Nov 1995

M68EM05C9 EMULATOR MODULE USER'S MANUAL

Third Edition

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Motorola logo are registered trademarks of Motorola Inc.

Motorola Inc. is an Equal Opportunity/Affirmative Action Employer.

TABLE OF CONTENTS

Heading	Page
CHAPTER 1 INTRODUCTION	1-1
1.1 DEVELOPMENT SYSTEMS	1-1
1.1.1 Motorola Modular Development System (MMDS05)	
1.1.2 M68HC05EVS Evaluation System (HC05EVS)	
1.2 EM LAYOUT	1-3
1.3 CONNECTORS P4 AND P5 PIN ASSIGNMENTS	
1.5 COP WATCHDOG EMULATION CONSIDERATIONS	1-4
CHAPTER 2 MMDS05 CONFIGURATION AND OPERATION	2-1
2.1 SETTING C9EM JUMPER HEADERS	2-1
2.1.1 Clock Source Select Headers (J2 and J3)	2-2
2.1.2 Reset Select Header (J4)	
2.1.3 Emulation Device Selection (J1, S1)	2-4
2.1.4 Port B Keyboard Interrupt Mask option (S2)	
2.2 THE EMULATED MCU	2-6
2.2.1 Resident MCU Substitution	
2.2.2 C9 Emulation	
2.2.3 (7)05C4A Emulation	
2.2.4 705C8 Emulation	
2.2.5 705C8A Emulation	
2.2.6 (7)05C9A Emulation	
2.2.7 C12A Emulation	
2.2.8 C2, C3, C4(A), C8, C8(A), C12A Emulation	2-8
2.3 REMAINING SYSTEM INSTALLATION	
CHAPTER 3 HC05EVS CONFIGURATION AND OPERATION	3-1
3.1 SETTING C9EM JUMPER HEADERS	
3.1.1 Clock Source Select Headers (J2 and J3)	
3.1.2 Reset Select Header (J4)	
3.1.3 Emulation Device Selection (J1, S1)	3-4
3.1.4 Port B Keyboard Interrupt Mask option (S2)	3-5
3.2 RESIDENT MCU SUBSTITUTION	
3.2.1 Resident MCU Substitution	
3.2.2 C9 Emulation	
3.2.3 (7)05C4A Emulation	
3.2.4 705C8 Emulation	
3.2.5 705C8A Emulation	
3.2.6 (7)05C9A Emulation	
3.2.7 C12A Emulation	
3.2.8 C2, C3, C4(A), C8, C8(A), C12A Emulation	
3.3 EVS LIMITATIONS	
3.4 LOGIC ANALYZER CONNECTOR P1	
3.5 REMAINING SYSTEM INSTALLATION	3-12

TABLE OF FIGURES

Figure	Page
FIGURE 1-1. HC05C9 EMULATOR MODULE	1-3
FIGURE 1-2. CONNECTORS P4 AND P5 PIN ASSIGNMENTS	1-4
FIGURE 3-1. CONNECTOR P1 PIN ASSIGNMENTS	
TABLE OF TABLES	
Table	Page
TABLE 2-1. MCUS EMULATION SELECTION	2-4
TABLE 2-2. MCUS AND PERSONALITY FILES	2-6
TABLE 3-1. MCUS EMULATION SELECTION	3-4
TABLE 3-2. RESIDENT MCUS	3-6
TABLE 2.2. LOCIC ANALYZED CONNECTOR DI CICNAL DECORPTIONS	

CHAPTER 1 INTRODUCTION

This user's manual explains connection, configuration, and operation information specific to the M68EM05C9 Emulator Module (C9EM). The C9EM makes possible emulation and debugging of target systems based on these microcontroller units (MCUs):

MC68HC05C4A MC68HC705C4A MC68HC05C8A MC68HC705C8A

MC68HC05C9A MC68HC705C9A MC68HC05C12A

The C9EM also emulates the following parts that have been or will shortly be replaced:

MC68HC05C2 MC68HC05C3 MC68HC05C4 MC68HC805C4

MC68HC05C8 MC68HC705C8 MC68HC05C9 MC68HC705C9

The C9EM can be part of two development systems. This chapter describes those systems and explains the layout of the C9EM.

1.1 DEVELOPMENT SYSTEMS

Your C9EM can be part of two Motorola development tools: the HC05 Motorola Modular Development System (MMDS05) or the M68HC05EVS Evaluation System (HC05EVS).

1.1.1 Motorola Modular Development System (MMDS05)

The MMDS05 is an emulator system that provides a bus state analyzer and real-time memory windows. The unit's integrated design environment includes an editor, an assembler, user interface, and source-level debug. A complete MMDS05 consists of:

- a station module the metal MMDS05 enclosure, containing the control board and the internal power supply. Most system cables connect to the MMDS05 station module. (The cable to an optional target system, however, runs through an aperture in the station module enclosure to connect directly to the emulator module.)
- an emulator module (EM) such as the C9EM: a printed circuit board that enables system functionality for a specific set of MCUs. The EM fits into the station module through a sliding panel in the enclosure top. The EM has a connector for the target cable.
- two logic clip cable assemblies twisted-pair cables that connect the station module to your target system, a test fixture, a clock, or any other circuitry useful for evaluation or analysis. One end of each cable assembly has a moulded connector, which fits into station-module pod A or pod B. Leads at the other end of each cable terminate in female probe tips. Ball clips come with the cable assemblies.

