

M6800

BASIC INTERPRETER

REFERENCE MANUAL

M68BAS(D3)

JANUARY 1980

The information in this document has been carefully checked · and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, Motorola reserves the right to
make changes to any products herein to improve reliability, function,
or design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of
ot hers.

Third Edition
©Copyright 1980 by Motorola Inc~

Second Edition February 1979

TABLE OF CONTENTS

CHAPTER 1. GENERAL DESCRIPTION

1.1 INTRODUCTION •••••••••••••
1.2 EXORciser-RESIDENT BASIC INTERPRETER.
1.3 FEATURES ••••••••••••••
1.4 PROGRAM STRUCTURE •••••••••••

• 1-1
1-1

• • • 1-2
• • • • 1-2

1.4.1 Statements •••••••••••••••• 1-2
1.4.2 Commands • • 1-3
1.4.3 Functions • • • • • • • • 1-3

1.5 DATA REPRESENTATION • • • • • • 1-3
1.5.1 Numbers ••••••••••••••••• 1-3

1.5.1.1 Numeric Variables. 1-4
1.5.1.2 Numeric Constants • • •• 1-4

1.5.2Strings............ 1-4
1.5.2.1 String Variables • • • • 1-4
1.5.2.2 Literals • • • • • • •• 1-5

1.6 OPERATING MODES • • • 1-5
1.6.1 Command Mode • • • ••••••• 1-5
1.6.2 Execution Mode • • • • • • • • • • 1-5

CHAPTER 2. PROGRAM PREPARATION
2.1 LOADING BASIC • • . • . . • • • • • • • • • 2-1

2.1.1 Loading MOOS BASIC .•••••••••• 2-1
2.1.2 Loading Tape BASIC • • • • • • • • • 2-2

2.2 ORIGINATING AND CHANGING A BASIC PROGRAM ••• 2-2

CHAPTER 3. STATEMENTS

3.1 INTRODUCTION • • • • • • • • • • • ••• 3-1
3.2 ASSIGNMENT STATEMENTS ••••••••••••• 3-1

3.2.1 LET Statement. • • • • • • • 3-1
3.2.2 Arithmetic Operator Symbols • • ••• 3-1
3.2.3 Operator Heirarchy • • • • • • 3-2
3.2.4 String Concatenation •••• 3-2

3.3 DECLARATION STATEMENTS • • . 3-3
3.3.1 DIM Statement • • • • • • ••• 3-3

3.4 CONTROL STATEMENTS • • • • • • • • 3-3
3.4.1 FOR and NEXT Statements • • 3-3
3.4.2 STOP Statement . • • • • .• 3-4
3.4.3 END Statement • • • • • • • 3-5
3.4.4 GOTO Statement • • • • • • • •• 3-5
3.4.5 GOSUB Statement • • • • • • • 3-5
3.4.6 RETURN Statement •••••••• 3-5
3.4.7 ON Statement • • • 3-5
3.4.8 IF and THEN Statements ••••• 3-6
3.4.9 USER Function • • • • • • • • • • • • 3-6

3.5 INPUT/OUTPUT STATEMENTS • • • • ••••• 3-6
3.5.1 INPUT Statement • • • • • • 3-7
3.5.2 DATA and READ Statements 3-8
3.5.3 RESTORE Statement • • • • • 3-9
3.5.4 PRINT Statement • • • • • • • 3-9
3.5.5 POKE Statement 3-10
3.5.6 PEEK Function • • • 3-10
3.5.7 LINE Statement • • • • • 3-11
3.5.8 DIGITS Statement • • • • • 3-11

3.6 DOCUMENTATION STATEMENTS ••
3.6.1 REM Statement ••••••

•••• 3-11
• • • • • • 3-11

• 3-11
• • 3-12

3.7 DEBUG STATEMENTS ••••••
3.7.1 TRACE ON Statement
3.7.2 TRACE OFF Statement ••
3. 7. 3 PATCH Statement • • ••

. . • 3-12
• • • • 3-12

CHAPTER 4. COMMANDS
4.1 INTRODUCTION • • • • • • • • • • 4-1
4.2 SYSTEM COMMANDS • • • • • • • • •••••• 4-1

4.2.1 LOAD Command • • • • • • • •• 4-1
4.2.2 APPEND Command • • • • 4-1
4.2.3 SAVE Command • • • • • • • • • • 4-1
4.2.4 EXIT Command • • • • • • •• 4-1
4.2.5 LIST Command • • • 4-2

4.3 PROGRAM EXECUTION COMMANDS •••••• 4-2
4. 3.1 RUN Command • • • • 4-3
4.3.2 CONT Command • • • • •• 4-3
4.3.3 NEW Command • • • • •••••• 4-3
4.3.4 BREAK KEY Command • • • • ••• 4-3

4.4 EDITING COMMANDS ••••••••••••••• 4-3
4. 4.1 CONTROL X Command (Cancel) • • • • 4-4
4.4.2 RUBOUT or DEL Command (Backspace) • • 4-4

4.5 SIZING COMMANDS • • • • • • • • • • • • • 4-4

CHAPTER 5. FUNCTIONS
5.1 INTRODUCTION • • • • • • • • •• 5-1
5.2 CONTROL FUNCTIONS • • • •••••• 5-1

5.2.1 TAB Function •••••••• 5-1
5.2.2 POS Function •• 5-1

5.3 DATA FUNCTIONS • • • • • • • • • • • • 5-1
5.3.1 RND Function • • • • • • • • • 5-1
5.3.2 INT Function • 5-2
5.3.3 ABS Function • • • • ••• 5-2
5.3.4 SGN Function •••••••••••• 5-2
5.3.5 PEEK Function • • • • • • 5-2

5.4 CHARACTER STRING FUNCTIONS • • • • • • 5-3
5.4.1 LEN Function • • • • • 5-3
5.4.2 ASC Function •••••••••••••• 5-3
5.4.3 CHR$ Function • • •• 5-3
5.4.4 VAL Function • • • • • • • 5-3
5.4.5 STR$ Function • • 5-4
5.4.6 LEFT$ Function • • • 5-4
5.4.7 RIGHT$ Function • • • • • • • • • 5-4
5.4.8 MID$ Function • • • • • •• 5-4

5.5 TRANSCENDENTAL FUNCTIONS • • • • 5-5
5.6 USER DEFINED FUNCTIONS • • • • • • ••• 5-5

5.6.1 DEF Function • • • • • 5-5
5.6.2 USER Function • • • • •• 5-6

CHAPTER 6. DISK FILE I/0 (MOOS ONLY)
6.1 INTRODUCTION 6-1
6.2 OPEN Statement 6-1
6.3 CLOSE Statement • 6-2
6.4 RESTORE Statement 6-2
6.5 INPUT Statement • • . . • . . • . • . • 6-3
6.6 PRINT Statement • 6-3

ii

6.7 EXAMPLES OF DISK FILE I/0 ••
6.7.1 Creation of a Data File
6.7.2 Reading a Data File ••

6.8 End of File Detection ••••
6.9 Updating a Data File •••••
6.10 Deleting a Data File ••••
6.11 Data File Data Representation

APPENDIX A. GENERAL CONVERSION CHARTS ••
APPENDIX B. ASCII TO DECIMAL CONVERSION •
APPENDIX C. ENHANCING PROGRAM OPERATION •
APPENDIX D. MINIMIZING MEMORY REQUIREMENTS ••
APPENDIX E. ERROR MESSAGES ••••••••
APPENDIX F. ROM-RESIDENT BASIC INTERPRETER •

i i i

..

. . • • • 6-3
• • • • • • • 6-3
• • • • • • • 6-4

• 6-4
• • • 6-4

• • 6-5
• • • • • • • • 6-5

• A-1
• • • 13-1

• • • • • • C-1
• • D-1

• E-1
• F-1

CHAPTER 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

This manual provides detailed information for the
EXORciser- and ROM-resident BASIC Interpreters. Chapters 1-6
discuss the EXORciser-resident BASIC Interpreter. Since both
Interpreters are basically identical, these chapters can be
used to support the ROM-resident BASIC Interpreter.
Differences are noted and references made to Appendix F.

1.2 EXORciser-RESIDENT BASIC INTERPRETER

The EXORciser-resident BASIC Interpreter provides a
high-level programming language widely used for general
purpose and business-related applications. BASIC uses
English-like statements and familiar mathematical notations
which make it one of the easiest computer languages to learn
and use. The system consists of the BASIC Interpreter
program software and one of the following hardware
configurations:

MOOS DISK SYSTEM

EXORciser
20K Bytes of Memory (Minimum)
EXORdisk II or III Drive Unit
ASCII Terminal
MOOS Floppy Disk Operating System

NON-DISK SYSTEM

EXORciser
8K Bytes of Memory (Minimum)
AS CI I Te rm i n a 1
Digital Cassette or Paper Tape Reader/Punch

The minimum configuration may be expanded to include up
to 56K bytes of memory and four disk drives for a total of
over 2 million bytes of on-line disk storage capability. In
addition, a variety of hard copy line printers and CRT
terminals may be used. Throughout this manual, it has been
assumed that a console terminal having both keyboard and
printer is being used with an MOOS floppy disk operating
system. If a CRT terminal is used, the words "console printer"
may be replaced by the words "CRT display".

Any differences between the MOOS version and tape
version of BASIC are noted. ROM version differences are
described in Appendix F.

1-1

1.3 FEATURES

The features of this BASIC Interpreter are:

All mathematical operations are performed in BCD
(Binary Coded Decimal) arithmetic for maximum
accuracy.

Nine significant digit precision.

User programs may be saved and loaded from
cassette, paper tape, or floppy disk.

Most arithmetic functions and transcendentals are
implemented as directly executable subprograms.

String variables and arrays are permitted. Most of
the popular string functions are provided.

Most program statements may
direct mode (no statement
immediate execution).

be executed in the
numbers required for

Users can call machine language programs from the
BASIC program.

Data file disk I/0 may be performed (MOOS only).

Limited editing of programs without leaving BASIC.

1.4 PROGRAM STRUCTURE

A user program written in BASIC consists
statements. The following paragraphs provide
description, while chapters referenced within each
provide an in-depth description.

1.4.1 Statements

of various
a brief
paragraph

Every statement must begin with a statement number,
followed by the statement directive and statement argument,
and terminated by a carriage return (CR). Six types of
statements are used in BASIC: Input/Output, Declaration,
Control, Assignment, Documentation, and Debug. These
statements are described in Chapter 3. The following rules
apply to all BASIC statements:

Every statement must have a statement number ranging from
1 to 9999. DO NOT USE STATEMENT NUMBER 0.

