
24

AR209

The designers of this microprocessor used the continuation method

to provide an elegant general solution to the

problem of virtual memory support.

Virtual Memory
and the M C68010

Douglas MacGregor and David S. Mothersole

Motorola, Inc.

Just a few years ago, the introduction of 16-bit
devices signalled a new generation of microprocessors.
With them came powerful capabilities previously
available only on minicomputers and mainframes.
However, most of these microprocessors did not have
the facilities to easily manage this new power. With the
introduction of the MC68010; Motorola is providing
support for virtual memory and virtual machine opera­
tion. In order to assist the reader in understanding how
this was done, we will first briefly define the concepts of
virtual memory. We will then compare two different
methods of implementation from an architectural
perspective. After providing this background, we will
present the details of the actual implementation of the
MC68010 and review its facilities.

1)1e MC68010 16-bit microprocessor is an extension of
the MC68000. It provides virtual memory capability, vir­
tual machine support, and increased performance, while
maintaining code compatibility with the M68000 architec­
ture. One of the most important requirements of any new
member of a processor family is that it not require major

©1983 IEEE. Reprinted, with permisssion,
from IEEE MICRO, Vol. 3, No. 3, pp. 24-39, June
1983

revisions of the software written for previous members of
the family. For this reason we considered it essential that
the MC68010 be code-compatible with the MC68000.
Since the extensions provided by the MC68010 required
changes in the processor interface to the operating system
(i.e., exception processing, privileged instructions, and
dispatching), the MC68010 was designed so that the re­
quired software modifications would be confined to the
operating system.

Virtual memory

The most significant feature of the MC68010 is its
ability to support virtual memory in a system by pro­
viding all of the mechanisms needed for its implementa­
tion. When the MC68000 was introduced, with its 32-bit
addresses and its addressing range of 16 megabytes, it
became clear that there was a need for mechanisms by
which this large address space could be hierarchically
maintained and accessed. The fundamental notion of a

0272-173218310600·0024$01.00 © 1983 IEEE IEEE MICRO

virtual memory system involves maintaining a large
address space on a hierarchy of memory devices with
different storage capacity, cost, and speed ratios.I A
simple example of a system with three levels of hier­
archically organized memory is shown in Figure 1.

The concept of using a paged memory with a backing
store is not at all new; it was first introduced in the late
1950's when it was used in the ATLAS machine developed
at Manchester University.2 Although the virtual memory
concept has .been expanded in the last two and· a half
decades, the basic theory underlying it has changed little.
What has changed is the size of the processors on which
this support is provided; functionality that was previously
only available on mainframes and high-end minicom­
puters is now available on microprocessors.

The need to organize memory heirarchically becomes
all the more acute as the clock frequencies at which pro­
cessors execute continue to increase. In the case of the
MC68000, a physical memory design that could hold the
entire 16-megabyte address space and provide no wait­
state access would involve substantial expense.

Virtual memory concepts. Originally, the need to
more efficiently utilize expensive memory provided the
motivation for the development of virtual memory con­
cepts. A virtual memory system allows the user to
execute programs on a very large store of virtual address
space without regard for its physical existence. A
memory management system; which may comprise
hardware and/or software, maps the virtual (or logical)
address of the user into the smaller physical memory.
Virtual and physical address spaces are divided into
fixed-size pages to facilitate mapping. The user need not
liave any knowledge about the organization of the
physical memory into which his program is mapped. If
an access is attempted to an address on a page which is
not resident in the physical memory, a page fault occurs,
interrupting the processor and initiating exception pro­
cessing. The virtual memory system can correct this
fault by fetching the page from an element lower in the

MAIN
PROCESSOR

CONTROL

LOGICAL
ADDRESS

DATA

MEMORY
MANAGEMENT

UNIT

hierarchy and substituting it for one of the pages in the
physical store. While this replacement operation is
occurring, the processor is free to service other users and
thus support multiprogramming more efficiently. After
correcting the fault, the processor is then permitted to
resume execution of the faulted program.

This description is very general and in theory simple.
Unfortunately, when it is necessary to implement virtual
memory on a processor, some of the details of im­
plementation create several difficult problems for either
the group designing the processor or the end user.

MC68010 processor design goals. The goal adopted
by the microprocessor design group at Motorola was to
develop a processor capable of cleanly and elegantly
supporting the fault detection/fault correction/program
resumption process. To achieve this, the group needed
to design a processor able to recognize a fault indication
on any bus access attempted and, regardless of the in­
struction being executed at the time of the fault, able to
carry out a simple recovery and resumption process.

Ironically, the reason that it is not possible to provide
a complete recovery for 100 percent of fault conditions
lies in one of the strongest a.spects of the M68000 family
architecture-its generality. The one situation from
which the MC68010 cannot make a successful recovery
is a fault on an access to the system stack pointer. The
fundamental cause of this problem is the general nature
of the M68000 stack pointer. Under almost all cir­
cumstances, it is desirable to treat the stack pointer as a
general-purpose register. This generality, however, also
implies that it is possible to load any address into the
supervisor stack pointer without regard to the residency
of that address in physical memory. If a fault occurs, the
processor needs to save the internal state of the pro­
cessor on the supervisor stack before it can proceed with
handling the exception. Thus, if the supervisor stack is
not resident in physical memory, the attempt by the pro­
cessor to save the state of the faulted process results in
yet another fault, a double bus fault, which overwhelms

HIGH­
S PEED
CACHE

MAIN
MEMORY

PHYSICAL ADDRESS

BACKING
STORE

Figure 1. System with three levels of hlerarchically organized memory-high-speed cache, main memory, and backing store.

June 1983 25

26

the fault recovery hardware and forces the MC68010
into an unrecoverable situation. In order for the pro­
cessor to provide complete protection, any address to be
loaded into the supervisor stack pointer would first have
to be checked to ensure its validity. However, such an
activity would be inconsistent with the general stack­
pointer register concept. Nevertheless, it is desirable to
provide complete coverage. Another solution is avail­
able-keeping the supervisor stack resident in physical
memory. This eliminates the need to check addresses to
be loaded into the supervisor stack pointer. Thus, the
general stack-pointer register concept is preserved and
complete fault coverage is provided.

