
 DSP56K Debugger 1
©1989-2016 Lauterbach GmbH

DSP56K Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 ICD In-Circuit Debugger ..

 Processor Architecture Manuals ..

 DSP56K ..

 DSP56K Debugger .. 1

 Brief Overview of Documents for New Users ... 4

 Warning .. 5

 Quick Start ... 6

 Troubleshooting .. 9

 SYStem.Up Errors 9

 FAQ ... 10

 Configuration ... 13

 On-chip Flash Programming and Debugging on 56F8xxx Derivatives 13

 General SYStem Settings and Restrictions .. 16

 SYStem.CPU Select the used CPU 16

 SYStem.CpuAccess Run-time memory access (intrusive) 16

 SYStem.LOCK Lock and tristate the debug port 17

 SYStem.MemAccess Real-time memory access (non-intrusive) 17

 SYStem.Mode Establish the communication with the target 18

 SYStem.CONFIG Configure debugger according to target topology 19

 Daisy-chain Example 21

 TapStates 22

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 23

 SYStem.Option COP Enable WATCHDOG 24

 SYStem.Option DE Enable DE line 24

 SYStem.Option IMASKASM Disable interrupts while single stepping 24

 SYStem.Option IMASKHLL Disable interrupts while HLL single stepping 25

 SYStem.Option SoftBreakFix Enables ”SoftBreakFix” patch 25

 SYStem.JtagClock Define JTAG clock 26

 General Restrictions 27

 FPU ... 30

 DSP56K Debugger 2
©1989-2016 Lauterbach GmbH

 TrOnchip Commands .. 31

 TrOnchip.view Opens configure panel 31

 TrOnchip.A Trigger cycle 31

 TrOnchip.AANDB Triggers if event occurs on unit A and unit B 32

 TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B 32

 TrOnchip.AORB Triggers if event occurs on unit A or unit B 32

 TrOnchip.B Trigger cycle 32

 TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A 33

 TrOnchip.CONVert Automatically convert range to single address 33

 TrOnchip.Count Delay counter 33

 TrOnchip.DMA Trigger on DMA access 33

 TrOnchip.Mode Defines used triggers 34

 TrOnchip.OFF Disable on-chip trigger unit 34

 TrOnchip.RESet Resets settings 34

 Floating Point Formats ... 35

 Integer Access Keywords ... 35

 ONCE Connector (56002/56100) ... 36

 JTAG Connector (56300, 56800, 56800E) .. 37

 Memory Classes .. 39

 Support ... 40

 Available Tools 40

 Compilers DSP56000 42

 Compilers DSP56300 42

 Compilers DSP56800/DSP56800E 42

 Realtime Operation Systems 43

 3rd Party Tool Integrations 43

 Products ... 45

 Product Information 45

 Order Information 45

 DSP56K Debugger 3
©1989-2016 Lauterbach GmbH

DSP56K Debugger

Version 24-May-2016

 DSP56K Debugger 4 Brief Overview of Documents for New Users
©1989-2016 Lauterbach GmbH

Brief Overview of Documents for New Users

Architecture-independent information:

• ”Debugger Basics - Training” (training_debugger.pdf): Get familiar with the basic features of a

TRACE32 debugger.

• ”T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the

processor architecture supported by your debug cable. To access the manual for your processor

architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “RTOS Debugger” (rtos_<x>.pdf): TRACE32 PowerView can be extended for operating system-

aware debugging. The appropriate RTOS manual informs you how to enable the OS-aware

debugging.

 DSP56K Debugger 5 Warning
©1989-2016 Lauterbach GmbH

Warning

NOTE: To prevent debugger and target from damage it is recommended to connect or

disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the debug cable from the target while the target power is

off.

2. Connect the host system, the TRACE32 hardware and the debug

cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the debug cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the debug cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.

 DSP56K Debugger 6 Quick Start
©1989-2016 Lauterbach GmbH

Quick Start

Starting up the debugger is done as follows:

Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the command line. If this is not the case enter

B:: to set the correct device prompt. The RESet command is only necessary if you do not start

directly after booting the TRACE32 development tool.

5. Specify the CPU specific settings.

The default values of all other option are set in such a way that it should be possible to work without

modification. Please consider that this is probably not the best configuration for your target.

6. Set the JTAG shift frequency

Normally the default value is 1.0 MHz, but the 56800E requires a lower value in the starting process.

7. Inform the debugger about read only address ranges (ROM, FLASH).

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-

chip breakpoints are necessary to set program breakpoints to read-only memories. The sections of

FLASH and ROM depend on the specific CPU and its chip selects.

8. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed it is possible

to access memory and registers.

b::

RESet

SYStem.CPU <cputype>

SYStem.JtagClock <frequency>

MAP.BOnchip <range>

SYStem.Up

 DSP56K Debugger 7 Quick Start
©1989-2016 Lauterbach GmbH

9. Configure chip according application.

Before loading binary data into the processor memory, the memory should be made writable.

Therefore processor configuration registers have to be set e.g. OMR, SR or chip select register. The

flash of the 56F8300 derivatives should be initialized here, too.

10. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler. Refer

to Supported Compilers to find the command, that is necessary for your compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

Register.Set OMR 3 ; 56800: Development mode

Data.LOAD.Elf program.elf ; ELF specifies the format,

; program.elf is the file name

 DSP56K Debugger 8 Quick Start
©1989-2016 Lauterbach GmbH

A typical start sequence for the DSP56858 is shown below. This sequence can be written to an ASCII file

(script file) and executed with the command DO <filename>. Other sequences can be found on the CD in

the DEMO directory.

b:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.CPU 56858 ; Select CPU (56800E class here)

SYStem.JtagClock 687000. ; Choose JTAG frequency

MAP.BOnchip 0x1f000..1f03ff ; Specify where read-only memory is

SYStem.Up ; Reset the target and enter debug

; mode

Register.Set PP 0x1F000 ; Set the extended program counter PP

; (not PC!) to the begin of the boot

; flash. The statement is redundant in

; this case, but remember the

; execution without loading a program

; starts here.

