
M68MDOS3

EXORdisk II/III
OPERATING SYSTEM

User's Guide

M68M 0083(0)

MICROSYSTEMS

.\{68MDOS3
DECEMBER 1918

EXOHdisk 11/111 Operating System User"'s Guide

MOOS 3.0

The information in this document has been carefully
checked and is believed to be entirely reliable. No
responsibility, however, is assumed for inaccuracies.
Furthermore, such information does not convey to the
purchaser of the product described any license under the
patent rights of Motorola, Inc. or others.

Motorola reserves the right to change specifications
without notice.

EXORciser, EXbug, EXORdisk, EXORterm and MQOS are
trademarks of Motorola, Inc.

First Edition
Copyright 1918 by Motorola, Inc.

MANUAL ORGANIZATION

The purpose of this guide is to provide the user with
the necessary information required to generate an MOOS
system, to use the MOOS command programs, and to produce
user-written programs that are compatible with MuOS. In
addition, a brief summary is presented of the MOOS-supported
software products which are currently available.

The User's Guide has been divided into two parts. PART
I is intended for the new user of MOOS who is just receiving
his system. It is essentially a manual within a manual that
can be read as an entity by itself. It provides the basic
concepts that are necessary for the installation of the
EXORdisk and for the simplified operation of MDOS. PART I
contains descriptions and examples of the basic forms of the
most frequently used MOOS commands in the order in which they
would most likely be used in a software development
environment. The infrequently used comm-ands are also
summarized in order to direct the user to those chapters
(command descriptions) as the need for their use arises.

PAHT II is intended as a detailed reference manual for
those who need to know specific or extended information about
the MOOS commands, the system structure, and the resident
system functions.

MOOS 3.0 User-'s Guide Paq e 1 i

MOOS

fABLE OF CONTENTS

~ANUAL ORGAN.IZATION

TABLE OF CONTENTS •

• • • • • •

• • • • • •

• • • • • • •

• • • • • • •

PART I -- SIMPLIFIED MDOS USEH·'S GUIDE

J ~ I NTH oDuer I ON e • • • • · · • • • • • • • • •

i • i Hardware Support Required • • • • • • • •
1.2 Additional Supported Hardware • • · •
1.3 Software Support Required · • • • • • • •
1.4 Program Compatibility • • · • • • • • • •
I .5 Hardware Installation • • • • • • • • • •

I .5. 1 Four-drive system installation • · 1.5.2 Fioppy disk controller installation
I .6 Software Installation • • • • • • • • • ·

2. GENERAL SYSTEM OPERAfION • • • • • • • • • •

2.1 System Initialization • • · · · · • • • · 2.2 Sign-on Message • • • • • · • • • • · • · 2.3 Initialization Error Messages • • • • • •
2.4 operator Command Format · • • • • • • • •
2.5 System Console · • • • • • • · • • · · · 2.5.1 Carriage return key • • • • • • • · 2.5.2 Break key • • • • · • • • • • • · •

2.5.3 Control-W • • · • • • • • • • · • •
2.5.4 Control-X • • • • • • • • • · • • · 2.5.5 DEL or RUBOUf • • • · · · · • • • •
2.5.6 Control-D • · • • • · • • • • • • •

2.6 COmmon E(ror ,. - - ~ - -- - -lYtesst:lye!j • • • • • • • • • •
2.7 Diskette File Concepts • • • • · • · • •

2.7. 1 File name specifications • · · • · 2.7.1.1 Family names · • • • • · • · 2.7.1.2 Device spe,c if ications • • · •
2.7.2 File creation • • · • • • • • · • •
2.7.3 File deletion • • • • • · • • • • •
2.7.4 File protection • • • • · • • • • •

2.8 Typical Command Usage Examples • • • • •
2.8. 1 OIR -- Directory display · • • • •
2.8.2 EDIT -- Program editinq • • · · · · 2.8.3 ASM or RASM -- Program assembling •
2.8.4- DEL -- File dele ti on • • • • · • •

Page

• • • ii

• • • iIi

• • • 01-01

• • •
nt n'")
VI-V"::>

• · • 01-03
• • • 01-04
• · • 01-04
• • • 01-05
• • • 01-05

· • · 01-06
• · · 01-07

• · • 02-01

• • • 02-01
• • · 02-02
• • • 02-02
• • · 02-06
• • · 02-07
• • • 02-07
• • • 02-08
• · • 02-08
• • • 02-08
• • • 02-09
• · • 02-09

A'>_AO
• • · vc.. V7

• • • 02-12

· • • 02-12
• • · 02-13
• · • 02-14
• • • 02-14

· · · 02-15

· · • 02-15
• · • 02-15

· · • 02-16
• • · 02-17
• · • 02-18
• • • 02-19

2.8.5 EXBIN -- Creating program load module · • 02-20
2.8.6 LOAD Program loadinq/execution • • · • 02-21
2.8.7 NAME -- File name chanqing • • · · • • • 02-22
2.8.8 NAME -- File protection changing · • · · 02-22
2.8.9 COiJY -- File copying • • • • • • · · 02-23
2.8.)0 BACKUP -- MOOS diskette creation · · 02-25

2.9 Other Available Commands • • • • • • · • • • • 02-25
2.9. I BACKUP -- Diskette copying • • • • • · • 02-26
2.9.2 EMCOPY -- EOnS file conversion · · · 02-26
2.9.3 BLOKED IT -- File rearrangement • · • • • 02-26

3.0 user-'s Guide Paqe iii

fABLE OF CONTENTS Page

2.9.4 LIST -- File disolay •••••••••• 02-26
2.9.5 MERGE -- File concatenation ••••••• 02-26
2.9.6 BINEX -- EXbug-loadable file creation •• 02-27
2.9.7 FREE -- Available file space display •• 02-27
2.9.8 ECHO -- Echo console 1/0 on printer ••• 02-27
2.9.9 PATCH -- Executable proqram file patchin~ 02-27
2.9.10 CHAIN -- MOOS com:nand chaining ••••• 02-27
2.9.11 REPAIR -- System table checking •••• 02-28
2.9.12 DUMP -- Diskette sector display •••• 02-28
2.9.13 FORMAT -- Diskette reformatting •••• 02-28
2.9.14 DOSGEN -- MOOS diskette generation ••• 02-28
2.9.15 ROLLOUT -- Memory rollout to diskette • 02-29

2.) 0 MOOS-Supported Software Products • • • • • 02-29
2.11 Paper Alignment ••••••••••••••• 02-29

MOOS 3.0 User"s Guide Page Iv

fABLE OF CONTENTS Page

PART II -- ADVANCED MOOS USER'S GUIDE

3.

4.

5.

6.

BACKUP COMMAND · . . • • • • • · • 03-01

3. IUs e • • •• ••••••••••••• 03 -0 I
3.2 Diskette Copying. ••••••••• • •• 03-02
3.3 File Reorganization _ _ ____ e e e •••• 03-03
3.4 File Appending •••••••••••••••• 03-08
3.5 Diskette Verification ••••••••••••• 03-10
3.6 Other Options ••••••••••••••••• 03-11
3.7 Messages ••• __ 0 • __ • e e 03-13
3.8 Precautions with BACKUP. • • • • •• • ••• 03-17

3.8.1 BACKUP and the CHAIN process •••••• 03-17
3.8.2 Single/double-sided diskettes •••••• 03-18
3. 8. 3 F 0 U r - d r i v e s y 5 t ems ••• •••••• 03 - 1 8

3.9 Examples • • • • • • • • • • •• • •• 03-18

BINEX COMMAND • • • . . · . • • • • • • • • • • • 04-01

4.1 Use •••••••• • • • • • • • • • • • • • • 04-0 I
4.2 Error Messages • • • • • • • • • • • • • · . • 04-02
4.3 Examples • e • • • • • • • • • • • • • • • • 04-02

BLOKEDIT COMMAND • e e _ • • • • •

5.1 Use ••••••••••••••
5.2 BL(~EDIT Command File •••••

5.2.1 Comment lines ••••••
5.2.2 Command lines ••••••
5.2.3 Quoted lines ••••••

5.3 Messages • • •••••••••
5.4 Examples • • • • • • • • • • •

CHA I N COMMAND • • • • • • • • · .

• • • • • • • • 05-01

• • • • • • • • 05-0 I
• • • • • • • • 05-01
· . • • •• • 05-02
• • • • • • • • 05-02
• • • • • • • • 05-03
• • • • • • • • 05-03
• • • • • • • • 05-05

• • • • • • • • 06-01

6.1 Use •••••••••••••••••••••• 06-01
6.2 Tag Definition, Assignment, and Substitution • 06-02
6.3 Compilat ion Operators ••••••••••••• 06-04

6.3.1 Compilation Comments •••••••••• 06-05
6.3.2 IF operator ••••••••••••••• 06-05
6.3.3 XIF and ELSE operators ••••••••• 06-07
6.3.4 ABORT operator ••••••••••••• 06-08

6.4 Execution operators • • • • • • • ••••••• 06-08
6.4.1 Execution Comments ••••••••••• 06-09
6.4.2 Operator Breakpoints •••••••••• 06-09
6.4.3 Error status word •••••••••••• 06-10
6.4.4 SET operator •••••••••••••• 06-11
6 • 4. 5 TS T op era t or •••• • • • • • • • • • • 06 -1 1
6.4.6 JMP operator •••••••••••••• 06-12
6.4.7 LBL operator •••••••••••••• 06-13
6. 4. 8 CMD op er a t or • • • • • • • • • • • • • • 06-1 3

6.5 Messages ••••••••• • • • • • • •• • 06-13
6.6 Resuming an Aborted CHAIN Process ••••••• 06-16

MOOS 3.0 User's Guide Page v

7.

d.

9.

10.

fABLE OF CONTENTS Paqe

6.7 Examples • • • · . . • • • • • • · . • 06-17

COpy COMrt\AND · . . · . . · • 07-01

1. 1

7.2
1.3
'1.4
7.5

1.6

Use • • • • • • •• ••• ••
7.1.1 Diskette-to-diskette copyinq
7.1.2 Diskette-to-device copying •
7.1.3 Device-to-diskette copying
7.1.4 Verification ••••••••
7.1.5 Automatic verification •••
User-Defined Devices. • ••••
COpy Mode Summary. • •• ••
Messages • •• •••••••••
Examples •••••• • ••••
7.5.1 Diskette-to-diskette example
7.5.2 Diskette-to-device example •
7.5.3 Device-to-diskette example
COpy with EXOHtape Header •••••

•

•• ••• 07-01
• • • • • • 07-02
• • • • • • 07-03
• • • • • • 07-04
• • •• • 07-05
• • • • • • 07-06

• • • • • 07-07
• • • • • • 07-08
• • • • • • 07-09
• • •• • 07-10
• ••••• 07-10
• ••••• 07-11
• ••••• 07-12
• ••••• 07-13

DEL COMMAND • • • • • • · . . • • • • • • · . • • • 08-01

8.1 Use ••••••••••••••••
B.I.I Single file name deletion ••
8.1.2 Multiple file name deletion.
8.1.3 Family deletion ••••••

8.2 (~tions • • • •• ••••••••
d.3 Messages • • • • • • • • • • • • •
8.4 Examples • • • • •• •• •

• • •
• • •
• •
• •
• • •

• • · .

• • • 08-01
• • • 08-02
• • • 08-02
• • • 08-02
• • • 08-03
• • • 08-03
• • • 08-04

DIH COMMAND • • • • • • • • • • • • • • · . . . • 09-01

9. I

9.2
9.3

Use • • • • •• ••••• • •
9.1.1 Families ••••••
9.1.2 System files ••••••
9.1.3 Entire directory entry
9.1.4 Segment descriptors.

• •

•
• •

9. I • 5 Ot her 0 p t ion s • • • •
Messages •••••••••
Examples ••••••••

• •
• •
• •

DOSGE N COMMAND • • • • • • • • • •

10. I
10.2
J 0.3
10.4
10.5

Use ••• • • • • • • • •
Diskette Surface fest ••
Minimum System Generation
Messages • •• •••••
Examples •••••••••

• •
• •
• •
• •
• •

• • • • • • • • 09-01
• • • • • • • • 09-02
• • • • • · . • 09-02
•• •• • • • 09-02
• • • • • · . • 09-04 · • • • 09-04
• • • • • • • • 09-05
• • • • • • • • 09-06

• • • • • • • • 10-01

• • • • •
• • • • •
• • • •
• • · . .
• • • • •

· .
• •
• •
• •
• •

•
•
•
•
•

10-01
10-04
10-04
10-05
10-07

MOOS 3. a User"s Guide Page vi

1 t •

12.

13.

14.

15.

16.

TABLE OF CONTENTS

DUMP COMMAND • • • • • • • • • • • • • • • • • • •

11.1 Use •••••••••••••••• • • • • •
11.1.1 Physical Mode of operation •• • • • • •
ii.l.2 Logical Mods of operation ••••••
11.1.3 Sector change buffer • • • •••••••

11.2 DUMP Command Set •••••••••••••••
11.2.1 Quit -- Q ••••••••••••• = =
11.2.2 Select loqical unit -- u ••••••••
11.2.3 Open diskette file - 0 ••••••••
11.2.4 Close diskette file -- C ••••••••
11.2.5 Show sector -- S •••••••• = = = =
11.2.6 Print sector -- L •••••••••••
11.2.7 Read sector into change buffer - H ••
11.2. 8 Write change buffer into sector- f4 • •
1 J .2.9 Fill change buffer - F • • • • • • • •
11.2.10 Examine/change sector buffer •••••

11.3 Messages. • •••• = • = = = = e e ••••

11.4 Examples ••••••••••••••••••

ECHO COMMAND • • . . . • • • • • • • · . . • • •

12. 1 Use • • •
12.2 Messages.

• = • • • • • • • • • • • • • • •
•• ••••••••••••••••

EMCOPY COMMAND • • • • • • • • · . • • • • • • • •

13.1 Use ••••••• = •••••••••• • • •
1 3. 1 • 1 Sin 9 I e f i 1 e cop Y • • • • • • • • •
13.1.2 Entire diskette copy •••••••
1 ~) ~ -1 5el ec t ed f i I e copy • • • • • • • •

• • •
• • •
• • •

13.2 File Differences Betwe'en EOOS and MDOS • • • •
13.3 Messages ••••••••••••••••
13.4 Examples ••••••••••••••••

• • •
• • •

EXBIN COMMAND • • • • • • • • • • • • • • • • • •

I 4. 1
14.2
14.3
14.4

Use •••••••••••••
Execution Address Specification
Error Messages ••••••••
Examples • • • • • • • ••••

FORMAT COMMAND

15. 1 Use •••
15.2 Messages.
15.3 Example •

• • . . . • • • • •

• • • • • • • · . .
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • •
• • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •

• • • • • • • ·
• • • • • • • •

FHEE COMMAND • • • • • • • • • • • • • • • • • • •

16.1 Use.
16.2 Example

• •
•

• • • • • • • •
• • • • • • • •

• • • • • • • • •
• • • • • • • • •

MDOS 3.0 User's Guide

Page

11-01

11-01
11-01
11-02
11-02
11-03
11-04
i i -04
11-04
11-05
11-05
11-06
11-07
11-07
11-08
11-08
11-09
11-12

12-01

12-01
12-01

13-01

13-01
13-02
13-02
13-03
i3-04
13-04
13-05

14-01

14-01
14-02
14-02
14-03

15-01

15-01
15-02
15-02

16-01

16-01
16-02

Page vii

I 7.

18.

19.

20.

TABLE OF CONTENTS Page

LIST COMMAND • • • • • • • • • • • • • • • • • • • J 7-01

17.1 Use ••••••••••••••••••••• 17-01
17.1.1 Start/end specifications •••••••• 17-02
17.1.2 Physical line numbers ••••••••• 17-02
17. 1 • 3 User-supplied heading • • • • • • • • • 17-03
17.1.4 Non-standard page formats ••••••• 17-03

17.2 Messages ••••••••••••••••••• 17-04
17.3 Examples ••••••••••••••••••• 11-05

LOAD COMMAND • • • • • • • • • • • • • • • • • • • 18-01

18. 1 Use • 18-01
18. I • 1 Command-interpreter-Ioadable programs • 18-03
J8.1.2 Non-command-interpreter-Ioadable programsl8-04
18.1.3 Programs in the User Memory Map • • • • 18-06
18.1.4 MDOS command line initialization • • · • 18-07
18. 1.5 Entering the debug moni tor · • • • · • ·)8-01

18.2 Error Messages · • • • • • • · • • • • • • • • J8-08
18.3 Examples • • • • • • • • • • • • • • • • • · • 18-10

MEtlGE COMMAND • • • • • • • • • • • • • • • • 19-01

19.1 Use • • • • • • • • • • • • • • • • • •• 19-01
19.1.1 Merging non-memory-image files ••••• 19-02
19.1.2 Merging memory-image files ••••••• 19-03
19.1.3 Other options ••••••••••••• 19-04

19.2 Messages ••••••••••••••••••• 19-05
19.3 Examples ••••••••••••••••••• 19-05

NAME COMMAND • • • • • • • • • • • • • • • • • •

20.1 Use •••••••••••••••
20.1.1 Changing file names ••••
20.1.2 Changing file attributes ••

20.2 Error Messages ••••••••••
20.3 Examples •••••••••••••

·
• • • • •
• • • • •
• • • • •
• • • • •

• 20-01

• 20-01
• 20-01
• 20-02
• 20-03
• 20-04

MDOS 3.0 User's Guide ~aqe vIii

2 1 , .

22.

23.

f.ABLE OF CONTENTS Page

PATCH COMMAND • • • • • • • • • • • • • • • • • • 21-01

21.1 Use ••••••• • • • • • • • • • • • • • • 21-01
21.2 PATCH Command Set • • • • • • • • • • • • • • 21-02

21 • 2. 1 Qu i t = Q • • • • • • • • • • • • • • •
21.2.2 Set/display offset -- 0 •••••••• 21-02
21.2.3 Display single location •••••••• 21-03
21.2.4 Display lowest address -- L •••••• 2!-04
21.2.5 Display highest address -- H •••••• 21-04
21.2.6 Calculate relative address -- R •••• 21-04
21.2.7 Dis-assemble operation code -- I 21-05
21.2iiS Set search mask and pattern .- Mao 0 0 21-06
21.2.9 Search for byte -- S •••••••••• 21-07
2) .2.10 Search for word -- W ••••••••• 21-08
21.2.11 Search for non-matchinq byte -- N ••• 21-08
21.2.12 Search for non-matchinq word -- X ••• 21-08
2.1.2.13 Display range of locations -- P •••• 21-08
21.2.14 Set/display execution address -- G •• 21-09
21.2.15 Examine/display/change locations ••• 21-10
21.2.16 Instruction mnemonic decode mode ••• 21-11

21.3 Special Considerations •••••••••••• 21-14
21.4 Error Messages •••••••••••••••• 21-15

HEPAI H COMMAND • • • • • • · . • • • • · . . • 22-01

22. 1 Use • • • • • • • • • · • · • · • • • • · · • 22-01
22.2 IU, LCAT, CAT, Bootblock Sector Check • • • • 22-03
22.3 Directory Sector Check • • • • · • • • • • • • 22-08
22.4 Hetrieval Information Block Check · • · • · • 22-) 1
22.5 CAT Reqeneration Phase • • • · · • • • • • · • 22-15
22.6 CAT Replacement Phase • • • • • • • • • • • • 22-18
22. 7 Me ssages • · • · • • • • • • • • • • • • • • • 22-19
22.8 Examples • • • · • • • • • • · • • • • • • • · 22-19

ROLLOUT COMMAND • • • • • • • • • • • • • • • · • 23-01

23.1 Use ••••••••••••••••••••• 23-01
23. I • 1 User Memory Map •• • • • • • • • • • • 23-02
23. 1.2 Non-overlayed memory •••••••••• 23-03
23. 1 .3 Overlayed memory • • • • • • • • • • • • 23-03
23.1.4 Scratch diskette conversion •••••• 23-05

23.2 Messaqes ••••••••••••••••••• 23-06
23.3 Examples ••••••••••••••••••• 23-08

MOOS 3.0 User's Guide Page i x

24.

r ABLE OF CONTENTS Page

SYSTEM DESCRIPTION • • • • • • • • • • • . . • • • 24-01

24.1 Diskette Structure •••••••••••••• 24-01
24.1.1 Diskette Identification Block ••••• 24-02
24.1.2 Cluster Allocation Table •••••••• 24-03
24.1.3 Lockout Cluster Allocation Table •••• 24-03
24.1.4 Directory ••••••••••••••• 24-04
24. 1 .5 Bootblock • • • • • • • • • • • • • • • 24-06

24.2 File structure • • • • •••••••••••• 24-01
24.2.1 Retrieval Information Block •••••• 24-07
24.2.2 File formats •••••••••••••• 24-JO

24.3 Record Structure ••••••••••••••• 24-11
24.3. 1 Binary records • • • • • • • • • • • • • 24-11
24.3.2 ASCII records ••••••••••••• 24-12
24.3.3 ASCII-converted-binary records ••••• 24-13
24.3.4 File descriptor records •••••••• 24-14

24.4 System Files ••••••••••••••••• 24-15
24.4.1 System overlays •••••••••••• 24-16
24.4.2 System error message file ••••••• 24-17

24.5 Memory Map •••••••••••••••••• 24-17
24.6 MOOS Command Interpreter ••••••••••• 24-20
24.7 Interrupt Handling •••••••••••••• 24-21
24.8 System Function Calls •••• • ••••••• 24-23
24.9 MOOS Equate File ••••••••••••••• 24-25

25. INpUT/OUTPUT FUNCTIONS FOR SUPPORTED DEVICES • • • 25-01

25. I Supported Devices •••••••••••••• 25-01
25.2 DeVice Dependent I/O Functions •••••••• 25-01

25.2.1 Console input -- .KEYIN •••••••• 25-02
25.2.2 Check for BHEAK key -- .CKBRK ••••• 25-04
25.2.3 Console 'output -- .DSPLY, .DSPLX, .DSPLZ 25-05

25.2.3.1 Example of console 1./0 •••••• 25-06
25.2.4 Printer output -- .PRINT, .PRINX •••• 25-07

25.2.4.1 Example of printer output •••• 25-08
25.2.5 Physical sector input -- .DREAD, .EREAD 25-09
25.2.6 Physical sector output -- .DWRIT, .EWRIT 25-11
25.2.1 Multiple sector input -- .MREAD, .MERED 25-12
25.2.8 Multiple sector output -- .MWRIT, .MEr4RT 25-13
25.2.9 Diskette controller entry points •••• 25-13

25.3 Device Independent I/O Functions ••••••• 25-13
25.3.1 I/O Control Block - IOCB ••••••• 25-14

25.3 •• 1 IOCSTA Error status •••••• 25-18
25.3 •• 2 IOCOTr Data transfer type ••• 25-19
25.3 •• 3 IOCOBP Data buffer pointer •• 25-22
25.3 •• 4 IOCDBS Data buffer start ••• 25-22
25.3 •• 5 IOCDSE Data buffer end •••• 25-23
25.3 •• 6 IOCGDW Generic device word •• 25-23
25.3 •• 7 I(~LUN -- Logical unit number •• 25-23
25.3 •• 8 IOCNAM - File name ••••••• 25-24
25.3 •• 9 IOCSUF - Suffix ••••••••• 25-24
25.3 •• 10 IOCMLS Maximum LSN referenced 25-25
25.3. • 1 I IOCSDW Cu rr ent SDW • • • • • • 25-25
25.3 •• 12 I(~SLS -- Starting LSN of SDW •• 25-25

MOOS 3.0 User"'s Guide Page x

TABLE OF CONTENTS Page

25.3.1.13 IOCLSN Next LSN ••••••• 25-26
25.3.1.14 IOCEOF LSN of end-of-file •• 25-26
25.3.1. 15 IOCRIB PSN of RIB •••••• 25-26
25.3.1.16 I(~FDF File descriptor flags. 25-26
25.3.1.17 IOCDEN Directory entry number 25-30
25.3.1.1810CSSP Sector buffer pointer. 25-31
25. 3. 1 • I 9 I OCSB S -- Sec tor bu f fer s tar t • • 25 - 3 I
25.3.1.20 I(~SBE -- Sector buffer end Q ~ ~ 25-3J
25.3.1.21 IOeSBI -- Internal buffer pointer 25-32

25.3.2 Reserve a device -- .RESRV ••••••• 25-32
25.3.3 Open a file -- .OPEN •••••••••• 25-34
25.3.4 Input a record -- .GETRC ••••• a 0 • 25-39
25.3.5 Output a record -- .PUTRC ••••••• 25-42
25.3.6 Close a file -- .CLOSE ••••••••• 25-45
25.3.7 Release a device -- .RELES ••••••• 25-48
25.3.8 Example of d~vice independent I/O ••• 25-49
25.3.9 Specialized diskette 1/0 functions ••• 25-51

25.3.9.1 Input logical sectors -- .GETLS • 25-51
25.3.9.2 Output logical sectors -- .PUTLS • 25-54
25.3.9.3 Rewind file -- .RE~ND •••••• 25-56
25.3.9.4 Example of logical sector 1/0 •• 25-58

25.3. 10 Error handl i ng •••• • • • • • • • • 25-62

26. INpUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES 26-01

26. 1 Device Dependent I/O ••••••••••••• 26-01
26.2 Device Independent 1/0 •••••••••••• 26-01

26.2.1 Controller Descriptor Block -- COB ••• 26-01
26.2.1.1 CDBInc Current IOCB address •• 26-04
26.2.1.2 CDBSDA Software driver address 26-04
26.2.1.3 CDBHAD Hardware address •••• 26-04
26.2.1.4 CDBDDF Device descriptor flags 26-04
26.2.1.5 COBVOr Valid data types •••• 26-07
26.2.1.6 CDBDOA Device dependent area • 26-08
26.2.1.7 CDB~ST Working storage •••• 26-08

26.2 .• 2 Devic e dr i ver 5 • • • • • • • • • • • • • 26-08
26.2.3 Example of device driver •••••••• 26-10
26.2.4 Adding a non-standard device •••••• 26-13

MDOS 3.0 User-'s Guide Page xi

27.

28.

f ABLE OF CONTENfS Page

Of HER SYSTEM FUNCTIONS • • • • • • • • • • • • • • 27-01

27. I Register Functions •••••••••••••• 27-01
27.1.1 Transfer X to B,A -- .TXBA ••••••• 27-02
27.1.2 Transfer B,A to X -- .TBAX ••••••• 27-02
27.1.3 Exchange B,A with X -- .XBAX •••••• 27-02
27.1.4 Add B to X -- • ADBX •••••••••• 27-02
2 7 • 1 • 5 A dd A to X -- • AD AX • • • • • • • • • • 27 - 0 3
27 • 1 • 6 Add B, A to X -- • AD B A X • • • • • • • • • 27-03
27 • 1 • 7 A dd X to B. A -- • AD XB A • • • • • • • • • 27 -03
27.1.8 Subtract 8 from X -- .SUBX ••••••• 27-04
27.1.9 Subtract A from X -- .SUAX • • • • • 27-04
27.1.10 Subtract B,A from X -- .SUBAX ••••• 27-04
27.1.11 Subtract X from B,A -- .SUXBA ••••• 27-04
27.1.12 Compare B,A with X - .CPBAX ••••• 27-05
27.1.13 Shift X right -- .ASRX •••••••• 27-05
27.1.14 Shift X left -- .A5LX ••••••••• 27-05
27.1.15 Push X on stack -- .PSHX ••••••• 27-06
27.1.16 Pull X from stack -- .~ULX •••••• 27-06

27.2 Double-byte Arithmetic Functions ••••••• 27-06
27.2.1 Add A to memory -- .ADDAM ••••••• 27-06
27.2.2 Subtract A from memory -- .SUBAM •••• 27-07
27.2.3 Shift memory right -- .OMA ••••••• 27-07
27.2.4 Shift memory left -- .MMA ••••••• 27-07

27.3 Character String FUnctions •••••••••• 27-08
27.3.1 String move -- .MOVE •••••••••• 27-08
27.3.2 String comparison -- .CMPAR •••••• 27-09
27.3.3 Character-fill a strin~ -- .STCHR ••• 27-10
27.3.4 Blank-fill a string -- .SICHS ••••• 27-10
27.3.5 Test for alphabetic character -- .ALPH~ 27-10
27.3.6 Test for decimal digit -- .NUMD •••• 27-11

27.4 Diskette File Functions : •••••••••• 27-11
27.4.1 Directory search -- .OIRSM ••••••• 27-13
27.4.2 Change file name/attributes -- .CHANG • 27-16
27.4.3 Load program into memory -- .LOAD ••• 27-19
27.4.4 Allocate diskette space -- .ALLOC ••• 27-24
27.4.5 Deallocate diskette space -- .DEALC •• 27-27
27.4.6 Display system error message -- .MDERR • 27-29

27.5 Other Functions • • • • • • • • • • ••••• 27-33
27.5.1 Process file name -- .PFNAM •••••• 27-33
27.5.2 Re-enter resident MOOS -- .MDENT •••• 27-36
27.5.3 Reload MOOS from diskette -- .Boor ••• 27-37
27.5.4 Set system error status word .EWORD 27-38
27.5.5 Allocate user program memory -- .ALUSM • 27-38

ERROR MESSAGES • • • • • • • • • • • • • • • • • • 28-01

28.1 Diskette Controller Errors •••••••••• 28-01
28.1.1 Errors during initialization •••••• 28-01
28.1.2 Errors after initialization •••••• 28-05

28.2 Standard Command Errors • • • • • • • • • • • 28-06
28.3 Input/(~put Function Errors ••••••••• 28-18
28.4 System Error Status Word ••••••••••• 28-19
28.5 Commands Affecting Error Status Word ••••• 28-20

MOOS 3.0 User"'s Guide Page xii

TABLE OF CONTENTS Page

APPEt'-lDICES

A. Cylinder-Sector/Physical Sector Conversion Table ~ A-OJ

B.

c.
D.

E.

F.

G.

H.

I •

ASCII Character Set • • • • • • · . . • • • 8-01

MDOS Command Syntax Summary • • • • • • • • • · . . C-OI

Diskette Controller Entry Points • • • • • • · . • 0-01

Mini-Diagnostic Facility • • • • • • • • • • • •• E-O t

Diskette Description, Handling, and Format • • • • F-Ol

Directory Hashing Function • • • • • • · . . · . • G-Ol

MDOS-Supported Software Products • • • • • • · . • H-O t

H. I ASM -- M6800 Ass embl er •••• • • • • • • H-02
1--1.2 ASMIOOO-- M141000 Cross Assembler •••••• H-04
rl.3 ASM3870 -- M3870 Cross Assembler • • • • • • • H-07
H.4 BASIC -- BASIC Interpreter •••••••••• H-09
H.5 EDIT -- Text Edi tor •••••••••••••• H-IO
rl.6 EM3870 -- M3870 Emulator ••••••••••• H-12
H.1 FORMIOOO -- M141000 Object File Conversion •• H-13
ti.8 FORT -- Helocatable FORTRA.N Compiler ••••• H-15
H.9 MASM -- MACE Cross Assembler ••••••••• H-J7
H.IO MBUG -- MACE Loader and Debuq Module ••••• H-19
rl. II MOTEST -- Componen t Tes ter Ex ecuti ve • • • • • H-20
H.12 MPL -- MPL Compil er • • • • • • • • • • • • • H-2 i
H.13 PPLO/PPHI -- PROM tJrogrammer I • • • • • • • • H-23
H.14 PROMPROG -- PROM Programmer 11/111 •••••• H-25
H. 1 5 RASM -- ReI ocatabl e M6800 Macro Assembl er •• H-26
H.16 RASM09 -- Relocatable M6809 Cross Assembler • H-29
H.17 RLOA.D-- M6BOO Linking Loader •••••••• H-32
d.J8 SIMIOOO -- 141000 Simulator ••••••••• H-38
H.19 USE with MOOS •••••••••••••••• H-39

MOOS Equate File Listing • • • • • • • • • • • • • 1-01

J. MOOS 3.00 Oi fferences ••••••••••••••• J-Ol
J. J Impact of MOOS 3.00 on Previous MOOS Programs. J-OI
J.2 Enhancements to MDOS 2.20/2.21 •••••••• J-04
J.3 Enhancements to MDOS 3.00 • • • • • • • • • • • J-06

K. IOCB Input Parameter Summary . . . • • • • • • • • K-O 1

L. EXOHdisk 11/111 System Specifications. • L-OI

MOOS 3.0 U ser-' s Gui de Page xi i1

PAR T I

SIMPL IF lED MDOS USER·'S GUIDE

CHAPTER I

i. INTRODUCTION

The EXOHdisk II is a single-sided, single-density, dual
diskette drive storaqe system designed for use with the
EXORciser or EXoRterm. The EXORdisk III is a double-sided,
sinqle-density. dual diskette drive storage system iesiqned
for use wi th the EXOHci ser or EXoRterm. The EXORdi sk I I! can
be expanded into a four-drive system.

With either the EXOHdisk II or EXOHdisk III system, the
following items are also included: a floppy disk controller
module, a floppy disk interconnection cable assembly, and a
software disk operating system. An illustration of a typical
EXORdisk system is shown in Figure I-I.

The M6dOO Oi skette Operating Syst em (MOOS) , in
conjunction with the EXORciser and EXORdisk II or EXORdisk
III, provides a powerful and easy-to-use tool for software
development. MOOS is an interactive operating system that
obtains commands from the system console. These commands are
used to move data on the diskette, to process data, or to
activate user-written processes from diskette. All this can
be accomplished with a minimum of effort; and since MDOS is a
facilities oriented system, rather than a supervisory
oriented one, a minimum of overhead is imposed.

In addi tion, an extensi ve set of resident system
functions are provided for general development use. Such
functions as dynamic space allocation, random access to data
files, record 1/0 for supported and non-supported deVices, as
well as many register, string, and other diskette-oriented
routines make MOOS a 900d basis for a user's application
system.

MOOS 3.0 user-'s Guide Page 01-01

Figure I-I. TYPcial EXORdisk system.

MOOS 3.0 User"s GUide Page OJ-02

NfHODUCTION 1.1 -- Hardware Support Required

J.I Hardware Support Required

The minimum hardware configuration required to support
MOOS con sl st s of I

an EXORciser or EXORterm with EXbug firmware
16K HAM
EXORdisk II/II! dual diskette drive unit
EXORdisk 11/111 floppy disk controller module
Interconnect cable
ASR33 (TTY) or RS-232C compatible terminal

The EXOHdisk II can read and write diskettes recorded in
an IBM-3740-similar format (single-sided, single-density).
The EXORdisk III can read and write all diskettes that the
EXORdisk II can handle. In addition, diskettes formatted in
the Motorola single-density, double-sided format can also be
read and written. The double-sided diskettes cannot be used
in the EXORdisk II.

The abOVe minimum configuration will allow the user to
run any of the MOOS commands that reside on the MOOS system
diskette at the time of purchase. Other additional hardware
may be required to run the MOOS-Supported software products~
Such information is described in Appendix H.

1.2 Additional Supported Hardware

MDOS also supports R line printer and the readerlpunch
(record) devices of the system console. The line printer
interfaces to the EXORciser through the printer interface
module (MEX68PI) which consists of two PIA's plus the
necessary buffering devices and address decoding. If the
printer interface from an EDOS system is used instead, it
must be modified for use with MDOS. The modifications
consist of adding the following lines to the printer
interface PIAl

I. Print select (high=selected) to PBO (pin 18 of PIA)
2. Paper out (low=paper available) to PBl (pin 11 of

PIA)

The system consoleJs automatic reader/punch (record)
devices must be similar to a Teletypewriter1s paper tape
reader and punch. For a complete description of the system
console requirements consul t the J'M6800 EXORciser User-'s
Guide".

MDOS 3.0 User1s Guide Page 01-03

I NTHODUCT I ON 1.3 -- Soft~are Supoort Required

1.3 Software Support Required

No additional software is required to run the operating
system as it comes shipped on the system diskette.

1.4 ~rogram Compatibility

All of the MOOS commands and system files th-3t are
shipped on the system diskette must be used with that
particular version of MOOS. MOOS commands and system files
from other versions should never be intermixed.
MOOS-Supported software products (see Appendix H) with
version numbers 3.00 or greater must be used with MOOS 3.00.
They wi 11 not operate correctl y with pr ior versions of MOOS.
In addition, prior versions of the M6800 Linkin1 Loader
(HLOAO, through version 2.03) will not operate with MOOS
3.00. Prior versions of other MOOS..,.,Supported software
products will work with MOOS 3.00.

Most user-written assembly lanquage programs th3t were
developed independently of MOOS can be executed on 3n MDOS
system without reassembly; however. such programs will have
to be converted into the memory-image file format before they
can oe loaded from diskette into memory (see section 2.8.5).
tJrograms need only be changed when transferred to MOOS if:

I •

2.

They make assumptions
initialization of the stack
they are loaded into memory,

about
pointer

the
after

They
while
$20,

are oriqined to load (initialize me~ory
loading) below hexadecimal location

3. They make assu~ptions about the physical
structure of diskette tables or files,

4. They utilize the diskette for input/output.

5. They make assumptions about the contents of
the S~I and IRQ interrupt vectors.

If a user has prior EX(fficiser support software products
which he has purchased from Motorola (e.g., editors,
assemblers, or compilers), that software must be upgraded to
be compatible with MOOS.

If a user has software that he has developed using
previous versions of MOOS, then Appendix J sh')uld be
consulted for a list of differences between MDOS 3.00 and
prior versions that may affect programs running with MOOS
3.00.

MOOS 3.0 User"s Guide Page 01-04

I NTH oDueT I ON 1.5 -- Hardware Installation

1.5 Hardware Installation

The floppy disk controller module and drive unit should
be inspected upon receipt for broken, damaged, or missing
parts as well as for damage to the printed circuit board.
The packing materials should be saved 1n case reshioping is
nece ssary.

1.5.1 Four-drive system installation

The following procedure must be performed to install the
four diskette drive version of the EXORdisk III. This
section is not applicable to EXORdisk II systems or to
dual-drive EXORdisk III systems. This procedure must be
performed before the floppy disk controller module is
installed (next section). It should be noted that in the
four-drive configuration, all diskette controller oriqinated
lines must be terminated in the last drive of the daisy
chain. When facing the front of the disk drive"units, drive
zero is on the left and drive one is on the right of one
unit, while drive two is on the left and drive th~ee is on
the right of the other unit. Before the following
modifications are made, both dual-drive units are identical.

I. The housings from both dual-drive units must be
removed.

2. In the dual-drive unit that is to contain drives zero
and nnQ_ thQ Terminator Np.twork (Motorola PIN -.. ~ "
51 NW9626AOI) should be removed from the socket XA22
on printed circuit board (pcb) for drive zero. The
drive one pcb socket XA22 should not have the
Terminator ~etwork installed.

3. JPR I) should be installed in the jumper area of the
pcb for drive zero.

4. JPR 9 should be installed in the jumper area of the
pcb for drive one.

5. The housing should be replaced on this dual-drive
unit and the drives marked as zero and one.

6. (h the other dual-drive unit the Terminator Network
should be installed in socket XA22 of the ocb for
drive three. There should be no Terminator ~etwork
installed on socket XA22 of the pcb for drive two.

1. JPR 11 in the jumper area of the pcb
should be removed (if installed).
installed.

MOOS 3.0 Jser's Guide

for drive two
JPR 8 should be

Page 01-05

I NTRODUCT ION 1.5-- Hardware Installation

8. JPR 9 in the Jumper are of the pcb for drive three
should be removed (If installed). JPR 10 should be
installed.

9. The housing on this dUal-drive un.it should be
replaced and the drives marked as two and three.

10. The 50-pin
should be
two/three.

ribbon cable (Motorola PIN 30BW1824XOI)
installed between drives zerolone and

1.5.2 Floppy disk controller installation

To install the floppy disk controller module into the
EXORciser, the following steps should be followed.

I. The PWR keyswitch on the EXORciser should be
turned OFF. CAUTION' Inserting the floppy
disk controller module while power is applied
to the EXORciser system may result in damage
to components of the module.

2. Any other card in the EX(illciser that responds
to addresses between hexadecimal $E800
through $EC07, inclusive, must be removed
from the system or configured for a different
address range.

3. The floppy disk controller module can then be
inserted into any available card slot. It is
desirable to keep all of the cards in the
EXORciser close together; it is specifically
recommended that dynamic memory boards be
kept as close to the MPU board as possible.
~hen properly installed, the component sides
of all cards should be facing the left-hand
side of the EXORciser chassis (as viewed from
the front). The EXOHciser motherboard
connectors are offset and keyed to prevent
backward installation of cards.

4. fhe interconnect cable should then be
attached to both the drive unit and the
diskette controller module. CAUTION' The
pin index mark on the connector must match up
with the index mark on the cable. Damage to
the module will result if the cable is
installed the wrong way.

5. power can now be applied to both the drive
unit and to the EXORciser·-- the hardware is
installed. The operator should get into the
habit of turning on the power in the

MOOS 3.0 llser"'s Guide Page 01-06

INTHODUCTION 1.5 -- Hardware Installation

following sequence: system console,
EXORciser, EXOHdisk, and line printer. The
power off sequence should be the reversel
line printer, EXORdisk, EXORciser, and system
console. No diskettes should be in a drive
while the driveJs or the EXORciserJs power is
being turned on or off.

1.6 Software Installation

There is no software installation that need be
performed. All MOOS software is included on the diskette
that is shipped with each EXORdisk. This diskette contains
the operatinq system and a set of commands that comprise
MOOS. It llay or may not contain any of the MDOS-supported
software products such as editors or assemblerse These
products are dependent on the mode of system purchase.

MUOS 3.0 User's Guide Page 01-07

CHAPTEr? 2

2. GENERAL SYSTEM OPERATION

This chapter provides the user with the basic concepts
that are necessary for the simplified and typical ooeration
of MOOS. It contains descriptions and examples of the
initialization procedures and of the basic forms of the most
frequently used commands. fhese examples clearly illustrate
how MOOS is used to edit a program, to assemble it, to
convert it into a loadable module, to load it and execute it,
as well as some other useful operations. The commanis are
presented in a sequence that is commonly follo~ed in a
software development environ~ent.

2.1 System Initialization

To initialize tne operating system, power must first be
applied to the EXOHciser and to the diskette drive unit. No
diskette should be in the drive while power is beinq turned
on or off on either the drive or the EXORciser. Once the
power is on, the following steps must be followed:

1. EXbug must be initialize~ and configured for
the proper speed of the system console. If
power has Just been turned on for the first
time, EXbug initialization is automatically
performed by the pOWG~-Up interrupt service
routine in EXbug. If power is already on and
MOOS is to be re-initialized, then either the
.ABORT or RESTART pushbuttons on the
EXORciser's front panel must be depressed to
initialize EXbug. The prompt "EXBUG V.R"
will be display,ed by EXbug indicating it is
waitinq for operator input. IIV" indicates
the version and uRn the revision number of
the EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola
or one that has been properly prepared by the
user (see section 2.8.10» must be placed in
drive zero. The door on the drive unit must
then be closed in order for the diskette to
begin rotating. For the side-by-side drives,
drive zero is on the left side, as seen from
the front. For the EOOS-converted systems
using the vertically stacked drives, drive
zero is the top one.

The diskette must be oriented properly before

MDOS 3.0 User"s Guide Page 02-01

Ut:Nt:HAL !::iYSTEM OPERATION 2.1 -- System Initi8lization

being inserted into the drive. When the
diskette is inserted properly, the label is
facing up, and the ed~e of the diskette with
the lbng narrow slot in the protective
covering is inserted first. The labelled
edge will be the last edge to be covered up
as the diskette is inserted into the drive.

3. (~erators with EXbug 2 in their systems will
skip thi s step. The EXbug I command "MAID'"
must be entered. An asterisk (*> prompt will
be displayed once MAID has been activated.

4. The MAID command "E800;G" must be entered if
the debug monitor is EXbug I. For EXbug 2
monitors, the EXbug command "MOOS" must be
entered. Either command will give control to
the diskette controller at the specified
address. The controller will initialize the
drive electronics and then proceed to read
the Bootblock into memory. Once the
8ootblock has been loaded, control is
transferred to it. The Bootblock will then
attempt to load into memory the remainder of
the resident operating system.

2.2 Sign-on Message

If no errors occur during the initialization process,
MOOS will display the message:

MOOS VV.RR
=

meaning that MOOS has been successfully loaded from disk and
initialized. The JIVV" and '''RR'' indicate the versi.on and
revision numbers of the operating system, respectively. In
addition, an equal sign (=) is displayed as a prompt
indicating that MDOS is ready to accept commands from the
operator. The equal sign prompt is subsequently displayed
each time the MOOS command interpreter gets control. The
sign-on message showing the version and revision nu~bers is
only displayed when MOOS is reloaded from the diskette.

2.3 Initialization Error Messages

If for some reason the drive electronics are not
properly initialized, or if the diskette in drive zero cannot
be read properly to load the Bootblock or the resident
operating system, then a two-character error message will be
displayed and control rsturned to the EXbug monitor.

MOOS 3.0 U ser"s Guide Page 02-02

3E,~ERAL S{SfEM OPERAT ION 2.3 -- Initialization Error Messages

The following
initialization. All

errors can be produced during
two-character messages begin with the

letter II Ell.

Message

El

E2

E3

E4

E5

MOOS 3.0 UserJs Guide

[)_ ... r.... r....l 0..,.,.~,..
r,vuou~c \,.,oU.;;JC

A cyclical redundancy check (CKC)
error was detected while reading the
resident operating system into
memory.

The diskette has the write protection
tab punched out. During the
initialization process. certain
information is written onto the
diskette.

The diskette
sti 11 be used
however, the
must fi rst be
opaque tape
di skette.

is not damaged and can
for a system diskette;
write protection tab

covered with a piece of
to allow writinq on the

fhe drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. If the
diskette hAS been inserted into the
drive with the wronq orientation, the
"not ready" error will be also
generated. I f a doubl e-sided
diskette is used in the EX(~disk II
drives, this error will also occur.

Closing the door, waitinq a little
bit lonqer before entering the
JtE800;G" .. or "MOOS'" command, or
turning the diskette around 50 it is
properly oriented should eliminate
this error.

A deleted data mark was
while reading the resident
system into memory.

detected
operating

A timeout interrupt occurred. This
indicates that a diskette controller
function was not completed within the
allotted time. This error can also
occur if the ABORT pushbutton is
depressed while a diskette transfer
is in progress.

Page 02-03

GENERAL Sf STEM OPERATION 2.3 -- Initialization Error Messages

E6 The diskette controller has been
presented with a cylinder-sector
address that is invalid.

E7

E8

E9

This error indicates some type of a
hardware problem. For example, the
error can be caused by missin1 or
overlapping memory, bad memory, or
pending IRQs that cannot be serviced.

A seek error occurred while trying to
read the resident operating system
into memory.

Like E6 errors, this one indic~tes
some type of a hardware problem.

A data mark error was detected while
trying to read the resident operating
system into memory.

A CRC error was found while rea1ing
the address mark that identifies
sector locations on the diskette.

The diskette controller errors EI, E4, ES, and E9
indicate that the diskette cannot be used to load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. Chapter
10, OOSGEN command, and chapter 15, FORMAT command, iescr ibe
ways in which damaged diskettes can be regenerated.
Depending on the extent of the errors, the diskette ~ay be
used in drive one to recover any files that may Oe on it
(section 2.8.9).

The diskette controller error E5 can occur for a variety
of reasons. The most common reason, and the most fatal, is
the destruction of the addressing information on the
diskette. If the addressing information has been d~stroyed
(verified by using DUMP command to examine areas of
diskette), the FORMAT command may be used to rewrite the
addressing; however, information on the damaqediiskette
cannot be recovered. Occasionally, after a system has just
been unpacked, the read/write head may have been positioned
past its normal restore point on cylinder zero. In this
case, trying the event which caused the error three or more
times may position the head to the proper place. If this
fails, the head will have to be manually repOSitioned past
cylinder zero; however, this problem rarely occurs. The E5
errors can also occur if a user-written program accesses
drives 1-3 without usinq one of the system functions and
without first restoring the read/write head on that drive.

Even after the resident operatinq system has been

MOOS 3.0 User's Guide Paqe 02-04

3ENERAL Sf STEM OPERATION 2.3 -- Initialization Error Messages

successfully read into memory, certain errors can occur in
the subsequent initialization procedure. During
initialization the resident operating system cannot access
the error message processor since it has not been
initialized. Messages similar in format to those generated
by the diskette controller are displayed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message Is a
non-numeric character. The ,following errors can occur durinq
initialization, but only after the resident operating system
has been read into memory.

Message

E?

Probable cause

This error indicates that the
Retrieval Information Block (RIB) of
the resident operating system file
MDOS.S'f is in error. The operating
system cannot be loaded.

The diskette probably is not an MOOS
system diskette, or the system files
have been moved from their original
places. The REPAIR command (Chapter
22) can be used to identify which
files are missing or if their places
have been chanqed.

EM This error indicates that there was
insufficient memory to accommo::iate
the resident portion of the operating
system.

The memory requirements described in
section 1.1 should be reviewed. If
the mInImum requirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

EI The version and revision of MDOS
already loaded into memory are not
the same as those on diskette. fhis
error usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
The error can also occur if the ID
sector has been damaged.

MDOS 3.0 UserJs Guide

The error can be avoided if the
initialization procedure is followed
correctly every time a new system

Page 02-05

GENERAL S'{STEM OPERATION 2.3-- Initialization Error Messages

diskette is inserted into drive zero.

ER The addresses of the Retrieval
Information Blocks of the MOOS
overlays are not the same as those at
the time of the last initialization.
This error may occur for the same
reasons as the nEIfl error.

EU An input/output system function
returned an error during the
initialization. Errors of this sort
indicate a possible memory proble~ or
the opening of the door to drive zero
while the initialization is taking
place.

EV (he of the system files is missinq or
cannot be loaded into memory. If a
system file is missing, the diskette
has been improperly generated or the
file was intentionally deleted. If a
file cannot be loaded, then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.8.9). This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

2.4 (~erator Command Format

After the sign-on message is displayed, MOOS is ready to
accept commahds from the operator. The equal ~ign prompt (=)
indicates that the command interpreter is awaiting input via
the console. Generally, the equal sign prompt will be
redisplayed after each command has finished its function.
The operator-entered command line must always indicate which
command is to be executed. In addition, the file na~es that
may be required by the command must be specified. Some
commands also allow various options that can alter the way in
whicn their functions are performed. These options are also
entered on the command line. Each command line must be
terminated with a carriage return. The command lIne has the
following formata

<name I> <name 2>,<name 3>, •••• ,<name n>;<options>

where each <name i> (1=1 to n) has the form of a complete
MOOS file name (see section 2.7.1). The name of the command
to be executed is always <name 1>. The remaining n~~es and
the options ~ay not be required, depending on the iniividual

MUDS 3.0 User's Guide Page 02-06

,ENERAL S(STEM OPERATION 2.4 - Operator Command Format

command. The following lines:

OIR EDII.CM:);E
FREE
MERGE FILE!!!.FILE2 t Oi FILE3:1;FILEJ:)

are valid examples of MD{~ command lines. Section 2.8
describes in a simplIfied form the basic format (i.e., the
comma~1Js name, what file names must be specified, and what
options are available) of the most frequently used commands.
PART II gives a complete and detailed description of all MOOS
commands. In addition, Appendix H contains a summary of the
command line formats of all MOOS-Supported software products.

Most fre uentl a "space" is used to se arate
the command name, from the other names which a
,se@arated by .lIcom~asJl. The"semicolon·1I always separates the
op ions from the rest of the command line. The uspace" and
"'comma" are the recommended separators since they make the
command line the most readable; however, any character that
will not be mistaken for an MOOS file name character, a
suffix delimiter, a logical unit number delimiter, or a
device name delimiter (see section 2.7.1) can be used as a
separator. The use of special characters, although
permitted, is not recommended because the command line
becomes very unreadable.

2.5 System Console

The system console is used as the communications device
between the operator and the operating systeffl. MD{}S fiisssagas
are displayed on the console printer or display .mechanism.
MOOS commands, as well as operator inputs prompted by the
commands, are entered via the keyboard. All command line
input and most input to the various commands requires upper
case, alphabetic characters. Numeric and special characters,
of course, are case independent. To allow corrections to be
made to any typed line before the terminating carriage return
is entered, several special keys on the keyboard can be used.
In addition, two other spacial keys serVe to prematurely
abort a command in progress or to "freeze" the display of
messaqes on the console.

2.5.1 Carriage return key

The CARRIAGE RETURN key Is used to terminate any
0herator re sponse to an ... MO$!§.._i_r:u.t'-:l_t eromQ,t. Thi sis true for
t e command line as well as all other input that may be
required from the operator by the various commanis. The
CARRIAGE RETURN will automatically perform both carriage
return and line feed functions.

MDOS 3.0 User"s Guide Page 02-07

GENERAL Sl'STEM OPERAT ION 2.5 --- System Con sol e

2.5.2 Break key _ COAl,R.IJLL£.D A8o~-r

The BREAK key is used as a controlled-abort function
key. Most MOOS commands that take a long time to complete
their function periodically check to see if the BREAK key has
been depressed. If it has, the command wi 11 come to a
premature, but control18d, termination paint.

The BHEAK key should be used, whenever possible, as an
alternative to using the EXORciser~s ABORT or RESTART
pushbuttons. The controlled abort that is achieved with the
BREAK key ensures that all system tables are intact. Since
termination is delayed until all critical diskette accesses
have been completed, no file space is lost nor is any system
table destroyed. Such precautions cannot be guaranteed if
the ABORT or RESTART pushbuttons are used, since the operator
has no way of knowing whether or not diskette data transfers
are in progress.

2.5.3 Control-W - H~L"'"

Control-W is actually a combination of two keys being
depressed simul taneouslya the CONTHOL or CTL key and the W
key. fhis combination is used to halt the display of
information on the system console or printer. All commands
that respond to the BREAK key abort function will also be
'"hal tabl e" wi th the CTL-~ key. Most MDOS commands that
display more than a few lines of information on the console
will occasionally check to see if the CTL-W key has been
depressed. If a CTL-W is detected, the command will suspend
processing until any other key on the console keyboard is
depressed (except, of course, another CTL-W). This feature
is particularly useful to hold the display for viewing on
systems that have a CRT. In addition, if output is being
directed to the printer, the CTL-~ can be used to suspend
printing until the paper is realigned.

2.5.4 Control-X

Control-X is actually a combination of two keys being
depressed simultaneously' the CONTROL or CIL key and the X
key. This combination is used to cancel the input line that
was Just entered by the operator (before a carriage return is
depressed). All system input from the console supports
CIL-X. Any characters entered on the current input line thus
far will be deleted and input can be resumed from the
beginning of the line. A carriage return and line feed will
be sent to the console, so that the operator has a positive
feedback that the line was cancelled.

MDOS 3.0 User's Guide Page 02-08

,ENERAL S{STEM OPERATION 2.5 -- System Console

2.5.5 UEL or RUB(lliT

The DEL or RUBOUT key serves as a backspace key during
console input. If the operator detects an error in the
current input line (before a carriage return is depressed),
the DEL key will cause the preceding character to be removed
from the input line. The character that is removed will be
echoed back to the console so that the operator has a
positive feedback that a character was backed out of the
line.

Control-D is actually a combination of two keys being
depressed simultaneously' the CONTROL or CIL key and the 0
key. This combination allows the operator to re-display the
current input line (before a terminating carriage return is
depressed). If the input line has had several characters
backed out (see DEL key above), the line is very unreadable.
The CTL-D key can. therefore. be used to show a ·"clean" copy
of the line for operator inspection. The newly displayed
line will be shown on the line following the current input
line. Operator input is not terminated with the CTL-D key.
Any remaining input must still be supplied, as well as the l

terminating carriage return.

2.6 Common Error Messages

Many error messages are COflllll0n to the MDnS commands. In
order to be aware of the most common errors, their
descriptions are included here. These common error messages
will be recognizable to the operator since they are prefaced
with a pair of asterisks (**) and a two-digit reference
number. Each command may, in addition, have a set of
specific error messages that will not be displayed by other
commands. These specific error messages will not have the
asterisks or tWo-digit reference number. Such messages are
explained along with each command~s detailed description in
PAHT II. A summary of the standard error messages can be
found in Chapter 28. The messages are listed there in order
of their two~digit reference numbers.

~HAT1

The first name entered on the command line was
not the name of a file in the disketteJs
directory. Most often this error occurs as the
result of a mistyped command name.

MOOS 3.0 User.ls Guide Page 02-09

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

** 01 COMMAND SYNTAX ERROR

The syntax of the command line parameters could
not be interpreted. Most often this error refers
to undefined characters appearing in the options
field.

** 02 NAME REQUIHED

The file name requir~d by the command as a
parameter was omitted from the command line.

** 03 <name> DOES Nor EXIST

The displayed file name was not tound In the
diskette1s directory. The file name must exist
prior to using the command. The <na~e> is
displayed to show which name of the ~ultiple
names specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command lioe as a
parameter does not exist in the diskette1s
directory. The file name must eXist prior to
using the command. No file name is displayed.
since only one parameter is required by the
command.

** 05 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette~s directory. The file name must not
exist prior to using the command. The <name> is
displayed to show which name ot the ~ultiple
names specifLed as parameters caused the error.

** 06 DUPLICATE FILENAME

The file name entered on the command line as a
parameter already exists in the diskette1s
directory. The file name must not exist orior to
using the command. No til e name 1 s di splayed.
since only one parameter is required by the
command.

** 07 OPTION CONFLICT

The specified options were not valid for the type
of function that was to be performed by the
command. Several of the options are ~utually
exclusive and cannot be specified at the same
time.

MOOS 3.0 User's Guide Page 02-10

3ENERAL Sf Sf EM OPERATION 2.6 -- Common E.rror Messages

** 1 I DEV ICE NOT READY

Most frequently this indicates that a com~and is
trying to output to the printer while the printer
is not ready:

** 12 INVALID TYPE OF OBJECT FILE

Most frequently this indicates that an attempt
was made to load a program ln~o memory whose file
does not have the "loadable ft memory-image format,
e.g., a source file.

** 13 INVALID LOAD ADDRESS

An attempt was made to load a program into memory
thatl) loads outside of the range of
contiguous memory established at initialization;
2) loads over the resident operating system; 3)
loads below hexadecimal location $20; or 4) loads
beyond hexadecimal location $FFFF.

** 25 INVALID FILE NAME

A file name was specified that contained a family
indicator <*), that began with a device name
indicator <I), or that did not begin with an
alphabetic character.

** 4J INSUFFICIENT DISK SPACE
.a. _______ -' ~_ ..L_ ... _~ __ .L _____ .&. __ ,&,':1 __ ~ """"

t\ l,;UlllllldIIU.1:::' \,,1 y.1IIY \"V 1...1 C.Ol..C a 1 ~~c VI "'\~"1 ~"'o

into a file. Upon trying to allocate more file
space, insufficient room remains on the diskette
to accommodate the space requirements.

**PROM 1/0 ERROR--STATUS=nn AT h DRIVE i-PSN j

An unrecoverable error occurred while trying to
access the diskette. The error status IlnnJI is a

value returned by the diskette controller. The
errors are of the same type that cause the
initialization process to give control to EXbug;
however, instead of beginning with the letter
nEil, the status (nn) begins with the digit 113".
The second digit of the status corresponds
directly to the diskette controller error number
discussed in section 2.3. The JIE" h3S been
replaced by the "3". Thus, status

MOOS 3.0 User"'s Guide Page 02-11

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

31 is the same as EI
32 is the same as E2

•
•
•

39 is the same as E9.

A memory address (only meaningful for system
diagnostics) is substituted for the letter "h";
the drive number is substituted for the letter
Ui"1 and the physical sector number (PSN) at
which the error occurred is substituted for the
letter "j".

2.7 Diskette File Concepts

In MOOS, a diskette file is a set of related information
that is recorded more or less contiguously on the diskette.
The information can be actual machine instructions that
comprise a command or user proqram. The information c~n also
be textual data, object program data. or any of the forms
described in Chapter 24. The following section describes how
files are named. created, deleted, and protected.

2.7.1 File name specifications

An MOOS file name specification consists of three parts:
a ufile name", a "suffix Jl , and a Illogical unit number". File
names can be from one to ei2ht alphanumeric characters in
length, the first of which must be alphabetic. The
alphabetic cnaracters must be upper case letters. Valid file
names could look like the following:

DIH
ASM3870
t3ACKUP
SO
BLOKEDIT
Z

In most cases, all that need be specified when a file
name specification is called for is the file name. The
suffix and logical unit number are usually given appropriate
default values by the various commands.

The suffix can be either one or two characters in
length. Like file names, suffixes must begin with an upper
case alphabetic character. The rest of the suffix must be
alphanumeric. A suffix is used to explicitly refer to a
particular entry in the directory. That is, there may be
several entries with the same file name but with different
suffixes. In such cases, a file name reference alo~e would

MOOS 3.0 User's Guide Paqe 02-12

;ENERAL SySTEM OPERAT ION 2.7 -- Diskette File Concepts

be ambiguous. Thus, the suffix is used to differentiate
between entries with the same file name. Usually, suffixes
designate a particular format of the file. Thus, a source
file could have the suffix "SA". Its assemble:i object
version could have the same file name but with the suffix
"LX", and its executable version could have the same file
name but with the suffix "LO". MOOS commands usually supply
an appropriate default suffix when deal.ing with specific
files.

If both file name and suffix are s ecified, the must be
seyarated bl a period (.). The following are examp es ot
va fd file name specifications using both file name and
suffix:

BLOKEDIT .eM
Z.SA
PHOC 1 .CF
DOCUMENT.Y

Sincs each diskette is a complete file system in itself,
with complete directory and system files, it is possible to
have directory .entries with the same file names and suffixes
on separate diskettes. Thus, the logical unit number is
required to uniquely specify a directory entry on a given
drive. Logical unit numbers consist of a single decimal
digit (0, I, 2, or 3). In most cases, MOOS commands supply a
default value for the logical unit number. It a particular
drive must be identified, it must be entered by the operator
as a part of the file name specification. Loqical unit
numbers follow either the file name or the suffix depending
on whether one or both are specified. The logic;:;l ffnii-

number must be se arated from the file .name or frQ
lX ya co on :. he following are examples of
name specifications using logical unit numbers.

2.7.1.1 Family names

BLOKEOIT.CM:Q
TEST. X: 1
DIR:I
Z456.03:3
ASM:2

Some commands allow the operator to specify a family of
file names. Family indicators can occur in either the file
name or the suffix. An asterisk (*> is used as , family
indicator. The family indicator represents all or part of a
flle name or suffix. For example,

FILE.*

would be a file name specification that includes all

MDOS 3.0 User"s Guide Page 02-13

GENERAL S{SfEM OPERATION 2.7 -- Diskette File Concepts

directory entries with the file name "FILE
suffix on the default drive. Similarly,

II bu t wit han y

is a file name specification that includes all directory
entries with ,uPROG" as the first four characters of their
file names, regardless of what the remaining characters are,
and with suffix "SAJlon the default drive. The asterisk
cannot have characters followinq it. Thus, the following
file name specifications are invalid:

*PHOG.SA
PROGRAM. *8

Not all commands allow file
contain the family indicator.
descriptions should be consulted
indicators are acceptable.

2.7.1.2 Device specifications

name
The
to

specifications to
individual command

see where family

Some com~ands allow the operator to enter a device
specification in the command line instead of a file name
specification. Device specifications consist of two parts.
a "device name'" and an optional uloqical unit number".
Device names are two characters long, both of which must be
alphabetic. A pound siqn (I) is used as a leadinq character
to indicate that the subsequent two-character sequence is a
device name. For example,

HLP
leN

are valid device names used for the line printer and the
console, respectively. A device specification may be entered
with a loqical unit number. Logical unit numbers must follow
the device name and must be separated from it by a colon (.).
The individual command descriptions should be consulted to
see where device specifications are allowed.

2.7.2 File creation

MOOS files are never explicitly created by the operator.
All commands that write to oytpyt tiles will creat~di_.them
automatically if they do not exist. Files will be created

-a cc oraI'ng"""to"""€ne--'nr'e""'Pnam'Et spe c i fIe at i on 9 i ve n on the c omm and
line. That is, if explicit suffixes and logical unit numbers
are specified, the file will be created on the indicated
drive. Otherwise, the appropriate default values supplied by
the command will be used to create the file. Existing files
are unaffected by the creation of a new file.

MDOS 3.0 User" s Guide Page 02-14

3ENERAL S'{STEM OPERAT I ON 2.7 -- D.iskette File Concepts

2.7.3 File deletion

Unlike file creation, file deletion is controlled
explicitly by the operator via the DEL command which is
described later. No other command program will delete
existinq files on the diskette. Exceptions to this are
commands that automatically create an intermediate work file
to perform the command's function: These intermediate files
are deleted by the command as an automatic clean-up process:

2.7.4 File protection

All MDOS files can be configured with gelate pt:Qt.~ti2.(l,
with w~ i te .erotect ion t or wi ~~_no_ . .Qr;.Qtec.tJQ[l. Del ete
protection will prevent the operator from inadvertently
deletin~ the file (the protection can be changed by the
operator so that the file can be deleted). Write protection
will prevent any command from writing to that file as well as
preventing deletion of the file. Normally, files are
unprotected, allowing both writing to or deletion of the
file. The NAME command. described later. can be t1Se:i to set
or toe h an..gL?~11l~.;'~~.",gX.9rl ... ~t,J on •

2.8 'fypical Command Usage Examples

The following sections give simple, but meaningful,
descriptions and examples of the most frequently used MOOS
commands in a typical software develop~ent environment. No
attempt is made in these sections to cover all capabilities
and options of the described commands. The detailed command
descriptions in PART II serve that purpose. After reading
this section, the operator should be able to qo lion-line"
with MOOS and be able to display the directory of a diskette,
create a source program file, assemble it, and load it into
~emory for testinq. The commands to delete a file, to change
its name or protection, to copy it between diskettes or to
tape are also described. New MDOS diskette generation is
discussed in the last part of this section.

It is assumed in the subsequent discussion th~t the
system has been properly installed and initialized. Thus, a
system diskette with the MOOS commands resides in drive zero.
Command program files have a suffix of '''CM·II which is supplied
as a default to the first file name that is entered on the
command line. The default loqical unit number that is
supplied is"IO". In the command examples that follow, it
will be seen that both suffix and logical unit number are not
specified for the command name.

The following notation will be used in the description
of the command line formats as well as throughout the

MOOS 3.0 User"'s Guide Page 02-15

GENERAL SYSTEM OPERATION

remainder of the manuall

Notation

Snnnn

<>

{]

{ }

2.8 -- Typical Command USBge Examples

Meaning

Hexadecimal number ,unnnnll.

Syntactic elements are printej in
lower case and are containej in
angle brackets, e.g., <options>,
<name> •

~ptional elements are contained
1n square brackets. If one of a
series of elements may be
selected, the available list of
elements will be separated by the
word ·"or" , e.g., {<tagt> or
<tag2>].

A required element that must be
selected from the set of ele~ents
will be contained in curly
brackets. The elements wll1 be
separated by the word "or".

All elements that appear outside of angle brackets «»
must be entered as is. Such elements are printed in capital
letters (if words) or printed as the actual characters (if
special characters). For example, the syntactical element
[;<options>] re~uires the semicolon (I) to be typed whenever
the <options> field is used.

2.8.1 DIH -- Directory display

The DIH command is used to display
diskette~s directory. Either the
selective parts of it can be displayed.
command line for the DrR command iSI

the contents of a
entire directory or

The format of the

DIR {<name>] {;<options>]

The file name specification <name> indicates what to
display. The <options> specification indicates how to
display it. If DIR is entered by itself on the command line,
it will display on the system console the file names of all
user-generated files on drive zero. If no user-generated
files exist on drive zero, a message will be displayed
indicating that no directory entries were found. This is
normally the case when DIR is used without any options on the
system diskettes that are shipped with the new system • .Ig"
display the system ..aod _:.t~j--y~,r.7.a.fuuu::ate.d......, file.:1, the ,!!~!I
opt i oF'} b C ani2..~~12~.?c~t~"tQ:t,S;Lth~ op1J()n~~~f.l~.1Q.,~.

MOOS 3.0 user"s Guide Page 02-16

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

OIR ;S

If drive one"s directory is to be displayed, then a ·11 a I,ll
must be typed in place of the file name specification:

OIR :1;S

To direct the output of the OIR command to the printer,
only one other option letter need be specified-- "LI'. Thus,

OIR sl;LS

will produce a listing of drive onels complete directory on
the printer. The us .. and ilL" can be in any order, as long as
they follow the semicolon.

The DIR command can also be used to see if a specific
file name exists on a given drive. This is accomplished by
entering a complete file name specification (i.e., name,
suffix, and logical unit number). Thus,

o I R ED IT. CM: J

will perform a directory search for the indicated file name
specification on drive one. If the directory entry exists,
its file name and suffiX will be dispiayed. Otherwise, a
message indicating that no entries were found will be
displayed. Directory searches for specific file names do not
require the usn option to distinguish between system files
and user files. Chapter 9 contains a complete description of
the DIH command1s use.

2.8.2 EDIT -- Program editing

The EDIT command is used to create and/or to change
user-written source program and data files on diskette. The
EDIT command, although an MOOS-Supported product which may be
purchased separately, is mentioned here since it is such an
inte~ral part of the software development environment. The
EDIT command, if not included on the MOOS system diskette,
must be copied from the diskette on which it was shipped (see
section 2.8.9). (~ce the EDIT command resides on the system
diskette, it is invoked with the following MOOS command line:

EDIT <name>

If the EDIT command is not copied to the system diskette, it
can be invoked from the diskette in drive one with the
following command line.

EDIT:l <name>

The only parameter supplied on the command line is the

MOOS 3.0 User"s Guide Page 02-)7

GENERAL S'{STEM OPERAT ION 2.8 -- Typical Command Usage Examples

name of the file that is to be edited. If the file does not
exist, the EDIT command will create the file; if the file
alr.eady exists, then it will be used. The suffix ,liSA", which
is typically used for ASCII source files, is autom~tically
supplied as a default if no suffix is entered on the command
line. Thus, the user need only specify the name of the file
to be edited. Upon completion of an edit, the file name will
be unchanged. That is, a user need not be concerned about
renaming his files between edits. A complete description of
the EDIT command~s format and usage is found in the manual
accompanying the EDIT command diskette, uM6800 Co-Resident
Editor Reference Manual Jl •

2.8.3 ASM or RASM -- Program assembling

The ASM and RASM commands (hereafter called the
assemblers) are used to assemble the source program files
created with the EDIT command. The assemblers translate
these source pro~rams into object programs. The assemblers,
although both MOOS-Supported software products which may be
purchased separately, are mentioned here since they are such
an integral part of the software development environment. If
not included .on the MOOS system diskette, the assemblers must
be copied from the diskette on which they were shipped (see
section 2.8.9). Once the assemblers reside on the system
diskette, they are invoked with the following MOOS command
line:

{ASM or RASM} <name> [;<options>]

If the assemblers are not copied to the system diskette in
drive zero, they can be invoked from the diskette in drive
one by using the following command line:

(ASM:I or HASM:I} <name> [;<options>]

The only required parameter is the name of the file that
is to be assembled. Normally, this would be the name of the
file specified in the previous description of the EDIT
command. The assemblers will automatically supply the
rlefault suffix for both the source file that is read (SA) and
for the object file that is created (LX, assuming that the
OPT l-lEL or OPT ASS assembler directiVe was not Used). Such
an object file will be in the standard, EXbug-loadable
format. Such files cannot, however, be loaded by MOOS (see
section 2.8.5). The object file will have the same file name
as <name>, but a different suffix will be assigned to it to
differentiate it from the source file.

Normally, a listing of the assembled program is desired.
The assemblers will not produce a source listing unless the
option to do so is specified in the <options> field. Thus,
the command line to assemble a source program file named

MOOS 3.0 User"s Guide Page 02-18

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

TESTtJROG with source listing output would appear aSI

{ASM or RASM} TESTPHOG;L

As with the OIR command, the "L" option directs the
printed output to the printer. If a printer is not
available, or if the program is short, the source listing can
be produced on the system console by using the following
option:

{ASM or RASM} TESTPRCXJ;L=#CN

If errors are detected during the assembly process, they
will be included on the source listing. If no source listing
is being produced, errors will automatically be displayed on
the console. Typically, the software development process
involves several iterations of the editing and assembly
processes before an error-free object file is produced. The
assemblers, however, require that the object file does not
exist prior to the assembly process. Therefore. if a
duplicate file name error message is displayed, the object
file already exists. It must first be deleted before the
assembly process can continue. The next section describes
the process of file deletion.

During the iterative process of editing/assembling to
obtain an error-free program, the object file created by the
assembler can be suppressed by specifying the option ·"-0" in
the options field. The command line

{ASM or RASM} TESTPRHG;L-O

for example, will assemble the source program as in the above
examples creating the listing on the line printer; however,
the object file will not be created. Thus, the deletion of
the object file between repetitive asssmblies is not required
since it is never created.

The "'M6800 Co-Resident Assembler Reference Manual" or
the uM6800/M6801/M6809 Macro Assembler Reference Manual"
should be consulted for a complete dsscription of the
assemblers~ function, usage, and command format.

2.8.4 DEL -- File deletion

The DEL command is used to delete file names from the
directory. The removal of a filels name from the directory
makes the file unaccessible to any other process. The file
itself is effectively deleted. Thus, in the subsequent
descriptions, the phrases Udelete a file name" and "delete a
file" are equivalent. The format of the command line for the
DEL command iSI

MDOS 3.0 User"s Guide Page 02-19

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

DEL <name>

which will cause the specified file to be deleted. If the
object file from the assembly process example above is to be
deleted, for instance, the following command line would be
ent ered:

DEL TESTPHOG.LX

It should be noted that the suffix is specified. Since
the DEL command is a general purpose command, like the OIR
command, no default value for the suffix is supplied. Only
those commands that can validly make an assumption about the
type of file they will be dealing with (e.g., EDIT, ASM,
RASM) will supply default suffixes.

The DEL command will display a message indicati~g that
the file name was deleted or that the file name was not
found. Chapter 8 contains a complete description of the DEL
command's other capabilities.

2.8.5 EXBIN -- Creating program load module

The EXBIN command is used to convert the object file
from the assembly process (assumes no OPT REL or OPT ASS in
source file) into a file whose contents can be loaded into
memory for execution. MOOS can only load programs into
memory that are in memory-image files. Thus, the EXBIN
command must be invoked after an assembly process to create
the loadable file. The format of the command line for the
EXBI~ command is.

EXBIN <name>

The <name> specified on the command line is the name of
the EXbug-loadable object file created by the assembler.
Only the file name need be specified. The default suffix
"LX" is automatically supplied by the EXBIN command. A file
in the memory-image format will be created by the EXSIN
process that has the same file name as <name>, but has the
suffix -"LO" to differentiate its file type. The following
command line

EXSI N TESTPROG

will convert the file TESTPROG.LX:O to its memory-image
equivalent TESTPHOG.LC):O. Thus, the processes of editing,
assembling, and object file conversion can all be performed
on a file by only referring to its file name. The suffix
will be automatically supplied. Normally, EXBIN will not
display any messages. The next section will describe how to
load a program from a file into memory after it has been
converted into the proper format. Chapter 14 contains the

MOOS 3.0 User-'s Guide Page 02-20

:JENERAL SYSTEM OPERATION 2.8 -- Typical Command Us~ge Examples

complete description of the EXBIN command.

2.8.6 LOAD -- Program loadinq/execution

The LOAD command is used to load programs from a
memory-image file on the diskette into memory. After the
program has been loaded. the debug moni tor can be gi ven
control (for testinq the program), or the proqram can be
given control directly (for execution). The format of the
command line for program loading is:

LOAD <nalle> (;<options>]

The name of the file whose contents are to be loaded is
given as <name>. The default sllffix"LO" is autom1tlcally
suppl ied by the LOAD command. Thus. in norma 1 software
jevelopment, only a file"s original source program name is
required to take a user through the four processes of
editinq, assemblinq, object file conversion, and program
1 oadin·~.

The <options> field of the LOAD command line is used to
specify whether the debug monitor or the loaded program is to
be given control, and whether or not the program overl~ys the
resident operating system. If the file TESTPRC)G from the
previous examples was origined to the hexadecimal memory
address $100, the followin1 command line:

LOAD TESTPROG;V

would be used to load the program. Ii-Ie !=V!~' optioii is used to
specify that the program to be loaded will overlay the
resident operating system. If the .. yu option were left off
the command line, an error messaqe would be displayed. The
absence of the IIGJI option letter means that the debu~ moni tor
will be given control after the program is loaded. So, the
above example would be used to load TESTPROG into memory for
testing.

If, on the other hand, the program TESTPROG has already
been tested and works, the command line l

LOAD TESTPHOG;YG

would be used to load and execute the program. No operator
intervention is required to specify the starting execution
address. This is only true if the startinq execution address
has been specified on the END statement of the source program
during the assembly process.

Typically, most user-written programs that have been
developed prior to receiving the MOOS system would be loaded
and tested in this fashion. Programs that are develooed with

MOOS 3.0 User's GUide Page 02-21

GENERAL S,(SfEM OPERATION 2.8 -- Typical Command Usage Examples

MDOS as a basis (i.e., programs that use the resident system
functions) are loaded without the "V" option. Chapter 18
describes the details of the LOAD command and should be
consulted if more information is required.

CAUTIONa AFTER THE DEBUG MONITOR HAS BEEN ENfERED VIA
THE LOAD COMMAND, MOOS MUST NOT BE INIfIALIZED VIA "E800;G"
OR "MDOS" UNTI L EITHER [HE ABORT OR RESTART PUSHBUITON HAS
BEEN DEPHESSED.

2.8.7 NAME -- File name changing

The NAME command allows file names and/or suffixes to be
chan:}ed from their originally assigned values. Often, as a
program is developed, its author decides that a file name
other than the original one would be more appropriate and
descriptive. The format of the command line for chanqing a
file's name is:

NAME <name J>,<name 2>

This command line requires the operator to enter two
names. The first name, <name I>, specifies the current or
original name of the file. The default suffix "SA" is
supplied automatically if none is given by the operator. The
second name, <name 2>, indicates the new name that is to be
assi]ned to the file now known by <name 1>. Thus, if the
file from the above examples, TESTPR(~. were to be given a
more descriptive name, such as BLAKJACK, the following
command would be usedl

NAME TESTPROG,BLAKJACK

In this case, only the file name of the source file
would be changed. Other files with the name TESTPHOG but
with suffixes other than IISA" would remain unaffected. The
contents of the file that has its name chanqed are also
unaffected -- only the name in the directory is changed.

2.8.8 NAME -- File protection changing

The NAME command is also used to chanqe the protection
attributes of a file. The command line format for ch~nging a
fileJs protection iSI

NAME <name>;<optlons>

The <name> entry is required to identify the file whose
attributes are to be changed. Ine <options> field contains
the letters D. W, or X to indicate how the protection
attributes are to be changed. The letters take on the
following meanings l

MOOS 3.0 User~s Guide iJage 02-22

3ENERAL SYSTEM .oPERATION 2.8 -- Typical Command Usage Examples

D Set delete protection
W Set write protection
X Set no protection (remove existing protection)

Thus, if the file TESTPR(~ (source file) Is to be
protected against deletion, the following command line would
be used I

NAME TESTPHOG;O

If the memory-image file that was produced from the
source of TESTPHOG were to be write protected and delete
protected, the following command line would be used:

NAME TESTPR(X3.LO;DW

The protection on this file could later be removed with
the command linea

NAME TESTPROG. LO; X

Chapter 20 describes in more detail the other features
of the NAME command.

2 .• 8. 9 COP Y -- F i 1 e copy i ng

The COpy command is used to make a duplicate copy of a
file on a sinqle diskette, to move a file between two
different diskettes, or to move a file between the console
reader/punch (record) device and a diskette.

To make a duplicate copy of a file on the same diskette,
the following command line is useda

COpy <name I>,<name 2>

where <name 1> specifies the current name of an existing
file, and <name 2> specifies the name of the duplicate copy.
The default suffix MSA" and the default logical unit number
zero are supplied for <name I> if those parts of the file
name specification are omitted. Normally, the destination
file, <name 2>, does not exist. The COpy command, however,
will alert the operator if <name 2> does exist, and ask him
if that file should be overwritten. If <name 2> has a
different logical unit number than the original file, the
file will be duplicated on the specified drive. If the
TESTyHOG source file from the above examples is to be saved
in a file called TEMp, the following command line would be
used: .

COpy TESTPROG,TEMP

The file TEMP will be created on the same drive as

MOOS 3.0 User"'s Guide Page 02-23

GENERAL S,{STEM OPERATION 2.8 -- Typical. Command Usage Examples

fESTPReX), namely, drive zero. To copy TESTPROG to drive one,
one need only specify the logical unit number (a) after the
second name.

The COpy command should be used to move the EDIf, ASM,
and RASM commands from their separate diskettes onto the
system diskette in drive zero. Since the names of the EDIT,
ASM, and RASM commands are to be kept the same, the second
name can be omitted completely. All that needs to be
specified is the logical unit number. Thus,

COpy EJIT .CM: 1,:0
COpy ASM.CM:I,aO
COpy RASM.CMa J ,aO

would be the commands that are entered if the diskette in
drive one contained these files. The suffixes "CM" are
explicitly specified since neither the EDIT, ASM, or RASM
comm~nds are source programs.

A similar procedure would be followed to copy any files
from a diskette in any drive to the system diskette in drive
zero. If a diskette has been damaged or cannot be used to
initialize MOOS, it may be placed in another drive in attempt
to save any files that may be on it. The COjJY command should
be used to save files in this manner. If diskette controller
errors occur durinq such a save process, the file~ ca~not be
recovered.

If
that are
records
sequence
console
transfer

a user has existing files on paper tape or cassette
written in one of t~e standard record formats (i.e.,
that end with 3 carringe return, line feed, null
- see section 24.3) and which can be read via the
reader, the following command line can be used to
those files to diskette:

COpy #C~,<name 2>;N

where <name 2> is the name of the diskette file into which
the tape file is to be written. The first parameter, HCR,
specifies the console reader device, and the liN" ootion
indicates that there is no MOe~ header record on the tape
file.

The above process can be chanqed sliqhtly so that a file
on diskette can be written to the console punch (record)
deVice. For example,

COpy <name 1>,#CtJ;N

will transfer the file named by <name I> to the console punch
device, #CP, without the MOOS header information ("N"
option). Chapter 7 describes in more detail the other
features of, the COpy command.

MOOS 3.0 User" s Guide Page 02-24

:JENEHAL SySTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8.10 BACKUP -- MOOS diskette creation

New diskettes, or diskettes never before used on .,n MOOS
system j must first be prepared for use with MOOS. The
quickest way to generate a ne~ MO(~ diskette is to use the
BACKUP command. Usually, a copy is retained of the original
system diskette that was shipped with the EXORdisk II or III.
This diskette should be used to qenerate subsequent MOOS
di skette s. It is recommended that the or iginal di skette not
be used for development purposes. It should serve only as
the master copy from which all other diskettes are generated.

A blank or scratch diskette should be placed into drive
one. The master system diskette should be resident in drive
zero. The following command line will then cause a complete
copy of the master diskette to be createdl

BACKUP ;U

rhe uU" option specifies that the entire surface of the
diskette in drive zero is to be read and copied to the
diskette in drive one. This process ensures that all sectors
on the neW diskette can be written to. Once the BACKUP
command has been invoked in this way, it will display the
followinq message:

BACKUP FROM DRIVE 0 TO 1?

to which the operator should respond with a nyu. Any other
response will terminate the BACKUP process, leaving the
diskette in arlve one intact. The ny .. respC:ise will cause
the diskette copy to take place.

As an added precaution, the two diskettes should be
compared against each other after the BACKUP command has
completed. This diskette verification is invoked with the
following command linel

BACKUP ;UY

If any messages are displayed during the
process, the diskette in drive one should not be
system diskette.

verification
used as a

Chapter 3 describes the BACKUP command in detail.
Chapter 10 describes an alternative method of generating new
system diskettes.

2.9 Other Available Commands

Several other powerful commands are included with each
MOOS diskette. These commands are not needed initially in

MOOS 3.0 UserJs Guide Page 02-25

GENERAL Sf STEM OPERATION 2.9 -- Other Available Commands

beco~ing familiar with the system; however, they do provide
helpful and necessary tools for the advanced software
developer. A brief description of these commands Is given
here to shed some light on their utility.

2.9.1 BACKUP -- Diskette copying

The BACKUP command allows making copies of entire MOOS
diskettes. Options exist for makinq campI ete copies, for
file reorqanization to consolidate fragmented files and
available diskette space, for appending families of files
from one diskette to another, and for diskette comp~risons.
Chapter 3 contains the complete description of the BACKUP
command.

2.9.2 EMCOPY -- EDOS file conversion

The EMCOPY command allows files from a user"s EO OS 2
system diskette to be copied to and catalogued on an MOOS
diskette. Options exist for copying the entire diskette,
selected files, or single files. Chapter 13 contains the
complete description of the EMCOPY command.

2.9.3 BL(~EDIT -- File rearrangement

The BLOKEDIT command allows lines of text from one or
more ASCII files to be selectively copied into a new file.
This command can be useful in generating new program source
files by copying routines from existing source files, or in
rearranginq existing files by copying their lines int0 a new
sequence. Chapter 5 contains the complete description of the
BLOKEDIT command.

2.9.4 LIST -- File display

The LIST command is used to print any ASCII file on
either the system console or the printer. (~tions exist for
numbering lines, specifying page formats, printing headings,
and indicating starting and ending points. In addition,
files can be accessed by their loglcal sector numbers for
rapid access to any portion of a file. Chapter 17 contains
the complete description of the LIST command.

2.9.5 MERGE -- File concatenation

The MEHGE command allows one or more files to be
concatenated into a new file. This command Is useful In
combining several smaller program modules or In building
relocatable libraries to be used in conjunction with the

MDOS 3.0 User"s GuIde Page 02-26

,ENERAL S'(STEM OPERATION 2.9 -- other Available Commands

M6800 Linking Loader. Chapter 19 contains the complete
description of the MERGE command.

2.9.6 BINEX -- EXbug-loadable file creation

The BINEX command allows memory-image files to be
converted into an EXbug-loadable format for copying to tape.
[his command performs the inverse operatIon of the EXBIN
command. BiN~X is useful in the development of
non-diskette-resident software with MDOS, since the object
code can be written to tape after it has been tested.
Chapter 4 contains the complete description of the BINEX
command.

2.9. I FREE Available file space display

The FHEE command displays how many unallocated ~ectors
and how many empty directory entries are on a diskette.
Chapter 16 contains the complete description of the FREE
command.

2.9.8 ECHO -- Echo console I/o on printer

The ECHO command can be used on/ an EXORciser I I system
to cause all input/output directed to the system console to
also be printed on the line printer. Chapter 12 contains the
complete description of the ECHO command.

2.9.9 PATCH -- Executable program file patching

The PATCH command allows changes to be made to
memory-image files. An object file can be ufixed u due to
minor bugs or assembly errors without having to re-eiit and
re-a ssemble its corresponding source fil e. The ,ltf ixes" can
be entered using M6800 assembly language mnemonics or the
equivalent hexadecimal operation codes. Chapter 21 contains
the complete description of the PATCH command.

2.9.10 CHAIN -- MOOS command chaining

The CHAIN command allows predefined procedures to be
auto~atically executed. A procedure consists of any sequence
at MDOS command I ines that have been put into a di ske tte
file. Instead of obtaining successive command lines from the
console, CHAIN will fetch commands from a file. This feature
allows complicated and len~thy operations to be defined once,
and then invoked any number of times, requiring no operator
intervention. The additional capabilities of conditional
directives to the CHAIN command at both compilation and

MOOS 3.0 User"'s Guide Page 02-27

GENERAL S'fSTEM OPERAT ION 2.9 Other Available Commands

execution time, and the capability of strinq substitution,
permits an almost unlimited number of applications to be
handled by a CHAIN file. Chapter 6 contains the complete
description of the CHAIN command.

2.9. II REPAIR -- System table checking

The REPAIR command allows the user to check and repair a
malfunctioning or a non-functioning MDOS diskette. Errors in
the system tables can be found, identified, and corrected
with this command. Since MOOS performance is jirectly
related to the correctness of these system tables, the REPAIR
command is a useful diagnostic utility. Chapter 22 contains
the complete description of the REPAIR command.

2.9.12 DUMP -- Diskette sector display

The DUMp command allows the user to examine the entire
contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP com~and
allows openinq of files so that they can be examinei using
logical sector numbers. Sectors can also be moved into a
temporary buffer where changes can be applied before they are
written back to diskette. Chapter I' contains the complete
description of the DUMP co~mand.

2.9.13 FORMAT -- Diskette reformatting

The FORMAT command attempts to rewrite the sector
addressing information on damaged diskettes. The cOll'TIand can
be used to reformat either sinqle-sided or double-sided
diskettes; however, double-sided diskettes must be formatted
wi th thi s command before they can be used with MDOS.
Single-sided diskettes usually come pre-formatted in a
compatible format. The FORMAT command will only 'I/ork on
systems that are operating at one of the standari clock
frequencies of J MHZ, 1.5 MHZ, or 2 MHz. Chapter 15 contains
the complete description of the FORMAT command.

2.9. 14 DOSGEN -- MOOS di sk ette generat ion

The DOSGEN command allows specialized MOOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
MDOS enVironment. DOSGEN will also create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or on appropriately formatted double-sided diskettes.

MDOS 3.0 user's Guide Pa'Je 02-28

,ENERAL Sf STEM OPERAT ION 2.9 -- Other A.vailable Commands

Chapter 10 contains the complete description of the O(~GEN
command.