SPECIAL STATUS WORD

FAULT ADDRESS HIGH

FAULT ADDRESS LOW

INSTRUCTION REGISTER

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

~ SP

02

04

06

08

OA

OC

Figure 2. MC68000 address errorlbus error stack.

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

FORMAT I VECTOR OFFSET

SPECIAL STATUS WORD

FAULT ADDRESS HIGH

FAULT ADDRESS LOW

RESERVED

DATA OUTPUT BUFFER

RESERVED

DATA INPUT BUFFER

RESERVED

INSTR. INPUT BUFFER

NON-USER-VISIBLE
INTERNAL INFORMATION

14-SP

02

04

06

08

QA

oc
OE

10

12

14

16

18

1A
• • •

38

Figure 3. MC68010 address errorlbus error stack.

Basic virtual memory processor requirements. In
order to provide virtual memory support, a processor
must be able to perform three basic functions: recogniz­
ing a fault, saving any information needed to recover
from the fault and executing the exception handler, and
restoring the saved state and resuming normal process­
ing. The MC68000 provides some of these functions,
since it can recognize the unsuccessful termination of a
bus cycle, save some state information, and execute the
exception handler.3 By expanding these capabilities to
include a complete save of the internal state of the pro­
cessor, and by providing the ability to restore the state
of the machine and resume execution, the MC68010 pro­
vides all of the mechanisms needed to support virtual
memory.

An essential element in providing virtual memory sup­
port is the ability to recognize an access fault when it
occurs. The MC68000 can recognize these faults both
internally and externally. When an access is made to a
misaligned instruction or operand, an address error is
internally detected, initiating the address error-fault
handling routine. Externally, the bus error (BERR) pin
provides the user with a method to signal that some
aspect of the access has generated an error. In the con­
text of virtual memory, a Motorola MC68451 memory
management unit, or any other address translation
device which can detect a fault situation, can signal a
fault to the main processor via the BERR pin. BERR is
shown in Figure 1 as a control signal. Although this
fault recognition capability does not need to be en­
hanced to support virtual memory, some of the timings
associated with it were made more liberal to provide
support for error detection and correction hardware.

Once the processor has recognized an access fault, the
next step is to save any state information that will be
needed to reconstruct the state of the machine after the
fault has been corrected. The MC68000 saves only
enough internal state information (Figure 2) to provide
the user with an approximate indication of the state of
the processor when the fault occurred. This informa­
tion, though providing the fault address, function
codes, and type of access, does not provide enough data
to allow the internal state of the machine to be
reconstructed. One of the side effects of the pipelined
instruction stream on the MC68000 is that the program
counter does not necessarily point at the instruction in
which the fault occurred, but rather points to the vici­
nity of the instruction.4 Furthermore, because of the
pipelining, the instruction register is updated before the
end of an instruction, an action which can result in the
stacked value of the instruction register also being
misleading. In order to provide the required data, the
MC68010 has to expand the size of the state that is
stored on a fault from seven words to 26 words. This
stack frame, shown in Figure 3, consists of the data
stacked by the MC68000 but also includes more detailed
information about the access type, internal temporary
registers, and various internal status bits. The stack is
divided into two parts-a user-visible section in which
everything that the user needs to know about the access
and its correction are provided, and a non-user-visible

IEEE MICRO

section in which the internal status and temporaries are
stored. After the internal state has been saved, the pro­
cessor returns control to the operating system by pro­
viding a vector to the address error or bus error
exception-handler routine. The operating system is then
responsible for reconfiguring the system to either suc­
cessfully complete the access or abort the process. While
this activity is taking place, a different program can be
dispatched to the potentially idle processor in a
multiprogrammed environment.

The last step is the most complex for the processor.
After the operating system has made any repairs that are
necessary, the state of the program suspended by the
fault must be reloaded and the execution of that pro­
gram resumed. If operating in a multiprocessor system,
the suspended program can be dispatched to any pro­
cessor throughout the system, which may or may not be
the processor that was originally faulted. The processor
must use the saved state information to reconstruct the
internal state of the machine and must allow execution
ofthe faulted program to resume. Reconstructing the in­
ternal state is composed of two steps: reading the inter­
nal state from memory and loading it into the machine,
and evaluating this state to determine what actions are
needed to restore the state of the machine to its prefault
condition. In the MC68000, an address error or a bus
error is considered to be exception from which no
recovery can be made. Hence, it has no facilities to allow
the machine to return from these exceptions. The
mechanism described here is an addition made on the
MC68010.

Processor instruction flow. In order to provide some
framework for the topics to be discussed later, it will be
advantageous to first study an example of a simple in­
struction and define the terms used in describing instruc­
tion flow.

Any instruction can be implemented internally as a
series of microinstructions. A microinstruction is an
integral unit of activity within a processor. Let us
examine a simple move instruction. In a word-sized
move-memory-to-memory instruction, in which both
source and destination are addressed using the predecre­
ment addressing mode [MOVE. W - (An), - (Am)], the
following activities must take place. The address register
An is decremented by two and the processor then uses
that address to read the word-sized data. The data are
then written to the memory location addressed by
address register Am decremented by two. In each case,
the decremented value is stored back into address
registers An and Am, respectively. This instruction can
be partitioned into three microinstructions, as shown in
the flowchart in Figure 4.

There must be some way to synchronize the external
world and the processor. This is done by allowing the in­
ternal sequencing of the machine to be effected by the
bus controller. When an access is initiated in a micro­
instruction, that microinstruction is not considered com­
plete until that access has been terminated. In reality,
because the execution time of a microinstruction is half
the time required to execute a bus cycle, there can be two
microinstructions associated with one bus access. In this

June 1983

case, the first microinstruction initiates the bus access
and the second microinstruction waits until the access is
completed before releasing the machine to continue ex­
ecution. If the access is completed successfully, then
normal processing is allowed to continue. Figure 5 pro­
vides two examples of this synchronization, one without
any memory delays, and the second with a one-clock
wait state. In the first case, microinstruction E initiates
the bus cycle and microinstruction F completes it. In the
second case, microinstruction F is extended by one clock
cycle to accommodate the memory delay. In the example
provided in Figure 4, the processor is not allowed to
begin execution of microinstruction C until the access in
microinstruction B has been completed. This ordering is
necessary because microinstruction C will use that data
to write to memory and to set the condition codes. The
processor, however, has completed all of the other ac­
tivities associated with microinstruction B and is simply
waiting for the access to be completed.

