
AR219

The MC68020 and System V /68

Bob Bei•1
1161000 Applic:atioa1 Ba1iaeer

llotorola llic:roproc:e1sor Products Division
Willi•• Caaaoa al US 290 Weal

Au1tia. Te:ra1 71735

As microcomputer systems have evo 1 ved over
the past few years, most of the "new" features
that have appeared are not really new at all;
rather, they were originally implemented in
main frame and mini-computers. Even the archi -
tectures of the microprocessors themselves have
their roots in the architectures of larger
machines, such as the DEC PDP-11 and VAX-11
mini-computers. In addition to the hardware
features that have migrated from the mini
computer world into microcomputers, software
features are al so being implemented on micro
computers that were previously found in minis.
Probably the most prominent example of this is
the emergence of multi -user, multi -tasking
operating systems for microcomputers, with the
UNIX operating system coming to the front as
the standard OS for most supermicros (UNIX is a
trademark of AT&T Bell Laboratories). In order
to implement UNIX on any computer system, the
main CPU of that system must have a fairly high
performance capacity, with an advanced inst
ruction set, to support the demands of this
operating system. In the past three years, one
microprocessor has emerged as the de facto
standard for implementing UNIX based micro
computers, the MC68000 and its related family
of processors and peripherals. This paper will
explore the relationship between the newest
member of the M68000 Family, the MC68020 32-bit
microprocessor, and Motorola's version of the
UIHX operating system, System V/68.

The development of a solid operating system
obviously does not happen over night, even
though it would seem that UNIX is a new kid on
the block, judging from the burst of new
product introductions that use it. However,
UNIX is now almost 14 years old, and it has
been present in microcomputers for over 3
years. In fact, two years ago Mini-Micro
Systems (Nov. '82) published an article on
supermicro computers, and listed twenty com
mercially available machines that used UNIX (or
a UNIX derivative or look-alike) as their
operating system. This indicates that this
operating system is quite mature, in its cap
abilities, in the amount of support available

for it, and in the number of application
programs written to run under it. The main
reason for all of the activity in the last few
months is, of course, due to the new posture
that AT&T has taken with respect to UNIX.
Motorola has taken advantage of its strong
position in the UNIX market place (of the
twenty machines listed by Mini-Micro two years
ago, 17 were MC68000 based) and has entered
into an agreement with AT&T to support UNIX for
the M68000 Family with a licensed System V
version of UNIX, System V/68. In fact,
Motorola is the first company to have its UNIX
System V port verified by AT&T. The impli
cation of this agreement between Motorola and
AT&T, and the existing hardware and software
base that has used the M68000 Family for UNIX
in the past, is that the M68000 processors will
continue to be the standard for UNIX machines.

There are several key questions that this
paper will attempt to answer: Why is the
M68000 Family so commonly used for UNIX
machines? What unique features are implemented
on the MC68020 that hel~ it to be a better UNIX
machine? What is Motorola's System V/68, and
what is its relationship to AT&T System V? And
finally, what kind of system level support is
being offered by Motorola to help system i nte
grators develop MC68020-System V/68 machines?

The M68000 Architecture -
What Makes It Good For UNIX.

As was mentioned above, in 1982 there were
at least 17 companies that had developed micro
computer hardware to support UNIX, and all of
them used the MC68000 microprocessor. Now in
1984, there are 70 vendors that have super
mi cros on the market (according to Systems &
Software, Sept·. '84); and most of those run
UNIX (or a look-alike) and use the MC68000 or
MC68010 as the main processor. The main
reasons for the popularity of the M68000 Family
are 1) a clean, 32-bit architecture with a
1 inear address space, 2) high performance, with
processors readily available that run at clock

Copyright © Electronics Conventions, Inc. Reprinted with permission, from WESCON 1984 Professional Program Papers, Session 17/1.

speeds of up to 12. 5 MHz, 3) fl exi bil i ty: these
processors have features such as multiprocessor
support, memory management and virtual memory
support that are a must for the design of a
high-performance UNIX machine, and 4) avail
abi 1 i ty, the MC68000 was the first widely
availa.ble machine with a 32-bit architecture,
which is very much like the architecture of the
DEC PDP~l family (which is where UNIX has been
used the most). The MC68020 is poised to take
advantage of the M68000 Family popularity in
the UIHX market place, and will reinforce all
of the above reasons for being the choice for
the microprocessor at the heart Of UNIX based
supermi eras. The t1C68020 uses the exact same
architecture as is implemented in the MC68000
and the MC68010, so that porting UNIX (and
applications that run under it) to the new
processor will be straight forward. This new
processor is at least four times faster than
its predecessors, and UNIX needs all of that
performance to meet the needs of the emerging
office automation environment. The MC68020 has
several advanced features that nake it even
more flexible in multi-processor environments,
such as the ones that are used in supermi cro
systel'ls. And finally, it is available now for
system prototyping, making it one of the
earliest 32-bit microprocessors on the market.

The M68000 Architecture
Before detailing.some of the new features of

the MC68020 that help it to improve the per
formance of UNIX, a short review of the basic
architecture of the M68000 Family of processors
will point out the reasons for their pop
ularity. The main precept that underlies all
of the architectural features of the processors
is that they are designed to be general purpose
machines. Therefore, the programmer's model,
instruction set, and hardware interface are all
designed to be non-dedicated, flexible, and
regular. The programmer's model, shown in
figure 1 , i 11 ustrates these concepts. The
register set consists of two groups of eight
32-bit registers, the data registers D0-07 and
the address registers AO-A7. Of these 16
registers, only one has a function that is
dictated by the processor. itself; A7 is used as
the stack pointer when it is needed for inter
rupts or other exceptions, or when implicitly
used by subroutine calls and returns. All of
the remaining 15 registers are completely
general purpose; they can be used for any
function defined by the programmer. This large
register space, and the non-dedicated manner in
which they are used, results in highly
efficient compiler code, which is particularly
important to UNIX, which is written mostly in
the C programming language.

