
MPL LANGUAGE

REFERENCE MANUAL

M6800 MICROPROCESSOR

Motorola Microsystems
3102 N. 56th Street
Phoenix, Arizona 85018

t-1PL LANGUAGE

For The

!16800 HICROPROCESSOR

PRELIl'UbJARY

r,tARCH 197 6

The information in this manual has been carefully
reviewed and is believed to be entirely reliable.
However, no responsibility is assumed for
inaccuracies. Furthermore, such information does
not convey to the purchaser of the semiconductor
uevices described any license under the patent
rights of Hotorola Inc. or others.

The material in this manual is subject to change,
and Motorola Inc. reserves the right to change
specifications without notice.

Second Edition
Copyright @ 1976 by Motorola Inc.

TABLE OF CONTENfS

INTRODUCTION • • • • • • • • •

ELEMENTS OF THE LANGUAGE •

DATA REPRESENTATION. •

CONSTANTS. • •

SYMBOLIC NAMES (RESERVED KEYWORDS) •

VARIABLES.

ARRAYS •••

SUBSCRIPTS •

POINTERS ••

EXPRESSIONS, ARIT~WETIC.

Arithmetic and Logical Operators

Order of Computation

LOGICAL EXPRESSIONS.

ORIGIN STATEMENT • •

DECLARE STATEMENT.

ARITHMETIC ASSIGNMENT STATEMENT.

CONTROL STATEMENTS

Unconditional GO TO Statements.

Assigned GO TO Statements •

Computed GO TO Statement ••

IF Statement.

DO Statement.

POINTERS AND THE 'DO' STATEMENT.

END Statement

MAIN PROCEDURE • • • •

SUBROUTINE PROCEDURES. •

ARGUMENTS IN A SUBROUTINE PROCEDURE ••

INVOKING THE COMPILER.

SOURCE PROGRAM ERRORS ••

SAMPLE SOURCE PROGRAM LISTING.

COMPILED AND ASSEMBLED SOURCE PROGRAM

-i-

. . .

Page

1

3

6

8

11

13

14

18

20

22

25

2,C,

27

29

29

34
37

38

33

39

42

43

50
51

52

53

57

61

A-I

B-1

B-2

MPL MANUAL

Preface

This compiler expands the Total Product Offering for the M6800

Microprocessor Family of Parts. The compiler was developed to

meet the varied needs of microprocessor users and in particular

the output of the compiler is an assembly language file (rather

than machine language output). This shows the user the code

generated on a compiler statement by compiler statement baRisi

which in turn gives the user closed loop feedback on his pro

gramming techniques.

Compilers have not been software panaceas in the past, nor do

we expect this compiler to solve all your programming problems.

However, in the hands of a serious programmer, this compiler

should serve as an effective software tool.

-ii-

INTRODUCTION

The MPL language is a compiler language that is especially

useful in writing programs for applications that involve mathe

matical computations and manipulation of numerical and string

data. The language is also especially suitable for realtime

microprocessor applications.

Source programs written in the NPL language consist of a

set of statements constructed by the programmer from the lang

uage elements described in this publication.

In a process called compilation, a program called the MPL

Compiler analyzes the source program statements and translates

them into an assembly language program called the object pro

gram, which will be suitable for assembly by an M6800 Assembler.

In addition, when the MPL Compiler detects errors in the source

program, it produces appropriate diagnostic error messages.

1

LISTING

MPL
SOURcr

FILE

MhROO
ASSEMBLER

SOURCE
FILE

MACHINE
FILF

COMPILER-BLOCK DIAGRAM

- 2 -

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which

the compiler generates machine instructions, constants, and

storage areas. A given MPL statement effectively performs one

of three functions:

1. Causes certain operations to be performed (e.g., add,

multiply, branch)

2. Specifies the nature of the data being handled.

3. Specifies the characteristics of the source program.

MPL statements usually are composed of certain MPL key

words used in conjunction with the basic elements of the

language: constants, variables, and expressions. The categories

of MPL statements are as follows:

A. Arithmetic Statements: These statements cause calculations

to be performed and cause the result to replace the current

value of a designated variable or subscripted variable.

B. Control Statements: These statements enable the user to

govern the flow and terminate the execution of the object

program.

C. Specification Statements: These statements are used to

declare the properties of variables and arrays (such as

type and amount of storage reserved).

3

D. Procedure Statements: These statements enable the user to

name and define procedures, which can be compiled separately

or with the main program.

The basic elements of the language are discussed in this

chapter. The actual MPL statements in which elements are used

are discussed in the following sections. The term procedure

refers to a main program or a subprogram. The phrase executable

statements refers to those statements in categories A, B, and

D above.

The order of an MPL program unit is:

1. Procedure statement.

2. Specification statements, if any. (Explicit specification

statements which initialize variables or arrays must appear

in the same specification statements that define the variable

or array name.)

3. Executable statements, at leas'c one of which must be present.

4. END statement.

CODING MPL STATEMENTS

The statements of an MPL source program may be punched on

cards or typed on a TTY terminal with each line on the TTY terminal

representing one SO-column card. MPL statements are written

within columns 1 through 72. If a statement is too long for one

card, it may be continued on successive cards except for any

valid constant. All constants must be completely contained on

the same card or line.

4

As many blanks as desired may be written in a statement to

improve its readability. Multiple blanks are ignored by the

compiler. Elanks, however, that are inserted in literal data

are retained and treated as blanks within the data.

It should also be noted however that the connectors and

logical operators - NOT, AND, OR, GT, GE, EQ, NE, LT, LE, lAND,

lOR, lEaR, SHIFT - must be preceded and followed by at least

one blank. Other reserved words must be preceded and followed

by a blank or some other delimiter. Labels, variable names

and procedure names must not contain hJ.anks.

The first card of a statement may contain a statement label

consisting of from 1 through 6 alphabetic or numeric characters,

the first of which must be alphabetic. Statement labels must

be followed by a colon (:) symbol. If column 1 contains a

dollar sign ($), the card is considered to be an assembly

language card and is passed to the symbolic output file without

being acted upon by the compiler.

Columns 73 through 80 are not significant to the MPL

compiler and may therefore, be used for program identification,

sequencing, etc.

Multiple statements may appear on one line, 5eparated by

blanks or by a semicolon(;).

5

,
..L.

or

Comments to explain a program may be written either by:

Enclosing the comments within /* and */ delimiters.

Such comments may occur anywhere and may extend over

several lines.

2. Terminating one or more statements on a line by an exclam-

at ion character (!) and following this by comments. The

compiler considers all information after the ! to be comments.

It is also possible to place the ! in column one if it is

desired to make the entire card to be a comment.

DATA REPRESENTATION

Data may bE represented in MPL in the following formats:

1. Bi t string:

BIT(l) - BIT(7) are one bit fields which may be tested,

set or cleared. The most significant bit, bit 7, is the

only bit used for the BIT (1) declaration. BIT(8) is

used for an 8-bit field (one byte) which car. have the

following operations performed on it:

A. Test (magni tude only)

B. Shift (rotate shift)

c. Logical AND

D. Logical OR

E. Logical EOR

6

2. Single or double precision integer binary: BINARY (I) or

BINARY(2). One or two bytes are occupied respectively

and the following operations may be performed:

A. Test

B. Shift ·(ari thmetic right & left)

C. Logical AND

D. Logical OR

E. Logical EOR

F. Hulitply

G. Divide

H. Add

I. Subtract

J. Replace

3. ASCII numeric: DECIMAL (1) , DECI~ffiL(2) ..• DECIMAL(12),

SIGNED DECIMAL (1), SIGNED DECH1AL (2) .•. SIGNED DECIMAL (12) I

DECI~1AL(m,n) or SIGNED DECIMAL (m,n) where m indicates the

total number of bytes (digits) in the representation and n

indicates the number of bytes (digits) after the assumed

decimal point. m and n must not be greater than 12. This

representation occupies one byte for each digit plus one

for an optional sign and may be used in the following

operations:

A. Test

B. Add

C. Subtract

D. Replace

7

4. ASCII alphanumeric: CHARACTER(m) occupies m bytes, one for

each character and 1 < m < 255.

