

Recommended procedure for initializing the PIAs is as follows:

1. Set b2 = 1 in the Control Register in order to select the Data Register.

2. Write the desired initial logic states into the Data Register.

3. Then establish the required outputs by selecting the Data Direction Register by setting b2 = 0 in the

Control Register and writing the appropriate pattern into the Direction Register.

Q 4. What causes the PIA to miss interrupts when the MPU is halted or in the WAIT mode?

A 4. While there are nominally no restrictions on the format of interrupt signals into CAl, CA2, CB 1, and

CB2 of the PIA, there are certain combinations of system situations that require special consideration.

Assume that the interrupt signal format follows one of the cases shown in Figure Al and that the PIA

has been conditioned by the MPU to recognize the transition polarity represented by the "trailing

edge" of the interrupt pulse.

Interrupt {
Signals Into

,PIA CA(B) 1
and CA(B)2

t
-----~

FIGURE A1. Interrupt Signal Format

The design of the PIA is such that at least one E pulse must occur between the inactive and active edges

of the input signal if the interrupt is to be recognized. Relative timing requirements are shown in Figure

A2. Note that an internal enable signal that is initiated by the first positive transition of E following the

inactive edge of the input signals is included.

E = VMA· </>2

PIA Internal Enable

Int. to CA(B) Inputs

I RQ (Int. Rqt to MPU)

FIGURE A2. Interrupt Enabling

When the MPU has been halted either by hardware control or execution of the Wait For Interrupt (W AI)

instruction, its VMA output goes low. Since VMA is normally used to generate the Enable signal (E =

VMA· cp2) either of these two conditions temporarily eliminates the E signal. The effect of this on the

trailing edge interrupt format is shown in Figure A3 where it is assumed that VMA went low and

eliminated the Enable pulses before the PIA's interrupt circuitry was properly conditioned to recognize

the active transition. It should be noted that this condition occurs only when an active transition is

preceded by an inactive transition and there are no intervening E pulses.

A-2

VMA I After Halt or WAI

E = VMA • cJ>2 r-, r-,

PIA Internal Enable
,..--------------

Int. to CA(B) Inputs

I RQ (Int. Rqt to MPU) L

FIGURE A3. Interrupt Not Properly Enabled

If this combination occurs during system operation, valid interrupts will be ignored. Either of two

simple precautions can be adopted. If the format of the interrupt signals is up to the designer, the

potential problem can be avoided simply by not using the pulse-with-trailing-edge-interrupt format.

If this format is compulsory, it is recommended that ~2 be used as the Enable signal with VMA ANDed

with an address line and applied to one of the PIA's chip select inputs as shown in Figure A4.

AO

A1

A3

A13 CS1

VMA
CS2

A14

cJ>2 E

FIGURE A4. Alternate E Generation

Q 5. Is there any change in the CA2 (CB2) line if it is set to a logic "0" (Control Register bits 5, 4, 3,

are 110 respectively - defining CA2 (CB2) as an output) and then the control register is put in

the handshake mode (CR bits 5, 4, 3, are changed to lOX, respectively)?

A 5. When the control register bits are changed to put the PIA in the handshake mode, the CA2 (CB2) lines

remain low.

Q 6. What are the threshold points for the M6800 family from which the delays are measured?

A 6. The M6800 input thresholds are specified as Logic 1 = 2.0v, Logic 0 = O.8v; the delays are measured

from these points. TTL and M6800 family devices provide output signals having logic 1 = 2.4v and

logic 0 = O.4v, providing 400 mv of noise margin. The delays are measured as shown:

A-3

2.4 V

--iII-- 2.0 V _~~_---.~ Noise Margin = 400 mv

-+-+-.8 V

2.4 V

---.....~-#-- 2.0 V

-~-~-.8V

'-----------------~---' '--------.4 V

~----DelaY---"""""1--

Q 7. What happens in the ACIA when a control word is loaded after an ACIA reset condition? (How is

the ACIA initialized in the system?)

A 7. When power is turned on in the system, the ACIA interrupts may be enabled and generate a system

interrupt. This can happen if there is a glitch in the power supply as the power came on:

Supply
Voltage

~-----------------Vcc

--~------------------------------------~"time

The procedure for initializing the ACIA is to do a master-reset by writing into the control register

(CR 1 = 1; CRO= 1), while the interrupts are masked in the system. The master reset clears the interrupt,

transmit data register empty, and receive data register full flags, and clears both the receive and

transmit data registers. The ACIA interrupts may then be enabled as required.