The instruction set of the M68000 Family is
not particularly large (the MC68000 only
implements 56 instruction types), but it is
quite efficient in terms of memory usage and

2

31

MC68000 I MC68008 I MC68010 I MC68020
USER PROGRAMMING MODEL

1f. 1~ ;, 7

>------------+-----+-----<

1-----------+----------1
'-----------'------------'
31 16 1~

31

15 0

or.
[.\1

02

03

[)4

A?

Ao
Af,

A7 !USF

PC

c==~=_ l ___ __,Im

Supervisor Programming Model Supplement

16 15

A7' llSP: .__ _______ __._ ________ ___,

31 16 15

15 B 7 0

I I 1ccR1 lsR
31

VBR

31 2 0
r- - - - - - - - - - - - - - - - - -aSfC
~----------------- DFC

~-----------------
~ 0

CACR

31 0

Figure 1. MC68020 Programmer's Model.

execution speed. Most of this efficiency is
the result of the powerful addressing modes (14
of them on the MC68000) that can be used by any
instruction. Figure 2 shows a summary of the
MC68020 instruction set (which is a superset of
the MC68000 and MC68010 instruction sets) and
addressing modes. Note that the instruction
set supports a l & l /2 address architecture,
where one operand for an arithmetic or 1 ogi cal
operation is always a data register and the

ABCO
ADD
ADDA
ADDI
ADDO
ADDX
AND
ANDI
ASL. ASA

"" BCHG

Add Decimal with btend
Add
Add Address
Add lmmedtate
ACICI Ou1c:k
Add w11h Elf1end
Logical AND
Logical AND Immediate
Anthmet1c Sh1t1 Left arid R1gh1

Branch Cond1t1onahv
l es1 811 and Chlrige
T til 811 and Clelr

.. .-
MULS
MULU
NBCD
NEG
NEGX
NOP
NOT
OR
OR'
PACK
PEA

RESET

~
Signed Multiply
Un~ed Mult1ptv
Neg11e----oec.me1 w1thtiitend
Negate
Negate with Extend
No Oper•t1on
~cal Comotement

1.o9ca1 lnctu11w OR
Logical OR lmmed111e

Pick BCD
Push Effective Address

Reset External Devices BCLR
BFCl-IG
BFCLR
BFEXTS
SFEXTU
BFFFO

T es1 Bit Fte!d and Change
Test 811 Fll!ld and C"'a·
Signed 811 Field b:trac1
Unsigned 811 Field Ertract
811 Field Find First One

ROL. ROR Rotate Leh and R1gh1
ROXL RQXR Rotate wtth htend Leh and R1gt11
RTD Retum end Dffllocate
RTE Relurn from hcep11on
ATM Return from Module

BFINS 811 Field lnsen RTR
BFSCl Test 811 Field and Set FITS

:~:ST ~:~:~t Fll!ld SBCD

BSET Test 811 and Set ~~~P
BSR ~esra~c8~ 110 Subrou11ne SUB

~B_TS~T--f--"'--""---------ISUBA
CALLM Call MOOule SUBI
CAS
CAS2
CMK
CHK2

CLR
CMP
CMPA
CMP1
CMPM
CMP2

Compare and Swa~ Operand~
Compare arid Swap Dual Operands
Check Reg1s1e• Against BounCI
Chee• Reg1s1er Against Upper and

Lower Bounds
Ciear
Comoare
Compare Addr~s
Compare tmmed1a1t-
Compare Memory 10 Memor,
Compare Reg1ste• Aga1ns1 UPDE" and

Lowe• Bound~

SUBO
SUBX
S\\AP

TAS
TRAP
TR A.Pee

TRAPY

'ST
UNLK
UNPt..

Re1urn and Restore Cond11ori Codes
R.,urri from Subrou11ne

Subtr•cl Dec1ma1 with hteno
Set Cond1t1onallv
Stop
Subtract
Subtract Address
Subtr1ct lrnmed!BIE-
Subtract Ou1ck
Subtrac1 with Eic1end
Swap Reg1ste1 Words

les1 Operand and Se1
lrao
l rap Condmonall~
Trap on Overt10""
lH1 Ope1and

Unhn~

Unpack BCD

COPROCESSOR INSTRUCTIONS
DBcc Test Cond1t1on. Decrernen: anCI Branctit---~----------<
DIVS, OIVSL Signed D1v1ae cpBcc Branch Cond•t1ooa11~
DIVU, OtVUL Uris1gned 01v1ae1 cpOBcc Test Coprocessor Corid111on

E"OR Lo01ca1 b:clus1ve OR Decremen1. 1nd Branct.

EORI Logical E•ciUS•v.! OR Immediate cpGEN Coprocessor Ger1era 1 IMtruC11or
ExG h.change Registers coRESTORE Restore 1n1ema1 Stat£- o' Coorocesso•
EXl Sign E11 terid cpSAVE Save ln1erria1 Stale o' Coprocesso·

1-'J;..M_P __ l-,'-'u'-m'"'o _.;.."---------fcpScc Se1 Cond111onat1~

JSR Jump to Subroutine

LEA Load Ettect1ve Address
LINK Link end Allocate
LSL LSR Logical Shi~ Let\ end R1gtit

MOVE Move
Move Address MOVE A

MOVE CCR
MOVE SR
MOVE USP
MOVEC
MOVEM
MOVEP
MOVED
MOVES

Move Cond1t1on Code Register
Move Status Register
Move User Stack Pointer
Movt' ContrOI Regrste•
Move Mulllplf! Registers
Move Periohera1
Move Quick
Move Attemele Address Space