Statement numbers are used to sequentially order the
program statements and to allow transfer of control.

In any program, a statement number may only be used once.

1-2

A previously entered line may be changed by entering the
same statement number along with the desired new
statement. Entering a statement number immediately
followed by a carriage return deletes that line and
statement number.

Statements do not need to be entered in numeric sequence,
since the BASIC interpreter automatically maintains a
sequential ordering of statements.

A statement may NOT contain more than 72 characters,
including spaces and statement' number.

Unless used within a character string, spaces are ignored
by BASIC. Although spaces may be inserted within a
statement to improve readability, the use of spaces
increases a program's memory requirements and execution
time. Numbers MUST NOT contain embedded spaces. All
examples presented in this manual include spaces.

Example: 110 LET. A= B + (3.5 * 5E2

is exactly equivalent to:

110LETA=B+(3.5*5E2)

1.4.2 Commands

BASIC provides a set of commands which are used for
program loading, editing, and execution. In addition, most
of the BASIC statements may be used as commands, thereby
operating as a calculator. A complete description of each
BASIC command may be found in Chapter 4.

1.4.3 Functions

Functions may be either intrinsic or user defined.

Int·rinsic functions are program functions which are
inherent to the BASIC interpreter itself and do not require a
separate program for execution. Three types of intrinsic
functions are available to the user: Control, Data, and
Mathematical. The intrinsic and user defined functions of
BASIC are described in Chapter 5.

1.5 DATA REPRESENTATION

All data used with BASIC must be represented in
accordance with the paragraphs of this section.

1.5.1 Numbers

The range of numbers capable of
BASIC is: 1.0E-99 to 9.99999999E+99.
exponent; thus, E-99 equals 10 to the
equals 10 to the 99th power. BASIC

1-3

being represented in
The 11 E11 represents
-99th power and E+99

provides for nine

significant digits of
representing more than nine
be entered and displayed in
decimal, or exponential.

Example: 153 (integer)

accuracy and truncates numbers
significant digits. Numbers may

one of three formats: integer,

153.34 (decimal)
1.5334E+2 (exponential)

1.5.1.1 Numeric Variables

Numeric variables may be named by any single alphabetic
character or any single alphabetic character followed by a
single numeric digit (0 through 9).

Example: A, B, C, A3, 84, or CO

Numeric variables may also be used to represent arrays.
In this case, the one or two dimension element number follows
the variable name in parentheses. See 3.3.1 for the DI M
statement and array information.

Example: A(5), 8(67,2), C(l), A3(14), or CO(?)

1.5.1.2 Numeric Constants

A numeric constant (that is, a non-varying quantity) is
composed of one or more numeric digits, with or without a
decimal point.

Example: 153, 34.52, .554, or 132E-2

1.5.2 Strings

Alphanumeric data (alphabetic letters and numerals) and
certain punctuation and special characters may be represented
in BASIC in several ways. Strings refer to this type of data
as opposed to numeric data. String data is represented and
stored in ASCII form while numeric data is stored in BCD
form.

1.5.2.1 String Variables

String variables are named by any single alphabetic
character followed by a dollar sign ($). String variables
may contain a MAXIMUM of 18 characters, including spaces.
Each string variable will be allocated 18 bytes of memory.
Each character in a string is represented internally in
ASCII.

Example: A$, 8$, C$, or W$

String variables may also be used to represent arrays.
The one or two dimension element number follows the variable
name in parentheses. See 3.3.1 for the DIM statement and
array information.

Example: A$(3), 8$(21,2), or C$(1)

1-4

1.5.2.2 Literals

A literal is the string equivalent of a numeric
constant. It is composed of one or more characters contained
within quotation (") marks.

Example: "LITERAL STRING", 11 5 11
,

11 --*(#$5 11

1.6 OPERATING MODES

Two operating modes are used during entering and
executing BASIC programs: Command and Execution.

1.6.1 Command Mode

The system
for the user to
command. The
by printing the

operates in the command mode when it is ready
enter the next program statement or BASIC
system indicates the command mode to the user
character as a prompt.

1.6.2 Execution Mode

When in execution mode, BASIC processes the user
program, executing one statement at a time.

1-5

CHAPTER 2

PROGRAM PREPARATION

2.1 LOADING BASIC

The BASIC Interpreter is available in three · types of
storage media: ROM, paper tape, or diskette. (Refer to
Appendix F for ROM-Resident BASIC Interpreter differences.

The procedure required to load the BASIC interpreter
into memory is dependent upon the type of storage media used.
If cassette or paper tape is used, then loading is controlled
by the EXbug monitor. If BASIC is stored on diskette, the
interpreter is loaded by typing the command BASIC followed by
the input file name and the output file name (if required) on
the disk operating system command line. This is covered in
paragraphs 2.1.1 and 2.1.2.

After the BASIC interpreter is loaded, the word REAOY is
printed on the console printer followed by the # character on
the next line. This indicates that the interpreter is ready
to accept input (either program statements or commands) from
the console keyboard. After each successive program
statement is entered, the system will prompt the user by
printing a # character. This indicates that the statement
has been entered. After a command is entered, the word
READY will again be printed, followed by the # character to
indicate that the command has been executed and the system is
ready for input of the next program statement or command.

2.1.1 Loading MOOS BASIC

This example shows the interactive procedure used to
start the BASIC interpreter on an MOOS disk system.

*E MOOS
=BASIC INFILE (or BASIC INFILE,OUFIL)

MOOS BASIC 2.xx
COPYRIGHT(C)- 19xx

READY

In the MOOS system, if INFILE doesn't exist, one will be
created. If INFILE exists, it will be read into the BASIC
user program buffer where it may be run or changed. A second
file name may be specified and the changed copy of the
program saved in it upon exiting.

2-1

2.1.2 Loading Tape BASlC

This example shows the interactive procedure used to
start the BASIC interpreter on a system using paper tape or
cassette.

*E LOAD
SGL/CONT S
BASICS
*E lOO;G
M6800 BASIC I.xx
COPYRIGHT (C) - 19xx

READY

2.2 ORIGINATING AND'CHANGING A BASIC PROGRAM

After the BASIC interpreter has been loaded into memory,
the system is ready to accept commands or statements from the
console keyboard. For example, the following program may be
entered:

READY
#10 REM DEMONSTRATION
#20 PRINT 11 U 1TER A NUMBER"
#30 INPUT N
#4·0 LET S=N*N
#50 PRINT
#60 PRINT "THE SQUARE OF 11 ;N;
#70 PRINT "IS ";S
#80 STOP

To insert a statement between two others, a statement
number that falls between the other two followed by the
statement to be inserted is typed. The following example
shows an inserted statement:

#45 REM THIS INSERTED BETWEEN 40 AND 50

To replace a statement, the statement number of the old
statement is typed, followed by the new statement and a
carriage return. For example, to change statement number 40
above:

#40 LET S=N©2

Each line entered must be terminated by a carriage
return. BASIC automatically advances the printer to the
start of the next line when a carriage return is recognized.

To execute the program at this point, the RUN command
should be entered on the console keyboard. Chapter 4
explains this and other commands used to save, list, or edit
a program.

2-2

CHAPTER 3

STATEMENTS

3.1 INTRODUCTION

A BASIC program consists of one or more statements which
perform some action. BASIC statements may be divided into six
categories: Assignment, Declaration, Control, Input/Output,
Documentation, and Debug.

These statements are stored in memory when entered and are
not executed until an execute command is given. Chapter 4
explains in detail the various commands. However, when BASIC is
in the command mode (waiting for user input), most statements may
be entered without statement numbers. BASIC will execute these
statements immediately. This is referred to as the "direct mode"
of execution. Since statements entered in the direct mode are
normally of a mathematical nature, the user obtains immediate
results to problems without requiring iterative (repeated) program
procedures. The direct mode is sometimes referred to as the
"calculator" mode.

3.2 ASSIGNMENT STATEMENTS

Assignment statements are used to assign values to variables
and allow the concatenation of string variables. The following
paragraphs list and explain the assignment statements.

3.2.1 LET Statement

The LET statement is used to assign a value to a variable.
The use of the word LET is optional. The following example shows
typical uses of the LET statement:

110 LET C=33. 5
120 LET M=(C+ll)/3
130 D=M+C+50
140 C$= 11 YES 11

The equal sign used in the LET statement does
equivalence as normally used in the mathematical sense.
it represents a replacement operator. When used in this
the equal sign means: replace the value of the variable
the left with the value of the expression on the right.

3.2.2 Arithmetic Operator Symbols

not mean
Instead,
context,
name on

The arithmetic operator symbols used to form arithmetic
expressions are shown below. No two operators may occur in
sequence (with one exception) and no operator may ever be assumed.

3-1

Thus A++B and (A+3)(B-4) are not valid arithmetic expressions.
The only exception to this rule is in the use of exponents. In
this case, A"'-5 is valid, meaning that A is raised to the -5
power. A negative value cannot be exponentiated, therefore C in
the expression CA2 must be positive.

A Exponentiation (raising to a power)
Unary (Negate, requires only one operand)

*Multiplication
I Division
+ Addition
- Subtraction

3.2.3 Operator Heirarchy

Operator heirarchy (priority)
evaluation of an arithmetic expression.
below showing the highest first:

() Parenthesis
A

- (unary)
* or I
+ or -

controls the order of
This heirarchy is listed

Note that in
contained within
non-parenthetical
below:

the heirarchy shown above, arithmetic operators
parentheses are executed first, followed by
o p e r a t o rs • S om e t y p i c a 1 e x a m p 1 e s a re s ho vtn

130 M=(X*Y)/(3+A)
160 K=-2"'2

In the first example (statement number 130), the terms within
the parentheses \'l'ill be evaluated first. Therefore, (X*Y) and
(3+A) will be evaluated, then the result of the first divided by
the second. Even though the + of the second term is lower
heirarchy than the division, it is executed first since it is
enclosed in parentheses. In statement 160, K will be -4 since the
exponentiation is performed before the unary operation.

3.2.4 String Concatenation

String concatenation is used to JOln together two or more
string variables. Even though a string variable may contain up to
18 characters, it may be desirable to combine several strings for
printing. The string concatenation symbol is the + sign. The
example which follows illustrates string concatenation:

110 A$= 11 THE II

120 B$= 11 QUICK II

130 C$= 11 BROWN II

140 D$= 11 FOX II

150 E$= 11 JUMPED II

160 F$=A$+B$+C$
170 G$=D$+E$
180 PRINT F$;G$

3-2

the results of executing statement number 180 would be:

THE QUICK BROWN FOX JUMPED

3.3 DECLARATION STATEMENTS

Declaration statements are used to specify (declare) the
attributes of various variables within BASIC. One declaration
statemerrt is used in this version of BASIC, the DIM statement.