Register.Set OMR 0x0 ; Prepare access to memory by using

; operating mode 0

Data.LOAD.Elf

ldm_external_memory.elf /LARGE

/VERFY

; Load the application with option

; large memory model and verify the

; process

Go main ; Run and break at main()

Data.List ; Open source window

Register /SpotLight ; Open register window

Var.Local ; Open window with local variables

 DSP56K Debugger 9 Troubleshooting
©1989-2016 Lauterbach GmbH

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is

required. If you receive error messages while executing this command this may have the following reasons.

• The JTAG lines are not connected correctly.

• The target has no power.

• The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.

• The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every

SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

• There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is the

only one member of a JTAG chain the debugger has to be informed about the target JTAG chain

configuration. Use the SYStem.CONFIG command to specify the position of the device in the

JTAG-chain. Debuggers for DSP56000 and DSP56100 do not support the SYStem.CONFIG

options! For the DSP56800 chips the support depends to the license. There is a license upgrade

available which also allows to debug 56800E core based chips. For Multicore DSP56300

systems e.g. DSP56720 or DSP56721 a Multicore License is necessary.

• Wrong CPU is selected

• JTAG clock is to high, especially for 56800E core based processors

• CPU executed illegal code and is in a bad state that can be only be reverted by re-powering the

target. To avoid this situations first plug the debugger to the target, then power the target. The

debugger will keep the target in RESET state until the command SYStem.Up was successful.

There are additional loads or capacities on the JTAG lines

 DSP56K Debugger 10 FAQ
©1989-2016 Lauterbach GmbH

FAQ

Debugging via

VPN
The debugger is accessed via Internet/VPN and the performance is very

slow. What can be done to improve debug performance?

The main cause for bad debug performance via Internet or VPN are low data

throughput and high latency. The ways to improve performance by the debugger

are limited:

 in practice scripts, use "SCREEN.OFF" at the beginning of the script and

"SCREEN.ON" at the end. "SCREEN.OFF" will turn off screen updates.

Please note that if your program stops (e.g. on error) without executing

"SCREEN.OFF", some windows will not be updated.

 "SYStem.POLLING SLOW" will set a lower frequency for target state

checks (e.g. power, reset, jtag state). It will take longer for the debugger to

recognize that the core stopped on a breakpoint.

 "SETUP.URATE 1.s" will set the default update frequency of Data.List/

Data.dump/Variable windows to 1 second (the slowest possible setting).

 prevent unneeded memory accesses using "MAP.UPDATEONCE

[address-range]" for RAM and "MAP.CONST [address--range]" for ROM/

FLASH. Address ranged with "MAP.UPDATEONCE" will read the specified

address range only once after the core stopped at a breakpoint or manual

break. "MAP.CONST" will read the specified address range only once per

SYStem.Mode command (e.g. SYStem.Up).

 DSP56K Debugger 11 FAQ
©1989-2016 Lauterbach GmbH

Setting a

Software

Breakpoint fails

What can be the reasons why setting a software breakpoint fails?

Setting a software breakpoint can fail when the target HW is not able to

implement the wanted breakpoint.

Possible reasons:

 The wanted breakpoint needs special features that are only possible to

realize by the trigger unit inside the controller.

Example: Read, write and access (Read/Write) breakpoints ("type" in Break.Set

window). Breakpoints with checking in real-time for data-values ("Data").

Breakpoints with special features ("action") like TriggerTrace, TraceEnable,

TraceOn/TraceOFF.

 TRACE32 can not change the memory.

Example: ROM and Flash when no preparation with FLASH.Create,

FLASH.TARGET and FLASH.AUTO was made. All type of memory if the

memory device is missing the necessary control signals like WriteEnable or

settings of registers and SpecialFunctionRegisters (SFR).

 Contrary settings in TRACE32.

Like: MAP.BOnchip for this memory range. Break.SELect.<breakpoint-type>

Onchip (HARD is only available for ICE and FIRE).

 RTOS and MMU:

If the memory can be changed by Data.Set but the breakpoint doesn't work it

might be a problem of using an MMU on target when setting the breakpoint to a

symbolic address that is different than the writable and intended memory

location.

Cannot release

from Software

Breakpoint

Cannot make an HLL-step from a software breakpoint or the context

switches while debugging

 Possible reason: Interrupts are pending

In HLL-stepping mode always debug with SYStem.Option IMASKASM ON,

when interrupts are pending.

 Possible reason: Routine is called again

Debugging in recursive routines can have strange side effects. The debugger

uses breakpoints to perfom HLL single steps. These breakpoints will place the

processor in debug state also when you try to step over a self call. So the

stackframe/context can switch or in case of fixed user breakpoints it seams that

the debugger cannot release from a breakpoint. Similar behavior can be

expected for debugging in nested interrupts or real time operating systems with

software interrupts.

56800/56800E

PC Register is

not equal to

Program

Counter

How can I set the program counter to including the extension bit from the

SR register?

Use the register PP e.g. Register.Set PP 0x1F0000.

 DSP56K Debugger 12 FAQ
©1989-2016 Lauterbach GmbH

56800E

AnySymbol

Option for

Metrowerks

800E

Debugger does not step correctly into routine or debugger does not load

HLL code for routine.