Virtual memory implementation methods

There are two basic methods of implementing virtual
memory on a processor: instruction "restart" and
instruction "continuation." Both methods have their

CALCULATE SOURCE ADDRESS

MICROINSTRUCTION A
(An-2)

PREFETCH NEXT INSTRUCTION

,,
READ OPERAND FROM SOURCE

ADDRESS (An - 2)

MICROINSTRUCTION B STORE DECREMENTED VALUE
IN REGISTER An

CALCULATE DESTINATION
ADDRESS (Am-2)

,,
WRITE OPERAND TO DESTINATION

ADDRESS (Am-2)

MICROINSTRUCTION C STORE DECREMENTED VALUE
IN REGISTER Am

SET CONDITION CODES

Figure 4. MOVE.W - (An), - (Am) mlcroflow.

27

CLOCKS

MICROINSTRUCTION : G

BUS ACTIVITY READ PREFETCH ======:: :

CLOCKS

MICROINSTRUCTION : G

: =::::: READ PREFETCH -----------------------------BUS ACTIVITY

Figure 5. Bus controllerlmlcromachine synchronization.

NORMAL
MICROINSTRUCTION

SEQUENCE

•

•
A

B

c

•
•

(a)

FAULT ...

RERUN FAULT
RECOVERY
SEQUENCE

•

•

A

B

1

f

A

B

c
•

•

SAVE
MICROINSTRUCTI ON

SEQUENCE

SAV1
:

SAVn

RTE
MICROINSTRUCTION

SEQUENCE

RTE1
:

RTEn

J

(b)

Figure 6. Restart method mlcroflow-normal microinstruction
sequence (a); rerun fault recovery sequence (b).

28

advantages and disadvantages. The MC68010 was
implemented with the less commonly used of the
two-the instruction continuation method-for reasons
that we will explain later in this article.

Instruction restart method. The most commonly used
method of virtual memory support is the restart method.
In this method, the instruction in which the fault
occurred is restarted from the beginning, after the
exception handler has completed all activity associated
with the correction of the fault. This is done regardless
of the stage of the instruction the processor had reached
when the fault was recognized. Figure 6 illustrates the
flow of the microcode for a faulted routine with the
restart method. Under normal conditions, microinstruc­
tions A, B, and C will execute consecutively (Figure 6a).
If microinstruction B has a fault associated with it
(Figure 6b), the processor will execute A and B but will
then be interrupted by the save routine. It will then save
the state and execute whatever handling routine is ap­
propriate. This handling routine should conclude with a
return from exception (RTE) instruction. This return
will restore the state and then restart the faulted instruc­
tion over again at microinstruction A. Thus, in this
scheme there will always be an A, B, C sequence of
microinstruction flow.

The restart method implies that the processor is able
to restore or reconstruct the state of the machine as it
existed at the beginning of the instruction. When a user­
visible resource is used as both a source and destination
for data within one instruction, this method becomes
quite complicated. One example of this problem occurs
with extended precision arithmetic operations, another
with autoincrement/autodecrement addressing modes.
In an extended arithmetic operation, a bit of the status
register indicates whether a previous carry or borrow
should be considered in the current calculation. The
instruction will in turn set that same bit to indicate
whether there was a carry or a borrow result in the cur­
rent calculation. If the processor is faulted after this bit
of the status register is updated, the original value must
be restored before the instruction can be restarted. This
is evident in the sample instruction presented in Figure
4, where an autodecrement addressing mode is used. It is
generally desirable to update the decremented address
register while the operand fetch is taking place (as shown
in the flowchart). Furthermore, if both source and
destination addressing modes use the same address
register, then the updated value of the register must be
used in the address calculation of the destination
address. If a fault is detected later in that instruction,
the register must be restored to its original value before
the instruction can be re-executed.

There are three methods commonly used to deal with
this problem. First, the processor can prevent any user­
visible resource from being altered until the instruction
is completely executed, when it can be assured that no
fault will occur. Second, the processor can maintain
copies of resources as they are altered. These copies will
contain the original value of the resource at the begin­
ning of the instruction. If the instruction is faulted, the
copies are used to restore the user state. Third, any

IEEE MICRO

updating of a user-visible resource can be tagged to in­
dicate which resource was altered· and how the original
data can be restored.

The level of difficulty involved in implementing one
of these methods depends on how complete the instruc­
tion set is and how orthogonal it and its addressing modes
are. If the number of situations where resource conflicts
can occur are limited, the complexity of providing a
comprehensive so1ution is manageable. However, if a
processor with a powerful instruction set is used, exten­
sive resources could be required. Unfortunately, it is too
often deemed acceptable in the microprocessor com­
munity to provide a limited solution to the problem
either by identifying a limited set of instructions that can
be provided to the user as virtual memory instructions,
or by expecting the user to conduct all of the repairs
needed to reconstruct the internal state of the machine.
In the first case, one can define instructions in which
there can be no resource conflicts and advise the user to
employ them to ensure that the page to be accessed
resides in physical memory. For instructions in which
there can be resource conflicts, no reliable recovery can
be made, and hence their use is somewhat limited. The
second solution is also unattractive, since it requires the
user to evaluate the saved state of the processor to deter­
mine if the faulted instruction presented a potential
resource conflict and, if it did, to make the needed cor­
rections. In either case the processor simply restores the
state of the machine and executes the faulted instruction
again, regardless of the validity of the restored state.

