

•

>16800

CO- RESIDENT ASSEI>ffiLER

REFERENCE MANUAL

>l68CRA(D)
Nov., 1976

The information in this manual has been carefully checked and is
believed to be entirely reliable . However , no responsibility is assumed
for inaccuracies. Furthermore, such information does not convey to the
purchaser of the product described any license under the patent rights
of Motorola or others.

Inc .
EXORciser, EXbug , MIKBUG, and MINIBUG are trademarks of l>1otoro!a,

Firs t Edi tion
Motorola , Inc ., 1976

"All Rights Reserved 11

CHAPTER 1:

1.1
1.2
1.2.1
1. 2. 2
1.3
1. 3. 1
1. 3. 2
1.4
1.5
1. 5.1
1.5 . 2

CHAPTER 2 :

2.1
2. 1.1
2.1. 2
2.1.3
2.1. 4
2.1.5
2.2
2 . 2.1
2.2.2
2.3
2.4
2.4 . 1
2.4 . 2
2.4 . 3
2. 4.4
2. 4.5
2.5
2.5.1
2.5.2

TABLE OF CONTENTS

GENERAL INFORMATION

Introduction
M6800 Co- Resident Assembler Language
Machine Operation Codes
Directives
H6800 Co-Resident Assembler
Assembler Aims
Assembler Operation
Ordering Information
Operating Environments
Equipment Requirements
Software Requirements

CODING M6800 CO- RESIDENT ASS~mLER
LANGUAGE PROGRAMS

Source Statement Format
Sequence Numbers
Label Field
Operation Field
Operand Fie Id
Comment Field
Expressions
Constants
ASCII Literals
Symbols
N6800 Addressing Modes
Inherent and Accumulator Addressing Node
Immediate Addressing Mode
Relative Addressing Mode
Indexed Addressing Mode
Direct and Extended Addressing Mode
Assembler Lis ting
Assembly Listing
Object Program

CHAPTER 3: ASSEMBLER DIRECTIVES

3.1 Introduction
3.2 End
3.3 EQU Equa te Symbol Value
3.4 FCB Form Cons tan t Byte
3.5 FCC Form Constant Character
3. 6 FDB Form Double Constant Byte

i

1-1

1-1
1- 1
1-1
1-1
1- 2
1-2
1-2
1- 2
1- 2
1-2
1-3

2-1

2- 1
2-1
2-1
2- 2
2-3
2-3
2-3
2-4
2-4
2-4
2- 4
2-4
2-4
2-5
2-5
2-5
2- 5
2- 5
2- 6

3- 1

3-1
3-4
3- 4
3- 5
3-6
3-7

3 . 7
3 . 8
3 . 9
3 .10
3 .11
3. 12

CHAPTER 4:

4 .1
4 . 2

4.2. 1

4 . 2. 1.1
4.2 .1.2

4 . 2.2
4.2 . 3

4.3

4.3.1

4 . 3 .2

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPE.i~DIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:
APP ENDIX I:

TABLE OF CONTENTS (CONT INUED)

NAN - - Program Name
OPT -- Output Option
ORG -- Origin
PAGE -- Top of Page
RMB Reserve Memory Bytes
SPC -- Space

ASSEMBLY INFORMATION

General Information
Co-Resident Assembler Tape/Cassette
Operating Procedures
Loading Co-Resident Assembler From
Tape/Cassette
Loading Tape/Cassette Into EXORciser
Loading Tape/Cassette Into Evaluation
l-Iodule Memory
Assembly loitia tian
Tape/Casset te Co- Resident Assembler
Operation
Co- Resident Assembler Diskette
Operating Procedures
Diskette Co- Resident Assembler
Operating Characteristics
Diskette Co-Resident Assembler
Operation

CHARACTER SET
S~~L\RY OF M6800 INSTRUCTIONS
M6800 CO- RESIDENT ASSEMBLY DIRECTIVES SUMMARY
ASSEMBLER ERROR MESSAGES
ABSOLUTE OBJECT RECORD FORMAT
SA}1PLE PROGRAH
USING MIKBUG VERSION OF THE H6800 CO- RESIDENT SOF'mARE
USE OF OTHER PERIPHERALS WITH THE CO- RESIDENT SOFTH'ARE
PRm! VERSION OF CO- RESIDENT ASSEMBLER/EDITOR

11

3-8
3- 8
3- 9
3-11
3-11
3- 12

4- 1

4- 1
4-1

4-1

4- 1
4- 1

4- 2
4-4

A- 1
B- 1
C-l
D- 1
E-1
F-1
G-1
H-l
1-1

CHAPTER 1

GENERAL INFORNATION

1.1 INTRODUCTION

The H6800 Co-Resident Assembler is a program that processes
source program statements written in H6800 Assembly Language, translates
these source statements into object programs compatible with the H6800
Firw.ware loaders , and produces a formatted listing of the source program .
The H6800 Co- Resident Assembler is compatible t.,rith the HPCASH and H68SAN
cross- assemblers . This Assembler can co-reside in memory with the N6800
Co-Resident Editor . The editor is described in the H6800 Co-Resident
Editor Hanual.

1.2 N6800 CO- RESIDENT ASSEHBLER LANGUAGE

The symbolic language used to code source programs to be processed
by the assembler is called the H6800 Co- Resident Assembler Language .

The language is a collection of mnemonic symbols representing:

Operations

}16800 machine-instruction operation codes

- N6800 Co- Resident Assembler directives

Symbolic names (labels)

Operators

Special symbols

1. 2 . 1 t-lachine Operation Codes

The assembly language provides mnemonic machine- instruction
operation codes for all machine instructions in the M6800 instruction
set . The H6S00 instructions are described in detail in the H6800
Prograrmning Reference Manual. Refer to Appendix B for a surmnary of the
M6800 instructions.

1.2.2 Directives

The assembly language also includes mnemonic directives which
specify auxiliary actions to be performed by the assembler . Directives
are no t always translated into machine language . (Directives are described
in Chapter 3 and a summary of directives is included in Appendix C.)

1- 1

1.3 1'16800 CO- RESIDENT ASSEHBLER

The M680D Co-Resident Assembler translates source statement s
written in H6800 Assembly Language into machine language. assigns
storage locations to instructions and data, and performs auxilia r y
assembler actions designated by the programmer.

1. 3 . 1

1. 3. 2

Assemble r Aims

The two basic aims of the 1-16800 Co- Resident Assembler are :

To translate source programs into object code in the
format required by the N6800 resident loaders or an
EXORciser-compatible loader.

To provide a printed listing containing the source
language input , assembler object code, and addi t ional
information (such as error codes , if any) useful in
program analysis.

Assembler Operation

The assembler reads the source program twice : first , to
develop the symbol table; second, to assemble the object program
with reference to the symbol table developed in Pass 1. During Pass
2. the object code and the assembly listing are generated. Each
source language line is processed before the next line is read .

As each line is processed, the assembler examines the location ,
operation , and operand fields. The operation code table is scanned for
a match with the oper ation field . If a standard machine operation code
is being processed , the proper data is inserted into the object code .
If a directive is specified, the proper action is taken. The objec t
code and the assembly listing are formed for output , with any detected
actual or po t ential errors flagged before the line containing the e r ror
is printed .

1. 4 ORDERING INFO&~TION

The N6800 Co- Resident Assembler may be used with the ~!6800
EXORciser, Evaluation Nodule I , Evaluation Nodule II and Evalua t ion Kit .
Table 1-1 identifies the options of the Assembler , their part numbers ,
and the hardware they are designed to wor k with.

1.5 OPERATING ENVIRONMENTS

1. 5 . 1 Equipment Requirements

Ninimum equipment requirements fo r the N6800 Co- Res i dent Assembler
include :

1-2

1. 5. 2

EXORciser , Evaluation Nodule I, Evaluation Nodule II,
or Evaluation Kit

8k bytes of RAN

Terminal with TTY (20m A neutral loop current) or RS-232C
interface and equipped with an automatic reader/punch
control.

Software Requirements

The N6800 Co-Resident Assembler operates with the EXbug
Firmware , the NIKBUG Firmware, and the NINIBUG Firmware. This Assembler
also may be used with EXORdisk and the EDOSII software operating system.

Hhen using the Co- Resident software Iodth Evaluation Nodule I
or the Evaluation Kit modify this hardware in accordance with
Appendix G.

TABLE 1-1 . Co- Resident Assembler Packages

HARDHARE SOFnolARE SOFTWARE PACKAGE
PACKAGE MANE PART NUl'IBER*

1. EXORciser Co- Resident Assembler N68ASNR013 A, B.
(EXbug)

2 . Evaluation Co- Resident N68ASH6813 A, B
Nodule I Assembler/Editor
(HIKBUG)

3. Evaluation Co- Resident Assembler N68ASHR213 A, B
Hodule II
(MINIBUC II)

*A = Cassette , B - Paper Tape, D - Diskette

1-3

0

•

CHAPTER 2

CODING M6800 CO- RESIDENT ASSEr-ffiLER
LANGUAGE PROGRAMS

2.1 SOURCE STATEMENT FORMAT

Programs writ t en in assembly language consis t of a sequence of
source statements . Each source statement consists of a sequence of
ASCII characters endi ng wi th a carriage return . Refer to Appendix A
for a listing of the suppor t ed ASCII character set .

Each source statement may include up to five fields :

Sequence number

Label (or ,, *11 i mp l ying a comment)

Operation

Operand

Comment

2 . 1. 1 Sequence Numbers

The sequence number field is an option pr ovi ded as a programmer
convenience . The sequence number field starts at the beginning of a
source line and consists of up to five decimal di gits (the value must be
less than 65 , 536) . Sequence number s must be followed by a space .

Although sequence numbers are optional, they must be consistentl y
used or not used for an entire program . If t he first source statement
includes a sequence number , then every succeeding statement must also
include a sequence number. If the first sour ce statement is unnumbered ,
then no other statement may be numbered. In this case the Assemble r will
provide sequential line numbers on the assembly listing .

2 . 1.2 Label Field

The label field occurs directly after the sequence
(if there is one) or as the fi r st f i eld of a source line .
field may take one of the following forms:

number field
The label

(1) An asterisk (*) as the first char acter indicates tha t
the rest of the source line is a comment and should be
ignored (except for listing pur poses) by the assembler .

(2) A blank (b) as the first character indicates that the
label field is empty (the line is not a comment and does
not have a label) .

2-1

(3) A symbol.