M68EM05C9/D 1-1 MOTOROLA

- a 9-lead RS-232 serial cable the cable that connects the station module to the host computer RS-232 port.
- a 9- to 25-pin adapter a moulded assembly that lets you connect the 9-lead cable to a 25-pin serial port.
- **system software** software, on 3-1/2 inch diskettes.
- **MMDS05 documentation** an MMDS05 operations manual (MMDS05OM/D) and the appropriate EM user's manual.

As mentioned, your C9EM gives the MMDS05 the ability to emulate several MC68HC05C-series MCUs. By substituting a different EM, you can enable your MMDS05 to emulate an MCU of a different series. (Your Motorola representative can explain all the EMs available.)

Chapter 2 explains how to configure and use your C9EM as part of an MMDS05 system. For information about MMDS05 software or the station module, see the MMDS05 operations manual. For layout and configuration information pertaining to a different EM, see the corresponding EM user's manual.

1.1.2 M68HC05EVS Evaluation System (HC05EVS)

An HC05EVS is an economical, two-board tool for designing, debugging, and evaluating target systems based on an MC68HC05 MCU. A complete HC05EVS consists of:

- **a platform board (PFB)** the bottom board, which supports the emulator module. The platform board has connectors for power and for the terminal or host computer.
- an emulator module (EM) such as the C9EM: a printed circuit board that enables system functionality for a specific set of MCUs. The EM fits onto the PFB. The EM has connectors for a target cable and for a cable to a logic analyzer.
- an RS-232 serial cable the cable that connects the PFB to the host computer RS-232 port.
- **system software** software, on 3-1/2 inch diskettes.
- **HC05EVS documentation** an HC05EVS operations manual (HC05EVSOM/D) and the appropriate EM user's manual.

As mentioned, your HC05C9 EVS emulates several MC68HC05C-series MCUs. By substituting a different EM, you can enable your HC05EVS to emulate an MCU of a different series. (Your Motorola representative can explain all the EMs available.)

Chapter 3 explains how to configure and use your C9EM as part of an HC05EVS system. For information about HC05EVS software or the platform board, see the HC05EVS operations manual. For layout and configuration information pertaining to a different EM, see the corresponding EM user's manual.

M68EM05C9/D 1-2 MOTOROLA

1.2 EM LAYOUT

Figure 1-1 shows the layout of the C9EM. Jumper J1 allows the selection of either Cx or CxA emulation (e.g. C4 vs C4A, C12A). Jumper headers J2 and J3 let the user select the clock source. Jumper J4 determines the logic direction of the RESET signal at the target connector. Switch array S1 determines which device is to be emulated. Switch array S2 allows the user to set the port B mask option for CxA devices (including C12).

Connectors P4 and P5 provide the interface to the target system. If you install the C9EM in the MMDS05 station module, the target cable passes through the slit in the station module enclosure. Connector P1 connects to a logic analyzer. (Connector P1 has more significance for an EVS system, as an MMDS05 system includes a bus analyzer.) Expansion header connectors P2 and P3 connect together the EM and the control board (for an MMDS05) or the EM and the platform board (for an EVS).

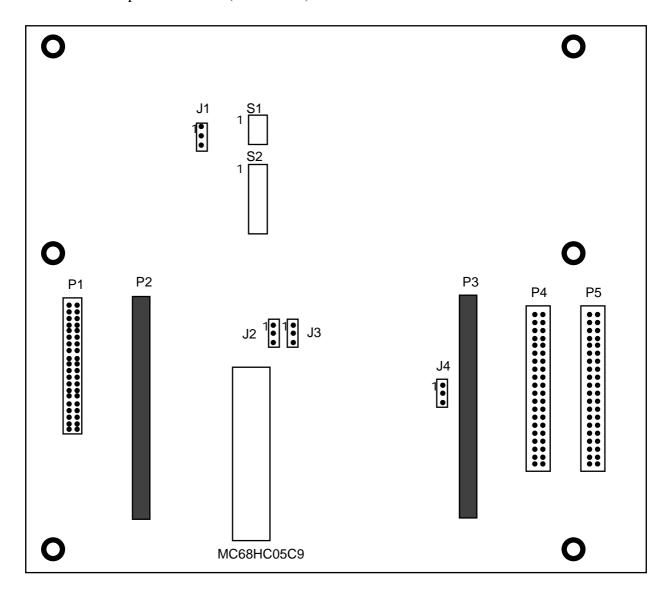


Figure 1-1. HC05C9 Emulator Module

1.3 CONNECTORS P4 AND P5 PIN ASSIGNMENTS

Figure 1-2 shows the pin assignments for connectors P4 and P5. The signal names used correspond with the signal names of the MCU. For signal descriptions, consult the technical data book for the specific MCU.

