applied to the RESET pin. If the
signal is still low, an external reset has occurred. If the signal is high, reset has
been initiated internally by either the COP system or the clock monitor.

7.3.3 COP Reset

The MCU includes a Computer Operating Properly (COP) system to help protect
against software failures. When the COP is enabled, software must write a partic
ular code sequence to a specific address in order to keep a watchdog timer from
timing out. If software fails to execute the sequence properly, a reset occurs.

7.3.4 Clock Monitor Reset

The clock monitor circuit uses an internal RC circuit to determine whether clock
frequency is above a predetermined limit. When the clock monitor is enabled, if
clock frequency falls below the limit, a reset occurs.

7.4 Interrupts

CPU12

Each M68HC12 device can recognize a number of interrupt sources. Each source
has a vector in the vector table. The XIRQ signal, the unimplemented opcode trap,
and the SWI instruction are non-maskable, and have a fixed priority. The remaining
interrupt sources can be masked by the I bit. In most M68HC12 devices, the
external interrupt request pin is assigned the highest maskable interrupt priority,
and the internal periodic real-time interrupt generator has the next highest priority.
Other maskable interrupts are associated with on-chip peripherals such as timers
or serial ports. These maskable sources have default priorities that follow the
address order of the interrupt vectors. The higher the vector address, the higher
the priority of the interrupt. Typically, a device integration module incorporates logic
that can give one maskable source priority over other maskable sources.

EXCEPTION PROCESSING

REFERENCE MANUAL

MOTOROLA

7-3

7.4.1 Non-maskable Interrupt Request (XIRQ)

The XIRQ input is an updated version of the NMI input of earlier MCUs. The XIRQ
function is disabled during system reset and upon entering the interrupt service
routine for an XIRQ interrupt.

During reset, both the I bit and the X bit in the CCR are set. This disables maskable
interrupts and interrupt service requests made by asserting the XIRQ signal. After
minimum system initialization, software can clear the X bit using an instruction
such as ANDCC #$BF. Software cannot reset the X bit from 0 to 1 once it has been
cleared, and interrupt requests made via the XIRQ pin become non-maskable.
When a non-maskable interrupt is recognized, both the X and I bits are set after
context is saved. The X bit is not affected by maskable interrupts. Execution of an
RTI at the end of the interrupt service routine normally restores the X and I bits to
the pre-interrupt request state.

7.4.2 Maskable interrupts

Maskable interrupt sources include on-chip peripheral systems and external inter
rupt service requests. Interrupts from these sources are recognized when the
global interrupt mask bit (I) in the CCR is cleared. The default state of the I bit out
of reset is 1, but it can be written at any time.

The integration module manages maskable interrupt priorities. Typically, an on
chip interrupt source is subject to masking by associated bits in control registers in
addition to global masking by the I bit in the CCR. Sources generally must be
enabled by writing one or more bits in associated control registers. There may be
other interrupt-related control bits and flags, and there may be specific register
read-write sequences associated with interrupt service. Refer to individual on-chip
peripheral descriptions for details.

7.4.3 Interrupt Recognition

Once enabled, an interrupt request can be recognized at any time after the I mask
bit is cleared. When an interrupt service request is recognized, the CPU responds
at the completion of the instruction being executed. Interrupt latency varies
according to the number of cycles required to complete the current instruction.
Because the REV, REVW and WAV instructions can take many cycles to
complete, they are designed so that they can be interrupted. Instruction execution
resumes when interrupt execution is complete. When the CPU begins to service
an interrupt, the instruction queue is refilled, a return address is calculated, and
then the return address and the contents of the CPU registers are stacked as
shown in Table 7-2.

After the CCR is stacked, the I bit (and the X bit, if an XIRQ interrupt service request
caused the interrupt) is set to prevent other interrupts from disrupting the interrupt
service routine. Execution continues at the address pointed to by the vector for the
highest-priority interrupt that was pending at the beginning of the interrupt se
quence. At the end of the interrupt service routine, an RTI instruction restores con
text from the stacked registers, and normal program execution resumes.

MOTOROLA

7-4

EXCEPTION PROCESSING CPU12

REFERENCE MANUAL

Table 7-2 Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP -4 ' YH: YL
~-------------------------~

I SP -6 XH: XL

1~ _____________ S_P_-_8 ____________ ~ _____________ B_:_A ____________ ~
. SP -9 CCR

7.4.4 External Interrupts

External interrupt service requests are made by asserting an active-low signal
connected to the IRQ pin. Typically, control bits in the device integration module
affect how the signal is detected and recognized.

The I bit serves as the IRQ interrupt enable flag. When an IRQ interrupt is recog
nized, the I bit is set to inhibit interrupts during the interrupt service routine. Before
other maskable interrupt requests can be recognized, the I bit must be cleared.
This is generally done by an RTI instruction at the end of the service routine.

7.4.5 Return from Interrupt Instruction (RTI)

RTI is used to terminate interrupt service routines. RTI is an 8-cycle instruction
when no other interrupt is pending, and a 10-cycle instruction when another inter
rupt is pending. In either case, the first five cycles are used to restore (pull) the
CCR, B:A, X, Y, and the return address from the stack. If no other interrupt is pend
ing at this point, three program words are fetched to refill the instruction queue from
the area of the return address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector is fetched,
and the stack pointer is adjusted to point at the CCR value that was just recovered
(SP = SP - 9). This makes it appear that the registers have been stacked again.
After the SP is adjusted, three program words are fetched to refill the instruction
queue, starting at the address the vector points to. Processing then continues with
execution of the instruction that is now at the head of the queue.

7.5 Unimplemented Opcode Trap

CPU12

The CPU12 has opcodes in all 256 positions in the Page 1 opcode map, but only
54 of the 256 positions on Page 2 of the opcode map are used. If the CPU attempts
to execute one of the 202 unused opcodes on Page 2, an unimplemented opcode
trap occurs. The 202 unimplemented opcodes are essentially interrupts that share
a common interrupt vector, $FFF8:$FFF9.

EXCEPTION PROCESSING

REFERENCE MANUAL
MOTOROLA

7-5

The CPU12 uses the next address after an unimplemented Page 2 opcode as a
return address. This differs from the M68HC11 illegal opcode interrupt, which uses
the address of an illegal opcode as the return address. In the CPU12, the stacked
return address can be used to calculate the address of the unimplemented opcode
for software-controlled traps.

7.6 Software Interrupt Instruction

Execution of the SWI instruction causes an interrupt without an interrupt service
request. SWI is not inhibited by the global mask bits in the CCR, and execution of
SWI sets the I mask bit. Once an SWI interrupt begins, maskable interrupts are
inhibited until the I bit in the CCR is cleared. This typically occurs when an RTI
instruction at the end of the SWI service routine restores context.

7.7 Exception Processing Flow

The first cycle in the exception processing flow for all CPU12 exceptions is the
same, regardless of the source of the exception. Between the first and second cy
cles of execution, the CPU chooses one of three alternative paths. The first path is
for resets, the second path is for pending X or I interrupts, and the third path is used
for software interrupts (SWI) and trapping unimplemented opcodes. The last two
paths are virtually identical, differing only in the details of calculating the return ad
dress. Refer to Figure 7-2 for the following discussion.

7.7.1 Vector Fetch

The first cycle of all exception processing, regardless of the cause, is a vector
fetch. The vector points to the address where exception processing will continue.
Exception vectors are stored in a table located at the top of the memory map
($FFCO-$FFFF). The CPU cannot use the fetched vector until the third cycle of the
exception processing sequence.

During the vector fetch cycle, the CPU issues a signal that tells the integration mod
ule to drive the vector address of the highest priority, pending exception onto the
system address bus (the CPU does not provide this address).

After the vector fetch, the CPU selects one of the three alternate execution paths,
depending upon the cause of the exception.

7.7.2 Reset Exception Processing

If reset caused the exception, processing continues to cycle 2.0. This cycle sets
the X and I bits in the CCR. The stack pointer is also decremented by two, but this
is an artifact of shared code used for interrupt processing - the SP is not intended
to have any specific value after a reset. Cycles 3.0 through 5.0 are program word
fetches that refill the instruction queue. Fetches start at the address pointed to by
the reset vector. When the fetches are completed, exception processing ends, and
the CPU starts executing the instruction at the head of the instruction queue.

MOTOROLA

7-6

EXCEPTION PROCESSING CPU12

REFERENCE MANUAL

~ _n?~~s_a9~e~s _______
set X and I; 8P-2 fi8P ,
~ fetc_h pro9r_am_w_ord _____

start to fill instruction queue

t
~ fe_tc_h program word ___

- -
continue to fill instruction queue

+
~ !etc_h p~09r_arnw?~d _ - _.

finish filling instruction queue

(~_EN_D~)

(START-;

i 10-V I fetch vector J
+ yes

opcode trap?

+ no
yes

reset?

+ no
no

interrupt?

t_ yes

~ ?~Sh !~tur~ _address_ - -

address of inst that would have
executed if no interrupt

+
~ !e!c_h p~owarn _wo~d _____

start to fill instruction queue

14.1-8 I pushY
i ,

~PUShX ,
6.1-P I fetch ro ram word p g

- - - - - - - - - -
continue to fill instruction queue
transfer B:A to 16-bit temp reg

~PUShB:A

8.1 - 8 push CCR (byte)

set I bit
if XIRQ, set X bit

finish filling Instruction queue

(~_EN_D_)

I

[

• ~ internal calculations

~ ?~Sh _retur~ add!ess _
- --

address of inst atter 8WI or
unimplemented opcode

1
~ !e_tch prog~am word - --

start to fill instruction queue

1 4.2 - 8 I push Y
i ,

1 5.2 - 8 I push X ,
6.2 - P I fetch pro ram word _____ 9 _________ _
continue to fill instruction queue
transfer B:A to 16-bit temp reg

~ pushB:A

push CCR (byte)

(_~E_ND~~)

CPU12EXPFLOW

[

[

Figure 7-2 Exception Processing Flow Diagram

CPU12

REFERENCE MANUAL
EXCEPTION PROCESSING MOTOROLA

7-7

7.7.3 Interrupt and Unimplemented Opcode Trap Exception Processing

If an exception was not caused by a reset, a return address is calculated.

Cycles 2.1 and 2.2 are both S cycles (a 16-bit word), but the cycles are not identical
because the CPU12 performs different return address calculations for each type of
exception.

When an X- or I-related interrupt causes the exception, the return address
points to the next instruction that would have been executed had processing not
been interrupted.

When an exception is caused by an SWI opcode or by an unimplemented op
code (See 7.5 Unimplemented Opcode Trap), the return address points to the
next address after the opcode.

Once calculated, the return address is pushed onto the stack.

Cycles 3,1 through 9.1 are identical to cycles 3.2 through 9.2 for the rest of the se
quence, except for X mask bit manipulation performed in cycle 8.1.

Cycle 3.1/3.2 is the first of three program word fetches that refill the instruction
queue.

Cycle 4.1/4.2 pushes Y onto the stack.

Cycle 5.1/5.2 pushes X onto the stack.

Cycle 6.1/6.2 is the second of three program word fetches that refill the instruction
queue. During this cycle, the contents of the A and B accumulators are concate
nated into a 16-bit word in the order B:A. This makes register order in the stack
frame the same as that of the M68HC11, M6801, and the M6800.

Cycle 7.1/7.2 pushes the 16-bit word containing B:A onto the stack.

Cycle 8.1/8.2 pushes the 8-bit CCR onto the stack, then updates the mask bits.

When an XIRQ interrupt causes an exception, both X and I are set, which in
hibits further interrupts during exception processing.

When any other interrupt causes an exception, the I bit is set, but the X bit is
not changed.

Cycle 9.1/9.2 is the third of three program word fetches that refill the instruction
queue. It is the last cycle of exception processing. After this cycle the CPU starts
executing the first cycle of the instruction at the head of the instruction queue.

MOTOROLA

7-8

EXCEPTION PROCESSING CPU12

REFERENCE MANUAL

SECTION 8
DEVELOPMENT AND DEBUG SUPPORT

This section is an explanation of CPU-related aspects of the background debug
ging system. Topics include the instruction queue status signals, instruction tag
ging, and the single-wire background debug interface.

8.1 External Reconstruction of the Queue

The CPU12 uses an instruction queue to buffer program information and increase
instruction throughput. The queue consists of two 16-bit stages, plus a 16-bit hold
ing latch. Program information is always fetched in aligned 16-bit words. At least
three bytes of program information are available to the CPU when instruction exe
cution begins. The holding latch is used when a word of program information ar
rives before the queue can advance.

Because of the queue, program information is fetched a few cycles before it is used
by the CPU. Internally, the MCU only needs to buffer the fetched data. But, in order
to monitor cycle-by-cycle CPU activity, it is necessary to externally reconstruct
what is happening in the instruction queue.

Two external pins, IPIPE[1 :0], provide time-multiplexed information about data
movement in the queue and instruction execution. To complete the picture for sys
tem debugging, it is also necessary to include program information and associated
addresses in the reconstructed queue.

The instruction queue and cycle-by-cycle activity can be reconstructed in real time
or from trace history captured by a logic analyzer. However, neither scheme can
be used to stop the CPU12 at a specific instruction. By the time an operation is vis
ible outside the MCU, the instruction has already begun execution. A separate in
struction tagging mechanism is provided for this purpose. A tag follows the
information in the queue as the queue is advanced. During debugging, the CPU
enters active background debugging mode when a tagged instruction reaches the
head of the queue, rather than executing the tagged instruction. For more informa
tion about tagging, refer to 8.5 Instruction Tagging.

8.2 Instruction Queue Status Signals

CPU12

The IPIPE[1 :0] signals carry time-multiplexed information about data movement
and instruction execution during normal CPU operation. The signals are available
on two multifunctional device pins. During reset, the pins are used as mode-select
input signals MODA and MODB. After reset, information on the pins does not be
come valid until an instruction reaches queue stage 2.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL
MOTOROLA

8-1

To reconstruct the queue, the information carried by the status signals must be
captured externally. In general, data movement and execution start information are
considered to be distinct 2-bit values, with the low-order bit on IPIPEO and the high
order bit on IPIPE1. Data movement information is available on rising edges of the
E clock; execution start information is available on falling edges of the E clock, as
shown in Figure 8-1. Data movement information refers to data on the bus at the
previous falling edge of E. Execution information refers to the bus cycle from the
current falling edge to the next falling edge of E. Table 8-1 summarizes the infor
mation encoded on the IPIPE[1 :0] pins.

ECLK

ADDR

DATA

IPIPE[1:0]

Data Movement
(capture at E rise)

0:0

0:1

1:0

1 :1

Execution Start
(capture at E fall)

MOTOROLA

8-2

0:0

0:1

1 :0

1 :1

EX1 REFERS TO THIS CYCLE

.~

I I,
DMO REFERS TO DATA CAPTURED

ON THIS ECLK TRANSITION

aUE STATUS TIM

Figure 8-1 Queue Status Signal Timing

Table 8-1 IPIPE[1 :0] Decoding

Mnemonic Meaning

- No movement

LAT Latch data from bus

ALD Advance queue & load from bus

ALL Advance queue & load from latch

Mnemonic Meaning

- No start

INT Start interrupt sequence

SEV Start even instruction

SOD Start odd instruction

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

8.2.1 Zero Encoding (0:0)

The 0:0 state at the rising edge of E indicates that there was no data movement in
the instruction queue during the previous cycle; the 0:0 state at the falling edge of
E indicates continuation of an instruction or interrupt sequence.

8.2.2 LAT-Latch Data From Bus Encoding (0:1)

Fetched program information has arrived, but the queue is not ready to advance.
The information is latched into the buffer. Later, when the queue does advance,
stage 1 is refilled from the buffer, or from the data bus if the buffer is empty. In some
instruction sequences, there can be several latch cycles before the queue advanc
es. In these cases, the buffer is filled on the first latch event and additional latch
requests are ignored.

8.2.3 ALD-Advance and Load from Data Bus Encoding (1 :0)

The two-stage instruction queue is advanced by one word and stage 1 is refilled
with a word of program information from the data bus. The CPU requested the in
formation two bus cycles earlier but, due to access delays, the information was not
available until the E cycle immediately prior to the ALD.

8.2.4 ALL-Advance and Load from Latch Encoding (1: 1)

The two-stage instruction queue is advanced by one word and stage 1 is refilled
with a word of program information from the buffer. The information was latched
from the data bus at the falling edge of a previous E cycle because the instruction
queue was not ready to advance when it arrived.

8.2.5 INT-Interrupt Sequence Encoding (0:1)

The E cycle starting at this E fall is the first cycle of an interrupt sequence. Normally
this cycle is a read of the interrupt vector. However, in systems that have interrupt
vectors in external memory and an 8-bit data bus, this cycle reads only the upper
byte of the 16-bit interrupt vector.

8.2.6 SEV-Start Instruction on Even Address Encoding (1 :0)

The E cycle starting at this E fall is the first cycle of the instruction in the even (high
order) half of the word at the head of the instruction queue. The queue treats the
$18 prebyte for instructions on page 2 of the opcode map as a special 1-byte, 1-
cycle instruction, except that interrupts are not recognized at the boundary be
tween the prebyte and the rest of the instruction.

8.2.7 SOD-Start Instruction on Odd Address Encoding (1: 1)

CPU12

The E cycle starting at this E fall is the first cycle of the instruction in the odd (low
order) half of the word at the head of the instruction queue. The queue treats the
$18 prebyte for instructions on page two of the opcode map as a special 1-byte, 1-
cycle instruction, except that interrupts are not recognized at the boundary be
tween the prebyte and the rest of the instruction.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL
MOTOROLA

8-3

8.3 Implementing Queue Reconstruction

The raw signals required for queue reconstruction are the address bus (ADDR),
the data bus (DATA), the read/write strobe (R/W), the system clock (E), and the
queue status signals (IPIPE[1 :0]). An E clock cycle begins after an E fall. Address
es, R/W state, and data movement status must be captured at the E rise in the mid
dle of the cycle. Data and execution start status must be captured at the E fall at
the end of the cycle. These captures can then be organized into records with one
record per E clock cycle.

Implementation details depend upon the type of device and the mode of operation.
For instance, the data bus can be 8 bits or 16 bits wide, and non-multiplexed or
multiplexed. In all cases, the externally reconstructed queue must use 16-bit
words. Demultiplexing and assembly of 8-bit data into 16-bit words is done before
program information enters the real queue, so it must also be done for the external
reconstruction. An example:

Systems with an 8-bit data bus and a program stored in external memory require
two cycles for each program word fetch. MCU bus control logic freezes the CPU
clocks long enough to do two 8-bit accesses rather than a single 16-bit access, so
the CPU sees only 16-bit words of program information. To recover the16-bit pro
gram words externally, latch the data bus state at the falling edge of E when
ADDRO = 0, and gate the outputs of the latch onto DATA[15:8] when a LAT or ALD
cycle occurs. Since the 8-bit data bus is connected to DAT A[7:0], the 16-bit word
on the data lines corresponds to the ALD or LAT status indication at the E rise after
the second 8-bit fetch, which is always to an odd address. IPIPE[1 :0] status signals
indicate 0:0 at the beginning (E fall) and middle (E rise) of the first 8-bit fetch.

Some M68HC12 devices have address lines to support memory expansion beyond
the standard 64-Kbyte address space. When memory expansion is used, expand
ed addresses must also be captured and maintained.

8.3.1 Queue Status Registers

Queue reconstruction requires the following registers, which can be implemented
as software variables when previously captured trace data is used, or as hardware
latches in real time.

8.3.1.1 in_add, in_dat Registers

These registers contain the address and data from the previous external bus cycle.
Depending upon how records are read and processed from the raw capture infor
mation, it may be possible to simply read this information from the raw capture data
file when needed.

8.3.1.2 fetch_add, fetch_dat Registers

These registers buffer address and data for information that was fetched before the
queue was ready to advance.

MOTOROLA

8-4

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

8.3.1.3 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the reconstructed
instruction queue.

8.3.1.4 st2_add, st2_dat Registers

These registers contain address and data for the final stage of the reconstructed
instruction queue. When the IPIPE[1 :0] signals indicate that an instruction is start
ing to execute, the address and opcode can be found in these registers.

8.3.2 Reconstruction Algorithm

This section describes in detail how to use IPIPE[1 :0) signals and status storage
registers to perform queue reconstruction. An "is_full" flag is used to indicate when
the fetch_add and fetch_dat buffer registers contain information. The use of the
flag is explained more fully in subsequent paragraphs.

Typically, the first few cycles of raw capture data are not useful because it takes
several cycles before an instruction propagates to the head of the queue. During
these first raw cycles, the only meaningful information available are data move
ment signals. Information on the external address and data buses during this setup
time reflects the actions of instructions that were fetched before data collection
started.

In the special case of a reset, there is a five cycle sequence (VfPPP) during which
the reset vector is fetched and the instruction queue is filled, before execution of
the first instruction begins. Due to the timing of the switchover of the IPIPE[1 :0] pins
from their alternate function as mode select inputs, the status information on these
two pins may be erroneous during the first cycle or two after the release of reset.
This is not a problem because the status is correct in time for queue reconstruction
logic to correctly replicate the queue.

Before starting to reconstruct the queue, clear the is_full flag to indicate that there
is no meaningful information in the fetch_add and fetch_dat buffers. Further move
ment of information in the instruction queue is based on the decoded status on the
IPIPE[1 :0) signals at the rising edges of E.

8.3.2.1 LAT Decoding

CPU12

On a latch cycle, check the is_full flag. If and only if is_full = 0, transfer the address
and data from the previous bus cycle (in_add and in_dat) into the fetch_add and
fetch_dat registers respectively. Then, set the is_full flag. The usual reason for a
latch request instead of an advance request is that the previous instruction ended
with a single aligned byte of program information in the last stage of the instruction
queue. Since the odd half of this word still holds the opcode for the next instruction,
the queue cannot advance on this cycle. However, the cycle to fetch the next word
of program information has already started and the data is on its way.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL
MOTOROLA

8-5

8.3.2.2 ALD Decoding

On an advance-and-Ioad-from-data-bus cycle, the information in the instruction
queue must advance by one stage. Whatever was in stage 2 of the queue is simply
thrown away. The previous contents of stage 1 are moved to stage 2, and the ad
dress and data from the previous cycle (in_add and in_dat) are transferred into
stage 1 of the instruction queue. Finally, clear the is_full flag to indicate the buffer
latch is ready for new data. Usually, there would be no useful information in the
fetch buffer when an ALD cycle was encountered, but in the case of a change-of
flow, any data that was there needs to be flushed out (by clearing the is_full flag).

8.3.2.3 ALL Decoding

On an advance-and-Ioad-from-Iatch cycle, the information in the instruction queue
must advance by one stage. Whatever was in stage 2 of the queue is simply thrown
away. The previous contents of stage 1 are moved to stage 2, and the contents of
the fetch buffer latch are transferred into stage 1 of the instruction queue. One or
more cycles preceding the ALL cycle will have been a LAT cycle. After updating
the instruction queue, clear the is_full flag to indicate the fetch buffer is ready for
new information.

8.4 Background Debugging Mode

M68HC12 MCUs include a resident debugging system. This system is implement
ed with on-chip hardware rather than external software, and provides a full set of
debugging options. The debugging system is less intrusive than systems used on
other microcontrollers, because the control logic resides in the on-chip integration
module, rather than in the CPU12. Some activities, such as reading and writing
memory locations, can be performed while the CPU is executing normal code with
no effect on real time system activity.

The integration module generally uses CPU dead cycles to execute debugging
commands while the CPU is operating normally, but can steal cycles from the CPU
when necessary. Other commands are firmware based, and require that the CPU
be in active background debugging mode (BDM) for execution. While BDM is ac
tive, the CPU executes a monitor program located in a small on-chip ROM.

Debugging control logic communicates with external devices serially, via the
BKGD pin. This single-wire approach helps to minimize the number of pins needed
for development support.

Background Debug does not operate in STOP mode.

MOTOROLA

8-6
DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

8.4.1 Enabling 80M

The debugger must be enabled before it can be activated. Enabling has two
phases. First, the BDM ROM must be enabled by writing the ENBDM bit in the
BDM status register, using a debugging command sent via the single wire inter
face. Once the ROM is enabled, it remains available until the next system reset, or
until ENBDM cleared by another debugging command. Second, BDM must be acti
vated to map the ROM and BDM control registers to addresses $FFOO to $FFFF
and put the MCU in background mode.

After the firmware is enabled, BDM can be activated by the hardware BACK
GROUND command, by breakpoints tagged via the LIM breakpoint logic or the
BDM tagging mechanism, and by the BGND instruction. An attempt to activate
BDM before firmware has been enabled causes the MCU to resume normal
instruction execution after a brief delay.

BDM becomes active at the next instruction boundary following execution of the
BDM BACKGROUND command. Breakpoints can be configured to activate BDM
before a tagged instruction is executed.

While BDM is active, BDM control registers are mapped to addresses $FFOO to
$FF06. These registers are only accessible through BDM firmware or BDM hard
ware commands. 8.4.4 80M Registers describes the registers.

Some M68HC12 on-chip peripherals have a BDM control bit, which determines
whether the peripheral function is available during BDM. If no bit is shown, the
peripheral is active in BDM.

8.4.2 80M Serial Interface

CPU12

The BDM serial interface uses a clocking scheme in which the external host gener
ates a falling edge on the BKGD pin to indicate the start of each bit time. This falling
edge must be sent for every bit, whether data is transmitted or received.

BKGD is an open drain pin that can be driven either by the MCU or by an external
host. Data is transferred MSB first, at 16 E clock cycles per bit. The interface times
out if 256 E clock cycles occur between falling edges from the host. The hardware
clears the command register when a timeout occurs.

The BKGD pin is used to send and receive data. The following diagrams show
timing for each of these cases. Interface timing is synchronous to MCU clocks, but
the external host is asynchronous to the target MCU. The internal clock signal is
shown for reference in counting cycles.

Figure 8-2 shows an external host transmitting a data bit to the BKGD pin of a
target M68HC12 MCU. The host is asynchronous to the target, so there is a 0 to 1
cycle delay from the host-generated falling edge to the time when the target
perceives the bit. Nine target E-cycles later, the target senses the bit level on the
BKGD pin. The host can drive high during host-to-target transmission to speed up
rising edges, because the target does not drive the pin during this time.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL

MOTOROLA

8-7

ECLOCK
(TARGET

MCU) i

HOST ~I ,,: --;-
TRANSMIT 1 ', ___ ~\-_-;------;-_--,---1.

i
HOST ~I

TRANSMIT 0 ', ___ .~ i

PERCEIVED START t TARGET SENSES BIT t
OF BITTIME ! __ ~ __ ~_ 9 CYCLES _~ ___ ~

SYNCHRONIZATION
UNCERTAINTY

, I"
,'- - -1-'·- - -,--

!

,"'- - -1:"'- - -,--

EARLIEST
START OF
NEXT BIT

CPU12 8DM HT TIM

Figure 8-2 BOM Host to Target Serial Bit Timing

Figure 8-3 shows an external host receiving a logic 1 from the target MCU. Since
the host is asynchronous to the target, there is a 0 or 1 cycle delay from the host
generated falling edge on BKGD until the target perceives the bit. The host holds
the signal low long enough for the target to recognize it (a minimum of 2 target E
clock cycles), but must release the low drive before the target begins to drive the
active-high speed up pulse 7 cycles after the start of the bit time. The host should
sample the bit level about 10 cycles after the start of bit time.

ECLOCK
(TARGET

DRI;;~ ~--,---)' , .. -; 1
1

1

--- HIGH-IMPEDANCE --------------.---,-----.
BKGD PIN.. " - - .. , , , i , 'I I i - - - - - - -, - .

I I I I
TARGET MCU - ! ,,----.. ! I

SPEEDUP . - - - - - - -1- - HIGH-IMPEDANCE· - - - - - - - - - - - - J \ - - J - - - - - - - - HIGH-IMPEDANCE - - - - - -1-- -- --
PULSE _ , I

PERCEIVED t I I
START OF BIT TIME ~- R-C RISE I II

BKGDPIN ~ _---~ I ' ,

j --t ' 10 C;CLES ' , , I .1 'j -- -~I- --i - -

MOTOROLA

8-8

I ' I ,
~ 10CYCLES~--~~~1 !

HOST SAMPLES
BKGD PIN

EARLIEST
START OF
NEXT BIT

CPU12 BDMTH TIM 1

Figure 8-3 BOM Target to Host Serial Bit Timing (Logic 1)

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

Figure 8-4 shows the host receiving a logic 0 from the target. Since the host is
asynchronous to the target, there is a 0 or 1 cycle delay from the host-generated
falling edge on BKGD until the target perceives the bit. The host initiates the bit
time, but the target finishes it. To make certain the host receives a logic 0, the
target drives the BKGD pin low for 13 E-clock cycles, then briefly drives the signal
high to speed up the rising edge. The host samples the bit level about ten cycles
after starting the bit time.

ECLOCK
(TARGET

MCU)

HOST - i
DRIVE TO .• - -. - - - ,I : - -T . -. --. ------- HIGH-IMPEDANCE - - - - - - - - - - - - - -. - - -
BKGD PIN - • - - -11-, __ -,-__ -',

,

I SPEEDUP PULSE

DRIVE AND . -- - - - - - I TARGET MCU - I

SPEEDUP PULSE - L---,--;---;----;--,--,---,--.,---t--t--.,---,--!
PERCEIVED t

START OF BIT TIME --

BKGD PIN

! I I I i ~ I I

i I.. 10CYCLES-------~
~-------10 CYCLES --------1 ~

t I
, 1

HOST SAMPLES
BKGD PIN

Figure 8-4 BOM Target to Host Serial Bit Timing (Logic 0)

8.4.3 BOM Commands

EARLIEST
START OF
NEXT BIT

CPU12 BDMTHOTIM

All BDM opcodes are 8 bits long, and can be followed by an address or data, as
indicated by the instruction.

CPU12

Commands implemented in BDM control hardware are listed in Table 8-2. These
commands, except for BACKGROUND, do not require the CPU to be in BDM mode
for execution. The control logic uses CPU dead cycles to execute these instruc
tions. If a dead cycle cannot be found within 128 cycles, the control logic steals
cycles from the CPU.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL
MOTOROLA

8-9

Table 8-2 BOM Commands Implemented in Hardware

Command oPcodel,
(Hex) ,

Data Description I

ENABLCFIRMWARE C4
FF01, Write byte $FF01, set the FIRM bit. This allows execu-

1000 xxxx(in) tion of commands which are implemented in firmware

BACKGROUND 90 none Enter background mode

16 bit address Read from memory with BD in map (may freeze CPU
READ_BD_BYTE E4

16 bit data out
if external access) data for odd address on low byte,
data for even address on high byte

READ_BD_WORD EC
16 bit address Read from memory with BD in map (may freeze CPU
16 bit data out if external access) must be aligned access

I
Read from memory with BD out of map (may freeze

READ_BYTE EO
16 bit address CPU if external access) data for odd
16 bit data out address on low byte, data for even address on high

byte

READ_WORD E8
16 bit address Read from memory with BD out of map (may freeze
16 bit data out ,CPU if external access) must be aligned access

I I FF01, I Read byte $FF01. Running user code (BGND instruc-
0000 0000 (out) tion IS not allowed)

STATUS E4
FF01,

Read byte $FF01. BGND instruction is allowed
1000 0000 (out)

FF01, Read byte $FF01. Background mode active (waiting
11000000 (out) for single wire serial command)

FF01, Write byte FF01. Enable tagging 16 cycles after in-
ENTER_ TAG_MODE C4

1010 xxx1 (in)
struction is executed. In non-intrusive mode, 150 cy-
cles may elapse before execution.

16 bit address Write to memory with BD in map (may freeze CPU if
WRITE_BD_BYTE C4

16 bit data in
external access) data for odd address on low byte,
data for even address on high byte

WRITE_BD_WORD CC
16 bit address Write to memory with BD in map (may freeze CPU if
16 bit data in external access) must be aligned access

16 bit address Write to memory with BD out of map (may freeze CPU
WRITE_BYTE CO

16 bit data in
if external access) data for odd address on low byte,
data for even address on high byte

WRITE_WORD C8
16 bit address Write to memory with BD out of map (may freeze CPU
16 bit data in if external access) must be aligned access

The CPU must be in background mode to execute commands that are imple
mented in the BOM ROM. The CPU executes code from the ROM to perform the
requested operation. These commands are shown in Table 8-3.

The host controller must wait 150 cycles for a non-intrusive BOM command to
execute before another command can be sent. This delay includes 128 cycles for
the maximum delay for a dead cycle

BOM logic retains control of the internal buses until a read or write is completed. If
an operation can be completed in a single cycle, it does not intrude on normal CPU
operation. However, if an operation requires multiple cycles, CPU clocks are frozen
until the operation is complete.

MOTOROLA

8-10

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

Table 8-3 80M Firmware Commands

Command Opcode (Hex) Data Description

GO 08 none Resume normal processing

TRACE1 10 none Execute one user instruction then return to BDM

TAGGO 18 I none Enable tagging then resume normal processing

WRITE_NEXT 42 16 bit data in X = X + 2; Write next word @ O,X

WRITE_PC 43 16 bit data in Write program counter

WRITE_D 44 16 bit data in Write D accumulator

WRITE_X 45 16 bit data in Write X index register

WRITCY 46 16 bit data in Write Y index register

WRITE_SP 47 I 16 bit data in ,Write stack pointer

READ_NEXT 62 16 bit data out i X = X + 2; Read next word @ O,X

READ_PC 63 16 bit data out Read program counter

READ_D 64 16 bit data out Read D accumulator

READ_X 65 I 16 bit data out Read X index register

READ_Y 66 16 bit data out Read Y index register

READ_SP 67 16 bit data out Read stack pointer

8.4.4 80M Registers

CPU12

Seven BOM registers are mapped into the standard 64-Kbyte address space when
BOM is active. Mapping is shown in Table 8-4.

Table 8-4 80M Register Mapping

Address Register

$FFOO BDM Instruction Register

$FF01 BDM Status Register

$FF02 - $FF03 BDM Shift Register

$FF04 - $FF05 BDM Address Register

$FF06 BDM CCR Register

The content of the instruction register is determined by the type of background
instruction being executed. The status register indicates BOM operating condi·
tions. The shift register contains data being received or transmitted via the serial
interface. The address register is temporary storage for BOM commands. The
CCR register preserves the content of the CPU12 CCR while BOM is active.

The only register of interest to users is the status register. The other BOM registers
are used only by the BOM firmware to execute commands. The registers can be
accessed by means of the hardware REAO_BO and WRITE_BO commands, but
must not be written during BOM operation.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL
MOTOROLA

8-11

8.4.4.1 80M Status Register

STATUS - BDM Status Register

BIT 7 6 5 4 3 2

I ENBDM I BDMACT I ENTAG SDV TRACE

RESE~ 0 0 0 o o
ENBDM - Enable BDM ROM

Shows whether the BDM ROM is enabled. Cleared by reset.

a = BDM ROM not enabled

BITO

o o

1 = BDM ROM enabled, but not in memory map unless BDM is active

BDMACT - 8DM Active Flag

Shows whether the 8DM ROM is in the memory map. Cleared by reset.

a = ROM not in map
1 = ROM in map (MCU is in active 8DM)

ITF - Instruction Tagging Flag

$FF01

Shows whether instruction tagging is enabled. Set by the TAGGO instruction and
cleared when 8DM is entered. Cleared by reset.

NOTE

Execute a TAGGO command to enable instruction tagging.
Do not write ITF directly.

a = Tagging not enabled, or 8DM active
1 = Tagging active

SDV - Shifter Data Valid

Shows that valid data is in the serial interface shift register.

NOTE

SDV is used by firmware-based instructions.
Do not attempt to write SDV directly.

a = No valid data
1 = Valid Data

TRACE - Trace Flag

Shows when tracing is enabled.

NOTE

Execute a TRACE1 command to enable instruction tagging.
Do not attempt to write TRACE directly.

a = Tracing not enabled
1 = Tracing active

MOTOROLA

8-12

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

8.5 Instruction Tagging

CPU12

The instruction queue and cycle-by-cycle CPU activity can be reconstructed in real
time, or from trace history that was captured by a logic analyzer. However, the re
constructed queue cannot be used to stop the CPU at a specific instruction, be
cause execution has already begun by the time an operation is visible outside the
MCU. A separate instruction tagging mechanism is provided for this purpose.

Executing the BOM TAGGO command configures two MCU pins for tagging. The
TAGLO signal shares a pin with the LSTRB signal, and the TAGHI signal shares a
pin with the BKGO pin. Tagging information is latched on the falling edge of ECLK,
as shown in Figure 8-5.