Flegos1er Dor«:t
011' Fleg1S1er Direc1
Address Reg1ste· Direct

Fle;isterll1drrec1
AOdress Fleg1s1er lrid.,ect

Add~ Fleg1s1e• Indirect with Post1ncremen1
Address Fleg1s1e• lnd.,ect with Preaecremen1
Addres~ Reg1s1er Indirect with D11011eement

Flegis1er ll'lduecl with lnde•
Address Register lnd11ec1 with Index 18-B•t D1so11c-nt1
AOdress Reg1ste• lnd11ec1 wilh lnde• <Ba~ 01Spl11cemen1'

Memory !ndorec1
Memory 1nt111ec1 PosHndeked
Memor1 lnd,,ec\ Pr!!-lnde~ed

Progra"' Counte• Indirect w1ll'I D1so1acemen1

Program Coo.1nter Indirect with lnoe•
PC tndirec1 with In.De• lB-B1t D1solilcemen11
PC Indirect witn lnde• !Base 01so1acemen11

Progr1m Counte• Memory lndrrec1
PC Memon, lndtrKI PosHnoe•ed
PC Memor~ 1nd1rec1 Pre-lnde•ec

Absolule
Absolult Sl'lon
AbsOlute Long

ND"l"ES
On .. Data Fleg•sle• 00 07
An .. Add1ess Reg1s1e• A0-A7

cpTRAPcc Trap Cond1110na11v

IAnl•
-tAnl

td15 An'

......

tlbd Al'I: kn.od•
jjbd An kn• od•

Ide; PC Xn1
lbd PC kn

ljbd PC) Xn od
Hbd PC x ... oo•

dE! t111i • A twos-CQn"IPlel'r'len1 or 11gn-e1net1oed d1S011cemen1 1aoed 1s pan o! the et11Ct1'1t! lddress ca1cul1t11ori. size 158 O' 16 b~s
td15 Ind de ere 16- end 8-blt c1oso1acemen1s1. when Pm•tted 1ssemble1s use I 111lve of u10

Xn .. Add•l!S!> or 1111a reg1ste• used as I" tnC"e• reg1Ste•. form is Xn SlZE•SCALE where SIZE •S W or l 11nd1ca1e~ •nc>t'•
reg•ste• 11ze1 &no SCALE is 1. 2 A o• e 11noe• reg1s1er 15 mu111pl1ea b1 SCALEI u0 ol SIZE ano o· set..~£ is oo~•O'""'

bd ... A twos comolemenl base d1so1acemen• wr>er- p1ewn1 s11e can bE 16 or 32 b•1S

Od ., Ou1er d•SP!ICetnenl 1aoea as pen 01 eftec11ve at1d1ess ca1culll1on aher 1nv mefl'IQf"\l 1ndir1Ct1Pn use 15 op11ona1 w11~, 1 S1lf

ot 16or32 bi1s
PC., Pre.grim Counte•

< cuna > • lmrned11te velve 01 8 16 01 32 b11s
! 1 • Ettec11ye edd1ess

Figure 2. M68000 Family Instruction Set
and Addressing Mode Sunmaries.

3

other operand may be another register or a
memory location that is determined by the
addressing mode that is used. The M68000 arch
itecture does support one variation on the
classical 1 & 1/2 address machine: the register
operand can be either the des ti nation or the
source, where it is always the destination in
the classical machine. Also, there is one very
important exception to this 1 & 1 /2 address
limitation: the MOVE instruction, which is
used for general data movement where no ALU
operation is performed on the data, is a true 2
address instruction so that both the source and
the destination addressing r.1odes can specify a
memory location. The move instruction illu
strates a very important concept that the
M68000 arc hi tee ts had in mind when they were
defining the instruction set; that a small
number of the instructions implemented by any
machine will be used most of the time, and thus
they should be very fast and very flexible.
The MC68000 designers performed extensive
studies on instruction usage and optimized the
most commonly used ones for higher performance
and flexibility. Furthermore, these fe\~
instructions are most useful when coupled with
a robust set of addressing modes. For example,
the 1·10VE instruction can take on over 1500
different forms when coupled with all of the
combinations of addressing modes that are
available.

As was mentioned earlier, the bulk of the
UNIX operating system is written in C; thus,
any microprocessor that can efficiently support
the C language will implicitly support the UNIX
operating system efficiently. The instruction
set and register set of the M68000 Family proc
essors are well suited to the C 1 anguage,
mainly because of their general purpose nature
and the 1 i near address space that is supported
by the addressing modes. One of the other
features that r.iake the processors good for UfHX
is the extensive exception handling mechanism
that is supported. Any time that a user
program attempts to do something that it
shouldn't, either by mistake or on purpose, the
processor will detect it, prevent the action,
and let the operating system know about it in a
graceful manner. This protection mechanism
extends off of the chip as 1~el l, si nee the
processor presents information to the outside
world that i denti fies the purpose and pri vi 1 ege
of every bus cycle. By using this information,
an external memory management unit can provide
protection against unauthorized use of certain
memory areas, and can assign attributes such as
read/write or execute only to segments of
memory.

What the MC68020 Does
to Improve UNIX Performance

When the MC68020 designers began working on
that processor, an obvious question that was

asked was: s i nee the MC68000 and MC68010 a re
already good, complete, high-performance
machines, how do we improve upon them? The
most obvious answer was to simply speed the
processors up, while maintaining the exact same
programmer's model and instruction set. This
was the primary goal of the chip designers; to
achieve the highest possible performance, given
the constraints of the current technology,
while maintaining absolute user code compat
ibility with the earlier machines. The MC68020
does this quite admirably due to several
factors:

o The processor runs at a clock frequency of
16.67 MHz in contrast to the 8 to 12.5 MHz
clock limit of the earlier processors.

o The MC68020 uses 32-bit data paths, both
internally and externally, in contrast to
the 16-bit paths used by its predecessors.

o A pipelined internal architecture is used,
with three independent 32-bit ALUs for
data manipulation and address c~lcula
tions, while the previous M68000 proc
essors use a single 16-bit ALU.

o An on-chip instruction cache (256 bytes
deep, organized as 64 32-bi t entries) is
included to help bridge the gap between
processor speed and memory speed in order
to keep the pipeline full as much as
possible.

o A 32-bit barrel shifter is included that
allows very fast shift operations, regard
less of the shift count.