Use the /AnySymbol paramater when you load Metrowerks ELF files.

56800E

Pointer has

wrong Width

Pointer type has wrong width.

The width of the pointer type depends on the memory model. The large memory

model requieres the parameter /LARGE for the command Data.LOAD.ELF.

 DSP56K Debugger 13 Configuration
©1989-2016 Lauterbach GmbH

Configuration

The processor type must be selected by the SYStem.CPU command before issuing any other target related

commands.

On-chip Flash Programming and Debugging on 56F8xxx Derivatives

TRACE32 offers target based flash programming for the internal flash on the 56F8xx and 56F8300

derivative. Before accessing the flash the device has to be configured. Example scripts for programming and

debugging can be found in /demo/dsp56800/flash and /demo/dsp56800e/compiler/mwerks/56f8323.

Configuration for flash programming:

• Select the CPU with SYStem.CPU and use SYStem.Up to enable debug mode.

• Optional: Adjust the processors system clock (SYS_CLK) to allow a faster JTAG communication

and shorter flash algorithm runtime.

Consult the processors architecture manual for the right PLL and Clock settings. An example for

the 56F8323 can be found under demo/dsp56800e/hardware/dsp568323demo/system.up

• Set the chip configuration register and peripherals to enable access to the memory sections with

flash.

Check the processor manual for correct setting of SR, OMR registers (especially EX bit and

MODE bits) and the chip select peripheral register. The exact configuration depends on your

application. Use the commands Register.Set and Data.Set to modify these registers.

• Configure the Flash programming

Use the TRACE32 commands FLASH.Create and FLASH.TARGET to inform the debugger about

Flash memory sections and the used flash algorithm. TRACE32 provides example scripts for all

known derivatives with the configuration EX=0 and Mode=0. Look in the demo/dsp56800/flash

and demo/dsp56800e/flash directories for these scripts.

The implementation of the FLASH.Create command differs from the standard:

- The physical range addresses are counted in words.

- The sector size is passed in bytes.

- The bus width is fixed to “Word”.

- Additional access class parameter for 56800 and 56800E family.

56800 family: An additional parameter after the access size parameter is necessary. The 32 bit

parameter tells the target program the address of the flash controller base register and the flash

memory class to use. Bit 0..15 of this parameter give the base address of the flash controller

registers, bit 16..31 specify the access class. Access class:

0 : Program flash memory or boot flash memory

1 : Data flash memory

 DSP56K Debugger 14 Configuration
©1989-2016 Lauterbach GmbH

Example:

56800E family: An additional parameter after the access size parameter is necessary, that tells

the target program about the flash memory class. Access class:

1 : Boot flash

2 : Program flash

3 : Data flash.

Example:

• Enable Flash programming and download application

Use FLASH.AUTO ALL to enable cached write access to the flash memory and download your

application with Data.Load. Alternatively it is also possible to use FLASH.Erase and

FLASH.Program, especially when large memory blocks have been changed.

• Disable Flash programming with FLASH.AUTO OFF or FLASH.Program OFF.

 ; Program flash, control base is 0x1020

FLASH.Create 1. P:0x0000--0x7bff 0x200 TARGET Word 0x01020

 ; Data flash, 0x10000 + control base 0x1060

FLASH.Create 2. X:0x1800--0x1fff 0x200 TARGET Word 0x11060

 ; Boot Flash

FLASH.Create 1. P:0x020000--0x020FFF 0x200 TARGET Word 1

 ; Program Flash

FLASH.Create 2. P:0x000000--0x003FFF 0x400 TARGET Word 2

 ; Data Flash

FLASH.Create 3. X:0x001000--0x001FFF 0x200 TARGET Word 3

 DSP56K Debugger 15 Configuration
©1989-2016 Lauterbach GmbH

Configuration for debugging in flash:

• Select the CPU with SYStem.CPU and use SYStem.Up to enable debug mode.

• Load Symbols

Assuming that the application is already programmed into flash, load the symbols with the help of

the TRACE32 command Data.Load with the additional parameters /NoCODE, /NOREG, /AS and

optional /LARGE if you use the large memory model.

• Configure the flash programming

• Execute start-up code to configure the device

The start-up code of your application includes normally instructions to configure the chip

registers and peripherals. You can execute the start-up code with the TRACE32 instruction “Go

main /ONCHIP”. The command lets the processor execute the code and breaks at main with the

help of an on-chip breakpoint.

• Adjust JTAG-Clock and enable flash memory for write access.

Assuming that the PLL is initialized correctly by the start-up code, the JTAG frequency can be

optimized to allow faster communication. The TRACE32 command FLASH.AUTO ALL enables

the flash for writing. This is necessary for debugging in flash. The executed program code should

not change the system clock (SYS_CLK) otherwise the flash clock divider (can only be set one

time after reset) and JTAG frequency can become invalid.

• Debug your application

The step-over function uses asm single steps to perform, because this safes flash life cycles. For

faster operation it is better to use break and go commands.

• Shutdown the processor with FLASH.AUTO OFF and SYStem.Down to replace the software

breakpoints with the original application code.

 DSP56K Debugger 16 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

General SYStem Settings and Restrictions

SYStem.CPU Select the used CPU

Selects the processor type.

SYStem.CpuAccess Run-time memory access (intrusive)

Default: Denied.