TAGS ARE APPLIED TO PROGRAM INFORMATION
CAPTURED ON THIS ECLK TRANSITION ~

\
r

/
ECLK /

LSTRBfT AGLO (LSTRB) VALID

BKGDfTAGHI

CPU12 TAG TIM

Figure 8-5 Tag Input Timing

Table 8-5 shows the functions of the two tagging pins. The pins operate indepen
dently - the state of one pin does not affect the function of the other. The presence
of logic level zero on either pin at the fall of ECLK performs the indicated function.
Tagging is allowed in all modes. Tagging is disabled when BOM becomes active.

Table 8-5 Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low Byte

0 1 High Byte

0 0 Both Bytes

In M68HC12 derivatives that have hardware breakpoint capability, the breakpoint
control logic and BOM control logic use the same internal signals for instruction
tagging. The CPU 12 does not differentiate between the two kinds of tags.

DEVELOPMENT AND DEBUG SUPPORT

REFERENCE MANUAL

MOTOROLA

8-13

The tag follows program information as it advances through the queue. When a
tagged instruction reaches the head of the queue, the CPU enters active back
ground debugging mode rather than executing the instruction.

8.6 Breakpoints

Breakpoints halt instruction execution at particular places in a program. To assure
transparent operation, breakpoint control logic is implemented outside the CPU,
and particular models of MCU can have different breakpoint capabilities. Please
refer to the appropriate device manual for detailed information. Generally, break
point logic can be configured to halt execution before an instruction executes, or to
halt execution on the next instruction boundary following the breakpoint.

8.6.1 Breakpoint Type

There are three basic types of breakpoints:

1. Address-only breakpoints that cause the CPU to execute an SWI. These
breakpoints can be set only on addresses. When the breakpoint logic en
counters the breakpoint tag, the CPU12 executes an SWI instruction.

2. Address-only breakpoints that cause the MCU to enter BOM. These break
points can be set only on addresses. When the breakpoint logic encounters
the breakpoint tag, BOM is activated.

3. Address/data breakpoints that cause the MCU to enter BOM. These break
points can be set on an address, or on an address and data. When the
breakpoint logic encounters the breakpoint tag, BOM is activated.

8.6.2 Breakpoint Operation

Breakpoints use two mechanisms to halt execution.

The tag mechanism marks a particular program fetch with a high (even) or low
(odd) byte indicator. The tagged byte moves through the instruction queue until
a start cycle occurs, then the breakpoint is taken. Breakpoint logic can be con
figured to force BOM, or to initiate an SWI when the tag is encountered.

The force BOM mechanism causes the MCU to enter active BOM at the next
instruction start cycle.

CPU12 instructions are used to implement both breakpoint mechanisms. When an
SWI tag is encountered, the CPU performs the same sequence of operations as
for an SWI. When BOM is forced, the CPU executes a BGNO instruction. However,
because these operations are not part of the normal flow of instruction execution,
the control program must keep track of the actual breakpoint address.

Both SWI and BGNO store a return PC value (SWI on the stack and BGNO in the
CPU12 TMP2 register), but this value is automatically incremented to point to the
next instruction after SWI or BGNO. In order to resume execution where a break
point occurred, the control program must preserve the breakpoint address rather

. than use the incremented PC value.

MOTOROLA

8-14

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

CPU12

The breakpoint logic generally uses match registers to determine when a break is
taken. Registers can be used to match the high and low bytes of addresses for
single and dual breakpoints, to match data for single breakpoints, or to do both
functions. Use of the registers is generally determined by control bit settings.

DEVELOPMENT AND DEBUG SUPPORT
REFERENCE MANUAL

MOTOROLA

8-15

MOTOROLA

8-16

DEVELOPMENT AND DEBUG SUPPORT CPU12

REFERENCE MANUAL

SECTION 9
FUZZY LOGIC SUPPORT

The CPU12 has the first microcontroller instruction set to specifically address the
needs of fuzzy logic. This section describes the use of fuzzy logic in control sys
tems, discusses the CPU12 fuzzy logic instructions, and provides examples of
fuzzy logic programs.

9.1 Introduction

CPU12

The CPU12 includes four instructions that perform specific fuzzy logic tasks. In ad
dition, several other instructions are especially useful in fuzzy logic programs. The
overall C-friendliness of the instruction set also aids development of efficient fuzzy
logic programs.

This section explains the basic fuzzy logic algorithm for which the four fuzzy logic
instructions are intended. Each of the fuzzy logic instructions are then explained in
detail. Finally, other custom fuzzy logic algorithms are discussed, with emphasis
on use of other CPU12 instructions.

The four fuzzy logic instructions are MEM, which evaluates trapezoidal member
ship functions; REV and REVW, which perform unweighted or weighted MIN-MAX
rule evaluation; and WAV, which performs weighted average defuzzification on sin
gleton output membership functions.

Other instructions that are useful for custom fuzzy logic programs include MINA,
EMIND, MAXM, EMAXM, TBL, ETBL, and EMACS. For higher resolution fuzzy
programs, the fast extended precision math instructions in the CPU12 are also
beneficial. Flexible indexed addressing modes help simplify access to fuzzy logic
data structures stored as lists or tabular data structures in memory.

The actual logic additions required to implement fuzzy logic support in the CPU12
are quite small, so there is no appreciable increase in cost for the typical user. A
fuzzy inference kernel for the CPU12 requires one-fifth as much code space, and
executes fifteen times faster than a comparable kernel implemented on a typical
midrange microcontroller. By incorporating fuzzy logic support into a high-volume,
general-purpose microcontroller product family, Motorola has made fuzzy logic
available for a huge base of applications.

FUZZY LOGIC SUPPORT

REFERENCE MANUAL

MOTOROLA

9-1

9.2 Fuzzy Logic Basics

This is an overview of basic fuzzy logic concepts. It can serve as a general intro
duction to the subject. but that is not the main purpose. There are a number of
fuzzy logic programming strategies. This discussion concentrates on the methods
implemented in the CPU12 fuzzy logic instructions. The primary goal is to provide
a background for a detailed explanation of the CPU12 fuzzy logic instructions.

In general. fuzzy logic provides for set definitions that have fuzzy boundaries rather
than the crisp boundaries of Aristotelian logic. These sets can overlap so that. for
a specific input value, one or more sets associated with linguistic labels may be
true to a degree at the same time. As the input varies from the range of one set into
the range of an adjacent set. the first set becomes progressively less true while the
second set becomes progressively more true.

Fuzzy logic has membership functions which emulate human concepts like "tem
perature is warm"; that is. conditions are perceived to have gradual boundaries.
This concept seems to be a key element of the human ability to solve certain types
of complex problems that have eluded traditional control methods.

Fuzzy sets provide a means of using linguistic expressions like "temperature is
warm" in rules which can then be evaluated with a high degree of numerical preci
sion and repeatability. This directly contradicts the common misperception that
fuzzy logic produces approximate results - a specific set of input conditions al
ways produces the same result, just as a conventional control system does.

A microcontroller-based fuzzy logic control system has two parts. The first part is
a fuzzy inference kernel which is executed periodically to determine system out
puts based on current system inputs. The second part of the system is a knowledge
base which contains membership functions and rules. Figure 9-1 is a block dia
gram of this kind of fuzzy logic system.

The knowledge base can be developed by an application expert without any micro
controller programming experience. Membership functions are simply expressions
of the expert's understanding of the linguistic terms that describe the system to be
controlled. Rules are ordinary language statements that describe the actions a hu
man expert would take to solve the application problem.

Rules and membership functions can be reduced to relatively simple data struc
tures (the knowledge base) stored in nonvolatile memory. A fuzzy inference kernel
can be written by a programmer who does not know how the application system
works. The only thing the programmer needs to do with knowledge base informa
tion is store it in the memory locations used by the kernel.

One execution pass through the fuzzy inference kernel generates system output
signals in response to current input conditions. The kernel is executed as often as
needed to maintain control. If the kernel is executed more often than needed, pro
cessor bandwidth and power are wasted; delaying too long between passes can
cause the system to get too far out of control. Choosing a periodic rate for a fuzzy
control system is the same as it would be for a conventional control system.

MOTOROLA

9-2

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

I
KNOWLEDGE I BASE

I
INPUT

MEMBERSHIP

i FUNCTIONS

I I I

RULE LIST

OUTPUT
MEMBERSHIP
FUNCTIONS

SYSTEM
INP~TS ,

I

~
I

FUZZIFICATION

; t
i ! I I ,

I RULE EVALUATION
I I • I I I ... I I I

I

I

,
DEFUZZIFICATION

I ,
SYSTEM

OUTPUTS

I

I

FUZZY
INFERENCE

KERNEL

FUZZY INPUTS
I I (IN RAM)

FUZZY OUTPUTS
(IN RAM)

FUZ LOG BO

Figure 9-1 Block Diagram of a Fuzzy Logic System

I

9.2.1 Fuzzification (MEM)

CPU12

During the fuzzification step, the current system input values are compared against
stored input membership functions to determine the degree to which each label of
each system input is true. This is accomplished by finding the y-value for the cur
rent input value on a trapezoidal membership function for each label of each sys
tem input. The MEM instruction in the CPU12 performs this calculation for one label
of one system input. To perform the complete fuzzification task for a system, sev
eral MEM instructions must be executed, usually in a program loop structure.

Figure 9-2 shows a system of three input membership functions, one for each label
of the system input. The x-axis of all three membership functions represents the
range of possible values of the system input. The vertical line through all three
membership functions represents a specific system input value. The y-axis repre
sents degree of truth and varies from completely false ($00 or 0%) to completely
true ($FF or 100%). The y-value where the vertical line intersects each of the mem
bership functions, is the degree to which the current input value matches the asso
ciated label for this system input. For example, the expression "temperature is
warm" is 25% true ($40). The value $40 is stored to a RAM location, and is called
a fuzzy input (in this case, the fuzzy input for "temperature is warm"). There is a
RAM location for each fuzzy input (for each label of each system input).

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-3

O'F

O'F

MEMBERSHIP FUNCTIONS
FOR TEMPERATURE

32'F 64'F

32'F 64'F

CURRENT
TEMPERATURE

IS 64'F

96'F

96'F

FUZZY INPUTS

TEMPERATURE IS HOT

TEMPERATURE IS WARM

128'F

TEMPERATURE IS COLD

128'F

FUZ MEM FNCT

Figure 9-2 Fuzzification Using Membership Functions

$00

$40

$CO

When the fuzzification step begins, the current value of the system input is in an
accumulator of the CPU12, one index register points to the first membership func
tion definition in the knowledge base, and a second index register points to the first
fuzzy input in RAM, As each fuzzy input is calculated by executing a MEM instruc
tion, the result is stored to the fuzzy input and both pointers are updated automat
ically to point to the locations associated with the next fuzzy input. The MEM
instruction takes care of everything except counting the number of labels per sys
tem input and loading the current value of any subsequent system inputs,

The end result of the fuzzification step is a table of fuzzy inputs representing cur
rent system conditions,

MOTOROLA

9-4

FUZZY lOGIC SUPPORT CPU12

REFERENCE MANUAL

9.2.2 Rule Evaluation (REV and REVW)

CPU12

Rule evaluation is the central element of a fuzzy logic inference program. This step
processes a list of rules from the knowledge base using current fuzzy input values
from RAM to produce a list of fuzzy outputs in RAM. These fuzzy outputs can be
thought of as raw suggestions for what the system output should be in response to
the current input conditions. Before the results can be applied, the fuzzy outputs
must be further processed, or de-fuzzified, to produce a single output value that
represents the combined effect of all of the fuzzy outputs.

The CPU 12 offers two variations of rule evaluation instructions. The REV instruc
tion provides for unweighted rules (all rules are considered to be equally impor
tant). The REVW instruction is similar but allows each rule to have a separate
weighting factor which is stored in a separate parallel data structure in the knowl
edge base. In addition to the weights, the two rule evaluation instructions also differ
in the way rules are encoded into the knowledge base.

An understanding of the structure and syntax of rules is needed to understand how
a microcontroller performs the rule evaluation task. The following is an example of
a typical rule.

If temperature is warm and pressure is high then heat is (should be) off.

At first glance, it seems that encoding this rule in a compact form understandable
to the microcontroller would be difficult. but it is actually simple to reduce the rule
to a small list of memory pOinters. The left portion of the rule is a statement of input
conditions and the right portion of the rule is a statement of output actions.

The left portion of a rule is made up of one or more (in this case two) antecedents
connected by a fuzzy and operator. Each antecedent expression consists of the
name of a system input, followed by is, followed by a label name. The label must
be defined by a membership function in the knowledge base. Each antecedent ex
pression corresponds to one of the fuzzy inputs in RAM. Since and is the only op
erator allowed to connect antecedent expressions, there is no need to include
these in the encoded rule. The antecedents can be encoded as a simple list of
pointers to (or addresses of) the fuzzy inputs to which they refer.

The right portion of a rule is made up of one or more (in this case one) conse
quents. Each consequent expression consists of the name of a system output, fol
lowed by is, followed by a label name. Each consequent expression corresponds
to a specific fuzzy output in RAM. Consequents for a rule can be encoded as a sim
ple list of pointers to (or addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers or ad
dresses of fuzzy inputs and fuzzy outputs. In order for the rule evaluation logic to
work, there needs to be some means of knowing which pointers refer to fuzzy in
puts, and which refer to fuzzy outputs. There also needs to be a way to know when
the last rule in the system has been reached.

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-5

One method of organization is to have a fixed number of rules with a specific num
ber of antecedents and consequents. A second method, employed in Motorola
Freeware M68HC11 kernels. is to mark the end of the rule list with a reserved val
ue, and use a bit in the pointers to distinguish antecedents from consequents. A
third method of organization, used in the CPU12, is to mark the end of the rule list
with a reserved value. and separate antecedents and consequents with another re
served value. This permits any number of rules. and allows each rule to have any
number of antecedents and consequents, subject to the limits imposed by avail
ability of system memory.

Each rule is evaluated sequentially, but the rules as a group are treated as if they
were all evaluated simultaneously. Two mathematical operations take place during
rule evaluation. The fuzzy and operator corresponds to the mathematical minimum
operation and the fuzzy or operation corresponds to the mathematical maximum
operation. The fuzzy and is used to connect antecedents within a rule. The fuzzy
or is implied between successive rules. Before evaluating any rules. all fuzzy out
puts are set to zero (meaning not true at all). As each rule is evaluated, the smallest
(minimum) antecedent is taken to be the overall truth of the rule. This rule truth val
ue is applied to each consequent of the rule (by storing this value to the corre
sponding fuzzy output) unless the fuzzy output is already larger (maximum). If two
rules affect the same fuzzy output. the rule that is most true governs the value in
the fuzzy output because the rules are connected by an implied fuzzy or.

In the case of rule weighting, the truth value for a rule is determined as usual by
finding the smallest rule antecedent. Before applying this truth value to the conse
quents for the rule, the value is multiplied by a fraction from zero (rule disabled) to
one (rule fully enabled). The resulting modified truth value is then applied to the
fuzzy outputs.

The end result of the rule evaluation step is a table of suggested or "raw" fuzzy out
puts in RAM. These values were obtained by plugging current conditions (fuzzy in
put values) into the system rules in the knowledge base. The raw results cannot be
supplied directly to the system outputs because they may be ambiguous. For in
stance. one raw output can indicate that the system output should be medium with
a degree of truth of 50% while. at the same time, another indicates that the system
output should be low with a degree of truth of 25%. The defuzzification step re
solves these ambiguities.

9.2.3 Defuzzification (WA V)

The final step in the fuzzy logic program combines the raw fuzzy outputs into a
composite system output. Unlike the trapezoidal shapes used for inputs. the
CPU12 typically uses singletons for output membership functions. As with the in
puts. the x-axis represents the range of possible values for a system output. Sin
gleton membership functions consist of the x-axis position for a label of the system
output. Fuzzy outputs correspond to the y-axis height of the corresponding output
membership function.

MOTOROLA

9-6

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

The WAV instruction calculates the numerator and denominator sums for weighted
average of the fuzzy outputs according to the formula:

n

I,SjFj

System Output = :....:i = ___ 1-'-----_
n

1=1

Where n is the number of labels of a system output, Sj are the singleton positions
from the knowledge base, and Fj are fuzzy outputs from RAM. For a common fuzzy
logic program on. the CPU12, n is eight or less (though this instruction can handle
any value to 255) and Sj and Fj are 8-bit values. The final divide is performed with
a separate EDIV instruction placed immediately after the WAV instruction.

Before executing WAV, an accumulator must be loaded with the number of itera
tions (n), one index register must be pointed at the list of singleton positions in the
knowledge base, and a second index register must be pointed at the list of fuzzy
outputs in RAM. If the system has more than one system output, the WA V instruc
tion is executed once for each system output.

9.3 Example Inference Kernel

CPU12

Figure 9-3 is a complete fuzzy inference kernel written in CPU12 assembly lan
guage. Numbers in square brackets are cycle counts. The kernel uses two system
inputs with seven labels each and one system output with seven labels. The pro
gram assembles to 57 bytes. It executes in about 54 J..ls at an 8MHz bus rate. The
basic structure can easily be extended to a general purpose system with a larger
number of inputs and outputs.

Lines 1 to 3 set up pointers and load the system input value into the A accumulator.

Line 4 sets the loop count for the loop in lines 5 and 6.

Lines 5 and 6 make up the fuzzification loop for seven labels of one system input.
The MEM instruction finds the y-value on a trapezoidal membership function for the
current input value, for one label of the current input, and then stores the result to
the corresponding fuzzy input. Pointers in X and Yare automatically updated by 4
and 1 so they point at the next membership function and fuzzy input respectively.

Line 7 loads the current value of the next system input. Pointers in X and Y already
point to the right places as a result of the automatic update function of the MEM
instruction in line 5.

Line 8 reloads a loop count.

Lines 9 and 10 form a loop to fuzzify the seven labels of the second system input.
When the program drops to line 11, the Y index register is pointing at the next lo
cation after the last fuzzy input, which is the first fuzzy output in this system.

FUZZY LOGIC SUPPORT

REFERENCE MANUAL
MOTOROLA

9·7

01 [2) FUZZIFY
02 [2)
03 [3)
04 [1)
05 [5) GRAD_LOOP
06 [3]
07 [3]
08 [1]
09 [5] GRAD_LOOPI
10 [3]

11 [1]
12 [2] RULE_EVAL
13 [3]
14 [2]
15 [2]
16 [IJ
17 [3n+4J

18 [2] DEFUZ
19 [1]
20 [1]
21 [8b+9]
22 [11]
23 [1]
24 [3]

***** End

LDX
LDY
LDAA
LDAB
MEM
DBNE
LDAA
LDAB
MEM
DBNE

LDAB
CLR
DBNE
LDX
LDY
LDAA.
REV

LDY
LDX
LDAB
WAV
EDIV
TFR
STAB

#INPUT_MFS
#FUZ_INS
CURRENT_INS
#7

E,GRAD_LOOP
CURRENT_INS+l
#7

#7
1,Y+
b,RULE_EVAL
RULE_START
#FUZ_INS
#$FF

#FUZ OUT
#SGLTN_POS
#7

Point at MF definitions
Point at fuzzy input table
Get first input value
7 labels per input
Evaluate one MF
For 7 labels of 1 input
Get second input value
7 labels per input
Evaluate one MF
For 7 labels of 1 input

;Loop count
;Clr a fuzzy out & inc ptr
;LOOP to clr all fuzzy outs
;Point at first rule element
;Point at fuzzy ins and outs
;Init A (and clears V-bit)
;Process rule list

;Point at fuzzy outputs
;Point at singleton positions
;7 fuzzy outs per COG output
;Calculate sums for wtd av
;Final divide for wtd av
;Move result to A:B
;Store system output

Figure 9-3 Fuzzy Inference Engine

Line 11 sets the loop count to clear seven fuzzy outputs.

Lines 12 and 13 form a loop to clear all fuzzy outputs before rule evaluation starts.

Line 14 initializes the X index register to point at the first element in the rule list for
the REV instruction.

Line 15 initializes the Y index register to point at the fuzzy inputs and outputs in the
system. The rule list (for REV) consists of 8-bit offsets from this base address to
particular fuzzy inputs or fuzzy outputs. The special value $FE is interpreted by
REV as a marker between rule antecedents and consequents.

Line 16 initializes the A accumulator to the highest 8-bit value in preparation for
finding the smallest fuzzy input referenced by a rule antecedent. The LDAA #$FF
instruction also clears the V-bit in the CPU12's condition codes register so the REV
instruction knows it is processing antecedents. During rule list processing, the V bit
is toggled each time a $FE is detected in the list. The V bit indicates whether REV
is processing antecedents or consequents.

Line 17 is the REV instruction, a self-contained loop to process successive ele
ments in the rule list until an $FF character is found. For a system of 17 rules with
two antecedents and one consequent each, the REV instruction takes 259 cycles,
but it is interruptible so it does not cause a long interrupt latency.

MOTOROLA

9-8
FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

Lines 18 through 20 set up pointers and an iteration count for the WAV instruction.

Line 21 is the beginning of defuzzification. The WAV instruction calculates a sum
of-products and a sum-of-weights.

Line 22 completes defuzzification. The EDIV instruction performs a 32-bit by 16-bit
divide on the intermediate results from WAV to get the weighted average.

Line 23 moves the EDIV result into the double accumulator.

Line 24 stores the low 8-bits of the defuzzification result.

This example inference program shows how easy it is to incorporate fuzzy logic
into general applications using the CPU12. Code space and execution time are no
longer serious factors in the decision to use fuzzy logic. The next section begins a
much more detailed look at the fuzzy logic instructions of the CPU12.

9.4 MEM Instruction Details

This section provides a more detailed explanation of the membership function eval
uation instruction (MEM), including details about abnormal special cases for im
properly defined membership functions.

9.4.1 Membership Function Definitions

CPU12

Figure 9-4 shows how a normal membership function is specified in the CPU12.
Typically a software tool is used to input membership functions graphically, and the
tool generates data structures for the target processor and software kernel. Alter
natively, points and slopes for the membership functions can be determined and
stored in memory with define-constant assembler directives.

An internal CPU algorithm calculates the y-value where the current input intersects
a membership function. This algorithm assumes the membership function obeys
some common-sense rules. If the membership function definition is improper, the
results may be unusual. 9.4.2 Abnormal Membership Function Definitions dis
cusses these cases. The following rules apply to normal membership functions.

• $00:::; point1 < $FF

• $00 < point2 :::; $FF

• point1 < point2

• The sloping sides of the trapezoid meet at or above $FF

Each system input such as temperature has several labels such as cold, cool, nor
mal, warm, and hot. Each label of each system input must have a membership
function to describe its meaning in an unambiguous numerical way. Typically, there
are three to seven labels per system input, but there is no practical restriction on
this number as far as the fuzzification step is concerned.

FUZZY LOGIC SUPPORT

REFERENCE MANUAL

MOTOROLA

9-9

• I

I
DEGREE

OF
TRUTH

~

GRAPHICAL REPRESENTATION

$FF ~------ ""------,--- .

$EO

$CO ~

$AO j
$80

$60

$40 POINT_1
$20 \
$00

/
SLOPC2

POINT 2 / -

$00 $10 $20 $30 $40 $50 $60 $70 $80 $90 $AO $BO $CO $DO $EO $FO $FF

... INPUT RANGE ~
MEMORY REPRESENTATION

AD DR $40 X-POSITION OF POINT_1

ADDR+1

ADDR+2

ADDR+3

$00

$08

$04

X-POSITION OF POINT_2

SLOPE_1 ($FF/(X-POS OF SATURATION - POINT _1))

SLOPE_2 ($FF/(POINT_2 - X-POS OF SATURATION)) NORM MEM FNCTN

Figure 9-4 Defining a Normal Membership Function

9.4.2 Abnormal Membership Function Definitions

In the CPU12, it is possible (and proper) to define "crisp" membership functions. A
crisp membership function has one or both sides vertical (infinite slope). Since the
slope value $00 is not used otherwise, it is assigned to mean infinite slope to the
M EM instruction in the CPU 12.

Although a good fuzzy development tool will not allow the user to specify an im
proper membership function, it is possible to have program errors or memory errors
which result in erroneous abnormal membership functions. Although these abnor
mal shapes do not correspond to any working systems, understanding how the
CPU12 treats these cases can be helpful for debugging.

A close examination of the MEM instruction algorithm will show how such member
ship functions are evaluated. Figure 9-5 is a complete flow diagram for the execu
tion of a MEM instruction. Each rectangular box represents one CPU bus cycle.
The number in the upper left corner corresponds to the cycle number and the letter
corresponds to the cycle type (refer to SECTION 6 INSTRUCTION GLOSSARY
for details). The upper portion of the box includes information about bus activity
during this cycle (if any). The lower portion of the box, which is separated by a
dashed line, includes information about internal CPU processes. It is common for
several internal functions to take place during a single CPU cycle (for example, in
cycle 2, two 8-bit subtractions take place and a flag is set based on the results).

MOTOROLA

9-10

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

CPU12

~

C __ S_TA,-R_T _)

: Read word @ O,X - PoinU and PoinU
X~X+4

Read word @ -2,X - Slope_ 1 and Slope_2
Y~Y+1

- - - - - - -- --

2a - Delta 1 ~ ACCA - Point 1
2b - Delta - 2 ~ Point2 - ACCA
2c -If (DeITa_1 or Delta_2) < 0 then flag_d12n ~ 1 else flag_d12n ~ 0

• ~ No bus access
- - - - - - - - - - - - - -- - - - - - - - - - - - -- - -- - - - - - - - - - - - - -- - - - -- - - - - - - - - - - --

3a - If flag_d12n ~ 1 then Grade_1 ~ 0 else Grade_1 ~ Slope_1 • Delta_1
3b - If flag_d12n ~ 1 then Grade_2 ~ 0 else Grade_2 ~ Slope_2 • Delta_2 ,
~ If misaligned then read program word to fill instruction queue else no bus access

- -- - - - - - - -- - - - - - --

4a -If ({{Slope_2 ~ 0) or (Grade_2 > $FF)) and (fIag_d12n ~ 0)) then Grade ~ $FF

else Grade ~ Grade_2

4b -If ({{Slope_1 ~ 0) or (Grade_1 > $FF)) and (flag_d12n ~ 0)) then Grade ~ Grade

else Grade ~ Grade_1

Write byte @ -1 ,Y - Fuzzy input result (Grade)

C~_E_N_D_)
MEM FLOW

Figure 9-5 MEM Instruction Flow Diagram

Consider 4a: If (((Slope_2 = 0) or (Grade_2 > $FF)) and (flag_d12n = 0)),

The flag_d12n is zero as long as the input value (in accumulator A) is within the
trapezoid, Everywhere outside the trapezoid, one or the other delta term will be
negative, and the flag will equal one, Slope_2 equals zero indicates the right side
of the trapezoid has infinite slope, so the resulting grade should be $FF everywhere
in the trapezoid, including at Point_2 as far as this side is concerned, The term
Grade_2 greater than $FF means the value is far enough into the trapezoid that
the right sloping side of the trapezoid has crossed above the $FF cutoff level and
the resulting grade should be $FF as far as the right sloping side is concerned, 4a
decides if the value is left of the right sloping side (Grade = $FF), or on the sloping
portion of the right side of the trapezoid (Grade = Grade_2), 4b could still override
this tentative value in Grade,

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-11

In 4b, Slope_1 is zero if the left side of the trapezoid has infinite slope (vertical). If
so, the result (Grade) should be $FF at and to the right of Point_1 everywhere with
in the trapezoid as far as the left side is concerned. The Grade_1 greater than $FF
term corresponds to the input being to the right of where the left sloping side pass
es the $FF cutoff level. If either of these conditions is true, the result (Grade) is left
at the value it got from 4a. The "else" condition in 4b corresponds to the input falling
on the sloping portion of the left side of the trapezoid (or possibly outside the trap
ezoid), so the result is Grade equal Grade_1. If the input was outside the trapezoid,
flag_d12n would be one and Grade_1 and Grade_2 would have been forced to $00
in cycle 3. The else condition of 4b would set the result to $00.

The following special cases represent abnormal membership function definitions.
The explanations describe how the specific algorithm in the CPU 12 resolves these
unusual cases. The results are not all intuitively obvious, but rather fall out from the
specific algorithm. Remember, these cases should not occur in a normal system.

9.4.2.1 Abnormal Membership Function Case 1

This membership function is abnormal because the sloping sides cross below the
$FF cutoff level. The flag_d12n signal forces the membership function to evaluate
to $00 everywhere except from PoinC 1 to PoinC2. Within this interval, the tenta
tive values for Grade_1 and Grade_2 calculated in cycle 3 fall on the crossed slop
ing sides. In step 4a, Grade gets set to the Grade_2 value, but in 4b this is
overridden by the Grade_1 value, which ends up as the result of the MEM instruc
tion. One way to say this is that the result follows the left sloping side until the input
passes PoinC2, where the result goes to $00.

Memory Definition: $60. $80. $04. $04 ;PoinU, PoinL2. Slope_1, Slope_2

Graphical Representation: How Interpreted:

~lIrAllrll' 1rrrrArrrrrrr
P1 P2 P1 P2

A8N MEM 1

Figure 9-6 Abnormal Membership Function Case 1

If Point_1 was to the right of Point_2, flag_d12n would force the result to be $00 for
all input values. In fact, flag_d12n always limits the region of interest to the space
greater than or equal to Point_1 and less than or equal to PoinC2.

MOTOROLA

9-12

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

9.4.2.2 Abnormal Membership Function Case 2

Like the previous example, the membership function in case" 2 is abnormal be
cause the sloping sides cross below the $FF cutoff level, but the left sloping side
reaches the $FF cutoff level before the input gets to PoinC2. In this case, the result
follows the left sloping side until it reaches the $FF cutoff level. At this point, the
(Grade_1 > $FF) term of 4b kicks in, making the expression true so Grade equals
Grade (no overwrite). The result from here to Point_2 becomes controlled by the
else part of 4a (Grade = Grade_2), and the result follows the right sloping side.

Memory Definition: $60, $CO. $04, $04 :PoinL 1. PoinU. Slope_1. Slope_2

Graphical Representation How Interpreted

~""A", P1 Left Side P2
Crosses $FF

ABN MEM 2

Figure 9-7 Abnormal Membership Function Case 2

9.4.2.3 Abnormal Membership Function Case 3

The membership function in case 3 is abnormal because the sloping sides cross
below the $FF cutoff level. and the left sloping side has infinite slope. In this case,
4a is not true, so Grade equals Grade_2. 4b is true because Slope_1 is zero, so
4b does not overwrite Grade.

Memory Definition: $60, $80, $00. $04 ;PoinL 1, Point_2, Slope_1, Slope_2

Graphical Representation

~",~""",
P1 P2

How Interpreted

=1

lllll~1111111
P1 P2

Figure 9-8 Abnormal Membership Function Case 3

ABN MEM 3

9.5 REV, REVW Instruction Details

CPU12

This section provides a more detailed explanation of the rule evaluation instruc
tions (REV and REVW). The data structures used to specify rules are somewhat
different for the weighted versus unweighted versions of the instruction. One uses
8-bit offsets in the encoded rules, while the other uses full 16-bit addresses. This
affects the size of the rule data structure and execution time.

FUZZY LOGIC SUPPORT

REFERENCE MANUAL
MOTOROLA

9-13

9.5.1 Unweighted Rule Evaluation (REV)

This instruction implements basic min-max rule evaluation. CPU registers are used
for pointers and intermediate calculation results.

Since the REV instruction is essentially a list processing instruction, execution time
is dependent on the number of elements in the rule list. The REV instruction is in
terruptible (typically within three bus cycles), so it does not adversely affect worst
case interrupt latency. Since all intermediate results and instruction status are held
in stacked CPU registers, the interrupt service code can even include independent
REV and REVW instructions.

9.5.1.1 Setup Prior to Executing REV

Some CPU registers and memory locations need to be setup prior to executing the
REV instruction. X and Y index registers are used as index pointers to the rule list
and the fuzzy inputs and outputs. The A accumulator is used for intermediate cal
culation results and needs to be set to $FF initially. The V condition code bit is used
as an instruction status indicator to show whether antecedents or consequents are
being processed. Initially, the V bit is cleared to zero to indicate antecedents are
being processed. The fuzzy outputs (working RAM locations) need to be cleared
to $00. If these values are not initialized before executing the REV instruction, re
sults will be erroneous.

The X index register is set to the address of the first element in the rule list (in the
knowledge base). The REV instruction automatically updates this pointer so that
the instruction can resume correctly if it is interrupted. After the REV instruction fin
ishes, X will point at the next address past the $FF separator character that marks
the end of the rule list.

The Y index register is set to the base address for the fuzzy inputs and outputs (in
working RAM). Each rule antecedent is an unsigned 8-bit offset from this base ad
dress to the referenced fuzzy input. Each rule consequent is an unsigned 8-bit off
set from this base address to the referenced fuzzy output. The Y index register
remains constant throughout execution of the REV instruction.

The 8-bit A accumulator is used to hold intermediate calculation results during ex
ecution of the REV instruction. During antecedent processing, A starts out at $FF
and is replaced by any smaller fuzzy input that is referenced by a rule antecedent
(MIN). During consequent processing, A holds the truth value for the rule. This truth
value is stored to any fuzzy output that is referenced by a rule consequent, unless
that fuzzy output is already larger (MAX).

Before starting to execute REV, A must be set to $FF (the largest 8-bit value) be
cause rule evaluation always starts with processing of the antecedents of the first
rule. For subsequent rules in the list, A is automatically set to $FF when the instruc
tion detects the $FE marker character between the last consequent of the previous
rule, and the first antecedent of a new rule.

MOTOROLA

9-14
FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

The instruction LDAA #$FF clears the V bit at the same time it initializes A to $FF.
This satisfies the REV setup requirement to clear the V bit as well as the require
ment to initialize A to $FF. Once the REV instruction starts, the value in the V bit is
automatically maintained as $FE separator characters are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm.
Each time a rule consequent references a fuzzy output, that fuzzy output is com
pared to the truth value for the current rule. If the current truth value is larger, it is
written over the previous value in the fuzzy output. After all rules have been eval
uated, the fuzzy output contains the truth value for the most-true rule that refer
enced that fuzzy output.

After REV finishes, A will hold the truth value for the last rule in the rule list. The V
condition code bit should be one because the last element before the $FF end
marker should have been a rule consequent. If V is zero after executing REV, it in
dicates the rule list was structured incorrectly.

9.5.1.2 Interrupt Details

The REV instruction includes a three-cycle processing loop for each byte in the rule
list (including antecedents, consequents, and special separator characters). Within
this loop, a check is performed to see if any qualified interrupt request is pending.
If an interrupt is detected, the current CPU registers are stacked and the interrupt
is honored. When the interrupt service routine finishes, an RTI instruction causes
the CPU to recover its previous context from the stack, and the REV instruction is
resumed as if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted REV in
struction, points to the REV instruction rather than the instruction that follows. This
causes the CPU to try to execute a new REV instruction upon return from the in
terrupt. Since the CPU registers (including the V bit in the condition codes register)
indicate the current status of the interrupted REV instruction, this effectively causes
the rule evaluation operation to resume from where it left off.

9.5.1.3 Cycle-by-Cycle Details for REV

CPU12

The central element of the REV instruction is a three cycle loop that is executed
once for each byte in the rule list. There is a small amount of housekeeping activity
to get this loop started as REV begins, and a small sequence to end the instruction.
If an interrupt comes, there is a special small sequence to save CPU status on the
stack before honoring the requested interrupt.

Figure 9-9 is a REV instruction flow diagram. Each rectangular box represents one
CPU clock cycle. Decision blocks and connecting arrows are considered to take no
time at all. The letters in the small rectangles in the upper left corner of each bold
box correspond to execution cycle codes (refer to SECTION 6 INSTRUCTION
GLOSSARY for details). Lower case letters indicate a cycle where 8-bit or no data
is transferred. Upper case letters indicate cycles where 16-bit or no data is trans
ferred.

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-15

f-----"---- ------------- --
x = x + 1 point at next rule element

3.0-f

i If Rx 11 $FE or $FF
then Read byte @ Rx,Y (fuzzy in or out Fy)
else no bus access

~ ~ - - - - - - - - - - - - - - - - - -- - - ,-

If Rx = $FE & V was 1, Reset ACCA to $FF
If Rx = $FE Toggle V-bit

-,
yes

Interrupt pending?

