TRACE32 Online Help		
TRACE32 Directory		
TRACE32 Index		
TRACE32 Documents		Þ
ICD In-Circuit Debugger		
Processor Architecture Manuals		
DSP56K		
DSP56K Debugger		1
	w Users	4
		5
		6
SYStem.Up Errors		9 9
·		10
		13
On-chip Flash Programming and Deb	pugging on 56F8xxx Derivatives	13
	ctions	16
SYStem.CPU	Select the used CPU	16
SYStem.CpuAccess	Run-time memory access (intrusive)	16
SYStem.LOCK	Lock and tristate the debug port	17
SYStem.MemAccess	Real-time memory access (non-intrusive)	17
SYStem.Mode	Establish the communication with the target	18
SYStem.CONFIG	Configure debugger according to target topology	19
Daisy-chain Example		21
TapStates		22
SYStem.CONFIG.CORE	Assign core to TRACE32 instance	23
SYStem.Option COP	Enable WATCHDOG	24
SYStem.Option DE	Enable DE line	24
SYStem.Option IMASKASM	Disable interrupts while single stepping	24
SYStem.Option IMASKHLL	Disable interrupts while HLL single stepping	25
SYStem.Option SoftBreakFix	Enables "SoftBreakFix" patch	25
SYStem.JtagClock	Define JTAG clock	26
General Restrictions		27
FPU		30

TrOnchip Commands		31
TrOnchip.view	Opens configure panel	31
TrOnchip.A	Trigger cycle	31
TrOnchip.AANDB	Triggers if event occurs on unit A and unit B	32
TrOnchip.AAFTERB	Triggers if event occurs first on unit A and then on unit B	32
TrOnchip.AORB	Triggers if event occurs on unit A or unit B	32
TrOnchip.B	Trigger cycle	32
TrOnchip.BAFTERA	Triggers if event occurs first on unit B and then on unit A	33
TrOnchip.CONVert	Automatically convert range to single address	33
TrOnchip.Count	Delay counter	33
TrOnchip.DMA	Trigger on DMA access	33
TrOnchip.Mode	Defines used triggers	34
TrOnchip.OFF	Disable on-chip trigger unit	34
TrOnchip.RESet	Resets settings	34
Floating Point Formats		35
Integer Access Keywords		35
ONCE Connector (56002/56	5100)	36
JTAG Connector (56300, 56	6800, 56800E)	37
Memory Classes		39
Support		40
Available Tools		40
Compilers DSP56000		
Compilers DSP56300		42
Compilers DSP56800/DSP56800E		42
Realtime Operation Systems		43
3rd Party Tool Integrations		43
Products		45
Product Information		45
Order Information		45

Version 24-May-2016

TRACE32 DSP56 [POWER TRACE ETHERN	eT.	
Eile Edit View Var Break Run CPU Misc Ir	ace <u>P</u> erf C <u>o</u> v <u>W</u> indow <u>H</u> elp	
N № + 4 C > II ⊠ % №		
B::Register	III B::Data. dump (X:0x0) 💶 💌 🎤 B::SYSTEM	
C - U - X1 0 Z - L - A2 0 A1 308400 N - S - B2 FF B1 920000 R0 0100 N0 0 M0 FFFFFF R1 0 N1 0 M1 FFFFFF R2 0 N2 0 M2 FFFFFF R3 0 N3 0 M3 FFFFFF R4 0 N4 0 M4 FFFFFF R5 0 N5 0 M5 FFFFFF R5 0 N5 0 M5 FFFFFF R6 0300 N6 0 M6 FFFFFF R7 0 N7 0 M7 FFFFFF VBA 0 EP 0 SZ 0 PABEX 0139 PIL 0BF080 PABD 013A PDB 0144 PABF 0138	X:0x0 ji Find Modify Mode MemAccess address 0 1 O Down CPU O x:000000 >300400 920000 NoDebug O Down O CPU O x:000001 000000 1000001 O O NoDebug O Denied CpuAccess O Attach O Enable O Denied Nonstop Nonstop Nonstop Nonstop Nonstop JtagClock 5.0MHz JtagClock 5.0MHz S.0MHz S.0MHz	Option IMASKASM IMASKHLL DE COP
[B::Data.List] ▶ Step breakpoint addr/line source 106	Lup ► Go H Break Mode Find: \\pass\pass.asm #2,x:M_SSISR0,*; wait for frame sync to pass	
107 jclr 109 move	#2,x:M_SSISRO,* ; wait for frame sync x:RX_BUFF_BASE,a ; receive left	
110 move P 112 jsr	x:RX_BUFF_BASE+1,b ; receive right process_stereo	
114 move 115 move	a,x:TX_BUFF_BASE ; transmit left b,x:TX_BUFF_BASE+1 ; transmit right	
117 move 118 move 119 move	<pre>#TONE_OUTFUT,y0 ; set up control words y0,x:TX_BUFF_BASE+2 #TONE_INPUT,y0</pre>	✓
B::Break.List		
	Delect] Delect] Delect] P 100p_1\6	
B::		
emulate trigger devices trace	Data Var PERF SYStem Step Go other	previous
P:000139 \\pass\pass\loop_1+0x6	stopped at breakpoint	HLL UP ,

Architecture-independent information:

- "Debugger Basics Training" (training debugger.pdf): Get familiar with the basic features of a TRACE32 debugger.
- "T32Start" (app t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances • for different configurations of the debugger. T32Start is only available for Windows.
- "General Commands" (general ref <x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

- "Processor Architecture Manuals": These manuals describe commands that are specific for the processor architecture supported by your debug cable. To access the manual for your processor architecture, proceed as follows:
 - Choose Help menu > Processor Architecture Manual. -
- "RTOS Debugger" (rtos <x>.pdf): TRACE32 PowerView can be extended for operating system-. aware debugging. The appropriate RTOS manual informs you how to enable the OS-aware debugging.