The CHARACTER representation may be tested and replaced.

CONSTANTS

A constant' is a fixed, unvarying quantity. Five types of

constants can be used: integer, binary, hexadecimal, string,

and address. The type of a constant is defined by its implicit

type and by its usage. For example, the value 123 may have

such representations as BINARY (1) , BINARY(2) or DECIMAL (3)

depending upon the environment of its usage.

INTEGER CONSTANTS

Definition

Integer Constant - a whole number written without a decimal

point. It occupies one or two locations of storage for a

binary constant and N bytes for a numeric ASCII constant

where 1 < N < 12.

Maximum magnitude for binary constant: + 127 for one byte

+ 32767 for two bytes

An integer constant may be positive, zero, or negative;

if unsigned, it is assumed to be positive. Its magnitude must

llot be greater than the maximum for the given representation

implied by its environment in a statement and it may not contain

embedded commas.

8

Examples:

Valid integer constants:

o

+91

91

173

-21474

Invalid integer constants:

3145903612 (exceeds the allowable range of a binary constant)

:5,396

BINARY CONSTANTS

Definition

(contains an embedded comma)

Binary constant - a string of 0 and 1 bits followed by the

letter B. A binary constant may occupy one or two bytes.

If less than 8 cr 16 bits are specified, they will be right

justified in the one or two bytes required to contain the

constant.

Examples:

OlOOlOllB

lOOlll0010010111B

lOllB

lOOllOllOllB

HEXADECIMAL CONSTAHTS

Definition

Hexadecimal constant -- a hexadecimal number (0-9, A-F)

enclosed in double quotes or not enclosed in quotes and

followed by the letter II. In the latter case the first

character must be numeric. The maximum magnitude is FFFF16 .

One or two bytes are occupied.

Examples:

"0" or OIl

"3F''' OI 3FII

"FFFF" or OFFFFH

"D24" or OD24H

"5A4C" or FA4CH

"6F" or 6FH

STRHJG CONSTANTS

Definition

String constant -- a series of ASCII characters enclosed ln

quote signs.

It occupies one byte for each character and must be less

than 256 bytes long. A maximum of 47 characters can be

used to the right of an equal sign.

Examples:

'TOTAL'

'VALUE IS' - The full 64 ASCII character set may be used.

The exclamation point (!), and apostrophe (')

can be used by usi~g two

AA='!!'" will set AA=!'

10

ADDRESS CONSTANT

Definition

Address constant -- a series of ASCII characters enclosed

in quote marks representing the value of an address. It

occupies two bytes and must have a magnitude less than

65535.

Examples:

'TABLE' - address of TABLE

'TABLE+50*10' - aaoress of TABLE+50*10

An address constant is assumed if the data representation

is BINARY(2) and the constant name is enclosed in single

quotes.

SYMBOLIC NAMES

Definition:

Symbolic Name consists of from one through six alphameric

characters i.e., numeric (0 through 9) or alphabetic

(A through Z) I the first of which must be alphabetic. In

addition, keywords reserved by the compiler or assembler

should not be used as symbolic names. The following names

are reserved keywords:

A GE OR

AND GO ORIGIN

B GOTO PROe

BASED GT PROCEDURE

BEGIN lAND RETURN

BIT IEOR SHIFT

BY IF SIGNED

11

CALL

DCL

DECLARE

DF.F

DEFINED

DO

ELSE

END

EOR

EQ

INIT

INITIAL

lOR

L.A.EEL

LE

LT

HAIN

NE

NOT

OP'I'IONS

T

THEN

WHILE

X

ZOOO

ZOOl

ZFFF

Note: All 4 character symbolic names whose first

character is Z are reserved.

Symbolic names are used in a procedure to identify elements

in the following classes.

An array and the elements of that array (see "Arrays")

A variable (see "Variables")

A statement label

A procedure name

Symbolic names must be unique within a program (consisting

of a main procedure and optional sub-procedure(s)) and can

identify elements of only o~e class.

:'2

VARIABLES

An MPL variable is a symbolic representation of a quantity

that occupies a storage area. The value specified by the name

is always the current value stored in the area. For example,

in the following statement both Wand Yare variables:

W = 5 + Y

The value of Y is determined by some previous statement and

may change from time to time. The value of W is calculated

whenever this statement is executed and changes as the value of

Y changes.

VARIABLE NN~ES

The use of meaningful variable names can serve as an aid

in documenting a program. That is, someone other than the

programmer may look at ,the program and understand its function.

For example, to compute the distance a car traveled in a

certain amount of time at a given rate of speed, the following

statement could have been written:

W = Y * Z

where * designates multiplication. However, it would be more

meaningful to someone reading this statement if the programmer

had written:

DIST = RATE * TIME

Examples:

Valid variable names:

B292S

RATE

IJ

Invalid variable names:

B292704

4ARRAY

SI.X

(Contains more than six characters)

(First character is not alphabetic)

(Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the

variable represents. Thus, a binary variable (BINARY) repre

sents a binary data, a bit string variable (BIT) represents

bit s·':rirg data, a numeric LSCII variable (DECIMAL) represents

numeric ASCII data, and a literal string variable (CHARACTER)

represents alphanumeric ~SCII data.

The number of storage locations reserved for the variable

depends on the type of the variable.

A programmer must declare the type of a variable by using

the DECLARE statement prior to the first usage of the variable.

ARRAYS

An MPL array is a set of variables identified by a single

variable name. A particular variable in the array ~ay be re

ferred to by its position in the array (e.g., first variable,

third variable, seventh variable, etc.). Consider the array

named NEXT which consists of five variables, each currently

representing the following values: 273, 41, 8976, 59, and 2.

:'4

NEXT(l) is the location containing 273

NEXT(2) is the location containing 41

NEXT(3) is the location containing 8976

NEXT(4) is the location containing 59

NEXT(5) is the location containing 2

Each variable (element) in this array consists of the

name of the array (i.e., NEXT) immediately followed by a number

enclosed in parentheses, called a subscript quantity. The

variables that the array comprises are called subscripted

variables. Therefore, the subscripted variable NEXT(l) has

the value 273; the subscripted variable NEXT(2) has the value

of 41, etc.

The subscripted variable NEXT(I) refers to the "Ith"

subscripted variable in the array, where I is an integer vari

able that may be assigned a value of 1, 2, 3, 4, or 5.

To refer to any element in an array, the array name must

be subscripted. The array name alone represents the entire

array.

Consider the following array named LIST described by two

subscript quantities, the first ranging from 1 through 5, the

second from 1 through 3.

Column 1 Column 2 Column 3

RQlv 1 82 4 7

ROv] 2 12 13 14

ROW 3 91 1 31

ROW 4 24 16 10

ROW 5 2 8 2

15

The array would be defined as:

DECLARE

01 TABLE,

02 ROW(S),

03· LIST(3) BINARY (1)

or as:

DECLARE LIST(S,3)

Reference to the number in row 2, column 3

would be coded as:

LIs'r (2,3)

Thus, LIST (2,3) has the value 14 and LIST (4,1) has the

value 2·\

OLcir.ary mathematical notation uses LISTi,j to represent

any element of the array LIST. In MPL, this is written as LIST

(I,J) where I equals 1, 2, 3, 4 or 5, and J equals 1, 2 or 3.