+ t no

~ $FF ~(No bus access
-J Rx $FF, other? - - --

• other
Adjust PC to point at current REV instruction

X I Read byte @ O,X (rule element Rx) I ~,_ ~o_ b_u~ ~e_e~s~ ___ --j - - -- - - - - - --

I X = X + 1 point at next rule element II
Adjust X = X-I

Continue to intrupt stacking
I

t
V-bit =?

1 (max)

+
• o (min)

~ No bus access ~ Update Fy with value read in eye 4.0

~~d~t~ ~y_with ~a:u_e read in_c~c_4~0 ____ If Rx 11 $FE or $FF, and ACCA > Fy

If Rx It $FE then A = mintA, Fy}
then Write byte @ Rx, Y
else no bus access

else A = A (no change to A)

I I

no J
Rx $FF (end of rules)?

+ yes

7.0 - 0 I Read program word if $3A misaligned
I

t
(__ E_ND_~)

REV tNST FLOW

Figure 9-9 REV Instruction Flow Diagram

MOTOROLA

9-16
FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

CPU12

When a value is read from memory, it cannot be used by the CPU until the second
cycle after the read takes place. This is due to access and propagation delays.

Since there is more than one flow path through the REV instruction, cycle numbers
have a decimal place. This decimal place indicates which of several possible paths
is being used. The CPU normally moves forward by one digit at a time within the
same flow (flow number is indicated after the decimal point in the cycle number).
There are two exceptions possible to this orderly sequence through an instruction.
The first is a branch back to an earlier cycle number to form a loop as in 6.0 to 4.0.
The second type of sequence change is from one flow to a parallel flow within the
same instruction such as 4.0 to 5.2, which occurs if the REV instruction senses an
interrupt. In this second type of sequence branch, the whole number advances by
one and the flow number changes to a new value (the digit after the decimal point).

In cycle 1.0, the CPU12 does an optional program word access to replace the $18
prebyte of the REV instruction. Notice that cycle 7.0 is also an 0 type cycle. One
or the other of these will be a program word fetch, while the other will be a free cycle
where the CPU does not access the bus. Although the $18 page prebyte is a re
quired part of the REV instruction, it is treated by the CPU12 as a somewhat sep
arate single cycle instruction.

Rule evaluation begins at cycle 2.0 with a byte read of the first element in the rule
list. Usually this would be the first antecedent of the first rule, but the REV instruc
tion can be interrupted, so this could be a read of any byte in the rule list. The X
index register is incremented so it points to the next element in the rule list. Cycle
3.0 is needed to satisfy the required delay between a read and when data is valid
to the CPU. Some internal CPU housekeeping activity takes place during this cy
cle, but there is no bus activity. By cycle 4.0, the rule element that was read in cycle
2.0 is available to the CPU.

Cycle 4.0 is the first cycle of the main three cycle rule evaluation loop. Depending
upon whether rule antecedents or consequents are being processed, the loop will
consist of cycles 4.0, 5.0, 6.0, or the sequence 4.0, 5.0, 6.1. This loop is executed
once for every byte in the rule list. including the $FE separators and the $FF end
of-rules marker.

At each cycle 4.0, a fuzzy input or fuzzy output is read, except during the loop pass
es associated with the $FE and $FF marker bytes, where no bus access takes
place during cycle 4.0. The read access uses the Y index register as the base ad
dress and the previously read rule byte (Rx) as an unsigned offset from Y. The
fuzzy input or output value read here will be used during the next cycle 6.0 or 6.1.
Besides being used as the offset from Y for this read, the previously read Rx is
checked to see if it is a separator character ($FE). If Rx was $FE and the V-bit was
1, this indicates a switch from processing consequents of one rule to starting to pro
cess antecedents of the next rule. At this transition, the A accumulator is initialized
to $FF to prepare for the min operation to find the smallest fuzzy input. Also, if Rx
is $FE, the V-bit is toggled to indicate the change from antecedents to conse
quents, or consequents to antecedents.

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-17

During cycle 5.0, a new rule byte is read unless this is the last loop pass, and Rx
is $FF (marking the end of the rule list). This new rule byte will not be used until
cycle 4.0 of the next pass through the loop.

Between cycle 5.0 and 6.x, the V-bit is used to decide which of two paths to take.
If V is zero, antecedents are being processed and the CPU progresses to cycle 6.0.
If V is one, consequents are being processed and the CPU goes to cycle 6.1.

During cycle 6.0, the current value in the A accumulator is compared to the fuzzy
input that was read in the previous cycle 4.0, and the lower value is placed in the
A accumulator (min operation). If Rx is $FE, this is the transition between rule an
tecedents and rule consequents, and this min operation is skipped (although the
cycle is still used). No bus access takes place during cycle 6.0 but cycle 6.x is con
sidered an x type cycle because it could be a byte write (cycle 6.1), or a free cycle
(cycle 6.0 or 6.1 with Rx = $FE or $FF).

If an interrupt arrives while the REV instruction is executing, REV can break be
tween cycles 4.0 and 5.0 in an orderly fashion so that the rule evaluation operation
can resume after the interrupt has been serviced. Cycles 5.2 and 6.2 are needed
to adjust the PC and X index register so the REV operation can recover after the
interrupt. PC is adjusted backward in cycle 5.2 so it points to the currently running
REV instruction. After the interrupt, rule evaluation will resume, but the values that
were stored on the stack for index registers, accumulator A, and CCR will cause
the operation to pick up where it left off. In cycle 6.2, the X index register is adjusted
backward by one because the last rule byte needs to be re-fetched when the REV
instruction resumes.

After cycle 6.2, the REV instruction is finished, and execution would continue to the
normal interrupt processing flow.

9.5.2 Weighted Rule Evaluation (REVW)

This instruction implements a weighted variation of min-max rule evaluation. The
weighting factors are stored in a table with one 8-bit entry per rule. The weight is
used to multiply the truth value of the rule (minimum of all antecedents) by a value
from zero to one to get the weighted result. This weighted result is then applied to
the consequents, just as it would be for unweighted rule evaluation.

Since the REVW instruction is essentially a list processing instruction, execution
time is dependent on the number of rules and the number of elements in the rule
list. The REVW instruction is interruptible (typically within three to five bus cycles),
so it does not adversely affect worst case interrupt latency. Since all intermediate
results and instruction status are held in stacked CPU registers, the interrupt ser
vice code can even include independent REV and REVW instructions.

The rule structure is different for REVW than for REV. For REVW, the rule list is
made up of 16-bit elements rather than 8-bit elements. Each antecedent is repre
sented by the full 16-bit address of the corresponding fuzzy input. Each rule con
sequent is represented by the full address of the corresponding fuzzy output.

MOTOROLA

9-18

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

The markers separating antecedents from consequents are the reserved 16-bit
value $FFFE, and the end of the last rule is marked by the reserved 16-bit value
$FFFF. Since $FFFE and $FFFF correspond to the addresses of the reset vector,
there would never be a fuzzy input or output at either of these locations.

9.5.2.1 Setup Prior to Executing REVW

CPU12

Some CPU registers and memory locations need to be setup prior to executing the
REVW instruction. X and Y index registers are used as index pointers to the rule
list and the list of rule weights. The A accumulator is used for intermediate calcu
lation results and needs to be set to $FF initially. The V condition code bit is used
as an instruction status indicator that shows whether antecedents or consequents
are being processed. Initially the V bit is cleared to zero to indicate antecedents are
being processed. The C condition code bit is used to indicate whether rule weights
are to be used (1) or not (0). The fuzzy outputs (working RAM locations) need to
be cleared to $00. If these values are not initialized before executing the REVW
instruction, results will be erroneous.

The X index register is set to the address of the first element in the rule list (in the
knowledge base). The REVW instruction automatically updates this pointer so that
the instruction can resume correctly if it is interrupted. After the REVW instruction
finishes, X will point at the next address past the $FFFF separator word that marks
the end of the rule list.

The Y index register is set to the starting address of the list of rule weights. Each
rule weight is an 8-bit value. The weighted result is the truncated upper 8 bits of the
16-bit result, which is derived by multiplying the minimum rule antecedent value
($OO-$FF) by the weight plus one ($001-$100). This method of weighting rules al
lows an 8-bit weighting factor to represent a value between zero and one inclusive.

The 8-bit A accumulator is used to hold intermediate calculation results during ex
ecution of the REVW instruction. During antecedent processing, A starts out at $FF
and is replaced by any smaller fuzzy input that is referenced by a rule antecedent.
If rule weights are enabled by the C condition code bit equal one, the rule truth val
ue is multiplied by the rule weight just before consequent processing starts. During
consequent processing, A holds the truth value (possibly weighted) for the rule.
This truth value is stored to any fuzzy output that is referenced by a rule conse
quent, unless that fuzzy output is already larger (MAX).

Before starting to execute REVW, A must be set to $FF (the largest 8-bit value) be
cause rule evaluation always starts with processing of the antecedents of the first
rule. For subsequent rules in the list, A is automatically set to $FF when the instruc
tion detects the $FFFE marker word between the last consequent of the previous
rule, and the first antecedent of a new rule.

Both the C and V condition code bits must be setup prior to starting a REVW in
struction. Once the REVW instruction starts, the C bit remains constant and the val
ue in the V bit is automatically maintained as $FFFE separator words are detected.

FUZZY LOGIC SUPPORT
REFERENCE MANUAL

MOTOROLA

9-19

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm.
Each time a rule consequent references a fuzzy output, that fuzzy output is com
pared to the truth value (weighted) for the current rule. If the current truth value is
larger, it is written over the previous value in the fuzzy output. After all rules have
been evaluated, the fuzzy output contains the truth value for the most-true rule that
referenced that fuzzy output.

After REVW finishes, A will hold the truth value (weighted) for the last rule in the
rule list. The V condition code bit should be one because the last element before
the $FFFF end marker should have been a rule consequent. If V is zero after exe
cuting REVW, it indicates the rule list was structured incorrectly.

9.5.2.2 Interrupt Details

The REVW instruction includes a three-cycle processing loop for each word in the
rule list (this loop expands to five cycles between antecedents and consequents to
allow time for the multiplication with the rule weight). Within this loop, a check is
performed to see if any qualified interrupt request is pending. If an interrupt is de
tected, the current CPU registers are stacked and the interrupt is honored. When
the interrupt service routine finishes, an RTI instruction causes the CPU to recover
its previous context from the stack, and the REVW instruction is resumed as if it
had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted REVW
instruction, points to the REVW instruction rather than the instruction that follows.
This causes the CPU to try to execute a new REVW instruction upon return from
the interrupt. Since the CPU registers (including the C bit and V bit in the condition
codes register) indicate the current status of the interrupted REVW instruction, this
effectively causes the rule evaluation operation to resume from where it left off.

9.5.2.3 Cycle-by-Cycle Details for REVW

The central element of the REVW instruction is a three-cycle loop that is executed
once for each word in the rule list. For the special case pass (where the $FFFE
separator word is read between the rule antecedents and the rule consequents,
and weights enabled by the C bit equal one), this loop takes five cycles. There is a
small amount of housekeeping activity to get this loop started as REVW begins and
a small sequence to end the instruction. If an interrupt comes, there is a special
small sequence to save CPU status on the stack before the interrupt is serviced.

Figure 9-10 is a detailed flow diagram for the REVW instruction. Each rectangular
box represents one CPU clock cycle. Decision blocks and connecting arrows are
considered to take no time at aiL The letters in the small rectangles in the upper left
corner of each bold box correspond to the execution cycle codes (refer to SEC
TION 6 INSTRUCTION GLOSSARY for details). Lower case letters indicate a cy
cle where 8-bit or no data is transferred. Upper case letters indicate cycles where
16-bit data could be transferred.

MOTOROLA

9-20
FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

(START

t
I 10-0 Read program word if $18 misaligned J
~ Readword @ O,X (rule element Rx) _

- - - --

1 X = X + 2 point al next rUle element

~ No bus access ---J - --
TMP2 = Y - 1 (weight pointer kept in TMP2)

40-1 I Update Rx with value read in eye 2 or 5

If Rx = $FFFE If Rx = $FFFF [If Rx = other
If V = 0. then TMP2 = TMP2 + 1 then no bus access then read byte @ .Rx fuzzy in/out FRx
If V = ° and C = 1, I
then read rule weight @ ,TMP2 I
else no bus access I

- -- - - - - - - - - - - - - - - - - - - --r--Toggle V-bit; If V now 0, A = $FF

no f yes , Interrupt pending?

t
~ If Rx 1t $FFFF ~ No bus access

then read rule word @ ,XO Adjust PC to point at current REVW instruction
- - - - - - - - - - - - - - - - -- - - --

Xo = X, X = Xo + 2
~. No bus access

min • mul
Adjust X = X - 2 pOinter to rule list

or default V=C=1 & Rx=$FFFE

'- M,rom.'m,' , ~ _ ~o_ b_u~ ~C?~s~ _________________

~,:~ & Rx1t $FFFE or $FFFF If (Rx = $FFFE or $FFFE) and V = °
then TMP2 = TMP2 - 1

I ~ IfA>FRxwriteAtoRx
I else no bus access ~, _ ~o_bus aCges~ __ - - - - - -t --------------- Y = TMP2 + 1

I
6.0 - x I No bus access

I Continue to i!errupt stacking
- - - - - --

A = min{A, FRx)

~
I 1

I I

~I No bus access - --J no Begin multiply of (wt+ 1) • A fi A:B
Rx = $FFFF (end of rules)?

I

t yes ~ _ Readrule word @,Xo
---------J

~ Read_p!0_g~a~_wordif$3B mlsali~ne_d ______
Continue multiply

Adjust PC to pOint at next instruction ~ _ No bus access -----------J If C=l (weights enabled), Y = TMP2 + 1 - - --
Finish multiply

t I
(~_E_ND_~)

REVW INST FLW

Figure 9-10 REVW Instruction Flow Diagram

CPU12 FUZZY LOGIC SUPPORT MOTOROLA

9-21 REFERENCE MANUAL

In cycle 2.0, the first element of the rule list (a 16-bit address) is read from memory.
Due to propagation delays, this value cannot be used for calculations until two cy
cles later (cycle 4.0). The X index register, which is used to access information from
the rule list, is incremented by 2 to point at the next element of the rule list.

The operations performed in cycle 4.0 depend on the value of the word read from
the rule list. $FFFE is a special token that indicates a transition from antecedents
to consequents, or from consequents to antecedents of a new rule. The V-bit can
be used to decide which transition is taking place, and V is toggled each time the
$FFFE token is detected. If V was zero, a change from antecedents to conse
quents is taking place, and it is time to apply weighting (provided it is enabled by
the C bit equal one). The address in TMP2 (derived from Y) is used to read the
weight byte from memory. In this case, there is no bus access in cycle 5.0, but the
index into the rule list is updated to point to the next rule element.

The old value of X (Xo) is temporarily held on internal nodes, so it can be used to
access a rule word in cycle 7.2. The read of the rule word is timed to start two cy
cles before it will be used in cycle 4.0 of the next loop pass. The actual multiply
takes place in cycles 6.2 through 8.2. The 8-bit weight from memory is incremented
(possibly overflowing to $100) before the multiply, and the upper 8 bits of the 16-
bit internal result is used as the weighted result. By using weight+ 1, the result can
range from 0.0 times A to 1.0 times A. After 8.2, flow continues to the next loop
pass at cycle 4.0.

At cycle 4.0, if Rx is $FFFE and V was one, a change from consequents to ante
cedents of a new rule is taking place, so accumulator A must be reinitialized to $FF.
During processing of rule antecedents, A is updated with the smaller of A, or the
current fuzzy input (cycle 6.0). Cycle 5.0 is usually used to read the next rule word
and update the pointer in X. This read is skipped if the current Rx is $FFFF (end of
rules mark). If this is a weight multiply pass, the read is delayed until cycle 7.2. Dur
ing processing of consequents, cycle 6.1 is used to optionally update a fuzzy output
if the value in accumulator A is larger.

After all rules have been processed, cycle 7.0 is used to update the PC to point at
the next instruction. If weights were enabled, Y is updated to point at the location
that immediately follows the last rule weight.

9.6 WAY Instruction Details

The WA V instruction performs weighted average calculations used in defuzzifica
tion. The pseudo-instruction wavr is used to resume an interrupted weighted aver
age operation.WAV calculates the numerator and denominator sums using:

MOTOROLA

9·22

n

L. SiFi

System Output = :....:i ==-,1:-_
n

FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

Where n is the number of labels of a system output, Si are the singleton positions
from the knowledge base, and Fj are fuzzy outputs from RAM. Sj and Fj are 8-bit
values. The 8-bit B accumulator holds the iteration count n. Internal temporary reg
isters hold intermediate sums, 24 bits for the numerator and 16 bits for the denom
inator. This makes this instruction suitable for n values up to 255 although 8 is a
more typical value. The final long division is performed with a separate EDIV in
struction immediately after the WAV instruction. The WAV instruction returns the
numerator and denominator sums in the correct registers for the EDIV. (EDIV per
forms the unsigned division Y = Y : D / X; remainder in D).

Execution time for this instruction depends on the number of iterations (labels for
the system output). WAV is interruptible so that worst case interrupt latency is not
affected by the execution time for the complete weighted average operation. WAV
includes initialization for the 24-bit and 16-bit partial sums so the first entry into
WAV looks different than a resume from interrupt operation. The CPU12 handles
this difficulty with a pseudo-instruction (wavr), which is specifically intended to re
sume and interrupted weighted average calculation. Refer to 9.6.3 Cycle-by-Cy
cle Details for WAV and wavr for more detail.

9.6.1 Setup Prior to Executing WAV

Before executing the WAV instruction, index registers X and Y and accumulator B
must be set up. Index register X is a pointer to the Sj singleton list. X must have the
address of the first singleton value in the knowledge base. Index register Y is a
pointer to the fuzzy outputs Fi. Y must have the address of the first fuzzy output for
this system output. B is the iteration count n. The B accumulator must be set to the
number of labels for this system output.

9.6.2 WAV Interrupt Details

CPU12

The WAV instruction includes an 8-cycle processing loop for each label of the sys
tem output. Within this loop, the CPU checks whether a qualified interrupt request
is pending. If an interrupt is detected, the current values of the internal temporary
registers for the 24-bit and 16-bit sums are stacked, the CPU registers are stacked,
and the interrupt is serviced.

A special processing sequence is executed when an interrupt is detected during a
weighted average calculation. This exit sequence adjusts the PC so that it points
to the second byte of the WAV object code ($3C), before the PC is stacked. Upon
return from the interrupt, the $3C value is interpreted as a wavr pseudo-instruction.
The wavr pseudoinstruction causes the CPU to execute a special WAV resumption
sequence. The wavr recovery sequence adjusts the PC so that it looks like it did
during execution of the original WAV instruction, then jumps back into the WAV
processing loop. If another interrupt occurs before the weighted average calcula
tion finishes, the PC is adjusted again as it was for the first interrupt. WAV can be
interrupted any number of times, and additional WAV instructions can be executed
while a WA V instruction is interrupted.

FUZZY LOGIC SUPPORT

REFERENCE MANUAL

MOTOROLA

9-23

9.6.3 Cycle-by-Cycle Details for WAY and wavr

The WAY instruction is unusual in that the logic flow has two separate entry points.
The first entry point is the normal start of a WAY instruction. The second entry point
is used to resume the weighted average operation after a WA V instruction has
been interrupted. This recovery operation is called the wavr pseudo-instruction.

Figure 9-11 is a flow diagram of the WAY instruction including the wavr pseudo
instruction. Each rectangular box in this figure represents one CPU clock cycle.
Decision blocks and connecting arrows are considered to take no time at all. The
letters in the small rectangles in the upper left corner of the boxes correspond to
execution cycle codes (refer to SECTION 6 INSTRUCTION GLOSSARY for de
tails). Lower case letters indicate a cycle where 8-bit or no data is transferred. Up
per case letters indicate cycles where 16-bit data could be transferred.

In terms of cycle-by-cycle bus activity, the $18 page select prebyte is treated as a
special1-byte instruction. In cycle 1.0 of the WAY instruction, one word of program
information will be fetched into the instruction queue if the $18 is located at an odd
address. If the $18 is at an even address, the instruction queue cannot advance so
there is no bus access in this cycle.

There is no bus access in cycles 2.0 or 3.0. In cycle 3.0, three internal 16-bit tem
porary registers are cleared in preparation for summation operations. The WA V in
struction maintains a 32-bit sum-ot-products in TMP3:TMP2 and a 16-bit sum-of
weights in TMP1. By keeping these sums inside the CPU, bus accesses are re
duced and the WAY operation is optimized for high speed.

Cycles 4.0 through 11.0 form the 8 cycle main loop for WAY. The value in the 8-bit
B accumulator is used to count the number of loop iterations. B is decremented at
the top of the loop in cycle 4.0, and the test for zero is located at the bottom of the
loop after cycle 11.0. Cycle 5.0 and 6.0 are used to fetch the 8-bit operands for one
iteration of the loop. X and Y index registers are used to access these operands.
The index registers are incremented as the operands are fetched. Cycle 7.0 is used
to accumulate the current fuzzy output into TMP1. Cycles 8.0 through 10.0 are
used to perform the 8 by 8 multiply of Fi times Sj. The multiply result is accumulated
into TMP3:TMP2 during cycles 10.0 and 11.0. Even though the sum-of-products
will not exceed 24 bits, the sum is maintained in the 32-bit combined TMP3:TMP2
register because it was easier to use existing 16-bit operations than it would have
been to create a new smaller operation to handle the high order bits of this sum.

Since the weighted average operation could be quite long, it is made to be inter
ruptible. The usual longest latency path is from very early in cycle 7.0, through cy
cle 11.0, to the top of the loop to cycle 4.0, through cycle 6.0 to the interrupt check.
There is also a four cycle (7.1 through 10.1) exit sequence making this latency path
a total of 12 cycles. There is an even longer path, but it is much less likely to occur.
If an interrupt comes near the beginning of cycle 2.1, when a weighted average op
eration is being resumed after a previous interrupt, the latency path is 2.1 through
6.1 plus 7.0 through 11.0 plus 4.0 through 6.0 plus the exit 7.1 through 10.1. This
is a worst case total of 17 cycles.

MOTOROLA

9-24
FUZZY LOGIC SUPPORT CPU12

REFERENCE MANUAL

(~_w_ar-vr __)

Read word @ O,SP (un stack TMPt)

Read byte @ O,Y (fuzzy output Fi) Read byte @ -t,Y (fuzzy output Fi)
- - - - - - - - - - - - - - - -

CPU12

Read byte @ O,X (singleton Si) Read byte @ -1,X (singleton Si)
- - - - - - - - - - - - - - - - - --