There is another class of problems associated with the
restart method that, although very subtle and in some
cases improbable, still presents situations from which
the processor cannot be predictably recovered. The first
situation involves an access made to an I/O device. It is
felt that in most systems there are significant advantages
to memory-mapped I/0, since any general instruction is
capable of communicating with an I/O device. If,
however, there is a fault of any kind after the access to
the 1/0 device, and if there is successful restoration
after the fault, the processor proceeds to refetch or
rewrite data to or from the I/O device. This can be
catastrophic, since the status of many I/O devices is
altered as the result of the access. Thus, the second
access to the device can result in incorrect data being
transferred. Another problem can occur when an
operand is transferred from memory to memory and the
operands overlap. For example, if a long-word move
from an address register indirect to an address register
indirect [(MOVE.L (An), (Am)] is executed with address
registers An and Am pointing as shown in Figure 7, the
instruction moves the long word X:Y into location Y:Z.
This is done by reading the words X and Y, then writing
X to location Y and Y to location Z. However, when the
write to location Z takes place, a fault can occur. In the
restart method, when the processor executes the instruc­
tion the second time, it reads X from location X but also
reads X from location Y, since location Y has been up­
dated by the first partial execution of the instruction.
Thus, the result of the instruction is that both locations
Y and Z contain X.

June 1983

Instruction continuation method. The second method
of virtual memory implementation, the instruction con­
tinuation method, provides an attractive alternative to
the restart method. In the continuation method, the en­
tire non-user-visible state of the machine is saved when
an access fault is detected. On completion of the fault
handler routine, the processor is allowed to resume in­
struction processing at the same location within the in­
struction at which execution was suspended by the fault.
This action occurs regardless of the location within the
instruction at which the access fault occurs.

In the example given in Figure 8, activity within the
processor is suspended in microinstruction B until the
completion of the data access. If that access is ter­
minated unsuccessfully, the processor saves the internal
state of the machine and enters the exception handler
routine, The operating system is free to make any
repairs to the system that are necessary. After these
repairs are complete, the operating system signals the
processor to restore the state and resume normal execu­
tion. The state is reloaded into the machine and the ac­
cess that caused the fault is repeated. When the access is
successfully completed, the processor resumes execution
with microinstruction C. Thus, the continuation method
is analogous to an interrupt operation at the
microinstruction level.

There are several problems associated with the con­
tinuation method of virtual memory support; they in­
volve

• instructions that require execution without inter­
ruption,

• silicon resources that must be provided to support
the saving and restoring of the internal state, and

• the time that is required for such saving and
restoring.

Moreover, the greater complexity of the continuation
method makes any virtual memory implementation that
uses it more vulnerable to design errors.

In general, continuation provides a more natural
method of virtual memory support. It is less disruptive

An--. x

Am_.. y

•••
z

0

• ••

+co

• • • PAGE BOUNDARY

MEMORY ORGANIZED BY WORD
FROM 1 TO +co

Figure 7. The operand overlap problem.

29

NORMAL
MICROINSTRUCTION

SEQUENCE

•
•
A

B

c
•

•

(a) CONTINUATION

FAULT-+

(b)

FAULT
RECOVERY
SEQUENCE

•
•

A

B

1

!

c

•
•

SAVE
MICROINSTRUCTI ON

SEQUENCE

~ SAV1
:

SAVn

RTE
MICROINSTRUCTION

SEQUENCE

RTE1
:

RTEn

J

Figure 8. Continuation method microflow-normal microinstruction
sequence (a); continuation fault recovery sequence (b).

30

to simply suspend operations or to interrupt execution at
the microinstruction level until the fault has been cor­
rected. The suspended program can then resume execu­
tion from the point at which execution was originally in­
terrupted. Sometimes the instruction needs to be ex­
ecuted without interruptions, however, and in this case
the continuation method is not naturally suited to pro­
viding the required support. An example of this type of
instruction is the test and set (TAS) of the M68000 in­
struction set. The TAS instruction provides the user with
a primitive operation which can be used to implement

resource protection mechanisms via semaphores or
other means. For the TAS instruction, the processor
must provide an uninterruptible read-modify-write se­
quence during which the bus cannot be arbitrated away.
If a fault occurs on the write portion of the access, it is
necessary to reinitiate the entire read-modify-write cycle
rather than simply rerun the write portion of the cycle.
In this case, there must be some mechanism to force the
entire read-modify-write cycle to be reinitiated.

The continuation method as implemented on the
MC680l0 requires that the entire internal state of the
processor be saved when an access fault occurs. Because
of the complexity of the MC68010, this state comprises a
large number of temporary execution-unit registers, se­
quencer state registers, and control latches. For the state
to be saved, the information about it must be stored in­
ternally. In addition, there must be access paths from
the state information, and there must be the control
needed to access this information. Similarly, additional
control logic is required to perform the reloading of the
state. In terms of silicon area, the additional resources
require a 22 percent increase over the MC68000 in total
area. Figure 9 is a labelled die photograph of the
MC6801Q; the crosshatched areas indicate the approxi­
mate increase in area due to virtual memory support.
While 22 percent is a significant amount of growth, the
most critical aspect of product design-development
time:--was greatly reduced, since most of the increase in­
volved areas consisting of regular structures.5,6

Another expense associated with the larger stacked in­
ternal state is the additional time it takes to read and
write the state during the save and restore operations.
While the time required to execute the save and restore
operations is shorter than the normal execution time for
some instructions, any time required to perform these
functions degrades overall performance. This is a par­
ticularly important concern because once the state has
been saved in a multiprogrammed environment, a dif­
ferent program can be dispatched to the idle processor.
This allows the time required for the page replacement
and other system repairs to be available to the system for
other processing tasks. Another problem associated with
the save time is that it contributes directly to the inter­
rupt latency. Because any instruction can cause a fault,
the interrupt latency must be calculated by adding the
time required to save the state to the time required to
execute the longest instruction. In the MC68010, the in­
terrupt latency could have increased by nearly 50 percent
over the interrupt latency of the MC68000. This did not
occur due to other optimizations made in the design.
Specifically, the latency associated with normal instruc­
tion processing was reduced by 50 percent, from 284
clock cycles to 148. The resulting normal instruction
latency is equivalent to the time required to save the
state-132 clock cycles. Thus, we were able to avoid the
latency problem inherent in saving the state. The
MC68010 interrupt latency is essentially the same as that
of the MC68000.