Figure 1-2. Connectors P4 and P5 Pin Assignments

As connector P1 has more importance to an HC05EVS than to an MMDS05, pin assignments for connector P1 are in Chapter 3.

To configure your C9EM for use as part of an MMDS05, follow the instructions of Chapter 2. To configure your C9EM for use as part of an HC05EVS, follow the instructions of Chapter 3.

1.5 COP WATCHDOG EMULATION CONSIDERATIONS

Some of the devices emulated by this system include on-chip COP watchdogs. See sections 2.2.x and 3.2.x for further configuration details.

CHAPTER 2

MMDS05 CONFIGURATION AND OPERATION

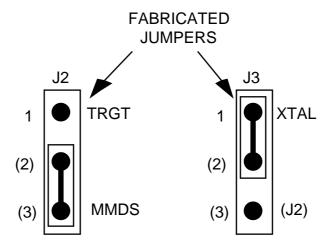
This chapter explains how to configure and use your C9EM as part of an MMDS05. For other parts of system installation or configuration, see the MMDS05 operations manual (MMDS05OM/D). (If you will use your C9EM as part of an HC05EVS system, go to Chapter 3 for corresponding information.)

Paragraph 2.1 explains how to set C9EM jumper headers. Paragraph 2.2 explains considerations pertaining to the MCU you emulate. Paragraph 2.3 explains remaining system installation.

Note that you can configure a C9EM already installed in the MMDS05 station module enclosure. To do so, switch off station-module power, remove the panel, then follow the guidance of this chapter.

CAUTION

Be sure to switch off power if you reconfigure an installed EM. Reconfiguring EM jumper headers with power left on can damage MMDS05 circuits.

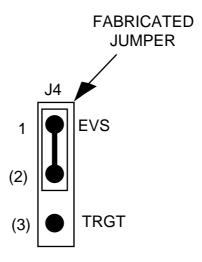

2.1 SETTING C9EM JUMPER HEADERS

Your C9EM has four jumper headers, J1 through J4 and two switch arrays S1 and S2. Paragraphs 2.1.1. through 2.1.4 explain how to configure these headers and switches.

M68EM05C9/D 2-1 MOTOROLA

2.1.1 Clock Source Select Headers (J2 and J3)

Jumper headers J2 and J3 select the source of the clock oscillator for the MCU. You may choose between on-board oscillator (EM), MMDS supplied oscillator (MMDS) or clock from the target system (TRGT). To select MMDS you must place the J3 jumper at the (J2) position as well as correctly selecting the J2 setting. The diagram below shows the factory configuration: the fabricated jumper on J3 between pins 1 and 2 selects the C9EM on-board cannel oscillator clock source.



Alternatively, you may use a clock source originating from the control board. To do so, position the J3 jumper between pins 2 and 3, then use the MMDS05 OSC command to select a frequency. To use a clock source originating from the target system position the J3 jumper between pins 2 and 3, then position the J2 jumper between pins 1 and 2.

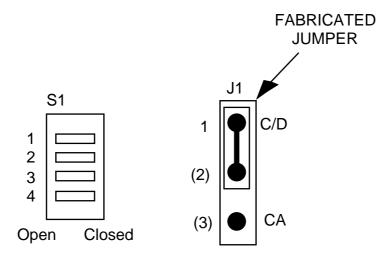
M68EM05C9/D 2-2 MOTOROLA

2.1.2 Reset Select Header (J4)

Jumper header J4 controls the path of a target reset. The diagram below shows the factory configuration: the fabricated jumper between pins 1 and 2 enables your software to control resets. This is the only correct J4 configuration for a C9EM that is part of an MMDS05.

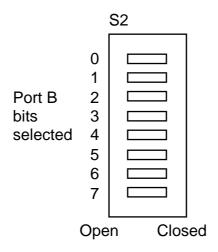
NOTE

The J2 pins 2-and-3 configuration is not correct for a C9EM that is part of an MMDS05 system. Such a configuration would interfere with correct operation of the RESETIN and RESETOUT commands.


M68EM05C9/D 2-3 MOTOROLA

2.1.3 Emulation Device Selection (J1, S1)

Switch array S1 and jumper J1 together allow the user to determine the device which is to be emulated. S1 is used to select the size of the memory map available to the MCU and also some device specific features. J1 determines whether the keyboard interrupt function is active for the CA style devices. The following table shows the settings of S1 and J1 which are required for each MCU emulated. Section 2.2 discusses the MMDS05 personality files to be used with each device and the operation of replacing the resident MCU where this is necessary. Note that devices in *italics* have been or will soon be replaced and are present for historical reasons only.