NOTE: Since a master reset clears the Transmitter buffer, an interrupt will be generated from the ACIA

provided the Transmitter Interrupt Enable (TIE) is activated when loading the control register

subsequent to the master reset.

Q 8. How large a load is the MC8T26 bus driver?

A 8. The MC8T26 has a PNP input and loads the MPU as shown:

200 IJ-a max at "0"

25 IJ-a max at "1"

= 1 0 pf input capacitance

Q 9. Why is 100 KHz specified as the minimum operating frequency?

A 9. The MPU is a dynamic device and (like dynamic memories) requires refreshing via the clock. The

maximum time between refresh transitions on the clock line is 5 IJ-S corresponding to an MPU cycle

time of 10 IJ-S; ora frequency of 100 KHz.

A-4

2 M6800 CONTROL

Q 1. Can ODE be tied to a OC level?

A 1. No, the DBE signal is used to refresh the output buffers which are dynamic. DBE cannot be held in one

state for more than 4.5 /LS without degrading the data held in the output buffers.

Q 2. What does ODE control?

A 2. DBE controls the three-state enable on the data output buffers. When DBE is low, the data output

buffers are in the high impedance state. When DBE is high, the data output buffers drive the data bus.

The data output buffers are also in the high impedance state during the execution of a read cycle (R/W

= 1).

Q 3. What should be used as a ODE control signal?

A 3. Most applications will use cp2 as the DBE control signal. A longer data hold time requirement during a

write cycle may be met by holding DBE high past the trailing edge of cp2. The MPU data setup time

(T ADS) can be shortened from the 200 ns specified by bringing DBE high before the leading edge of

cp2. The exact timing relationships are currently being characterized.

Q 4. What is the relationship od ODE and TSC?

A 4. DBE is the three-state strobe for the data buffers while TSC is the three-state strobe for the address bus

and the R/W line. TSC also forces VMA low. In many applications, it will be desired that the MPU

always drive the bus, thus, TSC will be tied low. In other applications, TSC will be used to implement a

Direct Memory Access, (DMA), or to force VMA low during system power-up rather than using

RESET to disable the devices on the bus. DBE and TSC cannot be tied together because DBE must

change states every 5 /LS whereas, in many systems, TSC will be tied low.

Q 5. Will interrupts (IRQ or NMI) and RESET be recognized while the MPU is halted?

A 5. Interrupts will not be acted on while the MPU is halted. These control signals are latched on the MPU

and will be serviced as soon as the MPU is taken out of the halted state. RESET going low while the

MPU is halted causes the following: VMA-low, BA-low, Data Bus-high impedance, R/W -Read State,

and the Address Bus will contain the restart address FFFE.

Q 6. What happens if the MPU is halted and the + 5 volt power fails?

A 6. The MPU stops program execution and all internal register contents will be lost.

Q 7. How can one tell whether the MPU has halted?

A 7. When the MPU is halted the BA signal will be high. The MPU completes execution of an instruction

before halting. Once the execution is completed, BA will go high within 470 nsec after the leading edge

of the next ~2 signal. Whenever BA goes high the MPU is inactive (halted) and the address bus, R/W

line and data bus are available for use by another device for as long as necessary. One caution to be

observed is that TSC going high will force BA low whether or not the MPU is halted. When the MPU is

halted all MPU outputs are in the high impedance state, therefore, there is no reason for TSC to be high,

however if it is brought high BA will go low and the indication that the MPU is halted will be lost.

A-5

Q 8. What is the timing relationship between HALT and BA?

A 8. If HALT is low during the first lOOns of cf> 1 in the last cycle of an instruction the MPU will halt at the

end of that instruction. If HALT is not low during the first lOOns of cf> 1 in the last cycle of an instruction

the MPU will halt at the end of the next instruction. The fastest instructions such as LDAA (Immediate)

execute in 2/-Ls while the longest instructions such as SWI require 12/-Ls to execute, (assuming a 1 MHz

clock rate). Depending on the instruction being executed when HALT goes low, BA will go high no

sooner than 2/-Ls and no longer than 14/-Ls after the negative transition of HALT.

Q 9. How is single instruction execution accomplished with the MC6800?

A 9. Single instruction execution is accomplished by holding the HALT line active low and pulsing the

HALT line high for one clock cycle when an instruction is to be executed. The transitions of this pulse

must occur within lOOns of the leading edge of cf> 1. The machine will come out of the halted mode and

execute the next instruction which will require from 2 to 12 machine cycles to complete. After

completion of the current instruction the MPU will return to the halted mode. In order to avoid incorrect

operation of the MPU when" stepping" through a program at a very high rate, the HALT line must not

be pulsed high until the MPU has completed executing the instruction commanded by the previous

HALT pulse. The BA signal going high will indicate that the MPU has halted and is available for

another single cycle pulse on the HALT line.

