

MICRON

WIDE DRAMs	
VRAMs	2
TRIPLE-PORT DRAMs	3
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

SPECIALTY DRAM DATA BOOK

2805 East Columbia Road Boise, Idaho 83706 Telephone: (208) 368-3900 Fax: (208) 368-4431 Customer Comment Line: 800-932-4992 (U.S.A.) 01-208-368-3410 (Intl.)

©1993, Micron Semiconductor, Inc. Printed in the U.S.A.

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice.

ABOUT THE COVER:

Front — A variety of features highlights Micron's Specialty DRAM product line, shown here against a circuitry backdrop rendered from a scanning electron microscope. Pictured are Micron's 1 Meg Triple-Port DRAM in a PLCC package (top), 1 Meg VRAM in an SOJ package (lower left) and 2 Meg VRAM in a TSOP package (lower right).

Back — Micron's Boise, Idaho, headquarters.

PREFACE GENERAL INFORMATION

IMPORTANT NOTICE

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. Customers are advised to obtain the latest versions of product specifications, which should be considered in evaluating a product's appropriateness for a particular use. There is no assurance that Micron's semiconductors are appropriate for any application by a customer.

MICRON SEMICONDUCTOR, INC., MAKES NO WARRANTIES EX-PRESSEDOR IMPLIED OTHER THAN COMPLIANCE WITH MICRON'S SPECIFICATION SHEET FOR THE COMPONENT AT THE TIME OF DELIVERY, ANY CLAIM AGAINST MICRON MUST BE MADE WITHIN NINETY (90) DAYS FROM THE DATE OF SHIPMENT FROM MICRON, AND MICRON HAS NO LIABILITY THEREAFTER. ANY MICRON LIA-BILITY IS LIMITED TO REPLACE-MENT OF DEFECTIVE ITEMS OR RETURN OF AMOUNTS PAID FOR DEFECTIVE ITEMS (AT THE BUYER'S ELECTION).

MICRON'S PRODUCTS ARE NOT AUTHORIZEDFORUSEASCRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF MICRON SEMICONDUCTOR, INC., AS USED HEREIN:

A. LIFE SUPPORT DEVICES OR SYSTEMS ARE DEVICES OR SYS-TEMS WHICH (1) ARE INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR (2) SUPPORT OR SUSTAIN LIFE AND WHOSE FAILURE TO PERFORM WHEN PROPERLY USED IN ACCORDANCE WITH INSTRUC-TIONS FOR USE PROVIDED IN THE LABELING CAN BE REASONABLY EXPECTED TO RESULT IN A SIGNIFICANT INJURY TO THE USER.

B. CRITICAL COMPONENT IS ANY COMPONENT OF A LIFE SUPPORT DEVICE OR SYSTEM WHOSE FAILURE TO PERFORM CAN BE REASONABLY EXPECTED TO CAUSE THE FAILURE OF THE LIFE SUPPORT DEVICE OR SYSTEM OR TO AFFECT ITS SAFETY OR EFFECTIVENESS.

i

MICRON

PREFACE GENERAL INFORMATION

Dear Customer:

Micron Semiconductor, Inc., is dedicated to the design, manufacture and marketing of high-quality, highly reliable memory components. Our corporate mission is:

"To be a world class team developing advantages for our customers."

At Micron, we are investing time, talent and resources to bring you the finest DRAMs, SRAMs, VRAMs and other specialty memory products. We have developed a unique intelligent burn-in system, AMBYX[®], which evaluates and reports the quality level of each and every component we produce. All components shipped have been through the AMBYX burn-in system.

We are dedicated to continuous improvement of all our products and services. This means continual reduction of electrical and mechanical defect levels. It also means the addition of new services such as "just-in-time" delivery and electronic data interchange programs. And when you have a design or application question, you can get the answers you need from one of Micron's applications engineers. They can be reached at (208) 368-3950.

We're proud of our products, our progress and our performance. And we're pleased that you're choosing Micron as your memory supplier.

The Micron Team

ADVANTAGES

Micron Semiconductor brings quality, productivity and innovation together to provide advantages for our customers. Our products feature some of the industry's fastest speeds and smallest die sizes. And we establish delivery standards based on customer expectations, including just in time (JIT) programs, made possible by ever-increasing product reliability.

COMPONENT INTEGRATED CIRCUITS

Micron entered the memory market in 1978, first designing, then manufacturing dynamic random access memory (DRAM). From there, we developed high-performance fast static RAM (SRAM), multiport DRAM (VRAM and triple-port DRAM), and a variety of other memory products.

As we bring progressive memory solutions to our customers, we enjoy recognition for our achievements. Micron's Triple-Port DRAM was the first IC ever to incorporate a second, independent serial access port, allowing unparalleled flexibility in data manipulation. In 1990, Micron's Triple-Port received the 1990 "Product of the Year" award from *Electronic Products* magazine.

SPECIALTY MEMORY PRODUCTS

Beyond our standard component memory, Micron is introducing many revolutionary products that we expect will follow the Micron Triple-Port tradition. Micron continues to forge ahead into new and exciting frontiers.

We are pleased to be first to market with our compact, easy-to-install, 88-pin IC DRAM Card. Ideal for laptop, notebook and other portable systems, Micron's IC DRAM Card offers both high density and low power within JEDEC and JEIDA specifications.*

DIE SALES

In addition to our durable packaging, Micron also provides memory devices in bare die form. These are increasingly in demand for commercial and military use in highly specialized applications. Micron's bare die products are available both in 6" wafers and GEL-PAK^{*}.

CUSTOM MANUFACTURING SERVICES

For complete project management of system-level products, Micron offers value-added services, including turnkey services covering all phases of production, and standard contract manufacturing services such as design, assembly, custom-kitted assembly and comprehensive quality testing or shipping. Our component and systemlevel manufacturing facilities are centrally located in Boise, Idaho, so the component products you need are readily available.

QUALITY

Without a doubt, quality is the most important thing we provide to every Micron customer with each Micron shipment. That's because we believe that quality must be internalized consistently at each level of our company. We provide every Micron team member with the training and motivation needed to make Micron's quality philosophy a reality.

One way we have measurably improved both productivity and product quality is through our own quality improvement program formed by individuals throughout the company. Micron quality teams get together to address a wide range of issues within their areas. We consistently and regularly perform a company-wide selfassessment based on the Malcolm Baldrige National Quality Award criteria. We've also implemented statistical process controls to evaluate every facet of the memory design, fabrication, assembly and shipping process. And our AMBYX[®] intelligent burn-in and test system^{**} gives Micron a unique edge in product reliability.

*See NOTE, page v. **For more information on AMBYX®, see Section 6.

ABOUT THIS BOOK

CONTENT

The 1993 Specialty DRAM Data Book from Micron Semiconductor provides complete specifications on specialty and derivative products based on our DRAM production process. These products include our Wide DRAMs, Video RAMs (VRAMs), Triple-Port DRAMs, and VRAM Modules.

The Specialty DRAM Data Book is one of three product data books Micron currently publishes. Its two companion volumes, currently available, include our SRAM Data Book and DRAM Data Book.

SECTION ORGANIZATION

Micron's 1993 *Specialty DRAM Data Book* contains a detailed Table of Contents with sequential and numerical indexes of products as well as a complete product selection guide. The *Data Book* is organized into eight sections:

- Sections 1–4: Individual product families. Each contains a product selection guide followed by data sheets.
- Section 5: Application/Technical notes.
- Section 6: Summary of Micron's unique quality and reliability programs and testing operation, including our AMBYX*intelligent burn-in and test system.*
- Section 7: Packaging information.
- Section 8: Sales information, including a list of sales representatives and distributors worldwide.

DATA SHEET SEQUENCE

Data sheets in this book are ordered first by width and second by depth. For example, the VRAM section begins with the $256K \times 4$ followed by $128K \times 8$ and all other x8 configurations in order of ascending depth. Next come the x16 products.

DATA SHEET DESIGNATIONS

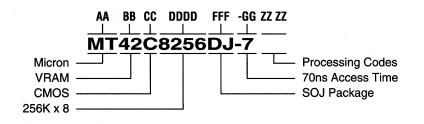
As detailed in the table below, each Micron product data sheet is classified as either Advance, Preliminary or Production. In addition, new product data sheets that are new additions are designated with a "New" indicator in the tab area of each page.

SURVEY

We have included a removable, postage-paid survey form in the front of this book. Your time in completing and returning this survey will enhance our efforts to continually improve our product literature for you.

For more information on Micron product literature, or to order additional copies of this publication, contact

Micron Semiconductor, Inc. 2805 East Columbia Road Boise, ID 83706 Phone: (208) 368-3900 Fax: (208) 368-4431 Customer Comment Line: 800-932-4992 (U.S.A.) 01-208-368-3410 (Intl.)


DATA SHEET MARKING	DEFINITION
Advance	This data sheet contains initial descriptions of products still under development.
Preliminary	This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.
No Marking (Production)	This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. These specifications are subject to change, as further product development and data characterization sometimes occur.
New	This data sheet (which may be either Advance, Preliminary or Production) is a new addition since the data book's last printing.

DATA SHEET DESIGNATIONS

NOTE: Micron's Data Books use acronyms to refer to certain industry-standard-setting bodies. These are defined below: EIA/JEDEC—Electronics Industry Association/Joint Electron Device Engineering Council JEIDA—Japanese Electronics Industry Development Association PCMCIA—Personal Computer Memory Card International Association

*Micron's detailed Quality/Reliability Handbook is available by calling (208) 368-3900.

EXPANDED COMPONENT NUMBERING SYSTEM

AA - PRODUCT LINE IDENTIFIER

MICRON

Component Product	MT
-------------------	----

BB - PRODUCT FAMILY

DRAM	4
VRAM	
TPDRAM	
SRAM	
FIFO	
Cache Data SRAM	
Synchronous SRAM	
-,	

CC – PROCESS TECHNOLOGY

CMOS	C
Low-Voltage CMOS	LC

DDDD - DEVICE NUMBER

(Can be modified to indicate variations)

DRAM	Width, Density
VRAM	Width, Density
TPDRAM	Width, Density
SRAM	Total Bits, Width
CACHE	Density, Width
Latched SRAM	Total Bits, Width
FIFO	Width, Total Bits
Synchronous SRAM	Density, Width

E – DEVICE VERSIONS

(Alphabetic characters only; located between D and F when required)

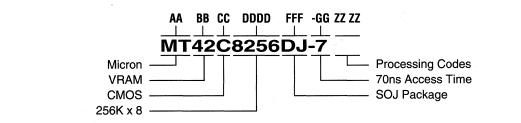
JEDEC Test Mode (4 Meg DRAM)	J
Errata on Base Part	Q

FFF – PACKAGE CODES

PLASTIC

DIP	 	Blank
DIP (Wide Body)	 	W
ZIP		Z
LCC		
SOP/SOIC		

FFF – PACKAGE CODES (continued)


QFP	LG
TSOP (Type II)	TG
TSOP (Reversed)	RG
TSOP (Longer)	TL
SOJ	DJ
SOJ (Skinny)	SJ
	DR
SOJ (Longer)	DL
DIE	
	XDC
	XWC
Military Die	XD
Military Wafer	XW
Ceramic	
DIP	C
DIP (Narrow Body)	CN
DIP (Wide Body)	CW
	EC
	ECN
	ECW
	CG
	DCJ
	CA
FLAT PACK	F

GG – ACCESS TIME

-5		5ns or 50ns
-6		6ns or 60ns
-7	· · · · · · · · · · · · · · · · · · ·	7ns or 70ns
-10	de la constante	10ns or 100ns
-12		12ns or 120ns
-15		15ns or 150ns
-17		
-20		
-35	n de la constante de la general de la constante de la constante de la constante de la constante de la constant Constante de la constante de la	
-45		
-50	(SRAM only)	50ns

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

GG - ACCESS TIME (continued)

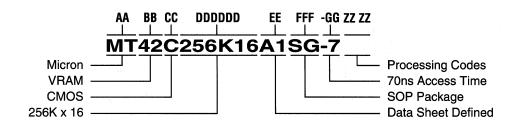
-53		53ns
-55		55ns
-70	(SRAM only)	70ns

ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as: V $\,$ L $\,$ IT


Interim		1
Low Voltage		V
DRAMS		
Low Power (Extended Refresh)		L
Low Voltage, Low Power (Extended Refre	esh)V	L
Low Power (SELF REFRESH)		S
Low Voltage, Low Power (SELF REFRESH	H)V	S
SRAMS		
Low Volt Data Retention		L
Low Power		
Low Power, Low Volt Data Retention	L	Р
Low Voltage, Low Power		

ZZ ZZ - PROCESSING CODES (continued)

Low Voltage, Low Volt Data Retention	VL
Low Voltage, Low Volt Data Retention,	
Low Power	VB
EPI Wafer	E
Commercial Testing	
0°C to +70°C	
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	XT
MIL-STD-883C Testing	
-55°C to +125°C	883C
-55°C to +110°C (DRAMs)	883C
0°C to +70°C	M070
Special Processing	
Engineering Sample	ES
Mechanical Sample	
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	BC

* Used in device order codes; this code is not marked on device.

AA – PRODUCT LINE IDENTIFIER

Component Product MT

BB – PRODUCT FAMILY

DRAM	4
VRAM	
TPDRAM	
Synchronous DRAM	
SRAM	5
FIFO	
Latched SRAM	
Synchronous SRAM	58

CC – PROCESS TECHNOLOGY

CMOS	 	C
Low Voltage CMOS	 	LC

DDDDDD - DEVICE NUMBER

Depth, Width

Example: 1M16 = 1 Megabit deep by 16 bits wide = 16 Megabits of total memory No. 1 - March

No Letter	Bits
К	Kilobits
М	Megabits
G	Gigabits

EE – DEVICE VERSIONS

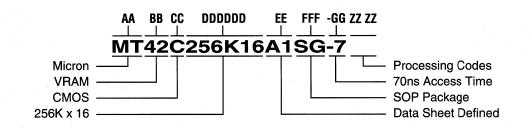
(The first character is an alphabetic character only; the second character is a numeric character only.) Specified by individual data sheet

FFF – PACKAGE CODES

Plastic

DIP	Blank
DIP (Wide Body)	
ZIP	
LCC	EJ
SOP/SOIC	SG

FFF – PACKAGE CODES (continued)


QFP	LG
TSOP (Type II)	TG
TSOP (Reversed)	
TSOP (Longer)	TL
SOJ	DJ
SOJ (Skinny) SOJ (Reversed)	SJ
SOJ (Reversed)	DR
SOJ (Longer)	DL
DIE	
Die	XDC
Wafer	
Military Die	
Military Wafer	
CEDAMIC	
DIP	C C
DIP (Narrow Body)	
DIP (Wide Body)	
LCC (Narrow Body)	
LCC (Narrow Body)	
LCC (Wide Body)	ECW
SOP/SOIC	
SOJ	
PGA	
FUA FLAT PACK	
	Г

GG – ACCESS TIME

-5	5ns or 50ns
-6	6ns or 60ns
-7	7ns or 70ns
-8	8ns or 80ns
-10	10ns or 100ns
-12	12ns or 120ns
-15	
-17	17ns
-20	
-25	
-35	35ns

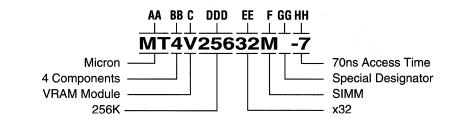
NEW COMPONENT NUMBERING SYSTEM (continued)

GG – ACCESS TIME (continued)

-45	 	45ns
-50 (SRAM only)		50ns
-53		
-55		
-70 (SRAM only)		

ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)


Example:

A DRAM supporting low power, extended refresh (L); low vo (V) and the industrial temperature range (IT) would be indica V L IT	
Interim	1
Low Voltage	V
DRAMs	
Low Power (Extended Refresh)	L
Low Voltage, Low Power (Extended Refresh)	VL
Low Power (SELF REFRESH)	S
Low Voltage, Low Power (SELF REFRESH)	VS
SRAMs	
Low Volt Data Retention	L
Low Power	P

ZZ ZZ – PROCESSING CODES (continued)

Low Power, Low Volt Data Retention	LP
Low Voltage, Low Power	VP
Low Voltage, Low Volt Data Retention	VL
Low Voltage, Low Volt Data Retention,	
Low Power	VB
Low Power EPI Wafer	E
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	
MIL-STD-883C Testing	
-55°C to +125°C	8830
-55°C to +110°C (DRAMs)	8830
0°C to +70°C	M070
Special Processing	101070
Engineering Sample	FS
Mechanical Sample Sample Kit*	IVIO CV
Salliple NIL	
Tape-and-Reel*	IN
Bar Code*	
* Used in device order codes; this code is not marked on dev	vice.

MODULE NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

MICRON

Micron Technology Component Product	onent ProductMT
-------------------------------------	-----------------

BB – NUMBER OF MEMORY COMPONENTS

C – RAM FAMILY

SRAMS
DRAMD
VRAMV

DDD – DEPTH

EE – WIDTH

F – PACKAGE CODE

DIP	D
Gold Plate	G
ZIP	
SIP	N
SIMM	M

GG – SPECIAL DESIGNATOR

Low Power	·
-----------	---

HH - ACCESS TIME

-10	
-15	
-20	20ns
-25	25ns
-30	
-35	35ns
-45	45ns
-6	60ns
-7	
-8	

PREFACE TABLE OF CONTENTS

PAGE

WIDE DRAMS

MT4C8512512K x 8 MT4C8512 S512K x 8 MT4C16257256K x 16 MT4C16257 S256K x 16 MT4C16258 S 256K x 16 MT4C16270256K x 16 MT4C16271256K x 16 MT4C16260256K x 16 MT4C16261256K x 16 FAST-PAGE-MODE FP Low Power, Extended Refresh LP. DW Dual WE S EDO Extended Data-Out

VRAMS

MT42C4256	256K x 4
MT42C8128	
MT42C8254	
MT42C8255	
MT42C8256	
MT42C8257	
MT42C256K16A1	
MT42C256K16C1	
MT42C256K16C2	
FP DW	

FP..... 1-1 FP, WPB 1-1 FP, LP 1-17 FP, WPB, LP 1-17 FP, LP, S..... 1-33 FP, WPB, LP, S 1-33 FP. DW 1-51 FP, DC 1-51 FP, DW, WPB..... 1-51 FP, DC, WPB 1-51 FP, DW, LP..... 1-73 FP, DC, LP 1-73 FP, DW, WPB, LP 1-73 FP, DC, WPB, LP 1-73 FP, DW, LP, S..... 1-95 FP, DC, LP, S..... 1-95 FP, DW, WPB, LP, S..... 1-95 FP, DC, WPB, LP, S 1-95 EDO, DC 1-119 EDO, DC, WPB 1-119 FP, ASY, DW 1-137 FP, WPB, ASY 1-137 SC STATIC-COLUMN

SC......STATIC-COLUMN WPB.....WRITE-PER-BIT DC.....Dual CAS 4KR......4,096-Row Refresh ASY.....Asymmetrical Addressing

PAGE

FP	2-1
FP	2-37
FP, DW	2-75
FP	2-107
FP, EDO	2-139
FP	2-181
FP, EDO, DW	2-221
FP, DW	2-265
FP, DC	2-267
DCExtended	

TRIPLE-PORT DRAMS

MICHON

MT43C4257	256K x 4
MT43C4258	
MT43C4257A	256K x 4
MT43C4258A	256K x 4
MT43C8128	
MT43C8129	
MT43C8128A	
MT43C8129A	
MT43C256K8A1	
FP	FAST-PAGE-MODE

VRAM MODULES

MT4V25632	
FP	FAST-PAGE-MODE

APPLICATION/TECHNICAL NOTES

PRODUCT RELIABILITY

Overview	6-1
Process Flow Chart	6-9

PACKAGE INFORMATION

Index	 	 	 7-1
Package Drawings	 	 	 7-2

FP, BW, QSF pin 3-1 FP, BW, SSF pin 3-1 FP, BW, QSF pin 3-3 FP, BW, SSF pin 3-3 FP, BW, QSF pin 3-49 FP, BW, SSF pin 3-49 FP, BW, QSF pin 3-51 FP, BW, SSF pin 3-51 FP, BW 3-97 BWBLOCK WRITE

PAGE FP, BW 4-1

BW BLOCK WRITE

PAGE

PAGE

PAGE

PAGE

PREFACE TABLE OF CONTENTS

PREFACE TABLE OF CONTENTS

SALES INFORMATION

PAGE

Customer Service Notes	8-1
Product Numbering System	8-5
Ordering Information and Examples	8-11
North American Sales Representatives and Distributors	8-12
International Sales Representatives and Distributors	8-24

PREFACE TABLE OF CONTENTS

Part #, MT:

42C256K16A1VRAM	
42C256K16C1VRAM	
42C256K16C2VRAM	
42C4256VRAM	
42C8128 VRAM	
42C8254 VRAM	
42C8255 VRAM	
42C8256 VRAM	
42C8257 VRAM	
43C256K8A1 TRIPLE-PORT DRAM	
43C4257 TRIPLE-PORT DRAM	
43C4257A TRIPLE-PORT DRAM	
43C4258 TRIPLE-PORT DRAM	
43C4258A TRIPLE-PORT DRAM	
43C8128 TRIPLE-PORT DRAM	
43C8128A TRIPLE-PORT DRAM	
43C8129 TRIPLE-PORT DRAM	
43C8129A TRIPLE-PORT DRAM	
4C16256 WIDE DRAM	
4C16256 L WIDE DRAM	
4C16256 S WIDE DRAM	
4C16257 WIDE DRAM	
4C16257 L WIDE DRAM	
4C16257 S WIDE DRAM	
4C16258 WIDE DRAM	
4C16258 L WIDE DRAM	
4C16258 S WIDE DRAM	
4C16259 WIDE DRAM	
4C16259 L WIDE DRAM	
4C16259 S WIDE DRAM	
4C16260 WIDE DRAM	
4C16261 WIDE DRAM	
4C16270 WIDE DRAM	
4C16271 WIDE DRAM	
4C8512 WIDE DRAM	
4C8512 L WIDE DRAM	
4C8512 S WIDE DRAM	

	2-221
	2-265
· · · · · · · · · · · · · · · · · · ·	2-267
· · · · · · · · · · · · · · · · · · ·	2-1
	2-37
	2-75
	2-107
	2-139
	2-181
	3-97
	3-1
	3-3
	3-1
	3-3
	3-49
	3-51
	3-49
	3-51
	1-51
	1-73
	1-95
	1-51
	1-73
	1-95
	1-51
	1-73
	1-95
	1-51
	1-73
· · · · · · · · · · · · · · · · · · ·	1-95
	1-137
	1-137
······································	1-119
	1-119
	1-1
	1-17
	1-33

MCRON

PREFACE TABLE OF CONTENTS

NUMERICAL INDEX (continued)

PAGE

Part #, MT:

4C8513	WIDE DRAM	1-1	
4C8513 L	WIDE DRAM	1-17	
4C8513 S	WIDE DRAM	1-33	
4V25632	VRAM MODULE	4-1	

PREFACE PRODUCT SELECTION

RON

Memory	Access	Part	Access	Typical Pow	er Dissipation	Package/Number of Pins			
Configuration	Cycle	Number*	Time (ns)	Standby	Active	ZIP	SOJ	TSOP	Page
512K x 8	FP	MT4C8512	60, 70, 80	3mW	350mW	28	28	28	1-1
512K x 8	FP, WPB	MT4C8513	60, 70, 80	3mW	350mW	28	28	28	1-1
512K x 8	FP, LP	MT4C8512 L	60, 70, 80	1mW	350mW	28	28	28	1-17
512K x 8	FP, WPB, LP	MT4C8513 L	60, 70, 80	1mW	350mW	28	28	28	1-17
512K x 8	FP, LP, S	MT4C8512 S	70, 80	1mW	350mW	28	28	28	1-33
512K x 8	FP, WPB, LP, S	MT4C8513 S	70, 80	1mW	350mW	28	28	28	1-33
256K x 16	FP, DW	MT4C16256	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DC	MT4C16257	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DW, WPB	MT4C16258	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DC, WPB	MT4C16259	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DW, LP	MT4C16256 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DC, LP	MT4C16257 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DW, WPB, LP	MT4C16258 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DC, WPB, LP	MT4C16259 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DW, LP, S	MT4C16256 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DC, LP, S	MT4C16257 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DW, WPB, LP, S	MT4C16258 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DC, WPB, LP, S	MT4C16259 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	EDO, DC	MT4C16270	70, 80	3mW	500mW	40	40	40/44	1-119
256K x 16	EDO, DC, WPB	MT4C16271	70, 80	3mW	500mW	40	40	40/44	1-119
256K x 16	FP, ASY, DW	MT4C16260	70, 80	1mW	500mW	40	40	40/44	1-137
256K x 16	FP, WPB, ASY	MT4C16261	70, 80	1mW	500mW	40	40	40/44	1-137

FP = FAST-PAGE-MODE, SC = STATIC-COLUMN, LP = Low Power, Extended Refresh; WPB = WRITE-PER-BIT, EDO = Extended Data-Out, DW = Dual WE, DC = Dual CAS, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, S = Self Refresh, ASY = Asymmetrical Addressing *(L)C means device is available in both 5V Vcc (MT4CXXXXX) and 3/3.3V Vcc (MT4LCXXXXX) versions

VRAM PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Typical Power Dissipation Package/Number of Pins			ins			
Configuration	Cycle	Number	Time (ns)	Standby	Active	SOJ	SOP	TSOP	ZIP	Page
256K x 4	FP	MT42C4256	60, 70, 80	15mW	275mW	28	-	-	28	2-1
128K x 8	FP	MT42C8128	60, 70, 80	15mW	275mW	40	-	-	-	2-37
256K x 8	FP, DW	MT42C8254	70, 80	10mW	300mW	40	-	40/44	-	2-75
256K x 8	FP	MT42C8255	70, 80	10mW	300mW	40	-	40/44	-	2-107
256K x 8	FP, EDO	MT42C8256	60, 70, 80	10mW	300mW	40	-	40/44	-	2-139
256K x 8	FP	MT42C8257	60, 70, 80	10mW	300mW	40	-	40/44	-	2-181
256K x 16	FP, EDO, DW	MT42C256K16A1	60, 70, 80	TBD	TBD	-	64	70	-	2-221
256K x 16	FP, DW	MT42C256K16C1	60, 70, 80	TBD	TBD	-	64	70		2-265
256K x 16	FP, DC	MT42C256K16C2	60, 70, 80	TBD	TBD	-	64	70	-	2-267

FP = FAST-PAGE-MODE, EDO = Extended Data-Out, DW = Dual WE, DC = Dual CAS

TRIPLE-PORT DRAM PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Power Di	Power Dissipation		age/Nu	mber of	Pins	
Configuration	Cycle	Number	Time (ns)	Standby	Active	SOJ	SOG	TSOP	PLCC	Page
256K x 4	FP, BW, QSF pin	MT43C4257	80, 100	15mW	500mW	40	-	40/44	-	3-1
256K x 4	FP, BW, SSF pin	MT43C4258	80, 100	15mW	500mW	40	· -	40/44	-	3-1
256K x 4	FP, BW, QSF pin	MT43C4257A	70, 80	15mW	500mW	40	· -	40/44	-	3-3
256K x 4	FP, BW, SSF pin	MT43C4258A	70, 80	15mW	500mW	40	-	40/44	-	3-3
128K x 8	FP, BW, QSF pin	MT43C8128	80, 100	15mW	550mW	· · ·	-	-	52	3-49
128K x 8	FP, BW, SSF pin	MT43C8129	80, 100	15mW	550mW	· ·	-	-	52	3-49
128K x 8	FP, BW, QSF pin	MT43C8128A	70, 80	15mW	550mW	-	-	-	52	3-51
128K x 8	FP, BW, SSF pin	MT43C8129A	70, 80	15mW	550mW	· - ·		-	52	3-51
256K x 8	FP, BW	MT43C256K8A1	60, 70, 80	15mW	400mW	-	64	-	- 1	3-97

FP = FAST-PAGE-MODE, BW = BLOCK WRITE

VRAM MODULE PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Power Dissipation		Package/Number of Pins	
Configuration	Cycle	Number	Time (ns)	Standby	Active	SIMM	Page
256K x 32	FP, BW	MT4V25632	70, 80	40mW	1,200mW	104	4-1

FP = FAST-PAGE-MODE, BW = BLOCK WRITE

APPLICATION/TECHNICAL NOTE PRODUCT SELECTION GUIDE

Technical Note	Title	Page
TN-00-01	Moisture Absorption in Plastic Packages	5-1
TN-00-02	Tape-and-Reel Procedures	5-3
TN-04-21	Reduce DRAM Cycle Times with Extended Data-Out	5-9
TN-42-01	Upgrading from 1 Meg to 2 Meg VRAMs	5-17
TN-42-02	Designing with the MT42C4256/8128 VRAM	5-25
TN-42-03	Regular, Real-Time and SPLIT READ TRANSFERs	5-35
TN-42-04	Bank Interleaving with Extended Data-Out VRAMs	5-39
TN-42-05	Four-Column vs Eight-Column BLOCK WRITE	5-43
TN-43-01	MT43C4257/8 Comparison	5-51
AN-43-01	Accelerate Common GUI Operations with a TPDRAM-Based Frame Buffer	5-53
AN-43-02	Use of TPDRAM for Smarter/Faster Network Applications	5-63

WIDE DRAMs	1
VRAMs	2
TRIPLE-PORT DRAMs	3
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

MICRON

WIDE DRAM PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Typical Pow	er Dissipation	Packag	e/Numbe	r of Pins	
Configuration	Cycle	Number*	Time (ns)	Standby	Active	ZIP	SOJ	TSOP	Page
512K x 8	FP	MT4C8512	60, 70, 80	3mW	350mW	28	28	28	1-1
512K x 8	FP, WPB	MT4C8513	60, 70, 80	3mW	350mW	28	28	28	1-1
512K x 8	FP, LP	MT4C8512 L	60, 70, 80	1mW	350mW	28	28	28	1-17
512K x 8	FP, WPB, LP	MT4C8513 L	60, 70, 80	1mW	350mW	28	28	28	1-17
512K x 8	FP, LP, S	MT4C8512 S	70, 80	1mW	350mW	28	28	28	1-33
512K x 8	FP, WPB, LP, S	MT4C8513 S	70, 80	1mW	350mW	28	28	28	1-33
256K x 16	FP, DW	MT4C16256	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DC	MT4C16257	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DW, WPB	MT4C16258	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DC, WPB	MT4C16259	60, 70, 80	3mW	500mW	40	40	40/44	1-51
256K x 16	FP, DW, LP	MT4C16256 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DC, LP	MT4C16257 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DW, WPB, LP	MT4C16258 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DC, WPB, LP	MT4C16259 L	60, 70, 80	1mW	500mW	40	40	40/44	1-73
256K x 16	FP, DW, LP, S	MT4C16256 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DC, LP, S	MT4C16257 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DW, WPB, LP, S	MT4C16258 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	FP, DC, WPB, LP, S	MT4C16259 S	60, 70, 80	1mW	500mW	40	40	40/44	1-95
256K x 16	EDO, DC	MT4C16270	70, 80	3mW	500mW	40	40	40/44	1-119
256K x 16	EDO, DC, WPB	MT4C16271	70, 80	3mW	500mW	40	40	40/44	1-119
256K x 16	FP, ASY, DW	MT4C16260	70, 80	1mW	500mW	40	40	40/44	1-137
256K x 16	FP, WPB, ASY	MT4C16261	70, 80	1mW	500mW	40	40	40/44	1-137

FP = FAST-PAGE-MODE, SC = STATIC-COLUMN, LP = Low Power, Extended Refresh; WPB = WRITE-PER-BIT, EDO = Extended Data-Out, DW = Dual WE, DC = Dual CAS, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, S = Self Refresh, ASY = Asymmetrical Addressing *(L)C means device is available in both 5V Vcc (MT4CXXXXX) and 3/3.3V Vcc (MT4LCXXXXX) versions

WIDE DRAM

MT4C8512/3

512K x 8 WIDE DRAM

WIDE DRAM

512K x 8 DRAM

FAST-PAGE-MODE

FEATURES

- Industry-standard x8 pinouts, timing, functions and packages
- Address entry: ten row-addresses, nine columnaddresses
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply
- Low power, 3mW standby; 350mW active, typical
- All device pins are TTL-compatible
- 1,024-cycle refresh in 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Optional FAST-PAGE-MODE access cycle
- NONPERSISTENT MASKED WRITE access cycle (MT4C8513 only)

OPTIONS	MARKING
 Timing 	
60ns access	-6*
70ns access	-7
80ns access	-8
 MASKED WRITE 	
Not available	8512
Available	8513
Packages	
Plastic SOI (400 mil)	DI
Plastic TSOP (400 mil)	TG
· · · · · ·	7
Plastic ZIP (375 mil)	L

Part Number Example: MT4C8512TG-7

*60ns specifications are limited to a Vcc range of ±5%.

GENERAL DESCRIPTION

The MT4C8512/3 are randomly accessed solid-state memories containing 4,194,304 bits organized in a x8 configuration. Each byte is uniquely addressed through the 19 address bits during READ or WRITE cycles. The address is entered first by \overline{RAS} latching 10 bits (A0-A9) and then \overline{CAS} latching 9 bits (A0-A8).

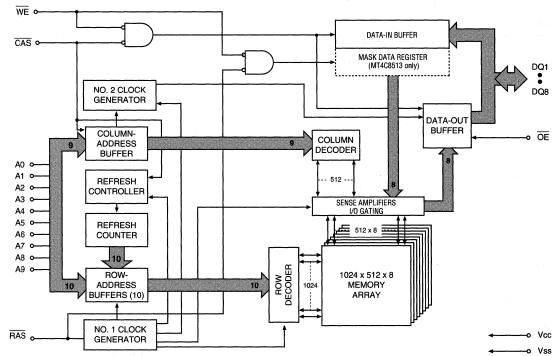
The MT4C8513 has NONPERSISTENT MASKED WRITE allowing it to perform WRITE-PER-BIT accesses.

FIN ASSI		rop	view)	
28-Pin SC (SDB-1))J		-Pin ZIP SDA-1)	
Vcc [1 DQ1 [2 DQ2 [3 DQ3 [4 DQ4 [5 NC [6 WE [7 RAS [8 A9 [9 A0 [10 A1 [11 A2 [12 A3 [13 Vcc [14	28 Vss 27 DQ8 26 DQ7 25 DQ6 24 DQ5 23 CAS 22 OE 21 NC 20 A8 19 A7 18 A6 17 A5 16 A4 15 Vss	OE DQ5 DQ7 Vss DQ1 DQ3 NC RAS A0 A2 Vcc A4 A6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$
		A8	27	IC

PIN ASSIGNMENT (Ton View)

28-Pin TSOP (SDE-1)

Н	1		28		Vss
Щ	2		27	þ	DQ8
Ш	3		26	þ	DQ7
Ш	4		25	þ	DQ6
Ξ	5		24	Þ	DQ5
Ш	6		23		CAS
Ш	7		22		OE
Щ	8		21		NC
Ш	9		20		A8
Щ	10		19		A7
Ш	11		18		A6
Ē	12		17	bo i	A5
Ē	13		16		A4
T	14		15	þ.	Vss
	<u>В В В В В В В В В В В В В В В В В В В </u>	H 2 H 3 H 5 H 5 H 6 H 7 H 8 H 10 H 12 H 13	1 2 1 3 1 4 5 6 1 7 10 11 12 13	L 2 27 L 3 26 L 4 25 5 24 G 23 T 22 B 21 9 20 10 19 11 18 12 17 L 13 16	L 2 27 II L 3 26 II L 4 25 II L 5 24 II L 6 23 II L 7 22 II L 8 21 II L 9 20 II L 10 19 II L 11 18 II L 12 17 II L 13 16 II


MT4C8512/3 REV. 3/93

RON

FUNCTIONAL BLOCK DIAGRAM

MT4C8512/3 512K x 8 WIDE DRAM

PIN DESCRIPTIONS

SOJ/TSOP Pin Numbers	ZIP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION		
8	15	15 RAS Input Row-Address Strobe: RAS is used to clock-ir address bits and strobe the WE and DQs in t WRITE mode (MT4C8513 only).				
23	2	CAS	Input	Column-Address Strobe: CAS is used to clock-in the 9 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles.		
7	14	WE	Input	Write Enable: \overline{WE} is used to select a READ (\overline{WE} = HIGH) or WRITE (\overline{WE} = LOW) cycle. \overline{WE} also serves as a mask enable (\overline{WE} = LOW) at the falling edge of \overline{RAS} in a MASKED WRITE cycle (MT4C8513).		
22		ŌĒ	Input	Output Enable: \overline{OE} enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and \overline{WE} must be HIGH before \overline{OE} will control the output buffers. Otherwise, the output buffers are in a High-Z state.		
10-13, 16-20, 9	17, 18, 19, 20, 23, 24, 25, 26, 27, 16	A0-A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one byte out of the 512K available words.		
2-5, 24-27	9, 10, 11, 12, 3, 4, 5, 6	DQ1-DQ8	Input	Data I/O: Includes inputs, outputs or High-Z and/or output masked data input (for MASKED WRITE cycle only).		
6, 21	13, 28	NC		No Connect: These pins should be either left unconnected or tied to ground.		
1, 14	8, 21	Vcc	Supply	Power Supply: +5V ±10%		
15, 28	7, 22	Vss	Supply	Ground		

MT4C8512/3

512K x 8 WIDE DRAM

WIDE

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 19 address bits during READ or WRITE cycles. First, \overline{RAS} is used to latch 10 bits (A0-A9) then, \overline{CAS} latches 9 bits (A0-A8).

The \overline{CAS} control also determines whether the cycle will be a refresh cycle (RAS-ONLY) or an active cycle (READ, WRITE or READ-WRITE) once \overline{RAS} goes LOW.

READ or WRITE cycles are selected by WE. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as CAS and OE remain LOW (regardless of WE or RAS). This late WE pulse results in a READ-WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common I/O and pin direction is controlled by \overline{OE} and \overline{WE} .

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} REFRESH cycle (\overline{RAS} -ONLY, CBR, or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

MASKED WRITE ACCESS CYCLE (MT4C8513 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when \overline{WE} is LOW at \overline{RAS} time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ8 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

In NONPERSISTANT MASKED WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 1 illustrates the MT4C8513 MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

MT4C8512/3 512K x 8 WIDE DRAM

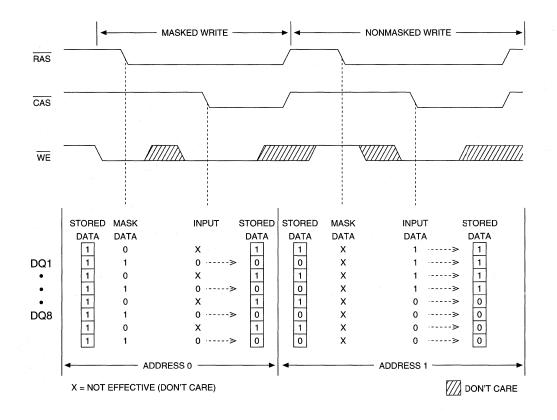


Figure 1 MT4C8513 MASKED WRITE EXAMPLE

MT4C8512/3 512K x 8 WIDE DRAM

TRUTH TABLE

						ADDRE	SSES		
FUNCTION		RAS	CAS	WE	ŌE	^t R	tC	DQs	NOTES
Standby		Н	H→X	Х	Х	X	X	High-Z	
READ		L	L	Н	L	ROW	COL	Data-Out	
EARLY-WRITE		L	L	L	X	ROW	COL	Data-In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
FAST-PAGE-	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out	
MODE READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out	
FAST-PAGE-	1st Cycle	L	H→L	L	X	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H→L	L	X	n/a	COL	Data-In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In	1, 2
RAS-ONLY REFRES	RAS-ONLY REFRESH		Н	Х	X	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	Х	X	X	X	High-Z	

NOTE: 1. Data-in will be dependent on the mask provided (MT4C8513 only). Refer to Figure 1. 2. EARLY WRITE only.

Π

ORAM

MT4C8512/3 512K x 8 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	¹ 1 : ,
Input High (Logic 1) Voltage, all inputs	Ин	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (lout = 4.2mA)	Vol		0.4	v	

			MAX		·	
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: TTL ($\overline{RAS} = \overline{CAS} = V_{H}$)	ICC1	2	2	2	mA	
STANDBY CURRENT: CMOS ($\overline{RAS} = \overline{CAS} = Vcc - 0.2V$)	ICC2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	120	110	100	mA	3, 4, 30
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	100	90	80	mA	3, 4, 30
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	ICC5	120	110	100	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	110	100	90	mA	3

**60ns specifications may be limited to a Vcc range of ±5%.

CAPACITANCE

PARAMETER		SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	i.	Ci1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE		CI2	7	pF	2
Input/Output Capacitance: DQ		Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±10%)

AC CHARACTERISTICS		-6*		-7			-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-WRITE cycle time	^t RWC	150		175		195		ns	1993) 1993
FAST-PAGE-MODE READ or WRITE	^t PC	35		40		45		ns	
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	85		95		100		ns	
cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Output Enable time	^t OE		15		20		20	ns	
Access time from column-address	^t AA		30		35	· .	40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	1898 - M.
RAS hold time	^t RSH	15		20		20		ns	
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	1
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST-PAGE-MODE)	^t CP	10		10		10	1.1.1	ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	10		10		10	4	ns	i sa s
Row-address setup time	^t ASR	0		0		0		ns	1997 - 19
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column-	^t RAD	15	30	15	35	15	40	ns	18
address delay time			a ser en el		aby Sal				
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	10		15		15		ns	
Column-address hold time	^t AR	50		55		60		ns	
(referenced to RAS)									
Column-address to	^t RAL	30		35		40		ns	
RAS lead time	18								
Read command setup time	^t RCS	0		0		0		ns	26
Read command hold time	^t RCH	0		0		0		ns	19, 26
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)	1.1							1.15	
CAS to output in Low-Z	^t CLZ	3		3		3	a second and	ns	31

*60ns specifications may be limited to a Vcc range of \pm 5%.

MT4C8512/3 512K x 8 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±10%)

AC CHARACTERISTICS		-6*		-7		-8		1.1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 29, 31
Output disable time	tOD	3	15	3	15	3	15	ns	29, 31
Write command setup time	tWCS	0		0		0		ns	21, 26
Write command hold time	tWCH	10		10		10		ns	26
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	26
Write command pulse width	tWP	10		10		10		ns	26
Write command to RAS lead time	^t RWL	15		20		20		ns	26
Write command to CAS lead time	^t CWL	15		20		20		ns	26
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	tRWD	85		95		105		ns	21
Column-address to WE delay time	^t AWD	55		60		65		ns	21
CAS to WE delay time	^t CWD	40		45		45		ns	21
Transition time (rise or fall)	۲	3	50	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	^t REF		16		16		16	ms	i da la como
RAS to CAS precharge time	^t RPC	0		0	1	0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10	e de la compañía de l Terreter de la compañía	ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26
WE hold time to RAS (MASKED WRITE	^t WRH	10		15		15		ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	28
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		0		ns	

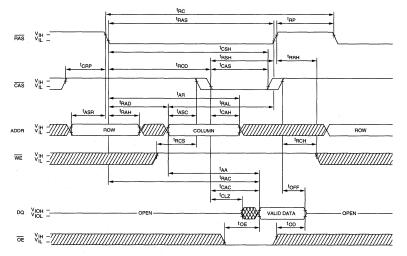
*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C8512/3

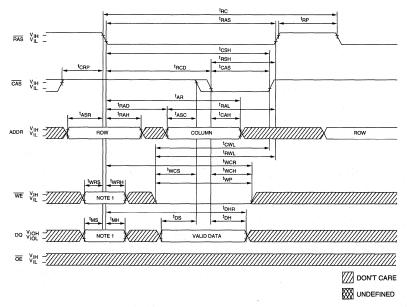
512K x 8 WIDE DRAM

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS -ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, VOH = 2.0V and VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRĆH or ^tRRH must be satisfied for a READ cycle.

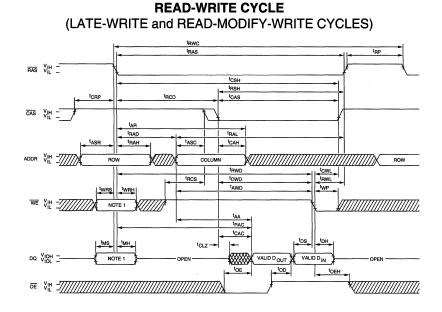

- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit conzdition; it is not a reference to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case WE = LOW and OE = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as WE going LOW.
- 27. MT4C8513 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 30. Column-address changed once while $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.
- 31. The 3ns minimum is a parameter guaranteed by design.

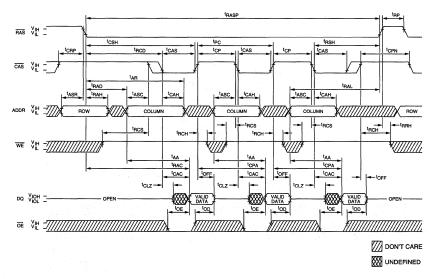
WIDE DRAM



MT4C8512/3 512K x 8 WIDE DRAM

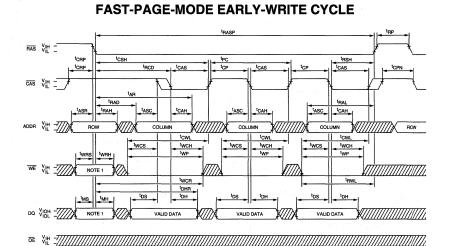
READ CYCLE

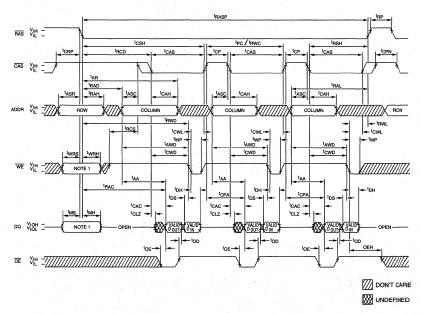

EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

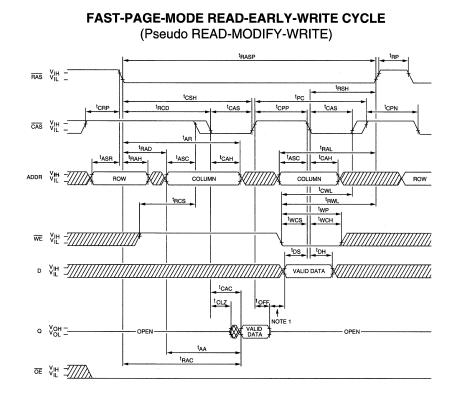
MT4C8512/3 512K x 8 WIDE DRAM

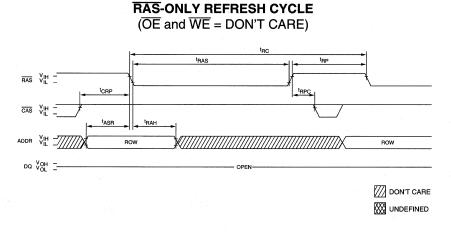
AICRON


FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

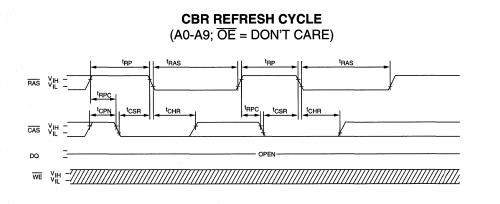
MT4C8512/3 512K x 8 WIDE DRAM


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

MT4C8512/3 512K x 8 WIDE DRAM

NOTE: 1. Do not drive data prior to High-Z; that is completion of ^tOFF. ^tCPP is equal to ^tOFF + ^tDS(MIN) + guardband between data-out and driving new data-in.



WIDE DRAM

MT4C8512/3 REV. 3/93

MT4C8512/3 512K x 8 WIDE DRAM

HIDDEN REFRESH CYCLE 24 $\overline{(WE = HIGH; \overline{OE} = LOW)}$ (READ) (REFRESH) t_{RAS} ^tRAS RAS VIH-^tCHR ^tCRP ^tRCD t_{RSH} CAS VIHt_{AR} t_{RAD} RAL tRAH_ ^tASC ^tCAH tASR. ADDR VIH-ROW COLUMN t_{AA} TRAC tOFF ^tCAC ^tCLZ DQ VIOH -VALID DATA OPEN OPENtop ^tOE tOBD OE DON'T CARE

MT4C8512/3 512K x 8 WIDE DRAM

WIDE DRAM

MT4C8512/3 L 512K x 8 WIDE DRAM

WIDE DRAM

512K x 8 DRAM

LOW POWER, EXTENDED REFRESH

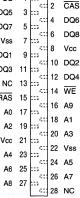
PIN ASSIGNMENT (Top View)

FEATURES

- · Industry-standard x8 pinouts, timing, functions and packages
- Address entry: ten row-addresses, nine columnaddresses
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply
- All device pins are TTL-compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and BATTERY BACKUP (BBU)
- Optional FAST-PAGE-MODE access cycle
- NONPERSISTENT MASKED WRITE access cycle (MT4C8513 only)
- 1,024-cycle refresh distributed accross 128ms
- Low-power, 1mW standby; 350mW active, typical

OPTIONS	MARKING
Timing	
60ns access	-6*
70ns access	-7
80ns access	-8
MASKED WRITE	
Not available	8512 L
Available	8513 L
Packages	
Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TG
Plastic ZIP (375 mil)	Ζ

Part Number Example: MT4C8512DJ-7 L

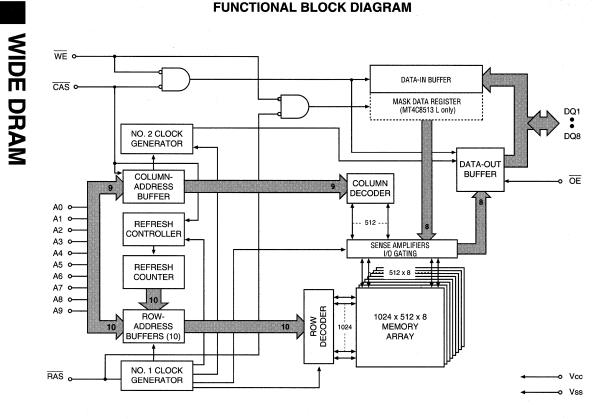

*60ns specifications are limited to a Vcc range of ±5%.

GENERAL DESCRIPTION

The MT4C8512/3 L are randomly accessed solid-state memories containing 4,194,304 bits organized in a x8 configuration. Each byte is uniquely addressed through the 19 address bits during READ or WRITE cycles. The address is entered first by RAS latching 10 bits (A0-A9) and then CAS latching 9 bits (A0-A8).

The MT4C8513 L has NONPERSISTENT MASKED WRITE allowing it to perform WRITE-PER-BIT accesses.

	28-Pin S (SDB-1			8-Pin Z SDA-1		
	<u> </u>					
Vcc [1	28	🛛 Vss	OE	1	C/
DQ1	2	27	DQ8	DQ5	3 4	D
DQ2	3	26		DQ7	5 6	D
DQ3	4	25	DQ6	Vss	7 :::	
DQ4 [5	24	DQ5	DQ1	9 === 8	
NC [6	23		DQ3	11	0 D
WED	7	22	DE	NC	13 ::: 1	2 D(
RAS	8	21		RAS		4 W
A9 🛙	9	20	🛛 A8		15	6 A9
A0 [10	19	🗅 A7	A0	17	8 A1
A1 [11	18	D A6	A2	19 ::::	0 A3
A2 🛛	12	17	🗅 A5	Vcc	21 ::::	
A3 [13	16	D A4	A4	23 23	2 Vs
Vcc [14	15	🛛 Vss	A6	25 24	4 A5
				A8		6 A7


28-Pin TSOP (SDE-1)

	· .			 	÷.,	
Vcc	Ē	1		28	þ	Vss
DQ1		2		27	þ	DQ8
DQ2	며	3		26		DQ7
DQ3	Щ	4		25	þ	DQ6
DQ4	Щ	5		24	þ	DQ5
NC	Щ	6		23	Þ	CAS
WE	Щ	7		22	þ	ŌĒ
RAS	떠	8		21	þ	NC
A9	Щ	9		20	þ	A8
A0	Ē	10		19	þ.	A7
A1	Щ	11		18		A6
A2	Щ	12		17		A5
A3	Ē	13		16	Ē	A4
Vcc	Щ	14		15	þ	Vss
			1.43			

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice @1993, Micron Semiconductor, Inc

MT4C8512/3 L 512K x 8 WIDE DRAM

PIN DESCRIPTIONS

SOJ/TSOP Pin Numbers	ZIP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
8	15	RAS	Input	Row-Address Strobe: \overline{RAS} is used to clock-in the 10 row- address bits and strobe the \overline{WE} and DQs in the MASKED WRITE mode (MT4C8513 L only).
23	2	CAS	Input	Column-address Strobe: CAS is used to clock-in the 9 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles.
7	14	WE	Input	Write Enable: \overline{WE} is used to select a READ (\overline{WE} = HIGH) or WRITE (\overline{WE} = LOW) cycle. \overline{WE} also serves as a mask enable (\overline{WE} = LOW) at the falling edge of \overline{RAS} in a MASKED WRITE cycle (MT4C8513 L).
22	1	ŌĒ	Input	Output Enable: \overline{OE} enables the output buffers when taken LOW during a READ access cycle. RAS and \overline{CAS} must be LOW and \overline{WE} must be HIGH before \overline{OE} will control the output buffers. Otherwise, the output buffers are in a High-Z state.
10-13, 16-20, 9	17, 18, 19, 20, 23, 24, 25, 26, 27, 16	A0-A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one byte out of the 512K available words.
2-5, 24-27	9, 10, 11, 12, 3, 4, 5, 6	DQ1-DQ8	Input	Data I/O: Includes inputs, outputs or High-Z and/or output masked data input (for MASKED WRITE cycle only).
6, 21	13, 28	NC		No Connect: These pins should be either left unconnected or tied to ground.
1, 14	8, 21	Vcc	Supply	Power Supply: +5V ±10%
15, 28	7, 22	Vss	Supply	Ground

MT4C8512/3 L

512K x 8 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 19 address bits during READ or WRITE cycles. First \overline{RAS} is used to latch 10 bits (A0-A9) then, \overline{CAS} latches 9 bits (A0-A8).

The \overline{CAS} control also determines whether the cycle will be a refresh cycle (\overline{RAS} -ONLY) or an active cycle (\overline{READ} , WRITE or READ-WRITE) once \overline{RAS} goes LOW.

READ or WRITE cycles are selected by WE. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as CAS and OE remain LOW (regardless of WE or RAS). This late WE pulse results in a READ-WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common I/O and pin direction is controlled by \overline{OE} and \overline{WE} .

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or RAS REFRESH cycle (\overline{RAS} -ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 128ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BBU MODE is a CBR REFRESH performed at the extended refresh rate with CMOS input levels. This mode provides a very low-current, data-retention cycle. RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

MASKED WRITE ACCESS CYCLE (MT4C8513 L ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\text{WE}}$ at $\overline{\text{RAS}}$ time. A MASKED WRITE is selected when $\overline{\text{WE}}$ is LOW at $\overline{\text{RAS}}$ time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ8 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

In NONPERSISTANT MASKED WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 1 illustrates the MT4C8513 L MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

WIDE DRAM

MT4C8512/3 L 512K x 8 WIDE DRAM

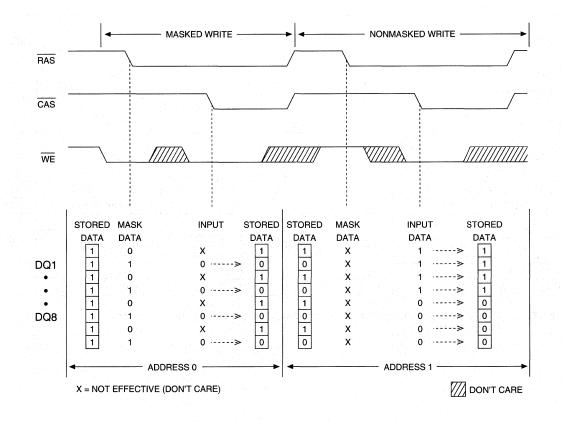


Figure 1 MT4C8513 L MASKED WRITE EXAMPLE

MT4C8512/3 L 512K x 8 WIDE DRAM

TRUTH TABLE

				· · · · · · · · ·		ADDRESSES			
FUNCTION		RAS	CAS	WE	OE	^t R	ťC	DQs	NOTES
Standby		Н	Н→Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	ROW	COL	Data-Out	
EARLY-WRITE		L	L	L	X	ROW	COL	Data-In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
FAST-PAGE-	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out	
MODE READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out	
FAST-PAGE-	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In	1, 2
RAS-ONLY REFRES	H	L	н	Х	Х	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	Х	Х	Х	X	High-Z	
BBU REFRESH		H→L	L	Х	Х	Х	X	High-Z	

NOTE: 1. Data-in will be dependent on the mask provided (MT4C8513 L only). Refer to Figure 1. 2. EARLY-WRITE only.

WIDE DRAM

WIDE DRAM

MT4C8512/3 L 512K x 8 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1V to +7V
Operating Temperature, T _A (ambient)0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (lout = 4.2mA)	Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: TTL (RAS = CAS = VIII)	Icc1	2	2	2	mA	
STANDBY CURRENT: CMOS ($\overline{RAS} = \overline{CAS} = Vcc - 0.2V$)	Icc2	200	200	200	μA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	120	110	100	mA	3, 4, 31
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	100	90	80	mA	3, 4, 31
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = VIH: ¹ RC = ¹ RC [MIN])	Icc5	120	110	100	mA	3, 31
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	110	100	90	mA	3
REFRESH CURRENT: BBU Average power supply current during BBU REFRESH: $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN) to 300ns; \overline{WE} , A0-A9 and DIN = Vcc - 0.2V (DIN may be left open), ${}^{t}RC = 125\mu s$ (1,024 rows at 125 $\mu s = 128m s$)	Icc7	300	300	300	μΑ	3, 5, 30

**60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C8512/3 L 512K x 8 WIDE DRAM

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	CI1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	CI2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

AC CHARACTERISTICS	T T	-6*			-7	-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTE
Random READ or WRITE cycle time	^t RC	110	INIAA	130	IMIAA	150	IMAA	ns	NUTE
READ-WRITE cycle time	^t RWC	150		175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	35	++	40	++	45		ns	
cycle time		00		40		-10		110	
FAST-PAGE-MODE READ-WRITE	^t PRWC	85	+	95		100		ns	
cycle time		00		55		100		115	
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Output Enable time	tOE		15		20		20	ns	
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	-
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	15		20		20		ns	
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST-PAGE-MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	10		10		10		ns	
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column- address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	10		15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		60		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	^t RCS	0		0		0		ns	26
Read command hold time (referenced to CAS)	^t RCH	0		0		0	34 	ns	19, 2
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	3		3		3		ns	32

*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C8512/3 L 512K x 8 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS		-	6*		-7	•	-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 29, 32
Output disable time	tOD	3	15	3	15	3	15	ns	29, 32
Write command setup time	tWCS	0		0		0		ns	21, 26
Write command hold time	^t WCH	10		10		10		ns	26
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	26
Write command pulse width	tWP	10		10		10		ns	26
Write command to RAS lead time	^t RWL	15		20		20		ns	26
Write command to CAS lead time	^t CWL	15		20		20		ns	26
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time	^t DHR	45		55		60		ns	
(referenced to RAS)									
RAS to WE delay time	^t RWD	85		95		105		ns	21
Column-address	^t AWD	55		60		65		ns	21
to WE delay time									
CAS to WE delay time	^t CWD	40		45		45		ns	21
Transition time (rise or fall)	r s ^t T s	3	50	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	^t REF		16		128		128	ms	
RAS to CAS precharge time	^t RPC	0		0		0	1.1.1	ns	
CAS setup time	^t CSR	10		10		10		ns	5
(CBR REFRESH)		Sec. Sec.					A States	$\mathcal{U}_{1} \subset \mathcal{U}_{1}$	
CAS hold time	^t CHR	10		10		10		ns	5
(CBR REFRESH)				$L = M_{1,1} + M_{1,2}$			Sec. 1		
MASKED WRITE command to RAS	tWRS	0		0	1.1.1.1.1.1	0		ns	26
setup time	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,				1.20		1		
WE hold time to RAS	tWRH	10	· .	15		15		ns	26
(MASKED WRITE	$(1,1,1,\dots,1)$								
OE hold time from WE during	^t OEH	15		20		20		ns	28
READ-MODIFY-WRITE cycle									1.11
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	

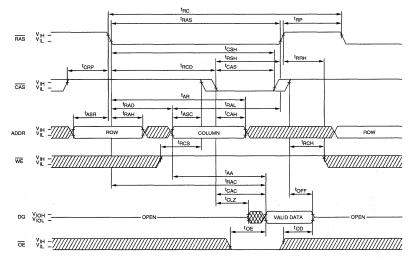
*60ns specifications may be limited to a Vcc range of \pm 5%.

NOTES

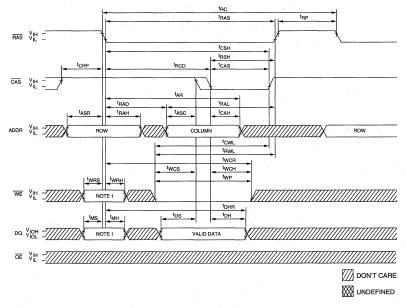
WIDE DRAN

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS -ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIII and VII. (or between VII. and VIII) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, VOH = 2.0V and VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to \overline{CAS} leading edge in EARLY-WRITE cycles and \overline{WE} leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as $\overline{\text{WE}}$ going LOW.
- 27. MT4C8513 L only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 30. BBU current is reduced as ^tRAS is reduced from its maximum specification during BBU cycle.
- 31. Column-address changed once while $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.
- 32. The 3ns minimum is a parameter guaranteed by design.


MT4C8512/3 L 512K x 8 WID<u>E DRAM</u>

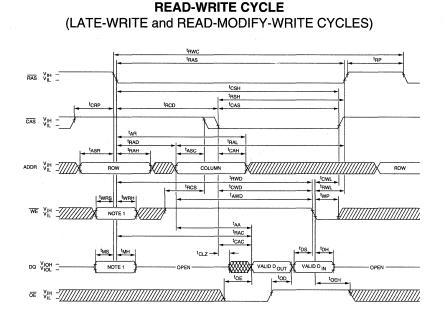
WIDE DRAM


MT4C8512/3 L

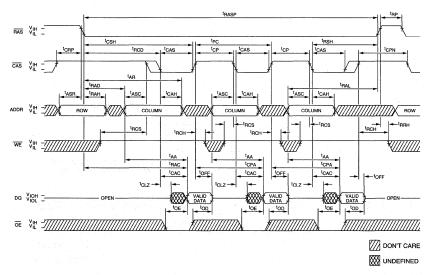
512K x 8 WIDE DRAM

READ CYCLE

EARLY-WRITE CYCLE

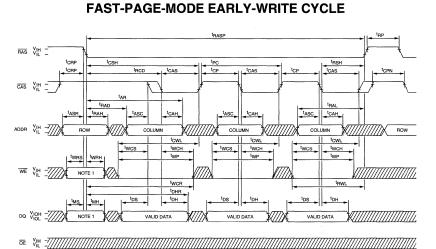


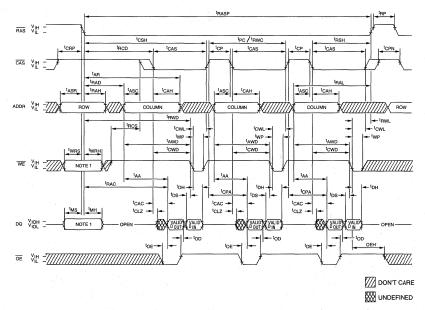
1. Applies to MT4C8513 L only; WE and DQ inputs on MT4C8512 L are "don't care" at RAS time. WE selects NOTE: between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.


MICRON

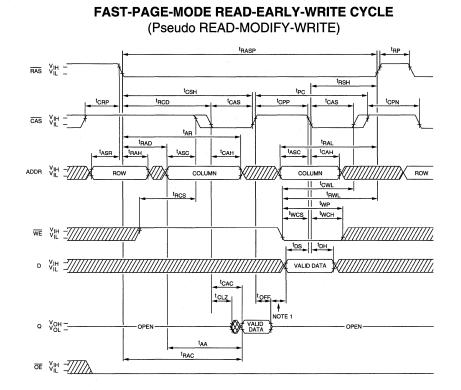
MT4C8512/3 L 512K x 8 WIDE DRAM

:RON

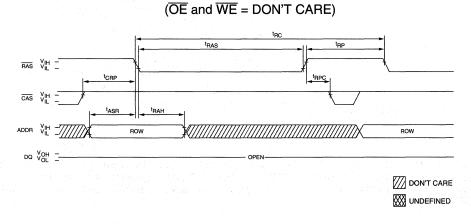

FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C8513 L only; WE and DQ inputs on MT4C8512 L are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

MT4C8512/3 L 512K x 8 WIDE DRAM



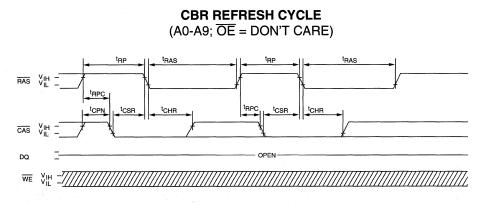
FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


NOTE: 1. Applies to MT4C8513 L only; WE and DQ inputs on MT4C8512 L are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

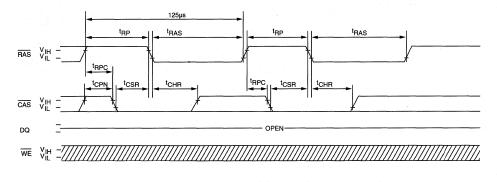
MT4C8512/3 L 512K x 8 WIDE DRAM

1. Do not drive data prior to High-Z; that is completion of ^tOFF. ^tCPP is equal to ^tOFF + ^tDS(MIN) + guardband between data-out and driving new data-in.