Table 2-1. MCUs Emulation Selection

DEVICE	S1 SWITCH	S1 SWITCH	S1 SWITCH	S1 SWITCH	J1 SET	TING
	1	2	3	4	C/D	CA
M68HC05C2	CLOSED	CLOSED	CLOSED	OPEN	ON	
М68НС05С3	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC05C4	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC805C4	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC05C8	CLOSED	CLOSED	CLOSED	OPEN	ON	
М68НС705С8	OPEN	CLOSED	CLOSED	OPEN	ON	
М68НС05С9	CLOSED	OPEN	CLOSED	OPEN	ON	
М68НС705С9	CLOSED	OPEN	CLOSED	OPEN	ON	
M68HC05C4A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC705C4A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC05C8A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC705C8A	OPEN	CLOSED	CLOSED	OPEN		ON
M68HC05C9A	CLOSED	OPEN	CLOSED	OPEN	_	ON
M68HC705C9A	CLOSED	OPEN	CLOSED	OPEN	_	ON
M68HC05C12A	CLOSED	OPEN	CLOSED	OPEN		ON

2.1.4 Port B Keyboard Interrupt Mask option (S2)

Switch array S2 selects which bits in port B have the keyboard interrupt function active for CxA type devices. (The switch S2 settings should match the port B mask option settings that you require for the device; in the 705C8A this is set up in register MOR1.) The bits selected are only active when programmed as inputs using the port B data direction register, in such cases a resistive pull up is activated on the bit in question. To enable the mask option for the keyboard interrupt bit close the relevant switch in S2 and ensure that jumper J1 selects the CA option. Switch array S2 is organised as follows:

M68EM05C9/D 2-5 MOTOROLA

2.2 THE EMULATED MCU

Your MMDS05 system uses a specific personality file for the MCU type being emulated. For example, to emulate an MC68HC05C9 or MC68HC705C9 MCU, the system uses personality file 0021AVxx.MEM. Table 2-1 lists all the personality files that pertain to the C9EM. Note that personality file names follow the pattern **OOZZZVxx.MEM**, where **ZZZ** is the EM identifier or MCU name, and **xx** is the version of the file. **Note that devices** in *italics* have been or will soon be replaced and are present for historical reasons only.

Table 2-2. MCUs and Personality Files

EMULATED MCU	PERSONALITY FILE	COMMENTS
M68HC05C2	00C2_V01.MEM	See paragraphs 2.2.1 and 2.2.8.
M68HC05C3	00C3_V01.MEM	See paragraphs 2.2.1 and 2.2.8.
M68HC05C4	00C4_V01.MEM	See paragraphs 2.2.1 and 2.2.8.
M68HC805C4	00C4_V01.MEM	See paragraphs 2.2.1 and 2.2.8.
M68HC05C8	00218V01.MEM	See paragraphs 2.2.1 and 2.2.8.
M68HC705C8	00219V01.MEM	See paragraph 2.2.1, 2.2.4 and 2.2.8
M68HC05C9	0021AV01.MEM	See paragraph 2.2.2.
M68HC705C9	0021AV01.MEM	See paragraph 2.2.2.
M68HC05C4A	00C4AV01.MEM	See paragraphs 2.2.1, 2.2.3 and 2.2.8.
M68HC705C4A	00C4AV01.MEM	See paragraphs 2.2.1, 2.2.3 and 2.2.8.
M68HC05C8A	00218V01.MEM	See paragraph 2.2.1 and 2.2.8.
M68HC705C8A	00219V01.MEM	See paragraph 2.2.1, 2.2.5 and 2.2.8.
M68HC05C9A	0021AV01.MEM	See paragraph 2.2.1 and 2.2.6.
M68HC705C9A	0021AV01.MEM	See paragraph 2.2.1 and 2.2.6.
M68HC05C12A	00C12V01.MEM	See paragraphs 2.2.1, 2.2.7 and 2.2.8.

MMDS05 software loads the personality file upon powerup. To replace the default personality file with a different one, use the LOADMEM command. (For more information about the LOADMEM command, see the explanation in the MMDS05 operations manual.)

Alternatively, you can insert the line LOADMEM 00ZZZVxx.MEM in the STARTUP.05 script file. This way, the system automatically loads the specified personality file as part of system startup. (For more information about the STARTUP.05 script file, see the SCRIPT command explanation in the MMDS05 operations manual.)

M68EM05C9/D 2-6 MOTOROLA

2.2.1 Resident MCU Substitution

The socket at C9EM location U9 contains the resident MCU. The factory ships the C9EM with an MC68HC705C9 resident MCU, which is appropriate for emulating a number of MCUs with some qualifications as described in the following paragraphs 2.2.2 through 2.2.8.

Occasionally it may be necessary to replace the resident MCU with another to improve the level of emulation of a particular feature.

When you are ready to install the substitute MCU, turn off MMDS05 power and make sure that you are grounded. Then remove the MCU from C9EM location U9, insert the new resident MCU, and restore power.

2.2.2 C9 Emulation

To emulate either an MC68HC05C9 or MC68HC705C9, use the MC68HC705C9 for the resident MCU. The C9 has single mask option for oscillator selection. This has no effect on emulator operation.