These features, which are purely performance
oriented, give the MC68020 at least four times
the processing speed of the MC68000, and up to
six or more times the speed of the MC68000 for
certain applications. Since the MC68000 has
been widely benchmarked by the computer
industry and is generally considered to be a
0.6 MIPS machine (@ 8 MHz, no wait-states),
this indicates that the same piece of code that
runs on the t1C68000 at that speed will execute
on the MC68020 at above 2 MIPS, and possibly as
fast as 3. 5 MIPS. Indeed, early benchmarks,
performed both inside Motorola and by outside
firms, show that the MC68020 easily reaches
performance levels of 2.5 MIPS for general
programs, and up to 4 MIPS for optimized
programs (that take advantage of the cache and
the 32-bit ALUs).

The next question that the chip designers
asked themselves, after considering performance
and compatibility, was: what can be done to
improve upon the MC68000 architecture? After
several studies and input from existing M68000
users, the following additions were made to the
programmer's model and instruction set:

4

0

0

0

0

0

0

0

Several instructions were enhanced to
support 32-bit operands.

Bit-field instructions were added to
better support compilers and certain
hardware applications, such as graphics.

Two of the existing addressing modes were
extended significantly to allow scaled
indexing, 32-bit displacements, and memory
indirection.

A new stack pointer
two already present
added to simplify
operating systems.

(in addition to the
in the MC68000) was
task switching for

A general purpose, flexible coprocessor
interface was developed to allow easy
expansion of the instruction set and
hardware features. The MC68881 Floating
Point Coprocessor is the first device from
Motorola to take advantage of this
interface.

Several miscellaneous instructions were
added to support EBCDIC and ASCII strings,
modular programming, multi-processor com
munications, and compiler run-time
exception protection.

Exception handling is extended for better
debug ·support, with a new program trace
facility and a program breakpoint facility.

Figure 3 gives a summary of the new instruc
tions of the MC68020. The two features that
are of most interest to UNIX programmers (or
more specifically, C programmers) are the bit
field instructions and the new addressing
modes. The other features will also improve
the overall performance of the MC68020 in a
UNIX system, but not as significantly as these
two. The following paragraphs discuss the bit
field instructions and new addressing modes,
while more details about the other additions to
the instruction set can be obtained from the
MC68020 User's Manual from Motorola.

MC68020
NEW INSTRUCTIONS

BFEXTx CHK2.s CALLM
BFINS CMP2.s RTM
BFFFO Tee CAS
BFTST TPee.s #xxx
BFCLR PACK
BFSET UNPK
BF CHG

Figure 3.

Bit Field Instructions
In many advanced programs l'ffi tten in C,

variables that will not assume very large
va 1 ues are often packed in memory through the
use of bit fields. For example, one 6-bit, one
4-bit and two 3-bit variables can be packed
into a 16-bit integer rather than using an
entire integer for each variable, thereby
conserving memory. However, most micro-
processors do not have a specific mechanism
designed to manipulate such data structures.
For example, if one of the 3-bit variables were
contained in bits 7-9 of a word, then the
fo 11 owing code segments might be used to fetch
or store that variable:

FETCH t10VE. \~ #$0380,DO Load Mask
AtW.W [ea],DO Get field
LSR.H #7,DO Justify

STORE LSL. ~J #7,DO Shift field
MOVE.W #$FC7F,Dl Load mask
AND.W [ea],Dl Get word
OR.W DO, Dl Add field
MOVE.W Dl ,[ea] Store it

This code is fairly straight forward and it
can be generated by a compiler, hOl~ever it does
require a si gni fi cant amount of memory and does
not make good use of the register set, since an
extra working register is needed for inter
mediate calculations. The bit field instruc
tions on the MC68020 support operations such as
the ones coded above with single instructions
that are very flexible and fast. The general
format of the bit field instructions is:

label BFopc <ea>{offset,wldth).Dn
where "ope" is one of the bit field operation
specifiers (EXTract Signed or Unsigned, INSert,
Find First One, Te ST, SET, CLeaR and CHanGe),
[ea] is any of the general addressing modes,
"offset" is the number of bi ts from the
effective address where the field starts, and
width is how wide the bit field is. Both the
offset and th0 width can be constant values,
specified in the instruction stream, or
variable values contained in any data
registers. The offset can take on any value in
the range of -231 to +231 -1 and the width
of the field can be from l to 32 bits. The
BFTST, BF SET, BFCLR and BFCHG instructions do
not use a destination data register, since they
simply read the specified bit field, set the
condition codes according to the source value,
and write the modified bit field back to memory
(the modified value is all l's, all O's or the
compliment of the field for the BFSET, BFCLR
and BFCHG instructions, respectively; the BFTST
opera ti on does not modify the field). The Find
First One operation (the mnemonic for which is

5

BFFFO) scans the specified bit field, starting
with the most significant bit, <i.nd stops when
the first 1 is found. The offset value of that
bit is then returned in the destination data
register for use as a pointer. Finally, the
BFEXTS , BFEXTU and BFINS instructions are used
to move bit fields in and out of data reg
isters. For example, the previous code
segments could each be replaced by a single
instruction as follows:

FETCH

STORE

BFEXTU

BF INS

[ea](#6,#3\,DO

DO,[ea]\#6,#3\

Note that the offset calculation for a bit
field is fror.i the most significant bit of the
byte specified by the effective address to the
most significant bit of the bit field, and that
bit fields may span any byte, word or long-word
boundary in an arbitrary fashion. An example
will be given later to show the power of this
addressing scheme when coupled with the new
addressing mode extensions of the MC68020.