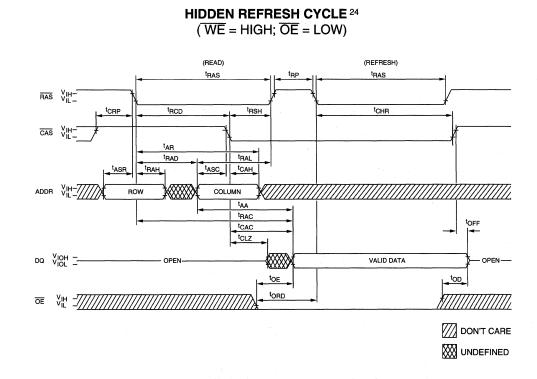
RAS-ONLY REFRESH CYCLE


WIDE DRAM

IRON


NOTE:

MT4C8512/3 L 512K x 8 WIDE DRAM



BBU REFRESH CYCLE (A0-A9; OE = DON'T CARE)

WIDE DRAM

MT4C8512/3 L 512K x 8 WIDE DRAM

WIDE DRAM

28-Pin ZIP

MT4C8512/3 S 512K x 8 WIDE DRAM

WIDE DRAM

512K x 8 DRAM

PIN ASSIGNMENT (Top View)

EXTENDED REFRESH SELF REFRESH

28-Pin SOJ

FEATURES

- Industry-standard x8 pinouts, timing, functions and packages
- Address entry: ten row-addresses, nine columnaddresses
- High-performance CMOS silicon-gate process
- Single +5V $\pm 10\%$ power supply
- All device pins are TTL-compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), HIDDEN, BATTERY BACKUP (BBU), and SELF
- Optional FAST-PAGE-MODE access cycle
- NONPERSISTENT MASKED WRITE access cycle (MT4C8513 S only)
- 1,024-cycle refresh distributed accross 128ms
- Low-power, 1mW standby; 350mW active, typical

OPTIONS	MARKING
 Timing 	
70ns access	-7
80ns access	-8
MASKED WRITE	
Not available	8512 S
Available	8513 S
 Packages 	
Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TG
Plastic ZIP (375 mil)	Ζ

• Part Number Example: MT4C8512DJ-7 S

GENERAL DESCRIPTION

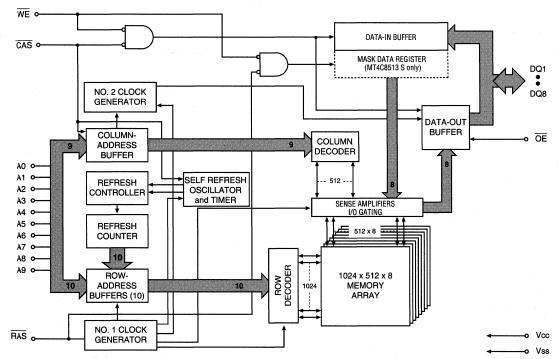
The MT4C8512/3 S are randomly accessed solid-state memories containing 4,194,304 bits organized in a x8 configuration. Each byte is uniquely addressed through the 19 address bits during READ or WRITE cycles. The address is entered first by \overline{RAS} latching 10 bits (A0-A9) and then \overline{CAS} latching 9 bits (A0-A8).

The MT4C8513 S has NONPERSISTENT MASKED WRITE allowing it to perform WRITE-PER-BIT accesses.

(SDB-1)			(SDA-1)
Vcc [1 DQ1 [2 DQ2 [3 DQ3 [4 DQ4 [5 NC [6 WE [7 RAS [8 A9 [9 A0 [10 A1 [11 A2 [12 A3 [13 Vcc [14	28 Vss 27 DQ8 26 DQ7 25 DQ6 24 DQ5 23 CAS 22 OE 21 NC 20 A8 19 A7 18 A6 17 A5 16 A4 15 Vss	OE DQ5 DQ7 Vss DQ1 DQ3 NC RAS A0 A2 Vcc A4 A6	1	CAS DQ6 DQ8 Vcc DQ2 DQ4 WE A9 A1 A3 Vss A5 A7
		A8	27 28	NC

28-Pin TSOP (SDE-1)

Vcc	Щ	1		28	Ш	Vss	
DQ1	Щ	2		27	Ь	DQ8	
DQ2	Щ	3		26	þ	DQ7	
DQ3	Щ	4		25	þ.	DQ6	
DQ4	Щ	5		24	þ	DQ5	
NC	Щ	6		23	þ	CAS	
WE		7		22	þ	ŌĒ	
RAS	Щ	8		21	Þ	NC	
A9	Щ	9		20		A8	
A0		10		19		A7	
A1	E	11		18	Þ	A6	
A2	Щ	12		17	Þ	A5	
A3		13		16	μı.	A4	
Vcc		14		15	þ	Vss	
	Ì			1			


MT4C8512/3 S REV. 3/93

MT4C8512/3 S 512K x 8 WIDE DRAM

MICRON

FUNCTIONAL BLOCK DIAGRAM

MT4C8512/3 S REV. 3/93

MT4C8512/3 S 512K x 8 WIDE DRAM

NEW

PIN DESCRIPTIONS

SOJ/TSOP Pin Numbers	ZIP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
8	15	RAS	Input	Row-Address Strobe: $\overline{\text{RAS}}$ is used to clock-in the 10 row- address bits and strobe the $\overline{\text{WE}}$ and DQs in the MASKED WRITE mode (MT4C8513 S only).
23	2	CAS	Input	Column-Address Strobe: CAS is used to clock-in the 9 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles.
7	14	WE	Input	Write Enable: \overline{WE} is used to select a READ (\overline{WE} = HIGH) or WRITE (\overline{WE} = LOW) cycle. \overline{WE} also serves as a mask enable (\overline{WE} = LOW) at the falling edge of \overline{RAS} in a MASKED WRITE cycle (MT4C8513 S).
22	. 1	ŌĒ	Input	Output Enable: \overline{OE} enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and \overline{WE} must be HIGH before \overline{OE} will control the output buffers. Otherwise, the output buffers are in a High-Z state.
10-13, 16-20, 9	17, 18, 19, 20, 23, 24, 25, 26, 27, 16	A0-A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one byte out of the 512K available words.
2-5, 24-27	9, 10, 11, 12, 3, 4, 5, 6	DQ1-DQ8	Input	Data I/O: Includes inputs, outputs or High-Z and/or output masked data input (for MASKED WRITE cycle only).
6, 21	13, 28	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
1, 14	8, 21	Vcc	Supply	Power Supply: +5V ±10%
15, 28	7, 22	Vss	Supply	Ground

MT4C8512/3 S 512K x 8 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 19 address bits during READ or WRITE cycles. First, \overline{RAS} is used to latch 10 bits (A0-A9) then, \overline{CAS} latches 9 bits (A0-A8).

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ -ONLY) or an active cycle ($\overline{\text{RAD}}$, WRITE or READ-WRITE) once $\overline{\text{RAS}}$ goes LOW.

READ or WRITE cycles are selected by \overline{WE} . A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} gose LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common I/O and pin direction is controlled by \overline{OE} and \overline{WE} .

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 128ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BBU is a CBR REFRESH performed at the extended refresh rate with CMOS input levels. This mode provides a very low-current, data-retention cycle. \overrightarrow{RAS} or \overrightarrow{CAS} time refers to the time at which \overrightarrow{RAS} or \overrightarrow{CAS} transition from HIGH to LOW).

SELF REFRESH is similar to BBU except that the DRAM provides its own internal clocking during sleep mode. Thus, an external clock is not required, which provides additional power savings and design ease. The DRAM's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding both RAS and CAS LOW for a specified period. The industry standard for this value is 100 μ s minimum (^tRASS). The DRAM will remain in the SELF REFRESH mode while RAS and CAS remain LOW. Once CAS has been held LOW for 600 μ s (^tCHD), CAS is no longer required to remain LOW and becomes a "don't care." CAS is a "don't care" until ^tCHS, at which time CAS must be either HIGH or LOW.

The SELF REFRESH mode is terminated by taking RAS HIGH for the time minimum of an operation cycle, typically 200ns (^tRPS). Once the SELF REFRESH mode has been terminated, accesses to the DRAM can begin immediately, as long as the system uses distributed CBR refresh as the standard refresh. The first CBR pulse should occur within the time of the external refresh rate prior to active use of the DRAM to ensure maximum data integrity and must be executed within three external refresh rate periods. The external refresh rate is typically 125µs per row-address. This immediate access is possible because Micron employs a distributed CBR SELF REFRESH scheme internally.

The alternative approach when exiting SELF REFRESH mode is to perform a refresh of all rows within the time of the external refresh rate prior to active use of the DRAM. This burst must be done if anything other than distributed CBR refresh is used as the standard refresh. Once this burst has been completed, the DRAM may be used in the functional mode with a burst or distributed refresh, such as CBR or \overline{RAS} only.

Micron's devices allow you to access the DRAM as soon as SELF REFRESH is exited, while other maufacturers' devices may require a full burst when exiting, regardless of the type of refresh used. To prevent possible compatibility problems, you may want to design the controller to perform the burst when exiting SELF REFRESH.

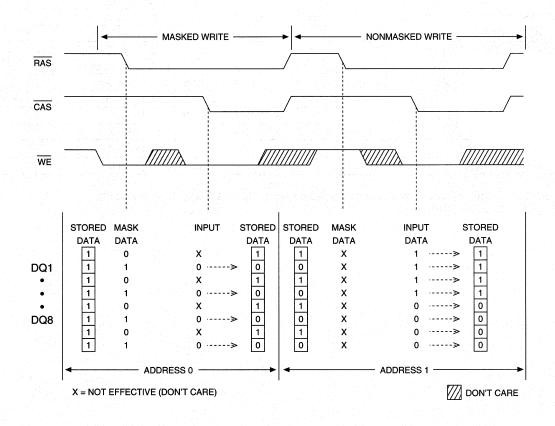
MASKED WRITE ACCESS CYCLE (MT4C8513 S ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\text{WE}}$ at $\overline{\text{RAS}}$ time. A MASKED WRITE is selected when $\overline{\text{WE}}$ is LOW at $\overline{\text{RAS}}$ time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ8 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data

NEW

m


DRAM

MT4C8512/3 S 512K x 8 WIDE DRAM

will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

In NONPERSISTENT MASKED WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 1 illustrates the MT4C8513 S MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

Figure 1 MT4C8513 S MASKED WRITE EXAMPLE

MICRON

MT4C8512/3 S 512K x 8 WIDE DRAM

	TORI, INC,						512	MT4C851 2K x 8 WIDE D	2/3 S 0RAM
IRUTH TABLE									
						ADDRE	SSES		
FUNCTION		RAS	CAS	WE	OE	^t R	tC	DQs	NOTES
Standby		н	Н→Х	X	X	X	X	High-Z	
READ		L	L	Н	L	ROW	COL	Data-Out	
EARLY-WRITE		L	L	L	X	ROW	COL	Data-In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
FAST-PAGE-	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out	
MODE READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out	
FAST-PAGE-	1st Cycle	L	H→L	L	X	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H→L	L	X	n/a	COL	Data-In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1
READ-WRITE	2nd Cycle	Ľ	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1
HIDDEN	READ	L→H→L	L	н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In	1, 2
RAS-ONLY REFRES	Η	L	۰H	Х	X	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	Х	X	X	X	High-Z	
BBU REFRESH		H→L	L	х	X	X	X	High-Z	
SELF REFRESH		H→L	L	Х	X	X	X	High-Z	

NOTE: 1. Data-in will be dependent on the mask provided (MT4C8513 S only). Refer to Figure 1. 2. EARLY WRITE only.

Π

5

Π

URAN

MT4C8512/3 S 512K x 8 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	VIH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	Vi∟	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input 0V ≤ ViN ≤ Vcc (All other pins not under test = 0V)	h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		v	
Output Low Voltage (lour = 4.2mA)	Vol		0.4	v	

MT4C8512/3 S 512K x 8 WIDE DRAM

			AX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
STANDBY CURRENT: TTL ($\overline{RAS} = \overline{CAS} = V_{H}$)	Icc1	2	2	mA	
STANDBY CURRENT: CMOS ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V$)	ICC2	200	200	μA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	110	100	mA	3, 4, 31
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	90	80	mA	3, 4, 31
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = V⊮: ^t RC = ^t RC [MIN])	ICC5	110	100	mA	3, 31
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	100	90	mA	3
REFRESH CURRENT: BBU Average power supply current during BBU REFRESH: $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN) to 300ns; \overline{WE} , A0-A9 and DIN = Vcc - 0.2V (DIN may be left open), ${}^{t}RC = 125\mu s$ (1,024 rows at 125 $\mu s = 128ms$)	Icc7	300	300	μΑ	3, 5, 30
REFRESH CURRENT: SELF Average power supply current during SELF REFRESH: CBR cycle with RAS \geq tRASS (MIN) and CAS held LOW; WE = Vcc - 0.2V; A0-A8 and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lccs	400	400	μΑ	5

MT4C8512/3 S 512K x 8 WIDE DRAM

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Ci1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Ci2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS		-7		-8		Sec. 1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		ns	
READ-WRITE cycle time	^t RWC	175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	45		50		ns	
cycle time							
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	95		100		ns	
Access time from RAS	^t RAC		70		80	ns	14
Access time from CAS	^t CAC		20		20	ns	15
Output Enable time	tOE	17 (A 1977) (S	20	an an sa a Ta ta	20	ns	
Access time from column-address	tAA		35		40	ns	
Access time from CAS precharge	^t CPA		40		45	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	tRASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		20		ns	194 A. C. S.
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	ns	
CAS hold time	tCSH	70		80		ns	Like ter
CAS precharge time	^t CPN	10		10		ns	16
CAS precharge time (FAST-PAGE-MODE)	^t CP	10		10		ns	ale stall ale
RAS to CAS delay time	tRCD	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	10		10	- 13.50 T	ns	New States
Row-address setup time	tASR	0		0		ns	
Row-address hold time	^t RAH	10		10		ns	
RAS to column- address delay time	^t RAD	15	35	15	40	ns	18
Column-address setup time	tASC	0		0		ns	
Column-address hold time	^t CAH	15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	55		60		ns	
Column-address to RAS lead time	^t RAL	35		40		ns	
Read command setup time	tRCS	0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
CAS to output in Low-Z	tCLZ	3		3		ns	33

WIDE DRAM

NEW

MT4C8512/3 S 512K x 8 WIDE DRAM

MICRON

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS			-7		-8	1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	tOFF	3	15	3	15	ns	20, 29, 33
Output disable time	tOD	3	15	3	15	ns	29, 33
Write command setup time	tWCS	0		0		ns	21, 26
Write command hold time	tWCH	10		10		ns	26
Write command hold time	tWCR	55	1. 10	60		ns	26
(referenced to RAS)		1. A. A. A.					
Write command pulse width	tWP	10	1	10		ns	26
Write command to RAS lead time	tRWL	20		20		ns	26
Write command to CAS lead time	tCWL	20		20		ns	26
Data-in setup time	tDS	0		0		ns	22
Data-in hold time	tDH	15		15		ns	22
Data-in hold time	^t DHR	55		60		ns	
(referenced to RAS)							
RAS to WE delay time	tRWD	95		105		ns	21
Column-address	tAWD	60		65		ns	21
to WE delay time							
CAS to WE delay time	tCWD	45		45		ns	21
Transition time (rise or fall)	tT	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	tREF		128		128	ms	
RAS to CAS precharge time	tRPC	0		0		ns	
CAS setup time	^t CSR	10		10		ns	5
(CBR REFRESH)							1.1
CAS hold time	^t CHR	10		10		ns	5
(CBR REFRESH)		3.				1.00	
MASKED WRITE command to RAS	tWRS	0		0		ns	26
setup time							
WE hold time to RAS	tWRH	15		15		ns	26
(MASKED WRITE)							
OE hold time from WE during	^t OEH	20		20		ns	28
READ-MODIFY-WRITE cycle	and the second se					1	
OE setup prior to RAS during	tORD	0		0		ns	
HIDDEN REFRESH cycle	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -						
RAS pulse width during	^t RASS	100		100		us	32
SELF REFRESH cycle				A			
RAS precharge time during	tRPS	150		150	1.1.1	ns	32
SELF REFRESH cycle							
CAS hold time during	tCHS	-70		-70	· · · · ·	ns	32
SELF REFRESH cycle					1		and the second sec
CAS LOW to "don't care" during	^t CHD	600		600		us	29
SELF REFRESH cycle	- 1						

MT4C8512/3 S 512K x 8 WIDE DRAM

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS -ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VII and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, VOH = 2.0V and VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as \overline{WE} going LOW.
- 27. MT4C8513 S only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.

MT4C8512/3 S 512K x 8 WIDE DRAM

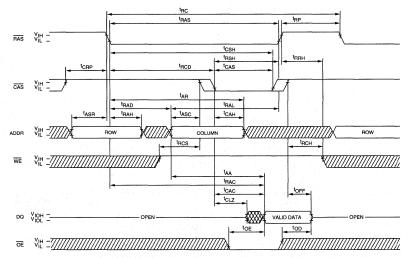
NEW WIDE DRAM

NOTES (continued)

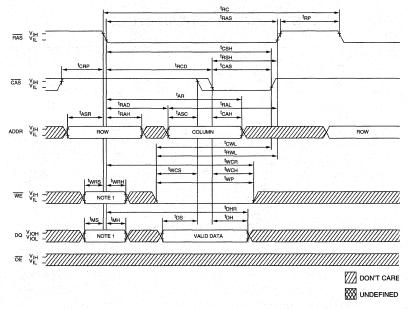
- 30. BBU current is reduced as ^tRAS is reduced from its maximum specification during BBU cycle.
- 31. Column-address changed once while $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.
- 32. When exiting the SELF REFRESH mode, one CBR REFRESH must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used

when in active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distibuted CBR REFRESH is used in the active mode.

33. The 3ns minimum is a parameter guaranteed by design.

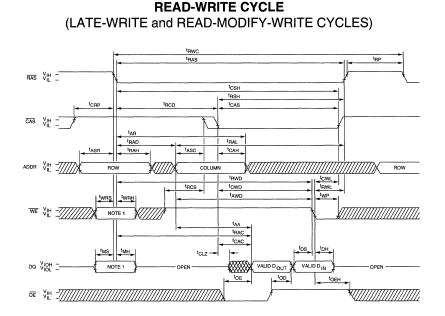

NEW

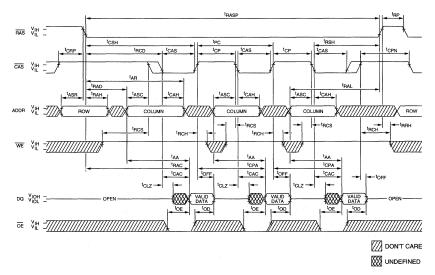
WIDE DRAM



MT4C8512/3 S 512K x 8 WIDE DRAM

READ CYCLE

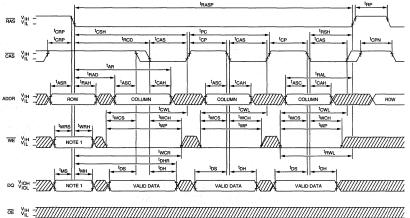

EARLY-WRITE CYCLE

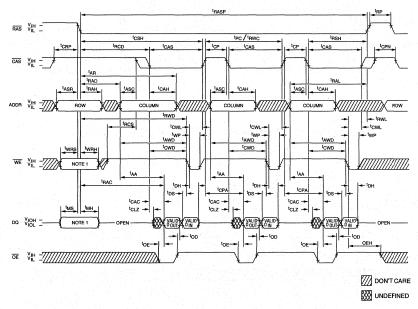

NOTE: 1. Applies to MT4C8513 S only; WE and DQ inputs on MT4C8512 S are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

MT4C8512/3 S 512K x 8 WIDE DRAM

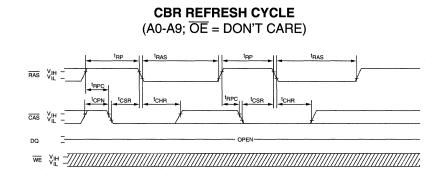
MICE

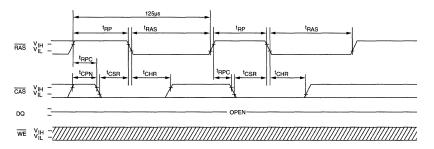
FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C8513 S only; WE and DQ inputs on MT4C8512 S are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

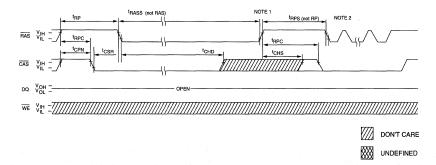

MTÀC8512/3 S 512K x 8 WIDE DRAM

FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

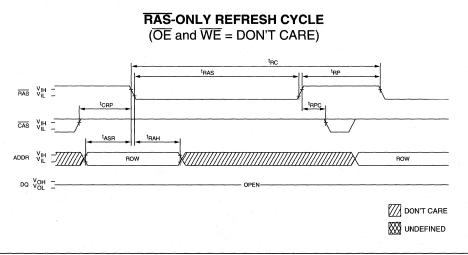

NOTE: 1. Applies to MT4C8513S only; WE and DQ inputs on MT4C8512 S are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

ADVANCE

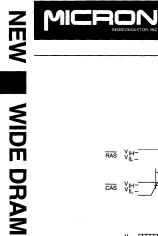

MT4C8512/3 S 512K x 8 WIDE DRAM

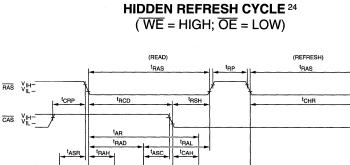
BBU REFRESH CYCLE (A0-A9; OE = DON'T CARE)

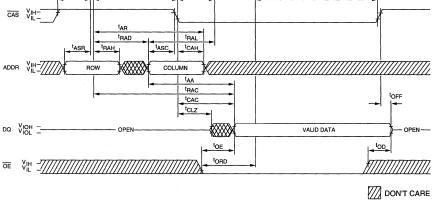
NOTE: 1. Once ^tRASS (MIN) is met, and RAS remains LOW, the DRAM will enter SELF REFRESH mode. 2. Once ^tRPS is satisified, a complete burst of all rows should be executed.


ADVANCE

MT4C8512/3 S 512K x 8 WIDE DRAM




NOTE: 1. Do not drive data prior to High-Z; that is completion of ¹OFF. ¹CPP is equal to ¹OFF + ¹DS(MIN) + guardband between data-out and driving new data-in.



ADVANCE

MT4C8512/3 S 512K x 8 WIDE DRAM

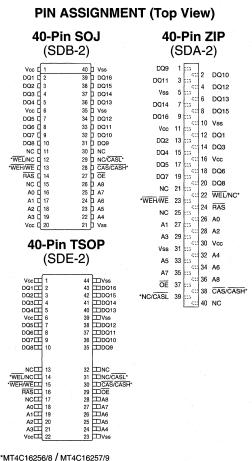
WIDE DRAN

FEATURES

MT4C16256/7/8/9 256K x 16 WIDE DRAM

WIDE DRAM

· Industry-standard x16 pinouts, timing, functions


256K x 16 DRAM

FAST-PAGE-MODE

and packages High-performance CMOS silicon-gate process Single $+5V \pm 10\%$ power supply . (SDB-2) ٠ Low power, 3mW standby; 500mW active, typical All device pins are fully TTL-compatible ٠ DQ1 0 2 512-cycle refresh in 8ms (nine rows and nine columns) DO2 13 Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) • DQ3 D 4 DQ4 0 5 and HIDDEN Vcc d 6 Optional FAST-PAGE-MODE access cycle ٠ DQ5 C 7 BYTE WRITE access cycle DQ6 C 8 . DQ7 D 9 BYTE READ access cycle (MT4C16257/9 only) ٠ DQ8 D 10 NONPERSISTENT MASKED WRITE access cycle NC 1 11 ٠ WEL/NC 0 12 (MT4C16258/9 only) WEH/WE 0 13 RAS E 14 **OPTIONS** MARKING NC 0 15 A0 [16 Timing A1 T 17 A2 0 18 60ns access -6* A3 d 19 70ns access -7 Vcc 2 20 80ns access -8 Write Cycle Access (SDE-2) BYTE or WORD via WE 16256 (nonmaskable) Vcc 1 DQ1 2 BYTE or WORD via CAS 16257 (nonmaskable) DQ4EE 5 40 BYTE or WORD via WE 16258 VccLL 6 (maskable) DQ51 7 BYTE or WORD via CAS 16259 DQ71 9 (maskable) DQ811 10 35 ٠ Packages NC 13 Plastic SOJ (400 mil) DI WEH/WELL 15 Plastic TSOP (400 mil) TG RASL 16 NCII 17 Plastic ZIP (475 mil) Ζ A01 18 27 A1 11 19 26 A21 20 Part Number Example: MT4C16256DJ-7 25 A31 21 24 *60ns specifications are limited to a Vcc range of ±5%. VccIII 22

GENERAL DESCRIPTION

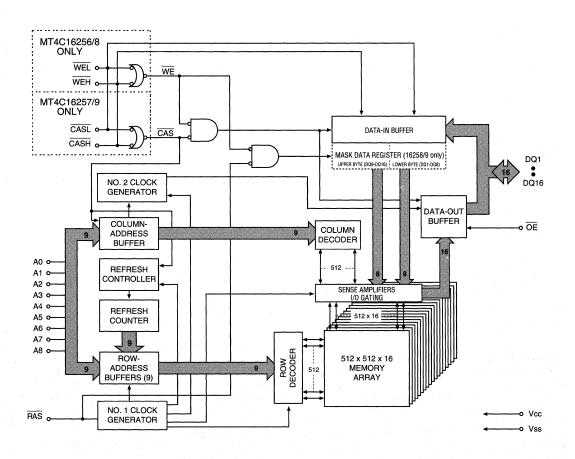
The MT4C16256/7/8/9 are randomly accessed solidstate memories containing 4,194,304 bits organized in a x16 configuration. The MT4C16256 and MT4C16258 have both BYTE WRITE and WORD WRITE access cycles via two write enable pins. The MT4C16257 and MT4C16259 have both BYTE WRITE and WORD WRITE access cycles via two CAS pins. The MT4C16258 and MT4C16259 are also able to perform WRITE-PER-BIT accesses.

The MT4C16256 and MT4C16257 function in the same manner except that $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ on MT4C16256 and $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ on MT4C16257 control the selection of byte WRITE access cycles. $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ function in an identical manner to $\overline{\text{WE}}$ in that either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ will generate an internal $\overline{\text{WE}}$. $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ function in an identical manner to $\overline{\text{CAS}}$ in that either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ will generate an internal $\overline{\text{CAS}}$.

MT4C16256/7/8/9

BEV 3/93

MT4C16256/7/8/9 256K x 16 WIDE DRAM


WIDE DRAM

The MT4C16256 $\overline{\text{WE}}$ function and timing are determined by the first $\overline{\text{WE}}$ ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. $\overline{\text{WEL}}$ transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and $\overline{\text{WEH}}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16257 CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner during READ cycles for the MT4C16257.

The MT4C16258 and MT4C16259 function in the same manner as MT4C16256 and MT4C16257, respectively; they have NONPERSISTENT MASKED WRITE cycle capabilities. This option allows the MT4C16258 and MT4C16259 to operate with either normal WRITE cycles or with NON-PERSISTENT MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM

MT4C16256/7/8/9 256K x 16 WIDE DRAM

PIN DESCRIPTIONS

SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	ТҮРЕ	DESCRIPTION
14	16	24	RAS	Input	Row-Address Strobe: \overrightarrow{RAS} is used to latch in the 9 row-address bits and strobe the \overrightarrow{WE} and DQs on the MASKED WRITE option (MT4C16258 and MT4C16259 only).
28	30	38	CAS/ CASH	Input	Column-Address Strobe: \overline{CAS} (MT4C16256/8) is used to latch-in the 9 column-address bits and enable the DRAM output buffers and strobe the data inputs on WRITE cycles. \overline{CAS} controls DQ1 through DQ16.
					Column-Address Strobe Upper Byte: CASH (MT4C16257/9) is the CAS control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high impedance) state during either a READ or a WRITE access cycle.
27	29	37	ŌĒ	Input	Output Enable: $\overline{\text{OE}}$ enables the output buffers when taken LOW during a READ access cycle. RAS and CAS (MT4C16256/8) or CASL / CASH (MT4C16257/9) must be LOW and $\overline{\text{WEL}}$ / $\overline{\text{WEH}}$ (MT4C16256/8) or $\overline{\text{WE}}$ (MT4C16257/9) must be HIGH before $\overline{\text{OE}}$ will control the output buffers. Otherwise, the output buffers are in a High-Z state.
13	15	23	WEH/WE	Input	Write Enable Upper Byte: $\overline{\text{WEH}}$ (MT4C16256/8) is $\overline{\text{WE}}$ control for the DQ9 through DQ16 inputs. If $\overline{\text{WE}}$ or $\overline{\text{WEH}}$ is LOW, the access is a WRITE cycle. If either $\overline{\text{WE}}$ or $\overline{\text{WEH}}$ is LOW at $\overline{\text{RAS}}$ time on MT4C16258, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
					Write Enable: $\overline{\text{WE}}$ (MT4C16257/9) controls DQ1 through DQ16inputs. If $\overline{\text{WE}}$ is LOW, the access is a WRITE cycle. The MT4C16258/9 also use $\overline{\text{WE}}$ to enable the mask register during $\overline{\text{RAS}}$ time.
12	14	22	WEL/NC	Input	Write Enable Lower Byte: \overline{WEL} (MT4C16256/8) is the \overline{WE} control for DQ1 through DQ8 inputs. If \overline{WEL} is LOW, the access is a WRITE cycle. If \overline{WEL} is LOW at RAS time on MT4C16258, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
29	31	39	NC/CASL	Input	Column-Address Strobe Lower Byte: CASL (MT4C16257/9) is the CAS control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a High-Z state during either a READ or a WRITE access cycle.
16-19, 22-26	18-21, 24-28	26-29, 32-36	A0-A8	Input	Address Inputs: These inputs are multiplexed and clocked by \overline{RAS} and \overline{CAS} (or \overline{CASL} / \overline{CASH}) to select one 16-bit word (or 8-bit byte) out of the 256K available words.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

WIDE DRAM

PIN DESCRIPTIONS (continued)

	SOJ Pins	TSOP Pins	ZIP Pins	SYMBOL	TYPE	DESCRIPTION
	2-5, 7-10, 31-34, 36-39	2-5, 7-10, 35-38, 40-43	12-15, 17-20, 1-4, 6-9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL / WEH (MT4C16256/8) or CASL / CASH (MT4C16257/8) to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. All sixteen I/Os are active for READ cycles (MT4C16256/8). The MT4C16257/9 allow for BYTE READ cycles.
i	11, 15, 30	13, 17	21, 25, 40	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
	1, 6, 20	1, 6, 22	11, 16, 30	Vcc	Supply	Power Supply: +5V ±10%
	21, 35, 40	23, 39, 44	5, 10, 31	Vss	Supply	Ground

MT4C16256/7/8/9 256K x 16 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle (RAS-ONLY) or an active cycle (READ, WRITE or READ-WRITE) once $\overline{\text{RAS}}$ goes LOW. The MT4C16256 and MT4C16258 each have one $\overline{\text{CAS}}$ control while the MT4C16257 and MT4C16259 have two, $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

The $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ inputs internally generate a $\overline{\text{CAS}}$ signal functioning in an identical manner to the single $\overline{\text{CAS}}$ input on the other 256K x 16 DRAMs. The key difference is each $\overline{\text{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\text{OE}}$ and $\overline{\text{WE}}$). $\overline{\text{CASL}}$ controls DQ1 through DQ8 and $\overline{\text{CASH}}$ controls DQ9 through DQ16.

The MT4C16257 and MT4C16259 \overline{CAS} function is determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition LOW and the last one to transition back HIGH. The two \overline{CAS} controls give the MT4C16257 and MT4C16259 both BYTE READ and BYTE WRITE cycle capabilities.

READ or WRITE cycles on the MT4C16257 or MT4C16259 are selected with the $\overline{\text{WE}}$ input while either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ perform the $\overline{\text{WE}}$ on the MT4C16256 or MT4C16258. The MT4C16256 and MT4C16258 $\overline{\text{WE}}$ function is determined by the first BYTE WRITE ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and the last one to transition back HIGH.

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled

by $\overline{\text{OE}}$, $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ (MT4C16256 and MT4C16258) or $\overline{\text{WE}}$ (MT4C16257 and MT4C16259).

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ or $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$. Enabling $\overline{\text{WEI}}$./ $\overline{\text{CASL}}$ will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling $\overline{\text{WEH}}$ or $\overline{\text{CASH}}$ will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ or $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ selects a WORD WRITE cycle.

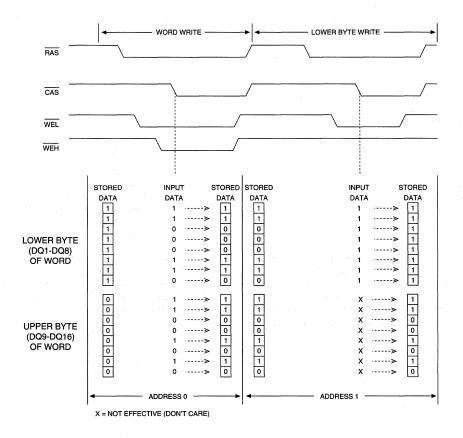
The MT4C16256, MT4C16257, MT4C16258 and MT4C16259 can be viewed as two 256K x 8 DRAMS which have common input controls, with the exception of the WE or the CAS inputs. Figure 1 illustrates the MT4C16256 BYTE WRITE and WORD WRITE cycles and Figure 2 illustrates the MT4C16257 BYTE WRITE and WORD WRITE cycles.

The MT4C16257 also has BYTE READ and WORD READ cycles, since it uses two \overline{CAS} inputs to control its byte accesses. Figure 3 illustrates the MT4C16257 BYTE READ and WORD READ cycles.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

WIDE DRAM

MASKED WRITE ACCESS CYCLE (MT4C16258/9 ONLY)


The MASKED WRITE mode control input selects normal WRITE access or MASKED WRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C16256 and MT4C16257 do not have the MASKED WRITE cycle function.

The mask data present on the DQ1-DQ16 inputs at \overline{RAS} time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and

no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a NONPER-SISTENT MASKED WRITE cycle is initiated , even if the previous cycle's mask was the same mask.

Figure 4 illustrates the MT4C16258 MASKED WRITE operation and Figure 5 illustrates the MT4C16259 MASKED WRITE operation.

Figure 1 MT4C16256/8 WORD AND BYTE WRITE EXAMPLE

WIDE DRAM

MT4C16256/7/8/9 256K x 16 WIDE DRAM

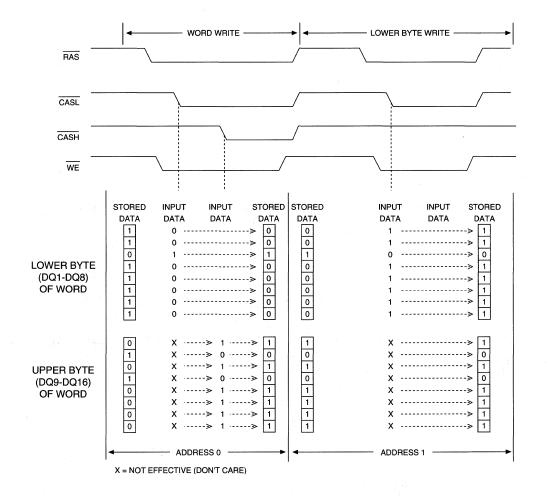


Figure 2 MT4C16257/9 WORD AND BYTE WRITE EXAMPLE

MT4C16256/7/8/9 256K x 16 WIDE DRAM

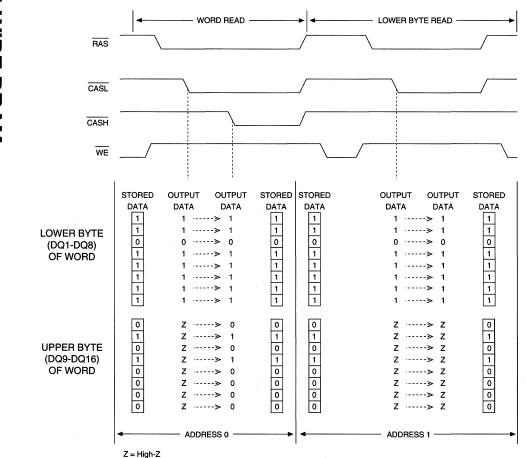


Figure 3 MT4C16257/9 WORD AND BYTE READ EXAMPLE

WIDE DRAM

MT4C16256/7/8/9 256K x 16 WIDE DRAM

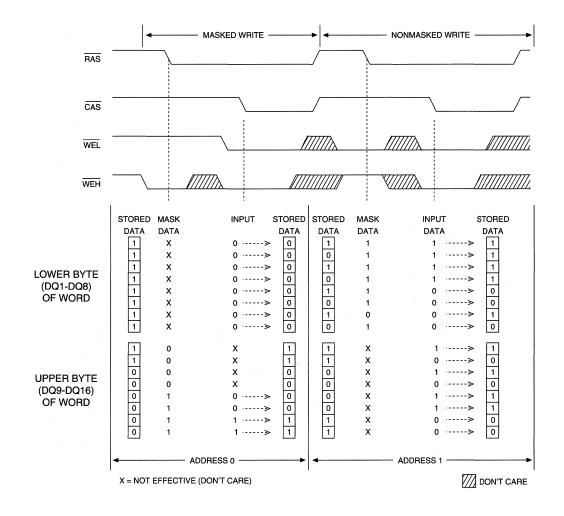


Figure 4 MT4C16258 MASKED WRITE EXAMPLE

NOTE: If WEL is LOW and WEH is HIGH when RAS goes LOW, then only DQs 1-8 will be masked. If WEL is HIGH and WEH is LOW when RAS goes LOW, then only DQs 9-16 will be masked.

ICRON

MT4C16256/7/8/9 256K x 16 WIDE DRAM

IRON

MIC

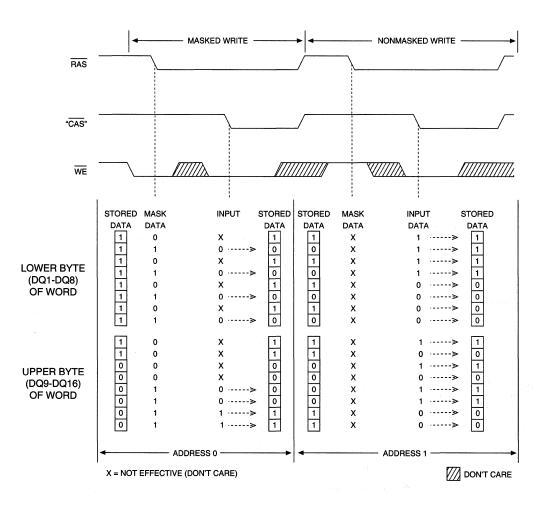


Figure 5 MT4C16259 MASKED WRITE EXAMPLE

MT4C16256/7/8/9 REV. 3/93

MT4C16256/7/8/9 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16256/8

FUNCTION							ADDR	ESSES		
		RAS	CAS	WEL	WEH	OE	tR	^t C	DQs	NOTES
Standby		Н	H→X	X	Х	X	X	Х	High-Z	
READ		L	L	Н	н	L	ROW	COL	Data-Out	
WRITE: WORD		L	Ļ	L	L	X	ROW	COL	Data-In	3
WRITE: LOWE BYTE (EARLY)		L. Ma	L	L	H A	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	3
WRITE: UPPER BYTE (EARLY)		L	L	Н	L	X	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	3
READ-WRITE	. 1 (s. 5 ⁴ - 1	$\mathbb{E}^{n} \in \mathbf{L}^{n}$	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 3
PAGE-MODE	1st Cycle	L.	H→L	Н	Н	L	ROW	COL	Data-Out	
READ	2nd Cycle	L	H→L	Н	H	L ^{and}	n/a	COL	Data-Out	
PAGE-MODE	1st Cycle	L	H→L	L	L	х	ROW	COL	Data-In	1, 3
WRITE	2nd Cycle	L	H→L	L	L	X	n/a	COL	Data-In	1, 3
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-In	1, 3
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 3
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	le Le j	x	ROW	COL	Data-In	1, 2, 3
RAS-ONLY REFRESH		L	Н	X	x	x	ROW	n/a	High-Z	
CBR REFRESI	Η	H→L	L	X	X	X	X	X	High-Z	1 - 14 - 54 - 54 - 54 - 54 - 54 - 54 - 5

NOTE: 1. These cycles may also be BYTE WRITE cycles (either WEL or WEH active).

2. EARLY-WRITE only.

3. Data-in will be dependent on the mask provided (MT4C16258 only). Refer to Figure 4.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16257/9

							ADDRI	ESSES		
FUNCTION		RAS	CASL	CASH	WE	ŌĒ	^t R	ťC	DQs	NOTES
Standby		н	H→X	H→X	Х	Х	X	Х	High-Z	1.1
READ: WORD		L	L	L	н	L	ROW	COL	Data-Out	
READ: LOWEF	BYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY-WRITI		L	L	L	L	х	ROW	COL	Data-In	5
WRITE: LOWE BYTE (EARLY)		L	L	н	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	5
WRITE: UPPEI BYTE (EARLY)	•	L	Н	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	5
READ-WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	·H	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1, 5
WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2, 5
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3, 5
RAS-ONLY REFRESH		L	Н	Н	Х	Х	ROW	n/a	High-Z	
CBR REFRES	4	H→L	L	L	Х	X	X	X	High-Z	4

NOTE: 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).

2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).

3. EARLY-WRITE only.

4. Only one of the two CAS signals must be active (CASL or CASH).

5. Data-in will be dependent on the mask provided (MT4C16259 only). Refer to Figure 5.

Т

IRAN

MT4C16256/7/8/9 256K x 16 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	VIH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	Vi∟	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (lout = 4.2mA)	Vol		0.4	v	

~ 1993년 1월 19일 - 19일 - 19일 1일을 가지하는 것 같은 19일 - 19일 1일을 가지하는 것이다. 19일 - 19일 - 19일 - 19일 - 19일 - 19일 1일을 가지하는 것 같은 것을 가지하는 것이다.		MAX					
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES	
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA		
STANDBY CURRENT: (CMOS) (RAS = \overline{CAS} = Vcc -0.2V)	lcc2	1	11 1	1	mA	25	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	190	170	150	mA	3, 4, 42	
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	Icc4	120	110	100	mA	3, 4, 42	
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC [MIN])	Icc5	190	170	150	mA	3, 5, 42	
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	180	160	140	mA	3, 5	

*60ns specifications may be limited to a Vcc range of ±5%.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1	5	pF	2
Input Capacitance: RAS, CAS/(CASL,CASH), (WEL, WEH)/ WE, OE	Ci2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS		-	6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		150		ns	11 - 1
READ-WRITE cycle time	^t RWC	150		175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	35		40		45		ns	35
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	85		95		100		ns	35
cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15, 33
Output Enable time	^t OE		15		20		20	ns	33
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	33
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	4
RAS pulse width (PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	15		20		20		ns	40
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	39
CAS hold time	^t CSH	60		70		80		ns	32
CAS precharge time	^t CPN	10		10		10		ns	16, 36
CAS precharge time (PAGE-MODE)	^t CP	10		10		10		ns	36
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17, 31
CAS to RAS precharge time	^t CRP	10		10		10		ns	32
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column-	^t RAD	15	30	15	35	15	40	ns	18
address delay time									
Column-address setup time	^t ASC	0		0		0		ns	31
Column-address hold time	^t CAH	10		15	1.0.1	15		ns	31
Column-address hold time	^t AR	50		55		60		ns	Lange State
(referenced to RAS)									
Column-address to	^t RAL	30		35	1	40		ns	
RAS lead time									1.1.1.1.1.1
Read command setup time	^t RCS	0		0		0		ns	26, 31
Read command hold time	^t RCH	0	1 1	0		0		ns	19, 26 ,32
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	3		3		3		ns	33

*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-	5*		-7		-8	19 July 19	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 29, 33
Output disable time	tOD	3	15	3	15	3	15	ns	29, 41
Write command setup time	tWCS	0		0		0	the second	ns	21, 26, 31
Write command hold time	tWCH	10		10		10	Contra-	ns	26, 40
Write command hold time (referenced to RAS)	tWCR	45		55	an a	60		ns	26
Write command pulse width	tWP	10		10		10		ns	26
Write command to RAS lead time	^t RWL	15		20	a sha wa s	20		ns	26
Write command to CAS lead time	^t CWL	15		20		20		ns	26, 32
Data-in setup time	^t DS	0		0		0	1.1.1	ns	22, 33
Data-in hold time	^t DH	10		15		15		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	85		95	a second second	105		ns	21
Column-address to WE delay time	^t AWD	55		60		65		ns	21
CAS to WE delay time	^t CWD	40		45		45		ns	21, 31
Transition time (rise or fall)	tT	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		8		8		8	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10		ns	5, 31
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5, 32
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26, 27
WE hold time (MASKED WRITE)	^t WRH	10		15		15		ns	26
Mask data to RAS setup time	tMS	0		0		0		ns	26, 27
Mask data to RAS hold time	^t MH	15		15		15		ns	26, 27
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	28
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
Last CAS going LOW to first CAS	^t CLCH	10		10		10		ns	34

*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C16256/7/8/9 REV. 3/93

MT4C16256/7/8/9

256K x 16 WIDE DRAM

NOTES

WIDE D

ORAM

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C $\leq T_A \leq 70$ °C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, VoL = 0.80 and VOH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.*
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either WEL or WEH or both going LOW on the MT4C16256/8. Write command is defined as WE going LOW on the MT4C16257/9.
- 27. MT4C16258/9 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of the OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.

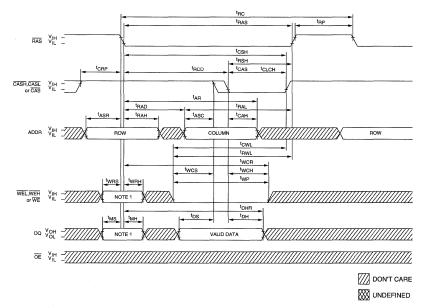
*The 3ns minimum is a parameter guaranteed by design.

MICRON

MT4C16256/7/8/9 256K x 16 WIDE DRAM

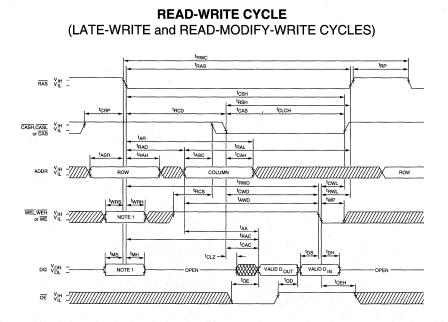

NOTES (continued)

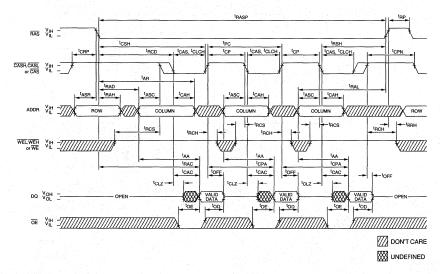
- 30. Notes 31 through 41 apply to MT4C16257/9 only.
- 31. The first \overline{CASx} edge to transition LOW.
- 32. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 34. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 35. Last rising CASx edge to next cycle's last rising CASx edge.
- 36. Last rising \overline{CASx} edge to first falling \overline{CASx} edge. 37. First DQs controlled by the first \overline{CASx} to go LOW.
- 38. Last DQs controlled by the last CASx to go HIGH.
- 39. Each CASx must meet minimum pulse width.
- 40. Last \overline{CASx} to go LOW.
- 41. All DQs controlled, regardless CASL and CASH.
- 42. Column-address changed once while $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.


MT4C16256/7/8/9 256K x 16 WIDE DRAM

WIDE DRAM

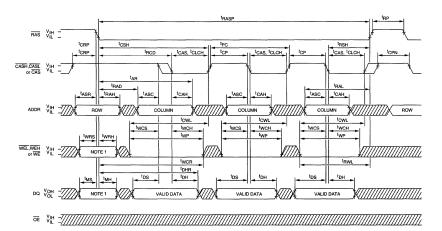
:RON


EARLY-WRITE CYCLE

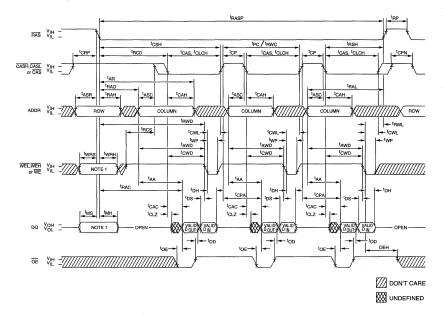

NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.

MT4C16256/7/8/9 256K x 16 WIDE DRAM

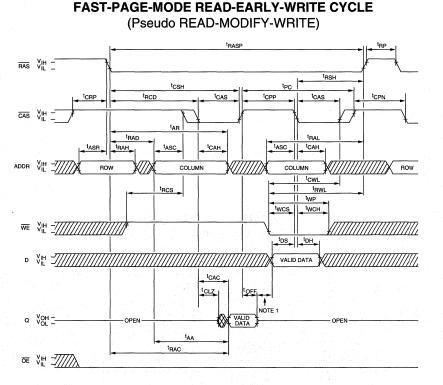
FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.

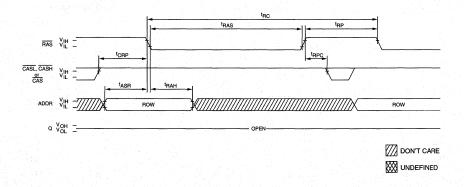
MT4C16256/7/8/9 256K x 16 WIDE DRAM



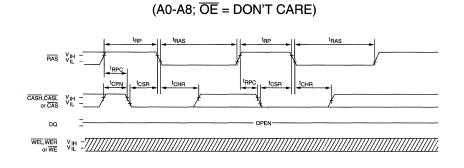
HON


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

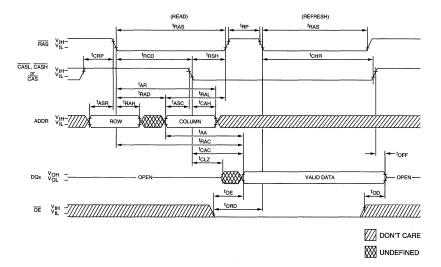
NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.


MT4C16256/7/8/9 256K x 16 WIDE DRAM

NOTE: 1. Do not drive data prior to High-Z; that is completion of ^tOFF. ^tCPP is equal to ^tOFF + ^tDS(MIN) + guardband between data-out and driving new data-in.



MT4C16256/7/8/9 256K x 16 WIDE DRAM



RON

CBR REFRESH CYCLE

HIDDEN REFRESH CYCLE²⁴ (WEL, WEH or WE = HIGH; OE = LOW)

WIDE DRAM

WIDE DRAM

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

22 WEL/NC*

38 CAS/CASH*

256K x 16 DRAM

LOW POWER, EXTENDED REFRESH

FEATURESIndustry-standard x16 pinor	its timing functions		ASSIGNMEI		iow)		
and packages	its, tilling, functions	FINF	455IGINIVIEI		iew)		
 High-performance CMOS si 	licon-gate process	40-Pi	n SOJ	40-P	in ZIP		
• Single +5V ±10% power sup			(SDB-2) (SI				
• All device pins are TTL com			U _,	(02			
• Refresh modes: RAS-ONLY,		Vcc [1	40 🛛 Vss	DQ9 1	-		
HIDDEN and BATTERY BA		DQ1 [] 2	39 DQ16	DQ11 3			
			38 DQ15 37 DQ14	Vss 5	4 DQ12		
FAST-PAGE-MODE access	Lycie	DQ4 D	36 D DQ13	DQ14 7	- 6 DQ13		
 BYTE WRITE access cycle 		Vcc E 6	35 🛛 Vss	and the second	- 8 DQ15		
 BYTE READ access cycle (M 	T4C16257/9 L only)	DQ5 [] 7	34 DQ12	DQ16 9			
 NONPERSISTENT MASKE 	D WRITE access cycle		33 DQ11 32 DQ10	Vcc 11 ::			
(MT4C16258/9 L only)		DQ8 [10	31 DQ9	DQ2 13	;		
		NC E 11	30 🛛 NC	DQ4 15 .:	, cz: 14 DQ3		
 512-cycle refresh distributed 		*WEL/NC E 12	29 NC/CASL*	DQ5 17 .:	- 16 Vcc		
 Low power, 1mW standby; 	500mW active, typical	*WEH/WE [] 13 RAS [] 14	28 1 CAS/CASH* 27 1 OE	DQ7 19	18 DQ6		
		NC E 15	26 🛛 A8				
OPTIONS	MARKING	A0 [16	25 A7				
Timing		A1 [] 17	24 🛛 A6	*WEH/WE 23 ::	24 RAS		
60ns access	-6*	A2 [] 18 A3 [] 19	23 🗋 A5 22 🗖 A4	NC 25	5		
70ns access	-7	Vcc E 20	21 U Vss	A1 27	26 A0		
				A3 29	28_A2		
80ns access	-8	40-Pin	TSOP	Vss 31 ::	30 Vcc		
Write Cycle Access			E-2)	A5 33	32 A4		
BYTE or WORD via \overline{WE}	16256 L		L-Z)	A7 35	- 34 A6		
	10230 L						
(nonmaskable)		Vcc 1 DQ1 2	44 ⊞Vss 43 ⊞DQ16	OE 37	38 CAS/C		
BYTE or WORD via \overline{CAS}	16257 L	DQ2EE 3	42 DQ15	*NC/CASL 39 ::	40 NC		
(nonmaskable)			41 DQ14				
BYTE or WORD via \overline{WE}	16258 L		40 DQ13 39 DVss				
(maskable)		DQ50 7	38 🖽 DQ12				
BYTE or WORD via \overline{CAS}	16259 L	DQ6 8 DQ7 9	37 DQ11 36 DQ10				
	16259 L	DQ81 10	35 009				
(maskable)							
 Packages 		NCE 13	32 IINC				
	DI	*WEL/NC 14 *WEH/WE 15	31 III NC/CASL* 30 III CAS/CASH*				
Plastic SOJ (400 mil)	DJ	RASE 16	29 10E				
Plastic TSOP (400 mil)	TG	NC 17 A0 18	28 🖽 A8 27 🖽 A7				
Plastic ZIP (475 mil)	Ζ	A1 🗔 19	26 🖽 A6				
		A2 20	25 🖽 A5 24 🖽 A4				
 Part Number Example: MT4 	4C16256DJ-7 L	A3□ 21 Vcc□ 22	24 11 A4 23 11 Vss				
*60ns specifications are limited to a Vcc r	ange of ±5%.	1	· · · · · · · · · · · · · · · ·				
sono or contentiono de maned to a veci							

*MT4C16256/8 L / MT4C16257/9 L

via two CAS pins. The MT4C16258 L and MT4C16259 L are also able to perform WRITE-PER-BIT accesses.

The MT4C16256 L and MT4C16257 L function in the same manner except that WEL and WEH on MT4C16256 L and CASL and CASH on MT4C16257 L control the selection of byte WRITE access cycles. WEL and WEH function in an

GENERAL DESCRIPTION

The MT4C16256/7/8/9 L are randomly accessed solid-

state memories containing 4,194,304 bits organized in a x16 configuration. The MT4C16256 L and MT4C16258 L have

both BYTE WRITE and WORD WRITE access cycles via two

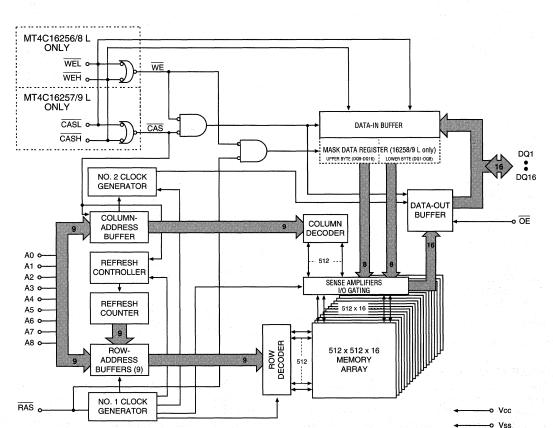
write enable pins. The MT4C16257 L and MT4C16259 L

have both BYTE WRITE and WORD WRITE access cycles

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

MICRON

WIDE DRAM


identical manner to $\overline{\text{WE}}$ in that either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ will generate an internal $\overline{\text{WE}}$. $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ function in an identical manner to $\overline{\text{CAS}}$ in that either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ will generate an internal $\overline{\text{CAS}}$.

The MT4C16256 L $\overline{\text{WE}}$ function and timing are determined by the first $\overline{\text{WE}}$ (WEL or $\overline{\text{WEH}}$) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and WEH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16257 L \overrightarrow{CAS} function and timing are determined by the first \overrightarrow{CAS} (\overrightarrow{CASL} or \overrightarrow{CASH}) to transition LOW

and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner during READ cycles for the MT4C16257 L.

The MT4C16258 L and MT4C16259 L function in the same manner as MT4C16256 L and MT4C16257 L, respectively; they have NONPERSISTENT MASKED WRITE cycle capabilities. This option allows the MT4C16258 L and MT4C16259 L to operate with either normal WRITE cycles or with NONPERSISTENT MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM

SEMICONDUCTOR INC.

MICEON SEMICONDUCTOR, INC.

PIN DESCRIPTIONS

SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	TYPE	DESCRIPTION
14	16	24	RAS	Input	Row-Address Strobe: \overrightarrow{RAS} is used to latch in the 9 row- address bits and strobe the \overrightarrow{WE} and DQs on the MASKED WRITE option (MT4C16258 L and MT4C16259 L only).
28	30	38	CAS/ CASH	Input	Column-Address Strobe: \overline{CAS} (MT4C16256/8 L) is used to latch-in the 9 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. \overline{CAS} controls DQ1 through DQ16.
					Column-Address Strobe Upper Byte: CASH (MT4C16257/9 L) is the CAS control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high imped- ance) state during either a READ or a WRITE access cycle.
27	29	37	ŌĒ	Input	Output Enable: $\overline{\text{OE}}$ enables the output buffers when taken LOW during a READ access cycle. RAS and CAS (MT4C16256/8 L) or CASL / CASH (MT4C16257/9 L) must be LOW and $\overline{\text{WEL}}$ / $\overline{\text{WEH}}$ (MT4C16256/8 L) or $\overline{\text{WE}}$ (MT4C16257/9 L) must be HIGH before $\overline{\text{OE}}$ will control the output buffers. Otherwise, the output buffers are in a High-Z state.
13	15	23	WEH/WE	Input	Write Enable Upper Byte: $\overline{\text{WEH}}$ (MT4C1625L6/8 L) is $\overline{\text{WE}}$ control for the DQ9 through DQ16 inputs. If $\overline{\text{WE}}$ or $\overline{\text{WEH}}$ is LOW, the access is a WRITE cycle. If either $\overline{\text{WE}}$ or $\overline{\text{WEH}}$ is LOW at $\overline{\text{RAS}}$ time on MT4C16258 L, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
					Write Enable: \overline{WE} (MT4C16257/9 L) controls DQ1 through DQ16 inputs. If \overline{WE} is LOW, the access is a WRITE cycle. The MT4C16258/9 L also use \overline{WE} to enable the mask register during RAS time.
12	14	22	WEL/NC	Input	Write Enable Lower Byte: WEL (MT4C16256/8 L) is the WE control for DQ1 through DQ8 inputs. If WEL is LOW, the access is a WRITE cycle. If WEL is LOW at RAS time on MT4C16258 L, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
29	31	39	NC/CASL	Input	Column-Address Strobe Lower Byte: CASL (MT4C16257/9 L) is the CAS control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a High-Z state during either a READ or a WRITE access cycle.
16-19, 22-26	18-21, 24-28	26-29, 32-36	A0-A8	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS (or CASL / CASH) to select one 16-bit word (or 8-bit byte) out of the 256K available words.

WIDE DRAM

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

WIDE DRAM

PIN DESCRIPTIONS (continued)

SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	ТҮРЕ	DESCRIPTION
2-5, 7-10, 31-34, 36-39	2-5, 7-10, 35-38, 40-43	12-15, 17-20, 1-4, 6-9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL / WEH (MT4C16256/8L) or CASL / CASH (MT4C16257/8L) to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. All sixteen I/Os are active for READ cycles (MT4C16256/8L). The MT4C16257/9L allow for BYTE READ cycles.
11, 15, 30	13, 17	21, 25, 40	NC		No Connect: These pins should be either left unconnected or tied to ground.
1, 6, 20	1, 6, 22	11, 16, 30	Vcc	Supply	Power Supply: +5V ±10%
21, 35, 40	23, 39, 44	5, 10, 31	Vss	Supply	Ground

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits.

The \overline{CAS} control also determines whether the cycle will be a refresh cycle (RAS-ONLY) or an active cycle (READ, WRITE or READ-WRITE) once RAS goes LOW. The MT4C16256 L and MT4C16258 L each have one CAS control while the MT4C16257 L and MT4C16259 L have two, CASL and CASH.

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input on the other 256K x 16 DRAMs. The key difference is each CAS controls its corresponding DQ tristate logic (in conjunction with OE and WE). CASL controls DQ1 through DQ8 and CASH controls DQ9 through DQ16.

The MT4C16257 L and MT4C16259 L CAS function is determined by the first CAS (CASL or CASH) to transition LOW and the last one to transition back HIGH. The two CAS controls give the MT4C16257 L and MT4C16259 L both BYTE READ and BYTE WRITE cycle capabilities.

READ or WRITE cycles on the MT4C16257 L or MT4C16259 L are selected with the WE input while either WEL or WEH perform the WE on the MT4C16256L or MT4C16258 L. The MT4C16256 L and MT4C16258 L WE function is determined by the first BYTE WRITE (WEL or WEH) to transition LOW and the last one to transition back HIGH.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late WE pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by OE, WEL and WEH (MT4C16256 L and MT4C16258 L) or WE (MT4C16257 L and MT4C16259 L).

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address (A0-A8) defined page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 64ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BBU is a CBR REFRESH performed at the extended refresh rate with CMOS input levels. This mode provides a very low-current, data-retention cycle. RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

BYTE ACCESS CYCLE

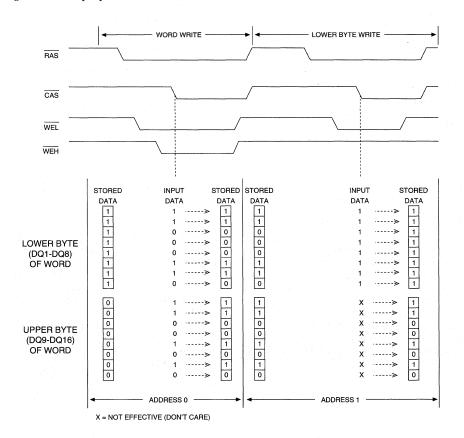
The BYTE WRITE mode is determined by the use of $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ or $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$. Enabling $\overline{\text{WEL}}$ CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling WEH or CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both WEL and WEH or CASL and CASH selects a WORD WRITE cycle.

The MT4C16256 L, MT4C16257 L, MT4C16258 L and MT4C16259 L can be viewed as two 256K x 8 DRAMS which have common input controls, with the exception of the WE or the CAS inputs. Figure 1 illustrates the MT4C16256 L BYTE WRITE and WORD WRITE cycles and Figure 2 illustrates the MT4C16257 L BYTE WRITE and WORD WRITE cycles.

The MT4C16257 L also has BYTE READ and WORD READ cycles, since it uses two CAS inputs to control its byte accesses. Figure 3 illustrates the MT4C16257 L BYTE READ and WORD READ cycles.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

MASKED WRITE ACCESS CYCLE (MT4C16258/9 L ONLY)


The MASKED WRITE mode control input selects normalWRITE access or MASKEDWRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C16256 L and MT4C16257 L do not have the MASKED WRITE cycle function.

The mask data present on the DQ1-DQ16 inputs at \overline{RAS} time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled

during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

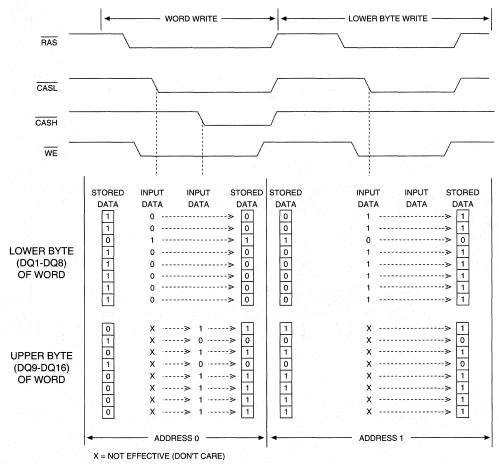
New mask data must be supplied each time a NONPER-SISTENT MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

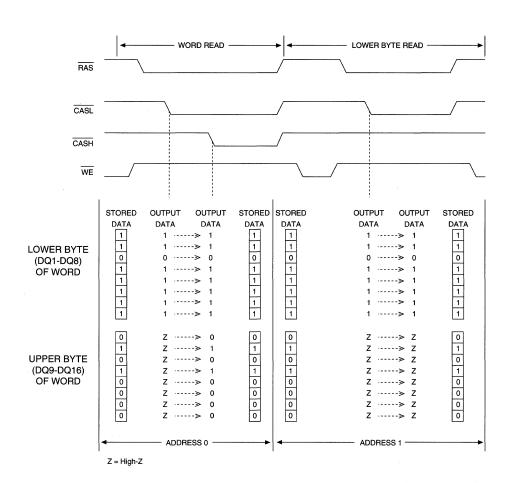
Figure 4 illustrates the MT4C16258 L MASKED WRITE operation and Figure 5 illustrates the MT4C16259 L MASKED WRITE operation.