The attributes of a symbol are :

consists of I to 6 characters

valid characters in a symbol are A through Z
and 0 through 9 .

the first character of a symbol must be
alphabetic .

the symbols "A" , "B" , and " XII are special symbols
used by the assembler and should never be used in
the label field .

A symbol may occur only once in the label field . If a symbol does
occur in more than one label field, then each reference to that symbol will
cause an error .

A label (symbol in the label field) is normally assigned the
value of the program location counter of the first byte of the instruction
or data being assembled .

The label of an EQU directive is assigned the value of the
expression in the operand field .

Some directives must not have a label in the label field . These
directives include: ORG, NA}I, END, OPT, PAGE, and SPC .

Each symbol in a program is allocated an eight byte block in the
symbol table.

2.1. 3 Operation Field

The operation field occurs directly after the label field in an
assembly language source statement . This field consists of an operation
code of three or four characters . The rules governing symbols also apply
to entries in the operation code field.

Entries in the operation code field may be one of two types:

machine mnemonic operation code - these correspond directly
to N6800 machine instructions . This operation code field
includes the "A" or "B" character for the "dual" or
"accumulator" addressing modes. For compatibility with
other H6800 assemblers, a space may separate the operator
f r om the accumulator designation (i . e . , LOA A is the same
as LOAA).

directive - special operation codes known to the assembler
which control the assembly process rather than being translated
directly to machine language.

2-2

•

The assembler searches for operation codes in t he table of
machine operation codes and directives. If not found. an error message
is printed.

2 . 1. 4 Operand Field

Interpretation of the operand field is dependent on the
operation field . For the H6800 machine instructions, the operand
field must specify the addressing mode . The ope r and field formats and
the corresponding addressing modes are as fol lows:

Operand Format

no operand

expression

11< expression >

< expression >. X

N6800 Machine Instruction
Addressing I'!ode

inherent and accumulator

direct or extended
(direct will be used if possible)

immediate

indexed

Addressing modes and expressions are described in the 1'16800
Programming l'~nual . Assembler directives can take on another form .
These directives are described in Chapter 3.

2.1.5 Comment Field

The last field of an 1'16800 Assembly Language source line is the
comment field . This field is optional and is ignored by the assembler
except for being included in the listing . The comment field is separated
from the operand field (o r the operator field if there is no operand) by
one or more blanks and may consist of any ASCII charac t er. This field
is important in document ing the operation of a program.

2.2 EXPRESSIONS

An expression is a combination of symbols and/or numbers separated
by one of the arithmetic operators (+, -, *, or /).

The assembler evaluates expressions algebraically from left to
righ t without parenthetical grouping . There is no precedence hierarchy
among the arithmetic operators. A fractional result, or intermediate
result obtained during the evaluation of an expression, will be truncated
to an integer value .

2-3

2 . 2.1

2 . 2 . 2

2.3

Constants

Decimal: < number>

Hexidecimal: $ < number> or < number> H
(first digit in latter case must be 0 - 9)

Octal : @ < number> or < number> 0 or < number>

Binary : % <number> or < number> B

ASCII Literals

I <character)
The result is the

(apostrophe followed by an ASCII character)
numeric value for the ASCII character .

SYHBOLS

A symbol in an expression is similar to a symbol in the label

Q

field except that the value of the symbol is referenced instead of defined.
An asterisk "*" is a special symbol recognized by the assembler and
represents the value of the current location counter (first byte of an
instruction, when used in the context of the symbol .

A 16- bit integer value is associated with each symbol . This
value is used in place of the symbol during expression evaluation .

The H6800 Co- Resident Assembler is a two- pass assembler . The
symbol table is built on the first pass . Object records and listing are
produced on the second pass. Certain expressions cannot be fully evaluated
during the first pass because they may contain (forward) references to
symbols which have not yet been defined. In some cases . a symbol may
not be defined before being used in the second pass. Since the assembler
cannot evaluate such symbols . these cases are t r eated as errors . Only one
level of forward referencing is allowed .

2 . 4 H6800 ADDRESSING NODES

2.4.1 Inherent and Accumulator Addressing Node

The H6800 includes some instructions which require only an
operation code byte . These self- contained instructions employ inherent
o r accumulator addressing and do not require the operand field when
writ ten in the H6800 assembly language .

2. 4 . 2 Immediate Addressing Hode

Immediate addressing refers to the use of one or two bytes
immediately following the instruction operation code as the instruction
operand . Immediate addressing is selected by preceding the operand field
in the source line with the character I1fi" . The expression following the
11 11 " may require one or two bytes . depending on the instruction.

2-4

•

2.4.3 Relative Addressing Mode

Relative addressing is used by the branch instructions.
Branches can be made only within the range - 126 to 129 relative to
the first byte of the branch instruction :

(PC+2) - 128 ~ D ~ (PC+2)+127

PC = address of first byte of branch instruction

D ~ address of the destination of the branch

The actual branch offset put into the second byte of the branch
instruction is the two's complement representation of the difference
between the location of the byte immediately following the branch
instruction and the location of the destination.

2.4.4 Indexed Addressing Mode

Indexed addresses are relative to the M6800 index register.
The address is calculated at the time of instruction execution by adding
the one- byte displacement in the second instruction byte to the current
contents of the l6- bit index register. Since no sign extension is
performed, the offset cannot be negative .

Indexed addressing is normally indicated by the characters 11 , X"
fol l owing the expression in the operand field. (Special cases of ",X" or
"X" alone are the same as "a, X" .)

2.4.5 Direct and Extended Addressing Mode

Direct and extended addressing utilize one (direct) or two
(extended) bytes to form the address of the operand desired. Direct
addressing is limited to the first 256 bytes of memory, 0-255 . Direct
and extended addressing are selected by simply putting an expression in
the operand field of the source line. Direct addressing is used if
possible . An error results if a directly- addressable variable is
referenced before it is defined in a source program since this can
cause a phasing error . To avoid phasing problems, directly addressable
variables should always be defined before any reference to the variable •

2. 5 ASSEMBLER LISTING

Assembler outputs include an assembly listing and an object
program .

2 . 5.1 Assembly Listing

The assembly listing includes the source program as well as
additional information generated by the assembler. Most lines in the
listing correspond directly to a source statement. Lines which do
not correspond directly to a source line include:

2-5

COLUNN

1- 5

7- 10

12- 13

15- 16

17- 18

20- 25

27- 31

34- 41

43- Last

page header lines

error lines (see Appendix D fo r a l is t i ng of e r ror
numbers)

expansion lines fo r the FCC , FDB , FCB direc t ives

Hos t listing l i nes follow the standard format shown in Tab l e 2-1.

TABLE 2- 1 . Standard Format

(Special cases may not use exactly the same format .)

CONTENTS

Source line /I - 5 digit decimal counter kept
by assembler

Current Location Counter value (in hex)

~lachine Opera tion Code (hex)

First byte of operand (hex)

Second byte of operand (if there is one)

Label Field

Operation Field

Operand Field (longer operand extends into
connnent field)

Connnent Field
Column

2.5.2 Object Program

Detailed descriptions of the absolute and relocatable object
format is included in Appendix E.

2- 6

,

CHAPTER 3

ASSEMBLER DIRECTIVES

3.1 INTRODUCTION

Assembler directives are instructions to the assembler rather
than instructions t o be directly translated into object code. This
section describes the directives recognized by the M6800 Co-Resident
Assembler .

In Table 3- 1 the directives are grouped by function performed.
Detailed descriptions of each directive are arranged alphabetically.

3- 1

TABLE 3- 1. Assembly Directives

DIRECTIVE FUNCTION

ASSEZ,ffiLY CONTROL

NAN

ORG

END

LISTING CONTROL

PAGE

SPC

OPT NOO

OPT 0
(Object Tape)

OPT M
(Memory File)

OPT NOH

OPT S
(Print Symbols)

OPT NOS

OPT NOL
(No Listing)

OPT L

OPT NOP
(No Page)

OPT P

OPT l>iOG
(No Generate)

3-2

Program name

Origin

Program end

Top of page

Skip "n" lines

No object tape

The Assembler will genera te
an object tape (selected by
default).

The Assembler will write
machine code to memory.

No memory (selected by
default) .

The Assembler will print the
symbols at the end of Pass 2.

No printing of symbols (selected
by default).

The Assembler will not print
a listing of the assembler data .

The listing of assembled data
will be printed (selected by
default) .

The Assembler will inhibit
format paging of the assembly
listing .

The listing will be paged
(selected by default) .

Causes only 1 line of data
to be listed from the assembler
directions FCC, FCB , and FOB.

•

TABLE 3-1 . Assembly Directives (Continued)

DIRECTIVE FUNCTION

OPT G All data generated by the
FCC . FCB. and FDB directions
will be printed (selec ted by
defau lt) .

DATA DEFINITION/STORAGE ALLOCATION

FCC Character string data

FCB One by te da ta

FDB Double byte data

R}!B Reserve memory bytes

SY~mOL DEFINITION

EQU Assign permanent value

3- 3

3.2

3.3

END

FORMAT: END

DESCRIPTION : The END directive ind i cates to the Assembler that
the source is finished . Subsequent source state
ments are ignored . The END directive encountered
at the end of the first pass through the source
program causes the Assembler to start the second
pass .

EQU - Equate Symbol Value

FOro-tAT: < bbd > .EQU' < e xpression> [(CQHUnents>]

DESCRIPTION: The EQU directive assigns the value of the expression
in the operand field to the symbol in the label field.
The label and expression follow the rules given in
a previous section . Note that EQU is one operator
that assigns a value other than the program location
counter to the label. The label and operand fields
are both required and the label cannot be defined
anywhere else in the program.

The expression in the operand field of an EQU cannot
include a symbol that is undefined or not yet defined
(no forward references are allowed) .

3-4

3. 4

•

FCB - Form Constant Byte

FORMAT: [< label>] FeB

{< expr >} < null» ,
[<expr>]

<expr>

< cormnen ts >
DESCRIPTION : The FeB directive may have one or more operands,

separated by commas. An a- bit unsigned binary
number corresponding to the value of. each operand
is stored in a byte of the object pr ogram . If
there is more than one operand , they are stored
in successive bytes . The operand field may contain
the actual value (decimal, hexadecimal , octal , or
binary), Alternatively, the operand may be a
symbol or an expression which can be assigned a
numerical value by the Assembler.

An FCB directive followed by one or more null
operands separated by commas will store zeros for
the null operands .