< >-yes

~~~~~~---~---------~ 

Continue to interrupt stacking 

t2.0- 0 

Adjust PC to pOint at next instruction 
YD = TMP3:TMP2; X = TMPt 

t 
\. END ) 
~----

Figure 9-11 WAV and wavr Instruction Flow Diagram 

FUZZY LOGIC SUPPORT 

REFERENCE MANUAL 

WAY INST FLOW 

MOTOROLA 

9-25 



If the WAV instruction is interrupted, the internal temporary registers TMP3, TMP2, 
and TMP1 need to be stored on the stack so the operation can be resumed. Since 
the WAV instruction included initialization in cycle 2.0, the recovery path after an 
interrupt needs to be different. The wavr pseudo-instruction has the same opcode 
as WAV, but it is on the first page of the opcode map so there is no page prebyte 
($18) like there is for WAV. When WAV is interrupted, the PC is adjusted to point 
at the second byte of the WAV object code, so that it will be interpreted as the wavr 
pseudo-instruction on return from the interrupt, rather than the WAV instruction. 
During the recovery sequence, the PC is readjusted in case another interrupt 
comes before the weighted average operation finishes. 

The resume sequence includes recovery of the temporary registers from the stack 
(2.1 through 4.1), and reads to get the operands for the current iteration. The nor
mal WAV flow is then rejoined at cycle 7.0. 

Upon normal completion of the instruction (cycle 12.0), the PC is adjusted so it 
points to the next instruction. The results are transferred from the TMP registers 
into CPU registers in such a way that the ED IV instruction can be used to divide 
the sum-of-products by the sum-of-weights. TMP3:TMP2 is transferred into Y:D 
and TMP1 is transferred into X. 

9.7 Custom Fuzzy Logic Programming 

The basic fuzzy logic inference techniques described above are suitable for a 
broad range of applications, but some systems may require customization. The 
built-in fuzzy instructions use 8-bit resolution and some systems may require finer 
resolution. The rule evaluation instructions only support variations of MIN-MAX rule 
evaluation and other methods have been discussed in fuzzy logic literature. The 
weighted average of singletons is not the only defuzzification technique. The 
CPU12 has several instructions and addressing modes that can be helpful when in 
developing custom fuzzy logic systems. 

9.7.1 Fuzzification Variations 

The MEM instruction supports trapezoidal membership functions and several other 
varieties, including membership functions with vertical sides (infinite slope sides). 
Triangular membership functions are a subset of trapezoidal functions. Some prac
titioners refer to S-, Z-, and n;- shaped membership functions. These refer to a trap
ezoid butted against the right end of the x-axis, a trapezoid butted against the left 
end of the x-axis, and a trapezoidal membership function that isn't butted against 
either end of the x-axis, respectively. Many other membership function shapes are 
possible, if memory space and processing bandwidth are sufficient. 

Tabular membership functions offer complete flexibility in shape and very fast eval
uation time. However, tables take a very large amount of memory space (as many 
as 256 bytes per label of one system input). The excessive size to specify tabular 
membership functions makes them impractical for most microcontroller-based 
fuzzy systems. The CPU12 instruction set includes two instructions (TBL and ET
BL) for lookup and interpolation of compressed tables. 

MOTOROLA 

9-26 

FUZZY LOGIC SUPPORT CPU12 

REFERENCE MANUAL 



CPU12 

The TBL instruction uses 8-bit table entries (y-values) and returns an 8-bit result. 
The ETBL instruction uses 16-bit table entries (y-values) and returns a 16-bit re
sult. A flexible indexed addressing mode is used to identify the effective address of 
the data point at the beginning of the line segment, and the data value for the end 
point of the line segment is the next consecutive memory location (byte for TBL and 
word for ETBL). In both cases, the B accumulator represents the ratio of (the x-dis
tance from the beginning of the line segment to the lookup point) to (the x-distance 
from the beginning of the line segment to the end of the line segment). B is treated 
as an 8-bit binary fraction with radix point left of the MSB, so each line segment can 
effectively be divided into 256 pieces. During execution of the TBL or ETBL instruc
tion, the difference between the end point y-value and the beginning point y-value 
(a signed byte-TBL or word-ETBL) is multiplied by the B accumulator to get an in
termediate delta-y term. The result is the y-value of the beginning point, plus this 
signed intermediate delta-y value. 

Because indexed addressing mode is used to identify the starting point of the line 
segment of interest, there is a great deal of flexibility in constructing tables. A com
mon method is to break the x-axis range into 256 equal width segments and store 
the y-value for each of the resulting 257 endpoints. The 16-bit D accumulator is 
then used as the x input to the table. The upper 8 bits (A) is used as a coarse look
up to find the line segment of interest, and the lower 8 bits (B) is used to interpolate 
within this line segment. 

In the program sequence ... 

LDX #TBL_START 
LDD DATA_IN 
TBL A,X 

The notation A,X causes the TBL instruction to use the Ath line segment in the ta
ble. The low order half of D (B) is used by TBL to calculate the exact data value 
from this line segment. This type of table uses only 257 entries to approximate a 
table with 16 bits of resolution. This type of table has the disadvantage of equal 
width line segments, which means just as many points are needed to describe a 
flat portion of the desired function as are needed for the most active portions. 

Another type of table stores x:y coordinate pairs for the endpoints of each linear 
segment. This type of table may reduce the table storage space compared to the 
previous fixed-width segments because flat areas of the functions can be specified 
with a single pair of endpoints. This type of table is a little harder to use with the 
CPU12 TBL and ETBL instructions because the table instructions expect y-values 
for segment endpoints to be in consecutive memory locations. 

Consider a table made up of an arbitrary number of x:y coordinate pairs, where all 
values are 8 bits. The table is entered with the x-coordinate of the desired point to 
lookup in the A accumulator. When the table is exited, the corresponding y-value 
is in the A accumulator. Figure 9-12 shows one way to work with this type of table. 

FUZZY LOGIC SUPPORT 

REFERENCE MANUAL 

MOTOROLA 

9-27 



BEGIN LDY 
FIND_LOOP CMPA 

#TABLE_START-2 
2,+Y 

BLS FIND_LOOP 
* on fall thru, XB@-2,Y YB@-l,Y XE@O,Y 

TFR D,X 
eLRA 
LDAB O,Y 
SUBB -2, Y 
EXG D,X 
SUBA -2,Y 
EXG A,D 

EXG 
FDIV 
EXG D,X 
EXG A,B 
'rSTA 
BPL NO_ROUND 
INCB 
LDAA 1,Y 
PSHA 
LDAA -l,Y 
PSHA 
TBL 2,SP+ 

;setup initial table pointer 
;find first Xn > XL 

(auto pre-inc Y by 2) 
;loop if XL .le. Xn 
and YE@l, Y 
;save XL in high half of X 
;zero upper half of D 
;D O:XE 
;D 0: (XE-XB) 
; X (XE-XB) .. D = XL: junk 
;A (XL-XB) 
;D 0: (XL-XB), uses trick of 

;X reg = (XL-XB)/ (XE-XB) 
;move fractional result to A:B 
;byte swap - need result in B 
;check for rounding 

;round B up by 1 
;YE 
;put on stack for TBL later 
;YB 

.; now YB@O, SP and YE@l, SP 
;interpolate and deallocate 
;stack temps 

Figure 9-12 Endpoint Table Handling 

The basic idea is to find the segment of interest, temporarily build a one-segment 
table of the correct format on the stack, then use TBL with stack relative indexed 
addressing to interpolate. The most difficult part of the routine is calculating the pro
portional distance from the beginning of the segment to the lookup point versus the 
width of the segment ((XL-XB)/(XE-XB)), With this type of table, this calculation 
must be done at run time. In the previous type of table, this proportional term is an 
inherent part (the lowest order bits) of the data input to the table. 

Some fuzzy theorists have suggested membership functions should be shaped like 
normal distribution curves or other mathematical functions. This may be correct, 
but the processing requirements to solve for an intercept on such a function would 
be unacceptable for most microcontroller-based fuzzy systems. Such a function 
could be encoded into a table of one of the previously described types, 

For many common systems, the thing that is most important about membership 
function shape is that there is a gradual transition from non-membership to mem
bership as the system input value approaches the central range of the membership 
function. Let us examine the human problem of stopping a car at an intersection. 
We might use rules like "If intersection is close and speed is fast, apply brakes." 
The meaning (reflected in membership function shape and position) of the labels 
"close" and "fast" will be different for a teenager than they are for a grandmother, 
but both can accomplish the goal of stopping, It makes intuitive sense that the ex
act shape of a membership function is much less important than the fact that it has 
gradual boundaries. 

MOTOROLA 

9-28 

FUZZY LOGIC SUPPORT CPU12 

REFERENCE MANUAL 



9.7.2 Rule Evaluation Variations 

The REV and REVW instructions expect fuzzy input and fuzzy output values to be 
8-bit values. In a custom fuzzy inference program, higher resolution may be desir
able (although this is not a common requirement). The CPU12 includes variations 
of minimum and maximum operations that work with the fuzzy MIN-MAX inference 
algorithm. The problem with the fuzzy inference algorithm is that the min and max 
operations need to store their results differently, so the min and max instructions 
must work differently or more than one variation of these instructions is needed. 

The CPU12 has min and max instructions for 8- or 16-bit operands, where one op
erand is in an accumulator and the other is a referenced memory location. There 
are separate variations that replace the accumulator or the memory location with 
the result. While processing rule antecedents in a fuzzy inference program, a ref
erence value must be compared to each of the referenced fuzzy inputs, and the 
smallest input must end up.in an accumulator. The instruction ... 

EMIND 2,X+ ;process one rule antecedent 

automates the central operations needed to process rule antecedents. The E 
stands for extended, so this instruction compares 16-bit operands. The 0 at the 
end of the mnemonic stands for the 0 accumulator, which is both the first operand 
for the comparison and the destination of the result. The 2,X+ is an indexed ad
dressing specification that says X points to the second operand for the comparison. 

When processing rule consequents. the operand in the accumulator must remain 
constant (in case there is more than one consequent in the rule), and the result of 
the comparison must replace the referenced fuzzy output in RAM. To do this, use 
the instruction ... 

EMAXM 2,X+ ;process one rule consequent 

The M at the end of the mnemonic indicates that the result will replace the refer
enced memory operand. Again, indexed addressing is used. These two instruc
tions would form the working part of a 16-bit resolution fuzzy inference routine. 

There are many other methods of performing inference, but none of these are as 
widely used as the min-max method. Since the CPU12 is a general purpose micro
controller, the programmer has complete freedom to program any algorithm de
sired. A custom programmed algorithm would typically take more code space and 
execution time than a routine that used the built in REV or REVW instructions. 

9.7.3 Defuzzification Variations 

CPU12 

There are two main areas where other CPU12 instructions can help with custom 
defuzzification routines. The first case is working with operands that are more than 
eight bits. The second case involves using an entirely different approach than 
weighted average of singletons. 

FUZZY LOGIC SUPPORT 

REFERENCE MANUAL 
MOTOROLA 

9-29 



The primary part of the WAV instruction is a multiply and accumulate operation to 
get the numerator for the weighted average calculation. When working with oper
ands as large as 16 bits, the EMACS instruction could at least be used to automate 
the multiply and accumulate function. The CPU12 has extended math capabilities, 
including the EMACS instruction which uses 16-bit input operands and accumu
lates the sum to a 32-bit memory location and 32-bit by 16-bit divide instructions. 

One benefit of the WAV instruction is that both a sum of products and a sum of 
weights are maintained, while the fuzzy output operand is only accessed from 
memory once. Since memory access time is such a significant part of execution 
time, this provides a speed advantage compared to conventional instructions. 

The weighted average of singletons is the most commonly used technique in mi
crocontrollers because it is computationally less difficult than most other methods. 
The simplest method is called max defuzzification, which simply uses the largest 
fuzzy output as the system result. However, this approach does not take into ac
count any other fuzzy outputs, even when they are almost as true as the chosen 
max output. Max defuzzification is not a good general choice because it only works 
for a subset of fuzzy logic applications. 

The CPU12 is well suited for more computationally challenging algorithms than 
weighted average. 32-bit by 16-bit divide instructions take 11 or 12 8 MHz cycles 
for unsigned or signed variations. A 16-bit by 16-bit multiply with a 32-bit result 
takes only three 8 MHz cycles. The EMACS instruction uses 16-bit operands and 
accumulates the result in a 32-bit memory location, taking only 12 8 MHz cycles 
per iteration, including accessing all operands from memory and storing the result 
to memory. 

MOTOROLA 

9-30 

FUZZY LOGIC SUPPORT CPU12 

REFERENCE MANUAL 



SECTION 10 
MEMORY EXPANSION 

This section discusses expansion memory principles that apply to the entire 
M68CH12 family. Some family devices do not have memory expansion capabili
ties, and the size of the expanded memory can also vary. Please refer to the doc
umentation for a derivative to determine details of implementation. 

10.1 Expansion System Description 

CPU12 

Certain members of the M68HC12 family incorporate hardware that supports ad
dressing a larger memory space than the standard 64 Kbytes. The expanded 
memory system uses fast on-chip logic to implement a transparent paged memory 
or bank-switching scheme. 

Increased code efficiency is the greatest advantage of using bank switching in
stead of implementing a large linear address space. In systems with large linear 
address spaces, instructions require more bits of information to address a memory 
location, and CPU overhead is greater. Other advantages of bank switching in
clude the ability to change the size of system memory, and the ability to use various 
types of external memory. 

However, the add-on bank switching schemes used in other microcontroliers have 
known weaknesses. These include the cost of external glue logic, increased pro
gramming overhead to change banks, and the need to disable interrupts while 
banks are switched. 

The M68HC12 system requires no external glue logic. Bank switching overhead is 
reduced by implementing control logic in the MCU. Interrupts do not need to be dis
abled during switching because switching tasks are incorporated in special instruc
tions that greatly simplify program access to extended memory. Operation of the 
bank-switching logic is transparent to the CPU. 

The CPU12 has a linear 64-Kbyte address space. Ali MCU system resources, in
cluding control registers for on-chip peripherals and on-chip memory arrays, are 
mapped into this space. In a typical M68HC12 derivative, the resources have de
fault addresses out of reset, but can be re-mapped to other addresses by means 
of control registers in the on-chip integration module. 

Memory expansion control logic is outside the CPU. A block of circuitry in the MCU 
integration module manages overlays that occupy pre-defined locations in the 64-
Kbyte space addressed by the CPU. These overlays can be thought of as windows 
through which the CPU accesses information in the expanded memory space. 

There are three overlay windows. The program window expands program memory, 
the data window is used for independent data expansion, and the extra window ex
pands access to special types of memory such as EEPROM. The program window 
always occupies the 16-Kbyte space from $8000 to $BFFF. Data and extra win
dows can vary in size and location. 

MEMORY EXPANSION 
REFERENCE MANUAL 

MOTOROLA 

10-1 



Each window has an associated page select register that selects external memory 
pages to be accessed via the window" Only one page at a time can occupy a win
dow; the value in the register must be changed to access a different page of mem
ory. With 8-bit registers, there can be up to 256 expansion pages per window, each 
page the same size as the window" 

For data and extra windows, page switching is accomplished by means of normal 
read and write instructions" This is the traditional method of managing a bank
switching system" The CPU12 CALL and RTC instructions automatically manipu
late the program page select (PPAGE) register for the program window" 

In M68HC12 expanded memory systems, control registers, vector spaces, and a 
portion of on-chip memory are located in unpaged portions of the 64-Kbyte address 
space" The stack and I/O addresses should also be placed in unpaged memory to 
makes them accessible from any overlay page" 

The initial portions of exception handlers must be located in unpaged memory be
cause the 16-bit exception vectors cannot point to addresses in paged memory" 
However, service routines can call other routines in paged memory" The upper 16 
-Kbyte block of memory space ($COOO-$FFFF) is unpaged" It is recommended 
that all reset and interrupt vectors point to locations in this area" 

Although internal MCU resources, such as control registers and on-chip memory 
have default addresses out of reset, each can typically be relocated by changing 
the default values in control registers" Normally, I/O addresses, control registers, 
vector spaces, overlay windows, and on-chip memory are not mapped so that their 
respective address ranges overlap" However, there is an access priority order that 
prevents access conflicts should such overlaps occur. Table 10-1 shows the 
mapping precedence" Resources with higher precedence block access to those 
with a lower precedence" The windows have lowest priority - registers, exception 
vectors, and on-chip memory are always visible to a program regardless of the 
values in the page select registers" 

Table 10-1 Mapping Precedence 

Precedence Resource 

1 Registers 

2 Exception Vectors/8DM ROM 

3 i RAM 

4 i EEPROM 
I 

5 Flash 

6 Expansion Windows 

When background debugging is enabled and active, the CPU executes code locat
ed in a small on-chip ROM mapped to addresses $FF20 to $FFFF, and BOM con
trol registers are accessible at addresses $FFOO to $FF06" The BOM ROM 
replaces the regular system vectors while BOM is active, but BOM resources are 
not in the memory map during normal execution of application programs" 

MOTOROLA 

10-2 

MEMORY EXPANSION CPU12 

REFERENCE MANUAL 



10.2 CALL and Return from Call Instructions 

CPU12 

The CALL is similar to a JSR instruction, but the subroutine that is called can be 
located anywhere in the normal 64-Kbyte address space, or on any page of pro
gram expansion memory. When CALL is executed, a return address is calculated, 
then it and the current program page register value are stacked, and a new instruc
tion-supplied value is written to PPAGE. The PPAGE value controls which of the 
256 possible pages is visible through the 16-Kbyte window in the 64-Kbyte memory 
map. Execution continues at the address of the called subroutine. 

The actual sequence of operations that occur during execution of CALL are: 

• The CPU reads the old PPAGE value into an internal temporary register, 
and writes the new instruction-supplied PPAGE value to PPAGE. This 
switches the destination page into the program overlay window. 

• The CPU calculates the address of the next instruction after the CALL in
struction (the return address), and pushes this 16-bit value onto the stack. 

The old 8-bit PPAGE value is pushed onto the stack. 

The effective address of the subroutine is calculated, the queue is refilled, 
and execution begins at the new address. 

This sequence of operations is an uninterruptable CPU instruction. There is no 
need to inhibit interrupts during CALL execution. In addition, a CALL can be per
formed from any address in memory to any other address. This is a big improve
ment over other bank-switching schemes, where the page switch operation can 
only be performed by a program outside the overlay window. 

For all practical purposes, the PPAGE value supplied by the instruction can be con
sidered to be part of the effective address. For all addressing mode variations ex
cept indexed indirect modes, the new page value is provided by an immediate 
operand in the instruction. For indexed indirect variations of CALL, a pointer spec
ifies memory locations where the new page value and the address of the called 
subroutine are stored. Use of indirect addressing for both the new page value and 
the address within the page allows use run-time calculated values rather than im
mediate values that must be known at the time of assembly. 

The RTC instruction is used to terminate subroutines invoked by a CALL instruc
tion. RTC unstacks the PPAGE value and the return address, the queue is refilled, 
and execution resumes with the next instruction after the corresponding CALL. 

The actual sequence of operations that occur during execution of RTC are: 

• The return value of the 8-bit PPAGE register is pulled from the stack. 

• The 16-bit return address is pulled from the stack and loaded into the PC. 

• The return PPAGE value is written to the PPAGE register. 

• The queue is refilled. and execution begins at the new address. 

MEMORY EXPANSION 

REFERENCE MANUAL 

MOTOROLA 

10-3 



Since the return operation is implemented as a single uninterruptable CPU instruc
tion, the RTC can" be executed from anywhere in memory, including from a different 
page of extended memory in the overlay window. 

In an MCU where there is no memory expansion, the CALL and RTC instructions 
still perform the same sequence of operations, but there is no PPAGE register or 
address translation logic. The value the CPU reads when the PPAGE register is 
accessed is indeterminate but doesn't matter, because the value is not involved in 
addressing memory in the unpaged 64-Kbyte memory map. When the CPU writes 
to the non-existent PPAGE register, nothing happens. 

The CALL and RTC instructions behave like JSR and RTS, except they have slight
ly longer execution times. Since extra execution cycles are required, routinely sub
stituting CALURTC for JSR/RTS is not recommended. JSR and RTS can be used 
to access subroutines that are located on the same memory page. However, if a 
subroutine can be called from other pages, it must be terminated with an RTC. In 
this case, since RTC unstacks the PPAGE value as well as the return address, all 
accesses to the subroutine, even those made from the same page, must use CALL 
instructions. 

10.3 Address Lines for Expansion Memory 

All M68HC12 family members have at least sixteen address lines, ADDR[15:0J. 
Devices with memory expansion capability can have as many as six additional 
high-order external address lines, ADDR[21 :16]. Each of these additional address 
lines is typically associated with a control bit that allows address expansion to be 
selectively enabled. When expansion is enabled, internal address translation cir
cuitry multiplexes data from the page select registers onto the high order address 
lines when there is an access to an address in a corresponding expansion window. 

Assume that a device has six expansion address lines and an 8-bit PPAGE regis
ter. The lines and the program expansion window have been enabled. The address 
$9000 is within the 16-Kbyte program overlay window. When there is an access to 
this address, the value in the PPAGE register is multiplexed onto external address 
lines ADDR[21 :14J. The 14 low-order address lines select a location within the pro
gram overlay page. Up to 256 16-Kbyte pages (4 Mbytes) of memory can be ac
cessed through the window. When there is an access to a location that is not within 
any enabled overlay window, ADDR[21 :16] are driven to logic level one. 

The address translation logic can produce the same address on the external ad
dress lines for two different internal addresses. For example, the 22-bit address 
$3FFFFF could result from an internal access to $FFFF in the 64-Kbyte memory 
map, or to the last location ($BFFF) within page 255 (PPAGE = $FF) of the pro
gram overlay window. Considering only the 22 external address lines, the last 
physical page of the program overlay appears to occupy the same address space 
as the unpaged 16-Kbyte block from $COOO to $FFFF of the 64-Kbyte memory 
map. Using MCU chip-select circuits to enable external memory can resolve these 
ambiguities. 

MOTOROLA 

10-4 

MEMORY EXPANSION CPU12 

REFERENCE MANUAL 



10.4 Overlay Window Controls 

There is a page select register associated with each overlay window. PPAGE holds 
the page select for the program overlay, DPAGE holds the page select for the data 
overlay, and EPAGE holds the page select for the extra page. The CPU12 manip
ulates the PPAGE register directly, so it will always be 8 bits or less in devices that 
support program memory expansion. The DPAGE and EPAGE registers are not 
controlled by dedicated CPU12 instructions. These registers can be larger or 
smaller than eight bits in various M68HC12 derivatives. 

Typically, each of the overlay windows also has an associated control bit to enable 
memory expansion through the appropriate window. Memory expansion is gener
ally disabled out of reset, so control bits must be written to enable the address 
translation logic. 

10.5 Using Chip-select Circuits 

M68HC12 chip-select circuits can be used to preclude ambiguities in memory
mapping due to the operation of internal address translation logic. If built-in chip 
selects are not used, take care to use only overlay pages which produce unique 
addresses on the external address lines. 

M68HC12 derivatives typically have two or more chip-select circuits. Chip-select 
function is conceptually simple. Whenever an access to a pre-defined range of ad
dresses is made, internal MCU circuitry detects an address match, and asserts a 
control signal that can be used to enable external devices. Chip-select circuits typ
ically incorporate a number of options that make it possible to use more than one 
range of addresses for matches as well as to enable various types and configura
tions of external devices. 

Chip-select circuits used in conjunction with the memory-expansion scheme must 
be able to match all accesses made to addresses within the appropriate program 
overlay window. In the case of the program expansion window, the range of ad
dresses occupies the 16-Kbyte space from $8000 to $BFFF. For data and extra ex
pansion windows, the range of addresses varies from device to device. The 
following paragraphs discuss a typical implementation of memory expansion chip
select functions in the system integration module. Implementation will vary from 
device to device within the M68HC12 family. Please refer to the appropriate device 
manual for details. 

10.5.1 Program Memory Expansion Chip Select Controls 

There are two program memory expansion chip-select circuits, CSPO and CSP1. 
The associated control register contains eight control bits that provide for a number 
of system configurations. 

10.5.1.1 CSP1 E Control Bit 

Enables (1) or disables (0) the CSP1 chip select. The default is disabled. 

CPU12 

REFERENCE MANUAL 

MEMORY EXPANSION MOTOROLA 

10-5 



10.5.1.2 CSPOE Control Bit 

Enables (1) or disables (0) the CSPO chip select. The default is enabled. This al
lows CSPO to be used to select an external memory that includes the reset vector 
and startup initialization programs. 

10.5.1.3 CSP1 FL Control Bit 

Configures CSP1 to occupy all of the 64-Kbyte memory map that is not used by a 
higher-priority resource. If CSP1 FL = 0, CSP1 is mapped to the area from $8000 
to $FFFF. CSP1 has the lowest access priority except for external memory space 
that is not associated with any chip select. 

10.5.1.4 CSPA21 Control Bit 

Logic one causes CSPO and CSP1 to be controlled by the ADDR21 signal. CSP1 
is active when ADDR21 = 0, and CSPO is active when ADDR21 = 1. When 
CSPA21 is one, the CSP1 FL bit is ignored and both CSPO and CSP1 are active in 
the region $8000 - $FFFF. When CSPA21 is zero, CSPO and CSP1 operate inde
pendently from the value of the ADR21 signal. 

10.5.1.5 STRPOA:STRPOB Control Field 

These two bits program an extra delay into accesses to the CSPO area of memory. 
The choices are 0, 1, 2, or 3 additional E-cycles in addition to the normal one cycle 
for unstretched accesses. This allows.use of slow external memory without slowing 
down the entire system. 

10.5.1.6 STRP1 A:STRP1 B Control Field 

These two bits program an extra delay into accesses to the CSP1 area of memory. 
The choices are 0, 1,2, or 3 additional E-cycles in addition to the normal one cycle 
for unstretched accesses. This allows use of slow external memory without slowing 
down the entire system. 

When enabled, CSPO is active for the memory space from $8000 through $FFFF. 
This includes the program overlay space ($8000 - $BFFF) and the unpaged 16-
Kbyte block from $COOO through $FFFF. This configuration can be used if there is 
a single program memory device (up to 4 Mbytes) in the system. 

If CSP1 is also enabled and the CSPA21 bit is set, CSP1 can be used to select the 
first 128 16-Kbyte pages (2 Mbytes) in the program overlay expansion memory 
space while CSPO selects the higher numbered program expansion pages and the 
unpaged block from $COOO through $FFFF. Recall that the external memory de
vice cannot distinguish between an access to the $COOO to $FFFF space and an 
access to $8000 - $BFFF in the 255th page (pPAGE = $FF) of the program overlay 
window. 

MOTOROLA 

10-6 

MEMORY EXPANSION CPU12 

REFERENCE MANUAL 



10.5.2 Data Expansion Chip Select Controls 

The data chip select (CSD) has four associated control bits. 

10.5.2.1 CSDE Control Bit 

Enables (1) or disables (0) the CSD chip select. The default is disabled. 

10.5.2.2 CSDHF Control Bit 

Configures CSD to occupy the lower half of the 64-Kbyte memory map (for areas 
that are not used by a higher priority resource). If CSDHF is zero, CSD occupies 
the range of addresses used by the data expansion window. 

10.5.2.3 STRDA:STRDB Control Field 

These two bits program an extra delay into accesses to the CSD area of memory. 
The choices are 0, 1, 2, or 3 additional E-cycles in addition to the normal one cycle 
for unstretched accesses. This allows use of slow external memory without slowing 
down the entire system. 

10.5.3 Extra Expansion Chip Select Controls 

The extra chip select (CSE) has four associated control bits. 

10.5.3.1 CSEE Control Bit 

Enables (1) or disables (0) the CSE chip select. The default is disabled. 

10.5.3.2 CSEEP Control Bit 

Logic one configures CSE to be active for the EPAGE area. A logic zero causes 
CSE to be active for the CS3 area of the internal register space, which can typically 
be remapped to any 2-Kbyte boundary. 

10.5.3.3 STREA:STREB Control Field 

CPU12 

These two bits program an extra delay into accesses to the CSE area of memory. 
The choices are 0, 1,2, or 3 additional E-cycles in addition to the normal one cycle 
for unstretched accesses. This allows use of slow external memory without slowing 
down the entire system. 

To use CSE with the extra overlay window, it must be enabled (CSEE = 1) and con
figured to follow the extra page (CSEEP = 1). 

MEMORY EXPANSION 
REFERENCE MANUAL 

MOTOROLA 

10-7 



10.6 System Notes 

The expansion overlay windows are specialized for specific application uses, but 
there are no restrictions on the use of these memory spaces. Motorola MCUs have 
a memory-mapped architecture in which all memory resources are treated equally. 
Although it is possible to execute programs in paged external memory in the data 
and extra overlay areas, it is less convenient than using the program overlay area. 

The CALL and RTC instructions automate the program page switching functions in 
an uninterruptable instruction. For the data and extra overlay windows, the user 
must take care not to let interrupts corrupt the page switching sequence or change 
the active page while executing out of another page in the same overlay area. 

Internal MCU chip-select circuits have access to all 16 internal CPU address lines 
and the overlay window select lines. This allows all 256 expansion pages in an 
overlay window to be distinguished from unpaged memory locations with 22-bit ad
dresses that are the same as addresses in overlay pages. 