In addition to the use of bit fields to
reduce the amount of storage required by a
program, the MC68020 bit field instructions are
al so designed to be used for hardware control
functions and complex data manipulations. For
example, a UNIX programmer might use bit field
data types to map variables onto the hardware
control registers of a device that he is
writing a driver for; then the bit field man
ipulation instructions such as BFTST, BFSET and
BFCLR can be used to toggle control registers
in the device or check status fields easily.
The compiler is better able to generate high
performance code for such applications since it
does not have to use intermediate registers,
and the hardware features of the MC68020, par
ticularly the barrel shifter, can be fully
utilized to get the highest possible per
formance. Also, the ability to manipulate
arbitrary sized fields that can be addressed in
a fully general, linear manner, is of par
ticular interest in bit mapped graphics appli
cations. For example, the bit field instruc
tions are quite useful in developing raster op
routines.

New Addressing Modes
As mentioned earlier, the 14 addressing

modes implemented by the MC68000, coupled with
the 56 powerful instructions of that machine
provide a very high performance architecture
that can support compilers very well. However,
there are some routine address calculations,
that are not directly supported by the MC68000,
that are performed by almost all high level
languages. For example, consider the following
code segment that is used to locate a long word
value in an array that is located at some

constant offset from a data area pointer. In
this example, DO contains the offset, in long
words, of the desired value from the start of
the array, which is located more than -128 or
+127, but less than -32k or +32k-l (ie. within
the reach of a 16-bit displacement), from the
data area pointer address, which is contained
in AO.

MOVE.W
LSL.W
LEA
MOVE.L

DO,Dl
#2,Dl
off(AO) ,Al
O(Al ,Dl .W),Dn

Get offset
x 4
Cale base

This simple address calculation requires two
intermediate registers, and even though this
code can be easily generated by a compiler and
will exe~ute quite fast, it could be eliminated
by the addition of two capabilities to the
addressing mechanism of the MC68000: index
scaling and displ_acements larger than 8 bits
(note that in the above example, if "off" where
larger than 15 bits, then another LEA instruc
tion would be required to add that offset to
the base in two calculations).

The MC68020 arc hi tee ts had two methods with
which they could extend the addressing modes of
the machine, either they could use one or more
of the four remaining addressing mode encodings
in the opcode word (the addressing modes are
encoded in two three bit fields, all but four
of the encodings are currently defined), but
that approach would have restricted the pot
ential for future enhancements. So, rather
than developing completely new addressing
modes, two of the existing addressing modes
were extended. These two addressing modes are
the address register indirect with index and
displacement, and Program Counter relative with
index and displacement. Both of these address
ing modes use bits in extension words to the op
code word to fully specify the addressing mode,
and some of the bits in those extension words
were not used by the MC68000 addressing modes;
this allowed for a clean addition to these mec
hanisms. In review, the format of the address
register indirect with index and displacement
is shown below:

disp(An,Xn.s)

where "disp" is an 8-bit displacement, An is
any address register that is used as the base,
and Xn is any address or data register that is
used as an index from the base pl us the dis
placement. The "s" specifies how much of the
index register is to be used in the address
calculation, the lower word or the entire long
word. The additional capabilities that have
been added by the MC68020 are:

o Displacements may be up to 32 bits, in two's
compliment form, thus allowing a range of
+/- 2 gigabytes.

o The index register may be multiplied by l,
2, 4 or 8 for use in the address calcu-
1 ation, and the original index value is left
unchanged in the register. This allows an
index to specify an offset in bytes, words,
long words or quad words.

o One level of memory indirection may be
performed, where an address is calculated, a
long word value is fetched from that
address, that value is then used as the base
address in further calculations and the
operand is then fetched at the resultant
address. The indirect reference may occur
before or after the index calculation is
performed, and two displacements may be
specified, one for use before the indirect
reference and one for use after it.

Figure 4 gives a summary of the two enhanced
addressing modes. When all of the permutations
of displacement, index, base register and
indirect options are combined, these new
addressing capabilities increase the original
two addressing modes to eighty distinct modes.
Obviously, no programmer is going to remember
eighty different modes, but since the rules for
usage of the new addressing mechanisms are
simple and regular (there are no exceptions to
the above rules), the programmer simply builds
the addressing mode that he wants by using
those rules and not by remembering specific
cases. This not only makes these addressing
modes easy to use for the assembly language
programmer, but al so make them quite useful to
compiler writers since they can be generated
easily.by simple algorithms.

MC68020 ADDITIONAL ADDRESSING MODES
SYNTAX SUMMARY

DIRECT:
<ea> • (bd.alze, An, Xn.1lze'1cale)
<H> • (bd.alze, PC, Xn.alze'•c•I•)

Data Space
Program Space

INDIRECT, PRE-INDEX:
<H> • «bd.alza, An, Xn.slze'scale), od.alze)
< H > = «bd.alza, PC, Xn.alze• scaleL od.alza)

Data Space
Program Space

INDIRECT, POST-INDEX:

6

<H> • «bcl.alze, An), od.slze, Xn.slza'acale)
< H> '" «bd.alza, PC), od.slze, Xn.alza'acale)

Data Space
Program Space

bd, od .. Baaa and Outer Dlsplacemenla, may ba 0, 8, 18 or 32 blla

An, PC = Base raglaler, which may ba taken •• zero (uaalul to lorce Program
Space ralerence without PC dl8placemenl).

Xn • Index Register, may ba None or a dalmi•ddrn• raglaler, ,1111er
18 or 32 bits

size • 8, 18, or 32 bit Identifier (B, W, or L)

scale = Scaling lactor of 1, 2, 4, or 8

Figure 4.

As an example of how the new addressing
modes will help the performance of a UNIX
system, recall the address calculation example
given earlier and cor.ipare it to the following
instruction that performs the same function.