2.2.3 (7)05C4A Emulation

To emulate the watchdog feature on a MC68HC(7)05C4A use the MC68HC(7)05C4A for the resident MCU. The watchdog feature on the MC68HC705C9 is different from that on the C4A and the C4 has no watchdog present.

For more information about the MC68HC05C4A and MC68HC705C9 features, see the corresponding technical data books.

2.2.4 705C8 Emulation

To emulate the exact OPTION register RAM/ROM behaviour of an MC68HC705C8, use a MC68HC705C8 substitute for the resident MCU. By restricting the use of the RAM/ROM available the MC68HC705C9 can be used as the resident MCU. When using the MC68HC05C9 to emulate the MC68HC705C8 writes to the OPTION register should be made to address \$3FDF rather than \$1FDF.

For more information about the MC68HC705C8 and MC68HC705C9 features, see the corresponding technical data books.

M68EM05C9/D 2-7 MOTOROLA

2.2.5 **705C8A** Emulation

To emulate the exact OPTION register RAM/ROM behaviour, and watchdog function of an MC68HC705C8A, use a MC68HC705C8A substitute for the resident MCU. By restricting the use of the RAM/ROM available, and watchdog function the MC68HC705C9 can be used as the resident MCU. When using the MC68HC705C9 to emulate the MC68HC705C8A writes to the OPTION register should be made to address \$3FDF rather than \$1FDF.

For more information about the MC68HC705C8A and MC68HC705C9 features, see the corresponding technical data books.

2.2.6 (7)05C9A Emulation

To emulate an MC68HC(7)05C9A, use the MC68HC705C9 for the resident MCU.

For more information about the MC68HC05C9A and MC68HC705C9 features, see the corresponding technical data books.

2.2.7 C12A Emulation

To emulate the watchdog feature on a MC68HC05C12A use the MC68HC05C12A for the resident MCU. The watchdog feature on the MC68HC705C9 is different from that on the C12A.

For more information about the MC68HC05C12A and MC68HC705C9 features, see the corresponding technical data books.

2.2.8 C2, C3, C4(A), C8, C8(A), C12A Emulation

To emulate an MC68HC05C2,C3,C4(A),C8, you may use the MC68HC705C9 for the resident MCU. Remember that these devices do not include all the MC68HC705C9 features. For accurate emulation, do not use any of the additional MC68HC705C9 features.

For example, the MC68HC705C9 has an OPTION register at address \$3FDF. This register can enable extra RAM and ROM in memory, be careful therefore not to disturb bit 6 and 7 of this register when emulated one of the above devices. This OPTION register also includes a bit which deteremines IRQ sensitivity; either edge only or level and edge. This bit (1) may be used to emulate the IRQ mask option on these devices.

For more information about the MC68HC05C2, C3, C4(A), C8(A) and MC68HC705C9 features, see the corresponding technical data books.

M68EM05C9/D 2-8 MOTOROLA

2.3 REMAINING SYSTEM INSTALLATION

When you have configured headers J1 through J4 and switches S1 and S2, and made sure that the resident MCU is appropriate, you are through with C9EM configuration:

- To install the C9EM in an MMDS05 station module, remove the panel from the station-module top. Fit together EM connectors P2 and P3 (on the bottom of the board) and control-board connectors P11 and P12. Snap the corners of the EM onto the plastic standoffs. Connect the target cable, if appropriate. Replace the panel.
- If your C9EM already is installed in the station module, reconnect the target cable (if necessary). Replace the panel.

At this point, you are ready to make remaining cable connections, as necessary, and restore power. For instructions, consult the MMDS05 operations manual (MMDS05OM/D).

M68EM05C9/D 2-9 MOTOROLA

MMDS05 CONFIGURATION AND OPERATION

This page intentionally left blank

CHAPTER 3

HC05EVS CONFIGURATION AND OPERATION

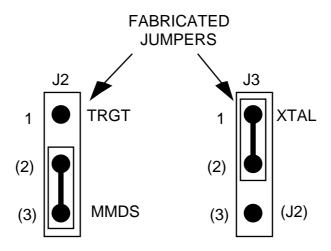
This chapter explains how to configure your C9EM for use as part of an HC05EVS. For other parts of system installation or configuration, see the HC05EVS operations manual (HC05EVSOM/D). (If you will use your C9EM as part of an MMDS05 system, go to Chapter 2 for configuration information.)

Paragraph 3.1 explains how to set C9EM jumper headers. Paragraph 3.2 explains considerations pertaining to the MCU you emulate. Paragraph 3.3 lists limitations on using the C9EM in an HC05EVS. Paragraph 3.4 explains pin assignments and signal descriptions for the logic analyzer connector (P1). Paragraph 3.5 explains remaining system configuration.

Note that you can configure a C9EM already installed on the HC05EVS platform board. To do so, disconnect platform-board power, then follow the guidance of this chapter.

CAUTION

Be sure to disconnect power if you reconfigure an installed EM. Reconfiguring EM jumper headers with power left on can damage HC05EVS circuits.