MOTOROLA 

10·8 

MEMORY EXPANSION CPU12 

REFERENCE MANUAL 



APPENDIX A 
INSTRUCTION REFERENCE 

A.1 Instruction Set Summary 

Table A-1 is a quick reference to the CPU12 instruction set. The table shows 
source form, describes the operation performed, lists the addressing modes used, 
gives machine encoding in hexadecimal form, and describes the effect of execu
tion on the Condition Code bits. 

A.2 Opcode Map 

Table A-2 displays the mnemonic, opcode, addressing mode, and cycle count for 
each instruction. The first table represents those opcodes with no prebyte. The 
second page of the table represents those opcodes with a prebyte value of $18. 
Notice the first hexadecimal digit of the opcode (shown in the upper left corner of 
each cell) corresponds to column location, while the second hexadecimal digit of 
the opcode corresponds to row location. 

A.3 Indexed Addressing Postbyte Encoding 

Table A-3 shows postbyte encoding for indexed addressing modes. The mnemon
ic for the indexed addressing mode postbyte is xb. This is also the notation used in 
instruction glossary entries. Table A-4 presents the same information in two-digit 
hexadecimal format. The first digit of the postbyte is represented by the value of 
the columns in the table. The second digit of the post byte is represented by the val
ue of the row. 

A.4 Transfer and Exchange Postbyte Encoding 

Table A-S shows postbyte encoding for transfer and exchange instructions. The 
mnemonic for the transfer and exchange postbyte is eb. This is also the notation 
used in instruction glossary entries. The first digit of the instruction postbyte is re
lated to the columns of the table. The second digit of the postbyte is related to the 
rows. The body of the table shows actions caused by the postbyte. 

A.S Loop Primitive Postbyte Encoding 

CPU12 

Table A-6 shows post byte encoding for loop primitive instructions. The mnemonic 
for the loop primitive postbyte is lb. This is also the notation used in instruction glos
sary entries. The loop primitive instructions are DBEQ, DBNE, IBEQ, IBNE, TBEQ, 
and TBNE. The first digit of the instruction postbyte corresponds to the columns of 
the table. The second digit of the post byte corresponds to the rows. The body of 
the table shows actions caused by the postbyte. 

INSTRUCTION REFERENCE 

REFERENCE MANUAL 

MOTOROLA 

A-1 



Source 
Form 

ABA 

ABX 

ABY 

ADCA apr 

I 

ADCB apr 

ADDA opr 

ADDB apr 

I 

ADDD apr 

MOTOROLA 

A-2 

Table A-1 Instruction Set Summary 

Operation 
Addr. Machine 
Mode Coding (hex) 

(A) + (B) => A INH 1806 
Add Accumulators A and B 

(B) + (X) => X IDX lA E5 
Translates to LEAX B,X 

(B) + (Y) => Y IDX 19 ED 
Translates to LEAY B,Y 

(A) + (M) + C => A IMM 89 ii 
Add with Carry to A DIR 99 dd 

I EXT B9 hh II 

I IDX A9 xb 
IDXl A9 xbll 
IDX2 A9xbeeff 

[D,IDX] A9 xb 
[IDX2] A9 xb ee If 

(B) + (M) + C => B IMM C9 ii 
Add with Carry to B DIR D9 dd 

EXT F9 hh II 
IDX E9 xb 

IDX1 E9 xbll 
IDX2 E9xbeeff 

[D,IDX] E9 xb 
[IDX2] E9xbeeff 

(A) + (M) => A IMM 8B ii 
Add without Carry to A DIR 9B dd 

EXT BB hh II 
IDX AB xb 

IDX1 ABxbff 
IDX2 ABxbeeff 

[D,IDX] AB xb 
[IDX2] ABxbeelf 

(B) + (M) => B IMM CBii 
Add without Carry to B DIR DBdd 

EXT FB hh II 
IDX EB xb 

IDX1 EB xb If 
IDX2 EB xb ee If 

[D,IDX] EB xb 
[IDX2] EBxbeelf 

(A:B) + (M:M+l) => A:B IMM C3 jj kk 
Add 16-Bit to D (A:B) DIR D3 dd 

EXT F3 hh II 
IDX E3 xb 

IDX1 E3 xbff 
IDX2 E3xbeeff 

[D,IDX] E3 xb 
[IDX2] E3xbeeff 

INSTRUCTION REFERENCE 

. -
2 

2 

2 

1 
3 
3 
3 
3 
4 
6 
6 

1 
3 
3 
3 
3 
4 

6 
6 

1 
3 
3 
3 
3 
4 
6 
6 

1 
3 
3 
3 
3 
4 
6 
6 

2 
3 
3 
3 
3 
4 
6 
6 

S X H I N Z V C 

- - fI. - fI. fI. fI. fI. 

- - - - - - - -

- - - - - - - -

- - fI. - fI. fI. fI. fI. 

- - fI. - fI. fI. fI. fI. 

- - fI. - fI. fI. fI. fI. 

- - fI. - fI. fI. fI. fI. 

- - - - fI. fI. fI. fI. 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine . 
S -Form Mode Coding (hex) 

ANDA apr (A). (M) => A IMM 84 ii 1 -

Logical And A with Memory DIR 94 dd 3 

EXT B4 hh II 3 
IDX A4 xb 3 

IDX1 A4 xb ff 3 

IDX2 A4 xb ee ff 4 
[D,IDX] A4 xb 6 
[IDX2] A4 xb ee ff 6 

ANDB apr (B). (M) => B IMM C4 ii 1 -

Logical And B with Memory DIR D4 dd 3 

EXT F4 hh II 3 

IDX E4 xb 3 
IDX1 E4 xbff 3 
IDX2 E4 xb ee ff 4 

[D,IDX] E4 xb 6 

[IDX2] E4 xb ee ff 6 

ANDCC apr (CCR) • (M) => CCR IMM 10 ii 1 1) 

Logical And CCR with Memory 

ASL opr EXT 78 hh II 4 -- IDX 68 xb 3 
~O 
C b7 bO IDX1 68 xb ff 4 

, IDX2 68 xb ee ff 5 

Arithmetic Shift Left [D,IDX] 68 xb 6 
[IDX2] 68xbeeff 6 

ASLA Arithmetic Shift Left Accumulator A INH 48 1 

ASLB Arithmetic Shift Left Accumulator B INH 58 1 

ASLD .- .- INH 59 1 -

[J+--[[IJI]+ilIIIJ+- 0 
C b7 A bO b7 B bO 

Arithmetic Shift Left Double 

ASR opr EXT 77 hh II 4 -

~ IDX 67 xb 3 

b7 bO C IDX1 67 xb ff 4 

Arithmetic Shift Right IDX2 67 xb ee ff 5 
[D,IDX] 67 xb 6 
[IDX2] 67 xb ee ff 6 

ASRA Arithmetic Shift Right Accumulator A INH 47 1 
ASRB Arithmetic Shift Right Accumulator B INH 57 1 

BCC rei Branch if Carry Clear (if C = 0) REL 24 rr 3/1 -

BCLR apr, msk (M) • (mm) => M DIR 4D dd mm 4 -

Clear Bit(s) in Memory EXT 1D hh II mm 4 

I IDX aD xb mm 4 
IDX1 OD xb ff mm 4 

IDX2 OD xb ee ff mm 6 

BCS rei Branch if Carry Set (if C = 1) REL 25 rr 3/1 -

BEQ rei Branch if Equal (if Z = 1) REL 27 rr 3/1 -

BGE rei Branch if Greater Than or Equal REL 2C rr 3/1 -

(if N (j) V = 0) (signed) 

BGND Place CPU in Background Mode INH 00 5 -
see Background Mode section. 

BGT rei Branch if Greater Than REL 2E rr 3/1 -

(if Z + (N (j) V) = 0) (signed) 

BHI rei Branch if Higher REL 22 rr 3/1 -

(if C + Z = 0) (unsigned) 

CPU12 INSTRUCTION REFERENCE 

REFERENCE MANUAL 

X H I 

- - -

- - -

1) 1) 1) 

- - -

- - -

- - -

- - -
- - -

- - -
- - -
- - -

- - -

- - -

- - -

N Z V C 

~ ~ 0 -

~ ~ 0 -

1) 1) 1) 1) 

~ ~ ~ ~ 

~ ~ ~ ~ 

~ ~ ~ ~ 

- - - -
~ ~ a -

- - - -

- - - -
- - - -

- - - -

- - - -

- - - -

MOTOROLA 

A-3 



i 

Source 
Form 

BHS rei 

BITA opr 

BITB opr 

BLE rei 

BLO rei 

BLS rei 

BLT rei 

BMI rei 

BNE rei 

BPL rei 

BRA rei 

BRCLR 
opr, msk, rei 

BRN rei 

BRSET 
opr, msk, rei 

BSET opr, msk 

BSR rei 

MOTOROLA 

A-4 

Table A-1 Instruction Set Summary (Continued) 

Operation 
Addr. Machine 
Mode Coding (hex) 

Branch if Higher or Same I REL 24 rr 
(if C = 0) (unsigned) 

i same function as BCC 

(A). (M) 

I 

IMM 85 ii 
Logical And A with Memory OIR 95 dd 

EXT B5 hh II 
lOX A5 xb 

IOX1 A5 xbff 

IOX2 A5xbeeff 
[O,IOX] A5 xb 
[IOX2] A5xbeeff 

(B). (M) IMM C5 ii 
Logical And B with Memory OIR 05 dd 

EXT F5 hh II 
lOX E5 xb 

IOX1 E5 xbff 
IOX2 E5 xb ee ff 

[O,IOX] E5 xb 

[IOX2] E5 xb ee ff 

Branch if Less Than or Equal REL 2F rr 
(if Z + (N Ell V) = 1) (signed) 

Branch if Lower REL 25 rr 

(if C = 1) (unsigned) 
same function as BCS 

Branch if Lower or Same REL 23 rr 
(if C + Z = 1) (unsigned) 

Branch if Less Than REL 20 rr 
(if N Ell V = 1) (signed) 

Branch if Minus (if N = 1) REL 2B rr 

Branch if Not Equal (if Z = 0) REL 26 rr 

Branch if Plus (if N = 0) REL 2A rr 

Branch Always (if 1 = 1) REL 20 rr 

Branch if (M) • (mm) = 0 OIR 4F dd mm rr 
(if All Selected Bit(s) Clear) EXT 1F hh II mm rr 

lOX OF xb mm rr 
IOX1 OF xb ff mm rr 
IOX2 OF xb ee ff mm rr 

Branch Never (if 1 = 0) REL 21 rr 

Branch if (M) • (mm) = 0 OIR 4E dd mm rr 
(if All Selected Bit(s) Set) EXT 1Ehh II mm rr 

lOX OE xb mm rr 

IOX1 OE xb ff mm rr 
IOX2 OE xb ee ff mm rr 

(M) + (mm) => M OIR 4C dd mm 
Set Bit(s) in Memory EXT 1C hh II mm 

lOX OC xb mm 
IOX1 OC xb ff mm 

IOX2 OCxbeeffmm 

(SP) - 2 => SP; REL 07 rr 

RTNH:RTNL => M(sP):M(sP+1) 
Subroutine address => PC 

Branch to Subroutine 

INSTRUCTION REFERENCE 

. -
311 

1 

3 
3 
3 
3 
4 

6 
6 

1 
3 

3 
3 
3 
4 
6 

6 

311 

3/1 

3/1 

3/1 

3/1 

3/1 

3/1 

3 

4 

5 
4 

6 
8 

1 

4 

5 
4 
6 

8 

4 
4 
4 

4 

6 

4 

S X H I N Z V C 

- - - - - - - -

- - - - D. D. 0 -

- - - - D. D. 0 -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -
- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - D. D. 0 -

- - - - - - - -

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine . 
S X 

Form Mode Coding (hex) -
BVC rei Branch if Overflow Bit Clear (if V = 0) REL 28 rr 3/1 - -
BVS rei Branch if Overilow Bit Set (if V = 1) REL 29 rr 3/1 - -
CALL apr, page (SP) - 2 => SP; EXT 4A hh II pg 8 - -

RTNH;RTNL => M(sP):M(sP+1) IDX 14B xb pg 8 
(SP) - 1 => SP; IDXl 4B xb ff pg 8 

(PPG) => M(sP); ! IDX2 14B xb ee ff pg 9 

ipg => PPAGE register; I 
I Program address => PC i 

I 
Call Subroutine in ex1ended memory 
(Program may be located on another 
expansion memory page.) 

CALL [D,r] Indirect modes get program address [D,IDX] 4B xb 10 - -

CALL [opr,r] and new pg value based on pointer. [IDX2] 4B xb ee ff 10 

r= X, Y, SP, or PC 

CBA (A)-(B) INH 1817 2 - -

Compare 8-Bit Accumulators 

CLC O=>C IMM 10 FE 1 - -

Translates to ANDCC #$FE 

CLI o => I IMM 10 EF 1 - -

Translates to ANDCC #$EF 
(enables I-bit interrupts) 

CLR opr O=>M Clear Memory Location EXT 79 hh II 3 - -
IDX 69 xb 2 

IDXl 69 xbff 3 
IDX2 69xbeeff 3 

[D,IDX] 69 xb 5 

[IDX2] 69 xb ee ff 5 
CLRA O=>A Clear Accumulator A INH 87 1 
CLRB O=>B Clear Accumulator B INH C7 1 

CLV O=>V IMM 10 FD 1 - -
Translates to ANDCC #$FD 

CMPA opr (A)-(M) IMM 81 ii 1 - -
Compare Accumulator A with Memory DIR 91 dd 3 

EXT Bl hh II 3 
IDX Al xb 3 
IDXl Al xbff 3 
IDX2 Al xbeeff 4 

[D,IDX] Al xb 6 
[IDX2] Al xbeeff 6 

CMPB apr (B)-(M) IMM Cl ii 1 - -

Compare Accumulator B with Memory DIR Dl dd 3 
EXT Fl hh II 3 
IDX El xb 3 

IDXl El xb ff 3 
IDX2 El xbeeff 4 

[D,IDX] El xb 6 
[IDX2] El xbeeff 6 

CPU12 INSTRUCTION REFERENCE 

REFERENCE MANUAL 

H I 

- -

- -

- -

- -

- -

- -

- 0 

- -

- -

- -

- -

N Z V C 

- - - -

- - - -

- - - -

- - - -

'" '" '" '" 
- - - 0 

- - - -

0 1 0 0 

- - 0 -

'" '" '" '" 

'" '" '" '" 

MOTOROLA 

A-5 



Source 
Form 

COM opr 

COMA 
COMB 

CPD opr 

CPS opr 

CPX opr 

Cpy opr 

DAA 

DBEQ cntr, rei 

DBNE cntr, rei 

MOTOROLA 

A-6 

I 

Table A-1 Instruction Set Summary (Continued) 

Operation 
Addr, Machine 
Mode Coding (hex) 

(M) ~ M equivalentto $FF - (M) ~ M EXT 71 hh II 
l's Complement Memory Location IDX 61 xb 

IDX! 61 xbff 
IDX2 61 xbeeff 

[D,IDX] 61 xb 

[IDX2] 61 xbeeff 
(A)~A Complement Accumulator A INH 41 

(B)~B Complement Accumulator B INH 51 

(AB) - (M:M+l) IMM 8C ii kk 
Compare D to Memory (16-Bit) DIR 9C dd 

EXT BC hh II 
IDX AC xb 

IDX1 AC xblf 
IDX2 AC xb ee If 

[D,IDX] AC xb 

[IDX2] AC xb ee If 

(SP) - (M:M+ 1) IMM 8F jj kk 
Compare SP to Memory (16-Bit) DIR 9F dd 

EXT BF hh II 

IDX AF xb 

IDXl AF xbff 
IDX2 AF xb ee If 

[D,IDX] AFxb 
[IDX2] AF xb ee If 

(X) - (M:M+l) IMM 8Ejj kk 
Compare X to Memory (16-Bit) DIR 9E dd 

EXT BE hh II 

IDX AE xb 

IDXl AE xbff 
IDX2 AE xb ee If 

[D,IDX] AE xb 
[IDX2] AE xb ee If 

(Y) - (M:M+l) IMM 8D jj kk 
Compare Y to Memory (16-Bit) DIR 90 dd 

EXT BD hh II 

IDX AD xb 

IDXl AD xbff 
IDX2 ADxbeelf 

[D,IDX] AD xb 
[IDX2] ADxbeelf 

Adjust Sum to BCD INH 1807 
Decimal Adjust Accumulator A 

(cntr) -1~ cntr REL 04 Ib rr 
if (cntr) = 0, then Branch (9-bit) 
else Continue to next instruction 

Decrement Counter and Branch if = ° 
(entr = A, B, D, X, Y, or SP) 

(cntr) - 1 ~ cntr REL 041b rr 
If (cntr) not = 0, then Branch; (9-bit) 
else Continue to next instruction 

Decrement Counter and Branch if * 0 
(cntr = A, B, D, X, Y, or SP) 

INSTRUCTION REFERENCE 

-
4 

3 
4 
5 
6 
6 
1 
1 

2 
3 

3 

3 
3 
4 

6 

6 

2 
3 
3 

3 

3 
4 
6 
6 

2 
3 
3 
3 
3 
4 

6 
6 

2 

3 
3 
3 
3 
4 
6 
6 

3 

3 

3 

S X H I N Z V C 

- - - - '" '" ° 1 

- - - - '" '" '" '" 

- - - - '" '" '" '" 

- - - - '" '" '" '" 

- - - - '" '" '" '" 

- - - - '" '" ? '" 
- - - - - - - -

- - - - - - - -

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine - S Form Mode Coding (hex) 

DEC apr (M) -$01 => M EXT 73 hh II 4 -
Decrement Memory Location IDX 63 xb 3 

IDXl 63 xb ff 4 
IDX2 63 xbeeff 5 

[D,IDX] 63 xb 6 
[IDX2] 63xbeeff 6 

DECA (A) - $01 => A Decrement A INH 43 1 
DECB (B) - $01 => B Decrement B INH 53 1 

DES (SP) - $0001 => SP IDX lB 9F 2 -

Translates to LEAS -1 ,SP 

DEX (X) - $0001 => X INH 09 1 -
Decrement Index Register X 

DEY (Y) - $0001 => Y INH 03 1 -

Decrement Index Register Y 

EDIV (Y:D) + (X) => Y Remainder => D INH 11 11 -
32 x 16 Bit => 16 Bit Divide (unsigned) 

EDIVS (Y:D) + (X) => Y Remainder => D INH 1814 12 -

32 x 16 Bit => 16 Bit Divide (signed) I 
EMACS sum (M(~:M(x+1) x (M(y):M(Y+1) + (M-M+3) => ! Special 1812 hh II 13 -

M- +3 I 

16 x 16 Bit => 32 Bit 
Multiply and Accumulate (signed) 

EMAXD apr MAX((D), (M:M+ 1» => D IDX 181A xb 4 -

MAX of 2 Unsigned 16-Bit Values IDXl 18 lAxb ff 4 
IDX2 181Axbeeff 5 

N, Z, V and C status bits reflect result of [D,IDX] 181Axb 7 
internal compare ((D) - (M:M+ 1)) [I DX2] 181Axbeeff 7 

EMAXM apr MAX((D), (M:M+l» => M:M+l IDX 18 IE xb 4 -
MAX of 2 Unsigned 16-Bit Values IDXl 18 IE xbff 5 

IDX2 181Exbeeff 6 
N, Z, V and C status bits reflect result of [D,IDX] 181E xb 7 
internal compare ((D) - (M:M+ 1» [IDX2] 181Exbeeff 7 

EMIND apr MIN((D), (M:M+l» => D IDX 181B xb 4 -

MIN of 2 Unsigned 16-Bit Values 
I 

IDXl 181B xb ff 4 

I IDX2 18 1 B xb ee ff 5 

I N, Z, V and C status bits reflect result of [D,IDX] 181B xb 7 
internal compare ((D) - (M:M+l)) [IDX2] 181 B xb ee ff 7 

EMINM apr MIN((D), (M:M+l)) => M:M+l IDX 181F xb 4 -

MIN of 2 Unsigned 16-Bit Values IDXl 18 IF xb ff 5 
IDX2 181Fxbeeff 6 

N, Z, V and C status bits reflect result of [D,IDX] 181F xb 7 
intemal compare ((D) - (M:M+ 1» [IDX2] 18 IF xb ee ff 7 

EMUL (D) x (Y) => Y:D INH 13 3 -
16 x 16 Bit Multiply (unsigned) I 

EMULS (D) x (Y) => Y:D INH 1813 3 -

16 x 16 Bit Multiply (signed) 

CPU12 INSTRUCTION REFERENCE 
REFERENCE MANUAL 

X H I 

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

N Z V C 

,... ,... ,... -

- - - -

- ,... - -

- ,... - -

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... ,... ,... 

,... ,... - ,... 

,... ,... - ,... 

MOTOROLA 

A-7 



Source 
Form 

EORA apr 

EORB apr 

ETBL opr 

EXG rl, r2 

FDIV 

IBEQ cntr. rei 

I 

IBNE entr, rei 

IDIV 

IDIVS 

MOTOROLA 

A-8 

Table A-1 Instruction Set Summary (Continued) 

Operation Addr. Machine 
Mode Coding (hex) 

(A) Ell (M) => A IMM 88 ii 
Exclusive-OR A with Memory DIR 98 dd 

EXT B8 hh II 
IDX A8 xb 

IDX1 A8 xbft 
IDX2 A8xbeeft 

[D,IDX] AS xb 
[IDX2] A8xbeeft 

(B) Ell (M) => B IMM C8ii 
Exclusive-OR B with Memory DIR D8 dd 

EXT F8 hh II 
IDX E8 xb 

IDX1 E8 xbft 

IDX2 E8 xb ee ff 

[D,IDX] E8 xb 
[IDX2] E8 xb eeft 

(M:M+ 1)+ [(B)x((M+2:M+3) - (M:M+ 1 ))] => D IDX 18 3F xb 
16-Bit Table Lookup and Interpolate 

Initialize B, and index before ETBL. 

<ea> points at first table entry (M:M+ 1) 
and B is fractional part of lookup value 

(no indirect addr. modes allowed) 

(r1) <=> (r2) (if r1 and r2 same size) or INH B7 eb 
$00:(r1) => r2 (if r1 =8-bit; r2=16-bit) or 
(r1 Iow) <=>(r2) (if r1=16-bit; r2=8-bit) 

r1 and r2 may be 
A, B, CCR, D, X, Y, or SP 

(D) + (X) => X; r => D INH 1811 
16 x 16 Bit Fractional Divide 

(cntr) + 1 => cntr REL 041b rr 
If (cntr) = O. then Branch (9-bit) I 
else Continue to next instruction 

I 
Increment Counter and Branch if = 0 
(cntr = A, B, D, X, Y, or SP) 

(cntr) + 1 => entr REL 041b rr 
if (entr) not = 0, then Branch; (9-bit) 

else Continue to next instruction 

Increment Counter and Branch if " 0 
(entr = A, B, D, X, Y, or SP) 

(D) + (X) => X; r => D INH 1810 
16 x 16 Bit Integer Divide (unsigned) 

(D) + (X) => X; r => D INH 1815 
16 x 16 Bit Integer Divide (signed) 

INSTRUCTION REFERENCE 

-
1 
3 

3 
3 
3 
4 
6 
6 

1 

3 
3 
3 
3 
4 

6 
6 

10 

1 

12 

3 

3 

12 

12 

S X H I N Z V C 

- - - - " " 0 -

- - - - " " 0 -

- - - - " " - ? 

- - - - - - - -

- - - - - " " " 
- - - - - - - -

- - - - - - - -

- - - - - " 0 " 
- - - - " " " " 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine - S Form Mode Coding (hex) 

INC apr (M) + $01"", M EXT 72 hh II 4 -

Increment Memory Byte IDX 62 xb 3 

IDXl 62 xbff 4 

IDX2 62 xb eelt 5 
[D,IDX] 62 xb 6 

I 

I I [IDX2] 62xbeelt 6 

INCA (A) + $01"", A Increment Ace. A I INH 142 1 

INCB (B) + $01 "'" B Increment Ace. B i INH 52 1 

INS (SP) + $0001 "'" SP I IDX lB 81 2 -

Translates to LEAS I,SP i 
INX (X) + $0001 "'" X INH 08 1 -

Increment Index Register X 

INY (Y) + $0001 "'" Y INH 02 1 -

Increment Index Register Y 

JMP apr Subroutine address => PC EXT 06 hh II 3 -

IDX 05 xb 3 

Jump IDXl 05 xb It 3 

IDX2 05 xb ee It 4 
[D,IDX] 05 xb 6 

[IDX2] 05 xb ee It 6 

JSR apr (SP) -2 "'" SP: DIR 17 dd 4 -

RTNH:RTNL"'" M(sP):M(sP+1): EXT 16 hh II 4 
Subroutine address"", PC IDX 15 xb 4 

IDXl 15 xblt 4 
Jump to Subroutine IDX2 15xbeeff 5 

[D,IDX] 15 xb 7 

[IDX2] 15xbeelt 7 

LBCC rei Long Branch if Carry Clear (if C = 0) REL 1824 qq rr 4/3 -

LBCS rei Long Branch if Carry Set (if C = 1 ) REL 1825qqrr 4/3 -

LBEQ rei Long Branch if Equal (if Z = 1) REL 1827qq rr 4/3 -
LBGE rei Long Branch Greater Than or Equal REL 182Cqqrr 4/3 -

(if N Ell V = 0) (signed) 

LBGT rei Long Branch if Greater Than REL 182Eqqrr 4/3 -
(if Z -I- (N Ell V) = 0) (signed) 

LBHI rei Long Branch if Higher REL 1822qqrr 4/3 -

(if C -I- Z = 0) (unsigned) 

LBHS rei Long Branch if Higher or Same REL 1824 qq rr 4/3 -
(if C = 0) (unsigned) 
same function as LBCC 

LBLE rei Long Branch if Less Than or Equal REL 182Fqq rr 4/3 -

(if Z -I- (N Ell V) = 1) (signed) 

LBLO rei Long Branch if Lower REL 1825qq rr 4/3 -

(if C = 1) (unsigned) 
same function as LBCS 

LBLS rei Long Branch if Lower or Same REL 1823qq rr 4/3 -

(if C -I- Z = 1) (unsigned) 

LBLT rei Long Branch if Less Than REL 18 2D qq rr 4/3 -

(if N Ell V = 1) (signed) 

LBMI rei Long Branch if Minus (if N = 1) REL 182Bqqrr 4/3 -
LBNE rei Long Branch if Not Equal (if Z = 0) REL 1826qqrr 4/3 -

LBPL rei Long Branch if Plus (if N = 0) REL 182Aqqrr 4/3 -

LBRA rei Long Branch Always (if 1 =1) REL 1820qqrr 4 -

CPU12 INSTRUCTION REFERENCE 

REFERENCE MANUAL 

X H I 

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- -1-

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

N Z V C 

Ll Ll Ll -

I 
- - - -

- Ll - -

- Ll - -

- - - -

- - - -

- - - -
- - - -
- - - -
- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -
- - - -

- - - -

- - - -

MOTOROLA 

A-9 



Source 
Form 

LBRN reI 

LBVC reI 

LBVS reI 

LDAA opr 

I 

LDAB opr 

LDD opr 

LDS opr 

LDX opr 

LDY opr 

LEAS opr 

MOTOROLA 

A-10 

Table A-1 Instruction Set Summary (Continued) 

Operation 
Addr. Machine 
Mode Coding (hex) 

Long Branch Never (ill = 0) REL 1821 qq rr 

Long Branch il Overflow Bit Clear (if V=O) REL 1828qqrr 

Long Branch if Overflow Bit Set (if V = 1) REL 1829qq rr 

(M) =>A IMM 86 ii 
Load Accumulator A DIR 96 dd 

EXT B6 hh II 
IDX A6 xb 

IDX1 A6 xbll 
IDX2 A6xbeelf 

[D,IDX] A6 xb 
[IDX2] A6xbeelf 

(M) => B IMM C6ii 
Load Accumulator B DIR D6 dd 

EXT F6 hh II 
IDX E6 xb 

IDX1 E6 xblf 
IDX2· E6 xb ee If 

[D,IDX] E6 xb 
[IDX2] E6xbeeff 

(M:M+ 1) => A:B IMM CCjj kk 
Load Double Accumulator D (A:B) DIR DC dd 

EXT FC hh II 
IDX EC xb 

IDX1 EC xblf 
IDX2 EC xb ee ff 

[D,IDX] EC xb 
[IDX2] EC xb ee If 

(M:M+1) => SP IMM CF jj kk 
Load Stack Pointer DIR DF dd 

EXT FF hh II 
IDX EF xb 

IDX1 EF xb If 
IDX2 EF xb ee ff 

[D,IDX] EF xb 
[IDX2] EF xb ee If 

(M:M+1) => X IMM CEjj kk 
I Load Index Register X DIR DE dd 

EXT FE hh" 
IDX EE xb 

IDX1 EE xbff 
IDX2 EE xb ee If 

[O,IDX] EE xb 
[IDX2] EE xb ee If 

(M:M+1) => Y IMM CD jj kk 
Load Index Register Y DIR DD dd 

EXT FD hh II 
IDX ED xb 

IDX1 ED xb If 
IDX2 ED xb ee If 

[D,IDX] ED xb 
[IOX2] ED xb ee If 

Effective Address => SP IDX 1B xb 
Load Effective Address into SP IDX1 1B xb II 

IDX2 1Bxbeefl 

INSTRUCTION REFERENCE 

-
3 

4/3 

4/3 

1 
3 
3 
3 
3 
4 
6 
6 

1 
3 
3 
3 
3 
4 
6 
6 

2 

3 
3 
3 
3 
4 
6 
6 

2 
3 
3 
3 
3 
4 
6 
6 

2 
3 
3 
3 
3 
4 
6 

6 

2 
3 
3 
3 
3 
4 
6 
6 

2 

2 
2 

S X H I N Z V C 

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - '" '" 0 -

- - - - '" '" a -

- - - - '" '" a -

- - - - '" '" a -

- - - - '" '" a -

- - - - '" '" a -

- - - - - - - -

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine - S Form Mode Coding (hex) 

LEAX apr Effective Address => X I IDX 1A xb 2 -

Load Effective Address into X IDX1 1A xb ff 2 

IDX2 1A xb ee ff 2 

LEAYapr Effective Address => Y IDX 19 xb 2 -
Load Effective Address into Y IDX1 19 xb ff 2 

IDX2 19 xb ee ff 2 

LSL opr .-- EXT 78 hh II 4 -

~I ! I I I I i ~O IDX 68 xb 3 
C b7 bO IDX1 68 xb ff 4 

Logical Shift Left IDX2 68 xb ee ff 5 

! 
same function as ASL [D,IDX] 68 xb 6 

[IDX2] 68 xb ee ff 6 
LSLA Logical Shift Accumulator A to Left INH 48 1 

LSLB Logical Shift Accumulator B to Left INH 58 1 

LSLD .-- .-- INH 59 1 -

o.-c:rr:r:IJ~O 
C b7 A bO b7 B bO 

Logical Shift Left D Accumulator 
same function as ASLD 

LSR opr --------+ EXT 74 hh II 4 -
O~ IDX 64 xb 3 

b7 bO C IDX1 64 xb ff 4 

Logical Shift Right IDX2 64 xb ee ff 5 
[D,IDX] 64 xb 6 
[IDX2] 64 xb eeff 6 

LSRA Logical Shift Accumulator A to Right INH 44 1 

LSRB Logical Shift Accumulator B to Right INH 54 1 

LSRD -~ --+ INH 49 1 -
O~II I II ~.J---.o 

b7 A bO b7 B bO C 

Logical Shift Right D Accumulator 

MAX A MAX((A), (M)) => A IDX 1818 xb 4 -

MAX of 2 Unsigned 8·Bit Values IDX1 1818 xb ff 4 
IDX2 1818xbeeff 5 

N, Z, V and C status bits reflect result of [D,IDX] 1818 xb 7 
intemal compare ((A) - (M)). [IDX2] 1818xbeeff 7 

MAXM MAX((A), (M)) => M IDX 18 1C xb 4 -

MAX of 2 Unsigned 8·Bit Values IDX1 181C xbff 5 
IDX2 181Cxbeeff 6 

N, Z, V and C status bits reflect result of [D,IDX] 181C xb 7 
intemal compare ((A) - (M)). [IDX2] 181Cxbeeff 7 

MEM f1 (grade) => M(YI; Special 01 5 -

(X) + 4 => X; (Y) + 1 => Y; A unchanged 

if (A) < P1 or (A) > P2 then f1 = 0, else 
f1 =MIN[((A) - P1)xS1, (P2 - (A))xS2, $FFJ 
where: 

A = current crisp input value; 
X points at 4 byte data structure that de-
scribes a trapezoidal membership function 
(P1, P2. S1, S2); 

Y points at fuzzy input (RAM location). 
See instruction details for special cases. 

CPU12 INSTRUCTION REFERENCE 

REFERENCE MANUAL 

X H I 

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- ? -

N Z V C 

- - - -

- - - -

'" '" '" '" 

'" '" '" '" 

0 '" '" '" 

0 '" '" '" 

'" '" '" '" 

'" '" '" '" 

? ? ? ? 

MOTOROLA 

A-11 



Source 
Form 

MINA 

MINM 

MOVB apr!, opr2 

MOVW opr1, opr2 

MUL 

NEG apr 

NEGA 

NEGB 

NOP 

ORAA apr 

ORAB apr 

ORCC apr 

MOTOROLA 

A-12 

I 
I 

Table. A-1 Instruction Set Summary (Continued) 

Operation Addr. Machine 
Mode Coding (hex) 

MIN«A), (M)) => A lOX 1819 xb 
MIN of 2 Unsigned 8·Bit Values 10Xl 1819 xbff 

! IOX2 1819xbeeff 
N, Z, V and C status bits reflect result of [O,IOX] 1819 xb 
internal corn pare «A) - (M)). [IOX2] 1819xbeeft 

MIN«A), (M)) => M lOX 18 ID xb 
MIN of 2 Unsigned 8·Bit Values 10Xl 18IDxbff 

IOX2 18IDxbeeff 
N, Z, V and C status bits reflect result of [O,IOX] 1810 xb 
internal cornpare «A) - (M)). [IOX2] 1810 xb eelf 

(M1) => M2 IMM·EXT 18 OB ii hh II 
Mernory to Mernory Byte·Move (8·Bit) IMM·IOX 1808xbii 

I EXT·EXT 18 OC hh II hh II 

I EXT· lOX 1809xbhhll 
IIOX.EXT 1800 xb hh II 

IOX·IOX 18 OA xb xb 

(M:M+l1) => M:M+12 IMM·EXT 1803 jj kk hh II 
Mernory to Memory Word·Move (16·Bit) IMM·IOX 1800xbjjkk 

EXT·EXT 1804hhllhhll 
EXT·IOX 1801 xb hh II 

IOX·EXT 1805xbhhll 
IOX·IOX 1802xbxb 

(A) x (B) => AB INH 12 

8 x 8 Unsigned Multiply 

O-(M)=>Mor(M)+1 =>M EXT 70 hh II 
2's Complement Negate lOX 60 xb 

IOXl 60 xbff 

IOX2 60xbeeff 
[O,IOX] 60 xb 
[IOX2] 60xbeeff 

o - (A) => A equivalent to (A) + 1 => B INH 40 
Negate Accumulator A 
o - (B) => B equivalent to (8) + 1 => B INH 50 
Negate Accumulator B 

No Operation INH A7 

(A) +(M) =>A IMM 8Aii 
Logical OR A with Memory OIR 9A dd 

EXT BAhh II 
lOX AAxb 

IOX1 AA xbff 
IOX2 AAxbeelf 

[O,IOX] AAxb 
[IOX2] AAxbeeff 

(B) + (M) => B IMM CAii 
Logical OR B with Memory OIR OAdd 

EXT FA hh II 

lOX EA xb 
IOX1 EA xb If 
IOX2 EAxbeelf 

[O,IOX] EAxb 
[IOX2] EAxbeeff 

(CCR) + M => CCR IMM 14 ii 
Logical OR CCR with Memory 

INSTRUCTION REFERENCE 

. -
4 
4 

5 
7 
7 

4 
5 
6 
7 
7 

4 
4 
6 
5 

5 
5 

5 
4 

6 
5 
5 
5 

3 

4 
3 
4 
5 
6 

6 
1 

1 

1 

1 
3 
3 
3 

3 
4 

6 
6 .r----
1 
3 

3 
3 

3 
4 
6 
6 

1 

S X H I N Z V C 

- - - - ... ... ... ... 

- - - - ... ... ... ... 

- - - - - - - -

- - - - - - - -

- - - - - - - ... 

- - - - ... ... ... ... 

- - - - - - - -

- - - - ... ... 0 -

--
- - - - t. ... 0 -

it - it it it it it it 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine - S Form Mode Coding (hex) 

PSHA (SP) - 1 => SP; (A) => M(sP) INH 36 2 -

Push Accumulalor A onto Stack 

PSHB (SP) - 1 => SP; (B) => M(sP) INH 37 2 -

Push Accumulator B onto Stack 

PSHC (SP) - 1 => SP; (CCR) => M(sP) INH 39 2 -

Push CCR onto Stack I 
PSHD (SP) - 2 => SP; (AB) => M(SP\:M(sP+ll INH 3B 2 -

Push 0 Accumulator onto Stack 

PSHX (SP) - 2 => SP; (XH:XL) => M(SPI:M(SP+l) INH 34 2 -

Push Index Register X onto Stack 

PSHY (SP) - 2 => SP; (YH:YL) => M(sP):M(sP+l) INH 35 2 -

Push Index Register Y onto Stack 
-- - -----------+---

PULA (M(sP)) => A; (SP) + 1 => SP INH 32 3 -

Pull Accumulator A from Stack 

PULB (M(sP)) => B; (SP) + 1 => SP INH 33 3 -

Pull Accumulator B from Stack 

PULC (M(sP)) => CCR; (SP) + 1 => SP INH 38 3 ~ 

Pull CCR from Stack 

PULD (M(SP):M(sP+l)) => AB; (SP) + 2 => SP INH 3A 3 -

I 
Pull 0 from Stack 

PULX (M(SP):M(SP+l)) => XH:XL; (SP) + 2 => SP INH 30 3 -

Pull Index Register X from Stack 

PULY (M(sP):M(SP+l)) => YH:YL; (SP) + 2 => SP INH 31 3 -

Pull Index Register Y from Stack 

I
REV 

MIN-MAX rule evaluation Special 183A 3 
.. 

-

Find smallest rule input (MIN). per 
Store to rule outputs unless fuzzy output is rule 

already larger (MAX). byte 

For rule weights see REVW. 

Each rule input is an 8-bit offset from the 
base address in Y. Each rule output is an 8-
bit offset from the base address in Y. $FE 
separates rule inputs from rule outputs. $FF 
terminates the rule list. 

REV may be interrupted. 

CPU12 INSTRUCTION REFERENCE 
REFERENCE MANUAL 

X H I 

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

II ~ ~ 

- - -

- - -

- - -

- - -

N Z V C 

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

~ ~ ~ ~ 

- - - -

- - - -

- - - -

- - ~ -

-

MOTOROLA 

A-13 



Source 
Form 

REVW 

ROL apr 

ROLA 

ROLB 

ROR apr 

RORA 
RORB 

RTC 

RTI 

RTS 

SBA 

MOTOROLA 

A-14 

Table A-1 Instruction Set Summary (Continued) 

Operation 
Addr. Machine 
Mode Coding (hex) 

MIN-MAX rule evaluation Special 183B 
Find smallest rule input (MIN), 
Store to rule outputs unless fuzzy output is 
already larger (MAX). 

Rule weights supported, optional. 

I Each rule input is the 16-bit address of a 
fuzzy input. Each rule output is the 16-bit ad-
dress of a fuzzy output. The value $FFFE 
separates rule inputs from rule outputs. 
$FFFF terminates the rule list. 

REVW may be interrupted. 

I~ 
I EXT 75 hh II 

IIIIII~ lOX 65 xb 
C b7 bO 

10XI 65 xbff 
Rotate Memory Left through Carry IOX2 65xbeeff 

[O,IOX] 65 xb 

[IOX2] 65 xb ee ff 
Rotate A Left through Carry INH 45 

Rotate B Left through Carry INH 55 

EXT 76 hh II 

L;illllll;:;[}J lOX 66 xb 
b7 bO C 10XI 66 xbff 

Rotate Memory Right through Carry IOX2 66 xb ee ff 
[D,IOX] 66 xb 
[IOX2] 66xbeeff 

Rotate A Right through Carry INH 46 
Rotate B Right through Carry INH 56 

(M(sP)) => PPAGE; (SP) + 1 => SP; INH OA 

(M(sP):M(sP+l)) => PCH:PCL; 
(SP) +2=> SP 

Return from Call 

(M(SP)) => CCR; (SP) + 1 => SP INH OB 

(M(SP):M(SP+l)) => B:A; (SP) + 2 => SP 
(M(SP):M(SP+l)) => XH:XL; (SP) + 4 => SP 
(M(sp)'M(SP+l)) => PCH:PCL; (SP) - 2 => SP 

(M(SP):M(SP+l)) => YH:YL; 
(SP) + 4 => SP 

Return from Interrupt 

(M(SP):M(SP+l)) => PCH:PCL; INH 30 
(SP) + 2 => SP 

Return from Subroutine 

(A)- (B) => A INH 1816 
Subtract B from A 

INSTRUCTION REFERENCE 

-.. 
3 
per 
rule 

byte; 
5 

per 
wt. 

I 

4 

3 
4 

5 
6 

6 
1 
1 

4 

3 
4 
5 
6 
6 
1 
1 

6 

8 

5 

2 

S X H I N Z V C 

- - ? - ? ? "" ! 

"" "" 
II II 

- - - - II II II II 

- - - - - - - -

II 1( II II II II II II 

- - - - - - - -

- - - - II II II II 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation 
Addr. Machine . 

S 
Form Mode Coding (hex) -

SBGA apr (A) - (M) - G ~ A IMM 182 ii 1 -

Subtract with Borrow from A DIR 92 dd 3 

EXT IB2 hh II 3 

IDX A2 xb 3 

IDXl A2 xblt 3 

IDX2 A2xbeelt 4 
[D,IDX] A2 xb 6 

[IDX2] A2xbeelt 6 

SBGB apr (B) -(M) -G ~ B 
I 

IMM C2ii 1 -

I Subtract with Borrow from B I DIR D2 dd 3 
I EXT F2 hh II 3 

IDX E2 xb 3 
IDXl E2 xbft 3 

IDX2 E2xbeeft 4 

[D,IDX] E2 xb 6 

[IDX2] E2 xb ee II 6 

SEC I~C IMM 1401 1 -

Translates to ORCC #$01 

SEI 1 ~ I; (inhibit I interrupts) IMM 1410 1 -

Translates to ORCG #$10 

SEV 1~V IMM 1402 1 -

Translates to ORGG #$02 

SEX r1, r2 $00:(r1) => r2 if rl , bit 7 is 0 or INH B7 eb 1 -

$FF:(rl) => r2 if rl, bit 7 is 1 

Sign Extend 8·bit rl to 16·bit r2 
rl may be A, B, or CCR 
r2 may be D, X, Y, or SP 

Alternate mnemonic for TFR rl , r2 

STAA apr (A) => M DIR 5A dd 2 -

Store Accumulator A to Memory EXT 7A hh II 3 

lOX 6A xb 2 
IDXl 6A xb If 3 

IDX2 6Axbeelt 3 
[D,IOX] 6A xb 5 
[IDX2] 6A xb ee If 5 

STAB apr (B) => M OIR 5B dd 2 -
Store Accumulator B to Memory EXT 7B hh II 3 

lOX 6B xb 2 

IDXl 6B xbll 3 
IDX2 6B xb ee II 3 

[D,IDX] 6B xb 5 
[IDX2] 6B xb eeft 5 

STD apr (A) => M, (B) => M+ 1 DIR 5G dd 2 -

Store Double Accumulator EXT 7C hh II 3 
IDX 6C xb 2 

IDXl 6C xblt 3 
IDX2 6G xb eelt 3 

[D,IDX] 6G xb 5 
[IDX2] 6Cxbeeff 5 

CPU12 INSTRUCTION REFERENCE 
REFERENCE MANUAL 

X H I 

- - -

- - -

- - -

- - 1 

- - -

- - -

- - -

- - -

- - -

N Z V C 

L'. L'. L'. L'. 

L'. L'. L'. L'. 

- - - 1 

- - - -

- - 1 -

- - - -

L'. L'. 0 -

L'. L'. 0 -

L'. L'. 0 -

MOTOROLA 

A-15 



Source 
Form 

STOP 

STS apr 

STX apr 

STY apr 

SUBA apr 

SUBB apr 

MOTOROLA 

A-16 

Table A-1 Instruction Set Summary (Continued) 

Operation Addr. Machine 
Mode Coding (hex) 

(SP) - 2 => SP; INH 183E 

RTNH:RTNL => M(SP):M(sP+1); 
(SP) - 2 => SP; (YH:YLl => M(sP):M(sP+1); 
(SP) - 2 => SP; (XH:XLl => M(sP):M(SP+1); 
(SP) - 2 => SP; (B:A) => M(sP):M(SP+1); 
(SP) - 1 => SP; (CCR) => M(SP); 
STOP All Clocks 

If S control bit = 1, the STOP instruction is 
. disabled and acts like a two-cycle NOP. 

Registers stacked to allow quicker recovery 
by interrupt. 

(SPH:SPLl => M:M+ 1 OIR 5F dd 
Store Stack Pointer EXT 7F hh II 

lOX 6F xb 

10XI 6F xbll 
IOX2 6F xb ee II 

[O,IOX] 6F xb 
[IOX2] 6F xb ee II 

(XH:XLl => M:M+ 1 OIR 5E dd 
Store Index Register X EXT 7E hh II 

lOX 6E xb 
10XI 6E xbll 
IOX2 6E xb ee II 

[O,IOX] 6E xb 
[IOX2] 6E xb ee II 

(YH:YLl => M:M+ 1 OIR 50 dd 
Store Index Register Y EXT 70 hh II 

lOX 60 xb 
10XI 60 xbll 
IOX2 60 xb ee II 

[O,IOX] 60 xb 
[IOX2] 60 xb ee" 

(A) - (M) => A IMM 80 ii 
Subtract Memory from Accumulator A OIR 90 dd 

EXT BO hh II 
lOX AO xb 

10XI AO xbll 
IOX2 AOxbeeli 

[O,IOX] AO xb 

[IOX2] AO xb ee ff 

(B)- (M) => B IMM COii 
Subtract Memory from Accumulator B OIR 00 dd 

EXT FO hh II 
lOX EO xb 

10XI EO xbll 
IOX2 EO xb eell 

[O,IOX] EO xb 
[IOX2] EO xb ee tf 

INSTRUCTION REFERENCE 

. -
.. 

9 

+5 
or .. 

+2 

I 

2 
3 

2 
3 

3 
5 
5 

2 

3 
2 

3 
3 
5 
5 

2 

3 
2 

3 
3 
5 
5 

1 

3 
3 
3 
3 

4 
6 
6 

1 
3 

3 
3 
3 
4 
6 

6 

S X H I N Z V C 

- - - - - - - -

- - - - II. LI. o -

- - - - LI. LI. 0 -

- - - - LI. LI. 0 -

- - - - LI. LI. LI. LI. 

- - - - II. II. LI. II. 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source 
Operation 

Addr. Machine . 
S Form Mode Coding (hex) -

SUBD apr (D) - (M:M+1) =:> D IMM 83 jj kk 2 -

Subtract Memory from D (A:B) DIR 93 dd 3 

EXT B3 hh II 3 

IDX A3 xb 3 

IDX1 A3 xb ff 3 

IDX2 A3 xb eeft 4 

[D,IDX] A3 xb 6 
[IDX2] A3xbeeft 6 

SWI (SP)-2 =:> SP; INH 3F 9 -

RTNH:RTNL =:> M(SP):M(SP+1); 

(SP) - 2 =:> SP; (VH:VLl =:> M(sP):M(sP+1); 

(SP) - 2 =:> SP; (XH:XL) =:> M(sP):M(sP+1); 
(SP) - 2 =:> SP; (B:A) =:> M(sP):M(sp+ 1); 

(SP) - 1 =:> SP; (CCR) =:> M(sP) 

1 =:> I; (SWI Vector) =:> PC 

Software Interrupt 

TAB (A)=:>B INH 180E 2 -

Transfer A to 8 

TAP (A)=:>CCR INH B702 1 Ll 

Translates to TFR A , CCR 

TBA (B) => A INH 18 OF 2 -

Transfer B to A 

TBEQ entr, rei If (cntr) = 0, then Branch; REl 04 Ib rr 3 -

else Continue to next instruction (9-bit) 

Test Counter and Branch if Zero 

(cntr = A, B, D, X,V, or SP) 

TBlopr (M) + [(B) x ((M+1) - (M))] =:> A IDX 18 3D xb 8 -
8·Bit Table lookup and Interpolate 

Initialize B, and index before TBl. 

<ea> points at first 8-bit table entry (M) and 
B is fractional part of lookup value. 

(no indirect addressing modes allowed.) 

TBNE entr, rei If (cntr) not = 0, then Branch; REl 04 Ib rr 3 -
else Continue to next instruction (9·bit) 

Test Counter and Branch if Not Zero 

(cntr=A, B, D, X,V, orSP) 

TFR rl, r2 (r1)=:>r2or INH 87 eb 1 -

$00:(r1) =:> r2 or or 
(r1 [7:0]) =:> r2 Ll 

Transfer Register to Register 

r1 and r2 may be A, B, CCR, D, X, V, or SP 

TPA (CCR)=:>A INH B720 1 -
Translates to TFR CCR , A 

CPU12 INSTRUCTION REFERENCE 

REFERENCE MANUAL 

X H I 

- - -

- - 1 

- - -

1) Ll Ll 

- - -

- - -

- - -

- - -

- - -

1) Ll Ll 

- - -

N Z V C 

Ll Ll Ll Ll 

- - - -

Ll Ll 0 -

Ll Ll Ll Ll 

Ll Ll 0 -

- - - -

Ll Ll - ? 

- - - -

- - - -

Ll Ll Ll Ll 

- - - -

MOTOROLA 

A-17 



Source 
Form 

TRAP 

TST apr 

TSTA 
TSTB 

TSX 

TSY 

TXS 

TYS 

WAI 

WAV 

MOTOROLA 

A-18 

Table A-1 Instruction Set Summary (Continued) 

Operation Addr. Machine 
Mode Coding (hex) 