Format: SYStem.CPU <cpu>

<cpu>: 56002 | 56004 | 56005 | 56006 | 56007 (56000 processors)

56301 | 56302 | 56303 | 56307 | 56309 | 56311 | 56321 | 56362 | 56364 | 56366

| 56367 | 56371 (56300 processors)

56801 | 56803 | 56805 | 56807 | 56809 | 56811 | 56827 (56800 processors)

56852 | 56853 | 56854 | 56855 | 56857 | 56858 (56800E 5685x processors)

56F8322 | 56F8323 | 56F8345 | 56F8346 | 56F8347 | 56F8355 | 56F8356 |

56F8357 | 56F8365 | 56F8366 | 56F8367 (56800E 56F83xx processors)

56F8122 | 56F8123 | 56F8145 | 56F8146 | 56F8147 | 56F8155 | 56F8156 |

56F8157 | 56F8165 | 56F8166 | 56F8167 (56800E 56F81xx processors)

56F8013 | 56F8014 (56800E 56F80xx processors)

Format: SYStem.CpuAccess Enable | Denied | Nonstop

Enable Allow intrusive run-time memory access.

In order to perform a memory read or write while the CPU is executing the

program the debugger stops the program execution shortly. Each short stop

takes 1 … 100 ms depending on the speed of the debug interface and on the

number of the read/write accesses required.

A red S in the state line of the TRACE32 screen indicates this intrusive behavior

of the debugger.

 DSP56K Debugger 17 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the

debug connector of the debugger is tristated. The main intention of the lock command is to give debug

access to another tool.

SYStem.MemAccess Real-time memory access (non-intrusive)
.

Default: Denied.

Denied Lock intrusive run-time memory access.

Nonstop Lock all features of the debugger, that affect the run-time behavior.

Nonstop reduces the functionality of the debugger to:

• run-time access to memory and variables

• trace display

The debugger inhibits the following:

• to stop the program execution

• all features of the debugger that are intrusive (e.g. action Spot for break-

points, performance analysis via StopAndGo mode, conditional break-

points etc.)

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess CPU | Denied<cpu_specific>

SYStem.ACCESS (deprecated)

CPU Real-time memory access during program execution to target is enabled.

Denied Real-time memory access during program execution to target is disabled.

 DSP56K Debugger 18 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

<mode>: Down

NoDebug

Go

Attach

Up

Down Disables the debugger (default). The state of the CPU remains unchanged. The

JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The JTAG

port is tristated.

Go Resets the target and enables the debugger and start the program execution.

Program execution can be stopped by the break command or external trigger.

Attach User program remains running (no reset) and the debug mode is activated.

After this command the user program can be stopped with the break command

or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After the

execution of this command the CPU is stopped and all register are set to the

default level.

StandBy Not available for DSP56K.

 DSP56K Debugger 19 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the

TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM +

DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-

chain Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the

required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port

at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and

TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate

mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down

resistor, other trigger inputs needs to be kept in inactive state.

Format: SYStem.CONFIG <parameter> <number_or_address>

SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>

(General):

(JTAG):

state

CORE <core>

DRPRE <bits>

DRPOST <bits>

IRPRE <bits>

IRPOST <bits>

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

 DSP56K Debugger 20 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

state Show multicore settings.

CORE For multicore debugging one TRACE32 GUI has to be started per core.

To bundle several cores in one processor as required by the system this

command has to be used to define core and processor coordinates within

the system topology.

Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system

contributes only one TAP to the JTAG chain, DRPRE is the number of

cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal

of the debugger and the core of interest. If each core in the system

contributes only one TAP to the JTAG chain, DRPOST is the number of

cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain

between the core of interest and the TDO signal of the debugger. This is

the sum of the instruction register length of all TAPs between the core of

interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain

between the TDI signal and the core of interest. This is the sum of the

instruction register lengths of all TAPs between the TDI signal of the

debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when

the debugger switches to tristate mode. All states of the JTAG TAP

controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this

option is required. The debugger switches to tristate mode after each

debug port access. Then other debuggers can access the port. JTAG:

This option must be used, if the JTAG line of multiple debug boxes are

connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all

except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals

nTRST and nSRST (nRESET).

 DSP56K Debugger 21 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

Daisy-chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6 ; IR Core D

SYStem.CONFIG.IRPOST 8 ; IR Core A + B

SYStem.CONFIG.DRPRE 1 ; DR Core D

SYStem.CONFIG.DRPOST 2 ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1

 DSP56K Debugger 22 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

 DSP56K Debugger 23 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default coreindex: depends on the CPU, usually 1. for generic chips

Default chipindex: derived from CORE= parameter of the configuration file (config.t32). The CORE

parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger the systems topology must be mapped

to the debuggers topology model. The debugger model abstracts chips and sub-cores of these chips. Every

GUI must be connect to one unused core entry in the debugger topology model. Once the SYStem.CPU is

selected a generic chip or none generic chip is created at the default chipindex.

None Generic Chips

None generic chips have a fixed amount of sub-cores with a fixed CPU type.

First all cores have successive chip numbers at their GUIs. Therefore you have to assign the coreindex and

the chipindex for every core. Usually the debugger does not need further information to access cores in

none generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information

how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a none

generic chip, two GUI are connected to the same coordinate or a GUI is not connected to a core. The initial

state of the system is value since every new GUI uses a new chipindex according to its CORE= parameter

of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must

be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <coreindex> <chipindex>

SYStem.MultiCore.CORE <coreindex> <chipindex> (deprecated)

<chipindex>: 1 … i

<coreindex>: 1 … k

 DSP56K Debugger 24 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.Option COP Enable WATCHDOG

Default: OFF.

The watchdog remains active when this option is set to ON. This option is not necessary for the 56800E

processors because their watchdog is disabled automatically in debug mode.