3.3.1 DIM Statement

The DIM statement allocates memory space for an array. One
or two dimensions are allowed. The maximum array size is 255 by
255 elements. (Of course, the real maximum is less since
insufficient memory exists for any array 255 by 255.) If an array
is not explicitly defined by a DIM statement prior to its use,
then it is implicitly assumed to be an array of 10 elements (or 10
by 10 if two elements are used) when it is first referenced in a
program. The array size can only be declared once in a program,
either explicitly or implicitly. The following examples show the
various uses of this statement:

630 DIM A(35),B4(12),J9(200)
640 DIM K$(15,10),W(10,50)
650 DIM L(Q) Note in this case, Q must have been

previously given a value before its
use in the DIM statement.

3.4 CONTROL STATEMENTS

to alter the normal sequential
execution. Control statements
to another part of a program,

iterative loops. The following

Control statements are used
progression of program statement
can be used to transfer control
terminate execution, or control
paragraphs list and explain each of the control statements.

3.4.1 FOR and NEXT Statements

The FOR and NEXT statements are used in conjunction with each
other to establish program loops. A loop causes the execution of
one or more statements for a specified number of times.

sn FOR vc=init TO end STEP val

where sn is the statement number
vc is the counter variable
init is the initial value
end is the final value
val is the step or increment value

sn NEXT vc
where sn and vc are as described above.

3-3

The FOR statement consists of three parts: FOR, TO, and
STEP. The FOR portion specifies the counter variable and its
initial value. The TO portion specifies the final counter value
at which the loop will be done. The optional STEP indicates the
size of the change to the counter for each interation through the
loop. (STEP will be 1 if omitted). Subsequently, each of the
statements following the FOR statement is executed until the
corresponding NEXT statement is encountered. Although expressions
are permitted for the initial, final, and step values in the FOR
statement, these expressions will be evaluated only once upon
initially processing the FOR statement.

The NEXT statement is located at the end of the loop. When
the NEXT statement is encountered, the variable specified by the
FOR statement is incremented by the value of the STEP. If the
resultant value is less than the TO value, the next statement
executed will be the statement immediately following the FOR
statement starting the loop. If the value is equal to or greater
than the TO value, then program execution continues on to the
statement following the NEXT.

When the statement following the NEXT statement is executed,
the counter will be equal to the value used the last time through
the loop. It is not possible to use the same variable for the
counter of two different loops if the loops are nested (one loop
within another loop). The counter variable K7 would ·have a value
of 9.25 after passing out of the loop shown below:

110 FOR K7=0.5 TO 10 STEP 1.25
120 INPUT X
130 PRINT K7,X,X/2.75
140 NEXT K7

A FOR-NEXT loop will always be executed at least once, even
if the TO value is less than the initial value with a positive
STEP. The STEP value may be either positive or negative.

The variable name in the NEXT statement must be the same as
the variable name for the corresponding FOR statement.

Control may be transferred out of the FOR-NEXT loop.
HoHever, certain precautions should be taken. First, if control
is transferred out of the loop and then returned to the loop,
execution will continue normally. If control is transferred out
of the loop and NOT RETURNED, then the nesting level is not
reduced and could cause an error due to too many levels of
nesting.

The maximum number of nesting levels is 8.

3.4.2 STOP Statement

The STOP statement causes the program to stop executing and
return to the command level of BASIC. This statement differs from
the END statement in that it causes the message 11 STOP xxxx 11 to be
printed (where xxxx is the statement number of the STOP
statement). In addition, the program can be restarted by a CONT
command.

3-4

3.4.3 END Statement

The END statement causes the program to stop executing and
return to the command level of BASIC. In this version of BASIC,
the END statement may appear more than once in a program or need
not appear at all.

3.4.4 GOTO Statement

The GOTO statement causes the program to jump to the
statement number specified. The program then continues at the new
statement number. In the example below, the GOTO statement will
cause statement 230 to be skipped.

220 GOTO 300
230 LET A=77
300 PRINT A

3.4.5 GOSUB Statement

The GOSUB statement causes the program to execute a
subroutine. A subroutine is a sequence of statements that perform
some task and may be called one or more times in a program. Upon
completion of a subroutine, its RETURN statement causes control to
be passed to the statement immediately after the GOSUB which
called the subroutine. Subroutine nesting (one subroutine calling
another) is limited to 8 levels.

In this example, both the GOSUB and RETURN statements are
shown:

Main Program:
110 INPUT X
120 GOSUB 210
130 PRINT Y
140 STOP

Subroutine:
210 Y=(X+3)/3.1415926
220 RETURN

3.4.6 RETURN Statement

The RETURN is used at the logical end of a subroutine to
return to the statement directly following the GOSUB statement.
The RETURN statement must be the last logical statement of the
subroutine. It may appear more than once within a subroutine.

3.4.7 ON Statement

The ON statement transfers the program to another statement
or subroutine based upon the value of the expression following the
ON statement. The expression will be evaluated, truncated to an
integer (whole number), and the program then transferred to the
statement number corresponding in position to the expression
value.

3-5

110 ON N GOTO 200,300,550,710
800 ON (K+5)/3 GOSUB 450,7790

In the above examples, if N were evaluated as 3, the program
would go to statement number 550. If K were 1, the subroutine at
statement number 7790 would be performed. The expression must
evaluate to a positive value less than 256. If N were 5 or
greater in the above example, then an error message would be
printed on the console during execution of the program.

3.4.8 IF and THEN Statements

The IF and THEN statements are used to control the execution
sequence via the testing of specific conditions. Various
relational operators are used \·lith the IF statement to determine
the specific conditions that will cause the program to execute the
statement following the THEN.

The relational operators listed below are used:
= Equal
<> Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

If the relational expression specified in the IF statement is
true, then the statement following the THEN is executed.
However, if the relational expression is false, program execution
continues with the statement following the IF statement. If a
statement number appears after the THEN, it is taken as an implied
GOTO statement and control will be transferred to the specified
statement number.

Example: 20 IF A<B THEN 150
30 IF A=B+4 THEN PRINT "VALUE=";A
40 IF K3>C3 THEN K3=0
50 IF A$= 11 YES 11 THEN 500

3.4.9 USER Function

The USER function acts as a form of a control statement which
allows calls to a user-written, non-BASIC subroutine. With the
USER function, operations or calculations written in assembly or
other language may be performed. A description of the USER
function is found in section 5.6.2.

3.5 INPUT/OUTPUT STATEMENTS

Input/Output statements are used to control the flow of data
b e t we e n t h e E X 0 R c i s e r s y s t e m a n d t h e p e r i p h e r a l s • T h e f o l 1 o "' i n g
paragraphs list and explain each of the input/output statements.
Refer to Chapter 6 for disk file I/0 operations available in MDOS
BASIC. The following table lists I/0 device assignments:

1
2
3-9

= console (default)
= line printer
= disk file (refer to Chapter 6)

3-6

3.5.1 INPUT Statement

The INPUT statement permits the user to enter data from the
console keyboard or disk data file during program execution. The
following example presents two typical INPUT statements:

120 INPUT X

130 INPUT X$

means to input one numeric value
(X) from the console keyboard. The
number may be integer, decimal, or
exponential.

means to input one string variable
(X$) from the console keyboard.

The string in the above example may consist of alphanumeric
and special characters up to a length of 18. If a blank (space)
or comma is used within the string, the string must be enclosed in
double quotes.

Example: "ADAMS, BEN"

The double quote(") itself cannot be input as a string character.

The INPUT statement may have more than one variable specified
after it. This is called a "list", and may consist of a mixture
of numeric variable names and string variable names. In addition,
the first item following the INPUT may be a literal which will
print on the console. All list items must be separated by commas.

When an INPUT statement occurs in the program, a question
mark (?) character is printed on the console printer (unless disk
file input is being used). In response to this prompt, the user
types in the requested data, separated by commas, and followed by
a carriage return. Numbers and strings can be entered in response
to an INPUT statement. If insufficient data is entered by the
user, the system will once again prompt with a question mark. If
no data is entered, the prompt will be repeated. If non-numeric
data is entered into a numeric variable, the system will prompt
with the word RE-ENTER. The example below illustrates the method
of entering both numeric variables and string variables using the
INPUT statement. Note that each of the variables are separated by
a comma.

140 INPUT A$,X,Y,Z

150 INPUT "ENTER B",X

Multiple inputs must be entered. If
the expected number of values are not
entered, the system will prompt with
another 11 ? 11 character.

Prints the message enclosed within
quotation marks as a prompt to the
user. A 11 ? 11 character is then
printed directly after the message.
The system then awaits the entered
value. This value is stored in
variable X. A semicolon is not
permitted in place of the comma here.

3- 7

If only string variables remain unsatisfied in an INPUT list,
a carriage return will terminate the INPUT and the remaining
string variables will be null. This facilitates entering data
which may or may not cross the 18 character boundaries of the
string variables.

3.5.2 DATA and READ Statements

The DATA and READ statements are used with each other to
provide a method of assigning internally stored initial values to
variables.

The DATA statement sequentially loads each value specified in
the argument field {the field of data directly following the DATA
directive) into the data buffer. Each value within the argument
field is separated from the next by a comma. If string variables
are used within the "argument field, they do not need to be
enclosed within quotation marks unless they contain a comma within
the string. All DATA statements, regardless of where they occur
in the program, cause the DATA argument to be combined into one
l is t.

The READ statement sequentially accesses the data buffer and
assigns the values previously stored {by the DATA statement) to
the variables specified in the argument field of the READ
statement. Each variable specified by the READ statement is
separated by a comma.

When using READ statements, both numeric and string variables
may be used intermixed. However, if this is done, they must be
used in the same sequence to match the type of data in the DATA
statements. An example using both numeric and string variables
follows:

160 DATA 10,20,30,45.5, 11 TEST, ONE 11 ,1.2345,6.7E8,END
170 READ A,B,C,D,E$,F,G4,F$

Each time a READ statement is encountered in the program, the
next available value from the data buffer is assigned to the
variables used as arguments of the READ. If there are more
variables in the READ statement than values remaining in the data
buffer, an error message would be generated. It is permissible to
have more values in the DATA statement than variables in the READ
statement.