An additional possibility of referring to elements of an

array is made available in }I1PL if the first of the two methods

Cd:: Cieclaring is used. Rmv(2) then refers to the data in all

three columns of row 2 and TABLE refers to all elements of the

array.

16

DECLARING THE SIZE AND TYPE Of' AN ARRAY

The size (number of elements) of an array is specified by

the number of subscript quantities of the array and the maximum

value of each subscript quantity. This information must be

given for all arrays before using them in a program eo that an

appropriate amount of storage may be reserved. Declaration of

this information is made by a DECLARE statement. This statement

is discussed in detail in the chapter "DECLARE" statement. The

type of an array name is determined by the specification for

the type of the variable name. Each element of an array is of

the type specified for the array name, but need not be the same

type f01: all levels of the structure. The above example could

be declared as:

01 TABLE,

02 ROW(S),

03 COLI BINARY (1) ,

03 COL2 BINARY (2) ,

03 COL3 DECIHAL(S)

if it is desired to have varying data representations for each

colwnn. vlithin one column however the data representation is

fixed.

17

SUBSCRIPTS

A subscript is an integer subscript quantity or a set of

integer subscript quantities separated by commas, which is

used to identif~' G. particular element of an array. The number

of subscript quantities in any subscrip~ must be the same as

the number of dimensions of the array with which the subscript

is associated. A subscript is enclosed in parentheses and is

\vri tten immediately after the array name. A maximum of three

subscript quantities can appear in a subscript.

General Form

Subscript Quantities -- may be one of four forms:

v

k

v+k

v-k

Where: v represents an unsigned, nonsubscripted, integer BINARY(l)

variable and must be level 01

k represents an unsigned integer constant.

Whatever subscript form is used, its evaluated result, as well

as the intermediate result, must always be greater than or equal

to 1 and less than or equal to 255. For example, when reference

is malie to the subscripted variable V(I-2), the value of I mcst

be greater than or equal to 3 and less than or equal to 255. In

any case, the evaluated result must be within the range of the

array.

18

r.

Examples:

Valid subscripted variables:

ARRAY (IHOLD)

NEXT (19)

MATRIX (1-5)

Z(I+3,J+8,K)

Invalid subscripted variables:

ARRAY (-I) (The subscript quantity I may not be signed)

ARRAY (1+2.)

NEXT (-7+J)

\'01(1(2»

TEST (K* 2)

TO'l'AL (2+K)

Q(I,J,K,L)

(The constant within a subscript quantity

must be an integer with no associated

G.ecimal point)

(If subtraction is indicated, the variable

must precede the constant)

(The subscript quantity I may not itself

be subscripted)

(Multiplication is indicated which is an

error)

(If addition is indicated, the variable must

precede the constant. Thus TOTAL (K+2) is

correct)

(No more than three subscript quantities

may be used)

19

POINTERS

The evaluation of subscripts generally requires multi

plication. Since the M6800 does not have a multiplication

instruction, an alternate forn of array addressing is provided

through the usa of pointers. A pointer must be declared with

a representation BINARY(2). It must contain the aGdress of

the level 01 entry of the item being referenced. An item is

pointed by the form

V:P or P->V

whr.re V represents a simple or subscripted variable and P

represents a simple variable of type BINARY (2) , level 01.

Valid pointed variables

ARRAY:PTR

NEXT(19) :JJ

JYlA'l'RIX (I - S) : J J

Invalid pointed variables

or

or

or

PTR -> ARRAY

JJ -> NEXT(19)

JJ -> MATRIX(I-5)

ARRAY:PTR(3) (pointer may not be subscripted)

NEXT(19) :JJ-2 (would be evaluated as (NEXT(19) :JJ)-2)

Additionally, pointer variables are useful in handling

linked lists. For example:

DECLARE

01 TABLE (100),

02 LINK BINARY (2) ,

02 Al DECIMAL (3) ,

02 A2 CHARACTER (5)

The pointer for the next entry in the chain may be obtained by

the statement:

XX=LINK:XX 20

•

The following coding will link the new entry pointed

to by li~EXT" into the chain. Assume the variable "PTR" points

to the first entry in the chain:

ZZ = 'PTR'

Ll xx = ZZ

ZZ = LINK:XX

IF ZZ NE ~ AND Al:NEXT Gr:: Al:ZZ

THEN GO TO Ll

LINK ~ }:X = NEXT

LINK:NEXT = ZZ

Removing (unchaining) the entry that has a value of Al equal to

35 could be accomplished by:

ZZ = 'PTR'

Ll: XX = ZZ

ZZ = LINK:XX

IF Al:ZZ NE 35 THEN GO TO Ll

LINK:XX = LINK:ZZ

EXPRESSIONS

MPL provides two kinds of expressions: arithmetic and

logical. Expressions may appear in arithmetic assignment state

ments and in IF statements.

21

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary

that may be a single constant, variable, subscripted variable,

or another expression enclosed in parentheses. The primary

may be either type BIT, BINARY, DECI~~L or CHARACTER.

!f the pri~ary is of BIT type, the expression is BIT type.

If iL is of DECIMAL type, the expression is of DECIt~L type etc.

Examples:

Primary Type of Primary Type of Expression

3 BINARY BINARY

AA CHARAC'I'ER (5) CHARACTER (5)

C(I+2) DECIMAL (3) DECIMAL (3)
subscripted variable

(R+S*T) PareEthesized Same as R,S, and T
e::-:press-ion

In the expression C(I+2), the subscript (1+2), which must

always represent integer binary, does not affect the type of the

expression. That is, the type of the expression is determined

solely by the type of primary appearing in that exprGssion.

t~re complicated arithmetic expressions containing two or

more primaries may be formed by using arithmetic operators that

express the computation(s) to be performed.

22

Arithmetic and Logical Operators

The arithmetic and logical oper~tors are as follows:

Arithmetic Operator

*
/

+

SHIFT

lAND

lOR

IEOR

Definition

:·lul tipl ica tion

Division

Addition

Sulltraction

Shift

Logical AND

Logical OR

Logical EOR

RULES FOR CONSTRUCTING ARI'I'HMETIC EXPRESSIONS; The following

are the rules for constructing arithmetic expressions that contain

arithmetic operators:

1. All desired computations must be specified explicitly. That

is, if more than one primary appears in an arithmetic ex

pression, they must be separated from one another by an

arithmetic operator. For example, the two variables Wand Y

will not be multiplied if written:

WY

If multiplication is desired, then the expression must be

written as follows:

W*Y

23

2. No tw~ arithmetic operators may appear in sequence in the

s~me expression. For example, the following expressions

are invalid:

W*/Y and W lAND *Y

An exception is the unary minus:

w*-y

In effect, -Y will be evaluated first and then W will be

multiplied by the result.

A shift operand is written as:

W SHIFT k

where k represents a positive or negative constant number of

bits to shift the varia~le Wand -8 < K < 8. ~ positive value

represents a left shift, while a negative value represents a

right shift. Shifts are arithmetic for vari2bles having data

representation of BINhRY(l). If the variable has a data

representation of BIT(l), the shift operation will be circular.

That is, bit 7 will be rotated to the right on a right shift,

negative value, and rotated left on a left shift through the

whole byte.

R = R SHIFT 2

Z(3) = D(3) SHIFT -6

24

3. Order of Computation: Computation is performed from left to

right according to the hierarchy of operations shown in the

following list.

OPERATION HIERARCHY

unary - I

SHIFT 2

logical AND - lAND 3

logical OR - lOR 3

logical EOR - IEOR 3

multiply 4

divide 4

add 5

subtract 5

This hierarchy is used to determine which of two consecutive

operations is performed first. If the first operator is

higher than or equal to the second, the first operation is

performed. If it is not, the second operator is compared

to the third, etc. When the end of the expression is

encountered, all of the remaining operations are performed

in reverse order.