SYStem.Option DE Enable DE line

Default: ON.

Enables the use of the /DE line on the JTAG connector. This increases the speed of the debugger for 56300

and 56800 processors. The 56800E processors can perform the SYStem.Up command faster when DE is

activated.

SYStem.Option IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The

interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are

restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping

and stepping from software breakpoints.

Format: SYStem.Option COP [ON | OFF]

Format: SYStem.Option DE [ON | OFF]

Format: SYStem.Option IMASKASM [ON | OFF]

 DSP56K Debugger 25 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.Option IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt

routine is not executed during single-step operations. After single step the interrupt mask bits are restored to

the value before the step.

SYStem.Option SoftBreakFix Enables ”SoftBreakFix” patch

Default: OFF.

If enabled an experimental patch gets active, which allows to set breakpoints in delay slots of conditional

branches (only 56800E processors). The patch is only useful, if the “pad pipeline” options for compiler and

assembler in the Metrowerks Codewarrior are disabled. The patch can have strange side effects e.g. in code

which reads data from p memory (case statements) or the debugger halts near a breakpoint.

Format: SYStem.Option IMASKHLL [ON | OFF]

Format: SYStem.Option SoftBreakFix [ON | OFF]

 DSP56K Debugger 26 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

SYStem.JtagClock Define JTAG clock

Selects the frequency for the debug interface.

• For a fast setup of the clock speed the pre-configured buttons can be used to enter the clock

speed. These are the most used frequencies fixed. The default frequency for the fixed clock is

1 MHz.

• The clock speed depends on the speed of the processor. Especially the 56800E processors

need a frequency lower or equal to 500000.Hz at SYStem.UP. After initializing the PLL to a core

clock of 120 MHz the JTAG clock can be increased up to 15 MHz. The other processors can

operate with the default JTAG clock setting at SYStem.UP.

Format: SYStem.JtagClock <rate>

SYStem.BdmClock <rate> (deprecated)

<fixed>: 976. … 15 000 000.

NOTE: Buffers, additional loads or high capacities on the JTAG/COP lines reduce the

debug speed.

 DSP56K Debugger 27 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

General Restrictions

SYS_CLK cannot be

changed while flash-

programming is active

The flash clock divider depends on the sys_clk. Since the flash clock

diver can only be set one time after system up, the flash clock

divider cannot be adapt to a modified system clock (SYS_CLK). The

restriction can cause a “flash timing error”

Program Modifications When the program is modified, the contents of the PIL and PDB

registers are not changed. If the modified address is already

fetched, the processor will execute the old instructions. Modifying

the PIL or PDB register, or setting the PC will cure this problem.

Program modifications by the debugger, like software breakpoints,

consider all pipeline effects.

Setting the PC In cases where the program counter consists of the PC register and

extension bits in SR register, the program counter can be set by the

register PP.

Setting the PC causes the execution of a jump instruction. Pending

REP instructions will be canceled.

Breakpoints in

 L: memory

Breakpoints in L: memory will be set to the Y: memory class.

Breakpoints on second

XAB access on 56100

Must be set by using the Y: memory access class.

Program counter after

SYStem.UP

In some cases the program counter after System.Up is not placed at

the begin of the boot flash.

Debugging with

interrupts

When IMASKHLL or IMASKASM is enabled the debugger won’t

update correctly the interrupt level bits in the SR register in case the

core is placed into the highest priority.

JTAG Multi Core

configuration

The settings in the SYStem.CONFIG window are only active for

56300 with Multicore License or 56800 and 56800e core based

chips with the license type DSP56800. You can view your license

type with license.list.

Software Breakpoints in

hardware supported

REP-loops

For the DSP56300 family setting a program software breakpoint on

the instruction following a REP instruction and using the Go-

command to continue will result in invalid loopcounter register LC.

Code example:

 DSP56K Debugger 28 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

If using software breakpoints the original instruction on the

breakpoint is replaced (invisible to the user) by a debug instruction.

The DSP executes the debug instruction, decrements the loop

counter register LC and then halts the system by entering debug

mode. Using the Go-command the debug instruction is replaced by

the original instruction which is then executed. This will decrement

the loop counter register LC one more time which is invalid.

To avoid this behavior do not use breakpoints within a hardware

supported REP-loop.

Software breakpoints in

hardware supported

DO-loops

For the DSP56300 family proper operation of DO-loop, DOR-loop or

DO-forever-loop is only guaranteed if no software breakpoints are

set near the end of the loop at loopaddress-2, loopaddress-1 or

loopaddress.

In HLL debugging mode setting software breakpoints near the end

of HLL-loops of any kind must be handled with care. To avoid this

behavior use on-chip breakpoints for critical applications.

Code example:

If using software breakpoints the original instruction on the

breakpoint is replaced (invisible to the user) by a debug instruction.

The DSP halts after debug is executed. Prior to the next Go- or

Step-command debug is replaced by the original instruction and the

program counter is moved back onto the original instruction. Setting

the program counter on instructions near the loop-end will

decrement the loop counter register LC.

Possible realtime viola-

tion using onchip pro-

gram breakpoints

Using on-chip breakpoints of the DSP56300 family may violate

realtime execution under the following conditions:

• Setting on-chip breakpoints on the next three instructions fol-

lowing conditional branches, jumps, loop-breaks or condition

calls to subroutines.

• Setting on-chip breakpoints on the instruction that is a branch

target of conditional branches, jumps, loop-breaks or condi-

tional calls to subroutines if the conditional branch, jump,

break or call is not taken.

• Setting on-chip breakpoints on instructions that are executed

in parallel.