MOVE.L (off,AO,DO.W*4),Dn

Compared to the previous example, this code is
not only more understandable, but it requires
fewer bytes of code and executes much faster in
terms of absolute clock cycles and real time
(performance depends on cache hits and instruc
tion order). The table below shows a com
parison of the two examples for an 8 MHz
MC68000 and a 16.67 MHz MC68020.

Bytes

MC68000 12
MC68020, Best case 6

Worst case 6

Clocks

26
4

12

Nsec

32SO
240
720

As a last example of the increased capabilities
of the MC68020 as a result of the new bit field
instructions and the new addressing modes,
consider the example shown in figure S. In
this example, a base pointer that locates the
beginning of a record file in memory is passed
to a routine on the stack, and FILEPTR is a
constant value equal to the offset from the
stack pointer to the file pointer. The record
that is needed by this routine is specified by
the offset RECS. Within each record is a
string of long words that are used to hold
arbitrary sized variables (bit fields), and 03
contains an offset from the start of the record
to a long word that contains the most signi
ficant bit of an array of bits. 04 contains
the offset from the start of the bit array to
the most significant bit of the desired bit
field, which is 24 bits wide (in this case it
happens to be constant, al though the width of
the field could also be contained in a
register). Even though this is a fairly
complex description of the location of a data
item, the MC68020 addressing mechanisms allow
the programmer to code the address of the
operand in a single instruction as shown. It
is important, also, to consider the flexibility
that is not shown explicitly by this example,
such as the fact that the constant offsets
FILEPTR and RECS can have any value between
-231 and +231_1, the offset in 04 can also
assume any signed value between -231 and
+231_1, the bit field may traverse any byte
boundary, and 03 may be sealed by l, 2 or 8
instead of 4. Finally, remember that the bit
field that is extracted is automatically right
justified in DO, with the register zero filled
beyond the bit field (it could be sign filled
with the BFEXTS instruction).

7

BHXTU ([FILEPTR,A 71,REC5,03.W*1)<D1,#21},00

Reco d rne r
Steck

Record 0
Record 1
Record 2
Record 3
Record 4
Record 5

03

Record 5 Lono Word Lono Word Lono Word Lono Word Lono '¥1
0 1 n n• I n• Z

·.
"

" "
.· .· .·

Long Word
n

04 "'24

Source Bit Field

Figure S. Bit Field Addressing Example.

Miscellaneous Enhancements
Some of the other enhancements to the M68000

architecture that were mentioned above are of
general use to any computer system, such as the
extensions of several instructions to 32-bit
operands. For example, the multiply and divide
instructions support 32x32 bit multiply and
64/32 bit divide operations, in addition to the
16-bi t operations previously supported by the
MC68000. Other instructions that have been
enhanced are shown in figure 6, and include
better bounds checking mechanisms for compiler

MC68020 32-BIT
INSTRUCTION EXTENSIONS

CHK.L (NOW ALLOWS WORD OR LONG OPERANDS)

Bcc.L (NOW ALLOWS 8, 16, OR 32-BIT DISPLACEMENTS)

DIVx.L (64 + 32 BIT WITH 32-BIT QUOTIENT AND REMAINDER)

TDIV.x (32 + 32 BIT WITH 32-BIT QUOTIENT AND REMAINDER)

MULx.L (32 x 32 BIT WITH 64-BIT RESULT)

TMULx (32 x 32 BIT WITH 32-BIT RESULT)

EXTB.L (NOW ALLOWS BYTE-WORD, BYTE-LONG, OR WORD-LONG)

LINK.L (NOW ALLOWS 16 OR 32-BIT DISPLACEMENT)

Figure 6.

run-time checks, a translation mechanism that
allows packed BCD data to be converted to
EBCDIC or ASCII and vice versa, and a new
module ca 11 and return for better support of
modular programr.iing. This last enhancement
wi 11 increase the performance of any operating
system, including UNIX; however, the call/
return mechanism used by the entire operating
system will have to be re-worked, so this
feature may not be used in the initial UNIX
release from most vendors, but rather it will
be utilized more in proprietary operating
systems or within application program environ
ments.

Another feature that was added to the
MC68020, specifically to support operating
systems, is a new stack pointer that allows for
more efficient context switch control. The new
stack pointer operates in a manner that is
transparent to applications programs and
existing operating systems, thus old operating
systems are not disturbed by its presence. The
main purpose for the new stack pointer, called
the Master Stack Pointer (MSP) is to allow the
operating system to maintain separate stacks
for the currently executing user task and all
interrupt tasks. In this manner, when an
interrupt is processed by the MC68020, the
stack space associated with the user task that
was executing is not disturbed by the interrupt
stack operations. If a task switch is required
due to the occurence of the interrupt, the
operating system can simply load the MSP with a
pointer to the context block for the new task
and activate it; while it has a val id stack
pointer avail able at all times for interrupts.
This gives the operating system a more secure
environment, while enhancing the performance of
the task scheduler by eliminating the need to
copy large amounts of information from one
stack space to another. While this is another
very useful feature of the MC68020, UN IX
handles interrupts in such a way that the use
of the MSP is not critical to system perform
ance, therefore it is beyond the scope of this
paper to describe it fully.

The Coprocessor Interface
Another subject that is beyond the scope of

this paper, but does have some bearing on the
performance of UN IX on the MC68020, is the
coprocessor interface that is implemented by
the chip. The general concept behind this
interface is to allow the architecture and
capabilities of the main processor to be
expanded with the addition of external
hardware. The first coprocessor that is
available from Motorola is the MC68881 Floating
Point Coprocessor, which is an implementation
of the IEEE draft 10 floating point standard,
with several extensions. With the addition of
the FPCP to the MC68020, floating point per
formance reaches the 1 evel of many mini -
computers that have floating point accelera
tors. Furthermore, the range of functions

8

available in hardware on the FPCP are well
beyond the simple add, subtract, multiply and
divide functions that are found on most
floating point processors. Al so included is a
ful 1 range of transcendenta 1 and trigonometric
functions that make the MC68020/MC68881 pair
function very well in appl i cations that require
real time calculations such as CAD/CAE, 3-D
graphics processors, and si gna 1 processors.
The programmer's model and a summary of the
MC68881 instruction set is shown in figure 7.