3- 5

3 . 5 FCC - Form Constant Character

FORNAT: FCC

[d < ASCII string>

l < decimal number>

< comments>

NOTE : 1. lid" is any non- numeric character (used
as a delimiter).

2. ASCII string may not include a carriage
return .

DESCRIPTION : The FCC directive translates strings of characters
into their 7- bit ASCII codes . Any of the characters
which correspond to ASCII hexadecimal codes 20 (SP)
tllrough SF (__) can be processed by this directive .
1 . Count . comma , text . Where the count specifies

how many ASCII characters to generate and the
text begins following the first comma of the
operand. Should the count be longer than the
text . spaces will be inserted to fill the count .
Haximum count 1s 255 .

2. Text enclosed between identical delimiters . each
being any single character . (I f the delimiters
are numbers, the text must not begin with a
comma.)

3-6

•

3 . 6 FOB - Form Double Constant Byte

FORHAT : < label > FDB

{
<expr>
< null >

< expr >

:}
< comments)

DESCRIPTION : The FOB directive may have one or more operands
separated by commas . The 16- bit unsigned binary
number corresponding to the value of each oper and
is stored in two bytes of the object program . If
there is more than one operand , they are stor ed

O(,,71':-'~~

[lL::' t'I2'.~

IJ ·30(~:

0(1@O:i 4

(11;:' (1~15

@(h~l ;;,r;:' ,~,,::,, ,~,~-:: ~..:.' ~:~':: ' .-:::

L:it1~1 <:":::: ji.:.":,-.2 '::"0 (~O

(::; .:::,,:;:' .. ~ '::''::''''F
-:'"0.:",::' 0::. ,~ (; ~ f
('(' I2>~':'. 'oC'~ FF
Ij ';:" '31~ (.::'I I.~H.:.' (~

0[":'O~' '::,'("JE ~'(H:::":
,::o-;:, .!. -Z' I::-':.:.,,:,{
(:~';:l:L 2 ~~10'::,1 ';::

.f'

in successive bytes. The operand fie ld may contain
the actual value (decimal , hexadecimal , octal , or
binary), Alterna t ively , the operand may be a
symbol or an expr ession which can be assigned a
numerical value by the Assembler .

An FOB directive followed by one or mo r e null
operands separated by commas will store zeros fo r
the null operands .

The label is optional .

F-'R '_" ~!"'r!!'! TO ! L!....US '"! Pf~T~ USE:. e'F FOP!'! ~":'U8!....E
E:',.'T!.... C':'i'b·! ,-!t·!T [' IF:U:: '"! I'·/E

·~·F.· ·f·FF.· 'f.FFF.· .' '+-FFFF

'::"::;':' :Lf' EtE '

3-7

3.7

3.8

NAN - Program Name

FORMAT: NAN < program name> [< commen ts > J.
DESCRIPTION: The NAH directive must be the first statement

of a H6800 Co- Resident Assembler source program .
The NAN directive does not allow a label, but it
does require an operand -- a program name (one
eight characters) .

The program name from the NAN directive is printed
on the header line for each listing page .

OPT - Output Option

FORMAT: OPT < option> [. < option>]

DESCRIPTION : The OPT directive is used to give the programmer
optional control of the format of the Assembler
output . The options are written in the operand
field and are separated by commas . The options
-may have the character "NO" as a prefix which
reverses their meaning .

OPTION

OPT 0
(object tape)

OPT NOD

OPT N
(memory file)

OPT NOH

OPT S
(printed symbols)

OPT NOS

OPT L

OPT NOL
(no listing)

3- 8

MEANING

The Assembler will
generate an object tape .
(selected by default)

No object tape

The Assembler will write
machine code into memory.

No memory (selected by
default).

The Assembler will print
the symbols at the end
of Pass 2 .

No printing of symbols
(selected by default).

The listing of assembled
data will be printed
(selected by default) .

The Assembler will not
print a listing of the
assembled data .

OPT P

OPT Nap

OPT G

OPT NOG
(no generate)

•

3-9

The listing will be paged
(selected by defaul t) .

The Assembler will inhibit
format paging of the
assembly listing .

All data generated by
the FCC, FeB , and FDB
directions will be print
ed (selected by default) .

Causes only one line of
data to be listed from
the assembler directions
FCC , FeB , and FOB .

3 . 9 ORG - Origin

FORNAT : ORG < express i on> [< cottoneo ts >]
DESCRIPTION : The ORG directive changes the program counter to

c. C'';::' ,} .L
(,,;:.(.. ;:..2
e01~0~

('::'€"::'4
r.";-")')'5

I;:' f~h::O ,~. :;:

0 0(";:",' ,;;.i:,.:.:",
'-":' ';' .L0 ," ' • .::0 ~1 ':''::''A
'::"::'1''' 1 L I.:.II L.:.' ~L

0(.'(:1:12 ~~L:~I.:.':.!.. (H~(' !:!

(":" :':!..-

the value specified by the expression in its operand
f ield . Subsequent statements are assigned memory
locations starting with the new program counter
value. If no ORC is specified, the program counter
is initialized with a value of O. The ORG directive
may not include a label .

of '

••

8! LL

Pf·"X:>-:f1H Y'_' I LLI)ST~:Fn E I_ISE:. ':'F TH~ (IF:! I:J! H
['.!.P.E(TI '..J E.

E ,~'! I-'

('PG
F:!'18
')P'::
RI 'IS
EH['

if)
JOHN
:i.@

3-10

PC

PC

P(

STAF:15

SET TO

SET TO

AT Z I::.F:()

HE~-=: .20.3

'·/F"tLUE OF JOH~~

•

3.10

3.11

':U3("~~1 .~

00121(')2
'~' ~~" ~'~1 :
(11:;"_":'''''
,;:)(n)C::'5

PAGE - TOp of Page

FORMAT: PAGE

DESCRIPTION : The PAGE directive causes the Assembler to advance
the paper to the top of the next page . The PAGE
directive does not appear on the program listing.
No label or operand is used, and no machine code
results .

RMB - Reserve Memory Bytes

FORl'lAT: [<label>] R>lB < expression> [<comments>]
DESCRIPTION: The R}rn directive causes the location counter to

be increased by the value of the operand field .
This reserves a block of memory whose length is
equal to the value of the operand field. The
operand field may contain the ac t ual number (decimal ,
hexadecimal, octal or binary) equal to the number
of bytes to be reserved . Alternatively , the operand
may be a symbol or an expression which can be
assigned a numerical value by the Assembler .

The block of memory which is reserved by the ru-m
directive is unchanged by that directive .

The expression must not contain symbols which are
defined later in the program (forward references).

PR (I GPf~! ' l T '~' ILLUS"'! F:f!TE USE ()F THE F:ESE ~:"'·' E:
!·!EI · !(1F:'~' !::: '~'TE [• .! F':E':' T 1 'uiL

';:";:'I;:'';~? • .::.I, ";~ I . Ij l.:"".:..:!.

1-"1I"'~':;1=::' (~ 1;:'1:"1. ("':".:.'2
0l3j:-'0::' .;;: • .;:..':. ... ,j ';:'('0:-:
1;:>(' (' 1.('

I: L !-t8..!. ~:1' !8

.:. U1!::..:: k l .![:
R!'i8
Et-~!:,

., "1 B'r'TE F=:E5EF:\-'l:!: ' F OP (LA8"1
:2 EY~'TES F:ESEf.:'·.-'E[' F-OF: (LA8~

3-11

3. 12 SPC - Space

FORHAT : SPC < e)..-pression >
DESCRIPTION : The SPC directive provides n vertical spaces for

formatting the program listing . It does not itself
appear in the listing . The number of lines to be
left blank is stated by an operand in the operand
field .

The operand would normally contain the actual
number (decimal, hexadecimal. octal or binary) equal
to the number of lines to be left blank. A.symbol
or an ~xpression is also allowed .

lfuen the SPC directives causes the listing to cross
page boundries , only those blank lines required to
get to the top of the next page will be generated .

3-12

•

•

CHAPTER 4

ASSEMBLER OPERATION

4 . 1 GENERAL INFORHATION

The user may have received the M6800 Co- Resident Assembler on
cassette, paper tape, or diskette . The loading, initialization and
operation of the Co- Resident Assembler in paper tape and cassette is
discussed in Paragraph 4 . 2 while the loading and operation of the
Co-Resident Assembler from diskette is discussed in Paragraph 4 . 3 .

4 . 2

4.2.1

CO- RESIDENT ASSE}mLER TAPE/CASSETTE
OPERATING PROCEDURES

Loading Co- Resident Assembler From Tape/Cassette

The Co- Resident Assembler must be present in the EXORciser or
Evaluation Hodule memory prior to the initiation of the assembler
operation . However, it is not always necessary to load the Assembler
before each assembly operation . If several programs are assembled in
succession. or if the programs are tested without modifying the memory
locations used by the assembler, then the Assembler will remain intact
in memory and available for subsequent uses without reloading.

4.2.2 .1 LOADING TftYE/CASSETTE INTO EXORciser HEJ.IQRY. Load the
Co- Resident Assembler into the EXORciser from tape/cassette as follows:

a. Place the Co- Resident Assembler object tape (paper tape or cassette)
into the System Reader Device .

b. Enter the EXbug command "LOAD". The EXbug Firmware will respond
with "SGL/CONT" .

c . Type "s" after SGL/CONT to load the single file containing the
Co- Resident Assembler. After the header record from the tape is
printed . the file is loaded into memory. Upon completion) control is
returned to EXbug .

4 . 2 . 2.2 LOADING TAPE/CASSETTE
the Co- Resident Assembler into the
cassette as follows:

INTO EVALUATION HODULE MflIORY . Load
Evaluation Hodule from paper tape/

a. Load the Co- Resident Assembler object tape (paper tape or cassette)
into the System Reader Device .

b. Enter the character L after the asterisk . This initiates the
Evaluation Hodule loading procedure. The Evaluation Module loads
the Co- Resident Assembler into memory and then prints an asterisk .

4- 1

4.2.2 Assembler Initiation

In normal operation , the memory region between the end of the
Co- Resident Editor and location $2000 is used by the Assembler for
the symbol table. This table provides space for 90 symbols . If a
larger symbol table is required, the symbol table area can be extended
at either end .