2.9.15 ROLLOUT -- Memory rollout to diskette
~~~~~~~~~--~----~-------~----~------~-------

The ROLLOUT command is used for writing the contents of 
memory to diskettee The ROLLOUT command supports the 
dual-memory maps of EXORciser II as well as the single memory 
map of EXORciser I. Options exist for w:riting memory 
directly into a diskette file or for writing to a scratch 
diskette. Chapter 23 contains the complete description of 
the 110LLOUT command. 

2.10 MOOS-Supported Software Products 

Although the preceding list of commands provides the 
user with many powerful tools for software development, there 
are many other Motorola products which are capable of running 
in an MOOS environment, even though they were developed 
independently. These products are called MOOS-Supported 
software products. No attempt will be made in this UserJs 
GUide to comprehensively describe any MOOS-Supported software 
product. Appendix H contains a list (complete at time of 
publication) of all products that can be invoked from an MOOS 
diskette as a command. Each description will contain the 
additional hardware reqUirements, if any, the command line 
formats, and a brief discussion of the product's 
capabilities. MOOS-Supported software products will be 
received on separate diskettes. Section 2.8.9 describes how 
such products can be copied onto the system diskette. 

2.11 Paper Alignment 

All MOOS commands that output to the line printer will 
return the paper to its original position upon termination. 
Thus, if the paper is correctly aligned at the time MDOS is 
initialized, then the paper will never have to be aligned 
again. The paper should be placed so that the print line is 
positioned three lines before a perforation (assuming 
fan-fold forms). MDOS commands use the standard format of 66 
lines/page. 

MOOS 3.0 User"s Guide Page 02-29 





PAt< r II 

ADVANCEU MDOS USER"S GUIDE 



CHAprE~ 3 

3. 8ACKUP COMMAND 

The BACKUP command allowsmakinq copies of entire MOOS 
di skette s. Opti ons exi st for making campl ete cop! e 5, for 
file reorganization to consolidate fragmented files and 
available space, for appending families of files from one 
diskette to another, and for diskette comparisons. The 
BACKUP command will only copy MOOS-generated diskettes. The 
BACKU~ command may also be used for copying single-sided 
diskettes onto double-sided diskettes. 

3. 1 Use 

The BACKUP command is invoked with the following command 
line: 

BACKUP [[I<s-unit>,}I<d-unit>] [;<options>] 

where <s-unit> is the source logical unit number, cd-unit> is 
the destination logical unit nu~ber, ~nd <options> can be one 
or more of the option letters described below. 

If neither <s-unit> nor cd-unit> is specified on the 
command line, then zero will be used as the source unit and 
one will be used as the destination unit. SpecifyinQ only a 
single logical unit number on the command line ~i!! cause 
zero to be the source unit and the specified logical unit to 
be the destination unit. Both <s-unit> and cd-unit> must be 
valid logical unit numbers (0-3), cd-unit> cannot be zero, 
~nd the two numbers cannot be the same. 

BACKUP will always copy from the source unit to the 
destination unit (unless diskette comparisons are spacified). 

If the command line is valid, the message l 

BACKUP FROM DRIVE <s-unit> To cd-unit>? 

or 

APPEND FROM DRIvE <s-unit> TO cd-unit>? 

will be displayed where <s-unit> is the source unit number 
and cd-unit> is the destination unit number. In either case, 
a response of uY" is required if BACKUP is to continue. Any 
other response will return control to MOOS. Further BACKUP 
action depends on the specified options. The options are 
divided into 'IMain Options" and "Other Options". Main 

MOOS 3.0 UserJs Guide Page 03-01 



BACKUP COMMAND 3. I -- Use 

o tions are mutuall exclus vee That is, only one Main 
(~ on can be specified on the com~and line at a time. The 
Other Options can be included with the Main options as 
described in section 3.6. 

Main Options 

none 

R 

A 

v 

other Options 

c 

u 

I 

L 

N 

S 

u 

y 

z 

Function 

Copy all allocated space to destination 
di sk ett e. 

Reorganize diskette so that files are 
defragmented and free space is 
consolidated on destination diskette. 

Append (copy) selective files to 
destination diskette. 

Verify (compare) source and destination 
diskettes. 

Function 

Continue if read/write errors occur. 

Continue if deleted data mark errors 
occur. 

Change 10 sector during copy. 

Use line printer for bulk of message 
printing. 

Suppress printing of tile names being 
copied. 

Suppress printing of byte offsets during 
compari sons. 

Include unallocated space in copy/verify 
process. 

If duplicate file name exists, delete 
old, copy new. 

It duplicate file name exists, suppress 
copy. 

3.2 uiskette Copying 

If no Main 
BACKUP process 

MDOS 3.0 User's Guide 

Options are 
will produce 

specified, then the default 
a physical sector copy of the 

Paqe 03-02 



3ACKUP COMMAND 3.2 -- Diskette Copying 

source diskette on the destination diskette. Only the 
allocated space from the source diskette will be copied. The 
allocated space includes all file space and all areas locked 
out in the Lockout Cluster Allocation Table (see Chapter 24). 
Thus,.oijly MJOS=generated diskettes can be copied using the 
BACKUP command. since other diskettes will not have an 
allocation table. u"' ..... U!! •. 

Since only the allocated space is copied, the ~lnlmum 
amount of disk space is copied, and the BACKUP process is 
completed in the minimum amount of time. Sometimes, however, 
it is desirable to obtain a complete copy, and not just a 
copy of the a llocated space. In such cases, the "U" opt ion 
can be used to force the copying of unallocated space as well 
as the allocated space. 

A typical BACKUP process dialogue would look like the 
following: 

=BACt<lJP 
BACKUP FtlOM DRIVE 0 TO 11 
Y 
= 

and would produce a copy on the destination diskette of the 
source dlskette J s allocated space. 

If an EX(mdisk III system is beinq used, then the 
destination diskette cannot be a single-sided diskette if the 
source diskette is a double-sided diskette. The error 
messaqe: 

INVALIlJ TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED 

will be displayed and control returned to MOOS to indicate 
this condition. The opposite, however, is allowed. fhat is, 
a single-sided diskette can be in the source drive with a 
double-sided diskette in the destination drive. 

3.3 File Reorganization 

After an MOOS diskette has been used for a while, the 
file structure may become fragmented and new files can become 
scattered. fhe lonqer a diskette is used in a developnent 
environment, the more the total system performance may be 
degraded due to increased access time. File reorganization 
is supplied by the BACKUP command and constitutes one way to 
restructure MOOS diskettes, thereby improving the system~s 
efficiency. 

MUOS 3.0 User"'s Guide Page 03-03 



BACKUP COMMAND 3.3 -- File Heorganization 

File reorqanization improves system efficiency by: 

t • Consolidating file segments, 
2. Packing files more closely together, 
3. Clustering related files together. 
4~ Operator selection to only copy desired files. 
5. Reducing marginal diskette errors by rewriting 

files, 
6. Consolidating directory space. 

File reorganization is specified with the Main Option 
JIR" on the BACKUP command 1 ine. Thus. 

BACKUP :<s-unit>,J<d-unit>;R 

would invoke the BACKUP command to reorganize the files on 
the source diskette in drive <s-unit> during the copy to the 
destination diskette in drive cd-unit>. The source jiskette 
must be an MOOS diskette. It is unaffected by the 
reorganization. The message 

BACKUP FROM DRIVE <s-unit> TO cd-unit>? 

is jisplayed before any copyinq takes place. Unlike the 
complete copy process which will proceed immediately after 
the .. yn response is given by the operator. the reorganization 
process will perform the followinq initialization procedure: 
First the ID sector is copied (and optionally modifiej if the 
"I" option was specified). Second, the Lockout Cluster 
Allocation Table (LCAT) and the Cluster Allocati0n Table 
(CAT) are initialized (user locked out sectors are not copied 
during the reorganization proces.s). Third, the directory 
sectors on the destination disk are zeroed. Fourth, the 
Bootblock is copied. Fifth, all of the file names from the 
source disketteJs directory are re8d. They are then sorted 
into alphabetical order, first by suffix, then by file name. 
After the sorting has been completed the following message 
will be displayed: 

ENTEH FILE COpy SELECTION COMMANDS: 
5 AV E (5), DEL ET E (D), P R I NT (P), QUI T (Q), NO MOH E (CR) 
.:), 0, P, Q t (CR): 

indicating that the operator must enter file selection 
commands to specify which files from the source diskette are 
to be copied to the destination diskette. The first line of 
the message indicates that BACKUP has reached the file 
selection stage. The second line contains the function of 
each file selection command as well as the letter that must 
be used to issue that command. The third line is used as a 
prompt for the current and subsequent file selection 
commands. 

MOOS 3.0 User's GUide Paqe 03-04 



3ACKUP COMMAND 3.3 -- File Heorqanization 

Command Letter Function 

SAVE S Include a certain file name or family 
of file names from the sorted 
directory in the set of files to be 
copied to the destination diskette. 

DELETE 0 Exclude a certain file name or family 
of fils names from the sorted 
directory from the set of files to be 
copied to the destination diskette. 

PRINT P Display the set of file names from 
the sorted directory th3t are 
eligible to be copied to the 
destination diskette. 

QUIT Q Terminate the BACKUP command and 
return to MO(S. No copying will take 
place; however, the destination 
diskette has been affected due to the 
reorganization option as explained 
above. 

NO MORE (CH) Entered as a carriage return only. 
No more commands will be entered. 
The files to be copied h~ve been 
selected. If no file selection 
commands were issued, all files in 
the sorted directory will be copied. 
Begin the copy precess. 

Both the SAVE and DELETE commands require file names to 
be specified as parameters. The format of the SAVE and 
DELETE commands are the same, except, of course, for the 
command letterl 

{D or S} <name l>[,<name 2>, ••• ,<name n>] 

The file names specified can contain the family indicator. 
fhe default suffix .11 SAil will be supplied if none is 
explicitly entered. For example, the SAVE commandl 

will cause the family of files having the suffix "eMil, the 
file EQU.SA. and the family of files having the name IOCB to 
be flagged as saved. The DELETE command: 

o A*.CM.NOL,TEST.L* 

will cause the family of files beginning with the letter nAu 
and havinq a suffix of"CMJI, the file NOL.SA, and the family 

MOOS 3.0 User's GUide 



BACKUP COMMAND 3.3 -- File Reorganization 

of files named TEST with suffixes beginning with the letter 
~L" to be flagged as deleted. 

After a SAVE or DELEfE command has been entered, each 
file name of the sorted directory which has not already been 
marked as Jlsaved'" or "deleted" and which matches one of the 
<name i> (i=1 to n) will be marked as "saved J• or .I'deleted". 
After all the file names from the SAVE or DELETE command line 
have been processed, a new prompt. 

S, D, P, a, (CR)' 

will be displayed. The operator can then enter further SAVE 
or DELETE commands as well as any o.f the other valid commands 
of the BACKUP file selection process. 

(nce a com~and other than SAVE or DELETE is entered one 
of two things happens to the sorted directory. If at least 
one SAVE command has been processed without error, then all 
file names in the sorted directory not marked as "save1" will 
be marked as "deleted"'. On the other hand, if no prior SAVE 
commands were used, then all file names not marked as 
"deleted" will be eligible for copying (marked as "'saved ll ). 

The QUIY command can be entered at any time in response 
to the file selection command prompt. QUIT will C9use the 
BACKUP process to be terminated and control returned to MOOS. 
The file selection commands entered thus far will have had no 
effect on the destination diskette; however, due to the 
reorganization option, the destination diskette will h9ve had 
its oasic system tables initialized as described above. 

The NO MORE command, entered as a carriage return only, 
indicates that no more file selection commands will be given 
by the operator. If no file selection commands have been 
entered prior to the NO MORE command, then all file names in 
the sorted directory will be eligible for copying to the 
destination diskette. The copy process will begin. 

The PRINT command will cause all names from the sorted 
directory which have not yet been flagged as ffdeleted" to be 
printed. The PRINT command also makes it impossible to enter 
further SAVE, DELETE. or QUIT commands. The PRINT command 
has its own sub-com~and structure that allows deletion of 
file na~es from the sorted directory. Along with each file 
name and suffix a two-digit, hexadecimal number that 
indicates the position of the file nal1e within the sorted 
directory is displayed. Thus, the output from the PHINT 
command could look like: 

MOOS 3.0 User's Guide Paqe 03-06 



BACKUP COMMAND 

00 BACKUP .CM 
01 BINEX • CM 
02 BLOKEDIT.CM 
03 CHAIN .CM 
"A uq. COpy 1"'11 

• ~IYI 

05 DEL .CM 
06 OIR .CM 
ID HLOAD .eM 
1 E FORLB .RO 
IF EQU .SA 
20 IOCB .SA 

3.3 -- File Reorganization 

The range of numbers $07-1C, inclusive, iS1lissing, 
indicating that they have been excluded from the sorted 
directory via prior SAVE and/or DELETE commands. If PHINT 
were the first command to be entered, then all file names in 
the sorted directory would be seen, and the range of numbers 
would be without gaps. 

After the PRINT command has displayed all of the file 
names, a new prompt will be issued: 

DELETE FILE NOS.: 

to which the operator can respond with a number, a series of 
numbers or ranges of numbers separated by commas, a range of 
numbers, or a single carriage return. The .numbers must be 
from the set of thosB displayed in front of the file names. 
These numbers are used to indicate which files are to be 
excluded from the sorted directory before fil~s are copied to 
the destination diskette. For example, the following entry: 

01-03,IE,06 

would cause the file names with numbers 

01, 02, 03, 06, and IE 

to be removed from the sorted directory before the file copy 
proce ss begins. Another "DELETE FILE NOS. ,I' prompt wi 11 be 
displayed it a number was entersd in response to a previous 
prompt. Thus, as many file names as desired can be excluded 
from the sorted directory. A carriage return response to the 
prompt has the same effect as the NO MORE command described 
above; i.e., it will end further command processing and cause 
the file copy process to begin. 

After the files to be ~opied have been selected, the 
message 

COPYING MOOS .5Y 

will be displayed. This message will in turn be followed by 
similar messages for each of the eight remaining system files 

MDOS 3.0 User.l's Guide Page 03-07 



BACKUP COMMAND 3.3 -- File Henrqanlzatlon 

that must be copied to every diskette. The MOOS family of 
system files are not shown in the sorted directory since they 
must be copied. These system files are copied first so that 
they will be assured of residing in specific physical 
locations required by the MD(S initialization process. After 
the MOOS system files have been copied, the message l 

STARTING TO COpy FILES 

is displayed, followed by messages of the forml 

COpy I NG <name i> 

as each file from the selected files list is copiei to the 
destination diskette. 

Using the above example of the sorted directory and the 
file names deleted from it, the file copy messages would look 
likel 

COPYING MOOS .SY 
COPYI NG MDOSOVO .SY 
COpy I NG MOOSOV I • S Y 
COpy I NG MDOS()V2 .SY 
COPYING MDOSOV3 .SY 
COPYING MDOS()V4 .Sf 
COPYING MDOS()V5 .SY 
COpy I NG MDOSOV6 .SY 
COPYING MDOSER .SY 
STARTING TO COpy FILES 
COPYING BACKUP .CM 
COpy ING COpy .CM 
COPYING DEL .CM 
COPYING RLOAD .CM 
COPYING EQU .SA 
COpy I NG I nCB .SA 
= 

After all eligible files from the sorted directory have 
been copied, BACKUP will return control to MDOS. The 
destination diskette will contain all of the selected files 
packed together as closely as possible, leaving as much free 
space as possible. 

3.4 File Appending 

The file append process allows selected single files or 
families of files to be copied from the source diskette to 
the destination diskette. The file append feature of the 
BACKUP command is similar to the reorgAnization feature 
except that the destination diskette is not initialized with 
new system tables or system files. Only the file selection 
and the file copying from the source diskette are performed. 

MOOS 3.0 User's Guide Page 03-08 



3.4 -- File Appendinq 

The diskette in the destination drive is assumed to be a 
valid MOOS diskette. The file append process is inv::>ked by 
using the Main Option "A" on the BACKUP command line: 

BACKUP :<5~unit>,a<d-unit>;A 

Instead of the "BACKUP FROM DRIVE <s-unit> TO <d-unit>?" 
message normally displayed by BACKUP, the message: 

APPEND FROM DHIVE <s-unit> TO <d-unit>? 

is shown. The operator must respond with a Uyfl if the file 
append process is to continue. Like the file reorganization 
process, the file append process allows the operator to 
select which files are to be copied. The messaqes for file 
selection and the commands to the file selection process are 
explained in section 3.3, File Reorganization, and will not 
be discussed aqain here. After all files have been selected, 
they will be copied similar to the process described in 
section 3.3; however, the MOOS family of system files is not 
copl ed. 

Since the destination diskette already contains entries 
in its directory, a possibility of file name duplication 
exists. In the event that one of the selected file names 
from the sorted directory duplicates a file name in the 
destination directory, the followinq message will be 
displayed: 

<name> - DUPLICATION: IS IT TO BE COPIED? 

The operator must respond with either an IINIt or uY". The i-Nii 
response will prevent the file from beinq copied to the 
destination diskette. The nyll response will cause the 
prompt: 

NE~~ NAME: 

to be shown, to which the operator can respond with the new 
name that is to be assigned. If a valid file name anj suffix 
are entered, they will be used as the name of the destination 
file. The default suffix "SAil will be supplied if none is 
explicitly entered. If only a carriage return is given as a 
response to the prompt, then the file on the destination 
diskette will be deleted (if it is unprotected) before the 
file from the source diskette is copied (which will retain 
its original name, in this case). If the destination 
diskette~s duplicate file cannot be deleted, the meSS3]e 

CANNOT Dt.LETE DUPLICATE NAME 

will be displayed and the BACKUP command will be terminated. 

The llyn and uz .. options can be used 1.n conjuncti')n with 

MOOS 3.0 User's Guide Paqe 03-09 



3.4 -- File Appending 

the JlA" option- to indicate an automatic procedure in the 
event of file name duplication. fhe nyn option will 
automatically cause an attempt to be made to delete the file 
on the destination diskette before the copy takes place. If 
the uy.. option is in effect, the file name duplication 
message from above takes on the following form. 

<name> - DUPLICATION' IS COPYING 

to indicate that a ny" was given as an automatfc response to 
the "IS IT TO BE COPIED?" portion of the messaqe. The "Z" 
option will cause the file name duplication message to take 
on the form. 

<name> - DUPLICATION: IS NDT COPIED 

to indicate that an UN" was given as an automatic resoonse to 
the "IS IT TO BE COPIED?" portion of the message. 

The file append process causes space to be allocated on 
the destination diskette in contiguous blocks. If 
insufficient contiguous space should remain 0n the 
destination diskette for a given file, the file will not be 
copied. The error me5sage 

OBJECT FILE CREATIO,'J COpy ERROR 

will be displayed and the BACKUP command will be terminated. 
The destination diskette may have sufficient sp~ce to 
accommodate the file; however, if the space is not 
contiguous, the above error occurs. To copy the file, the 
destination diskette should be run through the file 
reorJanization process described in section 3.3, or the file 
must be copied via the COpy command (Chapter 7). After the 
last file has been copied to the destination diskette, 
control will be returned to MOOS. 

3.5 Diskette Verification 

The Main Option I'V" invokes the verify process of the 
BACKUP command. The verify process allows R physical sector 
comparison to be made between the diskettes in the source and 
destination drives. The following command line, without the 
presence of other options, will cause the verify process to 
compare the diskettes~ physical sectors based on the source 
diskette's allocation table. 

BACKUP :<s-unit>,I<d-unit>;V 

If any bytes in any sectors fail to compare, a sector ~essage 
and a list of all offsets within the sector that did not 
compare is printed: 

MDOS 3.0 User"s Guide Page 03-10 



ACKUP COMMAND 3.5 -- Diskette Verification 

SECTOR nnnn 
OFFSET ii DR<s-unit>-JJ DH<d-unit>-kk 

where Mii~ is the hexadecimal offset into physical sector 
Jlnnnn", IIjJII is the hexadecimal contents of the sector's byte 
on the source diskette, and flkk" is the hexadecimal contents 
of the respective sectorJs byte on the destination diskette. 
If all sectors compare, no messages are displayed. After the 
verification has completed, control is returned to MOOS. 

If an EXOHdisk III system is being used, the destination 
diskette cannot be a sinqle-sided diskette if the source 
diskette is a double-sided diskette. In such cases the 
me ssage 

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED 

will be displayed and control returned to MOOS. The 
opposite, however, is allowed; that is, a single-sided 
diskette can be verified against a double-sided diskette. 

3.6 Other Options 

The other Options descr ibed br iefly in section 3. 1 
cannot be used indiscriminately with any of the Main(~tions. 
fhis section serves to fully explain the use of each (~her 
opt ion. 

other 
Option 

C 

o 

Valid with Function 
Main Option 

any The HC" option will cause the copy or 
verify process to continue even if a 
retryable read/write error occurred which 
could not be corrected. The retryable 
errors include CHC, seek. data mark, and 
address llark eRC errors. The HClI option 
will not cause read/write errors on 
Retrieval Information Blocks to be 
ignored. 

any The liD" option will cause the copy or 
verify process to continue even if a 
deleted data mark error is detected. 
This ootion allows the verification of 
diskettes that have had bad sectors 
locked out during the DOSGEN or REPAIR 
process (such sectors are flaggei with a 
deleted data mark). The "D" option 
permits a user to copy the maximu~ amount 
of data from a bad source diskette to a 
qood destination diskette. 

MOOS 3.0 User's Guide Page 03-11 



BACKUP COMMAND 3.6 -- Other Options 

other 
Option 

I 

L 

N 

s 

Valid with Function 
Main Option 

none, R The 111" option indicates that the 
diskettels ID sector is to be modified by 
prompting the operator. The .III" option 
will cause the following prompt messages 
to be displayed. The operator can enter 
new information if that field of the ID 
sector is to be changed. If the field is 
to remain the same as on the source 
diskette, then only a carriage return 
need be entered. 

any 

v 

Prompt 

DISK NAME' 

DATECMMDDYY) • 

115EH NAME' 

Operator Response 

Maximum of 
characters 
diskette 10. 
is similar to 
a file name. 

eight 
for 

Format 
that of 

Six-digit numeric 
date. No check is 
made for valid months 
or days of the month. 

Maximum of 
characters. 

twenty 

The ilL" option causes the output from the 
copy process or from the verification 
process to be directed to the line 
printer instead of the system console. 

The "NII option will suppre5s the printing 
of the file names as they are being 
copied to the destination diskette. This 
option will not suppress the printing of 
error 'llessaqes. 

The "5" option will suppress the Dr int ing 
of the sector offset messages if sectors 
do not compar e. 

MOOS 3.0 User's Guide Paqe 03-12 



)ACKUP COMMANU 3.6 -- Other opt ions 

other 
option 

II 
v 

y 

z 

Valid with Function 
Main Option 

none. V The "U" option indicates that all 
physical sectors. both allocated and 
unallocated. are to be cooied or 
verified. If "U" is not specified. only 
the allocated sectors, as mapped in the 
source diskette's allocation table, will 
be used. 

A The ny.. option will cause a "Y" to be 
automatically given as a response to the 
file name duplication error message. 
This will automatically force the 
attempted deletion of the duplic~te file 
on the destination diskette bef0re the 
file is copied. The nyu and DZ" options 
are mutually exclusive. 

A The uzn option will cause an UN" to be 
automatically given as a response to the 
file name duplication error ~essage. 
fhis will automatically prevent the file 
on the source diskette from being copied 
to the destination diskette. The HZ" and 
llyn options are mutually exclusive. 

3.7 Messages 

The following messages can be displayed by the BACKUP 
command. Not all messages are error messages, althou]h error 
messages are included in this list. The standard error 
messaqes that can be displayed by all commands are not listed 
here. 

BACKUP FHOM DRIVE <s-unit> TO cd-unit>? 

This indicates BACKUP will copy to the 
destination diskette in drive cd-unit> from the 
source diskette 1.n drive <s-unit> if a "y~1 
response is given. Any other response will cause 
control to be returned to MOOS. 

APPE1~O FROM DRIVE <s-uni t> TO <d-uni t>? 

This indicates that BACKUP will perform the file 
append process if a ny" response is given. Any 
other response will cause control to be returned 
to MDOS. 

MOOS 3.0 User"'s Guide Page 03-13 



BACKUP COMMAND 

OISK NAME: 

3.7 -- Messages 

The "I" option has been specified. The operator 
is expected to respond with a new disk 10 or a 
carriage return. 

DATE ( MMDU YY) & 

LJSER NAME: 

The "I" option has been specified. 
is expected to respond with a new 
carriaqe return. 

The ooerator 
date or a 

The uIJI option has been specified. The operator 
is expected to respond with a new user name or a 
carriage return. 

ENTEt-l FILE COpy SELECTION COMMANDS' 
SAVE (5), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR) 
S, D, P, Q, (CR): 

The fiR" or "Aft option has been specified. The 
file selection process is activated. The third 
line shows what the valid responses are. 

S, 0, P, a, (CR) I 

SYNTAX EHHOH 

This is a subsequent prompt from the file 
selection process. SAVE and DELETE commands can 
be entered until a P (print), Q (quit>, or 
carriaqe return (NO MORE) is entered. 

This indicates a mistake in a response to a 
question or prompt from the BACKUP command. The 
entire line entered by the operator is ignored 
and a new response must be made. 

STAHTING TO COpy FILES 

This indicates that files 
directory are starting to be 
option). 

MOOS 3.0 User's Guide 

from the sorted 
copied (R or A 

Page 03-14 



~ACKUP COMMAND 3.7 -- Messages 

l~O FILES TO COpy 

This indicates that there are no file names in 
the source directory (other than the MOOS system 
files) or that all of the file names from the 
sorted directory have been deleted. No files are 
cop i ed i f the 11 A" 0 pt ion i sus e d • On I y the M DOS 
family of system files will be copied if the uRn 
option is used. 

<name> NOT FOUND 

This indicates that a file name or a family of 
file na~es specified by a SAVE or DELETE command 
could not be found in the sorted directory. 

COpy I NG <name> 

This indicates that the file name specified by 
<name> is being copied to the destination 
diskette. 

<name> - DUPLICATION: IS IT TO BE COPIED? 

NE ,'i i~AME: 

This indicates that the file name specified by 
<name> already exists on the destination diskette 
during the append process. Only a "Y" or .tIN" is 
accepted as a valid response. 

This messaqe is displayed if A ny.. is given in 
response to the preceding message. It allows the 
operator to assign a new file name to the file 
being copied from the source diskette. A 
carriage return response (no file name) will 
cause an automatic attempt to delete the 
duplicate destination file to be made, rather 
than assigning a new name to the source file. 

<name> - DUt>LICATIONa IS COtlYING 

[his indicates that the file name specified by 
<name> already exists on the destination diskette 
during the append process. The uY" option caused 
an auto~atic attempt to delete the duplicate 
destination file to be made before the copy 
continues. 

MDOS 3.0 User"s Guide Page 03-15 



BACKUP C(h~MAND 3. 7 -- Me ssage s 

<name> - DUpLICATION: IS NO[ COPIED 

[his indicates that the file name specified by 
<name> already exists on the destination diskette 
during the append process. The "2" option caused 
the file to be skipped. The destination file is 
unaffected. 

OBJECT FILE CREATION COpy ERKOR 

[his usually indicates that insufficient 
contiguous space exists on the destination drive 
for the file being copied (A o~tion). 
Dccasi ona 11 y t however tit may mean that 3n error 
was detected in the readinq or writing of the 
file's Retrieval Infor~ation Block on the 
destination diskette. 

CANNDT OELETE DUPLICATE NA~E 

This indicates that the duplicate file ~ame on 
the destination diskette could not be deleted due 
to its protection attributes. 

DELEfE FILE NOS.: 

nn <name> 

The PRINT command displays this prompt to allow 
jeletion of file names by enterin1 their 
displayed numbers. The prompt wi 11 be 
redisplayed until a null response (carriaqe 
return) is given. 

After the PRINf command is chosen durinq the file 
selection process, a list of all file names 
eliqible for copyinq is displayed. The "nnll is a 
hexadecimal number that indicates the position of 
the name with respect to the total sorted 
directory. The <name>, of course, is the file~s 
name and suffix. 

SYSTEM SECTO~ COt->Y EHROR 

SECTOR nnnn 

This indicates that a system sector could not be 
read from or written to. BACKUP cannot continue 
and control is returned to MOOS. 

This indicates that the physical sectors "nnnn" 
did not compare during the verify process. 

MDOS 3.0 User-'s Guide Page 03-16 



BACKUP COMMAND 3.7 -- Messages 

OFFSET ii DH<s-unit>-jj OR<d-unit>-kk 

This indicates which bytes did not compare during 
the verify process. The IIi!" is the hex~decimal 
offset into the sector. ,II jjU Is the hexadecimal 
contents of the byte on the source unit <s-unit>, 
.lIkk.n is the hexadecimal contents of the byte on 
the destination unit <d-unit>. 

DIHECTOHY HEAD/WHITE ERROR 

This indicates that an internal system error was 
encountered while trying to access the directory 
of the source diskette. Errors of this type 
indicate a possible hardware problem. 

SOURCE FILE COpy ERROR 

This indicates that an internal system error was 
encountered while reading a Retrieval Information 
Block from a file on the source diskette. Errors 
of this type indicate a possible hardware 
problem. 

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED 

This indicates that on an EXOHdisk III system, 
the source diskette was double-sided while the 
,destination diskette was single-sided. This is 
invalid. 

3.8 Precautions with BACKUP 
------------~~-------------

The following sections describe some of the precautions 
that should be taken when using the BACKUP command in the 
vari0us environments that are supported by MOOS. 

3.8.1 BACKUP and the CHAIN process 

Since the BACKUP command has so many different paths 
that can be taken, it is generally recommended that BACKUP 
not be invoked from within a CHAIN process (see Chapter 6). 
The BACKUP process is so important to the protection of 
diskette files that the entire process should be supervised 
by the operator. 

Diskette verification from within a CHAIN process using 
the BACKUP command is also infeasible. The CHAIN command 
writes intermediate information to the diskette in drive zero 
durinq its operation. Thus, if BACKUP with the "V" option is 
invoked from within a CHAIN process, and if drive zero is 
involved in the BACKUP process, then the two diskettes are 

MDOS 3.0 User"s Guide Page 03-17 



BACKUP COMMAND 3.8 -- Precautions with BACKUP 

guaranteed to be different. 

3.8.2 Sinqle/double-sided diskettes 

On EXORdisk I II systems the BACKUP command can be used 
to copy or verify from a single-sided diskette (source 
diskette> to a double-sided diskette (destination diskette), 
however, the reverse is not allowed. 

~hen a sinqle-sided diskette is copied to a double-sided 
diskette, the system tables (CAT and LCAT) are automatically 
adjusted so that they reflect the true amount of space 
available on the double-sided diskette. When a verify takes 
place, the CAT and LCAT will be different between the two 
diskettes; however, no verification error is displayed if the 
allocated parts of the tables are the same. 

3.d.3 Four-drive systems 

The BACKUP command has the capability of c0pying to or 
verifying with any of the three drives (J-3) in a four-drive 
system. It is not p')ssible, however, for BACKUP to sense the 
difference between a two-drive and a four-drive system. 
Thus, due to the nature of the two-drive disk controllers 
with EXORdisk II. it is possible to destroy a diskette in 
drive one if BACKUP is invoked with the fiR" option and if 
non-zero numbers are specified on the command line for 
<s-unit> and <d-unit>. 

If the user has a two-drive system, it does not ~ake any 
sense for him to enter lo~ical unit numbers on the command 
line when invoking the BACKUP command, since the proper 
default is to copy from drive zero to drive one. If he were 
to specify to copy from drive two to drive three with the "R" 
option, then the diskette in drive one would be accessed and 
subsequently destroyed. 

3.9 Examples 

Many times it is desirable to differentiate the two 
identical copies of diskettes from each other by use of the 
ID sector information. The ID sector~s contents can be 
chan]ed during a diskette copy by using the "III option. 

MOOS 3.0 User's Guide 

=BACKUP ;1 
BACKUP FROM DRIVE 0 TO I? 
Y 
DISK NAMEINErlNAME 
DATE(MMDOYY):OJ0978 
USER NAME' 
= 

Page 03-18 



BACKUP COt~MAND 3.9 -- Examples 

All information to the riqht of the colons is supplied by the 
operator. The destination diskette will be given the disk 
name NEWNAME which will be printed on the heading lines of 
subsequent FREE and OIR command invocations (see Chapters 16 
and 9, respectivelyi. The date of the disk copy that Is 
generated is January 9, 1978, and the same user name t~at was 
assigned to the source diskette during a previous BACKUP or 
during the initial DOSGEN process will be given to the 
destination diskette (indicated by carriage return response 
without any data). 

The verification process using the two diskettes 
)enerated above will cause an error when comparinq the ID 
sectors; however, the remainder of the diskettes are still 
compared. The offset ~essaqes of the discrepancies can be 
suppressed by also using the itS" option. Thus, the 
verification of the above example~s generated diskettes would 
show the following operator-system interactionss 

=BACKUP ;VS 
SECTOR 0000 
= 

The following example assumes that no scratch or garbage 
files exist on the source diskette. Then, the reorqanization 
process requires a minimum amount of operator interaction: 

=BACKUP :l,:2;R 
BACKUP Fl10M DRIVE 1 TO 21 
f 
ENTER FILE COpy SELECTION COMMANDS: 
SAVE (S), DELETE (0), PRINf (P), QUiT (OJ, 
S, D, P t Q, ( CR ) I 
COPYING MOOS .SY 
etc. 
STARTING TO COpy FILES 
COPYING BACKUP .CM 
etc. 
= 

NO MORE 

It Should be noted that no file selection commands were used. 
The resulting destination diskette will contain all files 
from the source diskette, but they may be in different places 
on the surface of the diskette. Thus, a reorganization 
process cannot be followed with a verification process for 
the same diskette pair. The "Nfl option could have been used 
in the above example to suppress the printinq of the file 
names as they were being copied. 

The last example shows the file append process. The 
example assumes that there is an MOOS diskette in drive 1. 
Also, it assumes that the diskette in drive zero has a family 
of files which are to be copied to the destination diskette. 
The family has file names which start with the letters ·"FORn. 

MDOS 3.0 User"'s Guide Page 03-19 



BACKUP C(L~MAND 3.9 

The following shows the operator-system interactions: 

=BACKUP ; A 
APPEND FROM DRIVE 0 TO 11 
i 
ENTEti FILE SELECTION COMMANDS' 

Examples 

SAvE (5), DELETE (D), PRINT (P), QUIT (Q), NO MOHE (CR) 
S, 0, P, 0, (CR): S FOR*. * 
5, 0, P, Q, ( CR ) • }) 
09 FORT .CM 
OA FORTLI B • HO 
OB FORTNE~S. SA 
OC FORTESTI.SA 
OU F OHTEST2. SA 
OE FORTEST3.SA 
OF FORTEST4. SA 
10 FORTEST5.SA 
DELETE FILE NOS. I 

B-E, 10 
DELETE FILE NOS.' 

STARTING TO COpy FILES 
COpy I NG FORT .CM 
COtlYING FORTLIB .RO 
COpy I NO FORTEST4. SA 
FOHTEST4.SA - DUPLICATION' IS IT TO BE COPIED? 
Y 
NEW NAME:FTEST 
= 

The file selection command SAVE was used to flag all 
file names beginning with FOR as eligible for copyin~. Then 
the PRINT co~mand was used to see the eligible list of file 
names. The P~INT command terminates the use of the DELETE 
and SAVE commands. Thus, the PRINT command~s delete file 
feature is used to remove any remaining file names from the 
eligible list. File names OB, OC, 00, DE, and 10 were 
deleted in this manner. A null response is required to 
terminate the PRINT command's input prompting. The last file 
to be copied turned out to have a duplicate file name 
eXisting on the destination drive. The operator responded 
with a "Y·II indicating that he wanted to copy the file anyway. 
Since duplicate file names cannot exist, the append process 
lets the operator rename the source file before it gets 
copied. The new name assigned to the file on the destination 
diskette will be FTEST.SA (default suffix assigned). 

MDOS 3.0 User"s Guide Page 03-20 



CHAPTEH 4 

4. BINEX COMMAND 

The BINEX command allows rnemory-imaqe files to be 
converted into an EXbug-loadable format for copyinq to tape. 
This command performs the inverse operation of the EXBiN 
command (see Chapter 14). BINEX is useful in the development 
of non-diskette-resident software with MDOS 9 since the object 
code can be written to tape after it has been tested. 

4. t Use 

The B!NEX command is invoked with the following command 
linel 

BINEX <name l>[,<name 2>] 

where <name 1> is the file specification of a memory-image 
file that is to be converted, and <name 2> is the file 
specification of a file that is to receive the results of the 
conversion. Only <name 1> is required to be entered on the 
c 0 mm a nd 1 i n e • Th e de f au 1 t s u f fix n L 0" and the de fa u I t 
logical unit number zero will be supplied for <name I> if 
those quantities are not explicitly given. The output file 
specification, <name 2>, is optional. If <name 2> is 
entered, it may be a partial file specification consisting of 
only a file name, a suffiX, or a lo.gical unit number (or any 
combination thereof). The unspecified parts of <name 2> will 
be supplied from the respective parts of <name 1>, with the 
exception of the suffix. The default suffix for <na~e 2> is 
·"LX" to indicate its EXbug-loadable format. If no file 
specification is given for <name 2>, the output file will be 
created with the same file name as <name 1> but with the 
suffix "-LX"'. If only a suffix is given for <name 2>, that 
suffix will be used instead of the default"LX". If no 
logical unit number is given for <name 2>, the output file 
will be created on the same drive 8S given for <name I>. In 
any case, <name 2> must be a file specification for which no 
entry already exists in the directory. 

Standard error messages will be displayed if <name 2> 
already exists, if <name 1> does not exist, or if <na~e 1> is 
of the wrong file format. If no errors are found on the 
command line, BINEX will write into the output file a name 
record, or SO record, that contains the file na~e and suffix 
of <name 2>. Then, BINEX will convert the content of <name 
I> into displayable ASCII characters and output them to <name 
2> In the form of the EXbug SI records (the nM6800 EXORciser 
User's Guide" contains a description of this record format). 

MOOS 3.0 User.J's Guide Pa~e 04-0 i 



b I NEX CCHrhAAt"D 4. J -- Use 

[he terminatinq S9 record will contain the startinq execution 
address that was extracted fro~ <name I>~s load Infor~~tion. 

The memorY-ima1e file, <name t>, is unaffected by the 
entire HINEX process. The output file, <name 2>, can then be 
copl '~d to tape (see Chapter 7. COpy Command) for use in a 
non-iiskette environment. 

4.2 Error Messaqes 

No special error messaqes are displayed by the BINEX 
comlland. Only the standard error messages available to all 
commands are used. 

4.3 [::xarnpl es 

Most frequently, the default suffixes and logical unit 
numbers suffice for dINEX operation. The followinq co~mand 
line 

BINEX TESTPI'?OG 

will produce the file TESTpHOG.LX on loqical unit z~ro from 
the rnemory- i rnaqe f i 1 e TESTPHo3. LO, a 150 on 1 oql ca 1 uni t ze ro. 

If the output file is to be created on a different irive 
than the input file, but the other default parameters are 
still to be ~pplied, then only a logical unit number need be 
specified for <name 2> as in the followinq example: 

B I NEX [ESfPHOG,: I 

\"t'hi cn will create the f i 1 e T~STPHOG. LX on 1 oqi cal uni tone. 

If the file to be converted happens to reside on a drive 
other than zero, then that unit number will also be the 
default value of the loqical unit number for the output file. 
[hus. 

BINEX TESTPHOG:2 

~ill create rESrpR(~.LX on drive two. 

The last example illustrates the explicit namin1 of an 
output file and input file. In any case involving default 
values of which the 0perator is uncertain, it is alwFI'fs sAfe 
to explicitly use the full file specifications. i-=or examole, 

dINEX TESfPHOG.LO:(),FILEX.LT:Q 

will create FILEX.LT on drive zero. 

MuOS 3.0 Jser's Guide Page ()4-02 



CHAPTER 5 

5. BLOKEDIT COMMANlJ 

The BL(OCEDIT command allows lines of text from one or 
more ASCII files to be selectively copied into a new filee 
This command can be useful in generating new program source 
files by copying routines from existing source files, or in 
rearranging existing files by copying their lines into a new 
sequence. 

5. 1 Use 

The BLOKEDIT command is invoked with the following 
command line l 

BLOKEDIT <name 1.>, <name 2> 

Both of the parameters are required by the BLOKEDIT command. 
<name 1> is the file specification of a command file, and 
<name 2> is the file specification of a new file which will 
be created. The new file will be written into as directed by 
commands in the command file. 

Both file specifications are qiven the default suffix 
liSA" and the default logical unit number zero. <name I> must 
be the name of a file that exists in the directory. <name 2> 
~ust not already exist. A standard error massage ~ill be 
displayed if either of these criteria is not met, or if 
<name1> is of the wrong file format. 

5.2 BLOKEDIT Command File 

The command file specified by <name 1> is the 
controlling factor in the execution of the BL(~EDIT command. 
The command file contains the names of the source files that 
are to be used for the extraction of data, the numbers of the 
lines within a particular source file that are to be copied 
into <name 2>, comments, and original text supplie1 by the 
user that is also to be copied into <name 2>. The command 
file must be created with the EDIT command, or a similar 
command, prior to using the BL(~EDIT command. 

There are three kinds of lines that can appear in the 
command filel 

1. Comment lines 
2. Command lines 
3. Quoted lines 

MDOS 3.0 UserJ's Guide Pa~e 05-01 



BLOKEDIT COMMAND 5.2 -- BLOKEDIT Command File 

fhe three types of lines that comprise the command file are 
discussed in the following sections. 

5.2.1 Comment lines 

A comment line is a line whose first character is an 
asterisk (*>. For example. 

* * THESE THREE LINES ARE BLOKEDIT COMMENT LINES 

* 
The occurrence of comment lines in the command file is 
ignored by the BLOKEDIT command. Comment lines serve only to 
document the command file. 

5.2.2 Command lines 

A command line is recognized by the fact that its first 
character is an upper-case alphabetic character, a decimal 
digit, or a double quote character. For example, 

FILENAME.) 
5,75-80 
n 

are three valid com~anrl lines. 

Command lines which begin with an upper-case alohabetic 
character indicate that a source file is being named. Such 
command lines are used to specify from which file the 
subsequent lines are to be copie~. A source file can only 
be named by putting its file soecification at the beginning 
of a command line. Optionally, the suffix and/or logical 
unit number can be specified in the standard format after the 
file's nalle. The default values of liSA" and zero are 
supplied automatically if no explicit references to s~Jffix or 
logical unit number are made. 

Command lines which begin with a decimal digit indicate 
that the command line will contain one or more numbers. 
These numbers represent the physical line numbers to be 
copied from a source file which has been named using the 
prior form of the command line. Physical line numbers can be 
up to five diqits in length and must be in the range 1-65535, 
inclusive. More than one physical line number can aooear on 
a com~and line if it is followed by a comma. A r~nge of 
physical line numbers can be specified by separating the 
start and end of the range with a hyphen (-). For exa~ple, 

MOOS 3.0 User's Guide Page 05-02 



:)LOKEJ I r CChh\ANLJ ') • 2 - - B L () K t: D I [ Com'll r1 n d ~ i 1 e 

>j 

12345 
100-364 
12,15,1-5,17-200,5-15,2,2 

are v-~l ia forms of physic(31 line number command lines. A 
source file's physical line numbers can he pri'lted usinq the 
LIST command described in Chapter 17~ 

~.2.3 ~uotAd lines 

A c 0 mrn and Ii net h n t be q ins wit had ou b I e quo tee h 1 r ACt e r 
(II) in-Jicates the belinnin'J or the end of quoted lines. A_ny 
information that appears on the S8'TJe line as the ri()ublq quote 
is i Jnored. A quoted line is any line bounded by,q :J1ir of 
C0mm,qnj lines which beqin with a double quote chFlracter. A.II 
-1 U 0 t e ri 1 in e S wi 11 he cop i e ci ; i ire c t ! y f r om the c () rTlm -1 n:i f i 1 e 
into the new file, as is. rhus, it is possible to include 
original lines of text that will be co;)ied into the n~~ file 
in 1diition to the physical lines C()0ied fr()m t'1e n<3med 
source files. The followinq eXB'TJple illustrates the tlse of 
_-luoted lines: 

" STAfiT or: QUOfEJ LINE SEUUENCE 
LABEL LOAA #SFO • SEf MASK 

LSRt:3 • 
STA~ lA13+4 
TAB • 

* * COMMENfS IN QUOf!:D LI NES G~T vH?I TTEN OJ r 
* JMP EXlf • 
" Et~U O~ OUOfEJ LI NE SEOUEi~CE 

[he first and the last lines of the example will be discarded 
by the ':3LOKEDIT command. fhe eLJht lines in bet;Neen It'li 11 be 
written as is into the new file. 

The followinq llessaqes can be displayed by the1LOKI-:DIT 
command. Not all messages are error messages, al thou)!! error 
rness;lges are included in this list. The standarj error 
illeSSqqes that can be displayed by 111 coml1anris are not listed 
t1er e. 

MuOS 3.0 User's Guide Paqe 05-03 



BLOKEOIT COMMAND 5.3 -- Messages 

CURRENT SOURCE FILE IS <name> 

A command line containing the name of a source 
file has been processed. The name of source file 
is shown as <name>. This message is u seri to 
monitor the path of HLOKEDIT through the command 
f i 1 e. 

DONE. NEW FILE LINE COUNT IS nnnnn 

The command file has been exhausted (end of file 
encountered) when this message is displayed. It 
indicates that no more command lines will be 
proc essed. The number of phys ical 1 ines that 
were copied into the new file Is given by the 
decimal number Unnnnn U • After this message is 
displayed, control is returned to MOOS. 

** 36 FILE EXHAUSTED BEFORE LINE FOUND 

This message is displayed when the source file 
being read was exhausted (end of file 
encountered> before a specified physical line 
number was found. This is not a fatal error. 
The next command line from the command file will 
be processed. 

** 38 INVALID LINE NUMBER OR RANGE 

This error message can be displayed for several 
reasons. A line in the command file did not 
begin with an asterisk, a double quote, a decimal 
digit (O-9), or an alphabetic character (A-Z>, 
and the line was not a quoted line. If the 
command line started with a digit, then the 
physical line number had a value outside of the 
range J- 65535. or the starting number of a line 
number range was greater than the ending line 
number of the range. In any case, this is a 
fatal error. BL(~EDIT is terminated and control 
returned to ~DOS. The command line in error is 
displayed prior to this message. 

** 39 LINE NUMBER ENTERED BEFORE SOUHCE FILE 

This message indicates that the command file 
contained a line with a decimal digit in the 
first position before a source file was named. 
Processing cannot continue, so the BLOKEDIT 
command is terminated. The command line in error 
is displayed prior to this message. 

MDOS 3.0 User's Guide Page 05-04 



BLOKEDIT COMMAND 5.4-- Examples 

5.4 Examples 

In the following example it is assumed that the three 
source files EDIT.SAli, ASM.SAiO, and LOAD.SA:O contain some 
special utility subroutines that are to be extracted and 
placed into a new file UTILITY.SAIO. The physical line 
numbers of the routines can be determined by listing the 
source files on the console or printer (Chapter 11, LIST 
Command). ~ith that infor~ation, the command file 
dL~CMD.SAIO is created using the EDIT command: 

* * Define the first source file 

* EDIT: 1 
176-205 
224-230 

* * Define the second source file 

* ASM.SA:Q 
.. Insert a PAGE directive to separate routines 

PAGE .. 
~6-80,90-101,150-163 

* * Define the last source file 

* LOAD 
H Insert another PAGE directive 

PAGE 
II 

27,28,29,30,31,32,33,34,35,36 
37 
38 
39 
40 

* * End of Command File 

* 
Then, the MOOS command line 

BLOKEDIT BLKCMD,UTILITY 

is used to invoke the BLOKEDI r command. Durinq the 
processing, BLOKEDIT will display the following messaJes: 

CURRENT SOURCE FILE IS EDIT • SA: I 
CURHENT SOURCE FILE IS ASM .SA:O 
CURRENT SOURCE FILE IS LOAD .SA:Q 
DONE. NEW FILE LINE COUNT IS 104 
= 

MOOS 3.0 User~s Guide Page 05-05 



BLOKEDIT COMMAND 5.4 -- Examples 

The new file will contain the indicated lines from the 
respective source files. Each set of lines copied from the 
source files has been separated from the next file's set of 
lines by a PAGE directive (causing paging when the UTILlfV 
file is assembled). The ~AGE directive was insertei using 
quoted lines. 

BLOKEDIT can also be used to rearranqe the lines of an 
eXisting file by copyin] them in a given sequence into the 
new file. [he following command file. 

PROGI 
207-300, JO-206, 1-9 

for example, could be used to shuffle the lines in th~ source 
f i 1 e PH OG I • SA: 0 • Fir s t, 1 in e 5 207 - 3 00 wo u 1 d be cop i ad i n to 
the new file. These would be followed by lines 10-206, which 
would be followed by lines 1-9. 

Tne last example illustrates an error messaqe displayed 
by BLOKEDIT. The command line in error is displayed prior to 
the error message. The initial five-digit number in front of 
the displayed command line gives the line~s physic31 line 
number within the file (as displayed with the LIST c0mmand, 
Chapter 17). 

=BLOKEDIf BLKCMD,TEM~EQU 
CUHHENT SOUHCE FILE IS E(JU .SA:Q 
00002 56-34 
** 38 INVALID LINE NUMHEH OH HANGE 
= 

The error was caused by an invalid line number range. [he 
starting number of a range must be less than or equal to the 
endinq number of the range. 

MUOS 3.0 User's Guide Page 05-06 



CHAPTER 6 

6. CHAI N COMMAND 

The CHAIN command allows predefined procedures to be 
automatically executed. A procedure consists of any sequence 
of MDOS command lines that has been put into a diskette file, 
known as a CHAIN file. Instead of obtaining successive 
command lines from the console, CHAIN will fetch commands 
from the CHAIN file. This feature allows complicated and 
lengthy operations to be defined once, and then invoked any 
number of times. requiring no operator intervention. The 
additional capabilities of conditional directives to the 
CHAIN command at both compilation and execution time, and the 
capaoility of string substitution, permit an almost unlimited 
number of applications to be handled by a CHAIN file. 

6.1 Use 

The CHAIN command is initially invoked by the following 
command line: 

CHAIN <name 1> [;<arq l> •••••• ,<arg n>] 

The only required parameter is <name I>, the file name 
specification of the diskette file that contains the 
procedure definition. The CHAIN file, <name 1>, is given the 
default suffix iiCFii, permitting the file iiaffiC to be 
identified in the directory listing at a qlance as beinq a 
CHAIN file. The default logical unit number is zero. The 
optional arguments, <arg i> (i = 1 to n), are CHAIN tag 
definitions which can be used to modify the compilation, 
content, or execution of a CHAIN file. 

Two special forms of the CHAIN command line can be used 
to restart an aborted CHAIN process. These command lines are 
shown here, but are described in detail in section 6.6. 

CHAI N N* 
CHAIN * 

CHAIN executes a compilation phase and an execution 
phase. In the compilation phase. <name 1> is read from 
beginning to end. An intermediate file, CHAIN.St:O, is 
created durinq the compilation. The intermediate file 
consists of lines to be used in the execution phase of the 
CHAIA process. This file will be automatically deleted upon 
the subsequent successful completion of the CHAIN process. 

During the execution phase, CHAIN baSically intercepts 

MOOS 3.0 User's Guide Page 06-01 



CHA I N COMMAND 6. I -- Use 

the system console input requests so that input can be 
supplied from the intermediate file. Each time a~ input 
request is made by a command that is invoked by the CHAIN 
process, the next line from the intermediate file will be 
read and passed to the command. As far as the co~~and is 
concerned, it is receiving its input information from the 
operator at the console. 

The CHAIN command only intercepts console input via the 
MDOS system function ".KEYIN" (see section 25.2). Therefore, 
only programs (commands or user-written programs) that use 
this system function will receive their input from the 
intermediate file. ~rograms which contain their own input 
routines, or which use the device independent I/O functions 
(see section 25.3) can be invoked by the CHAIN process, but 
the subsequent input to those programs must be supplied 
manually via the console. 

The CHAIN command ·cannot be invoked from within a CHAIN 
process unless it is invoked from the last line of the 
intermediate file. An error message will be displ~yed if 
other typ~s of CHAIN command recur~ion are attempted. 

The CHAIN command will continue to supply information 
from the intermediate file until the end of the file is 
encountered. If, at that pOint, the next input request from 
the console is by the MDOS command interpreter, the CHAIN 
process will be properly terminated, MOOS will be re-entered, 
and commands will again be accepted from the operator at the 
console. If. however, the end of the intermediate file is 
encountered while a program is requesting console input, then 
the CHAIN process is aborted, an error messaqe is disolayed, 
and the currently active program will be stopped. Control 
will then be given to the MDOS command interpreter. 

The diskette in drive zero must remain in drive zero 
throuqhout the execution of the CHAIN process, even if the 
"CF" file is compiled from drives other than zero. 

6.2 fag Oefinition, Assignment, and Substitution 

The CHAIN command line can be parameterize:j wi th 
arqu'nents that follow the CHAI N f i 1 e spec i f icat ion. Each 
argunent has the following formats 

<tag>(%<value>%] 

where <tag> is the name by which the argument is referenced 
within the CHAIN file, and <value> is the value assigned to 
that arqu~ent. As many arquments as fit on the cornman; line 
can be specified. Multiple arguments must be separated by 
commas. Tags may be from one to thirty-two charact~rs in 
length and can contain any displayable character except the 

MOOS 3.0 User's Guide P~ge 06-02 



:;HA IN COMiV\AND 6.2 -- Tag Definition, Assignment, and Substitution 

period (.), the comma (,), the space ( ), or the percent sign 
(%). A tag~s value can be any series of disolayable 
characters with the exception of the percent siqn. A tag is 
given a value by following the taq's name with the value 
enclosed in percent signs. If no percent sign follows a 
taq~s name, it is assiqned a null value. For examole, the 
command line 

CHAIN TFILE;LIST,DAY%11%,TIME%02:30% 

defines three tags: LIST, DAY and TIME. The tag LIST is 
assilned a null value; the taq DAY is given the value 17; the 
tag rIME is given the value 02:30. 

CHAIN allows two uses to be made of tags. First, tests 
can be performed within the CHAIN file to determine whether 
or not a specific tag has been specified on the CHAIN command 
line. Second, the value of a taq can be substituted for a 
tag~s occurrence within the CHAIN file. Thus. using the 
above example, the CHAIN file could contain a test for the 
presence of the tag LIST to determine if the CHAIN orocess 
will produce output to a printer. The values of the tags DAY 
and rIME could be substituted in one of the heading lines 
that may be produced by the CHAIN process. 

So far in the discussion, the value of a ta1 has not 
been used. fhe existence of a tag can be tested re1ardless 
of a tag's value. A tag~s value is substituted for each 
occurrence of the tag's name contained between two delimiting 
percent signs. The following example will illustrate tag 
SUbstitution. If a CHAIN file contains these statements: 

RA5M TESTPROG;H%OPTIoN% 
~ROGHAM ASSEMBLED ON %OATE% 
EXBIN TESTPR(~%SrART% 

then the tags O~TI(}N, 

respective values put 
deli~itinq percent signs 
intermediate file. If 
CHAIN at its invocation, 
would be compiled: 

DATE, and START will have their 
in place of their tag names and the 
before each line is written into the 
no tags were specified for the above 
then the following intermediate file 

RASM TESTPROG; H 
PROGRAM ASSEMBLED ON 
EXB IN TESTPH(X3 

If the tags were given initial values via the CHAIN command 
line as. 

OPTION%XLG%,OATE%JANUARY 8, 1978%,START%; 1000% 

then the following intermediate file would be compile;' 

MDOS 3.0 User's GUide Page 06-03 



CHA I N COMMAl~O 6.2 -- Tag Definition, Assignment, and Substitution 

HASM TESTPHOG;HXLG 
PROGHAM ASSEMBLED ON JANUARY 8, 1978 
EXBI N TESTPROO; 1000 

fa] substitution is used here to specify the various options 
for the assembly process, a date for the heading line printed 
during the assembly, and the starting execution address for 
the converted object file. The use of taqs and tag values, 
therefore, is of great importance in the creation of 
complicated and general purpose CHAIN tiles. 

To pass tag values trom one CHAIN file to another, a 
torcin] character is used. [he bAckslash character (\) is 
used to indicate that the next character of a line is not to 
be tested as a special character (i.e., to see if an operator 
follows, or 3 valid tag). Thus, passing a tag from one CHAIN 
file to another can be done with a series of statements like 
the following: 

HAS.~ TESTPROG;H%OPTION% 
PHOGAM ASSEMBLED ON %DATE% 
CHAI N FILE2; STARr\ %%START%\% 

[he first and last percent signs of the last line are not tag 
replacement indicators. When the above lines are compiled, 
the resultant intermediate tile will not contain the 
backslash characters. If the value "XLGU is given to OPTION, 
nOI .8. -'8" to DATE, and n; IOOOJl to STAHT, then the compi led 
CHAIN tile would appear as 

tlASM TESTPROO;HXLG 
PROGRAM ASSEMBLED ON 01.8.78 
CHAIN FILE2;STAHT%;1000% 

The value of STAHT would be passed from the first CHAI~ file 
to the second CHAIN file. The second CHAIN process can only 
be invoked from the last line of the intermediate file. 

6.3 Compilation Operators 

Two types of CHAIN operators exist which can be used to 
modify the procedure that is performed through the CHAIN 
process: Compilation Operators and Execution Operators. 
Execution operators are descr ibed in section 6.4. 
Compilation Operators permit the operator to parameterize a 
CHAIN file to perform many different procedure~. For 
example, a CHAIN file may contain the MOOS command lines to 
assemble an entire system of programs. Based on the CHAIN 
arguments specified on the CHAIN command line, all or part of 
the system of programs may be assembled. The options for the 
assembly process can also be supplied via a CHAIN argument 
(see example in section 6.7). 

MOOS 3.0 User"s Guide Page 06-04 



CHA I N COMMAi~iJ 6.3 - Compilation Operators 

All Compilation Operators are included in the CHAIN file 
alon'J wi th any other statements. Compilation Operators are 
denoted by a slash (I) appearing in the first column of a 
line. Any number of intervening spaces (including none) can 
be placed between the slash and the operator. If an operator 
is found which is not defined, the CHAIN process will be 
aborteci. The following Compilation Operators are defined' 

Operator 

* IFS 
IFC 
XIF 
ELSE 
ABORT 

Function 

Comment 
Conditional "if set" test 
Conditional "if clear" test 
End conditional 
Conditional ~lternative 
Unconditional CHAIN abort 

6.3.1 Compilation Comments 

If the character following a slash is an asterisk (*), 
then a Compilation Comment is indicated. The remainder of 
the line following the asterisk contains the comment, which 
can include any displayable characters. Compilation Comments 
are not written into the intermediate file. They are, 
however, displayed on the console immediately after they are 
read from the CHAIN file. Compilation Comments are useful in 
communicating to the operator what intermediate file is being 
compiled for execution. The comment lines are only displayed 
if the part of the file containing the comments is being 
compiled into the intermediate file (see next section}. 

6.3.2 IF operator 

If the characters following a slash are II IF", an IF 
operator is denoted. There may be any number of intervening 
spaces between the slash and the IF operator. This feature 
allows a structured type of CHAIN file to be constructed that 
will show by its physical a:::>pearance the range of the 
conditional operators. The IF operator allows a test to be 
made for the existence of one or more tags on the CHAIN 
command line. If the test proves positive, or true, then the 
lines from the CHAIN file followinq the IF operator will be 
included in the intermediate file (written to the CHAIN.5Y 
file). If, however, the test proves negative, or false, then 
the subsequent lines will not be included in the intermediate 
file. The lines from the CHAIN file will be included or 
excluded following the IF operator until an ELSE or XIF 
operator (explained below) is encountered. 

The IF operator has two formsl IFS and IFC, which stand 
for lIif set" and .lIif clear", respectively. The IFS operator 

MDOS 3.0 User-'s GUide Page 06-05 



CHAl.N COMMAND 6.3 Compilation Operators 

proves positive if any of the taqs listed as its operand have 
been specified on the CHAIN command line. For example, 

/IFS LIST 

will prove positive if the tag LIST was mentioned on the 
CHAIN command line. The same test will prove neqative if 
LIST did not appear. Likewise, the IF operator 

/IFC DAY 

will prove positive if the tag DAY was not specified on the 
CHAI~ command line. The test will prove negative if DAY did 
appear. Multiple IF operators can appear in sequence to see 
if all tags of a certain group were specified. Thus, 

/IFS FLAGI 
/IFS FLAG2 
/IFS FLAG3 

will prove positive only if tags FLAGI, FLAG2, and FL~G3 were 
specified on the CHAIN command line. 

More than one tag can appear in the operand fleld of an 
IF operator. A comma separatinq tag names on an IF line will 
perform an Ilinciusive or" function. A period separatinq tag 
names, on the other hand, will perform an Hand" function. 
The "and" function has precedence over thellor" flJnction. 
That is, the commas (or) can be thought of as grouping the 
periods (and). For example, the IF operator line 

IIFS FL~GJ.FLAG2.FLAG3 

is equivalent to the previous example of three successive IF 
operators. The following line, 

/IFS Ft .F2,FLAG3,TAGI.TAG2.LIST 

which can be thought of as being evaluated by the following 
groupinq, 

eFt and F2) or (FLAG3) or (TAGI and TAG2 and LIST) 

will prove positive if the tags FI and F2 are specified, or 
if FLAG3 is specified, or if tags TAGI and TAG2 and LISr are 
specified. 

I f one IF 
subsequent lines 
operators, will be 
or XIF operator 
used to modify the 

MDOS 3.0 User's Guide 

operator has proven negative, then the 
from the CHAIN file, including other IF 
ignored until either a correspondin1 ELSE 
is found. In this way, the IF operator is 
resultant intermediate file. 

Page 06-06 



:;HAIN COMMAND 6.3 -- Compilation Operators 

6.3.3 XIF and ELSE operators 

Two Compilation Operators can cause the range of an IF 
operator to be endede The XIF operator marks the end of a 
series of conditionally compiled statements. The ELSE 
operator reverses the sense of the IF's test condition. and 
is us-ed to indicate what is compiled if the test condition is 
not met. The conditional IF operators can be nested to a 
depth of sixteen ievels. The following example shows the use 
of XIF and ELSE. 

IIFS LIST 
LIST TESTFILE.LH 
rEST pROGRAM HEADING LINE 
IELSE 
LIST TESTFILE 
IXIF 

In this example, the file TESTFILE will be listed on the 
printer only if the tag LIST is specified on the CHAIN 
command line. A heading line is also provided within the 
CHAIN file if the LIST tag is used. If, however, LIST is not 
specified. then the ELSE portion of the conditional operator 
will be compiled, causing TESTFILE to be shown on the system 
console instead. 

If the above example were to be written without the ELSE 
operator, one additional IF and XIF operator pair would have 
to be used, as shown' 

IT r ("' T T C".-r 
'.Lr'..::;J L.~J.1 

LIST TESTFILE;LH 
rEST PROGRAM HEADING LINE 
IXIF 
IIFC LIST 
LIST TESTFILE 
IXIF 

It can be seen that the use of the ELSE operator makes the 
CHAIN file easier to understand. 

Each IF operator must have a corresponding XIF operator. 
The ELSE operator is available at the option of the user. 
The following example shows how nested IF operators might 
appear in a CHAIN file: 

IIFS FI 
ASM TEST~ROG 
I IFS F2 
EXBIN TESTPROG 
/ XIF 
/XIF 

MOOS 3.0 Use r.l 5 Guide Pag e 06-07 



CHAIN COMMAND 6.3 -- Compilation (~erators 

In this case, the tag Ft governs whether or not the file 
TESTIJROG will be assembled. If FI is specified, then the 
assembly will be performed. Then, if in addition F2 is 
specified on the CHAIN command line, the object file 
conversion will also take place. The CHAIN file can be used, 
therefore, to perform only the assembly, or the assembly and 
the object file conversion, but not the object file 
conversion by itself. 

If, through the use of the conditional operators, a null 
(empty> intermediate file is generated. then the Execution 
Phase of the CHAIN command will be skipped. Control will be 
given to the MOOS command interpreter. as if no CHAIN had 
ever been executed. 

6.3.4 ABORT operator 

The ABORT operator provides a way of instantly returning 
to MDOS during a CHAIN file's compilation. No messa]es will 
be displayed as a result of encountering the ABORT operator. 
It is the user1s responsibility to include an explanation for 
the ABORT throuqh the use of Compilation Comments. 

The ABOHT operator is typically employed in terminating 
a CdAIN compilation if one or more critical tags h8ve been 
omitted from the CHAIN command line. For example, the 
following CHAIN file will be aborted during the compilation 
phase if both of the tags opr and FILE are missinq. The 
Compilation Comments will indicate the reason for the 
terminationl 

IIFS OPT.FILE 
1* GOING TO ASSEMBLE %FILE% 
HASM %FILE%I%OPT% 
IELSE 
1* 80TH "F ILEu A!'U II OPT" MUST BE SPECIF lEO 
1* CHAIN TERMINAfED 
IABORT 
IXIF 

6.4 Execution Operators 

Execution (~erators can be used for the dynamic 
adjustment of a CHAIN process while it is being executed. 
Through the use of these operators, the user can set values 
in an error status word maintained by MOOS. test the word, 
and, depending upon the results of the test, skip a aortion 
of the procedure. The error status word is accessed by all 
MOOS commands to indicate whether or not they completed their 
function without error. 

All CHAIN Execution Operators are denoted by the 

MDOS 3.0 User's Guide Page 06-08 



CHA I N COMMAND 6.4 -- Executif)n Operators 

commercial at-sign (@) as the first character of a li~e. Any 
number of intervening spaces (including none) can be placed 
between the at-sign and the operator. If an operator is 
found which is not defined, the CHAIN process will be 
aborted. The following Execution operators are defined! 

Operator 

* 

Function 

comment 
Operator breakpoint 
Set error status word 
Test error status word 

SET 
rST 
JMP 
LBL 
CMD 

Continue sequential processing at label 
Define a label 
Change state of CHAIN input echo 

6~4.! Execution Comments 

If the character following the at-sign is an ~sterisk 
(*), then an Execution Comment is indicated. The remainder 
of the line following the asterisk contains the comment, 
which can include any displayable characters. EXecution 
Comments are comoiled into the intermediate file and 3re not 
displayed until' they are encountered during the execution 
phase. Execution Comments are used to relay information to 
the operator during the actual execution of the intermediate 
file. In conjunction wi th the Operator Breakpoint (next 
section), these comments also serve as a means of passing 
instructions to the operator for mounting paper into the 
printer, swapping diskettes in drives one, two, or three, 
loading a cassette, etc. 

6.4.2 Operator Breakpoints 

A variation of the Execution Comment is the Operator 
Breakpoint. If a period (.) is used instead of an asterisk 
for the Execution Comment, then the normal Execution Comment 
is displayed; however, instead of continuinq with the 
processing of the next line of the intermediate file, the BEL 
(S07) character is sent to the console to alert the operator. 
The CHAIN process then waits for any key on the keyb0ard to 
be depressed before continuing. For example, the following 
compiled CHAIN filel 

:g* GOI NG TO ASSEMBLE PROGRAM 
g. TURN .oN PRINTER 
RASM TESTPR(~'LXG 

would display the two comments during the execution of the 
CHAIN process. Prior to startinq the assembly, however, the 
CHAI~ process would pause allowing the operator time to ready 

MOOS 3.0 User"'s Guide Paqe 06-09 



CHA I N COM~Aj~lJ 6.4 -- Execution Operators 

the printer. Execution would not resume until after the 
operator had depressed any key on the system console. 

6.4.3 Error status word 

Among the operating system's resident variables is a 
two-byte error status word. Each MDOS command will set or 
clear a bit within this status word to indicate the status of 
the command's completion. The error status word has the 
following formata 

FED C B A 9 8 7 6 543 2 0 

I 

I 

I 

I 

: 
: 
I 

Error 
Status 

a 
: 
I 

a 

Error 
Mask 

I 

I ••• 

a ••••••••••••••• 

Error Type 

Bits 0-7 describe 
error 

Error Mask Flag 
Bit B (S-A unused) 

I ••••••••••••••••••••••••••• Error Status Flag 
Bit F (C-E unused) 

Normally, after the completion of each command, all bits of 
the Error Status and the Error Type are cleared (= 0). The 
Error Mask is not affected by MOOS commands. If an error 
occurred during the command, the Error Status Flag (bit F) 
will be set by the command. In addition, an Error Type will 
be set into the lower half of the status word (bits 0-7). 
[he Error Type is used to indicate which error was detected 
by the command. 

Usually, the CHAIN process will abort anytime the Error 
Status Flag is set by one of the commands invoked from the 
intermediate file. The Error Mask can be used to inhibit 
CHAIN process aborting due to command errors by setting the 
Error Mask Flag (bit B) to a I. 

The Execution Operators can affect certain parts of the 
status word. The following symbols are used to refer to the 
various parts of the status Word' 

MDOS 3.0 User-'s Guide Page 06-10 



CHAIN COM~AND 6.4 -- EXecution Operators 

Word Designator Error Status Word Part 

(1 ~~h 01 e word (bi ts O-F) 
T Error Type (bits 0-7) 
M Error Mask (bits 8-8) 
S Error Status (bits C-F) 

6.4.4 SET operator 

The SEf operator can be used to place a certain bit 
pattern into the system error status word. In particular, 
the SEf operator is the only way that the Error Mask Flag can 
be set to inhibit CHAIN process abortions. The MDOS commands 
will only set the Error Status and the Error Type. The SET 
operator has the following format: 

@SET(,<j>] «value>] 

where <j> is the status word designator (explained above) and 
<value> is a hexadecimal number that is to be placed into the 
desi~nated word part. The size of <value> must not be 
greater than the size of the word part into which the it is 
to be placed. If the status word designator is not 
specified, then W, the whole word part, will be assumed. If 
<value> is not specified, then zero will be assumed. As an 
example of the SET operator, the following will set the Error 
Mask Flag (bit B) to inhibit CHAIN process aborting due to 
command execution errors: 

.'-"C"r-T l.I ("') 
gJr:~ ,1'1 a 

@SET,W 800 
@SEI 800 

All three forms will set bit B of the error status word; 
however, the last two forms Will, in addition, set to zero 
all other parts of the error status word. 

6.4.5 ISI operator 

The IST operator 
word for a particular 
following formata 

is used to examine the error status 
condition. This operator has the 

@ISI[,<J>J <condition> [,<value>] 

where <j> is the status word desiqnator, <condition> is the 
test condition to be performed, and <value> is a hexa~ecimal 
number that is used as part of the test. 

Use of the IST operator results in a true or false 
condition based on the test performed. If the result of the 

MOOS 3.0 User"'s Guide Page 06-11 



CHAIN COMMAND 6.4 -- Execution Operators 

test is true, then the next sequential line in the 
intermediate file will be skipped. If the result of the test 
is false, however, then the next sequential line in the 
intermediate file will be processed. In other words. a false 
condition has the same effect as if the TST operator was not 
processed at all. 

If the status word designator is not specified, then W, 
the whole word part, will be assumed. The following test 
conditions can be used in the <condition> field" of the TSr 
operator: 

<condition> Test performed on word part 

EQ Equal to <value> 
NE Not equal to <value> 
GT Greater than <value> 
LT Less than <value> 
GE Greater than or equal to <value> 
LE Less than or equal to <value> 
BS 8it set (=1) 
Be Bit clear (=0) 

The first six tests are the standard relation31 tests 
for equality, etc., that can be perfor~ed with the <value> 
and the desiqnated word part. The last two tests (BS and Be) 
allow specific bits in the designated word part to be tested 
for being set (BS) or clear (BC). The bits to be tested are 
indicated by the one bits from <value>. 

The <value> part of the TST operator is a hex~decimal 
number in the range O-FFFF. [he size of <value> must no~ be 
greater than the size of the word part that is being tested. 
No signed numbers can be used. That is, all comparisons and 
tests are made with positive integers. If <value> is not 
specified, then the default of zero will be used. 

6.4.6 JMP operator 

The JMP operator allows skipping lines in the 
intermediate file during its execution. Used in conjunction 
with the TSr operator, the JMP operator can be turned into a 
conditional jump around critical steps if certain conditions 
are detected during the execution of the CHAIN process. 

The JMP operator has the following format: 

@JMP <label> 

where <label> must be defined via the label operator LBL. 
Jumps can only be made in a forward direction. [hat is, once 
a line has been executed from the intermediate file. it 

MDOS 3.0 User's Guide Page 06-12 



CHA I N COMMAND 6.4 -- Execution Operators 

cannot be jumped to with the JMP operator, even if it has a 
defined label. Jumps to undefined labels or backward jumps 
will cause the CHAIN process to be aborted. 

6.4.7 LBL operator 

The LBL operator is used to define a label within the 
CHAI~ file. All labels referenced by the JMP operator must 
be defined with the LBL operator. The format of the LBL 
operator is: 

@LBL <label> 

where <label> follows the same restrictions placed on tag 
names (section 6.2). Labels that are multiply defined, 
undefined, or backward references will be flaqqed as errors 
during the CHAIN compilation phase. Such errors will cause 
the CHAIN process to be aborted. 

6.4.8 CMD operator 

Normally, during the execution phase, as commands are 
processed from the intermediate file, each command line is 
displayed on the consoie. Likewise, all input requested by 
the command that is supplied from the intermediate file will 
be displayed on the console. The CMD operator can be used to 
suppress console display of all input that originates from 
the intermediate file. The CMD operator has the following 
format: 

\<)CMD {ON or OFF} 

where either ON or OFF must be specified. The CMD operator 
can be used as many times as needed within the intermediate 
file. Initially during the execution phase, the ON form of 
the CMD operator is in effect. 

6.5 Messages 

The following messages can be displayed by the CHAIN 
command. The standard error messaqes that can be displayed 
by all commands are not listed here. The messages are broken 
up into two sections' those that can be displayed during the 
compilation phase, and those that can be displayed during the 
execution phase. 

The following error messages can be displayed during the 
compilation phase: 

MOOS 3.0 User"s Guide Page 06-13 



CHAI N COM.\4AND 6.5 -- Messages 

ILLEGAL NESTING OF CHAIN COMMANDS 

A CHAIN command was found in the intermediate 
file that did not coincide with the last record 
of the file. CHAIN processes can only invoke 
another CHAIN com~and from the last line of the 
intermediate file. 

SOURCE SYNTAX ERROR 

(~e of the source lines of the CHAIN file 
contained a backslash (') as the last character 
of the record, or an illegal tag reference was 
encountered. 

ILLEGAL {WERATOR 

The operator following a slash (/) was not a 
valid Compilation Operator, or the operator 
following an at-sign (@) was not a valid 
Execution operator. 

INVALID CONDITIONAL EXPRESSION 

An invalid tag reference or invalid tag separator 
(other than period or comma) was used on a 
conditional Compilation Operator statement. 

INVALID NESTING OF CONDITIONALS 

More than sixteen levels of conditionals were 
used, an unequal number of IFs and XIFs exist, or 
an ELSE operator was used illeqally. 

EXECUTION OPERATOR OPERAND ERROR 

The operand of an execution operator was invalid. 

VALUE roo LARGE FOR FIELD 

A value was specified for the Execution Operators 
SET or TST that was larger than the status word 
part designator allowed. 

END OF FILE REACHED BEFOHE LAST XIF FOUND 

The end of the CHAIN file was encountered while 
searching for an XIF operator. Usually this 
indicates an unbalanced number of IFs and XIFs. 

UNDEr L~EU LA8ELS FOUND 

A JMP operator referenced a label which was never 
defined with a LBL operator. 

MOOS 3.0 UserJs Guide Page 06-14 



CHAIN COMMAND 6.5 -- Messages 

OUTPUT RECORD BUFFEH OVEHFLOW"4 

A line from the CHAIN file was encountered which, 
after the substitution of all tag values, 
exceeded eighty characters in length~ 

** 48 CHAIN OVERLAY DOES NOT EXIST 

fhe MOOS system CHAIN overlay does not hf3ve an 
entry in the directory. The REPAIR command 
(Chapter 22) should be used to check the jiskett~ 
for other errors. 

The following messages can be displayed during the execution 
phase: 

END CHAI N 

This message is displayed upon the successful 
termination of a CHAIN process. The next console 
input request will be obtained from the system 
console again. The intermediate file, 
CHAIN.SYaO, will have been deleted. 

** OJ COMMAND SYNTAX ERROR 

An Execution Operator was encountered that had an 
illegal operand field. 

** 08 CHAIN ABORTED BY BtlEAK KEY 

The operator depressea cn~ BREAK key during 
execution phase causing the CHAIN process to 
aborted. 

** 0'; CHAIN ABORTED BY SYSTEM ERHOR STATUS ~ORD 

be 

The last executed program set an error status 
into the system error status word which was not 
~asked by the SET operator. If no SEf operators 
are used in a CHAIN file, any error status word 
change will cause the CHAIN process to be 
aborted. 

** 22 BUrFER OVERFLOW 

The response obtained from the intermediate file 
to an input request exceeded the maximum number 
of characters that were acceptable to the input 
request. 

MDOS 3.0 User"'s Guide Page 06-15 



CHAIN COMMAND 6.5 -- Messages 

** 4<) CHAIN ABORTED BY ILLEGAL OPERATOR 

An illegal Execut i on Operator was encount ered in 
the intermediate file. 

** 50 CHAIN ABORfED BY UNDEFINED LABEL 

A JMP operator was encountered which referenced a 
label that did not exist (Backward refere~ces are 
treated as undefined labels). 

** 51 CHAIN ABORTED BY PREMATURE END OF FILE 

An access to the intermediate file retur~ed an 
end-of-file condition when an input request was 
made by a proqram that was invoked by the CHAIN 
process. All input that is expected by the 
program must be in the intermediate file. 

6.6 Hesuming an Aborted CHAIN Process 

If a CHAIN process is aborted during the execution phase 
for any reason, the CHAIN process can still be restarted. 
Since the intermediate file is not deleted until the CHAIN 
process has been successfully completed, this capability 
eliminates the need to recompile the oriqinal CHAIN file. 

The special CHAIN command line: 

CHAIN * 
will restart the execution phase with the line last fetched 
from the intermediate file (the line that caused the error). 
For example, if an assembly has been invoked by the CHAIN 
process for which a duplicate object file exists, the CHAIN 
process will normally be aborted. The operator could then 
manually delete the duplicate file name and restart the CHAIN 
process with the above special form of the command line. 

If the failing command can never succeed, the current 
line of the intermediate file can be bypassed, and the next 
one used to resume the aborted CHAIN process by usinq the 
following special command linea 

CHAIN N* 

If the next line of the intermediate file has been intended 
as a keyin response for the program (which Just failed), then 
the process will generally abort again immediately. By using 
the .IIN1r" form of the special command line several times, the 
invalid step can usually be bypassed and the CH~IN process 
resumed at a valid MOOS command line. 

MDOS 3.0 User's Guide Page 06-16 



CHA I N COMMAND 6.6 -- Resuming an Aborted CHAIN Process 

The Error Status Mask and the current state of the CMO 
operator are lost when a CHAIN Is aborted. These values 
cannot be restored when an aborted CHAIN process Is 
restarted. 

6.7 Examples 

The following example shows a fairly complex CHAIN file 
that incorporates most of the features described in this 
chapter. This CHAIN file is used to assemble and create 
loadable files of a system of proqram files that resides on 
multiple diskettes. The primary assumption made is that an 
MOOS system diskette is on drive zero and that the source 
programs will be on drive one (although not all at the same 
time) • 

In this example the CHAIN process will display messages 
to the operator if no parameters are supplied. It will also 
display messages that indicate what path the comoilation 
phase is taking, based on the passed CHAIN tags. 

IIFC ASM.LOAD 
1* 
1* THIS CHAIN REQUIRES AT LEAST ONE OF THE FOLLOWING 
1* PARAMETERS: 
1* 
1* ASM -- CHAIN FOR ASSEMBL I ES 
1* LOAD CHAIN FOR pRODUCING MEMORY-IMAGE FILE 
1* 
/* Al~D ONE OR MOHE OF THESE pARAMETERS' 
1* 
1* 01,02 -- DISK 1 and DISK 2 
/* ALL -- ALL FILES ON ALL DISKS 
/* <name> -- NAME OF FILE 
1* 
/* TrlE FOLLO~ING ARE OPTIONAL PARAMETERS 
1* 
1* OPT -- ASSEMBLER OPTIONS 
1* 
IABORT 
IELSE 
I IFS ASM 
1* CHAIN FOR ASSEMBLING PROGRAMS 
I Xlr= 
I IFS LOAD 
1* CHAIN FOR MEMORY-FILE CREATION 
I XIF 
IXIF 
@SET,M 8 
IIFS ALL,Dl,tJROGI ,PROG2 
@. L~SERT DISK 1 INTO DRIVE 1 -- DEPRESS ANY KEY ~HEN HEADY 
I IFS ALL,OI,PROGI 
1* PROJRAM PROG I 

MOOS 3.0 User's Guide Page 06-17 



CHA IN COMi\iAND 

I IFS ASM 
DEL PROG I • RO: I 
RASM NOL,EQU,LIS,PROGIII 'H~OPT%O=PROGlal 
I XIF 
I IFS LOAD 
@TST,S EQ 
gJMP SKIPPGMI 
DEL PROG I • Loa 1 
RLOAU 
IDON;BASE ,CUI-lP= \ \$) 00, LOAD=PROG) : 1 
OBJA=PROGJ I I 
CURP=\ \$) 00, LOAD=PROG 1 : I 
MO=#LP;MAPF 
EXIT 
@LBL SKIPPGMI 
I XIF 
/ XIF 
I IFS ALL,DI,PRC)G2 
/* PliOGHAM PROG2 
I IFS ASM 
DEL iJROG2. ROI I 
RASM NOL, EQU, LIS, PROG2: 1 ,R%OPT%O=PROG21 I 
I XIF 
I IFS LOAD 
@TST,S EQ 
~JMP E!'lU I 
DEL pROG2. L(U I 
RLOAD 
IDON;BASE;CURP=\\SI00ILOAD=PHOG2a) 
OBJA=PHOG2: I 
CUHP=\ \ $100; LOAD=PROG21 I 
MO=#LP;MAPF 
EXIT 
@LBL END I 
I XIF 
I XIF 
IXIF 
IIFS ALL,D2,PROG3,PROG4 

6.1 -- Examples 

@. INSERT DISK 2 INTO DRIVE I -- DEPI1ESS ANY KEY WHEN READY 
I IFS ALL,D2,PR(~3 
1* PROGR AM tJROG3 
I IFS ASM 
DEL PROG3.LX:1 
RASM PROG3: I ;%OPT% 
/ XIF 
I IFS LOAD 
@TST,S EQ 
~JMP SK I PPGM3 
DEL PROG3. LO I I 
EXBI 1~ PHOG3:) 
~LBL SKIPPGM3 
/ XIF 
I XIF 
I IFS ALL,D2,PROG4 

MDOS 3.0 User's Guide Page 06-]8 



CHAIN COMMAND 

/* Pl-HlGHAM fiROG4 
/ It=S ASM 
DEL PROG4.LX:1 
RASM PHOG4: I ;%OPT% 
I XIF 
/ IFS LOAD 
gTST,S EQ 
@JMP END2 
DEL PROG4. Loa 1 
EXBIl{ PRoG4' i 
@LBL END2 
/ XIF 
/ XIF 
/XIF 

6.7 -- Examples 

The tags ALL, 01. D2, PROGI, PR(~2, PROG3. and PROG4 are 
used to identify which programs from the system of programs 
are to be selected by the CHAIN process. All progr~ms from 
all diskettes can be selected by specifying ALL. A specific 
program can be selected by specifying its name' either 
PROG1, PROG2, PROG3. or PROG4. All programs on a specific 
diskette can be selected by specifying 01 or 02. 

The tags ASM and LOAD are used to select what process 
the programs will go through. ASM specifies the programs 
will be assembled. LOAD specifies link/loading or object 
file conversion via EXBIN. 

It should be noted that nested IFs have been indented 
(spaces between slash and IF) to indicate their level of 
nesting. This is optional, but ~akes the CHAIN file easier 
to understand. Prior to the assembly and link/load or object 
file conversion processes, a DEL command has been placed to 
ensure that the output file from the process does not exist. 
The first time that the CHAIN file is used, the DEL command 
will cause an error to occur; however, the SET operator has 
been used to inhibit CHAIN process aborting. 

The TST operator is used after each assembly process to 
check for errors. If an error occurred, then the error 
status word will be non-zero in the portion indicated by the 
US" designator. Thus, the test condition for being equal to 
zero will be false, causing the JMP to be executed. 
Therefore, if assembly errors occur, the link/load or object 
file conversion process will be bypassed since it would only 
generate an unusable file. 

It should also b.e noted that the backslash character is 
used in the HLOAD command CURP. Thus, the CHAIN forcing 
character, which is also a backslash, must be entered. 

The Operator Breakpoint is used to pause the CHAIN 
process. This allows the operator time to insert the proper 
diskette into driVe one. Otherwise, if all programs from all 

MOOS 3.0 User's Guide Page 06-19 



CHA I N COMMAND 6.7 -- Examples 

diskettes were to be assembled, there might not be sufficient 
time for the operator to swap diskettes. 

The following example illustrates what is displayed on 
the system console when the CHAIN is invoked without any 
parameters. Since this would produce an empty intermediate 
file, the condition is tested for and an appropriate message 
displayed. The name of the CHAIN file in the directory is 
SYSGEN. CF. 

=CHAIN SYSGEN 
THIS CHAIN REQUIRES AT LEAST ONE OF THE FOLLOflING 
PARAMETERSI 

ASM -- CHAIN FOR ASSEMBLIES 
LOAD CHAI.N FOt< PRODUCING MEMORY-IMAGE FILE 

= 

AND ONE OR MORE OF fHESE PARAMETERS: 

01,02 -- DISK 1 and DISK 2 
ALL -- ALL FILES ON ALL DISKS 
<name> -- ,'JAME OF FILE 

THE FOLLOWING ARE OpTIONAL PARAMETERS 

OPT -- ASSEMBLEH OPTIONS 

The next example uses the same CHAIN file again; 
however, this time the parameters for assemblin~ (ASM), 
memory-image file creation (LOAD), and processing all files 
in the system (ALL) are specified. In addition, the options 
field of the assembler will be initialized with the value 
"LX" to produce a listing and a cross reference table on the 
line printer. 

=CHAIN SYSGEN;ASM,LOAD,ALL,OPT%LX% 
CHAIN FOR ASSEMBLING PROGRAMS 
CHA I N FOR MEMORY-F ILE CHEAT ION 
PROGRAM PROGI 
PROGRAM PROG2 
PROGRAM PROG3 
PROGRAM PROG4 

dSEf FOFF 0800 
iJ. INSERT DISK 1 INTo DHIVE 1 -- DEPRESS ANY KEY ,~HEN READY 
DEL pROG I. HO: I 
PROG 1 • RO: I DELETEU 
nASM NOL, EQU ,LIS ,tlROG 11 I; HLXO=PROG I I I 
MOOS MACROASSEMBLER 03.00 
COPYHIGHf BY MOfOROLA 1917 

~Tsr,FOOO 0000 0027 
~JMP 2F29 

MDOS 3.0 user"s Guide Page 06-20 



CHAI N COMMAND 

DEL PROG2. H(lI) 
PROG2 • RO I I DELETED 
KASM NOL,EQU,LIS,PROG2: J ;RLXO=PRCD2: 1 
MOOS MACrlOASSEMBLER 03.00 
COPYHIGHT BY MOTOROLA i977 

iTsr,FOOO 0000 0027 
gjMP 2F33 

6.7 -- Examples 

fJ. INSERf DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY 14HEN READY 
DEL PROG3. LX: 1 
PROG3 • LX: 1 DELETED 
RASM PROG3:1 ;LX 
!~DOS MACROASSEMBLER 03.00 
COPftiIGHT BY MOToROLA 1977 

gTST,FOOO 0000 0027 
~JMP 2F41 
GEL iJHOG4.LX:J 
PROG4 • LX I 1 DELETED 
JASM i->ROG4:1;LX 
MOOS MACHOASSEMBLER 03.00 
COPYHIGHT BY MOTOROLA 1977 

@TST,FOOO 0000 0027 
@JMP 2F4B 
END CHAIN 
= 

From the example above, it can be seen that even though 
the L<MD parameter was entered on the CHAIN command line, the 
process to create memorY-image files was not performed. This 
resulted from the fact that the assembly process Jenerated 
errors in each program. Had no errors occurrei, the 
memory-image files would have been created. The operands of 
the Execution Operators have been converted into hexadecimal 
corles during the compilation to make it easier for the 
execution phase overlay to process the intermediate file. 

The last example uses the same CHAIN file again; 
however, this time only a single program is processed, tJROG3. 
The operator does not need to know on which diskette this 
program resides. rhe Operator Breakpoint is used to notify 
the operator when a diskette is to be inserted into drive 
one. In this example, no errors occurred during the ~ssembly 
process since the memory-image file is created. 

MOOS 3.0 User"'s Guide Page 06-21 



CHAIN COMMAND 6. 7 -- Examples 

=CHAIN S,(SGEN;ASM,LOAD,PHOG3,OPT%LN=120% 
CHA I N FOR ASSEM BL I NG PROGR AMS 
CHAIN FOR MEMOI1'l-FILE CtiEATION 
PROGRAM PROG3 

i!iSE r FOFF 0800 
@. I NSEHT DISK 2 INTo 011 IVE I -- DEPRESS ANY KEY f~HEN READY 
DEL ~ROG3. LX a I 
PROG3 • LX I I DELETED 
HASM PROG3a I ;LN= 120 
!IADOS MACROASSEMBLER 03. 00 
COPYHIGHf BY MOTOROLA 1917 

~TSr,FOOO 0000 0027 
iJEL PROG3.LOIJ 
PROG3 • LO: I DELETED 
EXBI N PROG3' I 
,gLBL 2F29 
END CHAI N 
= 

MDOS 3.0 User's Guide Page 06-22 



CHAprE~ 7 

7 • COP,( COMM AND 

The COpy command allows files to be copied from one 
diskette to another, from a diskette to another device, or 
from another device to a diskette. It is not possible to 
copy files between two non-diskette devices with the COpy 
command. (~tions exist for copy verification and for the use 
of non-standard devices. 

7.1 use 

The COPY command is invoked with the following command 
line: 

C{WY <name I>[,cname 2>] [;<options» 

where <name I> is the name of a source file or source device, 
<name 2> is the name of a destination file or destination 
device i and <options> may specify the type of copying that is 
to be performed. The following options are valid. fheir use 
is described explicitly in the next sectionsl 

Option 

B 

c 

U=<name 3>[,] 

L 

M 

N 

MOOS 3.0 User's Guide 

Function 

Perform both the copy and the verify 
processes when copying between two 
diskette files. 

Use binary record conversion during 
the copy to a non-diskette device. 

Use a 
instead 
device 
verify 
located 

user-defined device driver 
of a standard MDOS-supported 
driver during the copy or 
process. The driver is 
in a diskette file <n3me 3>. 

List errors on the line printer 
durinq file verification. 

Go to debug monitor after loading 
user-defined device driver file. 

Use non-file format mode for the 
non-diskette device. 

Page 07-01 



COtlY COMMAND 

v 

1. I -- Use 

Verify source and destination files. 
No copy is performed. 

Use automatic 
destination file 
diskette. 

overwrite 
already exists 

if 
on 

7.1.1 Diskette-to-diskette copying 

In order to copy one diskette file into another, both 
<name I> and <name 2> must be specified. The source file 
name specification, <name 1>, will be supplied with the 
defaul t suffix ,"SAil and the defaul t logical uni t number zero 
if those quantities are not explicitly given. The 
destination file name specification, <name 2>, need only be 
specified with a file name, a suffix, or a loqical unit 
number (or any combination thereof); however, at least one 
part at <name 2>'s file name specification must be entered. 
[he unspecified parts of <name 2> will be supplied from the 
respective parts of <name I>. Thus, if TESTPR(~.SA:O is to 
be copied to the diskette on drive one, then only the logical 
unit number need be specified for <name 2>, since the file 
name and suffix will be supplied from <name 1>1 

COpy TESTPHOG, II 

In this example the default values were first supplied for 
<name 1>, and then the default values supplied for <n~me 2>. 
fhere is no restriction in file format when copyinq from one 
diskette file into another. 

On 1 Y the II B.It , .. Lit , .. V II and the .. W .. 0 p t i on s are val i d 
when copying between two diskette files. The "V" and II Sit 
options, as well as the "V" and U~~1t options, are mutually 
exclusive. The ilL" option is valid only valid with "V" or 
118 1f • The "Wit option is used to allow the destination 
diskette file to be overwritten if its file name ~lready 
eXists. If, in the above example, the file name 
fESTPROG.SAS) already existed, then COpy would have displayed 
the rnessaqe 

TESTPROG. SAl I EX ISfS. OVEH~Hl ITE? 

and await a response from the operator. A .. yn response would 
allow the COpy process to continue, and the file on drive I 
would be overwritten. Any other response would cause the 
COpy command to be terminated, and the destination file would 
be unaffected. The "W" option's presence will force the COpy 
command to attempt the copy if the destination file name 
exists. without promptinq the operator. 

The other options are eXplained in subsequent sections. 

MOOS 3.0 User's Guide Pa'Je 07-02 



COpy COMMAND 7. I -- Use 

7.1.2 Diskette-to-device copying 

If a diskette file is to be copied to another device, 
both <name I> and <name 2> must be specified on the comTaand 
line. The default assumptions for the source file are the 
same as in diskette-to-diskette copying; however, <name 2> 
must now indicate a destination device rather than 3 file. 
The following are valid device specifications that can be 
used for <name 2>1 

Device 
Name 

#eN 
#CP 
IILP 
IUD 

Associated Physical Device 

Console printer 
Console punch (record) device 
Line printer 
User-defined device 

Unlike diskette-to-diskette copying, where <name 1> 
co~ld be the name of any diskette file, <name 1> can only be 
an ASCII or binary record file (see section 24.3). Thus, not 
eVery diskette file can be copied to a non-diskette device. 
If memorv-imaae files are to be copied to a non-diskette 
device, t~en t~ey must first be conv~rted via the BINEX 
command (Chapter 4). 

There are two modes for copying files to a non-diskette 
device: file format mode and non-file format mode. fhe file 
format mode is the default mode that the COpy command uses. 
The file for~at mode will write one extra record to tne 
device before any data records are copied from the file. 
This special record is called the File Descriptor Record 
(FOR) and serves the same purpose as a directory entry for 
diskette files l the FOR contains the diskette fileJs name, 
suffix and file format (see section 24.3). TheliN" option 
inhibits the writing of the FOR to the output device, and is 
used to indicate the non-file format mode. Thus, if an FOR 
is to be written to the output device, the "N" option should 
be omi tted; if an FOR should not be wri tten, the II Nil should 
be specified. 

The out out devices #CN and #LP can be used as the 
destination device in the diskette-to-device copy mode. 
However, the presence of the uN" option on the command 1 ine 
when copying to these devices has no effect. The #eN and HLP 
devices are not ufile" devices since no FOR could ever be 
read from them. Thus, the COpy command will automatically 
force the non-file format mode to be in effect and suppress 
the writing of the FOR. 

Some output devices cannot support eight-bit binary 
data. In such instances. the lIC" option must be used when 

MDOS 3.0 User's Guide Page 07-03 



COpy COMMAND 7. I -- Use 

binary record files are being copied. The "C" option will 
cause the binary data to be converted into seven-bit ASCII 
data (see section 24.3) which can be handled by the ievice. 
The following table shows what the destination file format 
will be, based on the file format of the source file and the 
options specified: 

Source File Destination File 

ASC I I ASC I I. 

Binary, no "c" Binary, if supported by devi ce; else 
ASCII-converted-binary. 

Bi na ry, "c" ASCII-converted-binary. 

In the non-file format mode (IIN" option specified), only 
ASCII record files can be copied. 

The "V" and ilL" options are valid in this copy mode. 
The "~II and uB" options are invalid since no diskette file is 
being written to. The "0" and "MII options can be used, but 
only if the device IUD is specified for <name 2> (see section 
1.2) • 

7.1.3 Jevice-to-diskette copyinq 

If a file is to be copied from another device to the 
diskette, then <name I> is required; however, depending on 
the copy mode chosen (file format or non-file format) <name 
2> is optional. If the file format mode is to be used (no 
liN" option specified), then <name 2> can be omi tted. In such 
cases, the file name to be used for the diskette file is 
taken out of the FOR; however, if <name 2> is soecified 
(still no "N" option), the source deVice will be re~d until 
an FOR is found that matches <name 2> before the copy takes 
place. In other words, in the file format mode, <name 2> 
indicates the name of the tile on the device which will be 
copied to diskette. The name of the file can only be changed 
with the NAME command (Chapter 20) after the file has been 
copied to diskette. 

If the IIN" option is specified, then no FOR processing 
will be performed. fherefore, <name 2> must indicate the 
diskette file that is to be written to. 

In either case <"N" option or no liNn option), <name I> 
will specify the source device, and <name 2> will specify the 
destination diskette file. The default values liSA" 3nd zero 
will be supplied for <name 2>'5 suffix and logical unit 
number, respectively, if they are not explicitly entered by 
the operator. The valid device specifications that can be 

MOOS 3.0 User's GUide 



copy COMMAND 

used for <name 1> are: 

Device 
Name 

tlCR 
IUD 
#HR 

Associated Physical Device 

Console reader device 
User-defined device 
EXoRtape (see section 7.6) 

7. 1 -- Use 

Only ASCII record files can be copied using the liNn 
option. If paper tapes or cassettes have been generated in a 
non-MOOS environment, they must conform to the MOOS format 
for ASCII record files (section 24.3). Most important is the 
record termination sequence. Each record must end with a 
carriage return, line feed, and null character combination. 
Otherwise, leading data characters from the subsequent record 
can be dropped. Next in importance Is the end-af-file 
indicator. The tape should contain the ASCII end-of-file 
record (section 24.3) or generate a timeout condition 
(section of erased or blank tape) to cause the console reader 
to stop. 

If binary records are to be copied, then the file format 
mode must be used. The binary record copied to diskette will 
always be in the bina~y format~ never in the 
ASClI-converted-binary format. [he FOR contains the format 
of the file on the device. Thus, the conversion from 
ASClI-converted-binary to binary is performed automatically. 
The ilcn option, therefore, is invalid with this form of the 
COpy command. 

The "Wfl option can be specified to automatically 
overwrite the diskette file «na~e 2» if it already exists. 
[he un" and 11M'" options are only valid if <name 1> is the IUD 
device. The usn option is invalid, but the "VII ,3nd "L" 
options are valid. The ilL" option can only be specified if 
nvu is specified. 

7.1.4 verification 

The UV" option can be used to compare two files against 
each other. No file copying will take place if this option 
is specified. The "V" option is valid with all three modes 
of the COpy command I di skette-to-di skette t 
diskette-to-device, and device-to-diskette. If, however, a 
device specification is being used for either <na~e 1> or 
<name 2>, it must be a device that supports input. For 
example, even though a file from diskette can be copied to 
the line printer or the console punch, the "V" option is 
invalid for those specific devices. 

The verification process will display the message 

MDOS 3.0 User"s Guide Page 07-05 



COpy COMMAND 7. I -- Use 

VERIFY IN PROGRESS 

while the verification is taking place. If the files being 
compared are both diskette files, then the parts of the files 
that do not compare will be displayed in the following 
format: 

SECTOR nnnn 
OFFSET xx SRC-yy DST-zz 

where u nnnn " is the logical sector number of the file, '''xx'' 
is the offset into the sector, '''yy'' is the source file's byte 
(<name I», and .IIZZII is the destination file"s byte «name 
2». All values are displayed in hexadecimal. 

If memory-image files are being 
files" RIBs will also be included in the 
ensure that the load infor~ation matches. 

compared, then the 
verify process to 

In the event that only a sector number is displayed 
during the verify process (no byte discrepancies shown), then 
the two files are of different lengths. The files are 
identical through the end-of-file of the shorter file. The 
sector number displayed is one sector beyond the end-of-file 
of the shorter file. 

When verifying a diskette file with a non-diskette file, 
the mis-comparisons between the two files are displayed in a 
slightly different format as shown below& 

RECOHD mmmmm 
OFFSET kkk SRC-yy DST-zz 

where "mmmmmJl is the physical record number in the diskette 
f i I e ( i n dec i mal) , JJ k kk " i s the off set wit h in the r ec 0 r d 
(also in decimal), and .Uyyll and .IIZZ.ll are the same as 
described above. If the two files being compared are of 
different lengths, and if they are identical throu]h the 
end-of-file of the shorter file, then the offset portion of 
the error message will not be printed. 

The "L" option can be used in conjunction with the II V" 
option to cause the mis-comparisons between the two files to 
be printed on the line printer instead of the console. 

7.1.5 Automatic verification 

The .. Sit option can be us ed when copy ing from one 
diskette file to another to automatically cause the two files 
to be verified after the copy has taken place. Section 7.1.1 
describes the copy process between two diskette files. 
Section 7.1.4 describes the verification process. 

MDOS 3.0 User's GUide Page 07-06 



:oPY COMMArt) 1. 1 -- Use 

For example, the following command line l 

COpy TESTPR DO, = 1 ; B 

performs exactly the same function as the following two 
command lines l 

COpy TESfPROG, i i 
COpy TESTPROG, I 1 ;V 

The tiL" option can be specified along with the US·" 
option to cause any errors during the verification process to 
be printed on the line printer instead of the console. 

7.2 User-Defined Devices 

The· CO~y command allows the user to specify his own 
device drivers. Such device drivers must fol10w the 
specifications described in this section. The device name 
#UD is used on the C(WY command line to indicate that a 
user-defined device driver is specified in the options field. 
The nDn option is used to pass the file name of the device 
driver to the COpy command. The "Olt option has the foilowing 
formata 

D=<name 3>[,] 

where the terminating comma is optional. If the "0 11 option 
is the last option specified, then the comma need nct be 
supplied; however, if other optio~s follow the HD" option, 
then the comma .must be present to serve as a terminator for 
the file name specification of the device driver. 

The device driver must be in a file that has the 
memory-image format. <name 3> is a complete file name 
specification. The default values of "LO" and zero will be 
supplied for the suffix and for the logical unit number. The 
device driver must meet the requirements set forth in section 
26.2 for entry points, for calling sequences, and for return 
conditions. In addition, the following criteria must be 
satisfieda 

1. The first twelve bytes of the device driver 
must contain the Controller Descriptor Block 
(COB) for the device (Chapter 26). 

2. The device driver must not overlay the C(WY 
command. It is suggested that the device 
driver load as close to the end of the COpy 
command as possible. fhis address should be 
$3000. 

MDOS 3.0 User1s Guide Pa-ge 07-07 



COpy COMMAND 7.2 -- User-Defined Devices 

It may be necessary to set breakpoints in the 
user-defined device driver to ensure that it is working 
properly. The "M" option wi 11 cause the COpy command to 
enter the debug monitor after the device driver has been 
loaded into memory. This feature is especially useful during 
the initial testing of the device driver. 

The "Mil option cannot be used without the "U" option. 
I f the "M·" optIon is present, the debug moni tor wi 11 dI splay 
one of the following messages depending on the version of the 
EXbu r1 firmware. The first message is displayed by EXbug It 
the second by EXbug 21 

BKPT ERROR 
P-2126 X-2161 A-OD 8-80 C-CO S-226F 

* 
SWI P-2126 X-2J6J A-DO 8-80 C-CO S-226F 
*E 

These messages indicate that the user-defined device driver 
has Just been loaded into memory. The actual numbers in the 
pseudo-registers may differ and are inconsequential. The 
purpose of going to the debug monitor is to allow the user to 
set breakpoints at critical places in the device driver to 
verify that it is working properly. After the bre~kpoints 
are set, control is returned to the COPY command by entering 
the EXbug command 

;p 

Then, when the user-defined device driver is accessed by the 
COpy command, the set breakpOints will allow the IJser to 
check the device driver~s functions. 

1.3 COpy Mode Summary 

The following table summarizes the requirements for the 
three Copy command modes. The following symbols are used in 
the tablel 

Symbol 

OK-OK 
DK-OV 
DV-OK 
11 
o 
F 
D 

MDOS 3.0 User's Guide 

Meaning 

Diskette-to-diskette copying 
Oiskette-to-device copying 
Device-to-diskette copying 
Hequired 
Optional 
File name 
Device name 

Page 07-08 



e01->Y COMMAND 

COpy 
Mode 

DK-OK 

DK-OV 

DV-DK 

Valid 
options 

BtL,VtW 

C,D,L,M,N,V 

DtLtMtN,V,W 

<name 1> <name 2> 

D.j; .. , . 

RtF litO 

H,O O,F 

7.3 -- COpy Mode Summary 

Restrictions 

V and W options are 
mutually exclusive. V 
and B options are 
mutually exclusive. 
L 1s only valid with 
V or B. 

N option implies 
ASCII record format. 
e option implies 
binary record format. 
o option implies HUD 
device name. V 
option implies input 
device. L option is 
only valid with V. 

o option implies #UO 
device name. V 
option implies input 
dey ice. ~ a nd V 
options are mutually 
exclusive. N option 
requires 
<name 
search 
device 

<narne 2>. 
2> causes 

for FOR on 
if no N 

optic~. L aptian is 
only valid with V. 

7.4 Messages 

fhe following messages can be displayed by the COpy 
command. Not all messaqes are error messages. althouqh error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not listed 
here. 

<name> EXISTS. oVERV4RITE? 

The file named by <name> already exists in the 
directory. Before overwriting the file, the 
operator must respond with a "V". Any other 
response will terminate the COpy command. 

VERlt=Y IN PHOGRESS 

fhe "V" or 118" option was specified on the 
command line. The two files are being co~oared. 

MOOS 3.0 User" s Guide Page 07-09 



COpy COMMANU 

SECTOR nnnn 

HECOrlD mmmmm 

7.4 -- Messages 

fwo diskette tiles did not compare during the 
verity process. "nnnnft indicates the logical 
sector number (hexadecimal> at the failure. 

fwo files did not compare during the verify 
process. One file is on diskette, the other file 
is not. "mmmmm" indicates the physical record 
number (decimal) in the diskette file where the 
failure occurred. The LIST command (Chaoter 17) 
can be used to display the records in a file with 
their physical record numbers. 

OF~SET (xx or kkk) SRC-yy OST-zz 