One of the most difficult problems associated with the
continuation method is the incr,eased vulnerability to
microcode errors it causes. Since an access fault can
occur at almost any point within the execution of an in-

IEEE MICRO

struction, the processor must suspend and then resume
execution from that point as if the fault had never occur­
red. This implies a much more detailed prediction of the
state of the machine than that performed in the
MC68000. In order to simplify the verification of correct
execution, the microinstructions associated with an in­
struction can be categorized into general microinstruc­
tion routines. The categories, which are also present in
the MC68000, are shown in Figure 10. All of the
microinstructions are attributed to one of three
categories-either they fetch an immediate operand,
evaluate an effective address and fetch the operand, or
do the operation fundamental to the instruction. These
routines perform all or part of the activity associated
with an instruction. A simple instruction may be com­
posed of only one routine while a more complex instruc­
tion can be composed of several functional routines. Let
us examine variations of the ADD instruction (Figure
10). Breaking instructions into these routines makes it
possible to define a series of boundary conditions. These
boundary conditions define the state of the machine at
the beginning of the functional routine. With these
simplified state definitions, the routines can be verified
by confirming that the entrance boundary conditions are
satisfied, the functionality of the routine is correct, and
the exit boundary conditions are satisfied. Similarly, it is
possible to verify the correctness of instructions by
checking the functionality of the routines that compose
the instruction and by verifying that the boundary con­
ditions synchronize correctly. One of the difficulties im­
plicit in the continuation method is that when the pro­
cessor is suspended and then restored, its state must
reflect the exact conditions that existed before the fault.
In the continuation environment, the steps taken to
verify the validity of operations must be more rigorous.

ADDI #,M ADD #,R

FETCH FETCH
IMMEDIATE IMMEDIATE
OPERAND OPERAND

~· ~'
EVALUATE
EFFECTIVE
ADDRESS

OPERATION
ROUTINE

~·
OPERATION

ROUTINE

Figure 9. The MC68010-the crosshatched areas indicate circuitry
added to support virtual memory.

ADD M,R

EVALUATE
EFFECTIVE
ADDRESS

w
OPERATION

ROUTINE

ADD R,R

OPERATION
ROUTINE

Figure 10. Decomposition of instructions into functional routines.

June 1983 31

32

An example of this difficulty is an error that was
found on one of the initial (preproduction) versions of
the MC68010 processor. Figure 11 will be used to
illustrate this problem. Figure I la shows the normal
processing of two instructions. These instructions are
composed of microinstructions A, B, and C for one in­
struction and D, E, and F for the next. In Figure 11 b,
examples of the same two instructions are given, but this
time with an interrupt being recognized during the first
instruction. This interrupt is acted on at the boundary
between the two instructions. At the conclusion of the
first instruction (at microinstruction C), the interrupt
microinstructions are executed if the interrupt has been
recognized internally during microinstruction B. After
all of the operations associated with the interrupt are
completed, execution of the second instruction com­
mences.

The problem was encountered when a fault occurred
in microinstruction C after an interrupt had been recog­
nized in microinstruction B. Figure 1 lc shows this situa­
tion as it should have been handled. Because of internal
piping, the microinstruction sequencer must know the
next microinstruction to be executed during the current
microinstruction. This is state information which must
be saved to allow the processor to return to the location
from which activity was suspended. In this case, the next
microinstruction that was scheduled when the fault
occurred was the first microinstruction of the interrupt

What is the MC68010?

The Motorola MC68010 is a 16-bit microprocessor
with 32-bit registers, an expanded instruction set,
and flexible addressing modes. The MC68010 is
object-code-compatible with the M68000 family of
processors. It offers the following facilities to the
user:

• seventeen 32-bit data and address registers,
• 16-megabyte direct addressing range,
•virtual memory/virtual machine support,
• 57 instruction types,
• high-performance looping instructions,
• operations on five main data types,
• memory-mapped 1/0, and
• 14 addressing modes.

As shown in the programming models (Figures 1
and 2), the MC68010 offers seventeen 32-bit general­
purpose registers, a 32-bit program counter, a 16-bit
status register, a 32-bit vector-base register, and two
three-bit alternate-function-code registers. Eight of
the registers, 00-07, are considered data registers
and can operate on byte (8-bit), word (16-bit), and
long-word (32-bit) data; The other nine general­
purpose registers, AO-A7,A7', are considered address
registers and can be used on word and long-word
address operations. Any one of the 17 registers can
be used as an index register.

routine. Unfortunately, the interrupt that caused the
sequencer to select the interrupt handler had been re­
solved immediately after the save routine, so that when
the interrupt handler was executed again, a superfluous
interrupt-acknowledge cycle occurred. To solve the
problem, the MC68010 had to internally recognize this
situation during the return operation and take'compen­
sating actions. It should be clear, however, that totally
protecting the user from inconsistencies requires
strenuous efforts. In this case, the boundary conditions
did not correctly mesh with the conditions for the be­
ginning of a new instruction; that is, the boundary con­
ditions were not properly defined to prevent this condi­
tion from occurring.

When examining the difficulties associated with the
continuation method, one finds few situations in which
the operation of the machine is altered at all. The dif­
ficulties are instead related to the resources required to
implement the method, the execution time associated
with a larger state, and the difficulty of verifying the
correctness of the machine. If resources are available to
solve the problems described above, one can make many
simple enhancements to the continuation method that
will provide services of practical value to the user. These
will be described in detail later. In general, the continua­
tion method is much more natural and less disruptive to
the flow of the machine.

31 16 15 8 7

DO
I- + +

01
f- + +

02
I- + +

03
I- + +

04
I- + +

05
I- + +

06
I- + +

07

31 16 15

AO
+

A1
+

A2
+

A3
+

A4
+

A5
+

A6

..-------r--------.. A7 USER STACK

...._ _____ ___ ___,USP POINTER

PC

7 0

~CCR

PROGRAM
COUNTER

CONDITION CODE
REGISTER

Figure 1. User programming model for the MC68010.

IEEE MICRO

NORMAL
MICROINSTRUCTION

SEQUENCE

{a)

INSTRUCTION
BOUNDARY

INTERRUPTEO
SEQUENCE

INTERRUPT RECOGNIZED

INTERRUPT
MICROINSTRUCTION

SEQUENCE

INT1

INTn

RTE
MICROINSTRUCTION

SEQUENCE

RTE1

RT En

{b)

FAULTEO
INTERRUPTEO

SEQUENCE

INTERRUPT RECOGNIZEO

FAULT
SAVE

SEQUENCE

SAV1 INTERRUPT
STILL RECOGNIZEO

RTE SEQUENCE

RTE1 RTE SEQUENCE

RT En

{c)

Figure 11. Interrupt processing on the MC68010-normal microinstruction sequence {a); interrupted sequence {b);
faulted interrupted sequence {c).