Q 10.

A 10.

Q 11.

All.

Q 12.

A 12.

What effect on the other MPU signals does a low logic level on the RESET pin have?

RESET is intended to be used to initiate the power up sequence. RESET should be held low while

power is coming up and for at least 8 clock cycles after the power supply voltage goes above 4.75 volts

to properly initialize the MPU. During this time the address bus, R/W line, VMA line and data bus will

be in an indeterminate state. If any devices on the data bus could accept a write pulse during this time (a

battery backed RAM for example) they should be disabled until RESET goes high to avoid system

problems. After 8 clock cycles VMA will go low and RESET may be brought high causing the MPU to

vector to the restart addresses FFFE and FFFF.

With the MPU power up and the system running can RESET be pulsed low to re-initialize the

system?

Yes. Assuming that the processor has been running for at least 8 clock cycles, the processor can be

restarted by pulsing the RESET line low. This pulse must remain low for at least three cP2 cycles.

While the RESET line is low the MPU output signal will go to the following states: VMA-Iow,

BA-Iow, Data Outputs-high impedance, R/W (Read State), and the Address Bus will contain the

restart address FFFE. This will occur within 300 ns of the cP1 cycle following the cP1 cycle in which

RESET went low.

How can a 'DMA channel be implemented with the MC6800 MPU?

Two methods of controlling the MPU to allow DMA involve the use of the HALT and TSC lines.

(a) When the HALT line is pulled low the MPU will finish the current instruction and then go into the

halt mode as indicated by BA being high. All address lines, data lines, and R/W lines will be in the

high impedance state, allowing the DMA channel to assume these functions. VMA will be forced

A-6

Q 13.

A 13.

low. Once the MPU enters the halt state (which can take up to 14 nsec to finish the current

instruction), DMA transfers can begin and control the bus as long as necessary. The speed of DMA

is limited only by the constraints imposed by the memory system speed and DMA controller

design.

(b) TSC used in combination with stretching of the clock signals can provide a DMA channel which

allows DMA transfers without stopping MPU program execution. In order to transfer DMA

information using this technique TSC is brought high on the leading edge of cp1 when a DMA

transfer is requested. While TSC is held high the cp1 clock is held in the high state and the cp2 clock

is held in the low state in order to stop program execution by cycle stealing. Assuming that DBE is

driven by cp2 the result of pulling TSC high will be to place the address bus, R/W line, and the data

bus in the high impedance state. VMA and BA will be forced low. Due to the use of dynamic

registers within the MPU the clock signals cannot be held in any given state for more than 4. 511-s

producing a lower limit on clock frequency of 100KHz. This factor limits DMA transfers on the

bus to this 4.511-s interval when cp1 is held high. After the 4.511-s interval when cp1 is being held high

the MPU must be clocked in order to refresh the dynamic registers. This technique of DMA has the

advantage of fast response to a request for a DMA transfer (TSC = 1) but has a limitation on how

much data can be transferred in one block. Halting the machine as described in (a) has a longer

response time before DMA transfers can start but there is no limitation to the block size of the

DMA data.

What control signals could be used to select ROMS, RAMS, and PIA/ACIA?

VMA, R/W and cp2 are all available to enable RAMS, ROMS and PIA/ACIA's. In some cases it may

be desirable to eliminate one of these enabling signals so that enable input may be freed for address

decoding. The following discussion indicates which control signals could be deleted for a given device

and the effects on the system operation.

ROM - R/W and cp2 can be used to enable the ROMS without using the VMA si.gnal. Not using the

VMA signal means that the ROM may be enabled during a non-memory reference read cycle

(VMA would be low but since it is not used the ROM may be enabled). A false read of the

ROM will have no effect on the system and if the non-memory reference cycle had been a

write then the R/W signal would have disabled the ROM.

RAM - VMA can be left off as an enable to a RAM if the MPU will not be halted, WAI Instruction

executed or if the TSC will not be used. Either of these conditions cause the Address lines and

the R/W lines to float which could produce a false write into RAM if not protected by VMA.

During normal operation of the MPU only one instruction, TST, causes a false write to

memory (i.e. the write line going low with~ut VMA also going low). This instruction does

not pose a problem because it first reads the memory and then rewrites the data read. If VMA

was used to enable the RAM this false write would not occur, however, since the memory is

rewritten with the same data no problem occurs by not using VMA as an enable.