7.5 Examples 

fhis message indicates which bytes within a 
logical sector or within a physical recori of the 
two files being compared do not match. The 
offset "xx" is hexadecimal if comparing ·jiskette 
files. The offset J.lkkk" is ciecimal if cf)mparinq 
a diskette file with a non-diskette file. The 
byte in the source file is shown as "yyn. The 
byte in the destination file is shown as Itzz". 

[he followinq examples have been separated into the 
three COpy modes as illustrated in the table at secti':)n 7.3. 

7.5.1 Diskette-to-diskette example 

The following command line 

COpy PfH>GS. ROJ 2, • liN: I 

will copy the file PROGS.RO from drive two into the file 
PROGS.RN on drive one. A user response is required to 
continue the copy if the file on drive one already exists. 
The user response can be suppressed, regardless of whether 
the file on drive one exists, by adding the UW" option as 
shown: 

COpy PROGS. Roa 2, • RNa I 'rl 

No error results if the file on drive one does not exist. In 
either case, if the logical unit number had been omitted from 
the <name 2> specification, the file would have been created 
on drive two. 

MDOS 3.0 User's Guide Page 07-10 



COpy COMMAND 7.5 -- Examples 

The next example illustrates the display of the bytes 
which do not compare when two files are compared with the "V" 
option. 

_F'I"\nv 
-\...\Jrl BLAKJACK!!,!O;V 
VERIFY I N PROGRESS 
SECTOR 0000 

OFFSET )0 SRC-31 DST-02 
OFFSET I 1 SRC-34 DST-03 
OFFSET 12 SRC-2B DST-04 
OFFSET 13 SHC-54 OST-05 
OFfSET 14 SRC-53 OST-06 
OFFSET 15 SRC-31 DST-07 
OFFSET 16 SRC-38 DST-08 
OFFSET 17 SRC-OO OST-09 
OF~SET 18 SRC-2B DST-OO 
OFFSET 76 SRC ..... 45 DST-55 
OFFSET 77 SRC-4C OST-66 
OFFSET 78 SHC-53 DST-77 
OFFSET 79 SRC-45 OST-88 

= 

7.5.2 Diskette-to-device example 

The following command line 

COpy TEXT.HCP 

will copy the file TEXT.SA from drive zero to the console 
punch (record) device. The punch device must be ready to 
receive data before the command line is ente~ed. Since no 
uN" option was specified, an FOR record will be written 
before any data records are copied. 

Most frequently, however, the user 
files to the console punch for loading via 
command. In such cases, the FOR should not 
punch device. Then, the following command 
used: 

COpy TESTPROG.LX,#CP;N 

will copy object 
the EXbu:J LOAD 

be written to the 
line should be 

where TESTPHOG.LX is the output file from an assembly process 
(in the EXbug-loadable format). The II Nil option suppresses 
the writing of the FOR. If the TESTPR(~.LX file had a 
non-ASCII file format, then an error message would have been 
displayed. 

The next example illustrates how source listinqs that 
have been directed to diskette by the assembler (HASM) can be 
printed on the line printer. Since the file already contains 
page formatting, the LIST command would cause the printed 
copy to look strange since LIST imposes its own page 

MOOS 3.0 User.ls GUide Page 07-11 



COpy COMMAND 7.5 -- Examples 

formatting. Thus, the COpy command should be used to print 
source listings from diskette. 

COpy TESTrROG.AL,HLP 

The console printer, HCN, could be 
-3S well. The "Nn option is not used 
the printer (either HLP or ICN) 
Copying to a flnon-file fl device will 
non-file format mode. I f the "NII 
such a case, no error would result. 
redundant request. 

used instead of ILP just 
in this example because 
is not a "file" device. 
automatically set the 

option were specified in 
It would only be a 

The last example illustrates how the command li~e would 
appear if a user-defined device driver is used' 

COpy TESTPROG.LX,#UD;NlJ=TAPE 

The user device is indicated via the IUD. The liD" option 
must be present. Otherwise, an error would result. The file 
TAPE.LO on drive zero will be used as the device driver file 
for the user device. 

7.5.3 Device-to-diskette example 

(hce a file has been copied to the console punch with an 
FOH, it can be verified or copied back to diskette without 
having to specify its name. The following command line' 

COpy HeR 

will cause COpy to search for the first FOR on the console 
reader device. (~ce it is found, the file name contained in 
the FDH will be used for <name 2>. If the file name does not 
exist in the directory, it will be created before receiving 
the data records from the console reader. If the file name 
already exists in the directory, a message will be displayed 
by the ecPY command asking the operator if the file should be 
overwritten. 

The command line 

copy #CR,TESTPROG.LX;VL 

on the other hand, will search the console reader device for 
an FOR that contains the file name TESTPROG.LX. The same 
file name must also exist in the directory of the· diskette in 
drive zero so that the verification can take place. Any 
mis-comparisons between the two files will be printed on the 
line printer. 

If the User has files in a format that can be read by 
the consol e reader devi ce t but whi ch have no FDR t the II N" 

MOOS 3.0 User"'s Guide Page 07-12 



COPY COMMANO 7.5 -- Examples 

option must be used to copy those files to diskette: 

co P Y HeR, F I LEI ; N 

in this example, the file indicated by <name 2> will receive 
the data from the console reader. No search is perfor~ed for 
an ~DH. If the file is on paper tape, then it must be in a 
format that is compatible with the MDOS ASCII records 
(section 24.3). That is, a carriage return, line feed, null 
sequence must terminate each record. otherwise, one or two 
data characters from the subsequent records may be lost. 
This results from the fact that the detection of a carriage 
return forces the device driver to turn off the reader. In 
the amount of time it takes to turn the reader off, one or 
two frames (characters) may have passed by the read head. 

The following example illustrates how a user would set 
breakpOints in his. device driver to verify that it is 
performing the functions of a driver as specified in section 
26.2. The example shows EXbuq I as the debug monitor: 

=COpy HUD,TEST;NMD=D~IVER 
BKPT ERROR 
P-2126 X-2161 A-OD 8-80 C-CO S-226F 
*3056;V 
*3064;V 
*3082;V 
*;p 

The EXbug monitor is given control after the user's driver 
file; DRIVEH.L():O~ has been loaded into memory by the COpy 
command. The user then sets three breakpoints (the addresses 
for the breakpoints are, of course, meaningless in this 
example -- they serve only to illustrate that breakpOints are 
set). The II;P" command then returns control to the COpy 
command. When one of the breakpOints is reached during the 
execution of the COpy command, the normal breakpoint display 
will be seen. At that point, the user can examine registers, 
memory, etc., to ensure that his driver is functioning 
properly. 

7.6 c.oPY with EXORtape Reader 

The COpy command will provide users with EXORtape paper 
tape readers an additional device type. Users witn paper 
tape readers that are similar to the EXOHtape can also use 
the COpy command without the requirement of a user-defined 
device driver. 

The EXOHtape reader interfaces through a PIA on the 
EXOHdisk I interface module. rhe following steps must be 
followed to permit the EXOHdisk I Interface Module to be 
accec;sed by the COpy command. 

MOOS 3.0 User's Guide Page 07-13 



COpy COMMAND 7.6 -- COpy with EXORtape Reader 

I. No boards may res ide in the EXORc iser that 
respond to addresses at locations SEOOD-E7FF, 
inclusive. 

2. The M68IFCJ s base address must be changed via 
the five-position microswitch so thata 

S5 is closed, 
S4 is closed. 
S3 is closed, 
S2 is open, 
51 is open. 

3. The M68IFC must be inserted into the 
EXORciser"'s card caqe with power off on the 
entire system. 

4. The EXORtape should then be connected via its 
cable to P3 of the Interface Module. The 
COpy command can now use the EXORtape rea-ier 
as an input device through the device name 

#HR 

in all instances that an input device is 
valid. 

For users without the M68IFC but with a compatible paper 
tape reader (see U M68R680 EXORtape User"'s Guide tl ), a standard 
PIA interface can be used if the PIA is confiqured to the 
addre ssSE404. 

MDOS 3.0 User's Guide Page 07-14 



CHAPTER 8 

8. DEL COMMAND 

The DEL command is used to remove MDOS file names from a 
directory and to deallocate all space that belongs to the 
deleted entry. A single file name, a list of file names, or 
a family of file names may. be deleted with a single command. 

8. t Use 

The DEL command is invoked with the following command 
linea 

DEL [<name 1> [, •••• ,<name n»] [;<options>] 

where each <name i> (i = I to n) can specify a specific file 
name or a family of file names. The <options> field can be 
one or both of the following option letters: 

Option Function 

S When family name specifications are used 
include entries in the directory with the 
"'system'" attribute. 

Y Automatically delete all file na~es of a 
family. Do not ask the operator if each 
member of the family should be deleted. 

The list of file names specified on the command line is 
processed from left to right. As the Ii st is processed, the 
file names are searched for in the directory specified by the 
logical unit numbers. If no logical unit number is 
explicitly entered by the operator, zero will be supplied as 
a default. No default suffix is supplied. 

File names which are deleted by accident via the DEL 
command may be restored if no other commands that affect the 
directory or the allocation table have been run after the 
deletion. The REPAIR command description (Chapter 22) 
contains an example of the procedure that must be followed to 
restore such file names. It is recommended, however, that 
files be configured with delete protection or that adequate 
backup copies be kept as an alternative to restoring file 
names in this manner, especially since this restoration will 
only work if the error is detected immediately after the file 
name is deleted. 

MDOS 3.0 User" s Guide Page 08-01 



DEL COMMA NO 8. 1 - Use 

8.1.1 Single file name deletion 

A single file name is deleted by specifying its name as 
the only parameter on the command line. Both the filals name 
and suff i x must be suppl ied by the operator. I f the f i 1 e 
name is not found in directory of the indicated (or default) 
drive, the message 

<name> DOES NOT EXIST 

will be displayed. If the file name is found in the 
directory and if the file is unprotected, the message 

<name> DELETED 

will be displayed to verify that the file name has been 
deleted. If the file is protected, the message 

<name> IS PROTECTED 

will be shown. In this case, the file name is not deleted. 

8.1.2 Multiple file name deletion 

Multiple file names can be deleted by specifying more 
than one name on the command line. Multiple file names must 
be separated by commas or some other valid delimiter. Like 
single file name deletion. multiple file name deletion will 
cause one message to be displayed for each file name entered 
on the command line to indicate whether it was deleted, 
whether it did not exist, or whether it was protected and 
could not be deleted. As many file names as can be 
accommodated on the command line can be deleted at one time. 

8.1.3 Family deletion 

In either the single or the multiple file name modes, a 
file name specification can contain the family indicator. 
The family of file names specified by such a designation will 
then be considered for deletion. Unlike the single and 
multiple file name modes, the operator will be prompted with 
the message 

DELETE <name> ? 

for each file name that belongs to the family. This permits 
the operator to see all family members before they are 
deleted. A "yn response to the above prompt will cause the 
file name to be deleted. Any other response will inhibit 
deletion of that family member. Protected file names within 
the family will be displayed with the standard protection 

MDOS 3.0 Userls Guide Page 08-02 



DEL COMMAND 8. I - Use 

message indicating that they cannot be deleted. 

Without the presence of any options, only file names 
lacking the Usystem" attribute will be considered as eligible 
for deletion in the family mode~ 

A speci al case of the fami I y mode is th.e absence of any 
f il e nam e spec i f icat ion. 1 n thi s case, the DEL com.mand 
processes the command line as if the following file name 
specification had been given 

which will make all non-system file names on drive zero 
eligible for deletion. 

A logical unit number may be entered on the command line 
as the only part of the file name specltlcation~ In this 
case, the family *.* will be eligible for deletion. Instead 
of the default drive, however, the operator entered logical 
unit number will be used. 

8.2 Options 

The ~Sfl option is used to include file names with the 
system attribute iQ the family mode of deletion. Normally, 
the family m.ode excludes .such file names. The "5" option has 
no effect in the single or multiple file name modes. 

The nyu option will inhibit the DEL command~s prompt 
asking if each family member is be deleted. The effect of 
specifying the .. y.u option. is to give an automatic "Y" 
response to the prompt; however, neither the prompt nor the 
automatic response are displayed. The deletion messages 
indicating which members of the family were deleted or 
protected will still be shown. 

The .. yn and "5'" options can be used concurrentl y. 

8.3 Messages 

The following messages can be displayed by the DEL 
command. Not all messages are error messages' however, error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not shown 
here. 

<name> DOES NOT EXIST 

This message is displayed for each file name on 
the command line that Is not found in a 
directory. 

MOOS 3.0 User-'s Guide Page 08-03 



DEL COMMAND 8.3 -- Messages 

<name>, DELETED 

This messaqe is displayed for each file name that 
is deleted. It is displayed in single, multiple, 
or family file name modes. 

DELEfE <name> ? 

This prompt is displayed whenever a fa~ily of 
file names containing at least one member has 
been specified on the command line, and the nyu 
option is not present. The operator must respond 
with a "V" to delete each member of the family. 

<name> IS PR(ITECTED 

8.4 Examples 

This message is displayed for each tile name that 
cannot be deleted due to its protection 
attributes. The message is displayed in single, 
multiple, or family file name modes. 

To delete a single file name called TESTPHOG.S-A on drive 
zero, the following command line would be entered' 

DEL TESTPROG.SA 

The DEL command would then display the message 

fESTJJROG.SA'Q DELETED 

after it has deleted the file name. To delete the three file 
names' SCRATCH. SA on drive one, TEST.LX on drive two, and 
PROG.RO on drive zero, the following command line would be 
used. The system""s responses are also shownl 

=DEL SCRATCH. SAl i ,TEST.LX:2,PROG.RO 
SCRATCH .SA!I DELETED 
TEST • LX' 2 D"ELETED 
PROG .R():O DELETED 
= 

The following command line 

DEL *.SA,*.SA'I 

will search for all file names without the system attribute 
and with the suffix ~SA" on drives zero and one. After a 
tile name is found, its complete name will be displayed along 
with the prompt askinq if the file is to be deleted. The 
operator has complete control over the deletion of any member 
of the family since a response is required for every member. 

MOOS 3.0 User's Guide Page 08-04 



DEL COMMAND 8.4-- Examples 

To delete all unprotected file names on drive three 
without having to respond "V" to each prompt, the following 
command line could be used: 

DEL =3;YS or DEL *.*t3fYS 

In this case, unprotected file names with and without the 
system attribute will be deleted; 

MOOS 3.0 User-'s Guide Page 08-05 



CHAPTER 9 
... _-_ .... _----

9~ DIR COMMAND 

The DIH command displays MDOS file names from the 
directory. The entire directory or selective parts of it may 
be displayed. Options eX1S't for displaying all entire 
directory entry, its allocation information, and for 
directing the output to the printer. 

9. 1 Use 

The OIR command is invoked with the following command 
line: 

OIR [<name>] [;<options» 

where <name> can specify a specific file name or a family of 
file names. The <options> field can be one or more of the 
following option letters: 

Option Function 

L Direct output to line printer. 

S Include file names with the "system" 
attribute when displaying a family. 

E Display the entire directory entry for each 
file name. 

A Display the associated allocation information 
along with the entire directory entry. 

WheneVer the DIR command is invoked, regardless of 
options or file name specifications, the drive number and the 
10 from the diskette in the specified or default drive will 
be displayed as a heading. This heading will serve to 
identify the subsequent output. The heading has the 
following format' 

DRIVE : i DISK 1.0. : XXXXXXXX 

where ui~ will be the logical unit number zero. one. two, or 
three, and "xxxxxxxx" will be the eight-character 10 that was 
assigned to the diskette via the DOSGEN command (Chapter )0) 
or the BACKUP command (Chapter 3). 

Normally, without the presence of any options, the 

MOOS 3.0 User's Guide Page 09-01 



D I Ii COMMAlt.> 9. I -- Use 

directory entry specified by <name> will be searched for and 
its name and suffix displayed on the system console. The 
following sections explain the various options that can be 
specified on the command line. 

9.1.1 Families 

If <name> contains a family indicator in either the 
suffix or the file name portion of the file name 
specification, the entire family of file names will be 
searched for in the directory and displayed. If no <name> is 
specified at all, the default family ~*.*aon will be used. 
If only a logical unit number is specified, the family fl*.*" 
on the indicated logical unit will be used. If the "S" 
option has not been specified, only file names without the 
~systemfl attribute will be included in the display. This 
eliminates the display of all MOOS system files and commands. 

When <name> contains a family indicator (explicitly or 
by default), the file names are displayed in the order in 
which they are found in the directory. A file name's 
position in the directory is a function of its name and 
suffix. Appendix G describes in more detail how na~es are 
placed into the directoryl however, it should be noted here 
that when a file-'s name or suffix is changed, its position in 
the directory may also change. Thus, when the directory is 
shown at different times, the order of the displayed names 
may differ. 

9.1.2 System files 

file names with the "system" attribute will be included 
in the output of the OrR command if the liS'" option is 
specified on the command line. If a specific file name is 
being searched for «name> does not contain the family 
indi6ator), then the US" option has no effect. 

The effect of the "S" option is identical to its effect 
with the DEL command (Chapter 8). Thus, the same family of 
file names displayed by the DIR command will be affected by 
the DEL command (if invoked with similar command line 
parameters). This feature allows pn operator to see ahead of 
time what family of file names will be affected by the DEL 
command. 

9.1.3 Entire directory entry 

Normally, DIR will only display a file's name and 
suffix. The "E" option can be used to cause the entire 
directory entry to be displayed. The presence of the JIE" 
option will cause each displayed line from the OIR command to 

MDOS 3.0 User~s Guide Page 09-02 



DIH COMMAND 9. I - Use 

look like: 

FFFFFFFF.SS WDSCN# RRRR ZZZZ DO 

where the symbols take on the following meanings: 

Symbol 

FFFFFFFF 
55 
WDSCN# 
RRRR 
ZZZZ 
DO 

Meaning 

File name 
Suffix 
Attributes 
RIB address 
File size 
Directory entry number 

The file name and suffix are, of course, obvious. The file 
attributes are always displayed as a six-character field. 
The presence of a letter or number in a specific position of 
the attribute field indicates that the particular attribute 
applies to the file. A period in a position of the attribute 
field indicates that the particular attribute does not apply. 
The following letters <and positions) are defined in the 
attribute field: 

W 0 S C N # , , 1 J l a 
a I : I : : .. 
I , l I I , I 1 1 : 
I : : I I 

: : II I 

J .: a .1 : 

, .: : I I •••• 

I .: : I •••••• 

I I : •••••••• 

I a •••••••••• 
a •••••••••••• 

File format (O=user defined, 
2=memory-image, 
3=binary record, 
5=ASCII record, 
7=ASClI-converted-

binary record) 
Non-compressed spaces 
Gontiquous space allocation 
System file 
Delete protection 
~~ri te protecti on 

Thus, if the "W" is displayed, the file is write protected. 
If no nw" is displayed, the file is not write protected; if 
the nCIl is displayed, the file is allocated contiguous space; 
if no IIC" is displayed, the file is segmented; etc. 

The remainder of the fields of the directory entry 
contain only hexadecimal numbers. The RRRR field contains 
the physical sector number of the first sector of the file. 
This sector is known as the filels Retrieval Information 
Block (RIB). It is described in detail in Chapter 24. The 
HIB contains the allocation information that describes where 
the remainder of the file is located on diskette. 

The ZZZZ field contains the f11el s size in sectors. Due 
to the allocation scheme used by MOOS, this field will always 

MDOS 3.0 User's Guide Page 09-03 



D Iii COMMAio,JO 9. I -- Use 

be a multiple of the basic unit of allocation (see Chapter 
24). The si~e is, therefore, the physical size of the file. 
The logical file size, or the number of sectors from the 
beginning to the end-of-file indicator, may be smaller. 

The DO field is an eight-bit coded field that describes 
the directory entry1s physical position within the directory. 
It is interpreted as follows: 

7 6 5 4 3 2 o 

I 

: ••••• Position within sector 
(0-7 ) 

I •••••••••••••••••••• Physical sector number 
( $3-$16) 

9.1.4 Segment descriptors 

If the "AM option is specified on the command line, then 
in addition to having the entire directory entry displayed 
for each file name, the file's allocation information will 
also be shown. The allocation information is contained in 
the fileJs RIB and describes where each segment of the file 
is located on the diskette. This information is displayed 
following the complete directory entry. (~e line is shown 
for each segment of the file. The format of the allocation 
information is 

ss pppp zzz 

where -IISS" is the number of the segment CO-56, decimal) t 

Uppppfl is the physical sector number of the sector that 
starts the segment (hexadecimal), and nzzzfl is the size of 
the segment in sectors (hexadecimal). For example, a 
directory entry could appear as follows: 

FORLB .Rn .OS •• 3 0490 0088 75 00 0490 080 
01 0510 008 

The file FORLB.RO consists of two segments. The first 
segment starts in physical sector $490 and is S80 sectors 
long. The second segment starts in physical sector $510 and 
is 8 sectors long. The fileJs physical size is S88 sectors. 

9.1.5 other options 

Normally, the output from the OIR command is displayed 
on the system console. The UL" option can be used to direct 

MDOS 3.0 User"s Guide Page 09-04 



DIR COMMAI~O 9. 1 - Use 

the output to the line printer. The format of the display is 
the same. Like other MOOS commands that direct output to the 
line printer, the paging will be preserved by the DIR 
command. Thus. once the paper in the printer has been 
aligned, it will remain aligned after a directory has been 
printed. 

9.2 Messages 

The following messages can be displayed by the DIR 
command. The standard error messages that can be displayed 
by all commands are not listed here. 

DRIVE : i DISK 1.0. : xxxxxxxx 

This is the directory command~s heading line that 
is displayed each time the command is invoked. 
Ui,11 is the logical unit number. '"xxxxxxxx''' is 
the diskette~s 10 that was assigned to it when it 
was generated. 

TOTAL NUMBER OF SECTORS I dddd/$hhh 

This message is displayed if either the .liEn or 
the "A" option was specified on the command line, 
and if one or more directory ent~ies were found. 
It gives the total number of sectors that is 
allocated to the files whose names are displayed. 
J'ddddU is the decimal value of the total. ""hhh" 
is the hexadecimal value of the total. This 
message is displayed atter all file names have 
been printed. 

TOTAL DIRECTORY ENTRIES SHOWN: ddd/$hh 

This message is shown at the end of each 
directory search that found at least one file 
name. It gives the total number of directory 
entries included in the display. .IIdddu gi ves the 
decimal value of the total. ,lIhh" gives the 
hexadecimal value of the total. 

NO DIRECTORY ENTRY FOUND 

This message is displayed if the 
on the command line does not 
matches with directory entries 
If <name> contains a family 
message means that no members of 
found on the diskette. 

MDOS 3. 0 User·~s Guide 

<name> specified 
result in any 

on the diskette. 
indicator. the 
that family were 

Page 09-05 



DIH COMMAND 9.2 -- Messages 

This message will only be displayed if thenA" 
option is in effect and if an invalid RIB is 
found for a file. The message is displayed in 
place of the seqment descriptor information that 
appears to the right of the entire directory 
entry. ~hen such a messaqe is seen, it indicates 
that the file has probably been damaqed. Since 
no segment descriptors are found in the ~IB, the 
file will not be accessible any longer. The 
HEPAIR command (Chapter 22) should be used to 
check the remainder of the diskette, as well as 
to remove the erroneous file. 

NO TERMINATOR FOUND IN FILE~S R.I.B. 

9.3 Examples 

This message can only be displayed if the It A.a. 
option was specified on the command line. Like 
the previous message, this one indicates that a 
file~s RIB has been damaged. It indicates that 
the terminator was missing from the RIB. The 
allocation information displayed for the file is 
meaningless since 56 segment descriptors have 
been displayed. The file~s content is no longer 
accessible. The REPAIR command (Chapter 22) 
should be used to check the remainder of the 
diskette, as well as to remove the erroneous 
file. 

When the DIR command is invoked without any options on a 
newly received system diskette, this is what will be seen on 
the system console: 

=DIR 
DRIVE I 0 DISK 1.0. I MDOS0300 
NO DIRECTORY ENTRY FOUND 
= 

A new system diskette has only f il e names wi th the ., syst emil 
attribute. Those file names will be excluded from the 
directory search unless the 115-" option is specified. Thus, 
the default family *.*:0 (since no <name> was specified) 
contains no members. USing the liS" option on the above 
example would result in the following display: 

MDOS 3.0 User-'s Guide Page 09-06 



OIR COMMAi'ID 9.3 ._- Examples 

=DIR ,S 
DRIVE a 0 DISK 1.0. a MDOS0300 
BINEX .eM 
LIST .CM 
MDOSOVO .SY 
DIR .CM 
MERGE .CM 
MDOS,OV4 .SY 
MDOS .SY 
MDOS.OV6 .SY 
FREE .CM 
EQU .SA 
ROLLOUT .eM 
DUMP .eM 
EXBIN .eM 
NAME .CM 
MDOSOVI .5Y 
PATCH eCM 
BLOKEDIT.CM 
LOAD .eM 
MDOSOV3 .SY 
MDnSER .SY 
DEL .eM 
ECHO .eM 
CHAIN eCM 
BACKUP .CM 
REPAIR .CM 
MDOS()V5 .SY 
DOSGEN .eM 
EMCOPY .CM 
COpy .CM 
FORMAT .CM 
TOTAL NUMBER OF ENTR IES SHO~N : 030/$1 E 
= 

No file attributes or file sizes are displayed since neither 
the nEil nor the "Au option was specified. 

If a diskette is in drive one which contains 
MOOS-Supported software products (s ee Appendix H), the 
following shows how the directory entries with suffix "CMII on 
that drive can be displayed: 

=DIR *.CMal,AS 
DRIVE I I DISK I.D. a EDIT0300 
ASM .CM .DSC.2 OOBO 002C 70 00 0090 02C 
EDIT .CM .DSC.2 0230 0018 72 00 0230 018 
TOTAL NUMBER OF SECTORS : 0068/$044 
TOTAL DIRECTORY ENTRIES SHOflN a 002/$02 
= 

Both the EDIT and ASM commands reside on drive one. From 
their attributes it can be seen that those files are not 
write protected, are delete protected, are system files, are 

MOOS 3.0 User's Guide Page 09-07 



DIR COMMAl"O 9.3 -- Examples 

contigously allocated on diskette, and are of file format 2 
(memory-image). The .ASM command is located starting at 
physical sector sao and is S2C sectors long. The EDIT 
command is located starting at sector S230 and is SI8 sectors 
long. Both files have only one segment descriptor. fhe ASM 
command~s file name is the first directory entry in physical 
sector SE (found by shifting its directory entry number to 
the right three bit positions). The EDIT command~s directory 
entry is in the same sector, but is the third entry in that 
sector. 

In all of the above examples, the "Lfl option could have 
been used in addition to any other options to direct the 
output from the DIR command to the line printer. 

It is recommended that a copy of the directory printout 
containing the entire directory entry and the allocation 
information be kept with each diskette. Since files can 
dynamically expand and contract, their location on diskett~ 
may change. If something happens to the diskette to damage 
the directory, there is no way to recover any information 
from it if a prior printout has not been saved. Normally, 
the printout will never be needed, but as a precaution it is 
indispensable. 

MOOS 3.0 User~s Guide Page 09-08 



CHAPTER 10 

iO. DOSGEN COMMAND 

The DOSGEN command allow-s spe-cialized MDOS diskettes to 
be preparede Diskettes that have bad sectors can have those 
sectors locked out so that the diskette can be used in an 
MDOS environment. OOSGEN will also create all system tables 
and files on the generated diskette. The DOSGEN command can 
be used to generate system diskettes on either single-sided 
or appropriately formatted double-sided diskettes. 

10.1 Use 

New single-sided diskettes, or single-sided diskettes 
never before used on an MOOS system, must first be prepared 
for use with MDOS. One way to generate a new MOOS diskette 
is by invoking the BACKUP command (Chapter 3), however, the 
BACKUP command does not perform the write/read test that can 
be invoked via OOSGEN; nor is there the guarantee that all 
system files are copied to the destination diskette since the 
operator can selectively prevent files from being copied. 
Another way to generat_e a new MOOS diskette is by invoking 
the DOSGEN command from an already up-and-running MOOS 
system. 

DOSGEN does not create the sector addressing 
information. Single-sided diskettes usually come 
pre-formatted in an IBM-3740-similar format with the 
established sector addressing information. Double-sided 
diskettes, however, must be formatted with the FORMAT command 
(Chapter 15), since the double-sided format required by an 
EXORdisk I I I is a non-standard single:-densi ty for:nat. In 
either case, whether single- or double-sided, other 
information must be written on a new diskette in order to 
make it recognizable by MDOS. DOSGEN creates the system 
tables required by MOOS (see Chapter 24). These tables 
include a skeleton directory; a bit map showing which sectors 
of the diskette are available for space allocation' a lockout 
map showing which sectors of the diskette are bad or locked 
out by the user; and an identification sector containing a 
name to identify the diskette, the generation date, and the 
MOOS version number. The DOSGEN command also copies across 
the required MOOS family of system files which must be 
present on any diskette used in the MDOS environment. These 
files and tables must not be moved or changed in any way 
other than through the DOSGEN command and two other commands: 
BACKUP (Chapter 3) and REPAIR (Chapter 22). Optionally, the 
MOOS commands may be copied to the diskette. 

MOOS 3.0 User-'s Guide Page i 0-0 i 



DOSGEN COMMAND 10.1 -- Use 

The DOSGEN command is invoked with the following corrmand 
line. 

DOSGEN [:<unit>] [;<options>] 

where <unit> is the logical unit number (1-3) of the drive 
containing the diskette to be DOSGENed, and <options> can be 
one or both of the option letters described below. 

Opti on Function 

T Perform write/read test. 

U Generate minimum system (user diskette>. 

If <unit> is not specified, logical unit one will be 
used as a default. Logical unit zero cannot be DOSGENed. 

The diskette to be DOSGENed ,must be placed in the 
logical unit specified on the command line (logical unit one, 
if no <unit> was specified). DOSGEN will respond with the 
following question asking if <unit> contains a diskette that 
can be written to. 

DOSGEN DRIVE <unit> ? 

The response should be the letter "YH, if the diskette in the 
indicated <unit> is to be DOSGENed. Any other response will 
terminate the DOSGEN command and return control to MDOS. In 
this case, the diskette in <unit> is not affected. 

If a uyu is given as a response, certain information for 
the disketteJs identification sector must be supplied by the 
operator. This information is entered in response to the 
following DOSGEN prompts: 

Prompt Operator Input 

DISK NAME' An alphanumeric name, a maximum of 8 
characters in length, which will 
appear on subsequent heading lines 
from the OIR and FREE commands. The 
name must begin with an alphabetic 
character. 

DATE (MMDDYY)' The date of generatIon in six-digit, 
numeric form as indicated by the 
parenthetical inset. 

USER NAME. 

MDOS 3.0 User's Guide 

A maximum of twenty 
characters used for 
information only. 

displayable 
descriptive 

Page 10-02 



)OSGEN COMMAND 10.I-Use 

The version and revision numbers of MOOS 
automatically supplied by the DOSGEN command. 

will be 

The operator is then given a chance to lock out an area 
of the diskette. This area will not be accessed by any MOOS 
command or function since it is an allocat.ed block without a 
RIB. This permits the operator to set aside a part of the 
diskette for his own use. All MDOS information must be in 
files in order to be accessed by MDOS. The message 

LOCKOUT ADD IT IONAL SECTORS? 

is displayed to allow sector lockout. An "Nil response will 
cause DOSGEN to continue with the next step; no sectors will 
be locked out, leaving as much diskette space as possible for 
conventional file use. A lIy" response will cause the 
following messages to be shown. 

ENTER STARTING SECTOR (HHH): 
ENTER ENDING SECTOR (HHH): 

The operator can respond with only a carriage return, which 
will casue the lockout request to be bypassed. Otherwise, 
the response must be a valid hexadecimal sector number for 
each prompt. The sector numbers entered must meet the 
following criteria in order to cause the specified diskette 
area to be locked out: 

1. The sector numbers must be heXadecimal. 

2. The starting sector number must be the 
physical sector number of the first cluster 
to be locked out. The ending sector number 
must be the physical sector number of the 
last cluster to be locked out. 

3. The starting sector number must be less than 
or equal to the ending sector number. If the 
two numbers are equal, only one cluster will 
be locked out. 

4. Both sector numbers must be greater than $18 
and less than $7DO if generating a 
Single-sided diskette, or greater than S18 
and less than SFA4 if generating a 
double-sided diskette. In either case, the 
locked out area should be located such that 
the largest block of tree space resides in 
sectors with numbers less than that of the 
start of the locked out area. 

OOSGEN will then write the 10 sector, an initialized 
allocation table, a lockout table, an empty directory, and a 
Bootblock to the destination diskette. Normally, DOSGEN will 

MDOS 3.0 User's Guide Page 10-03 



DOSGEN COMMAND 10. 1 -- Use 

then copy all files that have the "system" attribute from the 
diskette in drive zero to the destination diskette. When 
DOSGEN is finished, a complete MOOS system will have been 
Jenerated on the destination diskette. 

JO.2 Diskette Surface Test 

If DOSGEN is invoked with the itT" option, a write/read 
test will be performed to ensure that the sectors on the 
destination drive are good. Any sectors which fail the 
write/read test will be flagged with the deleted data mark. 
If sectors cannot be flagged in this manner, the diskette 
cannot be generated. Such diskettes may be made usable again 
by using the FORMAT command (Chapter 15). If a sector can be 
marked :as bad, then the cluster to which the bad sector 
belongs will be automatically locked out from MOOS usage. 
This individual cluster lockout is independent of the area of 
diskette that can be locked out by the operator. It will 
allow diskettes with bad spots to be generated and made 
usable as MOOS system diskettes. 

Diskettes that have such bad sectors can be used as 
normal diskettes with the following exception. The BACKUP 
command should not be invoked without a Main Option (unless 
the UO" option is used) to make a complete copy of the 
allocated space. Without the "0 11 option, the complete copy 
process will abort if a fatal read error occurs. Since the 
complete copy is based on the allocation table, it is 
inevitable that the bad sectors locked out via OOSGEN will be 
read. Thus, the resultant copy of the diskette will always 
be incomplete. Therefore, BACKUP should always be run with 
the uRn option to force file reorganization. In this manner, 
the bad sectors will neVer be read since they are not a part 
of any allocated file. 

Diskettes which have had bad sectors locked out should 
not be used as the destination diskette with BACKUP. 

If sectors qet locked out into which the MOOS system 
files normally are copied (in the first several cylinders) 
the D()SGEN process will fail. Such diskettes cannot be used 
as MOOS system diskettes unless the FORMAT command (Chapter 
15) can be used to correctly rewrite the bad sectors. 

10.3 Minimum System Generation 

If the DOSGEN command is invoked with the "un option, 
the resultant diskette will not contain any of the MD(~ 
commands from drive zero. Only the MDOS family of system 
files that must reside on every diskette used in an MDOS 
environment will be copied. The "U·II option is useful In 
generating user diskettes which are to contain only data 

MOOS 3.0 User"s Guide Page 10-04 



DOSGEN COMMAND JO.3 -- Minimum System Generation 

files and will almost always be used in drives other than 
zero. 

10.4 Messages 

The following messages can be displayed by the OOSGEN 
command. Not all messages are error messages, although error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not listed 
here. 

DOSGEN DRIVE <unit> ? 

DISK NAME: 

This message permits the operator to exit the 
DOSGEN command or allows him time to insert a 
scratch diskette before continuingo A "V" 
response will cause OOSGEN to continue. Any 
other response will cause control to be returned 
to MDOS. 

This prompt is used to obtain the eight character 
10 field that is subsequently displayed by all 
OIR and FREE commands when used on the generated 
diskette. The 10 field has the same format as an 
MOOS f i I e name. 

DATE {MMDDYY>: 

USER NAME: 

[his prompt is used 
diskette generation. 
numeric characters. 

to 
The 

obtain 
date 

the 
must 

date 
be 

of 
six 

This prompt is used to obtain the descriptive 
information for the 10 sector. Up to twenty 
displayable characters may be entered. 

LOCKOUT ADD ITIONAL SECTORS? 

This message allows the user to specify whether 
or not he wishes to reserve a block of the 
diskette for his own use. The block will be 
excluded from use by MOOS. A "Y" response will 
cause the next two prompts to be issued. Any 
other response will cause the lockout request to 
be bypassed. 

MOOS 3.0 U ser·"s Guide Page 1 0-05 



DOSGEN COMMAND 10.4 -- Messages 

ENTER 

ENTEH 

ABOVE 

sr ART I NG SECTOR (HHH) t 

This prompt is used to obtain the starting 
hexadecimal sector number of the first cluster 
that is to be locked out. 

ENOL NG SECTOR (HHH) a 

This prompt is used to obtain the start ing 
hexadecimal sector number of the last cluster 
that is to be locked out. 

SECTORS HAVE BEEN LOCKED OUT 

This message will be displayed it valid starting 
and ending sector numbers have been specified for 
the area to be locked out. 

INVALID SECTOR NUMBEH 

This message is displayed if either the starting 
or ending sector nu~ber does not meet the 
criteria set forth in section 10.1. The operator 
is given another chance to enter the sector 
number range. 

SECTOR nnnn LOCKED OUT 

~hen a bad sector is detected during the 
write/read test (UT" option), this message is 
displayed to indicate which sector failed the 
test. The '''nnnn II is the hexadecimal, physi cal 
sector number. The cluster in which the sector 
resides will be automatically locked out. 

COPYING FILE <name> 

This message is displayed for each system file as 
it is being copied to the destination diskette. 
It serves only to monitor the DOSGEN operation. 

MDOS.SY DOES NOT START AT SECTOR $18 

This message indicates that the destination 
diskette cannot be generated. Either the 
operator or the write/read test locked out 
sectors which prevented the resident operating 
system file MDOS.SY from residing at the 
specified physical location. If the operator 
locked out those sectors, the diskette should be 
regenerated with a different range locked out. 
If the write/read test locked out those sectors, 
the diskette is unusable as a system diskette. 
Chapter 15 should be consulted for making such a 

MDOS 3.0 User"s Guide Page 1 0-06 



DOSGEN COMMAND 

diskette usable again. 

10.5 Examples 

The following example shows 
interaction during a OOSGEN process l 

=DOSGEN ;TU 
DOSGEN DRIVE I? '( 
DISK NAME' USEROOOI 
DATE (MMDDYY) I 072578 
USER NAMEI SYSTEM DEVELOPMENT 
LOCKOUT ADDITIONAL SECTORS? N 
COPYING FILE MOOS .SY 
COPYING FILE MDOSOVD .SY 
COPYING FILE MDOSO'li .SY 
COPYING FILE MDOSOV2 .SY 
COPYING fILE MOOSOV3 .SY 
COPYING FILE MDOSOV4 .SY 
COPYING FILE MDOSOV5 .SY 
COPYING FILE MDOSOV6 .SY 
COPYING FILE MOOSER .SY 
= 

10.4 -- Messages 

the operator-system 

The diskette to be generated was tested with the write/read 
test ("Tn option) to ensure that all sectors were good. A 
minimu~ system w~s generated ("U" option). The new 10. 
USER,JODI. the generation date, July 25, 1978, and the 
descriptive information, SYSTEM DEVELOPMENT 1, were placed 
into the 10 sector. Since no additional sectors were locked 
out, DOSGEN proceeded to copy the MOOS family of system files 
that must reside on each diskette. 

The following example shows what might happen if a bad 
diskette is used in the generation process: 

=DOSGEN :2;T 
DOSGEN OH I VE 21 Y 
DISK NAME' USE~D002 
DATE (MMDDYY): 072578 
USER NAME: TEST SYSTEM 
SECTOR 0030 LOCKED Our 
SECTOIi 0031 LOCKED OUT 
SECTOH 0056 LOCKET oUT 
LOCKOUT ADDITIONAL SECTORS? N 
COpy I NG rILE MOOS • SY 
MDOS.SY DOES NOT STAHT AT SECTOR $18 
= 

Three bad sectors were found during the write/read test. 
~hen the MDOS famil y of fi les was copied. it was Jetected 
that the locked out sectors prevented the resident op~rating 

system file MDOS.SY from residing at the specified physical 

MOOS 3.0 User's Guide Page 10-07 



DOSGEN COMMANJJ 10.5 -- Examples 

location. If the operator locked out those sectors, the 
diskette should be reqenerated with a different range locked 
out. If the write/read test locked out those sectors, the 
diskette is unusable as a system diskette. Chapter 15 should 
be consulted for making such a diskette usable again. 

MDOS 3.0 User"s Guide Page 10-08 



CHAPTER 11 

! ! .. DUMP COMMAND 

The DUMP command allows the user to examine the entire 
contents of any physical sector on the diskette. The sector 
can be displayed on either the system console or the printer. 
The display contains both the hexadec imal and the ASCI I 
equivalent of every byte in the sector. The DUMP command 
allows the opening of files so that they can be examined 
usin~ logical sector numbers. Sectors can also be moved into 
a temporary buffer where changes can be applied before they 
are written back to diskette. 

11.1 Use 

The DUMP command is invoked with the following command 
line. 

DUMP [<name>] 

where the presence of the optional file name determines the 
initial mode of operation. The DUMP command is an 
interactive program that has its own command structure. Once 
DUMP is running, it will display a colon <.> as an input 
prompt whenever it is ready to accept a command from the 
operator. Commands exist for selecting logical units, for 
opening and closing files, for displaying sectcrs y for 
modifying single sectors, and for displaying the directory 
and cluster allocation table. 

11.1.1 Physical Mode of operation 

If no <name> is specified on the command line, or if 
<name> only consists of a logical unit number, then OUMP will 
be in the "Physical Mode" when it displays its input prompt. 
The heading 

PHYSICAL MODE 

will be displayed prior to the prompt the first ti~e that 
DUMP is activated. From that point on, it is the operator~s 
task to keep track of which mode of operation DUMP is in. 
The Physical Mode of operation means that all subsequent 
commands referring to sector numbers will be interpreted as 
physical sector numbers. The Physical Mode of operation 
remains active as long as no files are opened. 

If no <name> is specified on the command line, OU~P will 

MOOS 3.0 User.is Guide Page 1 1-01 



UUMP COMMANU 11. 1 -- Use 

default to logical unit zero for all subsequent commands. 
The unit will remain selected until another unit selection 
command is issued by the operator. To override the default 
unit selected, the operator can specify only a logical unit 
number on the command line in place of <name>. In this case, 
the initial unit selected will be the logical unit number 
entered on the command 1 ine (0-3). The logical uni t number 
must be preceded by a colon, the logical unit number 
delimiter. 

When a logical unit number is specified on the command 
line, the diskette to be inspected with DUMP should already 
be in the indicated drive. If no diskette is in the 
specified drive, the message 

**PROM I/O ERROR-STATUS=33 AT h DRIVE i-PSN j 

is displayed, indicating that the drive is not ready. The 
"U" command (sect ion 11.2.2) must be used to restore the 
diskette drive after the diskette has been inserted. 

11.1.2 Logical Mode of operation 

If a <name> which exists in the directory is specified 
on the command line, then DUMP will be in the "Logic.!31 Mode" 
of operation when it displays the input prompt. <name> must 
contain an explicit suffix. No default suffix is supolied by 
the UUM~ command. The logical unit number, however, is given 
a default value of zero if it is not specified on the command 
line. 

If the <name> cannot be found in the directory, a 
standard error message will be displayed indicating that the 
file name does not exist. In that case, the Physical Mode of 
operation will be entered; however, the physical mode message 
will not be displayed since the error message has already 
indicated that the file could not be opened. 

The Lo~ical Mode of operation means that all subsequent 
references to sector numbers will be interpreted as logical 
sector numbers of the file <name>. A special convention is 
used when referrinq to the RIB of a file. The logical sector 
number of the RIB is FFFF. Since logical sector number zero 
is tne first data sector of the file, the RIB has a logical 
sector number of minus one (FFFF). DUMP will remain in the 
Logical Mode of operation until the file is closed or until 
another unit is selected. 

11.1.3 Sector change buffer 

Certain commands can reference a temporary sector buffer 
known as the '''sector change buffer". This buffer is large 

MOOS 3.0 User"'s Guide Paqe , J -02 



DUMP COMMAI'{) 11. 1 - Use 

enough to accommodate one sector from diskette. The sector 
change buffer can be used in either mode of operation. The 
contents of the sector change buffer will not be destroyed or 
altered unless the operator issues a command to do so. 

Associated with the sector change buffer is a "sector 
address validity flag". This flag indicates whether or not a 
critical command has been executed between the time the 
sector change buffer was read into and the time that the 
sector change buffer is written back to diskette. When the 
sector change buffer is read into, a sector address is 
specified. This address is retained so that if the sector is 
to be written back to diskette, the address need not be 
specified again; however, certain actions, describe~ under 
the separate command descriptions that follow, can cause the 
sector address to be invalidated. Then, the writing of the 
sector change buffer requires a respecification of the 
sector address into which the buffer is to be written. 

The sector change buffer is very useful in m0difying 
sectors. Most frequently. the sector change buffer is used 
in conjunction with the HEPAIH command (Chapter 22> to fix 
critical system tables which have been found i.n error. Of 
course, this procedure is not recommended unless the operator 
has detailed knowledge of the system table structure. 
Situations do arise when critical file information can only 
be recovered through the manual reconstruction of certain 
system tables. The DUMP command1s sector change buffer 
provides the ideal means for doing this. 

11.2 DUMP Command Set 

Each command to DUMP must be entered by the operator 
after the input prompt (I) is displayed on the system 
console. Like all MDOS input, all DUMP commands must be 
terminated by a carriage return. In the following command 
descriptions these symbols are usedl . 

Symbol Meaning 

m,n Both limn and Un" are one to four digit 
hexadecimal numbers used for specifying a 
sector number or a cluster number. 

i "i" is a one digit number used for 
referring to the logical unit number. 

b Jib" is a one or two digit hexadecimal 
number used as an offset into the sector 
chanqe buffer. 

MOOS 3.0 User's Guide Page 11-03 



DUMlJ COMMAND 11.2 -- DUMP Command Set 

c "c'" is a one or two dioit hexadecimal 
number. 

a 

<str> 

<cr> 

1 J • 2. I Qui t -- Q 

"a" is an ASCII character. 

U<str>" is a strinq of elements separated 
by commas. Each element can be a Uc" or 
a group of "afls enclosed in double 
quotes. 

U<cr> It is a carr iaqe return. 

The Q command is used to terminate DUMP and return 
control to MOOS. The format of the Q command is simply the 
letter IIQIt. Any information in the sector change buffer is 
lost. The Q command is valid in either mode of operation. 
If a file is open, it is unaffected by the execution of the Q 
command. 

11.2.2 Select logical unit -- U 

The U command is used to select the logical unit number. 
The format of the U command is 

U i 

where "i" can be any of the digits 0-3. The U command is 
valid in either mode of operation; however, if the current 
mode of operation is the Logical Mode, then the file that is 
open will be automatically closed. After the U co~mand is 
executed, the Physical Mode of operation will be in effect. 
fhe sector address associated with the sector change buffer 
is invalidated by the U command. 

If DUMP was invoked with only a logical unit number on 
the command line, and if a diskette was not in the drive at 
the ti~e DUMP was invoked, then the U command must be used to 
restore the diskette drive after a diskette has been inserted 
into the drive. If this procedure is not followed, timeout 
errors may occur on that drive since the head may not have 
been properly positioned to cylinder zero. 

11.2.3 Open diskette file -- 0 

The 0 command is used to open a file and thereby enter 
the LogiG;al Mode of operation. The format of the () command 
is 

o <name> 

MDOS 3.0 User.J's Guide Page 11-04 



DUMP COMMAND 11.2 -- DUMP Command Set 

where <name> consists of at least a file name and a suffix. 
If no logical unit number is specified for <name>, the last 
logical unit selected via the U command will be used as a 
default. If a logical unit number is specified for <name>, 
then it will become the selected unit number even if the 
Physical Mode of operation is entered later. If a file is 
currently open, it will be automatically closed when the 0 
command 1s executed. If the file <name> is not found~ then 
the Physical Mode of operation will be in effect after an 
error message is displayed. The sector address associated 
with the sector change buffer is invalidated by the 0 
command. 

11.2.4 Close diskette file -- C 

The C command is used to close the file that is 
currently open. The format of the close command is simply 
the letter "C". If the current mode of operation is already 
the ~hysical Mode, then no action results from the execution 
of the C command. If a file is open, then the Physical Mode 
of operation will be entered after the file is closed. The 
sector address associated with the sector change buffer is 
invalidated by the C command. 

11.2.5 Show sector -- 5 

The 5 command is used to display a sector1s contents on 
the system console. There are several forms of the 5 
command. 

Command Effect 

5 Display the contents of the sector change 
buffer. 

58 Display the contents of the Cluster 
Allocation Table. The 58 command is only 
valid in the Physical Mode of operation. 

5 m[ ,n] Display the contents of sector urn" or the 
contents of sectors Jlmll through lin". The 
values 0 fn m t.1 and .. n II are either ph y s i cal 
or logical sector numbers depending on 
the current mode of operation. 

SO [m[,n]] Display the contents of the directory 
sectors. The entire directory will be 
displayed if no Um" and no Un" are given. 
Ot her w i s e , the 1 oq i cal sec tor U m" 0 r the 
logical sectors um ll through unn of the 
directory will be displayed. [he 50 

MOOS 3.0 User·'s Guide Page 11-05 



DUMP COMMANJ 

SC m ( ,n] 

11.2 -- DUMP Command Set 

command is only valid in the Physical 
Mode of operation. 

Display the contents of cluster "mn or 
the contents of clusters Urn" throu~h Un". 
In this case, um'" and lin II are physical 
cluster numbers rather than physical 
sector numbers. The SC command is only 
valid in the Physical Mode of operation. 
For each cluster, four sectors will be 
displayed. 

The format of a displayed sector is shown in section 11.4. 

11.2.6 Print sector -- L 

The L command is used to print a sector~s contents on 
the line printer. There are several forms of the L c~mmand. 

Command 

L 

Effect 

Print the contents of the sector change 
bu ffer. 

LB Print the contents of the Cluster 
Allocation Table. The LB command is only 
valid in the Physical Mode of operation. 

L m( ,n] Print the contents of sector .urn ll or the 
contents of sectors J'rn" through "n". The 
values of .urn'" and "n" are ei ther physi cal 
or loqical sector numbers depending on 
the current mode of operation. 

LD (m(,n]] Print the tJntents of the directory 
sectors. The entire directory will be 
printed if no JlmJl and no Un" are given. 
Otherwise, the logical sector "m" or the 
logical sectors "m" through "n" of the 
directory will be printed. The LD 
command is only valid in the Physical 
Mode of operation. 

LC m(,n] Print the contents of cluster Om" or the 
contents of clusters "m'" through fln.ll. In 
this case, QmM and "nu are physical 
cluster numbers rather than physical 
sector numbers. The LC command is only 
valid in the Physical Mode of operation. 
For each cluster, four sectors will be 
printed. 

MDOS 3.0 User"'s Guide Page 11-06 



JUMP COMMANU 11.2 -- DUMP Command Set 

The format of a printed sector is shown in section 11.4. 

11.2.7 Head sector into change buffer -- R 

The R command is used to read a specified sector into 
the sector change bu ffer. Onc e the sector is in the change 
buffer, changes can be applied to it. The sector change 
buffer can then be written back to diskette. The R command 
has several forms. Each form of the R command will 
initialize the sector address validity flag associated with 
the sector change buffer. This flag allows the change buffer 
to be re-written to the same sector from which it was read 
without specifying the sector address again. 

Command Effect 

HB Read the Cluster Allocation Tabie into 
the sector change buffer. The RB command 
is only valid in the Physical Mode of 
operation. 

RD m Read the specified logical sector of the 
directory into the change buffer. The RD 
command is only valid in the PhYSical 
Mode of operation. 

R m Read the specified sector into the change 
buffer. The current mode of operation 
will determine whether "m" is a logical 
or a physical sector number. 

11.2.8 Write change buffer into sector -- W 

The W command is used to write the contents of the 
sector change buffer into a sector. The W command has 
several forms. 

Command Effect 

W Write the change buffer back into the 
sector from which it was originally read. 
This form of the W command is only valid 
if the U, 0, C, or F commands have not 
been used since the sector change buffer 
was read into. 

CAUTIONs THE FOLLOWING FORMS OF THE Vi COMMAND 
CAN DESTROY SYSTEM TABLES OR USER DATA IF USED 
I NO I SCR IMI NATELY. USE OF THE FOLLOW I NG FORMS 
SHOULD BE RESTRICTED TO DISKEITE REPAIR 

MDOS 3.0 User's GuIde Page 11-07 



DUMP COMMAND 11.2 -- DUMP Command Set 

FUNCTIONS. 

~B ~rite the contents of the sector change 
buffer into the Cluster Allocation Table. 
The WB command is only valid in the 
Physical Mode of operation. 

riD m ~rite the contents of the sector change 
buffer into logical sector limn of the 
directory. The riD command is only valid 
in the Physical Mode of operation. 

W m Write the contents of the sector change 
buffer into sector "m". The current mode 
of operation wi 11 determine whether Um,1I 
is a logical or a physical sector nu~ber. 
If the current mode of operation is the 
Logical Mode, then writing past the 
end-of-file sector will cause the CAT and 
the filels HIS to be updated in the event 
that additional diskette space is 
allocated. 

11.2.9 rill change buffer -- F 

The F command is used to fill the sector change buffer 
with a certain bit pattern or a certain ASCII character. The 
format of the F command is: 

where the first 
hexadecimal bit 
the buffer with 
associated with 
the F command. 

F c or F Ua" 

form will fill the buffer with the 
pattern IIC", and the second form will fill 
the character "au. The sector address 
the sector change buffer is invaliiated by 

1,1.2.10 Examine/change sector buffer 

A special command is used for examining/changing the 
individual bytes of the sector change buffer. In order to 
gain access to a specific byte of the sector change buffer, 
the offset must be specified in the following manner: 

b/<cr> 

where IIbfl is a hexadecimal number (SOO-7F). [he slash 
character causes the location at offset fib" to be "opened" 
and its contents displayed. After a particular location has 
been opened in thIs manner, the change buffer can be examined 
or changed a byte at a time by using the following co~mandsl 

MOOS 3.0 User1s Guide Page 11-08 



DUMP COMMAND 11.2 -- DUMP Command Set 

[<str>]<cr> 

or 

[<str>]A<cr> 

or 

[<str>]/<cr> 

The element string <str> will cause successive bytes of the 
change buffer to be changed to the respective values of 
<str>. If <str> is not specified, no changes will be applied 
to the change buffer. The <cr> only will cause the next 
offset of the change buffer to be opened and displayed. The 
u~<cr>1I will cause the previous location of the change buffer 
to be opened and displayed. The JI/<cr>" wi 11 cause the 
current location to be closed and the examine/change mode to 
be terminated. 

The initial command used to enter the examine/change 
mode can also take on the following formsl 

which will 
at offset 
Then the 
displayed. 
commands. 

b/<str><cr> 

cause the locations of the change buffer starting 
lib" to be changed according to the strinJ <str>. 

location after the last one changed will be 
The operator can then enter other examine/change 

If the initial command has the form: 

b/<str>l<cr> 

then the same function will be performed as in the previous 
command; however, instead of remaining in the examine/change 
mode, the normal command mode is entered. 

11.3 Me ssages 

The following messages can be displayed by the DUMP 
command. Not all messages are error messages; however, error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not listed 
here. 

r~HAT? 

The command issued in response to the OUMP input 
prompt was not recognized. A new input prompt is 
displayed. 

MOOS 3.0 User's Guide Page 11-09 



DUMP COMMAND 

SYNTAX EHROR 

MODE EHHOR 

1 I • 3 -- Me s sag e s 

[he command issued in response to the DUMP input 
prompt was recoJnized; however, it was 
parameterized illegally. A new input prompt is 
displayed. The command has not been processed. 

The 8, C, or D qualifier was used with the S, L, 
H, or W command while in the Logical Mode of 
operation. These forms of the commands are only 
valid in the Physical Mode. 

BOUNUAH Y ERH OR 

[he offset Ub" in the examine/change command was 
outside the range of the sector change buffer 
(SOo-7F), or a subs equent locat ion was to be 
displayed Which was outside the range of the 
sector change buffer. The examine/change mode is 
terminated. 

I NVAL ID SECTOR ADDRESS 

[he sector address associated with the sector 
change buffer has been invalidated. In this 
case, the ~ com~and cannot be used without 
specifying a sector address. 

PHiSf CAL MODE 

This message is displayed initially when the DUMP 
command is entered and the mode of operation is 
the Physi cal Mode. I f the me ssage is not 
displayed and if no error messaqes are sh0wn, the 
Logical Mode of operation is initially in effect. 
Subsequent mode changes must be kept track of by 
the operator. 

** 21 END OF FILE 

This message indicates that a logical sector 
beyond the logical end-of-file was to be read 
with one of the DU~P commands. In the Logical 
Mode of operation only sectors allocated to the 
file can be read. 

MOOS 3.0 Use r-" s Gui de Page J J -I 0 



[JUMP COMMAND 11.3 -- Messages 

**PHOM I/O EHHOH-STATUS=36 AT h DRIVE i-PSN J 

This message indicates that a physical sector 
beynnd the end of the diskette was to be accessed 
with one of the DUMP commands; In the Physical 
Mode of operation, only sectors 0-S701 
(single-sided) or sectors 0-SFA3 (double-sided) 
can be accessed~ A memory address (only 
meaningful for system diagnostics) is substituted 
for the letter "h"; the logical unit number is 
substituted for the letter ui"; and the physical 
sector number (PSN) at which the error occurred 
is substituted for the letter IIJII. 

The display format of a sector's contents is shown in 
section 11.4. The messages associated with that display are 
explained here. The sector display will contain headings to 
identify what sector is being displayed. 

"UNIT" will always specify the currently selected 
logical unit number. 

The heading "CHANGE BUFFER" will be displayed if the 
sector change buffer is being shown. 

The headinq "CLUSTER ALL(X:ATIOl~ MAP" indicates that the 
B qualifier was used with either the S or L command. 
Likewise, the heading uDIRECTORY" indicates that the D 
qualifier was used with either the S or L command. 

The heading "FILE=xxxxxxxx.xx" indicates that 
Logical Mode of operation is in effect. !ne file~5 name 
suffix are displayed to the right of the equal sign. 

the 
__ ...J 

ClIIU 

IIt>SNIt gives the displayed sector-'s physical sector 
number, regardless of the mode of operation. .f'LSN", or 
loqical sector number. is only shown if the directory is 
being displayed or if the current mode of operation is the 
Logical Mode. 

The digits 00-70 down the left edge of the display are 
the hexadeci~al offsets into the sector. The contents of the 
sector are shown both in hexadecimal and in displayable 
ASCII. Non-displayable characters are printed as oeriods 
( . ) . 

If sectors are displayed 
appe~r five sectors per page. 
heading will be automatically 
page. The paper alignment 
command is issued. 

MOOS 3.0 User's Guide 

on the line printer. they will 
The unit number and associated 

orinted at the top of each 
will be restored once the Q 

Page 11-11 



lJUMP COMMAND 11.4 -- Examples 

11.4 Examples 

The following example shows how the Cluster Allocation 
Table is displayed with the DUMP command (a single-sided 
diskette is used). 

=UUMP 
PHYSICAL MODE 
, S8 

U NI T=O CLUSTER ALLOCA r ION MAP 

PSN=OOOI 
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF · ............... 
10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF · ............... 
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FO 00 00 • ••••••••••••••• 
30 00 00 oa 03 FF FF FF FF FF 00 00 00 00 00 OF FF • ••••••••••••••• 
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF · ............... 
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF • ••••••••••••••• 
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF · ............... 
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF • ••••••••••••••• , Q 

= 

The next example illustrates how the logical sectors 
zero through three of the directory are displayed. 

=DUMP 
PHYSI CAL MODE 
I SO 0.3 

UNIT=O DIHECTORY 

PSN=0003 
00 42 49 4E 45 58 20 20 20 
10 42 55 49 4C 44 20 20 20 
20 4C 49 53 54 20 20 20 20 
30 00 00 00 00 00 00 00 00 
40 00 00 00 00 00 00 00 00 
50 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 
10 00 00 00 00 00 00 00 00 

PSN=0004 
00 4D 44 4F 53 4F 56 30 20 
10 46 4F 52 54 20 20 20 20 
20 00 00 00 00 00 00 00 00 
30 00 00 00 00 00 00 00 00 
40 00 00 00 00 00 00 00 00 
50 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 
70 00 00 00 00 00 00 00 00 

MDOS 3.0 User-'s Guide 

LSN=OOOO 
43 40 OJ 4C 72 00 00 00 
43 40 01 6C 72 00 00 00 
43 4D 02 Fa 72 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

LSJr-OOO I 

BINEX CM.Lr ••• 
BUILD CM.lr ••• 
LI ST CM •• r ••• 
• ••••••••••••••• 
• ••••••••••••••• 
• ••••••••••••••• 
• ••••••••••••••• 
• ••••••••••••••• 

53 59 00 5C 72 00 00 00 MDOSOVO S Y. \r ••• 
43 40 02 74 72 00 00 00 FORT CM. tr ••• 
00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 •••••••••••••••• 
00 00 00 00 00 00 00 00 •••••••••••••••• 
0000000000000000 •••••••••••••••• 

Page 11-12 



)UMP COMMAND 11.4 -- Examples 

)0 
10 
20 
30 
40 
50 
60 
70 

00 
10 
20 
30 
40 
50 
60 
70 
I Q 
= 

lJSN=OO05 LSN=0002 
44 49 52 20 20 20 20 20 43 40 01 sa 72 00 00 00 OIR eM •• r ••• 
4U 4~ 52 47 45 20 20 20 43 40 03 28 72 00 00 00 MERGE eM. (r ••• 
52 4C 4F 41 44 20 20 20 43 40 04 Ie 72 00 00 00 RLOAD CM •• r ••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • • • • • • • • • • • • • • • • 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ................ 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · . . . . . . . . . . . . . . . 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 

PSN=OO06 LSN=OO03 
40 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SY •• r ••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............ ~ ~ . 

In the following example, the DUMP command is invoked 
with a file name on the command line; however, the file name 
does not exist as it is specified (i.e., a suffix of spaces). 
The Physical Mode of operation is entered automatically. 
Then the 0 command is used to open the file. Subsequently, 
two sectors of the file are displayed. The logical sector 
numbers allow a user to examine the file~s contents without 
knowing where the file is physically located on the diskette. 

=DUMP MUOSEH 
** 04 FILE NAME NOT FOUND 
: 0 MDOSErl. SV 
: S 1,2 

UNIT=O FILE=MDOSER .Sf 

PSN=00A6 LSN=OOOJ 
00 81 30 36 81 44 55 50 4C 49 43 41 54 45 81 46 49 .06.DUPLICATE.FI 
)0 4C 45 81 4E 41 4D 45 00 30 44 81 30 37 81 4F 50 LE.N~ME.00.07.0P 
20 54 49 4F 4E 8J 43 4F 4E 46 4C 49 43 54 00 33 30 T ION. CONFL ICT. 30 
30 81 30 38 81 43 48 41 49 4E 81 41 42 4F 52 54 45 .08.CHAIN.ABORTE 
40 44 81 42 59 81 42 52 45 41 413 8J 48 45 59 00 33 D.BY.BREAK.KEY.3 
50 31 81 30 39 81 43 48 41 49 4E 81 41 42 4F 52 54 1.09.CHAIN.ABORT 
60 45 44 81 42 59 81 53 59 53 54 45 40 81 45 52 52 EO.Bf.SYSTEM.ERR 
70 4F 52 81 53 54 41 54 55 53 81 57 4F 52 44 00 31 OR.SfATUS.WORD.) 

PSN=OOA7 LSN=0002 
00 43 81 .31 30 81 46 49 4C 45 81 49 53 81 44 45 4C C.l0.FILE.IS.OEL 
10 45 54 45 81 50 52 4F 54 45 43 54 45 44 00 32 34 ETE.tJROTECTED.24 
20 81 31 31 81 44 45 56 49 43 ·45 81 4E 4F 54 81 52 • 11 • DEV ICE. NOT. H 
30 45 41 44 59 OD 30 45 8J 31 32 81 49 4E 56 41 4C EADY.OE.12.INVAL 
40 49 44 81 54 59 50 45 81 4F 46 81 4F 42 4A 45 43 ID.T,(PE.OF.OSJEC 

MOOS 3.0 User·'s GUide Page J 1-13 



DUt'~P 

50 
60 
70 
: Q 
= 

COMMAND 1 1 • 4 -- E X am p 1 e s 

54 81 46 49 4C 45 00 30 46 81 31 33 81 49 4E 56 I.FILE.OF.13.INV 
41 4C 49 44 81 4C 4F 41 44 81 41 44 44 52 45 53 A L I U • LOAD. A DO RES 
53 00 31 33 81 31 34 81 49 4E 56 41 4C 49 44 81 S • 1 3 • I 4. I NV AL 10. 

The following example illustrates how the DUMP command 
can be used to "fix" part of the MDOS system tables that were 
found to be in error by the REPAIR comman~ (Chapter 22). No 
discussion is qiven here of the REPAIR command; however, the 
example does show what the REPAIR command displayed insofar 
as diagnostic messa1es are concerned. These messages contain 
the re~uired information needed by the operator so that the 
JUMP command can be used to "fix" the bad sector. The REl->AIR 
command could show the following on the system console: 

=REPAIR 
DISK 10: MOOS0300 
VEHSION: 03 
REV I S I 0 l~ : 00 
DATE: 072578 
USEH: S'{S DEv'ELOPMENf DRVO 
06 03 01 TESTPHOG.SA 05BC 0581 0000 
ILLEGAL ATTK IBUTE OR UNUSED BtTES. DELETE? j~ 
33 GOOD FILES 00 FILES WITH BAD RIBS 
RECOj~STRUCTEJ C .A.T. MATCHES DISK 
= 

The first few lines show the contents of the ID sector. The 
line that begins with "06 03 01" shows the contents of a 
directory entry that has been found in error. The subsequent 
line shows the error that HEPAIR detected. The error is in 
the attribute bytes of the directory entry. Chapter 22 
describes the format of the displayed directory entry. ~ith 
that information, the operator knows that the attribute field 
is displayed as n0581". The error is in the least 
significant byte of this field. It should be zero, not "81" 
as shown. From the other information displayed, it can be 
seen that this directory entry is the second entry (01) in 
the third sector (03) of the directory. With that 
information the DUMP command is used to read the sector 
containinq the bad directory entry into the sector change 
buffer. The buffer is modified so that the "81" becomes a 
1100". I n the foIl owi ng exampl e, the sector change blJ ffer is 
displayed both before and after the modification. 

Such repair functions must be performed with extreme 
caution. The RE~AIR command should always be run again after 
a system sector has been changed in this way to ensure that 
the change was made correctly. 

MOOS 3.0 User-'s Guide Page J ) -1 4 



DUMP COMMAND 11 .4 -- Examples 

=DUMP 
PHYSICAL MODE 
a HD 3 
: S 

CHANGE BUFFER 

PSN=OOO6 
00 4D 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 Sy ~.r •• " 
10 54 45 53 54 50 52 4F 47 53 41 05 BC 05 8i 00 00 TESTPROGSA •••••• 
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · . . . . . . . . . . . . . . . 
: 181 
18 53 
19 41 
1 A 05 
lB Be 
Ie 05 
10 81 00/ 
a 5 

CHANGE BUfrER 

PSN=OO06 
00 40 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SY •• r ••• 
10 54 45 53 54 50 52 4F 47 53 41 05 BC 05 00 00 00 TESfPROGSA •• •••• 
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
40 00 00 00 00 00 00 00 00 00 uu uu 00 uu 00 00 00 · ............... 
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · ............... 
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • ••••••••••••••• 
: r~ 
: Q 

= 

MOOS 3.0 User's Guide Paqe 11-15 





CHAPTER 12 

i2. ECHO COMMAND 

The ECHO command can only be used on an EXORciser II 
system. ECHO causes all subsequent input/output that 1s 
directed to the system console to also be printed on the line 
printer. The ECHO command is also used to stop echoing 
console I/O on the printer. 

12. t Us e 

The ECHO command is invoked '.-'lith the followinq command 
linea 

ECHO [;<options>] 

where <options> can be the letter UN". If the ECHO command 
is invoked without any options, then all subsequent input and 
output to the system console via the MOOS console driver or 
the EXbug entry points will be duplicated on the line 
printer. The line printer will continue to receive a copy of 
all consol e I/O unti I the ECHO command is invoked wi th the 
"Nil option. 

The UN" option will turn oft the echo feature. No 
paqing is performed. Thus, if paper aliqnment is critical, 
it will have to be manually reset after the echo feature 15 
disabled. 

12.2 Me ssages 

The following messages can be displayed by the ECHO 
command. 

ECHO NOr AVAILABLE ~~ITH EXBUG 

The ECHO command was invoked on an EXORciser I 
system. The command has no effect on such 
systems. 

** 11 DEVICE NoT HEADY 

[he printer was not ready when the ECIiO command 
was invoked. The command has had no effect on 
the system. The printer must be readied and the 
ECHO command invoked a~ain if the echo feature is 
to be enabled. 

MOOS 3.0 User's Guide Page 12-01 





CHAtJTER 13 

13. EMCOPY COMMAND 

The EMGOPY command allows files from a user-'s EOnS 2 
system diskette to be copied to and catalogued on qn MOOS 
diskette. options exist for copyinq the entire diskette, 
selected files, or single files. 

13.1 Use 

The EMCOPY command is invoked with the following command 
line: 

EMCOPY «name 1>](,<nal1e 2>] [;<options>] 

where <name I> is the name of an EOOS file, <name 2> can be a 
new name that is to be used for <name 1> on the MOOS 
diskette, and <options> can be one or more of the option 
letters defined below. If neither of the two file names is 
entered on the command line, then an <options> specification 
must be present. The following option letters are available. 
They are described in detail in the following sections. 

Option function 

A F1le is of the ASCII record format. 

R File is of the binary record format as 
created by the Macro Assembler with the 
OPT HEL option. 

D Set the delete protection on the MOOS 
fi 1 e. 

C Create the MDOS file with contiquous 
space allocation. 

S Copy selected files 
di skette. 

from 

E Copy the entire ElJOS diskette. 

the EOOS 

For each of the different ways that EMCOPY can he used, 
the fOOS diskette must always be in drive one and the MOOS 
diskette in drive zero, regardless of whether a two-drive or 
a four-drive system is being used. 

MDOS 3.0 User's GUide Pa:]9 13-01 



EMCOPY COMMAND 13. I -- Use 

13.1.1 Single file copy 

If a single EOOS file is to be copied to the MOOS 
diskette, its name must be specified as <name 1>. Only EOOS 
file names that meet the MOOS criteria for valid file names 
can be copied (see section 2.7.1). Since EOOS file names are 
only five characters long and have no suffixes. <name I> is 
not speci f i ed with a suffix. On ly the fi rst fi ve ch·3racter s 
of <name I> will be used to search the ED OS directory. A 
loqical unit number should not be specified for <name I>. 
The options liE" or USII cannot be specified on the command 
line if only the single file <name I> is to be copied. An 
error will be displayed if <name I> cannot be found in the 
EOOS directory. 

If no <name 2> is given on the command line, then an 
MOOS file with the name of <name I> and the default suffix 
"EDII will be used as the destination file on drive zero. The 
default suffix can be overridden by specifyinq only a suffix 
for <name 2>. The default name can also be overridden by 
specifyinq a file name for <name 2>. 

In either case, whether an explicit or a default <name 
2> is used, a file with that name must not already exist on 
the MOOS diskette. A standard error message will be 
displayed if <name 2> already exists. 

If no option or if the "A" option is specifiei on the 
command line, EMCOPY will assume that the EDOS file is in the 
ASCII record format. The IfRn option can be used to copy EDOS 
files that were created by the EDnS Macro Assembler with the 
relocatable option (OPT HEL). Obviously, uRn and "A" cannot 
be spec i f ied at the same time. I f the EOOS fi Ie is found 
with the "t>ermanent Attribute" set, then the MOOS file will 
be automatically created with delete protection. The delete 
protection can be explicitly set for the MOOS file by using 
the "0" option on the command line. 

13.1.2 Entire diskette copy 

To copy all valid EOOS files from drive one to the MOOS 
diskette in drive zero, no file name specification must be 
given for <name 1>, no file name must be given for <name 2> 
(however, a suffix can be specified), and the "E" option must 
be specified. 

The EOoS diskette will have its entire directory 
searched, one entry at a time. for valid (MOOS compatible) 
file names. When a valid name is found. it will be given the 
default suffix ~EOIf or the explicit suffix specified by <name 
2>, and copied to the MOOS diskette. Of course, a file with 
that name cannot already exist on the MOOS diskette. This 

MOOS 3.0 User's Guide Page 13-02 



EMCOP'f COMMAND 13. 1 -- Use 

process is repeated until all entries in the EDOS directory 
have been ex~mined. 

As file names are processed from the EDOS directory one 
of the following two messages will be displayed for e3ch file 
name. The message 

COPYING FILEI <name> 

indicates that the EDOS file identified by <name> 1S being 
transferred to the MOOS diskette. The message 

<name> 
** 25 INVALID FILE NAME 

indicates that the file <name> does not have a valid MOOS 
file name and cannot be copied. If the file is to be copied i 

it must first be renamed on an EDnS system using the HENAM 
command. 

The .,CII, "Du, uRn, or U A II opti ons can be spec if i ed on 
the command line. These options, explained in the previous 
section, can be used to assign attributes to all files copied 
from the EDOS diskette. If no options are specified, then 
the MOOS files will use seqrnented allocation and be of the 
ASCII record format. The delete protection will 
autollatically be set for files with the "Permanent Attribute" 
on the EUOS diskette. 

The tiS'" option cannot be specified at the same time as 
the IIE" option. 

13.1.3 Selected file copy 

To copy only selected files from the EDOS diskette, the 
US" option must be specified on the command line. Nothing 
can be specified for <name I> or <name 2> if the US" option 
is used. BaSically, the selected file copy mode works like 
the entire diskette copy mode; however, the oper~tor can 
assi]n different attributes and suffixes to each file, as 
well as decidinq whether or not a particular file is to be 
copied at all. Ourinq the selected file copy mode, as valid 
file names are found in the EDOS directory, the messaqe 

COpy <name> ? 

will be displayed. The operator must respond with a "Y" if 
the file is to be copied to the MOOS diskette. Any other 
response will cause that file to be bypassed and not copied. 
The next valid file name will then be searchad for. 

If a "Y" response is given to the above prompt, EMCOPY 
will display two additional prompts l 

MOOS 3.0 User's Guide Page 13-03 



EMCOPY COMMAND 

SUFFIX? 
ATTRIBUTES? 

13.1 -- Use 

The operator can assign an explicit suffix by entering it 
after the "SUFFIX?" prompt, and he can assiqn explicit 
attributes by entering the appropirate attribute letters (A, 
C, 0, H) after the "ATTHIBUTES?" prompt. The default suffix 
"ED" and the default attributeUA" can be assigned by 
responding with only a carriaqe return. If an invalid 
attribute is entered by the operator, the uATTHldUTES?U 
promot will be redisplayed, forcing the operator to enter new 
attributes. This procedure will continue until all entries 
from the EOOS directory have been processed. At th3t time 
the message 

NO MORE FILES 

will be displayed and control returned to MOOS. 

13.2 File Differences Between EOOS and MOOS 

Both EDOS and MOOS systems support the ASCII and the 
~inary record format. The ASCII record format is primarily 
used for source program files and object program files in the 
EXbu]-loadable format. The binnry record format is used 
pri~arily for the relocatable object output files created by 
the ~acro Assembler, RASM. 

The EMCOP¥ command will transfer either type of file on 
a sector-by-sector basis. Thus, after a file is copied to 
the ;W\OOS diskette, its sectors are sti 11 in the same internal 
format; however, when an ASCII record file is processed by 
the MDOS editor, it will be altered. Multiple spaces will be 
compressed into a single byte, and the carriage return, line 
feed, null sequence that terminates all ASCII records on EDOS 
files will be replaced by a sinqle carriage return. Thus, 
the resultant MOOS file will be siqniflcantly smaller than 
its oriqinal EOOS form. 

Space compression is, of course, not performei on the 
binary record files; however, were the same object file to be 
produced by the MOOS Macro Assembler, it would not be 
identical to its EDOS counterpart. The carriage return, line 
feed, null sequence would have been replaced by a single 
carria1e return. 

13.3 Messages 

The following messages can be displayed by the EMCOP¥ 
command. Not all messages are error messages, although error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not listed 

MOOS 3.0 User's Guide Page 13-04 



EMC OPY COMMA NO 13.3 -- Messages 

here. 

COPYING FILE. <name> 

Durinq the entire diskette copy mode; this 
message monitors which files are being copied to 
the MOOS diskette. 

COpy <na me> , 

SUFFIX, 

ATTRIBUTES? 

During the selected file copy mode, this prompt 
allows the operator to choose which files qet 
copied. A IIy-1I response will cause <name> to be 
copi ed. Any other respons e will caus e <name> to 
be bypa ssed • 

This prompt allows the user to specify an 
explicit two-character suffix during the selected 
file copy mode. A response of carriage return 
only will cause the default suffix liED" to be 
used. 

This prompt allows the user to specify explicit 
attributes during the selected file cooy mode. 
The attribute letters itA", liCit, no", or uR" can 
be entered. A response of carriage return only 
will cause the nAil attribute to be used. 

NO MORE FILES 

The EOOS directory has been exhausted during the 
selected file copy mode. 

13.4 Examples 

The following example illustrates how the sin]le file 
fESTP from an EDOS diskette would be copied into the file 
TESTPROG.SA on an MOOS diskette. 

EMCOPY TESTtJ,TESfPROG.SA 

[he MOOS file will be allocated segmented space. It will be 
in the ASCII record format. The file may be delete protected 
if the EUOS file had the "Permanent Attribute" set. 

The following example shows how an entire EDOS-iiskette 
is copied. The first two files are not copied since their 
file names are not valid MOOS file names. It should l:)e noted 
that <name I> is not soecified. Thus, in order to specify a 

MOOS 3.0 User's Guide Page 13-05 



EMCOPY COMMAND 13.4 -- Examples 

suffix for <name 2>, the comma had 
that <name I> is null, or missing. 
will be used instead of the default 
copied to the MOOS diskette. Since 
qiven, all files will be created in 

to be entered to indicate 
The <name 2> su ff ix II SAil 
suffix nED" for all files 

=EMCOPY ,.SA;E 
SDOS 

no other options were 
the ASCII record format. 

** 25 INVALID FILE NAME 
SOIR 
** 25 INVALID FILE NAME 
COPYING FILE: PRNTX 
COPYING FILE' 0120 
COPYING FILE: OMEX 
COPYING FILE' OXRF 
COPYING FILE' ONOL 

** 06 DUPLICATE FILE NAME 
COPYING FILE' OLIS 
COPYING FILE: ONMC 
alPYING FILE. DASM 
COPYING FILE: OUP05 
COPYING FILE' OOJK 
COPYING FILE: OOPI 
COPYING FILE: TITLE 
COPYING FILE: PAGE 
COPYING FILE' PCHO 
COPYING FILE: HSMB 

** 41 INSUFFICIENT DISK SPACE 
= 

The file ONOL was not copied because the MOOS file ON<L.SA 
already existed. The file RSMB was partially copied. The 
MDOS diskette lacked sufficient space for that EOOS file. 
The EMCOPY is stopped at that point since subsequent files 
wouLj probably not have room either. Files like RSMB, RLOAD, 
ASMB, and EDIT on EDOS diskettes should not be copied to MOOS 
diskettes, since those proqra~s make assumptions about the 
diskette structure, and will fail to work if copied and 
executed (after EXBIN conversion). 

The last example shows how the selected file copy mode 
is used. In this example, not all files have the same record 
format. Thus, if they were copied with the nEil option, some 
would be creAted with the wrong file format. The file PRNTX 
is a binary record file. It is gi ven the suffix ,uRO" (suffix 
for relQcatable object files created by the Macro Assembler). 
[he file ONOL, on the other hand, is an ASCII recorrj file. 
It is given the default suffixtlED" (from the above example, 
ONOL.SA already existed on the MOOS diskette). The invalid 
file names from the EOnS diskette are displayed, but they are 
not copied. A sinqle carriage return is used in this example 
to respond to the "COPY?" promot to indicate a neqative 

MDOS 3.0 User·'s Guide Page 13-·:)6 



:MCOPY COMMAND 

response. 

MDOS 3.0 User's Guide 

=EMCOPY ;S 
$OOS 
** 25 INVALID FILE NAME 
$DIR 
** 25 INVALID FILE NAME 
COpy PRNTX? 
Y 
SUFF I X? 
RO 
ATT~IBUrES? 
H 
COpy 0120 ? 

COpy OMEX ? 

COpy OXRF ? 

COpy ONOL ? 
Y 
SUFFIX? 

ATTRIBUTES? 

COpy OLIS ? 

COpy ONMC ? 

COpy DASM ? 

COpy DUP05? 

COpy OOlK ? 

COpy OOP) ? 

COpy TITLE? 

COpy PAGE ? 

COpy PCHO 'I 

COpy HSMB ? 

NO MORE FILES 
= 

13.4 -- Examples 

Page 13-07 



CHAPTER 14 

14. EXt3IN COMMAND 

The EXBIN command is used to convert files in the 
EXbu~-loadable format (e.q., object output from the assembly 
process without the OPT REL or opr ABS directive) int') files 
that can be loaded into memory for execution. The EXBIN 
command performs the inverse operation of the BINEX command. 

) 4. 1 Use 

The EXBIN command is invoked with the following command 
line: 

EXBIN <name 1>(,<name 2>] (;<options>] 

where <name 1> is the file specification of an EXbug-loadable 
file that is to be converted, and <name 2> is the file 
specification of a file that is to receive the results of the 
conversion e Only <name 1> is required to be enterei on the 
command line. The default suffix "LX" and the default 
logical unit number zero will be supplied for <na~e 1> if 
those quantities are not explicitly given. The output file 
specification, <name 2>, is optional. If <name 2> is 
entered, it ~ay be a partial file specification consisting of 
only a file name, ~ suffix, or a logical unit number (or any 
combination thereof). The unspecified parts of <name 2> will 
be supplied from the respective parts of <name 1>, with the 
exception of the suffix. The default suffix for <name 2> is 
uLO" to indicate its memory-image format. If no file 
specification is given for <name 2>, the output file will be 
c rea ted wi th the same file name as <name 1> but 111 i th the 
5 u f fix ,II L 0" • I f on 1 y a su f fix i s 'J i ve n for < n arne 2> , t hat 
suffix will be used instead of the default"LO". If no 
logical unit number is given for <name 2>, the output file 
will be created on the same drive as given for <name J>. In 
any case, <name 2> must be a file specification for which no 
entry already eXists in the directory. 

Standard error messages will be displayed if <name 2> 
already eXists, if <name 1> does not exist, or if <na~e 1> is 
of the wrong file format. 

The <options> field can be used to specify a starting 
execution address for the ~e~ory-imaqe file. If no <options> 
field is qiven, EXBIN will use the address containei in the 
S9 record for the starting execution address. 

EXBIN will ignore the SO, or name record, as well as any 

MOOS 3.0 User.ls Guide Page 14-0 i 



EXHIN COAt~ANl) 14. I -- Use 

null records from <name I>. Null records consist of a 
carriage return only. The content of the 51 records will be 
converted to its binary equivale~t and written into <n~me 2>. 

Since the EXbug-loadable files can contain 51 records 
that would be loaded into non-adjacent blocks of memory based 
on their address fields, the resulting memory-image file may 
be larger (occupy more diskette space) than <name I>. This 
results from the fact that <name 2> is a memory-imale file. 
All parts of memory which are not directly referenced by the 
S 1 records, but which are incl uded between the lowest and the 
highest address contained in all 51 records, will be a part 
of the memory-image in the file <name2> <initialized to 
binary zeroes). 

The EXbug-loadable file, <name J>, is unaffected by the 
entire EXBIj conversion process. The output file, <name 2>, 
can then be loaded into memory directly from rliskette using 
the LOAD comlland (see Chapter 18). 

14.2 Execution Address Specification 

A starting execution address for the memory-image file 
can be specified by entering a valid hexadecimal number in 
the <options> field. The number must be in the range 
SOOOO-FFFF (entered in the <options> field without the dollar 
5iqn). In addition, the execution address must fall within 
the range of acidresses spanned by the file. That is, the 
starting execution address cannot be less than the lowest 
address found in an 51 record, and it cannot be greater than 
the hi:Jhest address. If an execution address is specified in 
the <options> field, it will override any value contained in 
the S9 record of <name J>. 

14.3 Error Messages 

The following error messages can be displayed by the 
EXBIN command. The standard error messaqes that can be 
displayed by all commands are not listed here. 

CHECt<SUM ERHOR 

(~e of the S records from <name I> contained an 
invalid checksum. 

MUOS 3.0 User's Guide Page 14-02 



EXB I N COMl~Ai~D 14.3 -- Error Messages 

HECOI~D FORMAf ERHOR 

(he of the records from <name I> was not in the 
cXbug-loadable format. Exceptions to this are 
null records, or recoris which consist of only a 
cArriage return. l~U 11 records are simply dropped 
and will produce no errors. otherwise. only 
records beginning with SO, 51, or S9 are 
acceptable~ If all records do beqin with these 
characters when this error occurs, then somethinq 
el se is wrong wi th their format. The .IIM6800 
EXORciser User-Jls Guide" contains a c(')mpl ete 
description of the S record format. 

SOURCE FILE NOT ASC I I 

fhe file <name 1> is not in the ASCII record 
format. EXbug-loadaole files must be ASCII. 

STAHf AODHESS OUT-OF-RANGE 

[he starting execution address specified in the 
<options> field or the address contained in the 
59 record is not within the range of memory 
Bddresses spanned by the file. 

** 3) INVALID EXECUTION ADDRESS 

Normally, this standard error message has a 
slightly rlifferent meaning. Ouring the EXBIN 
orocess. however. this error indicates that the 
starting execution a~dre5s given in the <options> 
field was not a valid hexadecimal number. 

14.4 Examples 

Most frequently, the default suffixes and 
numbers suffice for the EXBIN operation. 
command line 

EXBI N TESfPHOG 

logical uni t 
Ihe following 

will produce the file TESTPH03.LO on logical unit zero from 
the EXbug-loadable file TESTPROG.LX, also on logical unit 
zero. The startinq execution address from the 59 record will 
be used. 

The following command line 

EXBIN TESTPROG,a2;2100 

will create the same file as in the previous examole. In 
this case, however, the file is created on loqical unit two. 

MOOS 3.0 User1s GUide Page 14-03 



EXB I N COMMAND 14.4 -- Examples 

[he startinq execution address $2100 will be assiqned to the 
output file, regardless of what is contained in the S9 
record. 

MOOS 3.0 User's Guide Page 14-04 



CHAPTER 15 

15. F(H?MAT COMMAND 

The FORMAT command attempts to rewrite the sector 
addressing information on diskettes. The FORMAT comm8nd can 
be used to reformat either single-sided or double-sided 
diskettes; however, double-sided diskettes must be formatted 
with this command before they can be used with MOOS. 
Single-sided diskettes usually come pre-formatted in a 
compatible format. The FORMAT command will only work on 
systems that are operating at one of the standarj clock 
frequencies of 1 MHz, 1.5 MHz, or 2 MHz. 

15.1 Use 

The FOHMAT com:nand is invoked with the following command 
linel 

FORMAT [I<unit>] 

where <unit> is an optional logical unit 
specified, <unit> can take on the values 1-3. 
not specified, logical unit number one will be 
default. 

number. If 
If <unit> is 
used as a 

If a user has a dual-drive EXORdisk II system, there is 
no need for him to specify a <unit> on the command line. If 
he does, caution must be used since the specification of 
logical unit number 2 on a EXOHdisk II system will cause 
loqical unit number zero to be formatted due to the way the 
disk controller works! 

Since the FORMAf command will destroy all information on 
the diskette in the specified drive, the prompt 

FOHMAT Dr?IVE <unit>? 

will be displayed, where <unit> indicates the logical unit 
number containing the diskette to be formatted. <unit> is 
either the number entered on the command line, or the default 
value supplied by the command itself. Any response other 
than "Y" will cause the fORMAT command to be terminated and 
control returned to MOOS. In this case, the diskette in the 
specified drive is unaffected. If the nyn response is 
entered, the operator should have placed a diskette that 
needs to be formatted into the specified logical unit. 

FOHMAT will then proceed to: 

MOOS 3.0 User~s Guide Page 15-01 



FOKMAT COMMAND 15.1 -- Use 

I. Rewrite the soft sector addressing information on 
each cylinder (Appendix F contains a description 
of the diskette format), 

2. Initialize every byte of each sector to the 
hexadecimal value SE5, 

3. He-read each cylinder to verify that the CRC~s 
are good and that the diskette is readable. 

The above process terminates when the diskette is 
completely formatted or when a diskette controller error 
occurs repeatedly. In the former case, control is returned 
to MDOS. In the latter case, the FORMAT command will display 
the diskette controller error with the standard uPHOM I/O" 
error message. The diskette is not necessarily unusable if 
such errors occur. fhe FORMAT command should be re-run after 
having noted the physical sector number at which the error 
occurred. If the same error occurs at the same physical 
sector number after three attempts at running the F(~MAT 
command, then the oxide on the diskette is probably damaqed. 
fhe diskette is unusable in such cases. If the unusable 
diskette is inspected carefully by manually turning the 
diskette within its protective envelope, a mark or 
indentation can usually be found on its surface. 

The FOtiMAT command can be used to format sin'Jle-sided 
diskettes on the sinqle- and double-sided Calcomp EXOHdisk 
II/III systems or on the sinqle-sided Pertec EXOrldisk II 
systems; however, double-sided diskettes can only be 
formatted on the double-sided Calcomp EXORdisk III systems. 

15.2 Messages 

The only messages that the FORMAT command can display 
are the prompt shown above, asking if the diskette in the 
specified <unit> is to be for~atted, and the standard PHeW 
I/O error messaqe, indicating that a diskette controller 
error was encountered during the formatting process. 

15.3 Example 

The following example shows the FORMAT command being 
used repeatedly after an error is detected. Since the 
physical sector number of the error keeps increasing, it 
indicates that the FORMAT command is able to rewrite more and 
more of the diskette; however, at one point, the physical 
sector number is always the same. At that time the F(ffiMAT 
command is not used any lonqer ~ince the diskette in drive 
one is unusable. 

MDOS 3.0 User"s Guide 



=OK MAT COt~MAND 15.3 - Example 

=FOHMAT 
FOrtMAT DRIVE 11 
Y 
**PROM I/O ERHOH-STATUS=38 Af 2006 ON DHIVE l-PSN 01tJ3 
=FORMAf 
fORMAT uri IVE I? 
'I 
**PRUM I/O EKHOR-STATU5=38 AT 2006 ON DI1IVE J-PSN 01f2 
=FOH,"{AT 
FORMAT O~IVE ) 1 
'( 

**PHOM I/O EHHOH-STATU5=38 AI 2006 ON DKIVE l-PSN 0226 
=FORMAf 
FORMAT DR IVE 11 
Y 
**PROM 1/0 ERROK-STATUS=31 AI 2006 ON DKIVE l-PSN 0226 
=FOR,'t\Af 
FORMAT UHIVE 11 
Y 
**PROM 1/0 ERROR-STATUS=3) AT 2006 ON DHIVE l-PSN 0226 
= 

MOOS 3.0 User"s Guide Page J 5-03 



CHAPTEH 16 

160 FREE COMMAND 

The FHEE command displays the number of unallocated 
sectors and the number of empty directory entries re~aining 
on a dis k e t t e. 

The FREE command program is invoked with the following 
command line: 

FREE [:<unit>] [;<options>] 

where <unit> can be the logical unit number 0, I, 2, or 3, 
and <opti0ns> can be the letter uLIi. If the <unit> is not 
specified on the command line, the default value zero will be 
used. 

The FREE command normally displays its summary iata on 
the system console. The option "L", however, can be used to 
direct this data to the line printer instead. After the FREE 
command has determined the available space on the diskette, 
the data will be displayed in the followinq format: 

DRIVE i: xxxxxxxx 
aaaa/$bbb SECTnRS 
eeee/$ f ff LAHGEST CONI IGUOUS BLOCK 

[he symbols have the following meanings: 

Symbol 

i 
xxxxxxxx 
aaaa 
$bbb 
ccc 

Sdd 

eeee 

Sfff 

MOOS 3.0 User's Guide 

Meaning 

Logical unit number selected. 
Eight character diskette 10. 
Available sectors in decimal. 
Available sectors in hexadeci~al. 
Available directory entries in 
decimal. 
Available directory entires in 
hexadecimal. 
Size of largest, available block of 
contiguous sectors in decimal. 
Size of largest, available block of 
contiguous sectors in hexadecimal. 

Page 16-01 



FHEE COMMAND 16.2 - Example 

16.2 Example 

The followinq example shows the output from the FREE 
command as displayed on the system console (a double-sided 
diskette is used). 

=FREE :3 
DI1I Vr:. 3: MOOS0300 

= 

3004/$BBC SECT(~S 124/$7C FILES 
0212/$OD4 LAHGEST CONTIGUOUS BLOCK 

The last example uses a single-sided diskette. No 
<unit> is entered on the command line, so the default of zero 
is used. 

=FREE 
DRIVE 0: MDOS0300 

= 

0820/$334 SECTOHS J40/$8C FILES 
0064/$040 LARGEST CONTIGUOUS BLOCK 

MOOS 3.0 User~s Guide Page 16-02 



CHAPTER 17 

17. LIST COMMAND 

The LIST command is used to print any ASCII file on 
either the system console or the printere Options exist for 
numbering lines, speclfyinq paqe formats, printinq headinqs, 
and indicating starting and ending points. In a1dition, 
files can be accessed by their logical sector numbers for 
rapid access to any portion of a file. 

17.1 Use 

The LIST command is invoked with the following command 
linea 

LIsr <name>£,(cstart>][,<end>]] [;coptions>] 

where <name> is the file specification of an ASCII file that 
is to be displayed, <start> and cend> are the optional 
starting and ending points of the display, and <options> can 
be one or more of the option letters described below. 

option Function 

L Display tile on line printer. 

Get headinq 
console. 

information fro~ system 

N Display physical line numbers for each 
line. 

F Use a non-standard page format. 

The <name> parameter must be specified with the LIST 
command. If no suffix is given, the defaUlt value IISI\" will 
be supplied. The default logical unit number is zero. 

The following sections describe each of the options in 
detail. The IILII option can be used with any other options to 
specify that the output from the LIST command is to be 
directed to the line printer. If the "Llt option is '1lissing, 
the system console will be used instead. 

If the ASCII file contains any non-dis~layable 

characters, the LIST command will convert them into a percent 
sign (%) so that they will be visible. If records are 
contained in the file that are longer than the selected page 

MOOS 3.0 User's Guide Page 17-01 



LI ST COMMAND 17. I -- Use 

format, they will be truncated on the right before they are 
displayed. 

17.1.1 Start/end specifications 

[he default starting point for the display is the first 
physical line of <name>. The default ending point is the 
last physical line. The <start> specification can be used to 
start the display of the file at a specific physical line 
number or at a specific logical sector number. If the 
<start> speCification is present on the command line it must 
be in one of the following two formats. 

Lnnnnn 

or 

Smmm 

The HLnnnnntl form is used to specify a starting physical line 
number. The value "nnnnn" must be a 1-5 digit decimal number 
in the range 1-65535, inclusive. The "5mmm lJ form is used to 
specify a starting logical sector number. The value UmmmU 

must be a 1-3 digit hexadecimal number in the range SO-FFF, 
inclusive. fhe default <start> specification is "LI". 

The <end~ specification can be used to specify where the 
display of the file is to stop. The <end> specification has 
the same two forms as the <start> specification. If no 
<start> specification is entered on the command line, then 
the <end> specification can be of either form; however, if 
the <start> specification is entered, then the <end> 
specification must be of the same form. For example, it is 
invalid to specify a <start> specification of logical sector 
five and an <end> specification of physical line 216. The 
<end> specification must be larger than the <start> 
specification. The default <end> specification is the 
logical end of the file. 

17.1.2 Physical line numbers 

Normally, the displayed file will not be shown with 
physical line numbers. (~ly the actual data of the lines in 
the file will be shown. The "Nfl option can be used to cause 
physical line numbers to be generated by the LIST command and 
displayed with each line of data from the file. fhe physical 
line numbers will be printed as five digit decimal numbers. 
If the standard page format is used, each data line that is 
longer than the eighty characters will be displayed with 
eight fewer data characters, truncated from the right. The 
physical line numbers are useful when using the BLOKED!T 
command (Chapter 5) or when trying to find verify errors from 

MOOS 3.0 User's Guide Paqe 17-02 



L 1ST COMMAND 17. 1 -- Use 

the COtJY command (Chapter 7) between a diskette file and a 
tape file. 

The physical line number option "NJ) is fairly 
meaningless it the logical sector form of the <start> 
specification is used. Since no count is available for the 
number of lines between the beginning of the file and the 
specified logical sector, the physical line numbers (if 
printed) would only be relative to the part of the file that 
was displayed. A partial line will usually be seen as the 
first li.ne since the records randomly cross sector 
boundaries. 

17.1.3 User-supplied heading 

Normally, the LIST command will print a paqe number and 
the file, name specification of the file being listed as a 
headin~. The uHu option can be used to cause additional 
information to be displayed on the heading line. The UH" 
option will cause the following prompt to be shown on the 
system console before the file is listed' 

ENTER HEADING' 

The operator can then respond with a line of text that Is to 
be used as tne heading. The maximum lenqth of the entered 
heading is 100 (decimal) characters. The heading line 
containinq the page number, file name specification, and 
user-supplieci text will automatically be printed on the 
second line of each page. 

17.1.4 Non-standard paqe formats 

Normally, the LIST command will display a maximum of 
eighty characters per line and sixty-six lines per paqe. The 
uFu option can be used to·override the standard page format. 
[he format of the "FU option is as follows: 

F [ c c c ] • [ pp] 

where at least one of the two parameters must be present. 
The JI ccc" parameter is used to spec i fy the number of columns 
to be printed per line. It must be a decimal number in the 
range 1-132, inclusive. The ."pp" parameter is used to 
specify the number of lines per page. It, too, must be a 
decimal number, but in the ranqe 10-99, inclusive. An error 
messaqe will be displayed if an illegal page format is given. 
Either the line length or the page length can be specified 
without the other (e.g., "F20.'lor "F.58 u , respectively). 
Only the line lenqth need be specified if longer lines are to 
be printed on a standard length page. 

MOOS 3.0 User's Guide Page 17-03 



LIST COMM AND 17.2 -- Messages 

17.2 Messages 

The following messages can be displayed by the LIST 
command. Not all messages are error messages; however, error 
messages are included in the list. The standard error 
messaqes that can be displayed by all commands are not listed 
here. 

pAGE ddd <name> 

This is the standard heading supplied by the LIST 
command. uddd" is the decimal page number and 
<name> is the file name specification of the file 
being printed. 

ENTEH HEADING: 

fhis message is displayed when the "Hit option is 
used to print additional heading text on each 
page. A maximum of 100 (decimal) characters can 
be entered. 

** 24 LOGICAL SECTOR NUMBE~ OUT OF RANGE 

This error is caused when a <start> specification 
references a logical sector number that is 
greater than the logical sector number of the end 
9f file. 

** 34 INVALID START/END SPECIFICATIONS 

fhe <start> and <end> specifications on the 
command line were not both of the same form (ilL" 
or IIS"), or the <end> specification had a value 
that was less than the value of the <start> 
specification. This error can also be caused if 
the <start> or <end> specifications beg1n with 
letters other than JlLIt or "S". 

** 35 INVALID PAGE FORMAT 

The parameters of the IIFIt option did not meet the 
criteria explained in section 17.1.4. 

** 36 FILE EXHAUSTED BEFORE LI NE FOUND 

The <start> specification on the command line 
specified a physical line number whose value was 
larger than the total number of lines in the 
file. 

MOOS 3.0 User~s Guide Page J 7-04 



L l~r COMM AND 17.3 -- Examples 

17.3 Examples 
---.:..---------

The MOOS equate file is use:i in all of the followinq 
exam)les. [he following exa~ple shows what is prooqbly the 
~ost commonly used form of the LISr co~mand. No opti0~s are 
used. [he default values for suffix, l0qical unit number, 
<start> And <end> specifict3tions, paqe formflt, and output 
device are used. It is assumed that the BREAK key was 
depressed to terminate the LIST command and return co,trol to 
MOOS in this example. 

=LIsr EQU 

rJAGE 001 EQU .SA: 0 

* * ftJJ-? N OFF THE LIS [I NG 

* 
O~T NOL 
PAGE 

* * :'~DOS VEHSION 03.00 -- SYSfEi't\ Ei)UArc 1=1 LE -- JULY ~'), 197~ 

* . SrJC 3 

* = 
Th e follow i n q e x am pIe use s the < en d> 5 P e c i f i c 1 t i on to 

stop on the tenth line of the file. Since the default value 
for the <start> specification is to be used, a null p3rameter 
~ust be specified for it. This is done by entering the two 
adjC1cent commas. [he "N" ootior) causes the display of the 
physicql line numbers. 

=LIST EQU"LI0;N 

PAGE OJI EQU .SA: 0 

* * [URN OFF THE L 1 STI i"JG 

* OPT NOL 
PAGE 

* 

00001 
00002 
00003 
00004 
0000:> 
00006 
00007 
00008 
00009 
00010 

* MDOS VERSION 03.00 -- SY3TEM E')UATE FILE -- JIJLY 25,1978 

* 

= 

St-"C 3 

* 

Ine following example uses both 
specifications to cause the jisplay 
throuqh 40, inclusive. 

MUOS 3.0 User's Guide 

<start> and <end> 
of physical lines 30 



LIS[ COMMANU 17. 3 -- F.xampl es 

=LIsr f::JU,L3(),L40 

tJ AC;t: 00 I E:QU .51\:0 

* fHt: SAME COI'-lCEtJf AS rHE "SKIP2 11 tV\A.CHO IS USED, EXCEPf THAT 
* A uBII' TES[ ACCUMULATOj-{ A IMMF:JIA.fF:" OP CODF. IS GEi~r:r?ArF:iJ. 

* :;l<IPI !AACK 
~CH $d5 
F. i~U'A 

* * S 2 ALL 

* SCALL i\1ACH 
IfEJ NAliG-J 

= 

MAC H () (SYS[~M r:u Ncr I ON CALL) 

The following eXAmple illustrates how the loqicAl sector 
number CAn be used to rapidly Access Any part of .q file. 
~hen the <st~rt> and <end> specificAtinns refer to nhysical 
line numbers, the file ml1st ~e read from the beqinninq, a 
record at a time, in or,jer t:> find the correct lines; 
however, the lo~ical sector form of the <start> specification 
OArmits the LIST comrnanrl to go directly to the sector. The 
ph y sic all i n e n urn be r 0 p t ion .. Nil i 5 f rl i r 1 Y 11 ea n i nq 1 e s s i f the 
logic~l sector form of tne <start> specification is userl. 
Since no count is availAble for the number of lines between 
the helinnin? of the file ani the specified loqical sector, 
the ~lhysic'31 line numbers (if printed) would only be relf3tive 
to the part of the file thAt was rlisplayerl. A parti~l lIne 
'Ni 11 usuall y be seen as the first 1 ine since the records 
randomly cross sector boundaries. The dHEAK key WAS Ilsed in 
this examole to terminAte the displAY of the file. 

=LISf F:(JU,S~j 

? AGE no I EOU • SA: a 

fEiI OP CODE IS Gf:NF.RATED. 

* 
~Klr'1 MACH 

* 

Fen $85 
Et~UM 

* -:> CAL L 
* SCA.lL MACH 
If EO NAIiG-1 

= 

,'A A C Ii () (SYSfEM FU NCf I OH CALL) 

The following example displays the MOOS eqUAte file 
us i n '~1 :3 n on - 5 tAn dar j 1 i n e 1 en q t h s p e c i f i cat i () n • Or'll Y the 
first twenty charActers 0f each line will be shown. Notice 

,·,l J () S 3. 0 Use r ' s G u 1 rl ~ P~l e I 7-06 



LIST COMMAND 17.3 -- Examples 

that this format also applies to the printed headinq. The 
BREAK key was used to terminate the displaY. 

=LIST EQU;F20 

PAGE 001 EQU .5 

* * TURN OFF THE LISTI 

* OPT NOL 
PAGE 

* * MOOS VERSION 03.00 

* = 

The last example lists the first nine lines of the MOOS 
equate file. In addition to the previously shown features, 
the JJH" option is used to specify a heading. This heading 
would be printed at the top of each page if multiple pages 
were printed. 

=LIST EQ~"L9;HN 
El\'TER HEADINGs THIS IS THE MOOS SYSTEM EQUATE FILE 

PAGE 001 EQU .SAIO THIS IS THE MOOS SYSTEM EQUATE FILE 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
= 

* * TURN OFF THE LISTING 
* OPT NOL 

PAGE 
* * MOOS VERSION 03.00 -- SYSTEM EQUATE FILE -- JULY 25,1978 
.* 

SpC 3 

MOOS 3.0 User's Guide Page 17-07 



CHAPTER 18 

is. LOAD COMMAND 

The LOAD comma-l1-d is used to load a program from a 
memory-image file on the diskette into memory. OptIons exist 
for entering the debug monitor after loading a program, for 
automatically executing a program, for loading a program into 
the User Memory Map of EXORciser II systems 9 and for loading 
a program over the resident operating system. 

18. 1 Use 

The LOAD command is most frequently used to load a 
program into memory for testing; however, certain types of 
programs, specifically those that overlay MDOS, that load 
outside range of contiguous :nemory knonw to MDOS, or that 
execute in the User Memory Map of an EXORciser II system with 
the dual memory map configured, can only be executed via the 
LOAD command and one of its options (G). The LOAD command is 