Warning

NOTE:	To prevent debugger and target from damage it is recommended to connect or disconnect the debug cable only while the target power is OFF.	
	Recom	mendation for the software start:
	1.	Disconnect the debug cable from the target while the target power is off.
	2.	Connect the host system, the TRACE32 hardware and the debug cable.
	3.	Power ON the TRACE32 hardware.
	4.	Start the TRACE32 software to load the debugger firmware.
	5.	Connect the debug cable to the target.
	6.	Switch the target power ON.
	7.	Configure your debugger e.g. via a start-up script.
	Power	down:
	1.	Switch off the target power.
	2.	Disconnect the debug cable from the target.
	3.	Close the TRACE32 software.
	4.	Power OFF the TRACE32 hardware.

Quick Start

Starting up the debugger is done as follows:

Select the device prompt for the ICD Debugger and reset the system.

b::

RESet

The device prompt B:: is normally already selected in the command line. If this is not the case enter B:: to set the correct device prompt. The RESet command is only necessary if you do not start directly after booting the TRACE32 development tool.

5. Specify the CPU specific settings.

SYStem.CPU <cputype>

The default values of all other option are set in such a way that it should be possible to work without modification. Please consider that this is probably not the best configuration for your target.

6. Set the JTAG shift frequency

SYStem.JtagClock <frequency>

Normally the default value is 1.0 MHz, but the 56800E requires a lower value in the starting process.

7. Inform the debugger about read only address ranges (ROM, FLASH).

MAP.BOnchip <range>

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. Onchip breakpoints are necessary to set program breakpoints to read-only memories. The sections of FLASH and ROM depend on the specific CPU and its chip selects.

8. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible to access memory and registers.

9. Configure chip according application.

Register.Set OMR 3

; 56800: Development mode

Before loading binary data into the processor memory, the memory should be made writable. Therefore processor configuration registers have to be set e.g. OMR, SR or chip select register. The flash of the 56F8300 derivatives should be initialized here, too.

10. Load the program.

```
Data.LOAD.Elf program.elf ; ELF specifies the format,
; program.elf is the file name
```

The format of the Data.LOAD command depends on the file format generated by the compiler. Refer to **Supported Compilers** to find the command, that is necessary for your compiler.

A detailed description of the **Data.LOAD** command and all available options is given in the "General Commands Reference".

A typical start sequence for the DSP56858 is shown below. This sequence can be written to an ASCII file (script file) and executed with the command **DO** <filename>. Other sequences can be found on the CD in the DEMO directory.

b::	; Select the ICD device prompt
WinCLEAR	; Clear all windows
SYStem.CPU 56858	; Select CPU (56800E class here)
SYStem.JtagClock 687000.	; Choose JTAG frequency
MAP.BOnchip 0x1f0001f03ff	; Specify where read-only memory is
SYStem.Up	; Reset the target and enter debug ; mode
Register.Set PP 0x1F000	; Set the extended program counter PP ; (not PC!) to the begin of the boot ; flash. The statement is redundant in ; this case, but remember the ; execution without loading a program ; starts here.
Register.Set OMR 0x0	; Prepare access to memory by using ; operating mode 0
Data.LOAD.Elf ldm_external_memory.elf /LARGE /VERFY	; Load the application with option ; large memory model and verify the ; process
Go main	; Run and break at main()
Data.List	; Open source window
Register /SpotLight	; Open register window
Var.Local	; Open window with local variables

SYStem.Up Errors

The **SYStem.Up** command is the first command of a debug session where communication with the target is required. If you receive error messages while executing this command this may have the following reasons.

- The JTAG lines are not connected correctly.
- The target has no power.
- The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.
- The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

• There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is the only one member of a JTAG chain the debugger has to be informed about the target JTAG chain configuration. Use the SYStem.CONFIG command to specify the position of the device in the JTAG-chain. Debuggers for DSP56000 and DSP56100 do not support the SYStem.CONFIG options! For the DSP56800 chips the support depends to the license. There is a license upgrade available which also allows to debug 56800E core based chips. For Multicore DSP56300 systems e.g. DSP56720 or DSP56721 a Multicore License is necessary.

- Wrong CPU is selected
- JTAG clock is to high, especially for 56800E core based processors
- CPU executed illegal code and is in a bad state that can be only be reverted by re-powering the target. To avoid this situations first plug the debugger to the target, then power the target. The debugger will keep the target in RESET state until the command **SYStem.Up** was successful.

There are additional loads or capacities on the JTAG lines

Debugging via VPN	The debugger is accessed via Internet/VPN and the performance is very slow. What can be done to improve debug performance?
	The main cause for bad debug performance via Internet or VPN are low data throughput and high latency. The ways to improve performance by the debugger are limited:
	in practice scripts, use "SCREEN.OFF" at the beginning of the script and "SCREEN.ON" at the end. "SCREEN.OFF" will turn off screen updates. Please note that if your program stops (e.g. on error) without executing "SCREEN.OFF", some windows will not be updated.
	"SYStem.POLLING SLOW" will set a lower frequency for target state checks (e.g. power, reset, jtag state). It will take longer for the debugger to recognize that the core stopped on a breakpoint.
	"SETUP.URATE 1.s" will set the default update frequency of Data.List/ Data.dump/Variable windows to 1 second (the slowest possible setting).
	prevent unneeded memory accesses using "MAP.UPDATEONCE [address-range]" for RAM and "MAP.CONST [addressrange]" for ROM/ FLASH. Address ranged with "MAP.UPDATEONCE" will read the specified address range only once after the core stopped at a breakpoint or manual break. "MAP.CONST" will read the specified address range only once per SYStem.Mode command (e.g. SYStem.Up).