The status register (Figure 3) contains the interrupt
mask (eight levels available) as well as the condition
codes: extend (X), negative (N), zero (Z), overflow (V),
and carry (C). Additional status bits indicate whether
the processor is in the trace (T) mode or the super­
visor (S) state.

The vector-base register is used to determine the
location of the exception vector t~ble in memory. It
supports multiple vector tables. The alternate­
function-code registers allow the supervisor to
access any of the eight address spaces.

Figure 2. Supervisor programming
model for the MC68010.

15 13 10

12

\
TRACE

31

31

8

11 10

I
t

MODE SUPERVISOR
MODE

INTERRUPT
MASK

Figure 3. MC68010 status register.

June 1983

16 15 0
SUPERVISOR STACK

A7 POINTER

15 0

SR
STATUS
REGISTER

0

VBR
VECTOR BASE
REGISTER

2 0

8
SOURCE FUNCTION-

SFC CODE REGISTER

DFC DESTINATION FUNCTION-
CODE REGISTER

4 0

c

EXTEND t 1
NEGATIVE

ZERO
OVERFLOW

CARRY

33

34

MC68010 virtual memory
implementation details

As we explained earlier, we selected the continuation
method as the virtual memory implementation method
in the MC68010 because of the complexity of the
M68000 instruction set. In addition, the continuation
method made possible a high degree of fault coverage,
which is consistent with the M68000 family exception
philosophy. The details of how the continuation method
was implemented on the MC68010 can be described in
terms of four areas-additional hardware, architectural
methods, the save process, and the restore process.

Enhanced internal hardware. Additional hardware
resources were added and devoted to the task of saving
and restoring the internal state of the machine. These
resources include not only the latches and registers used
to hold data, but also the control logic used to latch and
transfer the data during the save and restore operations.

The saved state consists of 26 words-15 contain
execution-unit registers, three save the instruction pipe
registers, four hold bus controller information, one con­
sists of the status register, and three contain
miscellaneous bits of state information from throughout
the processor. To both save this data and preserve infor­
mation relevant to the faulted access, additional
registers are provided to store the address and data
associated with the faulted access. The three words of

The MC68010 can operate on five basic types of
data: bits, BCD digits, bytes, words, and long words.
The 14 address modes include six basic types:
register direct, register indirect, absolute, program
counter relative, immediate, and implied. These are
shown in Table 1.

The MC68010 instruction set is shown in Table 2. It
readily supports structured high-level languages.
Each instruction, with few exceptions, operates on
byte, word, and long-word data, and most instruc­
tions can use any of the 14 addressing modes. The
basic instructions can be combined with the
available data types and addressing modes to pro­
vide over 1000 total instructions. Furthermore, 33 of
the basic instructions can be used in the loop mode
with certain addressing modes and the DBcc instruc­
tion to provide 230 string, block manipulation, and
extended arithmetic operations.

References

1. MC68010-16-bit Virtual Memory Microprocessor,
Motorola, Inc., Austin, TX, Dec. 1982.

2. E. Stritter and T. Gunter, "A Microprocessor Architecture
for a Changing World: The Motorola 68000," Computer,
Vol. 12, No. 2, Feb. 1979. pp. 43-52

miscellaneous state information are latched so that they
can be saved and restored. Additional control logic is
provided to interpret the miscellaneous state informa­
tion, which may have been modified on the stack to en­
sure proper operation.

Architectural extensions. The MC68000's return from
exception (RTE) instruction was expanded so that it can
determine the type of exception associated with the
stack frame and take the action appropriate for that
type. This results in increasing the amount of informa­
tion stacked during an exception by one word. The addi­
tional word contains the stack frame (i.e., the exception
type) and the exception vector offset. The addition of
the exception vector offset to the stack frame allows
generic exception handlers to be used by the operating
system software. Figure 12 illustrates the difference be­
tween the exception stack frame of the MC68000 and
that of the MC68010. By using the general RTE instruc­
tion for the machine restore, we maintained compatibili­
ty with the MC68000 and yet enhanced the generality
and expandability of the instruction.

The execution of the RTE on the MC68010 is very
similar to that on the MC68000. The processor reads the
status register, program counter, and stack format into
the machine. The format word is then evaluated. If the
short stack format is present, then the information need­
ed for the return is resident in the machine and normal
processing resumes at the address indicated by the

Table 1.
Addressing modes.

Mode

Register Direct Addressing
Data Register Direct
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolute Long

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

Immediate Data Addressing
Immediate
Quick Immediate

Implied Addressing
Implied Register

NOTES·
EA= Effective Address
An= Address Register
On= Data Register

Generation

EA~ Dn
EA~An

EA~ !Next Word)
EA~ !Next Two Words)

EA~ IPCI + d15
EA~ IPCI + IXnl + dg

EA~ I An I
EA~ IAnl, An-An+N
An-An-N, EA=IAnl
EA~ IAnl + d15
EA~ IAnl + IXnl + dg

DA TA~ Next Word Isl
Inherent Data

EA~ SR, USP, SSP, PC,
VBR, SFC, DFC

Xn= Address or Data Register used as Index Register
SR= Status Register
PC= Program Counter
(l = Contents of
dg~8-B1t Offset !Displacement)
d15~ 16-Bit Offset !Displacement)
N = 1 for byte, 2 for word, and 4 for long word If An 1s

the stack pointer and the operand size is byte, N = 2
to keep the stack pointer on a word boundary

- =Replaces

IEEE MICRO

restored program counter. If the long stack format is
present, then the 26 words of state information must be
read from the stack and restored to their appropriate
location before execution can continue at the point of
the exception.

In order to allow for expansion and for verification of
the state information, we installed certain protection
mechanisms into the restore process. Currently there are
only two valid stack formats, $0 for the normal four­
word format, and $8 for the long 29-word format. Any
other formats are identified as illegal by the MC68010
and cause a "format error" exception.