25

For example, in the expression V*Y+Z*~v lAND I, the

operations are performed in the following order:

1. V~:Y Call the result R (multiplication)

2. W lAND I Call the result S (logical AND)

3. Z*S Call the result T (multiplication)

4. R+T Final operation (addition)

A unary plus or minus has the highest priority.

C = -D is treated as C=O-D

C =-D*E is treated as C=(O-D)*E

C =-D+E is treated as C=(O-D)+E

(R+Z*W lAND I)

(R+Z*S)

(R+T)

Parentheses may be used in arithmetic expressions, as in

algebra, to specify the order in which the arithmetic operations

are to be computed. Where parentheses are used, the expression

within the parentheses is evaluated before the result is used.

This is equivalent to the definition above since a parenthe

sized expression is a primary.

For example, the following expression:

D+«C+D)*E)+C lAND 2

is effectively evaluated in the following order:

1. (C+D)

2. (R*E)

3. D+S

4. C lAND 2

5. T+V

Call the result R D+ (R*E) +C Im~[' 2

Call the result S D+S+C lAND 2

Call the result T T+C lAND 2

Call the result V T+V

Final operation

26

4. The type of the result of an operation depends on the type

of the two operands (primaries) involved in the operation.

All variables within an expression must be of the same type.

LOGICAL EXPRESSIONS

A logical expression consists of two arithmetic e~·:pressions

(which may of course be simple variables) connected by one of

the following relational operations:

Examples:

Be: - equal

NE - not equal

GT - greater than

LT - less than

GE - greater than or equal to

LE - less than or equal to

C EQ C

C lAND "3F" NE 21

(C+D) *E GT 50

It should be c16arl1i' understood here that arithmetic expressions

involved in relational operations are evaluated first before the

relational operation is applied. See example in item 3, Order of

Computation above.

27

Relational operations in turn may be connected by the use

of the logical connectives AND and OF:

C EQ D OR E EO F

C NE D AND E GT F OR G EQ H

Normally AND operations have a higher hierarchy than OR operations,

thus C EQ D AND E GT F OR G EQ H is evaluated as

(C EQ D AND E GT F) OR G EQ H

However parentheses may be used to change the order of evaluation -

C EO D AND (E GT F OR G EQ H)

Additionally, the meaning of a logical operation may be

reversed by the modifier NOT

Example:

NOT W EQ Y

means \V NE Y

NOT (W EQ Y AND Z EQ V)

means everything but the intersection of W EQ Y AND Z EQ V

28

STATEMENTS

The following sections describe the statement types that

are available in the HPL language.

THE ORIGIN STATEMENT

General form

ORIGIN "hex constant"

The ORIGIN statement is used to reset the assembly address

for the subsequent statements. It may appear anywhere in the

program.

Example:

ORIGIN "3F2E"

The subsequent statements will be assembled starting at

hex address 3F2E.

Default starting address is zero.

TIlE DECLARE STATEMENT

The general form is:

DECLARE

[level #J name [(occurrence)]

j:::ARY
I DECIMAL

jSIGNED DECIMAL
I

: CHARACTER
I

i
LLABEL J

[BASED] [INITIAL (value 1, value 2 ...)]

29

r(m)] IQEF INED name]
(m, n)

Forms in square brackets are optional. The following

abbreviations are allowed:

Notes

DCL - DECLARE

BIN - BINARY

DEC - "DECIMAL

CHAR - CHARACTER

DEF - DEFINED

INIT - INITIAL

1. Level number is optional, but if not used is assumed to be

01. Basic items are level 01 explicitly or implicitly.

Elementary items have successively higher level numbers

and must be in sequence and may not be greater than 05.

Skipping a level number is not allowed. For example:

DECLARE

01 AA,

02 BB,

03 CC,

03 DD,

02 EE,

01 FF

is valid, while

DECLARE

01 AA,

02 BB,

04 CC

(indentation of levels for

clarification only and are

not required)

is invalid since level 03 is skipped.

Each level except the last one must terminate with a comma.

30

2. Name represents any valid MPL name.

3. If occurrence is not used then it is assumed to be 1.

Multiple occurrences may be used for arrays with more than

one dimension.

Example:

AA

RTS(8)

XYZ(10,12)

4. If BIT, BINARY etc. is not used then the data representation

is assumed to be BINARY(l) unless there are other levels

defined within the current level.

For example in the following statements:

DECLARE

01 AA,

02 BB DEC(3),

02 CC DEC (4) ,

01 RR,

01 TT(10,4 BIN(2)

RR will have a data representation of BINARY(l) since there

is no explicit data representation given. AA on the other

hand must not have a data representation since there are

other levels defined within AA.

31

5. m refers to the length of the data representation -

2 bits, 4 bytes etc. n refers to the number of digits

after the decimal point in the case of DECIMAL or

SIGNED DECI~lAL data representations. If m is not used

then its value is assumed to be 1.

Permissible values for m and n are as follows:

Representation m n -

BIT 1 '\. 8 not used

BINARY 1 '\. 2 not used

DECIHAL 1 '\. 12 1 '\. 12

CHARACTER 1 '\. 256 not used

LABEL not used not used

6. LABEL is used in conjunction with a computed GO TO

statement or an assigned GO TO statement; see assigned

and computed GO TO statement descriptions for an example.

Field definitions (m,n) DEFINED and BASED clauses may not

occur with LABEL.

7. DEFINED name is used to redefine a previously used name

at the same level.

In any data structure, the name being redefined must be

the last name used at the same level. For example:

DECLARE

01 XX,

01 YY,

02 AA,

03 RR,

03 SS,

02 BB DEFINED AA

32

is valid, since AA is the last previous occurrence at

02 level

DECLARE

01 XX,

02 YY,

02 ZZ,

02 WW DEFINED YY

is invalid since zz is the last previous occurrence at

the 02 level.

8. BASED is used when a data structure is being defined

which will not result in space being allocated by the

computer.

9. INITIAL (value 1, value 2 ...) is used to initialize

variables. The INITIAL statement may not be used if

DEFINED has also been used.

Example:

DECLARE RATE DEC(2)

DCL

01 PlAIA,

02 CRTRDY BIT(l),

02 CRTDWN BIT (1)

DECLARE

01 FLAGl,

02 BFLAGI BIN(l),

02 XFLAGI BIN (1) DEFINED BFLAGI

33

the

DECLARE

01 STRUCT(lO) ,

02 ITEr-1 CHARACTER (S) ,

02 AMT,

03 DLRS DEClMAL(2),

03 CENTS DECH1AL (2) ,

02 USAGE(S)

DECLARE TBL(S) INITIAL(S,3,2,l,9)

DCL ENDP CHAR(3) INITIAL('END')

String constants used in conjunction with LABEL need not

have single quotes.

For example:

DCL JTAB(3) LABEL INITIAL (A20,A70,AllO)

where A20, A70, and AllO are labels used in the program.

ARITHNETIC ASSIGNMENT STATEMEN'f

General form

a = b

Where: a is a subscripted or nonsubscripted variable,

or a series of comma separated subscriptE:& or nonsub

scripted variahles

b is c_n ari,thmetic expression.

34

This MPL statement closely resembles a conventional

algebraic equation when used in its simplest form. However,

the equal sign specifies replacement rather than equivalence.

That is, the expression to the right of the equal sign is

evaluated, and'the resulting value replaces the current value

of the variable or variables to the left of the equal sign.

The type of the variable(s), represented by ~, is

converted according to the type of the arithmetic expression

~, as shown in Table 2.