Setting a	What can be the reasons why setting a software breakpoint fails?
Software Breakpoint fails	Setting a software breakpoint can fail when the target HW is not able to implement the wanted breakpoint.
	Possible reasons:
	The wanted breakpoint needs special features that are only possible to realize by the trigger unit inside the controller. Example: Read, write and access (Read/Write) breakpoints ("type" in Break.Set window). Breakpoints with checking in real-time for data-values ("Data"). Breakpoints with special features ("action") like TriggerTrace, TraceEnable, TraceOn/TraceOFF.
	TRACE32 can not change the memory. Example: ROM and Flash when no preparation with FLASH.Create, FLASH.TARGET and FLASH.AUTO was made. All type of memory if the memory device is missing the necessary control signals like WriteEnable or settings of registers and SpecialFunctionRegisters (SFR).
	Contrary settings in TRACE32. Like: MAP.BOnchip for this memory range. Break.SELect. <breakpoint-type> Onchip (HARD is only available for ICE and FIRE).</breakpoint-type>
	RTOS and MMU: If the memory can be changed by Data.Set but the breakpoint doesn't work it might be a problem of using an MMU on target when setting the breakpoint to a symbolic address that is different than the writable and intended memory location.
Cannot release from Software Breakpoint	Cannot make an HLL-step from a software breakpoint or the context switches while debugging
	Possible reason: Interrupts are pending In HLL-stepping mode always debug with SYStem.Option IMASKASM ON, when interrupts are pending.
	Possible reason: Routine is called again Debugging in recursive routines can have strange side effects. The debugger uses breakpoints to perfom HLL single steps. These breakpoints will place the processor in debug state also when you try to step over a self call. So the stackframe/context can switch or in case of fixed user breakpoints it seams that the debugger cannot release from a breakpoint. Similar behavior can be expected for debugging in nested interrupts or real time operating systems with software interrupts.
56800/56800E	How can I set the program counter to including the extension bit from the SR register?
PC Register is not equal to Program Counter	Use the register PP e.g. Register.Set PP 0x1F0000.

56800E	Debugger does not step correctly into routine or debugger does not load HLL code for routine.
AnySymbol Option for Metrowerks 800E	Use the /AnySymbol paramater when you load Metrowerks ELF files.
56800E	Pointer type has wrong width.
Pointer has wrong Width	The width of the pointer type depends on the memory model. The large memory model requieres the parameter /LARGE for the command Data.LOAD.ELF.

The processor type must be selected by the **SYStem.CPU** command before issuing any other target related commands.

On-chip Flash Programming and Debugging on 56F8xxx Derivatives

TRACE32 offers target based flash programming for the internal flash on the 56F8xx and 56F8300 derivative. Before accessing the flash the device has to be configured. Example scripts for programming and debugging can be found in /demo/dsp56800/flash and /demo/dsp56800e/compiler/mwerks/56f8323.

Configuration for flash programming:

- Select the CPU with **SYStem.CPU** and use **SYStem.Up** to enable debug mode.
- Optional: Adjust the processors system clock (SYS_CLK) to allow a faster JTAG communication and shorter flash algorithm runtime.

Consult the processors architecture manual for the right PLL and Clock settings. An example for the 56F8323 can be found under *demo/dsp56800e/hardware/dsp568323demo/system.up*

• Set the chip configuration register and peripherals to enable access to the memory sections with flash.

Check the processor manual for correct setting of SR, OMR registers (especially EX bit and MODE bits) and the chip select peripheral register. The exact configuration depends on your application. Use the commands **Register.Set** and **Data.Set** to modify these registers.

Configure the Flash programming

Use the TRACE32 commands **FLASH.Create** and **FLASH.TARGET** to inform the debugger about Flash memory sections and the used flash algorithm. TRACE32 provides example scripts for all known derivatives with the configuration EX=0 and Mode=0. Look in the *demo/dsp56800/flash* and *demo/dsp56800e/flash* directories for these scripts.

The implementation of the FLASH.Create command differs from the standard:

- The physical range addresses are counted in words.
- The sector size is passed in bytes.
- The bus width is fixed to "Word".
- Additional access class parameter for 56800 and 56800E family.

56800 family: An additional parameter after the access size parameter is necessary. The 32 bit parameter tells the target program the address of the flash controller base register and the flash memory class to use. Bit 0..15 of this parameter give the base address of the flash controller registers, bit 16..31 specify the access class. Access class:

- 0 : Program flash memory or boot flash memory
- 1 : Data flash memory

Example:

```
; Program flash, control base is 0x1020
FLASH.Create 1. P:0x0000--0x7bff 0x200 TARGET Word 0x01020
; Data flash, 0x10000 + control base 0x1060
FLASH.Create 2. X:0x1800--0x1fff 0x200 TARGET Word 0x11060
```

56800E family: An additional parameter after the access size parameter is necessary, that tells the target program about the flash memory class. Access class:

1 : Boot flash 2 : Program flash 3 : Data flash.

Example:

```
; Boot Flash
FLASH.Create 1. P:0x020000--0x020FFF 0x200 TARGET Word 1
; Program Flash
FLASH.Create 2. P:0x000000--0x003FFF 0x400 TARGET Word 2
; Data Flash
FLASH.Create 3. X:0x001000--0x001FFF 0x200 TARGET Word 3
```

Enable Flash programming and download application

Use **FLASH.AUTO ALL** to enable cached write access to the flash memory and download your application with **Data.Load.** Alternatively it is also possible to use **FLASH.Erase** and **FLASH.Program**, especially when large memory blocks have been changed.

Disable Flash programming with FLASH.AUTO OFF or FLASH.Program OFF.

Configuration for debugging in flash:

- Select the CPU with **SYStem.CPU** and use **SYStem.Up** to enable debug mode.
- Load Symbols

Assuming that the application is already programmed into flash, load the symbols with the help of the TRACE32 command **Data.Load** with the additional parameters /NoCODE, /NOREG, /AS and optional /LARGE if you use the large memory model.