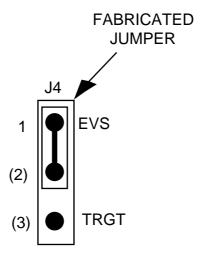

3.1 SETTING C9EM JUMPER HEADERS

Your C9EM has four jumper headers, J1 through J4 and two switch arrays S1 and S2. Paragraphs 3.1.1. through 3.1.4 explain how to configure these headers and switches.

M68EM05C9/D 3-1 MOTOROLA

3.1.1 Clock Source Select Headers (J2 and J3)

Jumper headers J2 and J3 select the source of the clock oscillator for the MCU. You may choose between on-board oscillator (EM) or clock from the target system (TOSC). To select TRGT you must place the J3 jumper at the (J2) position as well as selecting TRGT on the J2 jumper. The diagram below shows the factory configuration: the fabricated jumper on J3 between pins 1 and 2 selects the C9EM on-board canned oscillator clock source.


NOTE

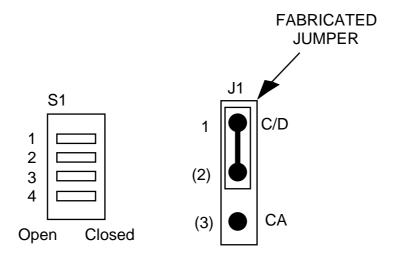
The J2 pins 2-and-3 configuration is not correct for a C9EM that is part of an HC05EVS system.

M68EM05C9/D 3-2 MOTOROLA

3.1.2 Reset Select Header (J4)

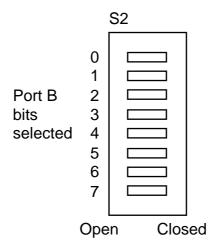
Jumper header J4 controls the path of a target reset. The diagram below shows the factory configuration: the fabricated jumper between pins 1 and 2 enables your C9EVS to reset the target when you press the user or master reset switch.

Alternatively, you may enable the target system to reset the C9EVS. To do so:


- Reposition the C9EM J4 jumper between pins 2 and 3, and
- Insert a fabricated jumper into platform-board header J3.

3.1.3 Emulation Device Selection (J1, S1)

Switch array S1 and jumper J1 together allow the user to determine the device which is to be emulated. S1 is used to select the size of the memory map available to the MCU and also some device specific features. J1 determines whether the keyboard interrupt function is active for the CxA style devices. The following table shows the settings of S1 and J1 which are required for each MCU emulated. Note that devices in *italics* have been or will soon be replaced and are present for historical reasons only.


Table 3-1. MCUs Emulation Selection

D TI II G T	C4 CITTED CIT	G4 GUUTTIGU	G4 GUUTTIGU	C4 CHITTICH	T4 655	
DEVICE	S1 SWITCH	S1 SWITCH	S1 SWITCH	S1 SWITCH	J1 SET	TING
	1	2	3	4	C/D	CA
М68НС05С2	CLOSED	CLOSED	CLOSED	OPEN	ON	
М68НС05С3	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC05C4	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC805C4	CLOSED	CLOSED	CLOSED	OPEN	ON	
M68HC05C8	CLOSED	CLOSED	CLOSED	OPEN	ON	
М68НС705С8	OPEN	CLOSED	CLOSED	OPEN	ON	
М68НС05С9	CLOSED	OPEN	CLOSED	OPEN	ON	
М68НС705С9	CLOSED	OPEN	CLOSED	OPEN	ON	
M68HC05C4A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC705C4A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC05C8A	CLOSED	CLOSED	CLOSED	OPEN		ON
M68HC705C8A	OPEN	CLOSED	CLOSED	OPEN		ON
M68HC05C9A	CLOSED	OPEN	CLOSED	OPEN		ON
M68HC705C9A	CLOSED	OPEN	CLOSED	OPEN		ON
M68HC05C12A	CLOSED	OPEN	CLOSED	OPEN		ON

3.1.4 Port B Keyboard Interrupt Mask option (S2)

Switch array S2 selects which bits in port B have the keyboard interrupt function active for CxA type devices. The bits selected are only active when programmed as inputs using the port B data direction register, in such cases a resistive pull up is activated on the bit in question. To enable the mask option for the keyboard interrupt bit close the relevant switch in S2 and ensure that jumper J1 selects the CA option. Switch array S2 is organised as follows:

M68EM05C9/D 3-5 MOTOROLA

3.2 RESIDENT MCU SUBSTITUTION

The socket at C9EM location U9 contains the resident MCU. The factory ships the C9EM with an MC68HC705C9 resident MCU, which is appropriate for emulating a number of MCUs with some qualifications as described in the following paragraphs 3.2.2 through 3.2.8.

Occasionally it may be necessary to replace the resident MCU with another to improve the level of emulation of a particular feature.

When you are ready to install the substitute MCU, turn off MMDS05 power and make sure that you are grounded. Then remove the MCU from C9EM location U9, insert the new resident MCU, and restore power.