Type Type

of of

b a

BIN

DEC

CHAR

BIN DEC

Assign Convert to
numeric ASCII
and aE.sig;1

Convert to Assign
binary and
assign

Not
allowed

Not allowed

TABLE 2

35

CHAR

Convert to numeric
ASCII with zero
supprE:!ssion and
assign, right justi
fied, blanked filled
on left

Zero suppress and
assign

Assign

a>b left justify
blank fill a

b>a truncate b on
the right and
assign

Assume that the data representation of several variables

has been specified as follows:

Variable Names

I, J, W

C, D-, E

EE

F (5,5)

Type

BINARY (1) variables

DECIMAL (3) variables

CHARACTER (5) variables

EINl'.RY (2) array

Then the following e1~mples illustrate valid arithmetic

statements using constants, variables, and subscripted

variables of different types:

Statements

C = D

w = D

c = I

I = I + 1

C = D + E

Description

'rhe value of C is replaced by the current

value of D.

The value of D is converted to binary,

and this value replaces the value of W.

The value of I is converted to an ASCII

field, and this result replaces the value

of C.

The value of I is replaced by the value

of I + 1.

The sum of D and E replaces the value of

C.

Statements

C = F(5,4)

J = EE

F(2,3) = c

C,D,E = Vl

CONTROL STATEMENTS

Description

The value of F(5,4) is converted to

numeric ASCII and replaces the value of C.

Not allmved.

The value of C is converted to double

precision binary, and this value replaces

the value of F(2,3).

The current value of W is converted to

numeric ASCII and is used to replace the

values of C, 0, and E.

Normally, MPL statements are executed sequentially. That

is, after one statement has been executed, the statement

immeaiately following it is executed. This section discusses

the statement that may be used to alter and control the normal

sequence of execution of statements in the program.

CC TO STATEMEN'I'S

GO TO statements permit transfer of control to an executable

statement specified by number in the GO TO statement. Control

may be transferred either unconditionally or conditionally. The

GO TO statements are:

1. Unconditional GO TO statement

2. Assigned GO TO statement

3. Computed GO TO statement

Note that in all three types GO TO may be replaced by GOTO.

17

Unconditional Go To Statement

General Form

GO TO xxxxx

Where: xxxxx is a label 011 an executable statement.

This GO TO statement causes control to be transferred

to the statement specified by the statement label. Every

subsequent execution of this GO TO statement results in a

transfer to that same statement. Any executable statement

immediately following this statement should have a statement

number; otherwise, it can never be referred to or executed.

Example: GO TO L25

LlO : \,1 = y + Z

L25:Z = ElAND 2

In the above example, each time the GO TO statement is

executed, control is transferred to statement L25.

Assigned GO TO Statement

General Form

GO TO xxxxx

Where:xxxxx is the name of a LABEL defined in the DECLARE

part of the program.

38

Example 1

DECLARE CAT LABEL

CAT = 'A2S'

GO TO CAT

Example 2

DECLARE CAT(S) LABBL

CAT(3) = 'A2S'

GO TO CAT(3)

In these examples CAT and CAT(3) are defined as labels in a

DECLARE statement. The values of the labels are assigned during

program execution.

Computed GS TO StateMent

General Form

GO TO (x . x
-1 -2

I ••• , x), i
-n

OR GO TO labelname(i)

Where: x , x , ... , x ,are the labels of executable
-1 -2 11
s-:c.aternents.

! is a nonsubscripted BINARY(l) variable whose current

value is in the range: 1 < i < n

labelname is the name of a LABEL array defined in a

LABEL declaration.

39

This statement causes control to be transferred to the

statement labeled x , x , x ,
-1 -2 -3

... , or x , depending on whether
-n

the current value of i is 1, 2, 3, ... , or n, respectively.

Example 1

GO TO (L25, LlO, L7), ITEM

L7: C = ElAND 2 + AA

L25:L = C

LlO:D = 21

In this example, if the value of the integer variable ITEM

is I, statement L25 will be executed next. If ITEM is equal to

2, statement LIO is executed next, and so on.

40

Example 2

DECLARE LARRAY(3) LABEL INITIAL (LIO, L20, L30)

GO TO LARRAY(Y)

In this case LARRAY is the name of a LABEL array. If the

value of the integer variable Y is 1, statement LlO will be

executed next. If Y is equal to 2, statement L20 will be

executed and if Y is equal to 3, statement L30 is executed.

41

ADDITIONAL CONTROL STATEf.1ENTS

IF Statement

General Form

IF a THEN SI [ELSE S2}

Where: a.is a logical expression.

and SI, S2 represent executable statements. If it is

desired to execute more than one statement if the condition

is or is not met, the form

may be used.

IF a THEN DO

A

ELSE

1

A2

P.
n

END

DO

B
1

B2

B
n

END

42

Other examples:

IF INADD(2) LT 0 THEN INADD(l) = "FF"

IF I LT 32 THEN GO TO BYTEl

Do Statement

General Form

1. DO

END

The sequence of statements is performed only once.

i is a nonsubscripted integer variable of data representation

BINARY.

ml , m2 and m3 are either unsigned integer constants or

unsigned nonsubscripted integer variables with a BINARY

data representation. If the clause BY m is omitted, it
3

is assumed to be present with m = 1.
3

The DO statement is a command to execute at least once

the statements that physically follow the DO statement, up

to a END statement. These statements are called the range

of the DO. The first time the statements in the range of

the DO are executed, i is initialized to the value ml ; each

succeeding time i is increased by the value m3 •

43

When, at the end of the iteration, i is equal to or

greater than m2 , control passes to the statement following

the END statement.

If m2 is equal to ~l' the statenlents in the range of

the DO are executed once. Upon completion of the DO, the

DO variable contains the value m2 . All four variables,

i, ~l' ~2' and m3 must be either BINARY(I) or BINARY(2)

in a DO definition.

3. DO WHILE Boolean expression

If the Boolean expression after the word WHILE is true the

sequence of statements down to the END statement is executed

as often as the Boolean expression is true. When the ex

pression is false an exit is made from the loop. The

Boolean expression must contain variables which are altered

during the execution of the DO loop and the result of such

alteration must eventually change the value of the Boolean

expression from TRUE to FALSE. If this does not occur no

regular exit from the loop is possible. However an IF

statement in the loop might in the usual way cause a

transfer of control outside the loop.

4. DO i = ml TO m2 ~Y m~ WHILE Boolean expression

This form is a combination of forms 2 and 3. For example:

DO I = I TO 5 WHILE Y LT 4

The loop would be executed up to 5 times, depending upon

the truth of the Boolean expression.

44

NOTE:

The Boolean expression must start with a variable; starting

with a constant will cause an error.

There are several ways in which looping (repetitively

executing the same statements) may be accomplished when using

the MPL language. For example, assume that a manufacturer

carries 100 different machine parts in stock. Periodically,

he may find it necessary to compute the amount of each different

part presently available. This amount may be calculated by

subtracting the number of each item used, OUT (I) , from the

previous stock on hand, STOCK(I).

Exarrple 1:

Explanation:

I=O

LIO:STOCK(I) = STOCK(I) - OUT (I)

I = I + 1

IF I LT 100 THEN GO TO LIO

L30:C = D + E

The first, third, and fourth statements required to control

the previously shown loop could be replaced by a single DO

statement as shown in example 2.

45

Example 2:

Explanation:

DO I = 1 TO 100

L25:STOCK(I) = STOCK(I) - OUT (I)

END

C = 0 + E

In example 2, the DO variable, I, is set to the initial

value of 1. Before the second execution of statement L25, I

is increased by the increment, 1, and statement L25 is again

executed. After 100 executions of the DO loop, I equals 100.