- Configure the flash programming
- Execute start-up code to configure the device

The start-up code of your application includes normally instructions to configure the chip registers and peripherals. You can execute the start-up code with the TRACE32 instruction "Go main /ONCHIP". The command lets the processor execute the code and breaks at *main* with the help of an on-chip breakpoint.

• Adjust JTAG-Clock and enable flash memory for write access.

Assuming that the PLL is initialized correctly by the start-up code, the JTAG frequency can be optimized to allow faster communication. The TRACE32 command **FLASH.AUTO ALL** enables the flash for writing. This is necessary for debugging in flash. The executed program code should not change the system clock (SYS_CLK) otherwise the flash clock divider (can only be set one time after reset) and JTAG frequency can become invalid.

Debug your application

The step-over function uses asm single steps to perform, because this safes flash life cycles. For faster operation it is better to use break and go commands.

 Shutdown the processor with FLASH.AUTO OFF and SYStem.Down to replace the software breakpoints with the original application code.

SYStem.CPU

Select the used CPU

Format:	SYStem.CPU <cpu></cpu>
<cpu>:</cpu>	56002 56004 56005 56006 56007 (56000 processors) 56301 56302 56303 56307 56309 56311 56321 56362 56364 56366 56367 56371 (56300 processors)
	56801 56803 56805 56807 56809 56811 56827 (56800 processors)
	56852 56853 56854 56855 56857 56858 (56800E 5685x processors)
	56F8322 56F8323 56F8345 56F8346 56F8347 56F8355 56F8356 56F8357 56F8365 56F8366 56F8367 (56800E 56F83xx processors)
	56F8122 56F8123 56F8145 56F8146 56F8147 56F8155 56F8156 56F8157 56F8165 56F8166 56F8167 (56800E 56F81xx processors)
	56F8013 56F8014 (56800E 56F80xx processors)

Selects the processor type.

SYStem.CpuAccess

Run-time memory access (intrusive)

Format:	SYStem.CpuAccess Enable Denied Nonstop
Default: Denied.	
Enable	Allow intrusive run-time memory access. In order to perform a memory read or write while the CPU is executing the program the debugger stops the program execution shortly. Each short stop takes 1 100 ms depending on the speed of the debug interface and on the number of the read/write accesses required. A red S in the state line of the TRACE32 screen indicates this intrusive behavior of the debugger.

Denied Lock intrusive run-time memory access.

Nonstop Lock all features of the debugger, that affect the run-time behavior. Nonstop reduces the functionality of the debugger to:

- run-time access to memory and variables
- trace display

The debugger inhibits the following:

- to stop the program execution
- all features of the debugger that are intrusive (e.g. action Spot for breakpoints, performance analysis via StopAndGo mode, conditional breakpoints etc.)

SYStem.LOCK

Lock and tristate the debug port

Format:

SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the debug connector of the debugger is tristated. The main intention of the lock command is to give debug access to another tool.

SYStem.MemAccess

Real-time memory access (non-intrusive)

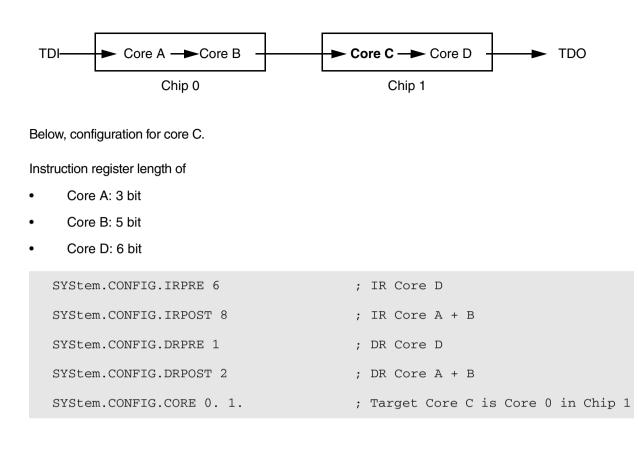
Format:	SYStem.MemAccess CPU Denied <cpu_specific> SYStem.ACCESS (deprecated)</cpu_specific>
CPU	Real-time memory access during program execution to target is enabled.
Denied	Real-time memory access during program execution to target is disabled.

SYStem.Mode

Format:	SYStem.Mode <mode></mode>
<mode>:</mode>	Down NoDebug Go Attach Up
Down	Disables the debugger (default). The state of the CPU remains unchanged. The JTAG port is tristated.
NoDebug	Disables the debugger. The state of the CPU remains unchanged. The JTAG port is tristated.
Go	Resets the target and enables the debugger and start the program execution. Program execution can be stopped by the break command or external trigger.
Attach	User program remains running (no reset) and the debug mode is activated. After this command the user program can be stopped with the break command or if any break condition occurs.
Up	Resets the target, sets the CPU to debug mode and stops the CPU. After the execution of this command the CPU is stopped and all register are set to the default level.
StandBy	Not available for DSP56K.

Format:	SYStem.CONFIG <parameter> <number_or_address> SYStem.MultiCore <parameter> <number_or_address> (deprecated)</number_or_address></parameter></number_or_address></parameter>	
<pre><parameter></parameter></pre>	state	
(General):	CORE <core></core>	
(JTAG):	DRPRE <bits> DRPOST <bits> IRPRE <bits> IRPOST <bits> TAPState <state> TCKLevel <level> TriState [ON OFF] Slave [ON OFF]</level></state></bits></bits></bits></bits>	

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM + DSP). The information is required before the debugger can be activated e.g. by a **SYStem.Up**. See **Daisy-chain Example**.


For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the required system configuration of these CPUs is known.

TriState has to be used if several debuggers ("via separate cables") are connected to a common JTAG port at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down resistor, other trigger inputs needs to be kept in inactive state.

	Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).	ļ

state	Show multicore settings.
CORE	For multicore debugging one TRACE32 GUI has to be started per core. To bundle several cores in one processor as required by the system this command has to be used to define core and processor coordinates within the system topology. Further information can be found in SYStem.CONFIG.CORE .
DRPRE	(default: 0) <number> of TAPs in the JTAG chain between the core of interest and the TDO signal of the debugger. If each core in the system contributes only one TAP to the JTAG chain, DRPRE is the number of cores between the core of interest and the TDO signal of the debugger.</number>
DRPOST	(default: 0) <number> of TAPs in the JTAG chain between the TDI signal of the debugger and the core of interest. If each core in the system contributes only one TAP to the JTAG chain, DRPOST is the number of cores between the TDI signal of the debugger and the core of interest.</number>
IRPRE	(default: 0) <number> of instruction register bits in the JTAG chain between the core of interest and the TDO signal of the debugger. This is the sum of the instruction register length of all TAPs between the core of interest and the TDO signal of the debugger.</number>
IRPOST	(default: 0) <number> of instruction register bits in the JTAG chain between the TDI signal and the core of interest. This is the sum of the instruction register lengths of all TAPs between the TDI signal of the debugger and the core of interest.</number>
TAPState	(default: 7 = Select-DR-Scan) This is the state of the TAP controller when the debugger switches to tristate mode. All states of the JTAG TAP controller are selectable.
TCKLevel	(default: 0) Level of TCK signal when all debuggers are tristated.
TriState	(default: OFF) If several debuggers share the same debug port, this option is required. The debugger switches to tristate mode after each debug port access. Then other debuggers can access the port. JTAG: This option must be used, if the JTAG line of multiple debug boxes are connected by a JTAG joiner adapter to access a single JTAG chain.
Slave	(default: OFF) If more than one debugger share the same debug port, all except one must have this option active. JTAG: Only one debugger - the "master" - is allowed to control the signals nTRST and nSRST (nRESET).

Daisy-chain Example

0	Exit2-DR
1	Exit1-DR
2	Shift-DR
3	Pause-DR
4	Select-IR-Scan
5	Update-DR
6	Capture-DR
7	Select-DR-Scan
8	Exit2-IR
9	Exit1-IR
10	Shift-IR
11	Pause-IR
12	Run-Test/Idle
13	Update-IR
14	Capture-IR
15	Test-Logic-Reset

Format:	SYStem.CONFIG.CORE < <i>coreindex</i> > < <i>chipindex</i> > SYStem.MultiCore.CORE < <i>coreindex</i> > < <i>chipindex</i> > (deprecated)
<chipindex>:</chipindex>	1i
<coreindex>:</coreindex>	1 k

Default coreindex: depends on the CPU, usually 1. for generic chips

Default *chipindex*: derived from CORE= parameter of the configuration file (config.t32). The CORE parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger the systems topology must be mapped to the debuggers topology model. The debugger model abstracts chips and sub-cores of these chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the **SYStem.CPU** is selected a generic chip or none generic chip is created at the default *chipindex*.

None Generic Chips

None generic chips have a fixed amount of sub-cores with a fixed CPU type.

First all cores have successive chip numbers at their GUIs. Therefore you have to assign the coreindex and the chipindex for every core. Usually the debugger does not need further information to access cores in none generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a none generic chip, two GUI are connected to the same coordinate or a GUI is not connected to a core. The initial state of the system is value since every new GUI uses a new *chipindex* according to its CORE= parameter of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must be merged by calling **SYStem.CONFIG.CORE**.

Format:

SYStem.Option COP [ON | OFF]

Default: OFF.

The watchdog remains active when this option is set to ON. This option is not necessary for the 56800E processors because their watchdog is disabled automatically in debug mode.

SYStem.Option DE

Enable DE line

Format:

SYStem.Option DE [ON | OFF]

Default: ON.

Enables the use of the /DE line on the JTAG connector. This increases the speed of the debugger for 56300 and 56800 processors. The 56800E processors can perform the **SYStem.Up** command faster when DE is activated.

SYStem.Option IMASKASM Disable interrupts while single stepping

Format: SYStem.Option IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping and stepping from software breakpoints.

Format:

SYStem.Option IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are restored to the value before the step.

SYStem.Option SoftBreakFix

Enables "SoftBreakFix" patch

Format: SYStem.Option SoftBreakFix [ON | OFF]

Default: OFF.

If enabled an experimental patch gets active, which allows to set breakpoints in delay slots of conditional branches (only 56800E processors). The patch is only useful, if the "pad pipeline" options for compiler and assembler in the Metrowerks Codewarrior are disabled. The patch can have strange side effects e.g. in code which reads data from p memory (case statements) or the debugger halts near a breakpoint.

Format:	SYStem.JtagClock < <i>rate</i> > SYStem.BdmClock < <i>rate</i> > (deprecated)
<fixed>:</fixed>	976 15 000 000.

Selects the frequency for the debug interface.

- For a fast setup of the clock speed the pre-configured buttons can be used to enter the clock speed. These are the most used frequencies fixed. The default frequency for the fixed clock is 1 MHz.
- The clock speed depends on the speed of the processor. Especially the 56800E processors need a frequency lower or equal to 500000.Hz at SYStem.UP. After initializing the PLL to a core clock of 120 MHz the JTAG clock can be increased up to 15 MHz. The other processors can operate with the default JTAG clock setting at SYStem.UP.

NOTE:	Buffers, additional loads or high capacities on the JTAG/COP lines reduce the debug speed.
	debug speed.