Table 3-2. Resident MCUs

EMULATED MCU	RESIDENT MCU	COMMENTS
M68HC05C2	MC68HC705C9	See paragraphs 3.2.1 and 3.2.8.
M68HC05C3	MC68HC705C9	See paragraphs 3.2.1 and 3.2.8.
M68HC05C4	MC68HC705C9	See paragraphs 3.2.1 and 3.2.8.
M68HC805C4	MC68HC705C9	See paragraphs 3.2.1 and 3.2.8.
M68HC05C8	MC68HC705C9	See paragraphs 3.2.1 and 3.2.8.
M68HC705C8	MC68HC705C9	See paragraph 3.2.1, 3.2.4 and 3.2.8
M68HC05C9	MC68HC705C9	See paragraph 3.2.2.
M68HC705C9	MC68HC705C9	See paragraph 3.2.2.
M68HC05C4A	MC68HC705C9	See paragraphs 3.2.1, 3.2.3 and 3.2.8.
M68HC705C4A	MC68HC705C9	See paragraphs 3.2.1, 3.2.3 and 3.2.8.
M68HC05C8A	MC68HC705C9	See paragraph 3.2.1 and 3.2.8.
M68HC705C8A	MC68HC705C9	See paragraph 3.2.1, 3.2.5 and 3.2.8.
M68HC05C9A	MC68HC705C9	See paragraph 3.2.1 and 3.2.6.
M68HC705C9A	MC68HC705C9	See paragraph 3.2.1 and 3.2.6.
M68HC05C12A	MC68HC705C9	See paragraphs 3.2.1, 3.2.7 and 3.2.8.

Table 3-1 shows the resident MCU appropriate for your emulation with additional information in th reference paragraphs. Also note paragraphs 3.2.2 through 3.2.8, below, for the information specific to the MCU you emulate.

M68EM05C9/D 3-6 MOTOROLA

3.2.1 Resident MCU Substitution

The socket at C9EM location U9 contains the resident MCU. The factory ships the C9EM with an MC68HC705C9 resident MCU, which is appropriate for emulating a number of MCUs with some qualifications as described in the following paragraphs 3.2.2 through 3.2.8.

Occasionally it may be necessary to replace the resident MCU with another to improve the level of emulation of a particular feature.

When you are ready to install the substitute MCU, turn off EVS power and make sure that you are grounded. Then remove the MCU from C9EM location U9, insert the new resident MCU, and restore power.

3.2.2 C9 Emulation

To emulate either an MC68HC05C9 or MC68HC705C9, use the MC68HC05C9 for the resident MCU. The C9 has single mask option for oscillator selection. This has no effect on emulator operation.

3.2.3 (7)05C4A Emulation

To emulate the watchdog feature on a MC68HC(7)05C4A use the MC68HC(7)05C4A for the resident MCU. The watchdog feature on the MC68HC705C9 is different from that on the C4A and the C4 has no watchdog present.

For more information about the MC68HC05C4A and MC68HC705C9 features, see the corresponding technical data books.

3.2.4 705C8 Emulation

To emulate the exact OPTION register RAM/ROM behaviour of an MC68HC705C8, use a MC68HC705C8 substitute for the resident MCU. By restricting the use of the RAM/ROM available the MC68HC705C9 can be used as the resident MCU. When using the MC68HC705C9 to emulate the MC68HC705C8 writes to the OPTION register should be made to address \$3FDF rather than \$1FDF.

For more information about the MC68HC705C8 and MC68HC705C9 features, see the corresponding technical data books.

M68EM05C9/D 3-7 MOTOROLA

3.2.5 705C8A Emulation

To emulate the exact OPTION register RAM/ROM behaviour, and watchdog function of an MC68HC705C8A, use a MC68HC705C8A substitute for the resident MCU. By restricting the use of the RAM/ROM available, and watchdog function the MC68HC705C9 can be used as the resident MCU. When using the MC68HC05C9 to emulate the MC68HC705C8A writes to the OPTION register should be made to address \$3FDF rather than \$1FDF.

For more information about the MC68HC705C8A and MC68HC705C9 features, see the corresponding technical data books.

3.2.6 (7)05C9A Emulation

To emulate an MC68HC(7)05C9A, use the MC68HC705C9 for the resident MCU.

For more information about the MC68HC05C9A and MC68HC705C9 features, see the corresponding technical data books.

3.2.7 C12A Emulation

To emulate the watchdog feature on a MC68HC05C12A use the MC68HC05C12A for the resident MCU. The watchdog feature on the MC68HC705C9 is different from that on the C12A.

For more information about the MC68HC05C12A and MC68HC705C9 features, see the corresponding technical data books.

3.2.8 C2, C3, C4(A), C8, C8(A), C12A Emulation

To emulate an MC68HC05C2,C3,C4(A),C8, you may use the MC68HC705C9 for the resident MCU. Remember that these devices do not include all the MC68HC705C9 features. For accurate emulation, do not use any of the additional MC68HC705C9 features.

For example, the MC68HC705C9 has an OPTION register at address \$3FDF. This register can enable extra RAM and ROM in memory, be careful therefore not to disturb bit 6 and 7 of this register when emulated one of the above devices. This OPTION register also includes a bit which deteremines IRQ sensitivity; either edge only or level and edge. This bit (1) may be used to emulate the IRQ mask option on these devices.