The following example shows DATA and READ statements and the
equivalent method of assigning values to variables using the LET
statement:

210 DATA 1,2,3,4,5,6,7,8,9,END
220 DATA EXIT
230 READ A,B,C,D,E,F,G,H,I
240 READ Z$,X$

3-8

i s the equivalent of:

210 LET A=l
220 LET 8=2
230 LET C=3
240 LET 0=4
250 LET E=5
260 LET F=6
270 LET G=7
280 LET H=8
290 LET 1=9
300 LET Z$= 11 END 11

310 LET X$= 11 EXIT 11

3.5.3 RESTORE Statement

The RESTORE statement resets the data buffer pointer, which
is advanced by the execution of READ statements, to the first
position in the data buffer. This permits the first argument of
the first DATA statement to be reused for the next READ statement.
The example below shows how the RESTORE statement can be used and
also presents the equivalent of the example if LET statements were
used:

400 DATA 1,2,3
410 READ A,B
420 RESTORE
430 READ C,D

is the equivalent of:

400 LET A=l
410 LET B=2
420 LET C=l
430 LET 0=2

3.5.4 PRINT Statement

The PRINT statement enables the user to print the value of
expressions, literal strings, or variables on the console printer,
line printer, or to a disk data file. The various variables or
literal strings of the PRINT statement may be separated by using
either a comma (,) or a semicolon (;). If commas are used, each
variable or literal string will be separated into 16-character
zones. If more is to be printed than line length permits, the
remaining variables or strings are printed on the following line
or lines. See LINE statement, section 3.5.7.

If semicolons are used to separate the variables or literal
strings, then no separation is used for strings or one space is
provided after numeric values. The semicolon used at the end of
the PRINT statement inhibits the normal carriage return/line feed
function.

To print to a line printer, the use of the form PRINT #2 is
required. Refer to Chapter 6 for disk 1/0 information.

3-9

Various uses of the PRINT statement are shown and explained
in the following examples:

710 PRINT

720 PRINT A,B,C

730 PRINT "LITERAL STRING"

Skips a line.

Prints the value of A, B, and C
separated into 16 character
zones. If the semicolon (;) were
used, the A, B, and C values
would be printed with only one
space between them.

Prints the string
contained within the
marks.

characters
quotation

740 PRINT #2,"VALUES A & B= 11 ;A,B
Prints the string characters
contained within the quotation
marks on the line printer
directly followed by the values
for A and B.

The PRINT statement may also be used to print the results of
expressions, such as PRINT A+B/SQR(C-D).

3.5.5 POKE Statement

The POKE statement stores a specified DECIMAL value into the
specified DECIMAL memory location. The format for this statement
i s :

sn POKE(ma,nv)

where 11 sn 11 is the
address, and 11 nv 11

inclusive.

statement number, 11 ma 11 is the decimal memory
is the decimal numeric value from 0 to 255

CAUTION! This statement should be used with extreme care. Using
an incorrect memory address may change the BASIC program, the
BASIC interpreter, or some other memory location causing
unpredictable results.

3.5.6 PEEK Function

The PEEK(X) function provides the decimal value contained in
the decimal memory address specified by 11 X11 in the function. The
number specified by X can be a constant or a variable.

Example: 170 LET A=PEEK(B)

In the above example, A will now contain the decimal value of
data found in memory located at decimal address equal to the value
of B.

3-10

3.5.7 LINE Statement

The LINE statement specifies the number of character
positions capable of being printed on a single line by the
program. If the printer position is within the last 25% of the
line length specified with this statement and a "space" character
is to be printed, a carriage return and line feed operation will
be performed to move the printer to the start of the next line.

This is done to prevent separation of a \'/Ord or number
between two lines. However, if this feature is not desired, it
can be effectively inhibited by setting the total line length to a
value which is at least 133% of the desired line length.

Example: 810 LINE=60

would mean a 60 character line length.
the first 45 characters would cause
return/line feed operation.

3.5.8 DIGITS Statement

The first "space" after
the automatic carriage

The DIGITS statement establishes the number of digits printed
to the right of the decimal point. Digits in excess of the number
specified by the DIGITS statement will be truncated (cut off, not
rounded). If the value to be printed contains fewer digits than
the number specified by the DIGITS statement, the remaining
positions will be zero-filled. If DIGITS=O is specified, the
value will be printed in the default floating point mode (omitting
non-significant zeros and un-needed decimal point). The maximum
value which can be specified for the digits is 9.

Example : 130 DIGITS=4
140 A=l23.456789
150 PRINT A

The above example will print as: 123.4567

3.6 DOCUMENTATION STATEMENTS

Documentation statements are used to add comments to a BASIC
program. Only one documentation statement is used in BASIC - the
REM statement.

3.6.1 REM Statement

The REM statement (from REMark) causes the comment on that
line to be printed during a LIST of the program only. It is not
executed and not printed during execution. The REM statement may
contain up to 72 characters, including the statement number and
spaces.

3.7 DEBUG STATEMENTS

Debug statements are used to assist the programmer in tracing
through the execution of a program or to allow going back to EXbug
with all its diagnostic powers. The three statements of this type
are described in the following paragraphs.

3-11

3.7.1 TRACE ON Statement

The TRACE ON statement causes the console to print each
statement number as the statement is executed. This statement
provides a valuable debug tool, since the user can easily follow
the course of the program as it is being run. The statement
number is printed in brackets [] to avoid confusion with other
printout.

3.7.2 TRACE OFF Statement

The TRACE OFF statement turns off the debug trace feature.

3.7.3 PATCH Statement

The PATCH statement allows returning to EXbug from within a
BASIC program. The EXbug features are now available to the user.
When the user desires to return to BASIC, the EXbug command ;P is
typed on the console keyboard, and the system will return to the
BASIC program at the step following the PATCH statement, or to the
command mode of BASIC if PATCH was used as a command. Refer to
Appendix F (RETURNING TO MINIBUG/MICROBUG) for ROM-Resident BASIC
Interpreter differences.

,CAUTION: This will not work as described if the
c~er pseudo register or the interrupt vectors are
during the use of EXbug.

3-12

program
changed

CHAPTER 4

COMMANDS

4.1 INTRODUCTION

BASIC provides a comprehensive set of commands which are
used to control the operation of the interpreter. These
commands permit such operations as program loading, editing,
execution, and saving. All BASIC commands are typed without
statement numbers and are executed immediately. The
following paragraphs list the commands used in BASIC and
describe the operation of each. Most statements discussed in
chapter 3 may also be used as commands by omitting the
statement number.

4.2 SYSTEM COMMANDS

System commands are used to immediately input or output
data from or to a system peripheral device. The system
commands are described in the following paragraphs.

4.2.1 LOAD Command

The LOAD command clears the memory and automatically
loads into memory a BASIC program previously saved on either
cassette or paper tape by the SAVE command. This command is
NOT used for loading from diskette.

4.2.2 APPEND Command

The APPEND command operates in exactly the same manner
as the LOAD command except that the memory is not cleared.
APPEND adds to the existing program. This command is NOT used
for loading from diskette.

4.2.3 SAVE Command

The SAVE command is used only when the user desires to
make a copy of the program currently stored in memory, onto
either cassette or paper tape. The SAVE command causes BASIC
to produce the necessary control signals to the read/record
mechanism or paper tape reader/punch. This command is NOT
used to save programs on diskette (see EXIT). Refer to
Appendix F for ROM-Resident BASIC Interpreter differences.

4.2.4 EXIT Command

The EXIT command is used in either of two ways,
depending upon whether disk BASIC or tape BASIC is being
used. If BASIC is stored on cassette or paper tape, the EXIT
command returns control directly to EXbug. If BASIC is
stored on diskette, the EXIT command first prompts the user
with the message:

SAVE (Y/N)?

4-1

If the user enters a Y, then the program currently stored in
memory will be copied onto the diskette under the new file
name (or old file name if no new one was specified) specified
on the original disk operating system command line (see 2.1)
and then control is returned to the disk operating system.

If the user enters an N, control is returned directly to
the disk operating system (MOOS).

4.2.5 LIST Command

The LIST command is used
current program on the console or
command has two forms:

to print a listing of the
line printer. The LIST

LIST [snl][,sn2]
LIST #2[,snl][,sn2]

The first form is used to direct the listing to the
console while the second directs the listing to the line
printer. If no statement numbers are specified, the entire
program is listed. When only the first statement number
(snl) is specified, the single line with this number is
printed. If both statement numbers (snl,sn2) are specified,
the lines corresponding to this inclusive range of numbers
are printed.

The following examples present the various uses of this
command.

LIST

LIST #2

LIST 320

LIST #2,100,450

1 i st al 1 statements

list all statements on line
printer

list statement number 320

1 i st al 1 statements from
statement number 100 to
statement number 450 inclusive
on the line printer.

Refer to Appendix F for ROM-Resident BASIC Interpreter
differences.

4.3 PROGRAM EXECUTION COMMANDS

Program execution commands are used to execute
previously entered program statements. BASIC uses four
program execution commands: RUN, CONT, NEW, and the Break
Key. These commands are listed and explained in the
following paragraphs.

4-2

4.3.1 RUN Command

The RUN command causes the program currently stored in
memory to begin execution starting at the first (lowest)
statement number. The RUN command also resets all program
parameters and initializes all variables to zero.

The "GOTO sn 11 can be used as a command in cases where it
is desired to begin execution at statement number 11 sn 11

instead of the first statement, and/or where it is desired
NOT to clear all variables at the start of execution.

4.3.2 CONT Command

The CONT command (CONTinue) causes the program to
continue after a STOP statement or 11 break 11 key has been
encountered in the program. The program will continue with
the statement following the STOP statement or where
interrupted by 11 break 11

• This command cannot be used if an
error was encountered in the program or if the program has
been changed after a STOP statement or 11 break 11 key
depression.

4.3.3 NEW Command

The NEW command causes
memory to be cleared as
effect of using this command
currently in memory.

#LIST

the working storage area in
shown in the example below. The
is to erase all of the program

10 REM DEMO OF NEW
20 STOP

#NEW
#LIST

4.3.4 BREAK KEY Command

Depressing the BREAK key on the console keyboard will
cause the BASIC program to halt execution and enter the
command mode, responding with the word READY and the # prompt
sign. BASIC will now accept commands or allow the program to
be modified. The BREAK key can be used to stor a LIST
command before completion or to halt the execution of a
program. Refer to Appendix F (CONTROL C COMMAND) for ROM­
Res i dent BASIC Interpreter differences.

4.4 EDITING COMMANDS

Two commands are used to aid in editing a program being
entered.

4-3

4.4.1 CONTROL X Command (Cancel)

Depressing the X key while the CONTROL key is held down
will clear the current line buffer. The system will respond
by printing the word DELETED and moving the printer to the
start of a new line.