Machine fault and state save process. The state save
process begins when a bus fault is detected via assertion
of the BERR pin or via a program-generated address
error. A flowchart of the save operation is provided in
Figure 13. The processor latches and holds information
relevant to the faulted cycle, which includes the function
code (address space),.data access type (read/write), and
various internal status information. The processor next
saves information resident in the save process hardware
by storing it in registers dedicated to this task. Examples
of this information include the contents of the address
output buffer register and data output buffer registers.
This clears a path for external accesses to memory; this
cleared path allows the remainder of the internal state to
be saved on the stack. After the completion of the state
save, exception processing continues, with vector

generation followed by execution from the vector loca­
tion. Detection of another bus fault during the state save
process constitutes a double bus fault exception, which
causes the processor to halt all processing pending asser­
tion of the external reset pin.

STATUS REGISTER 14- SP

MC68000 PROGRAM COUNTER HIGH

{a)
PROGRAM COUNTER LOW

STATUS REGISTER ~ SP

PROGRAM COUNTER HIGH
MC68010

PROGRAM COUNTER LOW

{b) FORMAT I VECTOR OFFSET

Figure 12. Exception stack frame of the MC68000 {a)
and of the MC68010 {b).

Table 2.
Instruction set summary.

Mnemonic Description Mnemonic Description

ABCD* Add Decimal with Extend MOVE* Move Source to Destination
ADD* Add MULS Signed Multiply
AND* Logical And MULU Unsigned Multiply
ASL* Arithmetic Shift Left
ASR* Arithmetic Shift Right

NBCD* Negate Decimal with Extend
NEG* Negate

Bee Branch Conditionally NOP No Operation
BCHG Bit Test and Change NOT* One's Complement
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test

CHK Check Register Against Bpunds
CLR* Clear Operand
CMP* Compare

OR* Logical Or

PEA Push Effective Address

RESET Reset External Devices
ROL * Rotate Left without Extend
ROR* Rotate Right without Extend
ROXL * Rotate Left with Extend
ROXR* Rotate Right with Extend
RTD Return and Deallocate'

DB cc Decrement and Branch Conditionally RTE Return from Exception
DIVS Signed Divide RTR Return and Restore
DIVU Unsigned Divide RTS Return from Subroutine

EOR* Exclusive Or SBCD* Subtract Decimal with Extend
EXG Exchange Registers sec Set Conditional
EXT Sign Extend STOP Stop

JMP Jump SUB* Subtract

JSR Jump to Subroutine SWAP Swap Data Register Halves

LEA Load Effective Address TAS Test and Set Operand

LINK Link Stack TRAP Trap

LSL* Logical Shift Left
LSR* Logical Shift Right

TRAPV Trap on Overflow
TST* Test

* Loopable Instructions UNLK Unlink

Junel983 35

36

Machine restore and return process. After the excep­
tion handler has completed any corrections it deems
necessary, the processor can be directed to reload its
stacked state and resume execution at the point at which
the fault occurred. This is initiated by the execution of
the enhanced RTE instruction described previously. A
flowchart of the RTE process is provided in Figure 14.
Before the actual internal restore operation begins, the
processor performs checks on the integrity of the restore
stack frame. Since the MC68010 is a microcoded design,

NORMAL
PROCESSING

BUS
ERROR ,,

LATCH BUS CONTROL
INFO., MICRO PC,

AND VARIOUS OTHER
VOLATILE INFO.

STORE LATCHED
INFO. IN VIRTUAL

MEMORY REGISTERS

SAVE
INTERNAL

STATE

FETCH NEW PC
FROM BUS

ERROR VECTOR

FETCH AND
EXECUTE BUS

ERROR HANDLER

Figure 13. Save process flow.

part of the state information includes the address of the
next microinstruction to be executed. This makes
necessary a mechanism . by which the processor can
check the validity of the microinstruction address
associated with the bus fault. This mechanism detects
the situation in which there are multiple processors with
different versions of microcode in the same system. If
this situation exists, it is possible for a process to be
faulted while on one processor and then redispatched to
a different processor with a different set of microcode.

NORMAL
PROCESSING

RTE

VALID

RESTORE
STATE

RERUN FAULTED
CYCLE BASED ON

RR BIT IN
SPECIAL STATUS WORD

Figure 14. RTE process flow.

IEEE MICRO

Since the microcode i~different, the pointer to .the next
microinstruction will not be valid, and a format error
exception must be taken or erroneous execution may
occur. The processor then performs a restore check
which pertains to the supervisor stack, although in
general the integrity of the supervisor stack pointer is the
responsibility of the software. Because of the size of the
stored machine state, we found it desirable to have the
processor ensure that the entire stack frame is resident in
physical memory before it is read in, while it is still
possible to accept another fault. For this reason the
length of the save stack frame is traversed and its
residency assured before significant amounts of state in­
formation are loaded during the restore process. Once
the validity of the stack is determined, the entire 26
words of machine state information are read into the
machine and restored to their original locations. A bus
fault during the loading of the machine results in a dou­
ble bus fault, since during the loading the registers that
are dedicated to saving the registers associated with the
bus activity are not predictably loaded. However, it is
possible to have a fault before the stack frame has been
traversed, or upon the rerunning of the access that
originally caused the fault, without precipitating a dou­
ble bus fault. Only the faulted access must be completed
before the processor is allowed to begin execution of the
next microinstruction.