Since I is now equal to the test value, 100, control passes

out of the DO loop and the fourth statement is executed next.

Note that the DO variable I is now 100.

46

Example 3:

Explanation:

DO I = 1 TO 9 BY 2

J = I + K

L25 : ARRAY (J) = BRAY.(J)

END

C = 0 + E

In example 3, statement L25 is at the end of the range

of the DO loop. The DO variable, I, is set to the initial value

of 1. Before the second execution of the DO loop, I is increased

by the increment, 2, and the second and third statements are

executed a second time. After the fifth execution of the DO

loop, I equals 9. Since I is now equal to the test value, 9,

control passes out of the DO loop and the fifth statement is

executed next. Note that the DO variable, I, is now 9.

47

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement (i, m , m , m)
1 2 3

should not be changed by a statement within the range of

the DO loop.

2. There may be other DO statenents \-,ri thin the range of a DO

statement. All statements in the range of the inner DO

must be in the range of the outer DO. A set of DO state-

ments satisfying this rule is called a nest of DO's and

may be nested nine deep.

Example 1:

DO I = 1 TO 4

C(I} = D(I} lAND 2
Range of

DO J = 2 TO 5
Range of Outer DO

Inner DO

I
I

E(J} = C(I)

END

END

Example 2:

I
DO INDEX = L TO M

N = INDEX + K
Range of

DO J = 1 TO 100 BY 2
Range of Outer DO

TABLE(J) = SUM(J,N)-l
Inner DO

END I
D(N) = C(N)

END

48

3. A transfer out of the range of any DO loop is permissible

at any time.

4. The extended range of a DO is defined as those statements

in the program unit containing the DO statement that are

executed between the transfer out of the innermost DO of

DO's and the transfer back into the range of this innermost

DO. The following restrictions apply:

Transfer into the range of a DO is permitted only if

SUCll U transfer is from the extended range of the DO.

No DO statements are permitted in the extended range of

the DO.

The indexing parameters (~ m ,m) cannot be
-2 -3

changed in the extended range of the DO.

Note that a statement that is the end of the range of more

than one DO statement is within the innermost DO loop.

5. The indexing parameters (i, m , m , m) may be changed by
- -1 -2 -3

statements outside the range of the DO statement. No

transfer may be made into the range of the DO statement from

outside the DO statement.

6. The use of, and return from, a subprogram from within any

DO loop in a nest of DO's is permitted.

49

POIHTEHS AND THE 'DO' STATEMENT

Consider a table of student data containing student name,

student ID, and eight class entries each containing semester

hours and class number. The DECLARE statement to allow for

100 such entries would be:

DECLARE

01 STUDNT(lOO),

02 NAME CHAR(lO) ,

02 ID DEC(3),

02 CLASES(8),

03 HOURS DEC(2,1),

o 3 CNU~l DEC (3)

The hours can be summed stepping through all entries in

the table using the following statements:

DO ZZ = 'STUDNT' TO 'STUDNT+99*53, BY 53

DO J = 1 TO 8

SUM = SUM + HOURS(J) :ZZ

END

END

50

If it were desired to have the entries available in some

order, each entry in the table can be linked to the next.

DECLP.RE

01 STUDNT (100) ,

02 LINK BINARY (2) ,

02 NAME CHAR (10) ,

02 ID DEC(3),

02 CLASES(8),

03 HOURS DEC(2,1),

03 CNUM DEC(2,1)

The previous example would then be:

ZZ = initial entry

LOOP:DO J = 1 TO 8

SUM = SUM + HOURS(J) :ZZ

END

ZZ = LINK:ZZ

IF ZZ NE ~ THEN GO TO LOOP

END Statement

The END statement terminates a DO loop or a procedure

(see below). An optional label may follow which then must be

the sare aE the label of the beginning of the DO loop, or the

label of the procedure.

For example:

XX: DO

END XX
51

MAIN PROCEDURE

A main procedure (usually referred to as a mainline

program in other languages) is identified by the statement

PROCEDURE OPTIONS (MAIN)

or

PROCEDURE OPTIONS (MAIN, stack name)

In the first example, the compiler will assume that the

program is wholly in RM1 memory and will allocate temporary

storage and stack. Additionally, the compiler will generate

jumps around in line DECLARE statements.

When a stack name is given, the compiler assumes a mixture

of RA}1 and ROM memories. The programmer must allocate a

temporary variable called T and a stack using a DECLARE state

ment. The compiler will not generate jumps around in line

DECLARE's as it is assumed that the programmer will place

DECLARE's in RAM and procedures in ROM.

A main program should be terminated with a 'branch to self'

instruction. This will stop the program and also keep it from

r~nning right on j.nto any sub programs following the main pro

gram. An END statement will not generate a terminating

instruction. Use $ BRA * or LABEL: GO TO LABEL before the

END statement.

Subscripts and mathematical expressions are evaluated by

subroutines called by the cGmpiler and appended to the end of the

user's program. A label ZFFF is attached to the END statement

following these routines. The user can find the first byte

address following the end of his program by referring to the label.

52

SUBROUTINE PROCEDURES

It is sometimes desirable to write a program which, at

various points, requires the same computation to be performed

with different data for each calculation. It would simplify

the writing of that prograrr if the statements required to

perform the desired computation could be written only once

and then could be referred to freely, with each subsequent

r~ferer.ce having the same effect as though these instructions

were written at the point in the program where the reference

was made.

For example, to take the cube root of a number, a program

must be written with this object in mind. If a general program

were written to take the cube root of any number, it would be

uesirable to be able to combine that program (or subprogram)

with other programs where cube root calculations are required.

The MPL language provides for the above situation through

the use of subroutine procedures. A subroutine procedure is

set up as follows:

label: PROCEDURE (a , a , a , •.. a)
I 2 3 n

A subroutine procedure label is a statement label as

defined above and a , a , a ..• is ~he parameter list of
I 2 3

arguments associated with the subroutine procedure.

The SUBROUTINE is referenced by a CALL statement, which

consists of the word CALL followed by the label of the sub-

routine procedure and its parenthesized arguments.

53

For example:

ABC: PROCEDURE (p', Y , Z)

RETURN

END

is called by the statement:

CALL ABC (R,S,T)

where R, Sand T are the arguments in the parameter list

corresponding to the dummy arguments P, Y, Z in the subroutine

procedure. Of course there need not be any arguments at all.

In this connection it should be noted that if the main procedure

and the subroutine procedure{s) are compiled together, then all

variables in both the main and the subroutine procedures are

effectively common to all procedures. On the other hand if

subroutine procedures are compiled separately, the variable

names and statement labels within them do not relate to any

other procedures. Constants used as arguments default to

BINARY (2) •

The subroutine procedure may use une orrnore of its arguments

to return values to the calling program. Any arguments so used

must appear on the left side of an arithmetic statement. The

subroutine procedure name (label) must not appear in any other

statement in the procedure.

54

Subroutines compiled by themselves must contain a $T RMB 40

or DeL T(40) statement for temporary workspace used by routines

called when t~e subroutine is compiled.

A main program calling a subroutine compiled separately

must have an EQU telling the main program where the subroutine

starts.

The dummy arguments (a , a , a , ... ,a) may be considered
-1 -2 -3 -n

dUIT~y variable names that are replaced at the time of execution

by the actual arguments supplied in the CALL statement.

Additional information about dummy arguments is in the section

"Arguments in a Subroutine Procedure".

Example:

The relationship between variable na.r.1es used as arguments

in the calling program and the dummy variables used as arguments

in the subroutine procedure is illustrated in the following

example. The object of the subprogram is to "copy" one array

directly into another.