4.4.2 RUBOUT or DEL Command (Backspace)

Depressing the RUBOUT or DEL key on the terminal
keyboard will delete the last character entered on the
current line each time the key is depressed. The character
just deleted will be echoed back. BASIC will prevent
deletion past the start of the current line.

4.5 SIZING COMMANDS

Sizing commands are used to establish the maximum number
of characters per line and the maximum number of digits to
the right of the decimal point that the user will permit to
be printed. Two s1z1ng commands, LINE and DIGITS, are
described as statements in sections 3.2.7 and 3.2.8.

4-4

CHAPTER 5

FUNCTIONS

5.1 INTRODUCTION

Intrinsic functions are program functions which are
inherent to the BASIC Interpreter itself and therefore do not
require a separate routine to be defined. Four types of
intrinsic functions are included in BASIC: Control, Data,
Character String, and Transcendental.

5.2 CONTROL FUNCTIONS

The intrinsic control functions permit the user to
position the print head on the printer or to ascertain its
position. The two control functions provided are TAB and
POS.

5.2.1 TAB Function

The TAB function moves the print head to a specified
print column. This function is similar to the typewriter
function of the same name. If the print head is already past
(to the right of) the position specified by the TAB function,
the print head will not move.

The first print position (left side) is position number
1. The print head position may be expressed by a numeric
variable or constant. More than one use of the TAB function
may be made in a single print statement.

Example: 430 PRINT TAB(23);A;TAB(C7);E$

5.2.2 POS Function

The POS
position of
function.

function returns the value of the present
the print head. This is the reverse of the TAB

Example: 620 PRINT A;U$;W$;
630 IF POS>66 THEN 900
640 L7=POS

5.3 DATA FUNCTIONS

Data functions provide the user with simple access to
certain useful operations.

5.3.1 RND Function

The RND(X) function produces a set of uniformly
distributed pseudo-random numbers. If no argument is used
with the function, it will be assumed to be zero. When a
zero argument is used, the function will return a different

5-1

number in the range of 0.0000000 to 0.9999999 inclusive. If
a number other than zero is used for the argument, then a
specific random number will be returned each time (the same
number each time).

Example: 320 Nl=lOO*RND(O}
330 N2=INT(RND*l0}

In the above examples, Nl will be assigned a value
between 0 and 99.99999 inclusive, and N2 will be 0 to 9
inclusive.

5.3.2 INT Function

The INT(X} function returns the largest integer less
than or equal to the value of X, regardless of whether the
value is positive or negative.

Example: 345 A=INT(3.14)
350 B=-1.4
355 C=INT(B)

After executing the above statements, A will equal 3 and C
will equal -2.

5.3.3 ABS Function

The ABS{X} function returns the absolute value of X.

Example: 270 A=ABS(-7.3)
280 B=88.3
290 C=ABS(B)

After executing the above statements, A will equal 7.3 and C
will equal 88.3.

5.3.4 SGN Function

The SGN(X) function returns the value of 1,
according to the sign of X (positive, zero
negative).

Example: 1130 A=5
1140 B=-7
1150 C=SGN(A)
1160 D=SGN(B)
1170 E=SGN(O}

0, or
value,

-1
or

After execution of the above statements, C will equal 1, D
will equal -1, and E will equal O.

5.3.5 PEEK Function

This function is described in paragraph 3.5.6.

5-2

5.4 CHARACTER STRING FUNCTIONS

The character string functions are used to perform
various operations such as extracting substrings or
conversion between string and numeric.

5.4.1 LEN Function

The LEN(X$) function returns the number of characters
contained in the string specified in the argument.

Example: 820 LO=LEN("THE QUICK")
830 B$="ABCDEF 11

840 Ll=LEN(B$)

The value of LO will be 9 and the value of Ll will be 6 after
the above statements are executed.

5.4.2 ASC Function

The ASC(X$) function returns the ASCII equivalent
numeric value (in decimal) of the first character of the
string in the argument.

Example: 330 B$="ABCDEF 11

340 V=ASC(B$)
350 W=ASC("3")

V wil 1 have the value 65 (the ASCII decimal value of 11 A11
) and

W will have 51 after execution of the above statements. See
Appendix B for ASCII to decimal conversion.

5.4.3 CHR$ Function

The CHR$(X) function returns the single string character
equivalent in value to the argument specified. This is the
inverse of the ASC function.

Example: 880 B$=CHR$(65}
890 W=51
900 C$=CHR$(W)

B$ will now contain the single character 11 A11 and C$ will
contain 11 311

• Note thar this is a method which can be used to
print the double quote (") character.

5.4.4 VAL Function

The VAL(X$) function returns the numeric value
equivalent to the numeric string specified in the argument.
The string must contain a valid number (alphabetic characters
not permitted except in the form 0.123E-4).

Example: 1500 A$="123.45 11

1510 A=VAL(A$)

5-3

1520 B=VAL("-87.654 11
)

A would equal 123.45 and B would equal -87.654 after
execution of the above statements.

5.4.5 STR$ Function

The STR$(X) function returns the string representation
of the numeric value specified by the argument.

Example: 770 A=l23.45
780 A$=STR$(A)
790 B$=STR$(-87.654)

A$ would now contain 123.45 and B$ would contain -87.654.
Note that this is the inverse of the VAL function.

5.4.6 LEFT$ Function

The LEFT$(X$,N) function returns a substring of
characters from the string of characters specified by the
argument (X$). The substring returned begins with the
leftmost character of the string X$ and continues for a total
of N characters.

Example: 400 A$="THE QUICK BROWN"
410 T=7
420 B$=LEFT$(A$,T)
430 C$=LEFT$("ABCDEF",4)

The string variable B$ \'Jill now contain "THE QUI"
and C$ will contain "ABCD"

5.4.7 RIGHT$ Function

The
characters
argument.
right-most

RIGHT$(X$,N) function returns a substring of
from the string of characters specified by the

The substring returned consists of the N
characters of the argument string.

Example: 990 A$="THE QUICK BROWN"
1000 T=7
1010 B$=RIGHT$(A$,T)
1020 C$=RIGHT$(11 ABCDEF 11 ,4)

The string variable B$ will now contain "K BROWN" and C$ will
contain 11 CDEF 11

•

5.4.8 MID$ Function

The MID$(X$,Y,Z) function returns a substring of
characters from the string of characters specified by the
first argument. The substring will consist of characters
beginning at character position Y of the argument string, and
continuing for a total of Z characters.

5-4

Example: 30 A$= 11 THE QUICK BROWN"
40 T=5
50 B$=MID$(A$,T,6)

will return the string "QUICK 11 in 8$.

5.5 TRANSCENDENTAL FUNCTIONS

Transcendental functions provide the user with an easy
method of performing more complex calculations than provided
by other BASIC operations. These functions are listed and
explained below. The results obtained from these functions
are only accurate to six significant digits.

FUNCTION

SIN(X)
COS(X)
TAN(X)
ATAN(X)
LOG(X)
EXP(X)

SQR(X)

EXPLANATION

Returns the SINE of X (X is in radians).
Returns the COSINE of X (X is in radians).
Returns the TANGENT of X (X is in radians).
Returns ARC TANGENT of X (X is in radians).
Returns the NATURAL LOGARITHM of X.
Returns the base of the natural logarithm
raised to the Xth power (inverse of LOG).
Returns the SQUARE ROOT of X.

5.6 USER DEFINED FUNCTIONS

In addition to the functions previously described, BASIC
also permits user defined functions or calling of machine
language subroutines.

5.6.1 DEF Function

The DEF function permits the user to create a function
which can be used within a program. To define this type of
function, the statement starts with DEF, followed by the
letters FN and one additional alphabetic letter, followed by
a non-subscripted numeric variable enclosed in parentheses,
and finally followed by the equal sign and any valid
expression.

Format: DEF FNx(v)=expression
where x is a single letter A-Z and v is a variable name.

The user may then call upon this defined function by the
three letter name (FNA through FNZ) just as he would any
other function. A function MUST be defined before it is used
and may NOT be defined more than once in any program.

A brief program is shown in the example below to
illustrate the use of the DEF and a user-defined function.

5-5

Example: 100 DEF FNC{X)=2*3.1415926*X
110 PRINT "ENTER RADIUS";
120 INPUT R
130 C=FNC{R)
140 PRINT #2, 11 A CIRCLE WITH RADIUS OF 11 ;R;
150 PRINT #2, 11 HAS A CIRCUMFERENCE OF 11 ;C
160 STOP

5.6.2 USER Function

The USER function is used to call
subroutines to perform some operation or
possible or desirable to write using BASIC.
ROM-Resident BASIC Interpreter, refer to
proper memory addresses.)

The form of the function is:

340 A=USER(B)

machine language
calculation not

(If using the
Appendix F for

If no "user subroutine" is present, the above statement
will act as a simple assignment (A=B). However, if a
"user-subroutine" is written, the value of B may be passed to
the subroutine, and one value as a result of the subroutine
may be passed back to A.

To call this "user subroutine", its starting address
must be stored in memory locations 67 and 68 {hexadecimal)
and it must contain an 11 RTS 11 (op-code hexadecimal 39) at the
subroutine's logical end.

The "user subroutine" can pass the arguments by getting
the data at a location whose starting address is found in 5D
and 5E (hexadecimal) of memory and storing the results there.
The data is stored in a 7 byte area beginning at the address
found in 5D and 5E. The first through fifth bytes contain
the value in BCD !O's complement representation. The seventh
byte contains the exponent in 2's complement representation,
adjusted so the decimal point is to the left of the leftmost
non-zero digit of the number. The sixth byte is zero.

Examples: 137.1 would be represented as
01 37 10 00 00 00 03

while -0.0012 would be represented as
98 80 00 00 00 00 FE

5-6

CHAPTER 6

DISK FILE I/0 (MOOS ONLY)

6.1 INTRODUCTION

The MOOS version of BASIC allows the user to create and
manage sequential disk data files. Disk data files are
similar to data defined via the DATA statement. Like the
DATA statement, the use of disk files allow the user to
define data prior to executing a program and to read it with
the INPUT statement. Unlike the DATA statement, data files
may also be created with the PRINT statement.

Up to three data files may be accessed at one time. All
data files must be in ASCII format (type 5). The statements
used in disk file operations are explained in this chapter.

6.2 OPEN Statement

The OPEN statement assigns a file number to an MOOS file
name, and prepares the file for future data transfers. This
file number is then used with the PRINT, INPUT, RESTORE, and
CLOSE statements. A maximum of three data files may be open
at one time. Each is opened by the OPEN statement as
f 011 0 ws :

sn OPEN #n,filename[.suffix][:lun],m

where : s n i s the BAS I C statement n·u m be r.

n is the file number (an integer from 3 through 9).

filename is the MOOS data file name.

suffix is the filename suffix (default is SA).

lun is the logical unit number (default is 0).

m is one of the following data transfer modes:

I is open input only, file name must exist.