invoked with the following command line: 

LOAD [<name>] [;<options>] 

where <name> is the file name specification of a file from 
which the program is to be loaded into memory, and <options> 
specifies how to load the program. If <name> is specified, 
it must be the name of a file that has the memory-image 
format. The default suffix -"LOll will be supplie-i if no 
explicit suffix is given. The default logical unit number is 
zero. 

The <options> are diVided into "Main Options" and "Other 
Options". Main Options are mutually exclusive. That is, 
only one Main Option can be specified on the command line at 
a time. The Other Options can be included with anyone of 
the Main {)ptions. The following tables show both ~ain and 
other Options. 

MOOS 3.0 User's Guide Page 18-01 



LOAD COMMANJ 

Main Option 

none 

u 

v 

Other Option 

none 

G 

«str» 

18. 1 - Use 

Function 

Load program into contiguous 
memory above MOOS; keep MOOS SWI 
vector to allow system function 
access. 

Load program into User Memory Map 
of an EXORciser II system with a 
dual memory map configuration. 

Allow program to load over MOOS 
or anywhere else in memory; 
disable MOOS's SWI vector. 

Function 

Enter debug monitor after loading 
program. 

Execute program after loading. 

Initialize MOOS command line 
buffer with the character string 
<str> as indicated in the 
enclosed parentheses. 

The <options> are discussed in detail in the following 
sections. 

The LOAD command does not verify that memory exists for 
the areas into which a program gets loaded. 
Command-interpreter-Ioadable programs (section 18.1.1) are 
~uaranteed that memory exists since the memory was sized at 
initialization time;- however, programs loadinq into 
discontiguous areas of memory or into the User Memory Map of 
a dual memory map confiquration are not guaranteed that 
memory exists. The operator is responsible for knowing where 
memory is configured in his system and where his progr~ms are 
loaded. Also, due to the nature of the diskette controller, 
it is not possible for the LOAD command to compare what is 
read from the file with what is stored into memory. Only 
diskette controller read errors can be detected. 

~rograms brought into memory from the diskette ~ill be 
loaded in multiples of eight bytes. This fact must be 
considered when programs are loaded into adjacent blocks of 
memory close to other programs, or if programs are loaded 
into the upper end of a block of memory. 

MOOS 3.0 User's Guide Pa::]e 18-02 



LOAD COMMAND 1 8. 1 - Use 

18.1.1 Command-interpreter-Ioadable programs 

Programs that can be loaded by the MDOS command 
interpreter are usually loaded for testing by not specifying 
anything in the <options> field. The UG.II option can be used 
to load and execute the program in one step; however, for 
such programs this is awkwarde They are usually loaded and 
executed directly by the MOOS command interpreter by enterlnq 
their file names as the first file name specification on an 
MOOS command line. The command line 

LOAD TESTPROG 

would attempt to load the file TESTPROG.LO from logical unit 
zero above the resident operating system (the program must 
have already been assembled at, or link/loaded and assigned 
memory locations at the proper addresses so it loads above 
MOOS). After the file was loaded, control would be given to 
the debug monitor. 

The following command lines 

TESTPROG.LO 

or 

LOAD TESTPROG;G 

would load the program from TESTPROG.LO from logical unit 
zero and execute the program. It should be noted that these 
two command lines will accomplIsh the same function. Since 
the first form of the command line is shorter, especially if 
the suffix were change to ~CMu, the second form is seldomly 
used. 

Command-interpreter-Ioadable 
following requirements' 

programs must meet the 

I. The program must load above the resident 
operating system; it must be oriqined to load 
above hexadecimal location $IFFF. The prolram 
can access the direct addressing area below 
hexadecimal address $100 (BSeT) durinq execution; 
however, that area of the memory cannot be loaded 
into. Thus, variables in SSCI cannot be 
initialized during loading. In addition, if a 
program is going to use diskette 1/0, none of the 
locations below address $20 can be used by the 
program for its own variables. 

2. The program must load within the range of 
contiguous memory that was established during 
MOOS initialization. Such programs require an 

MOOS 3.0 User"s Guide Page 18-03 



LOAD COMMAND 18. 1 - Use 

additional eight bytes of memory beyond their 
highest loaded address to allow room for a stack 
when the debug monitor is entered. These eight 
bytes must be within the contiguous memory block 
known to MOOS. 

If either of these criteria is not met, the standard error 
message will be displayed indicating that the program has an 
invalid load address. 

After the program is loaded (without any options), the 
debug monitor will be entered (as seen by the input prompt of 
the resident monitor). The pseudo reqisters of the debug 
monitor will have been initialized by the LOAD command to the 
following values: 

Pseudo register Contents 

p 
X 
S 

A,B,C 

Starting execution address 
Lowest address loaded into 
Highest address loaded into (eight 
bytes greater than the highest actual 
program location) 
Indeterminate 

Normally, comlland-interpreter-Ioadable proqra1ts take 
advanta~e of the fact that the stack pOinter is initialized 
to the end of the program area by using that part of memory 
for the actual stack during execution. Such stacks must be a 
minimum of 80 (decimal) bytes in size. 

In addi tion to setting up the pseudo registers, the LOAD 
command will change the MOOS variable ENDUSS (Chapter 24) to 
contain the last address loaded into by the program. This 
allows the program to dynamically allocate additional 
contiguous memory for buffers, etc., Via the ".ALUSMfl 
function (Chapter 27). 

Caution must be exercised when loading a program and 
entering the debug monitor. If MOOS is to be reinitialized, 
the ABORT or RESTART pushbuttons must first be depressed 
before the debug command "E8001Gu or "MOOS" is executed. 

18.1.2 Non-command-interpreter-Ioadable programs 

Programs are not loadable by the MOOS command 
interpreter must be loaded into memory for either testing or 
execution via the LOAD command. Normally, such programs will 
overlay the resident operating system or will load into areas 
outside of the contiguous memory known to MDOS. Such 
programs cannot be executed directly via the MOOS command 
interpreter. 

MDOS 3.0 User"'s Guide Page 18-04 



LOAD COMMAND 18. 1 - Use 

The "VII option will inhibit the memory boundary tests 
explained in the previous section. A program loaded with the 
II V " op t i on , howe ve r , m u s t 5 t i 11 m e e t the follow i n 9 
requirements: 

I. The program must load above the RAM variables 
required by the diskette controller. That is, 
the program must be assembled to load above 
hexadeci~al location S!F. The program can access 
the direct addressing area below hexadeci~al 
location S20 during execution; however, that area 
of memory cannot be loaded into. Thus, variables 
in the direct addressinq area cannot be 
initialized during loading if their addresses are 
between SOOOO and SOOIF, inclusive. 

2. The program"s ending load address, as calculated 
from the parameters in the ~IB, must not be 
greater than SFFFF. Specifically, the starting 
load address plus the number of sectors to load 
minus one (expressed in numbers of bytes), plus 
the number of bytes to load from the last sector 
minus one, must be less than or equal to $FFFF 
(see section 24.2). 

If either of these criteria is not met, the standari error 
messages will be displayed indicating that the progra~ has an 
invalid load address. 

If the proqram is to be loaded for testing, only the ltV" 
option should be specified. Thus, the command line 

LOAD TESTPROG;V 

will cause the debug monitor to be entered after the program 
is loaded from the file TESTPROG.LO from logical unit zero. 
The pseudo registers will contain the following values: 

Pseudo register Contents 

p 
X 
5 
A,B,C 

starting execution address 
Lowest address loaded into 
EXbuq stack address 
Indeterminate 

Since the memory boundary check is bypassed with the "V" 
option, the program can be assembled to load anywhere above 
location SlF; however. no check is made to verify that memory 
exists where the program is loaded. 

(~ce programs have been tested, they can be executed via 
the LOAD command by specifying the additional option "G", as 
in the following command linea 

MOOS 3.0 User-'s Guide Page 18-05 



l.lJJ\U L;lJMMANU 18. I -- Use 

LOAD TES fP ROG, VG 

The "Gil option will bypass entering the debug monitor and 
cause control to be passed directly to the loaded program. 
The stack pointer is still configured as explained above. 

If the "Y" opt ion is used (wi th or wi thout the "GU 
option), the SWI vector will be restored to its original 
value that points back to the debug monitor. T~us, programs 
loaded with the ltv" option cannot use the resident MDOS 
functions. 

18.1.3 ~rograms in the User Mewory Map 

By using the "U" option as shown in the follOWing 
command line, the LqAD command can be used to load a program 
into the User Memory Map of an EXORciser II system that has 
the jual memory map configured: 

LOAD TESTPROG;U 

If the dual memory map is not configured, an error ~essage 
will be displayed. 

The only requirement placed on programs loading into the 
User Memory Map is that the ending load address not be 
greater than SFFFF. otherwise, any memory If)cations 
(SOOOO-FFFF) can be loaded into; however, no check is made to 
ensure that memory exists where the program is loaded. If 
the "Gil option omitted, the debug monitor will be entered 
after the program is loaded. The debug monitor will display 
the User Memory Map prompt, not the Executive Me~ory Map 
prompt. The pseudo registers will contain the following 
values: 

Pseudo register Contents 

P 
X 
S 
A,B,C 

Startinq ex ecut ion address 
Lowest address loaded into 
Highest address loaded into 
Indeterminate 

Caution must be exercised in starting execution of 
programs loaded in this manner. Since the stack pointer 
contains the address of the last loaded program location, use 
of the debug monitor commands ";P" or It; Nfl will causp, seven 
locations of the program to be destroyed. This may alter 
program data or instructions. It is recommended that the 
stack pointer first be changed via the If;S" command, that the 
"nnnn;G" com~and be used to initiate execution; or that area 
for the stack be provided at the end of the program. 

i'oiDOS 3.0 User's Guide Page 18-06 



LOAD COMMAND 18. 1 - Use 

The LOAD command-'s IIG" option can be used in addition to 
the "U" option to give control to the program immediately 
after it has been loaded: 

LOAD TESTPROG,UG 

The uM6800 EXORciser II User's Guide·1I should be consul ted for 
a complete discussion of the User Memory Map= 

If the "U" option is used. (with or without the iiGii 
option), the S~I vector will be restored to its original 
value that points back to the debug monitor. Thus, programs 
loaded with the "U" option cannot use the resident MOOS 
function s. 

18.1.4 MOOS command line initialization 

The Other Option «str» is used while test inq 
command-interpreter-loadable programs (section 18.1.1). Stich 
programs usually obtain parameters via the initial command 
line that activated the program. When testing such programs, 
however, the command line buffer wi.ll contain the command 
line that invoked the LOAD command. Thus, the «str» option 
is used to allow testing of the loaded program as if it had 
been invoked from the command line directly, simulating its 
execution-time environment. The quantity <str> will be 
placed into the MOOS command line buffer. The com:nand line 
buffer pointer, CBUFP$ (Chapter 24), will be adjusted to 
point to a null character which precedes the string (a valid 
terminator for the .PFNAM function, Chapter 27). Any 
displayable characters, except the right parenthesis ~J~, can 
be included in the string <str>. The string will be 
terminated with a carriage return after it is placed into the 
command line buffer. Thus, the use of the null strinJ II()"', 

will cause a single carriage return to be placed into the 
buffer. 

The «str» option can be used with any of the Main 
Opti ons; however, i t only makes sense when no Main Opti on is 
used (command-interpreter-loadable programs). 

18.1.5 Entering the debuq monitor 

The LOAD command can be invoked without enterin,] a file 
specification. For example, the command line 

LOAD 

will cause the debug monitor to be entered directly. The 
message 

MOOS 3.0 User's Guide Page 18-07 



LOAD COMMAN:> 

l:iKPT ERROR 
~-2131 X-2170 A-DO 8-80 C-CO S-227F 

* 
or the message 

SWI P-2131 X-2J70 A-OO 8-80 C-CO S-227F 
E* 

18. I - Use 

will be displayed depending on whether EXbug J or EXbug 2, 
respectively, is in the system. The actual content~ of the 
pseudo registers may differ. 

If the LOAD command is invoked in this way, then at no 
time should MOOS be reinitialized via the "EaOO;G" or "MOOS" 
command without first depressing either the ABORT or RESTART 
pushbuttons on the front panel of the EXORciser. If the LOAD 
command was entered as shown in the example above, MOOS can 
be reentered without reinitialization by using the debug 
monitor command -II;P". The LOAD command has confiqure1 itself 
so that the ";P" command will cause a normal return to the 
MOOS command interpreter. 

If the nv" option was used without a file name specified 
on the command line, the ";P" command will cause MOOS to 
reinitialize as if an "E800;Gu or "MOOS" command had been 
given to the debug monitor. [he "V" option has the same 
effect as using the ABORT or HESTAHT pushbuttons insofar as 
the S~I vector configuration is concerned. 

The "un option is invalid with this form of the LOAD 
command. 

The Other Options "Gil and U«st'r»11 are invalid when the 
LOAD command is invoked without a file name specification on 
the command line. 

18.2 Error M3ssages 

The L(MO command displays error messages from the 
standard error message set; however, since some of these 
messaqes have special significance to the LOAD command only, 
they are listed here. 

MOOS 3.0 User's Guide Page 18-08 



LOAD COMMAND 18.2 -- Error Messaqes 

** 07 OPTION CONFLICT 

This error message can be displayed for the 
following reasons: More than one Main Option was 
specified at the same time; the LCMU com~and was 
invoked without a file name with the "U-II option; 
or the flU" option was used on an EXORciser I 
system or on an EX(lliciser II system without the 
dual memory map configured. 

Earlier versions of MOOS supported the liP" and 
"Mil options which were used as defaults if no 
options were entered. The "Pfl option had same 
effect as the null Main Option. The "Mit option 
had the same effect as the null other Option. If 
up'" was used wi th any of the Main Options, or if 
"M" was used with the "Gil option, then this 
message would also be displayed. 

** 12 INVALIO TYPE OF OBJECT FILE 

This error message is displayed if the file 
specified on the command line was not a 
memory-image file. In odd cases, this mec;saqe is 
also be displayed if the Retrieval Information 
Block of the tile has been damaged. If this is 
the suspected cause, then the REPAIR command 
(Chapter 22) should be run to verify that the RIB 
is in error. 

** 13 INVALID LOAD ADDRESS 

If the LOAD command was invoked with the null 
Main Option, the program cannot be loaded for one 
of the following reasons: 

1. It loads over the resident ooerating 
system. That is, it loads below 
hexadecimal location $2000. 

2. It loads beyond the range of contiguous 
memory known to MOOS <established at 
initialization time). 

If the L(MD command was invoked with the Main 
Option "V", the program cannot be loaded because 
it loads below hexadecimal location $20, or the 
program-'s ending load address is greater than 
$ FFFF. 

If the LOAD command was invoked with the Main 
Option uUn , ending load address is qreater than 
SFFFF. 

MDOS 3.0 User~s Guide Page 18-09 



LOAD COMMAND 18.2 -- Error Messaqes 

In the cases where the ending lOdd address 
exceeds SFFFF, the HIB of the file has been 
invalidly created. Usually, this occurs when a 
program loads into the highest memory location 
(SFFFF) but does not start loading at an address 
that is a multiple of eight. Since the only 
information available to the LOAD commanj is the 
starting load address and the program1s size (a 
multiple of eight bytes), the endinq load address 
may exceed SFFFF (diskette controller forces the 
multiple of eight byte criterion). Then, the 
program should be re-assembled or re-link/loaded 
so that the starting load address is a multiple 
of eight. If this is not the case, the REPAIR 
command (Chapter 22) should be invoked to check 
for other files that may also be in error. 

** 30 INVALID EXECUfION ADDRESS 

The the file from which a program is to be loaded 
has an invalid RIB which must be fixed with 
~EPAIR. The starting execution address lies 
ou tside of the block of memory tha t ',t#ould be 
loaded by the program. 

18.3 Examples 

The following command line l 

LOAD TESTPHOGI I I (F ILE I, F ILE2 ;S= 1000) 

will load the program from the file TESTPROG.LO from logical 
unit one into memory. The program must be origined to load 
above the resident MOOS and below the end of contiguous 
memory. The MDOS command line buffer will be initialized 
with the string 

FILEI,FILE2;S=IOOO 

to allow the program to be tested as if it had been invoked 
from the command line directly. After the program is loaded, 
control is given to the debug monitor. 

The next example illustrates how user-written programs 
are executed from diskette directly. The program can load 
anywhere in memory except below hexadecimal location $20. 
fhe program cannot use any of the resident MDOS functionsl 

LOAD BLAKJACK;VG 

The next example illustrates how the PROM Programmer I 
program can be used for makinq PHOMs of proqrams that load 
above resident MOOS and the area required by the command 

MOOS 3.0 User's Guide Page 18-10 



LOAD COMMAND 18.3 -- Examples 

interpreter and LOAD command. It is assumed that the program 
in the file TPROM.LO loads above $2300. Since the contents 
of ~emory are not destroyed during the initialization 
procedure, MOOS can be reinitialized after loading the 
program TPROM without losing the content of those memory 
locations. Then, the LOAD command is used again to load and 
execute a version of the Prom Proqrammer I proqra~ (oriqined 
to load at location $20). 

=LOAD TPHOM;V 
*E800;G 
MOOS 03.00 
=LOAD PPLo;VG 
? 

The command "E800;GII can be validly used since the proqram in 
the file TPHOM.LO was loaded with the "V" option. If no Main 
Options are used, the ABORT or RESTART pushbuttons would have 
to be depressed first. 

MDOS 3.0 User's Guide Page 18- J 1 



CHAPTER 19 

!9. MERGE COMMAND 

The MERGE command allows one or more files to be 
concatenated into a new file. This command is useful in 
combining several small.er program files into one large file, 
or in building relocatable libraries to be used in 
conjunction wi th the M6800 Linking Loader (RLOADL, 

19.1 Use 

The MERGE command is invoked with the following command 
line. 

MERGE <name 1>[,<name 2>, •••• <name n>l,<dname>[;<options>] 

where <name i> (i=1 to n) are the names of the files to be 
merged together, <dname> is the name of the destination file, 
and <options> can be one or both of the options 1i sted below. 
A maximum of 38 (decimal> file names can be accommod3ted by 
the MERGE command. 

Option Function 

~ Use automatic overwrite if destination 
file already exists on diskette. 

<addr> Use hexadecimal <addr> as starting 
execution address of destination file. 

The <options> are described in detail in the following 
sections. 

Only <name 1> and <dname> are required. All file name 
specifications on the MERGE command line must contain at 
least a file name. For all <name i>, the default suffix "SA" 
and the default ,logical unit number zero will be used if none 
are expliCitly given. The default suffix and logical unit 
number for <dname> are taken from <name I>. 

MERGE will perform two different functions depending on 
whether <dname> is the same as <name I> or not. If <dname> 
is different from <name 1>. then all of the files specified 
by <name i> will be combined into the destination file 
<dname>. Each of the <name i> files will remain unaffected. 
If <dname> is the same as <name I>. however, then MERGE will 
append the files specified by <name 2> through <na~e n> to 
the end of the file <name 1>. In this case, the file <name 

MOOS 3.0 UserJs Guide Page i9-0i 



MEHGE COMMAND 19.1 - Use 

I> will be changed. 

The file names <name 2> through <name n> are optional. 
If they are specified, they must be of the same file format 
and have similar allocation and space compression attriwtes 
as <name I>. In addition, their names cannot be the ,same as 
that of <dname> unless <dname> is the same as <name I>. If 
file names <name 2> through <name n> are not specified, the 
MERGE command performs the same function as the COpy command. 
That is, 

MERGE <name 1>,<dname> 

is identical to the command line 

COpy <name 1>,<dname> 

assuming that <name I> is not the same as <dname>. 

Chly four types of fil~s can be processed by the MERGE 
command. The files specified by <name i> must have one of 
the following formatsl 

File format as File format 
shown by OIR 

o User-defined 
2 Memory-image 
3 Binary record 
5 ASCII record 

Memory-image files can be merged together. The file 
<dname>, however, cannot exist in such cases because MERGE 
must ensure that the destination file is allocated contiguous 
space to accommodate the memory-images of all <name 1> files. 
If <dname> already exists, MERGE cannot ensure such 
allocation. For all other file formats that <name i> can 
assume, <dname> can already exist. In such cases where 
<dname> is different from <name I> and already exists in the 
directory (and no "W" option on command line), the message 

<dname> EXISTS. OVERWRITE? 

will be displayed. The operator must respond with a "Y" if 
MERGE is to perform the merge operation. Any other response 
will terminate the MERGE command and return control to MOOS. 

19.1.1 Merging non-memory-image files 

If the files specified by <name i> are all of the 
user-defIned format, the binary record format, or the ASCII 
record format, then the destination file <dname> will be a 

MDOS 3.0 User~s Guide Page 19-02 



~EHGE COMMAND 19. 1 - Use 

direct concatenation of all of the source 
example, if five ASCII record files are 
destination file can be represented by' 

files. 
merged, 

For 
the 

File i File 2 

, 
I ••••• start of file 

Destination File 

• I • , . . 
: File 3: File 4 : File 5 

, 
end of file •••• 1 

The same type of concatenation would take place if the 
file format was either user-defined or binary record. The 
MERGE command can be used in this manner to create one large 
data or source program file from smaller files, or a library 
file of relocatable object programs. 

19.1.2 Merging memory-image files 

If all of the files specified by <name i> are 
memory-image format files, then the destination file <dname> 
will be a memory-image file also; however, it will span all 
memory locations between the lowest and the highest address 
spanned by the <name i> files. If the files to be merged 
occupy overlapping areas in memory, then the destination file 
will contain the contents of the last file to be mer]ed that 
occupies those common locations. The MERGE command produces 
a file that is the memory image of files i-n as if they were 
loaded into memory in the sequence in which they appear on 
the command line. Regions of memory spanned by <dna~e> that 
are not "loaded-II into by the <name i> files wi 11 contain 
binary zeroes. 

For example, if three memory-image files as described In 
the following table were merged together, 

<name i> Lowest Highest 
file address address 

-------- ... _----- ----------
I 600 FFF 
2 100 7FF 
3 1200 13FF 

then the resulting destination file can be represented by' 

MOOS 3.0 User-'s Guide Page 19-03 



MERGE COMMAND 

Memory 
Location 1 

o 
o 

6 
o 
o 

8 
o 
o 

F 
F 
F 

:22222222222222222222222111111 II 
:22222222222222222222222111111 II 
:222222222222222222222221 I 111 I 11 

I 

I 

I 

I 

: 
: 
1 ••• Overlayed <name I> 

I 
2 
o 
o 

19. I - Use 

I 
3 
F 
F 

33333333 : 
33333333: 
33333333 : 

I 

I 

I 

I 

: •••••• Start of <dname> End of <dname> •••• 1 

The numbers in the body of the rectangle above indicate 
the data of the respective <name i> file. Thus, "2" 
indicates the data of <name 2>, etc. Between locations $600 
and $7FF, the data of <name 2> is seen. It overlayed any 
information put into <dname> by <name 1>. Since none of the 
<name i> files spanned the addresses from $1000 to $tIFF, 
inclusive, that part of <dname> is initialized to binary 
zeroes. 

It should be noted that programs from memory-image files 
loaded into memory are always a multiple of eight bytes in 
length. This is a function of the diskette controller. 
Regardless of the actual data of a file, a multiple of eight 
bytes will always be loaded. This fact must be kept in mind 
when merging files which span memory locations that are close 
together. 

Memory-image files have associated with their load 
information a starting execution address. If no <options> 
field is specified on the MERGE command line, <dname> will 
have the starting execution address of <name J> assigned to 
itl however, as can be seen from the above example, this 
default execution address can be meaningless. An explicit 
starting execution address can be specified in the <options> 
field as a one to four digit hexadecimal number. The address 
must lie within the range of memory addresses spanned by 
<dname>. 

19.1.3 Other options 

The "'w·u option is used to allow the destination tile to 
be overwritten if its file name already exists' the 
"OVERWRITE" prompt is not displayed and MERGE performs its 
expected function. If the OW" option is not used, the MERGE 
command will prompt the operator before overwriting the 
destination file. The OW" option is not valid if <name I> is 
a memory-image file because the destination file cannot eXist 

MOOS 3.0 User"s Guide Page 19-04 



MERGE COMMAND 19.1 -- Use 

in that case. 

19.2 Me ssages 

The following messages can be displayed by the MERGE 
command. Not all messages are error messages, although error 
messages are included in the list. The standard error 
messages that can be displayed by all commands are not listed 
here. 

<name> EXISTS. OVERWRITE? 

The specified file name already exists in the 
directory. The operator is prompted before the 
file is overwritten. A IIY" response will cause 
the merge to take place. Any other response will 
cause control be to returned to MOOS. 

** 15 <name> HAS INVALID FILE TYPE 

The file indicated by <name> is not of the proper 
format (i.e., ASCII record, binary record, 
memory-image, or user-defined), or the RIB of the 
file is damaged. A memory-image file's ~IB is 
considered to be damaged if the number of sectors 
to load is zero, the number of bytes to load from 
the last sector is zero, or if the ending load 
address is larger than SFFFF. If a damaged RIB 
is suspected, the REPAIR command (Chapter 22) 
should be invoked to correct the error. 

** 16 CONFLICTING FILE TYPES 

The fil~s specified by <name i> have different 
file formats. fhey must all be the same format. 
Even if the format (ASCII record, etc.) is the 
same, the contiguous allocation attribute and the 
space compression attribute must also agree 
between all <name i>. This error can also occur 
if <dname> (not the same as <name 1» exists and 
has a different file format than <name 1>. 

** 33 TOO MANY SOURCE FILES 

More than 38 (decimal) file names were specified 
for <name i>. 

19.3 Examples 

The following example combines the first four files 
specified on the command line into a new file (the last name 
on the command line). The first four files all have the same 

MDOS 3.0 User's Guide Page 19-05 



MEHGE COMMAi~D 19.3 -- Examples 

attributes. The last name Is the name of a new file since 
the OVEHWHITE prompt was not displayed. 

MERGE PARfl,PAHT2a3,PAHT31),PART4 a2,BOOK 

The default suffix -"SAil was used for e-ach file name. The 
destination tile BOOK is created on the default logical unit 
number used for PART1, unit zero. 

The next example illustrates how a relocatable library 
file can be constructed from various smaller files. The 
library file already exists. It will have the files appended 
to its end. 

MERGE LIB.RO,DSKIO.RO.CNSIO.RO.FLOT.RO,LIB.RO 

The last example illustrates 
attached to a test program file. A 
address is specified as S)F20. 

how a patch file can be 
new starting execution 

MERGE TESTPR(X3.LO,PATCHI.LO,NEWTEST.L()J lF20 

The file name NEt4TEST.LO must not already exist. Both of the 
other two files must be memory-image in format. 

MOOS 3.0 User's Guide Page 19-06 



CHAPTER 20 

20. NAME COMMAND 

The NAME comm~nd allows the names. suffixes and/or 
attributes of a file to be changed in the directory. A 
single file name or a famIly of file names can be affected. 
The contents of a file remain unchanged. 

20.1 Use 

The NAME command is invoked with the following command 
linel 

NAME <name 1> [,<name 2>] [;<options>] 

where <name I> is the file name specification of an existing 
file, <name 2> is the new name the file is td be given, and 
<options> can be one or more of the option letters listed 
below. 

option Function 

o Set delete protection 

~ Set write protection 

X Remove protection 

S Set system attribute 

N Remove system attribute 

The <options> are discussed in detail in the following 
sections. 

20.1.1 Changing file names 

If <name 2> is specified on the command line, the NAME 
command wi 11 a ttempt to chanqe the name and/or stJ ff ix- of 
<name 1>. <name 1> must always be specified. The default 
suffi x "liSA" and the defaul t logical uni t number zero are 
supplied if none are explicitly given for <name 1>. 

If only a file name is specified for <name 2>, then only 
<name I>Js file name will be changed; its suffix will remain 
the same. For example, the following command line 

MOOS 3.0 User"'s Guide Page 20-01 



NAME COMMAND 20.1 - Use 

NAME TESTPROG,BLAKJACK 

will change the file name rESTPR(~.SAIO to the new name 
BLAKJACK.SA. The default suffix and logical unit number were 
applied to <name I> before performing the name change. 
Likewise, if only a suffix is supplied for <name 2>, then 
<name I>~s file name will not be changed; only its suffix 
will be affected. Thus, the following command line 

NAME TESTPR(~.LXtl,.EY 

will change the suffix of the file name TESTPR(~.LX on drive 
one to .. EY·". 

A logical unit number should not be specified for <name 
2> since the file <name 1> cannot be moved from one logical 
unit to another when its name is being changed, however, if a 
logical unit number is specified for <name 2>, it must agree 
with the logical unit number of <name 1>. 

When changing file names, the family indicator can be 
used in either the file name portion or in the suffix portion 
of <name I>. The family indicator cannot appear in both 
places. The family indicator can be used to change the names 
or the suffixes of an entire family of file names. For 
example, the command line 

NAME *.ED,.SA 

would change all file names on drive zero that had the suffix 
"ED" (as would be created by the EMCOPY command when it uses 
the default suffix) so that they had the new suffix "SA". 
Similarly, the command line 

NAME TESTPR(~.*12,BLAKJACK 

would change all files named TESTPROG (a.ny suffix) on drive 
two to have the new name BLAKJACK. The suffixes wouli remain 
the same, preserving the identity of source, EXbug-loadable 
object, and memory-image files as designated by their 
respective suffixes. 

Regardless of how the NAME command is invoked to change 
a file's name and/or suffix, the new name must not already 
exist in the directory. Similarly, the old name specified by 
<name I> must exist in the directory. If either one of these 
two conditions is not true, one of the standard error 
messages will be displayed. 

20.1.2 Changing file attributes 

In addi ti on to changi ng a file" s name and/or su ffix. the 
NAME command can be used to chanqe a fileJs attributes. The 

MOOS 3.0 User"s Guide Page 20-02 



NAM.E COMMAND 20.1 - Use 

way in which the attributes are to be chanqed is specified in 
the <options> field. Thus, it is possible to chanqe both a 
file's name and/or suffix and its attributes with the same 
invocation of the NAME command. 

The inherent attributes of a file that_ define its 
physical format on the diskette (contiguous allocation, space 
compression~ memory-lmage~ etce) cannot be changed. These 
attributes remain with a tile from the time it is created 
until the time it is deleted; however. the protection 
attributes and the system attribute can be changed at any 
time. 

The protection attributes of a file are changed by 
specifying the letter "X" (remove protection). UW" (set write 
protection), or UO" (set delete protection) in the <options> 
field. The system attribute is changed by specifying the 
letter IISII (set system attribute) or II Nil (remove system 
attribute). A maximum of five option letters can be 
specified at one time. The option letters are processed from 
left to right. For example, if a file with write protection 
set is to have only delete protection set, the command line 

NAME TESTPROG;XD 

could be used. If the UXJI and "011 options were reversed. the 
file would be unprotected. 

If no <name 2> is specified. then an <options> field 
must be present. In such cases, the family indicator can be 
used for both the file name and the suffix of <name I>. 
Thus, a diskette can have all of l~S files protected or 
unprotected with a single invocation of the NAME command. 

20.2 Error Messages 

[he following error messages can be displayed by the 
NAME command. The standard error messages that can be 
displayed by all commands are not listed here. 

** 25 INVALID FILE NAME 

This error message is displayed for the following 
reasons' both <name I> and <name 2> were 
specified on the command line and the family 
indicator was present in both the file name and 
the suffix portion of <name t>; both <name 1> and 
<name 2> were entered with the family indicator; 
or a device name was used for <name 1> or <name 
2>. 

MOOS 3.0 User"s Guide Page 20-03 



NAME COMMAND 20.3 -- Examples 

20.3 Examples 

The following command line 

NAME *.*II;X 

will remove both delete and write protection from every file 
named in the directory of drive one. 

The next command line shows how files~ names and their 
attributes can be changed at the same time. 

NAM E *. ED , • LX, X 

This example will take all tile names with the suffix "ED", 
chanqe it to II LX" , and remove any protection that may be 
present. 

The last example illustrates how a user-written program 
can be incorporated as a system command file. 

NAME TESTPROG. LC)l3 ,SURFACE. CM, SO 

This command line changes both file name and suffix. In 
addition, the system attribute and delete protection are set. 
Thus, the program file named SURFACE.eM will now be treated 
as a system file by the DIR, DEL, and OOSGENprograms. 

MOOS 3.0 User~s Guide Page 20-04 



CHAPTER 21 

21 • PATCH COMMAND 

The PATCH command allows changes to be m3de to 
memory-image files. An object file can be J1fixed'u due to 
minor bugs or assembly errors. without having to re-eal~ and 
re-assemble its corresponding source file. TheUfixes" can 
be entered using M6800 assembly language mnemonics or the 
equivalent hexadecimal operation codes. 

21 • 1 Use 

The PATCH command is invoked with the following command 
line: 

PATCH <name> 

where <name> is the file specification of a memory-image 
file. Th e de f a u Its u f f i Xl' L 0" and the de fa u I t 1 og i cal un i t 
number zero will be supplied if none are explicitly given for 
<name>. (~e of the standard error messages will be displayed 
if the file <name> does not exist or if it is of the wrong 
file format. 

The PATCH command is an interactive program that has its 
own command structure. Once PATCH is running, it wi 11 
display a greater-than sign (» as an input prompt to 
indicate that a command must be entered by the operator. 
Commands eXist to assign an offset used as a base address for 
accessing the file, to-calculate the relative addresses for 
branches, to dis-assemble opcodes, to search the file for 
eight- or sixteen-bit patterns, to display and change 
locations in the file, and to change the starting execution 
address of the file. 

If the file <name> exists and is of the proper format, 
the PATCH command will display the followinga 

nnnn cc 
> 

The unnnn u is the absolute hexadecimal address of the lowest 
location of the memory-image file and is used as the initial 
offset (section 21.2.2>. The -IICC" is the hexadecimal content 
of that location. The second line is the PATCH input prompt. 
The follOwing sections describe the various commands that 
comprise the PATCH command set. 

"DOS 3.0 User-'s Guide Page 21-01 



PATCH COMMAND 21.2 -- PATCH Command Set 

21.2 PATCH Command Set 

Each command to PATCH must be entered by the operator 
after the input prompt (» is displayed on the system 
console. Like all MOOS input, all commands must be 
terminated by a carriage return. In the following command 
descriptions these symbols are used: 

Symbol Meaning 

m,n Both "m-ll and Un" are one to four digit 
hexadecimal nu~bers. 

c "c" is a one or two diqi t hexadecimal 
number. 

a 

<str> 

lIa ll is an ASCII character. 

It<str>U is a string of elements separated 
by commas. Each element can be a "c" or 
a group of "ails enclosed in double 
quot es. 

i •• ill is a valid M6800 a ssembl y language 
mnemonic. 

• 

* 

<cr> 

21.2.1 Quit -- Q 

The period symbol represents the current 
position within the file <name>. It 
takes on the value of the current 
absolute address minus the current 
offset. 

The asterisk represents the assembler 
location counter when used in the operand 
field of M6800 instructions. 

"<cr>n is a carriage return. 

The Q command is used to terminate PATCH and return 
control to MOOS. The format of the Q command is sirnply the 
letter lIQM. Any changes to the file which are still in 
memory will be written into the file before PATCH is 
terminat ed. 

21.2.2 Set/display offset -- () 

The 0 command is used to display and/or chanqe the value 
of the current offset. The offset is used as a base address 

MOOS 3.0 User"'s Guide Page 21-02 



PATCH COMMAND 21.2 -- PATCH Command Set 

to which the location parameters of th~ other PATCH commands 
are added to arrive at an absolute address within the file. 
The format of the 0 command is 

[m[.n]]O 

If the parameters um~ and "n U are not specified. the 0 
command will display the current value of the offset. For 
example. 

>0 
OFFSET=2000 

If either of the parameters "mfl or Un" are specified, 
the current value of the offset will be changed to either the 
single value "mfl • if only "rn" is specified, or to the value 
·'m plus nil, if both parameters are present. The following 
sequence of commands illustrates both forms of the 0 command' 

>A01FO 
>0 
OFFSET=AOIF 
~ 1234, 56780 
>0 
OFFSET=68AC 

21.2.3 Display single location 

The command to display the contents of a single location 
wi thin the file has the following format 

[m(.n]]<cr> 

If both "mfl and· Un" are omitted, only a single carriage 
return is entered. fhis form of the command will cause the 
next sequential location of the file to be displayed. Since 
pATCH initializes the current location to the first location 
of the file when first invoked, the carriage return by itself 
can be used to step through the file showing a byte at a 
time. as in the following example. 

MOOS 3.0 UserJs Guide 

=PATCH TESTPROG 
2000 30 
> 
2001 32 
> 
2002 30 
> 
2003 30 
> 
2004 OE 
>0 
= 

Page 21-03 



PATCH COMMAND 21.2 -- PATCH Command Set 

If either "mU or "n" are entered prior to the carriage 
return, the effect of the command will be to display the 
contents of location "m plus the current offset" or the 
contents of location Mm plus nfl. For example, 

=PATCH TESTPROG 
2000 30 
>0 
OFFSET=2000 
>10 
2010 20 
>J 00 
2100 00 
>200,2000 
2200 A6 
>1000, 1000 
2000 30 
>Q 

= 
21.2.4 Display lowest address -- L 
---------_ ... _----_ ... _-----.......... -_.--... _----

The L command is used to change the current location to 
the lowest address of the file. The contents of the lowest 
address will also be displayed. The format of the L command 
is simply the letter "Lfl. 

Initially, when the PATCH command is started, the lowest 
address is shown automatically. The L command can be used to 
return to this point of the file at any time. Locations at 
addresses numerically less than "Lit cannot he accessed since 
they do not correspond to any diskette space allocated to the 
file. 

21.2.5 Display highest address -- H 

The H command is used to chanqe the current location to 
the hi'~hest address of the file. The contents of the highest 
address will also be displayed. The format of the H command 
is simply the letter UHfl. Locations at addresses numerically 
greater than "H" cannot be accessed since they do not 
correspond to any diskette space allocated to the file. 

21.2.6 Calculate relative address -- R 

The R command is used to calculate the relative address 
between any two locations in the file. The format of the R 
command is 

m[.nlH 

MOOS 3.0 User"s Guide Page 21-04 



t>ATCH COMMAND 21.2 -- PATCH Command Set 

The R command will calculate the relative address between the 
current location in the file and the address tim plus the 
current offset Jl or the address .lIm plus n,lI. The following 
example illustrates the use of the R command. It is assumed 
that the locations used in the example are the second bytes 
of branch instructions. 

=PATCH LOGeCM 
8200 00 
>BA 
82BA 05 
>COH 
HEL ADDR=0005 
> 119 
8319 F9 
> 113R 
REL ADDR=FFF9 
>Q 

= 
The first relative address is in the forward direction. The 
second relative address is in the backward direction. The 
relative address is shown as a sixteen-bit number, even 
thou~h only eight bits are required for the operand of the 
M6800 branch instructions. 

21 .2. 7 Dis-assemble operation code-- I 

The I command is used to convert a one-byte operation 
code into ~ ts egui val ent_ M6800 assembly language mnemoni c. 
fhe format or the 1 command is 

cI 

where "c" is the one-byte hexadecimal operation code. The 
contents of the file are not affected by the I command. The 
format of the assembly language mnemonic that is displayed is 
the following' 

MMM [[A or B) [#]{HH or HHHH or RR} (,X]] 

The symbols take on the followinq meanings' 

MDOS 3.0 User's Guide Page 21-05 



PATCH COMMAND 21.2 -- PATCrl Command Set 

Symbol Meaning 

MMM The three-character mnemonic or base 
mnemonic. 

A or B The accumulator specification for 
accumulator instruction types. 

# The immediate addressi.ng 
qualifier (cannot appear 
wit h " , X U or .11 RR U) • 

mode operand 
concurrent 1 y 

HH A one-byte hexadecimal operand. 

HHHH A two-byte hexadecimal operand. 

RR A one-byte hexadecimal operand indicating 
relative addressing mode (cannot appear 
concurrently with ",n or U,X"). 

,X The indexed address1.ng 
qualifier (cannot appear 
wi th ,n/lu, "HHHHu, or .If RRU) • 

mode operand 
concurrently 

The following example illustrates the different types of 
displays that can be generated by the I command. 

=PATCH TESTPROG 
2000 30 
>881 
ADDA #HH 
>981 
ADDA HH 
>ABl 
ADDA HH,X 
>BBI 
ADDA HHHH 
>531 
COMB 
>801 
BSH HR 
>801 
JSR HHHH 
>291 
BVS RR 
>0 
= 

21.2.8 Set search mask and pattern -- M 

The M command is used to initialize a sixteen-bit search 
pattern and a sixteen-bit search mask for subsequent byte or 

MOOS 3.0 User"s Guide Page 21-06 



PATCH COMMAND 21.2 -- PATCH Command Set 

word searches (sections 21.2.9-21.2.12). The format of the M 
command is 

[ml[ ,n1M 

where II mil is the search pattern and Un.ll is the search mask. 
Initially, both the search pattern and the search mask are 
set to zero. The M command can be used to set both pattern 
and mask or to set either independently of the other. For 
example, 

E5E5M 

will set only the search pattern to the hexadecimal number 
$E5E5. The search mask is unaffected; however. the command 

,FFFFM 

will set only the search mask to the hexadecimal number 
$FFFF. The search pattern is unaffected. The command 

E5E5, FFFFM 

will set both the search pattern and the search mask. 

21.2.9 Search for byte -- S 

The S command is used to search the file for a specific 
ei~ht-bit pattern. The format of the S command is 

........ c III, 1.>oJ 

where .IIm J• and un'u represent the starting and ending addresses 
of the search. The addresses are both modified by the 
current value of the offset. The pattern to be searched for 
must have been specified via the M command (section 21.2.8). 
Only the least significant bytes of the search pattern and 
the search mask are used by the S command. The S command 
will display all addresses that contain patterns which meet 
the search criteria. The locations of the file included in 
the search is from address "m plus offsetu to "n plus 
offset~, inclusive. A match is indicated if a byte In the 
file meets the following conditiona 

contents of address & search mask = search pattern 

where the U&U indicates the logical Uand" function. The 
following example illustrates the use of the S commanda 

MDOS 3.0 User's Guide Page 21-07 



PATCH COMMAND 

=PATCH TESTPHOG 
8200 30 
>OOEE, FFFFM 
>0, ID7S 
82A7 EE 
82AD EE 
82AF EE 
>Q 
= 

21.2.10 Search for word W 

21.2 -- PATCrl Command Set 

The ~ command is similar to the S com~and; however, 
instead of searching for only a single byte, a double byte, 
or word, is searched for. The format of the W command is 

m. n'~ 

The address range searched with the Y4 command is from "m plus 
off set .. to Un pI us one plu s offset .. , incl u si ve. Thus, un-' 
cannot be the highest address of the file, since Un+l" would 
be an illegal address. Otherwise, the W command functions 
identically to the S command. 

21.2.11 Search for non-matching byte -- N 

The N command is similar in format and function to the 5 
command, however, instead of displaying all bytes that meet 
the search criteria, all bytes that do not meet the search 
criteria are shown. This makes it easy to search through a 
buffer of all zeroes, for example, to find any non-zero 
locations. 

21.2.12 Search for non-matching word -- X 

The X command is similar in format and function to the ~ 
command, however, instead of displaying all double bytes that 
meet the search criteria, all double bytes that do not meet 
the search criteria are shown. 

2.1.2.13 Display range of locations -- P 

The P command prints the 
locations on the system console. 
is 

m,nP 

contents of a range of 
The format of the P command 

where locations "m plus offset" through lin plus offset", 

MDOS 3.0 User"'s Guide Page 21-08 



PATCH COMMAND 21.2 -- PATCH Command Set 

inclusive, are the locations to be shown. The format of the 
display is illustrated in the following example. 

ATCH TESTPROG 
00 30 
5,DOP 
90 0090 00- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••••••••••• 
AO OOAD 00 00 00 00 00 3F 32 EE 04 FF 80 04 30 EE 00 EE ••••• 12 ••••• 0 ••• 
BO OOBO 06 FF 80 06 CE 80 00 3F 05 24 05 

,...,... 
3F 20 3F iA ••••••• 1.$._1 1. :>t' 

CO OOCO 3F 33 3F 05 24 03 7E 03 D3 7E 0.4 32 30 31 30 30 131. $ •••••• 20i 00 
:DO 0000 00 00 00 00 43 4F 4E 53 4F 4C 45 20 4C 4F 47 20 •••• CONSOLE LOG 

The contents of the locations are shown in both 
hexadecimal and the equivalent displayable ASCII. If a 
location contains a non-displayable character. it is s~own as 
a period (~)~ The first four-digit number contains the 
absolute address While the second four-digit number contains 
the relative address of the locations (relative to the 
beginning of the file). Even though the starting location 
requested was $95, the displayed locations start at location 
$90. A full sixteen locations are displayed for each line, 
regardless of the requested starting and ending points of the 
range. 

21.2.14 Set/display execution address -- G 

The G command is used to display and/or chanqe the value 
of the fileJs starting execution address. The format of the 
G command is 

[m[,nllG 

If the parameters 11m II and Un" are not sp.ecifieci, the G 
command will display the current value of the execution 
address. The following example illustrates this use of the G 
command: 

=PATCH TESTPROG 
8200 30 
>G 
EXEC ADH=8259 
,>Q 

= 
If either of the parameters "m Jl or Un U are specified, 

the current value of the execution address will be changed to 
Urn plus offset" or 11m plus nne The execution address must be 
within the range of addresses spanned by the file (between 
addresses shown with Land H commands). The following 
example shows how the G command is used to change the 
starting execution address: 

MDIlS 3.0 UserJs Guide Page 21-09 



PATCH COMMAND 

=PATCH TESTPROG 
8200 30 
>G 
EXEC ADR=8259 
>2G 
>G 
EXEC ADR=8202 
>0 
= 

21.2.15 EXamine/display/change locations 

21.2 -- PATCH Command Set 

Two commands exist that will open a specified location 
within the file and allow the contents of that and subsequent 
locations to be examined or changed. The format of these 
commands is 

m[,n]{/ or \}[<str>] 

where the slash (I) and backslash (') characters are used to 
distinquish between the two commands. Both commands will 
open the specified location (Um plus offsetn or "m plus nUl. 
The slash command will set the "increment" mode. The 
backslash command will set the "decrement" mode. The 
parameter <str> contains any changes that are to be applied 
to the specified locations. If the "increment" mode is set 
(slash command), any changes specified in <str> will be 
applied to the opened location and each subsequent higher 
location, one increment being applied for each element of the 
string. If the udecrement" mode is set (backslash command>, 
any changes specified in <str> will be applied to the opened 
location and each precedinq lower location, one decrement 
being applied for each element of the string. If any of the 
elements of the string are null, an increment (or decrement) 
will still be applied for those elements. Thus, if the 
entire string is null (one null element), one increment (or 
decrement) will be applied. The "increment U or ·'decrement'" 
modes will remain in effect until changed by another slash, 
backslash, or parenthesis com~and (section 21.2.16). 

The string <str> can contain either hexadecimal elements 
or ASCII string elements, in any combination. For example, 
the command 

1500,O/AA,I,2E,UAABBCC" 

will change the following locations to the indicated values. 

MOOS 3.0 User's GUide Page 2 J -I 0 



)ATCH COMMAND 

Absolute 
Address 

1500 
1501 
1502 
1503 
i 504 
1505 
1506 
1507 
1508 

New value 

SAA 
SOl 
$2E 
$41 
$41 
$42 
S42 
$43 
$43 

21.2 -- PATCH Command Set 

If the backslash command had been used instead, locations 
SI4FF, SI4FE, etc., would have received the values Sal, $2E, 
etc. 

An element of the string can be null (indicated by 
successive commas). Null elements will not affect the 
location that corresponds to that oart of the string. 

If an error is encountered in the string of elements 
<str>, the entire command will be ignored and no changes will 
be applied. An error message is printed to indicate that the 
command was not parameterized properly. 

21.2.16 Instruction mnemonic decode mode 

The instruction mnemonic decode mode is similar to the 
slash command explained above. Instead of using a slash, 
however, the open-parenthesi s character.( () is us ed. This 
command allows changes to be applied to a series of locations 
in the file using·M6800 assembly language mnemonics instead 
of the hexadecimal operation codes. The format of the 
command is 

m( , n] ( ( i ] [ ) ] 

where"m.ll and Un" specify the starting location (either "m 
plus offset·1I or Urn plus nil), the open-parenthesis character 
signifies the start of the instruction mnemonic decode mode, 
Jli II can be any valid M6800 assembly languaqe mnemonic, and 
the close-parenthesis character indicates the eni of the 
instruction decode mode. Since the close-parenthesis is 
optional, the user can remain in the instruction ~nemonic 
decode mode to enter several lin.es of instructions until a 
close-parenthesis character is entered. 

Once the open-parenthesis command has been issued, all 
other PATCH commands are invalid until the close-parenthesis 
command is issued, or until an error is encountered. 

MOOS 3.0 User's Guide Page 21-11 



PATCH COMMAND 21.2 -- PATCH Command Set 

The format of the commands followinq the 
open-parenthesis command is shown below. 

<blanks> ) <any> <cr> 

or 

<blanks> <opcode> [<blanks> <operand>] «any> ) <any>] <cr> 

The syntactic elements are described as follows' 

Element 

<blanks> 

<any> 

<cr> 

<opcode> 

<operand> 

Meaning 

Any number of spaces, includinq zero. 

Any character besides a carriage 
return or a close-parenthesis. 

Carriage return. 

Any valid assembly language mnemonic 
as specified in the MM6800 
~rogramming Reference Manual fl ; no 
space is allowed between the ,.nemonic 
and the accumulator designator (e.g., 
LDAA is valid, LOA A is not). 

(~ly valid if the instruction 
requires an operand. If no operand 
is required, the <operand> is treated 
as <any>. 

The <operand> field. when required, has the following 
format: 

[#]<arg>[{+ or -}<arg>] 

or 

«arg>[{+ or -}<arg>l,lX 

where the "A" indicates immediate addressing mode and ",X" 
indi cate 5 the indexed addre s5i ng mOde. The· .11+-,11 or .II_,n allows 
simple expressions to be used in the operand field. Each of 
the arguments <arg> can be one of the following kinds of 
elements' 

MDOS 3.0 User"s Guide Page 21-12 



PATCH COMMAND 

Element 

SHHHH 

DD ••• D 

%88 ••• B 

* 

o 

21.2 -- PATCH Command Set 

Meaning 

A one-character ASCII literal. 

A one to four digit 
number. 

h exadeci mal 

A decimal number, any number of 
digits in length; only the least 
significant 8 or 16 bits of the 
converted number will be used. 

A binary number. any number of digits 
in length' only the least significant 
8 or 16 bits of the converted number 
will be used. 

The value of the current 'location 
counter (Identical to the "*" used by 
M6800 assembler). 

The value of the current offset. 

This format allows the operator to enter assembly 
language mnemonics with comments after the operand field tor 
documenting the patch. The instruction mnemonic decode mode 
automatically puts the PATCH command into the -"increment" 
mode. 

As long as a close-parenthesis character is not 
encountered, PATCH will remain in the instruction mnemonic 
decode mode. A different input prompt Is displayed to 
distinguish the two different PATCH input modes, the normal 
input prompt (» is replaced the by the instruction mnemonic 
decode mode prompt (=». 

The following example illustrates how the instruction 
mnemonic decode mode is used to insert a patch into a filel 

MOOS 3.0 User's Guide Page 21-13 



PATCH COMMAND 21.2 -- PATCrl Command Set 

Line Console Display 

OJ =PATCH TESTPROG 
02 8200 30 
03 >0 
04 OFFSET=8200 
05 >F7 
06 82F7 CE 
01 >.(JMP $8317 GO TO THE PATCH AREA OF PROGRAM) 
08 >8317,0(LDX #O+$A THE LOX OVERLAYED BY THE JMP 
09=>STX O+$D2 
10 =>Sr4I THIS IS A SYSTEM FUNCTION CALL) 
II ./1 D 
12 .(BEQ *+5 IF NO ERRORS, CONTINUE 
13 =>JMP 0+$113 GO PROCESS ERROR 
14 =>LDX X PICK ut-> THE pOINTER 
15 =>LDAA O,X GET A CHARACTER 
16 =>CMPA #~1 IS IT UNIT I? 
I 7 => BNE *-10 GO PROCESS ERROR 
18 =>JMi-> $82FD RETURN TO MAIN CODE 
19 =» 
20 >0 
21 = 

In the above example, line 03 was used to display the 
value of the current offset. Line 05 was used to display the 
contents of location $F7, relative to the beginninq of the 
file. Line 07 was used to enter the instruction mnemonic 
decode mode to modify the current location (offset + $F7). 
Three locations were changed as a result of entering line 07. 
Line 08 was used to reenter the instruction mnemonic decode 
mode; however, this time absolute location $8317 was the 
address wher,e a patch was to be placed. Line ,11 was used to 
insert a hexadecimal constant into the location following the 
previously entered SWI instruction. Line 12 was used to 
return to the instruction mnemonic decode mode at the 
location following the hexadecimal constant inserted using 
line II. Line 19 was used to finally exit the instruction 
mnemonic decode mode. Line 20 was used to exit the PATCH 
command and return control to MOOS'- Comments were used 
throughout the instruction mnemonic decode mode to document 
what the patch does. 

21.3 Special Considerations 

The period symbol (.) can be used with any PATCH command 
that requires an address as an argument. The value 
associated with the period symbol is the absolute address of 
the current location minus the value of the current offset. 
Since the offset is automatically added to most of the 
command parameters, the resulting value for the period symbol 

MOOS 3.0 User"'s Guide Page 21-14 



PATCH COMMAND 21.3 -- Special Considerations 

will be the absolute address of the current location. 

For example, the following uses of the period c~n save 
time and eliminate remembering the address of the current 
location: 

Command Function 

.,nO Sets the offset to the current location 
if Un" is the value of the offset before 
the command is entered. 

.<cr> Displays the contents and the address of 
the current location • 

• /<str> Opens the current location and applies 
the changes from the string <str>. It is 
not necessary for the operator to count 
the number of elements in <str> if the 
next command is to apply more changes. 
Long strings are usually changed by 
initially using the Mm,n/" form of the 
chanqe command. Then, subsequ~nt changes 
use ~./n. The same holds true for the 
backslash and open-parenthesis commands 
used with the period symbol • 

• ,nS Search from the current location to the 
address "n plus offset". 

.... D 
lit' • & Display locations 11m plus offsetll to the 

current location. 

21.4 Error Messages 

The following messages can be displayed by the PATCH 
command. The standard error messages that can be displayed 
by all commands are not listed here. 

~HAT1 

SYNTAX ERROR 

The command issued in response to the PATCH input 
prompt (» was not recognized. A new input 
prompt is displayed. 

The command issued in response to the PATCH input 
prompt (» was recog~ized; however, it was 
parameterized illegally. A new input prompt is 
displayed. The command has not been processed. 

MOOS 3.0 User's Guide Page 21-15 



PATCH COMMAND 21.4 -- Error Messages 

I LLEG AL ADDR ESS 

An address was specified which referenced a 
location that was outside of the range of 
addresses spanned by the file. Only addresses 
between the lowest (L command) and the highest 
address (H command) can be referenced by PATCH. 
If new program area is to be allocated for 
additional patch space, a merge process, 
reassembly process, or link/load process must be 
used to creats the new space. 

ILLEGAL OP CODE 

The instruction mnemonic decoder did not 
recognize a valid M6800 assembly language 
mnemonic. The instruction mnemonic decode mode 
is terminated. The current instruction was not 
used to change the file. This error can also 
occur if an invalid M6800 operation code is given 
as the operand of the III·" command. 

I LLEGAL OPERAND 

An illegal operand was used in the operand field 
of the instruction. The instruction mnemonic 
decode mode is terminated. The current 
instruction was not used to change the file. 

I.NITIALIZATION ERROR 

This error indicates some sort of internal system 
~alfunction. Errors of this type indicate a 
hardware failure or damaged program files on the 
diskette. 

MDOS 3.0 User's Guide Page 21-16 



CHAPTEH 22 

REPAIR COMMAND 

The REpAIR command allows the user to check and repair a 
malfunctioning or a non-functioning MDOS diskette. Errors 
in the system tables can be found, identified, and corrected 
with this command. Since MDOS performance is directly 
related to the correctness of these system tables, the REPAIR 
command is a useful diagnostic utility. The REPAIR command 
works with either single-sided .or double-sided MDOS 
di skette s. 

22. 1 Use 

The REPAIR command is invoked with the following command 
line: 

REPAIR (:<unit>] 

where <unit> is the logical unit number on which a diskette 
that is to be "repaired" resides. If no <unit> is given, 
logical unit number zero will be used as a default. 

The REPAIR command runs throuqh five different phases: 

1. ID, LCAT, CAT, and Bootblock sector check phase, 

2. Directory sector check phase, 

3. Retrieval Information Block check phase, 

4. CAT regeneration phase. and 

5. CAT replacement phase. 

Each of the different phases is described in detail in the 
following sections. 

REpAIR progresses from each phase to the next carrying 
alonq information that was obtained during a prior phase. If 
errors are discovered, the operator will be notified via the 
system console. If REPAIR can fix the error, the operator 
will also be asked if the error should be correctej on the 
diskette. Thus, the operator has complete control over any 
chan1es that are made to the diskette. The operator can 
suppress any action that may be suggested by the REPAIR 
command as the means for correcting an error. 

The amount of knowledge about the MDOS tables that is 

MOOS 3.0 User's Guide Page 22-01 



REPAIR COMMAND 22. I -- Use 

required by the operator depends upon two things& the amount 
of actual damage on the diskette and the amount of 
information the operator wants to recover from the damaged 
tables. 

If the operator merely permits REPAIR to perform every 
suggested action to correct every error, then the resulting 
diskette is guaranteed to have error free system tables. In 
this case, the amount of systems knowledge required is 
insignificant. 

On the other hand, if the operator takes notes during 
the REPAIR command on what tables are damaged, and if the 
operator does not choose to delete those files that are 
lnvalid, then a great deal about the the MDOS file structure 
and system tables must be known to reconstruct th~ tables. 
Chapter 24 dsscribes the system structure in detail. It is 
required reading for a complete understanding of all the 
functions and the errors that the REPAIR command can perform 
and detect. 

The REPAIR command must be invoked from a working MDOS 
diskette. Thus, if a given diskette cannot be used for 
initialization, it must be placed into drives one, two, or 
three, and another working diskette (of the same MDOS version 
as the dammaged diskette) placed into drive zero before the 
REPAIR command can be used. 

REPAIR does not attempt to find errors within data 
files. It only attempts to find errors within the system 
tables. 

It is suggested that REPAIR be used for the following 
reasons: 

I. As a regular diskette checking utility. It never 
hurts to run REPAIR as a preventative maintenance 
tool to catch errors as they may be developing, 
before serious malfunctions are noticed. If 
nothing is wrong with a diskette, no operator 
interaction is required. REPAIR will si~ply 
return to MOOS after having displayed some 
monitoring information. 

2. If strange things start happening or if system 
error messages are displayed without apparent 
reason. If files or records within files 
disappear or get scrambled, the system tables may 
haVe been damaged. 

3. If MOOS will not run at all. 

MDoS 3.0 User"s Guide Page 22-02 



HEPAIR COMMAND 22. I -- Use 

4. After the ABORT or RESTART pushbuttons were 
depressed to stop the system while diskette 
transfers were in progress. 

5. After a power failure occurred while diskette 
transfers were in progress. Power failures 
include those caused by inadVertently switching 
off the EXORciser or EXOHdisk II as well as those 
that affect an entire installation. 

6. After a diskette has had its system tables 
repaired manually with the DUMP command. fhis 
ensures that the tables were corrected properly. 

22.2 10, LCAT, CAT, Bootblack Sector Check 

Phase 1 of REPAIR begins by checking the 10 sector for 
readability. If an error occurs during the read attempt, 
REPAIR will display the fOllowing. 

**PROM I/O ERROR-STATUS=31 AT 2C4C ON DRIVE )-PSN 0000 
10 SECTOR READ ERROR 
¥~RIrE TO DISK TO ATTEMPT TO CLEAR ERROR? 

The actual error status, address, and drive number of the 
first line will vary depending on the type of read error that 
was detected, the version of REPAIR being used, and the drive 
in which the diskette resides. The same is true for all of 
the pROM I/O error messages given in the examples of this 
chapter. A r esponseofe i ther .. NlI or II yu must be made by the 
operator. The "N·'i response wi 11 cause the me ssage 

10 SECTOR CANNOT BE CHECKED 

to be displayed. Since the other system tables could still 
be accessed, REPAIR will continue. If a uyu response is 
given, the 10 sector will be re-written in an attempt to 
clear the error. If an error develops during the write, the 
10 sector is considered unfixablel however, in this case, the 
other syste~ tables could still be accessed, so REPAIR will 
continue. 

If the ID sector can be read initially without error, or 
if the IU sector can be rewritten without error, the contents 
of the 10 sector will be displayed as follows. 

DISK ID. 
VERS IONa 
REVISI.ON' 
DATE: 
USERs 

MDOS0300 
03 
00 
072578 
SYS DEVELOiJMENT DISK 

Each field within the 10 sector is checked by the REPAIR 

MOOS 3.0 User-'s Guide Page 22-03 



REaJ AI R COMMAND 22.2 -- 10, LeAT, CAT, Bootblack Sector Check 

command. The following table shows what tests are ~ade for 
the respective fields: 

Field 

DISK 10 
VERSION 
REVISION 
DATE 
USER 
Remainder 

Test Performed 

MOOS file name format 
Same as MDOS.SY 
Same as MDOS.SY 
ASCII numeric 
Displayable ASCII 
Binary zero, excluding 
address area 

MOOS RIB 

If the fields in the ID sector fail to meet the above 
criteria, the fleld~s name will be displayed as a prompt to 
the operator to enter a correct value. If only a carriage 
return is entered in response to such a prompt, the ID sector 
field will not be changed. Otherwise, the entered field will 
be checked for correctness and then stored into the ID 
sector. 

The version and revision numbers in the 10 sector are 
compared against those of the resident operating system file 
on diskette. If the numbers are not identical, REPAIR will 
use the version/revision numbers from the MOOS file since the 
diskette cannot be initialized if they are not the sa~e. The 
message: 

VERSION AND REVISION NUMBERS IN ID SECTOR AND RESIDENT MDOS 
FILE ARE DIFFERENT 

THE NUMBERS I N THE 10 SECTOR ARE CHANGED TO: vv. rr 

to indicate the correction. The numbers ·"vv" and "rr·1t are 
the version and revision numbers of the resident operating 
system file, respectively. The operator has no control over 
what the version/revision numbers are in the 10 sector. 
Thus, those two fields cannot be supplied by the operator. 
In the event that a diskette controller error occurs when 
trying to read the correct version/revision numbers from the 
MDOS file, the message 

**PROM I/O ERROR-STATUS=31 AT 2E8A ON DRIVE I-PSN 0019 
RESIDENT MOOS CANNOT BE LOADED -- SECTOR READ ERHOR 

will be displayed. The diskette being repaired cannot be 
used in drive zero since the operating system cannot be read; 
however, REPAIR will continue to check the remaininq system 
tables. 

If the unused area of the ID sector has been damaged, 
the message 

ID UNUSED AREA NOr ZERO. ZERO IT? 

MOOS 3.0 UserJs Guide Page 22-04 



REPAIR COMMAND 22.2 -- lOt LCAT, CAT, Bootblock Sector Check 

The operator must respond with either a .yn or an UN". The 
"Y" response will cause the 10 sectorJs unused area to be 
filled with binary zeroes, as it is supposed to be. The "Nfl 
response will cause REPAIR to leave the 10 sector alone. 

After the ID sector has been checked, REPAIR will 
examine the Lockout Cluster Allocation Table '(LCAT) for 
readability. If the LCAT sector cannot be read, REPAIR will 
display the followin~ messages a 

**PROM 1/0 ERROR-STATUS=31 AT 2E8A ON DRIVE I-PSN 0002 
LOCKOUT C.A.T. READ ERROR 
tiRITE TO DISK TO ATTEMPT TO CLEAR ERROR? 

Ths operator must respond with either a "ya or UN" to the 
last question. If an UNat is entered, REPAIR cannot continue 
to check other system tables since subsequent checking is 
based on the validity of the LCAT. Thus, the message 

DISK IS NoT FIXABLE 

is displayed and control returned to MDOS. If a nyn response 
is given, HEPAIR will attempt to rewrite the LCAT sector. If 
an error develops during the write, the sector will be 
considered unfixable (as will the diskette). The ~essage 
shown above will be displayed and MDOS given control. 

If the LCAT sector is readable, or if rewriting the 
sector clears the error, REPAIR will proceed to check the 
contents of the LCAT. The LCAT must show that the di5kette~s 
system tables in the first cylinder are locked out 
<unavailable for allocation by a file). a.nd ~ll regions of 
the diskette that correspond to non-physical locations 
(beyond the highest physical sector number) must be locked 
out. 

If either of these two criteria is not satisfied, the 
LCAT will be considered destroyed. REPAIR will display the 
message 

LOCKOUT C.A.T. IN ERROR - RECONSTRUCT? 

and await a response from the operator. An "Nil response will 
make the LCAf unfixable. REPAIR will display a message to 
that effect and return to,MDOS. A ny .. response will cause a 
new LeAT to be rebuilt by REPAIR. In order to build a new 
LCAT, the entire diskette is read in an attempt to find any 
deleted data marks. The deleted data marks signify bad 
clusters found by the DOSGEN surface test (Chapter 10). All 
clusters containing deleted data marks will be locked out 
again automatically by this process. In addition, the 
operator can lock out an additional area of the diskette (for 
the same reasons as specified in Chapter 10). After the 
disketteJs surface has been completely read, REPAIR will 

MOOS 3.0 User-'s Guide Page 22-05 



HE!-J AI H COMMAND 22.2 -- 10, LCAT, CAT, Bootblock Sector Check 

display the message 

WHICH SECTOR RANGE IS TO BE LOCKED OUT? 

The operator can respond with a carriage return to indicate 
that no additional sectors are tO'be locked out. otherwise, 
the operator can respond with a range of sector numbers 
entered in the format 

,mmm-nnn 

where ,lImmmJI and ,unnn" are hexadecimal numbers of sectors that 
start on a cluster boundary (sector number is evenly 
divisible by four). If an illegal sector number is entered, 
or if the starting number is greater than the endinq number, 
the above message will be redisplayed until the operator 
enters a valid range or a singl.e carriage return. Only one 
contiguous range of sectors can be locked out. The same 
cautions described i~ Chapter 10 regarding user-locked out 
sectors apply here; however, in this case, since file~ 
already reside on the disk with allocated space, the locked 
out sectors must not conflict with any files. If a diskette 
did not have user-locked out sectors before, then sectors 
must not be locked out during the REPAIR process since they 
could conflict with sectors already allocated. The REPAIR 
command is not intended to be used for the normal lockout 
procedurel that is the function of the DOSGEN command 
(Chapter )0). If a diskette did have sectors locked out, 
then the identical sectors must be locked out by the operator 
again here. 

After the LCAT has been rebuilt, or if it 
begin with, the Cluster Allocation Table 
checked. If the CAT sector cannot be read, 
message will be displayed a 

was qt')od to 
(CAT) will be 
the following 

**PROM I/O ERROR-STATUS=31 AT 2E8A ON DR IVE J-PSN 0001 
C.A.T. READ ERROR 
l~RITE TO DISK TO ATTEMPT TO CLEAR ERROR? 

The operator must respond with either a nyu or an "N" to the 
last question. If an UN" is entered, REPAIR cannot continue 
to check the other system tables since subsequent checking is 
based on the validiy of the CAT. Thus the message, 

DISK IS NOT FIXABLE 

is di spl ayed and control returned to MOOS. If a "Y,II response 
is given, REPAIR will attempt to rewrite the CAT sector. If 
an error develops during the write, the sector will be 
considered unfixable (as will the diskette). The message 
shown above will be displayed and MDOS given control. 

If the CAT sector is readable, or if rewriting the 

MOOS 3.0 User.ls Guide Page 22-06 



~EPAI H COMMAND 22.2- 10, LCAT, CAT, Bootblock Sector Check 

sector cleared the error, HEPAIR will proceed to check the 
contents of the CAT. The CAr must show that all parts of the 
diskette locked out by the LCAT are flagged as allocated (see 
above for LCAT validity criteria). If the CAT contains an 
error at this point, REPAIR will display the message 

C.A.T. IN ERROR - RECONSTRUCT? 

and await a response from the operator. An UN" response will 
result in an unfixable diskette. REPAIR will show the 
message 

DISK IS NOT FIXABLE 

and return control to MOOS. 
CAT to be reconstructed from 
Phases 2 through 4. 

A Jly" response wi 11 cause a new 
the information gathered In 

After checking the CAT, REPAIR will attempt to read the 
Bootblock sector. If the Bootblock sector cannot be read, 
~EPAIR will display the following message: 

**PHOM I/O EHROt-l-STATUS=31 AT 2EUC ON OHIVE I-PSN 0017 
Boor BLOCK SECTOH READ EtlROR 
iiRITE TO DISK TO ATTEMPT To CLEAR ERROR? 

The operator 
last question. 
message 

must respond with either a uy .. or IINfI to the 
If an "Nil is entered, REPAIR will display the 

BOOT BLOCK SECTOH CANNOT BE CHECKED 

before continuing. Since the Bootblock is not affected by 
other system tables, REPAIH will continue to check the 
remainder of the diskette; however, a diskette with a 
damaged Bootblack sector cannot be used as an MOOS 1iskette 
in ,iri Ve Zero. If aUY" is entered. REPAIR will attempt to 
rewrite the sector in an attempt to clear the error. If an 
error develops during the write, the sector is unfix3ble and 
the diskette can never be used to initialize the system from 
drive zero. 

If the Bootblock sector is readable or if the error is 
cleared by rewriting the sector, REPAIR will verify that the 
sector contains a valid copy of the Bootblock program. If 
the jata is in error, the message 

Boor BLOCK SECTOR HAS BEEN DESTROYED 
~~RITE TO DISK TO ATTEMPT TO CLEAH ERHOR? 

will be displayed. An "NII response wil leave the Bootblock 
sector unchanged. A "Y" response will cause a new Bootblock 
to be written to the diskette. The HEPAIH command will then 
begin Phase 2. 

MOOS 3.0 User's Guide Pa·ge 22-07 



REPAIR COMMAND 22.3 -- Directory Sector Check 

22.3 Directory Sector Check 

Phase 2 of HEPAIR deals entirely with the MUOS directory 
sectors. Each of the directory sectors is first checked for 
readability. If a read error is found, the operator is 
informed and given the choice of trying to clear the read 
error via the following displayl 

**PHOM 110 EliROR-STATUS=31 AT 2F38 ON DR IVE I-PSN ()013 
lJIHECTOHY SECTOR READ ERi10R 
v~HITE TO DISK TO ATTEMPT TO CLEAR ERROH? 

The actual numbers in the error message will depend on the 
actual sector that is in error. If the operator responds 
with an .IIN", or if the rewrite attempt (llyn response) fails 
to clear the error, the message 

DISK IS NOT FIXABLE 

will be displayed and control returned to MDeS. If the 
sectors are all readable, or if the rewrite attempt 
succeeded, each directory sector is examined again. This 
timet each directory entry within each sector is tested 
against the followinJ criteria. 

I. If the first byte of the directory entry is zero 
(unused entry), then the remaining bytes of the 
entry must be zero also. 

2. If the first byte of the directory entry is the 
hexadecimal number SFF (deleted entry), then the 
second byte of the entry must be SFF also. If 
the second byte is not $FF t and if the remainder 
of the entry is valid, then the entry is the 
result of an incomplete name change. It was 
probably caused by a power failure or interrupt 
(ABORT or RESTART pushbuttons) during the time 
that the old name was deleted and the new name 
was added to the directory. REPAIR will allow 
the operator to delete the directory entry 
entirely or to reassign a name to the partially 
deleted entry. The name assigned must be the 
same as the original one. Otherwise, the name 
will probably be improperly placed in the 
directory (criterion 5). 

3. The physical sector number of the Retrieval 
Information Block must the first sector of a 
cluster, must not be the sector number of one of 
the system tables checked in Phase 1 or 2, and 
must not be greater than the highest valid 
physical sector number. 

MOOS 3.0 User"'s Guide Page 22-08 



REPAIR COMMAND 22.3 -- OirectorySector Check 

4. The directory entryJs attribute field must have 
the least significant byte (unused) set to zero. 
In addition, the two unused bytes at the end of a 
directory entry must be set to zero. 

5. The calculated hash index for the file name and 
suffix must locate the directory entry where it 
currently resides. An error in the hash index 
means that the directory entry is inaccessible e 

Appendix G contains a detailed description of the 
hashing method. 

6. The system file MOOS.SY must have a Retrieval 
Information Block in a specific physical sector. 
In addition, the other files in the family 
MDOS*.SY must be present in the directory. 

If any directory entry fails to meet one of the first 
five criteria, REPAIR will display the entry in error as well 
as a message identifying the problem. The directory entry is 
displayed in the following format: 

PSN LSN EN NAME SUF RIB ATTR NU [HEXNAM HEXSUF] 

where the symbols have the following meanings: 

Symbol 

pSN 
LSN 
EN 
NAME 
SUF 
RIB 
ATTR 
NU 
HEXNAM 
HEXSUF 

Meaning 

Directory sectorJs physical sector number 
Directory sector~s logi~al sector number 
Entry number within sector 
File name 
File suffix 
Physical sector number of RIB 
Attributes 
Not used portion of directory entry 
File name in hexadecimal 
Suffix in hexadecimal 

All of the fields are displayed as hexadecimal numbers with 
the exception of the file name and suffixs If 
non-displayable characters appear in either the fileJs name 
or suffix, they will be shown as percent signs (%). In such 
cases, the hexadecimal forms of the file name and suffix are 
shown to the right of the directory entry. 

In the following examples, the same directory entry is 
used so that the chanqesfrom one to the other can be more 
easily detected. The first line always shows the directory 
entry. The second line contains the error message and a 
prompt to the user. If a "Y" is entered, the entry will be 
removed from the directory (and later the space associated 
with that directory entry will be deallocated). An "NU 

MDOS 3.0 UserJs Guide Page 22-09 



HEPAIH COMMAND 22.3 -- Directory Sector Check 

response will leave the directory entry unchanged. 

The following message is shown for directory entries 
that fail to meet criterion I. Not all bytes of the entry 
are zero if first byte is zero. 

03 OJ 00 %INEX .CM OJ4C 7200 0000 00494E4558202020434D 
DIHECTORY ENTRY IN EtlROR. DELETE? 

The following message is shown for directory entries 
that fail to meet criterion 2. The directory entry is the 
result of an incomplete name chanqe. Instead of asking the 
operator if the file na~e should be deleted, REPAIR allows 
the original name to be reassigned. If no name is entered in 
response to the prompt (carriage return only), the directory 
entry will fail criterion 2, so the entry will be redisplayed 
as in the above example. If the original name is supplied, 
the fileJs directory entry will be recreated in the 
directory. The content of the file is unaffected; however, 
if a name is assigned other than the original, criterion 5 
will probably not be satisfied. The directory entry would 
then be displayed again, with the corresponding error 
message. 

03 00 00 %INEX .CM 014C 7200 0000 FF494E455820202043·4D 
POSSIBLE INCOMPLETE NAME CHANGE 
NE~ NAME I 

The following example illustrates a directory entry that 
fails to meet criterion 3. The RIB address is of the 
directory entry is invalid. In this case, the RIB address is 
a sector that is not on a cluster boundary. 

03 00 00 BINEX .CM 0140 7200 0000 
INVALID HIB SECTOR NUMBEH. DELETE? 

The next example shows a directory entry that f3ils to 
~eet criterion 4. The directory entry~s attribute field has 
a non-zero unused byte. 

03 00 00 BINEX .CM 014C 72FF 0000 
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? 

The last example illustrates a directory entry that 
fails to meet criterion 5. The hash index for the file name 
and suffix places the directory entry into a different 
directory sector than the one in which it appears (fileJs 
original name is BINEX.CM). 

03 00 00 AINEX .CM 014C 7200 0000 
HASH OR NAME DUPLICATION ERROR. DELETE? 

Criterion 6 does not deal with directory entries in 
general. Rather, the specific names of the system files are 

MDOS 3.0 User"s Guide Page 22-10 



REPAIR COMMAND 22.3 -- Directory Sector Check 

searched for in the directory to ensure they exist. The 
absence of anyone of the system files is noted by the 
display of one of the following messages a 

MDOS .Sy DOES NOT EXIST 
MDOSER .St DOES NOT EXIST 
MDOSOVO .St DOES NOT EXIST 
MDOSOVI .SY DOES NoT EXIST 
MDOS()V2 .SY DOES NOT EXIST 
MDOSOV3 .Sf DOES NOT EXIST 
MDOSOV4 .St DOES NOT EXIST 
MDOSOV5 .st DOES NOT EXIST 
MDOSOV6 .SY DOES NOT EXIST 

In addition, if the resident operating system file does not 
have a RIB in the proper physical sector, the diskette could 
not be used for system initialization in drive zero. Thus, 
the message 

MDOS.SY DOES NOT STAHT AT SECTOR $18 

is displayed in such cases. 

Since errors in the directory entries are not fatal 
insofar as REPAIR is concerned (they can be if the diskette 
is to be used for initialization or to run any programs), 
Phase 3 is started after these checks have been completed. 

22.4 Retrieval Information Block Check 

Phase 3 of REPAIR checks ~ne Retrieval Information 
Blocks (RIBs) of all directory entries that have a valid RIB 
add r e ss • I faR I B a ddr e s sis in val i din a d ire c t or y e nt r y , 
then the RIB cannot be found. The HIBs are checkei in the 
order in which they are referenced in the directory. If a 
KIB sector cannot be read, the following message will be 
displayed: 

**PHOM 1/0 EHROH-STATUS=31 AT 3008 ON DHIVE l-PSN 0570 
HId HEAD ERROR 
v~HITE To DISK TO ATTEMPT TO CLEAR EHROR? 

The operator must respond with either a nyu or an uN" to the 
last question. If a .,yu is entered, RE~AIR will attempt to 
rewrite the HIB. If the error is cleared, RE~AIR will 
continue. If an error occurs during the rewritinq of the 
t1IB, or if an liN" was entered, REPAIR cannot check the RIB 
any further. Thus, a message of the form 

03 00 00 BINEX .eM 014C 5200 0000 
HIB IN EHROfi - DELETE FILE? 

is displayed to allow the operator to delete the file 

MDOS 3.0 User'~s Guide Page 22-11 



REPAIR COMMAND 22.4 -- Retrieval Information Block Check 

completely so it is not allocated space in Phase 4. The 
first line shows the directory entry that belongs to the 
file. It is in the same format as the directory entry 
explained in the previous section. If the file is not 
deleted <"NII response), it will not be affected, nor will the 
allocation table be updated. If the file is deleted ("Y" 
response), then whatever space was allocated to it will be 
marked as available for allocation in the reconstructed 
allocation table. If a HIB is in error, the content of the 
file is usually unaccessible unless the error is corrected by 
the user. If this cannot be done, the file should be deleted 
by re spondi ng wi th a II y... to the above prompt. 

If the HIB can be properly read, or if the RIB was 
properly rewritten, then REPAIR will continue to check the 
~IB for the following criteria. If the HIB fails to satisfy 
the criteria, an error message will be shown, followei by the 
directory entry and a prompt that allows the file to be 
deleted: 

<cause of error> 
03 00 00 BINEX .CM 014C 5200 0000 
RIB IN ERROR - DELETE FILE? 

The actual content of the directory 
vary. The following messages can 
<cause of error> field. 

F I ~ST SO~ I N ERROR 

entry, however, will 
appear in place of the 

This error messa~e will be displayed if the first 
Segment Descriptor ~ord (SOW) does not contain 
the cluster number of the RIB as its starting 
cluster number. Since a RIB is the first 
physical sector of a file, it will always be in 
the fileJs first cluster. This message will also 
be displayed if the first SOW has the terminator 
bit set to one. 

SD~ BOUNDS ERROR 

This error message will be displayed if an SD~ 
has an invalid startin~ cluster number. Invalid 
cluster numbers are those that include the system 
table area of the diskette as well as areas 
beyond the maximum physical sector number. 

If an SOW describes a seqment which doesnJt lie 
entirely within the boundaries of the diskette, 
this message will also be shown. That is, the 
contiguous clusters adjacent to the starting 
cluster of an SOW must also have valid cluster 
numbers. 

MOOS 3.0 User-'s Guide Paqe 22-12 



REpAIH COMMAND 22.4 -- Retrieval Information Block Check 

RIB CLUSTER ALLOCATION DUPLICATION 

This error message will be displayed if two SOWs 
describe the same physical cluseter. All SOWs 
must span unique seg~ents of the d!skette= 

I LLEGAL SOW TERM INAToR 

This error message will be displayed if the SOW 
that acts as the terminator for the other segment 
descriptors does not exist or if it contains a 
logical sector number (used for monitoring the 
logical end-of-file) that is not a part of the 
allocated file. 

NON-CONTIGUOUS SOW ERROR 

This error message 
with the contiguous 
SOWs that describe 
diskette. 

NON-O BYTES AFTEH SO,~ TERMI NATOR 

will be displayed if files 
allocation attribute have 
a segmented area of the 

bytes 
Only 
have 

the 
the 

This error message will be displayed if 
following the terminating SOW are not zero. 
files in the memory-image format can 
non-zero bytes in the RIB following 
terminator, and then only beginninq with 
117th (decimal) byte of the sector (117 
relative to zero; zero being the first byte 
the HIB). 

is 
in 

BINAKY LOAD FILE RIB ERROR 

fhis error message can be displayed for a variety 
of reasons. The HIB of memory-image files 
contains special load information in the last 
eleven bytes of the sector. If those bytes do 
not meet the following specifications, this error 
message will be displayed. The offsets used to 
refer to the various bytes are relative to zero 
(zero beinq the first byte of the RIB sector). 
All offsets are given in decimal. 

1. Byte 117, the number of bytes to load from 
the last sector, must be non-zero, a multiple 
of 8, and less than or equal to 128 (S80). 

2. 

MOOS 3.0 User"s Guide 

Byt e s 1 1 8- 1 1 9, 
must contain a 
than the total 
the file, and 
(S200). 

the number of sectors to load, 
number that is non-zero, less 
number of sectors allocated to 
less than or equal to 512 

Page 22-13 



REPAIR COMMAND 22.4 - Retrieval Information Block Check 

3. Bytes 120-121, the starting load address, are 
not checked. For programs loading in an 
EXORciser I system, in the User Memory Map of 
an EXORciser II system with the single memory 
map configured, or in the Executive Memory 
Map of an EXORciser II system with the dual 
memory map configured, this value must be 
greater than hexadecimal location $IF if the 
program is to be loaded via the MOOS loader. 
EXORciser II systems with the dual memory map 
configured can have programs loaded into the 
User Memory Map starting at location zero. 

4. The ending load address is calculated from 
bytes 117-121 in the following manner' 

5. 

EL = CNSL - ) * 128 + NBLS + SL-

where EL is the ending load address, NSL is 
the number of sector s to load (bytes 
118-1)9), NBLS is the number of bytes in the 
last sector (byte 117), and SL is the 
start ing load address (byt es 120-12). The 
ending load address must be less than 65536. 

Bytes 122-123, the 
address, must lie 
addresses spanned by 
than or equal to the 
and less than or equal 
address) • 

starting execution 
within the range of 
the program (greater 
starting load addre ss, 
to the ending load 

6. Bytes 124-127 are not used and must be zero. 

Because of the complexity of the errors that can occur 
in a RIB, the REPAIR command will .make no attempt to .. , f i X" a 
HIB. If a RIB error is detected, REPAIR will qive the 
operator a choice of ~eleting the file (thereby removing the 
RIB and fixing the problem) or leaving the RIB alone. 

No space can be allocated to files with directory 
entries that have invalid RIB addresses or to files that have 
RIBs with detectable errors (since the allocation information 
is contained in the RIB). Thus, when REPAIR goes through the 
Phase 4, it will exclude all files with bad RIBsl however, 
the REPAIR command will not update the allocation table on 
diskette if files with bad RIBs are left undeleted. Thus, 
the files with bad RIBs should be deleted when REPAIR gives 
the operator the option to do so (the DEL command must not be 
used!), or they should be manually repaired via the DUMP 
command (Chapter .t) before the diskette is used. The DUMP 
command can be used to examine the damaged RIB and, if 
necessary, to examine where a file~s sectors actually are on 
the diskette. OUMP~s sector read, sector change, and sector 

MDOS 3.0 User~s Guide Page 22-14 



HEP AI H COMMANO 22.4 -- Retrieval Information Block Check 

write commands can be used to reconstruct a valid RIB. 
Sometimes, it will require less effort to recreate a file's 
RIB (if the allocation map has been recently printed via the 
OIR command) than to recreate the file itself. 

Ar~er a RiB has been reconstructed, REPAIR should be run 
again to ensure that there is no dual allocation with another 
file. 

After all of the HIHs have been checked y 

displayed to monitor REPAIR's progress. 
information takes on the following format: 

a summary is 
The sunmary 

xx GOOD FILES yy FILES ~ITH BAD RIBS 

where '''xx'' and .tlyyU are both hexadecimal numbers. The 
display of this message indicates the end of Phase 3. 

22.5 CAT Regeneration Phase 

Phase 4 of the REPAIR command reconstructs a cluster 
allocation table in memory from the HISs of those files that 
have no errors ("xx" in the Phase 3 summary me ssage). Phase 
4 consists of three passes. 

Pass I of Phase 4 reads all valid RIBs. All clusters 
that are allocated are retained in memory in a table called 
Table J. A second tabls, Table 2, also in memory, will 
contain all clusters which havs been allocated to more than 
one file. If no dual allocation has occurred, Table 2 should 
be empty at the end of Pass 1. If it is~ the rest of Phase 4 
is skipped. 

If Pass I has determined that dual allocation occurred, 
then Pass 2 of Phase 4 will read all RIBs a second time. 
This time, the files which have clusters allocated in Tabi\ 2 
are flagged so the file's na~es and conflicts can be shown in 
Pa ss 3. 

A summary message is displayed at the end of Pass 2 that 
gives totals of the number of files with and without dual 
allocation. The format of the summary message is 

xx GOOD FILES yy FILES i4ITH DUPLICATIONS 
zzzz ALLOCATION DUPLICATIONS 

where ll xx·lI , "yy"., and uzzzzu are all hexadecimal numbers. 
The totals '''xx'' and "Iyy" refer to numbers of files. The 
number JI zzzz", however, refers to the number of clusters that 
are common to the "yyJI files. The actual message is 
displayed on a single line. 

Pass 3 of Phase 4 will perform an analysis of all files 

MOOS 3.0 User-'s Guide Page 22-J5 



HEt>AIH COMMAND 22.5 -- CAT Regeneration Phase 

that have allocation conflicts with each other. The files 
are analyzed two at a time. The result of the analysis will 
be displayed in the following format: 

09 06 00 RASM .CM 031C 7200 0000 
SIZE: OOIF CONFLICTS: OOIF CLUSTERS 

10 00 01 FORLB .!i() 0500 6300 0000 
SIZE: 0041 CONFLICTS: nOIF CLUSTERS 

031C 0320 0324 0328 032C 0330 0334 0338 033C 0340 0344 0348 
034C 0350 0354 0358 035C 0360 0364 0368 036C 0370 0374 0378 
037C 0380 0384 0388 038C 0390 0394 

The na~es of the files and the numeric data displayed differ, 
0f course, dependinq on the exact files involved. 

The first line of the display contains the directory 
entry of a file with which other files have duplicate 
allocation. The format of the directory entry is the same as 
durinq Phase 2 (section 22.3). Since this line is extended 
to the left further than the other lines, this file is 
referred to in the following description as the "outer file". 
The second line of the display contains the total size of the 
Outer file in clusters (SIZE) and the total number of 
clusters that cause allocation conflicts (CONFLICTS). ~hen 
the total size is compared to the part of the file that is in 
conflict, a relative indication can be obtained of the 
fraction of the file that may be in error. The CONFLICTS 
total for the (~ter file includes the allocation c0nflicts 
with all "Inner files" (described below). 

The third and fourth lines of the display are of the 
same format as the first two lines; however, these lines 
describe an "Inner file" that has allocation conflicts with 
the (ruter file. Since more than one Inner file can be shown, 
the CONFLICfS total for each Inner file contains only the 
number of clusters in that file that cause allocation 
conflicts with the Outer file. 

Following the two-line description of the Inner file 
will be a list of clusters (belonqinq to the Inner file) that 
conflict with the (~ter file. The starting physical sector 
number is given for each cluster. 

After the Outer file and one Inner file have been 
displayed in this format, REPAIR will issue the following 
prompt (data supplied to go along with the above examole): 

UELEfE: NEITHER ( I ), BOTH( 2), FORLB • R ()( 3), RASM .CM(4): 

The above prompt allows the user to select the action that 
REPAIR is to take by entering a number from 1 to 4. Number I 
will cause neither the Inner nor the Outer file to be 
deleted. Number 2 will cause both files to be ieleted. 
Number 3 will cause the Inner file to be deleted. Number 4 

MOOS 3.0 User-'s Guide Page 22-16 



HEPA I R C()i~MANl) 22.5 -- CAT Reqeneration Phase 

will cause the Outer file to be deleted. 

As long as the Outer file is not deleted, all of the 
files that have conflicts with it will be displayed as Inner 
files. When all Inner files conflicting with the (~ter file 
have been displayed in this fashion, REPAIR will take the 
next file in its list of files with allocation conflicts and 
use it as an Outer file. This process continues until all 
files with allocation conflicts have been dealt with. 

Conflicting pairs of files will be printed only once. 
An Inner file may subsequently be displayed as an Outer file 
if it has additional conflicts with other files. ~s files 
are deleted, other files that were originally in conflict 
with it may no longer have allocation conflicts. 

Usually, the REPAIR command will be used more than once 
if files happen to have allocation conflicts. The first 
time. the operator wi 11 pick the .IINEI fHER" s election from the 
above prompt. In this way, he can accumulate the information 
required to decide which files shoUld be deleted and which 
should be retained. The DUMP command may be used to examine 
the conflicting clusters to see which file they actually 
belong to. Then, REPAIR is run a second time to· 8ctually 
delete the files in error. The files must not be deleted 
with the DEL command since it deallocates the files~ space in 
addition to deleting the directory entries. 

For files with allocation conflicts, one of the 
following statements may be true: 

i. ine UU"Ler Tl1.e may have a correct RIB and COnl.d~n 
all valid data. Thus, the error is caused by the 
Inner files that have allocation conflicts with 
the outer file. 

2. The Outer file may have an incorrect or 
overwritten HIB. In this case, the Inner files 
having allocation conflicts with the outer file 
are all correct. 

3. Some of the Outer file-'s existing space may have 
been erroneously allocated to, and possibly 
overwritten by, an Inner file. In that cage, 
since the Inner file was written to last, the 
Inner file contains valid data and has a valid 
HIS even though its space was allocated by error. 

4. Some of the Inner file-'s existing space may have 
been erroneously allocated to, and possibly 
over wr itt en by , an Ou t e r f i 1 e • I n t ha t cas e , 
since the Outer file was written to last, the 
(~ter file contains valid data and has a valid 
HIS even though its space was allocated by error. 

MOOS 3.0 user"s Guide Page 22-17 



REPAIR COMMAND 22.5 -- CAT Regeneration Phase 

5. A combination of 2, 3, and 4 may have occurred. 

It is necessary to be knowledgeable of the MOOS file 
structure before allocation conflicts can be wisely resolved. 
It should be noted that although space is allocated to a 
file, the space may not necessarily have been written into. 

If only an Outer file is displayed with no Inner files 
at the beginning of Phase 4, then the user has locked out 
sectors which conflict with files that already have allocated 
space. REPAIR assumed that the correct sectors were 
specified by the user during the Phase I, however, if that is 
not true, then this kind of a allocation conflict will be 
seen. 

22.6 CAT Replacement Phase 

Phase 5 of the REPAIR command compares the reconstructed 
allocation table in memory with the actual allocation table 
on the diskette. If the two tables are identical (normal 
case), REPAIR will display the message 

RECONSTRUCTED C.A.T. MATCHES DISK 

before terminating and returning control to MOOS. 

If the reconstructed table does not match the one on 
diskette, and if no HIB errors remain, then the messaqe 

WRITE RECONSTRUCTED C.A.T. TO DISK? 

will be displayed. The operator must 
nvn or an J1N". The "'V·' re sponse 
allocation table (the correct one) 
diskette. The uN" response will leave 
table intact. MOOS will be given 
response. 

respond with either a 
will cause the new 
to be written to the 

the erroneous system 
control after either 

The allocation table that is written to the diskette is 
a combination of Table I which was built during Pass 1 of 
Phase 4. and the LCAr. If files with invalid RIBs were 
encountered during the REPAI~ process which were not deleted, 
in all probability the allocation tables will differ. REPAIR 
will not update the diskette table until the files with 
invalid HIBs are fixed or deleted (but they must not be 
deleted with the DEL command -- only by the REPAIR co~and). 
In such cases, REPAIR will display the message 

INVALID RIBS RESULTED IN RECONSTRUCTED C.A.T. NOT MATCHING 
DISK 

as a reminder. that the allocation table and some RIBs contain 
errors. MDOS is given control after the message is 

MDOS 3.0 User"'s Guide Page 22-18 



REPAIW COMMAND 22.6 -- CAT Replacement Phase 

displayed. 

22. 7 Me ssaqes 

The following messages can be displayed by the REPAIR 
command. Only those messages not already covere~ in the 
preceding sections are listed. 

(YES) OR NCNO)I 

The REPAIR command~s prompts usually accept only 
a UY" or UN" response from the operator. If any 
other response is given, this message will be 
displayed, forcing a -new response to be entered. 

22.8 Exampl es 

The following example illustrates how REPAIR is used on 
a working diskette in drive zero to verify that the system 
tables are correctl 

=REPAIR 
DISK IDa MOOS0300 
VERSIONI 03 
HEVISIONa 00 
DATEI 012578 
USERa SYS DEVELOPMENT DISK 
31 G(KID FILES 00 FILES ~ITH BAD RIBS 
RECONSTRUCTED C.A.T. MATCHES DISK 
= 

The next example illustrates how REPAIR Ls used once 
just to gather information about what is wrong with the 
diskette. Then, DUMP is used to fix the directory, and 
HEPAIR run a second time to verify that the error was 
corrected. The file L(~.CM is presumably a user-written 
program that functions as a command; however, the attribute 
area of the directory entry was created illegally or has been 
destroyed. 

MDOS 3.0 User's Guide Paqe 22-19 



REP A I H C ()/~MAND 22.3 -- Examples 

=REPAIR :2 
DISK 10: MDOS0300 
VERSION: 03 
REV I S IOl\j, 00 
DATE: 072578 
USER: SYS DEVELOPMENT DISK 
OA 07 03 LOG .CM 0570 FFFF 0000 
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? N 
NON-O BYTES AFTER SD~ TERMINATOR 
OA 07 03 LOG .eM 0570 FFFF 0000 
HIB IN ERROR - DELETE FILE? N 
2F GOOD FILES 01 FILES ~IrH BAD RIBS 
INVALID HI8S RESULTED IN RECONSTRUCTED C.A.T. NOT 

MATCHING DISK 
= 

The DUMP command (Chapter 11) can then be used to chanqe 
the directory entry. Since Lcn.CM is a memory-image file, 
the HIB contains load information after the terminator' 
however, the attribute part of the directory entry was 
destroyed. Thus, REPAIR could not detect the memory-image 
format. 

From the information shown for the directory entry, it 
is determined that the directory entry for the file LOG.CM is 
in physical sector SOA or directory loqical sector 7. The 
following sequence is used to "repair" the attribute field: 

MOOS 3.0 User-'s Guide Page 22-20 



HEPA 111 COMMAND 

=DUMP :2 
PHYSICAL MODE 
:RO 7 
:S 

CHANGE BUFFEK 

PSN=OOOA 
00 42 41 53 49 43 20 20 20 
)0 46 52 45 45 20 lU ~u 20 
20 45 51 55 20 20 20 20 20 
30 4C 4F 47 20 20 20 20 20 
40 00 00 00 00 00 00 00 00 
50 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 
70 00 00 00 00 00 00 00 00 
:3CI 
3C FF 52,001 
:W 
:Q 
=REPAlli :2 
DISK liJ: MDOS0300 
VERSION: 03 
REVISION: 00 
DATE: 072578 

43 40 01 00 72 00 00 00 
43 4D 02 84 72 00 00 00 
53 41 04 BO 65 00 00 00 
43 40 05 70 FF FF 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

USEH: SYS DEVELOPMENT DISK 
30 GOOD FILES 00 FILES WITH BAD HIBS 
RECONSTRUCTED C.A.T. MATCHES DISK 
= 

22.8 -- Examples 

BA.SIC 
(-r"\rr 
rttcc 
EQU 
LOG 

CM •• r • = = 
~u _ 
\,.,/Y\ •• 1 ••• 

SA •• e ••• 
CM.p •••• · .............. . 

• ••••••••••••••• · .............. . · . . . . . . . . . . . . . . . 

The REPAIR command was then invoked a second time to 
ensure \-(leH, the .!!fix!! "as correctly applied. Since REPAIR 
then recognized the file LOG.CM as a memory-image file, the 
liIB error disappeared automatically. 

The same error could have been corrected without hav inq 
the detailed systems knowledge that was used in the above 
example. If the file were deleted, the error would be fixed 
and the diskette would be a valid MOOS diskette. The 
following example shows the minlmal-knowledqe approach to 
fixing the diskette: 

=REPAIR :2 
DISK ID: MDOS0300 
VERSION: 03 
REVISION: 00 
DATE: 072578 
USER: SYS DEVELOPMENT DISK 
OA 07 03 LOG .CM 0570 FFFF 0000 
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? Y 
2F GOOD FILES 00 FILES WITH BAD RIBS 
~RIrE RECONSTRUCTED C.A.T. TO DISK? Y 
= 

MOOS 3.0 User"'s Guide Page 22-21 



HEPAI R COMMAND 22.8 -- Examples 

Since the file was deleted, the reconstructed al10cation 
table did not match the one on the diskette. Thus, a new one 
was written to make the allocation table correct. 

The last example illustrates how a file just having been 
deleted by accident can be recreated if no other process is 
invoked that causes a directory entry to be created or space 
to be allocated or deallocated. Since the deletion only 
removes the name from the directory and frees the allocated 
space, all that needs to be done is to rebuild the directory 
entry using JUMP, and to recreate the allocation table using 
REPAIR. The following example shows the sequence of events 
from the file's deletion through its directory entry 
reconstruction. This example assumes that the operator knows 
the file~s position in the directory (from DEN of a directory 
listing). Otherwise, the DUMP command '''50'. would have to be 
used to display the entire directory, allowing the operator 
to search for the deleted entry visually. 

=DEL TE STP HCX]. SA 
TEST~ROG.SA'O DELETED 
=DUMP 
PHiS I CAL MODE 
IRD 3 
IS 

CHANGE BUFFER 

PSi~=0006 

00 40 44 4F 53 4F 
10 FF FF 53 54 50 
20 00 00 00 00 00 
30 00 00 00 00 00 

56 
52 
00 
00 

34 20 
4F 47 
00 00 
00 00 

40 00 00 00 00 00 00 00 00 
50 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 
70 00 00 00 00 00 00 00 00 
I J O/"TE"/ 
IS 

CHANGE HUFFER 

PSJ~=OO06 
00 40 44 4F 53 4F 56 34 20 
10 54 45 53 54 50 52 4F 47 
20 00 00 00 00 00 00 00 00 
30 00 00 00 00 00 00 00 00 
40 00 00 00 00 00 00 00 00 
50 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 
70 00 00 00 00 00 00 00 00 
• w 
.Q 
=HEPAIR 
DISK ID' MDOS0300 
VERSION, 03 

MOOS 3.0 User"s Guide 

53 59 00 88 72 00 0000 MDOSOV4 SY •• r ••• 
53 41 05 FC 05 00 00 00 •• STPROGSA •••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 · ............... 
00 00 00 00 00 00 00 00 • ••••••••••••••• 

53 59 00 88 72 00 00 00 MDOSOV 4 SY •• r ••• 
53 41 05 FC 05 00 00 00 TESTPROGSA •••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 • ••••••••••••••• 
00 00 00 00 00 00 00 00 · ............... 
00 00 00 00 00 00 00 00 • ••••••••••••••• 

Page 22-22 



HEtJ AI R COMMAND 

REVISION' 00 
DATE. 072578 
USER' SYS DEVELOPMENT DISK 
33 GOOD FI LES 00 FILES WITH BAD RIBS 
,4RITE ~ECONSTRUCTED c. A. T. TO 01 SK? Y 
=0 I R TESTPROG. SAIA 
DRIVE' 0 DISK 1.0 •• MDOS0300 
TESTPROG.SA ••••• 5 05FC 0004 31 00 05fC 004 
TOTAL NUMBER OF SECTORS I 0004/$004 
ToTAL DIRECTORY ENTRIES SHOWN I 001/$01 
= 

22.8 -- Examples 

The above procedure should only be used as a last resort. It 
can be avoided completely if an adequate backup copy is kept 
of all files and if the protection attributes are set for 
those files which are not to be deleted. 

MOOS 3.0 User-'s Guide Page 22-23 



CHAPTER 23 

23. ROLLOUT COMMAND 

The ROLLOUT command is us-ed for writing the contents of 
memory to di skette. The ROLLOUT command supports the singl e 
and dual memory maps of EXORciser II as well d!j the single 
memory map of EXORciser I. Options exist for writin1 memory 
directly into a diskette file or for writing to a scratch 
diskette. 

23.1 Use 

The ROLLoUT command is invoked with the following 
command line: 

ROLLOUT [<name>] [; <opt ion s> 1 

where <name> is the name of a diskette file and <options> is 
one of the options described below. The file name, if used, 
is given the default suffix "LO" and the default logical unit 
number zero. In some cases, it is invalid to have the file 
name specified with logical unit number one (see section 
23.1.4). If a file name is specified on the command line. it 
must be the name of a file which does not already exist in 
the directory. Whenever the file is created, it will be in 
the memory-image format and allocated contiguously on the 
diskette. 

There are four different ways 
command can be used. Each of the four 
specified via the <options> field. 

Option Function 

in which the ROLLOUT 
uses of ROLLOUT is 

U ~rite memory into a file from the User 
Memory Map of an EXOHciser. II system that 
has the dual memory map configured. 

none t~r i t e memory into a file. Onl y memory 
not overlayed by MOOS or ROLLOUT command 
can be accessed. 

V Write memory to scratch diskette (not to 
a file). Any memory block can be written 
out. 

D Copy the scratch diskette~s data (llyn 

option) into a diskette file. 

MOOS 3.0 User's Guide Pag e 23-01 



HOLLOUT COMMAND 23. 1 - Use 

The ROLLOUT command cannot be invoked from ~ithin a 
CHAIN file (Chapter 6). Since most of the processing is done 
by a position-independent routine that must work without MOOS 
being resident. the resident MOOS I/O functions cannot be 
used. Therefore, the special keyboard keys CIL-X. CIL-D, 
CTL-~, BREAK, and RUB<Ur are non-functional during the 
ROLLOUT command, however, each operator response must still 
be terminated with a carriage return. 

Caution must be used when writing out blocks of memory 
that include the highest addressed memory location $FFFF. 
Since MDOS can only load programs in a multiple of eight 
bytes, the starting load address of such programs must be an 
address that is a multiple of eight. Otherwise, the ending 
load address will be greater than $FFFF. 

23.1.1 User Memory Map 

When the ROLLOUT command is invoked with the command 
line 

ROLLOUT <name>fU 

the :nel1ory from the User Memory Map of an EXORci ser I r system 
with the dual memory map configured will be written into the 
diskette file <name> on the specified logical unit. If the 
dual memory llap is not configured, ROLLOUT will terminate 
after displaying the following message. 

USER MEMORY MAP NOT CONFIGURED 

If the dua 1 memory map is conf igured, then ROLLOUT will 
continue and display the messages 

ST AR r ADDR ESS I 
END ADDRESS. 

The user responds by entering the starting and ending memory 
addresses in the User Memory Map which are to be written into 
the diskette file. The addresses must be input in 
hexadecimal (SOOOO-FFFF), and the starting address must be 
less than or equal to the ending address. If these two 
conditions are not met, the message 

INVALID ADDRESS RANGE 

will be displayed and the operator will be given another 
chance to enter the addresses. After having supplied the 
memory range to be written to diskette, the message 

ARE YOU SUHE (V, N, 0)1 

will be displayed. The operator must respond with a BY" to 

MUOS 3.0 User-'s Guide ~age 23-02 



HOLLOUT COMMAND 23. I - Use 

have the memory written into the diskette file. The memory 
block is only written into the file if sufficient contiguous 
space can be allocated. RCLL(UT will then termin8te and 
return control to MOOS. 

The liN II response will cause the memory start and end 
address messages to be redisplayed in order to allow ~nother 
set of addresses to be entered. The UQII response will 