By selecting the editor over-write feature, the area occ upied
by the Co- Resident Editor can be appended to the beginning of the
symbol table . This increases the symbol table capacity to 312 symbols.
The over- write option is enabled by using ~~ID to c hange the contents
of memory location 30316 to FF16 '

,:.~ F;'_L:; 1 . -:: r'l li 1 D
. :: (I;:,' (I n := ~

•

If more than 8k bytes of read-write memory are avai l able,
additional memory can be appended to the end of the symbol table.
This is accomplished by modifying the end - of- symbol- table address in
memory locations 30116 and 30216 ' Eight bytes of read- write memory
are required for the storage of each symbol. Hodifying locations
30116 and 30216 to contain 240016 extends the symbol table by lk bytes.
or 128 symbols for a total of 2 8, assuming the editor over-write is
not selected .

';':?: F;;J~ 1 . ,~ "1-=11 D
_ ;:1'1 1 __ ':::0 ? 4
1);, !J ::: ,' I) (1 1)1)

•

If the object code is to be written into memory (OPT l-l) , the
end- of- symbo1- table address delimits the address . For example , if the
symbol table ends at 200016 (the default value), a program beginning
at 200016 or higher may have its output directed into EXORciser memory
(assuming the memory is available) . If , on the other hand, only 8k of
memory is available and the programmer vdshes to assemble into memory
(OPT H), the symbol table can be shortened to make memory available
for the object code . This is accomplished by changing the end-of- symbol
table address to a lower address . For example . assume 1FOO

l6
is the

new end- of- symbol-table address .

>:: '< E: tY~ 1 . c f'lf.! [D
-:::0 1 "'- 20 1F
1.' ::O::Ol OU (II)

•
4-2

•

HEX

A program beginning at IF00
16

now can be assembled into memory.

Should an end-of - symbol-table address be entered that is less
than the start- of-symbol- table address. the Co- Resident Assembler uses the
default address 200016 '

A user's program may take advantage of the direct addressing mode
and use the first 256 bytes (0- 10016) for scratch memory . However. no
instructions that generate data; such as FCC, FOB, or FCB; may be assembled
into this area because the Assembler and Editor also use this portion of
memory for scratch storage.

Figure 4-1 depicts a memOr) map of the Co- Resident Assembler.

Memory Hap
Tape Version

Assembler Operation

!>fernory Hap
Disk Version

Assembler Operation

0000

HEX

0000
SCRATCH

0100
I/O ROUTItiES

0300
RESIDENT

ASSE2-IBLER

1610

RESIDENT
EDITOR

lDOO

SYHBOL TABLE
(93 SYHBOLS)

2000

OPTIONAL USE
AS SYNBOL TABLE .

OPTIONAL USE
AS S'G1BOL TABLE
225 ADDITIONAL
SYNBOLS

NOTE: (TAPE VERSION ONLY)
The editor overwrite flag is at $303 .
If it is zero the editor area will not
be used as symbol table. If it is non
zero the editor area will be used as sym
bol table .
Locations $301-$302 contain the address
of the end of the symbol table. The de
fault value of $2000 may be changed by
the user.

SCRATCH

0100

I/O ROUTINES

0300

RESIDENT
ASSEHBLER

1610

STI1BOL TABLE
CONTII\'UES TO
THE Et-."D OF
CONTIKUOUS RAI'l

FIGURE 4-1. />ternory Haps of Co- Resident Assembler .

4-3

Selection of the Editor over- write feature and modification of
the end- of-symbol- table must be done after the Assembler has been
loaded and before it is initiated. Figure 4- 2 illustrat es the procedure
for loading the Assembler and initiating it without modification .
Appendix F depicts the Program Assembling Procedures.

c)(EUG l . ~: LOAD
~' 3:.. ""C'Jr-t T ;
~ A;!'11 , ::

::XE:'.i '':; 1.2 ('101 I D
· 100 ;, 13 '
'1~ a OO PES ID~N1 A ~$EMR~E~ 1 . 3
·:tJc." ') 'PIGHT ('1 0 101= 0 ' .. 11 1 ?I ,'oS
=: ~HE!Z" PH ~, ~" : 1':' · 1 ~ . '::"F-' • • ::L , 2 T

l P
1~60 0 ~€SID~rIT ~ S 5 EMBLER 1. 3
: J")' j;' I (5 y r r'l 'J H lt:; OLH 1 ";" 7 -:.
:: nr~~' F' .:; ~; : 1F' · I 5: · 2 F' , 2L · 2 T

FIGURE 4-2. Program Assembling Procedures

4 . 2 .3 Tape/Cassette Co- Resident Assembler Operation

The Co- Resident Assembler is a two- pass assembler . That is ,
the Co- Resident Assembler must read a source program twice--once to
build a symbol table and a second time to produce the assembled output.
In response to the assemble r prompt message ,

ENTER PASS: lP, lS, 2P, 2L , 2T
Select the appropriate assembler pass. The Co- Resident Assembler Pass
controls are described in the following paragraph and are summarized in
Table 4- 1.

CONTROL

1F
15
2P

2L
2T

TABLE 4- 1 . Co-Resident Assembler Pass
Controls and Options

DESCRIPTION

Pass 1, clears symbol table
Pass 1, inhibits clearing of symbol
Pass 2, assembly listing and object
output ,
Pass 2, assembly listing only
Pass 2, object tape only .

4- 4

table
tape

•

-

PASS IP -- Pass I produces a table of the symbols which appear in the
program and the corresponding memory addresses to which they are assigned .
This table is used in Pass 2 to determine the address field for instructions
which reference memory symbolically . Program syntax is also checked in
Pass I, and errors are listed.

PASS 1 Option IS - - In the assembly of multiple source tapes, it may be
advantageous to be known to each assembly. The S option for Pass 1
inhibits the clearing of the symbol table before the pass is started .

PASS 2P -- Pass 2 rereads the source tape and uses information in the
symbol table to produce the assembled output. Using terminals which
permit independent on/off control of the tape output and printer devices,
Pass 2 can produce both an object tape and an assembly listing. A
terminal .dthout independent controls viII permit the generation of
either an object tape or an assembly listing (not both). In this case,
Pass 2 may be repeated to generate both output forms .

PASS 2 OPTIONS
2L -- The L option for Pass 2 is used to generate only an assembly

listing (no object tape).

2T - - The T option for Pass 2 is used to generate an object tape
(no assembly listing).

4 . 3

4.3.1

NOTE :

One- Pass Operation . For source programs which have no
symbolic forward references, Pass 1 may be omitted. For
short programs with only a few forward references, it is
also possible to ' omit Pass 1. In this case, hovever, the
forward references will be flagged with error 211 and the
assembled program with an address field of FFFF. The
correct address can be patched after the symbol table is
printed at the completion of the assembly .

In combination with the options for entering a source
program from the terminal keyboard and for assembling
an object program in memory , short programs may be
assembled and executed without the use of tapes.

CO- RESIDENT ASSD1BLER DISKETTE OPERATING PROCEDURES

Disk Co- Resident Assembler Operating Characteristics

The Co- Resident Assembler on diskette , when working with the
EXORdisk with its EDOS Firmware, has several unique characteristics.
In this application, the EDOSII Firmware automatically selects the
Editor-overwrite option. Also the assembler searches the EXORciser
for the end of its continuous memory to deter the end- of- symbol- table
address .

4- 5

If the user wishes to use the OPT M directive and insert the
assembled output into memory he must provide a block of memory that is
not continuous with the memory being used by the Co-Resident Assembler .

4. 3. 2 Diskette Co- Resident Assembler Operation

The Co-Resident Assembler is a two pass assembler that resides
in the diskette file named AS~ffi . That is , in its assembly operation
the Assembler reads the source program twice -- once to build a symbol
table, and a second time to produce the assembled output. Unlike the
two pass operation of the assembler on tape or diskette , this assembly
automatically performs the twO passes in sequence .

This assembler working with the EXORdisk's EDOS Firmware assembles
the source file and directs the assembled object output (if selected)
to the object file and the assembly listing (if selected) to the terminal
device. In initiating the assembly process, the user instructs the
EXORciser to run the EDOS Firmware. On receiving the EDOS prompt (~)
the user enters the appropriate assembly command. The three assembly
operations are described in Figure 4- 3 and illustrated in Figure 4- 4 . In
entering the assembly command , all three operands must be specified . In
the case where no object file is to be created, any dummy file name may
be entered in the operand field. In this case . no file entry will be
created on the diskette.

4- 6

•

Name :

Format :

Pu r pos e :

Comments :

Examp l e :

ASH

ASH , passoption, objectfilename , sour cefi l ename

To assemble t he contents of the s our ce file and to dire c t
the assembled object output , if any to the object ou t pu t
file and the a s sembled list i ng , if any , to the list device .

All three operands must be specified . If no object file is
to be created, any dummy file name (i . e . X or Y or Z etc .)
may be entered in this operand field since no file di r ector y
entry will be created .

The pass op t ion operand field may contain the number 2 , 3 ,
o r 4 .

2 : bo t h an assembly listing and an object ou t put a r e
pr oduced .

3 ~ only as ~ssembly lis t ing is generated to the lis t
device .

4 only an object output i s generated to the output
object file .

ASr-! , 4 , JOEO , JOES

Pr oduce an object file named JOEO f r om the sou r ce file named
JOES .

L _ _ _ ____ _ _ __ FIGURE 4- 3. Assemble (ASH) Command -----------'

. E~! J I:; I . :' "1-1 I [I
" ~ '::O(l ; ,,:;
~ : ~5un EDO~ \:~~ . 2 . 2

'1':;,·;0 0 ';'ES I [lEt-i T A ~,S €I'1E:LE ~' 1 . . ;:
: ~PYR I GH T ~OTOPOL~ 1 ~76

FIGURE 4- 4 . Example of Disk Ass embly Operation

4- 7

•

APPEt-.1)lX A

CHARACTER SET

The character set recognized by the Hotorola H6800 Co- Resident
Assembler is a subset of ASCII (American Standard Code for Information
Interchange, 1968) . The ASCII Code is shown in the H6800 Progranuning
Reference Hanua!. The following characters are recognized by the assem
bler .

l.

2.

3 .

4.

5 .

6.