55

Calling Program

DECLARE

01 W(lOO) BINARY (1) ,

01 Y(lOO) BINARY (1)

CALL COpy (W,Y,lOO)

SUBROUTINE Procedure

COPY:PROCEDURE(C,D,N)

DECLARE

01 C(lOO) BINARY(l),

01 0(100) BINARY (1) ,

01 N BINARY (2) ,

01 NN BINARY (1) ,

01 I BINARY (1)

NN=N

DO I = 1 TO NN

0(1) = C(I)

LND

RETURN

END

The same names for dummy arguments may not be used in

subsequent subroutines in the same compilation. Once a name

is defined, it remains defined for the remainder of the program.

Thus all variables are common and need not be redefined in each

subroutine.

56

ARGUMENTS IN A SUBROUTINE PROCEDURE

The dummy arguments of a subroutine procedure appear

after the word PROCEDURE and are enclosed in parentheses.

They are, in effect, replaced at the time of execution by the

actual arguments supplied in the CALL statement of the calling

program. The dummy arguments must correspond in number, order,

and type to the actual arguments. For example, if the actual

argument is BINARY, then the dummy argument must be BINARY.

If a dummy argument is an array, the corresponding actual

argument mus-t be an array. The size of the dummy array lllUSt

not exceed the size of the actual array.

'l'he actual arguments can be:

Any type of constant

Any type of nonsubscripted variable

An array name

For each dummy argument in the procedure, an appropriate

DECLARE specification statement must appear in the procedure.

57

If a dummy argument is assigned a value in the subprogram,

the corresponding actual argument must be a nonsubscripted

variable name or an array name. A constant should not be

Sf€cified as an actual argument unless the programmer is

certain that the corresponding dummy argument is not assigned

a value in the subprogram.

for:

subscripts

Dummy arguments may not be used

arguments in another subroutine call

index of a computed GO TO statement

parameters or index of DO loops

An alternative method of using a parameter list which is

more efficient in terms of object code generation may be used

if there are three or less arguments in the parameter list and

the arguments themselves are of a certain length. The general

form in this case is:

label: PROC~DURE <a l , a 2 , a 3 >

and the corresponding CALL statement would be:

CALL label < b l , b 2 , b 3>

Note especially the use of the ,<, and ,>, delimiters.

a l , a 2 , b l , and b 2 must be one byte in length and a 3 and b 3

must be two bytes in length. Of course the same method may be

used if there are only one or two arguments in the parameter

list, but in those cases all arguments must be one byte in

length.

58

Examples:

CALL XYZ <'3,XX,J>

CALL DEF < Z I VAL : YY >

CALL GHI <"PTR(3»

Example of a main program calling a subroutine when each

has been compiled as a separate program. It should be noted

using this technique causes redundant coding when the same type

of operations are performed in each program. For instance, all

routines called from the library for computing subscripts will

be called for each program using subscripts. When compiled

together, these routines are called once.

!COHPILE ~Al~ PRQ~R~M SE?AR~lrlY AND CALL
!SUB~OUTI~E :O"PILED SEPARATELY

ORIGIN "200"
DECLARE
13 1 !~ (1 !J e) e I :~ (1) I

131 Y(1~0) B!H(l)
Del I

ISUBQOUTI4E 'C~pY' ~AS SEEN COMPILED AND STARTS AT
!HEX ~DDRESS 2A
$COP'/ EQU $2A

P~OCEDJRE OPTIOHS(MAIN)
DO I = 1 TO 10
lll< D=I
END
I=10
CALL COPY(i~, V, 1)

STOP: G,O TJ STOP
f. OPT HOL

END

59

Subprogram

!COM~lLE 3UB~OUTINE CALLED FROM SEPARATELY
!COMPILED ~AIN ?ROGRAM.
COf Y: ?ROCEDURECC, D, tD

HOT~*.* THE DECLARE T(40) STATEMENT IS
REQUIRED F~R ROUTINES CRLLED WHEN
THIS SUBROUTINE IS COMPILED.
VARI4BLE 'T' IS INCLUDED I .• ,IITH
MAIN PROGRAMS BY PROCEDURE OPTIONS(MAIN)
STIlTEMEtH. THEREFORE THE USER DOES NOT SUPPLY IT.

DECLARE 1(40)
DECLARE

01 C(100) BINARY(1),
a1 D(108) BINARY(l),
131 N BIHARY(1),

01 I BlIiAR~'(1)

DI:L HN
NN=N
DO I = 1 TO NN

DCI) = cell
END
RETURN

!THE FOLLOMIHG OPTION WILL PROHIBIT THE
!CROSS-ASSEM8LER FROM PRINTING FROM HERE ON.
f OPT NOLIST

EHD

60

OPERATION

This section describes how to access the compiler on the

XEROX Sigma 9 timesharing system and the GE MARK III time-

shcll:ing system.

INVOKING THE COMPILER

The compiler is invoked by typing

?o1TSS T/S
! 1-16 3MPL. Jl.1PU

GE HARK III T/S
OPT BIG
RUN M68r1PL

The compiler will request filenames by typing:

ENTER INPUT FILENAME

? input file name

ENTER OUTPUT FILENAME

? output file name (this will be the input file to the
cross assembler)

The compiler is also available in GE r4ARK III background.

Invoke as follows:

RUN M68NPLI - This invokes the program that prepares and
submits JCL file for background processing.

SOURCE FILE NAME:? enter source file name here.

PRIORITY:? enter H for high, press carriage return for
normal, enter L for low which is overnight
processing.

ASSEMBLE MPL OUTPUT - YES/NO? enter YES if you wish to
compile and assemble both during this
run. Enter NO if you wish to compile
only. The MPL output file is saved
for later retrieval. No MPL output
file is saved if you answer YES. An
assembly listing and object tape file
is saved instead.

61

CONTROL FILE NAME: M68SNNNN

JOB ID=JJJJ } These names are returned
to you. Keep them, they
are required to retrieve
output.

Allow anywhere from 10-90 minutes for this to be executed in

background. Time required depends on how fast the background

processor is running.

Check background progress of job by entering: BST JJJJ

When this entry returns DONE to you, proceed with retrieval

program as follows:

RUN 1'168HPLO starts retrieval program.

JOB ID: ?JJJJ enter the 4-character job#.

COMPILER OUTPUT FILE:? Press carriage return if you answered
YES for both compile and assembly.
Enter the name of a file you want the
MPL output to be saved in if you
compiled only, answered NO.

LIST FILE:? enter the name of a file you want assembly listing
retrieved to, press carriage return if you don't
want to retrieve it.

OBJECT FILE:? enter name of object tape file, press carriage
return if you don't want to save it.

CONTROL FILE TO DELETE:? enter MG8SNNNN control file name
returned wher. job was initiated, press
carriage return if you don't want to
delete it.

PURGE JOB - YES/NO? YES purges JOB JJJJ, NO saves it. It will
be purged automatically after 36 hours.
BE sure to retrieve output before that
time.

62

SOURCE PROG~M ERRORS

Source program errors arc identified by printing the

source line in error followed by an error message.

*** ERROR XXX

The error number XXX is defined on the following pages.