terminate the ROLLOUT command and return control to MDOS e 

23.1.2 Non-overlayed memory 

If the ROLLOUT command is invoked with the command line 

ROLLOUT <name> 

then any block of memory not overlayed by MOOS or the ROLLOUT 
command in either EXOiiciser I or II (single or Executive 
memory map) can be written to the diskette file specified by 
<name>. The file can be specified to reside on any logical 
unit number. 

As described in section 23.I.i, the start/end address 
message prompts will be displayed; however, in addition to 
the criteria set forth in that section for valid addresses, 
the address range must not have been overlayed by MOOS or the 
~OLLoUr command. If an address range is speclfied that fa lIs 
into the overlayed memory. the message 

START ADDRESS MUST BE GREATER THAN Snnnn 

wi 11 be displayed. The .tInnnnJI is the last address that has 
been used by MOOS or the ROLLOUT command. The oper~tor is 
then given a chance to re-enter the addresses. Otherwise, 
the function of the ROLLOUT command is similar to the 
function described in the previous section. 

23.1.3 Overlayed memory 

If the ROLLOUT command has been invoked with the command 
line 

ROLLOUT cV 

then any block of memory can be subsquently written to a 
scratch diskette. A position-independent routine will be 
moved into memory. This routine can subsequently be 
activated by the user from the debug monitor after loading 
his test program into memory. The routine will be used to 
write memory to a scratch diskette that has been placed into 
drive one. 

MOOS 3.0 User"s Guide Page 23-03 



HOLLour COMMAND 23. I -- Use 

No file name specification can be entered with the "V" 
option. The diskette that will be written to in drive one 
must not contain an MDOS system that is to be used again. 
The system tables on that diskette will be overwritten. The 
diskette will have to be regenerated in order to be used as 
an MuOS system diskette. 

ROLLOUT will display the following messaqe once it has 
been invoked with the "V" option: 

LOAD ADDliESSa 

to which the operator must respond with the starting 
hexadecimal address of a memory block into which the ROLLOUT 
command will attempt to move the position-independent 
routine. The address must be for memory above that required 
by MOOS and the HOLLOUT command. If the address entered is 
too low, ROLLOUT will display the message 

LOAD ADDRESS MUST BE GREATER THAN Snnnn 

and return control to MOOS. "nnnn" is the hexadecimal 
address of the last location in memory occupied by ,\tDOS or 
the ROLLOUT command. If the entered address specified spans 
non-existent memory, ROLLOUT will display the standard error 
message 

** 53 INSUFFICIENT MEMORY 

and return to MD(~. 

Caution must be used in locatin1 the 
position-independent routine in llemory. Since MOOS uses the 
upper end of memory when the command interpreter is running, 
the routine should not be loaded within 100 (decimal) bytes 
of the end of contiguous memory. Care must also be taken to 
ensure that the program being tested does not destroy the 
$200 locations occupied by the position-independent routine. 

If the position-independent routine was successfully 
transferred, ROLLOUT will terminate and return control to 
MOOS. The user can then invoke the LOAD command to bring his 
test program into memory. Then, whenever the time is reached 
that memory is to be written to diskette, the user need only 
:Jive control to the sti 11 resident position-independent 
routine at the address that was entered in response to the 
uLOAD ADDRESS" prompt discussed above. This is done via the 
EXbuq command 

nnnnlG 

When the pOSition-independent routine receives control in 
this manner, it will prompt the operator for the starting and 
endinq addresses as described in section 23. I. I. After the 

MOOS 3.0 User-'s Guide Page 23-04 



11 OLL OUT C OMM AND 23.1 -- Use 

address range has been entered and the "Y" response given to 
the uARE yOU SUHE?" question, the message 

DRIVE SCRATCH? 

will be displayed. At this point, a scratch diskette must be 
placed into drive one. A .. yu response will then cause the 
block of memory to be written to the scratch diskette. Any 
other response will give control to the debug monitor~ 

The UNit response to the "ARE YOU SURE?II prornot will 
allow the address range to be reentered. The 110" response, 
however, will return control to the debug monitor, rather 
than to MOOS. After the block of memory has been rolled out, 
the debug monitor will receive control aqain. 

The ROLLOUT command can be 
section 23.1.4) to copy the raw 
diskette into a file on drive zero. 

23.1.4 Scratch diskette conversion 

subsequently 
data from 

used (see 
the scra tch 

If the ROLLOUT command is invoked with the command line 

HOLLOUT <name>;O 

"V" 
wi 11 
been 

The 

then the memory written to the scratch diskette with the 
option will be copied into the file <name>. ROLLOUT 
assume that a scratch diskette is in drive one that h~s 
created via the ROLLOUT command with the "V" option. 
<name> specified must be tor logical unit zero. Since the 
diskette in drive one is scratch, no file can be created 
there. 

The ROLLOUT command will display the followinq message 
once it has been invoked with the "0" option: 

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT? 

to 'l'Ihich the operator must respond wi th a nyll if the ROLLOUT 
command is to continue. Any other response will terminate 
the ROLLOUT command and return control to MOOS. 

If the "YII response is given to the above ~essage. 
ROLLOUT will check that the diskette in drive one was 
:Jenerated with the nVUoption. If an invalid diskette has 
been placed into drive one, the message 

INVALID DISKEITE IN DRIVE 

will be displayed and R(~LOUT will be terminated. If a valid 
diskette is found. then ROLLOUT will oroceed to build a file 
on drive zero that contains the memory information from the 

MOOS 3.0 User"s Guide Page 23-05 



ROLLOUT COMMAND 23. I - Use 

scratch diskette. 

23.2 Messages 

The following messaqes can be displayed by the ROLLOUT 
command. Not all messages are error messages, althouJh error 
messages are included in this list. The standard error 
messages that can be displayed by all commands are not listed 
here. 

START ADDRESS: 

END ADDRESS: 

The starting address of the block of memory to be 
written out must be entered. 

The ending address of the block of memory to be 
written out must be entered. 

INVALID ADDRESS ~ANGE 

The starting address was greater than the ending 
address, or one of the two addresses contained an 
invalid hexadecimal number. 

ARE (OU SURE (Y, N, Q)1 

This message allows the operator to verify that 
the starting/ending addresses entered are what he 
wants. The llyn response will cause ROLLOUT to 
continue. The liN" response wi 11 allow a new 
address range to be entered. The "OU response 
will terminate the ROLLOUT command. 

DRIVE J SCRATCH? 

This message is displayed by the 
position-independent routine to allow the 
operator a chance to insert a scratch diskette 
into drive one. A .. yu response will cause the 
memory to be written to the diskette. Any other 
response will return control to the debug 
monitor. 

START ADDRESS MUST BE GREATER THAN $nnnn 

The start/end addresses include memory occupied 
by MOOS and/or the ROLLOUT command. If this 
memory is to be written out, the ROLLOUT command 
should be invoked with the "V" option. 
Otherwise, the start/end addresses must be 
greater that flnnnn". 

MDOS 3.0 User's Guide Pag e 23-06 



23.2 -- Messages 

LOAD ADOHESS MUST BE GREATER THAN $.nnnn 

fhe address specifi~d for locating the 
position-independent routine in memory includes 
memory occupied by MDOS and/or the ROLLOUT 
command. The address must be greater tha~ $nnnn 
shown in the message. 

USER MEMORY MAP NOT CONF IGURED 

The uu" option has been specified on an EXORciser 
I system or on an EX(mciser II system that has no 
dual memory map configured. 

LOAD ADDRESS: 

The operator must specify an address at which the 
position-independent routine will be located for 
subsequent access via the debug monitor. The 
load address entered will be the starting 
execution address that is used to activate the 
ROLLOUT routine from the debug monitor. 

DOES DiiIVE I CONTAIN A MEMORY ROLLOUT? 

This message allows the operator time to insert 
the scratch diskette created via a previous 
ROLLOUT process with the "VU option into drive 
one before ROLLOUT will convert the data into a 
diskette file on drive zero. A nyu response will 
cause ROLLOUT to c.ontinue. Any other response 
will cause control to be returned to MUO~. 

INVALID DISKETTE IN DRIVE J 

This message indicates that the diskette in drive 
one was not created by the ROLLOUT command with 
the "V" option. 

** 53 INSUFFICIENT MEMORY 

fhe operator specified an address which started a 
block of memory that does not exist or that 
contains bad memory. This block is used to 
receive a copy of the position-independent 
routine that is given control from the debug 
monitor. $200 bytes of memory must be available 
starting at the address entered by the operator. 
The cautions listed in section 23.1.3 should also 
be reviewed. 

MOOS 3.0 User"s Guide Page 23-07 



ROLLOUT COMMAND 23.3 -- Examples 

23.3 Examples 

The following example shows the operator-system dialogue 
for writing a block of memory to a file from the User Memory 
Map of an EXORciser II system with the dual memory map 
configured: 

=ROLLOUT UMBLOCK;U 
START ADDRESS: JOO 
END ADDRESS: 7FF 
ARE YOU SURE (f, N, 0)1 Y 
= 

fhe file named UMBLOCK.LO will be created on drive zero. It 
will contain the block of memory from $)00 to $7FF, 
inclusive, from the User Memory Map. 

The following example illustrates how a copy of the 
diskette controller HOM can be written into a diskette file: 

=ROLLOUT 0 I SKROM: 2 
STAHT ADDRESS: E800 
END ADDRESS: EBFF 
AR E f 0 U SUR E (Y, N, Q)? Y 
= 

fhe file named DISKHOM.LO will be created on drive two. This 
example is valid for either type of EXORciser system. 

The following example shows how the ROLLOUT command is 
used to write memory to disk during a test session of A user 
program that overlays MDOS. A maximum contiguous memory 
ranQe of 32K is assumed. 

=HOLLOUT ;V 
LOAD ADDHESS: 7F80 
** 53 I NSU FF Ie lENT MEMOHY 
=ROLLOUT ;V 
LOAD ADDHESS: 7000 
=LOAD TESTPROG;V 
* (User does testinq here via EXbuq) 
*7DOO;G 
START ADDRESS: 100 
END ADDRESS: 5FFF 
ARE toU SUHE (Y, N, Q)1 N 
STARf ADDRESS: 100 
END ADDRESS: 2FFF 
ARE '{OU SURE (Y, N, Q)1 Y 
DRIVE J SCRATCH? Y 
* 

In the above example, the operator initially specified a 
block of memory which was too small to receive the 

MUOS 3.0 User's Guide Paqe 23-08 



H OLL OUT C OMM A i~D 23.3 -- Examples 

position-independent routine. $200 bytes are required to 
contain the routine; however, since the end of memory is used 
by the MOOS command interpreter, an additional block of 
memory is allowed for the MDOS stack. Thus, the ROLLOUT 
command had to be invoked again. lnen, after loading and 
testing his program, the operator invoked the routine via the 
u7000;GtI EXbug command. After entering the end address, the 
user realized an error, and responded UNJ· to the "AHE yOU 
SURE?" question!' Testing can be continued after the block of 
memory has been written to the diskette. 

The last example illustrates how the scratch jiskette 
~enerated above is converted into a files 

=ROLLOUT TESTROLL;D 
DOES DRIVE J CONTAIN A MEMOHY ROLLOUT? Y 
= 

The file named TESTROLL.LO will be created on drive zero. 

MDOS 3.0 UserJs Guide Page 23-09 



CHAPTER 24 

24. SYSTEM DESCRIPTION 

This chapter contains the detailed descriptions of the 
structure of an MOOS diskette, the structure of MDOS files 
and their formats, the system overlays, the memory map, the 
command interpreter, interrupt handlers, the system function 
handler, and the MOOS equate file. The subsequent three 
chapters contain the detailed descriptions of the in1ividual 
system functions and how they are parameterized. 

24.1 Diskette Structure 

MDOS is based on a single- or double-sided, 
single-denSity flexible disk, or diskette. The diskette is 
compact in size, portable, fairly durable, and easily 
inserted into and removid from the diskette drives. Due to 
the disketteJs portabIlity and interchangeabilIty, each 
diskette is treated by MDOS as a complete, self-contained 
entity_ Each diskette has its own system tables, operating 
system, and files. 

Information on an MOOS diskette is stored in sectors 128 
(decimal) bytes in size. As the diskette turns, the 
read/write head in a stationary position will pass over 26 
(decimal) sectors each revolution. The area accessible to 
the stationary head on one side of the diskette is cal10d e 
track. The area accessible to the stationary head on both 
sides of the diskette is called a cylinder. The head can be 
positioned over 77 (decimal) discrete cylinders. Thus, there 
are a total of 2002 (decimal) sectors on each surface of a 
diskette. A single-sided diskette only has one surface that 
can be read from and written to. A double-sided diskette has 
two surfaces. 

In order to mlnlmlze access time and yet provide for a 
dynamic allocation scheme, all diskette space allocation is 
done in terms of clusters, rather than sectors. MDOS 
clusters consist of four, physically sequential sectors. A 
clUster is the smallest structural unit of information on the 
diskette. rhus, the smallest possibl.e size that a file can 
have is one cluster. 

The following 
statistics. 

MUOS 3.0 User"s Guide 

table summarizes these 1i ske tte 

Page 24-0 I 



SYSTEM DESCiiIPTION 24.) -- Diskette Structure 

Sin;Jle-sided Double-sided 

:Juanti ty Decimal Hex Decimal Hex 
-------- --------- -------
Surfaces/diskette I J 2 2 
dytes/sector 128 80 128 80 
Sectors/track 26 IA 26 IA 
[racks/cylinder I 1 2 2 
Sectors/cylinder 26 IA 52 34 
Cylinders/diskette 77 40 77 40 
Sectors/surface 2002 7D2 2002 7D2 
3ectors/diskette 2002 7D2 4004 FA4 
Sectors/cluster 4 4 4 4 
Clusters/diskette 500 IF4 1001 3E9 

MOOS accesses sectors on the diskette via a physical 
sector number (PSN). The diskette controller decodes the PSN 
into the appropriate cylinder/sector position. [0 avoid 
confusion. all sector numbers given in this secti0n will 
refer to physical settor numbers. If a need should ~rise to 
convert between cylinder/sector and physical sector ~umbers. 
Appendix A has been provided. It contains the physical 
sector numbers of the first sector of each cylinder on each 
surface. 

A portion of each diskette is reserved for some special 
system tables. These tables re~ide in the outermost cylinder 
of the diskette. cylinder zero. Each table, with the 
exception of the directory. occupies a single sector. The 
following table summarizes the location of the system tables: 

System table 

Diskette Identification Block 
Cluster Allocation Table 
Lockout Cluster Allocation Table 
Directory 
Bootblock, MuOS RIB 

24.1.1 Uiskette Identification Block 

PSN 

sao 
SO) 
S02 
S03-16 
$ 17. 18 

The Diskette Identification Block is created during 
system generation. It contains an 10. the version and 
revision number of the resident operating system. the date 
the diskette was generated. a user name identification area, 
and a dynamic area for the MDOS overlay RIB addresses. The 
1D is displayed by the DIR. FREE. and REPAIR commands. The 

MOOS 3.0 User"s Guide Page 24-02 



SYSTEM DESC~IPTI()N 24.1 -- Diskette Structure 

Diskette Identification Block has the following formata 

Bytes Size Cont ents 
------- --~----

0-7 8 Oi skette 10 
8-9 2 Version number 
$A-B 2 Revision number 
SC-Il 6 Generation date 
$12-25 $14 Us er name 
$26-39 $14 MOOS overlay RIB addresses 
$3A-$7F $46 Zeroes 

24.1.2 Cluster Allocation Table 

The Cluster Allocation Table (CAT) contains a bit map of 
the areas on the diskette that are available for new space 
allocation. Each bit in the CAT represents a pnysical 
cluster of diskette storage. The first bit of the first byte 
of the CAT (bit 7 of byte 0) represents cluster o. The 
subsequent bits represent subsequent clusters. -A bit set to 
one indicates that the cluster is allocated. If a bit is set 
to zero, it indicates that the corresponding cluster is 
available for allocation. Since not all 128 bytes of the CAT 
correspond to physical clusters, the parts of the CAT that 
represent clusters beyond the physical end of the diskette 
are marked as allocated so that they cannot be used by any 
MOOS functions. 

{n single-sided diskettes, bytes 0-$3E of the CAT 
correspond to the physical locations on the diskette; 
however, in byte S3E, bits 0-3 are set to one since no 
physical sectors correspond to those cluster numbers. Bytes 
$3F-IF are set to all ones. The cluster division for 
allocation only includes 2000 (decimal) sectors. Since there 
are 2002 sectors, the last two physical sectors of a 
single-sided diskette are not available for allocation 
( $ 700-7D t ) • 

(~ double-sided diskettes, bytes 0-$70 correspond to the 
physical locations on the diskette; however, in byte $70, 
bits 0-6 are set to one since no physical sectors correspond 
to those cluster numbers. Bytes $7E and $7F are set to all 
ones. The cluster division for allocation incluies all 
physical sectors (4004, decimal). There are no unused 
sectors on a double-sided diskette. 

24.1.3 Lockout Cluster Allocation Table 

The Lockout Cluster Allocation Table, or LeAT, is 
similar to the CAT in structure; however, it is only used 
during the OOSGEN and REPAlt-l processes. The LCAT provides a 

MUOS 3.0 User"'s Guide Paqe 24-03 



SYSTEM DESCHlj)TION 24. I -- Diskette Structure 

map of which areas of the diskette have been ,flagged as bad 
during the DOSGEN write/read test. In addition, the LCAr is 
configured so that those sectors of the diskette occupied by 
the system tables in cylinder zero and any user locked out 
areas (see Chapter 10, DCSGEN command) are flaqged as 
unavailable for normal allocation. 

24.1.4 Directory 

The directory occupies twenty sectors. Each directory 
sector contains eight entries of sixteen bytes each. Each 
entry contains a file name, a suffix, the address of the 
file's first cluster, the file's attributes, and some room 
for expansion. 

A file is one or more clusters containing related 
information. This information may be ASCII source programs, 
binary object records, user-generated data, etc. Each file 
must reside wholly on a single diskette. Files are 
identified to the system by their names, suffixes, and 
logical unit numbers. 

The name as stored in the directory consists of ten 
bytes; however the MOOS command interpreter deals with an 
eight-byte name and,a tWO-byte suffix. This is merely a 
convention of the command interpreter and has no significance 
in relation to the internal format of the directory. System 
routines and functions dealing with file names as a parameter 
use a ten-byte block which is always dealt with as a 
monolithic item. 

File names aSSigned by the user must be fro~ one to 
eight alphanumeric characters in length. The first character 
must be alphabetic. A file~s suffix is used to further 
identify the file. The suffix is primarily used to identify 
the format of the file content; however, this is ourely a 
convention; the attribute field of the directory entry 
describes the file~s physical format. Suffixes are 
conSidered as an extension of the file name. They can be one 
or two alphanumeric characters in lenqth. The first 
character of the suffix must be alphabetic. 80th the file 
name and the suffix, if shorter than their maximum allowable 
lengths, are left justified and space-filled in the directory 
entry. 

In most cases, the MOOS commands make certain default 
assumptions about a file's suffix if it is not explicitly 
specified by the operator; however, explicit suffixes can be 
used whenever the default is to be overridden. The standard 
MOOS default suffixes arel 

MDOS 3.0 UserJs Guide Page 24-04 



SYSTEM DESC~IPTIOj~ 24.1 -- Diskette Structure 

Suffix Implied meaning 

AL Assembly listinq file 
CF Chain procedural file 
eM Command file file 
ED EOnS-converted file 
Ln Loadable. memory-image file 
LX EXbuq-Ioadable file 
I")" tl,...l,...;.. ... +-ahl~ "h;o,. ... -filQ n \J fi C L v\.. a '" 1oJ.L c;; VI OJ J C;;...,.. ~ ~ .. '" 
SA ASCII source file 
SY Internally-used system file 

Lo~ical unit numbers identify the drive that contains 
the file. Since each diskette carries with it its own 
directory, different files with identical names and suffixes 
can reside on different diskettes. 

The standard format for specifying file names, suffixes 
and logical unit numbers is' 

<file name>.<suffix>'<loqical unit number> 

where the period (.) and colon (a) serve to delimit the start 
of the suffix and the logical unit number fields, 
respectively. 

In addition to a na~e, each directory entry contains a 
set of attributes which characterize the fileJs content. A 
file's attributes include inherent attributes and assignable 
attributes. The inherent attributes of a file describe its 
allocation scheme {contiguous or se~mented)i the file format 
(ASCII record, binary record, memory-image, or user-defined>, 
and whether space compression is used for ASCII recoris. The 
file formats are described in section 24.3. 

The assignable attributes include write protection, 
delete protection, and the system file attribute. If a file 
is write protected, it cannot be written into or deleted. If 
3 file is delete protected, it cannot be deleted. If a file 
has the system attribute, it will be included in the system 
Jeneration process (DOSGEN) and is handled differently by the 
UEL and OIR commands. 

The format of a directory entry is described in the 
following table: 

MOOS 3.0 User's Guide Pag e 24-05 



SYSTEM DESCRIPTION 24. I -- Diskette Structure 

Bytes Size Contents 

$0-7 8 File name 
$8-9 2 Su ffix 
$A-B 2 PSN of first cluster 
$C-D 2 Attributes 
$E-F 2 Zeroes 

The attribute field of a directory entry has the 
following format: 

F E D C B A 9 8 7 6 5 4 3 2 o 

: : : : J : <-------- Not Used (=o) -------> 
: : .: . : : . 
: : . : - : : ... File format (O=user-defined, . 
: : : , & 2=memory-im-3ge, , , : : & 3=binary record, 
: : , : : 5=ASC I I recard, 
: : & I I 7=ASCII-converted-
I : J , : binary record) 
I : : .: I 

: I J J & • • • • • • • • • • • Non-compressed space bit 
I : : : . . . . . . . .0. . . . . . Contiquous allocation bit 

I : ................... System fil e bit 
I : . . . . . . . . . . . . . . . . . . . . . . . Delete protection bit 
: . . . . . . . . . . . . . . . . . . . . . . . . . . . Write protection bit 

Associated with each directory entry is an eiqht-bit 
number, the directory entry number (DEN), which is a function 
of the physical location of the entry within the directory. 
[he DEN is not found anywhere in the directory. It is a 
calculated quantity and is interpreted as follows: 

7 6 5 

: 
I 

: 
: 

4 3 2 o 

: •••• Position within sector 
(0-7) 

I •••••••••••••••••••• Physical sector number 
( $3- $16) 

24.1.5 Bootblock 

The Bootblock is a small loader program that is brought 
into memory along with the next physical sector by the 
diskette controller during system initialization. The second 

MOO S 3. 0 U se r " s G u ide Page 24-06 



SYSTEM DESCH I VII ON 24.1 -- Oiskette structure 

sector that is loaded contains information regarding the size 
of the resident operating system. From this information, the 
Bootblack program configures the diskette controller to load 
into memory the actual resident operatin~ system. 

24.2 File Structure 

While the contents of a file can be thought of as a 
logically contiguous block of information, the actual 
diskette area allocated to the file mayor may not be 
physically contiguous. Space can be allocated to one or more 
groups of physically contiguous clusters on the diskette. 
each contiguous group of clusters is called a segment. This 
segmentation allows the dynamic allocation and deallocation 
of space to occur without having to move any of the 
information contained in the file or in other files. 

Each file must, therefore, have a table that describes 
which segments are allocated to the file. This table is kept 
in the first physical sector of each file and is called the 
Hetrieval Information Block (HIS). It is the address of the 
KIB that is contained in the directory entry of a file. 

MOOS accesses sectors within a file by logical sector 
number (LSN). Since the first physical sector of a file is 
not really a data sector, the RId is given an LSN of ~inus 
one (SFFFF). Therefore, logical sector zero of a file (the 
first data sector) is actually the second physical sector of 
the file. Logical sector numbers for data sectors are 
numbered sequentially beginning with zero. Thus, even though 
a file may be segmented (not physically contiguous on the 
diskette), it is treated as a logically contiguous collection 
of sectors when accessed by logical sector number. The 
system I/O functions decode the LSN into the actual PSN. 

24.2.1 Hetrieval Information Block 

For all files, the HIB contains a series of two-byte 
entries called segment d~~criptor words (SDWs). A special 
SOW is used as a terminator to indicate the end of the 
segment descriptors within the RIB. Each SOW (other than the 
terminator) contains two pieces of information: the cluster 
number of the first cluster in the segment, and the length of 
the segment. Since each segment consists of physically 
contiguous clusters, this information is all that is needed 
to describe where a segment of the file is located on the 
diskette. A RIB can contain a maximum of 57 (decimal) SOWs 
and one terminator. 

The RIB of a mernory-i~age file contains some adiitional 
information that describes where the contents of the file are 
to be loaded in memory. This information includes the 

MOOS 3.0 User's Guide Page 24-07 



SYSTEM DESCHIPTIOj~ 24.2 -- File structure 

starting I01d address, the number of sectors to load, the 
number of bytes in the last sector, and the starting 
execution address. 

The memory-image file load information is described in 
the following paragraphs. Both the content and the location 
of each field are described. The offsets used to refer to 
the various bytes are relative to zero (zero being the first 
byte of the HIS sector). All offsets are given in decimal. 

I. Byte 117, the number of bytes to load from 
the last sector, must be non-zero, a ~ultiple 
of 8, and less than or equal to 128 (S80). 

2. Bytes 1 J 8-119, 
must contain a 
than the total 
the file, and 
($200) • 

the number of sectors to load, 
number that is non-zero, less 
number of sectors allocated to 
less than or equal to 512 

3. Bytes 120-121, the starting load address, are 
not checked. For programs loadinq in an 
EXCmciser I system, in the User Memory Map of 
an EXOHcier II system with the single memory 
map configured, or in the Executive Memory 
Map of an EX(~ciser II system with the dual 
memory map configured, this value must be 
greater than hexadecimal location $IF if the 
program is to be loaded via the MDCB loader. 
EXOliciser II systems can have programs loaded 
into the User Memory Map of the dual memory 
map configuration starting at location zero. 

4. The ending load address is calculatei from 
bytes 117-121 in the following manner' 

EL = (NSL - I) * 128 + NBLS + SL -

where EL is the ending load address, NSL is 
the number of sectors to load (bytes 
118-119), N8LS is the number of bytes in the 
last sector (byte 117), and SL is the 
starting load address (bytes 120-12). The 
ending load address must be less than 65536. 

5. Bytes J22-123, the starting execution 
address, must lie within the range of 
addresses spanned by the file (greater than 
or equal to the starting load address, and 
less than or equal to the endin1 load 
addre ss). 

6. Bytes 124-127 are not used and must be zero. 

MOOS 3.0 User"s Guide Page 24-08 



SYSTEM DESCRIpTION 24.2 -- File Structure 

F 

The following diagrams illustrate the format of a 
segment descriptor word and the terminator. 

SEGMENT DESCRIPTOR WORD 

E D c B A 9 8 7 6 5 4 3 2 a 
____________ ... __ ... ______ . _____________ .... .-._oIIil&.;;;;;;;iiI;.g;.::===om:r:=-=m~ ___ 4!"I!'~ ______________ _ 

: 
a 
: 
I 

: <------- starting cluster number ------> 
I 

I ••••••••• Number of contiguous clusters -

I ••••••••••••••••••••• Zero (Non-terminator bit) 

TERM! NAToH 

F E o C B A 9 8 7 6 5 4 3 2 o 

: <------- Logical sector number of logical end-ot-file -----> 
I 

I ••••••• One (Terminator bit) 

The SD~ terminator is used to monitor the logical 
end-of-file. It contains the logical sector number of the 
end-of-file. The sector which is the end of a file may be 
partially filled with null characters. Thus, no actual 
end-of-file record will be found within a file. This feature 
allows files to be merged toqether without having to read 
through the entire file looking for an end-of-file record. 

The actual format of a RIB is shown in the following 
diagram. For non-memory-imaqe files, the bytes following the 
terminator must all be zero. Only memory-image files can 
have non-zero bytes following the terminator, and then those 
bytes must meet the six criteria listed above. 

MOOS 3.0 User"s Guide Page 24-09 



SYSTEM DESCHlt>TION 24.2 -- File Structure 

FED C B A 9 8 7 6 5 432 0 

00 

02 

04 

14 

76 

I8 

lA 

IC 

IE 

I 

• -

24.2.2 File formats 

Sow 0 

Sow I 

Other SD~s 

TEHM I NATOR 

Zeroes 

• • -

: BYTES IN LAST SECTOR : 

NUMBER OF SECTOHS TO LOAD 

STAHTING LOAD ADDRESS 

STARTING EXECUfION ADDRESS 

ZERO 

ZERO 

MDOS deals with four types of file formats on diskette: 
user-defined, memory-image, binary record, and ASCII record. 

User-defined f il es are deal t with by MOOS at the sector 
level. MDOS will keep track of where the file is and will 
only allow access to the file by logical sector number. The 
user has the responsibility of formatting the data within the 
sectors in the manner suited to his application. 

MemorY-image files include all files whose contents are 
to be loaded into memory directly from the diskette by the 
MOOS loader. Memory-imaqe files are allocated contiguous 
space on the diskette. The only information retainei about 
where the content is to be loaded is kept in the file's HIB. 
[he jata within the sectors of the file contain no load or 
record information. It is merely an imaqe of a block of 
memory to be loaded into. Due to the nature of the 1iskette 
controller, MDOS programs can only be loaded in multiples of 
eight bytes. A further restriction placed on memory-image 

MOOS 3.0 User's Guide Page 24-10 



SYSTEM DESCrlIPTION 24.2 -- File structure 

files is that their content cannot load below memory location 
$20 if they are to reside in the single memory map of an 
t X OR cis e rIo rEX OR cis e r I I sy s t em. 

Binary record files are used primarily for the 
relocatable object datA produced by the Macro Assembler and 
the relocatable FORTRAN compiler; however, the user can 
create data files usinq this binary record format as well. 

ASCII record files are used to contain all other 
MDOS-supported data. Such files can be in either 
space-compressed or non-space-compressed form. Normally, 
MOOS will alwBYs create ASCII files with the 
space-compression attribute to conserve diskette space. 

The non-memory-image files can be allocated in either 
contiguous or segmented fashion. Normally, MOOS will create 
such files in a segmented manner to take advantage of the 
dynamic allocation scheme. If files are segmented, they can 
expand to the full capacity of the diskette when they need to 
grow in size; however, if files have contiquously allocated 
space. then they can only be expanded if they are allocated 
space that is contiguous to the originally allocate1 space. 
Normally, contiguous files are created with the maximum space 
that they will ever need. 

24.3 Record Structure 

This section describes in detail the two record types 
supported for diskette files. In addition, a special record 
type used fot COpying binary files to a non=diskettG dGvice 
is also discussed. fhe actual use of such records is fully 
discussed in Chapter 25 which describes the supported I/O 
functions. All records supported by MOOS are terminated by a 
carriage return, line feed, and null sequence; however. on 
the diskette, only the carriage return character is retained 
in order to conserve diskette space. ~hen diskette files are 
copied to a non-diskette device, the other two characters are 
automatically supplied by MOOS. 

24.3.1 Binary records 

Binary records are used primarily as output from the 
i>Aacro Assembler and the FORTi1AN compiler, and for inout to 
the Linking Loader. Binary records contain a special record 
header, a byte count, and a checksum. The checksu~ is a 
two's-complemented sum of all bytes in the record from the 
byte count through the last data byte, inclusive. A maximum 
of 254 (decimal) data bytes can be contained in each binary 
record. 

The format of a binary record can be illustrnted as 

MDO S 3. 0 Use r" 5 G u ide Paqe 24-1 t 



SYSTEM DESCRIPTION 24.3 -- Record Structure 

follows: 

-----------------------------/ /--------_._---
: D : BC : DATA : CK : CH : 
------------------------------/ /-------------

[he symbols take on the following meanings: 

Symbol Meaning 

o [he binary record header character "0" 
( $ 44) • 

dC 

DATA 

CK 

A one byte "byte count U that cont~ins the 
number of data bytes in the record plus 
one (for the checksum byte). 

A maximum of 254 (decimal) data bytes. 
Any eight-bit values are valid for the 
data bytes. 

The twoJs-complemented sum of the byte 
count and all data bytes. CK is a one 
byte field. 

CR The terminatinq carriaqe return. For 
non-diskette devices this will actually 
be a carriage return, line feed, and null 
sequence. 

Since diskette files contain the logical end-of-file 
indicator in the RIB, the binary EoF record only will be seen 
on non-diskette devices. The binary EOF record has the 
following format: 

: E : BC : CK : CR : 

The symbol J'E'" is the end-ot-file record header which is the 
letter ~E" ($45). The other symbols are the same as in the 
above table. The EOF record has no data bytes. Thus, the 
byte count will be equal to one. 

24.3.2 ASCII records 

ASCII records are used primarily for source files on the 
diskette; however, EXbug-loadable format files are ASCII even 
though they are object files output from the assemblers or 
Linking Loader. 

ASCII records contain no record headers, byte counts, or 

MOOS 3.0 UserJs Guide Page 24-12 



jYSTEM DESCH I PT I Of~ 24.3 -- Record Structure 

checksum fields. The first ASCII record in a file begins 
with the first data character of a file and is terminated by 
the first carriage return. All other ASCII records in the 
file begin with the first data character following a carriage 
return: When ASCII records are copied ~o ~on-diskette 
devices, the terminating carriage return is actually a 
combination of three control characters: carriage return, 
line feed 9 and null. ASCII records should contain only 
displayable characters. 

When MOOS writes ASCII records to diskette, they 
normally contain space compression characters to conserve 
diskette space. A space compression character is indicated 
by a data byte having the sign bit (bit 7) set to a one. The 
remaining bits (O-6) contain a binary number representing the 
number of spaces ($20) to be inserted in place of the 
compressed charactero MD(S automatically expands these 
characters into spaces when such files are read. MDOS will 
also automatically create these compressed characters when 
such tiles are written. 

Since MDOS maintains the loqical end-at-file indicator 
in a file's RIB, no ASCII EOF record will be seen in a 
diskette file; however, when ASCII record files are written 
to a non-diskette device, the following EOF record 'flill be 
suppli ed: 

: 1 A: CR : 

where l.r"le .~~ i A!! symbol ISple5eiitS the end-of-file indicator w 

It is the hexadecimal value SIA or SUB control character 
(CTL-Z). The CH symbol is the carriage return, line feed, 
and null sequence. 

If ASCII record files generated on another system are to 
be processed by MOOS, it is important that the carriage 
return, line feed. and null sequence be present at the end of 
each record. Otherwi se, it is possi bl e for each data record 
to lose one or two characters from its beginning. 

24.3.3 ASCII-converted-binary records 

A special form of the binary record exists when copying 
to a non-diskette device that can only accept seven-bit data. 
This record format is usually never kept in a diskette file. 
fhe format of the ASCII-converted-binary record is identical 
to the binary record; however, each byte, with the exception 
of the special header character and the terminating carriage 
return, line feed, and null sequence, is converted into two 
eight-bit bytes with bit seven set to zero. This is 
acco~plished by taking each half of the original byte and" 

MOOS 3.0 User"s Guide Page 24-13 



SYSTEM DESCHlpTION 24.3 -- Record structure 

adding the bit mask %00110000 to the half-byte. 
is a displayable two-byte sequence. For 
hexadecimal data byte $85 would be converted 
byte sequence $38 and $35. 

The result 
example, the 

into the two 

24.3.4 File descriptor records 

MDOS 1/0 operations with non-diskette devices can be in 
one ~f two modes: file format or non-file format. The 
non-file format mode requires no special processing and uses 
only the ASCII record format. 

The file format mode allows MDOS to treat the data on 
certain non-diskette devices as a .ufile", similar to a file 
on diskette. The File Descriptor Record (FOR) is employed to 
serve the same function as a directory entry for a diskette 
file. The FDR contains a file name, suffix, and a file 
format descriptor. Thus, MO(~ can search for a named file on 
a cassette or paper tape, if it was originally created using 
the file format mode. 

All FURs are identical in 
record format of the data file. 
acceptable to any deVice, 
ASClI-converted-binary form, even 
the file is in binary or ASCII. 
the following diagram l 

format, reqardless of the 
Since the FOR ~ust be 

it is written in the 
if the remaining d3ta of 
The FOR format is shown in 

: H : BC : NAME : SUFX : NU : FDF : NU : CK : CR : 

The symbols take on the followinq meaninqsl 

MUOS 3.0 User's Guide Page 24-14 



SYSTEM DESCHIPTION 24.3 -- Record Structure 

Symbol Meaning 

H The FOR header character .uH" ($48). 

BC A one-byte J'byte count" that cont3ins the 
number of bytes in all fields from NAME 
through CK, inclusive. This nu~ber is 
fixed for FDR records at 17 (decimal)o 
This number reflects the real dat~ bytes 
in the unconverted binary form, not the 
bytes written in the 
ASClI-converted-binary form. 

NAME The eight-character file name. 

SUFX The two-character suffix. 

NU A two-byte field which is not used. It 
contains zeroes. 

FDF A two-byte field similar in format to the 
attribute field of a directory entry. 
(mly bits $8-$A are used to describe the 
file format. 

CK The two~s-complemented sum of the byte 
count and all other data bytes. CK is a 
one byte field. 

CR The terillinating character sequence of 
carriage return, line feed, and h~ll. 

The length of all fields of the rDH (except Hand CR) is 
doubled when written (ASCII-converted-binary format). Thus, 
if the CH field is counted as three characters (carriage 
return, line feed, null), then the physical length of an FOR 
in the ASClI-converted-binary format is 36 (decimal) bytes. 

24.4 System Files 

On every MDOS diskette there are nine files which 
comprise the operating system. These files contain the 
resident operating system, a series of overlays to reiuce the 
~ain memory requirements of the system, and standard error 
~essaqes. The resident operating system file MOOS.Sf must 
reside in a fixed place on the diskette if the B0otblock 
program is to work after being activated by the iiskette 
controller. The other system files must remain in fixed 
positions after MDOS has been initialized since they are 
referenced by their physical sector numbers. 

MOOS 3.0 User's Guide Page 24-15 



SYSTEM DESCH I PTI 01'1 24.4 -- System Files 

24.4.1 System overlays 

The system overlay files are loaded into memory into one 
of the four overlay regions discussed in the subsequent 
section. The overlay handler only brings an overlay into 
memory if it is not already in memory at the time a specific 
function is required. If an overlay remains in memory, 
access to its function is faster than if it has be to loaded 
from the diskette. The functions contained in the seven 
overlay files are shown in the following table: 

Overlay Function 

MDOSOVO.SY Diskette space 
deallocation. 

allocation and 

MDOSOVI.SY Processing standard file names, 
allocating contiguous memory, 
reserving a device, rele~sing a 
device, writing standard records, 
writing FOHs t writing end-of-file 
records, console reader/punch device 
handling. 

MOOSOV2.SY Heading 
FORs. 

standard records, reading 

MDOSOV3. SY Closing a f i I e/dev ice, rewi nd ing 
diskette files, changing file names 
and at tr ibut es. 

MDOSOV4.SY Opening a file/device. 

MOOSOV5.SY CHAIN file execution. 

MOOSOV6.SY Command line interpretation. 

When MOl)S is initialized, the directory is searched for 
the seven overlays' by name. The physical diskette addresses 
are then retained so that a subsequent reference to an 
overlay function does not involve another directory search. 
Thus, MUOS must be reinitialized each time the diskette in 
drive zero is changed so that the overlays can be located 
aqain. 

Overlays MOOSOVO and MDOSOVI use overlay regia" one. 
Overlays MUOSOV2 and MDOSOV3 use overlay region two. 
Overlays MDOS()V4 and MDOSOV5 use overlay region three, and 
overlay MDOSOV6 uses the User Program Area into which the 
MDOS commands also are loaded. The overlay regions are shown 
in the memory map diagram of section 24.5. 

MOOS 3.0 User's Guide Page 24-16 



S YSIEM DESCH I PI I Oi~ 24.4 -- System Files 

24.4.2 System error message file 

In an attempt to use English language descriptions for 
the various error conditions that may arise, all standard 
error messages are kept in the -system file MOOSER.SY. This 
file is accessed by the error message function .MDERR 
(section 27 ~ 4). The error me-ssages are placed in this file 
so that the most frequently used messages are near the 
be:] i nni n g. 

If the error message file cannot be read or accessed, 
the error message function will display a message injicatinq 
that an invalid error message has been requested. 

24.5 Memory Map 

Ine memory mapping of MOOS within the EXOHciser system 
is illustrated in the following diaqram& 

MOOS 3.0 User's Guide Page 24-17 



SYSTEM DESCHIPTION 

0000 : DISKETTE CONTf-lOLLER VAHIABLES : 

0020 UNUSED DIRECT ADDHESSING 
AREA 

OOAE COMMAND LINE BUFFER 

DOFE COMMAND LINE BUFFER POINTER 

0100 MOOS VARIABLES, 

2000 

3FFF 

IOCBs and S,{STEM BUFFERS 

SWI HANOLEH 
KEHNEL SYSTEM FUNCTIONS 

: CONTROLLER DESCRIpTOR BLOCKS 

SUPPORTED DEVICE DRIVERS 

HESIDENT SYSTEM FUNCTIONS 

OVERLAY HANDLER 

OVEHLAY HEGION I 

OVEHLAY REGION 2 

OVEHLAY REGION 3 

OVERLAY REGION 4 
and 

USER PROGRAM AREA 

: END OF MINIMUM SYSTEM MEMORY -
END OF CONTIGUOUS MEMORY 

RAM Discontinuity 

NON-MUOS RAM 

Eaoo DISKETTE CONTROLLER PROM 

ECOD 

FOOO 

FFF~ 

MOOS 3.0 User"s Guide 

PIAs 

EXbug MONITOR 

INTERRUPT VECTORS 

24.5 -- Memory Map 

Page 24-18 



SYSTEM OESCHItJTION 24.5 -- Memory Map 

Locations soOaO-OOIF, inclusive, are reserved for the 
variables of the diskette controller. These locations cannot 
be initialized by a program loading from the diskette. In 
addition, if a program requires the use of the diskette 
functions (either directly through the diskette controller or 
through the MOOS functions), then these locations cannot be 
used by the program for storage. Locations SOOAE700FD, 
inclusive, contain the MOOS command line as it was entered by 
the operator. Command~interpreter-loadable progra~s must 
load above location $IFFF. They can use the direct 
addressing area for variable storage; however, this Area 
cannot be initialized while the program is being loaded into 
memory. Programs that do not make use of MOOS system 
functions can load anywhere in memory above location SOOlF. 
If such programs do not use the diskette controller entry 
points (Appendix D)i the direct addressing area below 
location $0020 can be used, bUt only after the proqram is 
resident in memory. 

The MOOS variables (locations $FE and higher) contain 
pointers to several areas in memory that might be required by 
a user program. The absolute addresses of these pOinters 
should be obtained from the MOOS equate file. The pointers 
~ost often required are: 

Poi nter Name 

CBUFP$ 

ENDOS$ 

ENDUS$ 

ENDSY$ 

MDOS 3.0 User"'s Guide 

content 

The addre ss 
bu ffer to the 

in the command 
terminator of 

line 
the 

command being exeCuted. Parameters 
following the command name should be 
scanned for by using the contents of 
this variable. 

The address of the last location of 
resident MOOS. The value of this 
address plus one is the first 
location that a 
command-interpreter-Ioadable program 
can load into. 

The address of the last location 
loaded into by the current program. 
The proqram can allocate additional 
memory (between the last loaded 
location and the end of contiguous 
memory) via one of the system 
functions. 

The address of the last byte of 
contiguous memory CRAM). 

Page 24-19 



SYSTEM OESCHIPTION 

3~~ I SUV 

IRQSUV 

24.5 -- Memory Mao 

[he address of a user-defined SWI 
handler. This vector must be 
initialized by a user program if it 
is usinq S~Is other than those 
defined for MOOS system functions. 
This vector is set to point to an HTI 
instruction each time the MOOS 
command interpreter is given control. 

The address of a user-defined IRQ 
handler. This vector must be 
initialized by a user program if it 
is using IHQs. This vector is set to 
point to an HrI instruction each time 
the MDOS command interpreter is given 
control. 

24.6 MOOS Command Interpreter 

The MOOS command interpreter is one of the MDOS overlays 
that gets control whenever MDOS has been initialized or 
whenever a com~and has completed and returned control to 
MOOS. This overlay will cause the standard command line 
input prompt (=) to be displayed whenever it is activated. 

(nce in control, the interpreter waits for operator 
input. After a line has been entered, it is scanned for the 
first valid file name specification. If no valid file name 
is recognized, the standard message 

~HAT? 

will be displayed and a new input prompt shown. If the first 
encountered file name specification contains a valid file 
name, it will be used to search the directory. The default 
suffix "CM" and the default loqical unit number zero will be 
supplied by the MDOS command interpreter if none are 
explicitly entered by the operator. If the file name is not 
founi in the directory specified by the logical unit number, 
the "WdAT?1I message shown above will be displayed and another 
input prompt shown. If the file name is found, it must be 
the name of a file that contains a 
command-interpreter-loadable program. That is, the file must 
be in the memory-imaqe format and must have a starting load 
address that is qreater than the value contained in the MOOS 
variable ENDOSS (greater that SIFFF). If the file passes 
these tests, its contents are automatically loaded into 
memory and given control at the starting execution address 
contained in the file's RIB. 

The loaded program can then extract parameters from the 
MOOS command line buffer. The pointer into the buffer 
(CBUFPS) was left pointing to the terminator that stopped the 

MDOS 3.0 User-'s Guide Page 24-20 



SY~TEM DESC~IpTION 24.6 -- MOOS Commanj Interpreter 

scan for the first valid file name specification when the 
MOOS command interpreter processed the input buffer. After 
completing its function, the command can return to MOOS 
through one of the system functions (.MOENI) which will pass 
control back to the MOOS command interpreter, repeating the 
cycle. 

It should be noted here that commands invoked ~la the 
MOOS command interpreter do not necessarily have to have the 
suffix ·"eM" or reside on drive zero. If a user progra'1l with 
an "LOti suffix is being tested, it can be loaded and executed 
directly from the command line (if it meets the requirements 
for command-interpreter-loadable programs) by explicitly 
entering the suffix after the file name. Similarly, if a 
required command does not happen to reside on drive zero, its 
name can be followed with a logical unit number to cause it 
to be looked for and loaded from the specified unit. For 
example, the command line 

DIR:2 

will invoke the directory command from drive two to display 
the directory of the diskette in drive zero. 

Whenever the MOOS command interpreter regains control 
after a command terminates, it checks that the diskette in 
drive zero still has the same parameters (version number, 
overlay HIS addresses) as the diskette used durinq the last 
MOOS ini tia 1 izati on. If these parameters di ff er. one of the 
standard error messages EI, EH, EU, EV (Chapter 28) will be 
displayed and control given to the debug monitor. MJOS will 
then have to be reinitialized berore the MDGS command 
interpreter will accept further commands. 

In addition, the following parameters are reinitialized 
each time the MOOS command interpreter is given control. The 
user-defined SWI and IRQ vectors (S~I$UV and IRQ$UV) are 
reset to point to an RTI instruction. Since the user prO':)ram 
is no longer resident, the interrupt handlers are 
deactivated. The stack pointer is reset to the end of 
contiquous memory for the duration of the com~and 
InterpreterJ s execution. The Error Status and Error Type 
parts of the system error status word are set or cleared 
depending on whether or not a valid command name was entered 
on the command line. 

24.7 Interrupt Handling 

When MOOS initializes, it saves the contents of the St11 
vector required by the debug monitor. The SWI and IRQ 
vectors nre then changed to point into the MOOS function 
handler. Both vectors are required to allow the operator to 
make full use of the debuq facilities of the debug ~onitor 

MUOS 3.0 User-'s Guide Page- 24-21 



SYSTEM DESCHIPTION 24.7 -- Interrupt Handling 

while using MOOS system functions. Some versions of the 
M6800 MPU will give control to the address in the IRQ vector 
if an NMI occurs while an SWI is in progress. Since the 
debug facilities of the debug monitor use NMI, continuing 
from a system function call will result in passing control to 
the address in the IHQ vector. Thus, MOOS must intercept 
both StH and IRQ interrupts; however, MOOS can distinguish 
the difference between this "pseudo-IRQII and a real IRQ even 
though both give control to the same address. Since MOOS 
does not have any devices in the system that gener3te IRQ, 
there is no true IRQ interrrupt handler. User programs, 
however, can configure the MOOS variable IRQSUV so that if a 
real IHQ occurs, the routine specified by the user will be 
given control. 

Such user-defined IHQ handlers are accessible as long as 
the MDOS command interpreter is not re-entered. ~henever 
control is returned to the MOOS command interpreter, the 
user-defined IRQ vector will be changed to point back into 
MOOS. Thus, I HQs cannot occur after the user proqram has 
terminated. Otherwise, MOOS will hang up in a loop. [his is 
to be expected, since. MOOS has no way of knowing what device 
generated the IHQ, where the device is, or how to respond to 
the IRQ. An IRQ must not be pendinq or occur when the MDOS 
command interpreter is given control. 

Certain precautions must be remembered if a user program 
is to process IHQs and use the MDOS diskette functions. The 
MOOS diskette controller runs with interrupts inhibited for 
the duration of any diskette access. Thus, regardless of 
whether a single sector or multiple sectors are being 
processed, interrupts are inhibited throughout. Therefore, 
an IHQ cannot always be serviced within a definite time 
window if diskette accesses can be in progress. The time is 
dependent on the length of the diskette access. 

Another potential problem exists if NMI is to be used 
while diskette functions are in progress. The NMI vector is 
taken over by the diskette controller while the diskette 
access is in progress. rhe NMI is used as a timeout 
condition. rhus, if a user's system is generating NMIs while 
diskette accesses are going on, a timeout condition will 
result and the user will not be able to process the N~I. It 
is for this reason that no user-defined .NMI vector is 
prov i ded by ,\1DOS. 

The system functions provided by MOOS are accessible 
through use of the software interrupt or SV'lI instruction. A 
full explanation regarding the MOOS SVils is given in the next 
section; however, like the user-defined IRQ vector, MOOS 
allows a user-defined SWI vector to be confiqured throuqh the 
variable S~ISUV. Like the user-defined IRQ handler, the 
user-defined SWI handler is only accessible as long as the 
MOOS command interpreter is not reentered. vlhenever control 

MOOS 3.0 User~s Guide Page 24-22 



SYSTEM DESCHIPTION 24.7 -- Interrupt Handling 

is returned to the MOOS command interpreter, the user-defined 
S~I vector will be changed to point back into MOOS. Thus, 
user-defined SWIs cannot be processed after the user program 
has terminated. This is to be expected, since MOOS commands 
and user proqrams all load into one area of memory. Thus, 
the user-defined S~I handler is not resident after the MOOS 
command interpreter regains control. 

24.8 System Function Calls 

All of the system functions that MDOS commands use are 
also available to the user and can be incorporated into his 
program development. All MD(~ system functions are accessed 
via the software interrupt or S~I instruction. Each S~I must 
be followed by a byte that contains the number of the 
function to be executed. MDOS"s resident software interrupt 
handler can access up to 128 (decimal) functions; however, 
not all of these functions are defined. An error message 
will be printed if the software interrupt handler is 
activated and the function number is not defined. 

A special convention is used to allow the user to dafine 
a maximum of 128 functions also (to be processed by the 
user"s software interrupt handler that is configured via 
SWISJV). If the siqn bit of the function number byte (bit 7) 
is set to one, a user-defined software interrupt is 
indicated. All MDOS software interrupts have function number 
bytes with the l sign bit set to zero. The user-defined SWI 
handler gets control with the reqisters on the stack as if it 
intercepted the SWI directly. The B accumulator will have 
the valu~ of the function nuT.b6r {with the Sign bit set to 
zero) to facilitate indexing into the user"s function table. 

Since MOOS assumes control of the S~~I vector which is 
normally used by EXbuq, certain precautions must be observed 
when debugging proJrams using the debug monitor. 

I. MDOS must not be initialized via the debug 
monitor command IIE800;G" or "MDOS" without first 
having depressed the ABOHT or RESTART pushbuttons 
on the EXOHciser"s front panel. These two 
pushbuttons will restore EXbuq"s S~I vector. 

2. The normal breakpoints can be used while testing 
a program, regardless of whether MOOS system 
fUnctions are used or not; however, breakpoints 
set by simply placin~ an SWI instruction into 
memory via the memory chanqe function will cause 
a system function to be executed rather than a 
breakpoint to occur. Breakpoints must only be 
set or cleared via the debug monitor commands. 

3. Breakpoints can be set on an S~I instruction that 

MOOS 3.0 User's Guide Page 24-23 



SYSTEM UESCIi I PT I OJ..J 24.8 -- System function Calls 

is an MOOS system function call; however, before 
continuing from that particular breakpoint with 
the .I';P" orn;NII commands, the breakpoint should 
be cleared (this is only true for the newer 
versions of the M6800 MPU which do not give 
control to the IHQ vector when an NMI occurs 
while an SWI is executing). 

4. MOOS system functions cannot be traced or 
single-stepped throu~h with the EXbug commands 
";N" or ";T". Since these debug monitor 
functions utilize the stack, parts of MOOS will 
be overwritten due to the internal use of the 
stack pointer within the system function handler. 

MDOS system function calls or user-defined function 
calls are programmed by using the SWI instruction mnemonic 
and the FCB assembler directive. If programs are assembled 
with the MDOS equate file (next section), the provided macro 
definitions with the names SCALL and UCALL can be used to 
generate the code for MOOS system functions and user-defined 
functions, respectively. The macros require an argu~ent to 
be passed. This argument is the name or value of the 
function to be executed. The na:nes of MDOS functions are 
assigned symbols in the MOOS equate file so that the use of 
absolute numbers is not necessary. Use of the SCALL or UCALL 
macro makes the program a bit easier to read, especially if 
names are used for the macro arguments. 

MOOS system functions receive their parameters in the 
registers or in tables that are pointed to by the re)isters. 
Chapters 25 and 27 contain the detailed entry parameters and 
exit conditions for all MOOS system functions. 

Some system functions may not be able to perform their 
expected action. These functions will return an indication 
of whether a normal return or an abnormal return is being 
made. This condition is always passed back in the processor 
status (condition code) register. In addition, a status byte 
may be returned in one of the parameter tables or registers. 

Some of the more complex system functions involving 
input or output can encounter fatal error conditions as well 
as non-fatal error conditions. Fatal errors suggest that the 
program is hopelessly confused. In these cases, the only 
logical action is to display what the problem appears to be 
and to re-enter the MOOS command interpreter. Non-fatal 
errors can include such things as illegal record formats, 
checksum errors, file protection violation, lack of space on 
the diskette, etc. Such conditions are noted and returned to 
the calling program. In these instances, it is the 
responsibility of the calling program to identify the source 
of the error and decide what the course of action should be. 

MDOS 3.0 User's Guide Page 24-24 



SYSTEM DESCRIPTION 24.9 -- MDOS Equate File 

24.9 MOOS Equate File 

With each MOOS system diskette comes a file, EQU.SA, 
known as the MOOS equate file. The MOOS equate file contains 
the definitions of all symbols that are requirei by the 
resident MOOS and all of the MDOS commands. Not all of these 
symbols will be required by the user; however, the file is 
left as is to make it 'as useful as possible, 

The MOOS equate file contains the following definitions. 
The sequence of the descriptions more or less follows the 
sequence of the file from beginning to end. Four macro 
definitions are found at the beginning of the MDOS equate 
file that are useful to the user. 

Macro Name Function 

SKIP2 To be used as an instruction. The 
effect of the instruction is to 
execute a branch to location *+3. 
The .. *" refers to the address of the 
branch instruction. The condition 
codes are changed as in a CPX 
instruction; however, this branch 
instruction requires only one byte of 
memory. 

SKIP} 

SCALL 

UCALL 

MDOS 3.0 User-'s Guide 

To be used as an instruction. The 
effect of the instruction is to 
execute a branch to lecation *+2. 
The condition codes are changed as in 
a BITA instruction; however, the 
branch instruction requires only one 
byte of memory. 

To be used with a single argu~ent to 
execute a software interrupt (SWI) to 
the' MOOS system function handler. 
This macro ensures that the sign bit 
of the function byte is set to zero. 
The symbols for the system functions 
are defined later in the MOOS equate 
fi Ie. 

To be used with a single argument to 
execute a software interrupt (SWI> to 
the user-defined function handler. 
This macro ensures that the sign bit 
of the function byte is set to one. 
The UCALL macro only makes sense if 
the user has configured an SWI 
handler. 

Page 24-25 



SYSTEM OESCii I PTI o;~ 24.9 -- MOOS Equate File 

All other macro definitions in the MOOS equate file are for 
internal use. 

Following the macro definitions is a list of na~es that 
identifies all of the system functions accessible via the 
SCALL :nacro (or a n Sv~ I ins true ti on followed by a funct ion 
byte). These equates are defined using a ~acro that allows 
the labels to sequence themselves. Thus, if one label is 
removed from the list, the numbers assigned to the lanels 
will still be consecutive, ascendinq inteqers. The first 
function is Jiven the value of zero. . Subsequent functions 
are assiqned a number one higher than the previous function. 
If the SCALL ~acro is used in writing proqrams, it is 
suggested that the system symbols for the system functions 
also be used. 

After the definitions of the system function symbols is 
a set of equates for all of the ASCII control characters 
including space and rubout characters. These. symbols are 
followed by equate s for the speci al MDOS del imi ters rJ sed for 
suffixes, options, logical unit nu~bers, device names, and 
family indicators. 

Next is a list of MDOS sector equates that defines where 
the various system tables are located. In addition, the 
sector size and the sectors/cylinder, etc., are defined. 

Then, offsets into the various system tables are 
defined. These equates are followed by the definitions of 
the fields in the I/O control block (loeB), which, in turn, 
are followed by another series of self-sequencinq definitions 
for the various I/O function error statuses. 

Following the error statuses, the locations of all of 
the Mrn)S internal variables are defined. These include the 
locations of the variables needed by the user for acces~inq 
the command buffer, the memory sizes established at 
initialization, and the user-defined interrupt vectors. 

After the variables is a series of equates that defines 
the various bit positions of the loeB, the offsets into the 
controller descriptor block (COB), bit definitions within the 
COB, and the offsets to the entry points of the deVice 
irivers. 

LastlY, the diskette controller variables, entry points, 
and error statuses are equated to symbols. These equates are 
followed by a partial list of the locations in EXbug required 
by MDOS. The EXbug equate list is not complete. Thus, users 
requiring other entry points into EXbuq must provide them 
within their programs. 

If programs are being written that use the resident MOOS 
functions, it is suggested that the MOOS equate file be 

MOOS 3.0 User"'s Guide Page 24-26 



3YSTEM DESCHIPTION 24.9 -- MOOS Equate File 

included as a part of the assembly (requires M6800 Macro 
Assembler>. Symbols within the MOOS equate file rnny have 
their values changed by Motorola in subsequent versions of 
MOOS; however, all attempts will be made to ensure a minimal 
number of such changes: Therefore, the MOOS equate file 
should not be copied from one version of MOOS to another. 
Like the resident system and command files that comprise the 
operating system, the MOOS equate file is associated with a 
specific version and revision of the operating system. 

A listing of the MOOS equate file is contained in 
Appendix I. 

MOOS 3.0 User's GUide Page 24-27 



CHAPTER 25 

25. INpUT/OUTPUT FUNCTIONS FOH SUPPORTED DEVICES 

In the following description of the 1/0 functions for 
supported devices these symbols will be used: 

Symbol Meaning 

A A accumulator 
B B accumulator 
X Index register 
CC Condition code register 
Z Zero flag of condition code register (bit 

2) 
C Carry flaq of condition code register 

(bit 0) 
CR Carriage return 

It is assumed that the reader is familiar with what 
system functions are, how they are invoked, what precautions 
must be taken when testing programs using system functions, 
and how errors are handled by system functions (see section 
24.8) • 

25.1 Supported Devices 

MDOS provides input and output functions to access the 
following supported devices: 

MOOS Name 

CN 
CP 
CH 
DK 
LP 

Physical Device 

Console keyboard andlor display 
Console punch 
Console reader 
iJiskette drive 
Line printer 

The followinq sections describe the system functions that are 
available for accessinq these devices. 

25.2 DeVice Dependent 1/0 FUnctions 

MOOS provides system functions for directly accessing 
the console keyboard, display, line printer, and jiskette 
drives. All of the functions are accessed by executinq an 
SWI instruction followed by a function byte. The value of 

MOOS 3.0 user-'s Guide Page 25-01 



INPUT/OUTPUT FUNCfIONS 25.2 -- IJevice Dependent I/O Functions 

the fUnction byte indicates the function to be executed and 
can be obtained from the MOOS equate file. All system 
functions that perform input/output operations require a 
stack in the user program area. The size of the st~ck must 
be at least 80 bytes (decimal). Each system function call 
pushes seven bytes on the stack. Since function calls may be 
nested within MDOS, a large stack is required. It should be 
noted that EXbug does not have sufficient stack space 
available; the stack area must be provided by the user 
elsewhere. 

The device dependent functions for the console and the 
line printer use the device independent functions (section 
25.3) via parameter tables held in the MOOS variable section 
of memory. Any error conditions detected by these system 
functions will cause the calling program to be aborted, a 
standard system error message to be displayed, and control to 
be given to the MOOS command interpreter. Since MOOS manages 
these parameter tables (reserving, opening, etc.>, any error 
except "Buffer Overflow" during a console input will be a 
fatal error. 

If, while accessing the console or the line printer, the 
errors are to be handled by the calling program, the device 
indeoendent I/O functions (section 25.3) must be used 
instead. 

25.2.1 Console input -- .KEYIN 

The .KEVIN function inputs a specified nu~ber of 
characters from the system console keyboard. All characters 
entered (with the following exceptions) are stored into an 
input buffer. The function does not return until a 
terminating carriage return is supplied from the keyboard. 

The following characters are treated as special control 
characters when encountered by the .KEYIN function: 

Character Value 

HUBOUT or DEL S7F 

MOOS 3.0 User's Guide 

Function 

Hemoves last character 
entered into buffer unless 
buffer is empty. The removed 
character is displayed on the 
system console to indicate 
that it has been removed from 
the buffer. No action occurs 
if the buffer is empty. 

Page 25-02 



INPUT/OUTpUT FUNCfrONS 25.2 -- Oevice Dependent IIO Functions 

CTL-X or CAN S18 Deletes all characters from 
the input buffer. A cnrriage 
return/line feed is displayed 
on the console to indicate 
that a new input line ~ust be 
entered. 

CfL-D or EOT S04 

CIL-.\{ or CR SOD 

Displays the current c0ntents 
of the input buffer from the 
first character to the last 
character entered. fhe input 
is not terminated. This 
feature offers a means of 
displaying a .IIclean ll line 
after many characters have 
been backed out via the 
RUBOUI key. 

Terminates the input. The 
carria~e return is the last 
character placed into the 
input buffer. A carriage 
return/line feed is displayed 
on the console. 

All characters are normally echoed on the console display 
mechanism to indicate that they have been entered into the 
input buffer; however. the following characters are echoed 
but are not placed into the input buffer: 

ENTRY PARAMETERS: 

MOOS 3.0 LJ ser" s Gui de 

Character Value 

Null sao 
Line feed SOA 
DCI S11 
DC2 S12 
DC3 S13 
DC4 S14 

B = fhe maximum number of characters to 
be input from the keyboari (not 
including the terminatin] CR). 
Characters entered after the maximum 
has already been input will not be 
echoed on the console, nor will they 
be placed into the input buffer. If 
B = 0, then only a CR will be 
accepted from the keyboard. The 
function does not return until a CR 
is entered. 

x = The address of the input buffer that 
is to receive the data obtained from 

Page 25-03 



I i~PUT /OUTPUT FU NC r IONS 

EXIT CONOITIONS: 

25.2 -- LJevice Oependent I/O Functions 

the console keyboard. The buffer 
must be large enough to accommodate 
one more character than is s~ecified 
in 8. This extra space must be 
provided for the termi.nating c~rriage 
return which is placed into the 
buffer. If X happens to co~tain the 
address of the MOOS command line 
buffer, then a special test is made 
to ensure that B is less than 80 
(decimal). If 8 is greater than 19, 
it will be automatically changed to 
79 to prevent the resident MDOS from 
being overwritten with keyboard data. 

A is indeterminate. 

B = The number of characters input (not 
including the terminating C~). If B 
= 0, then only a CR was entere~. 

X is unchanged. 

CC i sin:1 e t e r min ate. 

The input buffer contains 
data, including the 
carriaqe return. 

the entered 
terllinating 

25.2.2 Check for BREAK key -- .CKBRK 

The .CKBRK function examines the system ACIA for a 
framing error status, indicating that the BHEAK key has been 
depressed since the last character was input from the console 
keyboard. fhis function also checks to see if the CfL-W key 
has l)een depressed. If the CrL-~ is detected, the .CKBRK 
function will enter a loop waiting for any other character on 
the keyboard to be entered before returning to the calling 
program. 

ENTRf ~ARAMErERS: 

EXIT CONDITIONS. 

None. 

A, B, and X re]isters are unchanged. 

C = 0, l = I if no framing error (no 
8REAK key) is detected. The 
remainder of CC is indeterminate. 

C = I. Z = 0 if a framing error (BREAK 
key) is detected. The remainder of 
CC is indeterminate. 

No indication is returned concerning the CfL-W key. 

MDOS 3.0 User's Guide Paqe 25-04 



Ij~PUT/oUTtlUT FUNCfIONS 25.2 -- L)evice Dependent I/O Functions 

This feature merely allows the operator at the console to 
pause the system. 

The framing error cannot be cleared from the ACIA by 
this function. The framinq error can only be cleared upon 
subsequent reception of another character from the console 
keyboard. Thus, if the .CKB~~ function-is called more than 
once without the ACIA having received any characters between 
successive calls, the framing error status is detected in 
each case (even thouqh the BREAK key was depressed only 
once). As a result, the BHEAK key status is not detected if 
the BHEAK key is depressed during an input request from the 
system console, since it is the reception of another 
character that clears the framinq error status (3nd each 
input request must be terminated with a CH). 

25.2.3 Console output -- .DSPLY, .DSPLX, .USPLZ 

rne .DS~LY, .DS~LX, and .DSPLl functions are all used to 
display a specified character string on the system console. 
The function .DSPLY displays a strinq that is termin~ted by a 
carriage return character. The functions .DSPL~ ani .DSPLZ 
display strings that are terminated by an EOT character, 
facilitatinq the use of embedded carriage returns within the 
strinq to output multiple-line messaqes- with one function 
call. Both .D5PLY and .DSPLX will send a c~rriage 
return/line feed sequence to the console so that su~sequent 
input or output is performed on a new line. The .DSPLZ 
function does not send the terminatinq carriaqe return/line 
feed sequence so that subsequent input or output can be 
perfarmed on the same line as the displayed string. 

ENTRt PAHAMETERS& 

EX IT C01~U IT IONS: 

MOOS 3.0 User"s Guide 

x = The address of a displayable ASCII 
string. The string must be 
terminated by a carriage return (SOD) 
if usinq .DSPLY. otherwise, the 
string must be terminated by an Ecrr 
($04). [he functions .DSPLX and 
.DSPLl will convert embedded c~rriage 
return characters into carriage 
return/line feed sequences 
automatically. 

A and 8 registers are unchanged. 

x = The a ljdre ss of the string's 
terminating character. 

CC is indeterminate. 

Page 25-05 



INpUT/OUTPUT FUNCTIONS 25.2 -- Uevice Dependent I/O Functions 

25.2.3.1 Example of console I/O 

The following example illustrates the use of the .KEVIN 
and .USPLY system functions. The example initially iisplays 
a message on the console to prompt the operator for input. 
The entered string is then displayed back on the console, but 
all characters have been reversed (the last character input 
is the first character output, etc.). If only a carriage 
return is entered, MOOS is given control via the system 
funct ion • MDENT. The system functi on • AOBX is u se'::f to add 
the contents of the B accumulator to the X register. Both of 
these functions are described in Chapter 27. A ~aximum 
string length of ten is allowed. The example has been 
assembled with the MOOS equate file. 

It is assumed in this example that the program is 
oriqined above location SIFFF since it is usinq the resident 
MDOS functions. The program can either be loaded !!lith the 
LOAD command or invoked from the MlJOS command interpreter 
directly. At the time the program is loaded, the stack 
pointer is automatically initialized to the last-loaded 
program location. In this example, this location is used as 
the top of the stack. 

MOOS 3.0 User's Guide Pa,)e 25-06 



I 1\11->UT /OUTPUT FU NC r IONS 25.2 -- Dev ice Dependent IIO Functions 

STA~T LOX HPHOMPT • 
SCALL .DSPLY • SHOW INPUT PROMPT 

* * INPUT [HE STRING FROM CONSOLE 
* INpUT LDAB 

* 

LOX 
SCALL 
TSI8 
BNE 
SCALL 

#10 
#1 BUFF 
.KEYIN 

S~~AP 
.MDENI 

• MAX 10 CHAR 

• GET INPUT STRING 
• CHECK FOR ZERO INPUT 

• EXIT IF NO INPUT 

* INVERT STRING INTO OBUFF 

* SWAP LDX IOBUFF • 
SCALL ~ADBX • POI NT TO END OF OBUFF 
LDAA HCR • STORE TERMINATOR 
STAA X • 
DEX • 
STS STl<SAV • SAVE STACK POINTER 
LDS #IBUFF-I • 

LOOP PULA • GET CHAR 
SfAA X · STORE CHAR 
DEX • BUMP POINTER 
DECB • 
BNE LOOP • LOOP UNTIL ZERO 
LOS STKSAV • RESTORE STACK 
LOX #OSUFF • 
SCALL .DSPLY • S HOW INVERTED STR I NG 
BHA INPUT • 

* 
* ~OHKING STORAGE 

* IBUFF BSZ 10+1 • INPUT BUFFER 
OBUFF BSZ 10+ I • OUTPUT BUFFER 
1->HOMPT FCC liE NTER STHINGS < 1 1 CHAHACTERS" 

FCB CH • 
STKSAV FOB 0 • SAVE AHEA 

BSZ 80 • STACK SET HERE BY LOAD 
* END SfAHT • BEGIN EXECUTION AT THIS 

25.2.4 printer output -- .PRINT, .PKINX 

LABEL 

The .PHINT and .PRINX functions are both used to print a 
specified character string on the line printer. The function 
.PRINT prints a string that is terminated by a c~rriage 
return character. The function .PHINX prints a string that 
is terminated by an E(IT character, facilitatinq the use of 
embedded carriage returns within the string to print 
~ultiple-line messages with one function call. 80th 
functions will send a carriage return/line feed sequence to 

MOOS 3.0 User"s Guide Pa~ e 25-07 



INiJUT/OUTtJUT FUNCfIONS 25.2 -- Device Dependent I/O Functions 

the printer at the end of each string. The .PRINX function 
will, in addition, send a carriage return/line feed sequence 
for each embedded carriage return character. 

ENTHY ~AHAMErEHSa 

EXIT CONDITIONS: 

x = The address of a displayable ASCII 
string. The string m~st be 
terminated by a carriaqe return (SOD) 
i f u sing • P R I NT • 0 t he r w i s e , the 
string must be terminated by an EOT 
(S04). The .PRINX function will 
convert embedded carriage return 
characters into carriage return/line 
feed sequences automatically. 

A and B registers are unchanged. 

x = The address of the string.J's 
terminating character. 

CC is indeterminate. 

25.2.4. I Exa~ple of printer output 

The following example illustrates the use of the .PHINT 
system function. The example will print strings of eighty 
identical characters, beqinninq with spaces (S20) and 
proceedinq through the entire displayable ASCII character 
set. The system function .STeHR is used to fill ~ buffer 
with the character contained in the A accumulator. The 
system function .MOENT is used to return control to MDOS. 
Both of these functions are described in Chapter 27. The 
example was ~ssembled with the MDOS equate file. 

It is assumed in this example that the program is 
origined above location SIFFF since it is usinq the resident 
\-\005 functions. The program can either be loaded with the 
LOAD command or invoked from the MOOS command interpreter 
directly. At the time the program is loaded, the stack 
pointer is automatically initialized to the last-loaded 
program location. In this example, this location is used as 
the top of the stack. 

MOOS 3.0 User's Guide Page 25-Q8 



INPUT/OUTPUT ~UNCrIONS 25.2 -- Device Dependent 1/0 Functions 

STAHT LDAA #SPACE • INlfIAL CHAR 
LOOP LOX #OBUFF • 

LDAB #80 • 
SCALL • STeHR • FILL BUFfER 
SCALL .PHINT • PH I fIT THE STR I NG 
INCA • HUMP CHARACTER 
CMPA #RUBour • END OF 01 SPLA 'f ABLE SEQUEi~CE 
BNE LOOP • 
SCALL .MOENT • EXIT TO MOOS 

* 
* WOHKING STORAGE 

* OBUFF BSZ 80 • OUTPUT BUFFER 
FeB CR • 
HSZ 80 • SfACK SET HERE BY LOAD 

/( 

END SfAHr ~ BEGIN EXECUTION AT TH IS LABEL 

25.2.5 Physical sector input -- .DREAD, .EREAD 

The .DHEAD and .EREAO functions are both used to read a 
single physical sector from the diskette into a specified 
buffer. For multiple physical sector input the functions in 
section 25.2.7 should be used. The .DHE4D function will only 
return to the calling program if no diskette controller 
errors are detected during the read attempt. The .EREAD 
function, on the other hand, will return to the calling 
program whether an error occurred or not. The .EREAD 
function will return the error status that was detected by 
the diskette controller. 

In ei th'er case, if a diskette e_rror occurred that was 
retryable (CRC, deleted data mark, data address mark, or 
address mark eRe errors), the following steps were taken in 
an attempt to recover from the error: 

J. The sector was reread five 
repositioning the read head. 

times 

2. The read head was stepped outward (towards 
cylinder zero) a maximum of five cylinders, 
repositioned over the cylinder in which the 

3. 

sector to be read resides, and another five read 
attempts were performed. 

The read head was stepped inward (towards 
cylinder 76) a maximum of five cylinders, 
repositioned over the cylinder in which the 
sector to be read resides, and another five read 
attempts were performed. 

If an error occurs during the .DREAD function, the 

MOOS 3.0 User"'s GUide Page 25-09 



I j'JPUT IOUTpUT FU NC r IONS 25.2 -- Dev ice Dependent 1/0 Funct ions 

standard "Pfh)M 1/0" error message will be displayed qiving 
the status of the error and the sector number that was being 
accessed. Control will then be qiven to the MOOS command 
interpreter. If an error occurs during the .EREAD function, 
the EXIT CONDITIoNS described below apply (for C = 1). 

If either of these two functions is to access a diskette 
in 3 drive which as not had the read head restored (via 
functions .OIHSM, • OPEN, .LOAD or .CHANG, or via an MDOS 
command), then the diskette controller firmware ~ust be 
invoked to restore the head. The RESTOR entry point is 
described in Appendix D. If the head is not restored 
properly, it is possible to receive timeout errors. 

The diskette controller variables below location $0020 
will be changed by these functions. 

ENTRY PAHAMEfEHSa 

EXIT CONDITIONS: 

MOOS 3.0 User's Guide 

B = The logical unit number. Bits 2-7 
are iqnored. 

x = The address of 
para~eter packet. 
following format. 

a five-byte 1/0 
The packet has the 

o Return status 

Phys ica 1 sector 
number 

2 to be read 

3 Address of 128 
byte 

4 sector buffer 

C = 0 if no errors occurred. The 
remainder of the CC is indeterminate. 

The A register is indeterminate. 

The X register is unchanged. 

The B register contains the return 
status returned in the packet ($30). 

The first byte of the parameter 
packet (Return Status) is set to $30 
(ASCII zero). The remainder of the 
parameter packet is unchanged. 

The sector buffer 
bytes read from 

contains the 128 
the specified 

Page 25-10 



I I~PUT /OUT1->UT FU NC r IONS 25.2 -- Uevice Dependent 1/0 Functions 

physical sector. 

c = I if an error occurred (.EREAD only). 
The remainder of the CC is 
indeterminate. 

The A reqister is indeterminate. 

The X register is unchanqed. 

The B reqister contains the return 
status returned in the first byte of 
the parameter packet. 

The first byte of the parameter 
packet contains the .diskette 
controller error ($31-$39). Section 
28$1 has a complete description of 
the diskette controller errors. 

The contents of the 128 byte sector 
buffer are indeterminate. 

25.2.6 Physical sector output -- .DWRIT, .ErlRIT 

The .D~~IT and .E~RIT functions are both used to write a 
single physical sector to the diskette from a soecified 
buffer. For multiple physical sector output the functions 
described in section 25.2.8 should be used. The .DWRIT 
function will only return to the calling proqram if no 
di skette cantrall er error s are detec ted dUr~ inq the wr i te 
attempt. The .E~Rlr function, on the other hand, will return 
to the calling program whether an error occurred or not. The 
.E~RIT function will return the error status that was 
detected by the diskette controller. 

If an error occurred, 
procedure described in section 
attempted. In addition, the 
those functions regarding the 
apply to the .DW~IT and .E~HIr 

the same type of recovery 
2~.2.5 (.DREAD, .ERE~D) was 
same precautions described for 
restoring of the read head 
functions. 

~NrR{ PAHAMEfEHS& 

EXIT CONlJITloNS: 

MOOS 3.0 User's Guide 

Same as for .DREAD and .EREAO; however, 
the sector buffer must contain the 
128 bytes that are to be written to 
the diskette. 

Same as for • DREAD and • EREAD; however, 
the the contents of the sector buffer 
are unchanqed after returning to the 
calling program. 

Page 25-11 



INPUT/oUTPur FUNCTIONS 25.2 -- Device Dependent I/O Functions 

25.2.7 Multiple sector input -- .MREAD, .MERED 

The .MREAD and .MERED functions are both used to read a 
multiple number of physically contiguous sectors from the 
diskette into a specified buffer. The .MREAD function will 
only return to the calling proqram if no diskette controller 
errors are detected during the read attempt. The .MERED 
function, on the other hand, will return to the callinq 
program whether an error occurred or not. The .MERED 
function will return the error status that was detected by 
the diskette controller. 

If an error occurred, the same type of recovery 
procedure described in section 25.2.5 (.DREAD, .EREAD) was 
attempted. In addition, the same precautions regarding the 
restoring of the read head described in that section aoply to 
the .MREAD and .MERED functions. 

ENTRY PARAMEfERS' 

EXIT CONDITIONS' 

MOOS 3.0 User's Guide 

8 = The logical unit number. Bits 2-7 
are ignored. 

x = The address of a seven-byte I/O 
parameter packet. The parameter 
packet has the following format. 

o ~eturn status 

: Starting physical : 
sector number 

2 to b~ read 

3 Address of 
multiple 

4 sector buffer 

5 Number of 
sectors 

6 to be read 

The sector buffer must be an integral 
number of sectors in size, and must 
be large enough to accommodate the 
number of sectors specified in bytes 
5 and 6 of the parameter packet. 

Same as for .DREAD and • EREAD; however, 
the sector buffer contains data from 
the number of sectors specified in 
bytes 5 and 6 of the parameter packet 
(only if no error occurred). 

Page 25-12 



INpUT/OUTiJUT FUNCTIONS 25.2 - Device Dependent I/O Functions 

25.2.8 Multiple sector output -- .M~RIT, .MEWRT 
-----------------------------... -------~-... ------.-----

The .MWRIT and .MEWRT functions are both used to write a 
multiple number of physically contiguous sectors from a 
specified buffer to the diskette. The .MWRIT function will 
only ,return to the callinq program if no diskette controller 
errors are detected during the write attempt~ The ~MEWRT 
function, on the other hand, will return to the calling 
program whether an error occurred or not. The .MEWRT 
function will return the error status that was detected by 
the diskette controllera 

If an error occurred, the same type of recovery 
procedure described in section 25.2.5 (.DREAD, .EREAO) was 
attempted. In addition, the same precautions regarding the 
restoring of the read head described in that section apply to 
the eM~RIT and ,MEWRf functions, 

ENTRY PARAMETERSl 

EXIT CONDITIONSl 

Same a s for .MREAD and • MEHED, however, 
the sector buffer must contain the 
bytes that are to be written to the 
diskette. 

Same as for .MREAD and .MERED; however, 
the contents of the sector buffer are 
unchanged after returning to the 
calling program. 

25.2.9 Diskette controller entry points 

The diskette controller has various entry points that 
allow the diskette to be accessed on a physical sector basis; 
however, since these entry points are independent of MOOS, 
they are described in a separate section (Appendix 0). That 
appendix also describes some entry points for accessing the 
line printer on an MOOS-independent basis. 

25.3 Device Independent I/o Functions 

The following sections describe functions which 
facilitate writing software for input/output operations 
independent of the physical hardware device. In a1dition, 
these functions are used to access files on the iiskette 
without having to perform physical sector I/O. 

Through the use of a single parameter table, the I/O 
Control Block or IOCB, a common set of functions can be 
accessed independently of the I/O device. Thus, the same 
fUnction would be called for writing a record to a diskette 
file or for writing a record to a line printer. The only 
difference is in the initial parameterization of the IOCB. 

MOOS 3.0 User"s Guide Page 25-13 



INPUT/OUTpUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

The normal sequence for calling the 1/0 functions, 
regardless of the device being used, is' 

.RESJ1V 

.OPEN 

.GETHC 

.PUTHC 
• CLOSE 
• RELES 

Reserve a device 
Open a file 
Head a record 
r4rite a record 
Close a file 
Helease a device 

The reading/writing of records. of course, ~ay not 
necessarily be used for the same device. Once the file is 
open, the record 1/0 functions can be called as many times as 
required. 

Use of the device independent 1/0 functions will cause 
the diskette controller variables below location $0020 to be 
chanqed. regardless of whether or not a diskette device is 
beinq used for a qiven 1/0 process. 

In order to fully describe each rlevice independent 1/0 
function, the structure of the r(~B must first be described. 
In the description of the errors that can be returned by each 
function. the names of the system symbols from the MOOS 
equate file are used. These are noted in the description of 
the status -byte of the I(~B, section 25.3.1.1. A sum~ary of 
all possible input parameters that are required by the twelve 
different modes in which an IOCB can be used is contained in 
Appendix K. 

25.3.1 1/0 Control Block IOCB 

The device independent 1/0 functions are parameterized 
through the IOCB. The 1/0 functions, in turn. interface to a 
device driver through another table, the Controller 
Descriptor Block or -COB (see section 26.2). It is only the 
device driver which interfaces directly to the device. 

The rOCB is a table of flaqs, buffer pointers, an; other 
information which is maintained by the calling program for 
the duration of the 1/0 accesses that are to be performed. 
Some of the entries in the I(~B must be initialized by the 
program before calling an 1/0 function. other entries of the 
IOCB are initialized and changed by the 110 functions 
themselves. The entries of the IOCB must not be changed 
between 1/0 accesses unless specifically indicated in the 
ENTRf PARAMETERS section of each lID function's description. 
The IOCB has the following format. 

MOOS 3.0 User's Guide Paqe 25-14 



INPUT IOUTPUT FUNC r IONS 25.3-- Device Independent 1/0 Functions 

Byte 
7 6 5 4 3 2 o <-- Bit position 

v ---------------------------------
00 Error status IOCSTA 

01 

02 

03 

04 

05 

06 

07 

08 

09 

OA 

08 

DC 

00 

10 : 5 : 0 : T : F : 

Data buffer 
pointer 

Data buffer 
start address 

Data buffer 
end address 

Generic device word 
or 

CDS address 

: H : LUN 

File name 
or 

Maximum LSN referenced 

File name continued 

M 

DE :Current segment descriptor word: 

OF 

10 

1 1 

12 

13 

File name continued 
or 

Starting LSN of SOW 

File name continued 
or 

Next logical sector number 

Suffix 
or 

14 : Logical sector number of E(~ 

15 

16 

17 

18 

Physical sector number 
off i 1 e" sRI B 

: ~ : 0 : S : C :N 
>.., 

(reserved; =0) 

FMf 

MDOS 3.0 User"s Guide 

IOCDrr - Data transfer 
type 

IOCOBS 

IOCOSE 

IOCGDW 

IOCLUN -- Logical unit 
number 

10CNAM I IOCMLS 

!OCSDW 

IOCSLS 

IOCLSN 

IOCSUF I IOCEOF 

IOCHIB 

IOCFDF - File descrip­
tor flags 

Page 25-15 



I NPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

19 

IA 

18 

IC 

7 6 5 4 3 2 

(reserved; =0) 

PSN EN 

(reserved; =0) 

10 Initial new file size 

IE 

IF 

20 

21 

22 

23 

24 

or 
Sector buffer pointer 

Sector bu ff er 
start address 

Sector buffer 
end address 

Sector bu ffer 
internal pointer 

MDOS 3.0 User's Guide 

o 

IOCOEN - Directory 
entry number 

Ioessp 

IoeSBS 

IoeSBE 

loeSB! 

Page 25-16 



INPUT IOUTtlUT FU NC r IONS 25.3 -- Device Independent 1/0 Functions 

IOCB FLAG DESCRIPTION SUMMARY 

---~----------~-----------~--

Field Name Bi t Content 
----- ~,!!!!!!O"'!!!!l!!' ___ -_ 

IOCDIT 10 6-7 1/0 transfer flag 
Bit 6: I => output transfer 
Bit 7: 1 => Input transfer 

S 5 Sector/record flag 
0 => Record 1/0 
I => Sector 1/0 

0 4 Openlclosed flag 
0 => File open 
I => File closed 

T 3 rruncate flag 
o => I qnore truncate action 
1 => Truncate file upon closing 

F 2 J~on-f i 1 e format flag 
o => File format mode 
I => Non-file format mode 

M 0-1 Mode flag 
00 => Updat e mode, existing file 
01 => Input mode, existing file 
10 => Output mode, new file 
1 1 => Update mode, any file 

IOCLUN 7 Not used (=0 ) 
R 6 Reserved fla;} 

0 => IOCB reI eased 
I => IOCB reserved 

LUN 0-5 Loqical unit nuniuer , .... -.,... "''''l''''\ 
\~JV-~.J71 

IOCFiJF ~.~ F ~rite protection bi t 
o => No write protection 
I => ~rite protected 

D E Delete protection bit 
o => No delete protection 
1 => Delete protected 

S 0 System fil e bit 
o => Non-system file 
I => System fi Ie 

C C Contiguous allocation bit 
o => Segllented allocation 
I => Contiguous allocation 

N 8 Non-compressed space bit 
0 => Spaces compressed 
1 => Spaces non-compressed 

MDOS 3.0 User-'s Guide Page 25-17 



INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions 

I<~B FLAG DESCRIPTION SUMMARY continued 

Field Name Bit 

IOCFuF FMT 8-A 

0-7 

IOCDEN PSN B-F 
EN 8-A 

0-7 

25.3.1. 1 IOCSTA 

Content 

File format 
000 => User-defined format 
001 => Use deviceJs default format for 

binary records 
010 => Memory-image format 
011 => Binary record format 
100 => Undefined format 
)01 => ASCII record format 
110 => Undefined format 
Lll => ASCII-converted-binary record 

format 
Not used (=0) 

Physical sector number ($03-16) 
Entry number within sector (0-7> 
Not used (=0) 

Error status 

The I<lCSTA byte contains the return, status from an I/O 
function. A zero in this byte indicates that an I/O function 
completed normally without any errors. A non-zero value 
indicates that an I/O function encountered some sort of an 
error. The following table contains all of the currently 
defined values that can be returned in the ICCSTA. Along 
with each value the system symbol equated to the value (MD(~ 
equate file), and the standard error message that would be 
displayed if the error message function were invoked to show 
a message are given. The two-digit reference number 
displayed alang with the error message should be used to 
locate the error messageJs description in Chapter 28. It 
should be noted that in order to decode the IOCSTA byte into 
the proper error message, the error message function, .MDERR. 
must be called with the B accumulator equal to zero. Section 
27.4 describes the error message handler. 

MOOS 3.0 User"s Guide Page 25-18 



:NPUT/OUTt>UT FUNCTIONS 

IOCSTA 
Value 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
)0 
11 

12 
13 
I 4 
15 

16 
I 7 

18 
19 

System 
Symbol 

i SNOER 
I$NODV 
I$HESV 
I$NOi1V 
I$NRDY 
I $ I VDV 
I$DUPE 
I$NONM 
I $CLOS 
ISEOF 
I$FTYP 
I$OTYP 
ISEOM 
I$BUFO 
I$CKSM 
ISWRIT 
I$DELT 
I $RANG 

I$FSPC 
! SDSPC 
1$ SSPC 
I$IDEN 

I$RIB 
I SDEAL 

ISRECL 
I$SECB 

25.3 -- Device Independent 1/0 Functions 

Standard Error Message Displayed 
by • MDEHR (B=O, X= IOCB address) 

Normal return, no error 
** 28 DEVICE NAME NOT FOUND 
** 18 DEVICE ALREADY RESERVED 
** 19 DEVICE NOT RESERVED 
** 11 DEVI CE NOT READY 
** 31 INvALID DEVICE 
** 06 DUPLICATE FILE NAME 
** 04 FILE NAME NOT FOUND 
** 20 INVALID OPENICLOSED FLAG 
** 21 END OF FILE 
** 14 INV~LID FILE TYPE 
** 17 INVALID DATA TRANSFER TYPE 
** 37 END OF MEDIA 
** 22 BU FFER OVERFLOW 
** 23 CHECKSUM ERROR 
** 26 FILE IS WRITE PROTECTED 
** 10 FILE IS DELETE PROTECTED 
** 24 LOGICAL SECTOR NUMBER our OF 

RANGE 
** 41 INSUFFICIENT DISK SPACE 
** 40 DIRECTORY SPACE FULL 
** 42 SEGMENT DESCRIPTOR SPACE FULL 
** 43 INVALID DIRECTORY ENTRY NO. AT 

nnnn 
** 32 INVALID RIB 
** 44 CANNOT DEALLOCATE ALL SPACE, 

DIRECTORY ENTRY EXISTS AT 
nnnn 

** 45 RECORD LENGTH TOO LARGE 
** 52 SECTOR BUFFER SIZE ERROR 

25.3.1.2 I{~DTT -- Data transfer type 

The IOCDTf byte contains the basic information about an 
I/O accessl whether an input or an output transfer is to 
take place, whether sector or record I/O is to be performed, 
whether the file is currently open or closed, whether a file 
(diskette only) should be truncated when it is closed, and 
whether the file or non-file format mode is to be used. 

MOOS 3.0 User's Guide Paqe 25-19 



I ,~pur /ourpur FU NC r IONS 25.3 -- Device Independent 1/0 Functions 

-, 

10 

• 
I 

• · · 
I 

The format of the I<~OTr byte is shown below' 

6 5 4 3 2 o 

:5: o:r:F: M 

• • J • a ••••• 
I I J • ........... • : I •••• ........... 
: I • • • • • • • • • • • • • • • • • • • 

: . . . . . . . . . . . . . . . . . . . . . . . 

Mode flag 
Non-file format fl~q 
Truncate flag 
Open/closed flag 
Sector/record fla1 

I ••••••••••••••••••••••••••••• 1/0 transfer flag 

Regardless of the type of device being accessed, the 
non-file format flag (F) and the mode flag eM) are to be 
initialized by the user. If the device is a diskette drive, 
the user may also chanqe the sector/record flaq (S) or the 
t run cat e f 1 a q (T ) be tween I/O fun c t ion call s • 1ft h e f I a q 5 

are to be changed after the IOCDTT byte hAS been initialized, 
care must be taken so that none of the system supplied flags 
are destroyed. Flags must be nor-edIt into the rOCDTf to be 
set, and Itand-ed lt out of th e IOCOTT to be cleared, once the 
IOCB has been reserved. 

The properties controlled by the various bits of the 
I<X:OIT are explained below. 

I () (tH t 5 6- 7) -- rIo t ran s fer f 1 a q 

These two bits are controlled exclusively by the 
I/O functions themselves. They should not be set or 
chanqed by the user in any case. If bit 6 is set to 
one, the device driver recognizes an output transfer. 
If bit 7 is set to one, the device driver recognizes 
an input transfer. The device driver will not be 
able to input or output a character if both of these 
bits are zero or one. 

MOOS 3.0 User's Guide Page 25-20 



INPUT 10UTtJUT FUNCTIONS 25.3-- Device Independent 1/0 Functions 

5 (Bit 5) -- Sector/record flaq 

This bit controls whether sector or record 
processing is performed during an I/O function. For 
non-diskette devices, this bit must always be zero. 
For diskette devices, this bit can be in either 
state. A one implies that logical sector 1/0 will be 
performede A zero implies that record 1/0 will be 
performed; however, care must be taken that the 
corresponding I/o function is called for the proper 
state of the bit. That is, the record 1/0 functions 
(~GETRC and .PUTHC) cannot be call ed if "s" is set to 
one. Likewise, the logical sector 1/0 functions 
(.GEILS and .PUTLS) cannot be called if US" is .set to 
zero. 

o (Bit 4) -- Open/closed flag 

This bit is supplied by the system i/O functions 
if they are properly called in their correct 
sequence. Ihe 110" bit must not be changed once 1/0 
transfers have been made. A one indicates that the 
file (or device) is closed. A zero, on the other 
hand, indicates that the file (or device) is open. 

r (Bit 3) -- Truncate flag 

The truncate flaq is only applicable to 1/0 on a 
diskette device. Normally, the user will not have to 
set or change this bit; however, certain cases will 
arise where changing of the truncate flag by the user 
may be necessary {see • CLOSE functio!1 y section 
25.3.6). The truncate flag is used as an indication 
that new space was allocated to a diskette file. If 
it is set to one, any unused parts of the newly 
allocated space (space beyond the maximum logical 
sector number referenced in I(~MLS) will be 
deallocated (returned to the available diskette 
space) when the file is closed. If the truncate flag 
is zero, no truncation will occur upon closing. 

A special case exists if ICCMLS contains the 
value $FFFF when the truncate flag is set to one. In 
addition to having all of the file~s space 
deallocated, the directory entry belonqin1 to the 
file is removed from the directory. The file is, in 
effect, deleted. 

MOOS 3.0 User"s Guide Page 25-21 



INPUT/OUTPUT fUNCTIONS 25.3 -- Uevi c e I nd ependent I/O Funct ions 

r (Bit 2) Non-file format flag 

If "FIt is set to one, the non-file format mode 
is indicated. In this mode, all 1/0 must be to a 
non-,jiskette device. No FOR (File Descriptor Record) 
processing is performed. The only valid file format 
that can be supported in this mode is ASCII (FMT = 5 
of I OCFDF ) • 

If the "Ftl flag is set to zero, then the file 
format mode is indicated. In this mode, I/O can be 
either to a diskette or to a non-diskette device. If 
a non-diskette device is being used, FOR processing 
will be performed. That is, an FOR will be written 
to the device if opened for output. or 8n FOR will be 
searched for on the device if opened for input. The 
file format mode (F = 0) must be used for accessinq 
the diskette. 

M (Bits 0-1) -- Mode flag 

The mode flaq can take on one of four different 
values. 

00 => Open an existing file (diskette only) for 
either input or output. 

01 => {~en an existing diskette file or open a 
device for input only. 

10 => Create a new diskette file or open a device 
for output only. 

11 => (~en an existing file or create a new file 
(diskette only) for either input or output. 

The update modes (M = 00 or II) can only be used 
when accessing diskette files. The way in which the 
four different modes are used is described in the 
.OPEN function, section 25.3.3. 

25.3. I .3 IOCDBP -- Data btl ffer point er 

This two-byte field of the IOCB is used as a working 
storeqe area by the record 1/0 functions. This entry should 
not be changed by the callinq program once 1/0 functions have 
been called. 

25.3. I .4 IOCDBS -- Data bu ffer start 

This two-byte 
the calling program 

MOOS 3.0 User's Guide 

field of the r(~B must be initialized by 
before any record I/O functions are 

Page 25-22 



I NtlUT loUTPUr FUNCrloNS 25.3 -- Device Independent 1/0 Functions 

called. IOCDBS must be configured to contain the a-Jdress of 
the first byte of a buffer into which a record is to be read, 
or from which a record is to be written. None of the 1/0 
functions will alter IOCiJBS. The data buffer may be used for 
.... ut'( processing by the .OPEN function (section 25.3.3) when 
dealiny with non-diskette devices. 

25.3.1.5 IOCDBE -- Data buffer end 

This two-byte field of the I(~B must be initialized by 
the calling program before any record 1/0 functions are 
called. I(~DBE must be confiqured to contain the address of 
the last byte of a buffer into which a record is to be read, 
or from which a record is to be written. During record 
input, IOCDBS and IOCOBI:: define the maximum size record that 
the buffer can accommodate. During record output, I(~DBS and 
I(~D~E describe the first and last byte of the record to be 
written. None of the 1/0 functions will alter IOCDHE. The 
data buffer may be used for FDH processing by the .OPEN 
function (section 25.3.3) when dealinq with non-iiskette 
devices. 

25.3.1.6 IOCGDW -- Generic deVice word 

This two-byte field 0f the I(eB serves a dual function. 
Before any 1/0 functions can be inVOked, IOCGDW must contain 
the MDOS device name that is to be accessed (see section 
25.1). The ievice name consists of two ASCII char3cters. 
(~ce the .~ESHV function (section 25.3.2) has been called, 
I(CGJW will contain the address of the controller descriptor 
block (COB, section 26.2.1) associated with that device. 
After the COB address has been put into IOCGOW, the contents 
of this field must not be chanqed by the calling oroqram. 
Section 26.2 contains a description of how to confiqure the 
IOCGJV4 field for non-supported deVices. 

25.3. 1. 7 IOCLUN -- Logical uni t number 

The IOCLUN byte contains two pieces of inforllation e 

Initially, the calling program must store the logical unit 
number of the device to be accessed in this byte. The 
logical unit number identifies a specific device within a 
~eneric device family (e.g., drive zero of the family OK). 
If there is only one device in a generic device fa~ily, a 
loqical unit number of zero must be placed in IOCLUN. 
Logical unit numbers should be ASCII numbers in the ranqe 
$30-$39 (0-9). Bit JlH" of IOCLUN indicates whether or not 
the I(~B has been reserved (.HESHV function). Initially, 
when the logical unit number is stored in IOCLUN, bit "li" 
will be set to zero. After the .RESRV function h1s been 
successfully invoked, bit "H" will be set to one, iniicating 

MDOS 3.0 User"'s Guide Page 25-23 



INPUT /oUTPUT FUNC fr ONS 25.3 -- Uevice Independent I/o Functions 

that the IOCB has been reserved. fhe IOCLUN field must not 
be changed by the calling program after the .RESRV function 
has been called. 

25.3. J.8 IOCNAM -- File name 

These eight bytes of the I(~B serve a dual purpose. If 
the non-file format mode is being used (F = I of I(COTT>, 
IOCNAM is not used at all; however, in the file format mode, 
IOCNAM must contain the name of the file to be accessed. The 
file name must be in the valid MDOS file name format. Any 
unused parts of the name must be spaces ($20). The file name 
should be placed into IOCNAM before the .OPEN function is 
invoked. After a file has been opened, the eight bytes will 
be replaced wi th the four two-byte fields I OCMLS, I ocsow, 
IOCSLS, and IOCLSN (only if the device is diskette>. 

~hen dealing with non-diskette devices in the file 
format mode, the I(~NAM entry can be configured so that the 
first byte is a binary zero. In this case, the .OPEN 
function will search for the first FOR on the non-diskette 
device, and place the found file name (and suffix) into 
IOCNAM (and IOCSUF). 

25. 3. I • 9 I OCS U F -- S u f fix 

This two-byte field of the I(~B serves a dual purpose. 
If the non-file format mode is being used (F = I of I(~OTT), 
I(~SuF is not used at all; however, in the file format mode, 
IOCSUF must contain the suffix of the file to be accessed. 
The suffix must be in the valid MDOS suffix format. Any 
unused parts of the suffix must be spaces ($20). The suffix 
should be placed into IOCSUF before the .OPEN function is 
invoked (at the same time that the file name is placed into 
I OCN AM) • After a f i I e has been opened, IOCSUF wi 11 be 
replaced with the two-byte field IOCEOF (only if the device 
is diskette). If the device being accessed is the system 
console, the first character of the I(~SUF field may be 
changed by the user to a displayable ASCII character 
(S20-$5F). Then, whenever an input request is made on that 
device, the character will be displayed as an input prompt. 

When dealing with non-diskette devices in the file 
format mode, the I(~NAM entry can be configured so that the 
first byte is a binary zero. In this case, the .oPEN 
function will search for the first FOR on the non-diskette 
device, and place the found file name (and suffix) into 
I OeN AM (and I OCS UF ) • 

MOOS 3.0 User's Guide Page 25-24 



INPUT/OUTPur FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

25.3.1.10 IOCMLS -- Maximum LSN referenced 

This two-byte field of the lOCB overlays the first two 
bytes of the IOCNAM after the .OPEN function has been called 
(diskette I/o only). It is a system-maintained field that 
contains the maximum logical sector number ever referenced by 
any of the 110 functions. IOGMLS and the truncate flag (T of 
IOCDIT) are used in determining the amount of newly allocated 
diskette space that is to be deallocated from a file when it 
is closed. Space will only be deallocated if the truncate 
flag is set to a one. Since MDOS automatically sets the 
truncate flag to a one if new diskette space is allocated to 
a file, any unused space will always be returnei to the 
available space pool. 

Normally. the user never changes the IOCMLS or the 
truncate flaq in the IOCDTI since the truncate flag is 
automatically set whenever additional space allocation "is 
performed or whenever a new file is created. When accessing 
an existinq file usinq both input and output (M = 00 or 11 of 
I (X": 0 IT) , however, the truncate flag may have to be set to one 
by the user if the file is to be shortened or if the 
end-of-file pointer in the HIB is to be updated. If an 
extant file does not grow in size, the truncate flag will be 
zero. 

In addition, when files are to be deleted (upon a 
subsequent .CLOSE function call), the IOCMLS must be set to a 
value of SFFFF and the truncate flag must be set to one. 

25.3.1.11 IOCSDW -- Current SU~ 

The IOCSDW field overlays the second two bytes of IOCNAM 
after the .OPEN function has been called (diskette 1/0 only). 
This field contains the segment descriptor word which 
identifies the current file segment that can be accessed. If 
another segment of the file is to be accessed, the disk 
driver will automatically reread the file's RIB and extract 
the appropriate SD~ into IOCSD~~. The contents of IrCSDrl 
should never be changed by the calling program. 

25.3.1.12 IOCSLS -- Starting LSN of SDI'I 

The IOCSLS field overlays the third two bytes of 
after the .OPEN function has been called (diskette 1/0 
This field contains the starting logical sector number 
current segment descriptor word. The contents of 
should never be changed by the callinq program. 

MOOS 3.0 User's Guide 

IOCNAM 
onl y) • 
of the 
IOCSLS 

Page 25-25 



INtlUT/OUTrJlJ[ FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

25.3.1.13 IOCLSN -- Next LSN 

The IOCL5N field overlays the fourth two bytes of IOCNAM 
after the .OPEN function has been called (diskette 1/0 only). 
This field is never chanqed by the calling program if record 
1/0 (5 = 0 of IOCOff> is being used. If logical sector 1/0 
is bein;J used (S = 1 of I OCOTr). then IOCLSN can be changed 
by the calling program to specify which logical sectors are 
to be read from or written to the file. This feature allows 
the calling program to randomly access the file (by loqical 
sector number> without having to know physically where the 
file resides on the diskette. After an 1/0 access has been 
completed, I(~LSN will contain the loqical sector nu~ber of 
the next sector on the diskette to be accessed. ~hen using a 
multiple sector buffer, I(~LSN may have been incremented by 
more than one, depending on the number of sectors processed. 

25.3.1.14 IOCEOF -- LSN of end-of-file 

The IOCEOF field overlays IOCSUF after the .OPEN 
fUnction has been called (diskette 1/0 only). IOCEOF is a 
system-maintained parameter that represents the logical 
sector number of the loqical end-of-file. This value must 
not be changed by the callin~ program once the .OPEN function 
has been invoked. 

25.3.1.15 I(~RIB -- PSN of RIB 

This two-byte field of the I(~B is initialized with the 
physical sector number of the file's HIB after the .OPEN 
function has been called (diskette I/O only). The RIB is 
used to access the file via its SOWs to allocate additional 
space, to deallocate unused space, and to monitor the LSN of 
the fileJs loqical end-of-file. The IOCRIB entry should 
never be changed by the calling program. 

25.3.1.16 IOCFOF -- File descriptor flags 

This two-byte field contains the flags that describe the 
inherent and the changeable attributes of a file. The format 
of the IOCFDF entry is shown below: 

MLJOS 3.0 Jser-'s Guide Page 25-26 



I NPlJT/OUTt->(rr FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

F D c B A 1 6 5 4 3 2 o 

: ~ : D : 5 : C : N: FMT 

: 
: : 
.: : 
I I 

I : . : . 
I : 

I : : : 
: : a : 

· . : I .. .. ... iii 

I I I • • • • • • • • • • • 

· : · . . . ............ 
: . . . . . . . . . . . . . . . . . . . 

• • • .. .. .. .. .. • • .. .. .. • 0 0 0 • • • • • • 

<-------- Not Used (=0) -------> 
File format bits 
Non-compressed space bit 
Contiguous allocation bit 
System file bit 
Delete protection bit 

I ••••••••••••••••••••••••••• ~rite protection bit 

The functions of the various bits are described beiowl 

~ (Bit ~) -- ~rite protection bit 

The OW" bit only ap~lies to diskette files. If 
this bit is set to one, the file can only be accessed 
with input requests. Any 1/0 functions that attempt 
to write to a file with the OW" bit set,will return 
an error. In addition, the file cannot be deleted. 
If the "Wit bit is set to zero, the file can be read 
from, written to, or deleted (the "0" bit must be 
zero also). The OW" bit is one of the ch~ngeable 
attributes of a file. 

D (Bit E) -- Delete protection bit 

The iiDii bit only applies to diskette files. If 
this bit is set to one, the file cannot be deleted. 
If the lion bit is set to zero, the file can be 
deleted (the 1Iv'4" bit must be zero also). The "0" bit 