The upper case letters A through Z

The integers 0 through 9

Four arithmetic operators:

+ - * /

Characters used as special prefixes :

n (pounds sign) specifies the immediate mode of addressing
$ (dollar sign) specifies a hexadecimal number
@ (commerc ial at) specifies an octal number
% (percent) specifies a binary number

(apostrophe) specifies an ASCII literal character
& (ampersand) specifies a decimal number

Characters used as special suffixes:

B (letter B) specifies a binary number
H (letter H) specifies a hexadecimal number
0 (letter 0) specifies an octal number
Q (letter Q) specifies an octal number

Three separating characters :

SPACE
CR (carriage return)

(comma)

7 . A comment in a source statement may include any characters
with ASCII hexadecimal values from 20 (SP) through SF (__) .

A-1

8 . In addition to the above) the assembler has the capability
of reading string of characters and of entering the
corresponding 7- bit ASCII code into specified locations in
the memory . This capability is provided by the assembler
directive FCC (see Chapter 3) . Any charac ters corresponding
to ASCII hexadecimal values 20 (SP) through SF <--> can be
processed . This kind of processing can also be done, for a
single ASCII character , by using the immediate mode of
addressing with an operand in the form tt ' Ctt

•

A- 2

•

•

ABA
ADe
ADD
AND
ASL
ASR
Bee
Bes
BEA
BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE
BPL
BRA
BSR
Bve
BVS
eBA
eLe
ClI
CLR
CLV
CMP
COM
CPX
DM
DEC
DES
DEX
EOR

NOTE

APPENDIX 8

SUMMARY OF M6800 INSTRUCTIONS

• ,
•
&
o
• ,
o

,
, ,

,

,

,

•
•
•
•
2
2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
•
•
2

•
•
2
•
•
•

• .;
• o
E
E

•
2
2
2

•
•
•
•
•
•
•
•
2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2

•
3

•
•
•
•
2

· o • ..
o

•
3
3
3
•
•
•
•
•
•
•
•
3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3

• ,
•
•
•
•
3

•
~ ,
• • w

• , , ,
6
6
•
•
•
•
•
• ,
•
•
•
•
•
•
•
•
•
•
•
•
•
6
• ,
6
5
•
6

•
• ,

•
5
5
5
7
7

•
•
•
•
•
•
5
•
•
•
•
•
•
•
•
•
•
•
•
•
7

•
5
7
6

•
7

•
•
5

• •• ..
E

2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
2
2

•
2
•
•
•
2

• , ,
•

o
.~ ,
•
" •
•
•
•
•
• , , , , , ,
• , , , , , , ,
8

,
•
•
•
•
•
•
•
•
•
•
•
•
•

II1 !erfU p ~ l ,me IS 12 cvcles from the end of

INC
INS
INX
JMP
JSR
LDA
LDS
LDX
LSR
NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS
SBA
SBe
SEC
SEI
SEV
STA
STS
STX
SUB
SWI
TAB
TAP
TBA
TPA
TST
TSX
TSX
WAI

the ,nS {> lIc \ ,on b e ing e xe(;u led, (' xcepl 10 110""'"9
a WA I ,,'S Huct,on . T hen n IS '1 cycles,

~ • • <5
• ,
o

,

,

,

,

,

x
u
~
2
•
•
•
•
•
•
•
2
2
•
•
•
•
2
2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
•
•
•

•
•
•
•
•
2
3
3
•
•
•
2

•
•
•
•
•
•
•
2

•
•
•
•
•
•
2
•
•
•
•
•
•
•
•
•

•
•
•
•
•
3 , ,
•
•
•
3
•
•
•
•
•
•
•
3

•
•
• ,
5
5
3
•
•
•
•
•
•
•
•
•

6

•
•
3
9 ,
5
5
6
6

• ,
•
•
6
6
•
•
• ,
•
•
•
5
6
6 ,
•
•
•
•
•
6

•
•
•

7

•
• ,
8
5
6
6
7
7

•
5

•
•
7
7

•
•
•
5
•
•
•
6
7
7
5
•
•
•
•
•
7
•
•
•

INSTRUCTION ADDRESSING MODES AND EXECUTION TIMES
(TIMES IN MACHINE CYCLES)

8-'

• .,
" E

• , ,
•
•
•
•
•
•
•
2
•
4 ,
•
•
10
5
2

•
2
2
2
•
•
•
•
12
2
2
2
2

• , ,
9

, ,
~" ADO:"

~OOI

A.~ A,,,,,,, :"BA

A., ""~ c"". AOCA
Aoce .-. M.O~

AI.Oi

B" T", BIU
BIIS

Ow n.
Cl R~

tllle
to~~·. t~?A

c~ ...
to-.. " 10,- '" '" tI>"'oI ,. 1', '" COM A

COMi

eo""""",,,. ,', I.H'

I~~ ... ", 'I[r.~

I. EGB

~A41'"
, ...

0."' , "" OHA
Oft,

(. " .. · .. 011 (OR'"
EORI

I . ", ... " I ~ C

I ~CA

I ~ CB

lo.' 10 ,"11" ,O U
lOU

O'.''''.~'' DRAA
O~AI

"''''0." ""' ""' """0", 'lI l:"
PUl8

R •• ". l," .. ,
ROl~

ROll
110 .. " M,t', ...

"O~ ..
Ron

!oM, l'" .", ... ,,' '" ASl ..

ASlU

$/-11 ",,"'. A,.' ' " ".
~su

~SRB

SII ," "'9i". l e '" l5MA
lSR~

s. ... ",-I" SIU
s, ~s

s.'· .. n SUB~

sun
So~~", A,,..,,. ...
s.~" M~ Co" ', SBCA

SBca
I .. " , ,,.,t,,, '" n,
'U' 1 " '.' '" ISlA

ISII

l(~UD

OP o"""· ... to ... , ~ '"" . ·,
N.mI:<, . ' ~"U C. <'"

~"_ ' ., "''''''' i"" ,",,, ... ,·e ".'
l,,' '. , ~·
lool .. n . '. 0

,

" " ..
" ..
" ..
"
..
"

..
"
..

• ..
" "

I "' -~'~':: ,
-, , .. , , .. , .. , , , .. , , .. , , " , , , .. , , .. , "

, , , .. , , .. ,
"

, , ,
"

, , :'" , ,. , , ,
"'

, , .. ,
" • , , .. , ,

"
,

" • , , .. , ,
"

,
" • .. , ,
"

,
, ,

"
, , .. , .. , , ,

"'
, ,

"
,

"
,

"
,

"
,

"
,

"
,

"
, .. ,

, ,
"

, , .. , .. , , , .. , , " , "
,

"
,

"
,

, ,
"

, , .. , , " , , , .. , , .. ,
'" , , .. , ,I:: ~ ~: : , , .. ,

.. ,
"

,

"
,

" •
• ,

"
,

"
,

"
,

• ,
"

,

"
,

"
,

"
, .. • " • "
, , .. ,

"
, • , ,

"'
,

'"
,

"
,

,
"

,
"

,
"

, , .. , "
,

"
,

'"
,

" •

Boo' .. ·, ,"",.~ •• OR
o 800'". t.,.", .• OR

iii C. ,,·"' , .' M

1 .. ·,'" ... "
B" ,,, .

00 a.If I,'.

" .. - ,

"
, ,

.. , •
"

, •

.. , ,

"
, ,

"
, ,

.. , ,
"

, , .. , ,

"
, , .. , ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

"
, ,

" , ,
"

, ,

"
, ,

"
, ,

'"
, ,

"
, ,

"
, ,

'"
, ,

~ ,

,DOli AN IAII!I~M[IIC 0'(~A nO N

IAIl '''''''' 1.1ot!,
." .. I. ".".,,'

A· M-A

I ."
' , .' , "

A' ",. C "

•• \!. C " .., , ,
"

,
"

'" B 'II

~ "
~ "
~ " , , ,

" , , ,
" ,
" , ' ,

~ " "
~ , "

~ , "

1:<>" ... " ~ •• 11(0 c " .. ,
'~I.'UII '

"
, ," , , -, , , -,

10(,)'1 -,
10M -,
~, • I "

" , " , ' , "
" -, , -,
A o ll _ A

• • ", -il , . "'v SF 1 -$' , • ~'sP SP , -"
SP. I -S/' VSf' ·A

SP . I 'SPIlSp-~

:1 c:;:; - ill'"ii).J · , " - •
:1 ITT11II 1;:::J -0 ,

" - •
:l -

0 - II Ii ii - O ,
" •

d9;' -i I " I - a • ,
-:f O- Ol.ll:!:l:1J - C

" • ,
• ," • ' " , , '. • " "

• , '. • "
, " , \, - C -, , ' . ,

"

" "' , ::
CIINDITID~tDD! SYMIO l$

" ,
~."u" ." • .,,~,'l
,.,,,,"", """
~t9't · ,. ''4'' ~,"
1 ... ,.". ,

"" DO! R(' ,

,

, , , , , , , , , , , , , , , ,
, , !;I~I
, , ,
,

,

~SI' to., .. "., ... _ , 'otI' eo 00"".'0" s..,. " .. , .. • , O.~<,·.,.. I ••• """ ,
Cot" r. ~., I

MC6800 INSTRUCTION SET
6 ,2

• , ~ ~'l'
St, ~ ~., '

"" •• ~ .. , ,I "0' """~ . ,-" ... ,,,
~" AIT .. "~

•

•

cOlm CO (IE REG

I M~,IEO DIRECT INOfX EXTNO IMPLIED • • , , , •
P(l IN TER (lPfRATI ONS MNEMON IC .. - - .. - - .. - " .. - " .. I - " a(l(lLEAN /ARITlIr.IETIC (lPERATIO Ii I Ii I I "

, , ,
u,mpa,. Indo . R'9 '" "

, ,
"

, ,
"

, ,
" • , " /,1 . Xl H.I·II • . Q) :® •

Of" '""O! 1m'., RPIj '" .. , , , -, ., • • • • •
Of" " ' S!>(~ Pnl< ... "

, ,
" I -Sf • • • • • •

I.«,""nl Inllo . Rtg II/X OS , , ,. , · , • • • • •
InU'mtol SI"o I'nu '" " • , Sp·1-SP • • • • • •
Lo.~ In~ . R.g eo, "

, ,
"

, , H , ,
" • , ,,' . XH.IM· II . " • . ® " • LOJd Sl., ~ P"" eo. "'

, ,
"

, ,
"

, ,
"' • , ',' -SPH.I/,I . \I-SPL • . I® " • $,o rr Ind .. H. g '" " • , " , ,
"

, ,
" ",1. XL · W· II • · IF " • S10,. Sm~ POll m " • , " , ,

"
, , SPH -. 1.1 . SPl -1M' II • . '@ " • In d, R.g . $,.,. P. " . ". +1' , I -. SP :1: • • • :1 5,,,. Pnll -In~ ' R .~ '")0 ~ I $p. 1 - X • • • • •