(SP) - 2 => SP; INH 18tn 

RTNH:RTNL => M(sP):M(SP+l); tn = $30-$39 

(SP) - 2 => SP; (YH:YL) => M(sP):M(sP+l): or 

(SP) - 2 => SP; (XH:XL) => M(sP):M(sP+1): $4Q-$FF 

I (SP) - 2 => SP; (S:A) => M(sP):M(sP+l); 
I (SP) - 1 => SP; (CCR) => M(sP) 

1 => I; (TRAP Vector) => PC 

Unimplemented opcode trap 

(M)-O EXT F7 hh II 
Test Memory for Zero or Minus lOX E7 xb 

10Xl E7 xblf 
IOX2 E7 xb ee If 

[O.IOX] E7 xb 

[IOX2] E7 xb ee ff 
(A)-O Test A for Zero or Minus INH 97 
(8)-0 Test 8 for Zero or Minus INH 07 

(SP) => X INH 8775 
Translates to TFR SP,X 

(SP) => Y INH S776 
Translates to TFR SP,Y 

(X) => SP INH 8757 
Translates to TFR X,SP 

(Y) => SP INH 8767 
Translates to TFR Y,SP 

(SP) - 2 => SP; INH 3E 

RTNH:RTNL => M(SP):M(SP+1); 
(SP) - 2 => SP; (YH:YL) => M(sP):M(sP+l); 
(SP) - 2 => SP; (XH:XLl => M(sP):M(SP+l); 
(SP) - 2 => SP; (8:A) => M(SpI'M(SP+l); 
(SP) - 1 => SP; (CCR) => M(sP); 

WAIT for interrupt 

Special 183C 

B 

L 8;F;=} Y:O 
i ~ 1 

B 

L F;=}X 
; = 1 

Calculate Sum of Products and Sum of 
Weights for Weighted Average Calculation 

Initialize S, X, and Y before WAV. Sspecifies 
number of elements. X points at first element 
in Sj list. Y points at first element in Fj list. 

All Sj and Fj elements are 8-bits. 

If interrupted, 6 extra bytes of stack used for 
intermediate values 

INSTRUCTION REFERENCE 

. -
10 

3 
3 
3 
4 
6 

6 
1 
1 

1 

1 

1 

1 

.. 
8 
(in) 

+ 
5 

(int) 

.. 
8 
per 

lable 

S X H I N Z V C 

0 0 0 1 0 0 0 0 

- - - - t. t. 0 0 

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

or 

- - - 1 - - - -

or 

- 1 - 1 - - - -

- - ? - ? t. ? ? 

CPU12 

REFERENCE MANUAL 



Table A-1 Instruction Set Summary (Continued) 

Source Operation Addr. Machine 
Form Mode Coding (hex) 

wavr seeWAV Special 3C 

pseudo- Resume executing an interrupted WAV in-
instruction struction (recover intermediate results from 

stack rather than initializing them to 0) 

XGOX (0) <0> (X) INH B7CS 
Translates to EXG 0, X 

XGOY (0) <0> (Y) INH B7C6 

Translates to EXG 0, Y 

NOTES: 
"Each cycle (-) is typically 125ns for an 8MHz bus (16MHz oscillator). 
""Refer to detailed instruction descriptions for additional information. 

Key to Table A-2 

opcode (hex) "-
"" c:o::-o --::-

Addressing mode abbreviations: 

DI- Direct 
EX - Extended 
ID -Indexed 
IH - Inherent 
1M - Immediate 
RL - Relative 
SP- Special 

mnemonic 

" - S 
.. 

-

1 -

1 -

X H I N Z V C 

- ? - ? f> ? ? 

- - - - - - -

- - - - - - -

Cycle counts are for single-chip mode with 16-bit internal buses. Stack location (internal or external). 
external bus width, and operand alignment can affect actual execution time. 

CPU12 

REFERENCE MANUAL 

INSTRUCTION REFERENCE MOTOROLA 

A-19 



~ s: 
N 0 
o --I 

::xl 
m 
"T1 
m 
::xl 
m 
Z 
(') 
m 
s: 

o 
el s;: 

Z en 
--I 
:c 
c: 
~ 
(5 
z 
:c 
m 
"T1 
m 
:c 
m z 
o 
m 

~ (') 
Z "tI 
C C 
~ ... 
r I\:) 

Table A-2 CPU12 Opcode Map (Sheet 1 of 2) 

00 5 10 1 20 3 30 3 40 1 50 1 60 3-6 70 4 80 1 90 3 AO 3-6 BO 3 CO 1 00 3 EO 3-6 
BGND ANDCC BRA PULX NEGA NEGB NEG NEG SUBA SUBA SUBA SUBA SUBB SUBB SUBB 

IH 1 1M 2 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
01 5 11 11 21 1 31 3 41 1 51 1 61 3-6 71 4 81 1 91 3 A1 3-6 B1 3 C1 1 01 3 E1 3-6 

MEM ED IV BRN PULY COMA COMB COM COM CMPA CMPA CMPA CMPA CMPB CMPB CMPB 
IH 1 IH 1 RL 2 IH 1 IH 1 IH 1 ID 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
02 1 12 3 22 3/1 32 3 42 1 52 1 62 3-6 72 4 82 1 92 3 A2 3-6 B2 3 C2 1 02 3 E2 3-6 

INY MUL BHI PULA INCA It:JCB INC INC SBCA SBCA SBCA SBCA SBCB SBCB SBCB 
IH 1 IH 1 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
03 1 13 3 23 311 33 3 43 1 53 1 63 3-6 73 4 83 2 93 3 A3 3-6 B3 3 C3 2 03 3 E3 3-6 

DEY EMUL BLS PULB DECA DECB DEC DEC SUBD SUBD SUBD SUBD ADDD ADDD ADDD 
IH 1 IH 1 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 
04 3 14 1 24 3/1 34 2 44 1 54 1 64 3-6 74 4 64 1 94 3 A4 3-6 B4 3 C4 1 04 3 E4 3-6 

loopt ORCC BCC PSHX LSRA LSRB LSR LSR ANDA ANDA ANDA ANDA ANDB ANDB ANDB 
RL 3 1M 2 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
05 3-6 15 4-7 25 3/1 35 2 45 1 55 1 65 3-6 75 4 85 1 95 3 A5 3-6 B5 3 C5 1 05 3 E5 3-6 

JMP JSR BCS PSHY ROLA ROLB ROL ROL BITA BIT A BIT A BITA BITB BITB BITB 
10 2-4 10 2-4 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
06 3 16 4 26 311 36 2 46 1 56 1 66 3-6 76 4 96 1 96 3 A6 3-6 B6 3 C6 1 06 3 E6 3-6 

JMP JSR BNE PSHA RORA RORB ROR ROR LDAA LDAA LDAA LDAA LDAB LDAB LDAB 
EX 3 EX 3 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
07 4 17 4 27 311 37 2 47 1 57 1 67 3-6 77 4 87 1 97 1 A7 1 B7 1 C7 1 07 1 E7 3-6 

BSR JSR BEQ PSHB ASRA ASRB ASR ASR CLRA TSTA NOP TFRlEXG CLRB TSTB TST 
RL 2 01 2 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 IH 1 IH 1 IH 1 IH 2 IH 1 IH 1 10 2-4 
06 1 16 - 26 3/1 38 3 46 1 56 1 66 3-6 78 4 66 1 96 3 A8 3-6 B8 3 C8 1 08 3 E8 3-6 

INX page 2 BVC PULC ASLA ASLB ASL ASL EORA EORA EORA EORA EORB EORB EORB 
IH 1 - RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
09 1 19 2 29 3/1 39 2 49 1 59 1 69 2-5 79 3 89 1 99 3 A9 3-6 B9 3 C9 1 09 3 E9 3-6 

DEX LEAY BVS PSHC LSRD ASLD CLR CLR ADCA ADCA ADCA ADCA ADCB ADCB ADCB 
IH 1 10 2-4 RL 2 IH 1 IH 1 IH 1 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
OA 6 1A 2 2A 3/1 3A 3 4A 8 5A 2 6A 2-5 7A 3 8A 1 9A 3 AA 3-6 BA 3 CA 1 OA 3 EA 3-6 

RTC LEAX BPL PULD CALL STAA STAA STAA ORAA ORAA ORAA ORAA ORAB ORAB ORAB 
IH 1 10 2-4 RL 2 IH 1 EX 4 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
OB 6 1B 2 2B 3/1 3B 2 4B 8-10 5B 2 6B 2-5 7B 3 8B 1 9B 3 AB 3-6 BB 3 CB 1 OB 3 EB 3-6 

RTI LEAS BMI PSHD CALL STAB STAB STAB ADDA ADDA ADDA ADDA ADDB ADDB ADDB 
IH 1 10 2-4 RL 2 IH 1 10 2-5 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 EX 3 1M 2 01 2 10 2-4 
OC 4-6 1C 4 2C 3/1 3C "+9 4C 4 5C 2 6C 2-5 7C 3 8C 2 9C 3 AC 3-6 BC 3 CC 2 OC 3 EC 3-6 

BSET BSET BGE wavr BSET STD STD STD CPD CPD CPD CPD LDD LDD LDD 
10 3-5 EX 4 RL 2 SP 1 01 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 
00 4-6 10 4 20 311 30 5 40 4 50 2 60 2-5 70 3 60 2 90 3 AO 3-6 BO 3 CO 2 00 3 EO 3-6 

BCLR BCLR BLT RTS BCLR STY STY STY CPY CPY CPY CPY LDY LDY LDY 
10 3-5 EX 4 RL 2 IH 1 01 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 
OE 4-6 1E 5 2E 3/1 3E 8 4E 4 5E 2 6E 2-5 7E 3 8E 2 9E 3 AE 3-6 BE 3 CE 2 OE 3 EE 3-6 
BRSET BRSET BGT WAI BRSET STX STX STX CPX CPX CPX CPX LDX LDX LDX 
10 4-6 EX 5 RL 2 IH 1 01 4 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 
OF 4-8 1F 5 2F 3/1 3F 9 4F 4 5F 2 6F 2-5 7F 3 8F 2 9F 3 AF 3-6 BF 3 CF 2 OF 3 EF 3-6 
BRCLR BRCLR BLE SWI BRCLR STS STS STS CPS CPS CPS CPS LDS LDS LDS 
10 4-6 EX 5 RL 2 IH 1 01 4 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 EX 3 1M 3 01 2 10 2-4 

FO 3 
SUBB 

EX 3 
F1 3 
CMPB 

EX 3 
F2 3 
SBCB 

EX 3 
F3 3 
ADDD 

EX 3 
F4 3 
ANDB 

EX 3 
F5 3 

BITB 
EX 3 
F6 3 
LDAB 

EX 3 
F7 3 

TST 
EX 3 
F8 3 
EORB 

EX 3 
F9 3 
ADCB 

EX 3 
FA 3 
ORAB 

EX 3 
FB 3 
ADDB 

EX 3 
FC 3 

LDD 
EX 3 
FO 3 

LDY 
EX 3 
FE 3 

LDX 
EX 3 
FF 3 

LDS 
EX 3 



:0 0 
m \l 
"Tl C m ~ 
:0 I\) 

m z 
o 
m 
~ » z 
C 
» 
r 

Z en 
-l 
:c 
c: 
~ 
o 
z 
:c 
m 
"Tl m 
:c 
m 
z 
o 
m 

~ 

@ 
:0 » 0 , r 

~ » 

Table A-2 CPU12 Opcode Map (Sheet 2 of 2) 

00 4 10 12 20 4 30 10 40 10 50 10 60 10 70 10 80 10 90 10 AO 10 BO 10 CO 10 00 10 EO 10 FO 10 ! 

MOVW IDIV LBRA TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP' 

IM-IO 5 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
01 5 11 12 21 3 31 10 41 10 51 10 61 10 71 10 81 10 91 10 A1 10 B1 10 C1 10 01 10 E1 10 F1 10 
MOVW FDIV LBRN TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 
EX-IO 5 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
02 5 12 13 22 4/3 32 10 42 10 52 10 62 10 72 10 82 10 92 10 A2 10 B2 10 C2 10 02 10 E2 10 F2 10 
MOVW EMACS LBHI TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 
10-10 4 SP 4 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
03 5 13 3 23 4/3 33 10 43 10 53 10 63 10 73 10 83 10 93 10 A3 10 B3 10 C3 10 03 10 E3 10 F3 10 
MOVW EMULS LBLS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

1M-EX 6 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
04 6 14 12 24 4/3 34 10 44 10 54 10 64 10 74 10 84 10 94 10 A4 10 B4 10 C4 10 04 10 E4 10 F4 10 
MOVW EDIVS LBCC TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 
EX-EX 6 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
05 5 15 12 25 4/3 35 10 45 10 55 10 65 10 75 10 85 10 95 10 A5 10 B5 10 C5 10 05 10 E5 10 F5 10 
MOVW IDIVS LBCS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 
10-EX 5 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
06 2 16 2 26 4/3 36 10 46 10 56 10 66 10 76 10 86 10 96 10 A6 10 B6 10 C6 10 06 10 E6 10 F6 10 

ABA SBA LBNE TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

IH 2 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
07 3 17 2 27 4/3 37 10 47 10 57 10 67 10 77 10 87 10 97 10 A7 10 B7 10 C7 10 07 10 E7 10 F7 10 

DAA CBA LBEQ TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

IH 2 IH 2 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
08 4 18 4-7 28 4/3 38 10 48 10 58 10 68 10 78 10 88 10 98 10 A8 10 B8 10 C8 10 08 10 E8 10 F8 10 
MOVB MAXA LBVC TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

IM-IO 4 10 3-5 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
09 5 19 4-7 29 4/3 39 10 49 10 59 10 69 10 79 10 89 10 99 10 A9 10 B9 10 C9 10 D9 10 E9 10 F9 10 
MOVB MINA LBVS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

EX-ID 5 ID 3-5 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OA 5 1A 4-7 2A 4/3 3A 3n 4A 10 5A 10 6A 10 7A 10 8A 10 9A 10 AA 10 BA 10 CA 10 DA 10 EA 10 FA 10 
MOVB EMAXD LBPL REV TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

ID-IO 4 ID 3-5 RL 4 SP 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OB 4 1B 4-7 2B 4/3 3B 3n 4B 10 5B 10 6B 10 7B 10 8B 10 9B 10 AB 10 BB 10 CB 10 OB 10 EB 10 FB 10 
MOVB EMIND LBMI REVW TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

1M-EX 5 ID 3-5 RL 4 SP 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OC 6 1C 4-7 2C 4/3 3C 8B 4C 10 5C 10 6C 10 7C 10 8C 10 9C 10 AC 10 BC 10 CC 10 DC 10 EC 10 FC 10 
MOVB MAXM LBGE WAY TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

EX-EX 6 ID 3-5 RL 4 SP 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OD 5 10 4-7 20 4/3 30 8 40 10 50 10 60 10 7D 10 80 10 90 10 AD 10 BO 10 CD 10 00 10 ED 10 FO 10 
MOVB MINM LBLT TBL TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

10-EX 5 10 3-5 RL 4 10 3 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OE 2 1E 4-7 2E 4/3 3E 9+5 4E 10 5E 10 6E 10 7E 10 8E 10 9E 10 AE 10 BE 10 CE 10 OE 10 EE 10 FE 10 

TAB EMAXM LBGT STOP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 

IH 2 10 3-5 RL 4 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 
OF 2 1F 4-7 2F 4/3 3F 10 4F 10 SF 10 6F 10 7F 10 8F 10 9F 10 AF 10 BF 10 CF 10 OF 10 EF 10 FF 10 

TBA EMINM LBLE ETBL TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP 
IH 2 10 3-5 RL 4 10 3 IH 2 IH 2 IH 2 IH 2 IH 2 IH 2 1~..!..f!..... __ 2 IH 2 IH 2 IH 2 IH 2 

• Refer to instruction glossary for more information. 

:j: The opcode $04 corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE. 



» s:: 
N 0 
I\) -; 

JJ 
m 
." 
m 
JJ 
m 
Z 
o 
m 
s:: 

o 
JJ o 
s;: 

z 
C/l 
-t 
:c 
C 
o 
-t 
o 
Z 
:c 
m 
." m 
:c 
m 
z 
o 
m 

» () 
Z "tl 
C C » ~ r I\) 

Postbyte 
Code (x b) 

rrOnnnnn 

111 rrOzs 

111 rr011 

rr1 pnnnn 

111 rr1aa 

111rr111 

Key toTable A-4 

Table A-3 Indexed Addressing Mode Summary 

Operand Comments 
Syntax 

,r 5-bit constant offset 
n,r n=-16to+15 
-n,r rr can specify X, Y, SP, or PC 

n,r Constant offset (9- or 16-bit signed) 
-n,r z- 0= 9-bit with sign in LSB of postbyte (s) 

1 = 16-bit 
if z = s = 1, 16-bit offset indexed-indirect (see below) 
rr can specify X, Y, SP, or PC 

[n,r] 16-bit offset indexed-indirect 
rr can specify X, Y, SP, or PC 

n,-r Auto pre-decrement lincrement or Auto post-decrement/increment; 
n,+r p = pre-tO) or post-(1), n = -8 to -1, +1 to +8 
n,r- rr can specify X, Y, or SP (PC not a valid choice) 

n,r+ 

A,r Accumulator offset (unsigned 8-bit or 16-bit) 
B,r aa - 00 = A 
D,r 01 = B 

10 = D (16-bit) 
11 = see accumulator D offset indexed-indirect 

rr can specify X, Y, SP, or PC 
i 

[D,r] Accumulator 0 offset indexed-indirect 
rr can specify X, Y, SP, or PC 

I 

postbyte (hex) 

source code syntax 

type offset used 



JJ 0 
m -u 
"Tl C m ~ 
JJ I\) 

m 
z 
o 
m 
s: » z 
C » r 

Z 
en 
--I 
::a 
c:: 
~ 
o z 
::a 
m 
"Tl 
m 
::a 
m z o 
m 

s: o 
6 
JJ 

=!> 0 
I\) r 
w » 

00 
O,X 

5b const 

01 
I,X 

Sb const 

02 
2,X 

5b const 
03 

3,X 
Sb const 

04 
4,X 

5b const 

05 
5,X 

5b canst 

06 
6,X 

5b const 

07 
7,X 

Sb canst 

08 
8,X 

5b const 

09 
9,X 

5b const 

OA 
10,X 

5b const 

08 
II,X 

5b canst 

OC 
12,X 

5b const 

OD 
13,X 

5b canst 

OE 
14,X 

5b const 

OF 
15,X 

5b canst 

10 20 
-16,X 1,+X 

5b const pre-inc 

11 21 
-15,X 2,+X 

Sb const pre-Inc 

12 22 
-14,X 3,+X 

5b const pre-inc 

13 23 
-13,X 4,+X 

5b const pre-inc 

14 24 
-12,X 5,+X 

Sb canst pre-inc 

15 25 
-11,X 6,+X 

5b const pre-inc 

16 26 
-10,X 7,+X 

5b canst pre-inc 

17 27 
-9,X 8,+X 

5b const pre-inc 

18 28 
-8,X 8,-X 

5b const pre-dec 

19 29 
-7,X 7,-X 

5b canst pre-dec 

lA 2A 
-6,X 6,-X 

5b const pre-dec 

lB 28 
-5,X 5,-X 

5b const pre-dec 

lC 2C 
-4,X 4,-X 

5b const pre-dec 

10 2D 
-3,X 3,-X 

Sb canst pre-dec 

IE 2E 
-2,X 2,-X 

5b canst pre-dec 

IF 2F 
-1,X 1,-X 

5b const pre-dec 

Table A-4 Indexed Addressing Mode Postbyte Encoding (xb) 
30 40 50 60 70 80 90 AO BO CO 

1,X+ O,Y -16,Y 1,+Y 1,Y+ O,SP -16,SP 1,+SP I,SP+ O,PC 
post-inc Sb const Sb const pre-inc posHnc 5b const 5b const pre-inc post-inc 5b const 

31 41 51 61 71 81 91 Al Bl Cl 
2,X+ I,Y -15,Y 2,+Y 2,Y+ I,SP -15,SP 2,+SP 2,SP+ I,PC 

post-inc 5b const 5b const pre-inc posHnc Sb const 5b canst pre-inc post-inc 5b const 

32 42 52 62 72 82 92 A2 B2 C2 
3,X+ 2,Y -14,Y 3,+Y 3,Y+ 2,SP -14,SP 3,+SP 3,SP+ 2,PC 

post-inc Sb const Sb const pre-inc post-inc 5b const Sb const pre-inc post-inc Sb canst 
33 43 53 63 73 83 93 A3 B3 C3 

4,X+ 3,Y -13,Y 4,+Y 4,Y+ 3,SP -13,SP 4,+SP 4,SP+ 3,PC 
post-inc 5b const 5b const pre-inc posHnc Sb const 5b const pre-inc post-inc 5b const 

34 44 54 64 74 84 94 A4 B4 C4 
5,X+ 4,Y -12,Y 5,+Y 5,Y+ 4,SP -12,SP 5,+SP 5,SP+ 4,PC 

post-inc 5b const 5b const pre-inc post-inc 5b const 5b const pre-inc post-inc Sb canst 

35 45 55 65 75 85 95 AS 85 C5 
6,X+ 5,Y -11,Y 6,+Y 6,Y+ 5,SP -11,SP 6,+SP 6,SP+ 5,PC 

past-inc 5b const 5b const pre-inc post-inc Sb const 5b canst pre-inc post-inc 5b canst 

36 46 56 66 76 86 96 A6 86 C6 
7,X+ 6,Y -10,Y 7,+Y 7,Y+ 6,SP -10,SP 7,+SP 7,SP+ 6,PC 

post-inc 5b canst Sb const pre-inc post-inc 5b const Sb const pre-inc post-inc Sb canst 

37 47 57 67 77 87 97 A7 87 C7 
8,X+ 7,Y -9,Y 8,+Y 8,Y+ 7,SP -9,SP 8,+SP 8,SP+ 7,PC 

post-inc Sb const Sb const pre-inc post-inc 5b const Sb const pre-inc post-inc 5b const 

38 48 58 68 78 88 98 A8 B8 C8 
8,X- 8,Y -8,Y 8,-Y 8,Y- 8,SP -8,SP 8,-SP 8,SP- 8,PC 

post-dec 5b const 5b canst pre-dec post-dec Sb canst 5b canst pre-dec post-dec 5b const 

39 49 59 69 79 89 99 A9 B9 C9 
7,X- 9,Y -7,Y 7,-Y 7,Y- 9,SP -7,SP 7,-SP 7,SP- 9,PC 

post-dec 5b const 5b canst pre-dec post-dec 5b canst Sb const pre-dec post-dec 5b const 

3A 4A SA 6A 7A 8A 9A AA BA CA 
6,X- to,Y -6,Y 6,-Y 6,Y- 10,SP -6,SP 6,-SP 6,SP- 10,PC 

post-dec Sb canst Sb canst pre-dec post-dec Sb const 5b const pre-dec post-dec Sb const 

3B 4B 58 68 7B 88 98 AB BB CB 
5,X- II,Y -5,Y 5,-Y 5,Y- II,SP -5,SP 5,-SP 5,SP- II,PC 

post-dec Sb const Sb canst pre-dec post-dec 5b const Sb const pre-dec post-dec 5b const 

3C 4C 5C 6C 7C 8C 9C AC BC CC 
4,X- 12,Y -4,Y 4,-Y 4,Y- 12,SP -4,SP 4,-SP 4,SP- 12,PC 

post-dec 5b const Sb const pre-dec post-dec 5b const Sb const pre-dec post-dec 5b const 

3D 4D 5D 6D 7D 8D 9D AD BD CD 
3,X- 13,Y -3,Y 3,-Y 3,Y- 13,SP -3,SP 3,-SP 3,SP- 13,PC 

post-dec Sb const 5b const pre-dec post-dec 5b const Sb canst pre-dec post-dec 5b const 

3E 4E 5E 6E 7E 8E 9E AE BE CE 
2,X- 14,Y -2,Y 2,-Y 2,Y- 14,SP -2,SP 2,-SP 2,SP- 14,PC 

post-dec 5b const Sb const pre-dec post-dec 5b const Sb const pre-dec post-dec Sb const 

3F 4F SF 6F 7F 8F 9F AF 8F CF 
I,X- 15,Y -1,Y 1,-Y I,Y- 15,SP -1,SP 1,-SP I,SP- 15,PC 

~~st-dec_ ~~C?~st __ ~_cons_t_ pre-dec ~~t-de~_ 5b const Sb const pre-dec post-dec Sb const 
-

DO EO FO 
-16,PC n,X n,SP 

5b const 9b const 9b const 

Dl El Fl 
-15,PC -n,X -n,SP 

5b const 9b const 9b const 

D2 E2 F2 
-14,PC n,X n,SP 

5b const 16b const 16b const 

D3 E3 F3 
-13,PC [n,XI [n,SPI 

5b const 16b indr 16b indr 

D4 E4 F4 
-12,PC A,X A,SP 

Sb canst A offset A offset 

D5 E5 F5 
-11,PC 8,X 8,SP 

5b const 8 offset B offset 

D6 E6 F6 
-10,PC D,X D,SP 

5b const D offset D offset 

D7 E7 F7 
-9,PC [D,XI [D,SPI 

5b canst o indirect o indirect 

D8 E8 F8 
-8,PC n,Y n,PC 

Sb const 9b const 9b canst 

D9 E9 F9 
-7,PC -n,Y -n,PC 

Sb const 9b const 9b const 

DA EA FA 
-6,PC n,Y n,PC 

Sb canst 16b const 16b const 

DB E8 F8 
-5,PC [n,YI [n,PC] 

5b const 16b indr 16b indr 

DC EC FC 
-4,PC A,Y A,PC 

Sb const A offset A offset 

DD ED FD 
-3,PC B,Y B,PC 

5b canst 80ftset B offset 

DE EE FE 
-2,PC D,Y D,PC 

Sb const D offset D offset 

DF EF FF 
--I,PC [D,YI [D,PC] 

5b const D indirect o indirect 



J) 0 
m \J 
"Tl C m ~ 
J) I\) 

m 
Z 
o 
m 
s: » z 
C » r 

z 
en 
-I 
J) 
c: 
o 
-I 
o 
Z 
J) 
m 
"Tl 
m 
J) 
m z 
o 
m 

s: o 
b 

» :0 , 0 
I\) r 
.j>, » 

: 

--

V. LS I MSoo; 

0 

1 

2 

3 

4 

5 

6 

7 

V. LS I MSoo; 

0 

1 

2 

3 

4 

5 

6 

7 

0 

A=>A 

A=>B 

A=> CCR 

sex:A => TMP2 

sex:A => D 
SEXA,D 

sex:A => X 
SEXA,X 

sex:A => Y 
SEXA,Y 

sex:A => SP 
SEX A,SP 

8 

A <0> A 

A<o>B 

A<=> CCR 

$OO:A => TMP2 

TMP2L => A 

$OO:A => D 

$OO:A => X 

XL => A 

$OO:A => Y 
YL => A 

$OO:A => SP 
SPL => A 

Table A-5 Transfer and Exchange Postbyte Encoding 

TRANSFERS 

1 2 3 4 5 6 7 

B=>A CCR => A TMP3L => A B=>A XL => A YL => A SPL => A 

B=>B CCR => B TMP3L => B B=>B XL => B YL => B SPL => B 

B => CCR CCR =>CCR TMP3L => CCR B => CCR XL => CCR YL => CCR SPL => CCR 

sex: B => TM P2 sex:CCR => TMP2 TMP3 => TMP2 D => TMP2 X=> TMP2 Y => TMP2 SP => TMP2 

sex:B => D sex:CCR => D 
TMP3 => D D=>D X=>D Y=>D SP => D 

SEX B,D SEXCCR,D 

sex:B => X sex:CCR => X 
TMP3 => X D=>X X=>X Y=>X SP => X 

SEXB,X SEXCCR,X 

sex:B => Y sex:CCR => Y 
TMP3 => Y D=>Y X=>Y Y=>Y SP => Y 

SEXB,Y SEXCCR,Y 

sex:B => SP sex:CCR => SP 
TMP3 => SP D => SP X=> SP Y => SP SP => SP 

SEX B,SP SEXCCR,SP 

EXCHANGES 

9 A B C D E F 

B<o>A CCR <0> A 
TMP3L => A B=>A XL => A YL => A SPL => A 

$OO:A => TM P3 A=>B $OO:A => X $OO:A => Y $OO:A => SP 

B<o>B CCR <0> B 
TMP3L => B B=>B XL => B YL => B SPL => B 

$FF:B => TMP3 $FF => A $FF:B => X $FF:B => Y $FF:B => SP 

B <=> CCR CCR <=> CCR 
TMP3L => CCR B => CCR XL => CCR YL => CCR SPL => CCR 

$FF:CCR => TMP3 $FF:CCR => D $FF:CCR => X $FF:CCR => Y $FF:CCR => SP 

$OO:B => TMP2 $OO:CCR => TMP2 
TM P3 <=> TM P2 D <0> TMP2 X<=> TMP2 Y <=> TMP2 SP <=> TMP2 

TMP2L => B TMP2L => CCR 

$OO:B => D 
$OO:CCR => D 

TMP3 <=> D D<=>D X<=>D Y<=>D SP <=> D 
B => CCR 

$OO:B => X $OO:CCR => X 
TMP3 <=> X D<=>X X<=>X Y<=>X SP <=> X 

XL => B XL => CCR 

$OO:B => Y $OO:CCR => Y 
TMP3 <=> Y D<=>Y X<=>Y Y<=>Y SP <=> Y 

YL => B YL => CCR 

$OO:B => SP $OO:CCR => SP 
TMP3 <=> SP D <=> SP X<=> SP Y <=> SP SP <=> SP 

SPL => B SPL => CCR 



00 A 10 A 
DBEQ DBEQ 

(+) (-) 
01 8 11 8 
DBEQ DBEQ 

(+) (-) 
02 12 

- -

03 13 
- -

04 D 14 D 
DBEQ I DBEQ 

(+) H 
05 X 15 X 
DBEQ DBEQ 

(+) H 
06 Y 16 Y 
DBEQ DBEQ 

(+) H 
07 SP 17 SP 
DBEQ DBEQ 

(+) (-) 

CPU12 

Table A-6 Loop Primitive Postbyte Encoding (Ib) 
20 A 30 A 40 A 50 A 60 A 70 A 80 A 90 A AD A 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) H (+) H (+) (-) (+) (-) (+) 
21 8 31 8 41 8 51 8 61 8 71 8 81 8 91 8 A1 8 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) H (+) H (+) (-) (+) (-) (+) 
22 32 42 52 62 72 82 92 A2 

- - - - - - - - -

23 33 43 53 63 73 83 93 A3 
- - - - - - - - -

24 D 34 D 44 D 54 D 64 D 74 D 84 D 94 D A4 D 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) H (+) H (+) H (+) H (+) 
25 X 35 X 45 X 55 X 65 X 75 X 85 X 95 X A5 X 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) (-) (+) H (+) (-) (+) (-) (+) 
26 Y 36 y 46 Y 56 Y 66 Y 76 Y 86 y 96 Y A6 y 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) (-) (+) (-) (+) H (+) H (+) 
27 SP 37 SP 47 SP 57 SP 67 SP 77 SP 87 SP 97 SP A7 SP 
DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE 

(+) (-) (+) (-) 

BO A 
_BEQ 

(-) 

(+) (-) (+) (-) 

postbyte (hex) N counter used 

branch condition sign of 9-bit relative branch offset 
(lower 8 bits are an extension byte 
following postbyte) 

INSTRUCTION REFERENCE 

(+) 

REFERENCE MANUAL 

BO A 
IBNE 
H 

81 8 
IBNE 
H 

B2 
-

B3 
-

84 D 
IBNE 

(-) 
B5 X 

IBNE 
H 

B6 y 
IBNE 

(-) 
B7 SP 

IBNE 
(-) 

MOTOROLA 

A-25 



MOTOROLA 

A-26 

INSTRUCTION REFERENCE CPU12 

REFERENCE MANUAL 



APPENDIX B 
M68HC11 TO M68HC12 UPGRADE PATH 

This appendix discusses similarities and differences between the CPU12 and the 
M68HC11 CPU. In general, the CPU12 is a proper superset of the M68HC11. 
Significant changes have been made to improve the efficiency and capabilities of 
the CPU without giving up compatibility and familiarity for the large community of 
M68HC11 programmers. 

B.l CPU12 Design Goals 

The primary goals of the CPU12 design were: 

• ABSOLUTE source code compatibility with the M68HC11 

• Same programming model 

• Same stacking operations 

• Upgrade to 16-bit architecture 

• Eliminate extra byte/extra cycle penalty for using index register Y 

• Improve performance 

• Improve compatibility with high level languages 

B.2 Source Code Compatibility 

CPU12 

Every M68HCll instruction mnemonic and source code statement can be 
assembled directly with a CPU12 assembler with no modifications. 

The CPU12 supports all M68HC11 addressing modes and includes several new 
variations of indexed addressing mode. CPU12 instructions affect condition code 
bits in the same way as M68HC11 instructions. 

CPU12 object code is similar to but not identical to M68HC11 object code. Some 
primary objectives, such as the elimination of the penalty for using Y, could not be 
achieved without object code differences. While the object code has been 
changed, the majority of the opcodes are identical to those of the M6800, which 
was developed more than 20 years earlier. 

The CPU 12 assembler automatically translates a few M68HC 11 instruction 
mnemonics into functionally equivalent CPU 12 instructions. For example, the 
CPU12 does not have an increment stack pointer (INS) instruction, so the INS 
mnemonic is translated to LEAS 1 ,So The CPU12 does provide single-byte DEX, 
DEY, INX, and INY instructions because the LEAX and LEAY instructions do not 
affect the condition codes, while the M68HC11 instructions update the Z bit to 
according to the result of the decrement or increment. 

M68HC11 TO M68HC12 UPGRADE PATH 
REFERENCE MANUAL 

MOTOROLA 

B-1 



Table 8-1 shows M68HC11 instruction mnemonics that are automatically 
translated into equivalent CPU12 instructions. This translation is performed by the 
assembler so there is no need to modify an old M68HC11 program in order to 
assemble it for the CPU12. In fact, the M68HC11 mnemonics can be used in new 
CPU12 programs. 

Table 8-1 Translated M68HC11 Mnemonics 

M68HC11 Equivalent 
Comments 

Mnemonic CPU12 Instruction 

ABX lEAX B,X 
Since CPU12 has accumulator offset indexing, ABX and ABY are rarely 

ABY lEAY B,Y 
used in new CPU12 programs. ABX was one byte on M68HC11 but 
ABY was two bytes. The lEA substitutes are two bytes. 

ClC ANDCG #$FE 
CLI ANDCC #$EF ANDCG and ORGG now allow more control over the GCR, including the 
ClV ANDCC#$FD ability to set or clear multiple bits in a single instruction. These instruc-
SEC ORGC #$01 tions took one byte each on M68HC11 while the ANDCG and ORCG 
SEI ORCC #$10 equivalents take two bytes each. 
SEV ORGG#$02 

Unlike DEX and INX, DES and INS did not affect CCR bits in the 
DES lEAS -1,S M68HC11, so the lEAS equivalents in GPU12 duplicate the function of 
INS lEAS 1,S DES and INS. These instructions were one byte on M68HC11 and two 

bytes on GPU12. 

TAP TFR A,CGR 
TPA TFR CCR,A The M68HC11 had a small collection of specific transfer and exchange 
TSX TFR S,X instructions. CPU12 expanded this to allow transfer or exchange 
TSY TFR S,Y between any two CPU registers. For all but TSY and TYS (which take 
TXS TFR X,S two bytes on either CPU), the CPU12 transfer/exchange costs one 
TYS TFR V,S extra byte compared to M68HG1. The substitute instructions execute in 

XGDX EXG D,X one cycle rather than two. 
XGDY EXG D,Y 

All of the translations produce the same amount of or slightly more object code 
than the original M68HC11 instructions. However, there are offsetting savings in 
other instructions. V-indexed instructions in particular assemble into one byte less 
object code than the same M68HC11 instruction. 

The CPU12 has a two-page opcode map, rather than the four-page M68HC11 
map. This is largely due to redesign of the indexed addressing modes. Most of 
pages 2, 3, and 4 of the M68HC11 opcode map are required because V-indexed 
instructions use different opcodes than X-indexed instructions. Approximately two
thirds of the M68HC11 page 1 opcodes are unchanged in CPU12, and some 
M68HC11 opcodes have been moved to page 1 of the CPU12 opcode map. 
Object code for each of the moved instructions is one byte smaller than object 
code for the equivalent M68HC11 instruction. The Table 8-2 shows instructions 
that assemble to one byte less object code on the CPU12. 

Instruction set changes offset each other to a certain extent. Programming style 
also affects the rate at which instructions appear. As a test, the BUFFALO monitor, 
an 8-Kbyte M68HC11 assembly code program, was reassembled for the CPU12. 
The resulting object code is six bytes smaller than the M68HC11 code. It is fair to 
conclude that M68HC11 code can be reassembled with very little change in size. 

MOTOROLA 

8-2 
M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



Table B-2 Instructions with Smaller Object Code 
---

Instruction Comments J 

I 

I 

DEY I Page 2 opcodes in M68HC11 but page 1 in CPU12_ 
INY I 

IFor values of n less than 16 (the majority of cases)_ Were on page 2, now are on page 1_ 
Applies to BSET, BCLR, BRSET, BRCLR, NEG, COM, LSR, ROR, ASR, ASL, ROL, DEC, 

INST n,Y 
IINC, TST, JMP, CLR, SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EaR, ADC, 
ORA, ADD, JSR, LDS, and STS_ If X is the index reference and the offset is greater than 
15 (much less frequent than offsets of 0, 1. and 2), the CPU12 instruction assembles to 
one byte more of object code than the equivalent M68HC11 instruction_ 

PSHY 
Were on page 2, now are on page 1_ 

PULY 

LDY 
STY Were on page 2, now are on page 1_ 
CPY 

CPY n,Y 
LDY n,Y For values of n less than 16 (the majority of cases)_ Were on page 3, now are on page 1_ 
STY n,Y 

CPD 
Was on page 2, 3, or 4, now on page 1_ In the case of indexed with offset greater than 15, 
CPU12 and M68HC11 object code are the same size_ 

The relative size of code for M68HC11 vs. code for CPU12 has also been tested 
by rewriting several smaller programs from scratch. In these cases, the CPU12 
code is typically about 30% smaller. These savings are mostly due to improved 
indexed addressing. 

It seems useful to mention the results of size comparisons done on C programs. A 
C program compiled for the CPU12 is about 30% smaller than the same program 
compiled for the M68HC11. The savings are largely due to better indexing. 

B.3 Programmer's Model and Stacking 

The CPU12 programming model and stacking order are identical to those of the 
M68HC11. 

B.4 True 16-Bit Architecture 

CPU12 

The M68HC11 is a direct descendant of the M6800, one of the first 
microprocessors, which was introduced in 1974. The M6800 was strictly an 8-bit 
machine, with 8-bit data buses and 8-bit instructions. As Motorola devices evolved 
from the M6800 to the M68HC11, a number of 16-bit instructions were added, but 
the data buses remained 8 bits wide, so these instructions were performed as 
sequences of 8-bit operations. The CPU12 is a true 16-bit implementation, but it 
retains the ability to work with the mostly 8-bit M68HC11 instruction set. The 
larger ALU of the CPU12 (it can perform some 20-bit operations) is used to 
calculate 16-bit pointers and to speed up math operations. 

M68HC11 TO M68HC12 UPGRADE PATH 

REFERENCE MANUAL 
MOTOROLA 

8-3 I 
I-

I 



B.4.1 Bus Structures 

The CPU12 is a 16-bit processor with 16-bit data paths. Typical M68HC12 devices 
have internal and external 16-bit data paths, but some derivatives incorporate 
operating modes that allow for an 8-bit data bus, so that a system can be built with 
low-cost 8-bit program memory. M68HC12 MCUs include an on-chip integration 
module that manages the external bus interface. When the CPU makes a 16-bit 
access to a resource that is served by an 8-bit bus, the integration module 
performs two 8-bit accesses, freezes the CPU clocks for part of the sequence, 
and assembles the data into a 16-bit word. As far as the CPU is concerned, there 
is no difference between this access and a 16-bit access to an internal resource 
via the16-bit data bus. This is similar to the wayan MC68HC11 can stretch clock 
cycles to accommodate slow peripherals. 

B.4.2 Instruction Queue 

The CPU 12 has a two-word instruction queue and a 16-bit holding buffer, which 
sometimes acts as a third word for queueing program information. All program 
information is fetched from memory as aligned 16-bit words, even though there is 
no requirement for instructions to begin or end on even word boundaries. There is 
no penalty for misaligned instructions. If a program begins on an odd boundary (if 
the reset vector is an odd address), program information is fetched to fill the 
instruction queue, beginning with the aligned word at the next address below the 
misaligned reset vector. The instruction queue logic starts execution with the 
opcode in the low order half of this word. 

The instruction queue causes three bytes of program information (starting with the 
instruction opcode) to be directly available to the CPU at the beginning of every 
instruction. As it executes, each instruction performs enough additional program 
fetches to refill the space it took up in the queue. Alignment information is 
maintained by the logic in the instruction queue. The CPU provides signals that 
tell the queue logic when to advance a word of program information, and when to 
toggle the alignment status. 

The CPU is not aware of instruction alignment. The queue logic includes a multi
plexer that sorts out the information in the queue to present the opcode and the 
next two bytes of information as CPU inputs. The multiplexer determines whether 
the opcode is in the even or odd half of the word at the head of the queue. Align
ment status is also available to the ALU for address calculations. The execution se
quence for all instructions is independent of the alignment of the instruction. 

The only situation where alignment can affect the number of cycles an instruction 
takes occurs in devices that have a narrow (8-bit) external data bus, and is related 
to optional program fetch cycles (0 type cycles). 0 cycles are always performed, 
but serve different purposes determined by instruction size and alignment. 

MOTOROLA 

8-4 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



Each instruction includes one program fetch cycle for every two bytes of object 
code. Instructions with an odd number of bytes can use an a cycle to fetch an 
extra word of object code. If the queue is aligned at the start of an instruction with 
an 'odd byte count, the last byte of object code shares a queue word with the 
opcode of the next instruction. Since this word holds part of the next instruction, 
the queue cannot advance after the odd byte executes, or the first byte of the next 
instruction would be lost. In this case, the a cycle appears as a free cycle since 
the queue is not ready to accept the next word of program information. If this 
same instruction had been misaligned, the queue would be ready to advance and 
the a cycle would be used to perform a program word fetch. 

In a single-chip system or in a system with the program in16-bit memory, both the 
free cycle and the program fetch cycle take one bus cycle. In a system with the pro
gram in an external8-bit memory, the a cycle takes one bus cycle when it appears 
as a free cycle, but it takes two bus cycles when used to perform a program fetch. 
In this case, the on-chip integration module freezes the CPU clocks long enough 
to perform the cycle as two smaller accesses. The CPU handles only 16-bit data, 
and is not aware that the 16-bit program access is split into two 8-bit accesses. 

In order to allow development systems to track events in the CPU12 instruction 
queue, two status signals (IPIPE[1 :0]) provide information about data movement 
in the queue and about the start of instruction execution. A development system 
can use this information along with address and data information to externally 
reconstruct the queue. This representation of the queue can also track both the 
data and address buses. 

8.4.3 Stack Function 

CPU12 

Both the M68HC11 and the CPU12 stack nine bytes for interrupts. Since this is an 