0 is open output only, file name must NOT exist.

U is open update, file may or may not exist.

Examples of the OPEN statement are:

140 OPEN #5,DATA45,I
150 OPEN #3,PFILE.DF:l,O

The file DATA45.SA on drive 0 must exist and will be opened
for reading data from it only. File PFILE.DF on drive 1 will
be created and opened for writing to it only. It must not
have previously existed.

6-1

The U mode is most useful for appending data to the end
of an existing data file. The program must first read to the
end of old data, then additional data may be written to the
file. If the last operation on a file open for update was a
write, then the remainder of the file is automatically
truncated upon closing the file. A data file may be deleted
in BASIC by opening in the U mode and then closing without
reading or writing the file. Therefore, caution must be
observed when using the U mode.

The OPEN statement may be used in the direct mode as a
command.

6.3 CLOSE Statement

The CLOSE statement releases
with an MOOS file name. If a file
is not properly closed, part or
last several records) may be lost.
contain extraneous data at the end

the file number associated
opened for output (O mode)
all of the last record (or

In addition, the file may
of the file.

The format of the CLOSE statement is

sn CLOSE #n

where sn and n are the statement and file numbers.

When the execution of a program is abnormally terminated
by an error or the BREAK key, the files are NOT released and
NOT closed. Prior to running the program again, any open
files must be closed.

The CLOSE statement may be used in the direct mode as a
command.

A file opened for output and not written to, will, upon
closing, be deleted from the MOOS diskette directory.

6.4 RESTORE Statement

When used in conjunction with a disk file, the RESTORE
statement resets the file pointers to the beginning of a
file, so that subsequent access will start at the beginning
of the file.

The format of the RESTORE statement is

sn RESTORE #n

where sn and n are the statement and file numbers.

This statement is valid only for files opened in the
input or update modes. The RESTORE statement may be used in
the direct mode as a command.

6-2

6.5 INPUT Statement

Records from the disk file may be read via the INPUT
statement.

sn INPUT #n, list

where sn and n are the statement and file numbers and list is
a list of one or more variable names separated by commas.

This statement can only be used for a file open for the
input or update modes and will read a record at a time (a
record may consist of 1 or more fields). The INPUT statement
may be used in the direct mode as a command.

6.6 PRINT Statement

Data records may be written to an MOOS file by the PRINT
statment.

sn PRINT #n, list

where sn is the statement number, n is the file number, and
list is a list of one or more variable names and/or
constants, literals, or expressions.

Numeric data and string data will be written to the disk
file in the same format as if they were being printed on a
printer. Therefore, the list items on a PRINT statement may
be separated by either a comma or semicolon, and in addition,
the list may contain a literal string enclosed in quotes.

This statement is valid only for files opened in the
output or update mode and will write one record to the disk.

6.7 EXAMPLES OF DISK FILE I/0

The following examples will serve to illustrate the use
of the disk file I/0 statements within a program.

6.7.1 Creation of a Data File

100 OPEN #3,DFl,O
110 FOR J=l TO 20
120 K=J*3.1415926
130 PRINT #3,"J= 11 ;J; 11 K= 11 ;K
140 NEXT J
150 CLOSE #3
160 STOP

The above program will create a file named DFl.SA on drive 0
which will contain data in the form of:

J= 1 K= 3.1415926
J= 2 K= 6.2831852
••• etc ••.

for values of J from 1 to 20.

6-3

6.7.2 Reading a Data File

100 OPEN #7,DFl,I
110 FOR A=l TO 20
120 INPUT #7,D$,X,E$,Y
130 PRINT #2,D$;X;E$;Y
140 REM ** THE ABOVE LINE WILL PRINT ON LINE PRINTER
150 NEXT A
160 CLOSE #7
170 STOP

This will read the file previously created and print the
contents on the line printer. Note that the variable list in
the INPUT statement must correspond in type and order to the
data in the file.

6.8 End of File Detection

MOOS BASIC does not have end of file (EOF) detection
without causing an error, so the user must devise a method of
detection of the end of file. This is often accomplished by
using an EOF record containing data in one or more fields
which will not occur for valid records. For example, if the
first field of each record contained an employee number, and
the maximum digits possible is four, then the use of a
numeric value of 99999 might be a choice to detect the EOF.

6.9 Updating a Data File

Updating takes the form of deleting a record, adding a
record, or changing a record. In either case, the technique
is the same. The following are the steps a programmer may
take to update an MOOS BASIC data file:

1. Open the old data file for input (I).
2. Open a new scratch data file for output (0).
3. Input a record from the old data file.
4. If this record is to be deleted, go back to step 3.
5. If this record is to be altered, change any data.
6. Write this record to the scratch file.
7. If a new record is to be inserted before the next old

record, create it and write it to the scratch file.
8. Proceed through the complete old data file.
9. When done with the old file, close the old data file

and the scratch file.
10. Open the old data file in U mode.
11. Close the old data file. (This deletes it.)
12. Open a new file with old data file name (0).
13. Open the scratch file (I).
14. Copy, record by record from scratch to data files.
15. Close both files.
16. Open scratch file in U mode, then close to delete it.

6-4

6.10 Deleting a Data File

As can be seen from the previous section, a data file
may be quite easily deleted with a BASIC program by opening
in the U mode and then closing the file. However, if the
user desires protection from this happening accidentally,
delete protection should be placed on the data file using the
MOOS NAME command. A delete protected file cannot be deleted
by a BASIC program.

6.11 Data File Data Representation

The data in an MOOS BASIC created data file is stored in
ASCII format with space compression and is compatible with
the MOOS editor and other MOOS commands such as LIST. The
BASIC created data file may be edited, and conversely a file
intended for data input to a BASIC program may be created by
the editor or other means.

6-5

APPENDIX A

DECIMAL -+-->- HEXADECIMAL CONVERSION CHARTS

From hex: locate each hex digit in its corresponding column position and note the decimal
equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into the decimal
number to be converted , and (2) note its hex equivalent and hex column position . (3) Find
the decimal remainder. Repeat the process on this and subsequent remainders .

HEXADECIMAL COLUMNS

6 5 4 3 2 1

HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1,048 ,576 1 65 ,536 1 4,096 1 256 1 16 1 1
2 2,097, 152 2 131 ,072 2 8,192 2 512 2 32 2 2
3 3, 145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4, 194,304 4 262 , 144 4 16,384 4 1,024 4 64 4 4
5 5,242 ,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393 ,216 6 24 ,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28 ,672 7 1,792 7 112 7 7
8 8,388 ,608 8 524 ,288 8 32 ,768 8 2 ,048 8 128 8 8
9 9,437 ,184 9 589 ,824 9 36 ,864 9 2 ,304 9 144 9 9
A 10,485,760 A 655 ,360 A 40,960 A 2,560 A 160 A 10
B 11 ,534 ,336 B 720 ,896 B 45 ,056 B 2,816 B 176 B 11
c 12,582 ,912 c 786,432 c 49, 152 c 3,072 c 192 c 12
D 13,631,488 D 851 ,968 D 53,248 D 3,328 D 208 D 13
E 14,680 ,064 E 917 ,504 E 57,344 E 3,584 E 224 E 14
F 15,728 ,640 F 983 ,040 F 61,440 F 3,840 F 240 F 15

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BYTE BYTE BYTE

A-1

POWERS OF 2

2n

256
512

1 024
2 048
4 096
8 192

16 384
32 768
65 536

131 072
262 144

524 288
1 048 576
2 097 152
4 194 304
8 388 608

16 777 216

n

8
9

10
11

12
13
14
15
16
17
18
19
20
21

22

23
24

2° = 16°
24 = 161

28 = 162

212 = 163
216 = 164
220 = 165
224 = 166
228 = 151
232 = 168
236 = 169
240 = 1510

244 = 1611

248 = 1512
2s2 = 1513
2ss = 1514

2so = 151s

A-2

POWERS OF 16

15n n

1 0
16 1

256 2
4 096 3

65 536 4
1 048 576 5

16 777 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10
1 7 592 186 044 4 16 11

281 474 976 710 656 12
4 503 599 627 370 496 13

72 057 594 037 927 936 14
1 152 921 504 606 846 976 15

APPENDIX B

ASCII TO DECIMAL CONVERSION

LSD MOST SIGNIFICANT DIGITS
0 1 2 3 4 5 6 7 8 9 10 11 12

0
1
2
3
4
5
6
7
8
9

NUL LF DC4 RS (2
SOH VT NAK us) 3
STX FF SYN SP * 4
ETX CR ETB ! + 5
EOT so CAN II 6
ENQ SI EM # 7
ACK OLE SUB $. 8
BEL DC 1 ESC 3 I 9
BS DC2 FS & 0
HT DC 3 GS 1

Examples: A is decimal 65
BEL is 7
x is 120

B-1

< F p z d n x
= G Q [e 0 y
> H R \ f p z
? I s J g q {
@ J T A h r I
A K u s }
B L v ... j t 'V

c M w a k u DEL
D N x b 1 v
E 0 y c m w

APPENDIX C

ENHANCING PROGRAM OPERATION

When preparing a program in BASIC, execution time can be reduced
by observing the rules listed below:

1. The use of spaces should be 1 imited si nee they consume
both memory allocation and interpreter time.

2. Since BASIC must search for subroutines and functions, the
user should arrange the program in such a manner that the
most used subroutine or function is located at the start
of the program, followed by the second most used, etc. If
this is done, the time required for BASIC to search will
be reduced.

3. Whenever possible, use non-subscripted variables.
Subscripted variables take considerable processing time.

4. Using the
COS, TAN,
functions
the LOG
slow. To

arithmetic functions listed in section 5.5 (SIN,
etc.) is time consuming. Therefore, use these
only when necessary. Exponentiation uses both
and EXP functions, making exponentiation quite
square a number, use A*A instead of A52.

5. BASIC searches the symbol table for a referenced variable.
Variables are inserted into the table as they are
referenced. Therefore, time can be saved if a frequently
used variable is used early in the program so that this
variable is located near the start of the symbol table.

6. Numeric constants are converted each time they are
encountered in the program. Therefore, if a constant is
used often, assign it to a variable and use the variable
instead.