is one of the changeable attributes of a file. 

S (Bit D) -- System file bit 

The US" bit only applies to diskette files. If 
this bit is set to one, the file is considered to be 
a system file. System files are treated specIally by 
the DIR, DEL, and DOSGEN commands. If the us .. bit is 
set to zero, the file is not a system file. [he 115.1' 
bit is one of the changeable attributes of a file. 

MOOS 3.0 User.ls Guide Page 25-27 



Il'JPUT/OUTPur FUNCfIONS 25.3 -- Device Independent 1/0 Functions 

C (Bit C) -- Contiguous allocation bit 

Th e .. C If bit 0 n I y a pp lie s to dis k e t t e f i I e 5 • I f 
this bit is set to one, only contiguous 1iskette 
space can be allocated to the file. All files whose 
contents are to be loaded into memory directly from 
the diskette must be allocated contiguous space. If 
the "c" bit is set to zero, the file may be allocated 
seqmented diskette space. The "C" bit is one of the 
inherent attributes of a file. It is specified at 
the time the file is created and cannot be changed 
thereafter. 

~ (Bit B) -- Non-compressed space bit 

Th e UN II bit on I y a pp lie 5 to dis k e t t e f i 1 e 5 • I f 
this bit is set to one, ASCII records written to the 
file will not have spaces compressed. If the UN" bit 
is set to zero, ASCII records written to the file 
will have spaces compressed into a byte of the 
following formata 

7 6 5 

: 
: 

4 

. . 

3 

a •••• 
I ••••••••••••••••••• 

2 o 

Number of compressed spaces 
Compression flag (=1) 

All MOOS commands create ASCII files with space 
compression (N = 0) in order to minimize the amount 
of diskette space consumed. The liN" bit is one of 
the inherent attributes of a file. It is specified 
at the time the file is created and cannot be changed 
thereafter. The space compression attribute is only 
meaningful if the file format is ASCII record (FMT = 
5). For other formats, the space compression 
attribute is ignored. 

PMT (Bits 8-A) -- File format bits 

The file format bits describe the intern~l data 
structure of the file. The file format is one of the 
inherent attributes of a file. FMT is specified at 
the time the file is created and cannot be changed 
thereafter. The following table lists the values of 
FMT and their meanings: 

MOOS 3.0 User's Guide Page 25-28 



I NPUT/OUTPUT FUNCfIONS 25.3 -- Device Independent IIO Functions 

FMT File format 

o User-defined format. This format is only 
valid for diskette files. The record 1/0 
functions cannot be used to access files with 
this format. Only loqical sector 1/0 can be 
performed with this form-at. The ca 11 ing 
proqram is responsible for extractinq data 
from the sectors according to his data 
structure. 

Use device's default format for binary 
records. Each device has associated with its 
COB (section 26.2) a flag that indicates what 
the default binary record format is (either 
fMT = 3 or FMT = 7). Since some devices can 
only process seven-bit data while other 
devices can process b6th seven-bit and 
eight-bit data, this format (FMT = J) allows 
a program to process binary records without 
knowing the specific format supportei by a 
particular device. The program will always 
be dealing with eight-bit data in ~emory. 
The FMT field is automatically ch~~qed to 
either a "3" or 117" depending on the device 
by the • OPEN funct ion. 

2 Memory-imaqe format. This format applies 
only to diskette files. Any file whose 
contents are to be loaded into memory 
directly from the diskette must be in the 
memory-image format. Due to the nature of 
the diskette controller, memory-image format 
files must be allocated contiquous iiskette 
space (C = 1 of IOCFDF). Memory-imaqe files 
have no record information within the data 
sectors. All information concerninq the 
starting load address, number of bytes to 
load, etc., is contained in the fileJs RIB. 
The load information must be written into the 
RIB by the pro~ram that is creating the 
memory-image file; the information is not 
automatically supplied by any system 

MDOS 3.0 User~s Guide 

function. The load information must ~eet the 
requirements defined in section 24.2. The 
record 1/0 functions cannot be used to access 
files with this format. Only logical sector 
1/0 can be performed with this format. 

Page 25-29 



I NPUT/OUTtJUT FUNCfIONS 25.3 -- Device Independent I/O Functions 

3 Binary record format. This format applies to 
both diskette and non-diskette files, 
however, non-diskette files can 0nly be 
accessed in the file format mode (F = 0 of 
IOCDrf) using this format. 

4 This format is undefined and shouli not be 
used. 

5 ASCII record format. This format applies to 
both diskette and non-diskette files. 
Non-diskette files of this format can be 
accessed in either the file format or the 
non-file format modes. ASCII record files 
can be space compressed, but only if they 
reside on diskette. 

6 This format is undefined and should not be 
used. 

1 ASCrr-converted-binary record format. [his 
format usually applies to non-diskette files. 
This format is intended to be us~d for 
writing binary record files from'the iiskette 
to a non-diskette device that can only accept 
seven-bit data bytes. Otherwise, this format 
is identical to FMT = 3. 

NOT USED (Bits 0-7) -- Reserved area 

The least significant byte of the !OCfOF field 
is reserved for future expansion. This byte ~ust be 
zero for all files. 

25.3.1.17 IOCDEN -- Directory entry number 

Associated with each directory entry is a number, the 
directory entry number, which is a function of the physical 
location of the entry within the directory. The directory 
entry number is not found anywhere in the directory, rather 
it is a calculated quantity. The tWo-byte I(~OEN field is 
supplied by the system after the .OPEN function (section 
25.3.3) has been called. It only applies to diskette files. 
[he contents of IOCDEN should never be changed by the calling 
program. The IOCDEN field has the following formata 

MOOS 3.0 User's Guide Page 25-30 



[NPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

F E D c B A 9 8 7 6 5 4 3 2 o 
--~---~----~~~------~------~~-------~------------~-~-------~---~~ 

PSN EN 
----------~---~-----------~~~~~~==~~~~~~~~~--------------~---~---

: 
: 

: <--------- Not Used (=0) -------> 
! I ••••• Position within sector (0-7> 
I 

= ..................... Physical sector number ($3-$16) 

25.3.1.18 IOCSBP -- Sector buffer pointer 

The IOCSBP field only applies to diskette 1/0. This 
two-byte field of the IOCB serves a dual purpose. If an 
eXisting file Is being opened, the initial value of IrCSBP is 
ignorede If a file is being created, this field must contain 
the initial number of sectors that are to be allocated to the 
file. I f the value of zero is specified, MOOS will defaul t 
the initial file size to a full segment descriptor (32 
clusters) and no error will occur during the file~s initial 
space allocation if fewer than 32 clusters are available. If 
a non-zero (non-default) initial size Is specified, however, 
an error will occur if that initial size cannot be allocated. 
The .ALLOC system function description (section 27.4) 
contains a more detailed explanation of the allocation 
mechanism. 

After a file has been opened, the I(~SBP contains a 
pointer into the sector buffer that is used by the record 1/0 
functions. fheretore, the contents of IOCSBP must not be 
changed by the callinq program once a file is open when using 
the record I/o functions. If the sector I/O fUnctions are 
used, then IOCSBP can be altered by the calling pro;Jram in 
any way after a file is open. 

25.3.1.19 I(~SSS -- Sector buffer start 

This two-byte field of the rOCB only applies to diskette 
1/0. It must be initialized by the calling prograll before 
any of the 1/0 functions are invoked. IOCSBS must be 
configured to contain the address of the first byte of a 
buffer into which one or more 128-byte sectors can be read. 
This sector buffer will be used for directory searches as 
well as for data transfers. IOCSBS will not be altered by 
any of the I/O functions. 

25.3.1.20 IOCSBE -- Sector buffer end 

This two-byte field of the IceS only applies to 1iskette 
1/0. It must be initialized by the calling program before 

MUOS 3.0 User~s Guide Paqe 25-31 



I NflUT IOUTflUT FUNC r IONS 25.3 -- Device Independent 1/0 Functions 

any of the 1/0 functions are invoked. IOCSBE must be 
configured to contain the address of the last byte of a 
sector buffer that is exactly large enough to accommodate an 
inteqral number of J28-byte sectors. An error will occur if 
the size of the sector buffer described by IOCSBS and I(X:;SBE 
is not correct. Specifically, the following relationship 
must be true~ 

IOCSBE- IOCSBS+I 
--------------- = INTEGER (Maximum # of Sectors) 

128 

loeSBE will not be altered by any of the 1/0 functions. 

25.3. 1.21 IoeSSI -- Internal buffer pointer 

This two-byte field of the I(~B applies only to diskette 
1/0. loeSSI is used to indicate the end of valid data within 
sector buffers. Since partial buffers (an integral nu~ber of 
sectors less than or equal to the maximum sector buffer size) 
may be read or wri tten, IoeSSI is used to locate the last 
valid data byte within a sector buffer. 

10eSBI is initialized and changed by the 1/0 functions. 
[he contents of I(~SBI must not be chanqed by the calling 
proqram after a file has been opened when usinq the record 
I/O functions; however, when using logical sector 1/0, the 
contents of IOCSSI may be changed. The value of IoeSaI wi 11 
always be less than or equal to the value of IOCSBE. The 
followinq relationship must alw~ys be true: 

IOCSBI- IOCSBS+ I 
--------------- = INTEGER (Actual # of Sectors) 

J28 

25.3.2 Reserve a device -- .HESRV 

The .HESRV system function links the appropriate 
controller descriptor block (COB) to the callinq program~s 
IOCB. fhe .tiESRV function must be called before any other of 
the "'jev ice independent I/O funct ions can be invoked. Sect ion 
26.2.4 should be consulted for a description of the imoact on 
the .HESHV call and the IOCB when using non-standard d~vices. 

ENTHt PAHAMEfERS: 

MOOS 3.0 user's Guide 

x = The address of an IOCB. 

IoeGDW must contain one 
generic device names: 
OK, or LP. 

of the valid 
CN, CP, CH, 

IOCLUN must contain the logic~l unit 
number of the device to be reserved. 

Page 25-32 



INPUT /OUTPUT FU NC r IONS 

EXIT CONUITIONS: 

25.3 -- Device Independent 1/0 Functions 

13i t 1If{" of I ((;LU N must be set to zero 
(this will normally be the case when 
the ASCII loqical unit number, 
$30-$39, is stor ed into I nCLU N) • 

All other entries of the IOCB need not be 
initialized. 

A is indeterminate. 

B = The contents of the ICCSTA entry. If 
no errors occurred, B will b~ zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanqed. 

C =0 and Z = 1 if no errors occurred (B 
= 0). The remainder of CC is 
i nd eterm inat e. 

C = 1 and Z = 0 if an error occurred (B 
not zero). The remainder of CC is 
indeterminate. 

The IOCB is affected in the following rnaf1ner if 
an error occurred: 

IOCSIA contains the error status. The 
followinq error statuses can be 
returned: I$IVDV, ISRESV. !$NODV. 

The remainder of the IOCB is not chan!;Jed. 

fhe IOCB is affected in the followinq manner if 
no errors occurred: 

MOOS 3.0 User"s Guide 

IOCSTA = O. 

IOCOIT has the 1110" bits set to zero and 
the uo" bit set to one (file closed). 
The rellainder of the IOCDTI is not 
chanqed. 

IOCGDW contains the address of the COB 
that is associated with the generic 
device. The oriqinal contents of 
IOCGDW are destroyed. 

IOCLUN has the uRIl bit set to one (IOCB 
reserved). The remainder of IC~LUN 
is not changed. 

fhe remainder of the loeB is not changed. 

Page 25-33 



INtJUT/oUTtJur FUNCfIONS 25.3 -- Device Independent I/O Functions 

25.3.3 Op.en a f i 1 e -- • OPEN 

The .OPEN function prepares a file for subsequent access 
by the record or loqical sector I/O functions. Data cannot 
be transferred between the file (or device) and the calling 
program until the .OPEN function has been invoked. The 
specific function performed by .OPEN depends on the device 
type and on the contents of the IOCD'lT entry (specifically, 
the non-file format flaq (F) and the mode flaq (M». 

There are four modes in which a file can be opened. The 
input mode eM = 01 of IOCDTf) will allow only input requests 
to be issued to the file. The output mode eM = 10 of IOCOTT) 
will allow only output requests to be issued to the file, and 
the update modes eM = 00 or 11 of I(~DTT) will allow both 
types of requests to be issued to the file. The update modes 
are only valid if the device type is OK. 

The non-file format flaq also has an effect on what 
.OPEN does. If the file format mode is specified eF = 0 of 
IOCOIT), then FOR processing will be performed. FOR 
processing consists of searching for a file descriptor record 
or a directory entry if the file is being opened for input. 
FOR processing consists of creating a file descriptor record 
or a directory entry if the file is being opened for output. 
One form of update mode processin::J (M = 11 of IOCOTT) will be 
identical to the input mode processing if the file already 
exists in the directory; or, it will be identical to the 
output mode processing if the file does not exist in the 
directory. The other form of update mode processing (M = 00 
of I(~OTr) will always be the same as the input mode 
processing since the file must exist for this mode. 

If a memory-image file is being created, the load 
information must be written into the RIB by the program that 
is creating the file and must meet the requirements described 
in section 24.2. The RIB can be accessed using logical 
sector 1/0. It has the logical sector number SFFFF. 

If the non-file format mode is specified (F = I of 
IOCDrr), then no FOR processing is performed. The non-file 
format mode is invalid for diskette devices. 

ENTRi PARAMETERS: 

MUOS 3.0 User's Guide 

x = The address of an IOCB which has been 
properly reserved (i.e., no errors 
occurred) via the .RESRV function. 
Since the IOCB needs to be reserved 
only once per device of a given 
logical unit number. it is possible 
to open and close a file and then 
reopen another file using the same 
IceS without issuing another .RESRV 
call. In these instances, the I nCB 

Page 25-34 



Ii~pUT/OUT2UT FUNCIICH..JS 

MOOS 3.0 User~s Guide 

25.3 -- Device Independent 1/0 Functions 

must not contain information for an 
open file (i.e., the first file must 
have been properly closed). The 
.OPEN fUnction does not force an 
already-open file to be closej. 

IOCDrr must have the tlM" bits set for 
input, output, or update modes. The 
update modes are only valid for 
diskette devices. In addItion, the 
"F" bit must specify file or non-file 
format. The non-file format mode is 
invalid for diskette devices. The 
US" bit must indicate the subsequent 
access method to be used. Sector 1/0 
is invalid for non-diskette devices. 

IOCDt3S must contain a buffer start 
add res sun I e s s dis k e t tel /0 (e i the r 
record or logical sector) 0r the 
non-file for~at mode has been 
specified in the IOCDTT. The data 
buffer described by IOCD13S anrJ I(x';OBE 
is used for FDR processing with 
non-diskette devices. If used, it 
must be large enough to acco~modate 
an FOR (section 24.3.4>. 

IOCOBE must contain a buffer end ,qddress 
unless diskette 1/0 (either record or 
logical sector) or the non-file 
format mode has been specified in the 
I OC 0 IT • Ih e d a tabu f fer des c rib ed by 
IOCDI3S and IOCOBE is used for FOR 
processing with non-diskette devices. 
If used, it must be larqe enouqh to 
accommodate an FOR (section 24.3.4). 

IOCNAM must contain a valid 
MOOS-formatted file name unless the 
non-file format mode has been 
specified in the IOCOTI or unless the 
first byte of file name is binary 
zero. In the file format mode on a 
non-diskette device being opened for 
input, the .OPEN function will cause 
a search to be performed for the 
first FOR if the first byte of l<I:;NAM 
is a binary zero. This file will 
then be used by the subsequent record 
input requests. otherwise, the file 
name supplied in IneLUN, IOCNAM, and 
IOCSUF is searched for or created 
(depending on M of lOCDIT>. 

Page 25-35 



INiJUT/OUTpUf FUNCfIONS 

MDOS .3.0 User's Guide 

25.3 -- Device Independent 1/0 Functions 

IOCSUF mu st contai n a va lid 
MOOS-formatted suffix unless the 
non-file format mode has been 
specified in the IOCDTI or unless the 
first byt e of IOCNAM c ont~ ined a 
binary zero (see above). 

IOCFDF must only be initialized to 
specify the file format (FMT bits) it 
the output mode (M = 10 of IOCDTI) or 
the update mode to a non-existing 
f i 1 e (M = I J 0 flOC 0 IT) is in j i cat ed • 
I n add i t i on, i f the de vic e t y p e i s 
OK, the other bi t s of IOCFOF must be 
specified for these two open modes. 
A special case exists if the non-file 
format mode is indicated in the 
lOCO IT • In this instance, the FMT 
bits of IOCFDF must be set to the 
ASCII record format (FMT = 5). 

It is not recommended that iiskette 
files be created with the protection 
at t r i btl t e sse t , sin c e' the y w i 11 
prevent a file from being deleted 
upon closing if no information was 
written into the file. The 
protection attributes shouli be set 
via the .CHANG system function or via 
the i~AME command. 

IOCSHP must be initialized if the device 
type is OK and either the output mode 
(M = J 0 of IOCDTT) or the update mode 
to a non - e xis tin q f 11 e ( M = I I 0 f 
I DC UrT ) iss pe c i fie d • A val u e 0 f 
zero will cause the default space to 
be initially allocated to the file. 
A non-zero value will cause that 
number of sectors to be used for the 
initial allocation. 

A non-zero value in IOCSl:3p when 
openinq an existinq file will have no 
affect on the allocation of the file. 
EXisting files only change in size 
when writing beyond the end-of-flle 
or when closing them with the 
truncate flaq set. 

IOCSBS must contain the starting address 
of a sector buffer only if the 
device type is OK. The sector buffer 
must be an integral number of sectors 

Page 25-36 



INPUT /oUTrlUr FUNCT IONS 

EXIT CONUITIONS: 

25.3 -- Devi ce Independent I/O Funct ions 

in size (see section 25.3.1.20). 

IOCSBE must contain the address of the 
last byte of a sector buffer only if 
the device type is OK. The sector 
buffer must be an integral number of 
sectors in size (see section 
25 • 3. 1 • 20 ) • 

A is indeterminate. 

B = The contents of the IOCSTA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged II 

C = 0 and Z = 1 if no errors occurred (B 
= 0) • The remainder of CC is 
indeterminate. 

C = 1 and Z = 0 if an error occurred (B 
not z er 0) • The remainder of CC is 
indeterminate. 

The IOCB is affected in the following manner if 
an error occurred: 

I(~STA contains the error status. The 
following error statuses can be 
returned: IsCKSM, I$CLOS, ISDSPC, 
I$UTyP, I$OUPE, I$EOF, I$FSPC, 
I$FTYP, I$EOM, I$IVDV, I$NONM, 
1$ NORV, 1$ NRDY, I $H I B, I $ViR I r • 

Th e r em a i nd er 0 f the I OC Ban d the 
contents of the data buffer 
(non-diskette device) and the sector 
buffer (diskette device) are 
indeterminate. 

The IOCB is affected in the followinq manner if 
no errors occurred: 

MOOS 3.0 User';s Guide 

IOCSTA = O. 

IOCOTT has the '·0" bit set to zero (file 
open). fhe "Til bit will have been 
set to one if a new file had to be 
created on the diskette. fl1e" rOil 
bits Rre indeterminate. The 
remainder of IOCOTI is not cha'1ged. 



INPUT /OUTpUT fUNCfIONS 

MOOS 3.0 User'''s Guide 

25.3 -- Device Independent I/o Functions 

IOCOBP is indeterminate. 

IOCNAM is unchanqed if the device type is 
not DK. If the device type is OK, 
then IOCNAM will have been replaced 
with the four entries IOCMLS, IOCSDW, 
IOCSLS and IOCLSN. 

IOCMLS contains the value $FFFF if the 
device type is OK. 

IOCSDW contains the first SOW from the 
file"s RIB if the device type is DK. 

IOCSLS contains the value $FFFF if the 
device type is OK. 

IOCLSN contains the value zero if the 
device type is DK. 

IOCSUF is unchanged if the device type is 
not OK. If the device type is OK, 
then I(~SUF will have been replaced 
with the IOCEOF entry. 

IOCEOF contains the logical sector number 
of the loqical end-of-file if the 
device type is OK. 

IOCRIB contains the physical sector 
number of the fileJs RIB if the 
device type is OK. 

IOCOEN contains the 
entry number if the 
OK. 

file~s directory 
device type is 

I(~FUF contains the FDF field from the 
directory entry or the FUR (if open 
mode is input or update to 9xisting 
file). Otherwise, the IOCFOF field 
contains its initial value; however, 
if the initial FMT bits contained a 
U I It , F M r will h av e been c h~ n g ed to 
either a "3" or a "7" as described in 
section 25.3.1.16. 

IOCSBP contains the value of zero if the 
device type is OK. 

IOCSSI contains the value in IOCSdE. 

The rema inder of the IOCB is unch~nqed. 

Pa';le 25-38 



INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions 

[he contents of the data buffer 
(non-diskette device) and the sector 
buffer (diskette device) are 
indeterminate. 

25.3.4 Input a record -- .GET~C 

The .GErRC function reads a record from an opened file 
or device into a data buffer. The specific processing 
performed by .GETHC depends on the FMT bits of IOCFDF and on 
the jevice type. The record input function will process 
three file formats: binary record (FMf = 3), ASCII record 
(FMT = 5), and ASClI-converted-binary record (FMT = 7). 

Binary records will be stripped of their record header 
(see section 24.3), their byte count, and their checksums. 
Only the data characters between the byte count and checksum 
fields will be returned. A carriage return will be the last 
data character in the data buffer. If characters are 
encountered after the checksum field of one binary record but 
before the header field of the next record, they will be 
ignored. 

ASCII records will be stripped of null characters, line 
feeds, rubouts, and the device control characters OC1-DC4. 
rlhen reading records from the diskette, compressed spaces 
(bytes with bit 7 set to I) will be automatically expanded 
into the appropriate number of spaces. before being placed 
into the data buffer. This automatic space expansion occurs 
regardless of the compression bit in IOCFOF (bit UNII). A 
carriage return will be the last data character lr1 the data 
bu ffer. 

ASCII-converted-binary records are handled similarly to 
binary records; however, the conversion of two seven-bit data 
bytes into a single eight-bit data byte is autom~tically 
performed. 

Ihe .GETRC function treats the system console (CN) in a 
slightly different way than it does other devices, since the 
input from this device is usually in an interactive mnde with 
the operator. In addition to the normal ASCII record 
proceSSing, .GETHC will perform the following. First, if the 
first byte of the I(~SUF field contains a displayable 
character in the range S20-S5F, it will be automatically 
displayed as an input prompt each time the .GETRC function is 
invoked. Next. the special keyboard characters rubout ($7F), 
cancel (CIL-X, SI8), and Ecff (CTL-D, $04) will cause the 
standard MOOS keyboard functions to be performed (section 
2.5). Hubout will delete the previously entered character, 
cancel will delete the entire input line entered thus far, 
and Ecff will cause the input line entered thus far to be 
redisplayed on a new line of the console. Lastly, the 

M~)S 3.0 User's Guide Page 25-39 



INtJUT/OUTpUT FUNCfIONS 25.3 -- Device Independent I/O Functions 

carriage return character will cause a carriage return, line 
feed, and null sequence to be sent to the console. All other 
data characters will be echoed back to the console display 
mechanism as they are entered from the keyboard. This 
function is the same as for the .KEYIN system function 
described earlier in this chapter (section 25.2.1). 

ENfRV PAHAMEfEHS: 

EXIT CONDITIONS' 

MDOS 3.0 User's Guide 

x = The address of an I(~B which hRS been 
properly reserved and opened (i.e., 
no errors occurred) via the .RESRV 
and .OPEi'l functions , respectively. 

loeorr must have the US" bit set to zero 
( r e cor d 1/0). Th e mod e f 131 ( bit 
"M") must specify either the input or 
the update modes as configured prior 
to opening the file. 

IOCOBS must contain the address where the 
first byte of the record is to be 
stored. 

IOCOBE must contain the address where the 
last byte of the maximum size record 
is to be stored. The buffer 
described by IOCOBS and IOCD8E must 
be large enough to accommoi3te the 
largest possible record that ~ay be 
encountered in the file. 

IoeSUF may be confiqured by the callinq 
program to contain a displayable 
character in its first byte if the 
input device is the system console. 
In this case, the character will be 
shown on the console as an input 
prompt each time the .GETRC function 
is invoked. I (~SUF must not be 
changed after opening a file when 
other devices are used. 

IOCFDF must have been configured for a 
valid file for~at on a previous .OPEN 
call (FMT = 3, 5, or 7). 

A is indeterminate. 

B = The contents of the IOCSTA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged. 

Page 25-40 



INpUTIOUTPUT FUNCfIONS 25.3 -- Device Independent 1/0 Functions 

C = 0 and Z = J if no errors occurred (B 
= 0). The remainder of CC is 
indeterminate. 

C = i and Z:;;; 0 if an error occurred (B 
not zero). The remainder of CC is 
indeterminate. 

The I(~B is affected in the followinq manner if 
an error occurred: 

IOCSTA contains the error status. The 
followinq error statuses can be 
ret urn e d : I S B UFo, I $ C KS M , I $ CL os t 
I SDTYP t I SEOF, I SFTYP, I SEOM, I SNROY t 
ISHANG, ISSECB. 

IOCDf:3P is indeterminate;. 

I OCMLS t I OCSDW, I OCSLS, I OCLSN, I OCSBP, 
and IOCSSr are indeterminate if the 
device type is DK. Otherwise, 
I OCNAM t I OCSBP, and I OCSB I are 
unchanged. 

The remainder of the IOCB is unchanged. 

If a buffer overflow error occurred 
( IOCSTA = r $ SUFO) t then the last data 
character of the record (c~rriage 
return) will be the last char~cter of 
the buffer. The first "n" characters 
(n beinq the size of the dat~ buffer 
minus one) of the record are intact. 
Otherwise, the contents of the data 
buffer are indeterminate. 

If the device type 
contents of the 
ind eterm inat e. 

is OK, then the 
sector buffer are 

The IOCB is affected in the following manner if 
no errors occurred: 

MOOS 3.0 User"s Guide 

roeSTA = o. 
IoeDIT has the 1/0 transfer flaq set to 

indicate input (10 = 10). The 
remainder of IoCOrr is unchanqed. 

IOCDBP contains the address of the last 
character read into the input buffer. 
This character will always be a 
carriage return. 

Page 25-41 



INpUT/OUTpUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

I OCMLS, I OCSDW, I OCSLS, I OCLSN, I OCEOF, 
IOCS8P, and IOCSSI cont~in the 
system-maintained parameters as 
described in section 25.3.1 if the 
device type is DK. They reflect the 
current diskette file pOinters. 
IOCNAM, IOCSUf, IOCSBP, and I(X:;SBI 
are unchanged if the device is not 
OK. 

The remainder of the IOCB is unch~nged. 

The data buffer contains the record. 

The sector buffer contains data from the 
logical sectors read. This number is 
given by I(CLSN minus the valid 
buffer size in sectors 
«IOCSBI-IOCSBS+)/128) if the device 
is DK. 

25.3.5 output a record -- .PUTRC 

The .PUTHC function writes a record from a data buffer 
to an opened file or device. The specific processing 
performed by .PUTHC depends on the FMT bits of IOCFDF and on 
the device type. The record output function will process 
three file formats' binary record (FMT = 3), ASCII record 
(FMT = 5), and ASClI-converted-binary record (FMf = 7). 

Binary records will be automatically supplied with their 
record header (see section 24.3), a byte count, and a 
checksum. In addition, a terminating carriage return is 
supplied by the .PUTRC function. If the output device is a 
non-diskette device, the terminating carriage return will 
actually be a carriaqe return, line feed, null sequence. 
None of these automatically supplied fields are present in 
the data buffer described by the IOCB. 

ASCII records will be automatically space compressed if 
the output device is diskette and if the liNn bit of IOCFDF is 
zero. Otherwise, spaces will not be compressed. A carriaqe 
return character will be automatically written to the output 
device after the last data character has been sent unless the 
last data character nappens to be a carriage return. All 
carriage returns, those encountered within the data buffer as 
well as the automatically supplied terminating one, are 
converted into a carriage return, line feed, null sequence 
when being written to a non-diskette device. The line feed 
and null ch~racters generated from embedded carriage returns 
will not be written to the diskette. 

ASClI-converted-binary records are handled simil1rly to 

MDOS 3.0 User"s Guide Page 25-42 



INiJUT/OUTaJUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

binary records; however, the conversion of one eight-bit data 
byte into two seven-bit data bytes is automatically 
performed. 

if a record is being written into a diskette file, 
additional space may be allocated to accommodate the 
increased space requirements of the file. The file 
allocation is done automatically. The amount o-f sec-ondary 
allocation will deoend on the available file space; however, 
an attempt will be ~ade to allocate the default nu~ber of 
clusters. If less space is available than the default, then 
the larqest available block will be allocated. 

ENTRt iJAHAMETERSa 

EX I T C(>r~IJ IT IONS: 

MOOS 3.0 User's Guide 

x = The address of an IOCB which has been 
properly reserved and ooenei (i.e., 
no errors occurred) via' the .RESRV 
and .OPEN functions, respectively. 

IOCDTT must have the "S" bit set to zero 
(record 1/0). The mode flaq (bit 
liMn) must specify either the output 
or the update modes as configured 
prior to opening the file. 

IOCOBS must contain the address of the 
first byte of the record that is to 
be wri tten. 

IOCOSE must 
last byte 
written. 
return is 
bu ffer. 

contain the address of the 
of the record that is to be 

A terminating carriage 
not required in the data 

IOCFDF must have been configured for a 
valid file format during theorevious 
.OPEN call (FMT = 3, 5, or 7). The 
non-compressed space bit (bit UNtI) 

determines whether or not spaces are 
compressed (only applies to ASCII 
files beinq written to diskette). 

A is indeterminate. 

B = The contents of the I(~STA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged. 

C = 0 and Z = I if no errors occurred (B 
= 0). The remainder of CC is 
ind eterm inat e. 

Page 25-43 



INPUT/OUTPUT FUNCTIONS 

The IOCB 
an error 

25.3 -- Device Independent I/O Functions 

C = and Z = 0 if an error occurred (8 
not zero) • The remainder of CC Is 
indeterminate. 

Is affect ed in the fo llow ing manner if 
occurred: 

I(~STA contains the error status. The 
following error statuses can be 
return ed: I SCLOS, I SOTVP, I SFfViJ, 
ISNHOY, I$RECL, ISRANG, ISSSCB, 
I$RIB, I$FSPC, ISSSPC. 

IOCDf:3P is indeterminate. 

IOCMLS, I OCSDr"4 , IOCSLS, I(~LSN, IOCEOF, 
IOCSBP, and IOCSSI are indeterminate 
if th e dev ic e type is OK. I OCNAM, 
IOCSUF, IOCSSP, and loCSaI are 
unchanqed otherwise. 

fhe remainder of the IOCB is unch~nqed. 

fhe contents of the data buffer are 
unchanqed. 

The contents of the sector buffer are 
indeterminate. 

The IOCB is a ffected in the following m~nner if 
no errors occurred: 

MOOS 3.0 User's Guide 

IOCSTA = O. 

IOCDIT has the I/O trnnsfer flag set to 
indicate output (10 = 01). If 
addition3l file space was allocated, 
the truncate flag (T) is set to one 
if it was not already one prior to 
the output transfer. The re~ainder 
of IOCOTf is unchanqed. 

IOCOBP contains the address of the last 
character in the data buffer (same as 
I OCDi3E ) • 

I OCMLS, I OCSOrl, I OC SLS, I OCLSN, I OCE OF, 
IOCSBP. and IOCSBI cont~in the 
system-maintained parameters as 
described in section 25.3.1 if the 
device is OK. They reflect the 
current diskette file pointers. If 
.PUTrtC h~s been CAlled for the first 
time, and if IOCMLS contained the 

Pa~e 25-44 



INPUT/OUT~UT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

value SFFFF upon entry, IOCMLS will 
contain the value SOOOO upon exiting 
the function. In this way, t~e file 
will not be deleted upon closing, 
even if only a single record has been 
written into the sector buffer. 

IOCNAM, IOCSUF, IOCSBP, anj IOCSSI 
are ~nchanqed if the device is not 
OK. 

The remainder of the IOCB is unchanged. 

The contents of the data buffer are 
unchanged. 

The sector buffer 
are going to 
startin;} with 
soec if ied by 
bu ffer is not 
been written. 
sec tor btl ff er 
.PUTRC call 
data from the 

contains the data that 
be written to diskette 
the logical sector 
IOCLSN. The sec tor 

cleared after having 
Thus, the parts of the 
not affected by the 

will still contain the 
buffer last written. 

25.3.6 Close a file -- .CLOSE 

The .CLOSE function is used to siqnify completion of all 
1/0 transfers to a file or device in the current open mode. 
Data cannot be transferred between the file (Or device) and 
the calling program after the .CLOSE function has been 
invoked. The specific function performed by .CLOSE depends 
on the mode flag (M of I(>COTf), the I/O transfer flaq (10 of 
I OCDIT) , and the devi ce type. 

If the IOCB has been opened in the input mode (M = 01 of 
I OCOfT), then the .CLOSE function will simply chanqe the IOCB 
to indicate that the file is closed. 

If the IOCB has been opened in the output mode (M = 10 
of I OCOIT > , then .CLOSE wi 11 perform the following. For a 
device type of OK, .CLOSE will zero-fill any unused portions 
of the unwritten sector buffer to a sector boundary before 
writing the buffer to the diskette (only if record I/O is 
be i n .;1 per for m ed ; 1 09 i cal sec t or I /0 will not c au set he 1 as t 
sector buffer to be changed or written). All space that has 
been newly allocated but not written into (those logical 
sectors greater than ICCMLS) will normally be deallocated on 
a cluster boundary and returned to the free space pool 
(assumes that the truncate flaq and I(~MLS have not been 
chanqed by the callinq program). fhe end-of-file LS~ will be 
adjusted in the 11 lB. I f the dev ice is not OK, then • CLOSE 

MDOS 3.0 User·'s Guide Page 25-45 



Il'JPUI/oUTPur FUNCfIONS 25.3 -- Oevice Independent 1/0 Functions 

will cause an end-of-file record to be written to the device 
(file format mode only). In the non-file format mode, .CLOSE 
will only write an end-af-file record to the device if it is 
a file-type device (e.g., an end-of-file is written to CP but 
not to LP or CN). File-type devices are those which use a 
medium that can be re-read later. 

If the I(~B has been opened in the update modes (M = 00 
or II of IOCDTI), then .ClOSE will perform the same functions 
as in the input or the output mode depending on the last 1/0 
transfer type. Ihe .GEIKC and .GETlS functions will set 10 
of I(CDIT to indicate an input transfer, while the .PUTRC and 
.PUIlS functions will set 10 of IOCUTT to indicate an output 
transfer. In the latter case, space is only deallocated it 
the truncate flag (T of IOCOrf) is set to one (done 
auto~atically when new space is allocated, or done by user to 
indicate tile shorteninq or updating of end-of-file pointer 
in H I B) • 

ENTRY PARAMETERSa 

MOOS 3.0 User's Guide 

x = Ihe address of an I(~B which has been 
properly reserved and openei (i.e., 
no errors occurred) via the .RESRV 
and .OPEr.J functions, respectively. 

Normally, no additional parameters 
are required; however, when dealing 
with diskette files in the update 
mod e (M = 00 0 r 1 I 0 f lOCO If) , the 
truncate flag (T of 10COIT) and the 
maximum referenced logical sector 
number (IOCMLS) can be configured by 
the calling program. Since the 
update modes only set the truncate 
flag to one it a new file is created 
during the open process or if 
additional space is allocated during 
the output process (file grows), 
space will not be deallocated or the 
end-of-file pointer updated from 
existing tiles unless the truncate 
flag and IOCMlS are explicitly set up 
by the ca 11 i ng program. ~~hen IOCMLS 
is set to the value SFFFF (value set 
up d ur in 9 • OPE N), then t he f i 1 e will 
have its directory entry deleted in 
addition to having all of its space 
deallocated (if truncate flag is set 
to one when .CLOSE is invoked). 

IoeDBS and I (CDBE must descr ibe a va 1 id 
data buffer when dealing with 
non-diskette devices (output only) 
since an end-af-file record is 
written (file-type devices only). 

Page 25-46 



INpUT/OUTpUT FUNCTIONS 

EXIT CONDITIONS: 

25.3 -- Device Independent I/O Functions 

A is indeterminate. 

B = [he contents of the IOCSTA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged. 

C = 0 and Z = 1 if no errors occurred (B 
= 0). The remainder of CC is 
indeterminate. 

C = and Z = 0 if an error occurred (B 
not zero). The remainder of CC is 
indeterminate. 

The IOCB is affected in the following manner if 
an error occurred: 

IOCSTA contains the 
following error 

error status. The 
statuses can be 

I SOELT. I SIDEN t returned: I SCLOS t 

I S i1 A f'lJ tIS SE C B , ISFSPC, ISSSPC. 
I $ H I [3 • I $ 0 E AL. 

[he remainder of the I(~B and the 
contents of the data buffer and the 
sector buffer nre indeterminate. 

The 10CB is affected in the followin9 ma'1ner if 
no errors occurred: 

MUOS 3.0 User's Guide 

IOCSTA = o. 

IOCOIT has the "0" bit set to one (file 
closed). The remainder of the IcCOrr 
is unchanged. 

IOCRIB will be zero if the file was 
deleted from the diskette. Otherwise 
it will be unchanged. 

IOCEOF will contain the LSN of the 
logical end-of-file if the device 
type is OK. IOCEOF will be unchanJed 
if the truncate flag was zero upon 
entry. 

[he remainder of the I(~B is unchanged. 

The contents of the data buffer and the 
sector buffer are indeterminate. 

Page 25-47 



INPUT I(XJTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

25.3.7 Release a device -- .HELES 

The .RELES function breaks the link between the 
appropriate controller descriptor block and the calling 
proqram"'s IOCB. The .HELES function should be the last 1/0 
function called after all 1/0 has been completed. 

ENIHt PARAMETERS' 

EXIT CONDITIONS. 

x = Th e a dd res s 0 f 0 fan I OC B w hi c h has 
been properly reserved (i.e., no 
errors occurred) via the .RESHV 
function. If the .OPEN function has 
been invoked at any time after 
res e rv in q the I OC B , the f i 1 e ( or 
device) must first be closed via the 
.CLOSE function before the IOCB can 
be reI ea sed. 

A is indeterminate. 

B = The cont ents of the IOCSTA entry. If 
no errors occurred, B will b~ zero. 
A non-zero value indicates thnt an 
error occurred. 

X is unchanged. 

C = 0 and Z = 1 if no errors occurred (B 
= 0). The remainder of CC is 
indeterminate. 

c = I and Z = 0 if an error occurred (B 
not zero). [he remainder f)f CC is 
indeterminate. 

fhe IOCB is affected in the following ma'1ner if 
an error occurred: 

IOCSTA contains the error status. The 
following error statuses can be 
returned: I$NORV, ISCLOS. 

fh e r ema inder of the IOCB and the 
contents of the data buffer and the 
sector buffer are unchanqed. 

The I(~8 is affected in the followinq manner if 
no errors occurred' 

IOCSTA = O. 

IOCGDW = O. 

IOCLUN has the "Hu bi t set to zero {I OCB 

MDOS 3.0 User's Guide Page 25-48 



[NPUT/OUTpur FUNCfloNS 25.3 -- Device Independent 1/0 Functions 

released). The remainder of 1(~LUN 
is unchanged. 

The remainder of the IOCB and the 
contents of the data buffer and the 
sector buffer are unchanged. 

25e388 Example of device independent 1/0 

The following example uses the device independent 1/0 
functions described thus far. The IOCB shown below is used 
in the example as the control block for writing to a iiskette 
file. The initial values set up in this rOCB are typical for 
most output operations. A four-sector buffer is used to 
allow a maximum of four sectors to be written to the diskette 
each time it is accessed. The Iarqer a sector buffer is, the 
fewer will be the number of diskette accesses. The logical 
unit number. file name, and suffix are going to be 
initialized from an operator-supplied parameter on the 
command line. The system symbols from the MOOS equate file 
are used throughout this example. 

OUTPUT EQU * • STARr OF OUTPUT roeB 
FCB a • IOCSTA 
FCB DI$ OPO+DT$CLS • InCDIT 
FOB a • IOCOBP 
FOB HBUFF • IOCDBS 
FOB RBUFFE · IOCDBE 
FCC 2,DK • IOCGD~ 
t=CB ~O+O • IOCLUN DEFAULT = a 
FCC n T nf" .:\1 AU 

0, • L ~lvJ"Inf~1 

FCC 2,SA • IOCSUF-- DEFAULT = SA 
FOB 0 • IOCRIB 
FOB FD$FMA!<8 • IOCFDF -- ASCI I 
FOB 0 • i-lESERVED 
FOB 0 • IOCDEN 
FOB 0 • IOCSBP 
FOB SCTBUF • IOCSBS 
fOB SCTBUF+(SC$SIZ*4)-) • IOCSBE 
FOB 0 · loess I 

* SCTBUF BSZ SC$SIZ*4 • SEcrOR BUFFER (4 SECTORS) 
HBUfF BSZ 80 • HECOHD BUFFER 
KBUFFE EQU *-1 • 

The code that is shown below performs the following 
functions. First, a file na~e specification which has been 
entered on the MDOS command line is extracted from the 
cornm.qnd line buffer and placed into the IOCB. [his is 
accomplished with the .pFNAM system function described in 
Chapter 27. Then, the IOCB is reserved and opened. ~ext, an 
input prompt is displayed on the system console and an line 
of text is accepted from the keyboard. If the entered line 

MDOS 3.0 User's Guide Paqe 25-49 



I l~PUT/OUTpur FUNCfloNS 25.3 -- Device Independent 1/0 Functions 

consisted of only a carriage return, the I(~B is closed, 
released, and control returned to the MOOS command 
interpreter (via the function .MDENT). otherwise, the 
entered line is written into the diskette file. The input 
process is repeated until only a carriage return is entered. 

The error message function, .MDERR, is used to display 
standard error messages if an invalid file name specification 
is entered, if a file name is missing, or if one of the 1/0 
functions returns an error condition (e.g., if the file name 
already exists in the directory, or if insufficient diskette 
space is available). The function .ADBX is used to add the 
contents of the B accumulator to the index register. 80th of 
these functions are discussed in detail in Chapter 27. 

In this example, the assumption is made that the program 
is invoked from the MOOS command line. Thus, it must be 
origined to load above location SIFFF. The stack pointer Is 
automatically initialized through the loading process to 
point to the last-loaded program location. The stack area 
has been set up so that the default value of the stack 
pointer can be used without having to execute a load stack 
pointer instruction. 

* * DEFI NE SOME ~ORK I ~~G STOHAGE 

* PFN~AK FOB 0,0 • pROCESS FILE NAME PACKET 
PHOMPf ~CB , : ,EOr • I NPUI PROMPT 
* * EXfliACT fHE FILE NAME FROM THE COMMAND LI NE 
* STAHT LDX #OUTPUT + I OCLU j\j • 

STX PFNPAK+2 · DESfINATION OF FILE NAME 
LDX CBUFPS · POI NTEK INTO CMD BUFFEH 
SIX PFNPAJ( · SOUHCE OF FILE NAME 
LOX #P~NPAK 
SCALL .PFNAM • FOHMAT SrAl\jDAHD FILE NAME 
IST8 • CHECK FOR EHRORS 
dEQ STARfA · EQ => GOOD NAME 
ASLB 
I3CS ERRI · CS => NAME MISSING 
LDAB #7 • ILLEGAL NAME MSG NUMBER 
BRA EHR2 • 

* EHRI LDAB #5 · NAME REQUIRED MSG NUMBER 
ERR2 SCALL .MOERR · DISPLAY STD EHHOH MSG 

BHA MDOS • EXIT THE PROGHAM 
* ERR3 CLHB · liD ERR MSG NUMBER; DECODED 

BHA EHR2 · FROM I (~STA 
* * O;JEN AND HESEHVE THE IOCB -- CREATE THE OUTPU r F ILi:! 

* 

MOOS 3.0 User's Guide 



INPUT/OUT~ur FUNCTIONS 25.3 -~ Device Independent 1/0 Functions 

STAi~TA LOX #oUTPUT • 
SCALL • l1ESRV 
tlCS ERR3 · CS => ERROR 
SCALL • OPEN • 
BCS EHR3 · ("~ ..... ..., => ERROR 

* * GET LINE FROM CONSOLE 

* LOOP LOX 
SCALL 
LOX 
LDAIj 
SCALL 
LDAA 
CMPA 
BEQ 
SIX 
DEX 
SCALL 
SIX 

#PROMPT • DISPLA"Y [HE INPUT PROMP[. i~O CR/Lf 
• DSPLl • 
#HBUFf • GEf THE INPUT LINE 
#H8U FFE-HBU FF 
.KEYIN • 
X • G E r 1 S [ CHAR I N 8 U FF E R 
#CH • CHEC~ F OR TERM I NAT OR 
EXIT • EO => THIS IS fHE rERMINATI~G LINE 
OUTPUT+ IOCDBS • SETUP START HECOHD POI NfER 

* 
* CLOSE 

* EXlf 

MOOS 

* 

LlJX 
SCALL 
BCC 
dRA 

AND 

LOX 
SCALL 
BCS 
SCALL 
tiCS 
SCALL 

• CALC END OF RECORD BUFFER 
.ADBX • B = NUMB CHAHS INPUT 
OUTPUT+!OCDBE • SETUP END RECORD POINIEH 
#oUTPUT • 
.PUTRC • WRITE [HE RECORD 
LOOP • CC => l~O ERRORS 
ERR3 

RELEASE THE IOCB, RETURN TO MDOS 

#OUTPUT · POINf TO THE IOCB 
.CLOSE • 
EHH3 · CS => ERHOH 
• RELES • 
ERR3 CS ~~ rr"\r\' .. ll · cnn\Jn 

.MDENT · RETURN To MOOS 

* Lt:AVE SOME ROOM FOR SfACK 
* BSZ 

END 
80 
START 

• STACK SE[ HEl1E BY LOAD 
• 

25.3.9 Specialized diskette 1/0 functions 

Thr ee addi tional 1/0 functions exist that a1 so use the 
I(~B as a parameter table; however, they are rlependent on the 
device type being OK. An error will be returned if any other 
device type is specified. 

25.3.9. I Input logical sectors -- • GEfLS 

The .GEfLS function reads one or more logical sectors 
from an opened file into a sector buffer. 

fNTRt PAHAMEfERSa x = The address of an IOCB which has been 

MOOS 3.0 UserJs Guide Paqe 25-51 



INPUT/OUTtlUr FUNCfIONS 

EXIT CONOITIONS: 

MDOS 3. a User"s Guide 

25.3 -- Device Independent 1/0 Functions 

properly reserved and opened (i.e., 
no errors occurred) via the .RESRV 
and .OPEN functions, respectively. 

IOCOTT must have the liS" bit set to one 
(sector 1/0). The mode flaq (bit 
liMit) must specify either the input or 
the update modes as confiqured prior 
to opening the file. 

lOCLSN must contain the logical sector 
nu~ber that is to be reai. The 
actual number of sectors read iepends 
on the size of the sector buffer (see 
below). The data sectors of the file 
begin with logical sector zero. If 
the rtIB is to be accessed via the 
.GETLS function, then I(CLSN must 
contain the value $FFFF. 

IOCSBS must contain the starting address 
of a ~ector buffer. The sector 
buffer must be an integral nu~ber of 
sectors in size (see 5ection 
25.3.1.2Q). This buffer does not 
necessarily have to be the same one 
used to open the file. The sector 
buffer can be in a different location 
for each .GETLS call; however, if the 
sector buffer is to be moved ~fter a 
file has been opened, then IOCSBS, 
IOCSSE, and lOCSSI must be chanqed by 
the calling program. 

IOCSSE must contain the address lof the 
last byte of a sector buffer. The 
sector buffer must be an inteqral 
number of sectors in size (see 
section 25.3.1.20). The buffer 
described by IOCSBS and I(l:SBE 
indicates the maximum number of 
sectors that can be processed 
starting with the logical sector 
whose number is in ICCLSN. 

A is indeterminate. 

B = The contents of the ICCSTA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanqed. 

Pag e 25-52 



It'lr>UT/OUT~UT FUNCfIONS 25.3 -- Device Independent I/O Functions 

C = 0 and Z = I if no errors occurred (1:3 
= 0). The remainder of CC is 
indeterminate. 

c = I and Z = 0 if an error occurred (8 
not zero). The remainder of CC is 
indeterminate. 

[he IOCB is affected in the following mar'lner if 
an error occurred: 

IOCSTA contains the error status. The 
following error statuses can be 
return ed: I SCLOS, I SOTVP, I SE OF. 
ISSECB, ISHANG. 

I OCMLS f I OCSDW ~ I OCSLS. I OCLSN, I OCSBP, 
and IOCSi:31 are indeterminate. 

fhe re~ainder of the I(~B is unchanged. 

The contents of the sector buffer are 
ind eterm inat e. 

[he I(~B is affected in the following ma~ner if 
no errors occurred: 

MOOS 3.0 User-'s Guide 

IOCSTA = O. 

IOCMLS, I OCSD;i, and IOCSLS contain the 
system-maintained parameters as 
described in section 25.3.i. They 
reflect the current diskette file 
pointers. 

IOCLSN has been incremented by the number 
of sectors read into the buffer 
« IOCSBI-IOCSBS+l )/) 28). 

IOCSBP contains 
the sector 
I OCSBS). 

the stArting address of 
blJ ffer (the S8'1le as 

IoeSBI contains the address of the last 
valid data byte in the sector buffer. 
If only a partial segment was read 
into the bu ffer. I ness I wi 11 not be 
the same a s I (X:;SBE (max imull end of 
buffer). The following relationship 
should be used to calculate the 
number of sectors read: 

I ness I - I OCSBS+ I 
--------------- = # SECT(mS READ 

Page 25-53 



INPUT/OUTpUT FUNCTIONS 25.3 -- Device Independent I/o Functions 

128 

The rema inder of the I nCB i s unch·~nged. 

The sector buffer contains the data from 
the sectors read beginning with the 
loqical sector whose number was in 
IOCLSN. 

25.3.9.2 Output logical sectors -- .PUTLS 

The .PUTLS function writes one or more logical sectors 
from a sector buffer to an opened file. Additional soace may 
be allocated to the file to accommodate the increasei space 
requirements. The space allocation is performed 
automatically. The amount of secondary allocation will 
depend on the available space; however, an attempt will be 
made to allocate the default number of clusters. If less 
space is available than the default, then the larqest 
available block will be allocated. 

ENTRV t>AHAMETEHS: 

MOOS 3.0 User"s Guide 

x = The address of an IOCB which has been 
properly reserved and opened (i.e., 
no errors occurred) via the .RESRV 
and .OPEN functions, respectively. 

IOCOTT must have the liS" bit set to one 
(sector I/O). The mode f l~g (bi t 
"M") must specify either the output 
or the update modes as confiqured 
prior to opening the file. 

IOCLSN must contain the l09ical sector 
number that is to be written into. 
The actual number of sectors written 
depends on the size of the sector 
buffer (see below). The data sectors 
of the file begin with loqical sector 
zero. If the RIB is to be 3ccessed 
via the .PUrLS function, then IOCLSN 
must contain the value SfFFF. 

IOCSBS must contain the starting address 
of a sector buffer containing the 
data to be written. The sector 
buffer must be an integral number of 
sectors in size (see section 
25.3.1.20). This buffer does not 
necessarily have to be the same one 
used to open the file. The sector 
buffer can be in a different location 
for each .PUrlS call; however, if the 
sector buffer is to be moved ~fter a 

Pa:Je 25-54 



INPUT /OUTPUf FUNCTIONS 

EX IT eOl~O IT IONS: 

25.3 -- Device Independent I/O Functions 

file has been opened, then IOCSBS, 
IOCSBE, and IOCSSI must be changed by 
the calling program. 

IOCSBE is not used during the .PUTLS 
function; however, it should not have 
been changed since the file was 
opened (with restrictions mentioned 
above for I OCSBS) .. 

10CSSI must contain the address of the 
last data byte to be written from the 
sector buffer. The sector buffer, as 
described by IOeSBS and loeSSI" must 
be an integral number of sectors in 
size (see section 25.3.1.20). 

A is indeterminate. 

B = The contents of the I(~STA entry. If 
no errors occurred, 8 will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged. 

e = 0 and Z = 1 if no errors occurred (8 
= 0). The remainder of ce is 
ind eterm inat e. 

e = and Z = 0 if an error occurred (8 
(lot zero). The rewa i ~der of CC is 
indeterminate. 

fhe I(~B is affected in the following manner if 
an error occurred: 

IoeSIA contains the error status. The 
following error statuses can be 
returned & I $CLOS, I $DYTP" I$SECB, 
I $RANG, I $i-? I Btl $FSPC t I $SSPC. 

IOCMLS, IOCSD~t IOCSLS, IOCLSN, I (>CEOF, 
I(~SBP, and IOCSSI are indeterminate. 

fhe remainder of the I(~B and the 
contents of the sector buffer are 
unchanged. 

fhe IOCS is affected in the following marlner if 
no errors occurred: 

IOCSTA = O. 

MOOS 3.0 User-'s Guide Page 25-55 



INiJUT/OUTaJUT FUNCTIONS 25.3 -- Device Independent I/O Functions 

IOCMLS, IOCSDrV, and IOCSLS contain the 
system-maintained parameters as 
described in section 25.3.1. They 
reflect the current diskette file 
pOinters. 

IOCLSN has been incremented by the number 
of sectors written 
« IOCSBI-IOCSBS+I )/128). If the 
sector specified by the entry value 
of IOCLSN or any of the sectors 
written from the buffer was outside 
of the ranqe of the file's allocated 
space, additional file space will 
have been Allocated (if available). 

IOCEOF contains the logical sector number 
of the logical end-of-file. If 
additional tile space was allocated, 
IOCEOF will contain the new 
end-of-file LSN. IOCEOF is unchanged 
otherw is e. 

ICCSBP contains the starting address ot 
the sector buffer (the same as 
I OCSHS) • 

The remainder of IOCB and the contents of 
the sector buffer are unchanged. 

25.3.9.3 Rewind file -- .RE.~!~D 

The .HEWND function resets the pointers of the IOCB so 
that subsequent 1/0 functions will access the diskette file 
as if it had Just been opened, i.e., from the be1inning. 
Only files that have been opened in the update or input mode 
can be rewound. Files opened in the output mode will cause 
the .RE~~ND function to return an error condition. 

ENTH{ PARAMETERSJ 

MOOS 3.0 User's Guide 

x = The address of an IOCB which has been 
properly reserved and opened (i.e., 
no errors occurred) via the .RESRV 
and • OPEl..] funct ion s. respect i ve 1 y. 

IOCDIT can have the "S" bi t set to 
indicate ei ther record or sector "'1/0. 
The mode flag (bit "M") must specify 
either input or update modes as 
configured prior to openinq the file. 

IOCSBS must contain the starting address 
of a sector buffer. The sector 
buffer 'l1ust be an inteqral number of 

Paqe 25-56 



INPUT /OUTPUT FUNCr IONS 

EXIT CONDITIONSa 

25.3 -- Device Independent 1/0 Functions 

sectors in size (see section 
25.3.1.20). This buffer does not 
necessarily have to be the sa~e one 
used to open the file; however, if 
the sector buffer is to be moved 
after ~ file has been opened, then 
I OCS as. I OCSSE, and I OCSB I must be 
changed by the calling progra~. 

IOCSBE must contain the addre S5 of the 
last byte of a sector buffer. The 
sector buffer must be an integral 
number of sectors in size (see 
section 25.3.1.20). 

A is indeterminate. 

B = fhe contents of the IOCSTA entry. If 
no errors occurred, B will be zero. 
A non-zero value indicates that an 
error occurred. 

X is unchanged. 

C = 0 and Z = 1 if no errors occurred (B 
= 0). The remainder of CC is 
indeterminate. 

C = 1 and Z = 0 if an error occurred (8 
not zero). The remainder of CC is 
indeterminate. 

The IOCB is affected in the following ma,ner if 
an error occurreda 

IOCSTA contains the error status. The 
same error statuses can be returned 
as those that cnn be returnei by the 
.OPEN and .CLOSE functions. 

I OCMLS. I OCSDW, I OCSLS. I OCLSN, I OCEOF • 
IOCSBP, and IOCSBI are indeterminate. 

The remainder of the IOCB is unchanged. 

The contents of the sector buffer are 
ind eterm inat e. 

The I(eS is affected in the following manner if 
no errors occurreda 

IOCSTA = O. 

IOCOTI has the "T" bit set to zero. If 

MOOS 3.0 User,is GuIde Page 25-57 



11'~PUT/OUTPur FUNCfIONS 25.3 -- Oevice Independent 1/0 Functions 

the bit was set to one before the 
.RE~I~D call was issued, space may 
have been deallocated from the file 
and the end-of-file pointer in the 
HIS updated. The remainder of IOCDIT 
is unchanged. 

IOCMLS contains the value $FFFF. 

I OCSD~~ contains the first SDW from the 
file's RIB. 

IOCSLS contains the value $FFFF. 

IOCLSN contains the value zero. 

IOCEOF contains the LSN of the logical 
end-of-file from the file'S RIB. 

IOCSBP contains the value zero. 

IOCSBI contains the value in IOCSBE. 

rhe remainder of the I nCB is unchanged. 

The contents of the sector buffer are 
indeterminate. 

[he effect of rewinding a file is the 
sa'Tle as if a • CLOSE and a. OPEN 
function were performed; however, the 
.REWND function reopens the file 
without having the calling orogram 
re-specify the file's na:ne and 
suffix. rhus, when the file is 
rewound, the same space deallocation 
and end-of-file pOinter 
considerations take effect as if the 
file were closed. Since the truncate 
flag is set to zero after the .HE~ND 
call (opening an existinq file), the 
callin~ ~rogram may have to reset the 
flag if space is to be deallocated or 
the end-of-file pointer updated upon 
ca 11 inq the subs equent • CLOSE 
function. 

25.3.9.4 Example of logical sector IAJ 

The following example uses the logical sector 1/0 
functions. The IOCB shown below is used in the example as 
the control block for reading from and writing to a jiskette 
file. The initial values set up In this InCB are similar to 

MDOS 3.0 User"'s Guide Page 25-58 



INtJUT/OUTpur FUNCTIONS 25.3 -- Device Independent I/O Functions 

those in the example qiven in section 25.3.8; however, the 
sector 1/0 and update modes are specified in the I(eOTT 
entry. Only a sin;Jle sector is used for a sector buffer to 
~ake the ~anagement of logical sectors easier (eliminntes 
calc~13tion of the number of sectors read or written). The 
logical unit number, file na~e, and suffix are going to be 
initialized by an operator-supplied parameter obtained from 
the command line~ The system syinbols from the MOOS equate 
file are usei throuqhout this example. 

[EXfIL EQU * • START OF TEXFIL loeB 
FCB 0 • IOCSTA 
FCH DTSOPU+DTSSlo+OTSCLS • IOCDTT 
FOB 0 · IOCDBP 
FOB 0 • I (>COBS 
FOB 0 • IOCDBE 
FCC 2,DK · IOCGDf'I 
FeB '0+0 IOCLUN DEFAULT = a 
FCC 8, • IOCNAM 
FCC 2,SA • IOCSUF -- DEFAULT = SA 
FOB 0 • lOCK IS 
FOB FDSFMA!<8 • IOCFOF -- ASCI I 
FDB a • RESEHVED 
FOB 0 • IOCDEN 
FiJB 0 • IOCSBP 
FOB SECBUF • IOCSBS 
FOB SECBUF+SCSSIZ-) • IOCSBE 
FOB 0 · IOCSBI 

* SECBUF BSZ SCSSIZ • SECrOR BUFFER 

The code that is shown below performs th6 follo'Ning 
fUnctions. First, a file na~e specification which must have 
been entered on the MDOS command line is extracted from the 
command line buffer and placed into the IOCB. [his is 
acco~plished with the .pFNAM system function described in 
Chapter 27. Then, the IOCB is reserved and opened. Next, 
one sector is read fro~ the file and all upoer case 
alphabetic characters are converted into lower case 
characters. A special check is made for punctuation marks 
(period, exclamation point, and question mark) so that the 
first alphabetic character following such punctuation is left 
upper case. After all bytes within the sector have been 
processed, they are rewritten into the same sector from which 
they were read. The process is repeated until an end-of-file 
condition is encountered. Finally, after the file is closed 
and reI eased, control is retUrned to the MDOS command 
interpreter via the function .MDENT. Since the file does not 
expand. it was opened in the update mode so that sectors 
could be both read from and written to the file. It should 
be noted that the loqical sector number should be decremented 
before a sector is written back from where it was reaJ. 

The error message function, .MDERH, is used to display 

MOOS 3.0 User"s Guide Paqe 25-59 



INPUT/OUTt>UT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

standard error messages if an invalid file name specification 
is entered, if a file name is missing, of if one of the 1/0 
functions returns an error condition. The system function 
.ALPHA is used to test for alphabetic characters. Both of 
these functions are discussed in detail in Chapter 27. 

In this example, the assumption is made that the program 
is invoked from the MOOS command line. Thus, it must be 
origined to load above location SIFFF. The stack pointer is 
automatically initialized through the loading process to 
point to the last-loaded program location. The stack area 
has been set up so that the default value of the stack 
pointer can be used without having to execute a loaj stack 
pointer instruction. 

* * DEFINE SOME WORKING STORAGE 
* PFNpAK FOB 
UCFLG FCB 

* 
* 

0,0 
a 

• PROCESS FILE NAME jJACKET 
• UPPEH CASE CONYERS ION FLAG 

* EXTRACT NAME FROM COMMAND LINE 

* STAHT LOX 

* ERRI 
EHH2 

* EHH3 

* 

STX 
LDX 
STX 
LDX 
SCALL 
TSrB 
BEQ 
ASLB 
BCS 
LDAB 
BHA 

LDAB 
SCALL 
BKA 

CLHB 
BHA 

* RESEHVE AND 
* STARfA LOX 

* 

SCALL 
BCS 
SCALL 
BCS 

#TEXFIL+IOCLUN • DESTINATION OF NAME 
PFNPAK+2 • 
CBUFPS • SOURCE OF NAME 
PFNPAK • 
#PFNPAK • 
• P F NA ~ • EXT K ACT F I LEi" AM E 

• CHECK FOR VALID NAME 
STAHT A • EQ => GOOD 

ERR) 
#7 
ERH2 

#5 
• MOERH 
EXIT 

ERR2 

OPEN THE 

#TEXFIL 
.flESHV 
ERR3 
.OPEN 
ERR3 

• 
• CS => NAME MISSING 
• ILLEGAL NAME MSG NUMBER 
• 

• NAME REQUIRED MSG NUMBER 

• U I SPLAY ERROH, THEN EX I r PHOGtlAM 

• 1/0 FUNCTION ERROR MSG NUMBI::t? 

IOCB 

• 
· CS => ERROR 
• 

· CS => EI-lROR 

* READ A LOGICAL SECTOR I NTO BUFFER 

* 

MOOS 3.0 User's Guide 



I NPUT/OUTtJUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

LOOp) • 
• 

LOX 
SCALL 
BCS 

#TEXFIL 
.GETLS 
EOF • CS => EHHOR. POSSIBLE END OF FILE 

* * COJ-.JVERT OAT A v~ ITHI N SECTOH BUFFER 
* LOOP2 LUX 

* 

LUAA 
BSH 
STAA 
INX 
STX 
CpX 
BNE 
LDAA 
BSR 
5TAA 

TEXFIL+IOCSBP • 
X ., GET CHAR FROM BUFFER 
CONVRT • 
X • PUT CHARACTER BACK 

• INC~EMENT BUFFER POINTER 
TEXFIL+IOCSBP • SAvE POINTER 
TEXFIL+IOCSBE • CHECK FOR LAST CHARACTER 
LOOP2 • NE => MORE DATA TO CONVERT 
X • CONVERT LAST CHARACTER 
CONVRT 
X 

* v~RITE LOGICAL SECTOR BACt< INTO FILE 
* LOX 

DEX 
STX 
LUX 
SCALL 
tiCS 
BHA 

TEXFIL+IOCLSN • PICK UP LSN 
• POINT BACK TO LAST HEAD SEC[Orl 

TEXFIL+IOCLSN • 
#TEXFIL • 
• PUTLS • V~H I TE THE SECTOR BACK 
ERH3 • CS => E KROR 
LOOP) • READ NEXT SECTOR AND CONTINUE 

* ENJ-OF-F ILE DETECTED ON I NPU f 
* EOF CMPB #1 $EOF • 

6i~E r- t~ ('\ "'" ..... ,,- =:; T 'I' Cl)i)nU 
Ctttt..) • He L' \1 t..:.!\(\ ~/I\ 

LOX #TEXFI L 
SCALL .CLOSE 
I:3CS ERR3 • CS => ERROH 
SCALL .RELES • 
BCS ERR3 · CS => EKHOR 

EXIT 

* 
SCALL .MDENT • RETURN [0 MUOS COMMAND INTEi<PRETER 

* COj~VERr ALL UPPER CASE ALPHABEf Ie CHAHACTERS TO LOi~ER 
* CASE CHARACTERS. FIRST ALPHAHETIC 
* CHAI-?ACTER fOLLO¥~ I NG A PEl1 I (X). EXCLAMAT ION POI NT. OH 
* (JUr:SIION MARK IS NOT CHANGED. 
* CONVHT SCALL 

des 
IST 
BNE 
OHAA 

• CHEC~ fCill U/C ALPHABEfIC 
• 
• 
• NE => DON,'T CONVERT 
• CONVEliT TO L/C 

CONVEX CLH 
CONEX2 HTS 

• ALPHA 
CONTHM 
UCFLG 
CONVEX 
HSPACE 
UCFLG • RESEr FLAG TO CONVERT NEXT ALFA 

• 
* CONTrlM CMPA #., • • PERIOD 

BEQ SETFLG 

MOOS 3.0 User"s Guide Page 25-61 



INPUT/OUTPur FUNCTIONS 25.3 -- Device Independent 1/0 Functions 

CMPA #'! • EXCLAMAfION 
BEQ SETFLG • 
CMPA #' ? • QUESTION 
H !'1E CONEX2 • 

SETFLG INC UCfLG • 
B~A CONEX2 • 

* 
* SAvE SOME !-lOOM FOH STACK 

* t:3SZ 80 • SfACK POINTEH SET HERE BY LOAD 

* END STAHT • 

25.3.10 Error handling 

All of the 1/0 functions discussed in this section use 
the I(~B. The first entry of the I(~B will contain an error 
status upon returning from one of these functions. The 
callin1 proqra~ is responsible for processing these error 
conditions. If the error status is to be decoierl and 
displayed as a messaqe on the system console, the system 
error messa~e function, .MUERR, can be used. This function 
is described in detail in Chapter 27; however, it should be 
notei here that a common mistake is made in calling the error 
message function with the value returned in the B accu~ulator 
by the 1/0 functions. It is true that thi s value is the same 
as IOCSfA's contents; however this is not the parameter that 
should be used to invoke the error messaqe function. The 
error message function will decode the contents of I(~STA 
only if it is called with the B accumulator equal to zero and 
with the X reqister pointing to the IOCB. 

None of the 1/0 functions described here will return 
control to the calling proqram if a diskette controller error 
i s de t e c ted ( on I y a pp I i cab lei f the de vic e t yp e i sDK) • 
fhese errors are fatal errors and will cause the program to 
be aborted (i.e., the files will not be closed). An error 
~essaqe is displayed on the system console before giving 
control to MDOS. 

In order to guarantee the integrity of data files 
(especially on the diskette), it cannot be stresse1 often 
enouqh that it is necessary for the callinq proqram to check 
for An error condition after each I/O function call. A 
common mistake is to fail to check for errors after ~ file 
has been closed. Since output can still take place durinq 
the clOSing, data at the end of the file can be lost without 
being apparent. Another common mistake is to initialize the 
IOCB wi th the "0" flag of IOCOTI and the flJiIl fla-:] of IOCLUN 
in the wrong sense. If the "H" flaq is clenred before the 
IOCB is reserved, the 11011 flag will be properly set by the 
functions themselves. 

MOOS 3.0 User's Guide Page 25-62 



CHAPfEH 26 

26. If~PUT/OUTPUT PROVISIONS FOP. NON-SUPPOHTED DEVICES 

It is assum~d that the 
device dependent 1/0 functions 
before this chapter is read. 

reader is familiar with the 
described in secti0n 25.3 

This chapter describes how the 1/0 functions interface 
with the hardware device and how a user can interface 
non-standard devices for use with the device indepenjent 1/0 
func tion s. 

26.1 Device Dependent 1/0 

The device dependent 1/0 functions ciescribed in Chapter 
25 for accessing the console and the line printer c~nnot be 
chan]ed to access non-standard devices. The~e routines are a 
part of MOOS and its basic environment requirements; however, 
a user can construct his own device drivers that are ~cces5ed 
by his programs: If the standard MOOS commands are to 
utilize non-standard devices, the user should be usinJ MOOOS 
(OEM MOOS) which can be configured to work in that manner. 
[he C(~Y command (Chapter 7) is an exception. It can load a 
user-defined device driver into memory to copy a file from 
that device to the diskette or from the diskette to that 
dev ice. 

26.2 Device Independent 1/0 

This section describes how the device independent I/O 
functions interface to the device drivers which, in turn, 
interface directly to the hardware device. This description 
applies to both standard and non-standard devices. 

26.2.1 Controller Descriptor Block -- COB 

The Controller Descriptor Block, or COB, is a table that 
describes a physical device and the types of input anj output 
operations that can be performed by the device. Unlike the 
IOCB, the COS is configured only once for each device. It is 
the memory location of the COB that replaces the contents of 
the IOCGDW entry of an IOCB after the .RESRV function has 
been called. The format of the COB is shown in the following 
diagram. 

MOOS 3.0 UserJs Guide Page 26-01 



INPUT /OUTtJUT PROV IS IONS 26.2 -- Device Independent I/O 

Byte 
7 6 5 4 3 2 o 

v ---------------------------------
00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

OA 

08 

IOCB address 

Device driver 
address 

~~-----~-------~~-----~~-~-------

Hardware address 

:R:O: I :F:W:S:L:O: 

: N : ! B : 

Device dependent 
area 

Viorkinq storage 

MOOS 3.0 User"s Guide 

<-- Bit position 

COSInc 

CDBSDA 

CDBHAD 

COBODF - Device descrip­
tor flags 

CDBVOT Valii data 
types 

COBDDA 

COBWST 

Page 26-02 



INPUT/OUTpUT r>HOVISIONS 26.2 -- Device Independent 1/0 

~ield Name 
-----

CDBDlJF H 

0 

I 

f 

s 

L 

D 

CDBVLJT !;,J 

B 

Bit 

-, 

6 

5 

4 

3 

2 

o 

7 

3-6 
2 

0-) 

MOOS 3.0 User-'s Guide 

CDS FLAG DESCRIPTION SUMMARY 

Content 

~eservable device flaq 
o => Not reservable 
I => Reservable 

{utput device flag 
o => Cannot perform output 
1 => Can perform output 

Input device flag 
o => Cannot perform input 
1 => Can perform input 

File-type device flag 
o => Cannot open/close files 
I => Can openlclose files 

Hewindable device flag 
o => Cannot rewind files 
1 => Can rewind files 

System console flaq 
o => Not system console device 
I => System console device 

Loqical sector I/O flag 
o => Cannot perform loqical sector 

1/0 
I => Can perform loqical sect0r 1/0 

Default binary record format flag 
o => Binary record is default binary 

format 
=> ASCII-converted-binary record is 

default binary format 

Hon-f i 1 e f orrnat flag 
o => Non-file format mode is invalid 
J => Non-file format mode is valid 

Not used (=0) 
Binary I/O flag 

o => Eight-bit data is invalii 
I => Eight-bit data is valid 

Not used (=0) 

Page 26-03 



INPUT IOUTPUT PHOV 151 ONS 26.2 -- Device Iniependent 1/0 

26.2.1.1 COoIOC -- Current IOCB address 

These two-bytes of the CD~ are reserved for exo~nsion. 
They are currently not being used by the device rJrivers. 
fhese two bytes should be initialized to zero. 

26.2.1.2 CDSSDA -- Software driver address 

This two-byte field of the CDS must contain the starting 
address of the device driver progra~ that contrals the 
device. It is this address that 1S used to access the 
individual device driver entry points. Therefore, this entry 
must be provided in every COB. The format of the device 
driver is explained in section 26.2.2. 

26.2.1.3 COBHAD ~- Hardware address 

These two bytes of the COS are intended to cont~in the 
lowest aJdress of the hardware device (PIA or ACIA) used to 
interface with the external device. The actual usage of this 
CDS entry depends exclusively on the deVice drIver orogram. 
The jevice independent 1/0 functions do not access this 
entry. 

26.2.1.4 CDBiJDF -- Device descriptor flags 

The CDBDDF byte contains the basic description about the 
types of 1/0 accesses that the ievice can perforl1. The 
format of the COBOOF byte is shown below: 

7 6 5 4 3 2 o 

:H:O: I: F:W: 5: L: D: 

: : : . : : . . ... . · : : : · : . · · ........ 
: · : .: : · · · ....... · .... 
: : : : . . . . . . . . . . . . . . . . 
: : : . . . . . . . . . . . . . . . . . . . . 
: : : . . . . . . . . . . . . . . . . . . . · .... 
: · · . . . . . . . . . . . . . . . . . . . . . . . · .... 

Uefault binary forl1at 
Logical sector 1-10 flag 
System console fl~q 
Hewindable device flaq 
File-type device flag 
Input device flag 
Output device fl11 

: •.•.....••.....•..•.....•.. •...• Reservable device flag 

These flags are constant once defined. The fl~gs are 
interrogated by the various cievice independent 1/0 functions 
in order to verify that the requested function can be 
perfor~ed on the specified device. The properties controlled 
by the various bits of the CDSODF are explained below. 

MOOS 3.0 User's Guide Paqe 26-04 



INyUT/OUTtJur PROVISIONS 26.2 -- De vi ce I ndep en dent I/O 

~ (Bit 7) -- Heservable device flag 

This bit determines whether a device can be 
reserved by multiple IOCBs at the same time. Certain 
devices. like diskette devices; by nature af their 
operation, can allow input/output accesses to be 
performed from di fferent ca 11 ers ( I OCSs) • other 
devices, like a line printer, cannot logically allow 
multiple output accesses from different IoCas to be 
processed. If the iiHii bit is set to one, it means 
that the device is reservable. In other words, only 
one IOCB can communicate with the device at '3 time. 
If the uRn bit is set to zero, it means t"at the 
device is non-reservable (i.e., the device can 
communicate with multiple IOCSs). 

o (Bit 6) -- Output device flag 

This bit indicates whether a device can be used 
by 0 u t pu t fun c t i on s ~ 1ft h e U 0" bit iss e t too n e , 
then the device can be used for output. I f the 110" 
flag is set to zero, then the device cannot he used 
for output. 

I (Bit 5) -- Input device flag 

This bit indicates whether a device can be used 
by input functions. If the''!'' bit is set to one, 
then the device can be used for input. If the 111" 
flag is set to zero, then the device cannot be used 
for input. 

F (Bit 4) -- File-type device flaq 

This bit determines whether or not a deVice can 
open and close files. A file-type device (e.g., 
diskette drive, and cassette or paper tape 
reader/punch) will be handled differently by the 
.OPEN and .CLOSE functions than a non-file-type 
device (e.g.. console printer. line printer. 
keyboard). In addition to having FOR processing 
performed on them, file-type devices are also 
sensitive to end-of-file records. Non-file-type 
devices are not subject to FOR processinq, nor are 
end-af-file records read from them or written to 
them. A file-type device is indicated by the IIF" bit 
be i n 'J 5 e t too n e • Non - f i I e - t y p e de vic e s h a vet he" Fit 
bit set to zero. 

MOOS 3.0 User""s Guide Page 26-05 



INiJUT/OUTPur PROVISIONS 26.2 -- Device Injependent I/O 

~ (Bit 3) -- Hewindable device flag 

This bit indicates whether the .REWND function 
is valid for the device. In the current version of 
MOOS, it may appear as if the IIWU flag and the "Ln 
flag ~re redundant, because only the diskette device 
can be used for logical sector I/O and only the 
diskette device can be "rewound"; however, in order 
to allow for expansion, the .REWND function's 
processing depends on the "W" flag. If the Jlw·n flag 
is set to one, the device can be rewound. If the .,W" 
flag is set to zero, the device cannot be rewound. 

S (Bit 2) -- System console flag 

This flag distinguishes the system console from 
all other devices. [his is needed since the record 
input function does special processing for the 
certain control characters which are treated 
differently when being input from another device. 
These special char~cters are described in section 
25.3.4. If the "s" bit is set to one, the device is 
the system console. I f the "S" bi t is set to zero, 
the device is not the system console. 

L (Bit I) -- Logical sector I/O flag 

This flag is used to distinguish the diskette 
drives from all other devices. Since t~e two 
specialized I/o calls, .GETLS and .PUrLS,~re only 
valid for the diskette drives, a flag is necessary 
that identifies that device. If the ilL" fla] is set 
to one, loqical sector I/O is valio (i.e., the device 
i 5 the dis k e t t e dr i Ve ) • 1ft he" L" f 1 a q 1 5 set to 
zero, logical sector I/O is invalid (i.e., the device 
is not the diskette drive). 

MOOS 3.0 User's Guide 



INPUT /OUTPUr PROV I S IONS 26.2 -- Device Iniependent I/O 

D (Bit 0) -- Default binary record format flaq 

Some devices cannot receive or transmit 
eight-bit data bytes. For those types of devices a 
specIal record format has been designed 50 that 
binary records can be processed. Devices t~at can 
process eight-bit data can process either type of 
record format. The uD" bi t controls the defaul t 
record format to be used when dealing with iibinElryU 
records. The FMr field of the I(CFDF entry in the 
IOCB has a special value that will cause the jefault 
binary record format to be used for the i~iicated 
device. If the "0" bit is set to one, the default 
record for~at will be the ASCII-convertej-binary 
for~at (only if binary records are being processed). 
If the "011 bi t is set to zero, then the defaul t 
record format will be the binary format (only if 
binary records are being processed)e If the device 
can process eight-bit data, then the settin1 of the 
"D" bit is independent of the deVice type; h0wever, 
for devices which can only process seven-bit data, 
the "0" bit must be set to one. Otherwise, the 
device may respond unpredictably when binary jata are 
bein] transmitted to it. 

26.2.1.5 CDBVDT -- Valid data types 

This byte of the COB is an extension of the CDBDDF 
entry. It contains some additional flags that govern the 
types of I/O accesses that can be made on the devic~. The 
format of the CDBVDT entry is shown below. 

7 6 5 

: N : 

: 
: 

. : 
: . 

4 3 2 o 

: B : 

: ..... . 
: ........... . . . . . . . . . . . . . . . . . . . . . . . . 

: . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . 
Not used (=0) 

Binary device flag 
Not used (=0) 
Non-file format flag 

The properties controlled by the various bits of the 
COBVJT entry are explained below. 

MDOS 3.0 User-'s Guide Page 26-07 



INPUT/OUTPur PROVISIONS 26.2 -- Device In1ependent 1/0 

N (Bit 1) -- Non-file format flaq 

This bit indicates whether or not the device can 
be used to perform FDR processing. Certain devices 
(i.e., those with the file-type bit set to zero in 
CDBODF) can never perform FOR processing; however, 
devices which are file-type deVices can, in some 
cases, be used in either the file format or the 
non-file format mode (see IOCOTT description, sect ion 
25.3.1.2). If the "Nil bit is set to one, then the 
device can be used in the non-file format moie. If 
the liN" bit is set to zero, then the device c~nnot be 
used in the non-file for~at mode. The diskette drive 
is an example of a device that can only be used in 
the file format mode. The console reader is an 
example of a device that can be used in either mode. 
The line printer is ·an example of a device th~t can 
only be used in the non-file form3t mode. 

NOT LlSED (Bits 3-6, 0-1) Heserved area 

These bits 
future expansion. 

of the CDBVDT byte are reserved for 
They must be zero. 

d (Bit 2) -- Binary device flag 

This bit indicates whether a device can process 
eiqht-bi t data or not. I f the "B" f lAq is set to 
one, then eight-bit data are valirl. If the "an flaq 
is set to zero, then eight-bit data are invalid. 

26.2.1.6 CDBJDA -- Device dependent area 

These two-bytes of the COB are available to the device 
drivers as working storage. For the MOOS-supported -ievices, 
this field has been provided for future expansion. For other 
devices, this field can be used for whatever purposes are 
deemed appropriate. 

26.2.1.7 CDB~Sr -- Working stora]e 

These two-bytes of the COB are available to the device 
jrivers as working storage. 

26.2.2 Device drivers 

Each device type that is to be accessed via the device 
independent 1/0 functions (section 25.3) must have its own 
driver proqram. All device drivers must be accessible for 
the following five functions: 

MOOS 3.0 User's Guide Page 26-08 



INPUT/oUTPur PROVISIONS 26.2 -- Device Iniependent I/O 

1. Turn the device on, 
2. Turn the device off, 
3. Perform device initialization, 
4. Perform device termination, 
5. Input and/or output a 51n916 character. 

Not necessarily all of the five functions apply to each 
device; however, an entry ooint must be provided in each 
device driVer for each of the five functions, reqariless of 
whether or not the function is performed. 

Since the only address that is available to the device 
independent 1/0 functions is the starting address of the 
device driver (COBSDA of COB), the followinq convention must 
be used by each device driver. The starting address 
contained in the CDi1SDA entry must be the address of the 
beginning of a Jump table, one jump for each of the five 
functions listed ab0ve~ An examole of such jump table is 
given below: 

0VDHV$ 

DEVIn 

EQU 
JMP 
JMP 
JMP 
JM.P 
EQU 

* DEVON 
DEVOFF 
DEV I Nf 
DEVfHM 
* 

• ADDHESS KEPT IN CDBSJA 
• OEV ICE ON HOUT I NE 
• DEVICE OFF ROUTINE 
• I N IT I AL IZAT I ON ROUT I NE 

TERMINATION ROUTINE 
• CdAHACTER I/O HOUTI NE 

Each entry point to the device driver is accessed from 
the Jevice independent 1/0 functions by executing an indexed 
subroutine call. The offset <index value) is defined by the 
displacement of the entry point from the beginning 0f the 
device driver. Since these offsets must be the same for all 
device drivers, a set of system symbols is defined in the 
MOOS e~1uate file for the device driver entry point offsets. 

The device on and off entry points are acce5se~ at the 
beginning and at the end of every record I/O function call 
(.GEfHC and .PUTHC). These entry points allow the device 
driver to turn the device on and off, respectively. If such 
acti0ns are not defined for the rievice, then the entry points 
should jump to a routine which simoly exits the driver with a 
uno error" status condition. 

The device initialization and termination entry points 
are called once by the .OPEN and .CLOSE fUr)ctions, 
respectively. These entry points Rre intended to allow 
leader to be punched on a paper t3pe device, for example. If 
such actions are not defined for the device, then the entry 
points should jump to a routine which simply exits the driver 
with a .Uno error u status condition. 

The character I/O entry point to the driver is used to 
receive or transmit one byte of data. The transmitted or 
received byte is passed between the 1/0 functions and the 

MOOS 3.0 User·'s GUide Pa:Je 26-09 



INPUT /oUTPUT PRO'v' IS IONS 26.2 -- Device Iniependent I/O 

device driver in the "B" accumulator. For devices that can 
process both input and output, the I{~B must be interrogated 
(1110 11 of IOCDTT> by the device driver to determine which 
function is to be performed. Since the index register is 
required to execute the jump to subroutine instructi0n, the 
address of the IOCB is passed to the device driver using the 
following convention a 

JSR DV$IO,X • CALL To DRIVER 
FOB IOCPTR. POINTER TO IOCB'S P()I~TER 
BCS ERROR. RETURN HERE FROM DRIvER 

• 
IOCr'TR FOB IOCB • ADDRESS OF I nCB 

With this convention, the aidress pushed on the stack as 
a result of executing the jump to subroutine instruction will 
point to the double byte which contains a pointer. It is the 
data at the address identified by the pointer that is the 
actual address of the IOCB itself. As a result, the device 
driver cannot Just execute a return from subroutine 
instruction to get back to the I/O function. This calling 
sequence applies to all entry points into all deyice 1rivers. 

Before returning to the I/O function, the device driver 
must set an error status conjition indicating the state of 
the performed action. Two things must be configurei by the 
driver to indicate an error. First, the IfCSTA byte of the 
lOCB must be initialized with one of the standard Ilr) error 
statuses (section 25.3.1.1). Second, the carry condition 
code must be set to one. If no error occurred, only the 
carry condition code must be set to zero. The I(~ST' entry 
of the IOCB need not be chanqed to zero since the I/O 
function will set a '1ormal return status before exitit1g. The 
UAII and "XU registers need not be preserved by the device 
driver in any case. The IIBU reqister returns the cl1aracter 
received if the device driver was called upon for !3n inout 
request. 

26.2.3 Example of device driver 

The following example illustrates a CDB and its 
associated device driver for a high-speed papertao~ reader 
(specifically, the EXORtape reader). The system syrnb'11s frorn 
the MUOS equate file are used throughout this example. 
First, the COB is shownl 

MOOS 3.0 User's GUide Paqe 26-10 



INPUT/OUTPUT PROVISIONS 26.2 -- Device In'iependent I/O 

* * CONTROLLEH DESCRIPToR BLOCK (COB) 

* HRSCDB EQU 
FOB 
FDB 
FDB 
FCB 
FCB 
FOB 
FDB 

* o • CDBIne 
HHDHV$ • COBSDA 
SE404 e COBHAD 
OOSRES+DDSINP+DOSOCF • CDBDDF 
VUSNFF+VO$8iN • COBVDT 
o • CDBDDA 
o • COSWST 

Logically, the paper tape reader should not be accessed 
by multiple loeBs at the same time. Thus, the device is 
considered to be reservable (Sit JlRIl of eOSDDF set to )}. 
The paper tape reader is an input device only. Therefore, 
bi t tl011 of CDBDJF is zero and bi t II I" is o'ne. The paaer tape 
reader is sensitive to end-of-file records. Thus, it must be 
a file-type device (Bit ifF" of eOBDDF set to I). Bits "W", 
usn, and IILII are all zero since the paper tape reader is not 
rewindable (accordinq to the definition in section 26.2.1.4), 
is not the system console, and is not able to perform logical 
sector I/O. The default binary format has been arbitrarily 
identified as binary record. 

The paper tape reader is capable of being use1 in the 
non-file format mode and is capable of transmitting eight-bit 
data to the device. Thus, both bits UN" and JlHIl of CDBVDT 
are set to one. 

The only otner required field of the COB is the address 
of the device driver in CDBSDA. The remainder of the eos is 
reserved for expansion or is used for working storage by the 
device driver. 

Next, the device rlriver itself is shown. Of the five 
entry points that are required by each device driver, only 
two are used for the paper tape reader driver. The other 
three (device on, device off, and device termination) are 
dummy vectors that set a "n0 error ll return status and then 
return to the I/O function. 

MOOS 3.0 User;s Guide Page 26-11 



I i~PUT /oUTPUf PHOV' 1 SI ONS 26.2 -- Device Iniependent 1/0 

* *DEV ICE OR I VER ENTHY POll'-ITS 
Ie 

rll1JH Y S EC)U 
CLC 
BHA 

* 

* 

* 

* 

CLC 
BtlA 

JSH 

CLC 
BliA 

DSH 
TAB 
BCe 
TSX 
LOX 
LOX 
LuX 
LUAA 
SfAA 

rlEfUHN TSX 

* 

LuX 
INS 
INS 
JMP 

* 
RETUHN 

RETUHN 

INITH 

RETURN 

• TURN DEVICE ON 
• 

• TURN DEVICE OFF 
• 

• DEVICE INITIALIZATION 

• DEVICE TEHMINATION 

GEfCP • CHARACTER INPUT 
• RETURN ~~ ITH CHAR IN U 8" 

HETURN • CC => NO ERROR 
• C S = > E NO OF ME IJ I A ( TIM E OU T ) 

O,X • GET AJH OF FOB FOLLOWING JSR 
O,X • GET CONTENTS OF FOB 
0, X • GET AUR OF IOCB 
#ISEOM • SET END OF MEDIA STATUS 
IOCSTA,X • 

• RETURN TO CALLER 
X • GET AUH Of FOB FOLLO~ I NG JSR 

• ADJUST STACK FOR REf URN 

2 t X • JUM~ TO ADR FOLLOW I NG FDfj 

* HEAD E R I NIT I A LIZ AT I 0 j~ K OUT I NE 

* INlIii STX 

* 

LuX 
CLR 
CLH 
LiJAA 
SfAA 
LUX 
HIS 

Hd $CDB+CDI:3JDA 
HRSCDB+COBHAiJ 
PfeIL .X 
PfOTA,X 
#$3C • 
PTCTL,X • 
HriSCIJ8+CDBlJDA 

• SAVE INDEX REGISfE~ 
• GEf THE PIA ADDRESS 

• HES TOR E I NDE X REG I 3TEIi 

* INpUf ONE CHAiiACTEH 

* ]EfCP Sf X 
LiJX 
LOAA 
LDAA 
SfAA 
LOAA 
SfAA 
CLR 
CLH 

'JEre I LUAA 

MOOS 3.0 User's Guide 

HRSCDB+CJBODA • SAVE THE I NDEX HE'; I SfER 
Ht~ SCDB+CDS;-IAD • GET THE PI A ADORE,S 
PTDTA,X • CLR I~fERRUPT 
#$34 • STJ.10BE HEADER 
PTCTL,X 
#S3C 
PTCTL,X 

• 

HH$CD8+CDf:3('~sr • I NIT THE TIMEOUT C()UNTEH 
HR$CDB+CDBrlST+) • AND CLEA~ CA~HY 
PTC fL, X • HEAdY TO READ? 

Page 26-12 



I I-JPUT lOUT PUT PROV' I S IONS 26.2 -- Device In:iependent 1/0 

BMI 
DEC 
Bi~E 
DEC 
n -Ir 
Df'fr: 

SEC 
GETC2 LDAA 

BCS 

* 

G~rC2 • MI => YES 
Hl1 SCDB+CDBtlST + I • PL => CHECK TI~EoUr 
GETCl • NE => KEEP LOOPING 
HKSCDB+CDB~Sr • 
GETC I NE => KEEP LOOP I NG 

• SET C\HRf FOR TIMEOUT 
PTDTA,X • GET CHAH 
GEfC4 .. CS => TIMEOUT 

* IF ASCII FILEt STRIP PARITY 
* TSX • GET ADR OF rOeB 

LiJX 2, X • GET BACK TO J ST LEVEL SUdRTN 
LOX O,X • GET CONTENTS OF 2ND FOB 
LD X 0 , X • GET AD H OF I OC B 
LDAB IOCFDF.X. PICK UP FILE ATTRIBUTES 
A;VB 
CMPB 
Bi-.JE 
ANDA 

GEfC3 CLC 
GETC4 LOX 

HIS 

#7 
#FMSFMA 
GEfC3 
#S7F 

• ISOLAfE FMT BITS 
ASCI! FILE ? 

• NE => NO, LEAVE 8 BITS 
• 5THIP PAHITY IF ASCII 
• SET SfATUS TO OK 

HHSCD8+COBDDA • HESTOliE X 
• 

26.2.4 Adding a non-standard device 

If the device driver define:i in the above example is to 
be used by a user's proqram with the device indepenient 1/0 
functions, then the only function that is treated differently 
is the .RESRV function. Since .RESRV must be used to link 
the I(~B with a known COd, the .HESRV call is bypassed 
alto·Jether by the user proqram; however, before ti1e .OPEN 
function is invoked, the IOCB must be parameterized as if it 
had been properly reserved. 

ThUS, the IOCGD,~ entry of the IOCB must be confi~ured to 
contain the address of the CDS with which communicati~n is to 
take place. In addition, bit uRn of IOCLUN must indicate 
that the IOCB has been reserved. This information is also 
founj in the EXIT CONDITIONS descr iption of the. HESRV 
function (section 25.3.2>. 

Once the IOCB has been configured in this manner, the 
other 1/0 functions can be used in the normal fashion. 

MDOS 3.0 User·'s Guide Page 26-J3 



CHAPTEH 27 

27. OTHEH SYSTEM FU Ncr IONS 

In the following description of the system functions 
these symbols will be used: 

Symbol Meaning 

A A accumulator 
3 B accumulator 
X Index register 
S Stack pointer register 
CC Condition code register 
Z Zero flaq of condition code register (bit 

2) 
C Carry flag of condition code register 

(bit 0) 
XH Most significant byte of X 
XL Least significant byte of X 
BiA [he register pair B and A treated as a 

sixteen ~it re~ister 

It is assumed that the reader is familiar with what 
system functions are. how they are invoked. what orecautions 
must be taken when testinq proqrams usinq system functions. 
and now errors are handled by system functions (see section 
24.8) • 

The remainder of this chapter is devoted to the 
description of all system functions not described th!Js far. 
The description is divided into the followin~ sections: 
reqister functions. double-byte arithmetic functions, 
character string functions, diskette file functions, and 
miscellaneous functions. 

27.1 Hegister Functions 

The register functions are used by some of the other 
system functions as an extension of the M6800 instruction 
set. Many operations that involve the transfer and exhange 
of inf0rmation between the reqister pair "B.AII and the X 
register are made feasible by the fact that the S~I 
instruction (used for accessinq system function handler) 
auto~atically saves all registers on the stack. Since the 
sixteen bit registers are pushed on the stack least 
significant byte first, ~ost significant byte last. the 
register pair "B,A" was chosen instead of "A,BtI. The 
relationship of the 8 and ~ registers on the stack is then 

MIJOS 3.0 User's Guide Page 27-01 



() fH ER S Y 5 f EM F U NC f I () NS 27.1 -- Hegister functions 

identical to the other sixteen bit registers saved in this 
fashion. 

27.1.1 TrAnsfer X to B,A -- .TXBA 

The .TXdA function transfers the contents of the X 
register into the register pair B,A. 

ENIR{ ~ARAMEfERS: 

r:xrT COj~OI[IONS: 

Non e. 

A contains XL. 
B cont8ins XH. 
X is unchanged. 
CC is indeterminate. 

27.1.2 fransfer B,A to X -- .TBAX 

The .fSAX function transfers the contents of the 
register pair B.A into the X register. 

ENTH{ yAKAMEfERS: 

EX IT CO!~U IT IONS: 

None. 

A is unchanged. 
B is unchanged. 
XH contains B. 
XL contains A. 
CC is indeterminate. 

27.1.3 Exchanqe 8,A with X -- .XHAX 

The .XdAX function exchanges the contents ~f the 
register pair B.A with the contents of the X reqister. 

ENfR{ PAHAMEfEHS: 

EXIT CONOITIONS: 

None. 

A contains entry value of XL. 
B contains entry value of XH. 
XH contains entry value of B. 
XL contains entry value of A. 
CC is unchanged. 

27.1.4 Add B to X -- .ADdX 

The .AOBX function adds the contents of the B register 
to the contents of the X register. [he addition is performed 
as if d were an unsigned binary number. 

ENTRY PARAMETERS: None. 

EX IT CO.~D I f IONS: A is unchanqed. 

MUOS 3.0 llser"'s Guide Paqe 27-Q2 



OTHER SYSTEM FUNCTIONS 27.1 -- Register Functions 

B is unchanged. 
X has been incremented by the contents of 

B. 
CC has been set as in a normal unsigned 

add! t! on = 

27.1.5 Add A to X -- .ADAX 

The .ADAX function adds the contents of the A reglSl:er 
to the contents of the X register. The addition is performed 
as if A were an unsigned binary number. 

ENTRY ~AHAMETERSa 

EXIT CONDITIONSa 

None. 

A is unchanged. 
B is unchanged. 
X has been incremented by the contents of 

A. 
CC has been set as in a normal unsigned 

addition. 

27.1.6 Add B.A to X -- .ADBAX 

The .ADBAX function adds the contents of the register 
pair B.A to the contents of the X register. 

ENTRf ~ARAMErERSa 

EXIT CO!'-lDITIONSa 

None. 

A is unchanged. 
H IS unchanged. 
X has been incremented by the contents of 

B,A. 
CC has bee n set a sin a norm a I r 1n s i 9 ned 

addition. 

27.1.7 Add X to B.A -- .ADXBA 

The .ADXBA function adds the contents of the X register 
to the contents of the register pair B,A. 

ENTRY ~ARAMErERSa 

EXIT CONDITIONS: 

MUOS 3.0 User's Guide 

l"lone. 

A has been incremented by XL. 
B has been incremented by XH and C. 
X is unchanged. 
CC has been set as in a normal u~signed 

addition. 

Page 27-03 



Of HER SYSfEM FUNCfIONS 27.1 -- Register Functions 

27.1.8 Subtract B from X -- .SUBX 

The .SUBX function subtracts the contents of the B 
register from the contents of the X register. The 
subtraction is performed as if 8 were an unsiqned binary 
number. 

ENTRY PARAMETERSa 

EXIT CONDITIONSa 

None. 

A is unchanged. 
B is unchanged. 
X has been decremented by the contents of 

B. 
CC has been set as in a normal, unsigned 

subtraction. 

27.1.9 Subtract A from X -- .SUAX 

The .SUAX function subtracts the contents of the A 
register from the contents of the X register. The 
subtraction is performed as if A were an unsigned binary 
number. 

ENTRY ~AHAMETERS: 

EXIT CONDITIONSa 

None. 

A is unchanged. 
B is unchanged. 
X has been decremented by the contents of 

A. 
CC has been set as in a normal unsigned 

subtraction. 

27. 1.10 Subtract B,A from X -- .SUBAX 

The .SUBAX function subtracts the contents of the 
reqister pair B,A from the contents of the X register. 

ENTRY PARAMETERSa 

EXIT CONDITIONSa 

None. 

A is unchanged. 
B is unchanged. 
X has been decremented by the contents of 

B, A. 
CC has been set as in a normal unsiqned 

subtraction. 

27. I. II Subtrac t X from B, A -- • SUXBA 

The .SUXBA function subtracts the contents 0f the X 
register from the contents of the register pair B,A. 

MUOS 3.0 User's Guide Page 27-04 



OTHER SYSTEM FUNCI IONS 

ENTRf PAHAMETERSa 

EX IT COND IT IONS I 

27.1 -- Register Functions 

None. 

A has been decremented by XL. 
B has been decremented by XH and C. 
X is unchanged. 
CC has been set as in a normal unsigned 

subtraction. 

27.1.12 Compare B,A with X -- .CpBAX 

The .CPBAX function compares the contents of the 
register pair B,A to the contents of the X register. 

ENTH{ PARAMETERS: 

EXIT CONDITIONS: 

None. 

A is unchanged. 
B is unchanged. 
X is unchanged. 
CC has been set as in a normal uf')signed 

subtraction. 

27.1.13 Shift X right -- .ASHX 

The .ASHX function shifts tne contents of the X register 
to the right by one bit position. Bit 15 is held constant 
and bit 0 is moved into C. 

ENTRf PAHA~ErERSI 

1-\1 T""'" ~,'·.H"\ T"r T ,'\.I\.rr-. 
CA.L J. \"'\.Jl'fU 11 1 \.Jl'fv. 

None. 
.A .: _ •• __ L.... ___ ~.-J 

" 1;::) ull~ilallyC\A. 

8 is unchanged. 
X is shifted right one bit position. The 

siqn bit is propagated into the lower 
bits upon subsequent shifts. 

C contains bit zero ~f the entry value of 
X. The re~ainder of CC is 
indeterminate. 

27.1.14 Shift X left -- .ASLX 

The .ASLX function shifts the contents of the X register 
to the left by one bit position. Bit 0 is filled with zero. 

ENTR{ PARAMETERS: 

EXIT CONUITIONS: 

MDOS 3.0 User's Guide 

None. 

A is unchanged. 
B is unchanged. 
X is shifted left one bit position. Bit 

zero is filled with zero. 
C contains bit 15 of the entry vqlue of 

X. The remainder of CC is 

Page 27-05 



OTHER SYSTEM FUNCfIONS 27.1 -- Reqister ~unctions 

indeterminate. 

27.1.15 Push X on stack -- .PSHX 

The .PSHX function pushes the contents of the X register 
on the current stack. 

ENTRY ~AHAMEfEHS: 

EXIT CONDITIONS: 

None. 

A is unchanged. 
B is unchanged. 
X is unchanged. 
CC is unchanged. 
S has been decremented by 2. The 

contents of XL have been oushed on 
the stack followed by the contents of 
XH. 

27.1.16 Pull X from stack -- .PULX 

The .PULX function pulls the contents from the stack 
into the X register. 

ENfHf PARAMEfERS: 

EXIT CONUITIONS: 

None. 

A is unchanged. 
B is unchanged. 
XH contains the contents located at the 

entry value of S + I. 
XL contains the contents locatei at the 

entry value of S + 2. 
CC is unchanged. 
S has been incremented by 2. 

27.2 Double-byte Arithmetic Functions 

The double-byte arithmetic functions are used by some of 
the other system functions and the MOOS commanis as an 
extension of the M6800 instruction set. These functions are 
not as general purpose as the register functions, but they 
are useful in speciAl cases. 

27.2.1 Add A to memory -- .AOOAM 

The .AOUAM function increments a double byte in memory 
by the contents of the A register. The addition is p~rformed 
as if A is an unsigned binary number. 

ENTRY PARAMEfERS: 

MOOS 3.0 User"s Guide 

x = The address of most significant byte 
of a double byte in memory. 

Page 27-06 



)IHER Sf Sf EM FUNCfIONS 

EXIT COr-luITIONSI 

27.2 -- Double-byte Arithmetic Functions 

A is indeterminate. 
B is unchanged. 
X is unchanged. 
CC is indeterminate. 
The double byte in 

incre~ented by the 
memory hqs been 

contents of A. 

27~2~2 Subtract A from memory -- .SUBAM 

The .SUBAM function decrements a double byte in memory 
by the contents of the A register. The subtraction is 
performed as if A is an unsigned binary number. 

ENTRf PAHAMEfEHSI 

EXIT CONDITIONS: 

x =fhe address of the most significant 
byte of a double byte in memory. 

A is indetermi~ate. 
B is unchanqed. 
X is unchanged. 
CC is indeterminate. 
The double byte in memory h~s been 

decrementej by the contents of A. 

27.2.3 Shift memory right -- .DMA 

The .DMA function shifts the contents of a double byte 
in memory to the riqht by the number of bit o0sitions 
represented by the contents of the A register. The effect is 
to jivide the double byte by a power of 2. The exponent is 
given by the value of the A register. 

ENTRY PAHAMETERS: 

EXIT CONDITIONS: 

x = The address of the most significant 
byte of a double byte in memory. 

A is unchanged. 
B is unchanged. 
X is unchanged. 
CC is indeterminate. 
The double byte in memory has been 

shifted to the right by the number of 
bits represented by the contents of 
A. Zero bits are brought in from the 
left as the shift takes place. 

27.2.4 Shift memory left -- .MMA 

The .MMA function shifts the contents of a double byte 
in memory to the left by the number of bit D0sitions 
represented by the contents of the A register. Ihe effect is 
to multiply the double byte by a power of 2. The exponent is 
given by the value of the A re~ister. 

MOOS 3.0 User's Guide Page 21-07 



OfHEH SYSfEM r:UNCTIONS 

ENfRY PAHAMEfEHS: 

EXIT CONDITIONS: 

27.2 -- Double-byte Arithmetic Functions 

x = Ihe address of the most siJ~ificant 
byte of a iouble byte in memory. 

A is unchanged. 
B is unchanged. 
X is unchanged. 
CC is indeterminate. 
The double byte in memory h~5 been 

shifted to the left by the number of 
bits represented by the contents of 
A. Zero bits are brouqht in from the 
right as the shift takes place. 

27.3 Character String Functions 

The character string functions are used by some of the 
more complex system functior)s and the MOOS commands =3S macro 
instructions or subroutines. 

27.3. I String move -- .MOVE 

The .MOVE function transfers a series of cOr')tiguous 
bytes in memory from one loc~tion into another locati0n. The 
moVe is made startinq with the lowest addressed byte of the 
source strinq. 

ENTRY pAHAMETEHS: 

EXIT CONDITIONS: 

MDOS 3.0 User's Guide 

B = The number of bytes to be moved. If 
tj is intlally zero. 256 (iecirnal) 
bytes will be moved. 

X = The address of the first byte of a 
four-byte parameter packet. The 
para!neter packet has the following 
format: 

o 

2 

3 

Address of 
the 

source string 

Address of 
the 

destination string 

A is indeterminate. 
S = o. 
X is unchanged. 
CC is indeterminate. 
The addresses of the source and 

destination strings in the o,rameter 
packet have both been incremer)ted by 
the entry value of B. 

Page 27-08 



OTHER SYSfEM FUNCTIONS 27.3 -- Character String Functions 

The source string has been moved into the 
destination string. 

21.3.2 String comparison -- .CMPAR 

The .CMpAR function compares a series of contiguous 
bytes in memory from one location with a series of bytes at 
another location. The comparison is made startinq with the 
lowest addressed byte of the source string. 

ENTRY PAHAMETERSa 

EXIT CONDITIONS: 

MDOS 3.0 User's Guide 

B = The number of bytes to be co~pared. 
If B is intially zero, 256 (iecimal) 
bytes will be compared. 

X = The address of the first byte of a 
four-byte parameter packet. The 
parameter packet has the following 
formata 

o 

2 

3 

Address of 
the 

source string 

,~ddress of 
the 

destination string 

A is indeterminate. 
S = The number of bytes remaining in the 

strinq which did not compare. If B 
is zero, the strings were identical. 
If the strings mis-compared on the 
first byte, B is unchanqed. 

X is unchanged. 
Z = I if the strings compared (8 = 0). 

The remainder of CC is indeterminate. 
Z = a if the strings mis-compared. The 

re~ainder of CC is indetermin3te. 
The addresses of the source and 

destination strings in the parameter 
packet have both been incremented by 
the entry value of B if the two 
str inqs compared. Otherwise. the 
source string pointer will contain 
the address of the character 
followinq the mis-comparison, and the 
destination string pointer will 
contain the address of the character 
of the mis-comparison. 

The source and destination strinq5 are 
uf"lchange<:i. 

Page 27-09 



OTHER SYSfEM FUNCTIONS 27.3 -- Character String Functions 

27.3.3 Character-fill a string -- .STCHR 

The .STCHR function stores a specific character into a 
series of contiguous bytes in memory. 

ENTRt PAHAMETERSa 

EXIT CONDITIONSa 

A = The character to be stored into the 
string. 

S = The number of bytes to be filled with 
the character. If B is initially 
zero, 256 (decimal) bytes wi 11 be 
fi 11 ed. 

X = The address of the first 
string to be filled. 

A is unchanged. 
B = o. 
X is unchanged. 
CC is indeterminate. 

byte ~f the 

The string is filled with the character 
in A. 

27.3.4 Blank-fill a string -- .SrCHB 

The .SICHS function stores blanks ($20) into a series of 
contiquous bytes in memory. 

ENfRf PAHAMETERS: 

EXIT CONDITIONS: 

B = The number of bytes to be filled with 
blanks. If B is initially zero, 256 
(decimal) bytes will be filled. 

X = The address of the first byte of the 
string to be filled. 

A = $20 (s pa c e) • 
B = o. 
X is unchanged. 
CC is indeterminate. 
The string is filled with blanks. 

27.3.5 'fest for alphabetic character -- .ALPHA 

The .ALPHA function examines the character in the A 
register for being an upper case alphabetic character (A-Z). 

ENTRY PAWAMETEHSa 

EXIT CONDITIONS: 

j~DOS 3.0 User's Guide 

A = The character to be tested. 

A is unchanged. 
B is unchanged. 
X is unchanged. 
C = 0 if A contains a valid alphabetic 

character. The remainder of CC is 
indeterminate. 

Page 21-10 



O[HER SYSfEM FUNCTIONS 27.3 -- Character String Functions 

C = 1 if A contains an invalid alphabetic 
character. The remainrier of CC is 
indeterminate. 

27.3.6 Test for decimal digit -- ~NUMD 

The • NUMD function examines the character in th e A 
register for being a valid ASCII decimal digit (0-9). 

ENTHt ~AHAMErERSa 

EXIT CONDITIONSa 

A = The character to be tested. 

A is unchanged if it contained an invalid 
d i q it. ot her w i s e , A con t a i !1 S the 
binary equivalent of the decimal 
digit (bits 4-7 will be zero). 

B is unchanqed. 
X is unchanged. 
C = 0 if A contained a valid digit. The 

remainder of CC is indetermin3te. 
C = I if A contained an invalid diqit. 

The re~ainder of CC is indeterminate. 

27.4 Diskette File Functions 

The diskette file functions can be used in conjunction 
with the device dependent I/O fUr'\ctions (section 25.2) for 
diskette accessing. These functions are used by the device 
independent I/O functions to perform directory searches and 
diskette space allocation and deallocation. The MDOS 
comman:iS use these functions for changinq fila ii5ii65 a~d 
attributes and for loading proCJrams from memory-ima)e files 
from the diskette into memory. 

All of the functions described in this section require a 
twenty-five byte parameter table called the diskette file 
table, or OFT. The format of the table is shown here so that 
it will not have to be repeated for each function. It will 
be seen that the first sixteen bytes of the OFT are iientical 
in f:)rmat with an MDOS directory entry. Also, the entire OFT 
is of the same format as part of an IOCB (startin] with 
IOCLUN and endinq wi th IOCSBE). The contents of the 
individual fields are not described in this section since 
they have been adequately discussed in sections 24.1.4 and 
25.3.1. All of the diskette file functions will change the 
diskette controller variables below location $0020. 

MOOS 3.0 User's Guide Page 27-11 



orHER SYSfEM FUNCfrONS 

00 

OJ 

02 

03 

04 

05 

06 

07 

08 

09 

OA 

OB 

OC 

Loqical unit number 

File Name 

Su ffix 

Physical sector number 
of file's RIB 

00 : ~ : 0 : S : C : N FMT 

OE 

or: 

10 

II 

12 

13 

14 

15 

16 

17 

18 

(reserved; =0) 

(reserved; =0) 

PSN EN 

(reserved; =0) 

Initial new file size 

Sector bu ffer 
start address 

Sector buffer 
end address 

MOOS 3.0 User"s Guide 

27.4 -- Diskette File Functions 

LUN 

NAM 

SUF 

RIB 

fDF - File de5crip­
tor fla"Js 

RES 

DEN - Directory 
entry number 

SIZ 

SBS 

SBE 

Page 27-12 



)[HER SYSfEM FUNCTIONS 27.4 -- Diskette File Functions 

27.4. I Directory search -- .DIRSM 

The .OIHSM function performs directory searches h~sed on 
various criteria. This function can be used for finding, 
creatinq, or deletinq directory entries on 8n MOOS diskette. 

ENT~f PAHAMETERS: 

MOOS 3.0 User's Guide 

B contains a function code that soecifies 
the action to be performed by .DIHSM. 

x = The address of the OFT. All calls to 
.DIRSM require that LUN cont8ins the 
logical unit number to be accessed 
(ASCII number 0-3, $30-$33), that SBS 
contains the starting address of a 
128 (decim~l) byte sector buffer, and 
that SSE contains the ending address 
of the sector buffer. If th~ sector 
buffer is larger than a single 
sector, 0nly the first 128 byt~s will 
be used. 

[he followinq function codes for the B 
reqister are defined: 

S = indicates to search for and 
retrieve the next, non-deleted 
directory entry. The OFT must have 
OEN = a for the initial call. The 
DEN must then remain unchanged for 
subsequent calls since it is used to 
determine where to resume the ~earch. 
The contents of the sector buffer 
must also remain unchanged between 
successive calls for this function 
code. 

B = 2 indicates to search for and 
retrieve a directory entry with a 
specific file name and suffix. The 
DFT entries NAM and SUF are used to 
specify the file name. 

B = 4 indicates to create a new unique 
directory entry of a given na~e and 
suffix. Initial diskette space 
allocation is performed if the 
directory entry is created. The OFT 
entries NAM and SUF are used to 
specify the directory entry to be 
created. A search of the directory 
is performed for this entry to ensure 
that it does not already exist. The 
OFT entries FOF and SIZ must also be 

Page 27-13 



OTHER SYSTEM FUNCT IONS 

EXIT CONDITIONS: 

MOOS 3.0 User.ls Guide 

27.4 -- Diskette File Functions 

specified. FDF must specify both the 
inherent and the chlngeable 
attributes to be initially assigned 
to the file. SIZ is used tojescribe 
the initial diskette space that is to 
be allocated. If SIZ is zero, the 
default space allocation will be 
performed. If SIZ is non-zero, the 
allocation will be performei using 
the contents of SIZ as the ~inimum 
number of sectors to be allocated. 

d = 8 indicates a similar fUnction to be 
performed as for the 8=4 case; 
however, in the event t,at a 
directory entry 3lready exists with 
the NAM and SUF found in the OFT. 
that file-'s directory entry 
information will be returned in the 
OFT. otherwise. the DFT is 
parameterized identically to the 8=4 
case. 

B = 16 (SID) indicates that a ~pecific 
directory entry is to be deleted from 
the directory. The OFT entries NAM 
and SUF are used to specify the entry 
to be deleted. 

B = 32 ($20) indicates to search for the 
next, non-deleted directory entry 
with a specific set of file 
attributes. Entries encountered with 
different attributes will not be 
returned by the search. The DFT must 
have DEN = 0 for the inlti~l call. 
'[he DEN must then remain u"changed 
for subsequent calls since it is used 
to determine where to resume the 
search. The contents of the sector 
buffer ~ust also remain u"chanqed 
between successive calls for this 
function code. The FDF entry must 
contain the specific attributes to be 
searched for. 

A is indeterminate. 

B contains the 
following 
defineda 

return 
return 

status. 
statuses 

The 
are 

B = 0 indicates that no errors occurred 
(normal return). 

Page 27-14 



Of HER S'fSfEM fUNCTIONS 

MOOS 3.0 user's GUide 

27.4 -- Diskette File Functions 

B = I indicates that the directory entry 
specified by LUN. NAM. and SUF was 
not found in the directory. 

B = 2 indicates that 8 contained an 
invalid function code upon entry to 
.DIRSM. 

B = 3 indicates the physical end of the 
directory was encountered during a 
"search for next directory entry" 
request (Entry value of B = I or 32). 

B = 4 indicates that 
full an1 cannot 
entry. 

the directory is 
accom0date a new 

B = 5 indicates that insufficient 
diskette space exists to satisfy the 
initial space requirements of SIZ 
when attempting to create a new 
directory entry. The .ALL(~ function 
(section 27.4.4) should be c0nsulted 
for a full description 0f the 
allocation scheme and the reasons for 
arrivinq at this error. 

B = 7 indicates that an attempt w~s made 
to create a duplicate entry in the 
directory. The file name identified 
by LUN, NAM, and SUF already exists 
in the directory. 

B = 8 indicates that 
entry was created 
LUN, NAM, and SUF. 

a new directory 
as ~pecified by 

H = 9 indicates that an attempt W~5 made 
to delete a protected file. 

X is unChanged. 

C = 0 if no errors occurred (B = J). The 
remainder of CC is indetermin~te. 

c = I if an error occurred (B not zero). 
The remainder of CC is indeterminate. 

fhe OFT entries were changed 
followinq manner depending 
various entry values of 81 

in the 
f)n the 

B = I. If a non-deleted directory entry 
was found, then NAM, SUFt RIB, FDF, 

Page 27-15 



OfHEH SYSfEM FUNCTIONS 27.4 -- Diskette File Functions 

and HES contain the full imaqe of the 
directory entry. DEN will contain 
the computed directory entry number. 
The re~ainder of the JFT is 
unchangej. The sector buffer 
contains the current directory 
sector. If no directory entry was 
found, the directory entry fields NAM 
through HES, inclusive, will be 
unchanged. OEN and the contents of 
the sector buffer are indeter~inate. 

B = 2. The OFT is affected the same as 
for 1:3=1. 

B = 4. If a new directory entry was 
created, RIB and DEN will reflect the 
appropriate values for the new entry. 
The sector buffer will contain the 
current directory sector. If a new 
entry was not created (duplicate file 
name), then the OFT will be affected 
in the same way as for B= I. 

1:3 = 8. Th e ex i t con d i t i on 5 for t his cas e 
are the same as for 8=4. In 
addi ti on, if a dupli cate en try 
already existed 1n the directory, the 
directory entry fields NAM throuqh 
11 ESt inc 1 us i ve • will con t a in the full 
i~age of the duplicate entry. DEN 
will also contain the duplicate 
entry's directory entry number. 

B = 16. If the entry is deleted, the 
complete directory entry will be 