" NO CODE REG

RelATI VE INDEX EX TN O IM PLI ED , • , , , •
OPERA TI ON S MNEMONIC .. - " .. - " .. - " OP I - " 8RA NCH TEST ,

1
, , , , ,

B""lh AI'N!V< .. , "
, , 1100'

:1
• • • • •

B""'h II C.mV CII., '" "
, , , .. • • • • •

S""'h II r.."y So, m "
, , ,. , • • • • •

B"n," II ~ l uo ." "
, , ,. , • • • • • •

S,.n,h 11 :>- Z.,o '" "
, , II (!) V ' 0 • • • • • •

B'~n<"!I > l"o ." "
, , Z.(N(!)VI · ll • • • • • • S",," 11 11,f/h" '" "
, , C' 1 ' 0 • • • • • •

8,.n," II or;; Z.,o "" "
, , Z ,m(!)V)· 1 • • • • • •

Bro",h II Lo","" 0, So m "
, , C • Z ' I • • • • • •

B,.n,n II < Z"o m "
, , N (!) V ' I • • • • • •

B"n,n If I,', nu. BMI '"
, , ,. , • • • • • •

Bron,h It /101 EQ ... I Z.,. BilE "
, , , .. • • • • • •

8ron," It O,.,lIow Ou , "" '" , , , .. • • • • • •
aronc" II O'~ r1 low Sr, "" "

, , ,. , • • • • • •
B.,.c" II PrO\ ." "

, , /1 - 0 • • • • • •
a,,"e" To Sub/ouM. "'" .. • , I • • • • • •
Jump J ',IP "

, ,
"

, , S •• So",.1 Op. m ,on. • • • • • •
Jump To Suh,ou"., "" '" • , .. , , • • • • • •
/loOo"."on 110P "

, , AU .. ,nc" PrOOj en!! O"I ¥ • • • • • •
R"u ,n h om lo""up, "" '" '"

, --@--
Ro,",n F,o m$u b,Qulln. en " • , l · ·DI J .. Soh""" '"1O,,,,p ' SWI " "

, S •• Sortlll Op ... "on, • • • • • •
1',"",10' '.''''"P' · I'IAI " ,

, • @ •••• , , Ad~." au. A ~u • R ,'I , , . na 0.11 Bu. ,n ' ~'IM ttl1> .. '" d \"W h'" YMA "h.ld low ..

, (B" v i

2 (S" CI
3 (gil CI

, (Bu VI

• (S" VI

• (B,I VI

CO "II COilE REO

IMPLlfO , • , , , •
IIPERATlOtl$ MNE MONIC " - " 800LEAllOPERATIOIl , , , , , ,
CI ... r..,,~ '" "'

, , .-, • • • • • " a .. , '"""""' M"~ '" "
, , 0-> • " • • • •

0 . " D",l lol"o" '" " 2 , .- , • • • • " •
Soo, r.."y m .. , , , ., • • • • • ,
SIlI'n"""p' r~., .. '" "

, , H • , • • • •
Sol 0".,110"" '" '" , , ,-, • • • • , •
MmllP A - CCR '" "

, , A-C'R --@--
CCR - . Atml ,. A '" "

, , CeR _. A . 1 . 1 •• 1 . 1 .

CO NDITI O" COilE REGISTER NOTES: IB,t .. ' ,I """ II u. ,no , I.,rod . ,h""" .. 1

T." R"ul, - IOeIlOOOO' (B" III rm $.go M 01 mo " "!i", I",", (MS I b". - I'
TOIl R .. ull · OOOOOIlDO' • (S>1 V) T"I n tQm;rlo""o, omllo,v Irom ."blrO"'O" 01 MS b~''''
hI! D."m.1 v.I." 01 mo" It!i",I, un ' BCD Ch"."., q""" ,h." "m" , 16" N) Teu Rtluh I, .. ,"'" mo' (B" 15 • 1)
(rIo, Cl d ,I p, ov,oudv'" I

'" (All) lo .d Cooa."." Co'" R"lll'" I,om S,ac~ (SH $01< ;. 1 O~"1ronll
T .. , Ollf"nd - 100000000".' to • • ,,",i.n' " 1811 II Sri wIIIn ,",,,,uPI .ttu" II o""ou<lv .. , .• lion ~I,,, I; ,bl'
hll"
10\'

O",,.od · 011 1111 1 puo< 10.,""".0' Inlwup' '$ "Q","d' •• '" ,h. ,,~ ,' "".
So, 'Quollo ,,,til l olll(!)e ,(", ,h'" N •• tcu " , d " IA liI Sr'''tQ 'dml ' 0 ' II< Co"!.nl< 01 A"umu'Olo< A

MC6800 INSTRUCTION SET (CONT INUED)

B·3

,

APPENDIX C

N6800 Co- Resident Assembly Directives
Summary

DIRECTIVE

ASSEMBLY CONTROL

NAM

ORG

END

LISTING CONTROL

PAGE

SPC

OPT NOO

OPT 0
(Object Tape)

OPT M
(Hcmory File)

OPT NON

OPT S
(Print Symbols)

OPT NOS

OPT L

OPT NOL
(No Lis ting)

C- l

FUNCTION

Program name

Origin

Program End

Top of page

Skip tlntl lines

No object tape

The Assembler will generate
object tapes (selected by default).

The Assembler will write machine
code to memory .

No memory (selected by default) .

The Assembler will print the
symbols at the end of Pass 2.

No printing of symbols (selected
by defaul t) .

The listing of assembled data
will be printed (selected by
defaul t) .

The Assembler will not print a
listing of the assembled data.

M6800 Co-Resident Assembly Directives
Summary (Continued)

DIRECTIVE FUNCTION

OPT P The listing will be paged (selected
by default) .

OPT NOP The Assembler will inhibit format
paging of the assembly listing .

OPT G All data generated by the FCC, FCB ,
and FDB directions will be printed
(selected by default) .

OPT NOG Causes only I line of data to be
(No Generate) listed from the assembly directions

FCC, FCB , and FOB.

DATA DEFINITION/STORAGE ALLOCATION

FCC Character string data (Form constant
character)

FCB One byte data (Form constant
byte)

FDB Reserve memory bytes (Form double
byte)

SYMBOL DEFINITION

EQU Assign permanent value

C-2

•

,

•

APPENDIX D

ASSEMBLER ERROR HESSAGES

201 NAM DIRECTIVE ERROR
HEANING : The NAH directive is not the first source statement,

or it occurs more than once in the same source
program (Applies only to version 1.2)

202 EQU DIRECTIVE SYNTAX ERROR
}~ING: The EQU direct i ve requires a label (Applies only to

version 1 . 2)

204 STATEHENT SYNTACTICALLY INCORRECT
HEANING : The source statement is syntactically incorrect

205 LABEL ERROR

206

207

MEANING: The statement may not have a label or the label is
syntactically incorrect .

REDEFINED SYMBOL
MEANING : The symbol has been previously defined.

UNDEFINED OPCODE
NEANING : The symbol in the operation code field is not a valid

opera tion code mnemonic or directive .

208 BRANCH ERROR
MEANING : The branch count is beyond the relative byte ' s range.

The allowance is
(* +2) - 128 D (* +2) + 127
where D = address of the destination of the branch

ins truc tion .
* = address of the first byte of the branch

instruction .

209 ILLEGAL ADDRESS mDE

210

}ffiANING: The mode of addressing is not allowed with the
operation code type .

BYTE OVERFLOW
MEANING : A one byte expression has been converted to a value

greater than 25510 or l ess than - 12810 ,

211 UNDEFINED SYMBOL
MEANING: The symbol does not appear in the label field .

D- 1

213* EQU DIRECTIVE SYNTAX ERROR
MEANING: The EQU directive requires a label.

216 DlRECTIVE OPERAND ERROR
~ffiANING: The directive operand field is in error.

218 MEMORY ERROR
MEANING: The memory option was used and the object code was

directed to overwrite the assembler/editor onto
non-existent memory .

220 REDEFINED LABEL ERROR
}~ING : The symbol in the label field has been redefined and

has a different value on Pass 2 than on Pass 1.

221 SnmOL TABLE OVERFLm.J
MEANING: The symbol table has overflowed .

operation paragraph in Chapter 3
symbol table.

See assembler
for extending the

* In version 1 . 2 ERROR 213 is a redefined symbol error .

0-2

•

,

Frame

, ,
J ,
S
6
1 , ,

'0

N

I
~ • ..
!
!
0 ,
• • ,

I

T
N ·
< ,
0
u

• > •

I

APPENDI X E
ABSO LUTE OBJECT RECORD FORMAT

/
00

} Leider (Null~ 1

- - -
- -
- -- -
----.,;.-

} (Null.)

(CRI Formatting for pr inter
(LFI read8b ilily : ignored by leader

0' (Null)

53 S · Start·ol·record ---ee

I
- - -
- -
- -

E - -, - -• u • 0
u - -

1
- -

CC · Type o f ReCOrd

} By le Coun l (two frames ·
one byte)

I AddreSI /Sllt

0"13

} Checkwm

~
Frames 3 !"rough N are hexildeclmal d,gm (m 7·bi, ASCII I whIch are (OMentd
10 BCD. Two BCD dlgin lIrt combined 10 m;tke one B·bi, byte.

The checksum It '''e one's comn~'men l of Ihe summalion of a·bi, bytes,

Frame

1 Stan ·ol·Record
2. Tyoe of Record
J .

BVle COUnl ,.
S
6. AddreulS,ze
1. ,
9. Data

'0 . ..:..: ___ _

N. Checkwm

cc ~ 30
H~ader

Rrcord

--'L
~

" ...B....