Figure 1 MT4C16256/8 L WORD AND BYTE WRITE EXAMPLE

WIDE DRAM

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM




Figure 2 MT4C16257/9 L WORD AND BYTE WRITE EXAMPLE

MCRON

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

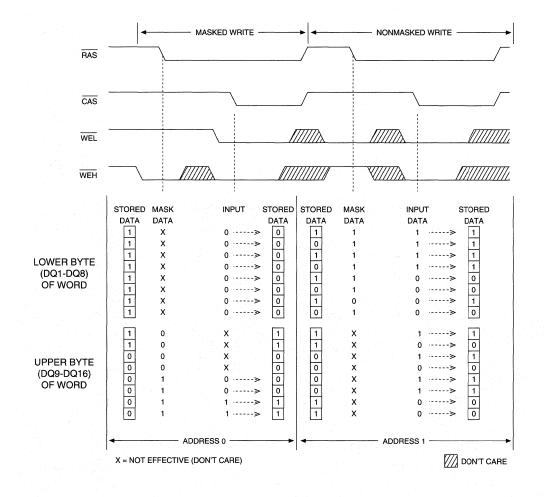

MICRON

Figure 3 MT4C16257/9 L WORD AND BYTE READ EXAMPLE

WIDE DRAM

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

Figure 4 MT4C16258 L MASKED WRITE EXAMPLE

NOTE: If WEL is LOW and WEH is HIGH when RAS goes LOW, then only DQs 1-8 will be masked. If WEL is HIGH and WEH is LOW when RAS goes LOW, then only DQs 9-16 will be masked.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

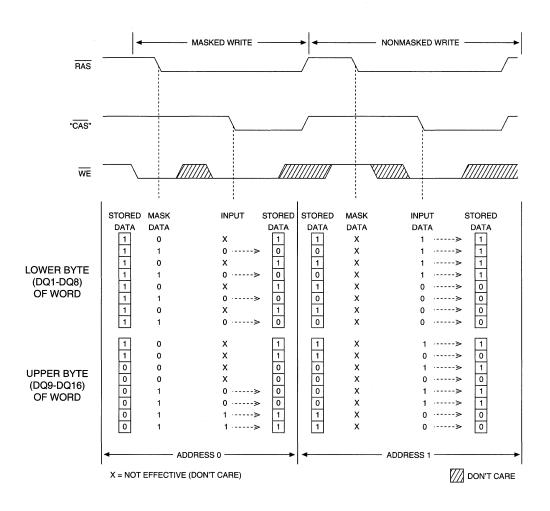


Figure 5 MT4C16259 L MASKED WRITE EXAMPLE

MT4C16256/7/8/9 L REV. 3/93

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16256/8 L

		RAS	CAS	WEL	WEH	OE	ADDRESSES			
FUNCTION	^t R						tC	DQs	NOTES	
Standby	н	H→X	Х	X	X	X	X	High-Z		
READ	L	L	Н	Н	L	ROW	COL	Data-Out		
WRITE: WORD (EARLY-WRITE)		L	L	L	L	X	ROW	COL	Data-In	3
WRITE: LOWER BYTE (EARLY)		L	L	in Lagar	н	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	3
WRITE: UPPER BYTE (EARLY)		L	L	Н	L	X	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	3
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 3
PAGE-MODE	1st Cycle	L	H→L	Н	н	L	ROW	COL	Data-Out	
READ	2nd Cycle	. L	H→L	Ĥ	Н	L	n/a	COL	Data-Out	
PAGE-MODE	1st Cycle	L	H→L	L	Laine	X	ROW	COL	Data-In	1, 3
WRITE	2nd Cycle	L	H→L	L	L	X	n/a	COL	Data-In	1, 3
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-In	1, 3
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 3
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	L	X	ROW	COL	Data-In	1, 2, 3
RAS-ONLY REFRESH		L	Н	H	н	X	ROW	n/a	High-Z	
CBR REFRES	H→L	L	X	X	X	X	X	High-Z		
BBU REFRES	H→L	L	X	X	X	X	X	High-Z		

NOTE: 1. These cycles may also be BYTE WRITE cycles (either WEL or WEH active).

2. EARLY-WRITE only.

3. Data-in will be dependent on the mask provided (MT4C16258 L only). Refer to Figure 4.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16257/9 L

						4,	ADDRI	SSES		
FUNCTION		RAS	CASL	CASH	WE	0E	^t R	ťC	DQs	NOTES
Standby		н	H→X	H→X	Х	Х	X	Х	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWEF	R BYTE	L	L	Н	н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY-WRITE		L	L	L	L	Х	ROW	COL	Data In	5
WRITE: LOWE BYTE (EARLY)		L	L	H a	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	5
WRITE: UPPEI BYTE (EARLY)	•	L	Н	L	L	X	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	5
READ-WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	X	ROW	COL	Data-In	1, 5
WRITE	2nd Cycle	L	H→L	H→L	L	X	n/a	COL	Data-In	1, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2, 5
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3, 5
RAS-ONLY REFRESH		L	Н	H ¹	х	Х	ROW	n/a	High-Z	
CBR REFRESH	-	H→L	L	L	Х	Х	X	Х	High-Z	4
BBU REFRESH	-	H→L	L	L	X	X	X	X	High-Z	4

WIDE DRAM

NOTE: 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).

2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).

3. EARLY-WRITE only.

4. Only one of the two CAS signals must be active (CASL or CASH).

5. Data-in will be dependent on the mask provided (MT4C16259 L only). Refer to Figure 5.

<

ĝ

Π

DRAN

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1V to +7V	I
Operating Temperature, TA (ambient) 0°C to +70°C	2
Storage Temperature (plastic)55°C to +150°C	2
Power Dissipation1W	V
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lou⊤ = -5mA)	Vон	2.4		V	
Output Low Voltage (lour = 4.2mA)	Vol		0.4	v	

			MAX			
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V$)	ICC2	200	200	200	μΑ	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	Іссз	190	170	150	mA	3, 4, 43
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	120	110	100	mA	3, 4, 43
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = V⊮: ^t RC = ^t RC [MIN])	Icc5	190	170	150	mA	3, 5, 43
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	Icc6	180	160	140	mA	3, 5
REFRESH CURRENT: BBU Average power supply current during BBU REFRESH: $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN) to 300ns; \overline{WE} , A0-A9 and DIN = Vcc - 0.2V (DIN may be left open), ${}^{t}RC = 125\mu s$ (512 rows at 125 $\mu s = 64ms$)	Icc7	300	300	300	μA	3, 5, 42

**60ns specifications may be limited to a Vcc range of ±5%.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

WIDE DRAM

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1	5	pF	2
Input Capacitance: RAS, CAS/(CASL,CASH), (WEL, WEH)/WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS			6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150			
READ-WRITE cycle time	^t RWC	150		175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	35		40		45		ns	35
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	85		95		100		ns	35
cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15, 33
Output Enable time	^t OE		15		20		20	ns	33
Access time from column-address	^t AA		30		35	1 C	40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	33
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	15		20		20		ns	40
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	39
CAS hold time	^t CSH	60		70		80		ns	32
CAS precharge time	^t CPN	10		10		10		ns	16, 36
CAS precharge time (PAGE-MODE)	^t CP	10		10		10		ns	36
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17, 31
CAS to RAS precharge time	^t CRP	10		10		10		ns	32
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column-	^t RAD	15	30	15	35	15	40	ns	18
address delay time								$\{ i_{i_1} \} \in \{ i_{i_1} \}$	
Column-address setup time	^t ASC	0		0		0	1	ns	31
Column-address hold time	^t CAH	10		15		15		ns	31
Column-address hold time	^t AR	50		55		60		ns	
(referenced to RAS)								estal aj	
Column-address to	^t RAL	30		35		40		ns	an shirt
RAS lead time							s dis de pe	an in the	1 Anna
Read command setup time	^t RCS	0		0		0		ns	26, 31
Read command hold time	^t RCH	0		0		0	i distante d	ns	19, 26 ,3
(referenced to CAS)	1.000								
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	3		3		3		ns	33

*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS)*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 29, 33
Output disable time	tOD	3	15	3	15	3	15	ns	29, 41
Write command setup time	tWCS	0		0	a the gate	0		ns	21, 26, 3
Write command hold time	^t WCH	10		10		10		ns	26, 40
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	26
Write command pulse width	tWP	10		10		10		ns	26
Write command to RAS lead time	^t RWL	15		20		20		ns	26
Write command to CAS lead time	^t CWL	15		20		20	1.00	ns	26, 32
Data-in setup time	^t DS	0		0		0		ns	22, 33
Data-in hold time	^t DH	10		15		15		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		7ns	
RAS to WE delay time	^t RWD	85		95		105		ns	21
Column-address to WE delay time	^t AWD	55		60		65		ns	21
CAS to WE delay time	^t CWD	40		45		45		ns	21, 31
Transition time (rise or fall)	tT	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		64		64		64	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10		ns	5, 31
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5, 32
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26, 27
WE hold time (MASKED WRITE)	^t WRH	10		15		15	1. 1. Sec. 1	ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	28
DE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
ast CAS going LOW to first CAS	^t CLCH	10		10		10		ns	34

*60ns specifications may be limited to a Vcc range of $\pm 5\%$.

MT4C16256/7/8/9 L

256K x 16 WIDE DRAM

NOTES

WIDE I

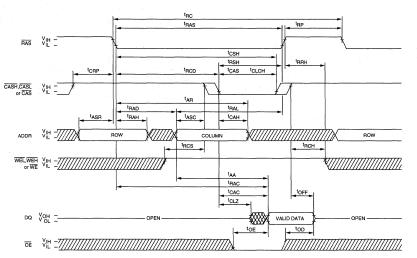
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 5. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIII and VIL (or between VIL and VIII) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, Vol. = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.*
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either WEL or WEH or both going LOW on the MT4C16256/8 L. Write command is defined as WE going LOW on the MT4C16257/9 L.
- 27. MT4C16258/9 L only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of the OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.

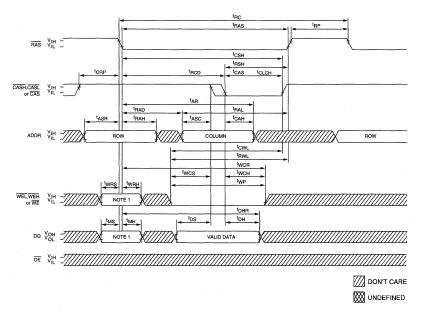
*The 3ns minimum is a parameter guaranteed by design.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

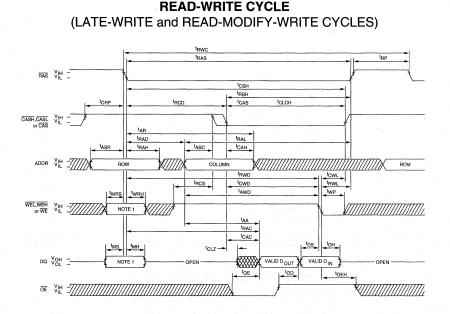
NOTES (continued)

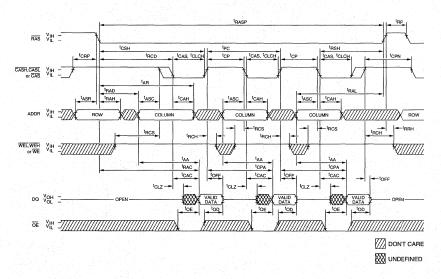

- 30. Notes 31 through 41 apply to MT4C16257/9 L only.
- 31. The first \overline{CASx} edge to transition LOW.
- 32. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input; DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 34. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- Last rising CASx edge to next cycle's last rising CASx edge.
- 36. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.

- 37. First DQs controlled by the first \overline{CASx} to go LOW.
- 38. Last DQs controlled by the last \overline{CASx} to go HIGH.
- 39. Each $\overline{CAS}x$ must meet minimum pulse width. 40. Last $\overline{CAS}x$ to go LOW.
- 41. All DQs controlled, regardless $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.
- BBU current is reduced as ^tRAS is reduced from its maximum specification during the BBU cycle.
- 43. Column-address changed once while $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.

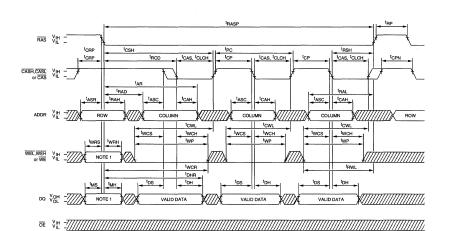

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

READ CYCLE

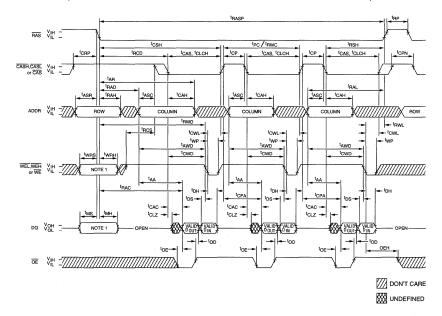

EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C16258 L and MT4C16259 L only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256L and MT4C16257 L are "don't care" at RAS time.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

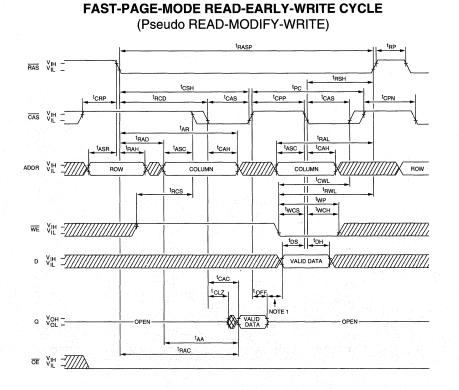

FAST-PAGE-MODE READ CYCLE

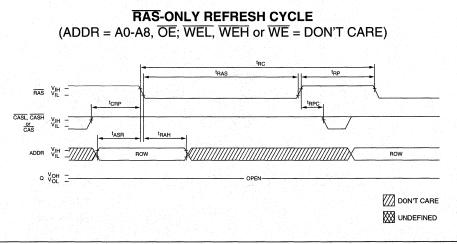
NOTE: 1. Applies to MT4C16258 L and MT4C16259 L only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 L and MT4C16257 L are "don't care" at RAS time.


MT4C16256/7/8/9 L 256K x 16 WIDE DRAM

BON

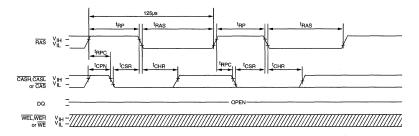
FAST-PAGE-MODE EARLY-WRITE CYCLE

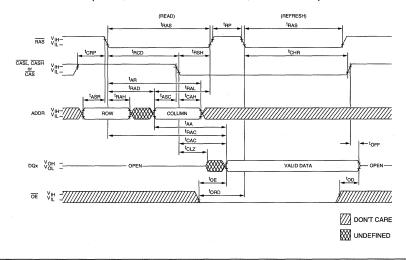

FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


NOTE: 1. Applies to MT4C16258 L and MT4C16259 L only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 L and MT4C16257 L are "don't care" at RAS time.

MT4C16256/7/8/9 L 256K x 16 WIDE DRAM


NOTE: 1. Do not drive data prior to High-Z; that is completion of ^tOFF. ^tCPP is equal to ^tOFF + ^tDS(MIN) + guardband between data-out and driving new data-in.




MICRON

BBU REFRESH CYCLE (A0-A8; OE = DON'T CARE)

HIDDEN REFRESH CYCLE²⁴ (WEL, WEH or WE = HIGH; \overline{OE} = LOW)

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

ZE WIDE DRAN

WIDE DRAM

256K x 16 DRAM

FAST-PAGE-MODE SELF REFRESH

SELF REFRESH, or "Sleep Me Industry-standard x16 pinout		PIN A	SSIGNMEN	IT (Top View)
and packages	s, uning, functions	40 Di	n SOJ	40-Pin ZIP
High-performance CMOS sili	con gato process			
		(SD	B-2)	(SDA-1)
Single +5V $\pm 10\%$ power supp			40 UVss	DQ9 1
Low power, 1mW standby; 50			40 U Vss 39 D DQ16	C 2 DQ10
All device pins are TTL-comp	patible	DQ2 E 3	38 DQ15	DQ11 3 4 DQ12
512-cycle refresh in 64ms (nir	e rows and nine	DQ3 E 4	37 DQ14	Vss 5 6 DQ13
columns)		DQ4 [] 5 Vcc [] 6	36 🛛 DQ13 35 🖵 Vss	DQ14 7 8 DQ15
Refresh modes: RAS-ONLY,	CAS-BEFORE-RAS (CBR)	DQ5 E 7	34 DQ12	DQ16 9 :::
HIDDEN, and BATTERY BA		DQ6 🛛 8	33 🛛 DQ11	Vcc 11 10 Vss
Optional FAST-PAGE-MODE		DQ7 [] 9 DQ8 [] 10	32 DQ10 31 DQ9	DQ2 13 12 DQ1
BYTE WRITE access cycle		NC E 11	30 D NC	DQ4 15 555
BYTE READ access cycle (MT	V(C16257/9 Souly)	*WEL/NC E 12	29 DNC/CASL*	DQ5 17 16 Vcc
		WEH/WE [13	28 1 CAS/CASH 27 1 OE	18 DO6
NONPERSISTENT MASKED	WRITE access cycle	RAS [] 14 NC [] 15	27 LI OE 26 LI A8	DQ7 19 20 DQ8
(MT4C16258/9 S only)		A0 [] 16	25 🖸 A7	NC 21 22 WEL/NC*
		A1 [] 17	24 🗅 A6	*WEH/WE 23 [===]
PTIONS	MARKING	A2 [] 18 A3 [] 19	23 🛛 A5 22 🗖 A4	NC 25 :::
Timing		Vcc E 20	21 D Vss	A1 27 ::: 26 A0
70ns access	-7	1 N. 1995 Total		A3 29 28 A2
80ns access	-8	40-Pin	TSOP	Vss 31 :::: 30 Vcc
	18 - 19 19 19 19 19 19 19 19 19 19 19 19 19	(SD	E-2)	A5 33 32 A4
Write Cycle Access	그는 양양 전망 관람이 많은 것이라. 같은		,	- 34 A6
BYTE or WORD via \overline{WE}	16256 S	Vcc III 1	44 🖽 Vss	A7 35 36 A8
(nonmaskable)		DQ1EE 2	43 DQ16	OE 37 38 CAS/CAS
BYTE or WORD via \overline{CAS}	16257 S	DQ2 3 DQ3 4	42 DQ15 41 DQ14	*NC/CASL 39 40 NC
(nonmaskable)			40 DDQ13	40 110
BYTE or WORD via \overline{WE}	16258 S	Vcc 6	39 🖽 Vss	
(maskable)		DQ500 7 DQ600 8	38 1 DQ12 37 DQ11	
BYTE or WORD via CAS	16259 S	DQ700 9	36 🖽 DQ10	
	16239 5	DQ800 10	35 🖽 DQ9	
(maskable)				
Packages		NCIII 13 *WEL/NCIII 14	32 III NC 31 III NC/CASL*	
Plastic SOJ (400 mil)	DJ	*WEH/WELL 15	30 CAS/CASH*	
Plastic TSOP (400 mil)	ŤĠ	RASLE 16		
Plastic ZIP (475 mil)	Ž	NCIII 17 A0III 18	28 HA8 27 HA7	
	승규님은 전통 것이 같은 것이 있는 것이 없는 것이 없다.	A1 🗔 19	26 🖽 A6	
Part Number Example: MT4	C16256DJ-7 S	A21 20 A31 21	25 田A5 24 田A4	
		Vcc 22	23 🖽 Vss	

The MT4C16256S and MT4C16257S function in the same manner except that WEL and WEH on MT4C16256 S and CASL and CASH on MT4C16257 S control the selection of byte WRITE access cycles. WEL and WEH function in an identical manner to WE in that either WEL or WEH will generate an internal WE. CASL and CASH function in an identical manner to \overline{CAS} in that either \overline{CASL} or \overline{CASH} will generate an internal CAS.

The MT4C16256/7/8/9 S are randomly accessed solid-

state memories containing 4,194,304 bits organized in a x16

configuration. The MT4C16256 S and MT4C16258 S have both BYTE WRITE and WORD WRITE access cycles via two

write enable pins. The MT4C16257S and MT4C16259S have

both BYTE WRITE and WORD WRITE access cycles via two

CAS pins. The MT4C16258 S and MT4C16259 S are also able

to perform WRITE-PER-BIT accesses.

MICRON


MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

The MT4C16256 S \overline{WE} function and timing are determined by the first \overline{WE} (\overline{WEL} or \overline{WEH}) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. \overline{WEL} transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and \overline{WEH} transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16257 S \overline{CAS} function and timing are determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH})to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. \overline{CASL} transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner during READ cycles for the MT4C16257 S.

The MT4C16258 S and MT4C16259 S function in the same manner as MT4C16256 S and MT4C16257 S, respectively; they have NONPERSISTENT MASKED WRITE cycle capabilities. This option allows the MT4C16258 S and MT4C16259 S to operate with either normal WRITE cycles or with NONPERSISTENT MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM

NEW

PIN DESCRIPTIONS

SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	TYPE	DESCRIPTION
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	16.00 10 10.00 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10 10 10 10 10 10 10 10 10 10 1	24	RAS	Input	Row-Address Strobe: \overline{RAS} is used to latch in the 9 row-address bits and strobe the \overline{WE} and DQs on the MASKED WRITE option (MT4C16258 S and MT4C16259 S only).
28	30	38	CAS/ CASH	Input	Column-Address Strobe: CAS (MT4C16256/8 S) is used to latch-in the 9 column-address bits and enable the DRAM output buffers, and strobe the data inputs on WRITE cycles. CAS controls DQ1 through DQ16.
					Column-Address Strobe Upper Byte: CASH (MT4C16257/9 S) is the CAS control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high impedance) state during either a READ or a WRITE access cycle.
27	29	37	ŌĒ	Input	Output Enable: $\overline{\text{OE}}$ enables the output buffers when taken LOW during a READ access cycle. RAS and CAS (MT4C16256/8 S) or CASL / CASH (MT4C16257/9 S) must be LOW and $\overline{\text{WEL}}$ / $\overline{\text{WEH}}$ (MT4C16256/8 S) or $\overline{\text{WE}}$ (MT4C16257/9 S) must be HIGH before $\overline{\text{OE}}$ will control the output buffers. Otherwise, the output buffers are in a High-Z state.
13	15	23	WEH/WE	Input	Write Enable Upper Byte: WEH (MT4C16256/8 S) is WE control for the DQ9 through DQ16 inputs. If WE or WEH is LOW, the access is a WRITE cycle. If either WE or WEH is LOW at RAS time on MT4C16258 S, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
					Write Enable: $\overline{\text{WE}}$ (MT4C16257/9 S) controls DQ1 through DQ16inputs. If $\overline{\text{WE}}$ is LOW, the access is a WRITE cycle. The MT4C16258/9 S also use $\overline{\text{WE}}$ to enable the mask register during $\overline{\text{RAS}}$ time.
12	14	22	WEDNC	Input	Write Enable Lower Byte: WEL (MT4C16256/8 S) is the WE control for DQ1 through DQ8 inputs. If WEL is LOW, the access is a WRITE cycle. If WEL is LOW at RAS time on MT4C16258 S, then it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
29	31	39	NC/CASL	Input	Column-Address Strobe Lower Byte: CASL (MT4C16257/9S) is the CAS control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a High-Z state during either a READ or a WRITE access cycle.
16-19, 22-26	18-21, 24-28	26-29, 32-36	A0-A8	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS (or CASL / CASH) to select one 16-bit word (or 8-bit byte) out of the 256K available words.

PIN DESCRIPTIONS (continued)

×	SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	TYPE	DESCRIPTION
WIDE DRAN	2-5, 7-10, 31-34, 36-39	2-5, 7-10, 35-38, 40-43	12-15, 17-20, 1-4, 6-9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL / WEH (MT4C16256/8 S) or CASL / CASH (MT4C16257/8 S) to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All sixteen I/Os are active for READ cycles (MT4C16256/8 S). The MT4C16257/9 S allow for BYTE READ cycles.
5	11, 15, 30	13, 17	21, 25, 40	NC	і на - 11 ст	No Connect: These pins should be either left unconnected or tied to ground.
	1, 6, 20	1, 6, 22	11, 16, 30	Vcc	Supply	Power Supply: +5V ±10%
	21, 35, 40	23, 39, 44	5, 10, 31	Vss	Supply	Ground

MT4C16256/7/8/9 S

256K x 16 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overrightarrow{RAS} is used to latch the first 9 bits and \overrightarrow{CAS} the latter 9 bits.

The \overline{CAS} control also determines whether the cycle will be a refresh cycle (\overline{RAS} -ONLY) or an active cycle (\overline{READ} , WRITE or READ-WRITE) once \overline{RAS} goes LOW. Both the MT4C16256 S and MT4C16258 S have one \overline{CAS} control while the MT4C16257 S and MT4C16259 S have two, \overline{CASL} and \overline{CASH} .

The $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ inputs internally generate a $\overline{\text{CAS}}$ signal functioning in an identical manner to the single $\overline{\text{CAS}}$ input on the other 256K x 16 DRAMs. The key difference is that each $\overline{\text{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\text{OE}}$ and $\overline{\text{WE}}$). $\overline{\text{CASL}}$ controls DQ1 through DQ8 and $\overline{\text{CASH}}$ controls DQ9 through DQ16.

The MT4C16257 S and MT4C16259 S \overline{CAS} function is determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition LOW and the last one to transition back HIGH. The two \overline{CAS} controls give the MT4C16257 S and MT4C16259 S both byte READ and byte WRITE cycle capabilities.

READ or WRITE cycles on the MT4C16257 S or MT4C16259 S are selected with the $\overline{\text{WE}}$ input while either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ perform the $\overline{\text{WE}}$ on the MT4C16256 S or MT4C16258 S. The MT4C16256 S and MT4C16258 S $\overline{\text{WE}}$ function is determined by the first BYTE WRITE ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and the last one to transition back HIGH.

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by \overrightarrow{OE} , \overrightarrow{WEL} and \overrightarrow{WEH} (MT4C16256 S and MT4C16258 S) or \overrightarrow{WE} (MT4C16257 S and MT4C16259 S).

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobedin by \overline{CAS} . \overline{CAS} may be toggled by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST-PAGE-MODE operation. Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 64ms, regardless of sequence. Only one of the CAS signals (CASL or CASH) is required to transition LOW in order to perform a CBR REFRESH cycle. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BBU is a CBR REFRESH performed at the extended refresh rate with CMOS input levels. This mode provides a very low-current, data-retention cycle. RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

SELF REFRESH is similar to BBU except that the DRAM provides its own internal clocking during sleep mode. Thus, an external clock is not required, which provides additional power savings and design ease. The DRAM's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding both RAS and CAS LOW for a specified period. The industry standard for this value is 100µs minimum (¹RASS). The DRAM will remain in the SELF REFRESH mode while RAS and CAS remain LOW. Once CAS has been held LOW for 600µs (¹CHD), CAS is no longer required to remain LOW and becomes a "don't care" until ¹CHS, at which time CAS must be either HIGH or LOW.

The SELF REFRESH mode is terminated by taking RAS HIGH for the time minimum of an operation cycle, typically 200ns (^tRPS). Once the SELF REFRESH mode has been terminated, accesses to the DRAM can begin immediately, as long as the system uses distributed CBR REFRESH as the standard refresh. The first CBR pulse should occur within the time of the EXTERNAL REFRESH rate prior to active use of the DRAM to ensure maximum data integrity and must be executed within three EXTERNAL REFRESH rate periods. The EXTERNAL REFRESH rate is typically 125µs per row-address. This immediate access is possible because Micron employs a distributed CBR SELF REFRESH scheme internally.

The alternative approach when exiting SELF REFRESH mode is to perform a refresh of all rows within the time of the EXTERNAL REFRESH rate prior to active use of the DRAM. This burst must be done because anything other than distributed CBR REFRESH is used as the standard refresh. Once this burst has been completed, the DRAM may be used in the functional mode with burst or distributed refreshes such as CBR or \overline{RAS} -ONLY.

MICRON. SEMICONDUCTOR, INC.

Micron's devices allow you to access the DRAM as soon as SELF REFRESH is exited, while other manufacturers' devices may require a full burst when exiting, regardless of the type of refresh used. To prevent possible compatibility problems, you may want to design the controller to perform the burst when exiting SELF REFRESH.

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ or $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$. Enabling $\overline{\text{WEL}}/\overline{\text{CASL}}$ will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling $\overline{\text{WEH}}$ or $\overline{\text{CASH}}$ will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ or $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ selects a WORD WRITE cycle.

The MT4C16256 S, MT4C16257 S, MT4C16258 S and MT4C16259 S can be viewed as two 256K x 8 DRAMS which have common input controls, with the exception of the WE or the CAS inputs. Figure 1 illustrates the MT4C16256 S BYTE WRITE and WORD WRITE cycles and Figure 2 illustrates the MT4C16257 S BYTE WRITE and WORD WRITE cycles.

The MT4C16257 S also has BYTE READ and WORD READ cycles, since it uses two CAS inputs to control its byte accesses. Figure 3 illustrates the MT4C16257 S BYTE READ and WORD READ cycles.

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

MASKED WRITE ACCESS CYCLE (MT4C16258/9 S Only)

The MASKED WRITE mode control input selects normal WRITE access or MASKED WRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C16256 S and MT4C16257 S do not have the MASKED WRITE cycle function.

The mask data present on the DQ1-DQ16 inputs at \overline{RAS} time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At \overline{CAS} time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a NONPER-SISTENT MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 4 illustrates the MT4C16258 S MASKED WRITE operation and Figure 5 illustrates the MT4C16259 S MASKED WRITE operation.

ZE

5

WIDE DRAM

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

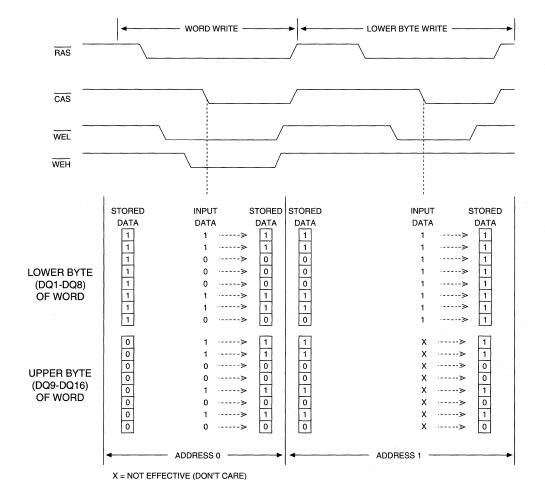


Figure 1 MT4C16256/8 S WORD AND BYTE WRITE EXAMPLE

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

MICRON

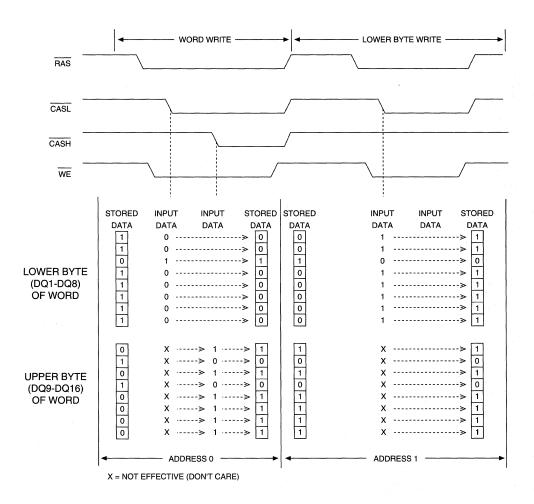


Figure 2 MT4C16257/9 S WORD AND BYTE WRITE EXAMPLE

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

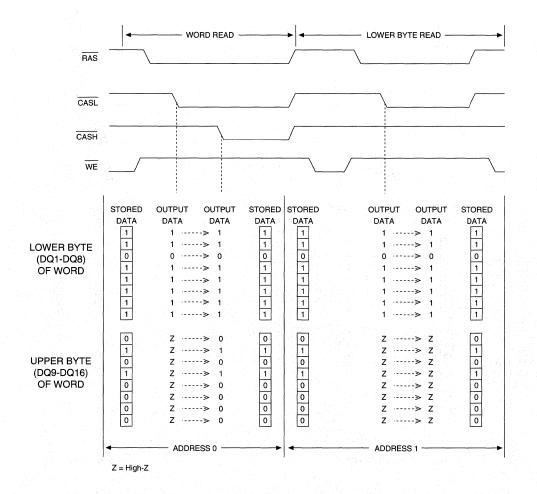


Figure 3 MT4C16257/9 S WORD AND BYTE READ EXAMPLE

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

MICRON

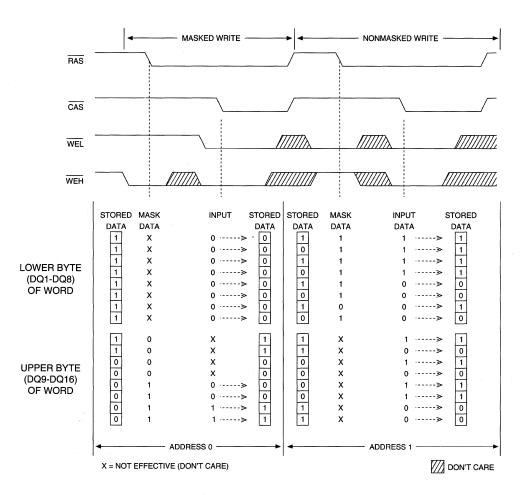


Figure 4 MT4C16258 S MASKED WRITE EXAMPLE

NOTE: If WEL is LOW and WEH is HIGH when RAS goes LOW, then only DQs 1-8 will be masked. If WEL is HIGH and WEH is LOW when RAS goes LOW, then only DQs 9-16 will be masked.

NEW

WIDE DRAM

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

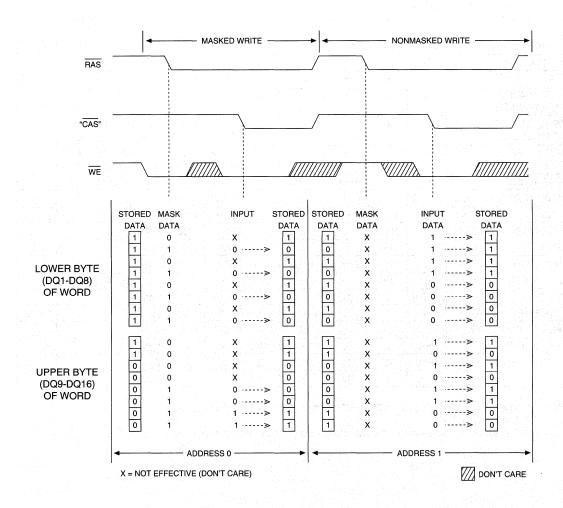


Figure 5 MT4C16259 S MASKED WRITE EXAMPLE

RON

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16256/8 S

							ADDRI	ESSES		
FUNCTION		RAS	CAS	WEL	WEH	ŌE	^t R	ťC	DQs	NOTES
Standby		Н	H→X	X	Х	X	X	Х	High-Z	
READ	<i></i>	L	L	Н	н	L	ROW	COL	Data-Out	
WRITE: WORD (EARLY-WRIT		L	L	L	L	X	ROW	COL	Data-In	3
WRITE: LOWE BYTE (EARLY)		. L	L	L	Н	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	3
WRITE: UPPE BYTE (EARLY)		L	L	н	L	X	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	3
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 3
PAGE-MODE	1st Cycle	L	H→L	Н	н	L	ROW	COL	Data-Out	
READ	2nd Cycle	L	H→L	Н	Н	L	n/a	COL	Data-Out	
PAGE-MODE	1st Cycle	Ľ	H→L	L	L	X	ROW	COL	Data-In	1, 3
WRITE	2nd Cycle	L	H→L	L	L	X	n/a	COL	Data-In	1, 3
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-In	1, 3
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 3
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	L	X	ROW	COL	Data-In	1, 2, 3
RAS-ONLY RE	RAS-ONLY REFRESH		н	X	X	X	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	Х	Х	Х	X	Х	High-Z	
BBU REFRESH	-	H→L	L	X	X	Х	X	Х	High-Z	
SELF REFRES	SН	H→L	L	Х	Х	X	X	Х	High-Z	

NOTE: 1. These cycles may also be BYTE WRITE cycles (either WEL or WEH active).

2. EARLY-WRITE only.

3. Data-in will be dependent on the mask provided (MT4C16258 S only). Refer to Figure 4.

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16257/9 S

				the product			ADDR	ESSES		
FUNCTION		RAS	CASL	CASH	WE	OE	^t R	^t C	DQs	NOTES
Standby		H	H→X	H→X	X	X	X	Х	High-Z	and a
READ: WORD		L	L	L	Н	L	ROW	COL	Data Out	
READ: LOWER BYTE		ana La	Laine Statistics	H	H	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPEF	BYTE	L	H	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY-WRIT		L	L	L	L	X	ROW	COL	Data-In	5
WRITE: LOWER BYTE (EARLY)		L	L	Н	L	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	5
WRITE: UPPER BYTE (EARLY)		L	Н	L	L	x	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	5
READ-WRITE		L	L	as iL	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
PAGE-MODE	1st Cycle	$\lim_{n\to\infty} L^{\infty}(\mu^{n})$	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	X	ROW	COL	Data-In	1, 5
WRITE	2nd Cycle	L	H→L	H→L	L	X	n/a	COL	Data-In	1, 5
PAGE-MODE	1st Cycle	L de	H→L	H→L	' H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2, 5
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	X	ROW	COL	Data-In	1, 3, 5
RAS-ONLY REFRESH		L	Н	Н	X	X	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	L	Х	X	X	X	High-Z	4
BBU REFRES	4	H→L	L	Н	X	X	X	X	High-Z	4
SELF REFRES	SH	H→L	L	Н	Х	X	X	X	High-Z	

NOTE: 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).

2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).

3. EARLY-WRITE only.

4. Only one of the two CAS must be active (CASL or CASH).

5. Data-in will be dependent on the mask provided (MT4C16259 S only). Refer to Figure 5.

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

PRELIMINARY

Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1V to	+7V
Operating Temperature, T _A (ambient)	70°C
Storage Temperature (plastic)55°C to +15	50°C
Power Dissipation	.1W
Short Circuit Output Current)mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	i li	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (lour = 4.2mÅ)	Vol		0.4	v	

		M	AX		
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	mA	
STANDBY CURRENT: (CMOS) ($\overline{RAS} = \overline{CAS} = Vcc - 0.2V$)	ICC2	200	200	uA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	Іссз	170	150	mA	3, 4, 43
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	110	100	mA	3, 4, 43
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC [MIN])	Icc5	170	150	mA	3, 5, 43
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	ICC6	160	140	mA	3, 5
REFRESH CURRENT: BBU Average power supply current during BBU REFRESH: $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN) to 300ns; \overline{WE} , A0-A8 and DIN = Vcc - 0.2V (DIN may be left open); ${}^{t}RC = 125\mu s$ (512 rows at 125 $\mu s = 64m s$)	ICC7	300	300	μΑ	3, 5,42
REFRESH CURRENT: SELF Average power supply current during SELF REFRESH: CBR cycle with RAS \geq tRASS (MIN) and CAS held LOW; WE = Vcc - 0.2V; A0-A8 and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lccs	400	400	μΑ	5

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Ci1	5	pF	2
Input Capacitance: RAS, CAS/(CASL,CASH), (WEL, WEH)/ WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		ns	
READ-WRITE cycle time	tRWC	175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		ns	35
cycle time					1		
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		ns	35
cycle time							
Access time from RAS	^t RAC	1.	70	л	80	ns	14
Access time from CAS	^t CAC		20		20	ns	15, 33
Output Enable time	tOE		20	. ().	20	ns	33
Access time from column-address	tAA		35		40	ns	1
Access time from CAS precharge	^t CPA		40		45	ns	33
RAS pulse width	^t RAS	70	100,000	80	100,000	ns	1.1
RAS pulse width (PAGE-MODE)	tRASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		20		ns	40
RAS precharge time	tRP	50		60		ns	1
CAS pulse width	^t CAS	20	100,000	20	100,000	ns	39
CAS hold time	^t CSH	70		80		ns	32
CAS precharge time	^t CPN	10		10	1.1.1	ns	16, 36
CAS precharge time (PAGE-MODE)	^t CP	10		10		ns	36
RAS to CAS delay time	tRCD	20	50	20	60	ns	17, 31
CAS to RAS precharge time	^t CRP	10		10		ns	32
Row-address setup time	tASR	0		0		ns	1.1.1.1.1.1.1.1
Row-address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time							
Column-address setup time	tASC	0		0		ns	31
Column-address hold time	^t CAH	15		15		ns	31
Column-address hold time	tAR	55		60		ns	
(referenced to RAS)							
Column-address to	^t RAL	35		40		ns	1980 <u>- 19</u>
RAS lead time							
Read command setup time	tRCS	0		0		ns	26, 31
Read command hold time	^t RCH	0		0		ns	19, 26, 32
(referenced to CAS)							
Read command hold time	^t RRH	0		0		ns	19
(referenced to RAS)					14 - L		
CAS to output in Low-Z	^t CLZ	3		3		ns	33

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS	-7 -8		-7 -8		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	tOFF	3	15	3	15	ns	20, 29, 33
Output disable time	tOD	3	15	3	15	ns	29, 41
Write command setup time	tWCS	0		0		ns	21, 26, 31
Write command hold time	tWCH	10		10		ns	26, 40
Write command hold time (referenced to RAS)	tWCR	55	i tarif Tari	60		ns	26
Write command pulse width	tWP	10		10		ns	26
Write command to RAS lead time	^t RWL	20		20	1.1	ns	26
Write command to CAS lead time	tCWL	20		20		ns	26, 32
Data-in setup time	^t DS	0		0		ns	22, 33
Data-in hold time	^t DH	15		15		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	55		60		ns	
RAS to WE delay time	tRWD	95		105		ns	21
Column-address to WE delay time	^t AWD	60		65		ns	21
CAS to WE delay time	tCWD	45		45		ns	21, 31
Transition time (rise or fall)	tŢ	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		64		64	ms	28
RAS to CAS precharge time	tRPC	0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5, 31
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5, 32
MASKED WRITE command to RAS	tWRS	0		0		ns	26, 27
WE hold time (MASKED WRITE and CBR REFRESH)	tWRH	15		15		ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	20		20		ns	28
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns	
Last CAS going LOW to first CAS to return HIGH	tCLCH	10		10		ns	34
RAS pulse width during SELF REFRESH cycle	^t RASS	100		100		us	44
RAS precharge time during SELF REFRESH cycle	[†] RPS	150		150		ns	44
CAS hold time during SELF REFRESH cycle	^t CHS	-70		-70		ns	44
CAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	600		600		us	29

WIDE DRAN

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VII and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

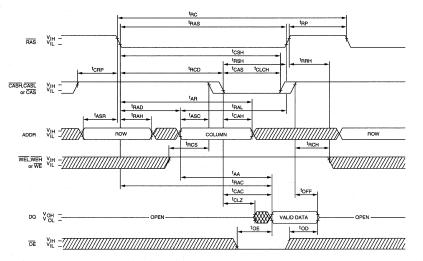
- 20. 'OFF (MAX) defines the time at which the output achieves the open circuit condition; is it not a reference to VOH or VOL.*
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either WEL or WEH or both going LOW on the MT4C16256/8 S. Write command is defined as WE going LOW on the MT4C16257/9 S.
- 27. MT4C16258/9 S only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of the OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.

^{*}The 3ns minimum is a parameter guaranteed by design.

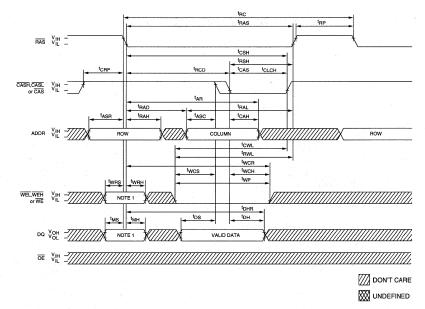
MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

NOTES (continued)

- 30. Notes 31 through 41 apply to MT4C16257/9 S only.
- 31. The first \overline{CASx} edge to transition LOW.
- 32. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 34. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 35. Last rising CASx edge to next cycle's last rising CASx edge.
- 36. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.
- 37. First DQs controlled by the first \overline{CASx} to go LOW.
- 38. Last DQs controlled by the last CASx to go HIGH.
- 39. Each \overline{CASx} must meet minimum pulse width.
- 40. Last \overline{CASx} to go LOW.

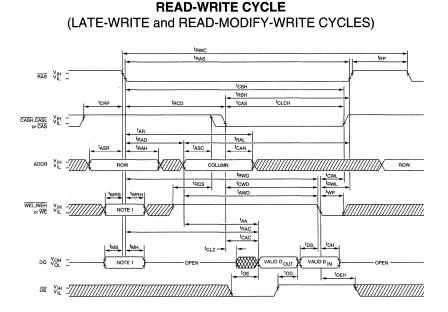

- 41. All DQs controlled, regardless \overline{CASL} and \overline{CASH} .
- 42. BBU current is reduced as ^tRAS is reduced from its maximum specification during BBU cycle.
- 43. Column-address changed once while $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.
- 44. When exiting the SELF REFRESH mode, one CBR REFRESH must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.

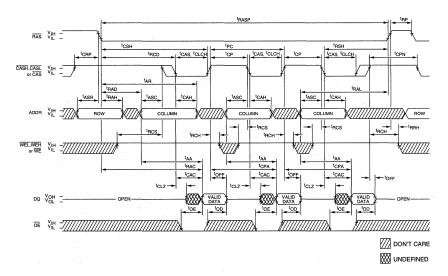
NEW


WIDE DRAM

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

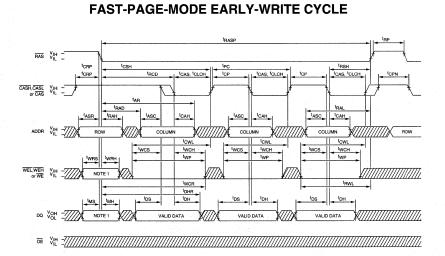
READ CYCLE

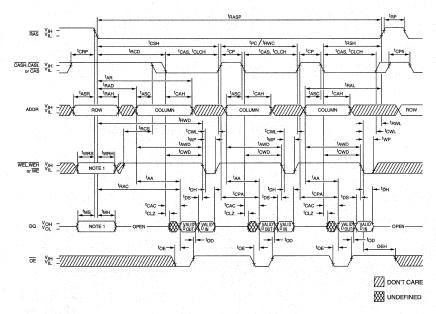

EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C16258 S and MT4C16259 S only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 S and MT4C16257 S are "don't care" at RAS time.

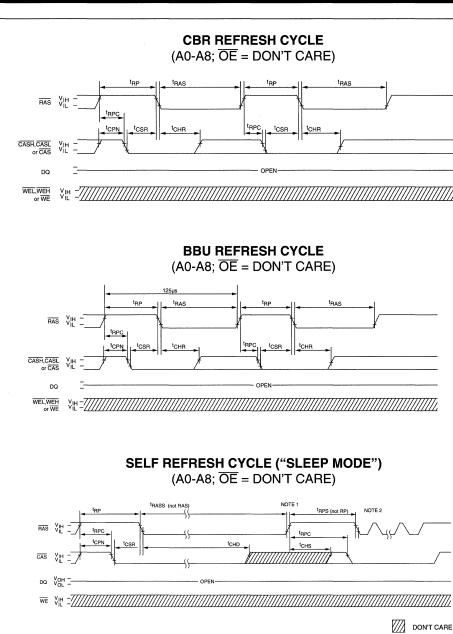
MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

MICRON


FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C16258 S and MT4C16259 S only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 S and MT4C16257 S are "don't care" at RAS time.

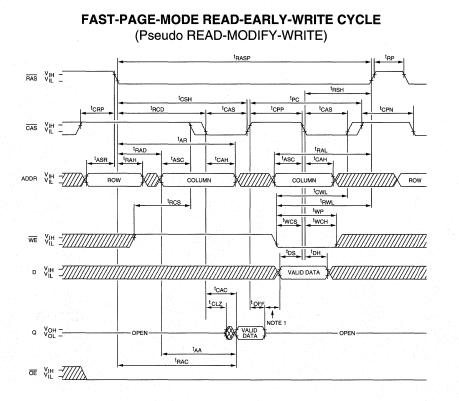
MT4C16256/7/8/9 S 256K x 16 WIDE DRAM


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

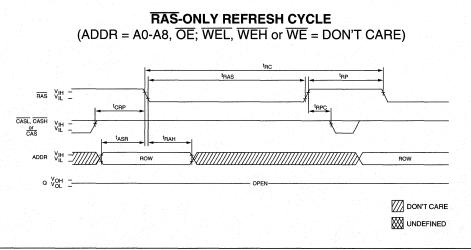
NOTE: 1. Applies to MT4C16258 S and MT4C16259 S only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WEL, WEH and DQ inputs on MT4C16256 S and MT4C16257 S are "don't care" at RAS time.

NEW

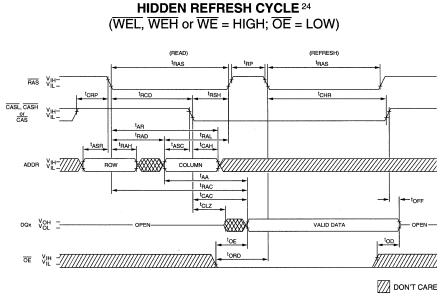
MT4C16256/7/8/9 S 256K x 16 WIDE DRAM


NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

MICHON


NEW

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM


NOTE: 1. Do not drive data prior to High-Z; that is completion of ¹OFF. ¹CPP is equal to ¹OFF + ¹DS(MIN) + guardband between data-out and driving new data-in.

MT4C16256/7/8/9 S 256K x 16 WIDE DRAM

MICRON

ADVANCE

NEW

WIDE DRAM

MT4C16270/1 256K x 16 WIDE DRAM

WIDE DRAM

256K x 16 DRAM

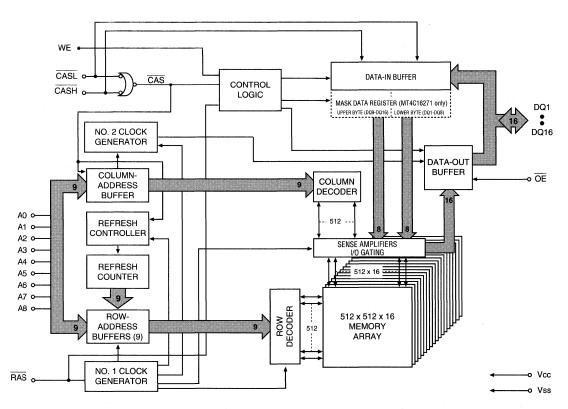
FAST-PAGE-MODE WITH EXTENDED DATA-OUT

FEATURES			
• Industry-standard x16 pino	uts, timing, functions	PIN ASSIG	NMENT (Top View)
and packages	licon coto nucesos	40-Pin SO	40-Pin ZII
High-performance CMOS si			
• Single +5V ±10% power sup		(SDB-2)	(SDA-2)
 Low power, 3mW standby; 		V∞ [1 40]	Vss DQ9 1
 All device pins are TTL-com 		DQ1 [2 39]	V00
 512-cycle refresh in 8ms (nin 		DQ2 [3 38]	DQ15 ct 4 D
 Refresh modes: RAS-ONLY 	,CAS-BEFRORE-RAS(CBR)	DQ3 [] 4 37 [] DQ4 [] 5 36 []	
and HIDDEN			Vss ci 8 Do
 Optional FAST-PAGE-MOL 	DE with EXTENDED	DQ5 [7 34] DQ6 [8 33]	-10 Ve
DATA-OUT access cycle		DQ7 [9 32]	DQ10 DQ20 10 12 D
BYTE WRITE access cycle		DQ8 [10 31] NC [11 30]	-11 D
BYTE READ access cycle		NC [12 29]	CASE DOS 17 16 Vo
 NONPERSISTENT MASKE 	D WRITE access cycle	WE 13 28 RAS 14 27 1	
(MT4C16271 only)	D WHILE access cycle	NC [15 26]	A8
(W114C10271 Only)		A0 0 16 25 0 A1 0 17 24 0	
OPTIONS	MARKING	A1 L 1/ 24 L A2 L 18 23 L	A5 C1 24 B
그 가지, 그의 그 아이지 않는 것 같아. 이 것 같아.	MILINA NO	A3 [19 22]	
• Timing	이 사람들을 했다. 그는 가장을 했다.	Vcc [20]	28 A
70ns access	-7	40-Pin TSO	A3 29 30 Vo
80ns access	-8		CCT 32 A
Write Cycle Access		(SDE-2)	A5 33 34 A6
BYTE or WORD via \overline{CAS}	16270		A7 35 36 A8
	10270		TDQ16
(nonmaskable)	1.007		DQ15 CASL 39 40 N
BYTE or WORD via \overline{CAS}	16271	DQ400 5 40 0	JDQ13
(maskable)		Vcc C 6 39 1 DQ5 7 38 1	⊒Vss ∃DQ12
Packages		DQ600 8 37 1	JDQ11
Plastic SOJ (400 mil)	ות	DQ70 9 36 DQ80 10 35	IDQ10 IDQ9
	DJ		
Plastic TSOP (400 mil)	TG	NC 13 32 1	
Plastic ZIP (475 mil)	Z		JCASL JCASH
• Part Number Example: MT	4C16270DL-7	RASC 16 29 1 NCC 17 28 1	
Turt Number Example. WI	10102/0100 /	A000 18 27 0	Ja7
		A1 19 26 1 A2 20 25 1	
		A300 21 24 0	JA4
		Vcc□□ <u>22</u> 23	JVSS Armanastration (1917) (Armanastration (1917)

40-Pin ZIP J (SDA-2) DQ9 1 :::: Vss - 2 DQ10 DQ16 3 D011 DQ15 - 4 DQ12 Vss 5 6 DQ12 DQ14 7 8 DQ15 DQ16 9 10 Vss Vcc 11 11 DQ1 DQ14 DQ13 Vss DQ12 DQ11 DQ10 12 DQ1 DQ2 13 DQ9 C 14 DO3 NC DQ4 15 CASL - 16 Vcc DQ5 17 CASH - 18 DQ6 ŌĒ DQ7 19 A8 --- 20 DQ8 NC 21 20 DQ8 WE 23 22 NC NC 25 22 24 RAS NC 25 22 26 A0 A1 27 22 8 A2 A7 A6 A5 A4 Vss 28 A2 A3 29 P(30 Vcc Vss 31 === Vss 31 cm 32 A4 A5 33 cm 32 A4 A7 35 cm 34 A6 OE 37 cm 36 A8 OE 37 cm 36 A8 CASL 39 cm 40 NO ⊒Vss IDQ16 CASL 39 TDQ15 - 40 NC IDQ14 IDQ13 ⊒Vss TDQ12 TD011 DQ10 TICASI TICASH TOE

GENERAL DESCRIPTION

The MT4C16270/1 are randomly accessed solid-state memories containing 4,194,304 bits organized in a x16 configuration. The MT4C16270 and MT4C16271 have both BYTE WRITE and WORD WRITE access cycles via two CAS pins. The MT4C16271 is also able to perform WRITE-PER-BIT accesses.


Both the MT4C16270 and MT4C16271 offer an accelerated FAST-PAGE-MODE cycle through a feature called EXTENDED DATA-OUT.

The MT4CMT4C16270/1 CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and by the last to transition back HIGH. CASL and CASH function in an identical manner to CAS in that either CASL or CASH will generate an internal CAS. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE

MT4C16270/1 256K x 16 WIDE DRAM

cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner. The MT4C16271 functions in the same manner as MT4C16270; it has NONPERSISTENT MASKED WRITE cycle capabilities. This option allows the MT4C216271 to operate with either normal WRITE cycles or with NON-PERSISTENT MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1993, Micron Semiconductor, Inc.

MT4C16270/1 256K x 16 WIDE DRAM

NEW

WIDE DRAM

PIN DESCRIPTIONS

SOJ PINS	TSOP PINS	ZIP PINS	SYMBOL	ТҮРЕ	DESCRIPTION
14	16	24	RAS	Input	Row-Address Strobe: \overline{RAS} is used to latch in the 9 row-address bits and strobe the \overline{WE} and DQs on the MASKED WRITE option (MT4C16271only).
28	30	38	CASH	Input	Column-Address Strobe Upper Byte: \overrightarrow{CASH} is the \overrightarrow{CAS} control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high impedance) state during a WRITE access cycle.
27	29	37	ŌĒ	Input	Output Enable: \overline{OE} enables the output buffers when taken LOW during a READ access cycle. RAS and \overline{CASL} / \overline{CASH} must be LOW and \overline{WE} must be HIGH before \overline{OE} will control the output buffers. Otherwise, the output buffers are in a High-Z state.
13	15	23	WE	Input	Write Enable: $\overline{\text{WE}}$ controls DQ1 through DQ16 inputs. If $\overline{\text{WE}}$ is LOW, the access is a WRITE cycle. The MT4C16271 also uses $\overline{\text{WE}}$ to enable the mask register during RAS time.
29	31	39	CASL	Input	Column-Address Strobe Low Byte: \overrightarrow{CASL} is the \overrightarrow{CAS} control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a High-Z state during a WRITE access cycle.
16-19, 22-26	18-21, 24-28	26-29, 32-36	A0-A8	Input	Address Inputs: These inputs are multiplexed and clocked by \overrightarrow{RAS} and $\overrightarrow{CASL}/\overrightarrow{CASH}$ to select one 16-bit word (or 8-bit byte) out of the 256K available words.
2-5, 7-10, 31-34, 36-39	2-5, 7-10, 35-38, 40-43	12-15, 17-20, 1-4, 6-9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using CASL / CASH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. The MT4C16270/1 allow for BYTE READ cycles.
11, 12, 15, 30	13, 14, 17, 32	21, 22, 25, 40	NC		No Connect: These pins should be either left unconnected or tied to ground.
1, 6, 20	1, 6, 22	11, 16, 30	Vcc	Supply	Power Supply: +5V ±10%
21, 35, 40	23, 39, 44	5, 10, 31	Vss	Supply	Ground

MT4C16270/1

256K x 16 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter nine bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ -ONLY) or an active cycle ($\overline{\text{READ}}$, WRITE or READ-WRITE) once $\overline{\text{RAS}}$ goes LOW. Both the MT4C16270 and MT4C16271 have two $\overline{\text{CAS}}$ controls, $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

The $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ inputs internally generate a $\overline{\text{CAS}}$ signal functioning in an identical manner to the single $\overline{\text{CAS}}$ input on the other 256K x 16 DRAMs. The key difference is that each $\overline{\text{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\text{OE}}$ and $\overline{\text{WE}}$ and $\overline{\text{RAS}}$). $\overline{\text{CASL}}$ controls DQ1 through DQ8 and $\overline{\text{CASH}}$ controls DQ9 through DQ16.

The MT4C16270/1 \overline{CAS} function is determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition LOW and the last one to transition back HIGH. The two \overline{CAS} controls give the MT4C16270/1 both byte READ and byte WRITE cycle capabilities.

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by $\overline{\text{OE}}$, $\overline{\text{WE}}$ and $\overline{\text{RAS}}$.

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by \overline{CAS} . \overline{CAS} may be toggled by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

EXTENDED DATA-OUT

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . If \overline{CAS} goes HIGH, and OE is LOW (active), the output buffers will be disabled. The MT4C16270/1 offer an accelerated FAST-PAGE-MODE cycle by eliminating output disable from \overline{CAS} HIGH. This option is called EXTENDED DATA-OUT and it allows CAS precharge time (^tCP) to occur without the output data going invalid (see READ and FAST-PAGE-MODE READ waveforms).

EXTENDED DATA-OUT operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after CAS goes HIGH, as long as RAS is LOW. If the DQ outputs are wire OR'd, OE must be used to disable idle banks of DRAMs. During cycles other than PAGE-MODE READ, the outputs are disabled at ^tOFF time after RAS and CAS are HIGH. The ^tOFF time is referenced from the rising edge of RAS or CAS, whichever occurs last.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4C16270/1 can be viewed as two 256K x 8 DRAMS which have common input controls. Figure 1 illustrates the MT4C16270 BYTE WRITE and WORD WRITE cycles.

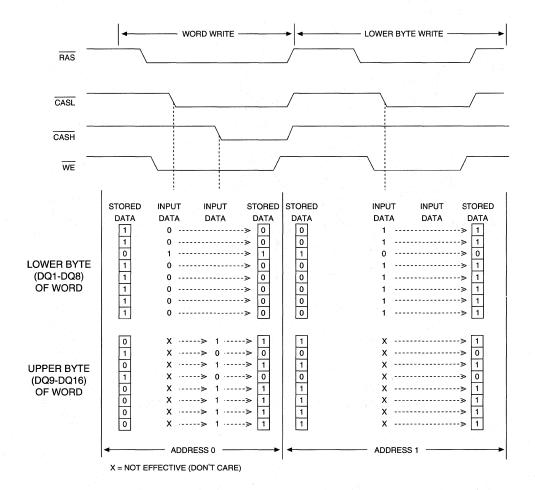
The MT4C16270/1 also has BYTE READ and WORD READ cycles, since it uses two CAS inputs to control its byte accesses. Figure 2 illustrates the MT4C16270 BYTE READ and WORD READ cycles.

MASKED WRITE ACCESS CYCLE (MT4C16271 only)

The MASKED WRITE mode control input selects normal WRITE access or MASKED WRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C216270 does not have the MASKED WRITE cycle function.

The mask data present on the DQ1-DQ16 inputs at RAS time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port

MT4C16270/1 256K x 16 WIDE DRAM


and allows normal WRITE operations to proceed. At \overline{CAS} time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

SISTENT MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 3 illustrates the MT4C16271 MASKED WRITE operation.

NEW WIDE DRAM

New mask data must be supplied each time a NONPER-

Figure 1 MT4C16270 WORD AND BYTE WRITE EXAMPLE

MT4C16270/1 256K x 16 WIDE DRAM

MICRON

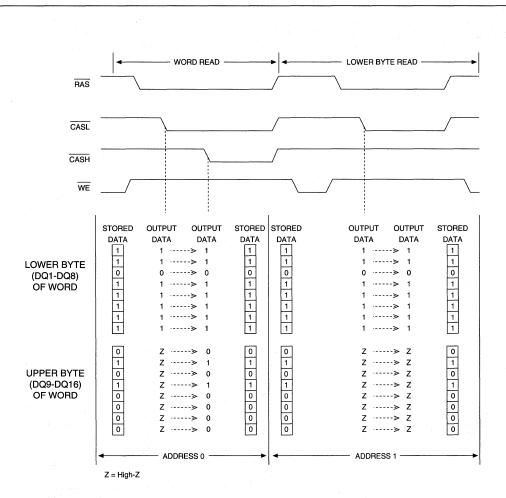


Figure 2 MT4C16270 WORD AND BYTE READ EXAMPLE

MT4C16270/1 256K x 16 WIDE DRAM

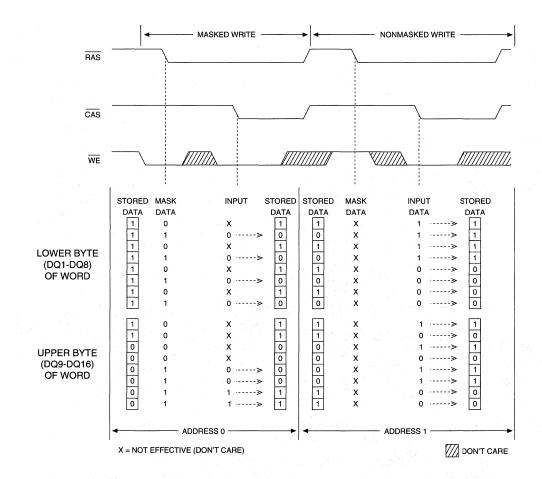


Figure 3 MT4C16271 MASKED WRITE EXAMPLE

MICHON

NEW

WIDE DRAM

MT4C16270/1 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16270/1

							ADDRI	SSES		
FUNCTION		RAS	CASL	CASH	WE	ŌE	^t R	ťC	DQs	NOTES
Standby		H	H→X	H→X	Х	Х	X	X	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWEF	R BYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	H	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data Out	
WRITE: WORD (EARLY-WRITI		L	L	L	L	X	ROW	COL	Data-In	5
WRITE: LOWE BYTE (EARLY)		L	L	Н	L	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	5
WRITE: UPPE BYTE (EARLY)		Ľ	H	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	5.
READ-WRITE		L	L ja	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	Ľ	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	X	ROW	COL	Data-In	1, 5
WRITE	2nd Cycle	L	H→L	H→L	L	X	n/a	COL	Data-In	1, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2, 5
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2, 5
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3, 5
RAS-ONLY RE	FRESH	E L	Н	н	X	Х	ROW	n/a	High-Z	
CBR REFRES	H	H→L	L	Leig	X	X	X	X	High-Z	4

NOTE: 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).