C-1

APPENDIX D

MINIMIZING MEMORY REQUIREMENTS

When writing a BASIC program, the size of memory required for
the program can be reduced by observing the rules listed below:

1. R E M (R em a r k) s t at em e n t s t a k e s p a c e i n memo r y , s o u s e t h em
sparingly. One byte is required for each character in the
remark.

2. Memory requirements for variables:

Each non-subscripted numeric variable requires 8 bytes.

Each non-subscripted string variable requires 20 bytes.

Each numeric array requires G bytes
per element.

p 1 us 6 bytes

Each string array requires 6 bytes plus 18 bytes per
element.

3. An implicitly dimensioned variable creates a 10 element
array (or 10 by 10 if two dimensions are used).
Therefore, if you do not intend to use 10 elements, save
memory by explicitly dimensioning the variable.

4. Each line in the program requires 2 bytes for the
statement number, 1 byte for the keyword (first word in a
statement), and 1 byte for every character following the
keyword including spaces, and 1 byte for the end of line
terminator. By using as few spaces as possible, memory
can be reduced.

5. BASIC requires the use of the first 256 bytes of memory
for scratchpad use.

D-1

APPENDIX E

ERROR MESSAGES

Various errors encountered in a BASIC program during execution
will result in BASIC printing an error message. Each error
message number is defined below and is displayed in the following
format:

ERROR #03 IN LINE 0110

Line 0000 means that the error was at the "command" level and not
caused by a specific program statement.

ERROR #

01

MEANING

Variable exceeds maximum (255) or is negative
when used with TAB, POKE, CHR$, or the ON
statement.

02 INPUT statement error.

03 Illegal character or variable.

04 No ending quote mark.

05 DIM error.

06 Illegal arithmetic or improper relational
operator.

07 Statement number not found.

08 Divide by zero attempted.

09 Excessive subroutine nesting (8 max.).

10 RETURN used without prior GOSUB statement.

11 Illegal variable.

12 Unrecognizable statement.

13 Parentheses error.

14 Memory full.

15 Subscript error.

16 Excessive FOR - NEXT loops (maximum of 8).

17 NEXT without FOR.

18 FOR - NEXT nesting error.

E-1

19 READ statement error.

20 ON statement error.

21 Input overflow.
characters.

Input 1 i ne exceeds 72

22 DEF function syntax error.

23 Function syntax error or function not defined.

24 STR$ usage error or mixing of numeric and
string variables.

25 String buffer overflow or substring too long.

26 I/0 operation error.

27 VAL function error.

28 Invalid or duplicate file number.

29 Maximum of 3 data files already open.

30 Invalid file name.

31 Invalid mode type (not I, 0, or U).

32 Data file cannot be opened, closed, or
accessed.

33 MOOS file is not in ASCII format.

34 Disk data record format error.

35 LOG function error.

36 BASIC program cannot be altered and continued
from a STOP.

E-2

APPENDIX F

ROM-RESIDENT BASIC INTERPRETER

INTRODUCTION

BASIC is also supplied as a 7K-byte firmware package to be used
in conjunction with the MINibug II and MICRObug monitors. Source
statements, as they are entered via the console, are stored in
the system workspace buffer. A Random-Access-Memory must be
available at this address, the capacity of which \'Jill determine
the maximum size of the BASIC source program and the amount of
elementary variables which can be accommodated in the user's
installation. SK bytes of R/W storage provide a comfortable RAM
capacity. The size of the workspace buffer may be expanded up to
16K bytes.

The operator communicates with
console which is linked to
MINibug/MICRObug. The console
peripherals: keyboard, printer,
recorder, CRT.

the BASIC Interpreter via a
the appropriate monitor

may include the following
reader/punch unit, cassette

The ROM-Resident BASIC Interpreter is basically identical to that
of the EXORciser-Resident BASIC Interpreter. This appendix
describes the differences. The term MINibug, as used in this
appendix, can be considered to refer to the MINibug II and
MICRObug monitors.

INVOKING THE BASIC INTERPRETER

The BASIC Interpreter may be invoked whenever MINibug performs
its main control loop; at that time, an asterisk is displayed on
the console. Typing the execute command 11 G 4000 11 causes the
interpreter to he entered. The interpreter then indicates its
readiness by displaying the following message:

ROM BASIC 1.31
READY

Prior to doing this, the workspace buffer has been cleared and
sized automatically; therefore, any BASIC source program which
may have been entered previously would be lost. This is due to
the fact that BASIC was entered via its cold-start entry point -
4000 (assuming the ROM-set is installed in a Micromodule 4 or
Editor/Assembler/BASIC Module).

A second entry point (hex address 4006) provides a means to gain
access to the interpreter without altering the workspace buffer
which may store a BASIC source program.

F-1

This warm-start entry point will normally be reached whenever the
operator desires to re-enter the Interpreter from MINibug. This
may occur when MINibug is accessed from Interpreter as a result
of the BASIC 11 PATCH 11 command, or as a result of a hardware reset
condition (the RESTART pushbutton is activated).

The BASIC 11 NEW 11 command provides a third way to re-initialize the
Interpreter operations. The effect of the NEW command, typed
while already under control of BASIC, is the same as when
entering the Interpreter cold-start address - i.e., the workspace
buffer is automatically cleared.

RETURNING TO MINibug/MICRObug

Should the operator desire to re-enter the MINibug monitor while
control is under the Interpreter, he may either:

1. push the RESTART button, or
2. type in the BASIC 11 PATCH 11 command.

In either case, care must be exercised when re-entering the
Interpreter, as described in the above paragraph.

SAVING THE SOURCE PROGRAM

After the BASIC source program has been successfully tested, it
may be saved on paper tape or cassette. The BASIC 11 SAVE 11 command
is used to that end. 11 SAVE 11 issues the necessary commands to
control a paper tape or digital cassette unit.

When an audio record is used (M68ADS equipped with the M68CIM
Cassette Interface Module), make sure that the baud rate is set
to 300. Rewind the tape. Type in 11 SAVE 11

, followed by a carriage
return. As soon as a series of squares is appearing on the ADS
screen, push the RECORD button of the recorder. The program will
be recorded. When the # sign is displayed on completion of the
record operation, push the recorder STOP button.

SENDING OUTPUT TO A LINE PRINTER

By specifying a port address of #2 in a PRINT or LIST command,
output will be directed to a 1 ine printer if the following steps
are implemented:

1. Write the software driver corresponding to its hardware
(PIA) interface.

2. Locate this driver at base address $6000.

3. Provide the hardware interface (PIA).

4. Use a 2708 type PROM programmer, such as MEX68PP3, to
change locations $5BEF/FO in the last ROM (BA?) from
the default console address to the line printer
driver base address, $6000.

F-2

5. Output is sent to the driver character by character
via the A accumulator.

6. The B accumulator and X-Reg must not be altered by
the user-written driver.

7. It is the user's responsibility to initialize the
hardware interface (PIA'S).

The Interpreter does not make any assumptions about the
hardware/software interface. A sample driver program is shown,
which is also compatible with the ROM Memory Assembler/Editor,
version 1.1. Refer to Table F-1 for other ROM BASIC constant and
jump vector locations.

TABLE F-1. ROM BASIC Constant and Jump Vector Locations

LOCATION(S) CONTENTS

$5BE7/8
5BE9/A
5BEB/C
5BED/E

5BEF/FO

5BF1/2
5BF3/4
5BF5/6

5BF7/9

5BFA/C

5BFD/F

CONSTANT TABLE
Start of workspace buffer address
Monitor top of stack address
Console input, no echo subroutine address
Console output subroutine address
User-supplied line printer driver address

(console address, as supplied)
ACIA Control/Status register address
ACIA Data Register address
Address of ACIA Control register setup byte

JUMP TABLE
(DO NOT MODIFY lST BYTE)

Jump to output 2 hex characters subroutine

Jump to output 4 hex characters + blank
subroutine
Jump to monitor entry point.

CONTROL X COMMAND

Depressing the X key while the CTRL key is held down causes the
current line buffer to be cleared and the system to move the line
printer to the beginning of a new line. The word DELETED is not
printed as in the EXORciser-resident BASIC version. See
paragraph 4.4.1.

F-3

CONTROL C COMMAND

Depressing and holding down the CTRL key on the terminal keyboard
and then depressing the C key wi 11 cause the BASIC program to
halt the current operation and to respond with the word READY.
The # prompt is not printed as it is for the equivalent command -
BREAK key used with the EXORciser-resident BASIC. See
paragraph 4.3.4. After the word READY has been printed, the
BASIC program will then accept further commands. The CTRL C
command is often used to stop a LIST command before completion,
or to halt the execution of a program.

USER FUNCTION

The ROM BASIC "user function" operates the same as the RAM
version except the addresses are different, as shown below:

USER SUBROUTINE

Starting Address

Pointer to data
arguments

RAM BASIC

$0067/8

$005D/E

See paragraph 5.6.2 for more information.

INSTALLING NEW 7K ROM BASIC VERSION 1.31

ROM BASIC

$0049/A

$003F/40

a. Replace the old Bl ROM (51AW1565X22) with the new Bl
ROM (51AW1565X45).

b. For MINIBUG BASIC, replace the old 87 ROM
(51AW1565X28) with the new B7 ROM {51AW1565X46).

c. For MICROBUG BASIC, replace the old B7 ROM
(51AW1565X29) with the new B7 ROM (51AW1565X47).

d. The other ROM's, B2 (51AW1565X23) through 86
(51AW1565X27), remain the same.

TESTING ROM BASIC PROGRAM INTEGRITY

A checksum byte (the two's complement of the sum of all bytes in
the ROM's) is included in 7K ROM BASIC, version 1.31. Therefore,
the total of all bytes, excluding the constant and jump vector
locations as shown in Table F-1 in the 7K program, is zero for
both the MINibug and MICRObug versions. Inclusion of this
checksum byte (location $5BE6) makes it easy to test the
integrity of the program through the use of the simple routine
provided below, which sums all bytes in the A accumulator. The
routine is position independent and may be entered into any

F-4

available RAM through the system console, using the memory
examine and change function provided by the system monitor. Use
the monitor go-to location and execute function to start the
test. Since, on completion, execution of the SWI instruction
causes the MPU registers to be displayed, inspection of the A
accumulator gives the result: pass = ~' fail # ~. The same
technique can also be used to monitor the integrity of programs
stored in user EPROM's during program development.

Comments Column

$0000 CE 6400 START LOX #$4000
$0003 4F CLRA
$0004 AB 00 LOOP ADDA x SUM ROM BYTES $4000-$5BE6
$0006 08 INX
$0007 8C 8000 CPX #$5BE7
$000A 26 F8 BNE LOOP
$0 ooc 3F SWI ** BREAKPOINT A REG = TOTAL **

F-5

PAGE 001 LPREX • SA• I LPREX *** SAMPLE USER LPR PR<X3. FOR .\i AE68 VI.