So that the user can handle a number of different
situations, he has been given the power to determine
how the access that caused the fault will be handled.
Fault information is available to the supervisor fault
handler in the special status word (Figure 15) that resides
on the supervisor stack. This information allows the
fault handler to determine the cause of the fault and to
take the appropriate corrective and compensatory
action. It also includes the nature of the fault, the fault
address, and the prospective destinations for the data

15 14 13 12 11 10 9 8

within the microinstruction. The fault handler also has
the ability to signal the processor whether it will correct
the faulted access or whether the processor should re­
attempt it. This is done by means of the rerun bit of the
special status word. Situations in which it may be
desirable for the operating system to complete the access
include operation with misaligned operands or data,
operation with 1/0 faults, or virtual operations (i.e.,
when the accessed resource does not exist). All of these
are readily supported by this mode. The meaning of a
software rerun does not limit itself simply to transferring
the appropriate data-when the exception handler
signals the main processor that it has completed the
access, the processor assumes that all aspects of the
transfer have been accomplished. In the case of a TAS
instruction with an uninterruptible read-modify-write
cycle, a software rerun includes the setting of the condi­
tion code bits within the status register to reflect the data
that were read. One of the limitations of the MC68000 is
that it cannot support misaligned data or instructions
(address error exception). However, if a misaligned pro­
gram must be executed, then a software rerun must be
performed. The only way in which an address error fault
can be corrected on the MC68010 is through a software
rerun or through a modification of the fault address on
the stack. While it is certainly possible to alter the
address that caused the fault, there are few situations in
which this is appropriate. If a software rerun is not
made, the processor restores the state and attempts to
make.the same access that previously caused the fault.
The access will fault again with the same results.

Once the state of the machine is restored and the
access is completed, either by the user or by the
machine, the processor is permitted to continue execu­
tion at the microinstruction following the faulted
microinstruction. Note that if the rerunning of the
access is left to the processor, it is possible for that

7 6 5 4 3 2 0

RR: RERUN FLAG; O=PROCESSOR RERUN (DEFAULT), 1 =SOFTWARE RERUN
IF: INSTRUCTION FETCH TO THE INSTRUCTION INPUT BUFFER

DF: DATA FETCH TO THE DATA INPUT BUFFER
RM: READ-MODIFY-WRITE CYCLE
HB: TRANSFER INTO/OUT OF HIGH BYTE OF BUFFER
BY: BYTE TRANSFER FLAG

RW: READ/WRITE FLAG
FC: FUNCTION CODE OF THE FAULTED ACCESS

O: RESERVED BY MOTOROLA; READS ZERO

Figure 15. The special status word.

June 1983 37

access to cause another bus fault. Thus, if the problem
that first caused the fault is not corrected, and the fault
handler signals to the processor that the machine is to
complete the access, a continuous fault-loop effect
occurs. During this loop, the stack frame occupies the
same location; thus, such a loop does not cause the stack
to grow.

MC68010 facilities

Virtual machine operation. The MC68010 provides
the mechanisms needed to implement a virtual machine
environment in which any degree of emulation is sup­
ported. This is achieved in large part by the virtual
memory mechanisms described above. Virtual I/0, for
instance, is readily achieved by defining a memory area
as an I/O device which is not physically resident. When
an access is made to that address, an access fault occurs.
The fault address can then be evaluated by the operating
system to determine the activity that should take place.
After the appropriate action has been taken, a software
rerun can be signalled and the RTE executed. Indicating
to the processor that the access has been completed
makes it possible to provide virtual I/O transfers. This
technique can of course be generalized to any other type
of virtual activity that the processor requests the
operating system to execute.

Performance enhancements. Since some new internal
resources had to be added to the processor to support
virtual operations, we wanted to apply these resources,
whenever possible, to other instructions to improve their
performance. The result of these efforts is a small per­
formance improvement, which we have estimated to be
about 15 percent for a typical instruction mix. A com­
mon criticism of the MC68000 is that it is not optimized
for fast block operations. Instructions dedicated to
handling block operations, however, carry with them
some rather unattractive architectural consequences, as
they tend not to fit well into the instruction map and do
not have the full range of available address modes. The
MC68010 provides perhaps the best solution to the per­
formance/regularity problem by recognizing code se­
quences in which the block operations are defined and
by executing these loops very quickly, with no
superfluous instruction accesses.

Several new microprocessors which support virtual
memory have been introduced recently, with each pro­
viding different degrees of such support. The MC68010,
utilizing the instruction continuation method, cleanly
and elegantly supports the fault detection/fault correc­
tion/program resumption process. The options
available as a consequence of the use of continuation
method-hardware and software rerun-provide
powerful support for various implementations of virtual
memory. The continuation method also provides the
ability to make any access virtual via the .software rerun
method of return.

One of the most challenging aspects of any design is
trying to provide an elegant general solution to a prob­
lem while at the same time ensuring that any exceptions
to the general case are also handled appropriately. In the
MC68010, this challenge has been met. •

References

I. Peter Denning, "Virtual Memory," Computing Surveys,
Vol. 2, No. 3, Sept. 1970, pp. 153-189.

2. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H.
Sumner, "One-Level Storage System," IRE Trans. Elec­
tronic Computers, Vol. EC-11, No. 2, Apr. 1962, pp.
223-235.

3. J. Zolnowsky and N. Tredennick, "Design and Implemen­
tation of System Features for the MC68000," Proc. Comp­
con Fall 79, Sept. 1979, pp. 2-9.

4. MC68000 16-bit Microprocessor User's Manual, 3rd ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 57-69.

5. Saburo Muroga, VLSI System Design-When and How to
Design Very-Large-Scale Integrated Circuits, John Wiley
and Sons, New York, 1982, pp. 417-421.

6. E. Stritter and N. Tredennick, "Microprogrammed Im­
plementation of a Single-Chip Microprocessor," Proc. 11th
Ann. Workshop on Microprogramming (Micro-11), Nov.
1978, pp. 8-16.

Douglas MacGregor defined the control structures and wrote
the microcode for the MC68010 and the MC68020. He enjoys
studying Japanese language and culture as well as reading
Farley Mowat. He served six years in the Navy, obtaining some
direction in life, while completing a BA in history and Asian
studies at night. After evaluating the job market, he obtained
an MS in computer science from the University of Illinois,
from which he went to Motorola's Microprocessor Design
Group in Austin, Texas.

David S. Mothersole is project manager of the MC68020
microprocessor systems design group. He has been involved
with the definition of the M68000 architecture since coming to
Motorola in November of 1978. His areas of research include
computer architectµre and microprocessor bus structures. A
member of the IEEE, he holds a BS and MS in electrical
engineering from the University of Texas.

The authors' address is Microprocessor Systems Design
Group, Mail Drop M2, Motorola MOS Integrated Circuits
Division, 3501 Ed Bluestein Blvd., Austin, TX 78721.

Al6642 PRINTED IN USA 9-83 IMPERIAL LITHO Cl6305 15,000