A-7

PIA/ACIA --.,;. All three signals must be used to enable or select a PIA or ACIA. Both of these devices

automatically clear the Interrupt Flags when the MPU reads the PIA or ACIA data

registers so that a false read of a PIA or ACIA may cause an interrupt on CAl, CB I,

CA2, or CB2 to be missed. In addition it is suggested that VMAecf>2 not be used as an

Enable signal for a PIA because if the machine is halted, (HALT active or W AI

instruction) VMA is forced low removing the clock from the PIA. Without the Enable

input to the PIA an external interrupt may not be recognized. cf>2 should be used for the

PIA Enable signal so that the PIA Enable clock always occurs whether or not the MPU is

halted. VMA may then be taken directly to chip select inputs or be gated with address

signals to the chip select inputs.

A-8

3 M6800 INTERRUPT OPERATION

Q 1. What happens if the interrupt mark is set (1=1) and (a) a SWI occurs; (b) a WAI occurs?

A 1. (a) The interrupt service routine indicated by the SWI vector will be processed. The Interrupt Mask

status (1= 1) will be saved on the stack with the other Condition Code Register bits. The RTI at the end

of the service routine then restores the 1= 1 status when the stacked condition code register is returned

to the MPU.

(b) If a W AI is executed while the Interrupt Mask is set, the MPU will cycle in a wait loop unless a

non-maskable interrupt (NMI) occurs.

Q 2. Is the interrupt mask always cleared after an RTI?

A 2. An RTI returns the I to the status that existed before the interrupt occurred. If the interrupt mask is set

then only the NMI or SWI can cause interrupts. The interrupt mask will be set following execution of

RTI if it was set prior to the above interrupts.

Q 3. If power goes down how does the programmer know where the MPU contents are stacked?

A 3. If the system uses NMI as a power fail detect input and there is non-volatile memory in the system the

MPU status will be saved on the stack. As part of the NMI service routine the STS instruction can be

used to store the stack pointer into a predetermined non-volatile memory location. If the MPU status is

also to be saved the stack must be in non-volatile memory.

Q 4. How can the NMI input be used as an operator interrupt?

A 4. If NMI is not used for starting a power down sequence, it may be used directly as an operator interrupt

by having an operator interrupt service routine specified at the NMI vector location.

If NMI is used for power down and operator interrupt, some external circuitry may be added so that a

test in the NMI service routine can determine whether a power fail or an operator interrupt has

occurred. In the diagram shown below, the test may be accomplished by reading the PIA data bit,

PAO. IfNMI occurs, a test of the appropriate PIA data register will determine whether a power down

or an operator interrupt occurred.

Powerfail -------~ }--------.
Operator I ntrpt

PAO
---..... NMI

PIA MPU

A-9

Q 5. What instructions set the interrupt mask?

A 5. TAP, SEI, SWI, W AI (after interrupt occurs).

The interrupt mask will also be set by NMI, RES, and IRQ interrupt inputs to the MPU.

Q 6. If NMI occurs while the MPU is halted will the MPU respond to the NMI when it is returned to

the "go" state?

A 6. Yes, there are flip-flops in the MPU to save NMI and IRQ. When the halt condition is removed, the

MPU will execute one instruction and then operate on NMI.

Q 7. How will the MPU react to the following conditions?

HALT

RES (Case 1)

RES (Case 2)

T1 T2 'T3 T4

A 7. In both cases the MPU will eventually recognize the RES. The RES sequence will be initiated when

RES goes high in Case I and when HALT goes high in Case 2. During TI, the MPU is halted and its

outputs are in the three-state high impedance mode. When the RES line goes low at the beginning of

T2, a halt latch is reset, the MPU goes out of three-state, and (after 3 machine cycles) the Address bus is

outputting FFFE, the most significant half of RES vector address

In Case I, the HALT line goes high and the MPU waits in its current state until RES high at the end of

T4; the MPU then fetches the starting address of the RES service routine from FFFE and FFFF and

processes the RES interrupt.

In Case 2, the RES line goes high at the end of T2 and the MPU loads the Program Counter with the data

(starting address of RES routine) from locations FFFE and FFFF and enters the halt mode again. The

RES service routine begins executing when HALT goes high at the end of T3.

Q 8. Can the Interrupt Mask be changed by the TAP instruction?

A 8. Yes. The contents of accumulator A is stored in the Condition Code Register, including the Interrupt

Mask. Note that bits 6 and 7 will not be stored.

Q 9. What happens when an NMI interrupt occurs during a SWI?