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016

00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
0002,8
00029
00030

00032

00034
00035
00036

ECI 0
ECll
ECl2
ECl3

4000

LPREX NAM
TTL
OPT

*** SAMPLE USER LPR PR ex:;. Ff~ MAE68
CREF

* 10 MAY 19791
* * LINE PRINTER DRIVER FC~ CENTR<mICS TYPE
* INTERFACE THROUGH A IJlA ,WITH OUTPUT
* CHARACTER ON A SIDE, I NP.UT STATUS ON B SIDE
* * F<~ 2MHZ <~ LESS MPU CYCLE TIME
* THIS 15 THE SIMILAR TO THE RESIDENT MOOS
* CONTR<X..ER ROM LINE PRINTER R<lJTINES.
* VER. 1.2 19 FEB 79 * COPYRIGHT 1978, 1979 BY MCJfOR<LA INC
*

* LINE PRI~TER PIA ADDRESSES *
* ----~---------------------
*
* CAUTION• THE PIA ADDRESSES MUST BE PROPERLY
* ------- SELECTED FOR COMPATIBILITV l'llTH

* EACH SYSTEM"S MEMORY MAP TO AVOID
* REDUNDANT AND/OR NON-VALID MEMORY

* SECTIONS!
* .A DATA EQU SECIO *** EX BUG COMP.AT IBLE

A CNTRLI EQU SEC 11
A STAT EQU SECl2
A CNTRL2 EOU SEC 13

A R<>MBAS EQU $4000

*******************·***·* * LPR CALLING VECTcms *

*

•
_______ .. _________

START <F 7K ROM BASIC

6000 <RG $6000
00037
00038A
00039.A
00040
00041A 6003
00042

6000 7E 602A A LPROUT JMP LISTW SEND CHAh iN AR TO LPR
* CrlAIT iF ERR<~>

7E 6017 A LPRINT JMP LPINIT INIT. LPR CPIA"S>
* NOTES THE ABOVE TWO VECTORS ARE REQUIRED -'JUM~

00043 * TYPE VECTORS FOR MAE68 VER. I. I .~ UP!
00044 *--------~---------------------------------------
00045 *
00046 * OPTIONAL, BUT USEFUL
00047A 6006 7E 602F A LPRO JMP LIST
00048 *
00049A 6009 BO 6003 A BASIC JSR LPIHNT
00050 *
0005LA 600C 7E 4000 A BASIC2 JMP ROMBAS

*

VECT <~ S FOLL C1"4 1

SEND CHAR IN AR TO LPR
<EXIT IF ERROR>

ST.ART ROM C7-K> BASIC
CINifIALIZES LPR!>

START ROM BASIC W/O LPR IN
00052
00053 * OTHER VECTORS AS DESIRED CAN GO HERE!

F-6

.....,

PAGE 002 LPREX .SA• I LPREX *** SAMPLE USE~ LPR PRCXJ. F 011 MAE68 VI.

00055 * ACTUAL PRINTE!-l ROUfI NES HERE *

00057 * STROBE PRINTER
00058 600F A L IST5 EOU * 00059A 600F BD 02 6013 BSR LIST7
00060A 6011 86 JC A LDAA #S3C
0006JA 6013 87 ECI I A LIST7 STAA CNTHLI
00062A 6016 39

00064
00065
00066,A 6017 7F
00067A 601A 7F
00068A 6010 CE
00069A 6020 FF
00070A 6023 CE
00071A 6026 FF
00072A 6029 39

00074
00075

6017 A
ECI I A
ECl3 A
FF3C A
ECI 0 A
003C A
ECI 2 A

00076A 602A 80 03 602F
00077A 602C 25 FC 602A
00078A 602E 39

00080
0.0081
00082
00083 602F A
00084A 602F 87 ECIO A
00085A 6032 80 14 6048
00086A 6034 86 34 A
00087A 6036 80 D7 600F
00088A 6038 86 EC12 A
00089A 6038 84 03 A
00090A 6030 4A
00091A 603E 2t> 07 6047
00092A 6040 70 EC II .A
00093A 6043 2A F3 6038
00094A 6045 20 01 6048
00095
00096
00097A 6047 OD
00098A 6048 86 ECI 0 A
00099A 6048 39

RTS

* SUBROUTINE TO INITIALIZE LPR PIA'S
LPINIT EOU * CLR CNTRLI OPEN DATA DIRECTION REG"S

CLR CNTRL2 CNO HDWR POWER UP RESET
LOX #SFF3C A= DATA OUTPUT & CTRL WORD
STX DATA
LDX #$003C B= STATUS INPUT & CTRL WOR
STX STAT • BIT O= ON-LINE
HTS BIT I= PAPER EMPT'f

* SUBROUTINE TO PRINT CHARACTER FRC~ A
* WAITS IF PlH NIER ERROR

ACC

LISTW BSR LIST SEND TO PHINTER
BCS LISfW WAIT IF ERROR
RTS

* SUBRCXJTI NE TO PRINT CHARACTER FROM A ACC
* .AND CHECK FOR PRINTER ERR<~

* IF ERROR, CARRY IS SET ON RETURN (C=I >
LIST EQU * STAA DATA SEND DATA

BSR EXIT CLEAR ACKN<~LEDGE
LDAA #$34
BSR LIST5 SEND STRU3E

LIST3 LDAA STAT CHECK STATUS
ANDA 113 BIT O=SELECT, BIT l=PAPER
DEC.A • CAR SHOULD HAVE BE =$01
BNE LERROR NO PAPER OR NOT SELECTED
Tsr CNTRLI ACKNOWLEDGE? (CLEAr~ CARR'f >
BPL LIST3 NO
BRA EXIT YES-ALL Cl<

* * HERE FOR LPR ERROR EXIT
LERROR SEC SEf ERROR INDICATION
EXIT LDAA DATA HEST<l?E A

HTS

F- 7

PAGE 003 LPREX • SA• I LPREX *** SAMPLE USER LPR PROG. FOR '-tAE68 VI.

00101 END
TOTAL ERRORS 00000--00000

6009 BASIC 00049*
600C BASIC2 00051*
EC I J CNTHLJ 00028*0006 I 00066 00092
ECl3 CNTHL2 00030*00067
ECIO DATA 00027*00069 00084 00098
6048 EXIT 00085 00094 00098*
6047 LERROR 00091 00091*
602F LIST 00047 00076 00083*
6038 LIST3 00088*00093
600F LIST5 00058•00087
6013 LISTJ 00059 00061*
602A LIST~ 00039 00076•00077
6017 LPlNII 00041 00065*
6003 LPR I Iii> 00041 *00049
6006 LPHO 00047•
6000 LPR<~T 00039*
4000 Rn"ttBAS 00032*00051
ECl2 STAT 00029•00071 00088

F-8

APPENDIX G
BASIC INTERPRETER SUMMARY

The detachable reference card provided below summarizes
the loading procedures, instructions, and error messages for
the BASIC Interpreter program.

BASIC
INTERPRETER
REFERENCE
CARD

TEAR OUT
FOR HANDY
POCKET
REFERENCE

LOADING PROCEDURES (User Responses Underlined)
CASSffiEJPAPER TAPE DISKETTE (MOOS)
*E LOAD *E MOOS
SGUCONT S
BASICS
*E 100; G
M6800 BASIC I.XX
COPYRIGHT (C) - 19XX
READY

=BASIC INFILE (or
BASIC INFILE, OUFILE)

MOOS BASIC 2.XX
COPYRIGHT (C) - 19XX
READY

SUMMARY OF INSTRUCTIONS
STATEMENTS COMMANDS INTRINSIC FUNCTIONS
INPUT/OUTPUT SYSTEM CONTROL

INPUT LOAD TAB
DATA APPEND POS
READ SAVE DATA
RESTORE EXIT RND(X)
PRINT POKE INT(X)
OPEN LIST ABS(X)
CLOSE TRACE ON SGN(X)

DECLARATION TRACE OFF LEN(X$)
DIM

PROGRAM ASC(X$)
CONTROL EXECUTION CHR$(X)

FOR
RUN

VAUX$)
NEXT

CONT
STR$(X)

STOP
NEW LEFT$(X$,N)

END RIGHT$(X$,N)
GOTO EDITING MID$(X$,X,Y)
GOSUB Control C PEEK(X)
RETURN Control X

MATHEMATICAL
ON Control 0

SIN(X)
IF PATCH

COS(X)
THEN Delete key

TAN(X)
USER Break key

ATAN(X)
ASSIGNMENT SIZING LOG(X)

LET (OPTIONAL) LINE EXP(X)
Mathematical Oper. DIGITS SQR(X)

/\ USER DEFINED
- (Unary) DEF
*

+ BASIC
REMARKS INTERPRETER

REM

ERROR#
01

02
03
04
05
06

07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

ERROR MESSAGE

MEANING
Oversize variable (over 255) or negative used
with TAB, POKE, CHR$ or ON.
IN PUT Statement Error.
Illegal character or variable.
No end ing quotation mark.
DIM error.
Illegal arithmetic or improper relational
operator.
Statement number not found.
Divide-by-zero attempted .
Excessive subroutine nesting. (8 max.).
RETURN without GOSUB .
Illegal variable.
Unrecogn izable statement.
Parentheses error.
Memory full.
Subscrip.t error.
Excessive FOR-NEXT loops (8 max.).
NEXT "X" without FOR loop defining "X''.
FOR/ NEXT nesting error.
READ statement error.
ON statement error.
Input overflow - line exceeds 72 characters.
Syntax error in DEF function .
Syntax error in function or function not defined .

24 STR$ usage error or mixing of numeric and
string variables.

25 String buffer overflow or substring too long.
26 1/0 operation error.
27 Error in VAL function usage.
28 Invalid or duplicate 1/0 file number.
29 Maximum of 3 data files already opened.
30 Invalid tile name.
31 Invalid data transfer mode type (not I, 0, or Ul.
32 Data file cannot be opened , closed , or

accessed.
33 MOOS file is not in ASCII format.
34 Disk data record format error .
35 Log function error.
36 Continued program was altered.

@ MOTOROLA

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Microsystems
P.O. Box 20912
Attention: Publications Manager

Mail Drop M374
Phoenix, Az. 85036

Comments
Product:

Please Print

Name

Company

Street

City

1Hardware Support: (800) 528-1908
I

lsoftware Support: (602) 831-4108
I
I
I

Manual:

Title

Division

Mail Drop Phone Number

State Zip