odd number of bytes, there is no practical way to assure that the stack will stay 
aligned. To assure that instructions take a fixed number of cycles regardless of 
stack alignment, the internal RAM in MC68HC12 MCUs is designed to allow 
single cycle 16-bit accesses to misaligned addresses. As long as the stack is 
located in this special RAM, stacking and unstacking operations take the same 
amount of execution time, regardless of stack alignment. If the stack is located in 
an external 16-bit RAM, a PSHX instruction can take two or three cycles 
depending upon the alignment of the stack. This extra access time is transparent 
to the CPU because the integration module freezes the CPU clocks while it 
performs the extra 8-bit bus cycle required for a misaligned stack operation. 

The CPU12 has a "last-used" stack rather than a "next-available" stack like the 
M68HC11 CPU. That is, the stack pointer points to the last 16-bit stack address 
used, rather than to the address of the next available stack location. This generally 
has very little effect, because it is very unusual to access stacked information 
using absolute addressing. The change allows a 16-bit word of data to be 
removed from the stack without changing the value of the SP twice. 

M68HC11 TO M68HC12 UPGRADE PATH 

REFERENCE MANUAL 
MOTOROLA 

8-5 



To illustrate, consider the operation of a PULX instruction. With the next-available 
M68HC11 stack, if the SP=$01 FO when execution begins, the sequence of opera
tions is: SP=SP+ 1; load X from $01 F1 :01 F2; SP=SP+ 1; and the SP ends up at 
$01 F2. With the last-used CPU 12 stack, if the SP=$01 FO when execution begins, 
the sequence is: load X from $01 FO:01 F1; SP=SP+2; and the SP again ends up at 
$01 F2. The second sequence requires one less stack pointer adjustment. 

The stack pointer change also affects operation of the TSX and TXS instructions. 
In the M68HC11, TSX increments the SP by one during the transfer. This 
adjustment causes the X index to point to the last stack location used. The TXS 
instruction operates similarly, except that it decrements the SP by one during the 
transfer. CPU12 TSX and TXS instructions are ordinary transfers - the CPU12 
stack requires no adjustment. 

For ordinary use of the stack, such as pushes, pulls, and even manipulations 
involving TSX and TXS, there are no differences in the way the M68HC11 and the 
CPU12 stacks look to a programmer. However, the stack change can affect a 
program algorithm in two subtle ways. 

The LOS #$xxxx instruction is normally used to initialize the stack pointer at the 
start of a program. In the M68HC11, the address specified in the LOS instruction 
is the first stack location used. In the CPU12, however, the first stack location used 
is one address lower than the address specified in the LOS instruction. Since the 
stack builds downward, M68HC11 programs reassembled for the CPU12 operate 
normally, but the program stack is one physical address lower in memory. 

In very uncommon situations, such as test programs used to verify CPU operation, 
a program could initialize the SP, stack data, and then read the stack via an ex
tended mode read (it is normally improper to read stack data from an absolute ex
tended address). To make an M68HC11 source program that contains such a 
sequence work on the CPU12, change either the initial LOS #$xxxx, or the absolute 
extended address used to read the stack. 

8.5 Improved Indexing 

The CPU12 has significantly improved indexed addressing capability, yet retains 
compatibility with the M68HC11. The one cycle and one byte cost of doing Y
related indexing in the M68HC11 has been eliminated. In addition, high level 
language requirements, including stack relative indexing and the ability to perform 
pointer arithmetic directly in the index registers, have been accommodated. 

The M68HC11 has one variation of indexed addressing that works from X or Y as 
the reference pointer. For X indexed addressing, an 8-bit unsigned offset in the 
instruction is added to the index pointer to arrive at the address of the operand for 
the instruction. A load accumulator instruction assembles into two bytes of object 
code, the opcode and a 1-byte offset. Using Y as the reference, the same 
instruction assembles into three bytes (a page prebyte, the opcode, and a one
byte offset.) Analysis of M68HC11 source code indicates that the offset is most 
frequently zero and very seldom greater than four. 

MOTOROLA 

8-6 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



The CPU 12 indexed addressing scheme uses a post byte plus 0, 1, or 2 extension 
bytes after the instruction opcode. These bytes specify which index register is 
used, determine whether an accumulator is used as the offset, implement 
automatic pre/post increment/decrement of indices, and allow a choice of 5-, 9-, or 
16-bit signed offsets. This approach eliminates the differences between X and Y 
register use and dramatically enhances indexed addressing capabilities. 

Major improvements that result from this new approach are: 

• Stack pointer can be used as an index register in all indexed operations 

• Program counter can be used as index register in all but auto inc/dec modes 

• Accumulator offsets allowed using A, B, or D accumulators 

• Automatic pre- or post-, increment or decrement (by -8 to +8) 

• 5-bit, 9-bit, or 16-bit signed constant offsets 

• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect 

The change completely eliminates pages three and four of the M68HC11 opcode 
map and eliminates almost all instructions from page two of the opcode map. For 
offsets of +0 to + 15 from the X index register, the object code is the same size as 
it was for the M68HC11. For offsets of +0 to + 15 from the Y index register, the 
object code is one byte smaller than it was for the M68HC11 . 

Table A-3 summarizes HC12 indexed addressing mode capabilities. Table A-4 
shows how the postbyte is encoded. 

B.5.1 Constant Offset Indexing 

CPU12 

The CPU12 offers three variations of constant offset indexing in order to optimize 
the efficiency of object code generation. 

The most common constant offset is zero. Offsets of 1,2 ... 4 are used fairly often, 
but with less frequency than zero. 

The 5-bit constant offset variation covers the most frequent indexing requirements 
by including the offset in the postbyte. This reduces a load accumulator indexed 
instruction to two bytes of object code, and matches the object code size of the 
smallest M68HC11 indexed instructions, which can only use X as the index regis
ter. The CPU 12 can use X, Y, SP, or PC as the index reference with no additional 
object code size cost. 

The signed 9-bit constant offset indexing mode covers the same positive range as 
the M6HC11 8-bit unsigned offset. The size was increased to nine bits with the sign 
bit (ninth bit) included in the postbyte, and the remaining 8-bits of the offset in a sin
gle extension byte. 

The 16-bit constant offset indexing mode allows indexed access to the entire nor
mal 64-Kbyte address space. Since the address consists of 16 bits, the 16-bit offset 
can be regarded as a signed (-32,768 to +32767) or unsigned (0 to 65,535) value. 

M68HC11 TO M68HC12 UPGRADE PATH 
REFERENCE MANUAL 

MOTOROLA 

8-7 



In 16-bit constant offset mode, the offset is supplied in two extension bytes after 
the opcode and postbyte. 

8.5.2 Auto-Increment Indexing 

The CPU12 provides greatly enhanced auto increment and decrement modes of 
indexed addressing. In the CPU12, the index modification may be specified for 
before the index is used (pre-), or after the index is used (post-), and the index can 
be incremented or decremented by any amount from one to eight, independent of 
the size of the operand that was accessed. X, Y, and SP can be used as the index 
reference, but this mode does not allow PC to be the index reference (this would 
interfere with proper program execution). 

This addressing mode can be used to implement a software stack structure, or to 
manipulate data structures in lists or tables, rather than manipulating bytes or 
words of data. Anywhere an M68HC11 program has an increment or decrement 
index register operation near an indexed mode instruction, the increment or 
decrement operation can be combined with the indexed instruction with no cost in 
object code size, as shown in the following code comparison. 

18 A6 00 
18 08 

LDAA O,Y 

INY 
A6 71 LDAA 2, Y+ 

18 08 INY 

The M68HC11 object code requires seven bytes, while the CPU12 requires only 
two bytes to accomplish the same functions. Three bytes of M68HC11 code were 
due to the page prebyte for each Y related instruction ($18). CPU12 post 
increment indexing capability allowed the two INY instructions to be absorbed into 
the LDAA indexed instruction. The replacement code is not identical to the original 
three instruction sequence because the Z condition code bit is affected by the 
M68HC11 INY instructions, while the Z bit in the CPU12 would be determined by 
the value loaded into A. 

8.5.3 Accumulator Offset Indexing 

This indexed addressing variation allows the programmer to use either an 8-bit 
accumulator (A or B), or the 16-bit D accumulator as the offset for indexed 
addressing. This allows for a program-generated offset, which is more difficult to 
achieve in the M68HC11. The following code compares the M68HC11 and CPU12 
operations. 

!C6 05 

I
CE 10 00 
3A 
A6 00 

I
SA 
26 F7 

MOTOROLA 

B·8 

LOOP 
LDAB #$5 [2) IC6 05 
LDX #$1000 [3 ) ICE 10 00 
ABX [3) A6 ES LOOP 
LDAA O,X [4] 

04 31 FB 
DECB [2] 

ENE LOOP [3] 

M68HC11 TO M68HC12 UPGRADE PATH 

LDAB 
LDX 
LDAA 

I 
DENE 

#$5 [1] 
#$1000 [2] 

B,X [3] 

B,LOOP [3] 

CPU12 

REFERENCE MANUAL 



The CPU12 object code is only one byte smaller, but the LOX # instruction is 
outside the loop. It is not necessary to reload the base address in the index 
register on each pass through the loop because the LOAA B,X instruction does 
not alter the index register. This reduces the loop execution time from 15 cycles to 
6 cycles. This reduction, combined with the 8 MHz bus speed of the M68HC12 
family, can have significant effects. 

B.5.4 Indirect Indexing 

The CPU12 allows some forms of indexed indirect addressing where the 
instruction points to a location in memory where the address of the operand is 
stored. This is an extra level of indirection compared to ordinary indexed 
addressing. The two forms of indexed indirect addressing are 16-bit constant 
offset indexed indirect and 0 accumulator indexed indirect. The reference index 
register can be X, Y, SP, or PC as in other CPU12 indexed addressing modes. PC
relative indirect addressing is one of the more common uses of indexed indirect 
addressing. The indirect variations of indexed addressing help in the 
implementation of pointers. 0 accumulator indexed indirect addressing can be 
used to implement a runtime computed GOTO function. Indirect addressing is 
also useful in high level language compilers. For instance, PC-relative indirect 
indexing can be used to efficiently implement some C case statements. 

B.6 Improved Performance 

The CPU12 improves on M68HC11 performance in several ways. M68HC12 
devices are designed using sub-micron design rules, and fabricated using 
advanced semiconductor processing, the same methods used to manufacture the 
M68HC16 and M68300 families of modular microcontrollers. M68HC12 devices 
have a base bus speed of 8 MHz, and are designed to operate over a wide range 
of supply Voltages. The 16-bit wide architecture also increases performance. 
Beyond these obvious improvements, the CPU12 uses a reduced number of 
cycles for many of its instructions, and a 20-bit ALU makes certain CPU12 math 
operations much faster. 

B.6.1 Reduced Cycle Counts 

No M68HC11 instruction takes less than two cycles, but the CPU12 has more 
than 50 opcodes that take only one cycle. Some of the reduction comes from the 
instruction queue, which assures that several program bytes are available at the 
start of each instruction. Other cycle reductions occur because the CPU12 can 
fetch 16 bits of information at a time, rather than eight bits at a time. 

B.6.2 Fast Math 

CPU12 

The CPU12 has some of the fastest math ever designed into a Motorola general
purpose MCU. Much of the speed is due to a 20-bit ALU that can perform two 
smaller operations simultaneously. The ALU can also perform two operations in a 
single bus cycle in certain cases. Table B-3 compares the speed of CPU 12 and 
M68HC11 math instructions. The CPU12 require much fewer cycles to perform an 
operation, and the cycle time is half that of the M68HC11. 

M68HC11 TO M68HC12 UPGRADE PATH 
REFERENCE MANUAL 

MOTOROLA 

8-9 



Table B-3 Comparison of Math Instruction Speeds 

Instruction Math M68HC11 M68HC11 CPU12 w/co-processor 
Mnemonic Operation 1 cycle = 250 ns 1 cycle = 250 ns 1 cycle = 125 ns 

MUL 
8 x 8 = 16 

10 cycles 3 cycles 
(signed) 

-

EMUL 
16x16-32 

20 cycles 3 cycles 
(unsigned) -

EMULS 
16x16=32 

20 cycles 3 cycles 
(signed) 

-

IDIV 
16+16-16 

41 cycles 12 cycles 
(unsigned) 

-

FDIV 
16+16=16 

41 cycles 12 cycles ! (fractional) -

EDIV 
32+16=16 

33 cycles 11 cycles 
(unsigned) 

-

EDIVS 
32+16-16 

37 cycles 12 cycles 
(signed) 

-

IDIVS 
16+16=16 

12 cycles 
(signed) 

- -

EMACS 
16x 16 =}32 20 cycles 12 cycles 
(signed MAC) 

-
per iteration per iteration 

The IDIVS instruction is included specifically for C compilers, where word-sized 
operands are divided to produce a word-sized result (unlike the 32+16=16 EDIV). 
The EMUL and EMULS instructions place the result in registers so a C compiler 
can choose to use only 16 bits of the 32-bit result. 

B.6.3 Code Size Reduction 

CPU12 assembly language programs written from scratch tend to be 30% smaller 
than equivalent programs written for the M68HC11. This figure has been 
independently qualified by Motorola programmers and an independent C compiler 
vendor. The major contributors to the reduction appear to be improved indexed 
addressing and the universal transfer/exchange instruction. 

In some specialized areas, the reduction is much greater. A fuzzy logic inference 
kernel requires about 250 bytes in the M68HC11, and the same program for the 
CPU12 requires about 50 bytes. The CPU12 fuzzy logic instructions replace whole 
subroutines in the M68HC11 version. Table lookup instructions also greatly reduce 
code space. 

Other CPU12 code space reductions are more subtle. Memory to memory moves 
are one example. The CPU12 move instruction requires almost as many bytes as 
an equivalent sequence of M68HC11 instructions, but the move operations 
themselves do not require the use of an accumulator. This means that the 
accumulator often need not be saved and restored, which saves instructions. 

MOTOROLA 

B-l0 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



I 

Arithmetic on index pointers is another example. The M68HC11 usually requires 
that the content of the index register be moved into accumulator D, where calcula
tions are performed, then back to the index register before indexing can take place. 
In the CPU12, the LEAS, LEAX, and LEAY instructions perform arithmetic opera
tions directly on the index pointers. The pre-/post-incremenVdecrement variations 
of indexed addressing also allow index modification to be incorporated into an ex
isting indexed instruction rather than performing the index modification as a sepa
rate operation. 

Transfer and exchange operations often allow register contents to be temporarily 
saved in another register rather than having to save the contents in memory. Some 
CPU12 instructions such as MIN and MAX combine the actions of several 
M68HC11 instructions into a single operation. 

8.7 Additional Functions 

The CPU12 incorporates a number of new instructions that provide added function
ality and code efficiency. Among other capabilities, these new instructions allow ef
ficient processing for fuzzy logic applications and support subroutine processing in 
extended memory beyond the standard 64-Kbyte address map for M68HC12 de
vices incorporating this feature. Table 8-4 is a summary of these new instructions. 
Subsequent paragraphs discuss significant enhancements. 

Table 8-4 New HC12 Instructions 
Mnemonic Addressing Modes Brief Functional Description 

ANDCC Immediate AND CCR with Mask (replaces CLC, CLI, and CLV) 

BCLR Extended Bit(s) Clear (added extended mode) 

BGND Inherent Enter Background Debug Mode, if enabled 

BRCLR Extended I Branch if Bit(s) Clear (added extended mode) 

BRSET Extended Branch if Bit(s) Set (added extended mode) 

BSET Extended Bit(s) Set (added extended mode) 

CALL Extended, Indexed 
Similar to JSR except also stacks PPAGE value 
With RTC instruction, allows easy access to >64K space 

CPS Immediate, Direct, Compare Stack Pointer Extended, and Indexed 

DBNE Relative Decrement and Branch if Equal to Zero (Looping Primitive) 

DBEQ Relative Decrement and Branch if Not Equal to Zero (Looping Primitive) 

EDIV Inherent Extended Divide Y:D/X = Y(Q) & D(R) (unsigned) 

EDIVS Inherent Extended Divide Y:D/X = Y(Q) & D(R) (signed) 

EMACS Special Multiply and Accumulate 16 x 16 => 32 (signed) 

EMAXD Indexed Maximum of Two Unsigned 16-Bit Values 

EMAXM Indexed Maximum of Two Unsigned 16-Bit Values 

EMIND Indexed Minimum of Two Unsigned 16-Bit Values 

EMINM Indexed Minimum of Two Unsigned 16-Bit Values 

EMUL Special Extended Multiply 16 x 16 => 32; M(idx) * D => Y:D 

EMULS Special Extended Multiply 16 x 16 => 32 (signed); M(idx) * D => Y:D 

ETBL Special Table Lookup & Interpolate (16-bit entries) 

EXG Inherent Exchange Register Contents 

IBEQ Relative Increment and Branch if Equal to Zero (Looping Primitive) 

CPU12 M68HC11 TO M68HC12 UPGRADE PATH 

REFERENCE MANUAL 

MOTOROLA 

8-11 



Mnemonic 

IBNE 

IDIVS 

LBCC 

LBCS 

i LBEQ 

LBGE 

i LBGT 

LBHI 

LBHS 

LBLE 

LBLO 

LBLS 

LBLT 

LBMI 

LBNE 

LBPL 

LBRA 

LBRN 

LBVC 

LBVS 

LEAS 

LEAX 

LEAY 

MAXA 

MAXM 

MEM 

MINA 

MINM 

MOVB(W) 
I 

r----ORCC 

I 

PSHC 

PSHD 

PULC 

PULD 

REV 

REVW 

RTC 

SEX 

TBEQ 

TBL 

TBNE 

TFR 

WAV 

MOTOROLA 

8-12 

I 

Table 8-4 New HC12 Instructions (Continued) 
Addressing Modes Brief Functional Description 

Relative Increment and Branch if Not Equal to Zero (Looping Primitive) 

Inherent Signed Integer Divide D/X => X(Q) & D(R) (signed) 

Relative Long Branch if Carry Clear (Same as LBHS) 

Relative Long Branch if Carry Set (Same as LBLO) 

Relative Long Branch if Equal (Z=1) 

Relative Long Branch if Greater than or Equal to Zero 

Relative Long Branch if Greater than Zero 

Relative Long Branch if Higher 

Relative Long Branch if Higher or Same (Same as LBCC) 

Relative Long Branch if Less than or Equal to Zero 

Relative Long Branch if Lower (Same as LBCS) 

Relative Long Branch if Lower or Same 

Relative Long Branch if Less than Zero 

Relative Long Branch if Minus 

Relative Long Branch if Not Equal to Zero 

Relative Long Branch if Plus 

Relative Long Branch Always 

Relative Long Branch Never 

Relative Long Branch if Overflow Clear 

Relative Long Branch if Overflow Set 

Indexed Load Stack Pointer with Effective Address 

Indexed Load X Index Register with Effective Address 

Indexed Load Y Index Register with Effective Address 

Indexed Maximum of Two Unsigned 8-Bit Values 

Indexed Maximum of Two Unsigned 8-Bit Values 

Special Determine Grade of Fuzzy Membership 

Indexed Minimum of Two Unsigned 8-Bit Values 

Indexed Minimum of Two Unsigned 8-Bit Values 

Combinations of i 
Immediate, Extended, I Move Data from One Memory Location to Another 

and Indexed I 

Immediate OR CCR with Mask (replaces SEC, SEI, and SEV) 

Inherent Push CCR onto Stack 

Inherent Push Double Accumulator onto Stack 

Inherent Pull CCR Contents from Stack 

Inherent Pull Double Accumulator from Stack 

Special Fuzzy Logic Rule Evaluation 

Special Fuzzy Logic Rule Evaluation with Weights 

Inherent 
Restore program page and return address from stack 
Used with CALL instruction, allows easy access to >64-Kbyte space 

Inherent Sign Extend 8-bit Register into 16-bit Register 

Relative Test and Branch if Equal to Zero (Looping Primitive) 

Inherent Table Lookup and Interpolate (8-bit entries) 

Relative Test register and Branch if Not Equal to Zero (Looping Primitive) 

Inherent Transfer Register Contents to Another Register 

Special Weighted Average (Fuzzy Logic Support) 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



B.7.1 Memory-to-Memory Moves 

The CPU12 has both 8- and 16-bit variations of memory-to-memory move 
instructions. The source address can be specified with immediate, extended, or 
indexed addressing modes. The destination address can be specified by extended 
or indexed addressing mode. The indexed addressing mode for move instructions 
is limited to modes that require no extension bytes (9- and 16-bit constant offsets 
are not allowed), and indirect indexing is not allowed for moves. This leaves a 5-bit 
signed constant offset, accumulator offsets, and the automatic increment! 
decrement modes. The following simple loop is a block move routine capable of 
moving up to 256 words of information from one memory area to another. 

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers 
DBNE B,LOOP ;repeat B times 

The move immediate to extended is a convenient way to initialize a register 
without using an accumulator or affecting condition codes. 

B.7.2 Universal Transfer and Exchange 

The M68HC11 has only six transfer instructions and two exchange instructions. 
The CPU12 has a universal transfer/exchange instruction that can be used to 
transfer or exchange data between any two CPU registers. The operation is 
obvious when the two registers are the same size, but some of the other 
combinations provide very useful results. For example when an 8-bit register is 
transferred to a 16-bit register, a sign-extend operation is performed. Other 
combinations can be used to perform a zero-extend operation. 

These instructions are used often in CPU12 assembly language programs. 
Transfers can be used to make extra copies of data in another register, and 
exchanges can be used to temporarily save data during a call to a routine that 
expects data in a specific register. This is sometimes faster and smaller (object 
code) than saving data to memory with pushes or stores. 

B.7.3 Loop Construct 

The CPU12 instruction set includes a new family of six loop primitive instructions. 
These instructions decrement, increment, or test a loop count in a CPU register 
and then branch based on a zero or non-zero test result. The CPU registers that 
can be used for the loop count are A, B, D, X, Y, or SP. The branch range is a 9-bit 
signed value (-512 to +511) which gives these instructions twice the range of a 
short branch instruction. 

B.7.4 Long Branches 

CPU12 

All of the branch instructions from the M68HC11 are also available with 16-bit 
offsets which allows them to reach any location in the 64-Kbyte address space. 

M68HC11 TO M68HC12 UPGRADE PATH 

REFERENCE MANUAL 

MOTOROLA 

B-13 



8.7.5 Minimum and Maximum Instructions 

Control programs often need to restrict data values within upper and lower limits. 
The CPU12 facilitates this function with 8- and 16-bit versions of MIN and MAX 
instructions. Each of these instructions has a version that stores the result in 
either the accumulator or in memory. 

For example, in a fuzzy logic inference program, rule evaluation consists of a 
series of MIN and MAX operations. The min operation is used to determine the 
smallest rule input (the running result is held in an accumulator), and the max 
operation is used to store the largest rule truth value (in an accumulator) or the 
previous fuzzy output value (in a RAM location), to the fuzzy output in RAM. The 
following code demonstrates how min and max instructions can be used to 
evaluate a rule with four inputs and two outputs. 

LDY #OUTl 
LDX #INl 
LDAA #$FF 
lUNA 1,X+ 
MINA 1,X+ 
MINA 1,X+ 
MINA 1,X+ 
MAXM 1,Y+ 
MAXM 1,Y+ 

;Point at first output 
;Point at first input value 
;start with largest 8-bit number in A 
; A=MIN (A, IN1) 
; A=MIN (A, IN2 ) 
; A=MIN (A. IN3) 
;A=MIN(A,IN4) so A holds smallest input 
;OUT1=MAX(A,OUT1) and A is unchanged 
;OUT1=MAX(A,OUT2) A still has min input 

Before this sequence is executed, the fuzzy outputs must be cleared to zeros (not 
shown). M68HC11 min or max operations are performed by executing a compare 
followed by a conditional branch around a load or store operation. 

These instructions can also be used to limit a data value prior to using it as an 
input to a table lookup or other routine. Suppose a table is valid for input values 
between $20 and $7F. An arbitrary input value can be tested against these limits 
and be replaced by the largest legal value if it is too big, or the smallest legal value 
if too small using the following two CPU 12 instructions. 

HILIMIT FCB $7F ;comparison value needs to be in mem 
LOWLIMIT FCB $20 ;so it can be referenced via indexed 

MINA HILIMIT,PCR ;A=MIN(A,$7F) 
MAXA LOWLIMIT,PCR;A=MAX(A,$20) 

;A now within the legal range $20 to $7F 

The ",PCR" notation is also new for the CPU12. This notation indicates the 
programmer wants an appropriate offset from the PC reference to the memory 
location (HILIMIT or LOWLIMIT in this example), and then to assemble this 
instruction into a PC-relative indexed MIN or MAX instruction. 

MOTOROLA 

8-14 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



B.7.6 Fuzzy Logic Support 

The CPU12 includes four instructions (MEM, REV, REVW, and WAV) specifically 
designed to support fuzzy logic programs. These instructions have a very small 
impact on the size of the CPU, and even less impact on the cost of a complete 
MCU. At the same time these instructions dramatically reduce the object code 
size and execution time for a fuzzy logic inference program. A kernel written for 
M68HC11 required about 250 bytes and executed in about 750 milliseconds. The 
CPU12 kernel uses about 50 bytes and executes in about 50 microseconds. 

B.7.7 Table Lookup and Interpolation 

The CPU 12 instruction set includes two instructions (TBL and ETBL) for lookup 
and interpolation of compressed tables. Consecutive table values are assumed to 
be the x coordinates the endpoints of a line segment. The TBL instruction uses 8-
bit table entries (y-values) and returns an 8-bit result. The ETBL instruction uses 
16-bit table entries (y-values) and returns a 16-bit result. 

An indexed addressing mode is used to identify the effective address of the data 
point at the beginning of the line segment, and the data value for the end point of 
the line segment is the next consecutive memory location (byte for TBL and word 
for ETBL). In both cases, the B accumulator represents the ratio of (the x-distance 
from the beginning of the line segment to the lookup point) to (the x-distance from 
the beginning of the line segment to the end of the line segment). B is treated as 
an 8-bit binary fraction with radix point left of the MSB, so each line segment is ef
fectively divided into 256 pieces. During execution of the TBL or ETBL instruction, 
the difference between the end point y-value and the beginning point y-value (a 
signed byte for TBL or a signed word for ETBL) is multiplied by the B accumulator 
to get an intermediate delta-y term. The result is the y-value of the beginning point, 
plus this signed intermediate delta-y value. 

B.7.8 Extended Bit Manipulation 

The M68HC11 CPU only allows direct or indexed addressing. This typically 
causes the programmer to dedicate an index register to point at some memory 
area such as the on-chip registers. The CPU12 allows all bit manipulation 
instructions to work with direct. extended or indexed addressing modes. 

B.7.9 Push and Pull D and CCR 

CPU12 

The CPU12 includes instructions to push and pull the D accumulator and the 
CCR. It is interesting to note that the order in which 8-bit accumulators A and B 
are stacked for interrupts is the opposite of what would be expected for the upper 
and lower bytes of the 16-bit D accumulator. The order used originated in the 
M6800, an 8-bit microprocessor developed long before anyone thought 16-bit 
single-chip devices would be made. The interrupt stacking order for accumulators 
A and B is retained for code compatibility. 

M68HC11 TO M68HC12 UPGRADE PATH 

REFERENCE MANUAL 
MOTOROLA 

8·15 



8.7.10 Compare SP 

This instruction was added to the CPU12 instruction set to improve orthogonality 
and high-level language support. One of the most important requirements for C 
high level language support is the ability to do arithmetic on the stack pointer for 
such things as allocating local variable space on the stack. The LEAS -5,SP 
instruction is an example of how the compiler could easily allocate five bytes on 
the stack for local variables. LOX 5,SP+ loads X with the value on the bottom of 
the stack and deallocates five bytes from the stack in a single operation that takes 
only two bytes of object code. 

8.7.11 Support for Memory Expansion 

Bank switching is a common method of expanding memory beyond the 64-Kbyte 
limit of a CPU with a 64-Kbyte address space, but there are some known 
difficulties associated with bank switching. One problem is that interrupts cannot 
take place during the bank switching operation. This increases worst case 
interrupt latency and requires extra programming space and execution time. 

Some M68HC12 variants include a built-in bank switching scheme that eliminates 
many of the problems associated with external switching logic. The CPU12 
includes CALL and return from call (RTC) instructions that manage the interface 
to the bank-switching system. These instructions are analogous to the JSR and 
RTS instructions, except that the bank page number is saved and restored 
automatically during execution. Since the page change operation is part of an 
uninterruptable instruction, many of the difficulties associated with bank switching 
are eliminated. On M68HC12 derivatives with expanded memory capability, bank 
numbers are specified by on-chip control registers. Since the addresses of these 
control registers may not be the same in all M68HC12 derivatives, the CPU12 has 
a dedicated control line to the on-chip integration module that indicates when a 
memory-expansion register is being read or written. This allows the CPU to 
access the PPAGE register without knowing the register address. 

The indexed indirect versions of the CALL instruction access the address of the 
called routine and the destination page value indirectly. For other addressing 
mode variations of the CALL instruction, the destination page value is provided as 
immediate data in the instruction object Code. CALL and RTC execute correctly in 
the normal 64-Kbyte address space, thus providing for portable code. 

MOTOROLA 

8-16 

M68HC11 TO M68HC12 UPGRADE PATH CPU12 

REFERENCE MANUAL 



APPENDIX C 
HIGH-LEVEL LANGUAGE SUPPORT 

Many programmers are turning to high-level languages such as C as an alternative 
to coding in native assembly languages. High-level language (HLL) programming 
can improve productivity and produce code that is more easily maintained than as
sembly language programs. The most serious drawback to the use of HLL in MCUs 
has been the relatively larger size of programs written in HLL. Larger program 
ROM size requirements translate into increased system costs. 

Motorola solicited the cooperation of third-party software developers to assure that 
the CPU 12 instruction set would meet the needs of a more efficient generation of 
compilers. Several features of the CPU12 were specifically designed to improve 
the efficiency of compiled HLL, and thus minimize cost. 

This appendix identifies CPU 12 instructions and addressing modes that provide 
improved support for high-level language. C language examples are provided to 
demonstrate how these features support efficient HLL structures and concepts. 
Since the CPU12 instruction set is a superset of the M68HC11 instruction set, 
some of the discussions use the M68HC11 as a basis for comparison. 

C.1 Data Types 

The CPU12 supports the bit-sized data type with bit manipulation instructions 
which are available in extended, direct, and indexed variations. The char data type 
is a simple 8-bit value that is commonly used to specify variables in a small micro
controller system because it requires less memory space than a 16-bit integer (pro
vided the variable has a range small enough to fit into eight bits). The 16-bit CPU12 
can easily handle 16-bit integer types and the available set of conditional branches 
(including long branches) allow branching based on signed or unsigned arithmetic 
results. Some of the higher math functions allow for division and multiplication in
volving 32-bit values, although it is somewhat less common to use such long val
ues in a microcontroller system. 

The CPU 12 has special sign extension instructions to allow easy type-casting from 
smaller data types to larger ones, such as from char to integer. This sign extension 
is automatically performed when an 8-bit value is transferred to a 16-bit register. 

C.2 Parameters and Variables 

CPU12 

High-level languages make extensive use of the stack, both to pass variables and 