2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).

3. EARLY-WRITE only.

4. Only one of the two \overline{CAS} signals must be active (\overline{CASL} or \overline{CASH}).

5. Data-in will be dependent on the mask provided (MT4C256K16E5 only). Refer to Figure 3.

MT4C16270/1 256K x 16 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1V to +	-7V
Operating Temperature, TA (ambient) 0°C to +70)°C
Storage Temperature (plastic)55°C to +150)°C
Power Dissipation	1W
Short Circuit Output Current50	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Vін	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V)	lr	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage ($IouT = 4.2mA$)	Vol		0.4	V	

	MAX				
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = V⊮)	Icc1	2	2	mA	
STANDBY CURRENT: (CMOS) ($\overline{RAS} = \overline{CAS} = Vcc - 0.2V$)	Icc2	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	170	150	mA	3, 4, 41
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	Icc4	110	100	mA	3, 4, 41
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC [MIN])	Icc5	170	150	mA	3, 5, 41
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	160	140	mA	3, 5

MT4C16270/1 256K x 16 WIDE DRAM

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±10%)

AC CHARACTERISTICS			-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150		ns	
READ-WRITE cycle time	tRWC	175		195		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	35		40		ns	34
cycle time							
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		ns	34
cycle time						n ster	
Access time from RAS	^t RAC		70		80	ns	14
Access time from CAS	^t CAC		20		20	ns	15, 32
Output Enable time	tOE		20		20	ns	23, 32
Access time from column-address	^t AA		35		40	ns	
Access time from CAS precharge	^t CPA		40	·····	45	ns	32
RAS pulse width	^t RAS	70	100,000	80	100,000	ns	
RAS pulse width (PAGE-MODE)	^t RASP	70	100,000	80	100,000	ns	-
RAS hold time	^t RSH	20		20		ns	39
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	15	100,000	15	100,000	ns	38
CAS hold time	tCSH	70		80		ns	31
CAS precharge time	^t CPN	10		10		ns	16, 35
CAS precharge time (PAGE-MODE)	^t CP	10		10		ns	35
RAS to CAS delay time	tRCD	20	50	20	60	ns	17, 30
CAS to RAS precharge time	^t CRP	10		10		ns	31
Row-address setup time	^t ASR	0		0		ns	
Row-address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time							
Column-address setup time	tASC	0		0		ns	30
Column-address hold time	^t CAH	15		15		ns	30
Column-address hold time	^t AR	55	a second a s	60		ns	
(referenced to RAS)						1997) 1997)	
Column-address to	^t RAL	35		40		ns	
RAS lead time					a di sang	н	
Read command setup time	^t RCS	0		0		ns	26, 30
Read command hold time	^t RCH	0		0		ns	19, 26, 31
(referenced to CAS)					17		1.1.1.1.24
Read command hold time	^t RRH	0		0		ns	19
(referenced to RAS)							
CAS to output in Low-Z	^t CLZ	3		3		ns	32, 42

MT4C16270/1 256K x 16 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-7		-8			a see there is	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
Output buffer turn-off delay from CAS or RAS	tOFF	3	15	3	15	ns	20, 29, 32 42	
Output disable time	tOD	3	15	3	15	ns	29, 40, 42	
Write command setup time	tWCS	0	Sec. She	0		ns	21, 26, 30	
Write command hold time	tWCH	10		10		ns	26, 39	
Write command hold time (referenced to RAS)	tWCR	55		60		ns	26	
Write command pulse width	tWP	10		10		ns	26	
Write command to RAS lead time	tRWL	20	1.1.1	20		ns	26	
Write command to CAS lead time	tCWL	20		20		ns	26, 31	
Data-in setup time	tDS	0		0		ns	22, 32	
Data-in hold time	^t DH	15		15		ns	22, 32	
Data-in hold time (referenced to RAS)	^t DHR	55		60		ns		
RAS to WE delay time	tRWD	95		105		ns	21	
Column-address to WE delay time	^t AWD	60		65		ns	21	
CAS to WE delay time	tCWD	45		45		ns	21, 30	
Transition time (rise or fall)	т. Т	3	50	3	50	ns	9, 10	
Refresh period (512 cycles)	^t REF		8		8	ns	28	
RAS to CAS precharge time	tRPC	0		0		ns		
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5, 30	
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5, 31	
MASKED WRITE command to RAS setup time	tWRS	0		0		ns	26, 27	
WE hold time (MASKED WRITE)	tWRH	15		15		ns	26	
Mask data to RAS setup time	tMS	0	and the second	0	1 galeria	ns	26, 27	
Mask data to RAS hold time	tMH	15		15	- 11 A. 19	ns	26, 27	
OE hold time from WE during READ-MODIFY-WRITE cycle	tOEH	20		20		ns	28	
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns		
Last CAS going LOW to first CAS returning HIGH	^t CLCH	10		10		ns	33	
Data output hold after CAS LOW	tCOH	5		5		ns		
	and the second	the second se	A STATE AND A STATE	in the second second second	A second second second	1 0.0 ¹ 1.00	N. AND STREET,	

NEW

WIDE DRAM

MT4C16270/1

256K x 16 WIDE DRAM

WIDE

NOTES

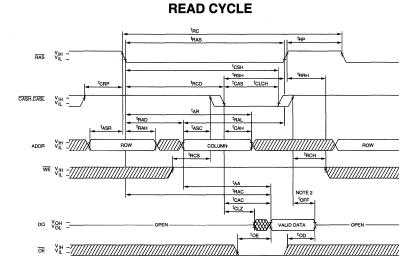
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If \overline{CAS} and $\overline{RAS} = VIH$, data output is High-Z.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS and RAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a

reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

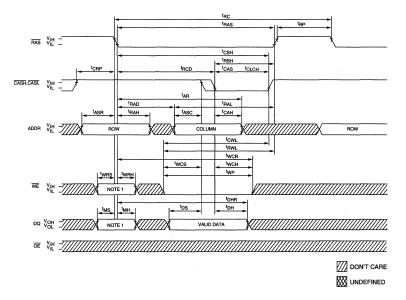
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS \geq ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD \geq ^tRWD (MIN), ^tAWD \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), ^tAWD \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS and RAS or OE go back to VH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE-WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and \overline{OE} = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as \overline{WE} going LOW.
- 27. MT4C16271 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ¹OD and ¹OEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ¹OEH is met.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur.

MT4C16270/1 256K x 16 WIDE DRAM

NOTES (continued)

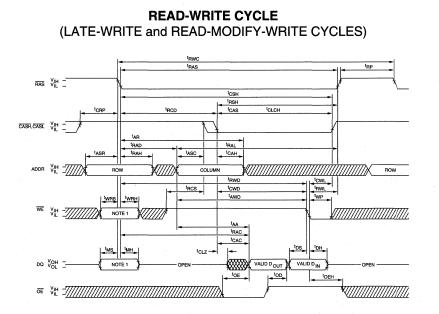

- 30. The first \overline{CASx} edge to transition LOW.
- 31. The last \overline{CASx} edge to transition HIGH.
- 32. Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 33. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 34. Last rising CASx edge to next cycle's last rising CASx edge.
- 35. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.

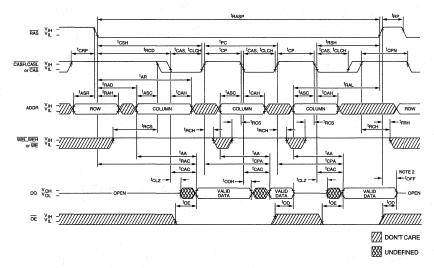
- 36. First DQs controlled by the first \overline{CASx} to go LOW.
- 37. Last DQs controlled by the last \overline{CASx} to go HIGH.
- 38. Each CASx must meet minimum pulse width.
- 39. Last \overline{CASx} to go LOW.
- 40. All DQs controlled, regardless \overline{CASL} and \overline{CASH} .
- 41. Column-address changed once while $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.
- 42. The 3ns minimum is a parameter guaranteed by design.


Z

MT4C16270/1 256K x 16 WIDE DRAM

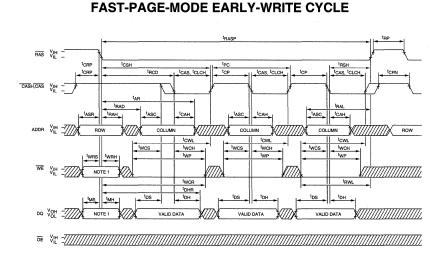
MICRON


EARLY-WRITE CYCLE

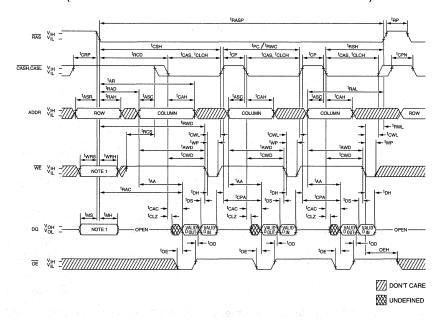

- NOTE: 1. Applies to MT4C16271 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WE and DQ inputs on MT4C16270 is a "don't care" at RAS time.
 - 2. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

MT4C16270/1 256K x 16 WIDE DRAM

FAST-PAGE-MODE READ CYCLE with EXTENDED DATA-OUT

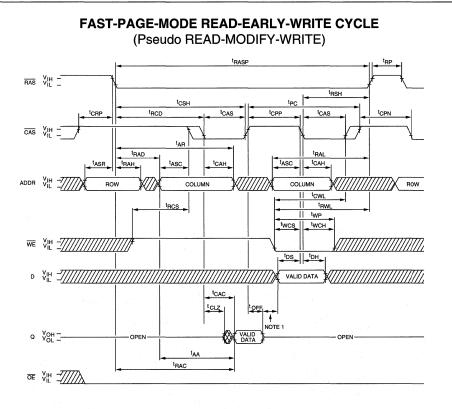


1. Applies to MT4C16271 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ NOTE: inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WE and DQ inputs on MT4C16270 is a "don't care" at RAS time.

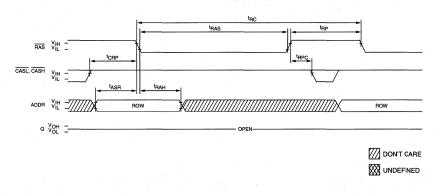

2. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

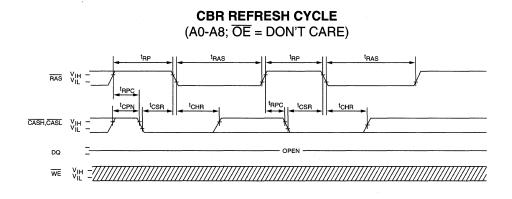
MT4C16270/1 256K x 16 WIDE DRAM

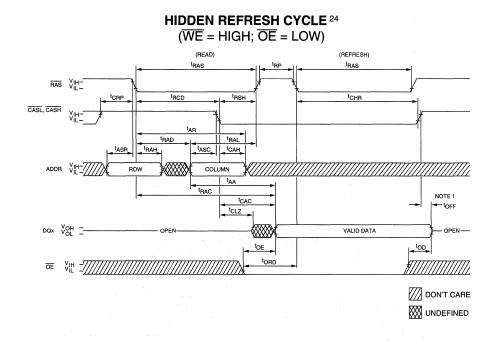
MICRON


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

NOTE: 1. Applies to MT4C16271 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE (WE HIGH at RAS time). The DQ inputs provide the mask data at RAS time for a MASKED WRITE (WE LOW at RAS time). WE and DQ inputs on MT4C16270 is a "don't care" at RAS time.


MT4C16270/1 256K x 16 WIDE DRAM




NOTE: 1. Do not drive data prior to High-Z; that is completion of ¹OFF. ¹CPP is equal to ¹OFF + ¹DS(MIN) + guardband between data-out and driving new data-in.

RAS-ONLY REFRESH CYCLE (ADDR = A0-A8, OE; WE = DON'T CARE)

MT4C16270/1 256K x 16 WIDE DRAM

NOTE: 1. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

MICRO

NEW

WIDE DRAM

WIDE DRAM

٠

٠

.

MT4C16260/1 256K x 16 WIDE DRAM

WIDE DRAM

256K x 16 DRAM

ASYMMETRICAL. FAST-PAGE-MODE

FEATURES Industry-standard x16 pinouts, timing, functions **PIN ASSIGNMENT (Top View)** and packages Address entry: ten row-addresses, eight column-40-Pin SOJ 40-Pin ZIP addresses (SDB-2) (SDA-2) High-performance CMOS silicon-gate process Single +5V±10% power supply 40 Vss 39 DO16 38 DO15 37 DO14 36 DO15 37 DO14 36 DO15 37 DO14 36 DO13 35 DVSS 34 DO11 32 DO11 32 DO12 33 DO11 32 DO12 33 DO11 32 DO12 33 DO13 30 DC4 31 DO9 30 NC 28 CAS 27 OE 28 A8 25 A7 23 A5 23 A4 21 Vss DQ9 1 == Vcc DQ10 DQ1 DQ2 2 Low power, 3mW standby; 500mW active, typical DQ11 3 D02 1 D03 1 D04 1 D04 1 D05 1 D06 1 D08 1 D08 1 WEL 1 TAS 1 A9 1 A9 1 A9 1 A9 1 A1 1 A2 1 A3 1 Joc 2 4 DQ12 All device pins are TTL-compatible Ċ. Vss 5 1,024-cycle refresh in 16ms 6 DO13 62 DO14 7 ----Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) c: 8 DQ15 DQ16 9 and HIDDEN 10 Vss Vcc 11 Optional FAST-PAGE-MODE access cycle, 256 en: 12 DQ1 DQ2 13 locations wide . 65 14 DQ3 DQ4 15 BYTE WRITE access cycle 6 16 Vcc DQ5 17 === NONPERSISTENT MASKED WRITE access cycle DQ7 19 18 DQ6 (MT4C16261 only) 20 DQ8 cit NC 21 ----**OPTIONS** MARKING --- 22 WEL WEH 23 • Timing 24 RAS A9 25 40-Pin TSOP A9 25 113 CT 26 A0 A1 27 113 CT 26 A0 A3 29 113 CT 26 A0 70ns access -7 -8 (SDE-2) 80ns access 30 Vcc 44 H Vss 43 H DQ16 42 DQ15 41 DQ14 40 DQ13 39 VSS 38 DQ12 37 DQ11 36 DQ10 35 DQ9 MASKED WRITE Vcc III 1 DQ1 III 2 DQ2 III 4 DQ3 III 4 DQ4 III 5 VCC III 6 DQ5 III 7 DQ6 III 8 DQ7 III 9 Vss 31 A5 33 32 A4 Not Available 16260 34 A6 Available 16261 A7 35 ίc: 36 A8 OE 37 Packages - 38 CAS DQ7 EE 9 DQ8 EE 10 *NC 39 ----Plastic SOJ (400mil) DI 40 NC Plastic TSOP (400mil) TG NC II 13 WEL II 14 WEH II 15 RAS II 16 A9 II 17 A0 II 18 A1 II 29 A2 II 29 32 II NC 31 II NC 30 II CAS 29 II OE 28 II A8 27 II A7 26 II A6 Plastic ZIP (475mil) Z • Part Number Example: MT4C16260DJ-7 25 H A5 24 H A4 23 H Vss A2 11 20 A3 11 22 Vcc = 21

GENERAL DESCRIPTION

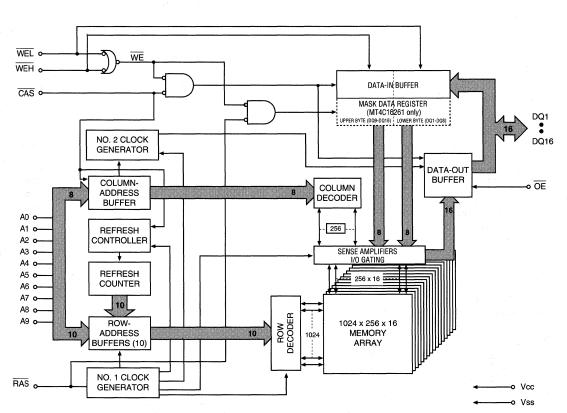
The MT4C16260 and MT4C16261 are randomly accessed solid-state memories containing 4,194,304 bits organized in a x16 configuration. Each word or byte is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 10 bits (A0-A9) first, 8 bits second (A0-A7). RAS is used to latch the first 10 bits and \overline{CAS} the latter 8 bits.

The MT4C16260 and MT4C16261 have both BYTE WRITE and WORD WRITE access cycles via two write enable pins. The MT4C16261 is able to perform WRITE-PER-BIT accesses.

The MT4C16260 and MT4C16261 function in the same manner in that WEL and WEH control the selection of BYTE WRITE access cycles. WEL and WEH function identically to WE in that either WEL or WEH will generate an internal WE.

The WE function and timing are determined by the first WE (WEL or WEH) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and WEH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16261 has NONPERSISTENT, MASKED WRITE capability.


MT4C16260/1 REV, 3/93

MT4C16260/1 256K x 16 WIDE DRAM

FUNCTIONAL BLOCK DIAGRAM

WIDE DRAM

MT4C16260/1 256K x 16 WIDE DRAM

PIN DESCRIPTIONS

SOJ Pins	TSOP PINS	ZIP PINS	SYMBOL	TYPE	DESCRIPTION
14	16	24	RAS	Input	Row-Address Strobe: $\overline{\text{RAS}}$ is used to latch in the 9 row- address bits and strobe the $\overline{\text{WE}}$ and DQs on the MASKED WRITE option.
28	30	38	CAS	Input	Column-Address Strobe: CAS is used to latch-in the 9 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. CAS controls DQ1 through DQ16.
27	29	37	ŌĒ	Input	Output Enable: \overline{OE} enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WEL / WEH HIGH before \overline{OE} will control the output buffers. Otherwise, the output buffers are in a High-Z state.
13	15	23	WEH	Input	Write Enable Upper Byte: \overrightarrow{WEH} is \overrightarrow{WE} control for the DQ9 through DQ16 inputs. If \overrightarrow{WE} or \overrightarrow{WEH} is LOW, the access is a WRITE cycle. If either \overrightarrow{WE} or \overrightarrow{WEH} is LOW at RAS time on MT4C16261, it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
12	14	22	WEL	Input	Write Enable Lower Byte: WEL is the WE control for DQ1 through DQ8 inputs. If WEL is LOW, the access is a WRITE cycle. If WEL is LOW at RAS time on MT4C16261, it is also a MASKED WRITE cycle. The DQs for the byte not being written will remain in a High-Z state (BYTE WRITE cycle only).
16-19, 22-26	18-21, 24-28	26-29, 32-36	A0-A8	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one 16-bit word (or 8-bit byte) out of the 256K available words.
2-5, 7-10, 31-34, 36-39	2-5, 7-10, 35-38, 40-43	12-15, 17-20, 1-4, 6-9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL / WEH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. All sixteen I/Os are active for READ cycles.
11, 15, 30, 29	13, 17, 31	21, 25, 40, 39	NC		No Connect: These pins should be either left unconnected or tied to ground.
1, 6, 20	1, 6, 22	11, 16, 30	Vcc	Supply	Power Supply: +5V ±10%
21, 35, 40	23, 39, 44	5, 10, 31	Vss	Supply	Ground

MT4C16260/1

256K x 16 WIDE DRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. \overline{RAS} is used to latch the first 10 bits (A0-A9) and \overline{CAS} the latter 8 bits (A0-A7).

The \overline{CAS} control also determines whether the cycle will be a refresh cycle (\overline{RAS} -ONLY) or an active cycle (READ, WRITE or READ-WRITE) once \overline{RAS} goes LOW.

A READ or WRITE cycle is selected with either $\overline{\text{WEL}}$ or WEH performing the WE function. The WE function is determined by the first BYTE WRITE (WEL or WEH) to transition LOW and the last one to transition back HIGH.

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by \overrightarrow{OE} , \overrightarrow{WEL} and \overrightarrow{WEH} .

FAST-PAGE-MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST-PAGE-MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS-ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$. Enabling $\overline{\text{WEL}}$ will select a lower byte WRITE cycle (DQ1-DQ8) while enabling $\overline{\text{WEH}}$ will select an upper byte WRITE cycle (DQ9-DQ16). Enabling both $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ selects a word WRITE cycle.

The MT4C16260/1 may be viewed as two 256K x 8 DRAMS that have common input controls, with the exception of the $\overline{\text{WE}}$ inputs. Figure 1 illustrates the MT4C16260/1 BYTE and WORD WRITE cycles.

MASKED WRITE ACCESS CYCLE (MT4C16261 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when \overline{WE} is LOW at \overline{RAS} time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ16 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

For NONPERSISTENT MASKED WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 2 illustrates the MT4C16261 MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

MT4C16260/1 256K x 16 WIDE DRAM

이 집안 같은 것이 있는 것이 없다.

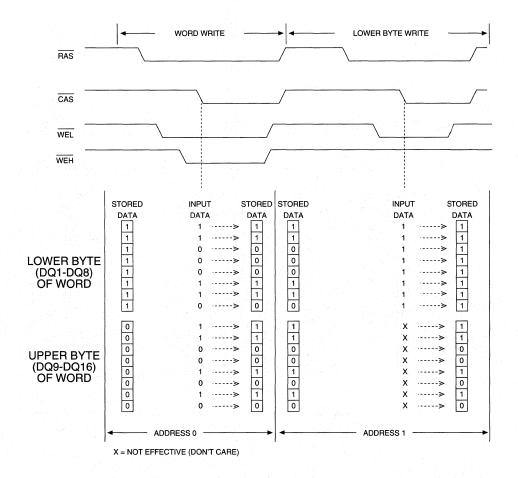


Figure 1 MT4C16260/1 WORD AND BYTE WRITE EXAMPLE

MT4C16260/1 256K x 16 WIDE DRAM

ION

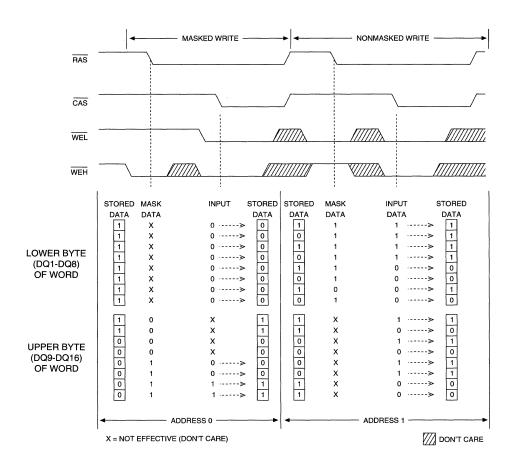


Figure 2 MT4C16261 MASKED WRITE EXAMPLE

NOTE: If WEL is LOW and WEH is HIGH when RAS goes LOW, then only DQs 1-8 will be masked. If WEL is HIGH and WEH is LOW when RAS goes LOW, then only DQs 9-16 will be masked.

MT4C16260/1 256K x 16 WIDE DRAM

TRUTH TABLE: MT4C16260/1

	1.1.1.1						ADDR	ESSES		
FUNCTION	UNCTION		CAS	WEL	WEH	OE	^t R	ťC	DQs	NOTES
Standby		Н	H→X	Х	Х	Х	X	Х	High-Z	
READ		L	L	Historia	Н	. L .	ROW	COL	Data-Out	
WRITE: WORD (EARLY-WRITE)		Ľ	L	L	L	Х	ROW	COL	Data-In	3
WRITE: LOWER BYTE (EARLY)		L	L	L	H	X	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	3
WRITE: UPPER BYTE (EARLY)		L	L	Η	E S	х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	3
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 3
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Data-Out	
READ	2nd Cycle	L	H→L	H	H	L	n/a	COL	Data-Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	i L	X	ROW	COL	Data-In	1, 3
WRITE	2nd Cycle	L	H→L	L	L	X	n/a	COL	Data-In	1, 3
FAST-PAGE-MODE	1st Cycle	in L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 3
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 3
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	$\left\ \mathbf{L}_{\mathbf{r}}^{T} \right\ _{\mathbf{r}}$	L	X	ROW	COL	Data-In	1, 2, 3
RAS-ONLY REF	RESH	L	н	х	х	X	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	Х	Х	X	X	Х	High-Z	

NOTE: 1. These cycles may also be BYTE WRITE cycles (either WEL or WEH active).

2. EARLY-WRITE only.

3. Data-in will be dependent on the mask provided (MT4C16261 only). Refer to figure 2.

MT4C16260/1 256K x 16 WIDE DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply Relative to Vss1V to +7V	
Operating Temperature, T _A (ambient)0°C to +70°C	
Storage Temperature (plastic)55°C to +150°C	
Power Dissipation1W	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	ViL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0 V)	h h	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lou⊤ = -5mA)	Vон	2.4		V	
Output Low Voltage (lou⊤ = 4.2mA) ↓	Vol		0.4	v	

(Notes: 1, 3, 4, 6, 7) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ± 10%)

$(100003.1, 0, 4, 0, 7) (0 0 3 1_{A} 3 70 0, 000 - 00 1 1070)$		M	AX		
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = $\overline{CAS} = V_{H}$)	Icc1	2	2	mA	
STANDBY CURRENT: (CMOS) ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V$)	Icc2	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	140	130	mA	3, 4, 30
OPERATING CURRENT: FAST-PAGE-MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	ICC4	100	90	mA	3, 4, 30
REFRESH CURRENT: TAS ONLY Average power supply current (TAS Cycling, TAS=VIH: ^t RC = ^t RC [MIN])	Icc5	140	130	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	Icc6	140	130	mA	3

.....

MT4C16260/1 256K x 16 WIDE DRAM

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	CI1		5	pF	2
Input Capacitance: RAS, CAS, WEL, WEH, OE	CI2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		ns	
READ-WRITE cycle time	^t RWC	175		195		ns	
FAST-PAGE-MODE READ or WRITE	tPC	40		45		ns	
cycle time			р — — — — — — — — — — — — — — — — — — —				
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		ns	
cycle time							
Access time from RAS	^t RAC		70		80	ns	14
Access time from CAS	^t CAC		20		20	ns	15
Output Enable time	tOE		20		20	ns	
Access time from column-address	^t AA		35		40	ns	
Access time from CAS precharge	^t CPA		40		45	ns	
RAS pulse width	^t RAS	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	tRASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		20		ns	
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	70		80		ns	
CAS precharge time	^t CPN	10		10		ns	16
CAS precharge time (FAST-PAGE-MODE)	^t CP	10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	10		10		ns	
Row-address setup time	tASR	0		0		ns	
Row-address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time							
Column-address setup time	tASC	0		0		ns	
Column-address hold time	^t CAH	15		15		ns	
Column-address hold time	tAR	55		60		ns	
(referenced to RAS)		•.			1997 - B. 1997		
Column-address to	^t RAL	35		40		ns	
RAS lead time			a strange of the		a de la companya de l La companya de la comp		
Read command setup time	^t RCS	0		0		ns	26
Read command hold time	^t RCH	0		0		ns	19, 26
(referenced to CAS)							
Read command hold time	tRRH	0		0		ns	19
(referenced to RAS)						8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
CAS to output in Low-Z	tCLZ	3		3		ns	31

WIDE DRAM

MT4C16260/1 256K x 16 WIDE DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

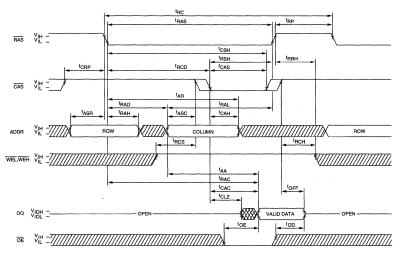
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS	-7				-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	20, 29, 3
Output disable time	tOD	3	15	- 3	15	ns	29, 31
Write command setup time	tWCS	0		0		ns	21, 26
Write command hold time	tWCH	10		10		ns	26
Write command hold time (referenced to RAS)	tWCR	55		60		ns	26
Write command pulse width	tWP	10		10		ns	26
Write command to RAS lead time	^t RWL	20		20		ns	26
Write command to CAS lead time	tCWL	20		20		ns	26
Data-in setup time	^t DS	0		0		ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		7ns	
RAS to WE delay time	tRWD	95		105		ns	21
Column-address to WE delay time	tAWD	60		65		ns	21
CAS to WE delay time	tCWD	45		45		ns	21
Transition time (rise or fall)	tT .	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	^t REF		16		16	ms	28
RAS to CAS precharge time	^t RPC	0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
MASKED WRITE command to RAS setup time	tWRS	0		0		ns	26, 27
WE hold time (MASKED WRITE)	tWRH	15		15		ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	tOEH	20		20		ns	28
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns	
Last CAS going low to first CAS	^t CLCH	10		10		ns	

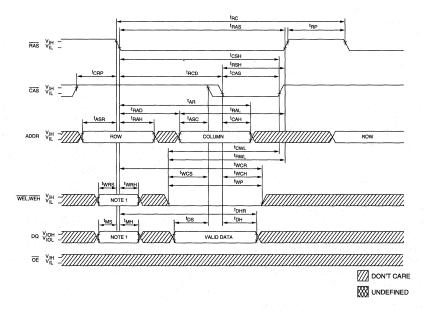
MT4C16260/1

256K x 16 WIDE DRAM

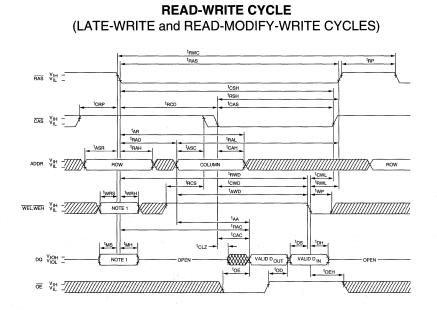
NOTES

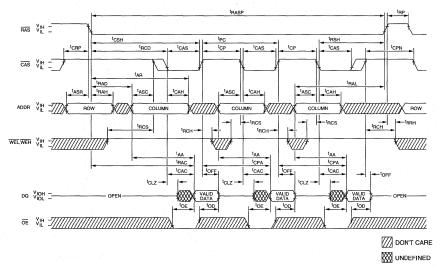

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS -ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tRAF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (max). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.

- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of Q (at access time and until CAS goes back to VIH) is indeterminate. WE determines either EARLY-WRITE (WCS), LATE-WRITE (RWD, AWD and CWD) or an indeterminate (WCS or RWD, AWD and CWD not met) cycle when WE goes LOW in reference to CAS going LOW.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ or both going LOW.
- 27. MT4C16261 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 30. Column-address changed once while $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.
- 31. The 3ns minimum is a parameter guaranteed by design.


MT4C16260/1 256K x 16 WIDE DRAM

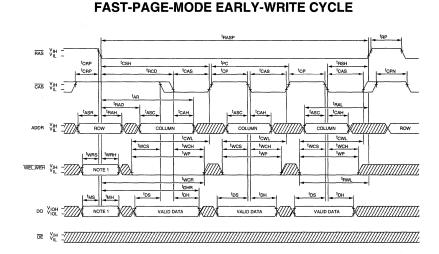
READ CYCLE


EARLY-WRITE CYCLE

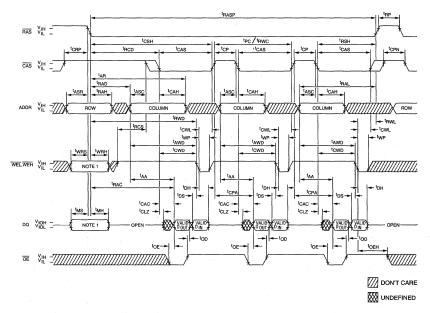

NOTE: 1. Applies to MT4C16261 only; WEL, WEH and DQ inputs on MT4C16260 are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE, with WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, with WE LOW at RAS time.

MT4C16260/1 256K x 16 WIDE DRAM

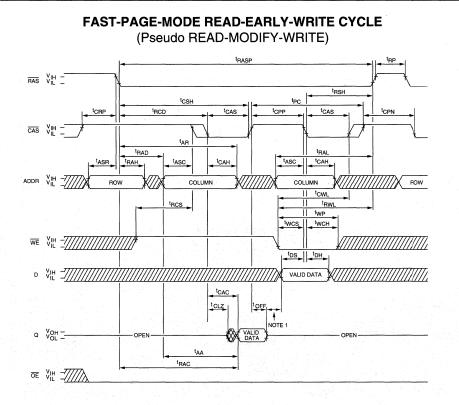
FAST-PAGE-MODE READ CYCLE

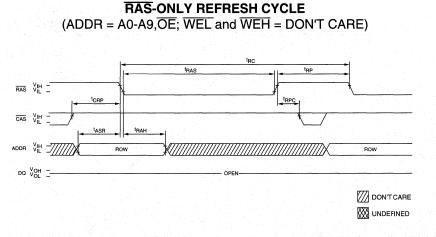


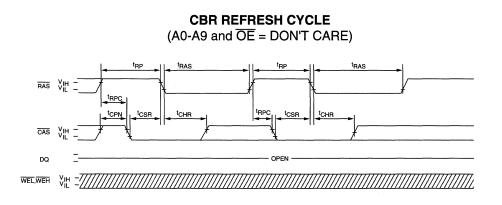
NOTE: 1. Applies to MT4C16261 only; WEL, WEH and DQ inputs on MT4C16260 are "don't care" at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE, with WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, with WE LOW at RAS time.

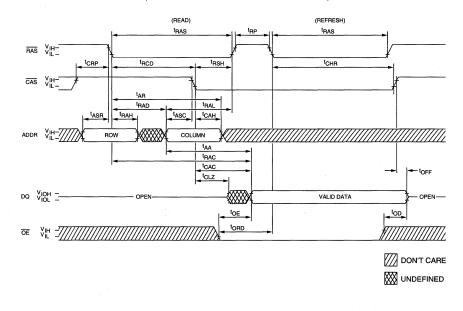

MT4C16260/1 256K x 16 WIDE DRAM

NCRON


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


1. Applies to MT4C16261 only; WEL, WEH and DQ inputs on MT4C16260 are "don't care" at RAS time. NOTE: WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE, with WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, with WE LOW at RAS time.




NOTE: 1. Do not drive data prior to High-Z; that is completion of ^tOFF. ^tCPP is equal to ^tOFF + ^tDS(MIN) + guardband between data-out and driving new data-in.

MT4C16260/1 256K x 16 WIDE DRAM

HIDDEN REFRESH CYCLE ²⁴ (WEL, WEH = HIGH; \overline{OE} =LOW)

FRON

WIDE DRAMs	*****		
VRAMs		 	2
TRIPLE-PORT DRAMs	奏驾战等建度转移管法委会	 ****	3
VRAM MODULES	***	 *****	4
APPLICATION/TECHNICA	L NOTES.	*****	5
PRODUCT RELIABILITY	****	****	6
PACKAGE INFORMATION		****	7
SALES INFORMATION	*****		8

VRAM SELECTION GUIDE

Memory	Access	Part	art Access	Typical Power Dissipation		Pa	ckage/Nu	mber of P	ins	
Configuration	Cycle	Number	Time (ns)	Standby	Active	SOJ	SOP	TSOP	ZIP	Page
256K x 4	FP	MT42C4256	60, 70, 80	15mW	275mW	28	-	-	28	2-1
128K x 8	FP	MT42C8128	60, 70, 80	15mW	275mW	40	-	-	-	2-37
256K x 8	FP, DW	MT42C8254	70, 80	10mW	300mW	40	-	40/44	-	2-75
256K x 8	FP	MT42C8255	70, 80	10mW	300mW	40	-	40/44		2-107
256K x 8	FP, EDO	MT42C8256	60, 70, 80	10mW	300mW	40	-	40/44	-	2-139
256K x 8	FP	MT42C8257	60, 70, 80	10mW	300mW	40	-	40/44	-	2-181
256K x 16	FP, EDO, DW	MT42C256K16A1	60, 70, 80	TBD	TBD	-	64	70	-	2-221
256K x 16	FP, DW	MT42C256K16C1	60, 70, 80	TBD	TBD	-	64	70	-	2-265
256K x 16	FP, DC	MT42C256K16C2	60, 70, 80	TBD	TBD	-	64	70	-	2-267

FP = FAST-PAGE-MODE, EDO = Extended Data-Out, DW = Dual WE, DC = Dual CAS

MT42C4256 256K x 4 VRAM

VRAM

256K x 4 DRAM WITH 512 x 4 SAM

28-Pin SOJ		28-Pin ZIP
(SDB-1)		(SDA-1)
SC [1 SDQ1 [2 SDQ2 [3] TFr/OE [4 DQ1 [5 DQ2 [6 WE/WE [7 NC [8 RAS [9 A8 [10 A6 [11] A5 [12 A4 [13 Vcc [14]	28 Vss 27 SDQ4 26 SDQ3 25 SE 24 DQ4 23 DQ3 22 DSF 21 CAS 20 QSF 19 A0 18 A1 17 A2 16 A3 15 A7	DSF 1 5 2 DQ3 DQ4 3 5 4 SE SDQ3 5 5 6 SDQ4 Vss 7 5 6 SDQ4 Vss 7 5 10 SDQ2 TFr/OE 11 5 10 SDQ2 TFr/OE 15 5 16 FAS A8 17 5 18 A6 Vcc 21 5 20 A4 Vcc 21 5 22 A7 A3 23 5 5 26 A0 QSF 27 5 28 CAS 5

port, the four internal 512-bit-wide paths between the DRAM and the SAM, and the 4-bit serial I/Oport for the SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally. As with all DRAMs, the VRAM must be refreshed to maintain data. Refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C4256 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data used in raster graphics display, serial and parallel networking and data communications. Special features, such as SPLIT READ TRANSFER and BLOCK WRITE allow further enhancements to system performance.

FEATURES

- Industry-standard pinout, timing and functions
- High-performance, CMOS silicon-gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL compatible
- Refresh modes: RAS-ONLÝ, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- Optional FAST-PAGE-MODE access cycles
- Dual-port organization: 256K x 4 DRAM port 512 x 4 SAM port
- No refresh required for serial access memory
- Low power: 15mW standby; 275mW active, typical
- Fast access times: 70ns random, 22ns serial 60ns random, 18ns serial*

SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE

OPTIONS

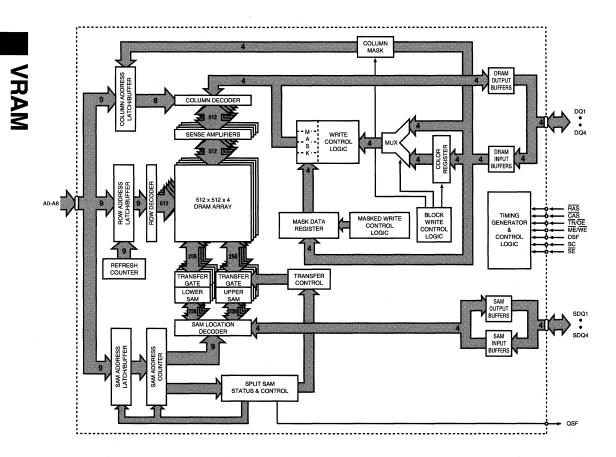
• Timing (DRAM, SAM [cycle/access])	
60ns, 18ns/18ns	-6*
70ns, 22ns/22ns	-7
80ns, 25ns/25ns	-8
Packages	
Plastic SOJ (400 mil)	DJ
Plastic ZIP (375 mil)	Z

MARKING

• Part Number Example: MT42C4256DJ-7

*60ns (-6) specifications are preliminary; consult factory for availability.

GENERAL DESCRIPTION


The MT42C4256 is a high-speed, dual-port CMOS dynamic random access memory or video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed by a 4-bit-wide DRAM port or by a 512 x 4-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is similar to the MT4C4256 (256K x 4 DRAM). Four 512-bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths; the 4-bit random access I/O

MT42C4256 REV. 5/93

FUNCTIONAL BLOCK DIAGRAM

MICRON

PIN DESCRIPTIONS

SOJ PIN Numbers	ZIP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
1	8	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
4	11	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at \overline{RAS} (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after \overline{RAS} goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z state.
7	14	ME/WE	Input	Mask Enable: If $\overline{\text{ME/WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{ME/WE}}$ is also used to select a READ ($\overline{\text{ME/WE}} = \text{H}$) or WRITE ($\overline{\text{ME/WE}} = \text{L}$) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{\text{ME/WE}} = \text{H}$) or WRITE TRANSFER ($\overline{\text{ME/WE}} = \text{L}$).
25	4	SE	Input	Serial Port Enable: \overline{SE} enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. \overline{SE} is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed.
22	1. 	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used on a particular access cycle.
9	16	RAS	Input	Row Address Strobe: RAS is used to clock-in the 9 row- address bits and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable and must fall for initiation of any DRAM or TRANSFER cycle.
21	28	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock-in the 9 column-address bits, enable the DRAM output buffers (along with $\overline{TR}/\overline{OE}$), and strobe the DSF input.
19, 18, 17, 16, 13, 12, 11, 15, 10	26, 25, 24, 23, 20, 19, 18, 22, 17	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 4-bit word out of the 256K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW).
5, 6, 23, 24	12, 13, 2, 3	DQ1-DQ4	Input/ Output	DRAM Data I/O: Data input/output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and DQ and Column Mask inputs for BLOCK WRITE.
2, 3, 26, 27	9, 10, 5, 6	SDQ1-SDQ4	Input/ Output	Serial Data I/O: Input, output, or High-Z.
20	27	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed: LOW if address is 0-255, HIGH if address is 256-511.
8	15	NC		No Connect: This pin should be left either unconnected or tied to ground.
14	21	Vcc	Supply	Power Supply: +5V ±10%
28	7	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT42C4256 may be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR/OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

VRAN

Like any DRAM-based memory, the MT42C4256 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C4256 supports CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, but must simply perform 512 CBR cycles within the 16.7ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for \overline{RAS} -ONLY refresh cycles. The DQ pins remain in a High-Z state for both the \overline{RAS} -ONLY and CBR refresh cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C4256 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH-to-LOW. Next, the 9 column address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH-to-LOW.

Note: RAS also acts as a "master" chip enable for the VRAM. If RAS is inactive, HIGH, all other DRAM control pins (CAS, TR/OE, ME/WE, etc.) are "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.

For standard single-port DRAMs, the $\overline{\text{OE}}$ pin is a "don't care" when $\overline{\text{RAS}}$ goes LOW. However, for the VRAM, when $\overline{\text{RAS}}$ goes LOW, $\overline{\text{TR}}/(\overline{\text{OE}})$ selects between DRAM access or TRANSFER cycles. $\overline{\text{TR}}/(\overline{\text{OE}})$ must be HIGH at the $\overline{\text{RAS}}$ HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after RAS falls to enable the DRAM output port.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the RAS HIGH-to-LOW transition. If (\overline{ME})/ \overline{WE} is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If (\overline{ME})/ \overline{WE} goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

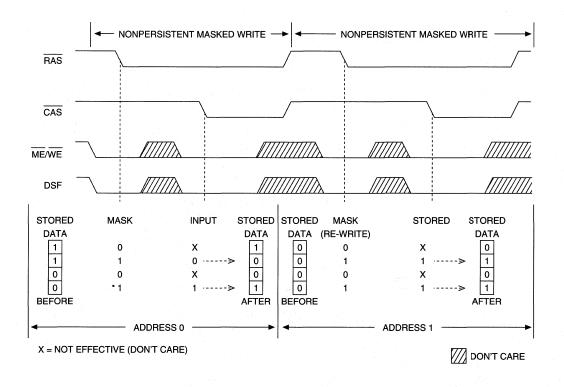
The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

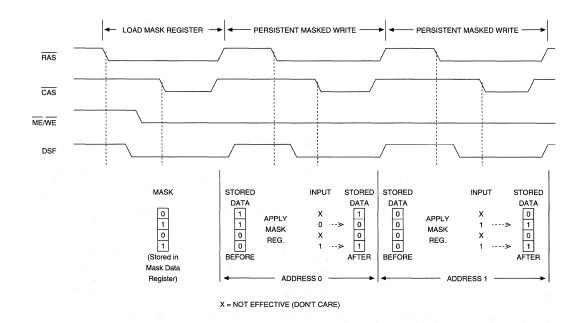
IJ

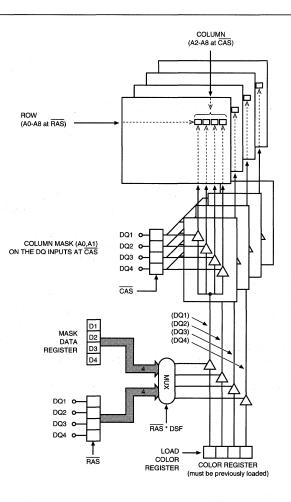
NONPERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need for a READ-MODIFY-WRITE cycle when changing only specific bits within a 4-bit word. The MT42C4256 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the $\overline{\text{RAS}}$ HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is nonpersistent (must be re-entered at every RAS cycle) if DSF is LOW when RAS goes LOW. The mask data register is cleared at the end of every NONPER-SISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle. An example NONPERSISTENT MASKED WRITE cover is shown in Figure 1.




Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE


PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking ME/(WE) and DSF HIGH when RAS goes LOW. The mask data is loaded into the internal register when CAS goes LOW.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present on the DQ inputs is not loaded into the mask register when RAS falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSIS-TENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 2 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot provide mask data to the DQ pins at RAS time to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations may be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

VRAN

Figure 3 BLOCK WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when CAS goes LOW, the MT42C4256 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 3). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER). Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

The row is addressed as in a normal DRAM WRITE cycle.

However, when \overline{CAS} goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs are then used to determine what combination of the four column locations will be changed. DQ1 acts as a write enable for column location A0 = 0, A1 = 0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0 = 1, A1 = 1. The write enable controls are active HIGH; the WRITE function is enabled by a logic 1 and disabled by a logic 0.

MICRON

NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions may be used during BLOCK WRITE cycles also. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPER-SISTENT MASKED WRITE, except that the mask is now applied to four column locations instead of just one.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when $\overline{\text{RAS}}$ goes LOW initiates a NONPERSISTENT MASKED cycle. The DSF pin must be driven HIGH when $\overline{\text{CAS}}$ goes LOW, to perform the NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes or column locations may be masked.

PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGIS-

TER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless NON-PERSISTENT MASKED WRITE or LOAD MASK REGISTER cycles are performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

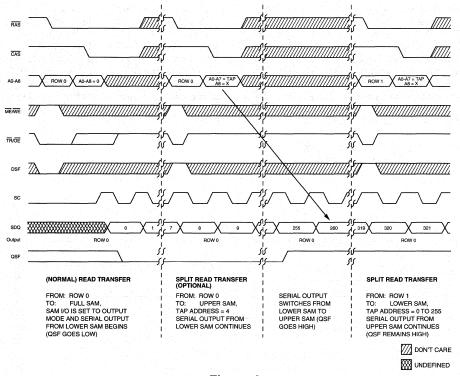
The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the four DQ planes.

LOAD COLOR REGISTER

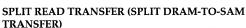
A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGIS-TER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

MICHON

MT42C4256 256K x 4 VRAM


TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\text{TR}}/(\overline{\text{OE}})$ is LOW then RAS goes LOW. The state of $(\overline{\text{ME}})/\overline{\text{WE}}$ when RAS goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and AL-TERNATE WRITE TRANSFER cycles. Each of the TRANS-FER cycles available is described below.


READ TRANSFER (DRAM-TO-SAM TRANSFER)

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the four 512-bit DRAM row planes to be transferred to the four SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text{CAS}}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accomplished in two

ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before \overline{CAS} goes LOW (refer to the AC Timing Diagrams). The 2.048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 9-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 255), and HIGH if access is from the upper half (256 through 511). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

Figure 4 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of RAS or CAS. The transfer timing is generated internally for SPLIT TRANSFER cycles. An SRT does not change the direction of the SAM port.

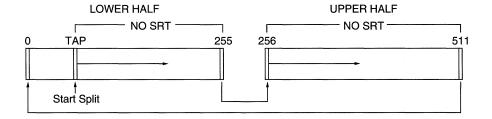

A normal, non-split READ TRANSFER cycle must precede any sequence of SRT cycles to set SAM I/O direction and provide a reference to which half of the SAM the access will begin. Then SRTs may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by

an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 ("A8" = 0, A0-A7=1), the new Tap address is loaded for the next half ("A8" = 1, A0-A7 = Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 4 would be to wait until QSF went LOW (indicating that row-1 data is shifting out of the lower SAM) and then transfer the upper half of row 1 to the upper SAM. If the half boundary is reached before an SRT is done for the next half a Tap address of "0" will be used. Access will start at 0 if going to the lower half, or 256 if going to the upper half. See Figure 5.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously except ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAMI/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, and HIGH if access is to the upper half.

Figure 5 SPLIT SAM TRANSFER

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE **ENABLE**)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of the SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{ME})/\overline{WE}$ is LOW when \overline{RAS} goes LOW, allowing SE to be a "don't care." This allows the outputs to be disabled using SE during a WRITE TRANSFER cycle. AL-TERNATE WRITE TRANSFER will change the SAM I/O direction to an input condition.

SERIAL INPUT AND SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SPLIT READ TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4-bit port. SE is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated in Figure 5. Address count will wrap around (after count 511) to Tap address 0 if in the "full" SAM modes.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the SAM address counter (loaded when the serial input mode was enabled) will determine the serial address of the first 4-bit word written. SE acts as a write enable for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

POWER-UP AND INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight RAS cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = (\overline{TR})/\overline{OE} \ge V_{IH}$ during power up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data.

The SAM portion of the MT42C4256 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and the I/O pins (SDQs) will be High-Z, regardless of the state of SE. The mask and color register will contain random data after power-up. QSF initializes in the LOW state.

TRUTH TABLE

			RAS	FALLING	EDGE		CAS FALL	A0-	A8 ¹	DQ1-DQ4 ²		REGISTERS	
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	SE	DSF	RAS	CAS	RAS	CAS, WE ³	MASK	COLOR
	DRAM OPERATIONS												
CBR	CBR REFRESH	0	x	X	х	х	X		х		x	х	X
ROR	RAS-ONLY REFRESH	1	1	X	х	x		ROW		х	-	х	х
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	x	0	ROW	COLUMN	х	VALID	х	x
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	х	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	×
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	X	0	ROW	COLUMN	x	VALID DATA	USE	X
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	x	1	ROW	COLUMN (A2-A8)	×	COLUMN MASK	X	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	X	1	ROW	COLUMN	WRITE MASK	COLUMN MASK	LOAD & USE	USE
BWOM	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	x	1	ROW	COLUMN (A2-A8)	x	COLUMN MASK	USE	USE
	REGISTER OPERATIONS												
LMR	LOAD MASK REGISTER	1	1	1	1	x	0	ROW ⁴	X	х	WRITE MASK	LOAD	X
LCR	LOAD COLOR REGISTER	1	1	1	1	x	1	ROW ⁴	x	×	COLOR DATA	x	LOAD
	TRANSFER OPERATIONS												
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	x	ROW	TAP ⁵	Х	X	х	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	x	х	ROW	TAP ⁵	х	х	х	X
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	x	ROW	TAP ⁵	х	X	X	x
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)	1	0	0	0	1	X	ROW ⁴	TAP ⁵	х	X	х	X
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	x	x	ROW	TAP ⁵	х	x	x	X

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.

2. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.

3. On WRITE cycles (except BLOCK WRITE and LOAD COLOR REGISTER), the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, with READ cycles, the output data is activated at the falling edge of CAS or TR/OE, whichever is later.

4. The ROW that is addressed will be refreshed, but no particular ROW address is required.

5. This is the SAM location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	0°C to +70°C
Storage Temperature (plastic)55	°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

(0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input (0V \leq VIN \leq Vcc); all other pins not under test = 0V	IL.	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	1
Output low Voltage (Iout = 2.5 mA)	Vol		0.4	V	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Cı2		7	pF	2
Input/Output Capacitance: DQ, SDQ	Cı/o		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

7

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$			MAX	-]	
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	ICC1	105	95	85	mA	3, 4 26
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	ICC2	95	85	75	mA	3, 4 27
$\label{eq:standby} \begin{array}{l} \mbox{STANDBY CURRENT: TTL INPUT LEVELS} \\ \mbox{Power supply standby current} \\ \mbox{(RAS = CAS = VIH after 8 RAS cycles [MIN]; other inputs $\geq VIH or $\leq VIL$)} \end{array}$	Іссз	8	8	8	mA	4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	ICC5	105	95	85	mA	3, 26
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	Icc6	105	95	85	mA	3, 5
SAM/DRAM DATA TRANSFER	Ісся	115	105	95	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C < T_{A} < 70^{\circ}C; V_{CC} = 5V + 10\%)$

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$			MAX]	
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc9	170	150	130	mA	3, 4, 26
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	Icc10	160	140	120	mA	3, 4, 27
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles [MIN]; other inputs \ge VIH or \le VIL)	Icc11	65	55	45	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	ICC12	170	150	130	mA	3, 4, 26
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC13	170	150	130	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC14	190	160	130	mA	3, 4

Ē

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS			-6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		150		ns	
READ-MODIFY-WRITE cycle time	tRWC	148		170		190		ns	$(1, \dots, q_{n})$
FAST-PAGE-MODE READ or WRITE	^t PC	35		40		45		ns	
cycle time									2.00
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	83	1.1	90		95		ns	
cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		18	· · · · ·	20		25	ns	15
Access time from (TR)/OE	tOE		15		20		20	ns	
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	1.00
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	18		20		25		ns	
RAS precharge time	tRP	40		50		60		ns	
CAS pulse width	^t CAS	18	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	42	20	50	20	55	ns	17
CAS to RAS precharge time	^t CRP	10	and the second sec	10		10		ns	
Row-address setup time	^t ASR	0	1.0	0		0		ns	
Row-address hold time	tRAH	10		10		10		ns	
RAS to column-	^t RAD	15	30	15	35	15	40	ns	18
address delay time									1.00
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	12	1. N. S.	15		15		ns	
Column-address hold time	^t AR	40		45		55		ns	
(referenced to RAS)					a ser a ser a		1.1.1	and the	
Column-address to	tRAL	30		35		40		ns	
RAS lead time								ar an	
Read command setup time	^t RCS	0		0		0		ns	1.
Read command hold time	^t RCH	0		0	1	.0		ns	19
(referenced to CAS)									
Read command hold time	tRRH	0	11 A.	0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	¹ CLZ	3		3		3		ns	
Output buffer	tOFF	3	12	3	12	3	15	ns	20, 23
turn-off delay									
Output disable	tOD	3	10	3	10	3	10	ns	20, 23
Output disable hold time from start of WRITE	^t OEH	10		10		10		ns	25
OE LOW to RAS HIGH delay time	^t ROH	0		0		0	1	ns	

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS		-	6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0	·	0		0		ns	21
Write command hold time	tWCH	12		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	40		45		55		ns	
Write command pulse width	tWP	10		15		15		ns	1.1.1.1
Write command to RAS lead time	tRWL	18		20		20		ns	
Write command to CAS lead time	tCWL	18		20		20		ns	1
Data-in setup time	tDS	0		0		0	1.11	ns	22
Data-in hold time	^t DH	12		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	40		45		55		ns	
RAS to WE delay time	tRWD	80		90		100		ns	21
Column-address to WE delay time	tAWD	50		55		60		ns	21
CAS to WE delay time	tCWD	38		40		45		ns	21
Transition time (rise or fall)	tΤ		35		35		35	ns	9, 10
Refresh period (512 cycles)	tREF		16.7		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		0	· .	ns	1.00
CAS setup time (CBR REFRESH)	^t CSR	10	-	10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		0		ns	4
ME/WE to RAS hold time	^t RWH	12		15	1	15	1.5	ns	
Mask Data to RAS setup time	tMS	0		0		0		ns	
Mask Data to RAS hold time	tMH	12		15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_A \le + 70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	6*		-7		-8		1
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		0		ns	1000
TR/(OE) LOW to RAS hold time	tTLH	15	10,000	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ TRANSFER only)	^t RTH	65	10,000	65	10,000	70	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ TRANSFER only)	ţСТН	25		25		25		ns	
TR/(OE) HIGH to SC lead time	tTSL	5		5		5		ns	
TR/(OE) to RAS HIGH hold time	^t TRD	15	1	15		15		ns	
TR/(OE) HIGH to RAS precharge time	tTRP	40		50		60		ns	
TR/(OE) precharge time	^t TRW	15		20		20	1.1	ns	1
First SC edge to TR/(OE) HIGH delay time	^t TSD	15		15		15		ns	
Serial output buffer turn-off delay from RAS	^t SDZ	. 7	40	7	40	7	40	ns	
SC to RAS setup time	^t SRS	20		25		30		ns	
Serial data input to SE delay time	tSZE	0		0		0		ns	
Serial data input delay from RAS	tSDD	50		50		50		ns	
Serial data input to RAS delay time	tSZS	0		0		0		ns	
Serial-input-mode enable (SE) to RAS setup time	tESR	0		0		0		ns	
Serial-input-mode enable (SE) to RAS hold time	^t REH	15		15		15		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		0		ns	
TR/(OE) HIGH to RAS hold time	tYH	12		15		15	-	ns	
DSF to RAS setup time	tFSR	0		0		0		ns	1
DSF to RAS hold time	tRFH	12		15		15		ns	
SC to QSF delay time	^t SQD	1	30		30		30	ns	
SPLIT TRANSFER setup time	^t STS	20		25		30		ns	
SPLIT TRANSFER hold time	^t STH	0		0		0		ns	
RAS to QSF delay time	^t RQD		70		75		75	ns	
DSF to RAS hold time	tFHR	40		45		55		ns	
DSF to CAS setup time	tFSC	0		0	1	0		ns	
DSF to CAS hold time	^t CFH	12		15		15		ns	
TR/OE to QSF delay time	^t TQD		25		25		25	ns	
CAS to QSF delay time	tCQD		30		35		35	ns	
RAS to first SC delay	tRSD	70		80		80		ns	
CAS to first SC delay	^t CSD	25		30		30		ns	

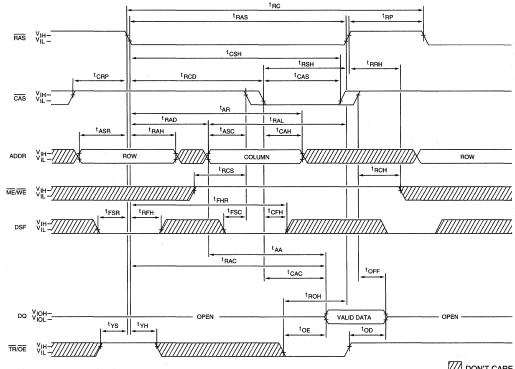
SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 10%)

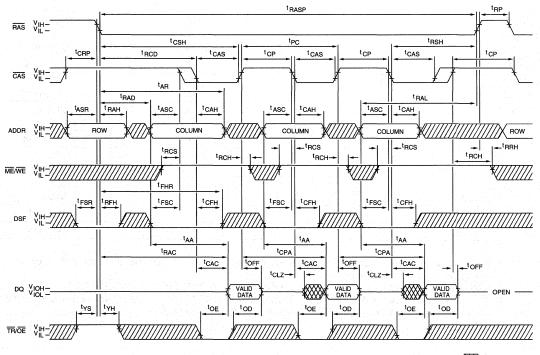
AC CHARACTERISTICS		-(6*	•	-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock-cycle time	tSC	18		22		25		ns	1
Access time from SC	^t SAC		18		22		25	ns	24, 28
SC precharge time (SC LOW time)	tSP	7	1	8		10	1	ns	n de la
SC pulse width (SC HIGH time)	^t SAS	7		8		10		ns	1.1.1
Access time from SE	^t SEA	18 A.	12		15		15	ns	24
SE precharge time	^t SEP	7		8		10		ns	1.5
SE pulse width	^t SE	7		8		10	100	ns	
Serial data-out hold time after SC high	^t SOH	5		5		5		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	10	3	12	3	12	ns	20, 24
Serial data-in setup time	^t SDS	0		0		0		ns	
Serial data-in hold time	^t SDH	9	1.1	10		10	1.1.1	ns	
Serial input (Write) Enable setup time	tSWS	0		0		0		ns	
Serial input (Write) Enable hold time	tSWH	15		15		15		ns	
Serial input (Write) disable setup time	tSWIS	0		0		0		ns	an a
Serial input (Write) disable hold time	tSWIH	15		15		15		ns	

NOTES


- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$, f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on I/O loading. Specified values are obtained with minimum cycle time and the I/Os open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- An initial pause of 100μs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition between 0V and 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If \overrightarrow{CAS} = VIH, DRAM data output (DQ1-DQ4) is High-Z.
- 12. If \overrightarrow{CAS} = VIL, DRAM data output (DQ1-DQ4) may contain data from the last valid READ cycle.
- 13. DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS \geq ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and TR/OE must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. ^tOD and ^tOEH must be met in LATE-WRITE and READ-MODIFY-WRITE cycles (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 26. Address (A0-A8) may be changed two times or less while $\overline{RAS} = VIL$.
- 27. Address (A0-A8) may be changed once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 28. ^tSAC is MAX at 70° C and 4.5V Vcc; ^tSOH is MIN at 0°C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. ^tSOH = ^tSAC output transition time; this is guaranteed by design.

VRAM


MT42C4256 256K x 4 VRAM

DRAM READ CYCLE

VRAM

DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

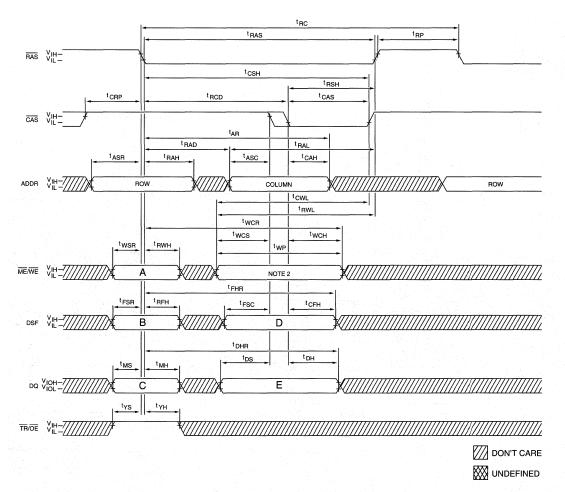
NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

WRITE CYCLE FUNCTION TABLE 1

-
<
J
~
2

	LOGIC STATES						
		RAS Falling Edge			CAS Falling Edge		
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)		
Normal DRAM WRITE	1	0	Х	0	DRAM Data		
NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	0	0	Write Mask	0	DRAM Data (Masked)		
PERSISTENT (Use Register) MASKED WRITE to DRAM	0	1	х	0	DRAM Data (Masked)		
BLOCK WRITE to DRAM (No Data Mask)	1	0	X	1	Column Mask ³		
NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	0	0	Write Mask	.1	Column Mask ³		
PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	0	1	x	1	Column Mask ³		
Load Mask Register	1	1	X	0	Write Mask		
Load Color Register	1	1	X	1	Color Data		

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

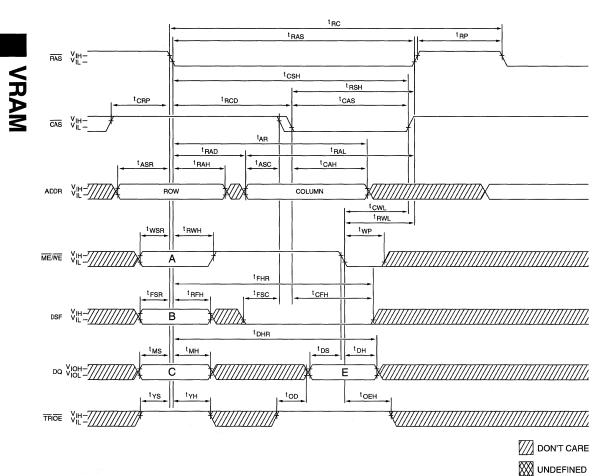

2. CAS or ME/WE, whichever occurs later (Except for BLOCK WRITE and LOAD COLOR REGISTER).

3. WE = "don't care" BLOCK WRITE and LOAD COLOR REGISTER. The DQ column-mask data or color data will be latched at the falling edge of CAS, regardless of the state of MEWE.