SYS_CLK cannot be changed while flash- programming is active	The flash clock divider depends on the sys_clk. Since the flash clock diver can only be set one time after system up, the flash clock divider cannot be adapt to a modified system clock (SYS_CLK). The restriction can cause a "flash timing error"	
Program Modifications	When the program is modified, the contents of the PIL and PDB registers are not changed. If the modified address is already fetched, the processor will execute the old instructions. Modifying the PIL or PDB register, or setting the PC will cure this problem. Program modifications by the debugger, like software breakpoints, consider all pipeline effects.	
Setting the PC	In cases where the program counter consists of the PC register and extension bits in SR register, the program counter can be set by the register PP.	
	Setting the PC causes the execution of a jump instruction. Pending REP instructions will be canceled.	
Breakpoints in L: memory	Breakpoints in L: memory will be set to the Y: memory class.	
Breakpoints on second XAB access on 56100	Must be set by using the Y: memory access class.	
Program counter after SYStem.UP	In some cases the program counter after System.Up is not placed at the begin of the boot flash.	
Debugging with interrupts	When IMASKHLL or IMASKASM is enabled the debugger won't update correctly the interrupt level bits in the SR register in case the core is placed into the highest priority.	
JTAG Multi Core configuration	The settings in the SYStem.CONFIG window are only active for 56300 with Multicore License or 56800 and 56800e core based chips with the license type DSP56800. You can view your license type with license.list.	
Software Breakpoints in hardware supported REP-loops	For the DSP56300 family setting a program software breakpoint on the instruction following a REP instruction and using the Go- command to continue will result in invalid loopcounter register LC. Code example:	
	[B::Data.List] ► Step ► Over ► Next ✔ Return ▲ Up ► Go ■ Break ※ Mode	

breakpoint	addr/line	code	mnemonic		comment
	P:000200		nop		
	P:000201		rep	#0×8	
	P:000202	000008	inc	a	
	P:000203	000000	nop		

If using software breakpoints the original instruction on the breakpoint is replaced (invisible to the user) by a *debug* instruction. The DSP executes the *debug* instruction, decrements the loop counter register LC and then halts the system by entering debug mode. Using the Go-command the *debug* instruction is replaced by the original instruction which is then executed. This will decrement the loop counter register LC one more time which is invalid. To avoid this behavior do not use breakpoints within a hardware supported REP-loop.

For the DSP56300 family proper operation of DO-loop, DOR-loop or DO-forever-loop is only guaranteed if no software breakpoints are set near the end of the loop at loopaddress-2, loopaddress-1 or loopaddress.

In HLL debugging mode setting software breakpoints near the end of HLL-loops of any kind must be handled with care. To avoid this behavior use on-chip breakpoints for critical applications. Code example:

📕 [B::Data.List]			
📄 Step 📄 🗎 Ove	r 🔶 Next 🖌 Retu	m 🕑 Up 🕩	Go 📕 Break 🔀 Mode
breakpoint add	r/line code	mnemonic	
	000200 06088000020	18 do	#0x8,0x209
	000202 000000	nop	
	000203 000000	nop	
	000204 000000	nop	
	000205 000008	inc	a
no P:	000206 000009	inc	b
	000207 00000A	dec	a
	000208 000008	dec	b
P:	000209 000000	nop	

If using software breakpoints the original instruction on the breakpoint is replaced (invisible to the user) by a *debug* instruction. The DSP halts after debug is executed. Prior to the next Go- or Step-command *debug* is replaced by the original instruction and the program counter is moved back onto the original instruction. Setting the program counter on instructions near the loop-end will decrement the loop counter register LC.

Using on-chip breakpoints of the DSP56300 family may violate realtime execution under the following conditions:

- Setting on-chip breakpoints on the next three instructions following conditional branches, jumps, loop-breaks or condition calls to subroutines.
- Setting on-chip breakpoints on the instruction that is a branch target of conditional branches, jumps, loop-breaks or conditional calls to subroutines if the conditional branch, jump, break or call is not taken.
- Setting on-chip breakpoints on instructions that are executed in parallel.
- Setting on-chip breakpoints on the instruction following a hardware supported REP-loop.

Possible realtime violation using onchip program breakpoints

Software breakpoints in

hardware supported

DO-loops

An onchip program breakpoint may get triggered even if the program counter is not directly on the given program memory location of the breakpoint. This is caused by the pipeline decode and prefetch mechanism and the parallel execution capabilities of the DSP.

If the DSP is halted by an on-chip breakpoint the debugger spots the current program counter and compares it with all on-chip breakpoint addresses. This is to decide which breakpoint has triggered. Under the above conditions sometimes no match can be found and the debugger continues execution. This behavior violates realtime execution and is signaled to the user in the state line by setting the spot breakpoint active flag. This behavior also applies to debugging in HLL mode.

Go	other	previous)	
	S	HLL	UP	

To avoid realtime violation set on-chip breakpoints on instructions which not meet the above conditions or try using software breakpoints instead.

For the DSP56300 family the range of fractional numbers which can be entered by using the command FPU.SET is limited to:

• -256.0 to 255.9999999999999997 for the registers A and B. Entering numbers outside this ranges is not supported by the DSP and will lead to invalid displayed fractional numbers.

Range of fractional numbers

Format:	FPU.view
Format:	FPU.Set <register> <value></value></register>

view Display accumulator registers as fractional numbers.

FPU.Set Changes accumulator registers in fractional number format.

10	B::FPU.view				
X1 V1	-1.0 0.9999999	ХО УЛ	0.0 0.9999999	X	-1.0 0.9999999403953481
A1	0.99999999	ÂŬ	0.99999999	Å	0.99999999403953481191
B1	0.0	BO	0.0	В	-256.00000000000000001

The breakpoint registers on the ONCE debugger can be used to monitor data or program access in realtime. They are automatically set, when a read or write breakpoint is set. On the 56300 family it is possible to trigger on access sequences to two different addresses.

TrOnchip.view

Opens configure panel

Format: IrOnchip.view	Format:	TrOnchip.view			
-----------------------	---------	---------------	--	--	--

Control panel to configure the on-chip breakpoint registers.