returned in fields NAM through RES, 
inc 1 us i v e • I n a dd i t ion, Ii I B 'II i 11 be 
zero. fhe contents of the sector 
buffer are indeterminate. If the 
entry is not deleted, all parameters 
except RES and DEN will be unchanged. 
HES, DEN and the contents of the 
sector buffer will be indeter~inate. 

B = 32 •. The D~T is affected in the same 
way as for B= I • 

27.4.2 Change file name/attributes -- .CHANG 

The .CHANG function allows a directory entry to have its 
name, suffix, and/or attribute fields chanqed. 

MOOS 3.0 User~s Guide Page 27-16 



OTHER SYS [EM FUNCI IONS 

ENTHt PARAMEfEHSa 

EXIT CONDITIoNS: 

MOOS 3.0 User"'s Guide 

27.4 -- Diskette File ~unctions 

B = A function code that specifies the 
action to be taken by .CHANG. If bit 
o is set to one, .CHANG wi 11 chanqe 
the file name and suffix fields of a 
d i rectory entry. I f bit 1 is 5 e t to 
one, the function will change the 
attribute fielj of a directory entry. 
l:3its 2~ 7 a-re not used and should be 
zero. Bits a and 1 are independent 
of each other. Thus, .CHAN] can be 
used to chanqe file name, suffix, and 
attributes at the same time. 

x = The address of a file table packet. 
Ihe packet has the following format: 

a 

2 

3 

Address of 
old DFT 

Ad:iress of 
new OFT 

The "old DFTu contains the LUN, NAM, 
and SUF fields of an existing 
directory entry that is to be 
changed. The SBS conta i ns the 
starting address of a 128 (jecimal) 
byte sector buffer. SHE cont~ins the 
ending address of the sector buffer. 
If the sector bu ffer is lar1er than 
one sector, only the first 12q bytes 
will be used. The "new OFT" contains 
the information that is to be placed 
into the directory entry. LUN in 
both DFTs must be the same (ASCII 
number 0-3, $30-$33). The new OFT 
must contain NAM, SUF, and/or FDF 
fields as indicated by the function 
code in the B register. A sector 
buffer is not required by the new 
OFf. 

A is indeterminate. 

d contains the return 
following return 
defined' 

status. 
statuses 

The 
are 

B = 0 indicates that no errors occurred 
(normal return). 

Page 27-17 



OfrlER SYSfEM FUNCTIONS 

MOOS 3.0 User's Guide 

27.4 -- Diskette ~ile Functions 

B = indicates that B contained an 
invalid function code upon entry to 
.CHA~G. 

B = 3 indicates that the directory entry 
specified hy LUN, NAM, and SUF of the 
old OFT could not be found in the 
directory. The old DFT directory 
entry must exist in order for the 
chanqe to be possible. 

s = 4 indicates that the directory entry 
specified by LUN, NAM, and SUF of the 
new OFT already existed in the 
directory. The new UFT directory 
entry must have a unique file name 
and suffix (only if chanqin1 the old 
entry's file name). 

B = 5 indicates that an invalid attribute 
chanqe was attempted. Only the 
changeAble attributes (syst~~ file, 
write protection, delete protection) 
can be changed. The inherent 
~ttributes of a file re~~in constant 
for the duration of the file~s 

existence. 

X is unchangetj. 

C = 0 if no errors occurred (B = 3). The 
re~ainder of CC is indetermin~te. 

C = I if an error occurred (H not zero). 
The remainder of CC is indeterminnte. 

The four-byte file packet is unchanged. 

The old DFf and its sector buffer have 
been changed as a result of 
performing a directory seArch (.DIRSM 
with H = 2). The new OFT h~5 been 
changei as a result of performing a 
directory search (.DIRSM with B = 4); 
however, no diskette space all~cation 
was performed. A file name chanqe is 
affected by deleting the old 
directory entry and by creatinq a new 
directory entry. Thus, the directory 
entry's DEN (and its position within 
the directory) may have chanqed; 
however, no space is deleted or 
reallocated. 

Page 27-18 



lIHER SYSfEM fUNCIIONS 27.4 -- Diskette File functions 

27.4.3 Load program into memory -- .LOAD 

The .LOAD function reads a program from a memory-image 
file from the diskette into memory~ Control CAn be p~~sed to 
the resident debug monitor, to the callinq program, or to the 
loaded program. In addition, the program can be loaded into 
the User Memory Map of EXOliciser II systems with the dual 
memory map configuration. 

The .LOAD function does not verify that memory exists 
for the areas into which a program gets loaded. Programs 
which load above location $1F and below the end of contiguous 
memory known to MDOS are quaranteed that memory exists since 
the inemory was sized during MOOS initialization; t')0wever, 
programs loading beyond the end of contiguous memory known to 
MDOS or programs loading into the User- Memory Map of an 
EXOHciser II system with the dual memory map configured are 
not guaranteed that memory exists. The operator is 
responsible for knowing where memory is configured in his 
system and where his prograMs are loaded. Also, due to the 
nature of the diskette controller, it is not possible for the 
.LOAJ function to compare what is read from the file with 
what is stored into memory. Only diskette controller read 
errors can be detected during the load process. 

Programs brouqht into memory from the diskette will be 
loaded in multiples of eight bytes. This fact must be 
considered when programs are loaded into adjacent blocks of 
memory close to other oroqrams, or if programs are loaded 
into the upper end of a block of memory. 

ENTHf PAHAMEfEHS: 

MDOS 3.0 User's Guide 

B = A function code that specifies the 
action to be performed by .LOAD. 
This action includes selectinq the 
memory map; checking the limits of 
the lOnded progrnm against the memory 
map; and the passing of control to 
the debug monitor, loaded proqram, or 
calling program. The following 
function codes are definedl 

Bit 0 = 1 indicates that control is to be 
given to the loaded proqram at its 
starting execution address as 
obtained from the file's RIB. Bit 0 
is mutually exclusive with bits 1 and 
2. 

Bit 1 = indicates that control is to be 
given to the resident debug ~onitor 
after the program is loaded. Bit 1 
is mutually exclusive with bits 0 and 
2. 

Page 21-19 



OTH E R S Y S [E M FUN C rIO N S 2 -, • 4 -- Dis k e t t e f i I e Fun c t i on s 

MDOS 3.0 UserJs Guide 

Bit 2 = lin:i i cat e s th a t c on t r 0 1 i c:; to be 
given to the loaded pr0qra~ nt a 
starting execution address specified 
in the DFT, not at the address 
contained in the file's dIS. [he 
starting executiol') address Inust be 
specified in DEN of the OFT. Bit 2 
is mutually exclusive with bits 0 and 
J • 

Bit 4 = 1 indicates that the pro1ram can 
only be loaded above the resident 
MDOS (locati0n $ J FFF) and b~low the 
last location of contiquous memory 
established during MOOS 
initialization. Programs 101ded in 
this manner require an adiitinnal 
eight bytes of memory beyond the last 
addre!=ls loaded into by the proqram. 
The~D()S variable ENDUSS will be 
chRnJed to reflect the last address 
loaded intn by the proqram. [he MOOS 
SWI vector will be unchanged to allow 
access te> MOOS system functio'1s. Bit 
4 is mutually exclusive wit~ bits 5 
and 7. 

Bit 5 = I indicates that the pr01r3m can 
only be loaded into the User Memory 
Map of an EX(~ciser II syste~ with 
the dual memory llap configuration. 
The MDOS St1I vector wi 11 be restored 
to point back to the debug monitor if 
control is passed to the loaded 
proqram or to the monit')r. If 
control is returned to the calling 
program, the MOOS SWI vector will be 
unchanged. The only req~irement 
pl~ced on programs loading into the 
User Memory Map of a dual mem0ry map 
configuration is that the ending load 
address not be qreater than SFFFf. 
Otherwi se, any memory 1 ocati ons 
(SOOOO-FFFF) can be loaded into. Bit 
~ is mutually exclusive with bits 4 
and I. 

Bit 6 = indicates that no directory 
search is to be performed. [he RIB 
entry of the DFT contail')s the 
physical sector number of tne RIB of 
the file from which the progr~m is to 
be loaded. 

Pa~e 27-20 



OTHER SYSTEM fUNCTIONS 27.4 -- Oi skette f'i Ie C:unctions 

E X I T CO N D I T IONS: 

MOOS 3.0 User's Guide 

Bit 7 = I indicates that the program can 
be loaded anywhere in memory above 
location SJF. The only other 
requirement is that the endin] load 
addre ss not exe eed $ FFFF. Nt) checks 
are ~ade for overlaying the resident 
MOOS or for load inq into 
discontiguous memory. As a result, 
the MDOS SWI vector is restored to 
point back into the debug monitor, 
making MOOS system functions 
unaccessible. This function requires 
one of the control pass~qe bits (0, 
1, or 2) to be set to one. Control 
must be passed to either the loaded 
proqram or to the debuq ~0nitor. 
Control cannot be returned to the 
callinq proqra~. Bit 7 is ~utually 
exclusive with bits 4 and 5. 

If none of bits 0-2 are set, then control 
will be returned to the callinq 
program after the program is loaded. 

X = The address of the OFT. All calls to 
the .LOAO function requlre th::1t LUN 
contains the loqical unit nu~ber to 
be acce ssed ( ASC I I nu~ber 0-3, 
$30-$33>, that SBS contains the 
starting address of a 128 (decimal) 
byte sector buffer, and that SSE 
contains the endinq aaaress r:>f \'fl~ 

sector buffer. If the sector buffer 
is larqer than one sector, only the 
first 128 bytes will be usei. For 
all cases but one (Bit 6 set to 1), 
the OFT ~ust also contain the file 
name and suffix in NAM and SUF. For 
the Bit 6 case, NAM and SUF are not 
required. Instead, the physical 
sector number of the fileJs ~IB must 
be placed into HIB. 

A is indeterminate. 

B contains the return status. The 
following return statuses are iefined 
(only if control is returned to the 
callinq oroqram): 

B = 0 indicates that no errors 0ccurred 
(normal return). 

B = indicates that B contai~ed an 

Paqe 27-21 



O[rlER SYSfEM FUNCTIONS 

MUOS 3.0 User's Guide 

27.4 -- Diskette File Functions 

invalid function code upon entry to 
.LOAD. An invalid function may be 
one that is not defined, or use of 
more than one of the ~utually 
exclusive bits. This error will also 
occur when attemptinq to load into 
the User Memory Map in a syste~ which 
does not have the dual memory map 
confi gured. 

B = 3 indicates that the directory entry 
specified by LUN, NAM, and SUF was 
not found in the directory. 

B = 4 indicates that the directory entry 
specified by LUN, NAM t and SUF does 
not have the memory-imaqe format. 
Only proqrams from memory-ima:Je files 
can be loaded from the diskette. 

B = 5 indicates that an attempt w~s made 
to load a program into an invalid 
range of memory. If bi t 4 W3S set, 
the ~rogram must load above SIFFF and 
eight bytes below the end of 
contiquous memory. If bit 5 'lias set, 
the program must load within the 
range SOOOO-SFFF~, inclusive. in the 
User Mernroy Map of an EXOl1ciser II 
system with the dual memory map 
confi]ured. If bit 7 was set, the 
program ~ust load within the range 
S20-SFFFF t inclusive. 

B = 6 indicates that the starting 
execution address is invalid. The 
startinq execution address must be 
within the range of memory lo~ded by 
the program. 

B = a diskette controller error status 
($31-$39) if a diskette controller 
error occurred durinq the load 
attempt. This status can only be 
returned if control was to be passed 
back to the callinq proqram (Bits 0-2 
all zero and Bit 5 zero in entry 
value of B) or if the program was to 
be loaded into the User Memory Map of 
a dual memory map configuration and 
executed (Bit 5 set to one ani bits 0 
or 2 set to I) • Otherwl se, any 
diskette controller errors that are 
detected while the proqrarn 1~ being 

Page 27-22 



OTHER SYSfEM ~UNCTIONS 27.4 -- Diskette File Functions 

loaded will cause the two-character 
diskette controller error message to 
be displayed and control o~ssed to 
the debug monitor. These 
two-character error messa~es are 
discussed in detail in section 28.1. 

X is unchanged if control is returned to 
the calling program (Bits 0-2 all 
zero in entry value of B). 
Otherwise, X will contain the 
starting load address of the program 
(lowest address loaded into). 

C = 0 if no errors occurred (8 = 3). The 
re~ainder of CC is indetermin~te. 

C = 1 if an error occurred (B not zero). 
The remainder of CC is indeterminate. 

S is configured depending on which range 
of memory is loaded into. If loading 
above the resident MOOS (Bit 4 set to 
one in entry value of B), the stack 
pointer will contain the highest 
address loaded into (eiqht bytes 
greater than the highest program 
location). If loadinq over the 
resident MUDS or into discontiguous 
memory (Bit 7 set to one i~ entry 
value of B), the stack pointer will 
contain the address VI the EXbuq 
stack area. If loading into the User 
Memory Map of an EXOHciser II system 
with the dual memory map configured, 
the stack pointer will contain the 
highest address loaded into. 

The DFT has been changed as if a 
directory search has been performed 
(.DI~SM with B = 2). In a1dition, 
HES contains the startin] load 
address anj OEN contains the starting 
execution address as found in the 
file's tlIB. The OFT cont~nts can 
only be accessed if control is 
returned to the calling progr~~. 

If the resident debug monitor is given control (Bit 
set to one in entry value of B), the pseudo reqisters are 
initialized as follows: 

MUDS 3.0 user's Guide 



OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions 

Pseudo register Contents 

p 
S 

X 
A,B,C 

starting execution address 
See description of S above. Contents 
vary depending on load mode. 
Starting load address. 
Indeterminate. 

This feature facilitates starting the execution of a program 
from the debug monitor since the starting execution address 
need not be remembered by the operator; however, caution must 
be exercised if programs are loaded into the User Me~ory Map 
of an EXORciser II with the dual memory map configured. 
Since the stack pointer contains the address of the last 
loaded pro'Jram location, U5e of the debug commands lI;p" or 
";N" ,will cause seven locations of the program to be 
destroyed. This may alter program data or instructions. It 
is recommenied that the stack p0inter first be changed via 
the ";S" command; that the "nnnn;GII command be used to 
initiate execution; or that stack area be provided at the end 
of the program area. For programs not loaded into the User 
Memory Map of an EXOHciser II system with the dual me'1l0ry map 
configured, this precaution does not apply. 

Particular attention should be placed on programs that 
load into the highest memory address SFFFF. Since the 
diskette controller can only load programs in a multiple of 
eiqht bytes, such programs should have a starting load 
add res s t hat i sam u 1 tip leo f e i g h t • ot her w i s e , the 
calculated ending load address will be greater than SFFFF, 
causin] an error. 

Caution must also be exercised if MOOS is to be 
reinitialized from the debug monitor after havinq 10aded a 
program. The ABOHT or HESTAHT pushbuttons must first be 
depressed before the debug comlland "EBOa,G" or "\tDOS" is 
executed. 

27.4.4 Allocate diskette space -- .ALLrc 

The .ALLOC function allocates contiguous segments of 
diskette space for a file. The fileJs Retrieval Inf0rmation 
Block and the system'~s Clus ter All ocat i on Tabl e are llpda ted 
to account for the allocated space. Since space all0cation 
is performed automatically by the device independent 1/0 
functions, the .ALLOC function should only be used by 
programs that are doinq physical sector 1/0 on MDOS 
compatible diskettes. 

ENTRY ~AHAMETEHSz x = The address of the OFT. 

The DFf must contain the f0llowing 

MDOS 3.0 user"'s Guide Page 27-24 



orHER S,{SfEM FUNCfIONS 

EX IT eONU IT IONS: 

MDOS 3.0 User's Guide 

27.4 -- Diskette File Functions 

parameters: 

LUN must contain the loqical unit number 
on wnich the file resides (ASCII 
number 0-3, $30-$33). 

~IB must contain the physical sector 
number of the file's HIB if the 
directory entry has already been 
created (additional space 
allocation). Otherwise, RIB must 
contain the value zero to indicate 
that no Hetrieval Information Block 
exists for the file (initi~l space 
allocation) • 

FDF should have the "Cn bit set to 
indicate whether space is to be 
allocated contiguously to the Rlready 
existing space (RIB not zero). If 
the "en bit is set to zero, 
additional space can be allocated 
anywhere on the diskette. If RIB is 
zero, the FDF entry is not re~uired. 

SIZ must contain the number of sectors 
that are to be allocated. If SIZ is 
zero, the default allocation size (32 
clusters> will be used. 

SBS must contain the startinq address of 
a 128 (deCimal) byte sector buffer. 

SSE must contain the ending address of 
the sector buffer. If the sector 
buffer is larger than one sector, 
only the first 128 bytes will be 
used. 

A is indeterminate. 

8 contains the return status. The return 
statuses Rre taken from the set of 
codes defined for the device 
independent I/O functions. Orlly the 
system symbols are qiven here for 
those return statuses. The exact 
values can be found from the MOOS 
equate file, section 25.3.1.1, or 
section 28.3. The followin) return 
statuses are definedz 

B = 0 indicates that no errors occurred 
(normal return). 



Of HER SYSfEM ~UNCf IONS 

MDOS 3.0 User"s Guide 

27.4 -- Diskette File ~unctions 

B = IS~Id indicates that the file had an 
eXisting Hetrieval Informatio~ Block 
that was invalid (see section 24.2). 

B = ISFSPC indicates that insufficient 
space is available to accommoiate the 
allocati0n requirements. If SIZ 
contained a non-zero value at the 
entry to .~LL(~, this error iniicates 
that the specific amount of space 
requested could not be allocated. 
[his can occur for two reasons. 
First, if the file is seqmented (tiC" 
of FJF set to zero), the nu~ber of 
sectors specified in SIZ couli not be 
allocated in a sinqle, contiguous 
block anywhere. Second, if the file 
is contiquous (UC" of FDF set to 
one), the number of sectors soecified 
in SIZ could not be allocated 
contiguously with the existin] spflce. 
If SIZ contained a zero value, this 
error indicates that no space is 
available at all on the diskette, or 
that no space is available that is 
co~tiguous to the existing space, 
depend in':) on "CII being zero or one in 
FD~. If the default of 32 clusters 
(S I Z = 0) cannot be all oca ted, • ALLOC 
will allocate whatever space it can 
without generating an error. If SIZ 
is non-zero, an error will be 
generatei if the exact nu~ber of 
sectors cannot be allocated. 

B = lSSS~C indicates that the file~s 
Retrieval Information Block could not 
accornmodate the requi red nUllber of 
SO~s for the requested al10cation. 
This error occurs if a file is very 
fraq'Tlented. 

X is unchanged. 

C = 0 if no errors occurred (8 = 0). The 
remainder of CC is indeterminate. 

C = I if an error occurred (8 not zero). 
The remainder of CC is indeterminate. 

[he OFT is unchanged if an error 
occurred. If no errors occurred, the 
OFT has been chan]ed in the following 
manner. Bytes 3 and 4 contain the 

Page 27-26 



:>fHER SYSfEM FUNCTIONS 27.4 -- Diskette File Functions 

SD~ of the last allocated seqment. 
Bytes 5 and 6 contain the starting, 
logical sector number of the last 
allocated segment. SUF contains the 
logical sector number of the logical 
end-of-file, and HIS, if orilinally 
zero, contains the physiCal sector 
number of the file's Hetrieval 
Information Block. The contents of 
the sector buffer are indeter~inate. 

27.4.5 Deallocate diskette space -- .DEALC 

The .DEALC function deallocates segments of iiskette 
space from a file. The file's Retrieval Informati~~ Block 
and the system's Cluster Allocation Table are updated to 
account for the deallocated space. Since space deall~cntion 
is performed automat ica 11 y by the dev ic e independent I/O 
functions, the .DEALC function should only be used by 
proqrams that are doing physical sector 1/0 on MOOS 
compqtible diskettes. 

ENTH{ PAHAMEfERS1 

MDOS 3.0 User's Guide 

x = The address of the OFT. 

The OFf ~ust contain the f0110winq 
parameters: 

LUN must contain the logical unit 
on which the file resides 
number 0-3, $30-$33). 

number 
( ASC I I 

Bytes 1 and 2 must contain the file's 
logical sector number beyoni which 
space is to be deallocated. If these 
two bytes contain the value SFFFF, 
then the entire space belonlinq to 
the file will be deallocated; 
however, in this special case, the 
tile's directory entry must 1lready 
have been tlaqqed as deleted. 

riIB must contain the physical sector 
number of the file's K~trieval 
Information Block. 

DEN must cO'1tain the file-'s jirectory 
entry number. 

SBS must contain the startinq ariiress of 
a 12d (decillal) byte sector bu ff er • 

SBE must contain the endinq 8ddr~ ss of 
the 5 ector bu ffer. It the sec tor 

Pa~e 27-27 



OTHER SYSTEM FlJ NC r IONS 

EXIT CONIJITIONS: 

MOOS 3.0 User's Guide 

bu ffer is 
only the 
used. 

27.4 -- Diskette File Functions 

larqer than one sector, 
first 128 bytes will be 

A is indeterminate. 

d contains the return status. The return 
statuses rtre taken from the set of 
codes defined for the dey ice 
independent I/O functions. Only the 
system symbols are given here for 
those return statuses. The exact 
values can be found from the MOOS 
equate file, section 25.3. I • 1 , or 
section 28.3. The fo llow in.] return 
statuses are defined: 

B = 0 indicates that no errors occurred 
(normal return). 

B = ISHI3 indicates that the file had an 
existin] ~etrieval Information Block 
that W3S invalid (see section 24.2). 

B = ISRAJ~ indicates that the ~aximum 
referenced logical sector number 
specified in bytes I and 2 does not 
belong to the file. That is, the LSN 
specified is greater than the number 
of sectnrs belonginq (allocqted) to 
the file. 

B = lSIDEN indicates that an invalid DEN 
was specified. 

B = ISUEAL indicates that an atte~pt was 
made to deallocate all of 3 file's 
sp~ce (bytes 1 and 2 set to SFFFF), 
but the directory entry for the file 
was not flagged as deleted. 

X is unchanged. 

C = 0 if no errors occurred (B = J). The 
remainder of CC is indeter~in3te. 

c = I if an error occurred (S not zero). 
The remainder of CC is indeter~inate. 

[he OFf is only chanqed if the 311 of a 
file's space was to be deallocated. 
In that case, RIB will cont8in the 
value zero. otherwise, the l)FT is 
unchanged. [he contents of the 

Paqe 21-28 



OfHEI1 SYSfEM fUNCfroNS 27.4 -- Diskette File Functions 

sector buffer are indeterminate. 

27.4.6 Display system error message -- .MDERR 

The .MDERH function displays on the system console one 
af the standard system error l1essaqes contained in the MOOS 
error lleSsflqe file. The error messa~e to be displ~yed is 
indicated by an index number which is passed in one of the 
registers. fhis index number will also be used to modify the 
system error status word (see section 2d.4). 

Certain error ~e5saqes contain references to gxternal 
para~eters that must be supplied by the calling program 
( e • g., a f i 1 e n am e 5 pee i fie a t ion 0 ran add res s ) • Th e 5 e 
parameters are shown in the list of error messaqes below as a 
oackslash character C') followed by a numeric diqit which 
indentifies the format of the parameter. ~hen an external 
parameter reference is encountered in the messaJe, the 
correspondinq parameter from the calling proqram will be 
inserted into the message before it is displayei on the 
system console. [he following external parameters are 
defined: 

parameter reference Callinq ~roqram specification 

\0 Ihe X register contains the address 
of a standard MDCS file name. Eleven 
bytes comprise an MOOS file namel 
logi cal uni t number ( 1 byte), f i Ie 
n arne ( ~ i q h t by t e 5 ) , 5 U f fix ( two 
bytes). 

\1 fhe X register~s contents are to be 
converted into four disolayable 
hexadeci~al dilits. 

\3 rhe X re~ister contains an address of 
a byte in memory whose cont~nts are 
to be converted into two displayable 
hexadeci~al diqits. 

\R rhe return address on the ~tack is 
decremented by two (pointing to the 
system call of the error llessaqe 
fUnction) and converted into four 
displayable hexadecimal digits. This 
para~eter allows the location 0f the 
call to .MDErtR to be incorpor3ted 
into the error messaqe for system 
diagnostic purooses. 

The followinq table lists the standard error nes5aqes 

MOOS 3.0 User's GUide Paqe 27-29 



OfHEH SYSfEM t:UNCTIONS 27.4 -- Diskette File Functions 

from the MOOS error messAqe file in order of their error 
mesS3ge index numbers (number re:.:tuired as entry parameter to 
display the ~essaqe). This number is not to be confused with 
the two-diqit decimal reference number that is display~d with 
each messaqe on the system console. The rlisplayed reference 
number only serves as a quick wFly of locating the error 
messaqes~ descriptions in Chapter 28. 

INDEX 
;'lUMBER 

02 
03 
04 
05 
06 
07 
08 
09 
OA 
OR 
OC 
OJ.) 
OE 
OF 
10 
11 
12 
13 
14 
15 
It> 
17 
Id 
19 
IA 
IS 
IC 
10 
IE 
If 
20 
21 
22 
23 
24 
25 
26 
27 
28 

MOOS 3.0 User~s Guide 

ERHOH MESSAGE 

** 40 DlkECTOHY SPACE FULL 
** 41 INSUFFICIENT DISK: SPACE 
** 29 INVALID LOGICAL UNIT NUMBEr? 
** 02 NAM E HE()U I liEU 
** 03 \0 DOES NOr EXIST 
** 25 INVALID FILENAME 
** 05 \0 DUPLICATE FILE NAME 
** 28 DEli ICE NAME NOT FOUND 
** 31 INVALIJ DEVICE 
** 01 COMMANu SY NT AX ERHOH 
** 46 INTEt~NAL SYSTEM ERROii AT \d 
** 01 OPfION CONFLICT 
** 12 INVALILJ TYPE OF OBJECT FILE 
** 13 I NVAL IiJ LOAD ADDHESS 
** 42 SEGMENf DESCi{Ip[OR SPACE FULL 
** 32 INVALIJ HId 
** 30 INVALID EXECUTION ADDRESS 
** 14 INVALID FILE TYPE 
** 36 FILE EXHAUSTED BEFORE LINE FOUNJ 
** 24 LOGICAL SECTOR HUMBER OUT ()~ RAi'lGE 
** 34 INVALIO STA~f/~ND S~ECIFICArIONS 
** 35 INVALIiJ PAGE F(mMAT 
** 38 INVALIJ LINE NUMBER OR RANGE 
** 39 LINE NJMBErl ENTEliED BEFORE S()UIiC~ FILE 
** 06 DUpLICATE FILE NAME 
** 04 FILE NAM E ,~or fOU NO 
** 10 FILE IS DELErE pROTECTED 
** 33 TOO MAi~'{ SOURCE FILES 
** 16 CONFLICTING FILe TYPES 
** 15 \0 HAS I!fI ALID FILE TYPE 
** 27 \0 IS rHt I IE PROTECTED 
** 47 INVALlu SCALL 
** 18 DEVICE ALHEADY HESEHVED 
** 19 DEy'ICE NOT RESEHVEO 
** 11 DEVICE NOT READY 
** 20 I NVALID OPEN/CLOSED FLAG 
** 21 END OF FILE 
** 17 INVALID DATA THANSFER TYPE 
** 3 -, END 0 F M ED I A 

Page 27-30 



O[HER SYSfEM FUNCfIONS 27.4 -- Diskette File Functions 

INDEX 
.'~UMt3ER ERROl-? MESSAGE 
-----.... -------------

29 ** 
')') RII ~j:;~lJ ()VEHFLOf~ c..c.. L...I'V I & l .......... 

2A ** 23 CHECKSUM EKROR 
2B ** 26 FILE IS v~H I TE PROTECTED 
2C ** 43 INVALIJ 01 l-?ECTORY ENTHY N(L~ AT '\3 
2D ** 44 CANNOT DEALLOCATE ALL SPACE, 01 Kf:CTORY 

ENTHf EXISTS AT \8 
2E ** 45 RECO~U LENGTH roo LARGE 
2F ** 48 CHAIN OVEHLAY DOES NOT EXIST 
30 ** 08 CHAIN ABOH fED Bf BREAK KEY 
31 ** 09 CHAIN AROKfED SY SYSTEM ERROR S[ATUS 

t~OHD 
32 ** 49 CHAIN ABOH fED BY' ILLEGAL OPE RA [~)i~ 
33 ** 

1.::1"\ CHAI l'J ABORfED uv U NDEF I NED LABEL J\,J 1J 1 

34 ** 51 CHAIN A30H fED 8Y lJREMATURE END OF FILE 
35 ** 52 SF.CTOH 8U FFEli SIZE EHROR 
36 ** 53 I NSU FF I C lENT MEMORY 

In addition, two error messaqes have specific callinq 
sequences. fhese two messages have the followinq for~at when 
displayed: 

I !VEX 
l~thU~ER 

00 
01 

EHROR MESSAGE 

**UNIF. liD EHROIi -- STATUS = \.3 AT \3 
**PROM 1/0 EtHH)R -- STATUS = \3 AT h DR I VE i 

- PSN j 

[he first case (index number 00) should be used for 
displayinq standard error messages as a result of the device 
ind epend ent I/O func t ions. Th e • MUEl-lR funct i on expect c; th e X 
register to contain the Address of an IOCB. The status byte 
of the IOCB will be decoded into one of the stfindard system 
error messa]es shown above. In the event that an illegal 
status corle is contained in the IOCl-3, the error messa~Je wi 11 
take on the form AS shown above. [he 1t\.3" parameter will 
cont3in the value of the status byte, and the "\8" oarameter 
will contain the fiddress of the call to the error .nessfige 
function. 

The second case (index number 01) should be used for 
displaying standard diskette controller error mess1qes (as 
returned by .EHEAD, .E~~RI r, .MEHED, .MEWRT). The .MDERH 
function expects the X register to contain the address of a 
thre~-byte packet. The format of the packet is c;hown below: 

MOOS 3.0 User's Guide Page 21-31 



o fH ER S Yt) rEM fUNCf IONS 27.4 -- Diskette File Functions 

o : Controller error status : 

AcJdre ss of 
function call 

2 : to sector 1/0 function 

In aidition, the .MDERH function will pick up the logical 
unit number and the physical sector number from the iiskette 
controller variables in lo~ations $0000-$0002, inclusive. 
vvhen the error messaqe is riisplayed, the oarameter uh lf will 
have been replaced with the address of the call to th~ error 
'oess:=Jqe function, the paraineter "i" will have been n:~placed 
wi th the loqical uni t number, 8nl"J the pararneter U jll wi 11 have 
been replac~d with the physical sector number at which the 
error occurred. 

~NrHf ~AHAMErEHSz 

EXIT CONUITI()NSz 

B = The index number of the error ~essAge 
as shown in the above tables. 

X nay not have to be parameteriZerl. If 
the error message calls for an 
external parameter, X will have to 
contAin the paramAter or the ~ddress 

of t~e parameter that is to be placed 
into the error messaqe. The contents 
of X depend on the type of ~e5saqe 
displayed as shown in the above 
taoles. 

A is indeterminate. 

1:3 is indeterminate. 

X is indeterminate. 

C = o. [he remainder of CC is 
indeterminate. 

The Error Type of the system error status 
word has been chanqed to contain the 
index number of the displayeJ error 
messaqe. In addition, the Error 
Status Fla1 of the system error 
status word has been set to one. 
Section 2~.4 contains a c0mplete 
description of the syste~ error 
status word. 

If the .MDEHH function is called with an index number 
for ~hich no valid error message exists, or if the MUOS error 
mess~ge file cannot be accessed on the diskette without an 

MJOS 3.0 User's Guide 



OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions 

error, a special message will be displayed. This mess~ge has 
the formata 

** INVALID MESSAGE \3 AT \8 

The ,11\3 11 parameter will have been replaced wi th the index 
number of the error message that the .MOERR fUnction was 
trying to display. This mayor may not be a valii index 
number, depending on whether or not the MOOS error message 
file could be properly accessed. Ine ';;\S:: parameter Wlll 

have been replaced with the address of the call to the .MOERR 
system function. In the event that this message is 
displayed, the Error Type portion of the system error status 
word will contain the value SFF (the Error Status Fla~ will 
also be set to one). 

27~5 (~her Functions 

The remaining system functions are so diverse that they 
fail to fall into one of the previous cateqories. These 
functions are used by the MD(~ commands and are available for 
user programs in order to extract file name or dsvice 
specifications from the MOOS command line, allocate program 
memory in the remaininq block of contiquous memory, set the 
system error status word when non-standard error messaqes are 
displayed so that CHAIN processing will work properly, and to 
return control to the MOOS command interpreter. 

27.5.1 Process file name -- .PFNAM 

The .PFNAM function scans a specified input buffer for a 
file name or device specification. The information is 
returned in a format which is called the standard MDOS file 
name format. This format fits into the other parameter 
tables required by the device independent I/O functions 
( I nCB) and the di ske tte fil e funct ions (OFT) • The • PF NAM 
function will also recognize family indicators in either the 
file name or the suffix. 

Due to the nature of the free-format of the MOOS command 
line, any character that will not be confused with a device 
name indicator, a family indicator; a suffix delimiter, a 
logical unit delimiter, an option field delimiter, or an end 
of line delimiter will be used to terminate the scan for a 
valid file name or device specification. 

The scan will never continue beyond an option delimeter 
(I) or an end of line delimeter (carriaqe return), re1ardless 
of the number of times .PFNAM is called with the scan pointer 
pointing to such a character. 

ENTR '{ ~ ARAMETERS s x = The address of a file name packet. 

MOOS 3.0 User"s Guide Page 27-33 



OTHER SYSTEM FUNCTIONS 

EXIT CONDITIONS' 

MDOS 3.0 User"s Guide 

27.5 - other Fu.nctions 

This packat has the following formata 

o Address of 
input bu ffer 

2 Addr.e ss of 
standard 

3 file name area 

Since .PFNAMis designed to be called 
more than once to extract multiple 
file name or device specifications 
from a single'input buffer, the first 
pointer of the file name packet, or 
scan pointer. must be pointin~ to a 
character which previously termina~ed 
the scan. ~hen .PFNAM is called the 
first time, special care ~ust be 
taken to ensure that the first byte 
of the input bu ffer is a val id 
terminator (this is autom~tically 
handled by the MOOS conmand 
interpreter in using the MOOS command 
line buffer>. This character is 
normally a space or a cammal however, 
any other valid terminator will 
suffice. 

The second pointer of the file name 
packet defines where the standard 
file name is to be placed. This area 
must be eleven bytes long. The first 
byte will contain the logical unit 
number. The next eight bytes will 
contain the device name or the file 
name. and the last two bytes will 
contain the suffix. 

A = The character that terminated the 
scan. 

B contains 
following 
defined' . 

the return status. 
return statuses 

The 
are 

B = 0 indicates that a standard MJOS file 
name specification was found. 

Bit 0 = 1 indicates that a family 
indicator was found in the file name. 

Page 21-34 



OTHER SYSfEM FUNCTIONS 27.5 - other Functions 

Bit I = ) indicates that a family 
indicator was found in the suffix. 

Bit 2 = I indicates that a 
specification was found. 

dey ice 

Bits 3-6 are unused and will be zero. 

Bit 7 = 1 indicates a null file name was 
found. This does not necessarily 
mean that a null suffix or a null 
logical unit number was found. 

X is unchanged. 

CC is indeterminate. 

The scan pointer (first two bytes of file 
packet) will contain the address of 
the character that terminated the 
scan. 

The standard filename pointer (second 
two bytes of file packet) will have 
been incremented by eleven (points to 
location following the suffix). 

The standard file name area is only changed if a 
corresponding element is found in the input buffer. Thus, if 
no loqical unit number is found in the input buffer, the 
logical unit part of the standard file name area will not be 
chan)ed. The same is true for the file name and ror the 
suffix fields. This feature allows appropriate. default 
values for the logical unit number, file name, and suffix to 
be placed into the standard file name area'before .PFN~~ is 
invoked. Then, after the input buffer is scanned, those 
parts of the file name specification which were not 
explicitly found will assume the default values which were 
unchanged. 

No delimiters of any sort are placed into the standard 
file name area. The presence of deVice name indicators and 
family indicators is indicated by the return status in the B 
register only. The file name (or device name) and suffix 
will be left justified within the file name area. Unused 
parts of the file name or suffix will be space-filled 
auto!llatically. 

When the scan is initiated, leadinq spaces in front of 
the file name or device specification will be treated as a 
single space (ignored). Any space, however, encountered 
after the first character of a speCification is found will be 
treated as a terminator. 

MOOS 3.0 User~ s Guide Page 27-35 



OTHER SYSTEM FUNCTIONS 27.5 -- Other Funct ions 

If the file name, suffix, or logical unit number 
contains more valid characters than required, they will be 
automatically flushed from the input stream. Thus, even if a 
ten character file name is specified, only the first eight 
characters will be returned in the file name area. 

The following examples illustrate how .PFNAM extracts 
the file name or device specification from the input buffer. 
The left column shows a string as it is encounterei in the 
input buffer. The double quotation marks delimit the start 
and end of the string. It should be noted that an initial 
terminator beqins each string. The right column shows the 
extracted information as it would appear in the stand~rd file 
name area. The dashes indicate unchanged parts of the 
standard file name area (those areas where the default values 
would be found). 

Input string 

JI FILE," 
II FILEI,O,II 
JI F. SA, •• 
II FILE.110,t ," 
II aO,,1I 
" • LX a J , .II 

Extracted file name 

-FILE 
OFI LEI 
-F SA 
IFILE RO 
0----------
I--------LX 

II FILENAMETOOLONG.AB: 1," 
II F I LE$ AB' I , ,II 

tFILENAMEAB 
-FILE 

.. #LP,·II 
II #UDal," 
II FILE*.*",u 

-LP 
IUD 
IFILE 

27.5.2 Re-enter resident MOOS -- .MDENT 

The .MDENT function passes control from a calling 
program to the MOOS command interpreter. It is one of the 
few functions which does not return control to the calling 
program. .MDEtrr can only be used if the resident operating 
system area has not be changed by the calling program (or any 
programs that may have executed prior to it). 

ENTRY PAHAMETERS: 

EXIT CONDITIONS' 

MOOS 3.0 User~s Guide 

The diskette in drive zero must not have 
been replaced with another diskette 
since the last time MDOS was 
initialized via the resident debug 
monitor. 

There is no return from this function; 
however, the following actions are 
performed: 

The SWI and IRQ vectors are configured 
for the MOOS function handler. 

Page 27-36 



OTHER SYSTEM FUNCIIONS 27.5 -- Other Funct ions 

The user SWI and IRQ vectors maintained 
by MOOS (SWI$UV and IRQSUV) are reset 
to point to an HII instruction. The 
user program is no longer resident, 
thus user-defined SWI and IRQ 
interrupts cannot be processed after 
MOOS regains control. 

The end of user memory pointer, ENDSUS, 
is reset. 

The command line buffer is initialized. 

The version/revision numbers of MDCS in 
memory are compared with the 
version/revision numbers in the 10 
sector. The addresses of the system 
overlays are also compared in this 
fashion. If a discrepancy exists 
between memory and the diskette, 
EXbug is given control. 

The system IOCBs for the console, 
printer, and the MOOS error message 
file are configured. 

The input prompt (=) is displayed and a 
new command line accepted from the 
system console. 

The system error status word is cleared 
(Error Type and Error Status Flag) it 
a valid command is interpreted. 

27.5.3 Reload MOOS from diskette -- .BOOT 

The .B(X)T function reloads the resident operating system 
from the diskette in drive zero via the diskette controller 
firmware. This function should be used if the resident 
operating system has been changed by the current program (SWI 
handler must still be intact). This function should also be 
used if the diskette in drive zero has been replaced with 
another MOOS diskette since the last time MOOS was 
initialized via the debug monitor. .BOOT is one of the few 
functions that does not return control to the calling 
program. 

This function has the same effect as if the ~BORT or 
RESTART pushbuttons were depressed on the EXORciser and the 
debug command JIE800;GII or "'MOOS" executed. 

ENTR{ PAHAMETERSa 

MOOS 3.0 UserJs Guide 

A valid MOOS diskette must be rea-dy in 
drive zero. 

Page 27-37 



OTHER SYSTEM FUNCTIONS 

EXIT CONDITIONS: 

27.5 -- Other Functions 

This function does not return to the 
calling program. A new copy of MOOS 
is brought from the diskette into 
memory. All of the functions 
performed during this type of 
initialization are described in 
section 2.1 and section 24.6. 
Control is given to the MDOS command 
interpreter after MOOS has been 
initialized. 

27.5.4 Set system error status word -- .EWORD 

The .E~ORD function confi;1ures the system error -status 
word with a specific error type. This allows a calling 
program to indicate that an error occurred during its 
execution. The system error status word can then be tested 
from within a CHAIN procedure (Chapter 6). 

ENTRf PARAMETERSa 

EXIT CONDITIONS: 

B = The value that is to be placed into 
the Error Type field of the system 
error status word. Any value is 
valid. Section 28.4 describes the 
format of the error status wori. 

A is unchanged. 

B is unchanged. 

X is unchanged. 

CC is indeterminate. 

The lower byte of the system error status 
word contains the value passei in B. 
The Error Status Flag has also been 
set to one. The remainder of the 
error status word is unchangei. 

27.5.5 Allocate user program memory -- .ALUSM 

The .ALUSM function adjusts the MDOS pointer ENOUS$ to 
reflect the end of the user program area. This function 
facilitates the dynamic allocation of variable buffer space 
adjacent to the highest loaded program location so that 
programs can take advantage of the variable amount of 
contiguous memory that may be configured for a given 
installation. 

The user program area consists of all contiguous memory 
between the end of the resident operating system and the end 
of contiguous memory. The pointer ENDUS$ is autom~tically 

MDOS 3.0 UserJs Guide Page 27-38 



orHER SYSfEM FUNCTIoNS 27.5 -- other Functions 

adjusted to reflect the end of a loaded proqram (only if the 
program is loaded directly from the command line or via the 
LOAD command without the nu" or "V" option). Th:J5, the 
program can obtain information about the remaining am~unts of 
~emory without havinq to size memory itself. 

ENfRf PAHAMETEHS: 

EX IT COND ITI ONS: 

MuOS 3.0 User's Guide 

B contains a function code th~t s09cifies 
the action to be taken by .ALUSM. 
The followinq function codgs (and 
their impact the the X re~ister) are 
defined: 

B = a indicates that the X register 
contains the address of t'1e last 
address that is to be made a oart of 
the current user program area. 

B = indicates that the X register 
contains the number of bytes of 
memory that are to be allocated to 
the end of the current user or0qrarn. 

B = 2 indicates that all of the re'Tlaininq 
contiguous memory is to·be allocElted 
to the current user proqr.:3mQrea. 

X contains the parameters as 1escriberi 
above. 

A is unchanged. 

contains the return sLdtuS. 
following return statuses 
defined: 

B = 0 indicates that no errors ~ccurred 
(normal return). 

B = indicates that the allocation 
reques t WOll ld hnve caused E ;'-lDUSS to 
be gre at er than E NDSYS • rne user 
proqram area cannot extend beY0nd the 
end 0f contiquous mAmory in the 
system. 

B = 2 indicates that the all'1cation 
re :lLJ es t wou 1 d have c aus ed E l'JJUS S to 
be 1 e 55 than or equal to E NDO:3S • The 
allocatej memory block must reside 
co~pletely above the ~drlres5 

contained in ENDOSS. 

X contains an indeter~inate value if an 
error occurrerl {exit value ')f B not 



OTHER SYSfEM FUNCfIONS 

l~iJOS 3.0 User's Guide 

21.5 -- Other Funct ions 

zero) or if the entry value 0f B was 
zero. 

X contains the old value plus one (value 
before the call to .ALUSM) of ENDUSS 
if the entry value of B w~s one. 
Thus, X points to the starting 
address of the newly allocated block. 

X contains the number of bytes allocated 
if the entry value of B was two. 

Z = J and C = a if no errors occurred (8 
= 0>. The remainder of CC is 
indeterminate. 

l = 0 and C = I if an error occurred (8 
not zero). The remainrier ()f CC is 
indeterminate. 

[he MOOS variable ENDUSS is unchaF1Jed if 
an error occurr eri. otherw is e It - ENDUS $ 
will contain the following l if the 
entry value of B was zero, ENDUS$ 
will contain the entry value ~f the X 
reqister; if the entry vnlue ')f B was 
one, EI~DUSS wi 11 hnve been 
incr'emented by the entry value of the 
X register; and if the entry v~lue of 
B WAS two, ENDUSS will contain the 
va I u e of Ej~DSI'$. 



CHAtJTE1i 28 

This ch~pter contains a summary and an explanation of 
all of the standard error messages that can be j(splayed 
durinq the operation of :~DOS. Standard error llessaqes 
include those displayed by the diskette controller firrnware 
during initialization. the PHO,'.J\ I/O messages that can be 
displayed when any fatal diskette error is detected by an 
IVtDOS command or overlay, anj the stf3ndard error messages 
displayed by the com~anrls themselves. The standard command 
error messages are recognizable by the fact that a pair of 
asterisks followed by two-JiJit refere~ce number is displayed 
oefore the Flctunl message. Explanations of messages without 
the two-diqit number should be looked for in the ietailed 
com118nj descriptions in chapters 3-23. 

28.1 Diskette Controller Errors 

The diskette controller err0rs can be displayed in two 
forms depending on the phase MUDS is in. During the 
initialization phnse. the error :nessaqes from the controller 
take on the form of the letter II e" followed by a decimal 
dilit 0-9. Control is qiven to the debuq monitor after the 
me sS3qe is rl i spl ayed. Aft er MOOS has been oroper I y 
initialized, the diskette controller errors are identified by 
the text lipf~OM I/O ERRORii. Control is r'~turned to the MDnS 
co~mani interpreter. 

28. 1. 1 Et:"rors during initialization 

If f0r some reason the drive electronics are not 
properly initialized, or if the diskette in drive zero cannot 
be read properly to load the Bootblock or the resident 
operatinq system, then a two-character error messaqe will be 
jisplayed and control returned to the debuq monitor. [he 
function resulting in the error has been tried five times. 
Aft e r the f i f t h fa i 1 u r e, the err I) r me s 5 a q e i 5 dis 0 1 a 'f o,:-j • 

El 

MOOS 3.0 User's Guide 

Probable Cause 

A cyclical redun1ancy check (C~C) 
error was detected while readin) the 
resident oaeratinq syste~ into 
memory. 

Pnqe 28-01 



EHHOH MESSAGES 

E3 

E4 

E5 

MDOS 3.0 User"s Guide 

28.1 -- Diskette Contr0Iler Errors 

[he diskette has the write protection 
tab punched out. During the 
initializati0n process, certain 
information is written onto the 
rliskette. 

The diskette 
still be used 
however t the 
must first be 
opaque taoe 
diskette. 

is not damaged ani can 
for a system diskette; 
write protection tab 

covered with a piece of 
to allow writinq on the 

The drive is not ready. The door is 
open or the diskette is not yet 
turninq at the proper speed. If the 
diskette has been inserted into the 
drive with the wronq orientation. the 
IInot ready II error wi 11 be ,1 so 
qeneraterl. This error wi 11 also 
occur if a douhle-sided diskette is 
placed into a sin1le-sirieri diskette 
drive. 

Closinq the door, waiting a little 
bit Ionqer before enterinq the 
II E 8 ()O ; G .. 0 r II M D () S " co mrn and. 0 r 
turninl the diskette around so it is 
properly oriented should elimi~~te 
this error. 

A deleted data ~ark was detected 
while rearlinq the resident operatinq 
system into rnemory. 

A timeout interrupt occurred. [his 
indicates that a diskette controller 
com~and was not completed within the 
allotted ti~e. This error is 11so 
produced if a non-maskable interrupt 
(such as rlepressinq the ABORT 
pushbutton on the EXDHciser's front 
panel) is qenerated during a diskette 
operation. 

Paqe ~8-02 



E6 

E7 

E8 

E9 

28.1 -- Diskette Contr0ller Errors 

[he diskette controller has been 
presented with a cylinder-sector 
ajdress that is invalid. This error 
occurs when the sum of STHSCr and 
NUMSCT (see Appendix D) is larger 
than the total number of sectors on 
the diskette. 

This error indicates some type of a 
hardw~re problem. For example, the 
error can be caused by missinl or 
overlappinq ~emory, bad memory, or 
pendin1 IHOs th~t cannot be servicAd. 

A seek error occurred while tryin]to 
read the resident operatin1 system 
into memorYe 

Like E6 errors, this one indicates 
some type 0f a hardware problem. 

A data mark error was detected while 
trying to read the resident operating 
system into memory. 

A eRC error was found while reaiinq 
the address ~ark that identifies 
sector locations o~ the diskette. 

The diskette controller errors E1, E4, E8, and E9 
indicate that the diskette cannot be used to 10ad the 
operAtinq system; however, a oew operatinq 5y5te~ can be 
qenerated on that diskette, makin1 it useful aqain. The 
J)OSGEN (Chapter 10) and/or FOHMAT (Chapter 15) cnmmands 
should be consulted for generating a new diskette. Depending 
on the extent of the errors, the diskette may be used in 
drive one to recover any files that may be on it (see section 
2.cs.y). 

The diskette controller error E5 can occur for a variety 
of reasons. The most common reason, and the most fatal, is 
the destruction of the addres5in~ information nn the 
diskette. If the addressing information has been destroyed 
(verified by using the OUM~ comm8nd to examine areas of the 
diskette), the FOHMAf comm"nd llay be used to rewrite the 
addressinq; however, informAtion on the damaqed iiskette 
cannot be recovered. Occasionally, after a system has just 
been unpacked, the read/write head may have been positioned 
past its normal restore point on cylinder zero. In this 
case, tryinl the event which causei the error three 0r more 
times may pOSition the head to the proper place. If this 
fails, the head will have to be mFlnually repositioned past 
cylinder zero; however, this problem rarely occurso The E5 
errors can also occur if a user-wr itt en proqram accesses 

MOOS 3.0 User's GUide Paqe 28-03 



EHHOi-{ MESSAGES 28. I -- Diskette Contr01ler Errors 

drivqs 1-.3 without usinq 0ne of the system functi0ns And 
'~~i thc)ut first restorin:) the read/write head on that ririve. 

Even after the resident operati~g system h~s been 
successfully read into memory, certain errors can occur in 
the subsequent initialization orocedure. Durinq 
initializati0n the resident ooerAtinq system cannot access 
the error message processor since it has n0t been 
initialized. Messa)es similar i~ format to those ~enerated 
by the diskette controller are displayed to indic~te such 
errors. They differ from the diskette controller errors in 
that the second character of the two-character meSS~le is a 
non-nu~neric character. The following errors can occur during 
initializAtion, but only after the resident operatinl system 
has oeen reaj int0 me~orf. 

Me ssage 

E? 

Probable cause 

fhis error inriicates that the RId of 
the resident operating system file 
MOOS. Sf is in error. The operat ing 
system cannot be loaded. 

The diskette prr:>bably is not an '~!)()S 
system diskette, or the system files 
have been ~oved from their oriqi~al 
places. The REPAIR command (ChApter 
22) can be used to identify w~ich 
files are missing or if their pl3ces 
have been chan1ed. 

EM This error indicates that there was 
insufficient memory to acc()rn!'Tl0'f~te 
the resijent portion of the operAting 
system. 

MuOS 3.0 User~s Guide 

fhe memory requirements ciescribe-j in 
sec t ion J. Ish ou I d be rev i ewe d • I f 
the minim'JfTI requirements~re 
satisfied, then the existing me~ory 
should be carefully examined for ba·i 
locations. 

Page 28-04 



:HHOR MESSAGES 

EI 

28.1 -- Diskette Controller Errors 

[he ver si on and reVl S1 on of i\\OOS 
already loaded into memory is not the 
same as that on diskette. This error 
usually occurs as the result of 
switching diskettes in drive zero 
without following the initialization 
procedure outlined in section 2.1. 
This error can also occur is the ID 
sector has been damaged. 

[he error can be avoided if the 
initialization procedure is followed 
correctly every time a new system 
diskette is inserted into drive zero. 

ER Th e addr ess es of the HI Bs of the \o\[JOS 
overlays are not the same as those at 
the time of the last initializati0n. 
This error may occur for the snme 
reasons as the tiEl" error. 

EU An input/output system function 
returned an error during the 
initialization. Errors of this sort 
indicate a possible memory problem or 
the opening of the door to drive zero 
while the initi~lization is taking 
place. 

EV On e 0 f the 5 y s t emf i Ie sis m iss i n J 0 r 
cann()t be loaded into memory. I f a 
system file is missing, the diskette 
has been improperly qenerated or the 
file was intentionally deleted. If a 
file cannot be loaded, then the 
diskette should be regenerated. The 
diskette ~ay be used in drive one to 
save any files that may be on it 
(section 2.8.9). [his error may also 
occur if the door to drive zero is 
opened while initialization is in 
progress. 

28.1.2 Errors after initialization 

If a diskette controller error is detected after MOOS 
has been initialized, then an error message of the following 
format will be displayed. 

**PROM I/O ERHOR~-SrATUS=nn AT h DRIVE i-PSN j 

Thi s me ssage indicates that an unrecov erabI e error occurred 
while trying to access the diskette. The error status ~nn" 

MOOS 3.0 User"s Guide Page 28-05 



EHH OR MESSAGES 28.1 -- Diskette Controller Errors 

is a value returned by the diskette controller. The errors 
are of the same type that cause the initialization pr~cess to 
give control to EXbug; however, instead of beginninq with the 
let t e rifE" , the s tat u s (nn) be ~ ins wit h the d i q i t II 3 II • Th e 
second digit of the status corresponds directly to the 
diskette controller error number discussed in the orevious 
section. The "E" has been replaced by the ··3". Thus, status 

31 is the same as El 
32 is the same as E2 

• 
• 
• 

39 is the sa~e as E9. 

A me'nory address (only meaninqful for system diaqnostics) is 
substituted for the letter "h"; the logical unit number is 
substituted for the letter tlill; and the physical sector 
number (PSN) at which the error occurred is substituted for 
the letter UJII. 

For errors that are retryable (status 31, 34, 38, and 
39), the following actions have been taken in an attempt to 
bypass the error. First, the i-?OM firmware tried to re-access 
the sector five times. [he head was then oositioned a 
rnaxi'num of five cylinders outward from the sector in error, 
repositioned back over the sector, and another five 1ccesses 
attempted. Lastly, the head was positioned a maximum ~f five 
cylinders inward from the sector in error, repositioned back 
over the sector, and another five accesses attempted. 

Occassionally, if the diskette in drive zero was chanqed 
vlithout properly reinitializing the system, or if an MOOS 
system file is moved, renamed, or deleted from the directory, 
the error messages EI, EH, EU, or EV can be displayerl and 
control given to the debuq monitor. These error rness~qes are 
explained in the previous section. 

28.2 Standard Command Errors 

The followinQ list contains all of the standard error 
messages than can be displayed by the MOOS commands. They 
are listed in order of their two-digit reference nu~ber for 
easy location. This number is not to be confused with the 
error message index number that is loaded into the B 
accumulator when the system error messaqe function (.MDERR, 
section 27.4) is accessed. 

In some cases, the error message applies also to 
user-written programs using the device independent I/O 
fUnctions. Then, the error condition returned in the I(~B 
entry IOCSTA (section 25.3.1.20) wi 11 contain a value, which 
when decoded by the .MDERR function, would result in the 

MOOS 3.0 User-'s Guide lJage 28-06 



El1tiOH MESSAGES 28.2 -- Standard Command Errors 

standard error message being displayed. 

The first error messaqe is standard, but is only 
displayed by the MOOS command interpreter, not by a command. 
It has no number identifyinq it. [he second error message is 
only displayed if the MOOS error message function is called 
with an invalid error message index number, or if the system 
error message file cannot be accessed without error. 

This message indicates that the first file name 
specification entered on the command line was not 
the name of a file in the diskette~s directory. 
Most often this error occurs as the result of a 
mistyped command name. 

Some commands, such as DUMP and PATCH, display 
this message to indicate an unrecolnizable 
command. 

** I J~VAL 10 MESSAGE mm AT nnnn 

[his messaqe is displayed by the .MDERR system 
function if it is called with an index number for 
which no valid error message exists, or if the 
MOOS error messa1e file cannot be accessei on the 
diskette without an error. The number limn" shows 
the index number of the error message th1t the 
.MDEHR function was tryinq to display. The 
number "nnnn" shows the address of the call to 
the .MDERR function. 

** 01 COMMAND SYNTAX ERROR 

The syntax of the co~mand line parameters as seen 
by the command could not be interpreted. Most 
often this message refers to undefined characters 
appearing in the <options> field of the com~and 
line. 

If this messaqe is displayed during the execution 
phase of the CHAIN com~and, it may mean that an 
execution operator was encountered that h~d an 
illegal operand field. 

** 02 NAME REQUIRED 

On e or m or e 0 f the f i 1 e n am e s 
command as parameters was 
command line. 

MOOS 3.0 User's Guide 

required by 
omi tted from 

the 
the 

Page 28-07 



EHHOH MESSAGES 28.2 -- Standard C0~mnnd Errors 

** 03 <name> DOES NOr EXIsr 

rhe displayed file name was not found in the 
ji5kette~s directory. The file must exist prior 
to using the command. The <name> is displayed to 
show which file name of the multipl~ names 
specified as parameters caused the error. 

** 04 FILE NAME NOT FOUND 

The file name entered on the commnnd line as a 
parameter does not exist in the diskette~s 
directory. The file must exist prior to using 
the command. No file name is displayed since 
only one parameter is required by the co~~and. 

This error can also occur during the FOR 
processing of the .OfJEN function when a file is 
being opened in the inout or update modes. 

** 05 <name> DUPLICATE FILE NAME 

[he displayed file na~e already ex~sts in the 
disketteJs directory. rhe file must not exist 
prior to using the command. The <n~~e> is 
ciisplayed to show which file name of the "n'Jltiple 
names specified as parameters caused the error. 

** 06 OUPLICATE FILE NAME 

The file name entered on the command lin~ as a 
parameter already exists in the diskette's 
directory. The file ~ust not exist prior to 
using the command. No file name is jisplayed 
since only one parameter is required by the 
com'Tland. 

This error can -31so occur durinq 
processing of the .OPEN function when a 
file is being opened in the output mode. 

** 07 OPTION CONFLICT 

t1-)e FOR 
,-:Ii ske tte 

The specified options were not valid for the type 
of function that was to be performed by the 
command. Several of the options are 'TllJtually 
exclusive nnd cannot be specified at the same 
time. The specific command descriptions should 
be consulted for the restrictions concerning the 
various options. 

MDOS 3.0 User's Guide Page 28-08 



EHHOR MESSAGES 28.2 -- Standard Cf')llmand Errors 

** 08 CHAIN ABORTED BY BHEAK KEY 

This message is displayed by the CHAIN cO~lland to 
indicate that the operator depressed the break 
key during the execution phase, causing it to be 
aborted. 

** 09 CHAIN ABORTED BY SYSTEM ERHOR STATUS WORD 

The last program invoked from the CHAIN process 
set an error status into the system error status 
word which was not masked by a SET ope~ator. If 
no SET operators are used in a CHAIN file, any 
error status word chanqe will cause the CHAIN 
process to be aborted. 

** 10 FILE IS DELETE PROTECTED 

An attempt was made to delete a file which had 
the delete protection bit set in its directory 
entry. The file is not deleted. 

** 11 DEVICE NOr f~EADY 

Most frequently this error indicates that a 
command is trying to out~Jt to the printer while 
the printer is not ready or out of paper; 
however, the message can apply to any of the 
supported devices whether being used for input or 
output. 

** :2 INVALID TYPE OF (\01C'0T C'TTC' 
\.IU""'L..VJ. I J.L...L,;. 

Most frequently this rnessaqe indicates that an 
attempt was made to load a program into memory 
from a file which does not have the memory-image 
attribute. 

This message can also indicate that the JIB of a 
memory-image file has been damaged (LOAD command, 
Chapter 18). 

MOOS 3.0 User's Guide Page 28-09 



EHl-H>R MESSAGES 2~.2 -- Stand~rd Co~mand Errors 

** 13 INVALIU LOAD AODRESS 

This messaqe indicates that an attempt ~~s made 
to load a progra~ into memory which, depending on 
the method of loadinq' I) loads outside of the 
ranqe of contiguous memory established at 
initialization; 2) loads over the resident 
operating system; 3) loads below hexadecimal 
location $20; or 4) loads beyond loc~tion SFFFF. 
The latter case implies that the fileJs ~IB may 
be damaged. If this is the suspected ca!.lse. the 
REPAIR command (Chapter 22) should be used to 
correct the error. Proqrams which load into the 
highest memory address (SFFFF) which do not have 
a startinq load address that is a multiple of 
eight, can also C.::llJse this error. 

** 14 INVALIO FILE rYPE 

The file name entered on the command line as a 
parameter has the wronq file format (the numeric 
portion of a displayed directory entry's 
attribute field) for the intended operati0n. No 
file name is displayed since only one parameter 
is required by the command. 

This error can also occur if a binary record 
transfer is beinq requested to a device th3t does 
not support binary transfers; if ~ non-record 
format (e.g., memory-image format) is specified 
when opening a non-diskette device; or if a 
non-ASCII record format is specified when usinq 
the non-file format ~ode. 

** IS <name> HAS INVALID FILE TYPE 

[he displayed file name has the wronq file format 
(the numeric portion of a displayed directory 
entryJs attribute field) for the intended 
operation. The <name> is displayed to sh0w which 
file name of the multiple names specified as 
parameters caused the error. 

fhe MEHGE command (Chapter 19) can displ~y this 
message if a ~emory-imaqe file has an invalid 
RIB. The HEPAIH command (Chapter 22) sh0uld be 
used to correct the error. 

** 16 COJ'JI=LICTING FILE TYPES 

A command was expectinq files of the same format. 
[he files specified have different file formats 
and/or attributes. 

MUOS 3.0 User's Guide 



ERHOR MESSAGES 28.2 -- Standard C0~mand Errors 

** 11 INVALID DATA T~ANSfER TYPE 

~n attempt was made to read from an output device 
or file, to write to an input device or file, to 
perform record 1/0 with the logical sector mode 
set, to perform lO]ical sector 1/0 with the 
record mode set, to open a non-input/output 
device in the update mode~ or to open a 
non-diskette device in the update mode. 

** Id DEVICE ALREADY RESERVED 

13it IIRtf of the IOClUN byte in an IOCB was set to 
one When the .RESRV system function WRS c~lled. 

** 19 DEVICE NOT RESERVED 

8i t IIR" of the I OClUN byte in an IOCB WRS set to 
zero when the .OPEN or .RELES system functions 
'liere called. 

** 20 INVALID OPEN/ClOSED FLAG 

Bit UO" of the IOCDTT byte in an lOCB was set to 
one when the .ClOSE, .GETRC, .GEfLS •• PUTRC, 
.PUrlS, .REWND, or .RElES system function was 
ca 11 ed, or bi t 110 II of the IOCDTT byte wa 5 set to 
zero when the .OPEN system function was c~lled. 

** 21 END O~ FILE 

An end-ot-tiie record was redu from a 
non-diskette device or an attempt was ~Rde to 
read beyond the loqical end-of-file in a diskette 
file. Attempting to read from a diskette file 
after the end-of-file error has occurred will 
result in the same error. Readinq from a device 
after the end-of-file error occurred mayor may 
not result in the same error, depending on what 
caused the initial end-of-file co~dition. 
~eadinq a record from a diskette file which 
contains no carriage returns will result in this 
error. 

** 22 BUFFER OVERFL(h~ 

An attempt was made to read a record which was 
larqer than the data buffer provided for the 
record. The overflow :>f the record is truncated. 

During the CHAIN command's execution ~hase, a 
supplied input response exceeded the ~aximum 
number of characters acceptable for the input 
request. 

MOOS 3.0 User"s Guide Pn~e 28-11 



EHtlOH MESSAGES 28.2 -- Standard C~mmand Errors 

** 23 CHECKSUM EHROrl 

A binary record or an ASCII-converte1-binary 
record was read whose calculated checksum did not 
agree with the checksum byte contained in the 
record. 

This error can also occur durinq the FOR 
processing of the .OPEN function. If the file 
for~at mode is specified, and the device is read 
in search of an FOR, any record that beqins with 
the FDR header char~cter but which is not an FDH 
(e.g., created in non-file format mode) will 
cause this error. 

** 24 LOGICAL SECTOH NUMBER OUT OF HANGE 

An attempt was made to read a logical sector 
beyond the physical end of the file. The 
physical end of the file is the highest numbered 
logical sector allocated to the file. This error 
can al so be caus ed if the I OCSD~ an'j IOCSLS 
entries of the I(~B are chanqed by the callinq 
program after the file has been opened. 

** 2S INVALIO FILE NAME 

A file name was specified that contained the 
family indicator {*>, beqan with a device name 
indicator (#), or began with a non-alphabetic 
character. 

[he NAME command (Chapter 20) limits the 
the family indicator. Failure to do 
result in this error. 

** 26 FILE IS ~HITE PRcITECTED 

use of 
so may 

An attempt was made to write into a filp, which 
has the write protection attribute set in its 
directory entry. 

This error can also be caused by attempting to 
open a diskette file in the update mode which 
already has the write orotection bit set. 

** 27 <name> IS rlRITE PR(ITECfED 

The file <name> had the write protection 
attribute set in its directory entry when an 
attempt was made to write to the file. 

MOOS 3.0 User"s Guide Paqe 28-12 



EHI10H MESSAGES 28.2 -- Standard Command Errors 

** 2d UEVICE NA~E NOT FOUND 

A device name was specified which is not 1efined 
as an MOOS-supported device. This usually occurs 
if the device name is mistyped. The valid device 
names for the 1/0 functions 8re Ci~, CR, CP, OK, 
~nd LP. If a loqical unit number is specified 
for a proper device that is greater than the 
number of units present for that device, then 
this error may also occurr (e.g., specifying 
units greater than 3 for for diskette drives or 
units greater than 0 f0r other devices). 

[he Copy command (Chapter 7) will also accept the 
device names HH and UD. 

** 29 I.~VALIL) LOGICAL UNIT NUMBEK 

A logical unit number was specified that is 
invalid. If the device is a diskette, the valid 
logical unit numbers are zero through three. For 
non-diskette supported devices only logical unit 
numbers of zero are allo~ed. 

** 30 INVALID EXECUTION ADDRESS 

[he starting execution address of a proqr1m in a 
memory-image file is less than the lowest address 
or greater than the hiqhest address load~d into 
by the program. [his indicates a HIS error. The 
HEPAIR command (Chapter 22) should be used to 
correct the error. 

The EXBIN commard (Chapter 14) uses this -nessage 
to refer to an illegal specification of an 
execution address in the options field (i.e., a 
non-hexa~ecimal digit). 

** 31 INVALIO DEVICE 

A valid device name was used in an illegal 
context. For example. the device LP cannot be 
used in the context of an input dev ice. The name 
OK cannot be used on the command line of any of 
the MOOS commands. The COpy command does not 
allow the CN device to be used as an input 
specification. 

[his message can also indicate an att9~pt to 
perform logical sector I/O on a non-diskette 
ievice, or an attempt to perform non-file format 
I/o on a device that does not 5upp'Jrt the 
non-file for~at mode. 

MOOS 3.0 User's Guide Page 28-13 



EHHOH MESSAGES 28.2 -- Standard C'1'llmand Error s 

If a non-standard device is being interfaced to 
the system usin? the device independent I/O 
functions, this error can indicate that the 
!OCGDW entry of an IOCB (address of CDB) is zero, 
or that the address of the software driver 
(COBSDA of COB) is zero. 

** 32 INVALID RIB 

An attempt was made to open a file (usually a 
~emory-image file) that has an invalid RIB. The 
criteria for a valii RIB are eXplained in detail 
section 24.2. The REPAIR command (Chapter 22) 
should be used to correct the error. 

** 33 roo MAj~y SOURCE FILES 

More file names were specified on the command 
line than could be accommodated by a command 
which can accept multiple file n~mes as 
parameters. 

** 34 INVALIJ START/END SPECIFICATIONS 

[he start and end specifications entered on the 
com~and line for the LIS[ command did not start 
with the letters "S" or "Ln. This error can 
occur if the starting specification starts with 
"s" and the ending specification starts with liLli, 
or vice versa. If the end specificati0n has a 
value less than the value of the start 
specification, then this error will also occur. 

** 35 I NVALI iJ pAGE FORMAf 

A non-standard paqe format was specifiei which 
had an invalid number of columns/line or 
lines/page. The specific command descriotion 
should be consulted for the limits of these 
specifications. 

** 36 FILE EXHAUSTED BE~ORE LINE FDUlill 

A start specification entered on the comm~nd line 
of the LIST cnmmand (Chapter 17) speci fi ed a 
physical line number whose value was lar1er than 
the total number of lines in the file. [he same 
type of error can be caused by a line number 
specification in A BL(~EUIT command file (Chapter 
5). 

MOOS 3.0 User-'s Guide PaJe 28-14 



EHHOH MESSAGES 28.2 -- Standard C~rnmand Errors 

** 37 END OF MEDIA 

A File Descriptor Record was being searched for 
on a non-diskette device or a record output 
transfer was takin~ place on a non-iiskette 
device when the device ran out of medium (e.g., 
end of cassette or paper t~pe). 

** 38 I NVAL 10 LINE NUMBER OR RANGE 

A line number was encountered in the 3LOKEDIT 
command file (Chapter 5) which did not belin with 
an asterisk, a double quote, a decim~l diqit 
(0-9), or an alphabetic character (A-Z), and the 
line was not a quoted line. If the command line 
started with a diqit, then the physical line 
number had a value outside of the ranqe 1-65535, 
or the starting number of a line number range was 
greater than the ending line number of the range. 

** 39 LINE NUMBER ENTERED BEFORE SOUHCE FILE 

A line number was encountered in the dLOKEDIT 
command file (Chapter 5) before an ihput file was 
opened. 

** 40 DIRECTORY SPACE FULL 

An attempt was made to add a new entry to the 
directory when no empty directory entry could be 
found (first byte equal to zero or to SFF). The 
directory can accommodate !60 (decimal) e~trips. 

MOOS 3.0 User's Guide Page 28-15 



ERROR MESSAGES 2d.2 -- Standard C0~mand Errors 

** 41 INSUFFICIENT OISK SPACE 

~hile trying to write to a file or close ~ file, 
on allocation request for more space returned 
with insufficient room to accommodate the space 
requirements. [his can occur when trying to 
extend a file whose attributes demand co~tiguous 
space allocation. In this case, even though more 
spoce may be available on the diskette than is 
actually required, the space is not adJace~t to 
the already allocated space. This error c~n Also 
occur when trying to create a file with 
contiguous allocation on a diskette where the 
largest available contiguous block is smaller 
than the requested size. This error c~n also 
occur if the diskette is 100% full wh~1"l a new 
file is being created or when an eXistinq file is 
attempting to expand by even a single sector. 
File reorqanization (section 3.3) will 
consolidate fraqmented space, possibly increasing 
the size of the available contiguous space. 

** 42 SEGMENf DESCRIPTOR SPACE FULL 

Juring an allocation request for additional 
space, the file's Retrieval Information Block was 
found to have the maximum number of Segment 
uescriptors already in use. File reorqanization 
(section 3.3) will consolidate seqment 
descriptors. 

** 43 L~VALI D 01 RECTORY ENTHf NO. AT nnnn 

An IceS (or OFT) contained a value in it~ I(eDEN 
(or DEN) entry which was outside of the allowable 
limits of valid directory entry numbers. The 
addre5s flnnnn" gives the location of the c~ll to 
the error message function. 

-** 44 CANNO[ DEALLOCATE ALL SPACE. UIRECTOHY ENTRY EXISTS AT 
nnnn 

[his message indicates a hardware or system 
software malfunction if qenerated by o~e of the 
;'ADOS cOl11mands. A directory entry must be flaqqed 
as deleted prior to havinq the file~5 space 
dea 110ca ted. The addre ss II nnnn II ~i ve 5 the 
location of the call to the error me~sage 
func t i on. 

MOOS 3.0 User's Guide Paqe 2d-16 



EHHOH MESSAGES 28.2 -- Standard Co~mand Errors 

** 45 KECOHD LENGTH roo LARGE 

An attempt was made to write a binary rec0rd or 
an ASCII-converted-binary record which had more 
than 254 (deci~al) data bytes; 

** 46 I NTERNAL SYSTEM ERHOR AT nnnn 

This message indicates a hardware or system 
software malfunction. Careful notes should be 
~ade regardinq the events leading up to this 
error. ~otorola Microsystems should be notified. 
The address "nnnn" gives tne location of the call 
to the error messa]e function. 

** 41 INVALID SCALL 

This messaqe indicates that a program attempted 
to access the MOOS Si~I (system function) handler 
with a function byte following the SWI 
instruction that is not defined. If bre3kpoints 
are patched into memory without using the EXbug 
command nnnnn;VII, this error may occur if the SWI 
vector is still confiqured for MOOS functinns. 

** 43 CHAIN DVEHLAY DOES NOT EXIST 

The CHAIN overlay's file name does not exist in 
the directory. [he HEPAIR command (Chapter 22) 
should be used to check the diskette f0r other 
errors. 

k* 49 CrlAIN ABOHTED BY I LLEG AL OPER ATOR 

An illeqal execution operator was encountered in 
the intermediate file during the CHAIN command's 
execution phase. 

** 50 CHAI N ABORTED BY U NDEF I NED LABEL 

A JMP execution operator was encountered which 
referenced a label that did not exist in the 
intermediate file (forward direction only) during 
the CHAIN command's execution phase. 

** 51 CHAIN ABORTED HY PHEMAfUHE END OF FILE 

An access to the intermediate file returned an 
end-of-file condition when an input request was 
made by a program that wos invoked by the CHAIN 
process. All input that is expected by the 
proqram must be supplied by the inter~ediate 
file. 

MOOS 3.0 User"s Guide tJage 28 .... 17 



EHHOH MESSAGES 28.2 -- Standard Command Errors 

** 52 ::5ECTOH BUFFER SILE EliiiOH 

The sector buffer pointers of an IOCB 'io not 
describe a sector buffer that is an inteqral 
number of sectors in size. ~hen a file IS 

opened, the IOCSBS anrl the IOCSHE entries of the 
rOCB must point to the first and last bytes of a 
sector ~Jffer. The following relationship must 
be true l 

I OCSBE- I OCSBS+ 1 
--------------- = INTEGRAL NUMBEH OF SECTORS 

128 

~hen using the logical sector I/O functions 
(.GErLS, .PUTlS), the above relationshio must be 
true also. In addition, the .PUrlS f'Jnction 
requires that the sector buffer to be output be 
described by the pointers IOCSBS and lOCSB! 
(instead of IOCSHE). Then, the buffer riescribed 
by IOCSt3S and IOCSSI must also be an inteqral 
number of sectors in size. 

** 53 INSUFFICIENT MEMOt-c,{ 

This messaqe indicates that a command could not 
allocate sufficient memory in the user program 
area to complete its task. The minimu~ memory 
requirements described in section 1.1 is 
sufficient for all M[)OS commands. ThUS, this 
message indicates a problem with the existing 
memory, or tamoerinq with the memory mao. The 
same is true for the MDOS-Supported software 
products that display this message; however, the 
memory require~ent5 for the particular product 
that displayed the error lTlessaqe sh0uld be 
reviewed (Appendix H), rather than those for the 
standard MOOS commancis in section J.I. 

The HOLLOUT command (Chapter 23) may display this 
messaqe to indicate that the address qiven as the 
destination of the position-independent routine 
is outside of a valid addressing range (~issing 
memory) • 

28.3 Input/Ouput Function Errors 

The MOOS system functions that perform 1/0 throuqh an 
1(~B parameter table will return an error status in the 
IOCSfA entry of the IOCB. These error conditions can be 
decoded and displayed ~s messages by the MOOS error llessage 
function by loadinq the B accumulator with a zero and leavinq 
the loeB's address in the X register. The errors are part of 

MOOS 3.0 UserJs Guide ~age 28-18 



Em"tOR MESSAGES 28.3 -- Input/Output Function Errors 

the standard error messages explained above. [his section 
contains the system symbols from the MDOS equate file that 
are used to reference the I/O errors. The followinl table 
shows the value of the IOCSTA byte, the system symbol equated 
to th"t value from the r~D()S equate file~ and the error 
rne ss aqe. 

IOCSTA 
value 

00 
Jl 
02 
J3 
(J4 

05 
;J6 
07 
')8 
09 
OA 
OB 
OC 
JD 
:)E 
OF 
10 
1 1 

12 
13 
14 
15 

16 
17 

18 
19 

System 
Symbol 

ISNOER 
I SNOUV 
I SRESV 
ISNORV 
ISNiiDY 
I$IVUV 
!S[JUPE 
ISNONM 
I SCLOS 
ISEOF 
ISFTYP 
I SOT'fP 
ISEOM 
ISBUFO 
ISCKSM 
ISvii-<IT 
ISDELT 
I SHANG 

ISFSPC 
ISUSPC 
IS SSPC 
ISIDEN 

ISRIB 
I SDEAL 

ISRECL 
ISSECB 

Standard Error Messaqe Disolayed 
by .MUEHl-( (8=0, X=IOCB addrec;s) 

Normal return, no error 
** 2d DEVICE NAME NOT FOUND 
** 18 DEvICE ALREADY RESERVED 
** 19 DEVICE NOT RESERVED 
** II DEV I CE NOT READY 
** 3! INVALID DEVICE 
** 06 DUPLICATE FILE NAME 
** 04 FILE NAME NOT FOUND 
** 20 INVALID OPEN/CLOSED FLAJ 
** 21 ENtJ OF FILE 
** 14 INVALID FILE TYPE 
** 17 INVALID UATA TRANS~EH [YPE 
** 37 EN0 OF MEDIA 
** 22 BUFFER OVERFLOW 
** 23 CHECKSUM ERROR 
** 26 FILE IS V4H lIE PROTECTED 
** 10 FILE IS DELETE PROTECTeD 
** 24 LOGICAL SECTOR NUMdEH OJ r Of 

KA.'JGE 
** 41 INSUFFICIENT DISK SPACE 
** 40 uIHECTOR"f SPACE FULL 
** 42 SEGME Nf DESC fi I PTO~ SPACE FULL 
** 43 INVALID DIRECTORY ENTRY NO. AT 

nnnn 
** 32 INVALID ~IB 
** 44 CAt\lNOT DEALLOCATE ALL SpA.CE, 

DIRECTOHY ENTRY EXISTS AT 
nnnn 

** 45 HECOl-?D LENGTH TOO LARGE 
** 52 SECTOR BUFFER SIZE ERROr? 

28.4 System Error Status Word 

Within the operating system's resident variables is a 
two-byte error status word. Each MDOS command will set or 
clear a bit within this status word to indicate the status of 
the command's completion. The error status word has the 
following formata 

MOOS 3.0 User"s Guide iJage 28-19 



ERHOR MESSAGES 28.4 -- System Error Status ~ord 

FED C B A 9 8 7 6 543 2 0 

.I 

a 
I 

& 

: 
I 

I 

Error 
Status 

a 
I 

I 

a 

Error 
Mask 

a 
& ••• 

I ••••••••••••••• 

Error Type 

Bits 0-7 describe 
error 

Error Mask Flag 
Bit B (8-A unused) 

I ••••••••••••••••••••••••••• Error Status Flag 
Bit F (C-Eunused) 

Normally, after the completion of each command all bits of 
the Error Status and the Error Type are cleared (= 0). If an 
error occurred during the command, the Error Status Flag (bit 
F) will be set by the command. In addition, an Error Type 
will be set into the lower half of the status word (bits 
0-7). [he Error Type is used to indicate which error was 
detected by the command. 

Usually, the CHAIN process will abort anytime the Error 
Status Flag is set by one of the commands invoked from the 
intermediate file; however, the Error Mask can be used to 
inhibit CHAIN process aborting due to command errors. The 
Error Mask Flag (bit B) will inhibit CHAIN process ~bortinq 
if it is set to one. The process of setting the Error Mask 
is described in section 6.4. 

28.5 Commands Affecting Error Status Word 

All MOOS commands that are intended to be invoked by the 
CHAIN process have been programmed to configure error types 
into the system error status word. These error types are 
summarized here to facilitate the user who is taking 
advantage of the TST execution operator durinq the CHAIN 
process. 

All MDOS commands use the system function .MDERH for 
displaying the common error messaqes. Thus, the error types 
that correspond to these messages will always be the same; 
namely, the error message~s index number used to c311 the 
.MDE~R function (not the same as the displayed, two-digit, 
error message reference number), however, commands have other 
arror messages that are displayed independently of the .MDERR 
function. These errors will cause a value to be set into the 
Error Type field of the error status word that is greater 
than or equal to 128 ($80). It is these values, which are 

MOOS 3.0 User"s Guide Page 28-20 



EHHOR MESSAGES 28.5 -- C.ommands Affecting Error Status Word 

unique to each command, that are summarized here. The 
following table contains the name of the MOOS command or 
system function that sets the Error Type, the value of the 
Error Type in hexadecimal, and th~ error message or condition 
that caused the error~ If the text In the table is in 
capital letters, it is an actual error message. If the text 
is in upper/lower case letters, then it is an error 
condition. 

MOOS Function 

MOOS Command 
Interpreter 

• MDERR 

BACKUP 

BINEX 

BLOKEDIT 

CHAIN 

COpy 

DEL 

DIR 

OOSGEN 

DUMP 

MOOS 3.0 User"s Guide 

Error 
Type 

S80 

$FF 

$80 
$81 
$82 
$83 

$84 
$85 
$86 
$87 

S80 

S81 

S80 
S81 

$80 
S81 

S82 

S80 
$81 

S80 
$81 
$82 
$83 
$84 

Error Message or Condition 

f4HAT? 

**INVALID MESSAGE mm AT nnnn 

SOURCE FILE COpy ERROR 
OBJECT FILE CREATION COpy ERROR 
CANNOT DELETE DUPLI CATE NA.\tE 
INVALID· TO COPY/VERIFY FROM 
DOUBLE TO SINGLE SIDED 
DIRECTORY READ/WRITE ERROR 
SYSTEM SECTOR COpy ERROR 
SYNTAX ERROR 
Sector verify er~or 

Hesponse other than 
overwrite question 
Verify error 

<name> DOES NOT EXIST 
<name> IS PROTECTED 

NO 01 RECTORY ENTRY FOUND 

"YII to 

NO TERM INATOR FOUND IN FILEJS 
R.I.B. 
*NO SD~S* 

INVALID SECTOR NUMBER 
SECTOR .xxxx LOCKED OUT 

SYNTAX ERROR 
MODE ERROR 
BOUNDARY ERHOR 
INVALID SECTOR ADDRESS 
WHAT? 

Page 28-21 



ERH OR MESSAGES 

ECH() 

EMCOP'{ 

EXBIN 

FOHMAT 

FREE 

LIST 

LOAD 

J'JAME 

MERGE 

PArCH 

HEPAIR 

tlOLLOUT 

28.5 -- Commands Affecting Error Status Word 

$80 
$81 
$82 
$83 

$80 

$80 
$81 
$82 
$83 
$84 
$85 

SOURCE FILE NOT ASCII 
RECORD FORMAT ERROR 
START ADDRESS OUT OF RANGE 
CHECKSUM ERROR 

Response other than 
ov erwr it e quest ion 

I NIT I AL I ZAT ION ERR OR 
~HAT? 
SYNTAX EHROH 
ILLEGAL OP CODE 
ILLEGAL OPERAND 
ILLEGAL ADDRESS 

II '{... to 

The following MOOS-supported commands (available at time of 
publication) change the Error Type in the error status word: 

Command 

ASM 

ASMIOOO 

ASM3870 

BASIC 

MDOS 3.0 User"s Guide 

Error 
Type Error Message or Condition 

The error message 
last encountered 
appear in the Error 

The error message 
last encountered 
appear in the Error 

The error message 
last encountered 
appear in the Error 

number 
error 

Type. 

number 
error 

Type. 

number 
error 

Type. 

of the 
wi 11 

of the 
will 

of the 
wi 11 

Page 28-22 



ERHOR MESSAGES 

FOHM1000 

i=ORT 

MASM 

MPL 

RASM 

KASM09 

HLOAiJ 

MOOS 3.0 UserJs Guide 

28.5 -- Commands Affecting Error Status Nord 

$80 

$80 

S80 
$81 
$83 
$84 
$85 
$86 
$87 
$88 
$89 
$80 
$8E 
$8F 
$90 

Any compiler-detected error 

Any compiler-detected error 

The error me ssage number 
last encount er.ed error 
appear in the Error Type. 

The error message number 
last encountered error 
appear in the Error Type. 

Ille:Jal Commmand 
Ille~al command syntax 
User assignment error 
Undefined intermediate file 
Phasing error 
Section overflow 
Undefined object file 
Illegal object record 
Local symbol table overflow 
Undefined symbol 

of 

of 

Multiply defined symbol 
Illegal addres~ing mode 
Global symbol table overflow 

the 
will 

the 
wi 11 

Page 28-23 



APPEND! X 

A. Cylinder-Sector/Physical Sector Conversion Table 

The follo"wing. tables give the physical se-ctor numbers 
for the first sector of every cylinder. The first table is 
for single-sided diskettes. All sectors are recorded on 
surf3ce zero, or the top surface, of a single-sided diskette. 

The second tabla Is for double-sided diskettes. The 
physical sector numbers are given for the first sector of a 
cylinder on each surface. Surface zero is the top surface 
and surface one is the bottom surface. 

The following notation is used in the table headings: 

NOTATION 

CYLINDER 

PSN 

DEC 

HEX 

SFC 0 

SFC I 

MDL)S 3.0 UserJs Gu1de 

MEANING 

The numbers in these columns are the 
cylinder numbers on the diskette. 
They are given in both deci~al and 
hexadecimal. 

[he numbers in these columns are the 
hexadecimal physical sector numbers 
of the first sector on a cylinder 
surface. 

Numbers in these columns are decimal. 

Numbers in these columns are 
hexadecimal. 

The top surface. surface zero. 

The bottom surface, surface one. 

Page A-OJ 



APt>ENDIX A Cylinder-Sector/Physical Sector Conversion Table 

SINGLE-SIDED DISKETTES 
---~~-------------~---

CYLINDER t>SN CYLINDER PSN 
--------- --------

DEC HEX HEX DEC HEX HEX 

00 00 000 39 27 3F6 
01 OJ alA 40 28 410 
02 02 034 41 29 42A 
03 03 04E 42 2A 444 
04 04 068 43 28 45E 
05 05 082 44 2C 478 
06 06 09C 45 20 492 
07 07 OB6 46 2E 4AC 
08 08 000 47 2F 4C6 
09 09 OEA 48 30 4EO 
10 OA 104 49 31 4FA 
II OB liE 50 32 514 
12 OC 138 51 33 52E 
13 00 152 52 34 548 
J4 OE 16C 53 35 562 
15 OF 186 54 36 57C 
16 a lAO 55 37 596 
17 1 18A 56 38 580 
18 2 104 57 39 5CA 
)9 3 lEE 58 3A 5E4 
20 4 208 59 38 5FE 
21 5 222 60 3C 618 
22 6 23C 61 3D 632 
23 7 256 62 3E 64C 
24 8 270 63 3F 666 
25 9 28A 64 40 680 
26 A 2A4 65 41 69A 
27 H 2BE 66 42 684 
28 C 2D8 67 43 6CE 
29 0 2F2 68 44 6E8 
30 E 30C 69 45 702 
31 F 326 70 46 71C 
32 20 340 71 47 736 
33 21 35A 72 48 750 
34 22 374 73 49 76A 
35 23 38E 74 4A 784 
36 24 3A8 75 4B 79E 
37 25 3C2 76 4C 788 
38 26 30C 

MOOS 3.0 User"s Guide Page A-02 



APPENDIX A Cylinder-Sector/Physical Sector Conversion Table 

OOUBLE-S IUEO DISKETTES 
.--------------_ ... --------

CYL Ii'll) ER PSN CYLI NOER PSN 
------- -------

DEC HEX SFC 0 SFC DEC HEX SFC 0 SFC 

0 000 000 OIA 39 027 7EC 806 
I 001 034 04E 40 ,..." n O"'lr"\ 0':>'\ ue:.o OLU UJ" 

2 002 068 082 41 029 854 86E 
3 003 09C OB6 42 02A 888 8A2 
4 004 000 OEA 43 028 aBC 8D6 
5 005 104 II E 44 02C 8FO 90A 
6 006 138 152 45 02D 924 93E 
7 007 16C 186 46 02E 958 972 
8 008 1 AO IBA 47 02F 98C 9A6 
9 009 104 lEE 48 030 9CO 90A 
10 aOA 208 222 49 031 9F4 AOE 
1 J OOB 23C 256 50 032 A28 A42 
12 OOC 270 28A 51 033 A5C A76 
13 000 2A4 28E 52 034 A90 AAA 
14 OOE 208 2F2 53 035 AC4 AOE 
1 5 OOF 30C 326 54 036 AF8 BI2 
16 010 340 35A 55 037 B2C B46 
I 7 OJ I 374 38E 56 038 B60 B7A 
18 012 3A8 3C2 57 039 894 BAE 
19 013 30C 3F6 58 03A BC8 BE2 
20 0)4 410 42A 59 038 BFC C16 
21 015 444 45E 60 03C C30 C4A 
22 :)16 478 492 61 03D C64 C7E 
" ~ "'7 A • '" A""~ 62 03E C98 CR2 LJ \J I J "1"n"" .v"'" 
24 018 4EO 4FA 63 03F CCC CE6 
25 019 514 52E 64 040 000 DIA 
26 OIA 548 562 65 041 03-4 D4E 
27 OIB 57C 596 66 042 068 082 
28 Ole 580 5CA 67 043 D9C DB6 
29 010 5E4 5FE 68 044 000 DEA 
30 OlE 618 632 69 045 E04 EIE 
31 OIF 64C 666 70 046 E38 E52 
32 020 680 69A 71 047 E6C E86 
33 02J 6B4 6CE 72 048 EAO EBA 
34 022 6E8 702 73 049 ED4 EEE 
35 023 71C 736 74 04A F08 F22 
36 024 750 76A 75 048 F3C F56 
37 025 784 79E 76 04C F70 F8A 
38 026 788 7D2 

MOOS 3.0 User's Guide Page A-03 



APPENDIX 

B. ' ASC I I Character Set 
--------~~--------------

BITS 4 TO 6 -- 0 2 3 4 5 6 7 
---... - ________ , _________ ..... __ a-_~ ___ ...,, __ ... ____________________ 

0 l"iUL OLE SP 0 @ r'\ 

" P t" 

B ) SOH DCI ! 1 A Q a q 
I 2 STX DC2 II 2 B R b r 
r 3 ETX DC3 # 3 C S c s 
S 4 EoT DC4 $ 4 0 T d t 

5 ENQ NAK % 5 E U e u 
0 6 ACK SYN & 6 F V f v 

7 BEL ErB , 7 G W 9 w 
r 8 BS CAN ( 8 H X h x 
() 9 HT EM ) 9 I y i y 

A LF SUB * I J Z j z 
3 B VT ESC + ; K [ k { 

C FF FS , < L \ 1 
0 CR GS = M ] m } 
;- SO RS > N A- n c • 
F 51 US / ? 0 0 DEL 

MOOS 3.0 User's Guide Page 8-01 



APPENDI X 

C. MUOS Command Syntax Summary 

:hapter Command Line options 

3* BACKUP ([,csource unit>.1:cdestination unit>] [;<options>1 
null - Normal copy 
A - Append 
R - Reorganize 
V - Verify 

C = Disk error continue 
J - Deleted data mark continue 
I - ID sector 
L - Line printer 
N - No printing 
S - Sector number only 
U - Unallocated space 
Y - Delete duplicate 
Z - Skip duplicate 

4 BINEX <memory-image file>[.<EXbu~-loadable file>] 

5 BLOKEDIT <command file>.<new file> 

6 CHAIN <command file> [;<tag i>[%<value i>%J ••• 1 
CHAI N N* 
CHAIN * 

7 CCWY <source name>[,<destination name>] [;<options>] 

8* DEL [cfile>] [;<options>] 

9* DIH [cfile>] [;<options>] 

MOOS 3.0 User"s GUide 

B - Automatic verify after copy 
C - Convert binary records 
D=<file>[.l - Driver file 
L - Line printer 
M - Test driver via debug ~onitor 
1'1 - Non-.f i I e format 
V - Verify 
~ - Overwrite 

5 - System files 
y - Yes. del et e 

A - Allocation information 
E - Entire entry 
L - Line printer 
S - System files 

Page C-Oi 



APPENDIX C MOOS Command Syntax Summary 

Chapter Command Line Options 

10 OOSGEN [l<unit>] [;<options>] 
r - ~rite/read surface test 
U - User diskette (minimu~ system files) 

II DUMP [<file>] 

12 ECHO [;<options>] 
N - Turn echo off 

13 EMCOtJY [<EOOS file>](,<MDOS file» [;<options>] 
A - ASCII record format 
C - Contiguous allocation 
D - Delete protection 
E - Entire disk copy 
H - Binary record format 
S - Selected file copy 

14 EXBIN <EXbug lodadable flle>[,<memory-image file>] [;<start address>] 

15 FORMAT (I<unit>] 

16 FREE (:<unit>] (;<options>] 
L - Line printer 

17 LIST <ASCII file>(,[<start>][,<end>]] (;<options>] 
F[mmm].(nn] - Page format 
H - Input heading 
L - Line printer 
N - Line numbers 

18 LOAD «memory-image file>] [;<options>] 
null - Go to EXbuq 
null - Load above MD(~ 
G - Load and go 
U - EXORciser II User Mem0ry Map 
V - Over I a y MD OS ; disc on t i g u ou s me m 0 r y 
«string» - Initialize command buffer 

19 MEHGE <file I>(.<file 2>, •••• <file n>J,<destination file> [;<options>] 
r~ - Overwri te 
<start address> 

20* NAME <old name>[.<new name>] [;<options>] 

21 PATCH <memory-image file> 

MOOS 3.0 User's Guide 

o - Delete protection 
N - Non-system file 
S - System file 
W - Write protection 
X - No protection 

Page C-02 



~PPEND I X C MDOS Command Syntax Summary 

;hapter Command Line options 

22 HEPAIR [I<unit>] 

23 ROLLOUr [<memory-image file>] [;<options>] 
null - Memory above MOOS 
D - Build file from scratch diskette 
U - EXORciser II User Memory Map 
V - Any memory to scratch diskette 

* These commands allow the family indicator in the file 
name specification. 

MOOS 3.0 User"'s Guide Page C-03 



APPENDI X 

u. Diskette Controller Entry Points 

The floppy diskette controller module firmware is used 
to control all of the EXOHdisk 11/111 hardware functions. 
The entry points to the various functions are described in 
this section. Parameters required by the firmware functions 
are stored in RAM in the locations described by the following 
table: 

Name Address Definition 

CUHDRV $0000 

STHSCT $0001 

NUMSCT $0003 

LSCTLN $0005 

CUKADR $0006 

FDSTAT S0008 

MOOS 3.0 User's Guide 

This byte contains the binary logical 
unit number of the drive to be selected 
(zero through three). 

These two bytes contain the physical 
sector number of the first sector to be 
used (starting sector). 

These two bytes contaIn the number of 
sectors to be used. This number includes 
a partial sector, if a partial sector 
read is being requested. The sum of 
STRSCT and NUMSCT cannot be greater than 
S702 (single-sided diskettes) or SFA4 
, J ___ '-1 _ _ .l -1_-1 -I.l _1, _~~ ..... ,.. \ 

\UUUU~~-~~u~u u~~~c~~~~,. 

This'byte contains the number of bytes to 
be read from the last sector during a 
read operation. This number should be a 
multiple of eight and cannot be greater 
than 128 ($80). If a number is specified 
that is not a multiple of eight, the next 
larger multiple of eight bytes will be 
read. 

These two bytes contain the first address 
In memory that is to be used during a 
read or write operation. This location 
is updated after each sector is read or 
written. During write test operations, 
these two bytes contain the address of a 
two-byte data buffer. 

This byte contains a status indication of 
the performed fUnction. If an error 
occurred during a diskette operation, the 
carry bit in the condition code register 

Page 0-01 



APPENDIX 0 Diskette Controller Entry Points 

SIDES soooo 

will be set to one upon returninq to the 
calling program. In addition, FDSTAT 
will contain a number indicating the 
error type ($31 - $39). The error types 
are explained in Chapter 28. If no error 
occurs, then the carry bit of the 
condition code register will be set to 
zero and FDSTAT will contain the value 
S30. 

This byte contains an indication of the 
type of diskette that is in a drive. If 
the sign bit (bit 7) of this location is 
set to one after a diskette h3s been 
accessed, then the diskette is 
single-sided. If the sign bit of this 
location is set to zero after a iiskette 
has been accessed, then the diskette is 
double-sided. In earlier versions of the 
diskette controller firmware (EXOHdisk 
II), this location will always have the 
sign bit set to one. 

For all of the firmware entry points desc~ibed below, 
the content of the registers is unspecified both upon entry 
and exit from the routine. Each entry point is accessed by 
executing a "Jump to subroutine" instruction (JS~). The 
para~eters must have been set up in RAM as indicated for each 
specific function. It should be noted that the HOM routines 
for the diskette functions run with the interrupt mask bit 
set to one in the condition code register. The routines also 
USe the NMI vector. Both the NMI vector and the interrupt 
~ask are restored before returning to the calling pro]ram. 

J~ame Address Funct ion 

OSLOAD SE800 

MOOS 3.0 User's Guide 

This entry point initializes the drive 
electronics and loads the Bootblack and 
MOOS retrieval information block from the 
diskette in Jrive zero. The Bootblock is 
given control after it has been loaded 
from the diskette. It, in turn, causes 
the rest of the operating system to be 
loaded into ~emory. No parameters are 
required for this entry point. This 
function does not return control to the 
calling program. If an error occurs 
during the Bootblock load process, the 
error number will be displayed on the 
system console and control passed to the 
resident debuq monitor. At least S120 
bytes of memory are requiredstartinq at 
location zero. If less memory exists, 

0-02 



f\pj-> END I X 0 

FOINIT SE822 

CHKEHH SE853 

PRNTEH SE85A 

HEADSC sE869 

KEADpS SE86D 

MOOS 3.0 U ser-' 5 Gu ide 

Diskette Controller Entry Points 

the Bootblock program may not be able to 
display an error message indicating that 
there is insufficient memory in the 
system. The S~I vector must be 
configured for the debug monitor before 
this entry point can be used (e.g., the 
ABORT or RESTART pushbutton on the front 
panel of the EXORciser must have been 
depre ssed) • 

This entry point initializes the PIA and 
SSDA. No parameters are required by this 
routine and none are modified by it. 

This entry point is used to check for a 
diskette controller error if called 
immediately after returning from another 
ROM entry point. The routine will check 
the state of the carry flag in the 
condition code register. If the carry 
flag is set to zero, the CHKEHR routine 
will simply return to the calling 
program. If the carry flag is set to one 
(an error occurred), then the routine 
will print an liE" followed by the 
contents of FDSTAT and two spaces on the 
system console. Control is qiven to the 
resident debug monitor after printing the 
error message. CHKERR does not change 
any of the parameters. 

Th i sen try p () J.r 1 t. W i 11 pi i itt .J :1 II E" 
followed by the contents of FDSTAT 
followed by two spaces on the system 
console. PHNTER does not change any of 
the parameters. 

This entry point causes the number of 
sectors contained in NUMSCT beginning 
with STHSCT from CURDRV to be read into 
memory starting at the address contained 
in CURADR. CURADR is updated to the next 
address that is to be written into after 
each sector is read. The parameter 
LSCTLN is auto~atically set to 128 ($80) 
so that a complete sector is read into 
memory when the last sector is processed. 
The parameters CURDRV, STRSCT t and NUMSCT 
are not chan~ed. FDSTAT will contain the 
status of the read operation. 

This entry point is similar to READSC 
with the exception that the last sector 
is only partially read according to the 

Pa':J e D-03 



APpENDIX u 

RDCRC SE86F 

l1WfEST SE872 

tlESrOR SE875 

5EEt< S E878 

w~HUOAM SE87E 

t~HVEHF S EBBI 

MOOS 3.0 User's Guide 

Diskette Controller Entry Points 

contents of LSCTLN. If LSCTLN contains 
128 (S80), then this entry point is 
identical to READSC. The restrictions 
placed on LSCTLN are described in the 
precedinq table of the parameters. 

fhis entry point causes the nu~ber of 
sectors contained in NUMSCT beginning 
with STHSCT from CURDRV to be read to 
check their CRCs. The contents of the 
sectors are not read into memory. The 
only parameter changed is FOSTAT. 

This entry point causes the two bytes 
located at the addre ss (and at address + 
I) contained in CURADR to be written into 
alternating bytes of NUMSCT sectors 
beginning with STRSCT of CURDRv. After 
NUMSCT sectors are written in this 
fashion, they are read back to verify 
their CRCs. The only parameter changed 
is FDSTAf. 

[his entry point causes the read/write 
head on CU~DRV to be positioned to 
cylinder zero. The only parameter 
required is CURDRV. The only parameter 
changed is FOSTAT. 

This entry point causes the re~d/write 
head of CUHDHV to be positioned to the 
cylinder containing STRSCT (see Aopendix 
A). The only parameter chanJed is 
FDSTAT. 

fhis entry point causes the two bytes of 
data located at the address (and at 
address + I) contained in CURAO~ to be 
written into alternating bytes of NUMSCT 
sectors begfnninq with STRSCT of CURDRV. 
The only parameter changed is FDSfAT. 

fhis entry point causes a deleted data 
~ark to be written to NUMSCT sectors 
beginning with STRSCT of CURDRY. The 
only parameter changed is FOSTAT. 

This entry point causes NUMSCr sectors 
beginnin~ at STHSCT of CURDRV to be 
written from memory starting at the 
address contained in CURADR. CURADR is 
updated to the address of the next byte 
to be read from ~e~ory after each sector 
is written. After all sectors h~ve been 

Page 0-04 



APPEN0IX D Diskette Controller Entry Points 

,~RI rsc S E884 

written to the diskette, they are read 
back to verify their CRCs as checked by 
the routine RDCRC. The only parameters 
changed are CURADR and FDSTAT. 

This entry point is identical to WRVERF 
with the exception that- the written 
sectors are not read back to verify their 
eRCs. The only parameters chan1ed are 
CURADR and FOSTAT. 

When an error occurs, the physical sector number at 
which the error occurred can be computed from the following 
reI at ion sh i p I 

PSN = STRSCT + NUMSCr - SCICNT -1 

where PSN is the physical sector number at which the error 
occurred, and SCTCNT is a two-byte value contained in 
locations SOaOB-OOOC. 

The following entry pOints are also in the firmw~re but 
have nothing to do with the diskette fUnctions. These entry 
points can be used to access a line printer. 

Aame Address Function 

LPINIT $EBeO 

r T cor ~CD"""" 
l... .L v J. v L. lJ vv 

LOAf ASEBE4 

LOATAI $EBF2 

MUDS 3.0 User's Guide 

This entry point intializes the PIA from 
a reset condition. 

fhis entry point sends th~ contents of 
the A accumulator to the line orinter. 
If the IIpaper empty" or "printer not 
selected" status condition is detected, 
the LIST entry point will return with the 
carry flaq of the condition code reqister 
set to one. If these conditions are not 
detected, the carry flaq will be set to 
zero. 

This entry point sends a character string 
to the line printer. The strinq is 
pointed to by the X reqister and ~ust be 
terminated with an E<IT ($04). Prior to 
printing the string, a carriage return 
and a line feed are sent to the orinter. 
If a printer error is detected by LDATA, 
it will loop until aborted or until the 
error is corrected. 

This entry point performs the same 
function as LDATA with the exception that 
the initial carriaqe return and line feed 

Page 0-05 



APPENDIX 0 Diskette Controller Entry Points 

are not printed. 

For a complete description of the diskette controller 
module the "Floppy Disk Controller Module User~s Guide" 
should be consulted. 

MDOS 3.0 User's Guide Page 0-06 



APPEND I X 

E. Mini-Diaqnostic Facility 

A rnini-diClgnostic routine is available in the EXORdisk 
II diskette controller firmware (version numbers less than 
i.2). This routine permits the user to execute any iiskette 
controller function a sinqle time or continuously. The 
para~eters required by the mini-diagnostic routines are 
similar to those used by the other diskette controller 
functions (Appendix D). The reader should be famili3r with 
those parameters before attempting to use the 
mini-diagnostics. 

The following parameters and entry points are required 
by the mini-diaqnostic routinel 

ifume Address Definition 

CUiiADH $0006 

LDADDR $0020 

EXADDH $0022 

oNEeON $0024 

$0060-$0073 

CLHIOP $EB90 

MDOS 3.0 LJserJ's Guide 

This parameter is automatically set up by 
the mini-diaqnostic routine fro~ LDADDR 
(see below) before each execution of the 
specified function. 

fhese two bytes contain the data that 
would normally be placed into eURADR. 
The diagnostic routine will update eURADR 
flom LDADDR before each function is 
executed. 

These two bytes must contain the address 
of the entry point of the function 
(HEADSet ~RTEST, etc.) that is to be 
executed by the diagnostic routine. 

This byte should contain a zero if the 
function is to be executed continuously. 
A non-zero value in this location will 
cause the function to only be executed 
once. 

This area contains a two-byte counter for 
each of the possible states returned by a 
function in FDSTAT. Locations $60-61 
contain a counter for the status of "0"; 
locations $62-63 contain a counter for 
the status of "1"; and so on. 

[his location 
mini-diagnostic 

is the entry point to the 
routine that initially 

Page E-Ol 



APPENDI X E Mini-Diagnostic Facility 

fOP $EB98 

Single Execution 

zeroes the counters in locations $60-73 
be-f-ere executing the function. 

This location is the entry point to the 
mini-diaqnostic routine that will leave 
the counters at location-s $60-73 
unchanged before executing the function. 

In order to execute a diskette function a single time, 
the parameters CUHDHV, SfRSCf, NUMSCT, LSCTLN, and LDADD~ 
should be configured as re~uired for the specific function. 
The address of the specific function should then be placed 
into EXADDH. The location ONECON should be initialized with 
a non-zero value. The stack register should be pointing to a 
valii area in memory (the EXbug stack is acceptable). Then, 
the debug monitor command 

EB98;G 

will give control to the mini-diagnostic routine causing the 
PIA and SSUA to be initialized, CURDHV to be restored, and 
the function in EXAODR to be executed a single time. Upon 
completion of the function, the letter "'Ell follolled by a 
digit .. a .. through "9" will be printed and control returned to 
the debug ~onitor. The displayed message will indicate the 
completion status of the function as returned in FOST~I. 

Continuous Execution 

In order to execute a diskette function continuously, 
the parameters CURORV, ST~SCr, NUMSCT LSCTLN, and LDADDR 
should be confiqured as re:::fuired for the specific f'Jnction. 
[he address of the specific function should then be placed 
into EXADDR. The location ONECON should be initialized to 
the value of zero. The the debuq monitor command 

EB98;G (to start at TOP> 

or 

EB90lG (to start at CLHTOP and zero counters) 

will give control to the mini-diagnostic routine. This will 
cause the PIA and SSDA to be initialized, CURORv to be 
restored, and the function in EXADDR to be executed 
continuously until one of the two-byte counters is 
incremented to zero. When one of the two-byte counters 
reaches zero, an tlEIl followed by an error indication will be 
printed at the console and control returned to the debuq 
moni tor. The error indication following the letter flEn wi 11 

MOOS 3.0 User"'s Guide E-D2 



APpENDIX E Mini-Diagnostic Facility 

not be the normal value in the range 0-9. Rather, it will be 
the ASCII character that corresonds to twice the value of the 
normal error code $30-$39. Thus, the following correlation 
exists between the normal error and the printed character 
following the IIE": 

Normal Error 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Printed character 

b 
d 
f 
h 
j 
1 
n 
p 
r 

If the user initializes a counter to the value $fFFF, for 
example, the mini-diagnostic will run continuously until the 
first error of the type monitored by the counter occurs. 

MOOS 3.0 user's Guide Page E-03 



APPEND IX 

F. Uiskette Description, Handling, ~nd Format 

The flexible disk, or diskette, is permanently enclosed 
by a durable, plastic covering. This outside jacket allows 
the diskette to be handled and at the same time qives a 
certain degree of protection for the oxide surface within. 
fhe covering also provides rigidity to the diskette, allowing 
it to be easily inserted into and removed from the diskette 
drives. 

To extend the usable life of a diskette and to ~aximize 
trouble-free operation, the diskette should be handled with 
reasonable care= fhe following points of diskette care 
should be followed. Most manufacturers usually list these 
points on the protective envelope of the diskette as a 
reminder. 

1. The diskette should be returned to its protective 
envelope when not in a drive unit. 

2. The diskette in its envelope should be stored 
vertica-lly. It should n0t be stacked or pl,~ced 
under heavy pressure as this can cause warpin1 of 
the oxide surface. 

3. Too many diskettes should not be forced into one 
oox. 

4. The diskette should not be exposed to any 
magnetizing force in excess of 50 oersted. The 
50 oersted level can be reached about three 
inches away from a typical source such as 
electric motors, transformers, etc. 

5. Diskettes should not be subjected to extremes of 
heat. They should not be kept in direct 
sunlight. ~arping can result. 

6. fhe label on the diskette should only be written 
on with a felt-tippe1 pen. Pencils, ballpoint 
pens, or extreme pressure from felt-tipped pens 
can emboss the oxide surface within. 

I. The physical oxide surface should never be 
touched. Skin oils transferred to the surface in 
this manner can attract and retain dust and other 
contaminants. 

MDOS 3.0 User-'s Guide Page F-Ol 



APPENOIX ~ Oiskette Description, Handlin~, nnd Format 

d. The surface of the diskette should never be wiped 
or cleaned. Any physical contact with the 
surface should be avoided. 

9. The diskette should never be forced into the 
drive. Neither should the diskette be folded or 
bent. 

10. The door on the diskette drive 
closed before the diskette has been 
the way. Damage to the drive 
result. Likewise, the door on the 
be fully opened before the diskette 

should not be 
inserted ~ll 
hub hole can 
drive should 
is removej. 

The diskette mayor may not have a write-protect hole 
alon~ the edqe that is inserted first into the drive. This 
hole is located 6.25 inches from the right edqe as seen from 
above the diskette. ~hen the hole is not coverei, the 
diskette is write protected. The hole must be covered in 
order to write on the diskette. An opaque adhesive-backed 
label or tape can be used to cover the hole. 

The single-sided diskette is recorded in a for~at that 
is similar to the single-sided single-density format of an 
IBM-3740 diskette. The detailed format description is 
contained in the IBM document number GA2J-9190-]. "IBM 
One-sided Diskette DEM Information", Appendix B. The format 
described in that appendix is in reference to IBM part number 
2305830. 

The Single-sided format is similar to the IBM 3740 
format insofar as the addressing information is co~cerned. 

The usage and content of the actual sectors and cylinders is 
not necessarily similnr. 

The double-sided diskette is recorded in the ~otorola 
single-density double-sided format. This format is an 
extension of the single-sided single-density format onto the 
other side of the diskette. Appendix A gives the loc3tion of 
the phsyical sectors with respect to surface and cylinier for 
both single- and double-sided diskettes. 

MOOS 3.0 LJser~s Guide Page F-02 



APPENDI X 

G. Uirectory Hashing Function 

In order to speed up a directory search for a specific 
file na~e. a hashing function is used to map a file~5 n~m~ 
1n"(:0 one of the directory" S sectors. ,b.~s a r esu 1 tithe number 
of sectors that have to be read before a ~atch is f0und or 
not found is minimized. 

All ten bytes of the file name and suffix are used by 
the hashinq function. The function computes a number which. 
when added to the physical sector number of the start of the 
Jirectory, is the sector number of the first sector used in a 
line~r search of the directory. 

An entry in the directory will have in its first byte a 
value of zero, indicating that this entry has never been 
used; a value of SFF, indicating that the entry is deleted; 
or an ASCII character, indicating the presence of a file 
name. 

Initially, all directory sectors are filled with zeroes. 
New names are added sequentially to the sector identified by 
the hashing function. New entries can be made into those 
entries which have a zero or an SFF in their first byte. 
Thus, a search for a name can stop whenever an entry is found 
which has the first byte equal to zero. 

A directory search begins in the sector identified by 
the hashing function. If no entries within this sector 
contain zero in their first byte, and if no match is found, 
the next sector in the directory is searched. The sectors 
will continue to be searched in this round-robin fashion 
until a ~atch or an entry with first byte of zero is found, 
or until all sectors have been examined. The only ti~e all 
sectors of the directory are searched is if every entry 
contains a valid file name or a deleted file name. Thus, 
directory searches are faster if the directory has been 
reorganized with the BACKUP command (section 3.3). 

The following routine is similar to the one used in MOOS 