MICRON

VRAM

DRAM EARLY-WRITE CYCLE¹

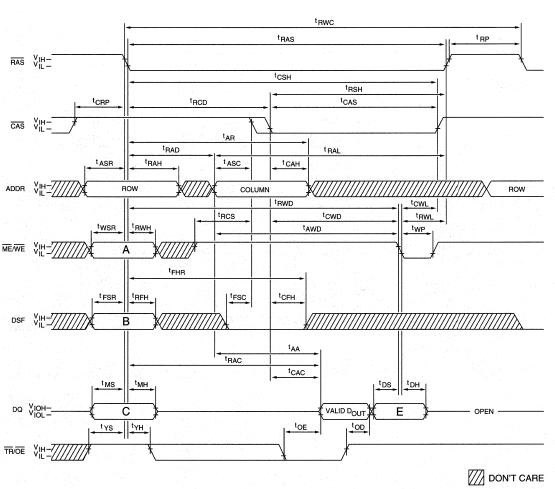


IOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

2. For Block Write, ME/WE = "don't care." For all other EARLY-WRITE cycles, ME/WE = LOW.

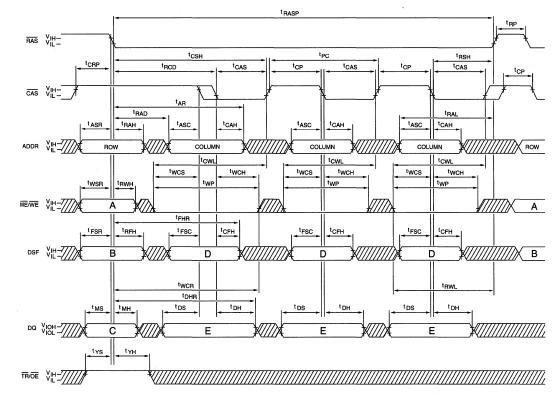
MICRON

MT42C4256 256K x 4 VRAM



DRAM LATE-WRITE CYCLE 1

NOTE: 1. The logic states of "A", "B", "C" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

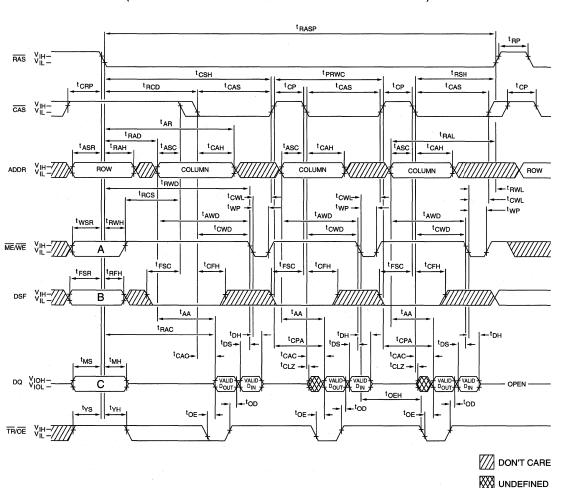


VRAM

DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

NOTE: The logic states of "A", "B", "C" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

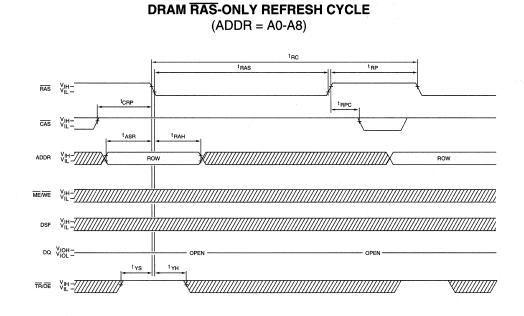
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE


IRON

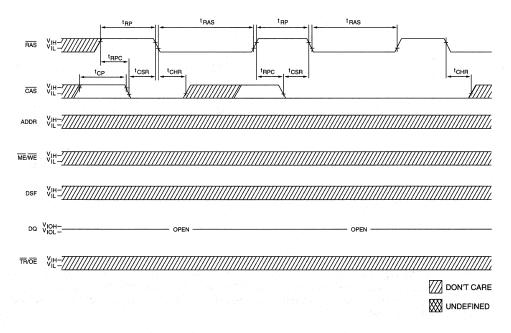
VRAM

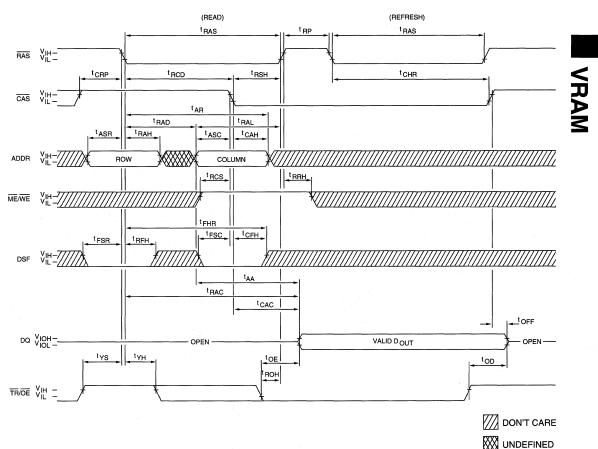
NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.

2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.



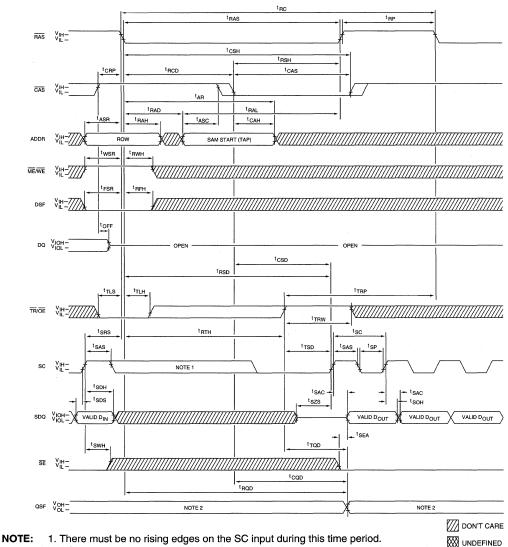
DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)


- **NOTE:** 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
 - 2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


MICRON

DRAM CBR REFRESH CYCLE

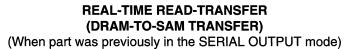
DRAM HIDDEN-REFRESH CYCLE

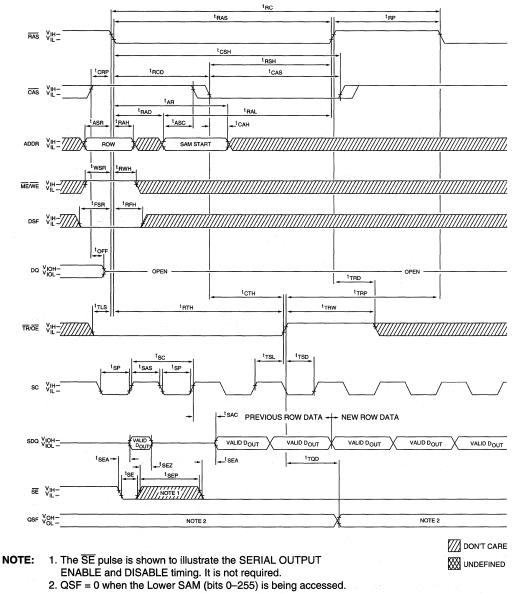


NOTE: A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH and the DQ pins stay High-Z. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

VRAM

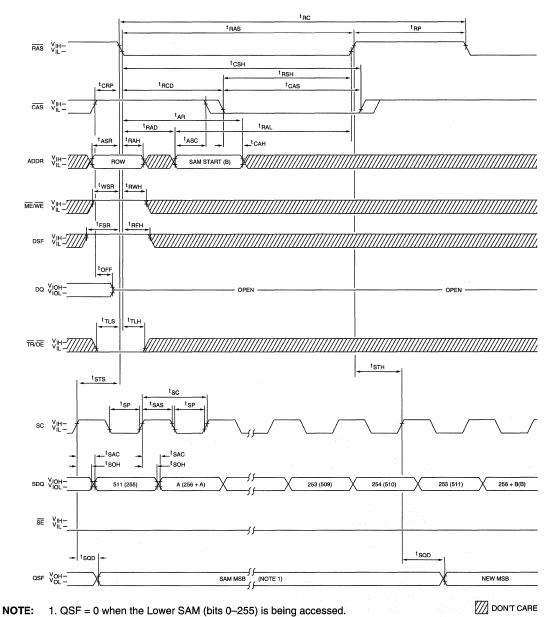
READ TRANSFER ³ (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL INPUT mode or SC idle)




QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

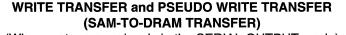
3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.

VRAM

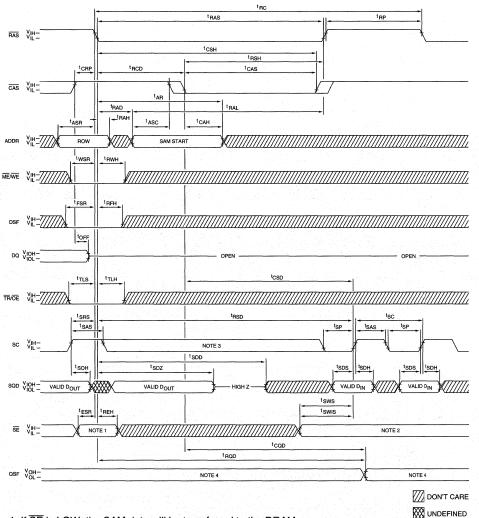


QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

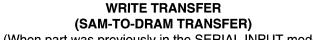
MICRON


SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

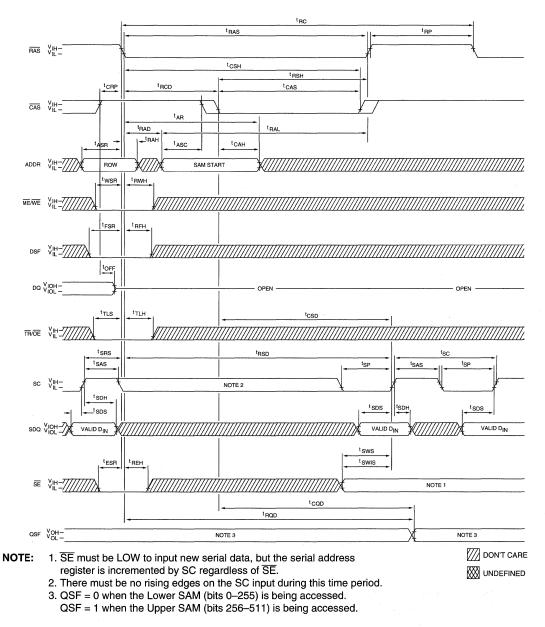
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.


W UNDEFINED

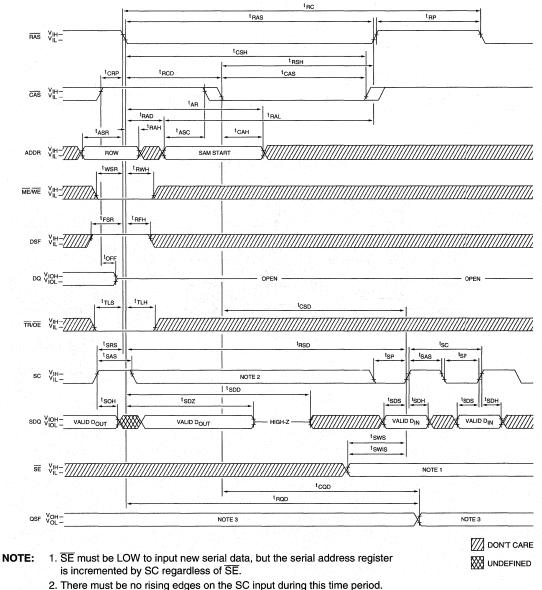
VRAM



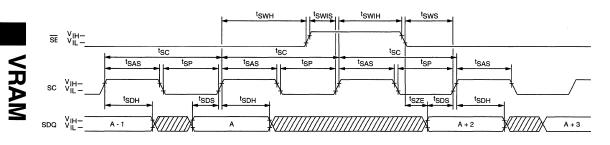
(When part was previously in the SERIAL OUTPUT mode)

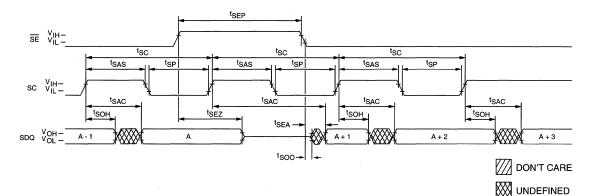


- NOTE:
- 1. If \overline{SE} is LOW, the SAM data will be transferred to the DRAM.
 - If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle). 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
 - 3. There must be no rising edges on the SC input during this time period.
 - 4. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256–511) is being accessed.


(When part was previously in the SERIAL INPUT mode)

VRAM




- 3. QSF = 0 when the Lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

MICRON SEMICONDUCTOR. INC.

MT42C8128 128K x 8 VRAM

VRAM

VRAM

128K x 8 DRAM WITH 256 x 8 SAM

PIN ASSIGNMENT (Top View)

FEATURES

- · Industry-standard pinout, timing and functions
- High-performance, CMOS silicon-gate process
- Single +5V ±10% power supply
- Low power: 15mW standby; 275mW active, typical
- Inputs and outputs are fully TTL compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- · No refresh required for serial access memory
- Optional FAST-PAGE-MODE access cycles
- Dual-port organization: 128K x 8 DRAM port 256 x 8 SAM port
- Fast access times: 70ns random, 22ns serial 60ns random, 18ns serial*

SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE

OPTIONS

MARKING

• Timing (DRAM, SAM	[cycle/access])
60ns, 18ns/18ns	-6*
70ns, 22ns/22ns	-7
80ns, 25ns/25ns	-8
 Packages 	
Plastic SOJ (400 mil)	DJ

• Part Number Example: MT42C8128DJ-7

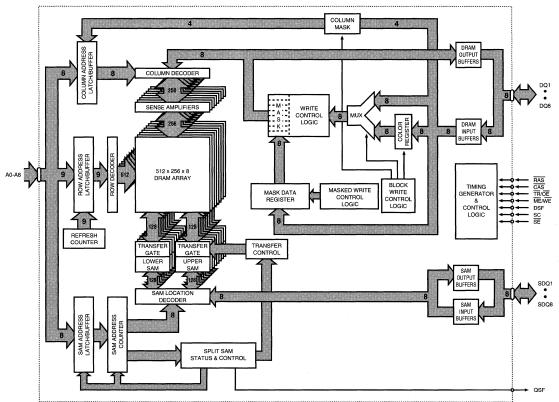
*60ns (-6) specifications are preliminary; consult factory for availability.

GENERAL DESCRIPTION

The MT42C8128 is a high-speed, dual-port CMOS dynamic random access memory or video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed either by an 8-bit-wide DRAM port or by a 256 x 8-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is similar to the

40-Pin SOJ (SDB-3)							
SC	d	1	40	ի	Vss1		
SDQ1	d	2	39	þ	SDQ8		
SDQ2	Ц	3	38	þ	SDQ7		
SDQ3	q	4	37	þ	SDQ6		
SDQ4	q	5	36	þ	SDQ5		
TR/OE	Е	6	35	þ	SE		
DQ1	q	7	34	Þ	DQ8		
DQ2	Е	8	33	þ	DQ7		
DQ3	C	9	32	þ	DQ6		
DQ4	Ľ	10	31	þ	DQ5		
Vcc1	C	11	30	þ	Vss2		
ME/WE	q	12	29	þ	DSF		
NC	d	13	28	þ	NC		
RAS	Е	14	27	þ	CAS		
NC	C	15	26	þ	QSF		
A8	C	16	25	þ	A0		
A6	C	17	24	þ	A1		
A5	C	18	23	þ	A2		
A4	C	19	22	þ	A3		
Vcc2	C	20	21	þ	A7		


MT4C4256 (256K x 4 DRAM). Eight 256-bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8-bit random access I/O port, the eight internal 256-bit-wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and requires no refresh.

The operation and control of the MT42C8128 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT READ TRANSFER and BLOCK WRITE, allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MT42C8128 128K x 8 VRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	SYMBOL	ТҮРЕ	DESCRIPTION
1	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
6	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text{RAS}}$ (H \rightarrow L), or
			Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z state.
12	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS, a MASKED WRITE cycle is performed, or
			Write Enable: $\overline{ME/WE}$ is also used to select a READ ($\overline{ME/WE} = H$) or WRITE ($\overline{ME/WE} = L$) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{ME/WE} = H$) or WRITE TRANSFER ($\overline{ME/WE} = L$).
35	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed.
29	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used for a particular access cycle.
14	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It acts as master chip enable, and must fall to initiate any DRAM or TRANSFER cycle.
27	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock-in the 8 column- address bits, enable the DRAM output buffers (along with $\overline{TR}/\overline{OE}$), and strobe the DSF input.
25, 24, 23, 22, 19, 18, 17, 21, 16	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 128K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A7 indicate the SAM start address (when CAS goes LOW). A7, A8 = "don't care" for the start address when during SPLIT TRANSFER.

PIN DESCRIPTIONS (continued)

_	SOJ PIN Numbers	SYMBOL	ТҮРЕ	DESCRIPTION
	7, 8, 9, 10, 31, 32, 33, 34	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data input/output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and DQ and Column Mask inputs for BLOCK WRITE.
j	2, 3, 4, 5, 36, 37, 38, 39	SDQ1-SDQ8	Input/ Output	Serial Data I/O: Input, output, or High-Z.
	26	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-127, HIGH if address is 128-255.
	15, 28	NC		No Connect: This pin should be either left unconnected or tied to ground.
	11, 20	Vcc	Supply	Power Supply: +5V ±10%
	30, 40	Vss	Supply	Ground

VRA

FUNCTIONAL DESCRIPTION

The MT42C8128 may be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function that is not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory, the MT42C8128 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C8128 supports CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, but must simply perform 512 CBR cycles within the 16.7ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C8128 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

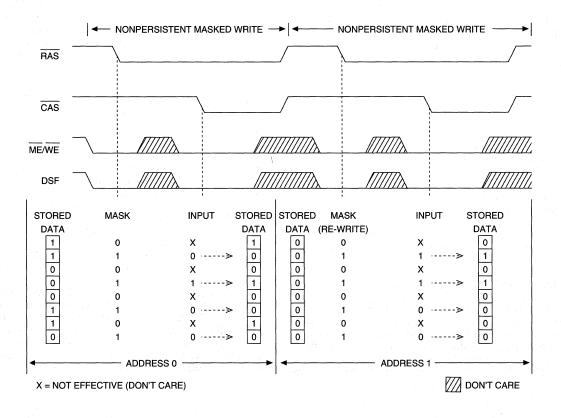
The 17 address bits used to select an 8-bit word from the 131,072 available are latched into the chip using the A0-A8, RAS and CAS inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH-to-LOW. Next, the 8 column address bits are set up on the address inputs and clocked-in when CAS goes from HIGH-to-LOW.

Note: RAS also acts as a "master" chip enable for the VRAM. If RAS is inactive, HIGH; all other DRAM control pins (CAS, TR/OE, ME/WE, etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFERcycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. To enable the DRAM output port, the $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after RAS falls.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition. If (\overline{ME})/WE is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If (\overline{ME})/WE goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.


The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

NONPERSISTENT MASKED WRITE

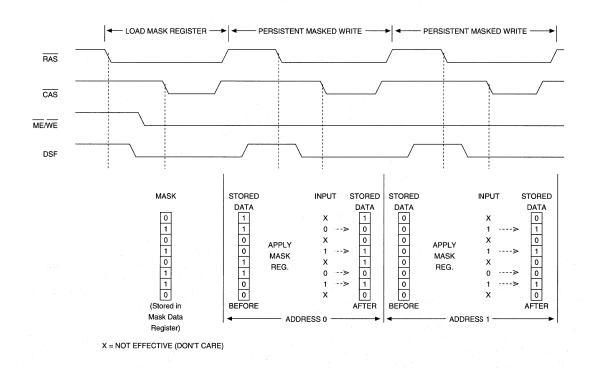
The MASKED WRITE feature eliminates the need for a READ-MODIFY-WRITE cycle when changing only specific bits within an 8-bit word. The MT42C8128 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE. If $\overline{\mathrm{ME}}/(\overline{\mathrm{WE}})$ and DSF are LOW at the RAS HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and

allows normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is nonpersistent (must be re-entered at every \overline{RAS} cycle) if DSF is LOW when \overline{RAS} goes LOW. The mask data register is cleared at the end of every NONPER-SISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE \overline{RAS} cycle. An example NONPERSISTENT MASKED WRITE cycle is shown in Figure 1.

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

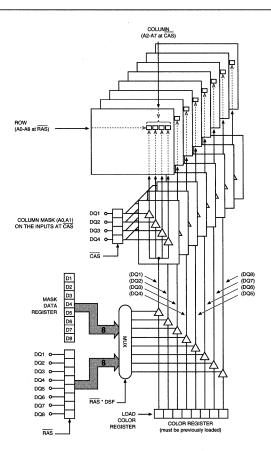
MICRON

MT42C8128 128K x 8 VRAM


IJ

D

PERSISTENT MASKED WRITE


The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF HIGH when RAS goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present on the DQ inputs is not loaded into the mask register when RAS falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSIS-TENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 2 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot provide mask data to the DQ pins at RAS time to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when \overline{CAS} goes LOW, the MT42C8128 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 3). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER). Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

The row is addressed as in a normal DRAM WRITE cycle. However, when CAS goes LOW, only the A2-A7 inputs are used. A2-A7 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3, and 4) are then used to determine what combination of the four column locations will be changed. The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations within the block. The write enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

1	COLUMN ADDRESS CONTROLLED							
INPUTS	AO	A1						
DQ1	0	0						
DQ2	1	0						
DQ3	0	1						
DQ4	search in the search in the	1						

NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions may be used during BLOCK WRITE cycles also. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\mathrm{ME}}/(\overline{\mathrm{WE}})$ LOW and DSF LOW when $\overline{\mathrm{RAS}}$ goes LOW initiates a NONPERSISTENT MASK cycle. The DSF pin must be driven HIGH when $\overline{\mathrm{CAS}}$ goes LOW, to perform a NONPERSISTENT MASKED BLOCK WRITE. Using the column mask input and MASKED WRITE function allows any combination of the eight bit planes or four column locations to be masked.

PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when \overline{CAS} goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGIS-

TER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

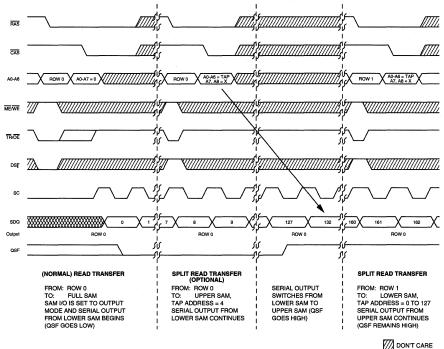
Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The mask data register contents will not be changed unless NON-PERSISTENT MASKED WRITE or LOAD MASK REGISTER cycles are performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the eight DQ planes.

LOAD COLOR REGISTER

The LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when \overline{CAS} goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.



TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\text{TR}}/(\overline{\text{OE}})$ is LOW then $\overline{\text{RAS}}$ goes LOW. The state of $(\overline{\text{ME}})/\overline{\text{WE}}$ when $\overline{\text{RAS}}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and AL-TERNATE WRITE TRANSFER cycles. Each of the TRANS-FER cycles available is described below.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

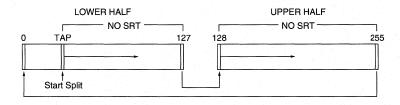
If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the eight 256-bit DRAM row planes to be transferred to the eight SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accomplished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), TR/(OE) is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2,048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. OSF will be LOW if access is from the lower half (addresses 0 through 127), and HIGH if access is from the upper half (128 through 255). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

Figure 4 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and need not be synchronized with the SC clock.


The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of RAS or CAS. The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM port.

A normal, non-split READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin, and to set SAM I/O direction. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A6, is used to input the SAM Tap address. Address pin A7 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, it is only needed if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 127 ("A7" = 0, A0-A6 = 1) the new Tap address is loaded for the next half ("A7" = 1, A0-A6 = Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 4 would be to wait until QSF went LOW (indicating that row-1 data is shifting out of the lower SAM) and then transfer the upper half of row 1 to the upper SAM. If the half boundary is reached, before an SRT is done for the half, a Tap address of "0" will be used. Access will start at 0 if going to the lower half, and 128 if going to the upper half. See Figure 5.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to that of the READ TRANSFER described previously except ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QSF is LOW if access is to the lower half of the SAM, and HIGH if to access the upper half.

Figure 5 SPLIT SAM TRANSFER

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of the SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{\text{ME}})/\overline{\text{WE}}$ is LOW when $\overline{\text{RAS}}$ goes LOW, allowing $\overline{\text{SE}}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\text{SE}}$ during a WRITE TRANSFER cycle. ALTERNATE WRITE TRANSFER will change the SAM I/O direction to an input condition.

SERIAL INPUT AND SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SRT cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The

address progresses through the SAM and will wrap around (after count 127 or 255) to the Tap address of the next half, for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated in Figure 5. Address count will wrap around (after count 255) to Tap address 0 if in the "full" SAM modes.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the SAM address counter (loaded when the serial input mode was enabled) will determine the serial address of the first 8-bit word written. SE acts as a write enable for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

POWER-UP AND INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = (\overline{TR})/\overline{OE} \ge VIH$ during power up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data.

The SAM portion of the MT42C8128 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and the I/O pins (SDQs) will be High-Z, regardless of the state of \overline{SE} . The mask and color register will contain random data after power-up. QSF initializes in the LOW state.

TRUTH TABLE

			RAS	FALLING I	DGE		CAS FALL	A	D-A81	D01	DQ8 ²	REGIS	TERS
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	SE	DSF	RAS	CAS, A8=X	RAS	CAS,WE ³	MASK	COLOR
	DRAM OPERATIONS			4									1
CBR	CBR REFRESH	0	X	X	х	X	X	-	X		X	X	x
ROR	RAS-ONLY REFRESH	1	1.1	X	X	X		ROW	·	×		X	x
RW	NORMAL DRAM READ OR WRITE	.1	1	1	0	x	0	ROW	COLUMN	х	VALID	X	x
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	x	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	x
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	x	0	ROW	COLUMN	X	VALID DATA	USE	x
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	x	1	ROW	COLUMN (A2-A7)	X	COLUMN MASK	x	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	X	1	ROW	COLUMN	WRITE MASK	COLUMN MASK	LOAD & USE	USE
BWOM	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1.1	0	1	x	1	ROW	COLUMN (A2-A7)	x	COLUMN MASK	USE	USE
	REGISTER OPERATIONS			· · · · · ·	1.1				·				
LMR	LOAD MASK REGISTER	1	1	1	1	x	0	ROW ⁴	x	x	WRITE MASK	LOAD	x
LCR	LOAD COLOR REGISTER	1	1	1	1	x	1	ROW ⁴	x	x	COLOR DATA	x	LOAD
	TRANSFER OPERATIONS				-	1.1	1111		and the second			a series a	
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	X	ROW	TAP ⁵	X	X	X	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	x	X	ROW	TAP ⁵	X	X	x	X
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	X	ROW	TAP ⁵	x	x	x	x
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)	1	0	0	0	1	X	ROW ⁴	TAP ⁵	х	x	X	X
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	x	x	ROW	TAP ⁵	x	x	x	X

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when CAS falls.

2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.

3. On WRITE cycles (except BLOCK WRITE and LOAD COLOR REGISTER), the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, with READ cycles, the output data is activated at the falling edge of CAS or TR/OE, whichever is later.

4. The ROW that is addressed will be refreshed, but no particular ROW address is required.

5. This is the SAM location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (127 for the lower half, 255 for the upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to	+7V
Operating Temperature, T _A (ambient)0°C to +7	∕0°C
Storage Temperature (plastic)55°C to +15	
Power Dissipation	.1W
Short Circuit Output Current)mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

VRAM

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Vін	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$	IL.	-10	10	μA	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V ≤ Vouт ≤ Vcc)	loz	-10	10	μΑ	
	Vон	2.4		V	4
Output High Voltage (Ιουτ = -2.5mA) Output Low Voltage (Ιουτ = 2.5mA)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Ci1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Ci2		7	pF	2
Input/Output Capacitance: DQ, SDQ	Ci/o		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$			MAX				
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES	
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ^t RC = ^t RC [MIN])	ICC1	105	95	85	mA	3, 4 26	
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ¹ PC = ¹ PC [MIN])	ICC2	95	85	75	mA	3, 4 27	V R
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles [MIN]; other inputs \ge VIH or \le VIL)	Іссз	8	8	8	mA	4	RAM
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	ICC5	105	95	85	mA	3, 26	
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	Icc6	105	95	85	mA	3, 5	
SAM/DRAM DATA TRANSFER	ICC8	115	105	95	mA	3]

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

$(0 \ 0 \ \le 1_A \le 70 \ 0, \ \sqrt{cc} = 5\sqrt{\pm 10})$			MAX	11		
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc9	170	150	130	mA	3, 4, 26
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ¹PC = ¹PC [MIN])	ICC10	160	140	120	mA	3, 4, 27
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = $CAS = V_{IH}$ after 8 RAS cycles [MIN]; other inputs $\ge V_{IH}$ or $\le V_{IL}$)	ICC11	65	55	45	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Viii)	ICC12	170	150	130	mA	3, 4, 26
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC13	170	150	130	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC14	190	160	130	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	-6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-MODIFY-WRITE cycle time	^t RWC	148		170		190		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	35		40	1 A A	45		ns	
cycle time							1. A.		$\{ i,j \}_{i \in \mathbb{N}}$
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	83		90		95		ns	
cycle time			$(x_1, \dots, x_n) \in \mathbb{R}^n$		1.1		1.5		
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		18	-	20		25	ns	15
Access time from (TR)/OE	tOE		15		20		20	ns	
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	18		20		20		ns	1
RAS precharge time	^t RP	40		50		60	1	ns	
CAS pulse width	^t CAS	18	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	42	20	50	20	55	ns	17
CAS to RAS precharge time	^t CRP	10		10		10		ns	
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column-	^t RAD	15	30	15	35	15	40	ns	18
address delay time									
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	12		15		15		ns	2.0
Column-address hold time	tAR	40		45		55		ns	
(referenced to RAS)									
Column-address to	^t BAL	30		35		40		ns	
RAS lead time					· · · · ·				
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time	^t RCH	0		0		0		ns	19
(referenced to CAS)			de la composition					i de la come	
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)		1.5					n an isteri		1.1
CAS to output in Low-Z	^t CLZ	3	1	3		3		ns	
Output buffer	tOFF	3	12	3	12	3	15	ns	20, 23
turn-off delay		-		•		-			
Output disable	tOD	3	10	3	10	3	10	ns	20, 23
Output disable hold time from start of WRITE	^t OEH	10		10		10	1	ns	25
OE LOW to RAS HIGH delay time	^t BOH	0		0		0	1	ns	+

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-6*			-7		8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	12		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	40		45		55		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	tRWL	18		20		20		ns	·
Write command to CAS lead time	^t CWL	18		20		20	a	ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	12		15		15	· · · ·	ns	22
Data-in hold time (referenced to RAS)	^t DHR	40		45		55		ns	
RAS to WE delay time	^t RWD	80		90		100		ns	21
Column-address to WE delay time	tAWD	50		55		60		ns	21
CAS to WE delay time	^t CWD	38	1	40		45		ns	21
Transition time (rise or fall)	^t т		35		35		35	ns	9, 10
Refresh period (512 cycles)	tREF		16.7		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	1
CAS setup time (CBR REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		0		ns	
ME/WE to RAS hold time	^t RWH	12		15		15		ns	
Mask Data to RAS setup time	tMS	0	ал. А.,	0		0		ns	
Mask Data to RAS hold time	tMH	12		15		15		ns	$(1,1) \in \mathbb{R}^{n}$

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-	6*		-7		-8	1. N. 1.	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		0		ns	
TR/(OE) LOW to RAS hold time	^t TLH	15	10,000	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time	tRTH	65	10,000	65	10,000	70	10,000	ns	
(REAL-TIME READ TRANSFER only)									
TR/(OE) LOW to CAS hold time	^t CTH	25		25		25		ns	
(REAL-TIME READ TRANSFER only)									
TR/(OE) HIGH to SC lead time	^t TSL	5	1.1	5		5	1. 1	ns	
TR/(OE) to RAS HIGH hold time	^t TRD	15		15		15		ns	
TR/(OE) HIGH to RAS precharge time	tTRP	40		50		60		ns	
TR/(OE) precharge time	^t TRW	15		20		20		ns	
First SC edge to TR/(OE) HIGH	^t TSD	15		15		15	a sub-	ns	a a star
delay time								1. 1. 1. 1. 1.	
Serial output buffer turn-off	^t SDZ	7	40	7	40	7	40	ns	1.1.1.1
delay from RAS	· · · ;							1.1.1.1	
SC to RAS setup time	tSRS	20		25		30	1.1.1	ns	100
Serial data input to SE delay time	^t SZE	0		0		0		ns	
Serial data input delay from RAS	^t SDD	50		50		50		ns	
Serial data input to RAS delay time	tSZS	0		0		0		ns	1.1
Serial-input-mode enable	tESR	0		0		0		ns	
(SE) to RAS setup time								1999 A	
Serial-input-mode enable	^t REH	15		15		15		ns	
(SE) to RAS hold time	4							{ · · · ;	1
TR/(OE) HIGH to RAS setup time	tYS	0		0		0		ns	
TR/(OE) HIGH to RAS hold time	^t YH	12		15		15		ns	
DSF to RAS setup time	tFSR	0	1.1.4	0		0	$(-1)_{i=1}^{i_{i}} (k_{i})_{i=1}^{i_{i}}$	ns	- 4 ¹
DSF to RAS hold time	^t RFH	12	1.1	15		15		ns	
SC to QSF delay time	^t SQD		30	1.1	30		30	ns	
SPLIT TRANSFER setup time	^t STS	20		25		30	1.00	ns	
SPLIT TRANSFER hold time	^t STH	0		0		0		ns	
RAS to QSF delay time	^t RQD		70		75		75	ns	
DSF to RAS hold time	^t FHR	40		45		55		ns	
DSF to CAS setup time	^t FSC	0		0		0		ns	
DSF to CAS hold time	^t CFH	12		15	1.1	15	1.1.1	ns	
TR/OE to QSF delay time	^t TQD		25		25		25	ns	
CAS to QSF delay time	^t CQD		30		35		35	ns	
RAS to first SC delay	^t RSD	70		80		80		ns	
CAS to first SC delay	tCSD	25		30	1.1.1.1	30		ns	

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

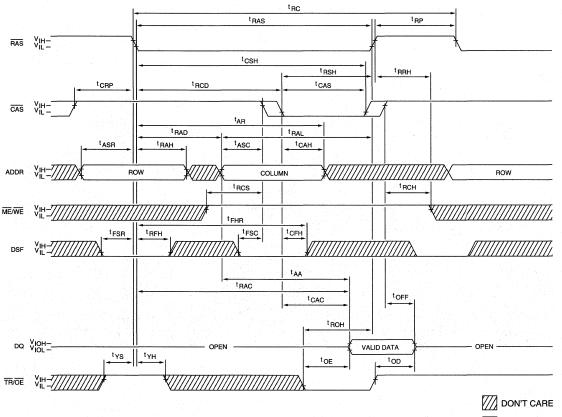
(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_{A} \le + 70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-6*		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock-cycle time	^t SC	18	1.1	22	1.1.1	25		ns	
Access time from SC	^t SAC		18	1.1	22	1	25	ns	24, 28
SC precharge time (SC LOW time)	tSP	7		8	and the second	10		ns	
SC pulse width (SC HIGH time)	^t SAS	7		8		10		ns	1.1
Access time from SE	^t SEA		12		15		15	ns	24
SE precharge time	^t SEP	7	1811	8		10		ns	
SE pulse width	^t SE	7		8		10		ns	
Serial data-out hold time after SC high	^t SOH	5		5		5		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	10	3	12	3	12	ns	20, 24
Serial data-in setup time	tSDS	0		0	15	0		ns	
Serial data-in hold time	^t SDH	9		10		10		ns	
Serial input (Write) Enable setup time	tSWS	0	1.14	0		0		ns	
Serial input (Write) Enable hold time	^t SWH	15	17	15		15		ns	
Serial input (Write) disable setup time	tSWIS	0		0		0		ns	
Serial input (Write) disable hold time	^t SWIH	15		15		15		ns	

NOTES

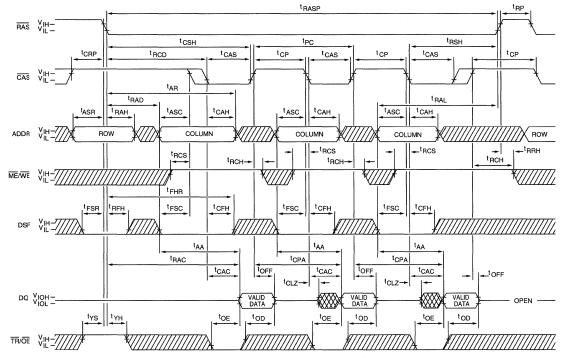
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$, f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on I/O loading. Specified values are obtained with minimum cycle time and the I/Os open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16.7ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition between 0V and 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data output (DQ1-DQ8) is High-Z.
- 12. If \overline{CAS} = VIL, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 2 TTL gates and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VoH -200mV, VoL +200mV). This parameter is sampled and not 100% tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If $^{t}WCS \ge$ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of TR/OE. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}}/\overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If $^{t}RWD \ge ^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 26. Address (A0-A8) may be changed two times or less while $\overline{RAS} = V_{IL}$.
- 27. Address (A0-A8) may be changed once or less while \overline{CAS} = VIH and \overline{RAS} = VIL.
- 28. ^tSAC is MAX at 70° C and 4.5V Vcc; ^tSOH is MIN at 0°C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature ^tSOH = ^tSAC output transition time, this is guaranteed by design.


VRAM

MICRON

MT42C8128 128K x 8 VRAM


VRAM

DRAM READ CYCLE

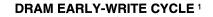
VRAM

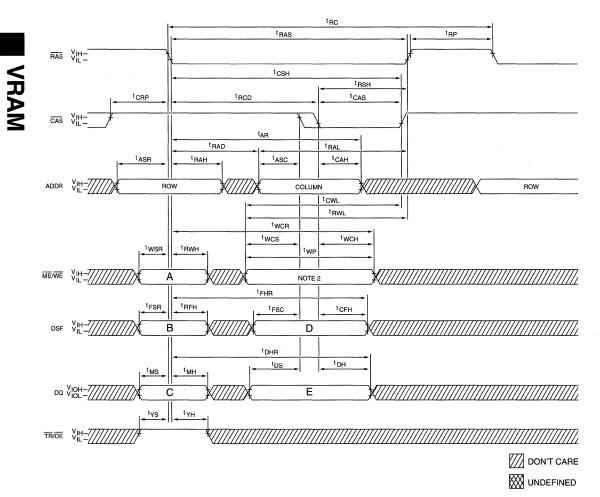
MT42C8128 128K x 8 VRAM

DRAM FAST-PAGE-MODE READ CYCLE

NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

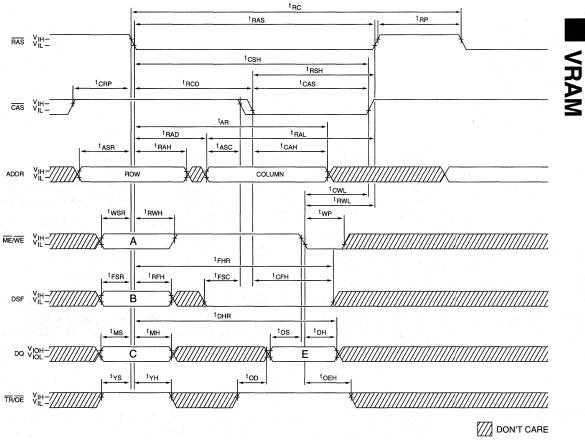
WRITE CYCLE FUNCTION TABLE 1


		LOGIC STATES							
	RAS Falling Edge				CAS Falling Edge				
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)				
Normal DRAM WRITE (or READ)	. 1 .	0	X	0	DRAM Data				
NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	0	0	Write Mask	0	DRAM Data (Masked)				
PERSISTENT (Use Register) MASKED WRITE to DRAM	0	1	x	0	DRAM Data (Masked)				
BLOCK WRITE to DRAM (No Data Mask)	1	0	X	1	Column Mask ³				
NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	0	0	Write Mask	1	Column Mask ³				
PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	0	1	X	1	Column Mask ³				
Load Mask Register	1	1	X	0	Write Mask				
Load Color Register	1	1	х	1	Color Data				


NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

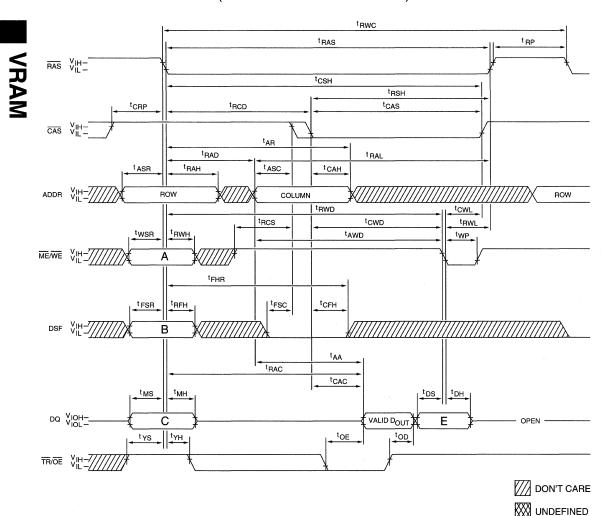
2. CAS or ME/WE, whichever occurs later (except for BLOCK WRITE and LOAD COLOR REGISTER).

3. WE = "don't care" for BLOCK WRITE and LOAD COLOR REGISTER. The DQ column-mask data or color data will be latched at the falling edge of CAS, regardless of the state of ME/WE.



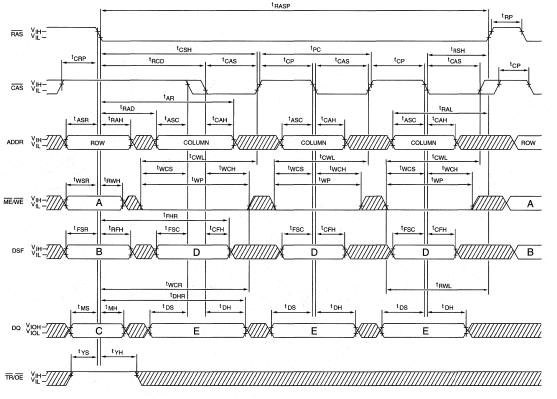
NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

2. For BLOCK WRITE, ME/WE = "don't care." For all other EARLY-WRITE cycles, ME/WE = LOW.


MT42C8128 128K x 8 VRAM

DRAM LATE-WRITE CYCLE

NOTE: The logic states of "A", "B", "C" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

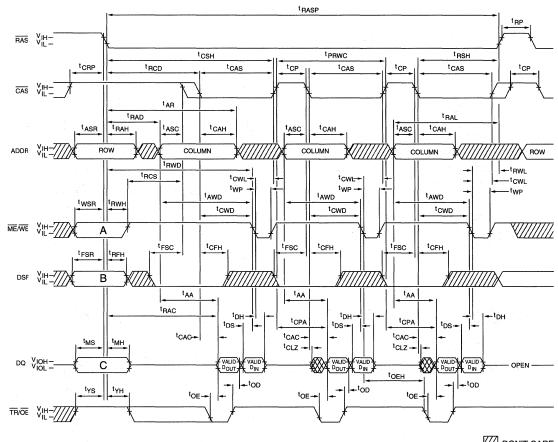
NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

UNDEFINED

VRAM

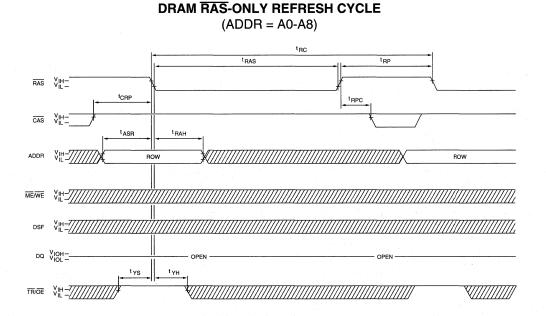
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

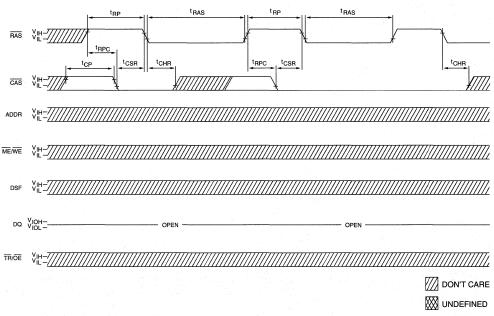
DON'T CARE


NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.

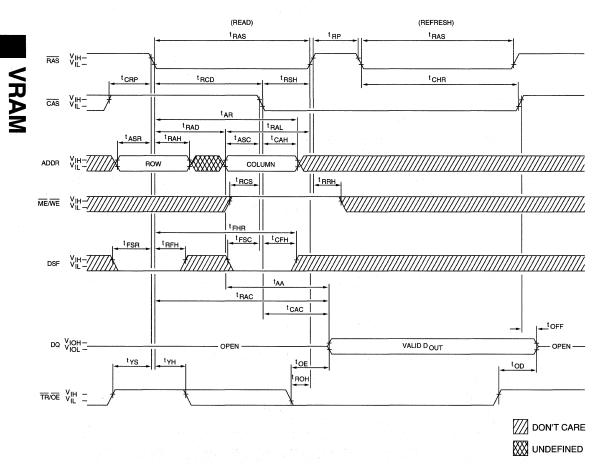
2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

VRAM

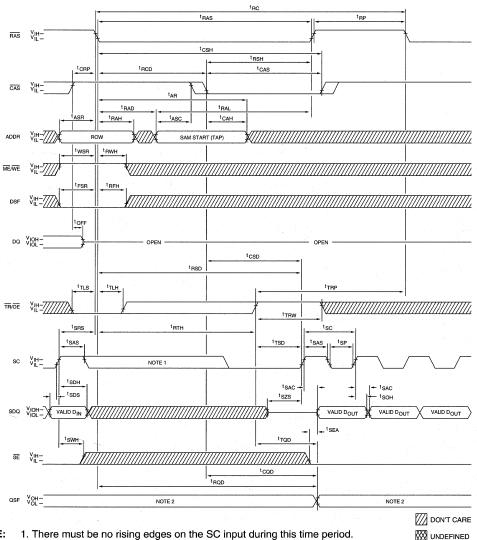

DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)


- **NOTE:** 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
 - 2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

VRAM

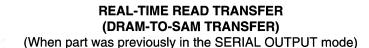

CBR REFRESH CYCLE

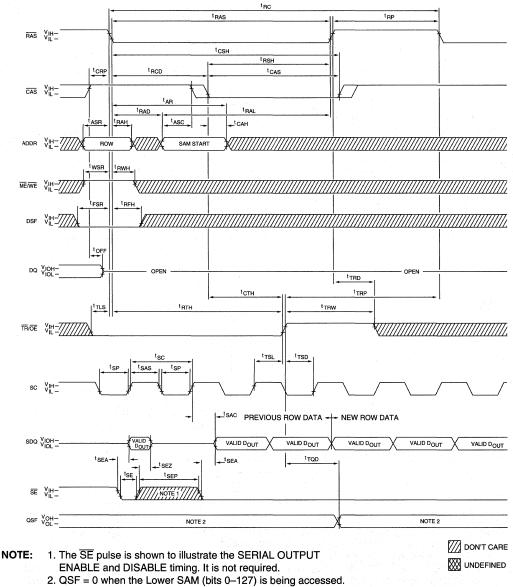
2-65


DRAM HIDDEN-REFRESH CYCLE

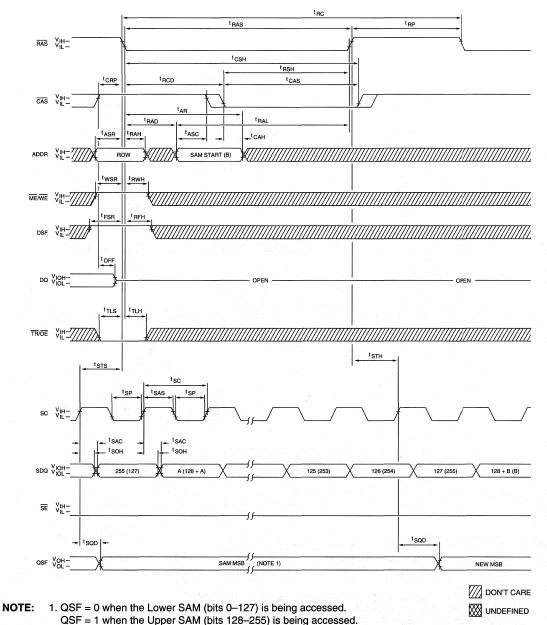
NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH and the DQ pins stay High-Z. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

READ TRANSFER 3 (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL INPUT mode or SC idle)

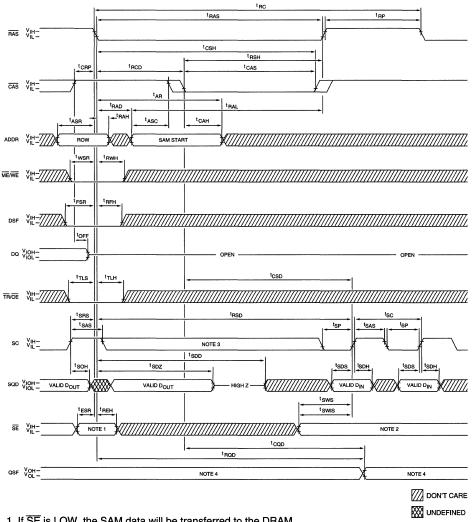



- **NOTE:** 1. There must be no rising edges on the SC input during this time period.
 - 2. QSF = 0 when the Lower SAM (bits 0-127) is being accessed.
 - QSF = 1 when the Upper SAM (bits 128-255) is being accessed.
 - 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the $\overline{TR}/(\overline{OE})$ rising edge, the transfer is done off of the $\overline{TR}/(\overline{OE})$ rising edge and ^tTSD must be met.

MICRON



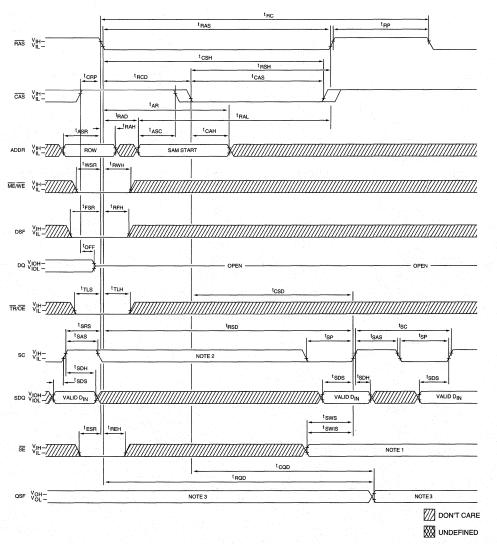
QSF = 1 when the Upper SAM (bits 128-255) is being accessed.


VRAM

MT42C8128 REV, 5/93

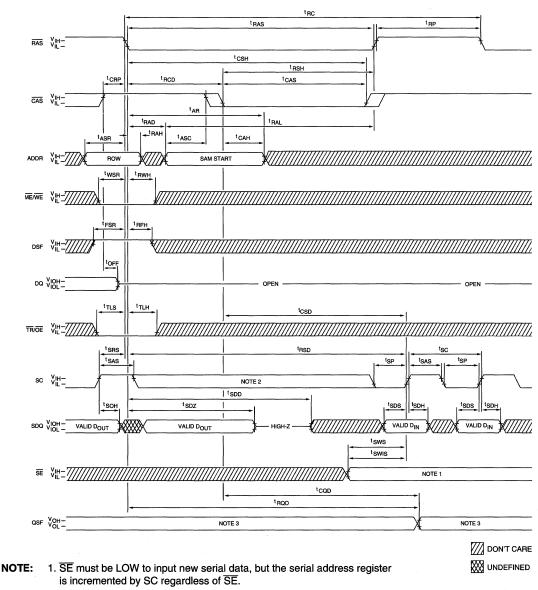
WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)


NOTE:

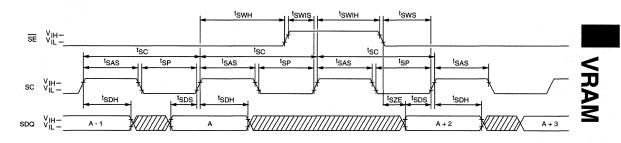
- E: 1. If SE is LOW, the SAM data will be transferred to the DRAM.
 - If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
 - 3. There must be no rising edges on the SC input during this time period.
 - 4. QSF = 0 when the Lower SAM (bits 0-127) is being accessed.
 - QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

VRAM

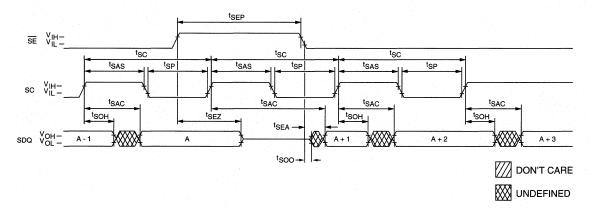


- NOTE: 1. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
 - 2. There must be no rising edges on the SC input during this time period.
 - 3. QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 - QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

:RON



ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the Lower SAM (bits 0-127) is being accessed.
 - QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

MT42C8128 128K x 8 VRAM

NEW

VRAN

VRAM

256K x 8 DRAM WITH 512 x 8 SAM

FEATURES

- Industry-standard pinout, timing and functions
- NIBBLE (4-bit) WRITE and MASKED WRITE access cycles
- High-performance, CMOS silicon-gate process
- Single +5V ±10% power supply

RON

- Inputs and outputs are fully TTL compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- FAST-PAGE-MODE
- Dual-port organization: 256K x 8 DRAM port 512 x 8 SAM port
- No refresh required for serial access memory
- Low power: 10mW standby; 300mW active, typical
- Fast access times: 70ns random, 22ns serial

SPECIAL FUNCTIONS

- NONPERSISTENT MASKED WRITE
- BLOCK WRITE
- SPLIT READ TRANSFER

OPTIONS

MARKING

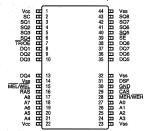
• Timing (DRAM, SAM [cycle/access]) '
70ns, 22/22ns 80ns, 25/25ns		-7 -8
Packages Plastia SOI (400 mil)		וח

Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TG*
Plastic TSOP (400 mil) reverse pinout	RG*

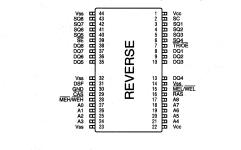
• Part Number Example: MT42C8254-7DJ

GENERAL DESCRIPTION

The MT42C8254 is a dual $\overline{\text{ME}}/\overline{\text{WE}}$ version of the MT42C8255, high-speed, dual-port CMOS dynamic random access memory or video RAM (VRAM) containing 2,097,152 bits. These bits may be accessed by an 8-bit-wide DRAM port or by a 512 x 8-bit serial access memory (SAM) port. Data may be transferred from the DRAM to the SAM.


The DRAM portion of the VRAM is functionally similar to the MT4C4256 (256K x 4-bit DRAM), with the addition of MASKED WRITE and BLOCK WRITE. Eight 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate data paths: the 8-bit

PIN	ASSIGNMENT	(Тор	View)


40-Pin SOJ (SDB-3)

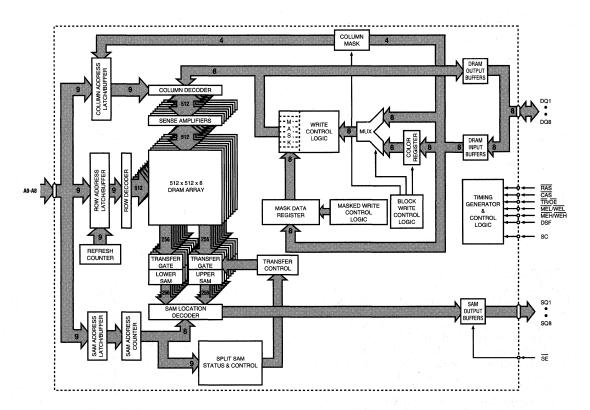
Vcc	d 1	40	Vss
SC	2	39	SQ8
SQ1	3	38	SQ7
SQ2	4	37	SQ6
SQ3	5	36	SQ5
SQ4	6	35	SE
TR/OE	d 7	34	DQ8
DQ1	8	33	DQ7
DQ2	9	32	DQ6
DQ3	10	31	DQ5
DQ4	11	30	Vss
Vss	12	29	DSF
MEL/WEL	13	28	GND
RAS	L 14	27	CAS
A8	15	26	MEH/WEH
A7	16	25	A0
A6	L 17	24	A1
A5	L 18	23	A2
A4	C 19	22	A3
Vcc	20	21	Vss

40/44-Pin TSOP* (SDE-2)

40/44-Pin TSOP* (SDE-2)

*Consult factory for availability.

NEW


random access I/O port, the eight internal 512-bit-wide paths between the DRAM and the SAM, and the 8-bit serial output port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The MT42C8254 WE function and timing are determined by the first NIBBLE WRITE (WEL or WEH) to transition LOW and the last to transition back HIGH. Use of only one of the two results in a NIBBLE WRITE cycle: WEL transitioning LOW selects a WRITE cycle for the lower NIBBLE (DQ1-DQ4) or WEH transitioning LOW selects a WRITE cycle for the upper NIBBLE (DQ5-DQ8).

The operation and control of the MT42C8254 are optimized for high performance graphics using off-the-shelf Super VGA controllers/accelerators. NIBBLE WRITE capability simplifies 16-color VGA modes. Special features such as SPLIT READ TRANSFER and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBERS	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
2	2	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
7	7	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS $(H \rightarrow L)$, or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z state.
26 13	28 15	MEH/WEH MEL/WEL	Input	Mask Enable: If MEH/WEH or MEL/WEL are LOW at the falling edge of RAS, a MASKED WRITE cycle is performed, or Write Enable: $MEH,L/WEH,L$ are also used to select a READ ($MEH,L/$ WEH,L = H) or WRITE ($MEH,L/WEH,L = L$) cycle when accessing the DRAM and READ TRANSFER ($MEH,L/WEH,L = H$) to the SAM. MEL/WEL controls DQ4-DQ1. MEH/WEH controls DQ8-DQ5. When performing BLOCK WRITE, both ME/WE pins must be LOW. NIBBLE BLOCK WRITE is not supported.
35	39	SE	Input	Serial Port Enable: \overline{SE} enables the serial output buffers and allows a serial READ operation to occur; otherwise, the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC when \overline{SE} is inactive (HIGH).
29	31	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).
14	16	RAS	Input	Row Address Strobe: RAS is used to clock-in the 9 row-address bits and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycle.
27	29	CAS	Input	Column Address Strobe: CAS is used to clock-in the 9 column- address bits and strobe the DSF input (BLOCK WRITE only).
25, 24, 23, 22, 19, 18, 17, 16, 15	27, 26, 25, 24, 21, 20, 19, 18, 17	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 262,144 available. During TRANSFER operations, A0-A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT READ TRANSFER.
8, 9, 10, 11, 31, 32, 33, 34	8, 9, 10, 13, 35, 36, 37, 38	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles; these pins also act as inputs for Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.
3, 4, 5, 6, 36, 37, 38, 39	3, 4, 5, 6, 40, 41, 42, 43	SQ1-SQ8	Output	Serial Data Out: Output or High-Z.
28	30	GND		No Connect/GND: This pin must be tied to ground to allow for upward functional compatibility with future VRAM feature sets.
1, 20	1, 22	Vcc	Supply	Power Supply: +5V ±10%
12, 21, 30, 40	14, 23, 32, 44	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT42C8254 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory, the MT42C8254 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C8254 supports CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, but must simply perform 512 CBR cycles within the 16.7ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C8254 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select an 8-bit word from the 262,144 available are latched into the chip using the A0-A8, RAS and CAS inputs. First, the nine row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the nine column-address bits are set up on the address inputs and clocked-in when CAS goes from HIGH to LOW.

Note:

 \overline{RAS} also acts as a "master" chip enable for the VRAM. If RAS is inactive, HIGH, all other DRAM control pins (CAS, TR/OE, MEH, L/WEH, L, etc.) are "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when RAS goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the RAS HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $(\overline{MEH,L})/$ WEH, L are HIGH when CAS goes LOW and remain HIGH until CAS goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{TR})/\overline{OE}$ input must transition from HIGH to LOW sometime after RAS falls in order to enable the DRAM output port.

For standard single-port DRAMs, WE is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{ME}/\overline{WE}$ performs two functions: write mask enable and data write enable. $\overline{\text{ME}}/(\overline{\text{WE}})$ is used when $\overline{\text{RAS}}$ goes LOW to select between a MASKED WRITE cycle and a normal WRITE cycle. If \overline{ME} (WE) is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any non-masked DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the RAS HIGH-to-LOW transition. If (ME)/WE is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If $(\overline{ME})/\overline{WE}$ goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed (refer to the AC timing diagrams).

The NIBBLE WRITE signals MEH/WEH and MEL/ WEL can be used together or singly to perform a write mask enable and data write enable. Using one performs a NIBBLE WRITE; using both performs a BYTE WRITE. The \overline{WE} function is determined by the first NIBBLE WRITE signal to transition LOW and the last to transition HIGH.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (late or early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

MASKED WRITE

The MASKED WRITE feature eliminates the need for a READ-MODIFY-WRITE cycle when changing individual bits within the 8-bit word. When $\overline{\text{MEL}}/(\overline{\text{WEL}})$, $\overline{\text{MEH}}/(\overline{\text{WEH}})$ and DSF are LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE is performed. MASKED WRITE can be executed as a NIBBLE or BYTE MASKED WRITE.

The MT42C8254 supports the nonpersistent mode of MASKED WRITE. In this mode, mask data must be entered with every RAS falling edge. The data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register (see Figure 1). DQ1-DQ4 or DQ5-DQ8 may be written independently during NIBBLE MODE. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during

the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that CAS is still HIGH. When CAS goes LOW, the bits present on the DQ1-DQ8 inputs will be written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE.

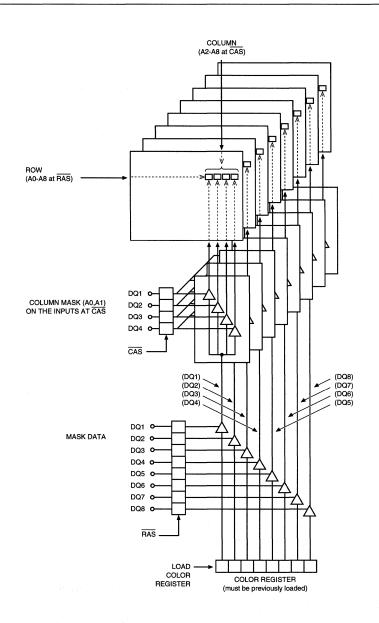

FAST PAGE MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

MIC

MT42C8254 256K x 8 VRAM

Figure 2 BLOCK WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when \overline{CAS} goes LOW, the MT42C8254 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 2). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER). Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

The row is addressed as in a normal DRAM WRITE cycle. However, when \overline{CAS} goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3 and 4) are then used to determine what combination of the four column locations will be changed (see Table 1). The DQ inputs are"written" at the falling edge of \overline{CAS} or \overline{WE} , whichever occurs last (see the WRITE cycle waveforms). The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations within the block. The write enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

BLOCK WRITE can only be executed as a byte BLOCK WRITE. Both $\overline{\text{MEL}}/\overline{\text{WEL}}$ and $\overline{\text{MEH}}/\overline{\text{WEH}}$ must be "active" for any BLOCK WRITE cycle.

MASKED BLOCK WRITE

The MASKED WRITE functions may be used during BLOCK WRITE cycles. MASKED BLOCK WRITE operates exactly like the normal MASKED WRITE except the mask is now applied to the eight bit-planes of four column locations instead of just one column location.

The combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when RAS goes LOW initiates a nonpersistent MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. Any combination of the eight bit-planes may be masked, along with any combination of the four column locations, by using both the column mask input and the MASKED WRITE function of BLOCK WRITE. MASKED BLOCK WRITE can only be executed on a byte basis; nibble MASKED BLOCK WRITE is not allowed.

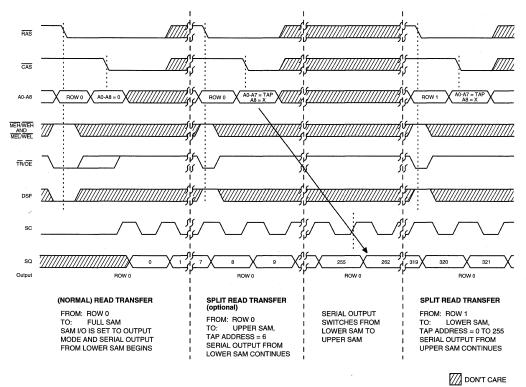
LOAD COLOR REGISTER

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except that DSF is HIGH when \overline{CAS} goes LOW. The contents of the 8-bit color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles. Both $\overline{ME}/\overline{WE}$ pins must be in the same state when loading the color register; only byte loads are allowed.

	COLUMN ADDRE	SS CONTROLLED
INPUTS	AO	A1
DQ1	0	0
DQ2	1	0
DQ3	0	1
DQ4	1	1

Table 1 DQ Masking of Columns (at CAS falling)

MICRON. SEMICONDUCTOR, INC.


MT42C8254 256K x 8 VRAM

TRANSFER OPERATIONS

The MT42C8254 provides two TRANSFER operations. These TRANSFER operations are initiated when TR/(\overline{OE}) is LOW and both $\overline{MEH}/\overline{WEH}$, and $\overline{MEL}/\overline{WEL}$ are HIGH at the falling edge of \overline{RAS} DSF at the falling edge of \overline{RAS} selects between NORMAL TRANSFER and SPLIT TRANSFER cycles. Each of the TRANSFER cycles is described in this section.

READ TRANSFER

A TRANSFER operation with DSF LOW when $\overline{\text{RAS}}$ goes LOW is a READ TRANSFER cycle. The row-address bits indicate which eight 512-bit DRAM row planes are transferred to the eight SAM data register planes. The columnaddress bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text{CAS}}$ must fall for every RT in order to load a valid Tap address. An RT may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC, (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after \overline{CAS} goes LOW. The TRANSFER will be made when $\overline{TR}/(\overline{OE})$ goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANSFER), TR/(OE) may go HIGH before CAS goes LOW and the actual data TRANSFER will be timed internally (refer to the AC Timing Diagrams). During the TRANSFER, 4,096 bits of DRAM data are written into the SAM data registers and the Tap address is stored in an internal nine-bit register. If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of \overline{SE} .