A 9. It is a characteristic of the MPU that if an NMI occurs while a Software Interrupt (SWI) is being

executed, the interrupt vector will be retrieved from the IRQ location rather than either the SWI or NMI

locations. If there is a possibility of this situation developing during system operation, precautions

should be taken to avoid an ambiguous result. In most applications, the NMI must be recognized and

serviced whenever it occurs.

A simple procedure is to always set a flag immediately prior to each use of SWI:

A-IO

NOP

SEI

INC NMIFLG

SWI

DEC NMIFLG

CLI

Set possible NMI Flag.

Execute Software Interrupt

Clear flag if SWI was normal

Testing this flag can then be made the first step of the normal IRQ service routine. As an example,

assume that the IRQ vector has been fetched and directs program control to IRQ service routine

START:

START

IRQSVC

TST

BEQ

JMP

xxx

NMIFLG

IRQSVC

NMIAUX

xxxxxx

Was this NMI via SWI?

No, branch to normal IRQ

Yes, go to NMI Service routine

For a normal IRQ, the flag will be zero and the routine will branch to the normal service routine,

IRQSVC. If the IRQ was entered via a Simultaneous SWI-NMI, the flag is non-zero and control is

transferred to an auxiliary NMI routine, NMIAUX:

NMIAUX TSX Get SP into X reg

TST 6,X Lobyte of PC on Stack = q,q,?
BNE HIBYTE Yes, go decrement Hibyte

DEC 5,X No, decrement lobyte

HIBYTE DEC 6,X Decrement Hibyte

NMISVC xxx xxxxx Begin normal NMI service

A normal NMI would be vectored to NMISVC. IfNMISVC is entered via a simultaneous SWI/NMI

and it is required that the program resume normal operation following service of the non-maskable

interrupt, NMIAUX will insure an orderly return to the main program. The NMIAUX sequence causes

the value of the Program Counter that was stacked by the SWI instruction to be decremented by one so

that the stacked program counter is pointing to the S WI instruction's location. This will cause the S WI

instruction to re-execute following an RTI from the NIMSVC service routine. Program flow will then

A-11

Q 10.

A 10.

Q 11.

All.

Q 12.

A 12.

Q 13.

A 13.

Q 14.

A 14.

proceed as if the NMI had not occurred. If there is no system requirement to return to the SWI

sequence, the auxiliary instructions can be deleted and exit from START becomes JMP NMISVC.

Note that the system initialization procedure should include provisions for clearing the NMIFLG flag.

Note also that IRQ is masked while the NMI flag (NMIFLG) is set to prevent an improper branch at

IRQ START.

When will the MPU recognize an IRQ pulse?

The IRQ input is latched internal to the MPU providing the pulse duration is at least two MPU cycles.

Therefore, the MPU will recognize pulses active for two cycles. Three exceptions are to be noted as

follows:

1. If 1M = 1 while a pulse occurs, the MPU will miss the interrupt.

2. If IRQ and NMI are active concurrently, the MPU will recognize NMI. In so doing, the interrupt

latches are reset and the IRQ pulse will be lost.

3. If IRQ occurs during an SWI instruction, the pulse will be lost because SWI clears the interrupt

latches.

What happens if an NMI occurs after an IRQ but before the MPU enters the IRQ service

routine?

The instruction being executed when the IRQ occurred will be completed. The IRQ interrupt sequence

will be initiated and continue (for 9 cycles) until the MPU status has been stacked. Assuming that NMI

occurs during this interval, the MPU will select NMI since it has higher priority . (Note that iflRQ was a

pulse, it is permanently lost unless it lasts until the Interrupt Mask is cleared by software.) The MPU

fetches the starting address of the NMI service routine from locations FFFC and FFFD and begins

servicing the non-maskable interrupt. If the IRQ line is still low when the Interrupt Mask is cleared by

either a CLI during the NMI service routine or the RTI at the end of it, a normal IRQ will then be

initiated.

Assume 1m = 1, IRQ is active (low), and 1m on the stack = 0; then an RTI is encountered. Will one

instruction after the RTI be executed?

No. the IRQ will be serviced prior to the instruction.

Assume 1m = 1, IRQ is active, and 1m on the stack = 1; then an RTI is encountered. Will the

interrupt be recognized after the RTI has executed?

No. The next program instruction will be executed. IRQ will not be serviced until 1m is reset by

software.

Will the MPU recognize an interrupt occurring during the last cycle of an instruction during that

instruction?