" " " ...1L

" ...lL

" --"--
J5

..2L

~ "

S
0

" ---

0000

48-11

'''0
52·R

9E

CC - 31
0818

Record

..2L

" " J6

" " " J.
3'
J8
3D
J2

~ "

El

s

"
1100

"
J2

CC · 39
End-ol·F,le
Record

~
....l2... 3.
...1L

3D
3D
lO

~

" "

AS (Cnecksum)

s ,
"
0000

Fe

APPENDIX F

SAMPLE PROGRAM

F'AGE (101 PI3I"

00001 riAI'l PGI'l
00002 • PE\'ISIQr'l 1
0000 ';: OPT 0 OUTPUT OBJECT TFIPE
00004 OFT ,

SELEC T PF.: I IH I NG OF :S:-y' t'lB 0 L S .~

00005 OCT r1
00006 2000 OJ;~G '1;2000
00007 ooo~: counT EJ)U ,)13 .j) INDICATES acrAL
o I) I) I) :; 2000 :::1;: 203 2 START LK:; ::STACK. INZ 'STACK PDIrHER
0000 ';:- 200:::: FE 20';:r;;, LD>< RDD~'

00(110 2006 (:6 I) .;: LIlA B ::cou~n I ~1t'lEII I ATE AIID~ES:S I ~11:;
00011 201):3 ,=- ,::::

.' -' OA BACK LIlA A 1 0 D I j;.'ECT ADDRESS ING
(10012 200A Al 02 Cl'lP A 2,X 1 ND=:><ED ADDPESS 1 ~lG
0001 '3 200C .-., 05 BEl) FOUtiIl F.'ELAT I ',/E ADDRESS I t1G " ' (10014 200E 0':" DE >< I t'WL I ED ADDRESSING
00015 200F SA DEC B ACCUt>lULATOR m1LY ADDRESSING
00016 201 I) 26 1=6 Br-lE E:ACK
00017 2012 :,~

-'- .!.il1 I I.·.IAIT I=O~' Hi TERRUPT

0001 '3 2 I) 1.3 BD 201 '3 FOUf'iII ·J·SR ·SUBRT "1 JUI'l!=' TO SU"E:RDU r I f'iE
OOO~:::-O 2016 7E 2000 .Jr'lP ~ THRT D::TEf"'lIlI;:D ADDRESS friG
(10021 • CDr'lrlEl'n ~;TATE/,lEtH rlOTE TRUtKAT I 0!'1 (I 12:34"56 7 :::'~ 0 12345
00022 201'~ 16 SUE:RTtl TAE: COt-H'lEl'll FJELD TRunCAT I Of'i (I 1 c.' :~:4

OOO~'j 201A BA 2 (I"~: :~: ORA A B'lTE SET t10 S. T s: I GrH F I CAtH I'IT
1)0024 201 D '~:':" F~TS RETURn FROt1 SUBRO'JT 1 f'lE

0002':, 201 E 0014 RI'lB 20 "S CF~ RTCH RPER FOR :50 TACK
00027 20 ';:2 0001 "S: TACK Rt'lB 1 START OF STACk
0002:;: 20:j ';: ::: (I B· TE FCB $:::0 F"ORH CmETRrH B'iTE
0OO2'~ 2034 1 0 I="CE: :1:10,$4 '. Hm ICATE:5: HE><ADEC I ~lAL

20 '~:S 04
(10030 20 :~:6 2 (I j::: AD DR FDB DRTA Fo&;·:r'l cmETANT DOUBLE B'y'TE

• OOO'~:l 20 ~: ::: 53 DATA FCC "'- SET ..." FORt" CONSTANT DRTR STP I NI.:; ' .. 8:5.(: I
2(n'~ 4C",
20~:A 54

END
COUtH ooo ·~: STAPT 2000 BRCI< 2008 FOUND 2013 SUBRTN 2019
STACK 2032 BYTE 2033 RDDR 20:36 DATA 203'::
TOTAL ERRORS 00000

F- l

SOOB000050474D20202.020~07n
S 11E2000e~2032~E2Q3~(6 0 3?~Oq8l0 ~2705n95~26F63EBV201?7E2000168834

~ 106~OlB203339 3~

v .,

S 1082033S010042Q~~5 34554 C ~

S- '?O::OOOOF"C

EXBUI;; 1 . 2. F'RrH
BEG AD DR 0601 2000
END FlODR FFFF 203A
E::<EC Y

2000 '::E 20 32 FE ,::0 ~: E, CE, 03 '::tE, O~ Al 02 27 0:, O'? 'SA
2010 26 F6 3E ED 20 19 7E 20 00 16 8A 20 33 3~ 55 55
2020 55 :,5 ~,:, 55 ':",'5 55 55 5'5 5'5 '55 55 55 55 5'5 55 55
2(1'':::(1 ':,5 55 55 ::: 0 1 I) 04 20 3:3 53 4'5 54 ,:.,:. '55 5'5 55 5'5
BEG ADDR 2000

F- 2

2 . 6F .. . !. ' .. Z
:~ . ;. = : ;: ,?UU
IJUIJUIJUIJUUIJ'JUttUUU
UUU . • • ::: "S. E' TUIJU'JU

<

APPEND IX G

USING MIKBUG VERSION OF THE M6800
CO·RESIDENT SOFTWARE WITH THE ME X6800 D1

EVALUATION KIT

The MIKBUG version of the M6800 Co-Resident
Sohware may be used with the MEK6800 D1 Evaluation
Kit . As discussed In Engineering Note 100. The Evalu
ation Kit uses the MIKBUG F,rmware stored in the
MCM6830l7 ROM and interfaces with the selected data
terminal via a MC6820 Peripheral Interface Adapter at
addresses 8004 through 8007. Interfacing the Evaluation
Ki t with a RS·232C compatible or TTY (20 rnA neutral
current loop) terminal is depicted in F igure 3·4 01
Engineering Note 100. The following changes arc required

to make the Evaluation Kit compatible With the M6800
Co-Resident Software.

.,
~w

"
"
"
"
"
"
"
"
"

Ad"'." Bu.

" ", ,.
'" " A"

.. ,
" A"

" AM

" , ..,
" "

MC68"20

" " " " " " " " CO>

" "

'"

,

2100
I / "2W

-5 V NC

I
I

, ,

,I II

a. Change the schemat ic in Figure 3·4 of Engineering
Note 100 in accordance with Figure 1 of this docu·
ment. The changes are depicted in dotted lines. Use
the modrfred schematic to design and build your
term inal mterlace.

b. Change the Control H character delete command
in Table 2·' of the M6800 RESIDEN T SOFTWARE
SUPPLEMENT to control H. (In Edition 1 of the
supplement. add the Control A to Table 2·1.1

-,

- .i2 v

1 IN4 001

! IN4001 •
." 'w

-12 V

$.". '
0 .. ,,, .. .

020 1
1- ~NJ"3-- 1

, I
r - -+ - -'
I E 3 b-.----+
I E4 I \\ I,

-~ ,

, '" ,w

t!'-j;;'i[:=::~'~L-------~~------~':'---------~---------------------1 ,
I ~:'I~~ - - - __ , , ,

" ,
MCI 489Al I

I r-- 1400
I

'b-..r-- I I - ., ,\:>l
.... _/ r1 / I MC1489 _ _

,I " " '"

., v "
-12 v , , ..,

I
II I

I.
'50

1/"2'11

I "
I " <>----t-i
L _ -1

R$·"23"2C
S o, and

R .. 4.,
ContrOl

"21 06
MCI489AL

. ~"~-o { a"O " .. 30 CPS

\ N 4 001
R '
CO"tlO ' R., .. ,n "26 0 , 1'86 ' SV'O.IOC"S

L~'~':' ':·C'~''..':·~''~
" 1"2 10

,
R • •••

9 A MCI4536

l ______ c'!.!.' Cou •

6 (I BYI>n .

, !'-",,'-'-~ ... -'''I r

6"20l>F

Ou., •
'" " ,

. 'v,-, ___ l-l'l'~'~~'~"~'~"~~~;f~----------I---l . 0 'nl\ "'~
11 14

°'''2
,

S "'
"

'"
G- l

Not. 1 Jumpe, EllP 10"2 10' TTY opa,., .""
NOle"2 Jump" , 103 to E4 tor f1S ·"232C o pef."O"

,

APPENDIX H

USE OF OTHER PERIPHERALS WITH THE
CO- RESIDENT SOFTWARE

The Co-Resident Assembler/Editor has been designed to op~rate
with TTY terminals equipped with automatic reader/punch control , or
other compatible terminals such as Texas Instruments 733/ASR . Normally
these console devices are also used for communication with the resident
system ' s moni t or program. Since other terminal t ypes may offer advantages
such as lower cost or higher performance, the Co- Resident softwa.re was
designed to easily accommodate other peripherals . All Assembler/Editor
input/output requests are processed by a common input/output program
that resides in memory locations 010016 - 02FF16 "

Each input/output operation , such as punch record, print record ,
etc . is invoked by entering the input/output package through the appro
priate jump vector . In the standard version, the input/output r outine
processes the input/output request and performs the input/outpu t operations
on the console device by calling the elementary input/output routines in
the resident monitor. As a result, there are three versions of the common
input/output program :

EXORciser - - Input/Output via EXbug

Evaluation -- Input/Output via IHKBUG
Nodule I

Evaluation -- Input /Outpu t via MINIBUG II
Nodule II

In order to substitute the other peripheral devices , the user
must supply the appropriate input/output drivers and patch the common
I/O programs so that his drivers are called rather than the standard
ones . To facilitate such modifications, source listings of the three
common input/output programs are available through the ~t6800 User ' s
Gro up Library.

LINE PRINTER INTERFACE

The input/output hardware and common input/output program modifica
tions listed in the following paragraphs provide an example of the changes
required to operate the Co- Resident Assembler/Editor with a line prin t er
(Centronics type) . The Disk Operating System includes the necessary commands
and driver routines for implementing a line printer. The commands and driver
routines required for paper tape and cassette are provided in the following
paragr aphs .

H- 1

Hardware

The jumper connections listed in Table HI must be performed if
the HEX6820 Input/Output ~lodule is used to interface the printer with
the EXORciser. However , if the MEX68PI Printer Interface Module is
used, these connections are not required. \Vhen using either of these
modules, refer to the appropriate Userfs Guide Supplement.

Common Input/Output Program

A.

of the
patch

B.

patch.
may be
tion .

Disk Assembler - ASMB (Version 1 . 3 Only)
In order to enable the printer patch included on the 1.3 version

ASMB disk file, the disk file must be amended with the object file
provided in Figure HI .

Disk Assembler - ASHB (Version 1.2 or 1.2A Only)
Version 1. 2 of the disk assembler (ASHB) does not include a printer
However, the object file patch (AS~WATCH) provided in Figure H2

used to amend this version of the disk file to permit printer opera-

C. Paper Tape and Cassette Assemblers
Assembler software provided on either paper tape or cassette must

be amended in the following manner to operate with a printer.