Figure 3 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER must occur between the last clock of "old" data and first clock of "new" data of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer is not synchronized with the serial clock and may occur at any time while the other half is outputting data.

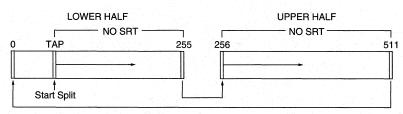
The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle, making it independent of the falling edge of \overline{CAS} or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles.

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference as to which half of the SAM the access will begin. Then an SRT may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As with nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address (at the HIGH-to-LOW transition of CAS). Address pin A8 is a "don't care" when the Tap address is loaded. A8 is generated internally and automatically selects the SAM half not being accessed.

Figure 3 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 ("A8" = 0, A0-A7=1), and an SRT was done for the upper half, the new Tap address is loaded for the next half ("A8" = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. For example, in Figure 3, the next step would be to wait until row one data

shifts out of the lower SAM and executes an SRT of the upper half of row one to the upper SAM. If the half boundary is reached before an SRT is completed for the next half, the device will leave split mode and the access will start from address 256 if going to the upper half, or at zero if going to the lower half (see Figure 4).

SERIAL OUTPUT


The control inputs for serial output are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial output buffers.

Serial output of the SAM contents will begin at the serial start address that was loaded in the SAM address counter during a READ or SRT cycle. The SC input increments the address counter and presents the contents of the next SAM location to the eight-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated in Figure 4. The address count will wrap around (after count 511) to Tap address zero if in the "full" SAM modes.

POWER-UP and INITIALIZATION

After VCC is at specified operating conditions for 100µs minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = \overline{TR} / \overline{OE} \ge V_{IH}$ during power-up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data.

The SAM portion of the MT42C8254 is completely static in operation and does not require refresh or initialization. The SAM port will power up with the output pins (SQs) in High-Z regardless of the state of SE. The color register will contain random data after power-up.

Figure 4 SPLIT SAM TRANSFER

MICRON

TRUTH TABLE

MT42C8254 256K x 8 VRAM

			RAS FALL	ING EDGE		CAS FALL	A0-A81		DQ1-DQ8 ²		REGISTER
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	DSF	RAS	CAS	RAS	CAS,WE ³	COLOR
	DRAM OPERATIONS										•
CBR	CBR REFRESH	0	X	1 ⁶	1 ⁶	-	X	x	-	X	x
ROR	RAS ONLY REFRESH	1	1	х	х	-	ROW	-	X	_	x
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	x	VALID DATA	x
RWM	MASKED WRITE TO DRAM (NEW MASK)	1	1	07	0	0	ROW	COLUMN	WRITE MASK	VALID DATA	x
BW	BLOCK WRITE TO DRAM	1	1	18	0	1	ROW	COLUMN (A2-A8)	. X	COLUMN MASK	USE
BWM	MASKED BLOCK WRITE TO DRAM (NEW MASK)	_1	1	08	0	1 -	ROW	COLUMN (A2-A8)	WRITE MASK	COLUMN MASK	USE
	REGISTER OPERATIONS										
LCR	LOAD COLOR REGISTER	1	1	18	1	1	ROW ⁴	X	X	REG DATA	LOAD
	TRANSFER OPERATIONS										
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	18	0	x	ROW	TAP ⁵	X	X	x
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	18	1	X	ROW	TAP ⁵	X	X	X

- **NOTE:** 1. These columns show what must be present on the A0-A8 inputs when \overline{RAS} falls and when \overline{CAS} falls.
 - 2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.
 - 3. During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is last. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or TR/OE, whichever is last. During a NIBBLE WRITE (no BLOCK WRITE), only one of the two WEs is used.
 - 4. The ROW that is addressed will be refreshed, but a ROW address is not required.
 - 5. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half).
 - 6. The MT42C8254 does not require a "1" on these pins, but to ensure compatibility with other 2 Meg VRAM function sets, it is recommended.
 - 7. If a NIBBLE MASKED WRITE is to be executed, only one of the two write enables needs to be LOW at the RAS falling edge.
 - 8. Both ME/WEs must be at the same state during these cycles; only byte-wide operations are supported.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1.00

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input (0V \leq VIN \leq Vcc); all other pins not under test = 0V	L	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SQ disabled, $0V \le V_{OUT} \le V_{CC}$)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	4
Output Low Voltage ($IouT = 2.5mA$)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cı1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Cı2		7	pF	2
Input/Output Capacitance: DQ, SQ	Cı/o		9	pF	2

MT42C8254 256K x 8 VRAM

CURRENT DRAIN, SAM IN STANDBY ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

$(0^{\circ}C \le 1_{A} \le 70^{\circ}C, \ \forall CC = 5 \forall \pm 10\%)$		M	AX		
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ^t RC = ^t RC [MIN])	Icc1	125	110	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; \overline{CAS} = Cycling: ^t PC = ^t PC [MIN]; other inputs \ge VIH or \le VIL)	ICC2	115	100	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles [MIN]; other inputs \ge VIH or \le VIL)	Іссз	10	10	mA	4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V⊮)	Icc4	125	110	mA	3, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC5	125	110	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	135	120	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C < T_{A} < 70^{\circ}C; V_{CC} = 5V + 10\%)$

$(0.0 \le 1_A \le 70.0, VCC = 5V \pm 10.8)$		MAX				
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES	
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	ICC7	175	160	mA	3, 4, 25	
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	ICC8	165	150	mA	3, 4, 26	
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = \overline{CAS} = VIH after 8 \overline{RAS} cycles [MIN]; other inputs \ge VIH or \le VIL)	Icc9	60	60	mA	3, 4	
REFRESH CURRENT: \overline{RAS} -ONLY (\overline{RAS} = Cycling; \overline{CAS} = V _H)	ICC10	175	160	mA	3, 4, 25	
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC11	175	160	mA	3, 4, 5	
SAM/DRAM DATA TRANSFER	ICC12	185	170	mA	3, 4	

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±10%)

AC CHARACTERISTICS		-7			-8		1
PARAMETER	SYM	MIN MAX		MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150	1.00	ns	
READ-MODIFY-WRITE cycle time	tRWC	170		190		ns	
FAST-PAGE-MODE READ or WRITE	tPC	40		45		ns	
cycle time							
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	90		95		ns	
cycle time							
Access time from RAS	^t RAC		70		80	ns	14
Access time from CAS	^t CAC		20		25	ns	15
Access time from (TR)/OE	tOE		20		20	ns	
Access time from column-address	^t AA		35		40	ns	i shiji
Access time from CAS precharge	^t CPA		40		45	ns	1.1
RAS pulse width	^t RAS	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	tRASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		25		ns	
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		ns	
CAS precharge time	^t CP	10		10		ns	16
RAS to CAS delay time	tRCD	20	50	20	55	ns	17
CAS to RAS precharge time	^t CRP	10		10		ns	
Row address setup time	tASR	0		0		ns	
Row address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time							
Column-address setup time	tASC	0		0		ns	
Column-address hold time	^t CAH	15		15		ns	
Column-address hold time	tAR	45		55		ns	
(referenced to RAS)							
Column-address to	tRAL	35		40	1	ns	
RAS lead time							
Read command setup time	tRCS	0		0		ns	1
Read command hold time	tRCH	0	1	0		ns	19
(referenced to CAS)							
Read command hold time	tRRH	0		0		ns	19
(referenced to RAS)					$\{ i_1, \ldots, i_{n-1} \}$		
CAS to output in Low-Z	^t CLZ	3		3		ns	
Output buffer turn-off delay from CAS	tOFF	3	20	3	20	ns	20,23
Output disable delay from (TR)/OE	tOD	3	10	3	10	ns	20,23
Output disable hold time from start of WRITE	^t OEH	10	1.1.1	10		ns	27
Output Enable to RAS delay	^t ROH	0		0		ns	

NEW

VRAM

DRAM TIMING PARAMETERS (continued) ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_A \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	7		-8	1.1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0	1.0	ns	21
Write command hold time	tWCH	15		15	1	ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
Write command pulse width	tWP	15		15		ns	1
Write command to RAS lead time	^t RWL	20		20		ns	
Write command to CAS lead time	^t CWL	20		20		ns	
Data-in setup time	^t DS	0		0	Sec. 198	ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
RAS to WE delay time	tRWD	90		100	1.11	ns	21
Column-address to \overline{WE} delay time	tAWD	55	1	60		ns	21
CAS to WE delay time	^t CWD	40		45		ns	21
Transition time (rise or fall)	tΤ		35		35	ns	9, 10
Refresh period (512 cycles)	^t REF		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		ns	
ME/WE to RAS hold time	tRWH	15		15		ns	
Mask data to RAS setup time	tMS	0		0		ns	
Mask data to RAS hold time	tMH	15		15		ns	

MT42C8254 256K x 8 VRAM

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

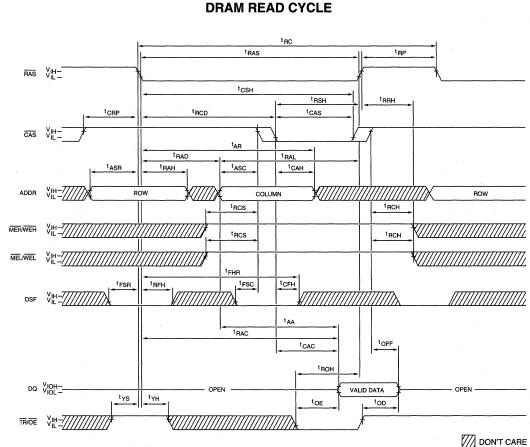
(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS			-7		-8	1.1.1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		ns	
TR/(OE) LOW to RAS hold time	^t TLH	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	65	10,000	70	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	tCTH	25		25		ns	
TR/(OE) HIGH to RAS precharge time	tTRP	50		60		ns	
TR/(OE) precharge time	^t TRW	20		25		ns	
TR/(OE) HIGH to SC lead time	^t TSL	5		5		ns	
TR/(OE) to RAS HIGH hold time	^t TRD	15		15		ns	
First SC edge to TR/(OE) HIGH	tTSD	15		15		ns	
delay time							· · ·
SC to RAS setup time	^t SRS	25		30		ns	· -
TR/(OE) HIGH to RAS setup time	tYS	0		0		ns	1.1
TR/(OE) HIGH to RAS hold time	^t YH	15		15	1	ns	
DSF to RAS setup time	tFSR	0		0		ns	
DSF to RAS hold time	^t RFH	15		15		ns	1. A. A. 1.
SPLIT TRANSFER setup time	tSTS	25		30		ns	
SPLIT TRANSFER hold time	^t STH	0		0		ns	
DSF (at CAS LOW) to RAS hold time	tFHR	45		55		ns	
DSF to CAS setup time	^t FSC	0		0		ns	
DSF to CAS hold time	^t CFH	15		15		ns	
RAS to first SC delay	^t RSD	80		80		ns	_
CAS to first SC delay	^t CSD	30		30		ns	

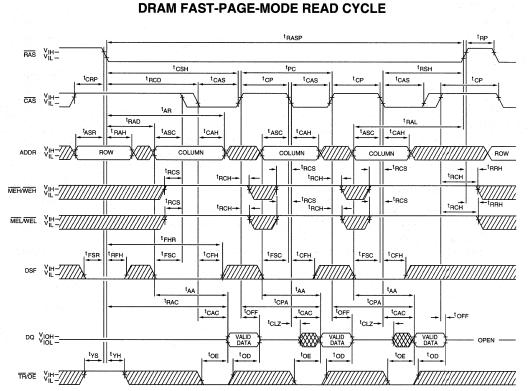
NEW VRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

	/ ±10%)						
AC CHARACTERISTICS			7	Ι	-8	Τ	1
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	22		25	1	ns	
Access time from SC	^t SAC		22		25	ns	24, 28
SC precharge time (SC LOW time)	tSP	8		10		ns	
SC pulse width (SC HIGH time)	^t SAS	8		10		ns	
Access time from SE	^t SEA		15	1	15	ns	24
SE precharge time	tSEP	8		10		ns	1
SE pulse width	^t SE	8	1	10		ns	
Serial data-out hold time after SC high	tSOH	5		5		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	ns	20, 24


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16.7ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from zero to 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data output (DQ1-DQ8) is High-Z.
- 12. If $\overrightarrow{CAS} = VIL$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- 13. DRAM output timing is measured with a load equivalent to one TTL gate and 50pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VoH -200mV; VoL +200mV). This parameter is sampled and not 100% tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If $^{t}WCS \ge$ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\text{TR}}/\overline{\text{OE}}$ must control the output buffers during the write to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE, and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate, but the WRITE will be valid if ^tOD and ^tOEH are met. (See the LATE-WRITE AC Timing diagram.)
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW, then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to one TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. Measured with two address changes while $\overline{RAS} = VIL$.
- 26. Measured with one address change while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have 'OD and 'OEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after 'OEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. ^tSAC is MAX at 70° C and 4.5V Vcc; ^tSOH is MIN at 0°C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. (^tSOH = ^tSAC output transition time); this is guaranteed by design.

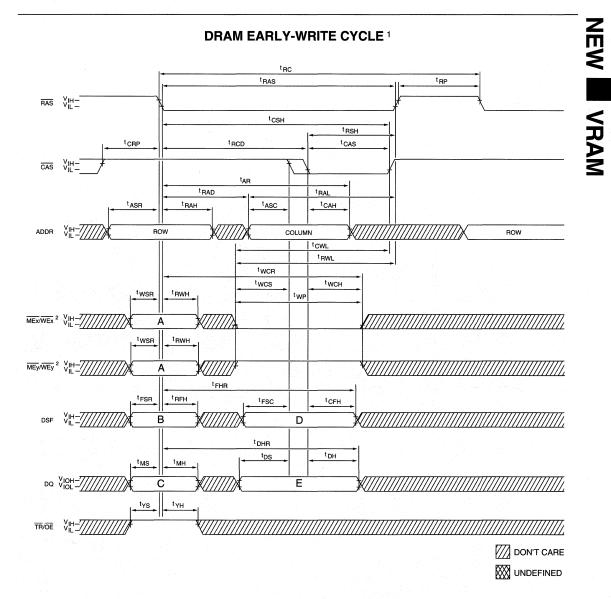
MT42C8254 256K x 8 VRAM

NEW VRAM

NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

MICRON

WRITE CYCLE FUNCTION TABLE 1

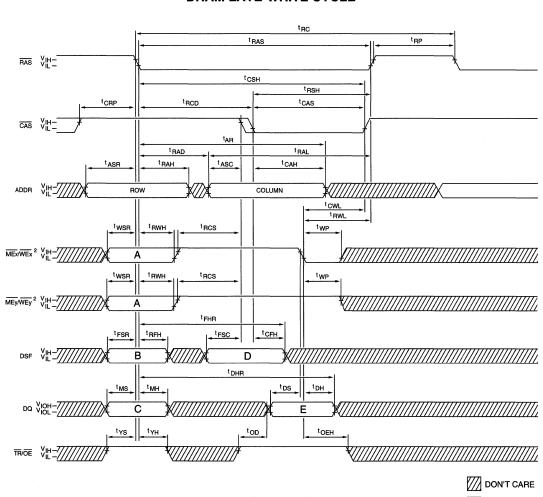

	LOGIC STATES							
		RAS Fall	ling Edge	CAS Falling Edge				
FUNCTION	A Me/we	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)			
Normal DRAM WRITE	1	0	X	0	DRAM Data			
MASKED WRITE to DRAM	0 ³	0	Write Mask	0	DRAM Data (Masked)			
BLOCK WRITE to DRAM (No Bit-Plane Mask)	14	0	X	1	Column Mask			
MASKED BLOCK WRITE to DRAM	0 ⁴	0	Write Mask	1	Column Mask			
Load Color Register	1 ⁴	1	X	1	Color Data			

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

2. CAS or ME/WE falling edge, whichever occurs last.

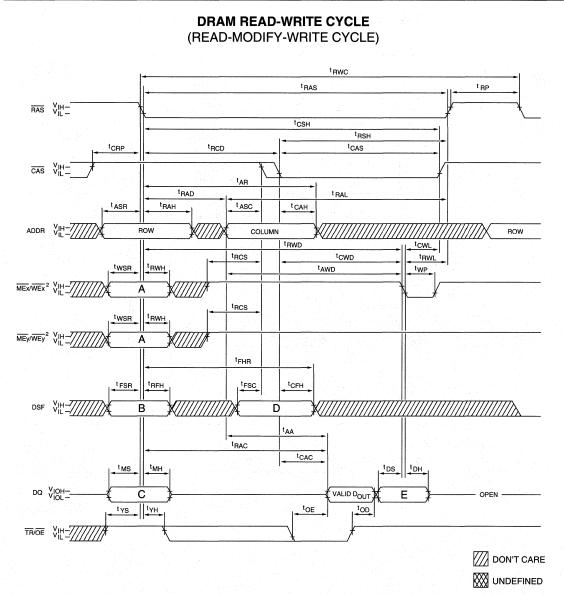
3. If a NIBBLE MASKED WRITE is to be performed, only one of the two write enables needs to be LOW at the RAS falling edge.

4. Both ME/WEs must be at the same state during these cycles; only byte-wide operations are supported.


- **NOTE:** 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
 - WEH and WEL apply to the WEx waveform if the corresponding nibble participates in the WRITE; if not, apply the WEy waveform.

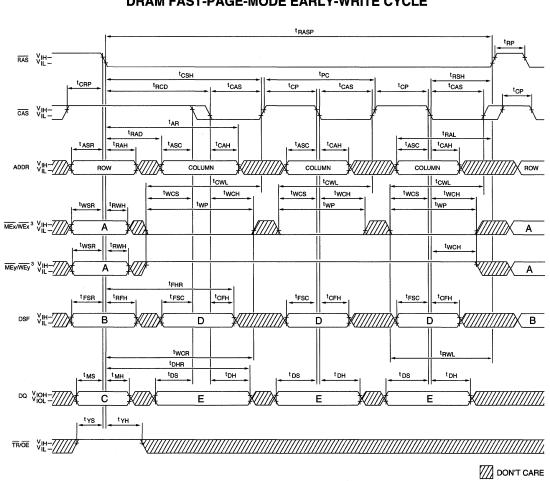
MICRON

NEW VRAM


MT42C8254 256K x 8 VRAM

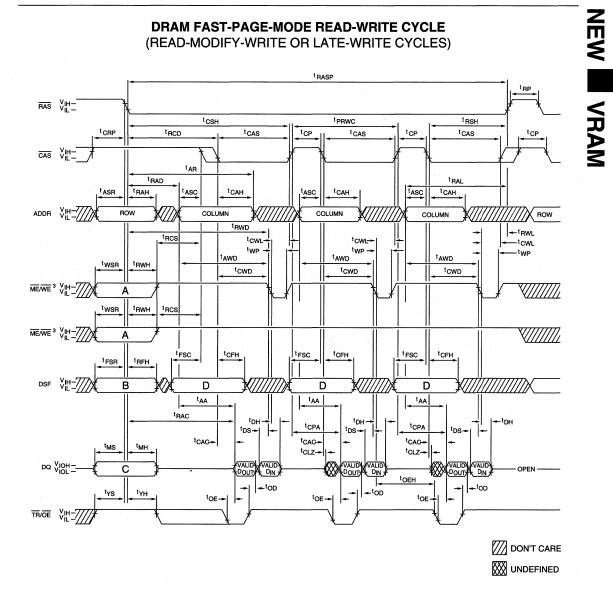
DRAM LATE-WRITE CYCLE

- **NOTE:** 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write <u>Cycle Function</u> Table for a <u>detailed</u> description.
 - 2. WEH and WEL apply to the WEx waveform if the corresponding nibble participates in the WRITE; if not, apply the WEy waveform.



- **NOTE:** 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
 - 2. WEH and WEL apply to the WEx waveform if the corresponding nibble participates in the WRITE; if not, apply the WEy waveform.

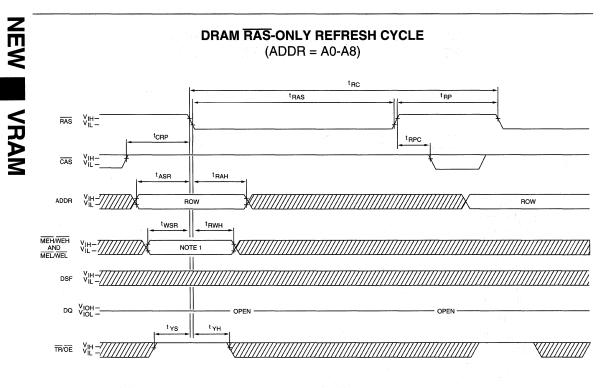
IRON


MT42C8254 256K x 8 VRAM

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.

- 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 3. WEH and WEL apply to the WEx waveform if the corresponding nibble participates in the WRITE; if not, apply the WEy waveform.

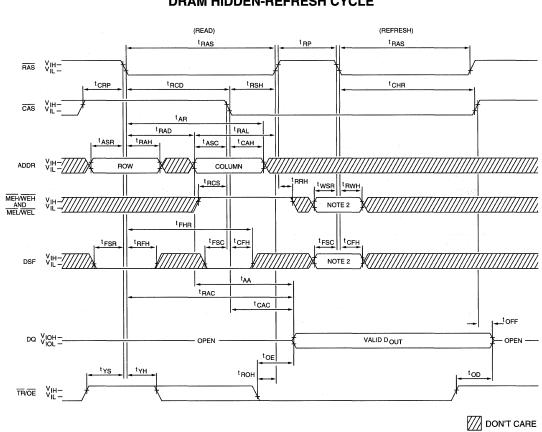


NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

- 2. The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 3. WEH and WEL apply to the WEx waveform if the corresponding nibble participates in the WRITE; if not, apply the WEy waveform.

MICRON

DON'T CARE


DON'T CARE

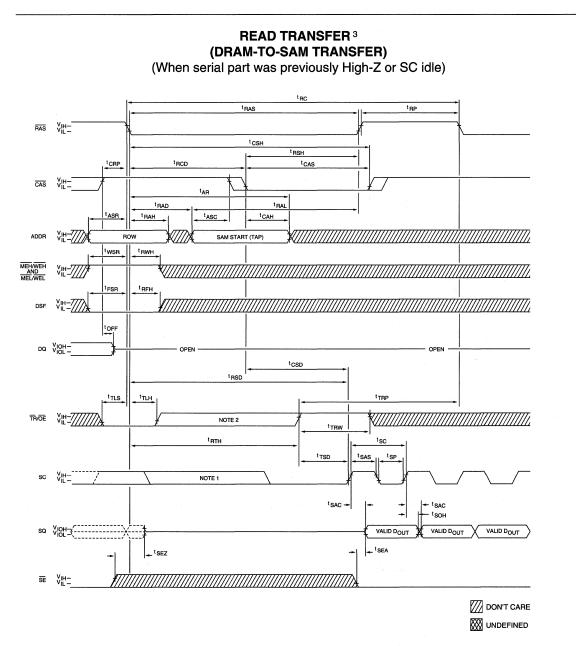
NOTE: 1. The MT42C8254 operates properly with ME/WE and DSF = "don't care", but to ensure compatibility with all 2 Meg VRAM feature sets, Micron recommends that they be HIGH ("1").

RON

RON

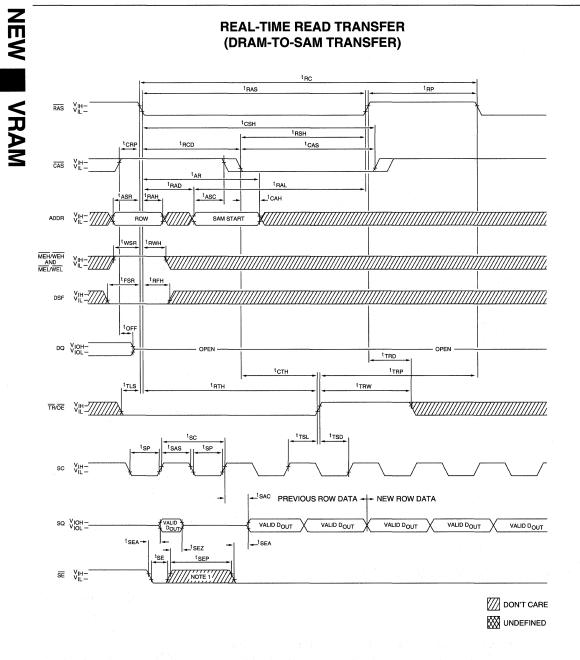
MT42C8254 256K x 8 VRAM

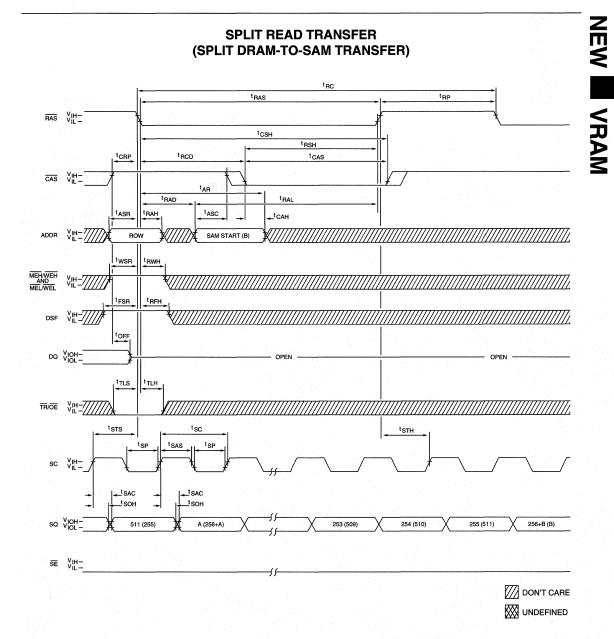
DRAM HIDDEN-REFRESH CYCLE

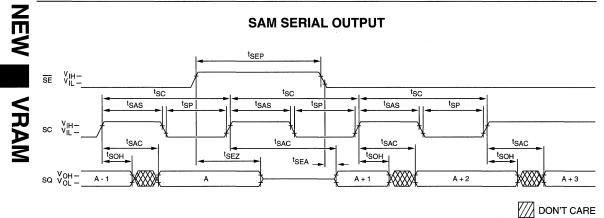

1. A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case, ME/WE = NOTE: LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

2. The MT42C8254 operates with ME/WE and DSF = "don't care", but to ensure compatibility with all 2 Meg VRAM feature sets, Micron recommends that they be HIGH ("1").

NEW


VRAM




- NOTE: 1. There must be no rising edges on the SC input during this time period.
 - If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge, and ^tTSD must be met.

NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

MT42C8255 256K x 8 VRAM

VRAM

256K x 8 DRAM WITH 512 x 8 SAM

VRAM

FEATURES

- Industry-standard pinout, timing and functions
- High-performance, CMOS silicon-gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully <u>TTL</u> compatible______
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- FAST-PAGE-MODE
- Dual-port organization: 256K x 8 DRAM port 512 x 8 SAM port
- No refresh required for serial access memory
- Low power: 10mW standby; 300mW active, typical
- Fast access times: 70ns random, 22ns serial

SPECIAL FUNCTIONS

- NONPERSISTENT MASKED WRITE
- BLOCK WRITE

OPTIONS

• SPLIT READ TRANSFER

MARKING

Timing (DRAM, SAM [cycle/access])
 70ns, 22/22ns
 -7
 80ns, 25/25ns
 -8

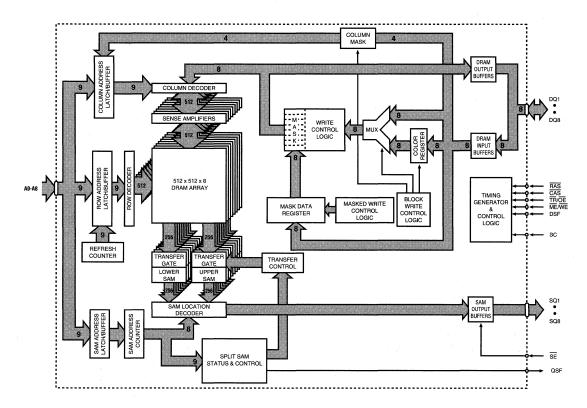
Packages	
Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TG*
Plastic TSOP (400 mil) reverse pinout	RG*

• Part Number Example: MT42C8255DJ-7

GENERAL DESCRIPTION

The MT42C8255 is a high-speed, dual-port CMOS dynamic random access memory or video RAM (VRAM) containing 2,097,152 bits. These bits may be accessed by an 8-bit-wide DRAM port or by a 512 x 8 bit serial access memory (SAM) port. Data may be transferred from the DRAM to the SAM.

The DRAM portion of the VRAM is functionally similar to the MT4C4256 (256K x 4-bit DRAM), with the addition of MASKED WRITE and BLOCK WRITE. Eight 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer


PIN /	ASSIGNN	IENT	(Top Vie	€w)
	40-Pin S	60 J (S	DB-3)	
	$\begin{array}{c c} Vcc & [1]\\ Sc1 & [2]\\ Sc1 & [2]\\ Sc2 & [4]\\ Sc3 & [5]\\ Sc4 & [6]\\ \hline TROC & [7]\\ Dc1 & [8]\\ Dc3 & [10]\\ \hline Dc4 & [11]\\ \hline Wcm & [12]\\ \hline MCMC & [13]\\ \hline RAS & [15]\\ AA & [15]\\ AA & [19]\\ Vcc & [2]\\ \hline Vcc & [2]\\ \hline \end{array}$	39 38 37 36 35 34 33 32 31 30 29 28 27 26 28 27 26 25 24 23 22	5 5E 1 DQ8 1 DQ7 1 DQ6 1 DQ5 1 Vss 1 DSF 1 GND 1 GND 1 GAS 1 QSF 1 A0 1 A1	
40)/44-Pin ⁻	TSOP	(SDE-2)	
	Vcc H 1 SC H 2 SO(1 H 4 SO(2 H 4 SO(3 H 5 SO(4 H 7 DO(1 H 8 DO(2 H 9 DO(3 H 10)		H Vss 12 H SQ8 12 H SQ6 14 H SQ6 19 H SQ6 19 H DQ8 18 H DQ6 19 H DQ6 16 H DQ5	
	DQ4 H 13 Vss H 14 HEWE H 16 A8 H 17 A7 H 18 A6 H 19 A5 H 21 Vcc H 22		11 Vss 12 11 DSF 30 11 GND 98 11 CAS 98 11 QSF 17 14 A0 26 11 A1 25 11 A3 23 11 Vss	
40	/44-Pin 1	SOP*	(SDE-2)
	Vss H 44 SQ8 H 43 SQ7 H 42 SQ6 H 41 SQ5 H 40 SE H 39 DQ8 H 33 DQ7 H 37 DQ6 H 36 DQ5 H 35	" IBSE	1 H Vcc. 2 H SC1 3 H SC2 4 H SC3 5 H SC4 7 H TR/OE 9 H DQ2 0 H DQ3	
	Vss H 32 DSF H 31 GND HH 29 QSF H 29 QSF H 28 A0 H 26 A2 H 26 A3 H 24 Vss H 23	REVERSE	4 HI <u>Vss</u> 5 HI <u>ME/WE</u> 6 HI RAS 7 HI A8 8 HI A7 9 HI A6	

*Consult factory for availability.

are accomplished using three separate data paths: the 8-bit random access I/O port, the eight internal 512-bit-wide paths between the DRAM and the SAM, and the 8-bit serial output port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8255 are optimized for high performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT READ TRANSFER and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MT42C8255 256K x 8 VRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
2	2	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
7	7	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at \overline{RAS} (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after \overline{RAS} goes LOW (\overline{CAS} must also be LOW); otherwise, the output buffers are in a High-Z state.
13	15	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{ME}/\text{WE}}$ is also used to select a READ ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE ($\overline{\text{ME}/\text{WE}}$ = L) cycle when accessing the DRAM and READ TRANSFER ($\overline{\text{ME}/\text{WE}}$ = H) to the SAM.
35	39	SE	Input	Serial Port Enable: \overline{SE} enables the serial output buffers and allows a serial READ operation to occur; otherwise, the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC when \overline{SE} is inactive (HIGH).
29	31	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).
14	16	RAS	Input	Row Address Strobe: RAS is used to clock-in the 9 row-address bits and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycle.
27	29	CAS	Input	Column Address Strobe: CAS is used to clock-in the 9 column- address bits and strobe the DSF input (BLOCK WRITE only).
25, 24, 23, 22, 19, 18, 17, 16, 15	27, 26, 25, 24, 21, 20, 19, 18, 17	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A8 indicate the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT READ TRANSFER.
8, 9, 10, 11, 31, 32, 33, 34	8, 9, 10, 13, 35, 36, 37, 38	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles: These pins also act as inputs for Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.
3, 4, 5, 6, 36, 37, 38, 39	3, 4, 5, 6, 40, 41, 42, 43	SQ1-SQ8	Output	Serial Data Out: Output or High-Z.
26	28	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.
28	30	GND		No Connect/GND: This pin must be tied to ground to allow for upward functional compatibility with future VRAM feature sets.
1, 20	1, 22	Vcc	Supply	Power Supply: +5V ±10%
12, 21, 30, 40	14, 23, 32, 44	Vss	Supply	Ground

The MT42C8255 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory, the MT42C8255 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C8255 supports CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, but must simply perform 512 CBR cycles within the 16.7ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling \overline{RAS} (and keeping \overline{CAS} LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C8255 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select an 8-bit word

from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH-to-LOW. Next, the 9 column-address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH-to-LOW.

MT42C8255

256K x 8 VRAN

Note: RAS also acts as a "master" chip enable for the VRAM. If RAS is inactive, HIGH, all other DRAM control pins (CAS, TR/OE, ME/WE, etc.) are "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.

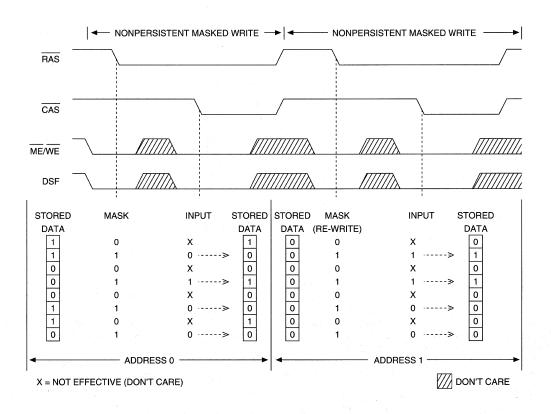
For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW and remains HIGH until $\overline{\text{CAS}}$ goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after RAS falls to enable the DRAM output port.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, \overline{ME}/WE performs two functions; write mask enable and data write enable. $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any nonmasked DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition. If $(\overline{ME})/\overline{WE}$ is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If $(\overline{ME})/\overline{WE}$ goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed (refer to the AC timing diagrams).

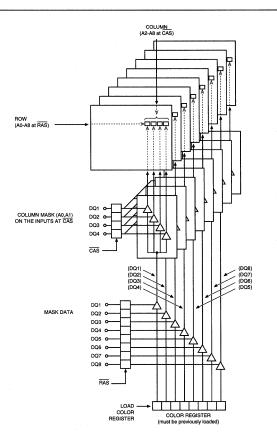
The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

D


MASKED WRITE

The MASKED WRITE (RWM) feature eliminates the need for a READ-MODIFY-WRITE cycle when changing individual bits within the 8-bit word. When $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the $\overline{\text{RAS}}$ HIGH-to-LOW transition, a MASKED WRITE is performed.

The MT42C8255 supports the nonpersistent mode of MASKED WRITE. In this mode, mask data must be entered with every RAS falling edge. The data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register (see Figure 1). The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM


cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE.

FAST-PAGE-MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

Figure 2 BLOCK WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when CAS goes LOW, the MT42C8255 will perform a BLOCK WRITE (BW) cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 2). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER). Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

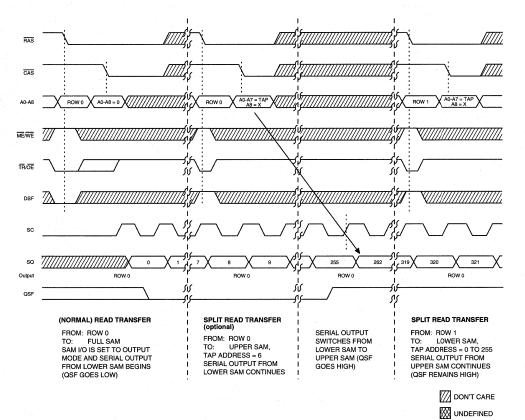
The row is addressed as in a normal DRAM WRITE cycle. However, when CAS goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3, and 4) are then used to determine what combination of the four column locations will be changed. The DQ inputs are "written" at the falling edge of \overrightarrow{CAS} or \overrightarrow{WE} , whichever occurs later (see the WRITE cycle waveforms). The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations

	COLUMN ADDRESS (ONTROLLED
INPUTS	AO	A1
DQ1	0	0
DQ2	1	0
DQ3	0	1
DQ4	1	1

within the block. The write enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

MASKED BLOCK WRITE

The MASKED WRITE functions may be used during BLOCK WRITE cycles. MASKED BLOCK WRITE (BWM) operates exactly like the normal MASKED WRITE except the mask is now applied to the 8 bit-planes of 4 column locations instead of just one column location.


The combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when RAS goes LOW initiates a nonpersistent MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. By using both the column mask input and the MASKED WRITE function of BW, any combination of the eight bit planes may be masked, along with any combination of the four column locations.

LOAD COLOR REGISTER

A LOAD COLOR REGISTER (LCR) cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when \overline{CAS} goes LOW. The contents of the 8-bit color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\text{TR}}/(\overline{\text{OE}})$ is LOW at the falling edge of $\overline{\text{RAS}}$. The state of $(\overline{\text{ME}})/\overline{\text{WE}}$ when $\overline{\text{RAS}}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER and SPLIT TRANS-FER cycles. Each of the TRANSFER cycles is described in this section.

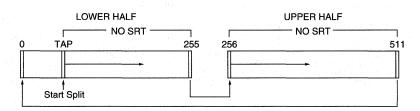
Figure 3 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

READ TRANSFER

VRAM

If $(\overline{ME})/\overline{WE}$ is HIGH and DSF is LOW when \overline{RAS} goes LOW, a READ TRANSFER (RT) cycle is selected. The rowaddress bits indicate which eight 512-bit DRAM row planes are transferred to the eight SAM data register planes. The column-address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every RT in order to load a valid Tap address. An RT may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC, (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after \overline{CAS} goes LOW. The TRANSFER will be made when $\overline{TR}/(\overline{OE})$ goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before CAS goes LOW and the actual data TRANS-FER will be timed internally (refer to the AC Timing Diagrams). During the TRANSFER, 4,096 bits of DRAM data are written into the SAM data registers and the Tap address is stored in an internal 9-bit register. The split SAM status pin (QSF) will be LOW if the Tap is in the lower half (addresses 0 through 255), and HIGH if it is in the upper half (256 through 511). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of \overline{SE} .

SPLIT READ TRANSFER


The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER has to occur between the last clock of "old" data and first clock of the "new" data of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer is not synchronized with the serial clock and may occur at any time while the other half is outputing data.

The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the falling edge of $\overline{\text{CAS}}$ or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles.

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin (the state of QSF). Then an SRT maybe initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated in such a manner that the SPLIT TRANSFER will automatically be to the SAM half not being accessed.

Figure 3 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 ("A8" = 0, A0-A7 = 1) the QSF output goes HIGH, and if an SRT was done for the upper half, the new Tap address is loaded for the next half ("A8" = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM (QSF has gone HIGH), new data may be transferred to the lower SAM. For example, the next step in Figure 3 would be to wait until OSF went LOW (indicating that row-1 data is shifting out of the lower SAM) and execute an SRT of the upper half of row 1 to the upper SAM. If the half boundary is reached before an SRT is done for the next half, the device will leave split mode and the access will start from address 256 if going to the upper half or at 0 if going to the lower half (see Figure 4).

Figure 4 SPLIT SAM TRANSFER

SERIAL OUTPUT

The control inputs for serial output are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SRT cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. SE is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated

in Figure 4. Address count will wrap around (after count 511) to Tap address 0 if in the "full" SAM modes.

POWER-UP and INITIALIZATION

After VCC is at specified operating conditions, for 100µs minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = \overline{TR}/\overline{OE} \ge V_{IH}$ during power up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data.

The SAM portion of the MT42C8255 is completely static in operation and does not require refresh or initialization. The SAM port will power-up with the Output pins (SQs) in High-Z, regardless of the state of SE. QSF initializes in the LOW state. The color register will contain random data after power-up.

TRUTH TABLE

			RAS FALL	ING EDGE		CAS FALL	A0-	A81	DQ1	I-DQ8 ²	REGISTER
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	DSF	RAS	CAS	RAS	CAS,WE ³	COLOR
	DRAM OPERATIONS						1.1				1. T. M. M.
CBR	CBR REFRESH	0	X	1 ⁶	16	-	х	x		x	X
ROR	RAS ONLY REFRESH	1	1	X	х	-	ROW	-	x		X
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	x	VALID DATA	x
RWM	MASKED WRITE TO DRAM (NEW MASK)	1	1	0	0	0	ROW	COLUMN	WRITE MASK	VALID DATA	X
BW	BLOCK WRITE TO DRAM	1	1	1.	0	1	ROW	COLUMN (A2-A8)	X	COLUMN MASK	USE
BWM	MASKED BLOCK WRITE TO DRAM (NEW MASK)	1	1	0	0	1	ROW	COLUMN (A2-A8)	WRITE MASK	COLUMN MASK	USE
	REGISTER OPERATIONS										
LCR	LOAD COLOR REGISTER	1	1	1	1	1	ROW ⁴	x	x	REG DATA	LOAD
	TRANSFER OPERATIONS						2				
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	х	ROW	TAP ⁵	X	X	x
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	Х	ROW	TAP ⁵	X	X	X

- **NOTE:** 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.
 - 2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.
 - 3. During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or TR/OE, whichever is later.
 - 4. The ROW that is addressed will be refreshed, but a ROW address is not required.
 - 5. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half).
 - 6. The MT42C8255 does not require a "1" on these pins, but to ensure compatibility with other 2 Meg VRAM function sets, it is recommended.

MICEON SEMICONDUCTOR, INC.

MT42C8255 256K x 8 VRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Operating Temperature, T _A (ambient)0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	Vi∟	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input (0V \leq VIN \leq Vcc); all other pins not under test = 0V	IL.	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Iout = -2.5mA) Output Low Voltage (Iout = 2.5mA)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Cı2		7	pF	2
Input/Output Capacitance: DQ, SQ	Cı/o		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

VRAM

(0°C ≤ T _A ≤ 70°C; Vcc = 5V ±10%)			MAX		· · · ·
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc1	125	110	mA	3, 4 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; \overline{CAS} = Cycling: ^t PC = ^t PC [MIN]; other inputs \ge VIH or \le VIL)	ICC2	115	100	mA	3, 4 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = Viн after 8 RAS cycles [MIN]; other inputs ≥ Viн or ≤ Vi∟)	Іссз	10	10	mA	4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	ICC4	125	110	mA	3, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC5	125	110	mA	3, 5
SAM/DRAM DATA TRANSFER	ICC6	135	120	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0.0 \le 1_A \le 70.0, VCC = 5V \pm 10\%)$		M	AX		
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc7	175	160	mA	3, 4 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ¹ PC = ¹ PC [MIN])	Icc8	165	150	mA	3, 4 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = \overline{CAS} = VIH after 8 \overline{RAS} cycles [MIN]; other inputs \ge VIH or \le VIL)	Іссэ	60	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V⊮)	ICC10	175	160	mA	3, 4 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC11	175	160	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	185	170	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-7		<u></u>	-8	<u> 1</u>	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		ns	
READ-MODIFY-WRITE cycle time	^t RWC	170		190		ns	i sada
FAST-PAGE-MODE READ or WRITE	tPC	40		45		ns	1.000
cycle time	$(a,b) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right)$						and a start of the
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	90		95		ns	
cycle time							
Access time from RAS	^t RAC		70	197	80	ns	14
Access time from CAS	^t CAC		20		25	ns	15
Access time from (TR)/OE	tOE		20		20	ns	
Access time from column-address	^t AA		35		40	ns	
Access time from CAS precharge	^t CPA		40	÷	45	ns	Sec. 1
RAS pulse width	^t RAS	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	70	100,000	80	100,000	ns	Sage 1
RAS hold time	^t RSH	20		25		ns	
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		ns	
CAS precharge time	^t CP	10		10		ns	16
RAS to CAS delay time	tRCD	20	50	20	55	ns	17
CAS to RAS precharge time	tCRP	10		10		ns	
Row-address setup time	^t ASR	0		0		ns	
Row-address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time							
Column-address setup time	tASC	0		0		ns	
Column-address hold time	^t CAH	15		15		ns	1.234
Column-address hold time	^t AR	45		55		ns	1.
(referenced to RAS)							
Column-address to	tRAL	35		40		ns	
RAS lead time							
Read command setup time	tRCS	0		0	1 States 1	ns	
Read command hold time	tRCH	0		0		ns	19
(referenced to CAS)					a star i se star		
Read command hold time	tRRH	0		0		ns	19
(referenced to RAS)							
CAS to output in Low-Z	^t CLZ	3		3		ns	
Output buffer turn-off delay from CAS	tOFF	3	20	3	20	ns	20,23
Output disable delay from (TR)/OE	tOD	3	10	3	10	ns	20,23
Output disable hold time from start of WRITE	tOEH	10		10		ns	27
Output Enable to RAS delay	tROH	0		0		ns	1

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	7	-	-8		· .
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		ns	21
Write command hold time	tWCH	15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
Write command pulse width	tWP	15		15	1	ns	
Write command to RAS lead time	tRWL	20		20		ns	
Write command to CAS lead time	tCWL	20		20		ns	
Data-in setup time	^t DS	0		0	1.1	ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
RAS to WE delay time	tRWD	90		100		ns	21
Column-address to WE delay time	^t AWD	55		60	£7	ns	21
CAS to WE delay time	tCWD	40		45		ns	21
Transition time (rise or fall)	tT		35		35	ns	9, 10
Refresh period (512 cycles)	tREF		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		ns	1.2
ME/WE to RAS hold time	tRWH	15		15		ns	1
Mask data to RAS setup time	tMS	0		0		ns	
Mask data to RAS hold time	tMH	15	1	15	-	ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V $\pm 10\%$)

AC CHARACTERISTICS			-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	tTLS	0		0		ns	
TR/(OE) LOW to RAS hold time	ttlh	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	65	10,000	70	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	^t СТН	25		25		ns	
TR/(OE) HIGH to RAS precharge time	tTRP	50		60		ns	1. 1.12
TR/(OE) precharge time	trrw	20		25		ns	
TR/(OE) HIGH to SC lead time	tTSL	5		5		ns	
TR/(OE) to RAS HIGH hold time	tTRD	15		15		ns	
First SC edge to TR/(OE) HIGH delay time	ttsd	15		15		ns	
SC to RAS setup time	tSRS	25		30		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		ns	
TR/(OE) HIGH to RAS hold time	tYH	15		15		ns	
DSF to RAS setup time	tFSR	0		0		ns	
DSF to RAS hold time	^t RFH	15		15		ns	
SC to QSF delay time	^t SQD		25		30	ns	
SPLIT TRANSFER setup time	tSTS	25		30		ns	
SPLIT TRANSFER hold time	^t STH	0	and so the	0		ns	
DSF (at CAS LOW) to RAS hold time	tFHR	45		55	an a	ns	
DSF to CAS setup time	tFSC	0		0		ns	
DSF to CAS hold time	^t CFH	15	1917	15		ns	
TR/OE to QSF delay time	tTQD		25		25	ns	
RAS to QSF delay time	tRQD		75		75	ns	
CAS to QSF delay time	^t CQD		35		35	ns	
RAS to first SC delay	tRSD	80		80		ns	
CAS to first SC delay	tCSD	30		30		ns	100

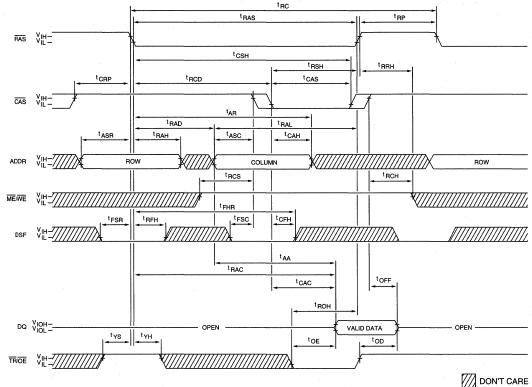
SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_A \le + 70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS	
PARAMETER	
Serial clock cycle time	
Access time from SC	
SC precharge time (SC LOW tin	ne)
SC pulse width (SC HIGH time)	· · · · · · · · · · · · · · · · · · ·
Access time from SE	
SE precharge time	· · · · · · · · · · · · · · · · · · ·
OF male and date	

AC CHARACTERISTICS		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	22		25		ns	
Access time from SC	^t SAC		22		25	ns	24, 28
SC precharge time (SC LOW time)	^t SP	8		10		ns	
SC pulse width (SC HIGH time)	^t SAS	8		10		ns	
Access time from SE	^t SEA		15	1.	15	ns	24
SE precharge time	^t SEP	8		10		ns	
SE pulse width	tSE	8		10		ns	
Serial data-out hold time after SC high	tSOH	5		5		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	ns	20, 24



VRAN

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C $\leq T_A \leq 70$ °C) is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16.7ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from 0 to 3V for AC testing.
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data output (DQ1-DQ8) is High-Z.
- 12. If $\overline{CAS} = VIL$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and TR/OE must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE, and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if tOD and tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. Address (A0-A8) may be changed two times or less while $\overline{RAS} = V_{IL}$.
- 26. Address (A0-A8) may be changed once or less while $\overline{CAS} = VIH$ and $\overline{RAS} = VIL$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have 'OD and 'OEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after 'OEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. ^tSAC is MAX at 70° C and 4.5V Vcc; ^tSOH is MIN at 0°C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. (^tSOH = ^tSAC output transition time); this is guaranteed by design.

DRAM READ CYCLE

VRAM

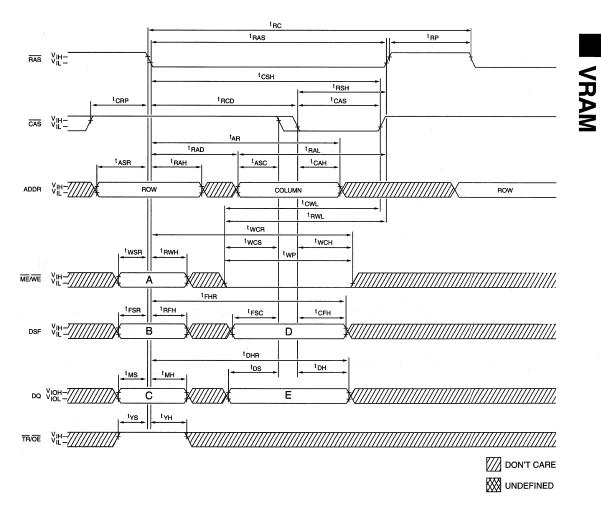
VRAM

DRAM FAST-PAGE-MODE READ CYCLE

NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

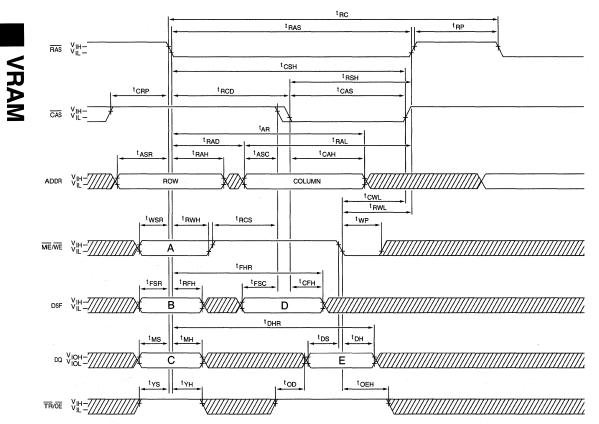
WRITE CYCLE FUNCTION TABLE 1

	LOGIC STATES						
		RAS Falling Edge			CAS Falling Edge		
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)		
Normal DRAM WRITE	1	0	Х	0	DRAM Data		
MASKED WRITE to DRAM	0	0	Write Mask	0	DRAM Data (Masked)		
BLOCK WRITE to DRAM (No Bit-Plane Mask)	1	0	Х	1	Column Mask		
MASKED BLOCK WRITE to DRAM	0	0	Write Mask	1	Column Mask		
Load Color Register	1	1	X	1	Color Data		


NOTE:

 Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

2. CAS or ME/WE falling edge, whichever occurs later.

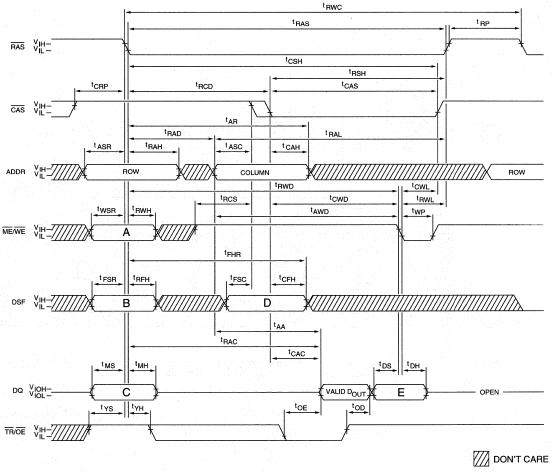


DRAM EARLY-WRITE CYCLE¹

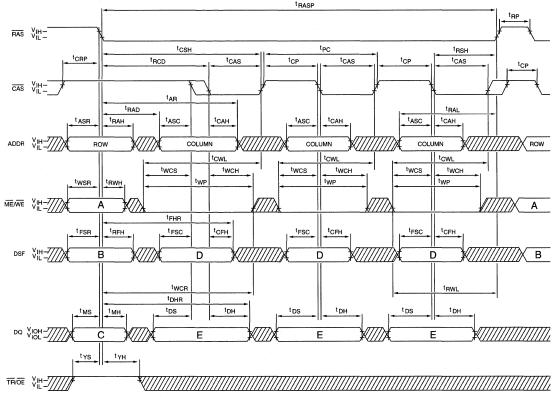
NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT42C8255 256K x 8 VRAM

DRAM LATE-WRITE CYCLE


DON'T CARE

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


MICRON SEMICONDUCTOR, INC. MT42C8255 256K x 8 VRAM

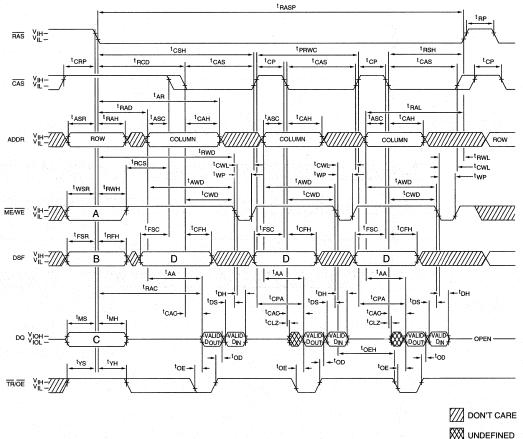
VRAM

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE

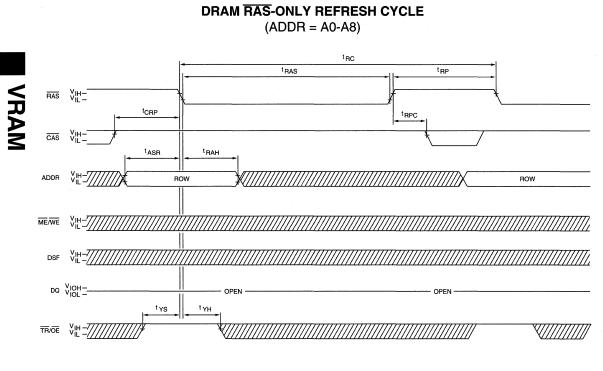
NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.


2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MICRON

VRAM

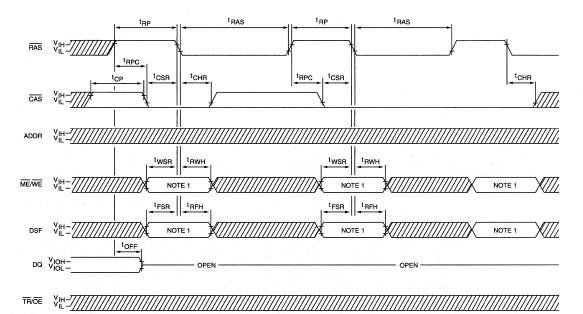
DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)



NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

2. The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

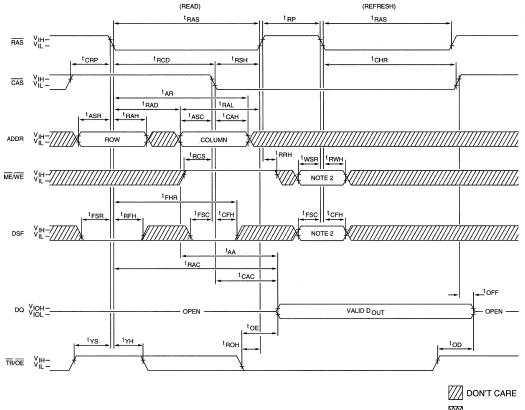
VRAM



VRAM

CBR REFRESH CYCLE

DON'T CARE


NOTE: 1. The MT42C8255 operates with ME/WE and DSF = "don't care," but to ensure compatibility with all 2 Meg VRAM feature sets, it is recommended that they be HIGH ("1").

VRAM

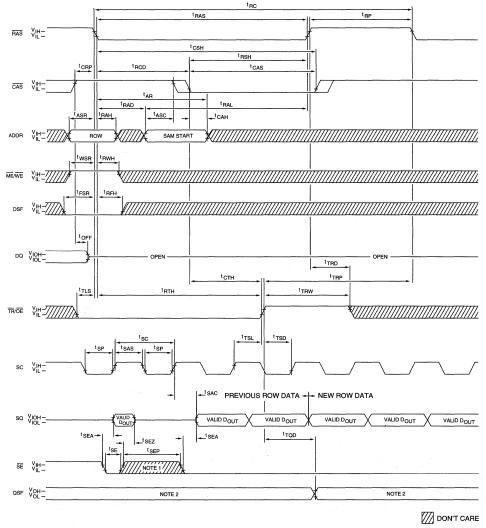
DRAM HIDDEN-REFRESH CYCLE

NOTE: 1. A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case, $\overline{\text{ME/WE}}$ = LOW (when $\overline{\text{CAS}}$ goes LOW) and $\overline{\text{TR/OE}}$ = HIGH. In the TRANSFER case, $\overline{\text{TR/OE}}$ = LOW (when $\overline{\text{RAS}}$ goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{\text{TR/OE}}$.

2. The MT42C8255 operates with ME/WE and DSF = "don't care," but to ensure compatibility with all 2 Meg VRAM feature sets, it is recommended that they be HIGH ("1").

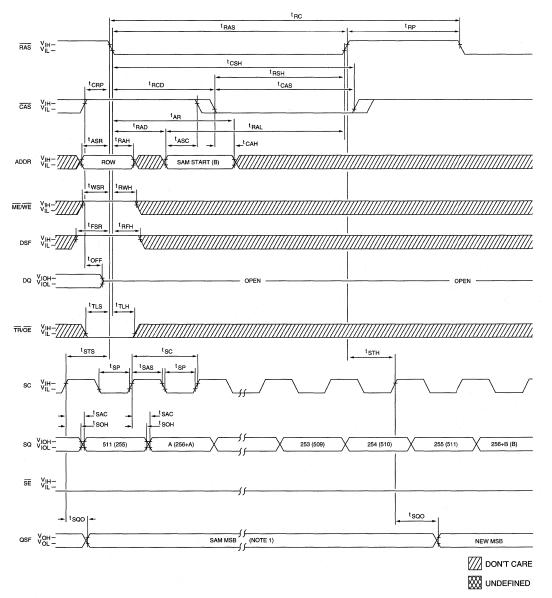
tRC t_{RAS} t _{RP} VIH-RAS t_{CSH} t_{RSH} tCRP t RCD t_{CAS} CAS VIHtAR t_{RAD} t RAL tASC ASR ^tRAH ^tCAH V#-7// ADDR ROW SAM START (TAP) twsR t_{RWH} MEANE FSF ^tRFH ¥‼=777 DSF tOFF DQ VIOH-^tCSD ^tRSD t_{TLH} t_{TBP} t TLS TR/OE VIII-7//// t TRW ^tBTH tsc t_{TSD} t SAS tSF VIHsc NOTE 1 t SAC ^tSAC - tson VIOH-VALID DOUT VALID DOUT sq VALID DOUT ^tSEA t SEZ t TOD Ϋ́Η SE t CQD t_{RQD} VOH-QSF NOTE 2 NOTE 2 DON'T CARE

NOTE: 1. There must be no rising edges on the SC input during this time period.


- 2. QSF = 0 when the Lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256–511) is being accessed.
- 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.

VRAM

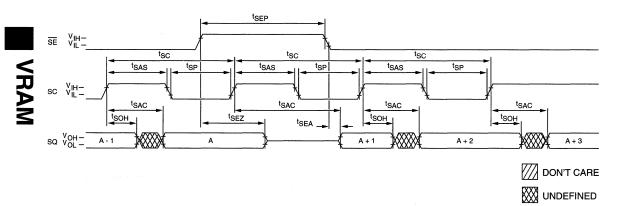
REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)



NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT

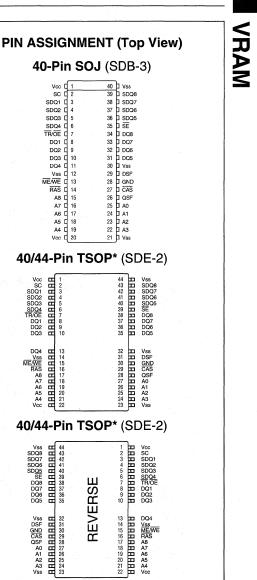
- ENABLE and DISABLE timing. It is not required.
- 2. QSF = 0 when the Lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

MICHON SEMICONDUCTOR, INC. MT42C8255 256K x 8 VRAM



NOTE: 1. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

SAM SERIAL OUTPUT



MICRON SEMICONDUCTOR, INC.

MT42C8256 256K x 8 VRAM

VRAM

256K x 8 DRAM WITH 512 x 8 SAM

*Consult	factory	for	availa	bility
Consult	laciory	101	avana	winty.

FEATURES

- · Industry-standard pinout, timing and functions
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply (consult factory regarding 3.3V operation)
- Fully TTL and CMOS compatible inputs and TTL compatible outputs
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- EXTENDED-DATA-OUT FAST-PAGE-MODE access
- Dual-port organization: 256K x 8 DRAM port 512 x 8 SAM port
- · No refresh required for serial access memory
- Low power: 10mW standby; 300mW active, typical
- Fast access times: 70ns random, 17ns serial 60ns random, 15ns serial[†]

SPECIAL FUNCTIONS

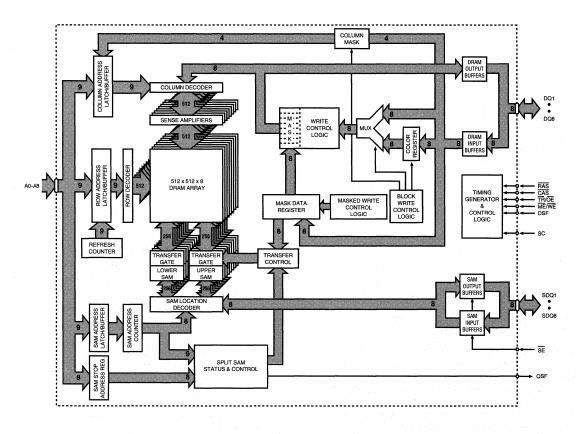
- JEDEC-Standard Mandatory Function set
- PERSISTENT MASKED WRITE
- MASKED WRITE TRANSFER/SERIAL INPUT
- MASKED SPLIT WRITE TRANSFER
- BLOCK WRITE (MASK)
- MASKED FLASH WRITE
- PROGRAMMABLE SPLIT SAM

OPTIONS

MARKING

٠	Timing (DRAM, SAM [cycle/access])	
	60ns, 18/15ns	-6†
	70ns, 20/17ns	-7
	80ns, 22/20ns	-8
•	Packages	
	Plastic SOJ (400 mil)	DJ
	Plastic TSOP (400 mil)	TG*
	Plastic TSOP (400 mil) reverse pinout	RG*

⁺60ns (-6) specifications are preliminary and are specified for $V_{CC} = 5V \pm 5\%$. Please consult factory for availability.