Yes. The interrupt must occur during the second to the last cycle of an instruction if it is to be

recognized during that instruction. The interrupt inputs are sampled during 4>2 and clocked during the

next 4> 1 so the interrupt must be present = 200 ns prior to the end of the 4>2 in the last cycle of an

instruction if it is to be recognized during that instruction. The first cycle of any given instruction is

considered to be the OP CODE fetch from memory.

A-12

Q 15.

A 15.

Q 16.

A 16.

Q 17.

A 17.

Q 18.

A 18.

H the Interrupt Mask is set and an interrupt is pending, how fast does the MPU recognize the
interrupt after the mask is cleared by a eLI instruction?

The interrupt will be serviced not more than one instruction after execution of the CLI. If the opcode of

the instruction immediately preceding the CLI instruction has a zero in its least significant bit position,

a pending interrupt will be recognized as soon as execution of CLI is complete. If there was a one in the

least significant bit position of the previous instruction's opcode, the instruction following the CLI will

be executed before the pending interrupt is recognized.

The Wait for Interrupt instruction (W AI) is often used to expedite the handling of interrupts by causing

the MPU to stack its contests and enter a waiting mode. It is normally used in anticipation of an

interrupt that requires the quickest possible handling. It is possible for the MPU to hang-up in the wait

mode if the W AI instruction is used following a Clear Interrupt Mask instruction (CLI) if the

anticipated interrupt is already pending when CLI executes and the interrupt is serviced as soon as the·

mask clears. Completion of the interrupt service routine will return the program to the W AI instruction

and cause the MPU to begin waiting for an interrupt that has already been serviced. If the opcode of the

instruction immediately preceding the CLI instruction had a one in its least significant bit position,

clearing of the Interrupt Mask by CLI is sufficiently delayed such that execution of the W AI instruction

begins before the interrupt can be recognized and the desired result is obtained. That is, W AI executes

and then the interrupt is serviced rather than vice versa. It is recommended that whenever W AI is

preceded by CLI, the CLI should be preceded by a NOP:

NOP

CLI

WAI

Use of the NOP insures that the least significant bit of the instruction preceding CLI will contain a one.

How is NMI masked once it is activated?

The NMI is not masked. The NMI input is reactivated 3 cycles prior to executing the first instruction of

the service routine. Another NMI input will be recognized if a falling edge occurs after this time.

When are the IRQ and NMI reactivated during the interrupt service routine?

Both are reactivated after the 9th cycle of the interrupt sequence, i.e. , after they have been tested to see

which interrupt input caused the sequence to start.

How fast can the MPU service an interrupt?

The MPU can vector to the first instruction of the interrupt service routine in 13 ~ 23 clock periods

depending on what instruction is being executed and how far that execution has progressed at the time

of the interrupt.

A-13

Q 19.

A 19.

Q 20.

A 20.

Q 21.

A 21.

Q 22.

A 22.

Q 23.

A 23.

Q 24.

A 24.

Why is the interrupt mask placed in front of the IRQ flip-flop?

The interrupt mask is placed prior to the IRQ flip-flop to prevent the flip-flop from being set again by

the present interrupt. The interrupt sequence sets the interrupt mask bit just prior to resetting the

interrupt flops.

How fast can an interrupt be serviced using the W AI instruction?

Four MPU cycles are required to start the interrupt sequence after a W AI instruction

When is a puD up resistor required for the IRQ and NMI MPU inputs?

When multiple signals are wired to the interrupt inputs, a 3.3KO pull up resistor is recommended.

WiD the MPU recognize IRQ and NMI when in a single instruction mode of execution, i.e., Gill
high for one cPt high clock cycle?

The IRQ and NMI interrupts will not be recognized in this mode of operation.

When does the MPU recognize an IRQ or an NMI when the HALT line goes high and the
interrupt is present?

The MPU will execute one instruction after the Go/Halt line goes high before the IRQ or NMI is

recognized.

What happens if an NMI occurs immediately after the RES line goes high?

Since the stack is undefined at this time the MPU status will be stored at some unknown location in

memory, overwriting any RAM programs if the stack pointer happened to be pointing at them.

Similarly if an IRQ occurs after the interrupt mask is cleared and before the stack pointer is initialized

the MPU status will be stored starting at an unknown location.

It is therefore recommended that the stack pointer be defined (using the LDS instruction) very early in

the program.

A-14

4 M6800 PROGRAMMING

Q 1. What is meant by dual operand addressing?

A 1. In computer terminology, "dual operand instructions" refers to instructions which reference two

values. The values may be specified as data (immediate operand), contents of a register, or contents of

a memory location.