,,
-'./

A

--I
-I
--I

A

--1-
--1-

FADD
FCMP
FDIV
FINT
FMUL
FREM
FSQRT
FSUB

FABS
FACOS
FAS IN
FATAN
FATANH
FCOS
FCOSH
FETOX
FETOXMl
FGETEXP
FGETMAN
FLOGlO
FLOG2
FLOGN
FLOGNPl
FMOD
FNEG
FSCALE
FSGLDIV
FSGLMUL
FSIN
FSINCOS
FSINH
FTAN
FT ANH
FTENTOX
FTST
FTWOTOX

FLOATING-POINT DATA REGISTER 0

FLOATING-POINT DATA REGISTER 1

FLOATING-POINT DATA REGISTER 2

FLOATING-POINT DATA REGISTER 3

FLOATING-POINT DATA REGISTER 4

FLOATING-POINT DATA REGISTER 5

FLOATING-POINT DATA REGISTER 8

FLOATING-POINT DATA REGISTER 7

31 23 15

STATUS CONDITIONl QUOTIENT J EXCEPTIONJ ACCRUED
CODE BITS EXCEPTION

CONTROL

IADDR

l ENABLE l
BYTE

INSTRUCTION ADDRESS

Add
Compare
Divide
Integer Part
Multiply
IEEE Remainder
Square Root
Subtract

Absolute Value
Arc Cosine
Arc Sine
Arc Tangent
Hyperbo 1 i c Arc Tangent
Cosine
Hyperbolic Cosine
e To The x Power
e To The x Power - 1
Get Exponent
Get Mantissa
Log Base 10
Log Base 2
Log Base e
Log Base e of x + 1
Modulo Remainder
Negate
Scale Exponent

MODE

Single Precision Divide
Single Precision Multiply
Sine

0

Simultaneous Sine and Cosine
Hyperbo 1 i c Sine
Tangent
Hyperbolic Sine
10 To The x Power
Test
2 To The x Power

Figure 7. MC68881 Instruction Set Summary
and Programmer's Model.

Memory Management
An important consideration in choosing any

computer for UNIX or any other multi-user
operating system is the method that it uses for
memory access control . While the MC68020 does
not have an integral memory management unit, it
does have the capabilities to support virtual
memory, due to its ability to continue any
instruction that causes a page fault. Further
more, the asynchronous bus interface that is
used by all M68000 processors lends itself
easily to memory management schemes, si nee
external translators can dynamically control
the speed of bus accesses and can terminate any
illegal bus cycle and cause the processor to
take an exception to repair the cause of the
fault, or abort a task that was attempting to
access an illegal area of the memory map. Due
to the flexible nature of the bus interface and
the fact that the processor supports any memory
management scheme that a designer wishes to
implement, the M68000 family has enjoyed wide
spread acceptance in virtual memory systems.
While Motorola does not wish to dictate the
memory management scheme to all system
designers, it does offer a VLSI solution to the
designer that does not wish to design his own
MMU.

The MMU that will be available for the
MC68020 in 1985 is the second coprocessor to be
built for the processor and is called the
MC68851 Paged Memory Management Unit (PMMU).
It supports a demand paged virtual memory envi
ronment by automatically searching translation
tables, set up in physical memory by the proc
essor, to translate 32-bit logical addresses to
32-bit physical addresses, while providing
protection against unauthorized accesses. To
speed up the translation process, an on-chip
translation cache, organized as a 64-entry
content addressable array, is used to translate
the addresses in 45 nsec (this allows the
MC68020 to run 4 clock cycle bus cycles at
16.67 MHz). The translation mechanism is quite
flexible, with user defined translation tables
and page sizes from 256 bytes up to 32 KBytes.
Coprocessor instructions are also implemented
to support operating system functions such as
paging algorithms and access protection
checking.

In addition to the VLSI PMMU, Motorola is
also supporting a second memory management
scheme, intended for prototyping of systems
that will later be based on the MC68020/MC68851
combination: the MC68461 Memory Management
Controller (MMC). This device is implemented
in Motorola.'s MCA2800ALS gate array and
pro vi des the control functions for a discreet
translation cache external to the MMC. When
combined with an external cache, the MMC
supports a memory management architecture that
is a subset of the possible architectures
supported the the MC68851, thus allowing for

9

upward compatibility. The MMC is an integral
part of the first system level product from
Motorola that is based on the MC68020, the VM04
VERSAmodule CPU board. Also, the mezzanine
board memory management unit for the VM04,
which uses the MMC and a 512 entry cache, is
called the Memory Management Board (MMB) and is
available for system prototyping.

System V/68

Now that the features of the MC68020 that
make it a good machine for UNIX have been
covered, the next question to answer is: what
UNIX products will be offered by Motorola in
support of the MC68020? The answer to that is
quite simple: 11otorol a is the first third party
vendor to have a port of UNIX System V
qualified by AT&T, and that product is in the
process of being upgraded to support the
MC68020 in the first half of 1985. The name of
the Motorola UNIX port is System V/68 and it is
currently supported by Motorola an two systems,
the EXORmacs multi -user development system and
the VME/10 single-user development system. It
is also supported by AT&T for DEC machines,
such that a systems integrator can use his
present VAX system to cross compile appl i
cations to run under System V/68 on an M68000
based system, or use a DEC computer to generate
the operating system kernel, file system and
utilities for porting to an end system that
uti 1 i zes the MC68000, MC68008 or MC6801 O (with
the MC68451 MMU).