1 . The object file (LPTDVR) provided in Figure H3 must
be stored in memory at a location contiguous with
the Co- Resident Assembler and Co- Resident Editor .

2. The current version of the assembler must be amended
with the object file (ASMPATCH) listed in Figure H3 .

H- 2

,

TABLE Hl MEX6820 Input/Output Hodule Jumper

Requirements for Operating With a Line Printer

PRINTER
PIA I P~~~R CONNECTOR PIN

SIGNAL PIN NUl-lEER

GA2 39 1 1

PAO 2 3 2

PAl 3 S 3

PA2 4) 4

PA3 5 9 S

PA4 6 11 6

PAS) 13)

PA6 8 15 8

PAl 9 1) 9

CAl 40 19 10

*Jumper connections to be performed between PIAl (U13) or PIA2 (U1S) on
MEX6820 and connec tor P2 or P3 respectively.

NOTES :

1 . The following pins on connector P2 or P3 (MEX6820) should be
connected to ground .

2, 4, 6, 8 , 10. 12 . 14. 16. 18 and 20

2. Printer connec tor pins 19 through 28 should be connected to
ground.

H- 3

! ::: fll T •• ':',=n

M6sno PE SIDENT ~DJTOR 1. 3
(:JF-YPI'3HT wJTOC::'OLA 1976
:;:, I rh7.jt" 1='8T

OR':;; '£2 (I
L [IS· ;:f,FF'::A
£;',rl

-n

M~80n ~eS ID~NT A~S EMBLER 1. 3
I:'O P YR I 13HT r'1 0 TOPOLFt 1 ':'76

0(1111)]

(! I) II (12 (102: I)
00nn~ nO~0 SE FF8 A
fll l I I (1 4

rio:tfo1
Q~'G

L O~;

::::r'w

F'HT
'1,20
::'J.FF8A

FIGURE Hl. ASHB Version 1.3 Object File Printer Patch

H- 4

,

"

?A;;:: 00 1

(1)001
0 ,'002
00003
11') 1)0 :1

ilflno '5
rt(1 (I I)·S

(1 1)0117

00 0 I).: !
i1OOO?
(lon t (I

on 0 1 1
,"l1nle'
I) il n I , . . '
Iino 14
flIIO I~
(II) n I S
,"(I (i I 7
II fI 1"11 :!
OfJ!)t·;"

(, 0 "' .~' (I
.. ,nt)~ l

001'1:-.2
(, I) fl ?;!
,', I' 1'1':: ::1

f. I) n.? ':.
flnll::;
(j,)1)? 7

(1 (II) ~' ::;

1111 (I :"?
1)')1'1:=('

') 1) 0:: 1
fl(1'n2
(I on;:::

0(1):;:4
11(1 n ::'5
(III (I ;:-:.
1)1) (1::7

1)(IO:: ::!

non::: ?
nnn ::1f1

no,::' (,
,) 0';' (I

00.:'3
(1')~' 5

(1(1.::-7

(11)2·;t

1102::
on?:-
(I(.:;?
('0:: :'
1' (1 ;::,

00 ;:::
0038
('0 ~D
I) I) 3:C
004 1
004 3
(11)4 ';,

1)1) 4 '~

(n)4C
MI4F
11(1:,2

('054
00'5'5
(lOS6
(1 0 '57
005:::
o O'S'?I
005M
(11)'5 E:
(1 1.1'5('

1)(100

;=F8A
FF'5-3
01 1~
01 1 8
01 : . :.

" .'

n I ;: .;
E..:,r,,=;
:EA[I[I
(11 I) 0

oj-=- FF:::A
" -
~..:. (I.)

31 0':1
27 !.~

:~ (10'5 ::1
BD 01 1 ~
'C 00(1 (I
.... :,
:. .; .. '. ' F[I

7F !=F'5::
BD 0 1 1 B
'::1 5 '?
,=7 07
? 1 4~ ,.
'- ,=.

r .
c::>

, 'C 01 00
CE EA OS c. 01 ~: 4

:7: E EAD[j
F. (11 ::7
.:: 0 EF"
50
'S .::
4 ':;'
<E
54
4'5
~.::.
,~

3!=
04

r'iFlt-l g so'IF-ATCH
~pr 0.<;

+T H I :;' !='~~O ';;RAr'l PFtTCHE<; THE f'16:::(10 PE ':;;:JDEN T A-S::;EI'IF~=:R

.TO REI)UE'S:T THE US::;:R TO S"ELECT IF ::J:.I T~ IJ T I "S" TO BE "S:

.T:) THE !='F:UlTER DEVI CE US Ir'i;3 THE PJ;;'Of'l np I '·lEF~
PA"5;"S
?=:-S TA C!<:
AEGH')
XnATA
'x": I F:
>(HE~D

"(L I ~'lE
:... D==1T .~
:_ [lAT;~ 1
~~"1B

T']P

D:='_ 8'/

A Sf'l
;:'RrHP

r'Ei;;

'-:: !)U
EO!)
E:Y.I
EO!.!
::=: 1) :.1
EOU
EO!.!
::O!J
EO'.1
E:)U
OPG
!.. It s:
~DA

C~'lP

t:E ~l

LD''':
F 1;'

, .' ,

LD'-=:
m:":<
F""
' . ! _r-.
I :::- ;;.

eNP
BEO
C!'1P
BI'i=
.I;'lP
LD>-=:
0:; T>(
LI(:'(

o:;r<
BPR
FCC

:=- CB
END

A
A

A

rl

(I

liC~ '::~

IF~5'3

1·1 lE
'1' 1 IB
'1.1 33
1.1 i·-':,
'fEAD'5
lEADD
'1. 1 00
1;20
::'x: STA'::k
PASS
:: '1: ';' ::l.E: JECr onLY"?
FI S: >1 y eo:"-~,

:;~'rSS

:>mATA
::(1

DE~CjV

·='ECHD
''';':: I E
.. ",'.J .. ,
Pf::'i'HR
:: "' N
1;:)P

A S)"'1"E::
::L TIRT8
':<HEA[l+ 1
::L(lATAl
XL !:-i!:+ 1
ASN
..... r=·RItHER? -"'

4

FIGURE H2. ASHB Versions 1.2 and lo2A Object File Printer Patch

H-5

O(lonl r'l~r'l LPTD\,'F'
00002 Or 'T 0
0000 3 EABO OPG EF1E:O
00 0 04 ·Ul EDO '~' ffS: -::~ El'IBLE~ , ~: ET THE FOLLO '.') I nl3 LOCAT 1 mrs:
onOO5 • (PIlAT A) = Jt'IP PD.'=n~

1i"1f1f16 • (PD8 TA 1") = .Jj'IP PDATRI
(I n n7 ECl I Ct"lTPI.. EO IJ 'fE C l1 PIA Af!P'"-'E S "S:
0008 1="(: 1 (I TIATA EOIJ '!:ECtO c' IA 8 IHI ~' t:::~ :~

non9 EAE:(I Ll ST EI~I IJ •
IJ 0 1 I) EAf:O ~ P "S H H

)001 1 ERE: l 7f" Eel I CL~' Cln~L

o nOlc: EAI:4 :~:6 :::~ LIlA H ;:'tl=" 1=

01.1[113 EA HE, p7
" f"C l fJ 'STA rl DATA

011014 EA E: '7! co"
'-' ':' c:E LDCj q :: '1:3£

nO(115 EAE:B £:7 Eel 1 s. TA H CNTPL
IInnlE, EAF:E ~: 2 I="U L q
(11"1[117 EARl=" R7 Eel (I S.TA H no.:nA
nOlll'3 EAC2 8 6 :;:6 LIlA A :;'J: '~: 6

IInn1? !=A(:4 F:7 ECl I :;:TA A (HTPt
I) II n~:. I) ~Hr7 :::6 3E L TICj H ::'J. ::E
nO(t?l ER C';" R7 E C l I ~TA H O-n l
nOn2 2 EACC BE. ECl 1 L IS T! LDA A CHTRL
(I I) 0;:'3 EACF 2A FB E:PL LI "T I
nIJ0 2 4 EATII "E:6 Ee l (I LItA H DATA
(10 02'5 E804 '3';:' ~ I 'S T2 Fn :;:
n (I I) :=: 6 EAD':, PDATA ':: 9iJ •
Ollu27 EArlS 86 0(1 L (lR q :: 'f (I

0OO2:~: 1:8[17 8 D D7 "E: ? P LI "S. T
n (I II C"~ EADS 1"", "

-=- '=' OR LItA H :: 'f.A
001"1;:(1 EAllf: :3D D :: BSR LI ST
nlln-":: \ ~ADll At; II (I PTIATA 1 LDA 8 ' ,

h

III) It ~: 2 E.A[l~ 8 1 n4 l:: t'1P H :~4

nOII '3;: ERE I ,-u Fl BEO LET2
00034 ERE 3 :::D CB BSF.' L ET
(I [I 0-;:'5 EAE'S II':' - ','

I r·r,{

n (III ;:':; ERE"::, 20 F" ':' E: J;:A PIt~TA l

El~It
,

nO lr~: 7

FIGURE H3 . Paper Tape and Cassette Line Printer Driver Object File Patch

APPENDIX I

PROH VERSION OF CO-RESIDENT
ASSENBLER/EDITOR

The Co- Resident Assembler/Editor also is available to operate
in the ROH environment. The Assembler's starting address is C00016 and
Editor's starting address is C00316 , The Co- Resident Assembler/Ed~tor
program uses 7k bytes of Rml and requires a minimum of lk byte of RAN ,
This Assembler/Editor program resides in memory locations C00016 through
DBFF16 and uses the RA}I memory locations 000016 through 01FF16 for scratch
pad memory. The symbol table starts at memory location 020016 and ends
at the default 120016 , This provides a buffer for 500 symbols ,

To change the size of the symbol table, the user enters into
memory locations 010016 and 010116 the end-of- symbol- table address plus
one. In this case, tfie user enters the Assembler at C03916 rather than
COOO,6 ,

If the object code is to be written into memory (OPT N). the end
of- sYMbol-t able address delimits the address . For example , if the symbol
table ends at 120016 (the default address) , a program beginning at memory
location 120016 or may have its output directed into EXORciser memory
(providing it is available) .

It should be noted that the edit buffer starts at memory location
020016 and extends to the end of continuous RA}I memory.

I-I

. •

® MOTOROLA

MICROSYSTEMS • 3102 North 56th Street· Phoenix, Arizona 85018