In the MC6800, dual operand instructions reference an accumulator (register) and either data

(immediate operand) or a memory address:

IMMEDIATE DUAL

OPERAND INSTRUCTION

Add A #17

Operand # 1 = Contents of A

Operand #2 = 17 (decimal)

Q 2. When is there an arithmetic carry?

A 2. Add Instructions

MEMORY REFERENCE

DUAL OPERAND INSTRUCTION

EOR B $8130

Operand # 1 =. Contents of B

Operand #2 = Contents of memory location

8130 (hex)

Carry occurs when the sum of the binary operand values is greater than 255. When DAA follows an add

instruction carry occurs when the sum of the binary coded decimal values is greater than 99. Add

instructions include: ADD, ABA, and ADC.

Subtract Instructions

In subtract operations the condition code register carry (C) bit is used as a borrow bit. When the binary

subtrahend is greater than the minuend the C bit is set. Otherwise it is cleared. Subtract instructions

include: CMP, CBA, NEG SUB, SBA and SBC.

Q 3. How is the H bit (bit 5) in the condition code register used?

A 3. The "H" stands for Half-carry.

In the MC6800 two BCD digits can be obtained in one eight bit byte. Decimal addition is accomplished

by two instructions - an add instruction followed by a DAA (Decimal Adjust Accumulator)

instruction.

The MC6800 add instructions are binary adds. The H bit is set during the add when the binary sum of

the low order decimal digit (bits 0-3) exceeds 15. When the binary sum is less than or equal to 15 the H

bit is cleared. The DAA instruction then uses the H bit to determine how the result of the add must be

adjusted to convert the binary sum to decimal. The H bit is affected by the following add instructions:

ADDA, ADDB, ABA, ADCA, and ADCB. The H bit is not tested by any branch instructions. If it is

desirable to test the H bit a program routine can be written.

Q 4. How is decimal subtraction accomplished?

A 4. There is no Decimal Adjust Subtract instruction for the MC6800. Decimal subtraction is accomplished

by using 9's complement arithmetic. The 9's complement of the subtrahend is found and then added to

A-15

, \

the minuend plus 1. The 9' s complement of a decimal number is found by subtracting each digit from

nine. The following subroutine is a decimal subtract routine of 16 digit numbers.

• DECIMAL SUBTRACT SUBROUTINE FOR 16 DECIMAL DIGIT

• TH 1 ::::: tw::UU TINE :SUBTRACTS THE SUBTRAHEND <: II SUBTRH II)

• FROM THE M I N~JEND (" M I NUEN ") AND PLACES THE
• II I FFE~:ENCE I N II RSL T • II

II:5:UB LII:X: ~~:3 SET B'rTE COUr-iTER
Ir:S:UB 1 LDA A ~~$'39

SUB A :5:UBTRH ,X FINII 9···:5: COMPLEMENT
:5:TA A RSLT,X U:5:E II RSLT" A:5: TEMP STORE
DE:X: DECREMENT BYTE COUNTER
BNE II:5:UBl LOOP UNTIL LAST B,YTE
LII:X: ~~:3 RESTORE B'y'TE COUNTER
:S:EC :5:ET CARRY TO ADD 1 TO COMPL

II:S:UB2 LDA A MINUEN,X LOAD MINUEND
AIIC A F.:SL T ,:x: ADD CO~lPLEf'lENT SUBTRAHEND
DAA DECIMAL AD.JUST
STA A R:S:L T ,:x: S:TORE DIFFERENCE
DE:>:: DECREMENT B'y'TE COUNTER
BNE D:S:UB2 LOOP '-'tiT I L LAST BYTE
RTS F.:ETURN TO HOST PROGRAM

• THE EXECUTION TIME OF THIS SUBROUTINE IS
• 384 MPU CYCLES EXCLUDING THE RTS.

Note that if the subtrahend is less than or equal to the minuend a positive 16 digit difference results.

This is known as unsigned 16 decimal digit precision subtraction. The preceding subroutine Call also be

used for signed (algebraic) subtraction. In this case the precision is 15 decimal digits. The high order

digit position is used to indicate the sign of the number. A zero in the high order digit means positive

and the remaining 15 decimal digits are in true binary coded decimal format. A 9 in the high order digit

means minus and the remaining 15 decimal digits are in 9' s complement binary coded decimal format.

Q 5. What is the difference between the:

BGT and BHI instructions?

BLE and BLS instructions?

A 5. BGT - Branch if Greater Than

BHI - Branch if Higher

BLE - Branch if Less Than or Equal To

BLS - Branch if Less Than or Same

The BGT and BLE instructions are used to test the result of a signed binary operation. The BHI and

BLS instruction is used to test the result of an unsigned binary operation.