Because of the fact that the Motorola UNIX
product is a direct port of the AT&T Bell
Laboratories' UNIX, much of the definition of
what System V/68 is is apparent. System V/68
includes all of the file handling capabilities
of UNIX, including pipes and filters, I/O
redirection, multi -tasking with foreground and
background tasks controlled by a single user, a
confi.gurabl e environment and a fl exi bl e command
language. On top of this, the standard UNIX
shell presents a user and applications inter
face to the file system; and on top of the
shell, System V/68 includes all of the standard
UNIX utility programs, the programmer's work
bench, the C and FORTRAN 77 languages and
networking capabilities. In addition to the
standard UNIX package, Motorola 1 also offers an
optional PASCAL compiler (revision 2.1), a
macro assembler, linker and loader, and support
for Motorola hardware development stations such
as the HDS-400 emulator with symbolic debugging
capabilities. In order to support customers
that are currently using the VERSAdos operating
system in their development environment,
Motorola also provides a tool kit that runs
under System V/68 contains file conversion
utilities and allows VERSAdos 1 i brari es to be
maintained on a System V/68 host.

While the details of what UNIX System v is
are beyond the scope of this paper, it is
interesting to 1 ook at the core of UNIX to see
what is required to port System V/68 to an end
system. The UNIX kernel is the heart of the
operating system and, 1 ike all of the util i
ties, it is written mostly in C (about 95%).
The host processor and system hardware portions
of the kernel are written in assembly language
for the highest performance. The entire kernel
is about 70-80 KBytes of code, and accounts for
less than 10% of the code for the entire
operating system. Since almost all of the

. operating system is written in C, the size and
speed of System V/68 is directly related to the
efficiency of the M68000 code generator
provided in the C compiler. The only change
required to take full advantage of the new
features of the MC68020 is to replace this code
generator and recompile the system.
Preliminary results of doing this show the
MC68020 kernel and operating system to be
approximately 20% smaller than the MC68010
version of same system, due mostly to the more
efficient addressing modes. Of course, perfor
mance is much greater than that of a comparable
MC68010 system; however, enough studies have
not been performed at this time for a definite
ratio to be published.

The First MC68020 - System V/68 Machine

The first port of System ~'V /68 to a native
MC68020 machine by Motorola is now in progress,
although that machine will not be available
connercially until the first half of 1985.
That system will be built around th~ VM04,
which was introduced in June of this year when
the MC68020 was introduced. The VM04 is a high
performance VERSAmodul e computer that includes
memory management support with the MMC (the
PMMU will be included when it is available) and
has a socket for an op ti ona 1 MC68881 • Al so
included on the board is a 4K x 32 direct
mapped cache and a 1 ocal bus extension to a
high speed private bus called the RAMbus.
Connected to the RAMbus is a second board, the
VMl 3 1 MByte memory module that supports all of
the features of the MC68020 bus interface at
full speed. Figure 8 shows a b 1 ock diagram of
these two boards, in a typ.ical system config
uration. This two board set, called the
Benchmark 20, is available now as an evaluation
system environment for the MC68020, MC68881 and
the MC68851 architecture that is supported by
the flt'IB.

Of course, UNIX does not perform a very
useful ·function without some kind of 1/0; and
indeed, the 1/0 portion of a UNIX system 1s
critically related to the performance of the
system. In recognition of this, two new 1/0
controller boards are being developed spec
fffcally to support the VM04/VM13 - System V/68
port. The first controller boa rd is the VM32

10

M68KVMCM VEASAmodule CPU M68KVM13-1 VERSAmodule MEMORY

SERIAL 110 1 PTM I ROM
68564

CONTROL I CPU
DYNAMIC RAM

MMB MC68020 ARRAY

CACHE 1M BYTE

4K 32-BIT
ERROR

ENTRY
CO-PROC l VEASAbus DETECTION

MC68881• MONITOR

AAMbus 1 VEASAbus
AAMbus 1 VEASAbus

INTERFACE INTERFACE INTERFACE INTERFACE

I I I I
I RAM bus I
I I

I
'· I

I
"Provision for

Y"ERSAbus

Figure 8. VM04/VM13 System Block Diagram.

asynchronous communi cations con troll er, that
supports 8 RS-232C full duplex comm ports, and
has a local M68000 processor as a dedicated
controller. The second is a high performance
Winchester disk controller, called the VM23.
This board supports up to four ST506 disk
drives, four floppy disk drives, a streaming
tape backup, and a parallel printer port.
Local intelligence is provided by a 10 MHz
MC68010 that has the following local resources:
up to 128KBytes of 1 ocal RAM, 64KBytes of ROM,
an MC68440 DMA controller and a special purpose
VERSAbus controller built around an AMO 2940
address sequencer for high-speed 32-bi t tran
sfers from the local memory to the VERSAbus.
The use of powerful processors for local
intelligence is a common design practice for
UNIX systems, due to the heavy 1/0 demands of
the operating system.

Summary

When the MC68000 microprocessor was intro
duced five years ago, it was heralded as a
mini-computer on a chip, due to its high
performance and its advanced architecture. The
MC68020 continues that tradition, by extending
the architecture beyond the previous 1 imits of
VLSI, and by achieving performance 1 evel s that
were only available to mini-computer users a
short time ago. At the same time that Motorola
was enhancing the M68000 Family, the user
community was beginning to embrace more and
more large computer architectural ideas and
place them into microcomputers. The standard
supermicro configuration that has been emerging
and maturing over the last two to three years
is an MC68000 or MC68010 based machine, with
intelligent 1/0 controllers, that runs a
version of UNIX from AT&T Bell Laboratories.
Now these two forces are coming together to
create very high performance, full featured
desktop computers that rival the performance of
machines that cost hundreds of thousands of
dollars - the MC68020 32-bit microprocessor and
System V/68 - an unbeatable combination.

A18652 PRINTED IN USA 4-85 IMPERIAL LITHO G30050 10,000 AR219