• Setting on-chip breakpoints on the instruction following a

hardware supported REP-loop.

 DSP56K Debugger 29 General SYStem Settings and Restrictions
©1989-2016 Lauterbach GmbH

An onchip program breakpoint may get triggered even if the program

counter is not directly on the given program memory location of the

breakpoint. This is caused by the pipeline decode and prefetch

mechanism and the parallel execution capabilities of the DSP.

If the DSP is halted by an on-chip breakpoint the debugger spots the

current program counter and compares it with all on-chip breakpoint

addresses. This is to decide which breakpoint has triggered. Under

the above conditions sometimes no match can be found and the

debugger continues execution. This behavior violates realtime

execution and is signaled to the user in the state line by setting the

spot breakpoint active flag.This behavior also applies to debugging

in HLL mode.

To avoid realtime violation set on-chip breakpoints on instructions

which not meet the above conditions or try using software

breakpoints instead.

Range of fractional

numbers

For the DSP56300 family the range of fractional numbers which can

be entered by using the command FPU.SET is limited to:

• -1.0 to 0.9999999999999929 for the registers X and Y.

• -256.0 to 255.9999999999999997 for the registers A and B.

Entering numbers outside this ranges is not supported by the DSP

and will lead to invalid displayed fractional numbers.

 DSP56K Debugger 30 FPU
©1989-2016 Lauterbach GmbH

FPU

Format: FPU.view

Format: FPU.Set <register> <value>

view Display accumulator registers as fractional numbers.

FPU.Set Changes accumulator registers in fractional number format.

 DSP56K Debugger 31 TrOnchip Commands
©1989-2016 Lauterbach GmbH

TrOnchip Commands

The breakpoint registers on the ONCE debugger can be used to monitor data or program access in real-

time. They are automatically set, when a read or write breakpoint is set. On the 56300 family it is possible to

trigger on access sequences to two different addresses.

TrOnchip.view Opens configure panel

Control panel to configure the on-chip breakpoint registers.

DSP56300:

TrOnchip.A Trigger cycle

Defines on which cycle the trigger system triggers (only 56300).

Format: TrOnchip.view

Format: TrOnchip.A <cycle>

TrOnchip.B <cycle>

<cycle>: Read

Write

Access

 DSP56K Debugger 32 TrOnchip Commands
©1989-2016 Lauterbach GmbH

TrOnchip.AANDB Triggers if event occurs on unit A and unit B

The on-chip breakpoint triggers, if an event occurs on trigger unit A and on trigger unit B (only 56300).

TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B

The on-chip breakpoint triggers, if an event occurs first on trigger unit A and then on trigger unit B (only

56300).

TrOnchip.AORB Triggers if event occurs on unit A or unit B

The on-chip breakpoint triggers, if an event occurs on trigger unit A or on trigger unit B (only 56300).

TrOnchip.B Trigger cycle

Defines on which cycle the trigger system triggers (only 56300).

Format: TrOnchip.AANDB

Format: TrOnchip.AAFTERB

Format: TrOnchip.AORB

Format: TrOnchip.A <cycle>

TrOnchip.B <cycle>

<cycle>: Read

Write

Access

 DSP56K Debugger 33 TrOnchip Commands
©1989-2016 Lauterbach GmbH

TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A

The on-chip breakpoint triggers, if an event occurs first on trigger unit B and then on trigger unit A (only

56300)

TrOnchip.CONVert Automatically convert range to single address

When enabled (default) the on-chip breakpoints are automatically converted from a range to a single

address if required. If the switch is off, the system will only accept breakpoints which exactly fit to the on-chip

breakpoint hardware.

TrOnchip.Count Delay counter

Defines the delay counter for the trigger system. A value of 1 means no delay (only 56300).

TrOnchip.DMA Trigger on DMA access

Trigger on DMA access instead of regular memory access (only 56300).

Format: TrOnchip.BAFTERA

Format: TrOnchip.CONVert [ON | OFF]

Format: TrOnchip.Count <count>

Format: TrOnchip.DMA [ON | OFF]

 DSP56K Debugger 34 TrOnchip Commands
©1989-2016 Lauterbach GmbH

TrOnchip.Mode Defines used triggers

Defines which triggers are used and in what combination (only 56300). In OFF mode the triggers are used

for the regular read/write breakpoints. In the other modes the Alpha and Beta breakpoints are used to

define the memory addresses.

TrOnchip.OFF Disable on-chip trigger unit
t

Disables on-chip trigger unit.

TrOnchip.RESet Resets settings

Resets the trigger system to the default state.

Format: TrOnchip.Mode <mode>

<mode>: OFF

AORB

AANDB

AAFTERB

BAFTERA

Format: TrOnchip.OFF

Format: TrOnchip.RESet

 DSP56K Debugger 35 Floating Point Formats
©1989-2016 Lauterbach GmbH

Floating Point Formats

Integer Access Keywords

F24 Fractional fixed point 24 bit

F48 Fractional fixed point 48 bit

F16 Fractional fixed point 16 bit

F32 Fractional fixed point 32 bit

M56 Floating point format (56002)

IeeeS Floating point format (56100)

NOTE: Fractional floating point numbers are always displayed with a fixed precision, i.e. a

fixed number of digits. Small fractional numbers can have many non relevant digits

displayed.

Word Word (16 bit)

TByte Triple byte (24 bit)

Long Double Word (32 bit), upper and lower word swapped

HByte Hexabyte (48 bit)

Quad Tertiary Word (64 bit), upper and lower word swapped

 DSP56K Debugger 36 ONCE Connector (56002/56100)
©1989-2016 Lauterbach GmbH

ONCE Connector (56002/56100)

This connector is obsolete.