DSP56300:

👎 B::TrOnchip			
tronchip RESet ✓ CONVert DMA	Mode OFF AORB AANDB AAFTERB	A Read Write Access 	B Read Write Access
Count1.	O BAFTERA		

TrOnchip.A

Trigger cycle

Format:	TrOnchip.A < <i>cycle</i> > TrOnchip.B < <i>cycle</i> >
<cycle>:</cycle>	Read Write Access

Defines on which cycle the trigger system triggers (only 56300).

TrOnchip.AANDB

Format: TrOnchip.AANDB

The on-chip breakpoint triggers, if an event occurs on trigger unit A and on trigger unit B (only 56300).

TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B

|--|

The on-chip breakpoint triggers, if an event occurs first on trigger unit A and then on trigger unit B (only 56300).

TrOnchip.AORB

Triggers if event occurs on unit A or unit B

The on-chip breakpoint triggers, if an event occurs on trigger unit A or on trigger unit B (only 56300).

TrOnchip.B

Trigger cycle

Format:	TrOnchip.A < <i>cycle</i> > TrOnchip.B < <i>cycle</i> >	
<cycle>:</cycle>	Read Write Access	

Defines on which cycle the trigger system triggers (only 56300).

Format:	TrOnchip.BAFTERA
---------	------------------

The on-chip breakpoint triggers, if an event occurs first on trigger unit B and then on trigger unit A (only 56300)

TrOnchip.CONVert

Automatically convert range to single address

Format:	TrOnchip.CONVert [ON OFF]	
---------	-----------------------------	--

When enabled (default) the on-chip breakpoints are automatically converted from a range to a single address if required. If the switch is off, the system will only accept breakpoints which exactly fit to the on-chip breakpoint hardware.

TrOnchip.Count

Delay counter

Format:

TrOnchip.Count < count>

Defines the delay counter for the trigger system. A value of 1 means no delay (only 56300).

TrOnchip.DMA

Trigger on DMA access

Format:

TrOnchip.DMA [ON | OFF]

Trigger on DMA access instead of regular memory access (only 56300).

TrOnchip.Mode

Format:	TrOnchip.Mode < mode>
<mode>:</mode>	OFF AORB AANDB AAFTERB BAFTERA

Defines which triggers are used and in what combination (only 56300). In **OFF** mode the triggers are used for the regular read/write breakpoints. In the other modes the **Alpha** and **Beta** breakpoints are used to define the memory addresses.

TrOnchip.OFF

Disable on-chip trigger unit

Format:	TrOnchip.OFF	

Disables on-chip trigger unit.

TrOnchip.RESet

Resets settings

Format: TrOnchip.RESet

Resets the trigger system to the default state.

F24	Fractional fixed point 24 bit
F48	Fractional fixed point 48 bit
F16	Fractional fixed point 16 bit
F32	Fractional fixed point 32 bit
M56	Floating point format (56002)
leeeS	Floating point format (56100)

NOTE:	Fractional floating point numbers are always displayed with a fixed precision, i.e. a fixed number of digits. Small fractional numbers can have many non relevant digits displayed.
-------	---

Integer Access Keywords

Word	Word (16 bit)
TByte	Triple byte (24 bit)
Long	Double Word (32 bit), upper and lower word swapped
HByte	Hexabyte (48 bit)
Quad	Tertiary Word (64 bit), upper and lower word swapped

This connector is obsolete.

Signal	Pin	Pin	Signal
DSI	1	2	GND
DSO	3	4	GND
DSCK	5	6	GND
DR-	7	8	VCC
RESET-	9	10	GND

JTAG Connector (56300, 56800, 56800E)

Signal	Pin	Pin	Signal
TDI	1	2	GND
TDO	3	4	GND
TCK	5	6	GND
N/C	7	8	KEY
RESET-	9	10	TMS
VCCS	11	12	N/C
DE-	13	14	TRST-

Pins	Con- nection	Description	Recommendations
1	TDI	Test Data In	Not 56300: If there are multiple chip devices on the JTAG chain, connect TDI to the TDO signal of the previous device in the chain.
2,4,6	GND	System Ground Plan	Connect to digital ground.
3	TDO	Test Data Out	Not 56300: If there are multiple chip devices on the JTAG chain, connect TDO to the TDI signal of the next device in the chain.
5	ТСК	Test Clock	Add 10 k Ω pull-up resistor to VCC.
7, 12	NC	No Connect	Leave unconnected.
8	KEY	Mechanical Keying	Pin should be removed.
9	RESET	Reset	May be tied to HRESET.
10	TMS	Test Mode Select	None.
11	VCCS	VCC Sense	Connect to Chip I/O voltage VDDH through a 10 Ω current limiting resistor.

14	TRST	Test Reset	TRST has an internal pull-up resistor, so no external pull-up or pull-down resistor is required. However, a 10 k Ω pull-down resistor should added to GND on this signal to keep the JTAG in reset mode while the device is operating regularly. When using more than one debug dongle driving this signal it is not recommended to pull down the signal in debug mode, because during the dongle source switch the signal output is set to tristate.
13	DE	Debug Enable	Add 10 k Ω pull-up resistor to VCC. This Signal is not needed. If not available, set SYStem.Option.DE OFF.