to perform the directory hashinq function. It is documented 
here to allow users who wish to write disk-oriented programs 
to access the directory without using MOOS. 

MUOS 3.0 User's Guicie Page G-Ol 



APPENDIX G Directory Has~inq Function 

* * MDOS DltiECfoHY HASHI NG FUNCTION 
* * ENfRY: X = ADDHESS OF 10 HYfE FILE NAME 
* A !~D S U F t= I X 

* * EXIT: 
* 
* 

THE VARIABLE uI:~P3" CONTAINS THE 
HASH CODE -- A NUMBER IN THE 
RANGE 0-19, DECIMAL. 

* IMPI 
TMP2 
IMP3 

* 

RMB 
liMB 
HMB 

HASH LDAB 
STAB 
CLC 
CLHB 

HASH2 STAB 
fPA 
SIAA 
LGAB 
SUBH 
BPL 
CLRB 

HASH25 LDAA 
TAP 
AGCS 
R()lB 
INX 
UEC 
BNE 
RC)HB 
TBA 
RC>HA 
ROHA 
H<)RA 
RORA 
ABA 
TAB 
Al~DB 

CMPB 
BLS 
SUBB 
CMPB 
BHl 
ASRA 
HOLB 

HASH3 STAB 
HfS 

MOOS 3.0 User's Guide 

#10 
IMP3 

IMp I 

IMP2 
O,X 
#$25 
HASH25 

IMP2 

IMPI 

TMP3 
HA::>H2 

• 

• 
• 

• 
• 
• 
• GET FILE CHAR 
• MAKE II UNHJUE 

• 

• 
• 
• 

• 
• 

• 

• 

• 

#%000 I I I 1 J • 

#19 • 
HASH3 
#20 
#9 
HASH3 

IMP3 

• 
• 

• 
• 

Page 0-02 



APPENDIX 

ti. MOOS-Supported Software Products 

This Appendix contains a list of the MOOS-Supported 
software products available at the time of publication. 
These products are capable of running in an MDOS environment 
even thouqh some of them have been developed indepen:ientl y. 
All MDOS-Supported products are purchased and shipped 
separately from MOOS. 

These descriptions contain a brief discussion of how the 
product is invoked from the MUOS command line. Any 
additional hardware requirements are also noted. The 
product's manual that is shipped along with its jiskette 
should be consulted for details about its operation. 

MOOS 3.0 UserJ's Guide Page H-Ol 



APPENDIX 

H.I ASM -- M6800 Assembler 

The ASM command processes source program st~tements 
written in the M6800 Assembly Language. The M6800 Assembler, 
ASM, translates these source statements into object programs. 

The M6800 Assembler Is invoked from the MDOS command 
line as are other MOOS commands. No additional hardware 
requirements are needed to run the assembler other t~an the 
mlnl.TIUm configuration used for MDOS. The format of the 
command line isS 

ASM <name> [;<options>] 

where <name> is the name of source file. The source file 
<name> is in the standard MOOS file name format 

<file name> [.<suffix>] [:<logical unit number>] 

fh e de f au I t val u e s 0 f .11 5 AU a nd II 0 U are used i f < su f fix> and 
<logical unit number> are not explicitly entered. 

The <options> may be one or more of the options listed 
in the following table. All options except th0se that 
control the destination of the source listing and the 
destination of the object file can be specified from within 
the source program with the (PI directive. Certain options 
are automatically used as a default condition. These 
conditions can be reversed or overridden by preceding the 
option letter with a minus siqn (-). The followin~ 0ptions 
are recognized by the assembler: 

OPTION DEFAULT 

L 
L=#CN, 
o 

O=<name> , 
S 

-G 

-L 
-L 
o 

o 
-s 

ATfi1IBUTE CONTROLLED BY OPTIOI\l 

Printing of qenerated code fr0~ ~CB, 
FOB, and FCC directives 
Print source listing on line printer 
Print source listing on console 
Create object file with name of 
source file and suffix "LX" on same 
logical unit as source file on 
corn~and line 
Create object file with name <name> 
Print symbol table 

Certain options (L=, 0=) require a terminating comma ·:)nly if 
other options follow. Options are specified wit~)f)ut any 
intervening blanks or separators. 

MDOS 3.0 User's Guide Page H-02 



f\PPENDI X H. 1 

Each sy~bol in the symbol tnble requires eight bytes. 
Thus, if the minimum of 16K bytes of memory is used, the 
M6800 Assembler can accommodate about 300 (decimal) sy~bols. 

F0r more details about the M68()O Assembler, the "M6800 
Co-Hesident Assembler Reference Manual ll should be consulted. 
The following enhancements have been made in the MOOS version 
of theM6800 Assembler over the specifications in its 
reference manual. 

The symbols may contain the special characters period 
(.) and dollar sign ($); however, the dollar sign may not be 
used as the first character of a symbol. 

The END directive has been chanqed so that it now has 
the following formata 

END [<expression>] 

where the value of the optional <expression> will be placed 
into the 59 record of the object file. This record is used 
to specify the starting execution address of the object file. 
If no expression is specified, the value of zero will be 
used. 

Like other MOOS comllands, the ASM command is sensitive 
to the B~EAK and CTL-W keys of the system console. 

The object file produced is in the EXbuq-Ioadable 
format. The file must be converted into a memory-im~~e file 
before it can be loaded from the diskette into memory. 

MOOS 3.0 User's Guide Page H-03 



APPEND IX 

H.2 ASMIOOO -- MI41000 Cross Assembler 

The ASMIO()O command processes source program st3ternents 
written in the MI41000 Assembly L~nquage. The MI4J010 Cross 
Assembler, AS~IOOO, translates these source statements into 
object programs that can be executed by the MI41000 
Simulator, SIMIOOO. 

The MI41000 Cross Assembler is invoked from tl1e MOOS 
comm3nd line as are other MDOS commands; however, the Cross 
Assellbler requires that the system has a minimum of 24t< bytes 
of memor y. [he format of the command 1 i ne is: 

ASMIOOO <name I>[,<name 2>, ••• ,<name n>] [;<options>] 

where <name i> are the names of source files. Each file name 
in the list is in the staniard MOOS file nAme format 

< f i len a f1l e > [. < s u f fix>] [: < I 0 q i c a I u nit numb e r> ] 

The default values of "SAil and "0" are used if <suffix> and 
<logical unit number> are not explicitly entered. Up to 
twenty file names can be accommodated by the assembler. 

The <options> may be one or more of the options listed 
in the following table. All options except those that 
control the destination of the source listin1, the 
destination of the object file, and the printing of error 
messages on the printer if no listing is desired, can be 
specified from within the sorJrce proqram with the OPT 
directive. Certain options are automatically usei as a 
default condition. These conditions can be reversed or 
overridden by preceding the option letter with a minlJs Sign 
(-). The following options are recognized by the ass~mbler: 

MDOS 3.0 User's Guide Page H-04 



A P PE NO I X H. 2 

OPTION DEFAULT 

.~ C \.., 

!\ D jJ 

F -E 
t= F 
,"" -G u 

Ii -H 

L -L 
L=#CN, -L 
L=<name>, -L 

M -M 

N=ddd, N=72 

0 () 

O=<name>, 0 
P=dd, P=58 

:3 -S 
r -T 
u -u 
X -x 

ATTRIBUTE CONfROLLED BY OPTIO!\l 

of macro calls 
of macro definitions 
of macro expansions 
of conditional directives 

Printinq 
Printing 
Printing 
Printinq 
Printing 
directive 
Input initial 

of generated code from OPLA 

heading the 
console 
Print source listing on line printer 
Print source listing on console 
Print source listing into jiskette 
file <name> (defalJlt suffix is "AL" , 
default logical unit number is zero). 
Such files should be printed with the 
COpy command. 
Print error messages only on line 
printer 
Set printed line length to .uddd" 
(decimal) 
Create object file with name <name 1> 
and suffixuAO" on same loqical unit 
as <name I> of command line 
Create object file with name <name> 
Set number of printed lines per page 
to "c.fd It (decimal). A -P su ppre 5ses 
paqinq. 
Print symbol table 
Print opcode usage statistics table 
Print uoassembled code between 
conditional directives 
Print cross reference table 

Certain options (L=, N=, (~t p=) require a terminating comma 
only if other options follow. Options are specified ll-li thout 
any intervening blanks or separators. 

Each symbol in the symbol table requires ten bytes. 
Thus, if the minimum of 24K bytes of memory is used, the 
M14iOOO Cross Assembler can accommodate flbout 490 (decimal) 
symbols; however, if the cross reference option is specified, 
the symbol table requirements differ. In this cqse, an 
additional ten bytes are required by each symbol for every 
four references to that symbol. If any macro definitions are 
used (either MACH or INST directi ves), the available symbol 
table space will be smaller. 

For more details about the MI41000 Cross Assembler, the 
JlMI41000 Cross Assembler Reference Manual II should be 
consulted. 

Like other MOOS commands, the ASMIOOO comm,nd is 

MiJOS 3.0 User"s Guide Pa:]e H-05 



APPENDIX H.2 

sensitive to the BREAK and CrL-~ keys of the system console. 

MUDS 3.0 User's Guide Pa:]e I-f-06 



APPEND IX 

H.3 ASM3870 -- M3870 Cross Assembler 

The ASM387Q command processes source program statements 
written in the M3870 Assembly Lanquaqe. The M3870 Cross 
Assembler, ASM3870, translates these source statements into 
object programs that can be executed by the M3870 Emulator, 
EM3870. 

The M3870 Cross Assembler is invoked from the MOOS 
command line as are other MD(S commands; however, the Cross 
Assembler requires that the system has a minimum of 20K bytes 
of memory. The format of the command line iSi 

ASM3870 <name l>(,<name 2>, ••• ,<name n>] [;<options>] 

where <name i> are the names of source files. Each file name 
in the list is in the standard MOI)S file name format 

<file name> [.<suffix>] [.<logical unit number>] 

The default values of ,"SA" and "0" are used if <suffix> and 
<logical unit number> are not explicitly entered. Up to 
twenty file names can be accommodated by the assembler. 

The <options> may be one or more of the options listed 
in the following table. All options except those that 
control the destination of the source listing, ~ne 
de$tination of the object file, and the printing of error 
messages on the printer if no listing Is deSired, can be 
specified from within the source program with the OPT 
directive. Certain options are automatically used as a 
default condition. These conditions can be reversed or 
overridden by preceding the option letter with a minus sign 
(-). The following options are recognized by the assembler. 

MUOS 3.0 User's GuIde Page H-07 



APPENDIX H.3 

OPTION OEFAULT 

c C 
U D 
E -E 
F F 
,~ -G v 

rl -H 

L -L 
L=#CN, -L 
L=<name>, -L 

M -M 

N=ddd, N=72 

() 0 

()::<name> , () 

P=dd, P=58 

S -s 
U -U 

X -X 

ATfRIBUTE CONTROLLED BY OPTION 

Printing of macro calls 
Printing of macro definitions 
Printing of macro expansions 
Printing of conditional directives 
Printing of generated code from DA 
and DC directives 
Input initial heading from the 
console 
Print source listing on line printer 
Print source listing on console 
Print source listing into diskette 
file <n am e> (d e fa u 1 t s u f fix is n AL" , 
default logical unit number is zero). 
Such files should be printed with the 
COpy command. 
Print error messages only on line 
printer 
Set printed line length to .tlrlddll 

(decimal) 
Create object file with name <name I> 
and suffix tlLX" on same logical unit 
as <name I> of command line 
Create object file with name <name> 
Set number of printed lines oer page 
to "ddU (decimal). A -P suppresses 
paqing. 
Print symbol table 
~rint unassembled code between 
conditional directives 
Print cross reference table 

Certain options (L=, N=, 0=, P=) require a terminatin.J comma 
only if other options follow. Options are specified without 
any intervening blanks or separators. 

Each symbol in the symbol table requires ten bytes. 
Thus, if the minimum of 20K bytes of memory is used, the 
M3870 Cross Assembler can accommodate about 230 (decimal> 
symbols; however, if the cross reference option is specified, 
the symbol table requirements differ. In this case, an 
additional ten bytes are required by each symbol for every 
four references to that symbol. If any macro definitions are 
used (MACR directive), the available symbol table space will 
be smaller. 

For more details about the M3870 Cross Assembler, the 
IIM3810 Cross Assembler Reference Manual" should be consulted. 

Like other MDOS commands, the ASM387Q comrn!3nd is 
sensitive to the BREAK and CfL-W keys of the system console. 

MOOS 3.0 User~s Guide Page H-08 



APPEND IX 

H.4 BASIC -- BASIC Interpreter 

Th-e BASIC command processes source proqram statements 
written in the BASIC language. The BASIC interpreter, BASIC, 
can be used to create, modify, and interpret these source 
statements. 

The BASIC interpreter is invok ed from the MOOS command 
line as are other MOOS commands; however, the interpreter 
requires that the system has a minimum of 20K bytes of 
memory. The format of the command line iSI 

BASIC <name l>(,<name 2>] 

where <name 1> is the name of a source program file to be 
loaded or created, and <name 2> can be the name of a file 
into which the source program file is to be saved. Both file 
specifIcations are of the standard MDOS file name format 

<file name> [.<suffix>] [I<logical unit number>] 

The default suffix ~SAu and the default logical unit number 
zero will be automatically supplied if none are explicitly 
ent ered. 

If <name 1> is the name of file which already exists in 
the directory, then it must contain a valid BASIC program. 
The contents of the file <name I> will then be auto:natically 
loaded into the work space. If <name 1> does not exist, it 
will be used to save the contents of the work space when the 
BASIC interpreter is terminated. 

The file <name 2> can optionally b9 used to save the 
contents of the work space if <name I> is to be left 
unchanged. If <name 2> is specified, it must be the name of 
a file that does not already exist. 

For a detailed description of the BASIC interpreter, the 
IIM6800 BASIC Interpreter Reference Manual" should be 
consulted. 

MDOS 3.0 User-'s Guide Page H-09 



APPENDIX 

H.5 EDIT - Text Editor 

The EOIr command can be used to create or to modify 
ASCII record files on the diskette. The EDIT command is 
invoked from the MOOS command line as are other MOOS 
commands. No additional hardware reqUirements are needed to 
run the EDIT command other than the minimum confiquration 
used for MOOS. 

The EDIT command is invoked with the following command 
linel 

EDIT <name I>(.<name 2>] 

where <name I> is the name of the file to be edited and <name 
2> can be the name of an output or scratch file. 80th file 
specifications are in the standard MOOS formatl 

<file name> [.<suffix>] [I<logical unit number>] 

The default values "SA" and zero are used for the suffix and 
the logical unit number, respectively. if they are not 
explicitly entered. 

If only <name I> is specified on the command line. then 
it will be the name of the file to be edited. If <name I> 
already exists. the input will be taken from it. If <name I> 
does not already exist. then it will be automatically 
created. and all output written to it. 

The second file name speCification, <name 2>. can only 
be llsed if the file to be edited already exists on the 
diskette. Normally, <name 2> i5 not specified. In this 
case, the EDIT proqram will aut0matically create a temporary 
output tile called SCRATCH.SA. The output file will be 
created on the same logical unit number as <name I>, unless a 
specific loqical unit number is entered for <name 2>. The 
output file is used to receive the data from <name I> after 
it has been edited by the operator. ~hen the edit process is 
ended, any unedited portion of the input file <name I> will 
be copied into the output file. The output file will then 
contain a complete copy of the input file plus any changes 
that were made to it. 

If the detault output file is used, the tile <name 1> 
will be automatically deleted and the output file renamed so 
it has the same name as the original input file. Thus, as 
tar as the operator is concerned, the file <name J> now 
contains the results ot the edit. <name I> will, therefore, 

MOOS 3.0 User's Guide Page H-JO 



APPEj\()IX H.5 

always be the name of the input file and need not be changed 
3S a result of editing it. 

If, however. <name 2> was explicitly entered on the 
command line. then <name 1> will not be deleted when the EDIT 
command is terminated. In this way, a set of changes can be 
applied to the input file without affecting the original copy 
of the file. The result of the edit will be in <name 2> 
aft e r the e d i tis end ed • I f on 1 y a I oq i cal un i t n u llb e r i s 
entered for the <name 2> file name specification. then the 
result of the edit will be on the specified logic~l unit. 

One of the standard MOOS error messages will be 
displayed if the input file <name I> is delete or write 
protected and <name 2> is not specified. Since a protected 
file cannot be deleted, the edited output file SCR~TCH.SA 
will contain the results of the edit; however, the input file 
must be manually deleted and the file SCRATCH.SA must be 
manually renamed by the operator. 

If the file SCRATCH.SA already exists on the 1iskette 
when the EDIT com~and is invoked without a <n3me 2> 
specification. the error message 

** 06 DUPLICATE FILE NAME 

will be displayed. The file to receive the output, whether 
explicitly entered on the command line or implicitly used as 
SCRATCH. SA, cannot exist prior to the edit. 

(he of the standard error messages will also be 
displayed it during a cross-drive edit, <name 2> ca~not be 
renamed after the original file <name 1> has been 1eleted. 
This can occur if <name 1> exists on both drives. In this 
case, the edited output will aqain be intact in the file 
SCRAfCH.SA; however, it will have to be renamed manually. 

For a complete description of the EDIT command1s usage, 
the "M6dOO Co-Resident Editor Reference Manual" should be 
consulted. 

The EDIT command has been changed slightly for MDOS from 
the way it is described in the EDIT command1s Manual. In an 
attempt to conform to the MOOS keyboard controls, the RUBOUT 
(DEL) key can be used to backspace a character out of the 
input buffer; however, the CTL-O key cannot be used to 
re-display the current line. In addition, the BREAK key can 
be used to prematurely terminate printing of lines (T 
command) and file searching eN command). Control will be 
returned to the EDIT command processor. The CTL-W c~n also 
be used to "hold" the lines for consoles that are CHTs. The 
"FII command (punch nulls for leader) is invalid. The "A" 
comm~nd appends 255 lines into the edit buffer. 

MUOS 3.0 User-'s Guide Page H-l i 



APPENDIX 

H.6 EM3870 -- M3870 E~ulator 

The EM3870 command is the controlling software for the 
M3870 Emulator Module. It permits the user to load 3870 
object programs from the diskette; to perform examine and 
chanqe operations on the various programmable registers and 
~emory; and to insert, to display and to remove breakpoints 
in the user program. 

The EM3870 Emulator is invoked from the MOOS command 
line as are other MOOS commands; however, the Emulator 
requires that the system has a minimum of 20K bytes of memory 
as well as an M3870 Emulator Module. In addition, the user"s 
development system must not contain memory between l0cations 
SDOOO through SOFFF, inclusive. 

The EM3870 Emulator is invoked from the following 
command linea 

EM3870 

For a complete description of the Emulator and 
structure, consul t the "MC3870 Development 
Guide". 

MOOS .3.0 User's Guide 

its command 
Sy stem Use r" s 

Page H-12 



APPEND IX 

H.7 FOHMJOOO -- M141000 Object File Conversion 

The FOHM10-00 command takes the output file from the 
M141000 Cross Assembler and converts the data to an ASCII 
record file. The resultant file can then be conied to 
cassette or paper tape via the MOOS COpy commAnd. No 
additional h~rdware requirements are needed to run the object 
file conversion proqram other than the minimum confillJration 
needed to run the M141000 Cross Assembler. 

The FOHM1000 command is invoked with the f0110winq 
command line: 

FOHMIOOO <nalle 1>[,<na'Tle 2>] 

',..,here <name I> is the name of the object outtJut fi Ie oro;fuced 
by the M14JOOO Cross Assembler. anrl <name 2> is the n~me of 
the file that is to be produced. Both file specifications 
take on the form: 

<file name> [.<suffix>] [:<10qical unit nurnber>j 

If <name 2> is not specified on the command line. the~ <name 
1>'s file name and logical unit number will he used as 
defaul t val uas for <name 2>. If either su ff i xis omi t ted 
from the command line, then the default value5 "AO" 1nd "AFII 
wi 11 be used for <narTIe i> 8n.l <rV::iiTI8 2>, 16specti v81 y. ! f the 
logical unit numher is not specified for <name 1>, then the 
default value zero will be used. 

Once the command ha5 been inVOked, the 
directories will be searched to ensure that: 

1. <name 1> exists, and 
2. <name 2> does not exist. 

s,Je c i f i ed 

If these conditions are met, <na~e 2> will be created. <name 
1> will be read and it~ content converted into ASCII records 
that are written into <nA~e 2>. Each record will be ei,hty 
bytes of data terminated by a carriaJe return. A t0tal of 
sixty-six records will be written into <name 2> (64 data 
recorrls and 2 OPLA records). The eiqhty-character records 
have the following format: 

MuOS 3.0 User's Guide H-13 



A.PPENDIX H.7 

COLUt~;~ 

o 
I 

4 
7 

xx XX ••••• XX XX XX XX 

. 
XX XX. • • • • XX XX XX XX 
ZZ ZZ. • • • • II ZZ lZ ZZ 
lZ Zl • •••• ZZ ZZ ZZ ZZ 

5 
4 

YYY 

YYY 
YfY 
YiY 

6 
o 

PAD 000 THRU 015 

PAD F48 THRU F63 
OPLA TEHMS 00 THf?U 15 
OPLA TERMS 16 THKU 31 

where "XXII are the instructi:m operation codes, uYYY" .:)re the 
arithmetic sums of all "XX" or uZZ" for that record, ~nd "ll" 
are output PLA initiAlization values. 

Durinq the processin~ of the command, the 8HEAK key can 
be depressed at any time to cause a controlled termin~tion of 
the proqra'1l; however, the partially-qenerate~j ()utout file 
will have to be deleted mAnually. 

The output file, <name 2>, :ioes not, qet creat~d wi th 
spac f3 compression as do other MDOS ASCII files. Therefore, 
<name 2> mllst not be edi tej wi th the MDOS EDIT comman.:f since 
the editor automatically creates space-compressed files. 

MDOS 3.0 User's Guide H-14 



APpEND I X 

H.8 FORT -- Relocatabl e FOR [RAN Campi ler 

The FOHT command processes source program statements 
written in the M6dOO FORfRAN LanluaJe. The FORTR.btN cornpiler, 
FOHT, compiles these source statements lnt.o relocatable 
object proqrAMs. The output from the FORTRAN compiler must 
be processed hy the M6800 Linking Loader in order ta ohtain 
an executable object file. 

The F01iTRAN compiler is invoked from the MDOS com11Rnd 
lin e a 5 are () the r M D ()S co mm An ri 5 ; howe v e r • the c om 0 i 1 e r 
requires that a system has a minimum of 24K bytes of memory. 
The format of the command line is 

FortI <name I>[,<name 2> •••• ,<name n>] [;<options>] 

where <name i> are the names of source files. Each file name 
in tne list is in the standard MUOS file name format: 

<file name> [.<suffix>] (:<loqical unit number>] 

[he jefault values "SAil and zero are used if <suffix> 
<logical unit number> are not explicitly entered. 
twenty file names can be accommo~ated by the compiler. 

and 
Up to 

The <options> 11ay be one or more of the options listed 
in the following table. Certain options are 8utom~tically 
used as a default condition. These conditions can be 
reversed or overridden by precP'dinq the option letter with a 
minus siqn (-). The follnwinq options are recoqized by the 
compiler: 

MOOS 3.0 User's Guide H-J5 



OPTION JEFAULT 

rl 

L 
L=#CN, 
L=<naine> 

;~=ddd. 

, ) 

O=<narne> , 
P=rld, 

s 
X 

-H 

-L 
-L 
-L 

N=80 

() 

o 
P=53 

-s 
-X 

ATrf{It3~JTt: CONfHOLLED BY ()pTIOi 

Input 
console 

initial headinq fr()m the 

Print source listinq on line orinter 
Print source listinq on console 
Print so~rce listing into iiskette 
file <narne> (default suffix "ALII, 
loqical unit number zero). Such 
files should be printed with the COpy 
command. 
Set printed line lenqth to Hddd" 
(decimal) 
Create object file with n1me <name I> 
and suffix IIHO" on sarne loqic"l 'Jnit 
as <name I> of com~and line 
Create object file with name <~ame> 
Set number of printed lines oer paqe 
to "dd" (decimal). A -t-> stL)preSSes 
paqinq. 
Print symbol tnble 
Conditional compilation of st~tements 
beqinninq with letter "X" 

Certain optiol')s (L=, N=, 0=, P=) require a terminatinl comma 
only if other options follow. Options nre specifiej witnout 
any interveninq blanks or separators. 

For a complete 
cons'JI t the "M6801') 
:itanua 111. 

MDOS 3.0 User's Guide 

description of the FORTtlAN clJmoiler 
Resident FORTIiAN Compiler tlo.ference 

Paqe H-16 



APPE i~IJ I X 

H.9 MASM -- MACE Cross Assembler 

T~e MASM command p-r0cess es sourc e proqram stat ements 
\>Jri ttef) in a user-defined assembly language. The MACE Cross 
Asse~bler. MASM, allows the user to define the microword size 
and instruction field formats for a particular h8rdware 
confiqJration as well as to process source state~ents written 
in this format. The object files created by the MACE Cross 
~ssernbler can be loaded via the MACE Loader and Debul Module 
(MBUG) • 

The MACE Cross Assembl er is invnked from the M.OOS 
command line as are other MD(~ commands; however! tne Cross 
Assembler requires that the system has a minimum of 32K bytes 
of memory. [he for~at of the cO~~3nd line is: 

MASM <nAme I>[,<name 2>, •••• <name n>l [;<options>] 

where <name i> are the names of source files. Each file name 
in the list is in the stanjard MJOS file nome format 

<file name> [.<suffix>] [:<logical unit number>] 

The default values af"SA" rind 110" are used if <suffix> and 
<logical unit number> are not explicitly entered. 

The <options> may be one or more of the optIons list.ed 
in the following table. Certain options rire autom~tically 
used as a default condition. These conditions can be 
reversed or overridden by precedinq the option letter with a 
minus siqn (-). The following options are recoqnized by the 
a sse:nbl er: 

MUOS 3.0 User-'s Guide Paqe H-17 



APPENDIX 1-1.9 

OPfldN DEfAULT ATTIiIBLJTl:: cOJ~rHOLLF:D BY ()prI()f~ 

J 

u=<name>, 

L 
l=#C N, 
L=<nAfTle>, 

'v1 

j~=ddd , 

0 

()=<name> , 
,J=jd, 

[=<n arne>, 

x 

D 

D 

-l 
-L 
-L 

-M 

N=72 

0 

() 

P=58 

-T 

-x 

duild definition table in file <~ame 

I> from co~mand line; default suffix 
is HUT"; default logical unit number 
taken from <name I> 
Build definition table in file 
<name>; default suffix is "uT" and 
logical unit number is zero 
Print source listinq on line arinter 
Print source listinq on console 
Print source listinq into iiskette 
file <nAme> (default suffix is "AL" , 
defaJlt lo,ical unit number is zero). 
Such files should be printed with the 
COpy c0lTlfTland. 
?rint error fTleSsAqes only on line 
printer 
Set printed line lenqth t') "drid" 
(decimal) 
Create object file with name <name 1> 
and suffix "A()" on SAme logiC'-11 lJni t 
as <hame I> of command line 
Create object file with nAme <name> 
Set number of printed lines p~r page 
to II drift (decimal). A -p SlI~oresses 
paqinq. 
Specifies name of file containing 
definition tables to be referenced 
during the assembly phRse; -f implies 
tables are in ~emory 
Print cross reference table 

CertAin options (0=, L=, N=, 0=, P=, T=) reluire a 
terminatinq c()mma only if other options follow. Opti'1ns are 
specified without any intervenin"J blanks or separators. 

EAch symbol in the symb01 table requires a variAble 
number of bytes depending on the complexity of the microword 
definition. If the minimum of 32K bytes of memory is used, 
the MAC~ Cross Assembler can acc0m~0dRte about 8K of sy~bol 
table. 

For more 
"MACE 29/800 
cons~Jl ted. 

details about the MACE Cross Assembler, the 
Development System User~s Guide" sh0uld he 

Like other MDOS cornm3nJs, the MASM comrnand is sensitive 
to the BKEAK and CTL-W keys of t~e system console. 

MOOS 3.0 User·'s Guide H-18 



APPEND IX 

H.IO MBUG -- MACE Loader and Debug Module 

The MBUG command allows a user to load a program from a 
diskette file created by the ~ACE Cross Assembler into the 
microprogram control storage. MBUG also allows the control 
storaqe to be examined, changed, and written back i~to the 
diskette file. 

The MBUG command is invok ed from the MUOS comrnan-i 1 ine 
as are other MOOS commands; however, MBUG requires that the 
system has a minimum of 32K bytes of memory, the Memory 
Emulator, and the System Analyzer~ The format of the com~anrl 
line is 

MBUG [<name 1>][,<name 2>] [;<options>] 

where <name 1> is the name of a file from which a Or0)ram is 
to be loaded, and <name 2> is the narne r)f an output fi Ie. 
tJoth file names are in the standard MlJOS file name f0rrnat: 

<file name> [.<suffix>] [:<10gical unit number>j 

[he defaul t value IfAO" wi 11 be usej for the suffixes Jf <name 
1> and <name 2> if none are exol ici tl y entered. The ,jeffJul t 
loqical uni t number for <name 1> is zero. [he iefaul t 
logical unit number for <name 2> is taken from the loqical 
unit number of <name i>. 

Only two letters can appear in the <options> field: "Vu 
and .. () II • fh e II V .. 0 p t ion i n rl i cat e c; t hAt < n a mel > i s to be 
ver i f ied aqainst the current contents of memory. If IIV" is 
5 p e c i fie d , < n arne 1 > mu 5 t ex i 5 t • 

The IIQII option indicates that all addresses entered will 
be interpreted as octal. All displayed addresses will also 
be in octal. If U\J" is not specifieo, the hexadeci'1111 base 
wi 11 be used. 

For a complete description of MHUG, consult theltMA.CE 
29/800 Jeveloprnent System User's Guide". 

MUOS 3.0 Jser's Guide PAge H-19 



APPENDIX 

H. II M<ITESr -- Component Tester Executive 

Tt1e MDOS version of the MOfEST Component Tester has the 
same functional capabilities as described in the "MOTEST 
Component Tester M~dule Supple~ent~. The operatinq procedure 
of the M(ITEST executive is described in that supplement. 

The MOTEST executive proqra:n is invoked by the followinq 
command line: 

LOAD MOTST;VG 

This MDOS command will both loarl and execute the executive 
program. 

Since all versions of the MOTEST Component Tester are 
identical. reqardless of the media on which they were 
supplied, the conversion to diskette will greatly speed up 
the amount of time it requires to initially load the ~rogram. 

If the program is on either paper tape or cassette, it 
cnn ()e copied to the di5kette by usinq the followin-:r MOOS 
command: 

COpy HCrl,MOrST.LX;N 

1ft he 0 r 0'-1 r a Tn i son an E DO S dIs k e t t e • i t can be cop i ed to 
the MDOS diskette hy tJsinq the followinq command: 

EMCOP'y' ,\10TST •• LX 

Once the pro~.Jram is on an MDOS diskette, it must be c~nverted 
into a rnem0ry-ima:le file for loadlnq by using the f0l1owing 
MDOS command: 

EXBIN MOTS[; 200 

[hereafer, tne LOAD command can be used as described 8bove. 

MiJOS 3.0 User's Guide H-20 



APPENDIX 

H.12 MPL -- MPL Compiler 

The MPL command processes source proqrall st,ternents 
written in the M6800 MPL Lanquaqe. The MPL compil~r, MPL. 
compiles these source statements into assembly l~n~Iaqe 
source pro~rams. The output from the MPL compiler llust be 
asse~bled with the M6800 Macro Assembler. The output from 
the Macro A5sembler must be processed by the M6800 Linking 
Loader in order to obtain an executable object file. 

Tne MPL compiler is invoked from the MOOS comma'1d line 
as rlre other MDOS commands; however, the compiler requires 
that a system has a ~inimum of 56K bytes of memory. The 
form8t of the command line is 

MPL <nqme l>[,<name 2>, ••• ,<name n>] [;<options>] 

where <na~e i> are the names of source files. Each file name 
in the list is in the standard MOOS file name format: 

<file name> [.<suffix>] [:<logical unit number>] 

rhe default values ,IISA" an,-j zero are llsed if <suffix> and 
<loqical unit number> are not explicitly entered. 

The <options> may be one or more of the ootions listed 
in tne folloWing table. Certain options are automqtically 
used as a default condition. [he sense of an optio'1 can be 
reversed by orecedin,) the option letter with a min~Js siqn 
(-). The following options Rre recognized by the comoiler: 

OPfIDN DEFAULT 

L -L 

d -N 

O=<n arne> -0 

J S 

MDOS 3.0 Jser's Guide 

ATTr? I 8UTf_: CONrK OLLED BY OPTIO\l 

produce source listinq on the line 
printer 
Print error messaqes only on the line 
printer 
Sequence numbers are present f')n each 
source stat ement 
Generate compiler output (used for 
subsequent assembler input) in the 
file <na~e>. The file is given the 
default suffix II SAil and :iefault 
lo::}ical uni t number zero. fhe UO" 
option, if used, must be the last 
option specified on the commani line. 
Include MPL statements as c0~~ents in 
the output file 

H-21 



.c\PPENJIX H.12 

(~tions are specified without 3ny intervening blanks or 
setJarators. 

For a complete description of the MPL compiler consult 
the "M6800 Hesident MPL Compiler Reference Manual". 

The symbol table requirements for the MPL comoiler are 
fairly complex; however, 6000 (deci~al) bytes of symo~l table 
spRce are available. This is sufficient to acc!')rnmodate 
approximately 200 (decimol) symbols. 

MOOS 3.0 user's Guide Page 11-22 



APPEl~D I X 

H.13 PPLO/PPHI -- PHOM Progra mmer I 

Tne MDOS version of the pROM Programmer I has the same 
functional capabilities as described in the "PROM Pr0]ramrner 
Module SUDplement li • Botn \'ersions of trle PROM pra-Jrarnmer 
(PH().~P HI and PHOMP LO) are provided on the MDOS dis'<ette in 
the files PPHI.LO and PPLO.Lo, respectively. These files are 
in the memory-image format to allow them to be loaded into 
memory directly from the diskette. 

The operating procedure for each version of the PROM 
Pro~rammer I is described in the above-mentioned Suo~lement; 
however, the process of loading the PHOM Programmer I from 
the .jiskette is explained here. 

£:i ther version of the PROM proqrarnmer I can be loaded 
and executed from the MOOS diskette by entering the MDOS 
comm3nd line 

LOAD PPHI; vG or LOAD PPLO; VG 

j e pen din 9 0 n w hi c h ve r sian i s to be use d • I f a use r p r og ram 
on the diskette is to be placed into a PROM, the following 
procedure C1n be used if the user program loads above the 
resijent operating system and MUOS command interpreter. The 
file can be lOFlded into memory using the MDOS commnnd 

LOAD <name>;V 

where <na~e> is the file name of the user1s program. Since 
'~DOS does not destroy memory during initializatl''Jn, the 
system can be reinitialized and the PROM programmer loaded as 
expl,ined Above. 

If the user proqram overlays the resident MUOS, then it 
must be "relocated" by chanqing the file1s Ketrieval 
Information Block before loadinq it into memory~ The 
foll0winq sequence of commands should be used to alter a user 
programs's startinq load arldress: 

DUMP <name> 
H FFFF 
78/mm. nnl 
~ 
Q 

[he values -lIfTlm" and --finn" represent the hexadecimal nu'nbers of 

MDOS 3.0 User~s Guide Paqe H-23 



A r-> r> E ND I X H. 1 3 

the most siqniticant ann leAst si1niticant bytes of the new 
startin,] load address (above the resident ,"'DOS). After the 
offset lORd arldress has been confiqured in this manner, the 
above ~rocedure should be followed to load the user program 
and then loa'j and execute the PHOM Proqrarn'1ler I. 

A user proqram whose file has been modifiej in this 
fashion cannot be executed after bein1 loaded into memory. 
The file should be deleted after it hRS been placed into the 
~ 110M. 

I f the user has the p~O!v\ ~ro'Jra~mer I on a non-MOOS 
diskette mediA, it cnn be copied to the MOOS diskette usinq 
the followin~ procedure. 

If the PROM Proqranvner I is on cassette 0r pao~r tape 
the cOf1mands 

coPt #Cri,pt-iHI.LX;N 
COpy #Cri,PPLO.LX;l'1 

should be used. If the PH()~ Pro(~rammer I is on9n EOns 
diskette the commands 

EMCOPf PPHI,.LX 
EMCOPf PPLO, .LX 

should be used. After the tiles are on the MOOS diskette, 
they must be converted into IO-3dable memory-image files using 
the commands: 

MDOS 3.0 user's Guide 

eXH I J~ PPLO; 20 
EXf:3IN jJt-irlI;IOOO 

H-24 



APPENDIX 

H. ) 4 PHOMPHOG -- PHOM Progra mmer I I I I I I 

The PH OM Programmer 11/111 is the controlling software 
for the Universal EHOM/PHOM Programmer Module. It provides 
the user with a means of programminq n variety of 4-bit and 
8-bi t PHOMs and EROMs. 

The PHOM Programmer I II I I I is invoked from the MOOS 
command line as are other rv\OOS commands; however, the pHOM 
programmer requires that the system contains tne PROM 
Proqrarrtmer 11/111 Module. The format of the command line ls: 

PHOMPHOG 

For a co:nplete description of the pHOM Programmer 11/111 and 
its command structure, the "PliOr'" Programmer 11/111 l1eference 
Manual il should be consulted. 

MOOS 3.0 Jser.fs Guide Paqe H-25 



APPEND I X 

H.15 RASM -- Relocatable M6800 Macro Assembler 

The RASM command processes source program statements 
written in the M6800/M6801 Assembly Language. The Macro 
Asse~bler, HASM, translates these source statements into 
object programs. If programs Rre assembled using the 
relocatable option, the M6800 Linkinq Loader is required to 
create a file that can be loaded from diskette into memory. 

The Macro Assembler is invoked from the MOOS command 
line as are other MOOS com:nands; however. the Macro Assembler 
requires that the system has a mlnlmum of 24K bytes of 
memory. The format of the command line is: 

RASM <name I>[,<name 2>, •••• <name n>] (;<options>] 

where <name i> are the names of source files. Each file name 
in tr1e list is in the standard MOOS fi 1 e name format 

<file name> [.<suffix>] ['<logical unit number>] 

[he default values of "SAII And JlO" are used if <suffix> rlnd 
<loqical unit number> are not explicitly entered. Up to 
twenty file names can be (3cco'nmo::iated by the assembler. 

The <options> may be one or more of the options listed 
in the following table. ~ll options except those that 
control the destination of the source listin), the 
destination of the object file, ~n~ the printin1 of error 
lless~ges on tt1e printer if no listinq is desired, Crln be 
specified from within the source program with the OPT 
directive. Certain options are automAtiCAlly used flS a 
default condition. These condItions can be reversed or 
overridden by preceding the option letter with a minus siqn 
(-). The following options rlre recognized by the Ass~mbler: 

MUOS 3.0 dser's Guide H-26 



I\PPENDIX H.15 

OPfION DEfAULT 

A 
C 
!J 
E 
f 
iJ 

d 

L 
L=#C 1~. 
L=<name>, 

o 

()=<name> • 
p=dd. 

tl 
.:> 
J 

X 
l 

-A 
C 
0 
-E 
F 
-G 

-H 

-L 
-L 
-L 

-M 

N=72 

o 

o 
P=58 

-R 
-5 
-u 
-X 
-z 

ATTtlIBUTE COrfTROLLEO BY OPTION 

Memory-i~age object file output 
Printinq of macro calls 
Printing of macro definitions 
Printinq of macro expansions 
Printing of conditional directives 
Printing of generated code from FeB, 
FOB, and FCC directives 
Input initial headinq frnm the 
console 
Print source listing on line printer 
Print source listinq on console 
Print source listing into iiskette 
file <name> (default suffix is IIALIf, 
de f <1 ~J 1 t 1 oq i cal un i t n u m b e ric; z e r 0) • 

Such files should be printed with 
COpy command. 
Print error ~essaqes only 0n line 
printer 
Set printed line length to "ddd li 

(decimal) 
Create object file with name <name t> 
and suffix "LX" (non-reloc3table). 
s u f fix ii H Oii ( reI oc a tab 1 e), 0 r 5 U f fix 
"LOII (memory-image) on same logi cal 
unit as <name I> of command line 
Create object file with name <name> 
Set number of printe~ lines per paqe 
to "dd li (decimal). A -P su:)presses 
paqinq. 
Relocatable object file output 
~rint symbol table 
Print unassembled code between 
conditional directives 
~rint cross reference table 
Use M6801 instruction ~~emonics 
instead of M6800 and create M6dOl 
object output 

Certain options (L=, N=, 0=, P=) require n terminatin] COmllfl 
only if other options follow. Options are specified without 
any intervenin1 blanks or separators. 

E~ch symbol in the symbol table requires ten bytes. 
rhus, if the minimum of 24K bytes of memory is us~j, the 
Macr~ Assembler can accommodate a~out 195 (decim8l) symbols; 
however, if the cross reference option is specifiei, the 
symbol table requirements differ. In this c~se, an 
adiitionfll ten bytes are requirei by each symbol for every 
four references to that symb0l. If macro definitions are 
used (MACH directive), the available symbol table space will 
be smaller. For more det3ils about the Macro Assembler, the 

MDOS 3.0 User's Guide Page H-21 



ArJPENDIX H.15 

IIM68:JO/M6801/M6809 Macro Assembler Reference Manual" should 
be consulted. 

Like other MOOS commAnds, the HASM command is set1sitive 
to t~e BREAK and CTL-W keys of tne system console. 

MJ.)OS 3.0 User's Guide Page H-28 



APt>ENDI X 

H.16 HASM09 -- Helocatable M6809 Cross Assembler 

The RASM09 command processes source proqram st8tements 
written in the M6809 Assembly L~nquaqe. The M6819 Cross 
Asse:nbler, HASM09, translates these source statements into 
object proJrams. If pro]rams are assembled using the 
relocatable option, the M6dOO Linkinq Loader is required to 
create a file that can be loaded from diskette by t~e M6809 
Simulator. 

The M6809 Cross Assembler is invoked from 
command line as are other MOOS commands; however, 
Asse-nbler requires that the system has a minimum of 
of memory. rhe format of the co~m~nd line is: 

the 
the 
32K 

MOOS 
Macro 
bytes 

HASM09 <name I>[,<name 2> •••• ,<name n>] [;<options>] 

where <name i> are the names of source files. Each file name 
in the list is in the standard MOOS file name format 

<file name> [.<suffix>] [:<loqical unit number>] 

rhe default values of IISAII and "a .. are used if <suffix> and 
<logical unit number> are not explicitly entered. Up to 
twenty file names can be accommodated by the assembler. 

Tll e < (j p t i Oil 5 > m ,3 y be on e 0 r m o!" e 0 f the () pt i nn 5 lis ted 
in the followinq table. All options except those that 
control the destination of the source listinq, the 
destination of the object file, and the printing 0f error 
messaqes on the printer if no listing is desired, can be 
specified from within the source program with the OPT 
directive. Certain options are automatically usei 3S a 
default condition. These conditions can be reversed or 
overridden by precedinq the option letter with a minus siqn 
(-). The followinq options are recoqnized by the assembler: 

MOOS 3.0 User"s Guide Page H-29 



~PPENDIX H.16 

Ot>T I C)N DEFAULT 

A 
{'I 
V 

J 
'-
f 
. .-" 
J 

~ 

L 
L=lICN, 
L=<name>, 

,'Ij=jdd, 

O=<name>, 
P=dd, 

rt 
S 
U 

x 

-A 
C 
jJ 

-E 
f 
-G 

-H 

-L 
-L 
-L 

-M 

N=72 

o 

o 
P=58 

-H 
-S 
-u 

-x 

kITH I HUTE CONTHOLLED BY OpT! 0\1 

Memory-i'Tlaqe object file QutOl1t 
Printing of macro calls 
~rintinq of macro definitions 
Printing of macro expansions 
~rinting of conditional directives 
Printinq of generated code fr0m FeB, 
fDB, and FCC directives 
Input initial heading fr~~ the 
console 
Print source listing on line printer 
Print source listing on console 
Print source listing intoiiskette 
file <na'Tle> (default suffix is "AL", 
default logical unit number is zero). 
Su c h f i 1 e s sh 0U 1 d be p r i n t ~ .-1 wit h 
COr> Y command. 
Print error messages only on line 
printer 
Set printed line length to tldrJd tl 

(decimal) 
Create object file with name <name J> 
and suffix "LX" (non-reloc~tabl e), 
suffix "RO" (reI0cFltAble), or suffix 
IILOtl (mernory-illaqe) on same loqical 
unit as <name I> of commanri line 
Create object file with name <name> 
Set number of printed lines oer page 
to .. :id" (dec ima 1. A -P Sll opres ses 
paging. 
Iielocatable object file output 
Print symbol table 
Print unassembled code between 
conditional directives 
Print cross reference table 

Certrlin options (L=, N=, 0=, P=) require a terminatinl comma 
only if other options follow. Options are specifie·i lll/ithout 
any intervening blanks or separators. 

Each symbol in the symbol table requires ten bytes. 
Thus, if the mInImum of 32K bytes of memory is used, the 
M680) Cross Assembler can accommodate about 740 (iecimal) 
symbols; however, if the cross reference option is specified, 
the symbol table requirements ji ffer. In this c"se, an 
additional ten bytes are required by each symbol for every 
four references to that symbol. If macro definiti')ns are 
used (MACK dir~ctive), the available symbnl table sp"ce will 
be smaller. For more details about the M6809 Cross 
Asse:nbler, the "M6dOQ/M6801/M6809 Macro Assembler K~ference 
Manual ll should be consulted. 

MDOS 3.0 User's Guide H-30 



~PPENDIX H.16 

Like other MOOS commands, the HASM09 coml1~nci is 
sensitive to the BREAK and CfL-W keys of the system c0~sole. 

MOOS 3.0 User's Guide Paqe H-31 



A.PiJENDIX 

H.17 HLOAD -- M6800 Linkinq Loader 

The I~L()AD comlland combines relocatabl e object fi les 
created by the M6800/M6801/M6809 Macro Assemblers or the 
M6800 F()RTRAN Compiler and produces an absolute obj~ct file 
in either memory-imaqe or EXbuq-loariable format. 

The M6800 Linking Loader is invoked from the MOOS 
command line as are other MiJOS commands; however, the Linking 
Loader requires that the system has a minimum of 24K bytes of 
memory. The format of the command line is 

HLOAD 

liLOAJ works basicall y the same as described in the .IIM680() 
Linkinq Loader Reference Manual"'; however, the following 
chan~Je5 have been made in the MIJOS vers ion of RLOAD over the 
specifications in the manual. 

Some commands have been removed from HLOAD since they 
were originally intended for a cassette version of the 
Linkinl Loader which is no lonqer supported. These commands 
are: EXBUG, 01, SHed, SKIP, FILE, and MOOU. 

The STR, CUli (Without backslash option), and END 
co~mands allow the use of either a defined ASCT symbol or a 
numeric constant to the right of the equal sign. 

The def3ult BSCr 1ddress that HLOAD will assiqn is $0020 
if assembly lanquaqe proqr~ms are being linked; however, the 
default address of BSCT will beco!1le $0040 if FORTRAN programs 
are 1 inked. I n add i t i on, FORfHAN programs wi 11 be 
auto~atically assiqned memory locations so that aSCT and ~scr 
fallon even addresses. Therefore, the CUR commands with the 
backslash option (\) need not be used when linkin] FORTRAN 
programs; however, if the CUR co~mand with the b~ckslash 
option is used when linkin] FO~IRAN programs, the llser must 
ensure that the supplied number is an even number. 

Programs with uninitialized BSCr and/or DSCr will not be 
allocated space on the diskette when an absolute, 
memory-imaqe file is created; however, all of the ASCI and 
OSCT must be uninitialized for this feature to be of use. 

The format of the load map is sliqhtly improved over the 
examples shown in the Linking Loader manual. Each program's 
symbols are printed separately, in alphabetical order, so 
that an individual symbol can be more easily located in the 
printed maps. 

MOOS 3.0 User's Guide H-32 



A?PENO IX H. 1 7 

The following two cautions should be observed when RLOAD 
is invoked from within a CHAIN file. Since CHAIN uses a 
forcinq character of a back51ash (\), two backslash 
char,qcters have to be entered for the RLOAD commands tl1at use 
that character. Systems which have a CHT as a console may 
lose the err()r messaqes displayed by RLOAD if errors are 
inhibited within the CHAI~ process. Since such errors are 
not reflected in any printed MAPs, it is possible to lose 
sight of the fact that an error occurred. resulti~g in an 
invalid output fiie. 

Each symbol in HLOAlJ requires twelve bytes. If the 
minimum memory configuration of 24K is used, about 90 entries 
can be ~ade into the local symbol table and about 280 entries 
can be made into the 1lobal symbol table; however, other 
items besides symbols occupy this area. The exact symbol 
table requirements can be calculated from the followin]: 

SIZE = GST + larqest LSI 

where SIZE is the total size of the symbol table in bytes and 
GSI and LSI are computed fro~ the formulas qiven below: 

GST = 12 * (5 + ASCI + NC + XDEF + UXREF + NMOO) 

Lsr = 12 * (5 + ASCI + NC + XDEF + XREF) 

The symbols have the following meanings' 

Symbol 

GST 
LSI 

ASCI 
NC 
XUEF 
XHEF 
'JXREF 

NMOD 

Meaning 

Size of Global Symbol Table. 
Size of Local Symbol Table. An LST is 
created for each file loaded; however, 
only one LSI is kept in memory at anyone 
time. 
Number of absolute sections. 
Number of ~amed common sections. 
r~t1mber of ext ernal def in it ions. 
Number of external references. 
Number of external references not 
satisfied (definerl) by an 9xternal 
definition. 
Number of files loaded. 

RLOAD divicies the available memory so that about three 
fourths of it is available for the qlobal symbol t~hle and 
one fourth is available for the local symbol table. The 
global symbol table contains ~ll of the external definitions 
and all undefined external references from all loade1 files. 
The local symbol table contains the external definitio~s and 
references that pertain to an in,jividual proqram. Th!Js, if a 
')lobal symbol table overflows (GOV error). more memory sh()uld 

MlJOS 3.0 User;s Guide Paqe H-33 



A PP E NO I X H. I I 

be added to the system, or fewer external definitions should 
be made. If a local symbol table overflow occurs (LOV 
error), then more memory should be added or the program 
causing the error should be split into smaller proqrams. 

The followinq ~rror messaqes are rJefined in the RLOAD 
manu~l; however, some expansions and new causes for the 
errors are listed here. All error messages th~t are 
qenerated by ULnAD take on the followinq format: 

ERR-<cause> 

where <cause> can be any of the following messages: 

<cause> Explanation 

dAE BSCT Assignment Error. The size of the base 
section is greater than sino bytes. This messaqe 
can be displayed only after a MAP or OBJ command. 

cov Common Sectio!') Overflow Error. The size of a 
common section is qre~ter than $FFFF bytes. 

GAE General Assignment Error. [he Linking Loader 
cannot assi;}n absolute memory addresses for one 
or more of the following reasnns: 

The combined lenlth of all secti0ns is 
greater than $FFFF bytes. 
Due to the location of ASCTs or user ~ssiqned 
sections, the re~aininq unassigned sections 
cannot be placed into unassigned areas of 
memory. 
The automatic sequence in which sections are 
assigned memory locations (BSCr, cscr, USCT, 
PSCT) results in the Linking loader being 
unable to assiqn memory. User specified 
starting and/or ending addresses can oossibly 
be us~d to override the automatic sequence of 
assiqning memory to force a successful 
link/load. 

GOV Global Symbol Table Overflow Error. The amount 
of memory available for the qlobal symbol table 
was too small to accommodate all section 
information and external definitions. 

lAM Illegal Address Mode Error. A four-diqit 
hexadecimal number will be displayed following 
this error messaqe. This number is the address 
of a reference to a qlobal symbol which is used 
in the program as a one-byte operand; however, 
the most significant byte of this sy~bol's value 

MOOS 3.0 User's Guide Page H-34 



A jJ cJ E ND I X H. 1 "1 

is not zero. One byte relocation will be 
performed on the byte located at the soecified 
address, using o~ly the least significant byte of 
the symbolJs value. The object file s~ould be 
examined to ensure it can be executed. 

rCM Illeqal Command Error. An entered comm3nd was 
not recognized by the Linking Loader. 

10K 

ISY 

Illeqal Object ttecord 
input file is not a 
record. 

r_ ..................... 
C! 1 Vi • A recori in the 

valid relocatable object 

Illegal 
in the 
command. 

Command Syntax Error. An error occurred 
option or soecification field of a 

The following causes are exa~ples of 
syntax errors: 

A command seoarator other than a space, 
semicolon, or carriage return was used. 
A command (e.g., OBJA, DEF) was entered 
without the required equal sign. 
A <name> was used when a <number> was 
required by the command (e.g., CURP=\L~BEL). 
An invalid section specification was used 
with the DEf command. 
A non-ASCI symbol was used to the riqht of 
the equal sign of a 5TH, CUR, or END command. 
A backslash was used with the sr~ or END 
commands. 
An undefined global symbol was used to the 
rlgnt or ~ne equal sign of the EXIT c~mm3~d. 
The file/module qualifier was invalid with 
the LOAD or LIB command. 
A logical unit number greater than 3 was 
specified with a file name. 
A non-numeric logical unit number was 
specified with a file name. 
A numeric constant was used after the device 
delimiter of the MO command. 

LOY Local Symbol Table Overflow Error. The a11f)Unt of 
memory available for the local symbol table was 
too small to acco~m0date the section ani symbol 
information for a sinqle program. 

MDS Multiply Defined Symbol Error. The symbol in 
error is shown followin,) the MOS meSS8]e. Only 
one external definition (from files loaded or via 
OEF command) can be encountererl by the Linkinq 
Loader. Only the first definition is valid and 
will be used. 

PHS Phasinq Error. The value of a symbol~s ~bsolute 

MLJOS 3.0 User-'s GUide Paqe H-35 



A PpE it) I X H. 1 -, 

1ddress assiqned at the end of Pass I (prior to 
OBJ corrrnand) doe s not agree with the VA 1 ue 
obtained durin'] P(lSS II (after the OBJ ca-nmand). 
This error can also 0ccur if a proqram is beinq 
searched for during rJ(lSS II and it is not found. 

30"1 Section Overflow Error. The length of a section 
is qreater than $FFF~ bytes (non-BSCT section). 

JAE User Assiqn~ent Error. [his error can occur for 
anyone or more of the following reasons: 

1ft h e 0 ~ J A c 0 mll a nd i s be i n gus ed, the 
startinq load Adiress is less than SOJ20. 
If the odJA c0mmand is beinq user.f, the 
cal cuI ated endi n:1 load a ddre ss is lrea ter 
than SFFFF. 
A user assigned start airlress for a section 
is less than the user assigned end address 
for that section. 
The user aSSigned space (end-start) for a 
section is too s11all to contain the actual 
section. 
rhe user assigned addre sses for secti ons 
overlap. 
The execution adiress specified with the EXIT 
command is les5 than the startinl load 
address or greAter than the ef1din'J load 
address of the pro~ram. 
[he user assigned startinq/endinq ad"iress for 
dSCT is greater than SOIOO. 

UDS Undefined Symbol Error. [he symbol in question 
is disolayed followinq the UOS mesS11e. The 
symbol was not defined durinq Pass I via ~ loaded 
proqram's external defintiions or via a DEF 
commAnd. This error can occur after a LOA.D, LIB, 
LJEF, STR, CUtl, or END commanri. A value of zero 
will be used for the undefined symbol. 

'JIF Undefined Intermediate ~ile Error. The IFON 
c0m~and was issued but no intermediate file has 
been defined via the IF command. 

In addi tion, so'ne of the standard MOOS error Tlessages 
can be displayed by HLOAJ. The following are the most 
frequently seen messaqes: 

** 03 <name> DOES Nor EXIS[ 

The file <name> was used with the 
command but does not exist on 
loqical unit. 

MUOS 3.0 User's Guide 

LOAD or LIH 
the specified 

H-36 



APPE i'D I X H. 17 

** O~ <name> DUPLICATE F ILt: l~AME 

rhe fi I e <name> wa s used wi th OBJA, OBJX, MO, or 
IF commands. [hese commands require the nAmed 
file to not exist prior to execution. 

** 11 lJEV ICE NOT HEADY 

A MAP command is trying to write to the printer 
which is not ready. 

** 14 INVALIU FILE TYPE 

The file specified with the LOAD or LIB comlland 
was not a binary record file. 

** 24 LOGICAL SECTOH NUMBEti our OF HANGE 

During Pass II (after OBJA command), the progr(3ms 
loaded required the accessing of allocated 
diskette space outsiJe of the ranqe th~t was 
calculated as sufficient during Pass I. [his can 
occur if different files are loaded during the 
two passes. This messaqe will aqain occur when 
the EXIT command is issued, resultina in the 
output file being deleted. -

** 4 1 I NS U r FIe I E Iff 0 I SK SPACE 

Any memory-imaqe file for which an apornpriate 
contiguous block of space does not exist will 
cause this error. Usually. thlS occurs when 
creating a file with initialized BSC[ or JSCr at 
low memory addresses and PSCT at hiq~ memory 
addresses. If an intermediate file is being used 
(which also requires disk space). it is S;Jlgested 
that the link/load process be run with0Ut the 
intermediate file (using CHAIN for example). Map 
output files also require disk space and can 
cause this error. 

MOOS 3.0 User"'s Guide Pa:]e H-37 



APPEND IX 

H.18 SIMIOOO -- 141000 Simulator 

The S!MIOOO command is the controlling software for the 
MI41000 Simulator Module. It permits the user to loai 141000 
object programs from the diskette, to examine and change the 
various registers and memory, to debug the program, and to 
rewrite the program with chanqes back to the diskette. 

The SIM1000 Simulator is invoked from the MOOS command 
line as are other MOOS commands; however, the Simulator 
requires that the system has a minimum of 24K bytes of memory 
as well as an MI41000 Simulator Module. 

The SIMIOOO Simulator is invoked from the f0110winq 
comlland 1 ine: 

SIM1000 

for a complete description 0f the Simulator and its co~~and 
structure. consult the uMCI41000/1200 Simulator UserJs 
Guide ll • 

MOOS 3.0 User's Guide Page H-38 



APPE f~D I X 

H.19 U~E with MOOS 

Several versions of the Floppy Diskette Controller 
Module are available for use with MOOS. If a crystal ()n the 
controller board is used to generate timing for-the 1iskette 
interface, this section is not applicable; however, if the 
memory clock from the EXORciser bus is being used to lenerate 
the timinq, the following precautions must be taken when 
usin:] MDOS and USE to~ether. 

The user clock must run at 1 MHz, plus or minus a few 
percent (variable clock rate acceptable in Series II 
versions), to permit loading user memory with a proqram from 
a file from the diskette. If the user clock is not near I 
MHz, the object file should first be converted to an 
EXbuq-loadable file and copied to cassette or paper tape in 
the reqular MOOS environment. [hen, the user can 10ad the 
tape via EXbug in his own environment running with the user 
clock. 

The other precaution is the possibility of havi~] a PIA 
or ACIA in the user memory qenerate an IRQ when ~JOS is 
initializinq. ~hen memory resides at the same addresses in 
both EXOHciser and user system, the EXOHciser memory responds 
when such a redundant location is read; however, both 
locations respond (one in each systerrt) when the EXORciser 
memory is written to. Thus, if an 1/0 device resides in the 
user's system at an address that is within the range of 
contiguous memory in the EXOHciser system, the device will be 
wri tten to when MDOS sizes memory 3t initialization. It is 
possible, therefore, to confiqure the 1/0 device to '~lenerate 
an IliO. MOOS does not run wi th I H:Js pendi ng. Thus, ~ swi tch 
shou19 be installed to allow the IHO line to be openej. rhis 
ha5 been done in the buffer box of USE28. 

For a more detailed discussion of USE and the Floppy 
Diskette Controller Module one or more of the followinl three 
manuals should be consulted: "MEXUSE2B User's Guide", 
"Floppy iJisk Controller Module User's Guide", or the 10pendix 
of the "USE User"s Guide n • 

MUOS 3.0 User's GUide H-39 



APtJENDIX 

I. MOOS Equate File Listing 

This appendix contains a modified listing of the MDOS 
equate file. Only the pertinent parts the assembler output 
are shown. The leftmost column contains the value of the 
location counter which represents the value equatei tn the 
system symbol. The MDOS equate file can be Assemblei on a 
userJs system if the M6800 Macro Assembler is available. 

* * MOOS VEi1SION 03.00 -- SYSTEM EQUATE t:ILE -- JULY 25,1978 
* 
* *DEFI1'4E TYPE OF MDOS--HESIDENT MOOS ONLY 
* 

0:)00 A MuOSF $ EQU 
0000 A MiJOS9$ EQU 

* * SKI P 2 
* 

o 
o 

• 0 => MOOS t => OEj'~ MOOS 
• 0 => MDOS, I => j'-AOOS09 

MAC R 0 

* THE GENEHATfD BYTE IS A "COMPARE Il'lDEX I I~~EOI ATE". 
* THE EXECUTION OF fHE BYTE WILL CHANGE THE CONDITION CODE 
* NO HEGI STERS ARE AFt=ECTEu. fHUS, A ONE~3fTE INSTRUCTION 
* IS fORMED THAT SK·IPS FOH~AHO TWO BYTES. 

* St<ItJ2 MACH 

* 

FCB $8C • 
ENDM 

* SKI P I 

* 
MAC H 0 

* THE SAME CONCEPT AS fHE tlSKIP2" MACHO IS USED, EXCEPT TH 
* A "BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATE 
* SKIP) MACH 

* 

FeB $85 
ENDM 

* S CAL L 
* SCALL MACH 

IFEQ NARG-I 
SWI 

MAC R 0 

FC B \O!. %0 1 1 I ) I 1 I 
ENDC 

* IFNE NARG-l 

(SYSTEM FUNCfION CALL) 

t=AIL * UNDEFINED S~~I CALL AHGUMENT * 
ENDC 

MOOS 3.0 User's Guide I-OJ 



APt> E NO I X I 

ENOM 
* * U CAL L MAC R 0 

0000 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OODC 
aoou 
OOOE 
ooo~ 
DOlO 
0011 
0012 
0013 

MOOS 

0000 A 

* UCALL MACH 

* 

* 

IFEQ NARG-I 
SWI 
FCB \O!+%IOOaOOoo 
cNUC 

IFNE NARG-I 
SCALL 
ENlJC 
EN OM 

* 5 E Q MAC Ii 0 

* SEQ MACH 
IfNE NARG 

\0 EC)U * . 

* 
* 
* 
* 

EI~OC 

OHG *+1 • 
ENIJM 

S Y S T E M 

* SET LOCATION 

* • $SAV SEf 
OHG 

* 
* 
* SEQ 

SEQ 
SEeJ 
SEQ 
SEO 
SEeJ 
SEC) 
SEQ 
SEll 
SEQ 
SEC) 
SEQ 
SEQ 
SEQ 
SEO 
SEC) 
SECJ 
SEQ 
SEt) 
SEQ 

F U 

COUNT 

* $0 

.RESRV 

.RELES 
• OPEN 
.CLOSE 
.GETtlC 
• PUTtle 
• f.lErlND 
.GEfLS 
.PUflS 
.KEVIN 
.DSPLY 
.OSPLX 
• DSt>LZ 
• Cl<BRK 
.DREAO 
• J~~rt I r 
• ~OVE 
.CMt>AK 
.STCHB 
.STCHR 

3.0 User's Guide 

N C 

To 0 

· 

· · 
• 

· 
• 

· · · 
• 
· · · 
• 

· 
• 

· · • 
· 
• 

MOOS Equate File Listinq 

(USER FlJ NCr ION CALL) 

(NUMBE~ING SEQUENTIAL EQUATES) 

T I 0 N 0 E F I N I T I 0 N 

FOR [HE EQUATE u::FINITIONS 

SAVE OLD LOCAT I O:'..J COUNT 

RESEIiVE A DEv'ICE 
RELEASE A DEVICE 
OPEN A FILE 
CLOSE A FILE 
HEAD A RECORO 
~~K I TE A HECORD 
pOS IT ION TO BEG I NNI NG Of FILE 
HEAD LOGICAL SECTOR 
r~H ITE LOG ICAl SEC fOR 
CONSOLE INPUT 
CONSOLE OUTPUT ( TERM WI CR) 
CONSOLE OUTPUT (r~RM v~1 EOT) 
CONSOLE OUTPUT (fERM WI Eor, NO C 
CHECK CONSOLE FOR BREAK KEY 
EROM DISK HEAD 
EROM DISK WrlITE 
MOVE A STRING 
COMPARE STRINGS 
SfOKE BLANKS 
STORE CHARACTEHS 

PAge 1-02 



AP?ENDI X I 

0014 
(0)5 
0016 
0017 
0018 
0019 
OOIA 
0011:3 
OOIC 
0010 
OOIE 
OOIF 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
002A 
002(3 
002C 
0020 
002E 
002F 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
003A 
003i3 
003C 
0030 
003E 
003F 

0000 

OJOO 
0001 
0002 
0003 
0004 

* 
* 

SEO 
SED 
SEU 
SEC) 
SEO 
SEQ 
SEQ 
SEn 
SEeJ 
SED 
SEO 
SEQ 
SEQ 
SEO 
SEQ 
SEC) 
SECJ 
SEQ 
SEQ 
SEQ 
SEQ 
SEC) 
SEtJ 
SE~ 
SEC) 
SEQ 
SEC) 
SEO 
SE() 
SED 
SEC) 
SEQ 
SE(J 
SEQ 
SEeJ 
SED 
SEC) 
SEQ 
SEQ 
SEO 
SEQ 
SEQ 
SEQ 
SEQ 

ORG 

* A SCI I 

* A. NULL EQU 
A SOH E()U 
A srx EQU 
A ETX EQU 
A. EDT EQU 

MOOS 3.0 User~s GUide 

• ALPHA. 
• ;'~UMU 
• ADOA.iv'\ 
.SUdAM 
.MMA 
.DMA. 
.MDENT 
.LOAO 
.01 liS M 
• PF NAM 
• ALUSM 
.CHANG 
.MDERR 
• ALLOC 
• DE A.Le 
• Efi OHD 
.TXBA 
;;; fBAX 
• XBAX 
• ADdX 
• AD A.X 
.AOBAX 
• ADXBA 
• SUi:3X 
• SU AX 
.SUBAX 
• SUXB A 
.CPBAX 
• ASt~X 
• ASLX 
• PSdX 
.PULX 
.p;-?INT 
.PHINX 
• GEfFD 
.PUIFD 
.PUfEF 
.ERtAD 
• Et~riI r 
.MHEAO 
• M~~K IT 
.MErlEO 
• ME;~R r 
• BOOT 

• SS,A.V 

MOOS Equate File Listing 

• CHECK ALPHABETIC C~ARACTER 
• CHECK DECIMAL DIGIf 
• INCREMENT MEMORY (DOUBLE BYTE) BY 
• DECREMENT MEMORY (:JOURLE BYTE) BY 
• MULTIPLY (SHIFT LE~T) MEMORY BY A 
• D I V IDE (S HI F r RIG H f) ME M OR Y BY A 
• ENTER MDOS WITHOUT HELOADING 

LOA.DA FILE ~ROM 0ISK 
• DltiECTOHY SEARCH AND MODIFY 
• PROCESS FILE NA:'AE 
• ALLOCATE USER MEMORY 
• CHANGE NAMEI ATTt~ I 3!ITES 
• MDOS ERROR MESSAGE HANDLER 
• ALLOCATE DISt< SPACE 
• RETURN DISK SPACE 
• SET ERROH Sf AfUS j~()RD FOR CHA U-J 
• TKANSFEH X TO B,A 
e THANSfER B~A Tn X 
• EXCHANGE B,A AND X-
• AOO B TO X 
• AJD A TO X 
• ADD B, A T () X 
• ADD X TO B, A 
• SU BTRACT B fHOM X 
• SUBTRACT A FROM X 
• SU B T R ACT B, A f R n~ X 
• SUBTHACT X FliOM B,A. 
• COMPAHE B,A TO X 
• SHIFT X RIGHT (AHITHMETIC) 
• SHIFT X LEFT (ARITdMETIC/LOGICAL) 
• PUSH X ON STACK 
• PU LL X FRoM SfAC!( 
• P~INT-TERMINATE ~IrH CR 
• PR I NT - T E H M I NAT E IV I f H E or 
• HEAD FDR (RESIDENf MDOS ()~JLY) 
• ~'~rlITE FDR (RESIDENT MDOS ONLY) 
• .~rlITE EOF (RESIDEr..JT MDOS ONLY) 
• UISK READ WI ERR ~ETN 
• DISK ~lilrE WI ERH RETN 
• MULTIPLE SECrOH HEAD 
• MULTIPLE SECTOR ~~RITE 
• MULTIPLE SECTOR HEAD WI ERR RETUR 
• MULTIPLE SECrOH ~~aITE ~I ERR HErU 
• HELOAO MOOS 

• RESTORE LOCA.TION COUNTER 

CON T Ii 0 L C H A R A C A. r E R 5 

a 
1 
2 
3 
4 

• NULL 
• 5T ART OF HEAD I NG 
• START OF TEXT 
• ENtJ OF TEXT 
• END OF TRANSMI SSI 0"1 

Page 1-03 



APPEND! X 1 

0005 
0006 
OD01 
0008 
0009 
OOOA 
0008 
OOOC 
OOOD 
OOOE 
OOOF 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
OOIA 
0018 
OJIC 
OOID 
DDIt: 
OOI~ 
0020 
007F 

OQ2E 
OJ38 
003A 
0023 
OQ2A 
0:)80 

A ENQ EQU 
A ACK EQU 
A Bi:L EQU 
A as EQU 
A HT EQU 
A LF EQU 
A vr EQU 
A Ff EQU 
A CR EQU 
A SO EQU 
A 51 EQU 
A DLE EOU 
A DCI EQU 
A DC2 EQU 
A DC3 EQU 
A DC4 EQU 
A NAK EOU 
A SI'N EQU 
A ErB EQU 
A CAN EQU 
A EM Et)U 
A SUB EQU 
A ESC EQU 
A F~ EQU 
A GS EQU 
A HS EQU 
A US EQU 
A StJACE EQU 
A HUBOUT EQU 

* 

5 
6 
7 
8 
9 
$A 
S8 
SC 
SO 
SE 
SF 
$10 
SII 
S12 
$13 
SI4 
S15 
SI6 
SI7 
SIS 
$19 
$IA 
SIB 
SI C 
SI U 
SIE 
SIF 
S20 
S7F 

* S P E C I A L 
* A SUFDLM EQU 

A OPTDLM EQU 
A DliVDLM EQU 
A DEVOLl;{ EQU 
A FAMDLM EQU 
A ESFAfL EQU 

* 

, I 

': 
.'# 

'* 
I ! < 7 

MOOS Equate File Listing 

• E~QUIRY (WRU - ~rlO ARE YOU) 
• ACKN(){~LEDGE 

• BELL 
• BACKSPACE 
• HORIZONTAL TAB 
• LI r-lE FEED 
• VERTICAL TAB 
• FORM FEED 
• CARHIAGE RETURN 
• SHIFT OUT 
• SHIFT IN 
• DAfA LINK ESCAPE 
• DEVICE CONTROL I 
• iJEV ICE CONTROL 2 
• DEVICE CONTROL 4 
• DEV ICE CONTROL 4 
• NEGATI VE ACKNOWLE:1J E 
• SYNCHRONOUS IDLE 
• END OF TRANSMI SSION BLOCK 
• CAi~CEL 
• END OF MED IUM 
• SUBSTITUTE 
• ESCAPE 
• FILE SEPARATOR 
• GHOUP SEPARAfoH 
• RECORD SEPARATOR 
• UN ITS E P AR AT OR 
• SPACE (WORD SEPAH~T()R) 
• DELETE (HUB OU f) 

C H A RAe T E R - QUA T E S 

SUFFIX DELI METER 
• OP r IONS OEL I METER 
• LOGICAL DRIVER DELI METER 
• GENERIC DEVICE NAME DELIMETER 
• FAMILY NAME/SUFFIX DELIMEfER 
• FATAL ERROR BIT 

* M DOS SEC TOR E a U ATE S 

0000 
0001 
0()02 
0003 
0016 
0011 
0018 
OOdO 
OOIA 
0034 
0;)04 
0100 
0~A4 

* A SC$DIO EQU 
A SC$CAT EQU 
A SCSLot( EQU 
A SCSDIR EQU 
A SCSDRE EQU 
A SCSI:38 EC)U 
A SC$UOS EC)U 
A SCSSIl EQU 
A SCSTRK E()U 
A SCSTKO E()U 
A SCSCLS cQU 
A SC$MAX EQU 
A SCSMXD EI)U 

MOOS 3.0 Jser's Guide 

o 
1 
2 
3 
$16 
SI7 
S18 
128 
26 
52 
4 
2008 
4004 

• DISK 10 PHYSICAL SECTOR NUMBER 
•• CLUSTER ALLOCATIO,-J TABLE PHS(ICAL 
• L(~K(ruT CLUSTER f'BLE PHYSICAL SE 
• DIRECTOHY START tJdl'SICAL SECTOR N 
• DIRECTORY END PHYSICAL SECrOt-l NUM 
• BOOT BLOCK PHYSICAL SECTOR NUMBEH 
• OPERATING SYSTEM P:-iS (I CAL' SECTOR 
• SECTOR SIZE IN BYTES 
• NUMBER OF SECTORS/TH ACK (S INGLE 5 
• NU~BER OF SECfORS/CYLI NUEH (iJOUBL 
• NU MB ER of SECTORS / CL USTER 
• MAX I MU M NO. OF US '13 LE SECTORS (SJ! 
• MAX IMUM NO." (>t= U:3~BLE SECTORS (~ 

Pa)e 1-04 



~PPEND IX I 

0020 

0000 
0008 
OOOA 
OODe 
0012 
0026 

OfJOO 
0008 
OOOA 
OODe 
OOOE 

0075 
0076 
OQ7d 
007A 

A DFCLSS EQU 

* 
* 0 I S K 

* A UI0S10 EQU 
A DIDSVN EQU 
A DIOSRN EQU 
A UIDSDT EQU 
A UIO$NM EQU 
A DiOSRB EQU 

* 
* D 1 R E 
* A DIRSNM EQU 

A OIRSSX EQU 
A UIHSHB EQU 
A DIRSAT EQU 
A DIR$NU EQU 

C T 

* *R.I.B. 
* A HIBSLB EQU 

A t11BSSL EQU 
A i1IB$LA EQU 
A HIBSSA EClU 

* 

I 

32 

tJ 

0 
8 
10 
12 
18 
38 

0 

o 
8 
10 
12 
14 

Ii 

Ii 7 
118 
120 
122 

MOOS Equate t:ile Listing 

• DEFAULT NO. hF CLUSTERS 

SEC TOR OFFSETS 

• OFFSET To 0 I SK 10 (8 BYTES) 
• OFFSET TO VERSION NUMBER (2 ByrES 
• OFFSET TO REVISION NU,\iBER (2 BYTE 
• OFFSET TO DATE (6 BYTES) 
• OFFSET TO USER NAWE (20 BY rES) 
• OFFSET TO RIB ~DDRS. (20 B YIES) 

'{ E N TRY OFF 5 E T S 

• OFFSET TO NAME (8 BYTES) 
• OFFSEf TO SUFFIX (2 BYTES) 
• OfFSET TO RIB ADlJRESS (2 BYTES) 
• Oi=FSET OF ATTRIBUfES (2 BYTES) 
• OFFSET TO NoT USE) AHE A (2 BYTES) 

BIN A R Y F I l E OFF SET 

• NUMBER OF BYTES IN LAST SECTOR 
• 1"illMBEH OF SECTORS ro LOAIJ 
• MEMOHY LOAD ADDRESS 
• START EXECUfION AJORESS 

* U N I F I E 0 I/O CONTROL B L 0 C K 

* 
* OFF SET S 
* 
* A, .... A'"' A Tf\r"'CTA C("\I r vvvv !''\ .L \/vv.L n. t... .... v o ERROR STATLIS 

0!)01 A IOCOTT EQU 1 • DATA TRANSFER TYPE 
0002 A IOCOBP E(JU 2 • DATA BUFFER POINTER 
or)04 A 10CDBS EQU 4 • DATA BUFFER START ADDRESS 
0006 A IOCDBE EQU 6 • DATA BUFFER END ADDRESS 
0'108 A I OCGDi~ EOU 8 • GENERIC DEVICE TiPE/CDB ADDRESS 
GOOA A IOCLUN EQU 10 • LOG leAL UNIT NUMdErl 
0008 A IOCNAM EQU 11 • FILE NAME 
OOOS A IOCMLS EQU 11 • MAXIMUM REFERENCEJ LSN 
0000 A IOCSD~ EQU 13 • CU KRENT SEGMENT DESCt1I lJTOR ~I()RD 
OOOF A IOCSLS EQU 15 • 1ST LOGICAL SECTOR OF CURRENf SEG 
0011 A IOCLSN EQU 1 7 • CU ~HENT LOG I CAL SECTOR NUM BEH 
0013 A IOCSlJF EQU 19 • FILE NAME SUF~IX 
00t3 A IOCEOf E()U 19 • LOG reA.L END OF FILE 
0015 A I OC:-? I B EQU 21 • PHYSICAL DISK ADDRESS OF R.I.B. 
0017 A IOCFUF EQU 23 • FILE DESCRI P fOR FL~GS 
0018 A IOCDEN EQU 27 • 01 RECTORY ENTRY ~'~U~BER 
0010 A IOCSBtJ EQU 29 • SECTOR BUFFER POINTER/INITIAL SIZ 
001F A IOCSBS EQU 31 • SECTOR BUFFER STA~r A.DDRESS 
0021 A IOCSBE EQU 33 • SECTOR BUFFER END .A.DDRESS 
0023 A IOCSBI EQU 35 • SECTOR SU FFEH I NTEKNAL PTR 
002~ A I0'2~LN EC)U I OCSS I +2- I nCST A • 1 nCB LE NGfd 

* 

MOOS 3.0 User" s Guide Page 1-05 



APtJENU IX I 

0000 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
DaDA 
0008 
OOOC 
OOOU 
OOOE 
OOOf 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 

0000 

0000 

0100 
0-:)50 
OOAE 
OOFE 
0100 
0102 
0104 
0106 
0)08 
OIOA 
OIOE 
0110 
0112 
0114 
0116 

MOOS Equate File L1stinq 

* U 1'1 I FIE D 

* 
I/o ERROR STATUSE 

• ~ E ~ EM B Eli THE C U H HE jfT L OC A r I ON d A .SSAV SET * 
ORG so • HESET IT TO ZERO [0 USE THE SEQ ,. 

* 

* 
* 
* 

SEQ 
SEQ 
SEQ 
SECJ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEC) 
SEQ 
SEQ 
SEQ 
SEQ 
SE;'') 
SEQ 
SEQ 

OHG 

* M 1) 0 5 

* 
* 
* A MOOSS 

A CdUFLs 
A CBUfFS 
A C3UFPS 
A VtRS SS 
A REVSS$ 
A KYI$S'v' 
A ENDOSS 
A EI~OUSS 
A E\lOSYS 
A rlIBBAS 
A El'lDRVS 
A G0HAS 
A S lEHK $ 

A Sf~ I ssv 

AND 

EQU 
EQU 
EQU 
E:JU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
E:JU 

ISNOEH 
IS llJ(U 'I 
I SHES\! 
IS NOHV 
I SNliDY 
IS IVDV 
ISDlJPE 
IS NONM 
ISCLOS 
IS E OF 
I SF' ryp 
I SD[YP 
ISEOM 
IS BLJFO 
I $CKSM 
IS(~:-llr 

ISDELT 
ISRANG 
I$FSPC 
I SDSPC 
I SS.::ipC 
IS IUEN 
ISH 18 
ISUt:AL 
ISRECL 
ISSECB 

• SSAV 

• NO ERROHS. NORMAL rtETURN 
• NO SUCH DEVICE 
• DEV I CE RESEHVED ALiiE AD Y 
• DEVICE NcIT RESERVED 
• DEVICE NOT READY 
• INvALID DEVICE 
• DUPLICATE FILE NA~E 
• F I LEN AM E NoT F ()U l~lJ 
• I NV ALI 0 OPEN/CLOSSD FLAG 
• END OF FILE 
• INVALID FILE TYPE 
• INVALID DATA TRANSfER TYPE 
• END OF MEDIA 
• SU FFER OVEHFLO~ 
• CHECKSUM ERROR 
• FILE I S ~~R I TE PH O[ECTEO 
• FILE IS DELETE PIiOTECTED 
• LOG I CAL SECTOR NU \~I3ER OUT OF RANG 
• IIJO DISK FILE SPACE AVAILABLE 
• NO DIRECTORY SPACE AVAILABLE 
• NO SEGMENT DESCRIpTOR SPACE AVAIL 
• I N i AL I lJ D I R. E Nf H f NO. 
• I NV ALLOR IS 
• CA,\J'~T DEALLOCATE .t\LL SPACE 
• BINAHY RECOHD LE1IJ,'JTH TOO LiiGE 
• SECTOI1 BUFFEli SI lE ERROR 

• ~ESTORE THE LOCArIoN COUNTER 

I I'J T ERN A L V A R I A B L E 

E:1UAfES L DeAT ION 

S I no • ST AHT OF MDOS ASEC r 
80 • CCFMvtAND BUFFER LE\lGTH 
MDOSS-CdUFLS-2 • COMMAND BUFFER LOCAT ION 
CdUFFS+CBJFLS • COMMAND BUFFEH SCAN POI ;~TER 
MDOSS • VEHSION # 
VEHSSS+2 • HEVISION # 
REVSSS+2 • SAVE AREA FOR KF.fIdS VECTot-? 
KY I S5 V+2 • END OF MOOS 
E !JDOS S+2 • END OF USER PH ()Gir.t\l~ AHEA 
ENOUSS+2. END OF SYSTEM (MOf)S) HAM 
ENDSY$+4 • KI8 BUFFER AUDl1ES3 
R I BdA $+ 2 • El~l) OF MOOS ROM v A.H lAB LES 
EiJOriVS+2 • GENEHIC DEVICE TABLE ADDRESS 
GDI3AS+2 • SYSTEM EHROH STAfUS ~v()RD 
S,{ E liR S+2 • sv~ I VECTOR S AVE A,"~i:A 

MUOS 3.0 U5er~s Guide 1-06 



.Prl END I X I 

0118 
011 A 
OllC 
OIIE 
Oi 20 
014:5 
016A 

A Sv~IsUV EQU 
A I KOSUV EeJU 
A IHQSSV EQU 
A CHFLGS EQU 
A SfIOCB EQU 
A S,{pOCB EQU 
A SYEOCB EQU 

* 

MOOS Equate File Listing 

S~ISSV+2 • St~I USER VECfOR 
St"lISUV+2 • IRQ USER VECTOR 
IRQ$UV+2 • IRQ VECTOR SAVE Ai~EA 
lliQ$SV+2 • CHAIN FUNCTION FLAG v~()RD 
CHFLGS+2 • SYSTEM CONSOLE I DCB 
SYIoCB+IOCBLN • SYSTEM PRINfEH IOCB 
SYPOCB+IOCSLN • ERR MSG FILE 

*L () G I CAL U N I f N U M B E Ii - - 8 ITO E F. 
* 0040 A LUSRES EQU 

0000 
0001 
0002 
0'103 
or)04 
OOOd 
O~) I 0 
Ot120 
004J 
0080 

0000 
0001 
0002 
nOO3 
0005 
OJ07 
0;]08 
0010 
0020 
0:)40 
0080 

0000 
0002 
0004 
0006 
0107 
0008 
onOA 
OOOC 

* * I 0 C D T T 

* A OfSOPt-> EQU 
A IJfSOPI EQU 
A 0 [$OcJO 
A D[SOPU 
A DfSNFF 
A DTSTRU 
A DTSCLS 
A O[SSIO 
A DTSOUT 
A DIS I l~P 

* 
* I () 

* A FDSFMlJ 
A FDSFMD 
A FlJ$FML 
A rOSFMB 
A FDSFMA 
A FiJ$FMC 
A Fu$CMP 
A FDSCON 
A FOSSYS 
A FiJSDEL 
A FDSrlHI 

* 
* U N 

* 
* 
* 

C 

I 

EQU 
[:;.r) I , 
L .. \""':I(V 

EQU 
EQU 
EQU 
EC)U 
EQU 
E()U 

F 

EQU 
EQU 
EOU 
EQU 
EQU 
EQU 
EQU 
fQU 
fOU 
EClU 
EQU 

F 

A CDBIOC EQU 
A CDBSOA EQU 
A CiJBHAD EQU 
A CDBDDF EQU 
A CuBVDT EQU 
A CDBDDA EQU 
A ClJBr4ST EQU 
A CDBLEN EQU 

* 

D F 

I E 

* COB 0 0 F 

* 

MDOS 3.0 User's Guide 

%01000000 • IOCB RESERVED FLAG 

BIT o E F I ~ I T I () N S 

%00000000 • OPEN UPDATE/INPUf 
%00000001 • OPEN INPUr ,''''ODE 
?~OOOOOO 10 • OPEN OUTPUT MODE 
%00000011 =0 OPEN UPOATE MODE 
%OOnOOloo • NON-FILE FORMAT I/O FLAG 
%00001000 • TRUNCATE FLAG 
%00010000 • FILE OPEN/CLOSE FLAG 
%00100000 • SECTOI-< I/O FLAG 
%01000000 • OUTPUT TRANSFER riPE 
%10000000 • INPUT TRANSFER riPE 

B I T D E F I N I T I 0 N 5 

%OO[)OOOOO · USER DEt= I NED FOH;~AT ( SECTOR 
%00000001 · DEFAULT OBJECT R;::C'D FORMAT 
%00000010 • BINARY LOAD FORMAf 
~&oooooo 11 • BINARY RECORD FO:~MAT 
%00000101 · ASC I I HcCOHU FOK\\AT 
%00000111 · ASCI -CONVERTEO-8 I NARY REC'D 
%00001000 • SPACE COMPRESS I ON FLAG 
%00010000 · CONTIGUOUS ALLOC A. fl ON FLAG 
%00100000 · SYSTEM FILE ATTt?I SUTE 
%OIOfJOOf)O • OELETE PROTECTION ATTRIBUTE 
%10000000 · ~RITE PROTECT I o.~ A. TTH I BUTE 

0 I / 0 C 0 N T R 0 L 0 E S C 

B L () C 1< o F F S E r S 

o • AODRESS OF I (CB 
2 • SOFTWARE DRI VER AJJRESS 
4 • HARDtJARE ADDHE SS 
6 • DEV I CE DESCR I PTOK FLAGS 
7 • VALID DATA TYPE 
B • DEVICE DEPENDENT A~EA 
10 • rlOIiK I NG STORAGE 
CDB~ST+2 • CDB LENGTH 

BIT D E FIN I T ION S 

I/O 

FORM 

R I 

Paqe 1-07 



APt-> ENtJ I X I 

0001 
0002 
0004 
0008 
0010 
0020 
0040 
0080 

0004 
0808 
0010 
0080 

0000 
OD03 
0006 
0009 
OOOC 

0000 
0001 
0003 
OD05 
0006 
or)08 
OOOes 
0000 

Edoa 
EH22 
Ed53 
Ed5A 
E869 
E86D 
Ed6F 
E372 
Ed75 
Ed7d 
E87B 
E~7E 
Ed81 
EB84 

A DOSFMC EQU 
A OOSLOG EQU 
A DUSC r-.lS EQU 
A DD$Ht1D EQU 
A DO$OCf EQU 
A DU$!NtJ E:')U 
A OD$OU r EQU 
A !JO$HES EOU 

* * C D B V D T 

* A vOSBIN EQU 
A VOSGDB EQU 
A VO$SDA EQU 
A VJSNFF EQU 

* * 0 E V ICE 

* A DV$ON EQU 
A DV$OFF EQU 
A DV$! NT EOU 
A UV$THM EQU 
A DV$IO EQU 

* * 0 I S K 

* A CURDRV EQU 
A STRSCT EQU 
A NUMSCT F.QU 
A LSCTLN fQU 
A CURADIi EQU 
A fDSTAT EQU 
A SCTCNf EQU 
A SIDES EQU 

* * E ROM 

* A OSLOAD EQU 
A FO!NIT EQU 
A CHKERR EQU 
A PliNTEH EQU 
A REAUSC EQU 
A READPS EQU 
A ROCHC EQU 
A R t'~TES f Ef)U 
A HESTOIi EQU 
A SEEK EQU 
A v~tlTEST EQU 
A ~~liDDAM EQU 
A v~ RVERF EQU 
A r~~ ITSC EQU 

* * E Ii 0 M 
* 

MOOS 3.0 User's Guide 

E 

MDOS Equate File Listing 

%00000001 • ASCI I -CONVEI1TED-BI NARY IS DEFAlJl 
%00000010 • LOGICAL SECTOR 1/0 FLAG 
%00000100 • CONSOLE FLAG 
%00001000 • HEWIND FLAG 
%00010000 • OPEN/CLOSE FLAG 
%00100000 • INPUf DEVICE FLAJ 
%01000000 • OUTPUT DEVICE FLAG 
%10000000 • HESERVABLE DEVICE FLAG 

BIT D E F I HIT ION S 

%00000100 • BINARY (illJECr FLAG 
%00001000 • TEMP GOB POINTEH FLAG 
%00010000 • TEMp SDA POINTER FLAG 
%10000000 • NON-FILE FOHMAT FLAG 

iJ R I V E R E N T R f OFF SET 

0 • DEV ICE 01\1 OFFSET 
3 • DEV I CE OFF OFFSEf 
6 • DEV ICF. I NT I AL I ZAT ION OFFSE r 
9 • DEV ICE TERML~ATI()N OFFSET 
12 • DEVICE CHARACTER I\lPUT/OUT~UT OFF 

E R () M E QUA T E S 

0 • CURRENT DRIVE NUMBER 
I • STAHTING PHYSICAL SECTOR NUMBER 
3 • .lliM8EI1 Of SECTOHS TO OPEHATE UPb_. 
5 • # ()~ BYTES TO REA) FROM LAST SECT 
6 • MEMORY ADDRESS FOq DISK TRANSFER 
8 • DISK THANSFEH SIAfUS 
II • SECTOR COUNT USEO IN DETERM INI NG 
SJ • - ->SINGLE; + -> JOUBLE SIDED 

N f R '( POI N T S 

S E!'3 00 • HOOTSTRAP THE OPE;~ATI NG SYSTEM 
$E822 • IJ\JITIALIZE THE DI3/(-'S PIA AND SSO 
$E8ij3 • CHECK AND PRINT Ei?KOR FROM FDSTAf 
SE85A • PHINT ERROR FROM FDSTAT 
SE869 • (lEAD SECTOR(S) 
$E86D • liE AD P ART I AL SEC f ()R 
$E86F • READ AND CHECK FOR CRC 
$E872 • ~~rt ITE/READ TEST 
SE875 • MOVE HEAD TO TRACt< 0 
$E818 • POSITION HEAD TO ft?ACK OF "STRSCT 
SE87H • i~H I TE TEST 
SEd7E • ... ~RITE DELETED DATA MAHK 
$EaSI • WRITE AND VERIFY eRC 
$E884 • ~vRITE SECTORCS) 

E H K o R E Q LJ ArE 5 

1-08 



APr>ENiJIX I 

0031 
0:)32 
0033 
0034 
0035 
OJ36 
OD31 
0038 
0039 

A E,~SCHC EQlJ 
A EHSvVl-?T EQU 
A EHSRDY EQu 
A EHSMHK EQU 
A E~$TIM EQU 
A EHSUAU EQU 
A EHSSEK EQU 
A EHSDMA EOU 
A ErtSACH EQU 

* 

, 1 

'2 
'3 
'4 
-'5 
'6 
'I 
'8 
-'9 

MOOS Equate File Listinq 

• iJATA eRC ERH(m 
• v~H I IE PRoTECrED J 15K 
• iJ I SK j\JOT READY 
• DELETED DATA MARK ENCOUNTEKED 
~ TIMEOUT 
• INVALID DISK ADD~ESS 
• SEEK El-?ROR 

DAT A ADOHESS M ~RK ERROR 
• AODHESS MARK eRC E RROH 

* MIS C ELL A N E 0 U S E ROM EQ UATES 

* 0005 A HEIHVS EQU 5 • HEfHY COUNT FOI1 DISK READ/WHITE E 

Edeo 
EdCC 
EdE4 
EdF2 

FOI':> 
FOld 
F:)21 
F024 
FCFJ 
Fflf 
Ff4t= 
F~53 
f~Fd 
ft=FA 
FfFC 
Ff8A 
FJF3 
F~16 
Ff18 
FFtA 
FftB 
FFtC 
FFIO 
Ff63 
FCF4 

* * LIN E t-> KIN r E H E ROM E QUA rES 
* A LpINIT EQU 

A LIST EQU 
A LOATA EQU 
A LJATAI EQU 

* 

$EBCO 
SEBeC 
SEBE4 
SEBF2 

INIT PR.INTER PIA 
• PH I NT CONTENTS of ' A-' 
• PHINT STRING, CR/LF 
• PRINT STRING, NO CR/LF 

* E X BUG E QUA T E 5 F () R MOO S 
* (PAHTIAL LIST o,~LY) 

* A I NCHNP EQU 
A OUTCH EQU 
A PCHLF E()U 
.c\ PJATA EQU 
A. SdlT$ EQU 
A BRKPTs EQU 
A l:SKP I 1'iS EQU 
A A~CH() EQU 
A Il~Q$VC EQU 
A Sr~ISVC EQU 
A NJ\<\l SVC EQU 
A XSTAKS EQU 
A MAID$ EQU 
A XHEG$P EQU 
A XHEG$X EQU 
A XHEGSA EQU 
A XHEG$B EQU 
A XREG$C EQU 
A XI-lEGSS EQU 
A BHKPES EQU 
A C l'-lAC IS EQU 

* 

SFOJ5 
SFOld 
Sf 021 
SF024 
SFCFD 
SFFIF 
SFF4F 
$FF53 
sFFFS 
SFFFA 
sFFFC 
SFf8A 
SFOF3 
sFFI6 
S Ft= 18 
SFF1A 
sFFIB 
SFFIC 
SFF1D 
SFF63 
SFCF4 

• I NPUr CHAHACTEH (1"10 PA~ I T'y) 
• OUTPUT O~E CHAHACfEH 
• P K I NT L F /C R 
• PRINT STRING 
• Bl T 7 I NO I CATES I ~?() OCCUriRED (I F 
• MAIIJ-'S BREAKPOIN[ fABLE (S FOB'S) 
• EX BUG BREAKPOI NTS I N .~ EMORY 

..... r."'\,rt""'"r ",,-'I .. • "" ',-..Trr\ 
1 l'l t" U 1 "n t\n f'\v .L r:: n 

• IHQ VECTOR 
• s~~ I VECTOR 
• NMI VECTOR 
• EXBUG STACK 
• MAID ENTRY POINT 
• MAID P-REG. 
• MAID X-REG. 
• MAID A-REG. 
• MAID B-REG. 
• MAID C-REG. 
• MAID S-REG. 
• END OF MAID BREAKPOI NT TABLE 
• CONSOLE AC IA 

* SPECIAL MACHO FOR THE CENTfH>NIX PRIrITERS TO PRINT TITLES 
* (NO LONGER USED) 
[ITlE MACR 

ITL \0 
ENDM 

rorAL ERRORS 00000--00000 

MDOS 3.0 User's Guide Page 1-09 



APPENDI X I MOOS Equate File Listing 

.SSAV 0000 • ADAX 0028 • ADBAX 0029 • ADBX 0027 • ADDAM ')016 
• AUXBA 002A • ALLOC 0021 .ALPHA 0014 .ALUSM f)OIE .ASLX 1')031 
• ASRX 0030 • BOor 003F .CHANG nOIF • CKBliK 0000 .CLOSE ()O03 
.CMPAH 0011 • CPBAX 002F .DEALC 0022 .OIRSM OOIC .DMA 0019 
.DliEAD OOOE .DSPLX 0008 .DSPLY OODA • DSPLZ aooc • Dv~R I r QOOF 
• EREAD 0039 .EWOHD 0023 • E~~H IT 003A .GETFD 0036 .GETLS ()O07 
.GETRC 0004 .KEYIN 0009 .LOAD 0018 .MDENT aOIA • MOE RH 0020 
.MEREu 0030 • MEv~RT 003E • MMA 0018 • MOVE 0010 .MREAlJ 003B 
• M~'Ht I T 003C • NUMD 0015 • OPEN 0002 • PFNAM 0010 .PRINf n034 
• PH INX 0035 .pSHX 0032 .PULX ()O33 .PUTEF 0038 .PUTFlJ ')037 
• PUTLS 0008 • PurtlC 0005 • RELES 0001 • RESRV 0000 .REWND 0006 
.STCHS 0012 • STCHR 0013 • SUAX 002C • SUBAM 0017 • SUBAX 0020 
.SUBX 0028 .SUXBA 002E • TSAX 0025 .TXBA 0024 .XBAX f)026 
ACK 0006 AECHO FF53 BEL 0007 BKPINS FF4F BHKPES FF63 
BRKPTS FFIF BS 0008 CAN ·JOI8 CHUFFS OOAE CBUFLS 0050 
CBUFPS OOFE CDBDUA 0008 CDBODF 0006 COBHAlJ 0004 COHIOC 0000 
CDdLEN OOOC CDBSOA 0002 COBVOT 0007 CDBWST onOA CHFLGS 011E 
CHt<ERH E853 CNACIS FCF4 CH 0000 CUHADH 0006 CURDHV 0000 
DCI 0011 JC2 0012 OC3 0013 OC4 0014 DUSC NS 0004 
ODS FMC 0001 DDS I piP 0020 OOSLOG 0002 DDSOCf 0010 DDS OUT ()O40 
ODSHES OOdO DDSHv~O 0008 OEVOLM 0023 DFCLSS 0020 Dr OSD f oooe 
DID SID 00)0 DIDSNM 0012 OIDSRB 0026 DIDSHN OOOA OIOSVN 0008 
D It1S AT OOOC DlliS iJM 0000 DIRSNU OOOE DIRSi1B aOOA OIRSSX OOOB 
OLE 0010 uKVJLM 003A DTSCLS 0010 OTSINP 0080 DrS NFF 0004 
OTSot>I aOi) I DTSO;JO 0002 DTsOPt> 0000 DTSOPU 0003 DTSOUT 0040 
OTSSlo 0020 DTSTtlU 0008 DVSINf 0006 DVSIO oooe DVSOFF 0003 
DVS ON 0000 UVSTtlM 0009 ESFATL 0080 EM 0019 ENDOSs 0106 
ENDl1VS 0110 ENDS YS OIOA ENUUSS 0108 END 0005 EoT 0004 
t:liSACK 0039 ERSCRC 0031 EHSDAD 0036 ERSOMA 0038 ERSMRK 1)034 
EHSHDf 0033 ERSSEK 0037 EHSTIM 0035 ERS~RT 0032 ESC ()018 
ErB 0017 fTX 0003 FAMDLM 002A FDSCMP 0008 FDSCOI~ :)010 
~USDEL 0040 FDSFMA 0005 FOS~MB 0003 FDSFMC 0007 FOSFMD \1001 
FOS~ML 0002 FOSFMU 0000 FDS~YS 0020 FDS~~RT 0080 FDINlf E822 
~DSTAf 0008 FF OOOC FS ')0 I C GDBAS 0112 GS ;JO Ii.) 
HT 0009 ISBU~O 0000 I SCKSM OOOE ISCLOS 0008 ISDEAL ()017 
ISDELf 0010 ISOSPC 0013 ISOTYP 0008 ISDlJPE 0006 ISEOF 0009 
ISEOM OOOC ISFSPC 0012 ISFfYP OOOA ISIDEN 0015 I SI VDV -)005 
IS NODV OO:JI ISNOER 0000 1$ NONI\i 0007 IS NORV nOO3 ISNRD( 0004 
I SK ANG 00 I I ISRECL 0018 IsRESv 0002 ISKIS f)016 ISSECB ')019 
ISSSPC 0014 ISWi-lIT OOOF INCHNP FDJ5 IOCHLN 0025 IOCDBE r)006 
I (COB? 0002 IOCDBS 0004 IOCDEN 001 B IOCOTT 0001 I (£EOF 1013 
IOCFOf 0017 IOCGOW 0008 IOCLSJ" 001 I I DCLl) N aOOA I (l:MLS 1)008 
IOCNAM 0008 IOCHIB 0015 IOCSBE 0021 I OCSS I 0023 IOCSHr> 0010 
I ex;sss 00 IF IoCSOW 0000 IOC::>LS 000r: • I nCST A 0000 IOCSU~ 0013 
IROSSV 0 II C IRQSUV 0 II A liiQSVC FFF8 KYISSV 0104 LUATA EBE4 
LDATAI EBF2 LF OOOA LIsr EHCC LPINIT EBCO LseTL1~ 000S 
LUSI1ES 0040 MAIDS FOF3 MOOSS 0100 MDOS9 S 0000 MDOSFS 0000 
NAt<. 0015 NM IS VC FFFC NULL 0000 NUMSCT 0003 OP[OLM ')031:3 
OSLOAD E800 OUTCrl FOl8 PCRLF t=021 PDATA F024 PRNTEH E85A 
HDCHC E86F HEADt->S E86D READSC E869 HESTOH E875 RETHYS 0005 
iifVS$S 0102 HIBSLA 0078 HIBSLB 0075 RIBSSA 007A Ii I B S S L 'JO 16 
HIBBAS OIOE HS OOIE HUBOUf 007F RtiTEST E872 SBlfS FC~[) 
SCSBH 0017 SCSCAT 0001 SCSCLS 0004 SCSUID 0000 SCS D I i~ (J003 
scsoos 0018 SCSDHE 0016 SCSLOK 0002 SCSMAX 0700 SCSMXLJ OFA4 

MOOS 3.0 User"s Guide P Flg P- 1-10 



APtJENDI X I MOOS Equate File Listing 

SCSSIZ DOdO SC$TKD 0034 SCSTRK aOIA SCICNT OOOB SEEK E87d 
SI OOOF SIDES 0000 SO OOOE SOH 0001 SPACE 0020 
STRSCT 0001 SIX 0002 SUB 001 A SUFOLM 002E S~~ ISSV 0116 
SvHSUV 0118 S~~I S VC FFFA SYEOCB 016A SYERHS 0114 SYIOCS r) 120 
SiN 0016 SYPOCB 0145 US OOIF VOSBIN 0004 VDSGDB 0008 
V/.JS NFf 0080 VDSSlJA 0010 VEHSSS 0100 'liT 0008 f4I1DDAM E87E 
V~K I rsc E884 ~~RrEsr E87S WHVERf ES81 XREGSA FFIA XHEGSB FF1B 
XREGSC FFIC XREGSP FF16 XREG·SS FFID XREGSX FF18 XSTAKS FF8A 

MUOS 3.0 User's Guide Pa:;Je 1-11 



APPENDIX 

J. MD(~ 3.00 Differences 

Th-e following appendix contains a description of the 
differences between MOOS 3.00 and prior versions of MDOS. 
[he first part of the appendix contains those differences 
that m3Y have an impact on user-written programs which were 
basej on prior versions of MOOS. The second part of the 
appendix contains the enhancements that are apparent to the 
operator at the MOOS command level. These enhancements have 
been separated by the verSion number of MOOS in which they 
first appeared. All of the listed enhancements are 
incorporated into Mur5 3.00. 

J.1 Impact of MOOS 3.00 on Previous MlJOS Programs 

MOOS version 3.00 accommodates both the single-sided and 
the 'iouble-sided diskettes, a four-drive system, and multiple 
sect0r I/O. There are several items which as a res'Jlt of 
these new features must he checked in all programs that have 
been developed to use prior versions of MOOS. These items 
are listed below. 

I. A proqram making explicit checks for loqical unit 
numbers 0 and 1 must be chan:]ed to accommodate the 
new numbers 2 and 3. 

2. A proqram referrinq to the maximum number of sectors 
on a diskette as 2000 (decimal) or 2002. or the 
symbol from the MOOS equate file (SCSMAX), must be 
changed to accommodate the possible larqer diskette 
sizes tnat can be encountered with the double-sided 
systems. Once a diskette has been accessed, the 
diskette controller variable SLUES (location S0000) 
will have bit seven set or cleared to indicate the 
number of sides on the diskette. If bit seven is 
one, a sinqle-sided diskette has been accessed. If 
bit seven is zero, a double-sided diskette has been 
accessed. This variable is set up properly in ~ll 
versions of the MOOS diskette controller. 

~ single-sided diskette can be accessed in a 
double-sided drive; however, a double-sided diskette 
cannot be accessed in a single-sided drive. 

A new symbol has been placed into the MOOS equate 
file that gives the maximum number of sectors on a 
double-sided diskette (SCSMXO). 

MOOS 3.0 User's Guide Page J-Ol 



APt> ENLJ I X J MO OS 3. 00 J iff e r en c e 5 

fhe double-sided diskette has no unused sectors as do 
the single-sided diskettes, since an inteqral nu~ber 

of clusters exists. 

3. A program using the IOCB for diskette I/O must have 
the full loeB configured as described in all ~DOS 
manuals. This includes the until~now-unused entry 
I neSSI. 

4 • Apr 0:J r a 11 u sin g the I OC B for disk e t tel /0 will h a ve 
to be changed if the sector buffer at the time of the 
.O?Ei'-l function call is not exactly an inteqral number 
of sectors. In previous versions of MDOS, the sector 
size did not get checked until a subsequent I/O 
transfer was made (even though the entry parameters 
for the .OPEN call specified t~at IOCSBS and IOCSBE 
must be set up). 

5. A program using the IOCB for diskette I/O will have 
to be changed if the sector buffer pointers (IOCSBS 
and IOCSBE) are al tered after the • OPEN funct ion has 
been called. Since .OPEi~ sets loeSSI to the 5!3me 
value as IOeSBE, movin::} the sector buffer requires 
that all sector buffer pointers (IOeSBS, IOCSBE, and 
IOCSBI) be changed accordingly. 

6. A program accessing logical unit I without first 
using the system function .OrJEN •• DIHSM. .CHANG, or 
.LOAD, '>'Iill have to be changed so that the read head 
is restored before the unit is accessed. ~revious 
Versions of MOOS restored both loqical units 0 ani I 
eacn time the system initialized and each time the 
MOOS command interpreter received control; however, 
i n MOOS 3. a t his i s no 1 on q e r t rue. r hu s , the 
diskette controller firmware entry point HESTOH llust 
be used to restore the head on the unit to be 
accessed if not using one of the above system 
functions (which do the restore themselves). [he 
same is true if the program is to access units 2 or 3 
without first usinq one of these functions. 

7. A program that has been designatinq loqical unit 
numbers in the diskette controller variable eUHOHV 
(location SOOOO) as either a zero or a non-zero value 
(to access either unit 0 or I). will have to be 
changed so that the actual binary number is 'Jsed 
instead. A non-zero value no longer guarantees that 
unit I will be accessed (physical I/O). 

8. If a proqram has been usinq the system function 
.ALUSM, the entry and exit conditions have been 
changed. Section 27.5.5 should be consulted for a 
detailed description of the current entry and exit 
conditions. 

MOOS 3.0 User's Guide Page J-02 



APPENDIX J MOOS 3.00 Difference~ 

9. 

) o. 

Four new system functions have been prov ided for 
rnulti;:>le sector physical diskette lID. These new 
functions are described in sections 25.2.7 .qnd 
2'1.2.8. The existin':J system functions have not had 
their fUrtction numbers changed. 

fhe device independent I/O functions (Unified 1/0 
functions in previous versions of MDOS manuals) for 
acc e ss inq th-e diskette have been enhanced with the 
iilul tiple sector 110 capaoili ty. Now, a sector buffer 
can be larger than a single sector in order to 
~inimize the number of diskette accesses that must be 
made (and therefore decrease the amount of time it 
takes a program to run). The following areas have 
been affected: 

I (~SBI, the lOCB sector bu ffer interna 1 pOinter, is 
now used. This pointer indicates the end of valid 
Jata within tne user~s sector buffer. It is 
initialized by the .OPEN function to point to the end 
of the sector buffer (I(~SHE). It is changed by the 
input functions to reflect the end of the valid data 
(if only using a sinqle sector, loCSSr will always be 
the same as IOCSBE). 

IOCSBE. the rOeB ending sector buffer pointer, still 
aoints to the last byte in the sector buffer; 
however, the sector buffer can be an integral number 
of sectors in length (one or more). 

No program modification will be required if a pro~ram 
is using record I/O and if the sector huffer 5tays in 
the same place; however, changing the size of the 
sector buffer should speed up the program. 

rJrograms using logical sector 1/0 will not require 
~odification if only a single sector is accommodated 
by the buffer and if the sector buffer is always in 
the same place. Thus, existing proqrams should be 
~inimally impacted. If the sector buffer chanqes 
locations (single sector size), then the I(~SBI entry 
must be adjusted alon(] with the IOCSBE entry to 
reflect the end of the valid data within the sector 
bU ffer. 

If the user supplies a sector buffer larger than one 
sector, then he ~ust realize that after a .GEfLS 
function, he may have more sectors in the buffer than 
just the logical sector number requested. IOCLSN 
will be updated to point to the logical sector t~ be 
read next (incremented by the number of sectors that 
were read into the buffer). Upon return from the 
.GEfLS call, loeSS! will point to the last valid data 
byte within the sector bJffer (less than or equal to 

MDOS 3.0 User-'s Guide Pa.ge J-03 



APpEND! X J MDOS 3.00 Oi fferences 

IOCSHE). Thus, the user must check loeSSl to 
d et e r min e the end 0 f th e d a t a i nth e bu f fer an j to 
calculate the number of sectors read. 

[he .PUrlS function will write the logic~lly 
cont i1UOUS sectors from IOCSBS through IOCSBI from 
the bu f fer to the f i 1 e start in9 at IOCLSN. IOCMLS 
and IOClSN are updated as expected, And additional 
space may have been allocated. 

J.2 enhancements to MOOS 2.20/2.21 

MOOS 2.20 was released to support the dual memory map of 
the EXOl-lciser II system. other enhancements, however, were 
added to the MOOS cO'Tlmands at the same time. MDOS 2.21 is 
almost identical to MOOS 2.20. A chanqe was imolellented to 
aid in the proper s1z1ng of contiguous memory during 
initialization when runninq with the USE module. 

I. A new command, ROLLOUT, was added to the stani1rri 
command package. ROLLOUT allows the user to 
write blocks of memory to a diskette. 

2. A new command, ECHO, was added to the stani1rd 
c()'Tl'Tland packaqe. ECHO allows users with an 
EXOHciser II system to echo all console 
input/output to a line printer 

3. The Bootblock program may ]enerate a new error 
messaqe: EM. This messaqe indicates that 
insufficient conti~uoU5 ~A~ exists in the system 
to load the resident MOOS. 

4. ~hen MOOS 2.20 or 2.21 initializes via the Ed"}J;G 
or MuOS com'Tland to the debuq monitor, it sizes 
memory usin~ a technique that will not change the 
content5 of llemory. Thus, orOlra"1S can be IOl1ed 
above MOOS, the syste:n reiniti"lized, I and another 
program loaded with the first pro~ram image still 
intact in memory (first program must load above 
MOOS command interpreter and LOAO command). 

5. The F JiEE command c-an be i nvok ed with the tiL" 
option, causing its output to be directed to the 
line printer. 

6. The HEPAIR command will default to drive zero if 
no logical unit number is specified. In 
addition, if a file with a ~IB error is not 
deleted, the user will not be able to update the 
CAT on diskette. A messaqe is displayed to that 
effect during the last phase of the REPAIR 
process. 

MOOS 3.0 User's Guide Pa:)e J-04 



~P}JENDIX J MDOS 3.00 ;Jifferences 

7. The COpy command allows users with an t:XOKt~pe 
paper tape reader to use that dev ice. In 
addition, a user can provide his own device 
driver to be llsed by COpy for an input or output 
device. 

8. The LOAD command allows files to be loaded into 
the User Memory Map of an EXORciser II system 
that has th~ dual memory ma~ config~ted. Thi~ is 
done with the "U" option. The "v" option now 
allows programs to be loaded anywhere in me~ory 
(not below $20 or beyond $FFFF, however). In 
addition, the stackoointer is set to the EXbug 
stack area when the "V" option is specified. 

9. The DEL command will display the logical Jnit 
numbers along with the file names shown as bginq 
deleted or protected. In addition, the co~~~nd 
line processing has been changed so thEft a null 
file name a~ong a list of multiple file name~ is 
invalid. 

10. The BINEX command generates an SO record 
containing the memory imRge file name and suffix. 

12. All standard error messages are displayed with a 
two-digit decimal reference number to allow them 
to be easily looked up in the error mess3ge 
chapter of the new MOOS manual. Most error 
messages are still the same. However, the 
wording was changed on several to make them ~ore 
uiliform. ,A.lsc y the IIA.T nnnn" rhr;:Jse that 
accompanied many error messaqes has been re~0ved 
to make the messages less cryptic. A new error 
message was added (as was a new error code) for 
sector I/O functions that are called with a 
sector buffer not 12d bytes in size. 

13. The EXBIl'J command ignores null records (carriage 
return only) if encountered in the EXbuq-loaiqble 
file. 

14. Ihe EOT character ($04) which was output by the 
.PRINX, .DSPLX and .l)SPLl ·functions, is no 10'1]er 
written to the output device. 

I 5. Th e seq u en ceo f 1 i n e fee d , car ria q ere t urn, r')lJ 11 
written to console and/or printer, has been 
chanqed to carriage return, line feed, null to 
eliminate the overorintinq problem encounterei on 
certain printers with an 80 cnaracter buffer ~hen 

lines of 80 characters were printed. 

16. The FORMAT command has been upqraded to function 

MOOS 3.0 User-'s Guide Paqe J-05 



J1. t't' r: 1'IU 1. l\ J MO(~ 3.00 Differences 

wi th ei ther a I MHz or a 2 MHz syst em. 

17. The recovery of accidentally deleted files has 
been made easier for those users who refuse to 
keep d ir ectory 1 ist i nqs or backup copi es. [he 
directory entry is only chanqeH so that the first 
two bytes are chan~ed to an $FF when deleted. 
This retains 8 characters of name and suffix out' 
of the oriqinal 10' to make the entry visible in 
the directory. In addition, the RIB is no longer 
zero-filled when the file is deleted. Thus, the 
user has only to use DUMP to rebuild the two 
FF-ed name bytes in the directory. Then, the 
HEPAIR program must be run immediately afterwards 
to reconstruct the allocation table. 

J.3 Enhancements to MOOS 3.00 

MOOS 3.00· was released to support EXORdisk III 
(four-drives, double-sided). The other major enhancement was 
the 3ddition of multiple sector I/O. The implementation of 
this enhancement has considerably reduced the amount ~f time 
it takes all MOOS commands to execute. Commands like LIST, 
MEJiGE, COpy, DOSGEN. and f.:OIT show the qreatest increases in 
speed. The other enhancements are listed below. 

I. The BACKUP command has been modified to allow 
sinqle-sided diskettes to be copied onto 
double-sided diskettes. A loqical unit number 
specification can be entered on the command line 
to allow copyinq diskettes from units other than 
zero to units other than one. The URn option no 
longer copies the LeAr from the source diskette. 
The destination diskette's LCAT is initialized 
completely. The "V" option no lonqer termin8tes 
the verify process if the system sectors in 
cylinder zero miscompare since the BREAK key can 
be used to abort the process at any time. 

2. The COpy command's "V" option will cause the 
miscomparisons to be displayed between sectors or 
records when verifying files. The tiL" option can 
be used to direct this display to the line 
printer. The "8" option has been arlded to 
automatically verify files after the copy has 
completed (diskette-to-diskette copy only). 

3. The DOSGEN command has been changed allow logical 
unit number specifications 1-3. Either sin11e­
or double-sided diskettes can be DOSGENed. [he 
write/read test has been changed to verify that 
the sectors locked out indeed have the deleted 
data mark written in them. [he BHEAK key is 

MOOS 3.0 dser's Guide J-06 



~PPENUIX J MOOS 3. 00 Di ff erences 

4. 

sensed at times other than the file copy ph3se. 
Only one sector range can be locked out by the 
user. All input from the operator is enterei on 
the same line as the input prompts. 

The FOl1MAT command has been 
loqical units other than 
formatted. Both stngle­
diskettes can be formatted. 

changed to allow 
number one to be 

and double-sijed 

5. The REPAIR command has been changed so that it 
will work with logical units 0-3 and with sin]le­
and double-sided diskettes. In addition, the 
version numbers between the resident MOOS and the 
ID sector are compareri and made the same. [he 
version and revision numbers can no longer be 
chanqed by the operator. Several of the me5s~qes 
have been changed. 

MUOS 3.0 Jser's Guide Paqe J-07 



APPEt~DI X 

K. IOCB Input Parameter Summary 

The following appendix contains a summary of the twelve 
different modes in which an IOCB can be used. The tables 
show the entries of an InCa labelled on the left. Across the 
top of each table are the names of the valid device 
inde~endent I/O functions. Imrnediately underneath each I/O 
fUnction will be the letter IIt~t' or llyn. The "Nil indicates 
that the function cannot be used in the mode described by the 
title line under each table. A nyn indicates that the 
function can be used. 

An "XII appears in those places where a 
is required as an input parameter to the 
colu'nn the "X" appears. At the bottom of 
values that must be placed into the 
summarized. Periods in the table serve as 
show the columns. 

MUOS 3.0 User's Guide 

given IOCB entry 
function i~ whose 
each table, the 

I a::;s entri es are 
place hol.:1ers to 

Page K-Ol 



APPENiJIX K I(~H Input Para~eter Summary 

R 
E 
S 
H 
V 

() G 
P E 
E r 
N R 

C 

p C 
U L 
r () 
f1 S 
C E 

R G P 
F E {j 

L T T 
ELL 
S S S 

R 
E 
.'4 
N 
D 

VALID CALL 
IOCB ENTHi 

IOCSTA 
IOCDTf 
IOCiJBP 
IOCDBS 
IOCDBE 
IOCGDW 

---Y---Y---Y--~---Y---Y--~--IN---Y--

I OCLU N 
IOCNAM/MLS 

ISD~~ 

ISLS 
ILSN 

IOCSUF/EOr 
IOCHIB 
IOCfDF 

IOCOEN 
IOCSBP/SIZ 
IOCSBS 
IOCSBE 
loess I 

• 

• x 
X 

• 

• 

• 
X 
• 

• 

x 
X 
X 
X 
X 

• 
X 
X 
• 

• 
• 

· • 
X 
X • 

• 
• 
• 
• 

• • 

• 

• • 

• 
• • 

• 
• 
• 

• 

• • 
• • • 
• • • 
• 

• • • 
• 
• • • 

• 
• 

• 

• • 
• • 

• 
• • • 

Diskette Uevice -- Record Processinq, Input (Existin1 File) 

I ncO IT = DTSCLS + DrSop I 
IOCGOW = OK 
I nCLl) N = 0-3 
IOCNAM = File name of existing file 
IOCSUF = Suffix 
IOCS8S = Sector buffer start 
I OC SdE = Sec tor bu ff er end 
IOCDdS = Data buffer start 
IOCD8E = Data buffer end 

MOOS 3.0 User's Guide Paqe K-02 



APt>ENlJ IX ~ IOCB Input Paralleter Summary 

Ii 0 G P C Ii G P ~ 

E P t U L F- E U '-

5 E T r 0 L T T Ii 
R N R R S E L L .'1 
V C C E r' co c ,) 

.:::> .:::J oJ l.J 

-----------------------------VALIJ CALL Y Y N 'f Y Y N N 1'-1 

IOCB ENTH'i 
IOCSTA e !' • • 
IOCJTf • X • 
IOCOBiJ • • 
I oeD t3S • • • x • • 
IOCDSE X • 
I OCGD~~ X • • • 
IOGLUN X • • • 
I oc l"~AM/MLS X • 

ISDW X • • • 
ISLS X 
ILSN • X • 

IOCSUF/EOF X 
IOCHIB · • • 
IOCfDt= X • 

• 
I O~:iJEN • • • • • 
IOCS8P/SIZ y 

1'\ 

IOCSBS X • • • • 
IOCSBE X • • • 
IoeSSI • 

-~------------------------------------

Di ske tte Device -- Hecord iJroce si ng, Output ( New file) 

lOCO IT = DTSCLS + DT$OPO 
I OCGDv~ = OK 
IOCLUN = 0-3 
IOCNAM = File name of new file 
IOCSUF = Suffix 
IOCFJF = FO$FMA or FDSFMB plus other optional attributes 
I oes IZ = 0 (Default size) or specific size 
IOCSBS = Sector buffer start 
IOCSdE = Sector buffer end 
IOCOdS = Oatrl bu tfer start 
IOC013E = Data buffer end 

MOOS 3.0 User's Guide Page K-03 



J\t't' t: NU 1 X K. rOCB Input Parameter SUMmary 

R () G P C R G P tl 
E P E U L E E U E 
S E r r 0 L T T ,i 
R N R R S E L L t'Il 
V C C E S 5 S 0 

-----------------------VALlO CALL Y Y Y Y "{ Y N N { 

IOCB ENTH '{ 
IOCSTA • • • • • • • 
loCuIT • X • • • • • • • 
IOCOBP • • • • • • 
I ()CUBS • X X • • 
JOCOBE • X X • 
I OCGD~~ X • • • • 
IOCLUN X • • 
IOCNAM/MLS X • • 

/SDW • X • • • • • 
/SLS • X • • • • 
/LSN • X • • • 

IOCSUF/EOF • X • • 
IOCHIB • · • • 
IOCFDF • X • 

• • • 
IOCUEN • • • • • 
IOCSBP/SIZ X • • 
IOCSBS • X • • • 
IOCSBE • X • • • • 
IoeSSI • 

---------------------------------~----

Diskette Device -- Hecord Processing, Update (New ~ile) 

lOCO IT = OT$CLS + OTS()PU 
IOCGiJW = OK 
IOCLJN = 0-3 
IOCNAM = File name of new file 
IOCSUF = Su ffi x 
IOCFDF = FOSFMA or FDSFMB plus other optional attributes 
I (X;S I Z = 0 (Default size) or specific size 
IOCSt3S = Sector bu ffer start 
IOC5dE = Sector buffer end 
IOCDB5 = Data bu ffer start 
IOCDSE = Data buffer end 

MDOS 3.0 User's Guide Page K-04 



APPENDIX 1< loeB Input Paralleter Summary 

R 0 G P C R G P d 
E P E U L E E U ,-

e 
5 E r T 0 L T r I'~ 

H N H H S E L L N 
V C C E S 5 5 J 

--------------------------------
VALID CALL Y Y Y Y { Y N N '{ 

I ()CB ENtRY 
IOCSTA • · • • • 
IOCUff X • • X • • • 
IOCDBP • • • • 
IOCUBS • • X X • • • • 
IOCDBE X X • • • 
IOCGO~ X • • • • • • 
IOCLUN X • • • • • • • 
IOCNAM/MLS X • X • • 

ISOW • X • • • • • 
ISLS • X • • • • 
ILSN • X • • • • • • • 

IOCSUF/EOF • X 
IOCKIS • • • • • • • 
IOCfDF • • • • • 

• • • 
IOCOEN • • • • • • • • 
IOCSBP/Sil • • • • • • • • 
IOCSBS X • • • • • • 
IOCSBE • X • • • • • • • 
I nCSSI • • • • • 

-----~-~-------~-------------------~~-

Diskette Device -- Record Proc e ssi ng, Update (Existin] file) 

IOCDfT = DTSCLS + DTSOPP 
rOCGDW = Ot< 
IOCLUN = 0-3 
r OCNAM = File name 
IOCSUF = Suffix 
IOCSdS = Sector buffer start 
IOCSdE = Sector bu ff er end 
IOCDdS = Oata bu ffer start 
IOCDdE = Data buffer end 

MDOS 3.0 User's Guide Page K-05 



AP~ END I X t< IOCB Input Paralleter Summary 

H () G P C H G t> R 
E P E U L E E U E 
S E T T () L T T W 
H N R R S E L L 1'1 
V C C E S S S D 

--------------------------VALID CALL y y N N Y y y N { 

I (l: tj ENTHf 
IOCSTA • • • • • • • 
IOCOTT X 
IOCOBP • • • • • • • 
IOCOBS • • • 
IOCOBE • • • • • • • 
IOCGDV'I X • • 
IOCLUN X · • • 
IOCNAM/MLS X • • • • • 

/SDW • X • • 
/SLS • X • • · • 
/LSN X • • X 

IOCSUF/EOF ·X • • • • • 
IOCHIB • 
IOCFLJF • • • • • 

• • • 
IOCDEN • • • 
I OCSBP/S I Z • • 
IOCSBS X 
I (JeSBE X • • 
loeSBr • • • 

------------------------------------~-

Diskette Device -- Loqical Sector Processinq, Inaut 
(Existing file) 

lOCO IT = OTSCLS + OfSOPI + OTSS!O 
IOCGUW = OK 
!OCLUN = 0-3 
IOCNAM = File name of existinq file 
IOCSUF = Su ffix 
IOCLSN = Starting loqical sect or number to be read 
IOCSdS = Sector bu ffer start 
IOCSdt: = Sector bu ffer end 

MUOS 3.0 User"'s Guide Page K-06 



Apr> END I X K 10CB Input Paralleter Summary 

R 0 G P C Ii G P 11 
E P E U L F= E U :..0 

5 E T T 0 L T T ;'4 
R N R 11 S E L L ,oJ 
V C C E 5 S 5 U 

-----------------------
VALID CALL Y Y N N '{ Y N Y N 
InCB Ei..JTR { 

IOCSTA · • • • • • • 
IoeDTT X 
IOCDBP e • 
IOCD8S • • • • • • 
IOCOBE • • 
I ()CGD~i X 
IOCLUN X • • • 
I DeN AM/f..tLS x • ~ 

ISD~~ • X • • 
ISLS • X • • • • 
ILSN • X • • • X 

10CSUF/EOF X • • • 
10CHIH • • • 
10CFDF X • • • 

• • • 
IOCDEN • • • • 
IOCSBP/SIZ X • • • • 
IOCSBS X • X 
IOCSBE • X • • 
IOe581 • • • • • • x 

------~-------------------------------

uiskette Oevi ce -- Loqi cal Sector Proc ess inq t Out'Jut 
(r..Jew file) 

lOCO IT = DT$CLS + DT$OPO + OT$SIO 
10CGiJ~ = OK 
IOCLJN = 0-3 
10CNAM = File name of new file 
!OCSUF = Su ffix 
10CFiJF = Optional attributes 
IOCL3N = Starting logical sector number to be written 
IOCSIZ = 0 (Default size) or specific size 
IOCSdS = Sector buffer start 
10CSI:31 = Sector bu ffer end 

MDOS 3.0 User's Guide Page K-07 



APPEND! X K IOCB Input P ara'net er Summary 

H 
E 
S 
R 
V 

o G 
P E 
E r 
N R 

C 

peR 
U L F. 
r 0 L 
R S E 
C E S 

G t> 
E U 
T T 
L L 
S S 

----------------------------VALID CALL 
IOCB ENTRY 

IOCSTA 
IOCOTI 
IOCUSP 
IOCDBS 
IOCDSE 
IOCGO~ 
IOCLUN 
IOCNAM/MLS 

/SD~~ 
/SLS 
/LSN 

IOCSUF/EOF 
IOCrtIB 
IOCFDF 

IOCOEN 
IOCSBP/SIZ 
IOCSBS 
I<X~SBE 
IDeS t3 I 

Y Y N N Y Y Y Y Y 

• 
• 

• 
X 
X 

• 

• 

• 
• 

• 

• x 

• 

• 
X 
X 
X 
X 
X 

X 

• • 
• • 
• 

• 

• 
• • 
• 
• 
• • 

• 

• • 
• 

• • 
• 
X 
X 
X 
• 

• 
• 

• • 
• 

• • 
• 
• 
• 
• 

• 
• 

• 
• 
• 

• 

• 
• 

• 

• 

• 

• 
• 
• 

X 
• 

• 

X 
X 
• 

• 

• 

• 
X 

X 

X 

• 

• 
• 
• 

• 
• 

• 

• 
• 
• 

• 

• 
• 

Jiskette Device -- Loqical Sector Processinq, Upd~te 
(:.Jew f i Ie) 

IOCDIT = DTSCLS + O[SOPU + OTSSIO 
I OCGJJ~ = OK 
IOCLUN = 0-3 
I OC NAM = F i 1 e n am e () f new f i 1 e 
IOCSJF = Suffix 
IOCFJF = opt ional at tr i but es 
IOCLSN = Starting logical sector number 
I(~SIZ = 0 (Oefault size) or specific size 
IOCSBS = Sector buffer start 
IOCSBE = Sector buffer end 
I OCSt3 I = Sec tor bu ff er end 

MOOS 3.0 User's Guide Page K-08 



~PPENiJ IX ~ IOCB Input Para'Tleter Summary 

R 0 G P C R G P rl 
c P E U L E E U C 
t- ~ 

S ' . T r 0 L T T 1'1 c 
R N R R S E L L ~ 
V C C E 5 S S J 

---------------------------VALID GALL Y Y N N Y y y y { 

loeB ENfHY 
IOCSTA • • • • · • • 
IOCDTf • X • X • • 
IOCDBt> • • • 
IOCiJBS • • • 
IOCOSE • • 
IOCGDt4 X • 
IOCLUN X · • • • 
I oc NA.MI:~LS x • X 

ISDW X • • • • 
ISLS • X • • • • • 
ILSN • X • • x X 

!OCSUF/EOF X • • • 
IOCtlIB • • • • • 
IoefOF • • • • 

• • • 
IOCUEN • • • • • 
IOCSBP/SIZ • 
!OCSBS • X • X X 
IOCSBE • X • • • x · IoeSB! • • x 

---------~-------------~--------------

Oi skette Device -- Loqi cal Sector Proce ssi n.g t Updr:tte 
(Existinq Fi 1 e) 

lOCO IT = OTSCLS + orsoPP + orsslo 
IOCGJW = OK 
IOCLUN = 0-3 
!OCNAM = File name of existing file 
IOCSUF = Suff ix 
IOCL3N = Starting logical sector number 
IOCS[3S = Sector bu ffer start 
IOCSBE = Sector buffer end 
IOCSdI = Sector bu ff er end 

MDOS 3.0 User's Guide K-09 



APPENDIX j( lOCH Input Parameter Summary 

Ii () G P C R G P R 
E P E U L E E U E 
S E T T 0 L T [ 1'1 
R N R R S E L L "l 
V C C E 5 5 5 lJ 

-------------------------------VALID CALL Y Y Y N Y Y N N i'l 
IOCB ENTHY 

IOCSTA • · • 
IOCDTf • X • • • 
IOCD(jjJ • • • • 
IOCDBS • • X • • • • 
IOCDSE • X • • • • • 
IOCGDW X • • • • • 
IOCLUN X • • • • 
I OCN AM/j~LS • • • • • 

/SDv~ • • • 
ISLS • • • • • • 
ILSN • • 

IOCSUF/EOF • X • • • 
IOCHIB · • • 
IOCfDF X • • 

• • • 
IOCDEN • 
IOCSHP/SIZ • • • 
IOCSBS 
IOCSBE • • 
IOCSSI • • 

--------------------------------------

Non-d1 sk ette Device -- Non-file Format, Input 

lOCO IT = DTSCLS + OrSNFF + DrS OP I 
IOCGDvJ = eN or CR 
IOCLtJN = 0 
IOCFJF = FDSFMA 
IOCSJF = Display prompt if dey ic e is CN 
IOCDdS = Data bu ffer start 
IOCDdE = Data buffer end 

MDOS 3.0 user"s Guide K-IO 



APr>ENDI x K IOCB Input Para'1leter Summary 

R 0 G P C R G P R 
E P E U L E E U E 
S E I T () L T T ~ 
n N n R S r T T N t( 11 r:: 1.. L. 

V C C E S S S D 

--------------VALID GALL , Y y N Y Y y N N N 
I ()CB ENIHY 

IOCSTA • • • • • • 
IOCOIT X • • • 
IOCOBP • • • • • 
IDCOBS • X X • 
IOCOSE • • X X • • • 
I OCGDr~ X • • 
!OCLUN X • • • 
IOCNAM/MLS • • • • 

/SD~ • • • • 
ISL5 • • • • • • 
ILSN • • 

IOCSUf/EOF • • 
Ioe~IB • • • • 
IOCfDF X • 

• • • • • 
InCDEN • • • 
IOCSBP/SIZ • • • • 
10C5135 • • • 
IOCSBE • • • 
10CSBl • • • • 

-~---------~------------------~-------

Non-d i sk ett e Oevice -- Non-file Format, Output 

I oeD IT = OTSCLS + DTSNFF + IJrs oPo 
IOCGJW = LP, CN, or CP 
IOCLUN = 0 
IOCFJF = FDSFMA 
IOCDdS = Data bu ffer start 
IOCD8E = Data buffer end 

MDOS 3.0 User's Guide Page K-l1 



A PP E NO I X t< IOCB Input Parameter Summary 

H 0 G P C H G P H 
E P E U L E E U E 
S E T T 0 L T r vV 
It N H R S E L L ~ 
V C C E 5 5 5 J 

---------------------------VALID CALL Y y y N Y Y N N 1'1 
lOCH ENTHY 

IOCSTA • • • 
IOCOTT • X • • • • 
IOCOBP • • • • 
I<>CUBS X X • • • • • 
IOCOBE • X X • • • • 
IOCGDW X • • • • • • 
IOCLUN X • • 
IOCHAM/MLS X · • • • -

/SD~~ • X • • • • 
/SLS X • • • • 
/LSN X • • • 

IOCSUF/EOF • X • • • 
IOCtlIB • • • • • • 
IOCFDF • • • • • • • 

• • • • 
I (>CUEN • • • • • • • 
IOCSBJJ/SIZ • • • • 
IOCSI:3S • • • • • 
IOCSBE • • • • • 
IOCSBI • 

--~------------------~-------------~--

Non-diskette Device - File Format, Input 

lOCO fT = DTSCLS + DT$OPI 
IOCGDW = CH 
IOCLUN = 0 
IOCOdS = Data buffer start (us ed for Fuji processing) 
IOCDBE = Data bu ffer end 
IOCNAM == File na~e of existinq file 
IOCSUF = Su ffix 

MuOS 3.0 Jser's Guide Paqe K-J2 



A PP END I X t< IOCB Input Paral1eter Summary 

R () G P C H G P K 
E P E U L r E U E c 
S E T T () L T T y~ 

R N H R S E L L \1 
V C C E S S S J 

-----------------------------VALID CALL 'f Y N Y 'f Y N N j~ 

loeB ENTHY 
IOCSTA • • 
IOCDTT X • • • • 
IOCDBP e • • • 
IOCDBS X • X X • • • 
IOCDSE X X X • 
I OCGDr~ X 
IOCLUN X • 
I OCi~AM/MLS • X • • 

ISDW • X • e • 
ISLS • X • 
ILSN • X • • • • • 

IOCSUF/EOF X • • • 
IOCHIB • • • • • • 
IOCfDF X • • • • • 

• • • • • 
IOCOEN • • • • • 
IOCSBP/SIZ • • • • • 
IOCSBS • • • • 
IOCSBE • • • • • • • 
loeSBI • • • • • 

--------------------------------------

Non-diskette Device -- File Format, Output 

IOCDrr = DT$CLS + DT$OPO 
I OCGU~~ = CP 
IOCLJN = 0 
IOCDdS = Data buffer start (used for FUR processinq) 
IOCOSE = Data bu tter end 
IOCNAM = File name 
IOCSUF = Suffix 
IOCFJF = FD$FMA, FD$FMB, FD$FMC, or FD$FMD (only) 

MOOS 3.0 User-'s Guide Paqe K-13 



APPENDIX 

L. EXORdisk 11/111 System Specifications 

The followinq table lists the characteristics and 
specifications of the EXORdisk II/III system. 

CHARACTERISTICS 

PO~~EI-i REQU I REMENTS 
A.C Power 

DC Power supplied by 
EXORci ser 

BUS INfEHFACE SIGNALS 
Address. Control busses 

uata bus 

DISK-TO-CONTROLLER INTERfACE 
SIGNALS 

OPERATI j~G TEMPERATURE 

~HYSICAL CHARACTEdISTICS 
Disk Drive Unit 

vvidth 
Depth 
Height 
t~eight 

~loppy Disk Controller 
Width 
Height 
Board thickness 

CONNcCTOH TYpES 
Bus Connector (PI) 

Disk Drive Unit 
Connector (P2) 

MOOS 3.0 User·'s Guide 

SPECIFICATIONS 

110 Vac, 60 Hz, 3.4 Am~s 
110 Vac, 50 HZ. 3.4 Amps 
220 Vac, 50 Hz, 1.8 Amps 

+ 5 Vdc @ 2.75 Amps 
+12 Vdc @ 20 mAmps 
-12 Vdc @ 45 mAmps 

TfL compatible 

Bi-dlrectional, three state 
TfL compatible 

Positive true TTL compatible 

0-70 degrees Celsius 

1 7. 75 inches 
23.5 inches 
6.96 inches 

48 pounds 

9.75 inches 
5.75 inches 
0.06 inches 

Stanford Applied Engineering 
SAC-43D/l-2 or equivalent 

AMp PIN 88393-7 or 
equivalent 

Page L-Ol 



® MOToROLA INC. 
Integrated Circuits Division 

Microsystems • P.o. Box 20912 • Phoenix, Arizona 85036 