Signal Pin Pin Signal

DSI 1 2 GND
DSO 3 4 GND

DSCK 5 6 GND
DR- 7 8 VCC

RESET- 9 10 GND

 DSP56K Debugger 37 JTAG Connector (56300, 56800, 56800E)
©1989-2016 Lauterbach GmbH

JTAG Connector (56300, 56800, 56800E)

Signal Pin Pin Signal

TDI 1 2 GND
TDO 3 4 GND
TCK 5 6 GND
N/C 7 8 KEY

RESET- 9 10 TMS
VCCS 11 12 N/C

DE- 13 14 TRST-

Pins Con-

nection

Description Recommendations

1 TDI Test Data In Not 56300: If there are multiple chip devices on the

JTAG chain, connect TDI to the TDO signal of the

previous device in the chain.

2,4,6 GND System

Ground Plan

Connect to digital ground.

3 TDO Test Data Out Not 56300: If there are multiple chip devices on the

JTAG chain, connect TDO to the TDI signal of the

next device in the chain.

5 TCK Test Clock Add 10 k pull-up resistor to VCC.

7, 12 NC No Connect Leave unconnected.

8 KEY Mechanical

Keying

Pin should be removed.

9 RESET Reset May be tied to HRESET.

10 TMS Test Mode

Select

None.

11 VCCS VCC Sense Connect to Chip I/O voltage VDDH through a 10

current limiting resistor.

 DSP56K Debugger 38 JTAG Connector (56300, 56800, 56800E)
©1989-2016 Lauterbach GmbH

14 TRST Test Reset TRST has an internal pull-up resistor, so no external

pull-up or pull-down resistor is required. However, a

10 k pull-down resistor should added to GND on this

signal to keep the JTAG in reset mode while the

device is operating regularly. When using more than

one debug dongle driving this signal it is not

recommended to pull down the signal in debug mode,

because during the dongle source switch the signal

output is set to tristate.

13 DE Debug Enable Add 10 k pull-up resistor to VCC. This Signal is not

needed. If not available, set SYStem.Option.DE OFF.

 DSP56K Debugger 39 Memory Classes
©1989-2016 Lauterbach GmbH

Memory Classes

Memory Class Description

X X: data memory space

Y Y: data memory space or second XAB access on 56100 for breakpoints

(not 56800, not 56800E)

L L: data memory space which is X:Y chained data memory

(not 56100, not 56800, not 56800E)

P P: programm memory space

 DSP56K Debugger 40 Support
©1989-2016 Lauterbach GmbH

Support

Available Tools

C
P

U

IC
E

F
IR

E

IC
D

D
E

B
U

G

IC
D

M
O

N
IT

O
R

IC
D

T
R

A
C

E

P
O

W
E

R

IN
T

E
G

R
A

T
O

R

IN
S

T
R

U
C

T
IO

N

S
IM

U
L

A
T

O
R

DSP56002 YES

DSP56004 YES

DSP56005 YES

DSP56156 YES

DSP56166 YES

MC68356 YES YES YES YES

C
P

U

IC
E

F
IR

E

IC
D

D
E

B
U

G

IC
D

M
O

N
IT

O
R

IC
D

T
R

A
C

E

P
O

W
E

R

IN
T

E
G

R
A

T
O

R

IN
S

T
R

U
C

T
IO

N

S
IM

U
L

A
T

O
R

DSP56301 YES

DSP56303 YES

DSP56307 YES

DSP56309 YES

DSP56311 YES

DSP56321 YES

DSP56362 YES

DSP56364 YES

DSP56366 YES

DSP56367 YES

DSP56371 YES

DSP56374 YES

DSP56720 YES

DSP56721 YES

 DSP56K Debugger 41 Support
©1989-2016 Lauterbach GmbH

C
P

U

IC
E

F
IR

E

IC
D

D
E

B
U

G

IC
D

M
O

N
IT

O
R

IC
D

T
R

A
C

E

P
O

W
E

R

IN
T

E
G

R
A

T
O

R

IN
S

T
R

U
C

T
IO

N

S
IM

U
L

A
T

O
R

DSP56824 YES

DSP56852 YES

DSP56853 YES

DSP56854 YES

DSP56855 YES

DSP56857 YES

DSP56858 YES

DSP56F801 YES

DSP56F802 YES

DSP56F803 YES

DSP56F805 YES

DSP56F807 YES

DSP56F8122 YES

DSP56F8123 YES

DSP56F8135 YES

DSP56F8145 YES

DSP56F8146 YES

DSP56F8147 YES

DSP56F8155 YES

DSP56F8156 YES

DSP56F8157 YES

DSP56F8165 YES

DSP56F8166 YES

DSP56F8167 YES

DSP56F826 YES

DSP56F827 YES

DSP56F8322 YES

DSP56F8323 YES

DSP56F8335 YES

DSP56F8345 YES

DSP56F8346 YES

DSP56F8347 YES

DSP56F8355 YES

DSP56F8356 YES

DSP56F8357 YES

DSP56F8365 YES

DSP56F8366 YES

DSP56F8367 YES

 DSP56K Debugger 42 Support
©1989-2016 Lauterbach GmbH

Compilers DSP56000

Compilers DSP56300

Compilers DSP56800/DSP56800E

Language Compiler Company Option Comment

ASM GAS NXP Semiconductors MCOFF Source level

debugging

C GCC56K NXP Semiconductors MCOFF

C C56 TASKING IEEE

Language Compiler Company Option Comment

C GCC56300 NXP Semiconductors MCOFF

C C563 TASKING IEEE

Language Compiler Company Option Comment

C CODEWARRIOR NXP Semiconductors ELF/DWARF

C CODEWARRIOR NXP Semiconductors ELF/DWARF /LARGE for LDM

(800E only) /AS

 DSP56K Debugger 43 Support
©1989-2016 Lauterbach GmbH

Realtime Operation Systems

3rd Party Tool Integrations

No operation systems supported.