Memory Class	Description
x	X: data memory space
Y	Y: data memory space or second XAB access on 56100 for breakpoints (not 56800, not 56800E)
L	L: data memory space which is X:Y chained data memory (not 56100, not 56800, not 56800E)
Р	P: programm memory space

Available Tools

CPU	ICE	FIRE	ICD DEBUG	ICD MONITOR	ICD TRACE	POWER INTEGRATOR	INSTRUCTION SIMULATOR
DSP56002			YES				
DSP56004			YES				
DSP56005			YES				
DSP56156			YES				
DSP56166			YES				
MC68356	YES		YES	YES			YES

CPU	ICE	FIRE	ICD DEBUG	ICD MONITOR	ICD TRACE	POWER INTEGRATOR	INSTRUCTION SIMULATOR
DSP56301			YES				
DSP56303			YES				
DSP56307			YES				
DSP56309			YES				
DSP56311			YES				
DSP56321			YES				
DSP56362			YES				
DSP56364			YES				
DSP56366			YES				
DSP56367			YES				
DSP56371			YES				
DSP56374			YES				
DSP56720			YES				
DSP56721			YES				

CPU	ICE	FIRE	ICD DEBUG	ICD MONITOR	ICD TRACE	POWER INTEGRATOR	INSTRUCTION SIMULATOR
DSP56824			YES				
DSP56852			YES				
DSP56853			YES				
DSP56854			YES				
DSP56855			YES				
DSP56857			YES				
DSP56858			YES				
DSP56F801			YES				
DSP56F802			YES				
DSP56F803			YES				
DSP56F805			YES				
DSP56F807			YES				
DSP56F8122			YES				
DSP56F8123			YES				
DSP56F8135			YES				
DSP56F8145			YES				
DSP56F8146			YES				
DSP56F8147			YES				
DSP56F8155			YES				
DSP56F8156			YES				
DSP56F8157			YES				
DSP56F8165			YES				
DSP56F8166			YES				
DSP56F8167			YES				
DSP56F826			YES				
DSP56F827			YES				
DSP56F8322			YES				
DSP56F8323			YES				
DSP56F8335			YES				
DSP56F8345			YES				
DSP56F8346			YES				
DSP56F8347			YES				
DSP56F8355			YES				
DSP56F8356			YES				
DSP56F8357			YES				
DSP56F8365			YES				
DSP56F8366			YES				
DSP56F8367			YES				

Compilers DSP56000

Language	Compiler	Company	Option	Comment
ASM	GAS	NXP Semiconductors	MCOFF	Source level debugging
С	GCC56K	NXP Semiconductors	MCOFF	
С	C56	TASKING	IEEE	

Compilers DSP56300

Language	Compiler	Company	Option	Comment
С	GCC56300	NXP Semiconductors	MCOFF	
С	C563	TASKING	IEEE	

Compilers DSP56800/DSP56800E

Language	Compiler	Company	Option	Comment
С	CODEWARRIOR	NXP Semiconductors	ELF/DWARF	
С	CODEWARRIOR	NXP Semiconductors	ELF/DWARF	/LARGE for LDM (800E only) /AS

No operation systems supported.

3rd Party Tool Integrations

CPU	ΤοοΙ	Company	Host
ALL	ADENEO	Adeneo Embedded	
ALL	X-TOOLS / X32	blue river software GmbH	Windows
ALL	CODEWRIGHT	Borland Software Corporation	Windows
ALL	CODE CONFIDENCE TOOLS	Code Confidence Ltd	Windows
ALL	CODE CONFIDENCE TOOLS	Code Confidence Ltd	Linux
ALL	EASYCODE	EASYCODE GmbH	Windows
ALL	ECLIPSE	Eclipse Foundation, Inc	Windows
ALL	RHAPSODY IN MICROC	IBM Corp.	Windows
ALL	RHAPSODY IN C++	IBM Corp.	Windows
ALL	CHRONVIEW	Inchron GmbH	Windows
ALL	LDRA TOOL SUITE	LDRA Technology, Inc.	Windows
ALL	UML DEBUGGER	LieberLieber Software GmbH	Windows
ALL	ATTOL TOOLS	MicroMax Inc.	Windows
ALL	VISUAL BASIC INTERFACE	Microsoft Corporation	Windows
ALL	LABVIEW	NATIONAL INSTRUMENTS Corporation	Windows
ALL	CODE::BLOCKS	Open Source	-
ALL	C++TEST	Parasoft	Windows
ALL	RAPITIME	Rapita Systems Ltd.	Windows
ALL	DA-C	RistanCASE	Windows
ALL	TRACEANALYZER	Symtavision GmbH	Windows
ALL	SIMULINK	The MathWorks Inc.	Windows

CPU	Tool	Company	Host
ALL	TA INSPECTOR	Timing Architects GmbH	Windows
ALL	UNDODB	Undo Software	Linux
ALL	VECTORCAST UNIT TESTING	Vector Software	Windows
ALL	VECTORCAST CODE COVERAGE	Vector Software	Windows
ALL	WINDOWS CE PLATF. BUILDER	Windows	Windows

Product Information

OrderNo Code	Text
LA-7730	BDM Debugger for DSP56K (ICD)
BDM-DSP56K	supports DSP56002/4/5, DSP561xx and DSP-part of 68356 (only for chips with 5V tolerant IO's) includes software for Windows, Linux and MacOSX requires Power Debug Module debug cable with 10 pin connector

OrderNo Code	Text
LA-7735 BDM-DSP56300	BDM Debugger for DSP56300 (ICD) supports DSP5630x
	includes software for Windows, Linux and MacOSX requires Power Debug Module not supported by PowerDebug PRO debug cable with 14 pin connector

OrderNo Code	Text
LA-7738	BDM Debugger for DSP56800 and DSP56800E (ICD)
BDM-DSP56800	supports DSP568xx and DSP5683xx includes software for Windows, Linux and MacOSX requires Power Debug Module Not supported by PowerDebug PRO debug cable with 14 pin connector

Order Information

Order No.	Code	Text
LA-7730	BDM-DSP56K	BDM Debugger for DSP56K (ICD)

Code	Text		
BDM-DSP56300	BDM Debugger for DSP56300 (ICD)		
Additional Options			
MULTICORE-LICENSE	License for Multicore Debugging		
	BDM-DSP56300 Options		

Order No.	Code	Text
LA-7738	BDM-DSP56800	BDM Debugger for DSP56800 and DSP56800E (ICD)