GENERAL DESCRIPTION

The MT42C8256 is a high-speed, dual-port CMOS dynamic random access memory, or video RAM (VRAM) containing 2,097,152 bits. These bits may be accessed by an 8-bit wide DRAM port or by a 512 x 8-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is similar to the MT4C4256 (256K x 4-bit DRAM), with the addition of MASKED WRITE, BLOCK WRITE and FLASH WRITE. Eight 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the8-bit random access I/O port, the eight internal 512-bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing and address-decoding logic.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8256 are optimized for high performance graphics and communication designs. The dual port architecture is well suited to buffering the sequential data types used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT TRANSFERs, extended data-out FAST-PAGE-MODE and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION	
2	2	SC	Input	Serial Clock: Clock input to the serial address counter and data latch for the SAM registers.	
7	7	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS ($H \rightarrow L$), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state.	
13	15	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{ME}/\text{WE}}$ is also used to select a READ ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE ($\overline{\text{ME}/\text{WE}}$ = L) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE TRANSFER ($\overline{\text{ME}/\text{WE}}$ = L).	
35	39	SE	Input	Serial Port Enable: \overline{SE} enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC when \overline{SE} is inactive (HIGH).	
29	31	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, FLASH WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).	
14	16	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and strobe for ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycles.	
27	29	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock in the 9 column- address bits and as a strobe for the DSF input (BLOCK WRITE only).	
25, 24, 23, 22, 19, 18, 17, 16, 15	27, 26, 25, 24, 21, 20, 19, 18, 17	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A8 indicate the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT TRANSFERs.	
8, 9, 10, 11, 31, 32, 33, 34	8, 9, 10, 13, 35, 36, 37, 38	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles: These pins also act as inputs for Mask and Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.	
3, 4, 5, 6, 36, 37, 38, 39	3, 4, 5, 6, 40, 41, 42, 43	SDQ1-SDQ8	Input/ Output	Serial Data I/O: Input, output, or High-Z.	
26	28	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.	
28	30	GND		No Connect/GND: This pin must be tied to ground to allow for upward functional compatibility with future VRAM feature sets.	
1, 20	1, 22	Vcc	Supply	Power Supply: +5V ±10%	
12, 21, 30, 40	14, 23, 32, 44	Vss	Supply	Ground	

FUNCTIONAL DESCRIPTION

The MT42C8256 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the TR/OE pin will be shown as TR/(OE) in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory, the MT42C8256 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C8256 supports CBR, RAS ONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and must simply perform 512 CBR cycles within the 16.7ms time period. CBR cycles are also used to reset MASKED WRITE and PROGRAMMABLE SPLIT SAM operating modes. There are three CBR cycles defined for the MT42C8256: CBR No Reset (CBRN), CBR Reset Stop Address (CBRS), and CBR Reset All Options (CBRR). To perform these functions, two additional pins are defined for CBR cycles, ME/WE and DSF1. These operations are described in detail in the MASKED WRITE and SPLIT READ/WRITE TRANSFER sections of the functional description.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling \overline{RAS} (and keeping \overline{CAS} LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C8256 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These

conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select an 8-bit word from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH-to-LOW. Next, the 9 column address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH-to-LOW.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW and remains HIGH until $\overline{\text{CAS}}$ goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after $\overline{\text{RAS}}$ falls to enable the DRAM output port.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{ME}/\overline{WE}$ performs two functions, write mask enable and data write enable. When \overline{RAS} goes LOW, $\overline{ME}/(\overline{WE})$ is used to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any non-masked DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the RAS HIGH-to-LOW transition. If (\overline{ME})/WE is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If (\overline{ME})/WE goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed (refer to the AC timing diagrams).

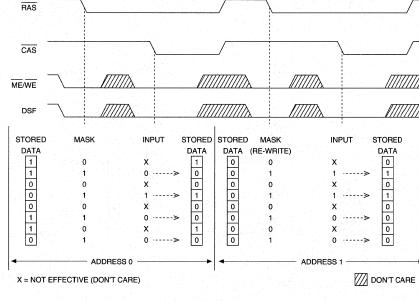
The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ (with EX-TENDED-DATA-OUT), FAST-PAGE-MODE WRITE (late or early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

Note: \overline{RAS} also acts as a "master" chip enable for the VRAM. If \overline{RAS} is inactive, HIGH, all other DRAM control pins (CAS, \overline{TR} / \overline{OE} , \overline{ME} / \overline{WE} , etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles or resets will be initiated without \overline{RAS} falling.

EXTENDED DATA OUTPUT

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . If \overline{CAS} goes HIGH, and \overline{OE} is LOW (active), the output buffers will be disabled. The MT42C8256 offers an accelerated FASTPAGE MODE (FPM) cycle by eliminating output disable from \overline{CAS} HIGH. This option is called extended data-out, and it allows \overline{CAS} precharge time (^tCP) to occur without the output data going invalid (see DRAM READ and DRAM FAST-PAGE-MODE READ waveforms).

Extended data-out operates as any DRAM READ or FPM READ, except data will be held valid after \overline{CAS} goes HIGH, as long as \overline{RAS} and $(\overline{TR})/\overline{OE}$ are LOW. If the DQ outputs from multiple banks are wired together, $(\overline{TR})/\overline{OE}$ must be used to select and deselect the appropriate banks. During non-PAGE-MODE READ cycles, the outputs are disabled at tOFF time after \overline{RAS} and \overline{CAS} are HIGH. The tOFF time is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs later.


MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing individual

bits within the 8-bit word. The MT42C8256 supports two types of MASKED WRITE cycles, nonpersistent MASKED WRITE and persistent MASKED WRITE. When $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the $\overline{\text{RAS}}$ HIGH-to-LOW transition, a MASKED WRITE is performed.

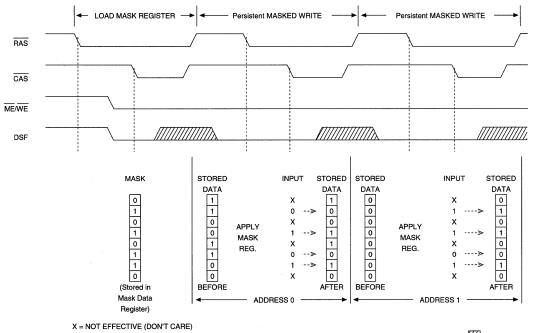
The MT42C8256 initializes in the nonpersistent mode. In this mode, mask data must be entered with every RAS falling edge. The data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register (see Figure 1). The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that CAS is still HIGH. When CAS goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle.

NONPERSISTENT MASKED WRITE

NONPERSISTENT MASKED WRITE ----

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

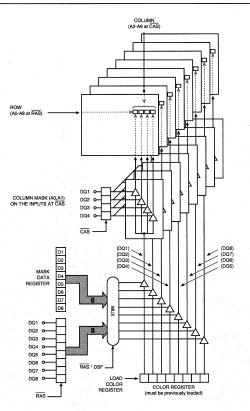
The selection of persistent or nonpersistent MASKED WRITE is done by performing a LOAD MASK REGISTER (LMR) cycle (see LMR description). If an LMR is done, all ensuing MASKED WRITEs are persistent and the mask data will be provided by the mask data register (see Figure 2). The mask data is applied in the same manner as in nonpersistent mode.


To reset the device back to the nonpersistent mode, a CBR RESET All Options (CBRR) cycle must be performed. This cycle is defined as a CBR with DSF LOW when \overline{RAS} falls; WE is "don't care." To preserve the persistent mode of MASKED WRITE, while using CBR REFRESH, a CBRN cycle is used. This cycle will perform a refresh of the internally addressed row of DRAM but will not reset the MASKED WRITE mode.

FAST PAGE MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

BLOCK WRITE

If DSF is HIGH when \overline{CAS} goes LOW, the MT42C8256 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 3). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).


The row is addressed as in a normal DRAM WRITE cycle. However, when \overline{CAS} goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3 and 4) are then used to determine what combination of the four column locations will be changed. The DQ inputs are "written" at the falling edge of \overline{CAS} or \overline{WE} , whichever occurs last (see the WRITE cycle waveforms). The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations within the block. The write enable controls are active HIGH;

DON'T CARE

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

VRAN

Figure 3 BLOCK WRITE EXAMPLE

a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

MASKED BLOCK WRITE

The MASKED WRITE functions may also be used during BLOCK WRITE cycles. MASKED BLOCK WRITE operates exactly like the normal MASKED WRITE except the mask is now applied to the 8 bit-planes of four column locations instead of just one column location.

The combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when RAS goes LOW initiates a MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. By using both the column mask input and the MASKED WRITE function of BLOCK

WRITE (BW), any combination of the eight bit planes may be masked, along with any combination of the four column locations.

The MASKED BLOCK WRITE will be nonpersistent (new mask) at device power-up. To enter persistent mode (old mask) a LOAD MASK REGISTER cycle is performed. All MASKED BLOCK WRITEs will be persistent after the LOAD MASK REGISTER (LMR). To reset to nonpersistent mode, a CBRR (reset all) cycle must be performed.

	COLUMN ADDRESS CONTROLLED					
INPUTS	AO	A1				
DQ1	0	0				
DQ2	1	0				
DQ3	0	1				
DQ4		1				

MT42C8256 REV. 5/93 Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. © 1993, Micron Semiconductor, Inc.

MASKED FLASH WRITE

The MASKED FLASH WRITE cycle is similar to the MASKED BLOCK WRITE cycle in that it uses the color register to accelerate the writing of a select color to the DRAM memory array. Instead of writing to four adjacent column locations in one DRAM cycle (BLOCK WRITE), FWM writes the contents of the color register to all column locations on an addressed row in one cycle.

The FWM cycle is selected by taking $\overline{\text{TR}}/(\overline{\text{OE}})$ and DSF HIGH and $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW at the falling edge of $\overline{\text{RAS}}$. DSF is "don't care" at the falling edge of $\overline{\text{CAS}}$. The DQ plane mask applies as it does for all masked write cycles; if the mask register has been loaded, the mask is persistent; if it has not, the mask is nonpersistent.

LOAD MASK REGISTER

The LOAD MASK REGISTER (LMR) operation loads the data present on the DQ pins into the 8-bit mask data Register at the falling edge of \overline{CAS} or $(\overline{ME})/\overline{WE}$. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $(\overline{ME})/\overline{WE}$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle.

Note: LOAD MASK REGISTER cycles also enable the persistent MASKED WRITE mode. All ensuing MASKED WRITEs (including MASKED WRITE and MASKED SPLIT WRITE TRANSFER) will be masked with data from the mask register. A CBRR has to be done to reset back to nonpersistent mode.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

During persistent operation, the mask data register contents are used for MASKED WRITE, MASKED BLOCK WRITE, MASKED FLASH WRITE, and MASKED WRITE and SPLIT WRITE TRANSFER cycles to selectively enable writes to the eight DQ planes.

LOAD COLOR REGISTER

A LOAD COLOR REGISTER (LCR) cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when \overline{CAS} goes LOW. The contents of the 8-bit color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE and FLASH WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/(\overline{OE})$ is LOW at the falling edge of \overline{RAS} . The state of $(\overline{ME})/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER and SPLIT TRANSFER cycles. Each of the TRANSFER cycles is described in this section.

READ TRANSFER

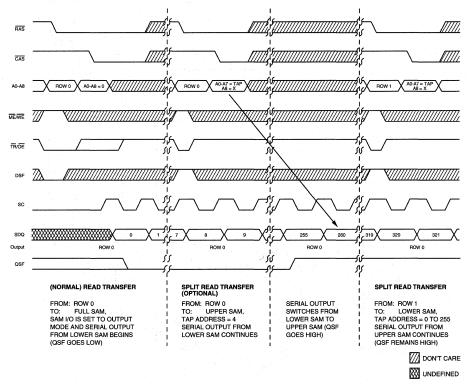
If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER (RT) cycle is selected. The rowaddress bits indicate which eight 512-bit DRAM row planes are transferred to the eight SAM data register planes. The column-address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC (REAL-TIME READ TRANSFER), $\overline{\text{TR}}/(\overline{\text{OE}})$ is taken HIGH after $\overline{\text{CAS}}$ goes LOW. The TRANS-FER will be made when $\overline{TR}/(\overline{OE})$ goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANS-FER), $\overline{TR}/(\overline{OE})$ may go HIGH before \overline{CAS} goes LOW and the actual data TRANSFER will be timed internally (refer to the AC Timing Diagrams). During the TRANSFER, 4,096 bits of DRAM data are written into the SAM data registers and the Tap address is stored in an internal 9-bit register. The split SAM status pin (QSF) will be LOW if the Tap is in the lower half (addresses 0 through 255), and HIGH if it is in the upper half (256 through 511). If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of \overline{SE} . Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

SPLIT READ TRANSFER

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER has to occur between the last clock of "old" data and first clock of the "new" data of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and is not synchronized with the serial clock.

MICRON


MT42C8256 256K x 8 VRAM

D

The TR/(\overline{OE}) timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of TR/(\overline{OE}) is not used to complete the TRANSFER cycle and therefore is independent of the falling edge of \overline{CAS} or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM I/O port.

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin (the state of QSF), and to set SAM I/O direction. Then an SRT may be initiated by taking DSF HIGH when RASgoes LOW during the TRANS-FER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated in such a manner that the SPLITTRANSFER will automatically be to the SAM half not being accessed.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 (A8= 0, A0-A7=1) the QSF output goes HIGH and, if an SRT was done for the upper half, the new Tap address is loaded for the next half (A8 = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM (QSF has gone HIGH), new data may be transferred to the lower SAM. For example, the next step in Figure 4 would be to wait until OSF went LOW (indicating that Row 1 data is shifting out of the lower SAM) and execute an SRT of the upper half of Row 1 to the upper SAM. If the half-boundary is reached before an SRT is done for the next half, the device will leave split mode and the access will start from address 256 if going to the upper half or at 0 if going to the lower half (see Figure 5).

Figure 4 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

The stop address of the SAM half (the point at which access will change to the next half) is programmable on the MT42C8256. This function is described in the PROGRAM-MABLE SPLIT SAM section of the functional description.

MASKED WRITE TRANSFER

The operation of the MASKED WRITE TRANSFER (MWT) is identical to that of the READ TRANSFER described previously except ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ is LOW and a DQ plane mask is applied when RAS goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A DQ mask must be applied to all MWTs as shown in Figure 6. This may be done using persistent or nonpersistent modes. When using persistent mode, the mask will be supplied by the mask register. When in nonpersistent mode, the DQ pins are used to input a bit plane mask at the falling

LOWER HALF	UPPER HALF
0 TAP 25	
Start Split	

Figure 5 SPLIT SAM TRANSFER

edge of RAS. An MWT changes the direction of the SAM I/O buffers to the input mode. To change the SAM I/O buffers to input mode without SAM data being transferred to the DRAM, a mask of all zeros must be presented on the DQ pins when RAS falls. QSF is LOW if serial input is to the lower half of the SAM, and HIGH if it is to the upper.

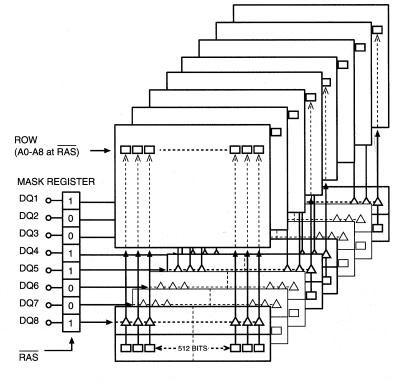
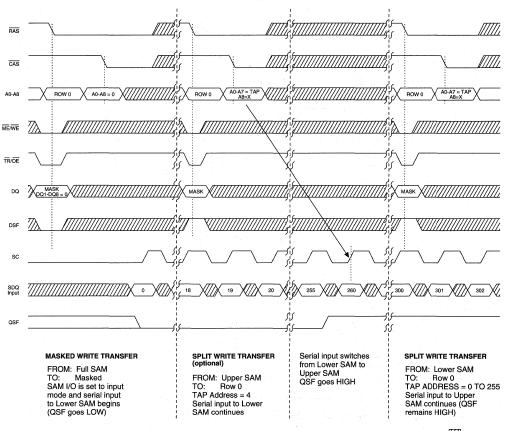


Figure 6 DQ MASKED WRITE TRANSFER

MT42C8256 256K x 8 VRAM


MASKED SPLIT WRITE TRANSFER

The MASKED SPLIT WRITE TRANSFER (MSWT) cycle allows serial input data to be transferred to the DRAM without interrupting the serial clock. Operation of the SWT cycle is very similar to the SPLIT READ TRANSFER cycle. It will transfer the idle half of the SAM to the DRAM and set the Tap address to where the new serial data will be loaded in that half. Selection of the MSWT cycle is the same as that of the MASKED WRITE TRANSFER with the exception of the state of DSF. When DSF is HIGH at the falling edge of RAS, an MSWT will occur. The initiation sequence for MSWT is shown in Figure 7. An MSWT will not change the direction of the SAM I/O buffers.

PROGRAMMABLE SPLIT SAM

Programmable Split SAM operation is an extension of the Split SAM mode. This mode optimizes SAM performance by allowing user-programmable stop points to be defined in the split SAM. The stop points define a SAM location at which the access will change from one half of the SAM to the other half (at the loaded Tap address). The locations of the stop points are programmable in power-of-two increments. The stop points and size of the resulting partitions are shown in Figure 8, along with an example.

The stop points are set by performing a CBR RESET STOP (CBRS) address cycle. A CBRS cycle is a CBR with $\overline{\text{ME}}/\overline{\text{WE}}$ LOW and DSF HIGH at the RAS HIGH-to-LOW transition.

DON'T CARE

Figure 7 TYPICAL SPLIT-WRITE-TRANSFER INITIATION SEQUENCE

This is a special CBR refresh cycle that, in addition to refreshing the DRAM, will sample the address pins (A4-A8) and set the stop point partition to the addressed value (See Figure 8). The programmable stop points will not become valid until a Split Transfer (READ or WRITE) is done, following the CBRS. Both halves of the SAM will be programmed simultaneously to the same partition lengths and stop points.

Access will progress from the Tap address to the end of the programmable partition into which the Tap fell. When the end of the "addressed" partition is reached, the access will jump to the tap address of the next half, provided that a SPLIT TRANSFER (READ or WRITE) was done before the partition boundary was reached. If a SPLIT TRANSFER (ST) is not done prior to the terminal count of the partition, the partition is not recognized and the address count will continue in the same half (this is shown Figure 8 at stop address 383). The count will continue in the same half until a SPLIT TRANSFER (READ or WRITE) occurs or the SAM half boundary is reached. In Figure 8, an ST occurs some time between addresses 383 and 447 and the boundary is recognized at 447. The programmable stop points may be reprogrammed at any time by performing another CBRS cycle, the new stop points will not be valid until an ST is performed.

Disabling the programmable split SAM requires a CBRR. This is as CBR cycle with DSF LOW at the RAS HIGH-to-LOW transition. The CBRR will take effect immediately; it does not require an ST to become active valid.

Number Stop	A	ddres	s @ R	AS LO	W	Number and Size
Points/Half	A8	A7	A6	A5	A4	of Partition(s)
1 (Default)	X	1	1	1	1	1 x 256
2	X	0	1	1	1	2 x 128
4	Х	0	0	1	1	4 x 64
8	X	0	0	0	1	8 x 32
16	X	0	0	0	0	16 x 16

A0-A3 = "don't care"

EXAMPLE (four stop points)

Programmed Partition (A4-A8) = 000111111 MSB....LSB

Figure 8 PROGRAMMABLE SPLIT SAM OPERATION

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the SERIAL INPUT/OUT-PUT buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SPLIT READ TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half, for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated in Figure 5. Address count will wrap around (after count 511) to Tap address zero if in the "full" SAM modes.

SC is also used to clock-in data when the device is in the SERIAL INPUT mode. As in the serial output operation, the contents of the SAM address counter (loaded when the SERIAL INPUT mode was enabled) will determine the serial address of the first 8-bit word written. \overline{SE} acts as a write enable for SERIAL INPUT data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

POWER-UP and INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = (\overline{TR})/\overline{OE} \ge V_{IH}$ during power-up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data, and the nonpersistent MASKED WRITE mode is enabled.

The SAM portion of the MT42C8256 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the SERIAL INPUT mode (MASKED WRITE TRANSFER) and the I/O pins (SDQs) will be High-Z, regardless of the state of SE. QSF initializes in the LOW state. The mask and color register will contain random data after power-up.

TRUTH TABLE

		1	RAS FALL	ING EDG	E	CAS FALL	A0-	A81	DQ1-	DQ8 ²	REGIS	STERS
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	DSF	RAS	CAS	RAS	CAS ³	MASK	COLOR
	DRAM OPERATIONS						1.47					12
CBRR	CBR REFRESH (RESET ALL OPTIONS)	0	X	X	0		X	x		X	х	X
CBRS	CBR REFRESH (RESET STOP ADDRESS)	0	X	0	1	-	STOP7	X		X	х	X
CBRN	CBR REFRESH (NO RESET)	0	х	1	1.		X	X	i — 11	X	X	X
ROR	RAS ONLY REFRESH	1	1	X	X	· · _	ROW		х		х	X
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	×	VALID DATA	x	×
RWM	MASKED WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	0	ROW	COLUMN	WRITE MASK ⁴	VALID DATA	USE ⁴	×
BW	BLOCK WRITE TO DRAM	1	1	1	0	1	ROW	COLUMN (A2-A8)	x	COLUMN MASK	X	USE
BWM	MASKED BLOCK WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	1	ROW	COLUMN (A2-A8)	WRITE MASK ⁴	COLUMN MASK	USE ⁴	USE
FWM	MASKED FLASH WRITE TO DRAM (OLD OR NEW MASK)	, 1,	1	0	1	x	ROW	x	WRITE MASK ⁴	X	USE ⁴	USE
	REGISTER OPERATIONS											
LMR	LOAD MASK REGISTER	1	1	1	1	0	ROW ⁵	×	x	REG DATA	LOAD	×
LCR	LOAD COLOR REGISTER	1	1	1	1	1	ROW ⁵	x	X	REG DATA	x	LOAD
	TRANSFER OPERATIONS											
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	ROW	TAP ⁶	X	X	X	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	x	ROW	TAP ⁶	X	X	x	X
MWT	MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER) (NEW OR OLD MASK)	1	0	0	0	x	ROW	TAP ⁶	WRITE MASK ⁴	x	USE ⁴	x
MSWT	MASKED SPLIT WRITE TRANSFER (SAM-TO-DRAM TRANSFER, NEW OR OLD MASK)	1	0	0	1	×	ROW	TAP ⁶	WRITE MASK ⁴	×	USE ⁴	×

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.

2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.

3. During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is last. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or _____

TR/OE, whichever is last.

- 4. After an LMR cycle, all masked WRITEs use the mask register (old mask). Data on the DQs at RAS falling edge will be ignored. A CBRR will reset to new mask state and mask data must be presented on the DQs at every RAS falling edge.
- 5. The ROW that is addressed will be refreshed, but a ROW address is not required.
- 6. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half or programmable stop address boundary).
- 7. Defines the column addresses where access moves to the next half; see Programmable Split SAM functional description.

ABSOLUTE MAXIMUM RATINGS*

 $\label{eq:Voltage on Vcc Supply Relative to Vss $$ -1V$ to +7V$ Operating Temperature, T_A (ambient) $$ -0°C$ to +70°C Storage Temperature (plastic) $$ -55°C$ to +150°C Power Dissipation $$ -55°C$ to +150°C Power Dissipation $$ -50°C$ Note that the set of the se$

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$	IL.	-10	10	μA	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	1
Output low Voltage (lout = 2.5 mA)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Ci1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Cı2		8	pF	2
Input/Output Capacitance: DQ, SDQ	Cı/o		9	pF	2
Output Capacitance: QSF	Со		9	pF	2

٦

Г

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0 \ 0 \ 1_A \le 70 \ 0, \ 0 \ C = 50 \ 10 \ 0)$			MAX			
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc1	165	155	145	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ¹ PC = ¹ PC [MIN])	ICC2	110	100	90	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮ after eight RAS cycles [MIN])	Іссз	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V⊮)	ICC4	165	155	145	mA	3, 25
REFRESH CURRENT: CBR (RAS and \overline{CAS} = Cycling)	ICC5	165	155	145	mA	3, 5
SAM/DRAM DATA TRANSFER	ICC6	185	175	165	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0.0 \le 1_A \le 70.0, 0.00 = 30 \pm 10.0)$			MAX			
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc7	215	205	190	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	Ісся	160	150	135	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮ after eight RAS cycles [MIN])	Icca	50	50	45	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	Icc10	215	205	190	mA	3, 4, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	Icc11	215	205	190	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	220	210	195	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS			6*		-7		-8	: .	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150	· · · · ·	ns	a side a te
READ-MODIFY-WRITE cycle time	tRWC	148		170	1	190	and a second	ns	
FAST-PAGE-MODE READ or EARLY WRITE cycle time (Extended Data Out (READ))	^t PC	24		27		30		ns	
FAST-PAGE-MODE LATE WRITE, MASKED WRITE or BLOCK WRITE cycle time.	^t PC	30		35		40		ns	
FAST-PAGE-MODE READ-MODIFY-WRITE cycle time	^t PRWC	83		90		95		ns	
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15, 28
Access time from (TR)/OE	tOE		15		20		20	ns	10, 20
Access time from column-address		1	30	pi	35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	tRASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15	+	20	+	20	1.00,000	ns	
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width (FAST-PAGE-MODE READ	tCAS	10	100,000	10	100.000	12	100,000	ns	
or EARLY WRITE cycles only)									1000
CAS pulse width (All other cycles)	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60	1	70		80		ns	
CAS precharge time	tCP	10		10	a na la ser la	10		ns	16
RAS to CAS delay time	tRCD	20	45	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row-address setup time	tASR	0	1.1.1.1.1.1	0		0		ns	1.000
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column-address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column-address setup time	^t ASC	0		0	The state	0		ns	
Column-address hold time	^t CAH	12		12		15		ns	
Column-address hold time (referenced to RAS)	^t AR	45		55		60		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	3		3		3		ns	
CAS HIGH to RAS HIGH lead time	^t CRL	0		0		0		ns	
RAS HIGH to CAS HIGH lead time	^t RCL	0		0		0		ns	
Output buffer turn-off delay from CAS or RAS	^t OFF	3	20	3	20	3	20	ns	20, 23
Output disable delay from (TR)/OE	tOD	3	10	3	10	3	10	ns	20, 23
Output enable delay from (TR)/OE	^t OELZ	3		3		3		ns	
Output disable delay from (ME)/WE	tWHZ	3	10	3	10	3	10	ns	
Output disable hold time from start of WRITE	^t OEH	10		10		10		ns	27
Output Enable to RAS delay	tORD	0		0		0		ns	
Data output hold after CAS LOW	1СОН	5		5		5		ns	28

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	6*	-	7	-	8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	12		15		15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	
Write command pulse width	tWP	12		15		15		ns	
Write command to RAS lead time	tRWL	18		20		20		ns	
Write command to CAS lead time	^t CWL	18		20		20		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	12		12		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	tRWD	80		90		100		ns	21
Column-address to WE delay time	tAWD	50		55		60		ns	21
CAS to WE delay time	tCWD	35		40		40		ns	21
Transition time (rise or fall)	tT.		35		35		35	ns	9, 10
Refresh period (512 cycles)	tREF		16.7		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CBR REFRESH)	tCSR	10		10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		0		ns	
ME/WE to RAS hold time	tRWH	15		15		15		ns	
Mask data to RAS setup time	tMS	0		0		0		ns	
Mask data to RAS hold time	tMH	15		15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_A \le + 70^{\circ}C$; Vcc = 5V ±10%)

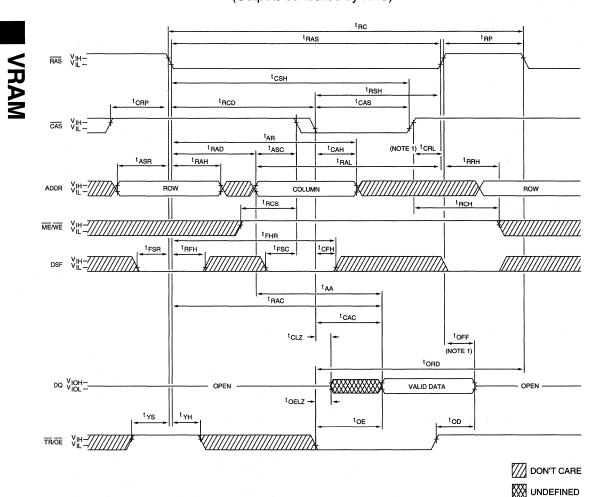
AC CHARACTERISTICS			6*		-7		-8	$= \frac{1}{2} \sum_{i=1}^{n} $	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	tTLS	0	1.1	0		0	1.4.154	ns	1.1
TR/(OE) LOW to RAS hold time	^t TLH	15	10,000	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	60	10,000	70	10,000	80	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	^t CTH	15		20		20		ns	
TR/(OE) HIGH to RAS precharge time	^t TRP	50	1.20	50		50		ns	1.1
TR/(OE) precharge time	^t TRW	15		20		25		ns	
TR/(OE) LOW to last SC hold time	tTSL	5		5		5		ns	11
TR/(OE) HIGH to first SC setup time	^t TSD	50		50	1	50	and the second	ns	11
Serial output buffer turn-off delay from RAS	^t SDZ	7	40	7	40	7	40	ns	
SC to RAS setup time	tSRS	20		25		30		ns	
Serial data input to SE delay time	tSZE	0		0		0		ns	
Serial data input delay from RAS	tSDD	50	Sec. Sec.	50		50	-	ns	
Serial data input to RAS delay time	tSZS	0		0		0		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		0	t	ns	
TR/(OE) HIGH to RAS hold time	^t YH	15		15		15		ns	
DSF to RAS setup time	tFSR	0		0		0		ns	
DSF to RAS hold time	^t RFH	15		15		15		ns	
SC to QSF delay time	^t SQD		20		25		30	ns	da esta
SPLIT TRANSFER setup time	^t STS	20		25		30		ns	
SPLIT TRANSFER hold time	^t STH	10		10		10		ns	S. S. Sampler
DSF (at CAS LOW) to RAS hold time	tFHR	45		55	a shekara dag	60		ns	
DSF to CAS setup time	tFSC	0		0		0	Sec. 1	ns	
DSF to CAS hold time	^t CFH	15		15		15		ns	
TR/OE to QSF delay time	^t TQD	1.1	30		30		30	ns	
RAS to QSF delay time	^t RQD		70		75		75	ns	
CAS to QSF delay time	^t CQD		35		40		45	ns	
RAS to first SC delay	tRSD	95		105		115		ns	
CAS to first SC delay	tCSD	50		55		55		ns	

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V $\pm 10\%$)

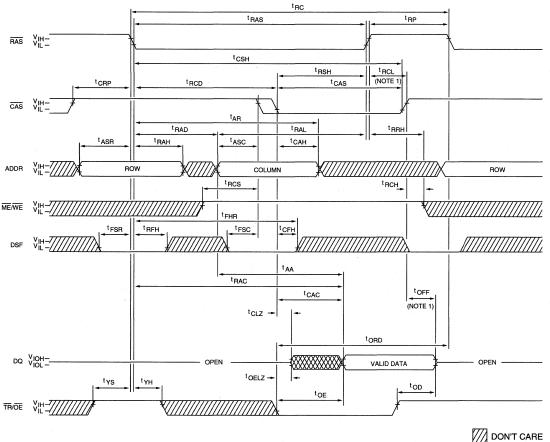
AC CHARACTERISTICS		-	6*		-7	-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	18		20		22		ns	
Access time from SC	^t SAC		15		17		20	ns	24, 28
SC precharge time (SC LOW time)	tSP	7		8		9		ns	
SC pulse width (SC HIGH time)	^t SAS	7		8		9		ns	
Access time from SE	^t SEA		12	-	12		15	ns	24
SE precharge time	^t SEP	7		8		9		ns	
Serial data-out hold time after SC high	^t SOH	3		3		3		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	3	12	ns	20, 24
Serial output buffer turn-on delay from SE	tSOO	3		3		3		ns	
Serial data-in setup time	tSDS	0		0		0		ns	
Serial data-in hold time	^t SDH	10		10		10		ns	
Serial input (Write) Enable setup time	tSWS	0		0		0		ns	
Serial input (Write) Enable hold time	^t SWH	15		15		15		ns	
Serial input (Write) disable setup time	tSWIS	0		0		0		ns	
Serial input (Write) disable hold time	tSWIH	15		15		15		ns	


VRAN

NOTES

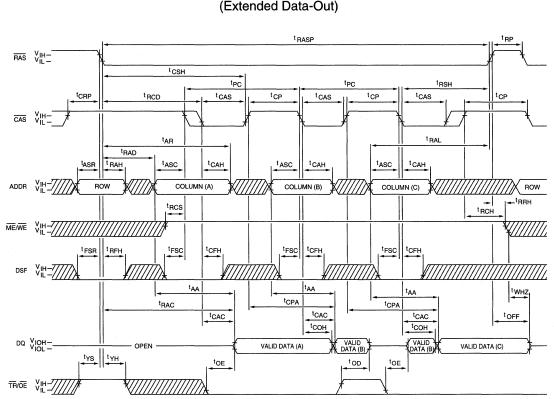
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_{A} \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from 0 to 3V for AC testing.
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. The "last" SC edge causes the last data from the previous row to appear on the SDQ pins. The "first" SC causes the first data from the new row to appear.
- 12. If CAS = VIL, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to one TTL gate and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for CP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\text{TR}}/\overline{\text{OE}}$ must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ^tAWD \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until ^tOD is met) is indeterminate, but the WRITE will be valid if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE HIGH or when RAS and CAS go HIGH, whichever occurs first.
- 24. SAM output timing is measured with a load equivalent to one TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. Address (A0-A8) may be changed two times or less while $\overline{RAS} = V_{IL}$.
- 26. Address (A0-A8) may be changed once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS and RAS go HIGH prior to OE going back LOW, the DQs will remain open.
- 28. ^tSAC/^tCAC are MAX at 70° C and 4.5V Vcc; ^tSOH/ ^tCOH are MIN at 0° C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. This is guaranteed by design (^tSOH = ^tSAC - output transition time; ^tCOH = ^tCAC - output transition time).


DRAM READ CYCLE¹ (Outputs controlled by RAS)

NOTE: 1. ^tCRL is a reference parameter. If $\overline{CAS} = HIGH$ ^tCRL before \overline{RAS} , ^tOFF is referenced from the rising edge of \overline{RAS} .

VRAM



NOTE: 1. ^tRCL is a reference parameter. If RAS = HIGH ^tRCL before CAS, ^tOFF is referenced from the rising edge of CAS.

VRAM

MT42C8256 256K x 8 VRAM

DRAM FAST-PAGE-MODE READ CYCLE (Extended Data-Out)

DON'T CARE

NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

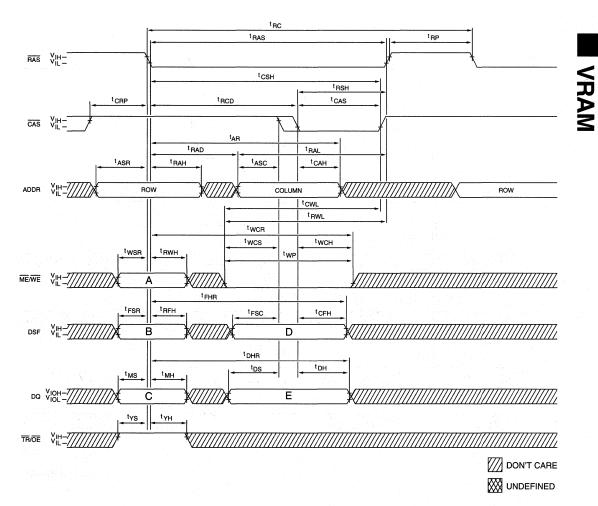
^tRASP t RP RAS VIH-^tCSH ^tPC ^tPC ^tRSH t_{CRP} t RCD tCAS t_{CP} t CAS t_{CP} t_{CAS} t_{CP} VIH-CAS t RAL ^tAR ^tRAD ^tASR TRAH tASC ^tCAH ^tASC ^tCAH ^tASC ^tCAH ADDR V#=7// COLUMN (A) ROW COLUMN (B) COLUMN (N) ROW tRCH-+ ^tRCS twcs ^tWCH Vн*-7*/// ME/WE tFSC t FSC ^tRFH ^tCFH ^tFSR ^tCFH tFSC ^tCFH VIII-7 DSF ////// t_{AA} t_{AA} ^twHz ^tCPA ^tRAC ^tCAC t_{DS} ^tDH ^tCAC tсон DQ VIOH-VALID DATA (B) OPEN VALID DATA (A) tys ^tYH ^tOE TR/OE V#2777

DRAM FAST-PAGE-MODE READ/WRITE CYCLE

(Extended Data-Out)

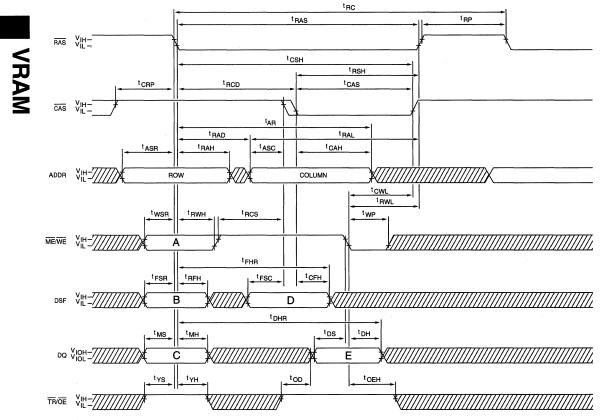
DON'T CARE

WRITE CYCLE FUNCTION TABLE 1


	LOGIC STATES					
	RAS Falling Edge			CAS Falling Edge		
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)	
Normal DRAM WRITE	1	0	X	0	DRAM Data	
MASKED WRITE to DRAM	0	0	Write Mask ³	0	DRAM Data (Masked	
BLOCK WRITE to DRAM (No Bit-Plane Mask)	1	0	x	1	Column Mask	
MASKED BLOCK WRITE to DRAM	0	0	Write Mask ³	1	Column Mask	
MASKED FLASH WRITE to DRAM	0	1	Write Mask ³	X	Х	
Load Mask Data Register	1	1	X	0	Write Mask Data	
Load Color Register	1	1	Х	1	Color Data	

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

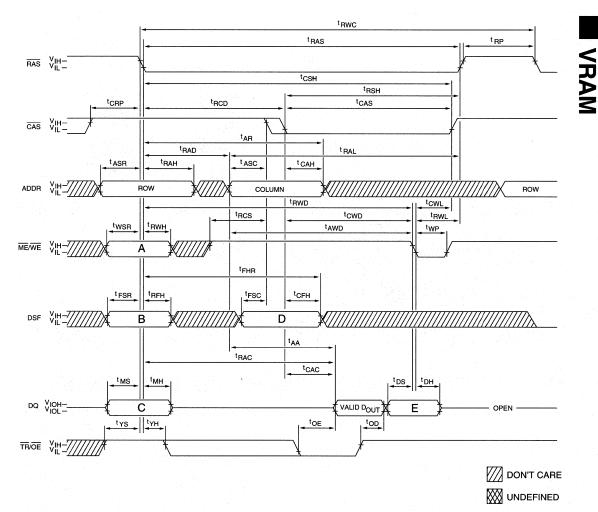
 2. CAS or ME/WE falling edge, whichever occurs last.
 3. Mask Data is loaded at RAS falling if nonpersistent mode is active. If persistent mode is active, mask data is supplied by the Mask Data Register and the DQs are "don't care" at the RAS falling edge.



DRAM EARLY-WRITE CYCLE¹

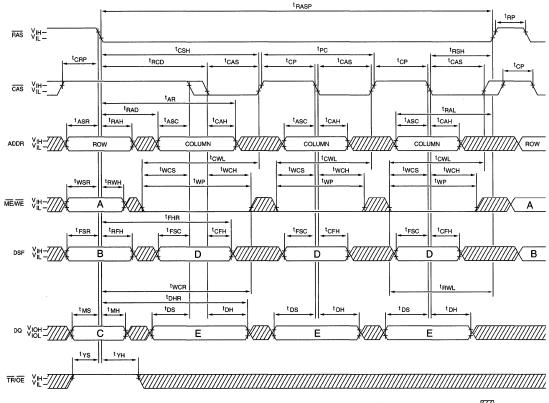
IOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT42C8256 256K x 8 VRAM



DRAM LATE-WRITE CYCLE

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.



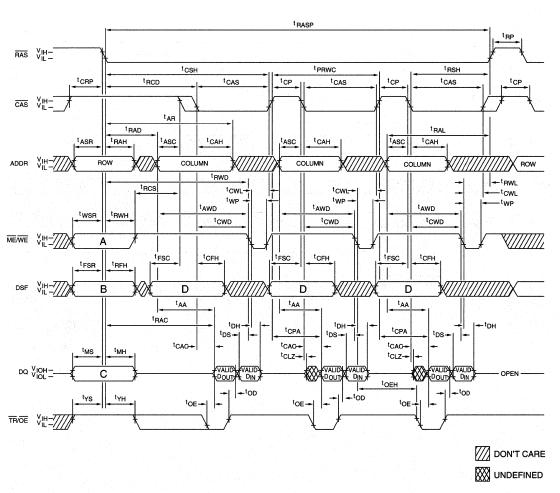
IOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

2-167

42C8256

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1, 2

IRON


VRAM

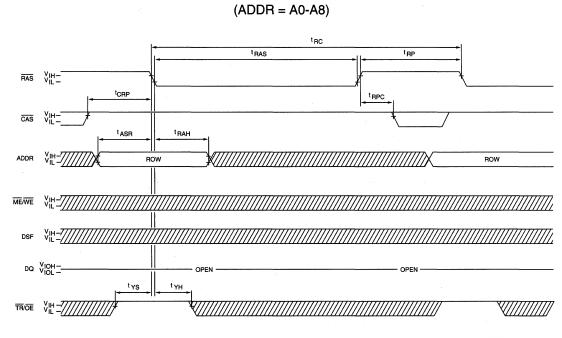
NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.

2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

VRAN

DRAM FAST-PAGE-MODE READ-WRITE CYCLE ^{1,2} (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)

IOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

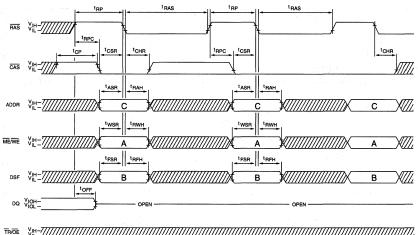

2 - 169

2. The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

VRAM

MT42C8256 256K x 8 VRAM

DRAM RAS-ONLY REFRESH CYCLE

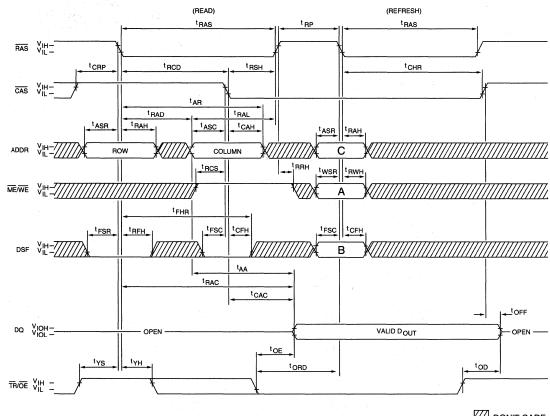


CALCE FUNCTION TABLE

		LOGIC STATES RAS Falling Edge (CAS = LOW)			
FUNCTION	CODE	A ME/WE	B DSF	C A0-A8	
CBR REFRESH (Reset All Options)	CBRR	X	0	X	
CBR REFRESH (Set/Reset Stop Address)	CBRS	0	1	STOP ADDRESS ¹	
CBR REFRESH (No Reset)	CBRN	1	1	X	

VRAN

CBR REFRESH CYCLE²


> DON'T CARE

IOTE: 1. Programmable Stop Point column addresses:

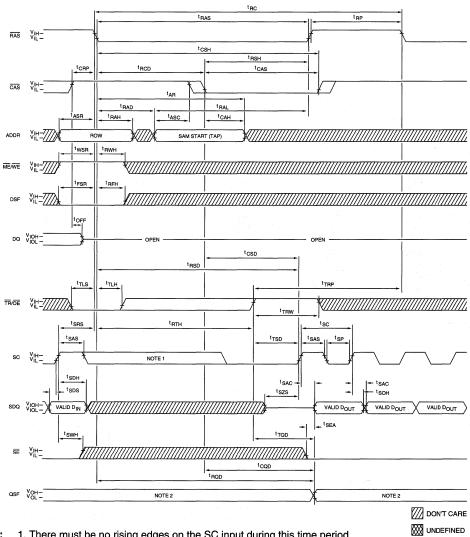
Number Stop	Number Stop Address @ RAS LOW					Number and Size		
Points/Half	A8	A7	A6	A5	A4	of Partition(s)		
1 (Default)	X	1	1	1	1	1 x 256		
2	X	0	1	1	1	2 x 128		
4	X	0	0	1	1	4 x 64		
8	X	0	0	0	1	8 x 32		
16	X	0	0	0	0	16 x 16		

A0-A3 = "don't care"

2. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

DRAM HIDDEN-REFRESH CYCLE 1, 2

DON'T CARE

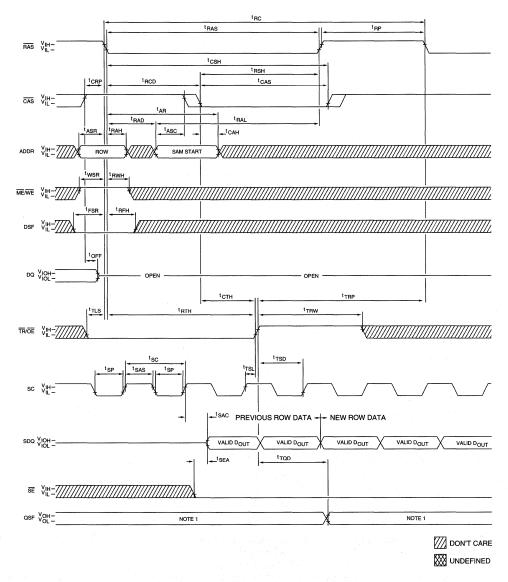

- **NOTE:** 1. A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.
 - 2. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

MICRON

VRAM

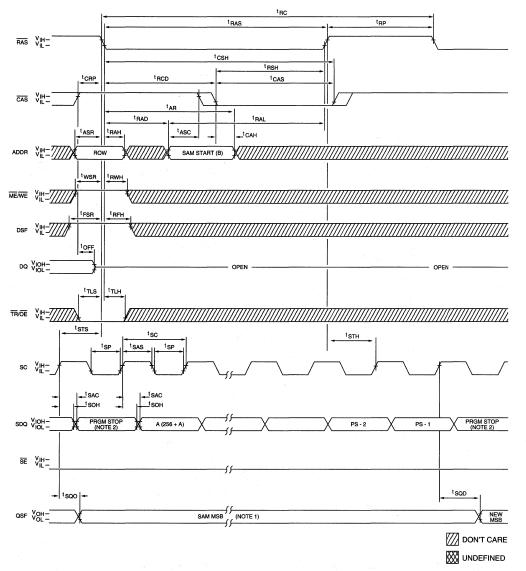
READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode, or SC idle)

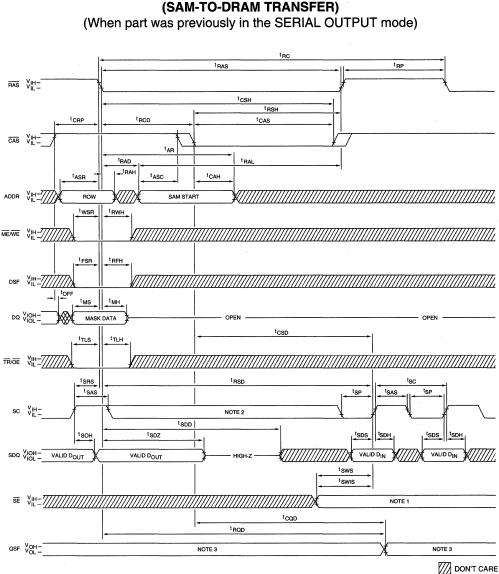


- **IOTE:** 1. There must be no rising edges on the SC input during this time period. 2. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256–511) is being accessed.
 - 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.

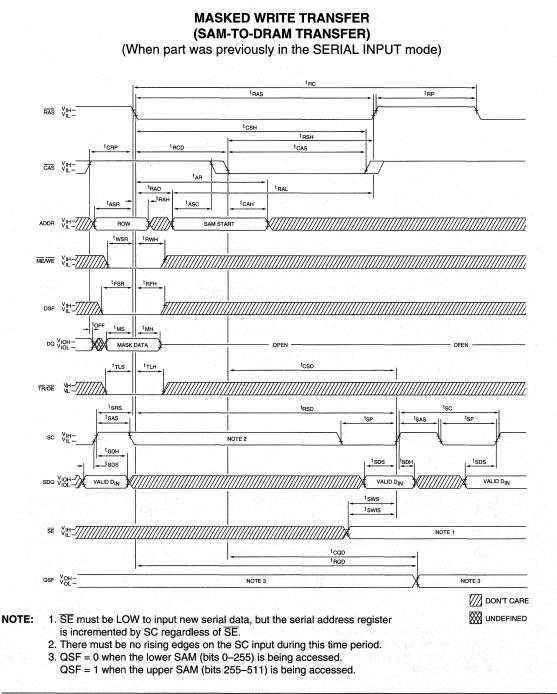
VRAM


REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)

NOTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 256–511) is being accessed.

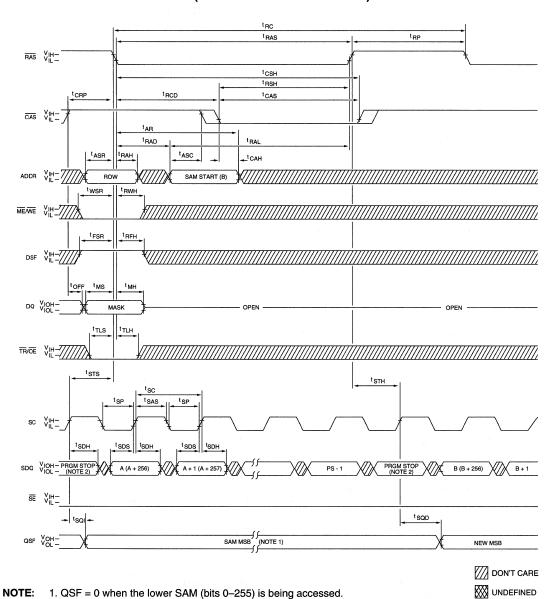

IDTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed.

- QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- 2. Programmable stop address or SAM half boundary (255 or 511). See the Programmable Split SAM functional description for detail.


MASKED WRITE TRANSFER

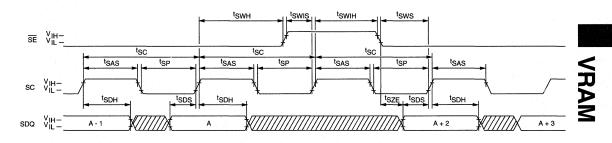
NOTE: 1. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.

- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the lower SAM (bits 0–255) is being accessed.
- QSF = 1 when the upper SAM (bits 256-511) is being accessed.

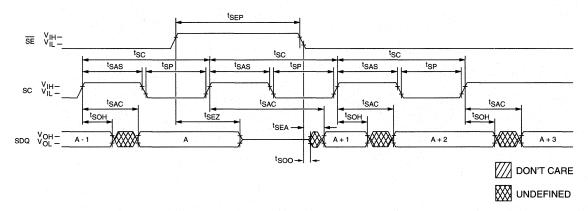


VRAM

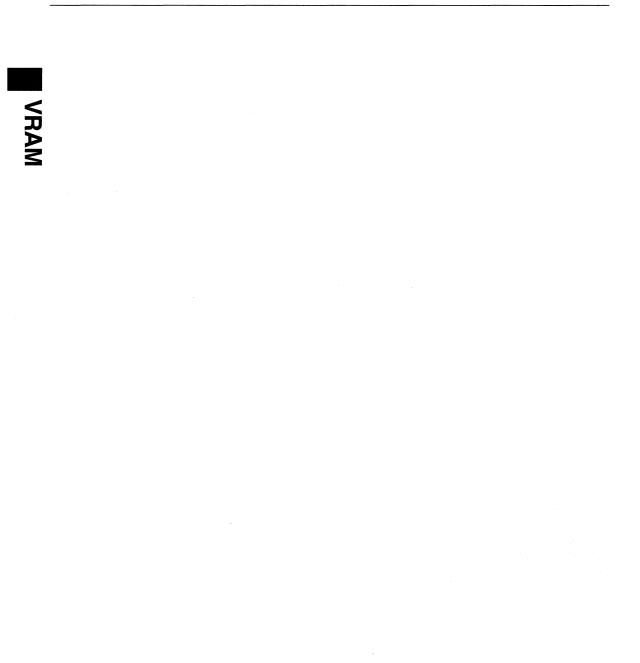
VRAM



MASKED SPLIT WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


QSF = 1 when the upper SAM (bits 256–511) is being accessed.
 Programmable stop address or SAM half boundary (255 or 511). See the Programmable Split SAM functional description for detail.

SAM SERIAL INPUT



SAM SERIAL OUTPUT

ø

MT42C8257 256K x 8 VRAM

NEW

VRAN

VRAM

256K x 8 DRAM WITH 512 x 8 SAM

IN ASS	SIGNI	MEN	Т (Т	op V
40-	Pin S	SOJ	(SDI	B-3)
SI SI SI TH I I I I I I I I I I I I I I I I I I	Vcc [1 SC [2 DO1 [3 DO2 [4 DO3 [5 DO2 [4 DO3 [5 DO2 [4 SC [7 DO1 [8 DO3 [6 VOE [7 DO1 [8 DO3 [10 DO3 [10]		40 P Vs 39 P SC 37 P SC 37 P SC 36 P SC 35 P SC 33 P D 33 P D 32 P D 33 P D 32 P D 33 P D 32 P D 23 P S 27 P P 28 P M 27 P P 28 P M 27 P P 24 P A1 23 P A2 24 P A1 23 P A2 21 P Ns	1028 1027 1026 1025 18 18 17 18 15 15 15 15 15 15 15 15 15 15 15 15 15
40/44	-Pin ⁻	rso	P * (€	SDE-
SC C SDQ1 C SDQ2 C SDQ3 C	1 2 3 4 4 5 6 7 8 9 9 10		44 43 42 41 40 39 38 37 36 35	H Vss SDQ8 SDQ7 SDQ6 SDQ6 SDQ5 H DQ8 DQ7 DQ6 DQ5
HAS C A8 C A7 C A6 C A5 C A4 C	H 13 15 16 17 18 19 20 21 22		25 24	Vss DSF GND CAS A0 A1 A2 A3 Vss
40/44	-Pin ⁻	rso	P * (S	SDE-
Vss C SDQ8 C SDQ7 C SDQ6 C SDQ6 C SE C DQ8 C DQ8 C DQ7 C DQ6 C DQ5 C	43 42 41 40 39 38 37 36	ERSE	3 4 5 6 7 8 9	H Vcc SC SDQ1 SDQ2 SDQ3 SDQ4 SDQ3 SDQ4 TR/OE DQ1 DQ2 DQ3
Vss D DSF D CAS D QSF D A0 D A1 D A2 D A3 D Vss D	28 27 26 25 24	REVE	16 17 18 19 20 21	DQ4 Vss ME/W RAS A8 A7 A6 A5 A4 Vcc

*Consult factory for availability.

- · Industry-standard pinout, timing and functions
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply (consult factory regarding 3.3V operation)
- Fully TTL and CMOS compatible inputs and TTL compatible outputs
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- Dual port organization: 256K x 8 DRAM port 512 x 8 SAM port
- No refresh required for serial access memory
- Low power: 10mW standby; 300mW active, typical
- Fast access times: 70ns random, 17ns serial 60ns random, 15ns serial[†]

SPECIAL FUNCTIONS

- JEDEC-Standard Mandatory Function set
- PERSISTENT MASKED WRITE
- MASKED WRITE TRANSFER/SERIAL INPUT
- MASKED SPLIT WRITE TRANSFER
- BLOCK WRITE (MASK)
- MASKED FLASH WRITE
- PROGRAMMABLE SPLIT SAM

OPTIONS

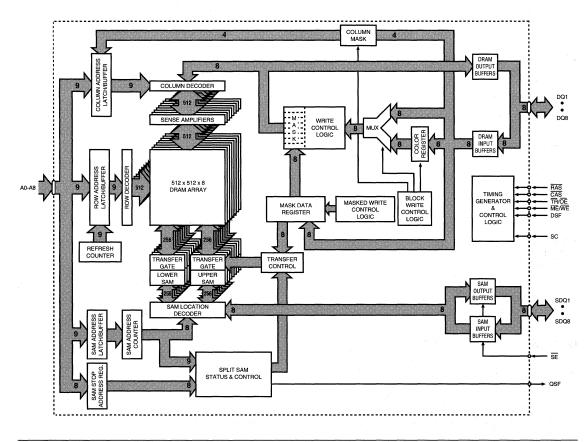
MARKING

•	Timing (DRAM, SAM	cycle/access])	
	60ns, 18/15ns		-6†
	70ns, 20/17ns		-7
	80ns, 22/20ns		-8
•	Packages		
	Plastic SOJ (400 mil)		DJ
	Plastic TSOP (400 mil)		TG*
	Plastic TSOP (400 mil)	reverse pinout	RG*

⁺60ns (-6) specifications are preliminary and are specified for Vcc = $5V \pm 5\%$. Please consult factory for availability.

GENERAL DESCRIPTION

The MT42C8257 is a high-speed, dual-port CMOS dynamic random access memory, or video RAM (VRAM) containing 2,097,152 bits. These bits may be accessed by an 8-bit wide DRAM port or by a 512 x 8-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.


MT42C8257 REV. 5/93

The DRAM portion of the VRAM is similar to the MT4C4256 (256K x 4-bit DRAM), with the addition of MASKED WRITE, BLOCK WRITE and FLASH WRITE. Eight 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8-bit random access I/O port, the eight internal 512-bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

:RON

Each port may be operated asynchronously and independently of the other except when data is being transferred internally. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8257 are optimized for high performance graphics and communication designs. The dual port architecture is well suited to buffering the sequential data types used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT TRANSFERs and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MT42C8257 256K x 8 VRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
2	2	SC	Input	Serial Clock: Clock input to the serial address counter and data latch for the SAM registers.
7	7	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS ($H \rightarrow L$), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state.
13	15	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{ME}/\text{WE}}$ is also used to select a READ ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE ($\overline{\text{ME}/\text{WE}}$ = L) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE TRANSFER ($\overline{\text{ME}/\text{WE}}$ = L).
35	39	SE	Input	Serial Port Enable: \overline{SE} enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC when \overline{SE} is inactive (HIGH).
29	31	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, FLASH WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).
14	16	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and strobe for ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycles.
27	29	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock in the 9 column- address bits and as a strobe for the DSF input (BLOCK WRITE only).
25, 24, 23, 22, 19, 18, 17, 16, 15	27, 26, 25, 24, 21, 20, 19, 18, 17	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW), and A0-A8 indicate the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT TRANSFERs.
8, 9, 10, 11, 31, 32, 33, 34	8, 9, 10, 13, 35, 36, 37, 38	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles: These pins also act as inputs for Mask and Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.
3, 4, 5, 6, 36, 37, 38, 39	3, 4, 5, 6, 40, 41, 42, 43	SDQ1-SDQ8	Input/ Output	Serial Data I/O: Input, output, or High-Z.
26	28	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.
28	30	GND		No Connect/GND: This pin must be tied to ground to allow for upward functional compatibility with future VRAM feature sets.
1, 20	1, 22	Vcc	Supply	Power Supply: +5V ±10%
12, 21, 30, 40	14, 23, 32, 44	Vss	Supply	Ground

NEW VRAM

FUNCTIONAL DESCRIPTION

The MT42C8257 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory, the MT42C8257 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT42C8257 supports CBR, RAS ONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and must simply perform 512 CBR cycles within the 16.7ms time period. CBR cycles are also used to reset MASKED WRITE and PROGRAMMABLE SPLIT SAM operating modes. There are three CBR cycles defined for the MT42C8257: CBR No Reset (CBRN), CBR Reset Stop Address (CBRS), and CBR Reset All Options (CBRR). To perform these functions, two additional pins are defined for CBR cycles, ME/WE and DSF1. These operations are described in detail in the MASKED WRITE and SPLIT READ/WRITE TRANSFER sections of the functional description.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C8257 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES

The DRAM portion of the VRAM is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These

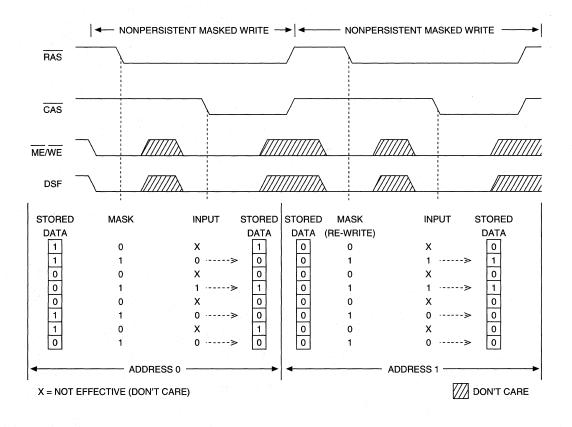
conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select an 8-bit word from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the nine row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH-to-LOW. Next, the nine column-address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH-to-LOW.

Note: \overline{RAS} also acts as a "master" chip enable for the VRAM. If \overline{RAS} is inactive, HIGH, all other DRAM control pins (\overline{CAS} , $\overline{TR}/\overline{OE}$, $\overline{ME/WE}$, etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles or resets will be initiated without \overline{RAS} falling.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW and remains HIGH until $\overline{\text{CAS}}$ goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after $\overline{\text{RAS}}$ falls to enable the DRAM output port.


For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, \overline{ME}/WE performs two functions, write mask enable and data write enable. When \overline{RAS} goes LOW, $\overline{ME}/(\overline{WE})$ is used to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any non-masked DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition. If (\overline{ME})/ \overline{WE} is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If (\overline{ME})/ \overline{WE} goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed (refer to the AC timing diagrams).

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (late or early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing individual bits within the 8-bit word. The MT42C8257 supports two types of MASKED WRITE cycles, nonpersistent MASKED WRITE and persistent MASKED WRITE. When $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the $\overline{\text{RAS}}$ HIGH-to-LOW transition, a MASKED WRITE is performed.

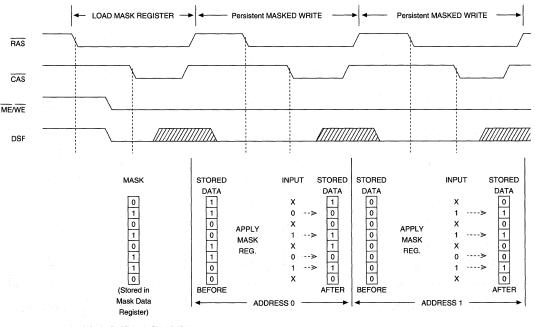
The MT42C8257 initializes in the nonpersistent mode. In this mode, mask data must be entered with every \overline{RAS} falling edge. The data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register (see Figure 1). The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that CAS is still HIGH. When CAS goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle.

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

MT42C8257 REV. 5/93

MICHON

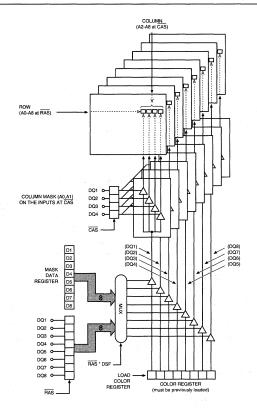
The selection of persistent or nonpersistent MASKED WRITE is done by performing a LOAD MASK REGISTER (LMR) cycle (see LMR description). If an LMR is done, all ensuing MASKED WRITEs are persistent and the mask data will be provided by the Mask Data Register (see Figure 2). The mask data is applied in the same manner as in nonpersistent mode.


To reset the device back to the nonpersistent mode, a CBR RESET All Options (CBRR) cycle must be performed. This cycle is defined as a CBR with DSF LOW when \overrightarrow{RAS} falls; WE is "don't care." To preserve the persistent mode of MASKED WRITE, while using CBR REFRESH, a CBRN cycle is used. This cycle will perform a refresh of the internally addressed row of DRAM but will not reset the MASKED WRITE mode.

FAST PAGE MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

BLOCK WRITE

If DSF is HIGH when \overline{CAS} goes LOW, the MT42C8257 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 3). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).


The row is addressed as in a normal DRAM WRITE cycle. However, when \overline{CAS} goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3 and 4) are then used to determine what combination of the four column locations will be changed. The DQ inputs are "written" at the falling edge of \overline{CAS} or \overline{WE} , whichever occurs last (see the WRITE cycle waveforms). The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations within the block. The write enable controls are active HIGH;

X = NOT EFFECTIVE (DON'T CARE)

DON'T CARE

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

Figure 3 BLOCK WRITE EXAMPLE

a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

MASKED BLOCK WRITE

The MASKED WRITE functions may also be used during BLOCK WRITE cycles. MASKED BLOCK WRITE operates exactly like the normal MASKED WRITE except the mask is now applied to the 8 bit-planes of four column locations instead of just one column location.

The combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when RAS goes LOW initiates a MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. By using both the column mask input and the MASKED WRITE function of BLOCK

WRITE (BW), any combination of the eight bit planes may be masked, along with any combination of the four column locations.

The MASKED BLOCK WRITE will be nonpersistent (new mask) at device power-up. To enter persistent mode (old mask) a LOAD MASK REGISTER cycle is performed. All MASKED BLOCK WRITEs will be persistent after the LOAD MASK REGISTER (LMR). To reset to nonpersistent mode, a CBRR (reset all) cycle must be performed.