For more information about the MC68HC05C2, C3, C4(A), C8(A) and MC68HC705C9 features, see the corresponding technical data books.

M68EM05C9/D 3-8 MOTOROLA

3.3 EVS LIMITATIONS

This paragraph explains the limitations that apply to using your C9EM in an HC05EVS. (These limitations apply regardless of the resident MCU.)

Limitation 1. CLI/RTI. You may not trace a clear interrupt mask (CLI) or return from interrupt (RTI) instruction with an interrupt enabled and pending, due to MCU interrupt handling. Attempting such a trace causes an interrupt in the monitor map; this forces a software reset of the HC05EVS. User breakpoints remain in the user map as SWI instructions; you must remove such SWI instructions.

Limitation 2. Branch. Do not trace a conditional branch instruction (such as BRCLR) that branches to itself. As the monitor places an SWI instruction on the object of the branch, the system never would execute the instruction. However, it would appear to you that the instruction had executed. You may enter a G command while the PC points to this type of instruction as long as the instruction is not a breakpoint address.

Limitation 3. IRQ/SWI. Whenever possible, avoid mixing interrupt requests (IRQs) and user software interrupts (SWIs). This prevents a possible IRQ-SWI timing problem: a concurrent hardware interrupt and SWI could cause an HC05EVS failure that could stop program execution. To recover from such a failure (which occurs very infrequently, statistically), press the master reset switch (SW3).

Limitation 4. Memory Map. You must be aware of the memory map of the MCU being simulated; be sure to use only valid ROM locations. The HC05EVS does not provide protection to limit user programs to the exact amount of MCU ROM available. (For information about memory maps, consult the technical data book for the MCU.)

Limitation 5. COP. The computer operating properly (COP) update register serves as an EPROM location for the resident MCU. Accordingly, the platform-board write-protect jumper header must enable write protection. Otherwise, any writes to the COP update register change the value stored in user pseudo ROM.

M68EM05C9/D 3-9 MOTOROLA

3.4 LOGIC ANALYZER CONNECTOR P1

Figure 3-1 shows the pin assignments for logic analyzer connector P1. Table 3-2 lists signal descriptions for this connector.

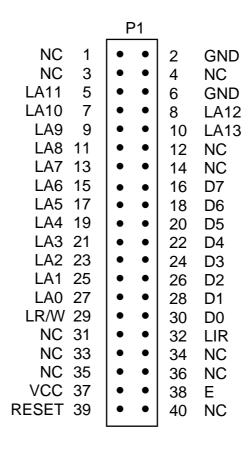
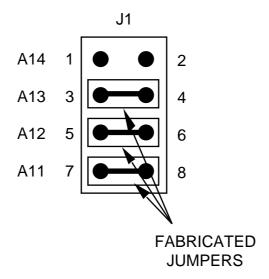


Figure 3-1. Connector P1 Pin Assignments


Table 3-3. Logic Analyzer Connector P1 Signal Descriptions

PIN	MNEMONIC	SIGNAL
1, 3, 4, 10, 12, 14, 31, 33 -36, 40		No connection
2, 6	GND	GROUND
5, 7, 8, 9, 11. 13. 15. 17, 19, 21, 23, 25, 27	LA13 — LA0	LATCHED ADDRESSES (bits 13—0) - MCU latched output address bus.
8	LA12	LATCHED ADDRESSES (bit 12) - MCU latched output address bus.
16, 18, 20, 22, 24, 26, 28, 30	AD7 — AD0	DATA BUS (bits 7—0) - MCU multiplexed I/O data bus.
29	LR/W	LATCHED READ/WRITE - Active-high output signal that indicates the direction of data transferred on the bus.
32	LIR	LOAD INSTRUCTION REGISTER - Open-drain, active-low output signal that indicates an instruction is starting.
37	VCC	+5 VDC POWER - Input voltage (+5 Vdc @ 1.0 A) used by EVS logic circuits.
38	E	EXTERNAL CLOCK - Internally generated output clock signal used as a timing reference. The frequency of E clock is 1/2 the input frequency of the signal on the OSC2 pin.
39	RESET	RESET - Active-low bidirectional signal for starting an EVS reset.

3.5 REMAINING SYSTEM INSTALLATION

When you have configured headers J1 through J4 and switches S1 and S2, and made sure that the resident MCU is appropriate, you are through with C9EM configuration.

Find jumper header J1 of the HC05EVS platform board. Make sure that three fabricated jumpers are installed, per the diagram below.

To install the C9EM on an HC05EVS platform board, fit together EM connectors P2 and P3 (on the bottom of the board) and platform-board connectors P3 and P4. Snap the corners of the EM onto the plastic standoffs.

At this point, you are ready to make remaining cable connections, as necessary, and restore power. For instructions, consult the HC05EVS operations manual (HC05EVSOM/D).

M68EM05C9/D 3-12 MOTOROLA