for temporary and local storage. It follows that there should be easy ways to push 
and pull all CPU registers, stack pointer based indexing should be allowed, and 
that direct arithmetic manipulation of the stack pointer value should be allowed. 
The CPU12 instruction set provided for all of these needs with improved indexed 
addressing, the addition of an LEAS instruction, and the addition of push and pull 
instructions for the D accumulator and the CCA. 

HIGH-LEVEL LANGUAGE SUPPORT 

REFERENCE MANUAL 
MOTOROLA 

C-1 



C.2.1 Register Pushes and Pulls 

The M68HC11 has push and pull instructions for A, B, X, and Y, but requires sep
arate 8-bit pushes and pulls of accumulators A and B to stack or unstack the 16-bit 
o accumulator (the concatenated combination of A:B). The PSHD and PULD in
structions allow directly stacking the 0 accumulator in the expected 16-bit order. 

Adding PSHC and PULC improved orthogonality by completing the set of stacking 
instructions so that any of the CPU register can be pushed or pulled. These instruc
tions are also useful for preserving the CCR value during a function call subroutine. 

C.2.2 Allocating and Deallocating Stack Space 

The LEAS instruction can be used to allocate or deallocate space on the stack for 
temporary variables: 

LEAS -lO,S ;Allocate space for 5 16-bit integers 

LEAS 10,S ;Deallocate space for 5 l6-bit ints 

The (de)allocation can even be combined with a register push or pull as in the fol
lowing example: 

LDX 8,S+ ;Load return value and deallocate 

X is loaded with the 16-bit integer value at the top of the stack, and the stack pointer 
is adjusted up by eight to deallocate space for eight bytes worth of temporary stor
age. Post-increment indexed addressing is used in this example, but all four com
binations of pre/post increment/decrement are available (offsets from -8 to +8 
inclusive, from X, Y, or SP). This form of indexing can often be used to get an index 
(or stack pointer) adjustment for free during an indexed operation (the instruction 
requires no more code space or cycles than a zero-offset indexed instruction). 

C.2.3 Frame Pointer 

In the C language, it is common to have a frame pointer in addition to the CPU 
stack pointer. The frame is an area of memory within the system stack which is 
used for parameters and local storage of variables used within a function subrou
tine. The following is a description of how a frame pointer can be set up and used. 

First, parameters (typically values in CPU registers) are pushed onto the system 
stack prior to using a JSR or CALL to get to the function subroutine. At the begin
ning of the called subroutine, the frame pointer of the calling program is pushed 
onto the stack. Typically, an index register such as X, is used as the frame pointer, 
so a PSHX instruction would save the frame pointer from the calling program. 

Next, the called subroutine establishes a new frame pointer by executing a TFR 
S,X. Space is allocated for local variables by executing an LEAS -n,S, where n is 
the number of bytes needed for local variables. 

MOTOROLA 

C-2 
HIGH-LEVEL LANGUAGE SUPPORT CPU12 

REFERENCE MANUAL 



Notice that parameters are at positive offsets from the frame pointer while locals 
are at negative offsets. In the M68HC11, the indexed addressing mode uses only 
positive offsets, so the frame pointer always points to the lowest address of any pa
rameter or local. After the function subroutine finishes, calculations are required to 
restore the stack pointer to the mid-frame position between the locals and the pa
rameters before returning to the calling program. The CPU12 only requires execu
tion of TFR X,S to deallocate the local storage and return. 

The concept of a frame pointer is supported in the CPU12 through a combination 
of improved indexed addressing, universal transfer/exchange, and the LEA instruc
tion. These instructions work together to achieve more efficient handling of frame 
pointers. It is important to consider the complete instruction set as a complex sys
tem with subtle interrelationships rather than simply examining individual instruc
tions when trying to improve an instruction set. Adding or removing a single 
instruction can have unexpected consequences. 

C.3 Increment and Decrement Operators 

In C, the notation + + i or i - - is often used to form loop counters. Within limited 
constraints, the CPU12 loop primitives can be used to speed up the loop count and 
branch function. 

The CPU12 includes a set of six basic loop control instructions which decrement, 
increment, or test a loop count register. and then branch if it is either equal to zero, 
or not equal to zero. The loop count register can be A, B, D, X, Y, or SP. A or B 
could be used if the loop count fits in an 8-bit char variable; the other choices are 
all 16-bit registers. The relative offset for the loop branch is a 9-bit signed value, so 
these instructions can be used with loops as long as 256 bytes. 

In some cases, the pre or post increment operation can be combined with an in
dexed instruction to eliminate the cost of the increment operation. This is typically 
done by post-compile optimization because the indexed instruction that could ab
sorb the increment/decrement operation may not be apparent at compile time. 

C.4 Higher Math Functions 

CPU12 

In the CPU12, subtle characteristics of higher math operations such as IDIVS and 
EMUL are arranged so a compiler can handle inputs and outputs more efficiently. 

The most apparent case is the IDIVS instruction, which divides two 16-bit signed 
numbers to produce a 16-bit result. While the same function can be accomplished 
with the EDIVS instruction (a 32 by 16 divide), doing so is much less efficient be
cause extra steps are required to prepare inputs to the EDIVS, and because EDIVS 
uses the Y index register. EDIVS uses a 32-bit signed numerator and the C com
piler would typically want to use a 16-bit value (the size of an integer data type). 
The 16-bit C value would need to be sign-extended into the upper 16-bits of the 32-
bit EDIVS numerator before the divide operation. 

HIGH-LEVEL LANGUAGE SUPPORT 
REFERENCE MANUAL 

MOTOROLA 

C-3 



Operand size is also a potential problem in the extended multiply operations but 
the difficulty can be minimized by putting the results in CPU registers. Having high
er precision math instructions is not necessarily a requirement for supporting high
level language because these functions can be performed as library functions. 
However, if an application requires these functions. the code is much more efficient 
if the MCU can use native instructions instead of relatively large, slow routines. 

C.5 Conditional If Constructs 

In the CPU 12 instruction set, most arithmetic and data manipulation instructions 
automatically update the condition codes register, unlike other architectures that 
only change condition codes during a few specific compare instructions. The 
CPU12 includes branch instructions that perform conditional branching based on 
the state of the indicators in the condition codes register. Short branches use a sin
gle byte relative offset that allows branching to a destination within about ±128 lo
cations from the branch. Long branches use a 16-bit relative offset that allows 
conditional branching to any location in the 64-Kbyte map. 

C.S Case and Switch Statements 

Case and switch statements (and computed GOTOs) can use PC-relative indirect 
addressing to determine which path to take. Depending upon the situation, cases 
can use either the constant offset variation or the accumulator D offset variation of 
indirect indexed addressing. 

C.7 Pointers 

The CPU12 supports pointers by allowing direct arithmetic operations on the 16-bit 
index registers (LEAS, LEAX, and LEAY instructions) and by allowing indexed in
direct addressing modes. 

C.S Function Calls 

Bank switching is a fairly common way of adapting a CPU with a 16-bit address bus 
to accommodate more than 64-Kbytes of program memory space. One of the most 
significant drawbacks of this technique has been the requirement to mask (disable) 
interrupts while the bank page value was being changed. Another problem is that 
the physical location of the bank page register can change from one MCU deriva
tive to another (or even due to a change to mapping controls by a user program). 
In these situations, an operating system program has to keep track of the physical 
location of the page register. The CPU12 addresses both of these problems with 
the uninterruptible CALL and return from call (RTC) instructions. 

The CALL instruction is similar to a JSR instruction, except that the programmer 
supplies a destination page value as part of the instruction. When CALL executes, 
the old page value is saved on the stack and the new page value is written to the 
bank page register. Since the CALL instruction is uninterruptible, this eliminates 
the need to separately mask off interrupts during the context switch. 

MOTOROLA 

C-4 
HIGH-LEVEL LANGUAGE SUPPORT CPU12 

REFERENCE MANUAL 



The CPU 12 has dedicated signal lines that allow the CPU to access the bank page 
register without having to use an address in the normal 64-Kbyte address space. 
This eliminates the need for the program to know where the page register is phys
ically located. 

The RTC instruction is similar to the RTS instruction, except that RTC uses the byte 
of information that was saved on the stack by the corresponding CALL instruction 
to restore the bank page register to its old value. Although a CALURTC pair can 
be used to access any function subroutine regardless of the location of the called 
routine (on the current bank page or a different page), it is most efficient to access 
some subroutines with JSR/RTS instructions when the called subroutine is on the 
current page or in an area of memory that is always visible in the 64-Kbyte map 
regardless of the bank page selection. 

Push and pull instructions can be used to stack some or all the CPU registers dur
ing a function call. The CPU12 can push and pull any of the CPU registers A, B, 
CCR, D, X, Y, or SP. 

c.g Instruction Set Orthogonality 

CPU12 

One very helpful aspect of the CPU12 instruction set, orthogonality, is difficult to 
quantify in terms of direct benefit to a HLL compiler. Orthogonality refers to the reg
ularity of the instruction set. A completely orthogonal instruction set would allow 
any instruction to operate in any addressing mode, would have identical code sizes 
and execution times for similar operations on different registers, and would include 
both signed and unsigned versions of all mathematical instructions. Greater regu
larity of the instruction makes it possible to implement compilers more efficiently, 
because operation is more consistent, and fewer special cases must be handled. 

HIGH-LEVEL LANGUAGE SUPPORT 
REFERENCE MANUAL 

MOTOROLA 

C-5 



MOTOROLA 

C-6 

HIGH-LEVEL LANGUAGE SUPPORT CPU12 

REFERENCE MANUAL 



INDEX 

A 
ABA instruction 6-8 
Abbreviations for system resources 1-2 
ABX instruction 6-9 
ABY instruction 6-10 
Accumulator direct indexed addressing mode 3-9 
Accumulator offset indexed addressing mode 3-9 
Accumulators 2-1 to 2-2,5-8,5-19 

A 2-1 to 2-2, 3-5, 5-8, 6-8, 6-11,6-13, 
6-15 to 6-16, 6-20, 6-24, 6-35, 6-53, 6-57, 
6-60,6-63,6-69 to 6-71,6-73,6-87,6-90, 
6-92 to 6-93, 6-97, 6-122, 6-124, 6-132, 
6-134,6-136,6-139 to 6-140, 
6-142 to 6-143, 6-146, 6-148, 6-151, 
6-154,6-157,6-160,6-167,6-169,6-171, 
6-174,6-177,6-179 to 6-180, 
6-185 to 6-186. 6-193, 6-196 to 6-204, 
6-207 

B 2-1 to 2-2,3-5,5-8,6-8 to 6-10, 6-12, 
6-14 to 6-15, 6-17, 6-21,6-25,6-36,6-53, 
6-58,6-61,6-64,6-70 to 6-71,6-74, 
6-88 to 6-90, 6-92 to 6-93, 6-98, 
6-123 to 6-124,6-133,6-137,6-146, 
6-149,6-152,6-155,6-161,6-172,6-175, 
6-177,6-179,6-181,6-185,6-187,6-194. 
6-196 to 6-197, 6-199 to 6-203, 6-208 

D 2-1 to 2-2, 3-5, 5-8, 6-15, 6-65, 
6-70 to 6-71,6-78 to 6-79, 6-8110 6-86. 
6-90 to 6-95, 6-124, 6-134, 6-138, 6-146, 
6-157,6-163,6-185,6-188, 
6-195 to 6-196, 6-200, 6-202 to 6-203, 
6-215 to 6-216 

Indexed addressing 3-9 
ADCA instruction 6-11 
ADCB instruction 6-12 
ADDA instruction 6-13 
ADDB instruction 6-14 
ADDD instruction 6-15 
Addition instructions 5-3. 6-8 to 6-15 
ADDR mnemonic 1-3 
Addressing modes 3-1 

Direct 3-3 
Extended 3-3 
Immediate 3-2 
Indexed 2-2, 3-5 
Inherent 3-2 
Memory expansion 10-8 
Relative 3-4 

ANDA instruction 6-16 
AN DB instruction 6-17 
ANDCC instruction 6-18 
ASl instruction 6-19 
ASLA instruction 6-20 

CPU12 

REFERENCE MANUAL 

ASlB instruction 6-21 
ASlD instruction 6-22 
ASR instruction 6-23 
ASRA instruction 6-24 
ASRB instruction 6-25 
Asserted 1-3 
Automatic indexing 3-8 
Automatic program stack 2-2 

B 
Background debugging mode 5-22, 8-6 

BKGD pin 8-7 to 8-9 
Commands 8-9 to 8-10 
Enabling and disabling 8-7 
Instruction 5-22, 6-31,8-7 
Registers 8-11 
ROM 8-6 
Serial interface 8-7 to 8-9 

Base index register 3-6, 3-10 
BCC instruction 6-26 
BClR instruction 6-27 
BCS instruction 6-28 
BEQ instruction 6-29 
BGE instruction 6-30 
BGND instruction 5-22, 6-31, 8-7 
BGT instruction 6-32 
BHI instruction 6-33 
BHS instruction 6-34 
Binary-coded decimal instructions 5-4, 6-8, 

6-11 to 6-14, 6-69 
Bit manipulation instructions 5-7, 6-27, 6-48, 

B-15,C-1 
Mask operand 3-11 , 6-27, 6-48 
Multiple addressing modes 3-11,6-27,6-48 

Bit test instructions 5-7, 6-35 to 6-36, C-1 
BITA instruction 6-35 
BITB instruction 6-36 
Bit-condition branches 5-16, 6-45, 6-47 
BKGD pin 8-7 to 8-9 
BlE instruction 6-37 
BlO instruction 6-38 
BlS instruction 6-39 
Bl T instruction 6-40 
BMI instruction 6-41 
BNE instruction 6-42 
Boolean logic instructions 5-6 

AND 6-16 to 6-18 
Complement 6-62 to 6-64 
Exclusive OR 6-87 to 6-88 
Inclusive OR 6-151 to 6-153 
Negate 6-147 to 6-149 

BPl instruction 6-43 
BRA instruction 6-44 

MOTOROLA 

1-1 



Branch instructions 3-4,4-4 to 4-5,5-13, C-4 
Bit-condition 4-4 to 4-5, 5-16, 6-45, 6-47 
Long 4-4 to 4-5, 5-13,6-104 to 6-121, B-13 
Loop primitive 4-5,5-16,6-70 to 6-71, 

6-92 to 6-93, 6-200, 6-202 
Offset values 5-13, 5-16 
Offsets 3-4 
Short 4-4 to 4-5, 5-13, 6-26, 6-28 to 6-30, 

6-32 to 6-34, 6-37 to 6-44, 6-46, 
6-50 to 6-51 

Signed 5-13, 6-30, 6-32, 6-37, 6-40, 
6-107 to 6-108, 6-111, 6-114 

Simple 5-13, 6-26,6-28 to 6-29, 6-41 to 6-43, 
6-50 to 6-51,6-104 to 6-106, 
6-115 to 6-117,6-120 to 6-121 

Subroutine 5-17, 6-49 
Taken/not-taken cases 4-4,6-7 
Unary 5-13, 6-44, 6-46, 6-118 to 6-119 
Unsigned 5-13, 6-33 to 6-34, 6-38 to 6-39, 

6-109 to 6-110, 6-112 to 6-113 
BRCLR instruction 6-45 
BRN instruction 6-46 
BRSET instruction 6-47 
BSET instruction 6-48 
BSR instruction 4-3, 6-49 
Bus cycles 6-5 
Bus structure B-4 
BVC instruction 6-50 
BVS instruction 6-51 
Byte moves 6-144 
Byte order in memory 2-6 
Byte-sized instructions 4-4 to 4-5 

c 
C status bit 2-5,6-19 to 6-26,6-28,6-33 to 6-34, 

6-38 to 6-39,6-54,6-69,6-72 to 6-74, 
6-78 to 6-79, 6-81 to 6-84, 6-86, 
6-95 to 6-98, 6-104 to 6-105, 
6-109 to 6-110,6-112 to 6-113, 
6-139 to 6-140, 6-142 to 6-143, 6-168, 
6-179 to 6-182, 6-193 to 6-195 

CALL instruction 3-12, 4-3, 5-17, 6-52, 
10-2 to 10-4, B-16, C-4 to C-5 

Case statements C-4 
CBA instruction 6-53 
Changes in execution flow 4-2 to 4-5, 

6-102 to 6-103,6-176 to 6-178, 6-196, 
7-1 to 7-6 

CLC instruction 6-54 
Clear instructions 5-6, 6-56 to 6-58 
Cleared 1-3 
CLI instruction 6-55 
Clock monitor reset 7-3 
CLR instruction 6-56 

MOTOROLA 

1-2 

CLRA instruction 6-57 
CLRB instruction 6-58 
CLV instruction 6-59 
CMPA instruction 6-60 
CMPB instruction 6-61 
Code size B-10 
COM instruction 6-62 
COMA instruction 6-63 
COMB instruction 6-64 
Compare instructions 5-5, 6-53, 6-60 to 6-61, 

6-65 to 6-68 
Complement instructions 5-6, 6-62 to 6-64 
Computer operating properly monitor 7-3 
Condition codes instructions 5-21, 6-18, 

6-54 to 6-55, 6-59, 6-153, 6-156, 6-162, 
6-182 to 6-184, 6-198, 6-203 to 6-204, B-15 

Condition codes register 2-1,2-3,6-18, 
6-54 to 6-55, 6-59, 6-90, 6-128, 6-153, 
6-156,6-162,6-177,6-183t06-185,6-198, 
6-203 to 6-204, C-4 

C status bit 2-5, 6-19 to 6-26, 6-28, 
6-33 to 6-34, 6-38 to 6-39, 6-54, 6-69, 
6-72 to 6-74, 6-78 to 6-79, 6-81 to 6-84, 
6-86, 6-95 to 6-98, 6-104 to 6-105, 
6-109 to 6-110, 6-112 to 6-113, 
6-139 to 6-140,6-142 to 6-143, 6-168, 
6-179 to 6-182, 6-193 to 6-195 

H status bit 2-4, 6-8, 6-11 to 6-14, 6-69 
I mask bit 2-4, 6-18, 6-55, 6-183, 6-196, 

6-205,6-213,7-2,7-4 
Manipulation 5-21, 6-18, 6-54 to 6-55, 6-59, 

6-153, 6-182 to 6-184, 6-198, 6-204 
N status bit 2-4, 6-41 , 6-43, 6-115, 6-117 
S control bit 2-3, 6-189 
Stacking 6-156, 6-162 
V status bit 2-5, 6-50 to 6-51, 6-59, 

6-120 to 6-121,6-166 to 6-169, 6-184 
X mask bit 2-3,6-90,6-162,6-177,6-189, 

6-198,6-203,6-213,7-2,7-4 
Z status bit 2-5, 6-29, 6-42, 6-81 to 6-84, 

6-101,6-106,6-116,6-139 to 6-140, 
6-142 to 6-143 

Conditional 16-bit read cycle 6-7 
Conditional 8-bit read cycle 6-7 
Conditional 8-bit write cycle 6-7 
Conserving power 5-21, 6-189 
Constant indirect indexed addressing mode 3-7 
Constant offset indexed addressing mode 

3-6 to 3-7 
Conventions 1-3 
COP reset 7-3 
CPD instruction 6-65 
CPS instruction 6-66 
CPU wait 6-213 

CPU12 

REFERENCE MANUAL 



CPX instruction 6-67 
CPY instruction 6-68 
Cycle code letters 6-5 
Cycle counts B-9 
Cycle-by-cycle operation 6-5 

DAA instruction 6-69 
DATA mnemonic 1-3 
Data types 2-5 

o 

DBEQ instruction 6-70, A-25 
DBNE instruction 6-71, A-25 
DEC instruction 6-72 
DECA instruction 6-73 
DECB instruction 6-74 
Decrement instructions 5-4, 6-72 to 6-77 
Defuzzification 9-6 to 9-7, 9-22 to 9-24,9-26, 

9-29 
DES instruction 6-75 
DEX instruction 6-76 
DEY instruction 6-77 
Direct addressing mode 3-3 
Division instructions 5-7 

16-bit fractional 6-91 
16-bit integer 6-94 to 6-95 
32-bit extended 6-78 to 6-79 

Divsion instructions C-3 

EDIV instruction 6-78 
EDIVS instruction 6-79 

E 

Effective address 3-2, 3-5, 6-128 to 6-130 
EMACS instruction 5-11, 6-80, 9-1, 9-29 
EMAXD 6-81 
EMAXD instruction 6-81 
EMAXM instruction 6-82, 9-1 
EMIND instruction 6-83, 9-1 
EMINM instruction 6-84 
EMUL instruction 6-85 
EMULS instruction 6-86 
Enabling maskable interrupts 2-4 
EORA instruction 6-87 
EORB instruction 6-88 
ETBL instruction 5-12, 6-89, 9-1 
Even bytes 2-6 
Exceptions 4-3, 7-1 

Interrupts 7-3 
Maskable interrupts 7-1,7-4 to 7-5 
Non-maskable interrupts 7-1,7-4 
Priority 7-2 
Processing flow 7-6 
Resets 7-1 to 7-3 
Software interrupts 5-18, 6-196, 7-1, 7-6 

CPU12 

REFERENCE MANUAL 

Unimplemented opcode trap 7-1 to 7-2, 7-5 
Vectors 7-1,7-6 

Exchange instructions 5-2, 6-90, 6-215 to 6-216, 
B-11,B-13 

Postbyte encoding A-24 
Execution cycles 6-5 

Conditional 16-bit read 6-7 
Conditional 8-bit read 6-7 
Conditional 8-bit write 6-7 
Free 6-5 
Optional 4-4 to 4-5, 6-6 
Program word access 6-6 
Read indirect pointer 6-5 
Read indirect PPAGE value 6-5 
Read PPAGE 6-5 
Read 16-bit data 6-6 
Read 8-bit data 6-6 
Stack 16-bit data 6-6 
Stack 8-bit data 6-6 
Unstack 16-bit data 6-7 
Unstack 8-bit data 6-6 
Vector fetch 6-7 
Write PPAGE 6-5 
Write 16-bit data 6-6 
Write 8-bit data 6-6 

Execution time 6-5 
EXG instruction 6-90 
Expanded memory 3-12, 4-3, 10-1, B-16, 

C-4to C-5 
Addressing modes 3-12, 10-4 to 10-7 
Bank switching 3-12, 10-1, 10-3 to 10-7 
Chip-select circuits 10-5 
Instructions 3-12, 5-17, 6-52, 6-176, 

10-2 to 10-4 
Overlay windows 10-1, 10-3 to 10-7 
Page registers 3-12, 10-1, 10-4 to 10-7 
Registers 10-5 to 10-7 
Subroutines 5-17,10-2, C-4to C-5 

Extended addressing mode 3-3 
Extended division 5-7 
Extension byte 3-5 
External interrupts 7-5 
External queue reconstruction 8-1 
External reset 7-3 

F 
Fast math B-9 
FDIV instruction 6-91 
Fractional division 5-7 
Frame pointer C-2 to C-3 
Free cycle 6-5 
Fuzzy logic 9-1 

Antecedants 9-5 

MOTOROLA 

1-3 



Consequents 9-5 
Custom programming 9-26 
Defuzzification 5-9, 9-6 to 9-7,9-22 to 9-24, 

9-26, 9-29 
Fuzzification 5-9, 9-3, 9-26 
Inference kernel 5-9, 9-2, 9-7 
Inputs 5-9, 9-30 
Instructions 5-9,6-141,6-166,6-168,6-214. 

9-1,9-9,9-13 to 9-14, 9-17 to 9-20,9-22, 
B-15 

Interrupts 9-20, 9-23 to 9-24, 9-26 
Knowledge base 9-2,9-5 
Membership functions 5-9, 6-141, 9-1 to 9-3, 

9-9 to 9-13, 9-26 to 9-27 
Outputs 5-9, 9-30 
Rule evaluation 5-9, 6-166, 6-168, 9-1, 9-5, 

9-13 to 9-15,9-17 to 9-20, 9-22, 9-29 
Rules 9-2, 9-5 
Sets 9-2 
Tabular membership functions 5-12, 9-26 
Weighted average 5-9, 6-214, 9-1,9-6 to 9-7, 

9-22 to 9-24, 9-26 

G 
General purpose accumulators 2-1 

H 
H status bit 2-4, 6-8, 6-11 to 6-14, 6-69 
High-level language C-1, C-3 

Addressing modes C-1 , C-3 to C-4 
Condition codes register C-4 
Expanded memory C-4 to C-5 
Instructions C-1 
Loop primitives C-3 
Stack C-1 to C-2 

I mask bit 2-4, 6-18, 6-55, 6-183, 6-196, 6-205, 
6-213,7-2 

IBEQ instruction 6-92, A-25 
IBNE A-25 
IBNE instruction 6-93 
IDIV instruction 6-94 
IDIVS instruction 6-95, C-3 
Immediate addressing mode 3-2 
INC instruction 6-96 
INCA instruction 6-97 
INCB instruction 6-98 
Increment instructions 5-4, 6-96 to 6-101 
Index calculation instructions 5-20, 6-9 to 6-10, 

6-76 to 6-77,6-100 to 6-101, 
6-129 to 6-130, B-11 

Index manipulation instructions 5-19, 
6-67 to 6-68, 6-90, 6-126 to 6-127, 

MOTOROLA 

1-4 

6-158 to 6-159,6-164 to 6-165, 
6-191 to 6-192,6-203,6-209 to 6-212, 
6-215 to 6-216 

Index registers 2-1 to 2-2, 5-19, C-2 
X 3-5, 6-9, 6-67, 6-70 to 6-71. 6-76, 

6-90 to 6-95, 6-100, 6-126, 
6-128 to 6-130, 6-158, 6-164, 6-166, 
6-168,6-177,6-185,6-191,6-196, 
6-200 to 6-203, 6-209, 6-211, 6-215 

Y 3-5, 6-10, 6-68, 6-70 to 6-71,6-77 to 6-80, 
6-85 to 6-86, 6-90, 6-92 to 6-93, 6-101, 
6-127 to 6-130, 6-159, 6-165 to 6-166, 
6-168,6-177,6-185,6-192,6-196, 
6-200 to 6-203, 6-210, 6-212, 6-216 

Indexed addressing modes 2-2, 3-5, A-23, 
B-6 to B-9 

Accumulator direct 3-9 
Accumulator offset 3-9 
Automatic indexing 3-8 
Base index register 3-6, 3-1 ° 
Extension byte 3-5 
Postbyte 3-5 
Postbyte encoding 3-5, A-23 
16-bit constant indirect 3-7 
16-bit constant offset 3-7 
5-bit constant offset 3-6 
9-bit constant offset 3-7 

Inference kernel, fuzzy logic 9-7 
Inherent addressing mode 3-2 
INS instruction 6-99 
Instruction queue 1-1,2-6,4-1,8-1, B-4 

Alignment 4-1 
Buffer 4-1 
Debugging 8-1 
Movement cycles 4-2 
Reconstruction 8-1 to 8-2, 8-4 to 8-5 
Stages 4-1 , 8-1 
Status registers 8-4 to 8-5 
Status signals 4-1,8-1,8-3,8-5 to 8-6 

Instruction set A-2 
Integer division 5-7 
Interrupt instructions 5-18 
Interrupts 7-3 

Enabling and disabling 2-3 to 2-4, 6-55, 6-183, 
7-2 

External 7-5 
I mask bit 2-4, 6-55, 6-183, 6-196, 6-213, 7-4 
Instructions 5-18, 6-55, 6-177, 6-183, 6-196, 

6-205 
Low-power stop 5-21,6-189 
Maskable 2-4, 7-4 
Non-maskable 2-3, 7-2, 7-4 
Recognition 7-4 
Return 2-4, 5-18, 6-177, 7-5 

CPU12 

REFERENCE MANUAL 



Service routines 7-4 
Software 5-18, 6-196, 7-1, 7-6 
Stacking 7-4 
Vectors 7-3 
Wait instruction 5-21, 6-213 
X mask bit 2-3, 6-189, 6-213, 7-4 

INX instruction 6-100 
INY instruction 6-101 

J 
JMP instruction 4-5, 6-102 
JSR instruction 4-3, 6-103 
Jump instructions 5-17 
Jumps 4-5 

Knowledge base 9-2 

LBCC instruction 6-104 
LBCS instruction 6-105 
LBEQ instruction 6-106 
LBGE instruction 6-107 
LBGT instruction 6-108 
LBH I instruction 6-1 09 
LBHS instruction 6-110 
LBLE instruction 6-111 
LBLO instruction 6-112 
LBLS instruction 6-113 
LBL T instruction 6-114 
LBMI instruction 6-115 
LBN E instruction 6-116 
LBPL instruction 6-117 
LBRA instruction 6-118 
LBRN instruction 6-119 
LBVC instruction 6-120 
LBVS instruction 6-121 
LDAA instruction 6-122 
LDAB instruction 6-123 
LDD instruction 6-124 
LDS instruction 6-125 
LDX instruction 6-126 
LDY instruction 6-127 

K 

L 

LEAS instruction 6-128. C-2, C-4 
Least signficant byte 1-3 
Least significant word 1-3 
LEAX instruction 6-129, C-4 
LEAY instruction 6-130. C-4 
Legal label 6-3 
Literal expression 6-3 
Load instructions 5-1 , 6-122 to 6-130 
Logic level one 1-3 
Logic level zero 1-3 

CPU12 

REFERENCE MANUAL 

Loop primitive instructions 4-5, 6-70 to 6-71, 
6-92 to 6-93, 6-200, 6-202, A-25, B-13, C-3 

Offset values 5-16 
Postbyte encoding A-25 

Low-power stop 5-21 , 6-189 
LSL instruction 6-131 
LSL mnemonics 5-8 
LSLA instruction 6-132 
LSLB instruction 6-133 
LSLD instruction 6-134 
LSR instruction 6-135 
LSRA instruction 6-136 
LSRB instruction 6-137 
LSRD instruction 6-138 

M 
Maskable interrupts 7-1,7-4 
MAXA instruction 6-139 
Maximum instructions 5-11, B-14 

16-bit 6-81 to 6-82 
8-bit 6-139 to 6-140 

MAXM instruction 6-140, 9-1 
MEM instruction 5-9, 6-141, 9-1,9-9 to 9-13 
Membership functions 9-2 
Memory and addressing symbols 1-2 
Memory expansion 

Addressing 10-8 
Bank switching 10-8 
Overlay windows 10-8 
Page registers 10-3, 10-8 

MINA instruction 6-142, 9-1 
Minimum instructions 5-11, B-14 

16-bit 6-83 to 6-84 
8-bit 6-142 to 6-143 

MINM instruction 6-143 
Misaligned instructions 4-4 to 4-5 
Mnemonic 1-3 
Mnemonic ranges 1-3 
Most significant byte 1-3 
Most significant word 1-3 
MOVB instruction 6-144 
Move instructions 5-3, 6-144 to 6-145, B-10, 

B-13 
Destination 3-10 
Multiple addressing modes 3-10 
PC relative addressing 3-10 
Reference index register 3-10 
Source 3-10 

MOVW instruction 6-145 
MUL instruction 6-146 
Multiple addressing modes 

Bit manipulation instructions 3-11,6-27,6-48 
Move instructions 3-10, 6-144 to 6-145 

MOTOROLA 

1-5 



Multiplication instructions 5-7 
16-bit 6-85 to 6-86 
8-bit 6-146 

Multiply and accumulate instructions 5-11,6-80, 
6-214 

M68HC11 compatibility 3-2, B-1 
M68HC11 instruction mnemonics B-1 

N 
N status bit 2-4, 6-41,6-43,6-115,6-117 
NEG instruction 6-147 
NEGA instruction 6-148 
Negate instructions 5-6, 6-147 to 6-149 
Negated 1-3 
Negative integers 2-5 
NEGB instruction 6-149 
Non-maskable interrupts 7-1 to 7-2,7-4 
NOP instruction 5-22, 6-150 
Notation 

Branch taken/not taken 6-7 
Changes in CCR bits 6-2 
Cycle-by-cycle operation 6-5 
Memory and addressing 1-2 
Object code 6-2 
Operators 1-3 
Source forms 6-3 
System resources 1-2 

Null operation instruction 5-22, 6-150 
Numeric range of branch offsets 3-4 

o 
Object code notation 6-2 
Odd bytes 2-6 
Opcodes B-2, B-9 

Map A-20 
Operators 1-3 
Optional cycles 4-4 to 4-5, 6-6 
ORAA instruction 6-151 
ORAB instruction 6-152 
ORCC instruction 6-153 
Orthogonality C-5 

p 
Pointer calculation instructions 5-20, 

6-128 to 6-130 
Pointers C-4 
Postbyte 3-5, 6-90, 6-185, 6-203 
Postby1e encoding 

Exchange instructions A-24 
Indexed addressing modes A-23 
Loop primitive instruction A-25 
Transfer instructions A-24 

Post-decrement indexed addressing mode 3-8 
Post-increment indexed addressing mode 3-8 

MOTOROLA 

1-6 

Power conservation 5-21, 6-189, 6-213 
Power-on reset 7-3 
Pre-decrement indexed addressing mode 3-8 
Pre-increment indexed addressing mode 3-8 
Priority, exception 7-2 
Program counter 2-1, 2-3, 3-5, 6-31, 6-49, 6-52, 

6-103,6-128 to 6-130,6-144 to 6-145, 
6-150, 6-177 to 6-178, 6-196, 6-201, 6-205 

Program word access cycle 6-6 
Programming model 1-1 ,2-1, B-3 
Pseudo-non-maskable interrupt 7-2 
PSHA instruction 6-154 
PSHB instruction 6-155 
PSHC instruction 6-156 
PSHD instruction 6-157 
PSHX instruction 6-158 
PSHY instruction 6-159 
PULA instruction 6-160 
PULB instruction 6-161 
PULC instruction 6-162 
PULD instruction 6-163, C-2 
Pull instructions C-5 
PULX instruction 6-164 
PUL Y instruction 6-165 
Push instructions C-5 
PUSHD instruction C-2 

R 
Range of mnemonics 1-3 
Read indirect PPAGE cycle 6-5 
Read PPAGE cycle 6-5 
Read 8-bit data cycle 6-6 
Read16-bit data cycle 6-6 
Register designators 6-3 
Relative addressing mode 3-4 
Relative offset 3-4 
Resets 7-1 to 7-2 

Clock monitor 7-3 
COP 7-3 
External 7-3 
Power-on 7-3 

REV instruction 5-9, 6-166, 9-1, 9-5, 
9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29 

REVW instruction 5-9, 6-168, 9-1,9-5, 
9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29 

ROL instruction 6-170 
ROLA instruction 6-171 
ROLB instruction 6-172 
ROM, BDM 8-6 
ROR instruction 6-173 
RORA instruction 6-174 
RORB instruction 6-175 
Rotate instructions 5-8, 6-170 to 6-175 
RTC instruction 3-12, 4-3, 5-17, 6-176, 

CPU12 

REFERENCE MANUAL 



10-2 to 10-4, B-16, C-4 to C-5 
RTI instruction 2-4, 5-18, 6-177, 7-5 
RTS instruction 4-3, 6-178 

S control bit 2-3, 6-189 
SBA instruction 6-179 
SBCA instruction 6-180 
SBCB instruction 6-181 
SEC instruction 6-182 
SEI instruction 6-183 
Set 1-3 

s 

Setting memory bits 6-48 
SEV instruction 6-184 
SEX instruction 5-2, 6-185 
Shift instructions 5-8 

Arithmetic 6-19 to 6-25 
Logical 6-131 to 6-138 

Sign extension instruction 6-185 
Signed branches 5-13 
Signed integers 2-5 
Signed multiplication 5-7 
Sign-extension instruction 5-2, C-1 
Simple branches 5-13 
Software interrupts 6-196, 7-1 
Source code compatibility 1-1, B-1 
Source form notation 6-3 
Specific mnemonic 1-3 
ST AA instruction 6-186 
STAB instruction 6-187 
Stack 2-2, B-5 to B-6 

Interrupts 6-177,6-196 
Stop and wait 6-189, 6-213 
Subroutines 6-49, 6-52, 6-103, 6-176, 6-178 
Traps 6-205 

Stack operation instructions 5-20, 6-154 to 6-165 
Stack pointer 2-1 to 2-2,3-5,6-49,6-52,6-66, 

6-70 to 6-71,6-75,6-90,6-92 to 6-93, 6-99, 
6-103,6-125,6-128 to 6-130, 
6-154 to 6-165,6-178,6-185,6-190, 
6-200 to 6-203, 6-209 to 6-212, C-1 

Initialization 2-2 
Manipulation 5-20, 6-66, 6-75, 6-99, 6-125, 

6-128,6-154 to 6-155,6-190, 
6-209 to 6-212 

Stacking order 2-2, B-5 
Stack pointer instructions 5-20, 6-66, 6-75, 6-99, 

6-125,6-128,6-190,6-203,6-209 to 6-212, 
B-16 to C-1 

Stack 16-bit data cycle 6-6 
Stack 8-bit data cycle 6-6 
Stacking instructions 6-154 to 6-155 
Standard CPU 12 address space 2-5 

CPU12 

REFERENCE MANUAL 

STD instruction 6-188 
STOP instruction 2-3, 5-21, 6-189 
Store instructions 5-1 , 6-186 to 6-188, 

6-190 to 6-192 
STS instruction 6-190 
STX instruction 6-191 
STY instruction 6-192 
SUBA instruction 6-193 
SUBB instruction 6-194 
SUBD instruction 6-195 
Subroutine instructions 5-17 
Subroutines 4-3,6-103, C-4 to C-5 

Expanded memory 4-3, 5-17, 6-52, 6-176 
Instructions 5-17, 6-49, 6-103, C-4 to C-5 
Retum 6-176, 6-178 

Subtraction instructions 5-3, 6-179 to 6-181 , 
6-1 93 to 6-195 

SWI instruction 5-18, 6-196, 7-6 
Switch statements C-4 
Symbols and notation 1-2 

T 
TAB instruction 6-197 
Table interpolation instructions 5-12, 6-89, 6-201, 

B-15 
Tabular membership functions 9-26 to 9-27 
TAP instruction 6-198 
TBA instruction 6-199 
TBEQ instruction 6-200, A-25 
TBL instruction 5-12, 6-201 , 9-1, 9-26 to 9-27 
TBNE instruction 6-202, A-25 
Termination of interrupt service routines 5-18, 

6-177,7-5 
Termination of subroutines 6-176, 6-178 
Test instructions 5-5, 6-35 to 6-36, 6-200, 6-202, 

6-206 to 6-208 
TFR instruction 6-185, 6-198, 6-203 to 6-204, 

6-209 to 6-212 
TPA instruction 6-204 
Transfer and exchange instructions C-1 
Transfer instructions 5-2, 6-197 to 6-199, 

6-203 to 6-204, 6-209 to 6-212, 8-11, 8-13 
Postbyte encoding A-24 

TRAP instruction 5-18, 6-205, 7-5 
TST 6-206 
TST instruction 6-206 
TST A instruction 6-207 
TST8 instruction 6-208 
TSX instruction 6-209 
TSY instruction 6-210 
Twos-complement form 2-5 
TXS instruction 6-211 
Types of instructions 

MOTOROLA 

1-7 



Addition and Subtraction 5-3 
Background and null 5-22 
Binary-coded decimal 5-4 
Bit test and manipulation 5-7 
Boolean logic 5-6 
Branch 5-13 
Clear, complement, and negate 5-6 
Compare and test 5-5 
Condition code 5-21 
Decrement and increment 5-4 
Fuzzy logic 5-9 
Index manipulation 5-19 
Interrupt 5-18 
Jump and subroutine 5-17 
Load and store 5-1 
Loop primitives 5-16 
Maximum and minimum 5-11 
Move 5-3 
Multiplication and division 5-7 
Multiply and accumulate 5-11 
Pointer and index calculation 5-20 
Shift and rotate 5-8 
Sign extension 5-2 
Stacking 5-20 
Stop and wait 5-21 
Table interpolation 5-12 
Transfer and exchange 5-2 

TYS instruction 6-212 

u 
Unary branches 5-13 
Unimplemented opcode trap 5-18, 6-205, 

7-1 to 7-2 
Unsigned branches 5-13 
Unsigned multiplication 5-7 
Unstack 16-bit data cycle 6-7 
Unstack 8-bit data cycle 6-6 
Unweighted rule evaluation 6-166,9-5, 

9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29 

v 
V status bit 2-5,6-50 to 6-51,6-59, 

6-120 to 6-121,6-166 to 6-169, 6-184 
Vector fetch cycle 6-7 
Vectors, exception 7-1, 7-6 

W 
WAI instruction 5-21,6-213 
WAV instruction 5-9,5-11,6-214,9-1, 

9-6 to 9-7, 9-22 to 9-24,9-26,9-29 
Wavr pseudoinstruction 9-23 to 9-24, 9-26 
Weighted average 6-214 
Weighted rule evaluation 6-168, 9-5, 

9-13 to 9-15,9-17 to 9-20,9-22,9-29 

MOTOROLA 

1-8 

Word moves 6-145 
Write PPAGE cycle 6-5 
Write 16-bit data cycle 6-6 
Write 8-bit data cycle 6-6 

x 
X mask bit 2-3, 6-90, 6-162, 6-177,6-189, 

6-198,6-203,6-213 
XGDX instruction 6-215 
XGDY instruction 6-216 

z 
Z status bit 2-5,6-29,6-42,6-81 to 6-84, 6-101, 

6-106,6-116,6-139 to 6-140, 
6-142 to 6-143 

Zero-page addressing 3-3 

CPU12 

REFERENCE MANUAL 



SUMMARY OF CHANGES 
First edition. 



Colophon: 

This manual is a production of the Motorola Advanced Microcontroller Division. Writing and technical edit by 
Harold D. Roberson, using Macintosh computers and Framemaker 5 software. Technical review performed by 
Jim Sibigtroth and Greg Viol. Illustrations by Harold Roberson and Doug Garry. Copy edited by Donna Delvy and 
Kurt Von Quintus. 

1ATX35342-0 Printed in USA 4/96 CSI 28569-16 12,000 AMCU YGAKAA 