CPU Tool Company Host

ALL ADENEO Adeneo Embedded

ALL X-TOOLS / X32 blue river software GmbH Windows

ALL CODEWRIGHT Borland Software

Corporation

Windows

ALL CODE CONFIDENCE

TOOLS

Code Confidence Ltd Windows

ALL CODE CONFIDENCE

TOOLS

Code Confidence Ltd Linux

ALL EASYCODE EASYCODE GmbH Windows

ALL ECLIPSE Eclipse Foundation, Inc Windows

ALL RHAPSODY IN MICROC IBM Corp. Windows

ALL RHAPSODY IN C++ IBM Corp. Windows

ALL CHRONVIEW Inchron GmbH Windows

ALL LDRA TOOL SUITE LDRA Technology, Inc. Windows

ALL UML DEBUGGER LieberLieber Software

GmbH

Windows

ALL ATTOL TOOLS MicroMax Inc. Windows

ALL VISUAL BASIC

INTERFACE

Microsoft Corporation Windows

ALL LABVIEW NATIONAL

INSTRUMENTS

Corporation

Windows

ALL CODE::BLOCKS Open Source -

ALL C++TEST Parasoft Windows

ALL RAPITIME Rapita Systems Ltd. Windows

ALL DA-C RistanCASE Windows

ALL TRACEANALYZER Symtavision GmbH Windows

ALL SIMULINK The MathWorks Inc. Windows

 DSP56K Debugger 44 Support
©1989-2016 Lauterbach GmbH

ALL TA INSPECTOR Timing Architects GmbH Windows

ALL UNDODB Undo Software Linux

ALL VECTORCAST UNIT

TESTING

Vector Software Windows

ALL VECTORCAST CODE

COVERAGE

Vector Software Windows

ALL WINDOWS CE PLATF.

BUILDER

Windows Windows

CPU Tool Company Host

 DSP56K Debugger 45 Products
©1989-2016 Lauterbach GmbH

Products

Product Information

Order Information

OrderNo Code Text

LA-7730
BDM-DSP56K

BDM Debugger for DSP56K (ICD)
supports DSP56002/4/5, DSP561xx and
DSP-part of 68356
(only for chips with 5V tolerant IO's)
includes software for Windows, Linux and MacOSX
requires Power Debug Module
debug cable with 10 pin connector

OrderNo Code Text

LA-7735
BDM-DSP56300

BDM Debugger for DSP56300 (ICD)
supports DSP5630x
includes software for Windows, Linux and MacOSX
requires Power Debug Module
not supported by PowerDebug PRO
debug cable with 14 pin connector

OrderNo Code Text

LA-7738
BDM-DSP56800

BDM Debugger for DSP56800 and DSP56800E (ICD)
supports DSP568xx and DSP5683xx
includes software for Windows, Linux and MacOSX
requires Power Debug Module
Not supported by PowerDebug PRO
debug cable with 14 pin connector

Order No. Code Text

LA-7730 BDM-DSP56K BDM Debugger for DSP56K (ICD)

 DSP56K Debugger 46 Products
©1989-2016 Lauterbach GmbH

Order No. Code Text

LA-7735 BDM-DSP56300 BDM Debugger for DSP56300 (ICD)

Additional Options

LA-7960X MULTICORE-LICENSE License for Multicore Debugging

Order No. Code Text

LA-7738 BDM-DSP56800 BDM Debugger for DSP56800 and DSP56800E (ICD)

	DSP56K Debugger
	Brief Overview of Documents for New Users
	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	On-chip Flash Programming and Debugging on 56F8xxx Derivatives

	General SYStem Settings and Restrictions
	SYStem.CPU Select the used CPU
	SYStem.CpuAccess Run-time memory access (intrusive)
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Real-time memory access (non-intrusive)
	SYStem.Mode Establish the communication with the target
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.Option COP Enable WATCHDOG
	SYStem.Option DE Enable DE line
	SYStem.Option IMASKASM Disable interrupts while single stepping
	SYStem.Option IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option SoftBreakFix Enables ”SoftBreakFix” patch
	SYStem.JtagClock Define JTAG clock
	General Restrictions

	FPU
	TrOnchip Commands
	TrOnchip.view Opens configure panel
	TrOnchip.A Trigger cycle
	TrOnchip.AANDB Triggers if event occurs on unit A and unit B
	TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B
	TrOnchip.AORB Triggers if event occurs on unit A or unit B
	TrOnchip.B Trigger cycle
	TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A
	TrOnchip.CONVert Automatically convert range to single address
	TrOnchip.Count Delay counter
	TrOnchip.DMA Trigger on DMA access
	TrOnchip.Mode Defines used triggers
	TrOnchip.OFF Disable on-chip trigger unit
	TrOnchip.RESet Resets settings

	Floating Point Formats
	Integer Access Keywords
	ONCE Connector (56002/56100)
	JTAG Connector (56300, 56800, 56800E)
	Memory Classes
	Support
	Available Tools
	Compilers DSP56000
	Compilers DSP56300
	Compilers DSP56800/DSP56800E
	Realtime Operation Systems
	3rd Party Tool Integrations

	Products
	Product Information
	Order Information