A-16

When using signed binary notation the high order bit of a byte represents the sign of the value. A "0" in

bit seven means positive and a" 1 " means negative.

In unsigned binary notation, bit 7 of the number implies a weight of 128.

The correlation between signed and unsigned branch tests subsequent to a subtract or compare

instruction is as follows:

ACC = Accumulator value of tested instruction.

OPRND = Operand value of tested instruction.

ACC < OPRND

ACC < OPRND

ACC 5> OPRND

ACC 5> OPRND

SIGNED TEST

BLT

BLE

BGE

BGT

UNSIGNED TEST

BCS

BLS

BCC

BHI

Q 6. When using the TSX instruction why is the value in the stack pointer register increased by I?

A 6. When stacking data in memory the MC6800 first addresses the memory location referenced by the

stack pointer register and stores the data. Then the value in the stack pointer register is decremented by

one to point to the next stack address.

The TSX instruction adds one to the stack pointer register value as it is transferred to the index register

so that the index register is pointing at the last address of the stack that has stacked data. The TXS

instruction subtracts one from the index register value as it is transferred to the stack pointer register to

reverse the operation.

The value stored in the stack pointer register is not changed due to the execution of the TSX instruction.

Likewise, the value stored in the index register is not changed due to the TXS instruction

Q 7. How fast can data be transferred via aPIA?

A 7. There are two types of data transfer-synchronous and asynchronous. In synchronous data transfer the

source of the data transfer clock is derived from the M6800 system timing. In asynchronous data

transfer the data transfer clock is derived separately from the M6800 system timing.

In the following examples it is assumed that the number of words transferred is known prior to entry

into the data transfer routine.

EXAMPLE 1: 8-bit Word Synchronous Read Transfer

NOTE: Accumulator B is the word counter.

LOOP LDAA

PSHA

DECB

BNE

PIAPRA

LOOP

Executive time @ 1 /Ls/cycle = 14 /LS

Max data rate = 71.4K words/sec.

FETCH DATA

STORE DATA

DECREMENT WORD COUNTER

LOOP UNTIL DONE

A-17

EXAMPLE 2: 8-bit Word Asynchronous Read Transfer

NOTE: a) Accumulator B is the word counter.

b) PIA Control Register A, bit 7 = 1 signifies a word is ready for transfer.

LOOP LDAA

BPL

LDAA

PSHA

DECB

BNE

PIACRA

LOOP

PIAPRA

LOOP

Execution time @ I/Ls/cycle = 22 /LS.

Max data rate = 45.4K words/sec.

FETCH CONTROL WORD

WAIT FOR WORD READY

FETCH DATA

STORE DATA

DECREMENT WORD COUNTER

LOOP UNTIL DONE

EXAMPLE 3: 8-bit Word Asynchronous Write Transfer

NOTE: a) Index register is the word counter.

b) PIA Control Register B bit 7 = 1 signifies a word transfer is requested by the peripheral.

LOOP 1 LDAA DATA, X FETCH DATA FROM MEMORY

LOOP 2 LDAB PIACRB FETCH CONTROL WORD

BPL LOOP 2 WAIT FOR WORD REQUEST

STAA PIAPRB MOVE WORD TO PIA

LDAB PIAPRB CLR CRB, BIT 7

DEX DECREMENT WORD COUNTER

BNE LOOP 1 LOOP UNTIL DONE

Execution time @ 1 /Ls/cycle = /Ls.

Max data rate = 33.3K words/sec.

EXAMPLE 4: I6-bit Asynchronous Word Read Transfer

NOTE: a) Accumulator B is the word counter.

b) PIA Control Register A, bit 7 = 1 signifies a word is ready for transfer.

LOOP LDAA

BPL

LDAA

PSHA

LDAA

PSHA

DECB

PIACRA

LOOP

PIAPRB

PIAPRA

BNE LOOP

Execution time @ I/Ls/cycle = 3 /LS.

FETCH CONTROL WORD

WAIT FOR WORD READY

FETCH HIGH ORDER BYTE

STORE HIGH ORDER BYTE

FETCH LOW ORDER BYTE

STORE LOW ORDER BYTE

DECREMENT WORD COUNTER

LOOP UNTIL DONE

Max data rate = 33.3K words/sec or 66.7K bytes/sec.

The maximum data rates shown in the preceding examples represent simple transfer tasks using

software polling rather. than interrupt service requests. It should be noted that if any other tasks that

must be performed while transferring data would reduce the maximum data rate.

A-I8