A-l

500 - illegal character

501 - syntax error (or compiler expects a different symbol type)

502 - "SYW' overflow in 'STUFF' (too many symbols in the program)

503 - parse stack overflow (statement is too complex)

504 - this symbol has already been declared as a variable

505 - the compiler expects this symbol to be a declared variable

506 - illegal character scan

507 - token overflow - scan (symbol over 47 characters long)

508 - missing level (level numbers must be in sequence)

509 - name duplicated

510 - decimal location too big

511 - value too big for data representation

512 - DEFINED or BIT items may not have initial values

513 - undefined error message number

5]4 - undefined error message number

SIS - level number cannot be greater than S

516 - statement label is a variabl~

517 - index name not found

518 - index representation is not BINARY

519 - index size is not 1

520 - variable cannot be pointed, dummy or subscripted

521 - IITH-IP" (variable nnmc T) is not large enough for this
expression

522 .. variable nane not founc. or "1''' is not declared and there
is no main procedure

523 - too many operands in this expression

524 - variable nam~ has too many occurrences

~2S - pointer name not found

526 - pain tor not level 01 or i.s cluffilny

A-2 3/76

527 - pointer is array

528 pointer size is not 2 bytes

529 pointer data representation is not BINARY

530 - subscript name not found

531 - too many subscripts

532 - subscript not level 01

533 subscript is an array

534 subscript is not 1 byte

535 subscript d~ta representation is not BINARY

536 - too many operands

537 - constant.± 127

538 - constant not allowed as first operand

539 - the number of subscripts used do not agree with the
nUMber of subscripts in the declare statement

540 - DO operand data representation is not BINARY and/or
size is 2

541 - too many nested IF's and/or no's

542 - compiler error

543 - IF/DO overlap

544 - DO loops are nested more than nine deep

545 - increment of DO is net 1 byte in length

546 jnitial or final value size is not same as index

547 - simple variable required

548 - shift operand is not constant

549 - number of bits shifted is not consistent with field
size or zero

550 - constant not allowed greater than I byte

55! - illegal operation for this picture type

552 - mixed mode not allowed

A-3 3/76

553 - A=B+C not allowed when mode changes

554 - compiler error. A op B = C has mixed mode

5SS - operand for bit operation is not constant ~ or I

556 - illegal bit operation

SS7 - STUFF error

558 - illegal action call

SSg - action number out of range

560 - picture or initialize conflict between levels; only
elementary items may have a picture or be initialized

561 - bit string spans more than one byte

562 - warning code can be deleted; the last statements store
into the same location; example: J=l; J=2;

563 - warning code can be deleted; the last statement loaded
from and stored into the same location; examples:
J=J; 2(5)=2(5)

564 - the keyword following the variable name is not a scale
(picture) attribute; example: binary, decimal or
character

565 - the array has more than three dimensions

566 - arrays with more than one dimension can only be dimension
as elementary items

567 - more items initialized than the space declared

568 - BASED variables can only be declared at level one (01)
and can not be initialized

A-a 3/76

•

SOURCE PROGRAM LISTING

1.0 $ OPT "F="FTESTISYHBOL
2.9 Del 1(5) IHIT(S.19.7.-3.22)
3. 0 D Cl J. S, L
II. a PROC OPTIONS(I1AIN)
5.t} L=0

S.0 DO J = 1 TO 5
7.~ ~~HID TH£ LARGEST NU"BER IN THE ARRAY
8.0 IF I(J) LE L THEN GO TO S1
9.0 L = I(J)

1'3 B l~I;H TH~ SKAllEST HUMBER IH THE ARRAY
:!.E- 31: IF I(J) GE S THEN GO TO S5
12.0 S=I(J)
13.9 S5: ~ND

!4.0 STOP, GO TO STOP
15. e END

B-1 3/76

ASSEMBLY LISTING

88019 HAH LARO
00828 *** COMPILED WITH Pl/I VERSION a.SA
e00l0 OPT I1F=I1FTEST~ S'(MBOL
ge04a *09992 DCl I (5) IHIT<5110, 7,-3, 22)
09950 aeee 05 I FCB 5
eee60 aaSI 9A FCB 19
00070 a002 97 FCB 7
eB080 aa93 FD FeB -3
0(;090 a8e4 16 FeB 22
00100 *09093 DCl J. S, l
09119 e99S eeB1 J RMB 1
081;:·0 2;0~6 ,Hia 1 s RMB 1
t)0130 31307 2991 L RMB 1
130148 *88094 PROC OPTIOHS(HAIN)
e01se ae0S e023 T RHB 49
f10~€.O 0030 3E O!32F 2000 LDS IT+39
f.t ;) ~ i' a *1313005 L=0
UC!89 iH;J3 7F eO:;7 CLR L
!)O~90 *09006 S="7F·
O(l:c:1:10 0e36 36 7F I. DR A 1127
€Il~ 2 1 0 eliD S 97 as STA A S
.71 :)229 *lHHJ07 DO$J = 1 TO 5
£10230 0B3A 36 01 LDA A 11
o (\ 2" .; t' *IH1098 ! F I I~D THE LARGEST NUMBER IN THE ARRAY
\.1(1(:59 a93C ~7 as Z901 STA A J
ll!:} 2 ~ 0 "'13[,009 IF I (J) LE L THEN GO TO S 1
ll:'2('e 3 (13 E CE @0iH~ LDX II
~1(\280 0011 D6 95 LDA B J
(l02:~e atH3 aD 91385 JSR 2FIF
1}03ae a046 A6 80 LDA A a/x
00313 ';048 91 97 CHP A L
(,a~'20 (HHA 2E 93 BGT 2093
(1(13313 a61C 7E 90SE 2802 JHP S 1
e B 340 *0e010 L = I (J)

u!3330 *0901 J ~FIND THE SMALLEST HUMBER IN THE ARRAY
(11)363 :J1H!=' CE ~:)Ola 29133 LDX II
en:!7~ 0332 flf 135 LDA B J
09380 €nj54 8D BBS5 JSR 2F1F
l1 ~n::) a 131357 ~6 99 LDA A B~X

0134013 a059 97 97 STA A l
(.rHl0 *90012 S 1: IF I(J) GE S THEN GO TO S5
084~0 SaSB CE 0089 S1 LDX II
139430 a05E D6 05 LDA B J
O"44Q1 aaS0 aD 0085 JSR 2FIF
1)1345(1 :.H3S3 (.\6 90 LDA A 9.)(
(l04S0 ;?JOS5 31 95 CHP A S
004 ;'13 13es 7 2D 93 BLT zees
00430 aeS9 7E 0978 20tH JHP 55
013430 *813013 S= l(J)
09590 iHI5C CE 001Hl 2995 LDX II
00519 aeSF" D6 85 LDA B J
0052a 3071 aD e085 J5R 2F1F

B-2 3/76

09530 e874 A6 88 LDA A a.x
09540 9876 97 96 STA A S
00559 *813014 55: END
09569 ee78 36 as ss LDA A J
eaS7B 807A al 85 CMP A 15
013580 0a7e 2C 84 BGE 2806
00590 807E 4C INC A
006i38 ge7F 7E 993C JMP 2001
00618 *08915 STOP: eo TO STOP
00629 9882 2806 EQU •
09630 1,30a2 7E 9082 STOP JHP STOP
00649 *99016 END
00659 (3985 26 92 ZF1F BHE 2FIF2 *** ADD TO INDEX * ••
09670 a087 99 DEX
£19630 8888 39 RTS
00630 tl089 SA 2FIF2 DEC B
00730 0e8A DF B£ 2FSF STX T +6
921710 aa8e DB 0f ADD B T +7
01l7l0 aBBE D7 91= STA B T+7
00738 9898 24 93 BCC ZFIFI
98748 a892 7C 999E INC T+6
013759 1.3995 DE 9£ 2F 1 F 1 LDX T+6
£lOiS0 0097 39 RTS
00779 END

SYMBOL TABLE

I 0909 J 9895 L 0£197 S 90e6 51 9059
S5 987a STOP 0982 T 0098 2080 0039 2001 98JC
Z002 004[; 2903 004F ZIHH 1j~69 ze05 00GC 2036 9082
ZF1F 0095 ZF1Fl 0095 ZF1F2 00B9 ZF5F 80BA

B-3 3/76