INDUTO	COLUMN ADDRESS CONTROLLED								
INPUTS	AO	A1							
DQ1	0	0							
DQ2	1	0							
DQ3	0	1							
DQ4	1	1							

MASKED FLASH WRITE

The MASKED FLASH WRITE cycle is similar to the MASKED BLOCK WRITE cycle in that it uses the color register to accelerate the writing of a select color to the DRAM memory array. Instead of writing to four adjacent column locations in one DRAM cycle (BLOCK WRITE), FWM writes the contents of the color register to all column locations on an addressed row in one cycle.

The FWM cycle is selected by taking $\overline{\text{TR}}/(\overline{\text{OE}})$ and DSF HIGH and $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW at the falling edge of $\overline{\text{RAS}}$. DSF is "don't care" at the falling edge of $\overline{\text{CAS}}$. The DQ plane mask applies as it does for all masked write cycles; if the mask register has been loaded, the mask is persistent; if it has not, the mask is nonpersistent.

LOAD MASK REGISTER

The LOAD MASK REGISTER (LMR) operation loads the data present on the DQ pins into the 8-bit mask data register at the falling edge of \overline{CAS} or $(\overline{ME})/\overline{WE}$. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $(\overline{ME})/\overline{WE}$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle.

Note: LOAD MASK REGISTER cycles also enable the persistent MASKED WRITE mode. All ensuing MASKED WRITEs (including MASKED WRITE and MASKED SPLIT WRITE TRANSFER) will be masked with data from the mask register. A CBRR has to be done to reset back to nonpersistent mode.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

During persistent operation, the mask data register contents are used for MASKED WRITE, MASKED BLOCK WRITE, MASKED FLASH WRITE, and MASKED WRITE and SPLIT WRITE TRANSFER cycles to selectively enable writes to the eight DQ planes.

LOAD COLOR REGISTER

A LOAD COLOR REGISTER (LCR) cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when \overline{CAS} goes LOW. The contents of the 8-bit color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE and FLASH WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/(\overline{OE})$ is LOW at the falling edge of RAS. The state of $(\overline{ME})/\overline{WE}$ when RAS goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER and SPLIT TRANSFER cycles. Each of the TRANSFER cycles is described in this section.

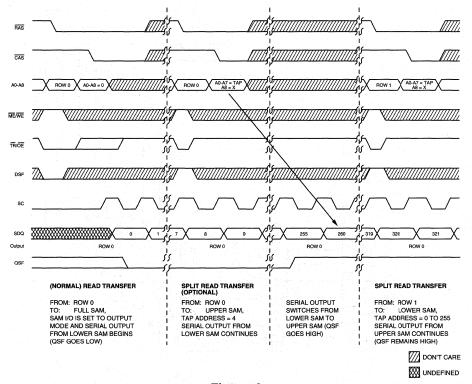
READ TRANSFER

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER (RT) cycle is selected. The rowaddress bits indicate which eight 512-bit DRAM row planes are transferred to the eight SAM data register planes. The column-address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after \overline{CAS} goes LOW. The TRANS-FER will be made when $\overline{TR}/(\overline{OE})$ goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANS-FER), TR/(OE) may go HIGH before CAS goes LOW and the actual data TRANSFER will be timed internally (refer to the AC Timing Diagrams). During the TRANSFER, 4,096 bits of DRAM data are written into the SAM data registers and the Tap address is stored in an internal 9-bit register. The split SAM status pin (QSF) will be LOW if the Tap is in the lower half (addresses 0 through 255), and HIGH if it is in the upper half (256 through 511). If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of \overline{SE} . Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

SPLIT READ TRANSFER

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER has to occur between the last clock of "old" data and first clock of the "new" data of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and is not synchronized with the serial clock.

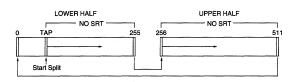

NEV

The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the falling edge of $\overline{\text{CAS}}$ or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM I/O port.

={=}

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin (the state of QSF), and to set SAM I/O direction. Then an SRT may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated in such a manner that the SPLIT TRANSFER will automatically be to the SAM half not being accessed.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 (A8= 0, A0-A7=1) the QSF output goes HIGH and, if an SRT was done for the upper half, the new Tap address is loaded for the next half (A8 = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM (QSF has gone HIGH), new data may be transferred to the lower SAM. For example, the next step in Figure 4 would be to wait until QSF went LOW (indicating that Row 1 data is shifting out of the lower SAM) and execute an SRT of the upper half of Row 1 to the upper SAM. If the half-boundary is reached before an SRT is done for the next half, the device will leave split mode and the access will start from address 256 if going to the upper half or at 0 if going to the lower half (see Figure 5).


Figure 4 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

The stop address of the SAM half (the point at which access will change to the next half) is programmable on the MT42C8257. This function is described in the PROGRAM-MABLE SPLIT SAM section of the functional description.

MASKED WRITE TRANSFER

RON

The operation of the MASKED WRITE TRANSFER (MWT) is identical to that of the READ TRANSFER described previously except $(\overline{\text{ME}})/\overline{\text{WE}}$ is LOW and a DQ plane mask is applied when RAS goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A DQ mask must be applied to all MWTs as shown in Figure 6. This may be done using persistent or nonpersistent modes. When using persistent mode, the mask will be supplied by the mask register. When in nonpersistent mode, the DQ pins are used to input a bit plane mask at the falling

Figure 5 SPLIT SAM TRANSFER

edge of \overline{RAS} . An MWT changes the direction of the SAM I/O buffers to the input mode. To change the SAM I/O buffers to input mode without SAM data being transferred to the DRAM, a mask of all zeros must be presented on the DQ pins when \overline{RAS} falls. QSF is LOW if serial input is to the lower half of the SAM, and HIGH if it is to the upper.

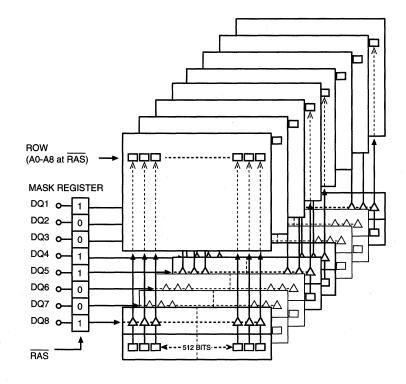
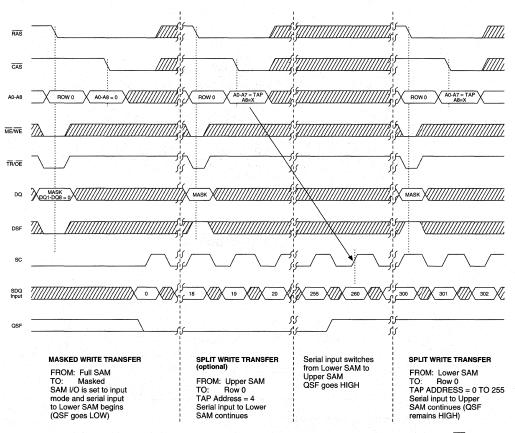


Figure 6 DQ MASKED WRITE TRANSFER


MASKED SPLIT WRITE TRANSFER

The MASKED SPLIT WRITE TRANSFER (MSWT) cycle allows serial input data to be transferred to the DRAM without interrupting the serial clock. Operation of the SWT cycle is very similar to the SPLIT READ TRANSFER cycle. It will transfer the idle half of the SAM to the DRAM and set the Tap address to where the new serial data will be loaded in that half. Selection of the MSWT cycle is the same as that of the MASKED WRITE TRANSFER with the exception of the state of DSF. When DSF is HIGH at the falling edge of RAS, an MSWT will occur. The initiation sequence for MSWT is shown in Figure 7. An MSWT will not change the direction of the SAM I/O buffers.

PROGRAMMABLE SPLIT SAM

Programmable Split SAM operation is an extension of the Split SAM mode. This mode optimizes SAM performance by allowing user-programmable stop points to be defined in the split SAM. The stop points define a SAM location at which the access will change from one half of the SAM to the other half (at the loaded Tap address). The locations of the stop points are programmable in power-of-two increments. The stop points and size of the resulting partitions are shown in Figure 8, along with an example.

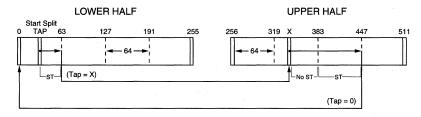
The stop points are set by performing a CBR RESET STOP (CBRS) address cycle. A CBRS cycle is a CBR with $\overline{\text{ME}}/\overline{\text{WE}}$ LOW and DSF HIGH at the RAS HIGH-to-LOW transition.

DON'T CARE

Figure 7 TYPICAL SPLIT-WRITE-TRANSFER INITIATION SEQUENCE

NEW

This is a special CBR refresh cycle that, in addition to refreshing the DRAM, will sample the address pins (A4-A8) and set the stop point partition to the addressed value (See Figure 8). The programmable stop points will not become valid until a Split Transfer (READ or WRITE) is done, following the CBRS. Both halves of the SAM will be programmed simultaneously to the same partition lengths and stop points.


Access will progress from the Tap address to the end of the programmable partition into which the Tap fell. When the end of the "addressed" partition is reached, the access will jump to the tap address of the next half, provided that a SPLITTRANSFER (READ or WRITE) was done before the partition boundary was reached. If a SPLITTRANSFER (ST) is not done prior to the terminal count of the partition, the partition is not recognized and the address count will continue in the same half (this is shown Figure 8 at stop address 383). The count will continue in the same half until a SPLIT TRANSFER (READ or WRITE) occurs or the SAM half boundary is reached. In Figure 8, an ST occurs some time between addresses 383 and 447 and the boundary is recognized at 447. The programmable stop points may be reprogrammed at any time by performing another CBRS cycle, the new stop points will not be valid until an ST is performed.

Disabling the programmable split SAM requires a CBRR. This is a CBR cycle with DSF LOW at the RAS HIGH-to-LOW transition. The CBRR will take effect immediately; it does not require an ST to become active valid.

Number Stop	A	ddres	s @ R	Number and Size		
Points/Half	A8	A7	A6	A5	A4	of Partition(s)
1 (Default)	X	1	1	1	1	1 x 256
2	X	0	1	1	1	2 x 128
4	X	0	0	1	1	4 x 64
8	X	0	0	0	1	8 x 32
16	X	0	0	0	0	16 x 16

A0-A3 = "don't care"

EXAMPLE (four stop points)

Programmed Partition (A4-A8) = 000111111 MSB....LSB

Figure 8 PROGRAMMABLE SPLIT SAM OPERATION

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SC and SE. The rising edge of SC increments the serial address counter and provides access to the next SAM location. SE enables or disables the SERIAL INPUT/OUT-PUT buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SPLIT READ TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half, for split modes. If an SRT was not performed before the half boundary is reached, the count will wrap around (after count 511) to Tap address zero if in the "full" SAM modes.

SC is also used to clock-in data when the device is in the SERIAL INPUT mode. As in the serial output operation, the contents of the SAM address counter (loaded when the SERIAL INPUT mode was enabled) will determine the serial address of the first 8-bit word written. \overline{SE} acts as a write enable for SERIAL INPUT data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

POWER-UP and INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overline{RAS} = (\overline{TR})/\overline{OE} \ge VIH$ during power-up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data, and the nonpersistent MASKED WRITE mode is enabled.

The SAM portion of the MT42C8257 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the SERIAL INPUT mode (MASKED WRITE TRANSFER) and the I/O pins (SDQs) will be High- Z, regardless of the state of SE. QSF initializes in the LOW state. The mask and color register will contain random data after power-up.

MICHON

TRUTH TABLE

	-	1	RAS FALL	ING EDG	E	CAS FALL	A0-	A81	DQ1-	DQ8 ²	REGIS	STERS
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	DSF	RAS	CAS	RAS	CAS ³	MASK	COLOR
	DRAM OPERATIONS									,		
CBRR	CBR REFRESH (RESET ALL OPTIONS)	0	X	x	0	-	X	X	-	х	х	x
CBRS	CBR REFRESH (RESET STOP ADDRESS)	0	x	0	1	-	STOP ⁷	X	_	х	х	X
CBRN	CBR REFRESH (NO RESET)	0	x	1	1	- ¹	X	X		x	X	x
ROR	RAS ONLY REFRESH	1	1	x	х	-	ROW	-	x	-	X	X
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	x	VALID DATA	x	X
RWM	MASKED WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	0	ROW	COLUMN	WRITE MASK ⁴	VALID DATA	USE ⁴	×
BW	BLOCK WRITE TO DRAM	1	1	1	0	1	ROW	COLUMN (A2-A8)	×	COLUMN MASK	×	USE
BWM	MASKED BLOCK WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	1	ROW	COLUMN (A2-A8)	WRITE MASK ⁴	COLUMN MASK	USE ⁴	USE
FWM	MASKED FLASH WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	1	×	ROW	x	WRITE MASK ⁴	X	USE ⁴	USE
	REGISTER OPERATIONS											
LMR	LOAD MASK REGISTER	1	1	1	1	0	ROW ⁵	×	x	REG DATA	LOAD	x
LCR	LOAD COLOR REGISTER	1	1	1	1	1	ROW ⁵	X	x	REG DATA	x	LOAD
	TRANSFER OPERATIONS											
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	ROW	TAP ⁶	x	X	X	x
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	x	ROW	TAP ⁶	x	X	x	x
MWT	MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER) (NEW OR OLD MASK)	1	0	0	0	x	ROW	TAP ⁶	WRITE MASK ⁴	x	USE ⁴	x
MSWT	MASKED SPLIT WRITE TRANSFER (SAM-TO-DRAM TRANSFER, NEW OR OLD MASK)	1	0	0	1	X	ROW	TAP ⁶	WRITE MASK ⁴	x	USE ⁴	X

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.

2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.

3. During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is last. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or TR/OE, whichever is last.

- 4. After an LMR cycle, all masked WRITEs use the mask register (old mask). Data on the DQs at RAS falling edge will be ignored. A CBRR will reset to new mask state and mask data must be presented on the DQs at every RAS falling edge.
- 5. The ROW that is addressed will be refreshed, but a ROW address is not required.
- 6. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half or programmable stop address boundary).
- 7. Defines the column addresses where access moves to the next half; see Programmable Split SAM functional description.

MT42C8257 256K x 8 VRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Operating Temperature, T _A (ambient)0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Vін	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

(0°C \leq T_A \leq 70°C; Vcc = 5V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$		-10	10	μA	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (lout = -2.5mA) Output Low Voltage (lout = 2.5mA)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1	-	5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	Cı2		8	pF	2
Input/Output Capacitance: DQ, SDQ	Cı/o	· .	9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$	<i>2</i> .		MAX			
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ^t RC = ^t RC [MIN])	Icc1	165	155	145	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	ICC2	110	100	90	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮ after eight RAS cycles [MIN])	Іссз	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = ViH)	ICC4	165	155	145	mA	3, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC5	165	155	145	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	185	175	165	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0.0 \le 1_A \le 70.0, 0.00 = 30.1070)$			MAX				
PARAMETER/CONDITION	SYMBOL	-6*	-7	-8	UNITS	NOTES	
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ^t RC = ^t RC [MIN])	Icc7	215	205	190	mA	3, 4, 25	
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ¹PC = ¹PC [MIN])	ICC8	160	150	135	mA	3, 4, 26	
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮ after eight RAS cycles [MIN])	Icca	50	50	45	mA	3, 4	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V⊮)	Icc10	215	205	190	mA	3, 4, 25	
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	Icc11	215	205	190	mA	3, 4, 5	
SAM/DRAM DATA TRANSFER	ICC12	220	210	195	mA	3, 4	

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		150		ns	
READ-MODIFY-WRITE cycle time	^t RWC	148		170		190		ns	
FAST-PAGE-MODE READ, WRITE, MASKED WRITE or BLOCK WRITE cycle time	^t PC	35		40		45		ns	
FAST-PAGE-MODE READ-MODIFY-WRITE cycle time	^t PRWC	83		90		95		ns	
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15, 2
Access time from (TR)/OE	tOE		15		20		20	ns	
Access time from column-address	tAA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	tRAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	40		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CP	10		10		10		ns	16
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	1
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10	33 []	ns	1.1
RAS to column-address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	12		12		15		ns	1.1
Column-address hold time (referenced to RAS)	tAR	45		55		60	1	ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	3		3		3	:	ns	
Output buffer turn-off delay from CAS or RAS	tOFF	3	20	3	20	3	20	ns	20, 2
Output disable delay from (TR)/OE	tOD	3	10	3	10	3	10	ns	20, 2
Output enable delay from (TR)/OE	^t OELZ	3		3		3		ns	
Output disable delay from (ME)/WE	^t WHZ	3	10	3	10	3	10	ns	
Output disable hold time from start of WRITE	^t OEH	10		10		10		ns	27
Output Enable to RAS delay	tORD	0	11	0		0	1	ns	
Data output hold after CAS LOW	^t COH	5		5		5		ns	28

DRAM TIMING PARAMETERS (continued) ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_A \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	6*	-	-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	12	and the second	15		15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	
Write command pulse width	tWP	12		15		15		ns	
Write command to RAS lead time	^t RWL	18		20		20		ns	
Write command to CAS lead time	^t CWL	18		20		20		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	12		12		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	tRWD	80		90		100		ns	21
Column-address to WE delay time	tAWD	50		55		60		ns	21
CAS to WE delay time	tCWD	35	1	40	1	40		ns	21
Transition time (rise or fall)	tT		35		35		35	ns	9, 10
Refresh period (512 cycles)	^t REF		16.7		16.7		16.7	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5
ME/WE to RAS setup time	tWSR	0	1	0		0		ns	
ME/WE to RAS hold time	tRWH	15		15		15		ns	
Mask data to RAS setup time	tMS	0		0		0		ns	
Mask data to RAS hold time	tMH	15		15		15		ns	

RON

MT42C8257 256K x 8 VRAM

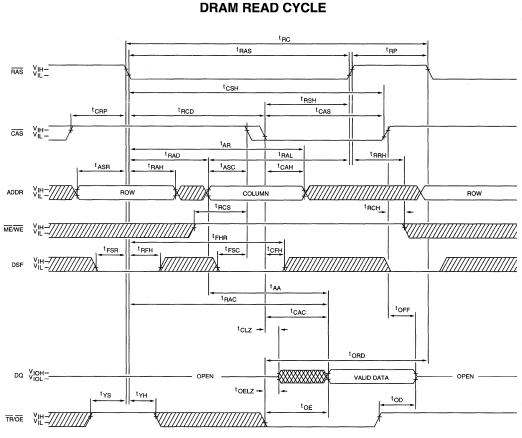
TRANSFER AND MODE CONTROL TIMING PARAMETERS

AC CHARACTERISTICS		-6*		-7		-8			1.1.1
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		0		ns	1.1.1.1
TR/(OE) LOW to RAS hold time	TLH	15	10,000	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	60	10,000	70	10,000	80	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	^t СТН	15		20		20		ns	
TR/(OE) HIGH to RAS precharge time	^t TRP	50		50		50		ns	1
TR/(OE) precharge time	TRW	15		20		25		ns	
TR/(OE) LOW to last SC hold time	^t TSL	5		5		5		ns	29
TR/(OE) HIGH to first SC setup time	^t TSD	50		50		50		ns	29
Serial output buffer turn-off delay from RAS	tSDZ	7	40	7	40	7	40	ns	
SC to RAS setup time	^t SRS	20		25		30		ns	
Serial data input to SE delay time	^t SZE	0		0		0	1.14	ns	
Serial data input delay from RAS	^t SDD	50		50		50		ns	
Serial data input to RAS delay time	tSZS	0		0		0		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		0		ns	1.1.1
TR/(OE) HIGH to RAS hold time	tYH	15		15		15	1.1.1.1.1.1	ns	
DSF to RAS setup time	tFSR	0		0		0	1.1.1.2.1	ns	$\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$
DSF to RAS hold time	^t RFH	15		15		15		ns	
SC to QSF delay time	tSQD		20		25		30	ns	- 10 C
SPLIT TRANSFER setup time	^t STS	20		25		30		ns	
SPLIT TRANSFER hold time	^t STH	10		10		10		ns	
DSF (at CAS LOW) to RAS hold time	^t FHR	45		55		60		ns	
DSF to CAS setup time	^t FSC	0		0		0		ns	
DSF to CAS hold time	^t CFH	15		15		15		ns	
TR/OE to QSF delay time	^t TQD		30		30		30	ns	
RAS to QSF delay time	^t RQD		70		75		75	ns	
CAS to QSF delay time	tCQD		35		40		45	ns	
RAS to first SC delay	^t RSD	95		105		115		ns	
CAS to first SC delay	tCSD	50		55		55		ns	

SAM TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V ±10%)

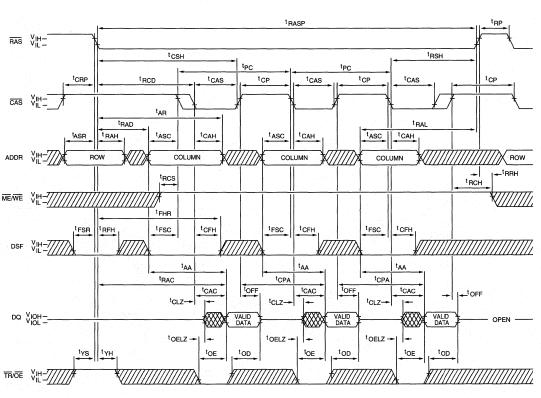
AC CHARACTERISTICS	-6*			-7			-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	18		20		22		ns	
Access time from SC	^t SAC		15		17		20	ns	24, 28
SC precharge time (SC LOW time)	tSP	7		8		9		ns	
SC pulse width (SC HIGH time)	^t SAS	7		8		9		ns	
Access time from SE	^t SEA		12	1	12		15	ns	24
SE precharge time	^t SEP	7		8		9		ns	
Serial data-out hold time after SC high	^t SOH	3		3		3		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	3	12	ns	20, 24
Serial output buffer turn-on delay from SE	tSOO	3		3		3		ns	
Serial data-in setup time	tSDS	0		0		0		ns	
Serial data-in hold time	^t SDH	10	· · · · · · · · · · · · · · · · · · ·	10		10		ns	
Serial input (Write) Enable setup time	tSWS	0		0		0		ns	
Serial input (Write) Enable hold time	tSWH	15		15		15		ns	
Serial input (Write) disable setup time	tSWIS	0		0		0		ns	
Serial input (Write) disable hold time	tSWIH	15		15		15		ns	

NOTES

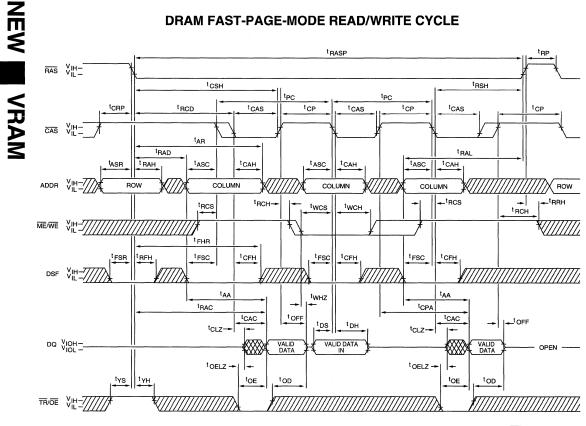

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ($0^{\circ}C \le T_A \le 70^{\circ}C$) is assured.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from 0 to 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data output (DQ1-DQ8) is High-Z.
- 12. If $\overrightarrow{CAS} = VIL$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to one TTL gate and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ¹CP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (Vон -200mV, VoL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If $^{t}WCS \ge$ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\text{TR}}/\overline{\text{OE}}$ must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate, but the WRITE will be valid if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to one TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. Address (A0-A8) may be changed two times or less while $\overline{RAS} = V_{IL}$.
- 26. Address (A0-A8) may be changed once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. ^tSAC/^tCAC are MAX at 70° C and 4.5V Vcc; ^tSOH/ ^tCOH are MIN at 0° C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. This is guaranteed by design (^tSOH = ^tSAC - output transition time; ^tCOH = ^tCAC - output transition time).
- 29.The "last" SC edge causes the last data from the previous row to appear on the SDQ pins. The "first" SC causes the first data from the new row to appear.

MT42C8257 256K x 8 VRAM


NEW VRAM

NEW


VRAM

DRAM FAST-PAGE-MODE READ CYCLE

NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

:RON

DRAM FAST-PAGE-MODE READ/WRITE CYCLE

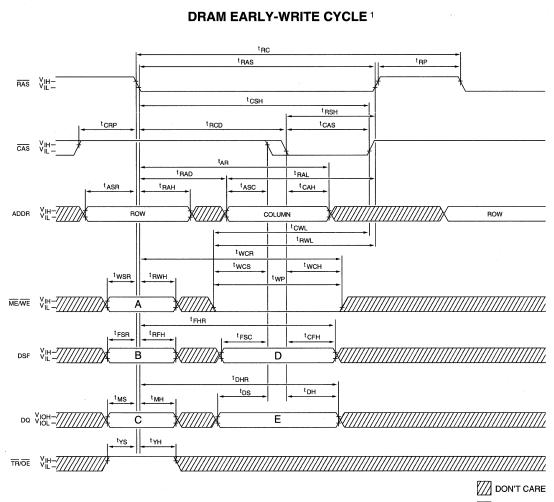
DON'T CARE

NOTE: Any one of the following signals: (TR)/OE, (ME)/WE or CAS, can be used to disable the data outputs before presenting input data. The controlling parameter would then be ^tOD, ^tWHZ or ^tOFF, respectively, or the first to be met when more than one parameter is applicable.

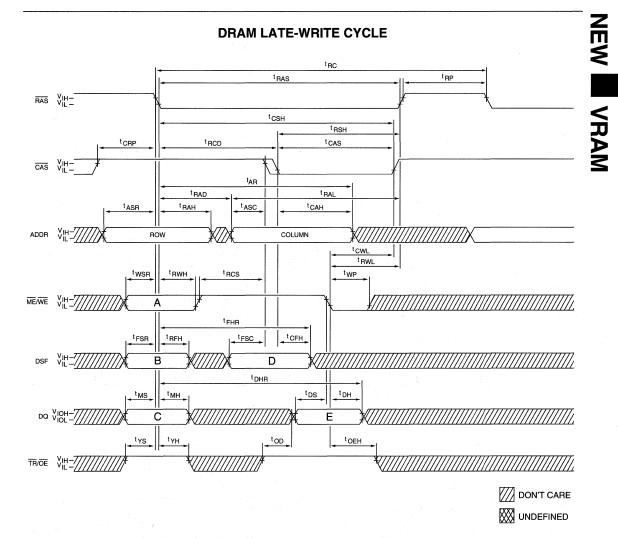
WRITE CYCLE FUNCTION TABLE 1

	LOGIC STATES									
		RAS Fal	ling Edge	CAS Falling Edge						
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)					
Normal DRAM WRITE	1	0	X	0	DRAM Data					
MASKED WRITE to DRAM	0	0	Write Mask ³	0	DRAM Data (Masked)					
BLOCK WRITE to DRAM (No Bit-Plane Mask)	1	0	X	1	Column Mask					
MASKED BLOCK WRITE to DRAM	0	0	Write Mask ³	1	Column Mask					
MASKED FLASH WRITE to DRAM	0	1	Write Mask ³	Х	X					
Load Mask Data Register	1	1	X	0	Write Mask Data					
Load Color Register	1	1	Х	1	Color Data					

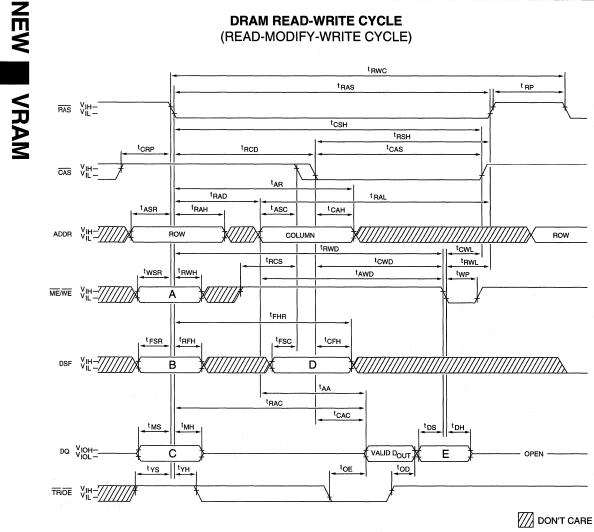
NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.


2. CAS or ME/WE falling edge, whichever occurs last.

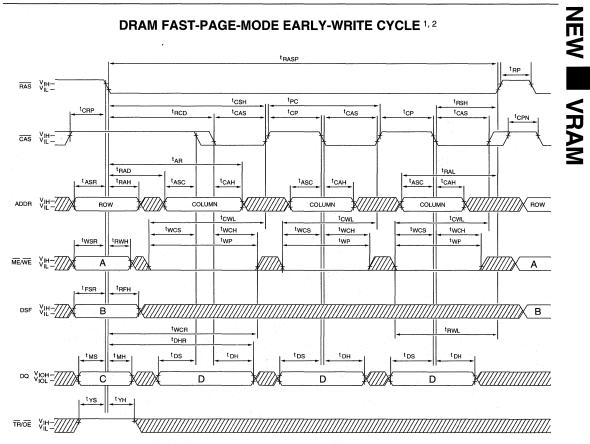
3. Mask Data is loaded at RAS falling if nonpersistent mode is active. If persistent mode is active, mask data is supplied by the Mask Data Register and the DQs are "don't care" at the RAS falling edge.


NEW VRAM

MT42C8257 256K x 8 VRAM


NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT42C8257 256K x 8 VRAM



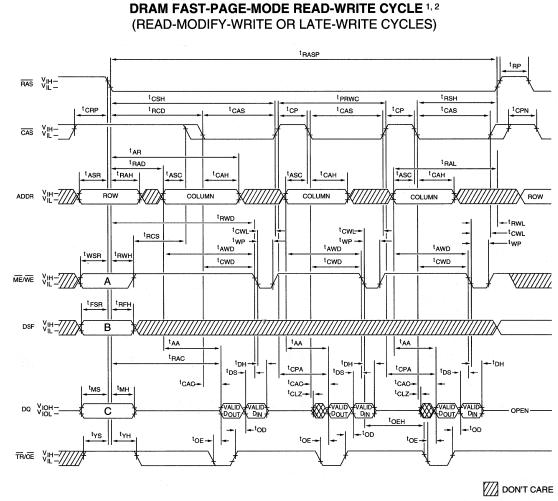
NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

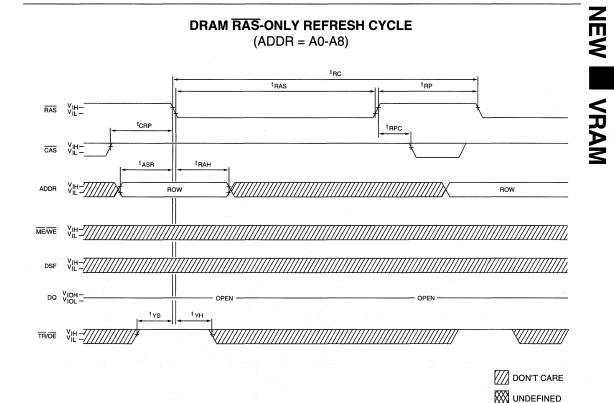
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1, 2

RON

DON'T CARE

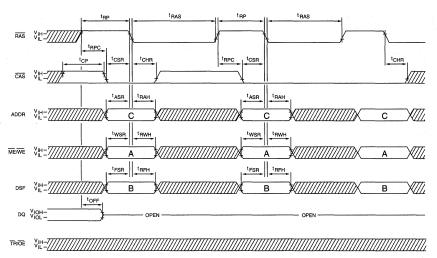

- VOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.
 - 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

NEW


VRAM

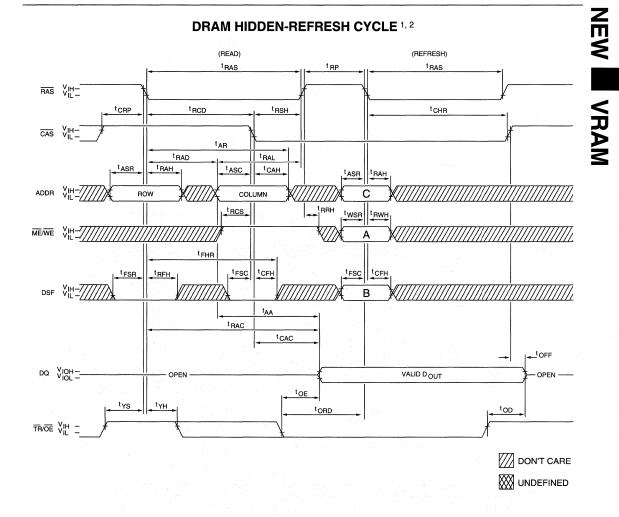
MT42C8257 256K x 8 VRAM

NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.


2. The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

CBR CYCLE FUNCTION TABLE

		LOGIC STATES					
		RAS Falling Edge (CAS = LOW)					
FUNCTION	CODE	A ME/WE	B DSF	C A0-A8			
CBR REFRESH (Reset All Options)	CBRR	X	0	X			
CBR REFRESH (Set/Reset Stop Address)	CBRS	0	1	STOP ADDRESS ¹			
CBR REFRESH (No Reset)	CBRN	1	1	X			

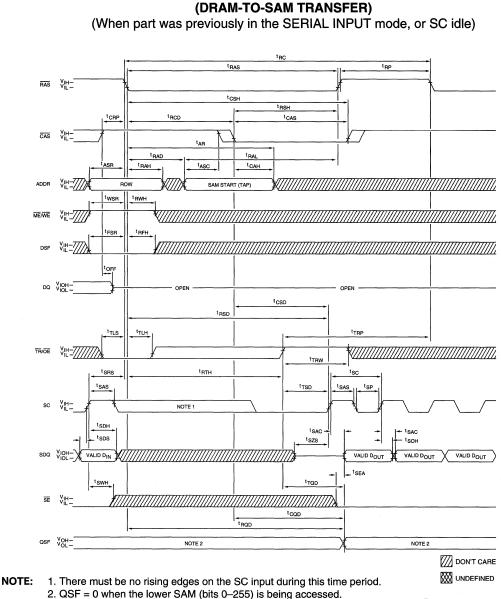

CBR REFRESH CYCLE²

NOTE: 1. Programmable Stop Point column addresses:

Number Stop	A	ddres	s @ A	Number and Size		
Points/Half	A8	A7	A6	A5	A4	of Partition(s)
1 (Default)	X	1	1	1	1	1 x 256
2	X	0	1	1	1	2 x 128
4	X	0	0	1	1	4 x 64
8	X	0	0	0	1	8 x 32
16	X	0	0	0	0	16 x 16

A0-A3 = "don't care"

2. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

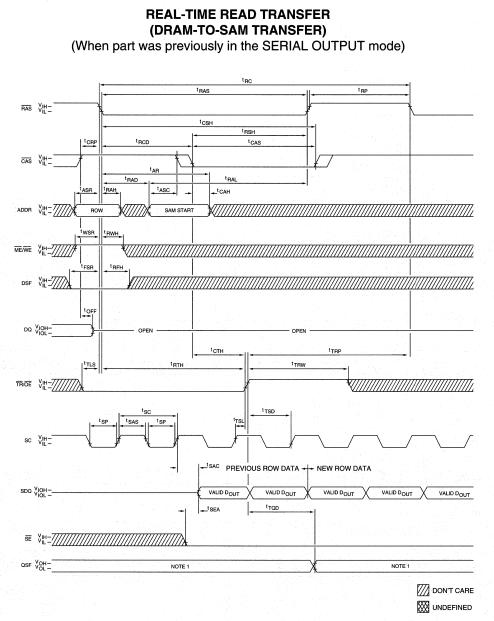


NOTE: 1. A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

2. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

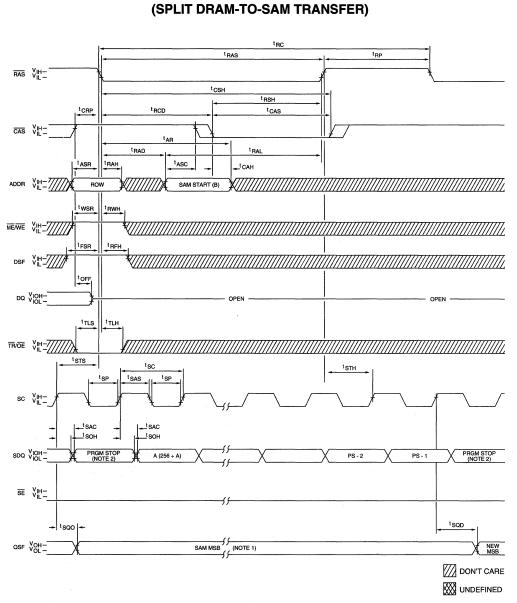
MICRON

MICRON



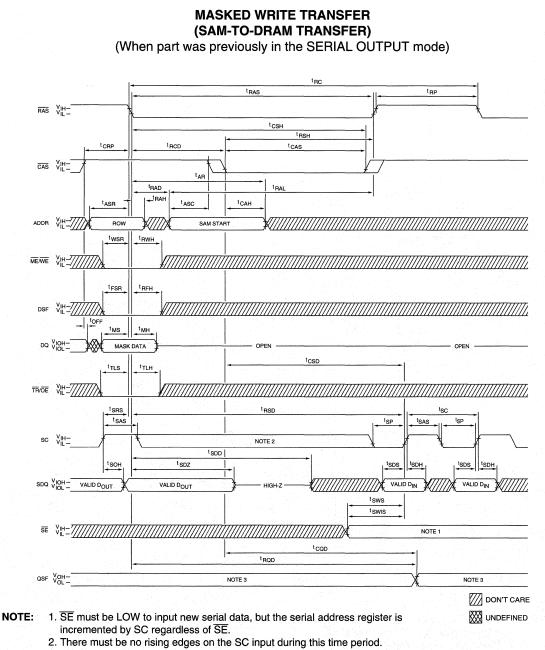
READ TRANSFER

- QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.


NEW VRAM

NOTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 256–511) is being accessed.

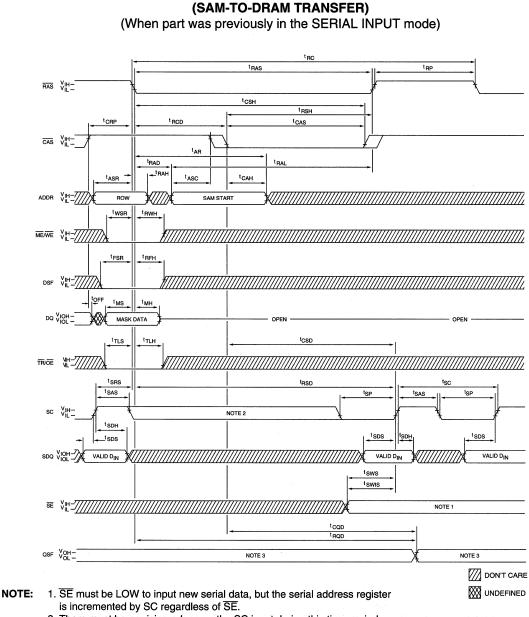
NEW VRAM



SPLIT READ TRANSFER

- NOTE: 1. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256–511) is being accessed.
 - 2. Programmable stop address or SAM half boundary (255 or 511). See the Programmable Split SAM functional description for detail.

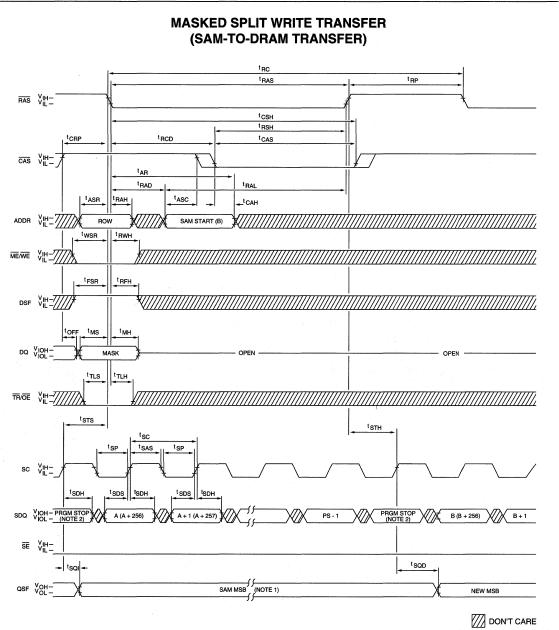
NEW VRAN



3. QSF = 0 when the lower SAM (bits 0–255) is being accessed.

QSF = 1 when the upper SAM (bits 256–511) is being accessed.

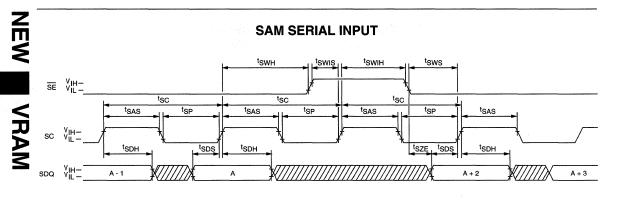
NEW VRAN


MASKED WRITE TRANSFER

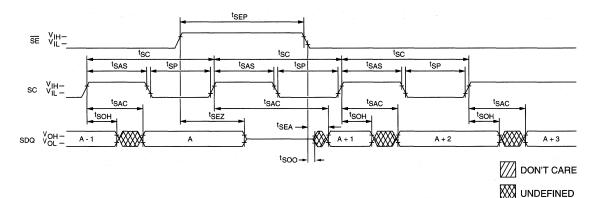
- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 255–511) is being accessed.

MT42C8257 256K x 8 VRAM

NEW VRAM

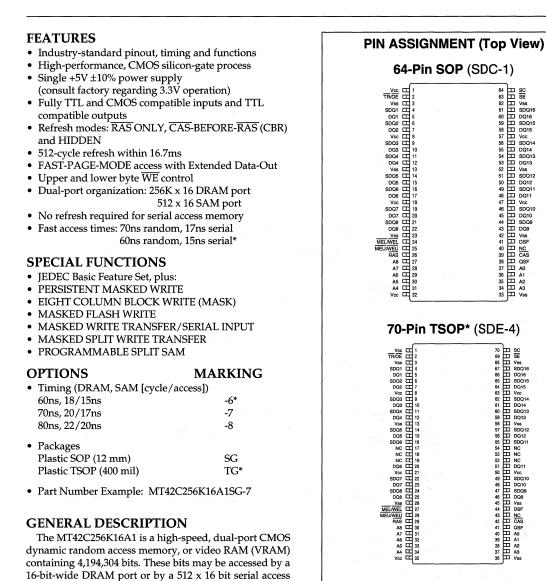

NOTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed.

- QSF = 1 when the upper SAM (bits 256-511) is being accessed.
- 2. Programmable stop address or SAM half boundary (255 or 511). See the Programmable Split SAM functional description for detail.


W UNDEFINED

MT42C8257 256K x 8 VRAM

SAM SERIAL OUTPUT


VRAN

MT42C256K16A1 256K x 16 VRAM

VRAM

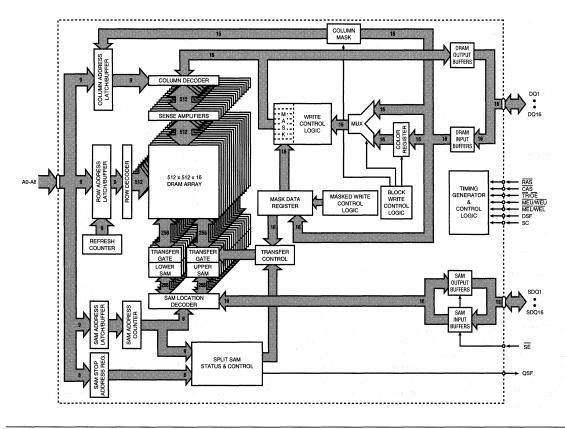
256K x 16 DRAM WITH 512 x 16 SAM

*Consult factory for availability.

memory (SAM) port. Data may be transferred bidirection-

ally between the DRAM and the SAM.

SEMICONDUCTOR, INC.


MT42C256K16A1 256K x 16 VRAM

VRAM

The DRAM portion of the VRAM is similar to the MT4C16256 (256K x 16-bit DRAM), with the addition of BLOCK WRITE and FLASH WRITE. Sixteen 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 16-bit random access I/O port, the 16 internal 512-bit-wide paths between the DRAM and the SAM, and the 16-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C256K16A1 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial, parallel networking and data communications. Special features such as SPLIT READ TRANSFER, extended data-out and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MT42C256K16A1 256K x 16 VRAM

PIN DESCRIPTIONS

SOP PIN NUMBERS	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
64	70	SC	Input	Serial Clock: Clock input to the serial address counter and data latch for the SAM registers.
2	2	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at \overline{RAS} (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after \overline{RAS} goes LOW (\overline{CAS} must also be LOW); otherwise, the output buffers are in a High-Z state.
24,25	27,28	MEL/ WEL, MEU/ WEU	Input	Mask Enable: If MEU/WEU or MEL/WEL are LOW at the falling edge of RAS, a MASKED WRITE cycle is performed, or Write Enable: MEL,U/WEL,U are also used to select a READ or READ TRANSFER CYCLE (MEL,U/WEL,U = H) or WRITE or WRITE TRANSFER CYCLE (MEL,U/WEL,U = L). MEL/WEL controls writes on DQ1-DQ8. MEU/WEU controls writes on DQ9-DQ16.
63	69	SE	Input	Serial Port Enable: \overline{SE} enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC, regardless of the state of \overline{SE} .
41	44	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, FLASH WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).
26	29	RAS	Input	Row Address Strobe: RAS is used to clock in the nine row-address bits and strobe for MEL,U/WEL,U, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycles.
39	42	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock in the nine column-address bits and as a strobe for the DSF input.
37, 36, 35 34, 31, 30 29, 28, 27	40, 39, 38 37, 34, 33 32, 31, 30	A0-A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 16-bit word out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A8 indicate the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT TRANSFERs.
5,7,10,12, 15,17,20,22, 43,45,48,50, 53,55,58,60	5,7,10,12, 15,20,23,25, 46,48,51,56, 59,61,64,67	DQ1- DQ16	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles: These pins also act as inputs for Mask and Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.
4,6,9,11,14,16 19,21,44,46,49 51,54,56,59,61	4,6,9,11,14,16 22,24,47,49,55 57,60,62,65,67	SDQ1- SDQ16	Input/ Output	Serial Data I/O: Input, output, or High-Z.
38	41 a 41	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.
40	17,18,19,43, 52,53,54	NC	-	No Connects. SOP pin 40/ TSOP pin 43 should be tied LOW to allow for upward functional compatibility with future VRAM feature sets.
1,8,18,32,47,57	1,8,21,35,50,63	Vcc	Supply	Power Supply: +5V ±10%
3,13,23,33 42, 52, 62	3,13,26,36, 45,58,68	Vss	Supply	Ground

VRAM

FUNCTIONAL DESCRIPTION

The MT42C256K16A1 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM based memory, the MT42C256K16A1 VRAM must be refreshed to retain data. All 512 rowaddress combinations must be accessed within 16.7ms. The MT42C256K16A1 supports CBR, RASONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CBR cycles within the 16.7ms time period. CBR cycles are also used to reset MASKED WRITE and PROGRAMMABLE SPLIT SAM operating modes. There are three CBR cycles defined for the MT42C256K16A1; CBR No Reset (CBRN), CBR Reset Stop Address (CBRS), and CBR Reset All Options (CBRR). To perform these functions, three additional pins are defined for CBR cycles, MEL/WEL, MEU/WEU and DSF. These operations are described in detail in the MASKED WRITE and SPLIT READ/WRITE TRANSFER sections of the functional description.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT42C256K16A1 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES (RW)

The DRAM portion of the VRAM is similar to standard 256K x 16 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select a 16-bit word from the 262,144 available are latched into the chip using the A0-A8, RAS and CAS inputs. First, the nine row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH-to-LOW. Next, the 9 column address bits are set up on the address inputs and clocked-in when CAS goes from HIGH-to-LOW.

Note: \overline{RAS} also acts as a "master" chip enable for the VRAM. If \overline{RAS} is inactive, HIGH, all other DRAM control pins (\overline{CAS} , $\overline{TR}/\overline{OE}$, $\overline{MEL}/\overline{WEL}$, etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles or resets will be initiated without \overline{RAS} falling.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $\overline{\text{MEL}}/\overline{\text{WEL}}$ and $\overline{\text{MEU}}/\overline{\text{WEU}}$ are HIGH when $\overline{\text{CAS}}$ goes LOW and remain HIGH until $\overline{\text{CAS}}$ goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ16 port. The (TR)/ $\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after $\overline{\text{RAS}}$ falls to enable the DRAM output port.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{MEL/WEL}$ and $\overline{MEU/WEU}$ perform two functions; write mask enable and data write enable. $\overline{MEL/WEL}$ and $\overline{MEU/WEU}$ are used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If either $\overline{MEL/WEL}$ or $\overline{MEU/WEU}$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any nonmasked DRAM access cycle (READ or WRITE), \overline{MEL}/WEL WEL and $\overline{MEU/WEU}$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition. If either $\overline{MEL/WEL}$ or $\overline{MEU/WEU}$ is

MT42C256K16A1 256K x 16 VRAM

.OW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE peration is performed. If either $\overline{MEL}/\overline{WEL}$ or $\overline{MEU}/\overline{VEU}$ goes LOW after \overline{CAS} go LOW, a DRAM LATE WRITE peration is performed (refer to the AC timing diagrams). The BYTE WRITE signals $\overline{MEU}/\overline{WEU}$ and $\overline{MEL}/\overline{VEL}$ are used together to perform a write mask enable and eparately for data write enable. For write maske enables, he \overline{WE} function is determined by the first BYTE WRITE ignal to transition LOW and the last to transition HIGH. Jsing one for data writes performs a BYTE WRITE; using oth performs a WORD WRITE.

The VRAM can perform all the normal DRAM cycles ncluding READ, EARLY-WRITE, LATE-WRITE, READ-VODIFY-WRITE, FAST-PAGE-MODE READ (with Exended Data Out), FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE- MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

EXTENDED DATA OUTPUT

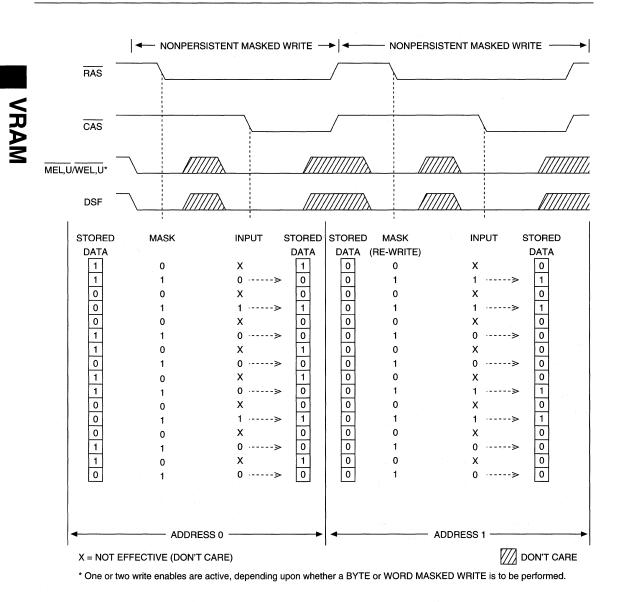
DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . The MT42C256K16A1 offers an accelerated FAST PAGE MODE FPM) cycle by eliminating output disable from \overline{CAS} HIGH. This option is called Extended Data Out, and it allows \overline{CAS} precharge time (^tCP) to occur without the output data going invalid (see DRAM READ and DRAM FAST-PAGE-MODE READ waveforms).

Extended Data Out operates as any DRAM READ or FPM READ, except data will be held valid after CAS goes HIGH, as long as (TR)/OE and RAS are LOW. If the DQ outputs from multiple banks are wired together, (TR)/OE must be used in conjunction with CAS to select and deselect the appropriate banks. During non-PAGE-MODE READ cycles, the outputs are disabled at 'OFF time after RAS and CAS are HIGH. The 'OFF time is referenced from the rising edge of RAS or CAS, whichever occurs later.

MASKED WRITE (RWM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing individual

bits within the 16-bit word. The MT42C256K16A1 supports two types of MASKED WRITE cycles, nonpersistent MASKED WRITE and persistent MASKED WRITE. When DSF and either $\overline{\text{MEL}}/\overline{\text{WEL}}$ or $\overline{\text{MEU}}/\overline{\text{WEU}}$ are LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE is performed.

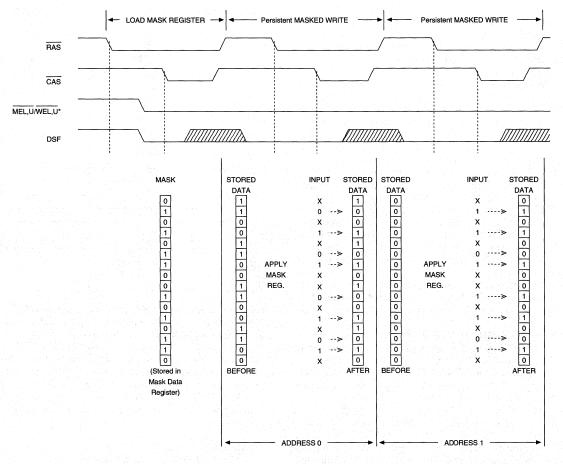

The MT42C256K16A1 initializes in the nonpersistent mode. In this mode, mask data must be entered with every RAS falling edge. The data (mask data) present on the DQ1-DQ16 inputs will be written into the mask data register (see Figure 1). The mask data acts as an individual write enable for each of the sixteen DQ1-DQ16 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that CAS is still HIGH. When CAS goes LOW, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle.

The selection of persistent or nonpersistent MASKED WRITE is done by performing a LOAD MASK REGISTER (LMR) cycle (see LMR description). If an LMR is done, all ensuing MASKED WRITEs are persistent and the mask data will be provided by the Mask Data Register (see Figure 2). The mask data is applied in the same manner as in nonpersistent mode.

To reset the device back to the nonpersistent mode, a CBR, Reset All Options (CBRR) cycle must be performed. This cycle is defined as a CBR with DSF LOW when RAS falls, $\overline{\text{MEL,U}/\text{WEL,U}}$ are "don't care." To preserve the persistent mode of MASKED WRITE, while using CBR REFRESH, a CBRN cycle is used. This cycle will perform a refresh of the internally addressed row of DRAM but will not reset the MASKED WRITE mode.

FAST-PAGE-MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

MT42C256K16A1 256K x 16 VRAM


Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE

MICRON

VRAM

MT42C256K16A1 256K x 16 VRAM

X = NOT EFFECTIVE (DON'T CARE)

* One or two write enables are active, depending upon whether a BYTE or WORD MASKED WRITE is to be performed.

Figure 2
PERSISTENT MASKED WRITE EXAMPLE

DON'T CARE

BLOCK WRITE (BW)

If DSF is HIGH when CAS goes LOW, the MT42C256K16A1 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to eight adjacent column locations (see Figure 3). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However when CAS goes LOW, only the A3-A8 inputs are used. A3-A8 specify the "block" of eight adjacent column locations that will be accessed. The DQ inputs are then used to determine what combination of the eight column locations will be changed. Two separate 8-bit column masks are provided on the DQ inputs, one for the lower byte portion (DQ1-8) of the block, and one for the upper byte portion (DQ9-16). The DQ inputs are "written" at the falling edge of CAS or MEL, U/WEL, U, whichever occurs later (see the

WRITE cycle wavef, by Wilchever occurs later (see the WRITE cycle wavef, by the DQ inputs is used to selectively enable or disable individual column/byte locations within the block. The write enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

The contents of the color register will then be written to the enabled column/byte locations; each DQ location of the color register is written to the corresponding DQ bit plane.

MASKED BLOCK WRITE (BWM)

The MASKED WRITE functions may also be used during BLOCK WRITE cycles. MASKED BLOCK WRITE operates exactly like the normal MASKED WRITE except the mask is now applied to the 16 bit-planes of eight column locations instead of just one column location.

The combination of DSF and either $\overline{\text{MEL}}/\overline{\text{WEL}}$ or $\overline{\text{MEU}}/\overline{\text{WEU}}$ LOW when $\overline{\text{RAS}}$ goes LOW initiates a MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. By using both the column mask input and the MASKED WRITE function of BW, any combination of the sixteen bit planes may be masked, along with any combination of the eight column locations for each byte portion of the block.

The MASKED BLOCK WRITE will be nonpersistent (new mask) at device power-up. To enter persistent mode (old mask) a LOAD MASK REGISTER cycle is performed. All MASKED BLOCK WRITEs will be persistent after the LMR. To reset to nonpersistent mode, a CBRR (reset all) cycle must be performed.

MASKED FLASH WRITE (FWM)

The MASKED FLASH WRITE cycle is similar to the MASKED BLOCK WRITE cycle in that it uses the color register to accelerate the writing of a select color to the DRAM memory array. Instead of writing to eight adjacent

		COLUMN ADDRESS ONTROLLE		DQ PLANES
DQ INPUTS	A2	A1	AO	CONTROLLED
DQ1	0	0	. 0	1-8
DQ2	0	0	1	1-8
DQ3	0	1	0	1-8
DQ4	0	1	1	1-8
DQ5	1	0	0	1-8
DQ6	1	0	1	1-8
DQ7	1	1	0	1-8
DQ8	1	1	1	1-8
DQ9	0	0	0	9-16
DQ10	0	0	1	9-16
DQ11	0	1	0	9-16
DQ12	0	1	1	9-16
DQ13	1	0	0	9-16
DQ14	1	0	1	9-16
DQ15	1	1	0	9-16
DQ16	1	1	1	9-16

Table 1

DQ Masking of Columns (at CAS falling)

column locations in one DRAM cycle (BLOCK WRITE), FWM writes the contents of the color register to all column locations on an addressed row in one cycle.

The FWM cycle is selected by taking $\overline{\text{TR}}/(\overline{\text{OE}})$ and DSF HIGH and either $\overline{\text{MEL}}/\overline{\text{WEL}}$ or $\overline{\text{MEU}}/\overline{\text{WEU}}$ LOW at the falling edge of $\overline{\text{RAS}}$. DSF is "don't care" at the falling edge of $\overline{\text{CAS}}$. The DQ plane mask applies as it does for all MASKED WRITE cycles; if the mask register has been loaded, the mask is persistent; if it has not, the mask is nonpersistent.

LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation loads the data present on the DQ pins into the 16-bit mask data register at the falling edge of CAS or ($\overline{\text{MEL}}$, $\overline{\text{U}}$)/ $\overline{\text{WEL}}$, $\overline{\text{U}}$. As shown in the Truth Table, the combination of $\overline{\text{TR}}$ /($\overline{\text{OE}}$), $\overline{\text{MEL}}$ / $\overline{\text{WEU}}$, $\overline{\text{MEU}}$ / $\overline{\text{WEU}}$ and DSF being HIGH when RAS goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when CAS goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle.

Note: LOAD MASK REGISTER cycles also enable the persistent MASKED WRITE mode. All ensuing MASKED WRITEs (including MASKED WRITE and MASKED SPLIT WRITE TRANSFER) will be masked with data from the mask register. A CBRR is required to reset back to nonpersistent mode.

MT42C256K16A1 256K x 16 VRAM

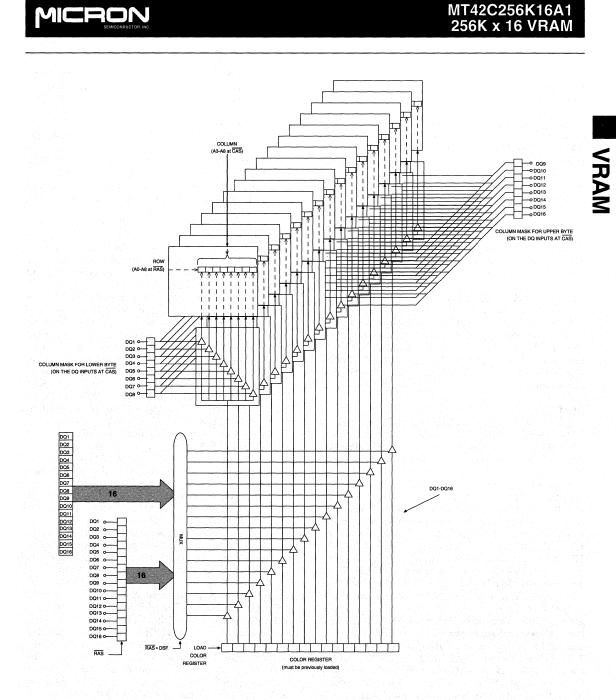


Figure 3 **BLOCK WRITE EXAMPLE**

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

During persistent operation, the mask data register contents are used for MASKED WRITE, MASKED BLOCK WRITE, MASKED FLASH WRITE, MASKED WRITE TRANSFER and SPLIT WRITE TRANSFER cycles to selectively enable writes to the sixteen DQ planes.

LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when CAS goes LOW. The contents of the 16-bit color register are retained until changed by another LOAD COLOR REGIS-TER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE and FLASH WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\text{TR}}/(\overline{\text{OE}})$ is LOW at the falling edge of $\overline{\text{RAS}}$. The state of $(\overline{\text{MEL}},\overline{\text{U}})/\overline{\text{WEL}},\overline{\text{U}}$ when $\overline{\text{RAS}}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER and SPLIT TRANS-FER cycles. Each of the TRANSFER cycles is described in this section.

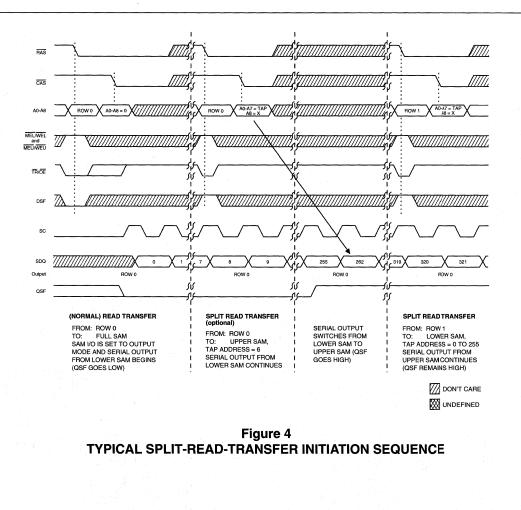
READ TRANSFER (RT)

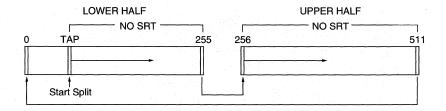
If MEL/WEL and MEU/WEU are HIGH and DSF is LOW when RAS goes LOW, a READ TRANSFER cycle is selected. The row-address bits indicate which sixteen 512bit DRAM row planes are transferred to the sixteen SAM data register planes. The column-address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC (REAL-TIME READ TRANS-FER), $\overline{\text{TR}}/(\overline{\text{OE}})$ is taken HIGH after $\overline{\text{CAS}}$ goes LOW. The TRANSFER will be made when TR/(OE) goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before \overline{CAS} goes LOW and the actual data TRANSFER will be timed internally (refer to

the AC Timing Diagrams). During the TRANSFER, 8,192 bits of DRAM data are written into the SAM data registers and the Tap address is stored in an internal 9-bit register. The split SAM status pin (QSF) will be LOW if the Tap is in the lower half (addresses 0 through 255), and HIGH if it is in the upper half (256 through 511). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-toHIGH transition, regardless of the state of \overline{SE} . Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

SPLIT READ TRANSFER

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER has to occur between the last clock of "old" data and first clock of the "new" data of the SAM port.


When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and is not synchronized with the serial clock.


The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the falling edge of $\overline{\text{CAS}}$ or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles. An SRT does not change the direction of the SAM I/O port.

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin (the state of QSF), and to set SAM I/O direction. Then an SRT may be initiated by taking DSF HIGH when RASgoes LOW during the TRANS-FER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated in such a manner that the SPLIT TRANSFER will automatically be to the SAM half not being accessed.

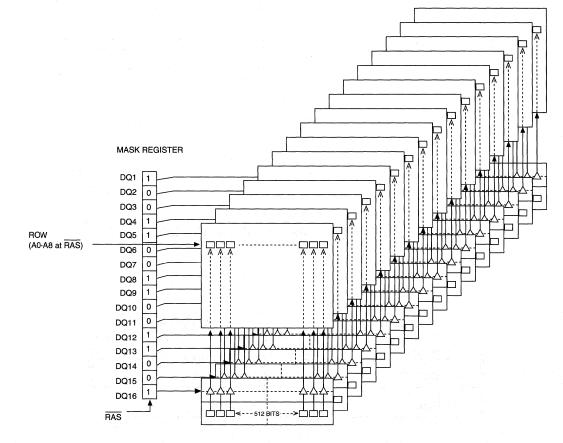
Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 ("A8"= 0, A0-A7=1), the QSF output goes HIGH; if an SRT was done for the upper half, the new Tap address is loaded for the next half ("A8" = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM (QSF has gone HIGH), new data may be transferred to the lower SAM. For example, the next step in Figure 4 would be to wait until QSF went LOW (indicating that row-1 data is shifting out of the lower SAM) and execute an SRT of the upper half of row 1 to the upper SAM. If the half boundary is reached before an SRT is done for the next half, the device will leave split mode and the access will start from address 256 if going to the upper half or at 0 if going to the lower half (see Figure 5).

MT42C256K16A1 256K x 16 VRAM

Figure 5 SPLIT SAM TRANSFER

MICRON

MICRON


MT42C256K16A1 256K x 16 VRAM

The stop address of the SAM half (the point at which access will change to the next half) is programmable on the MT42C256K16A1. This function is described in the PRO-GRAMMABLE SPLIT SAM section of the Functional Description.

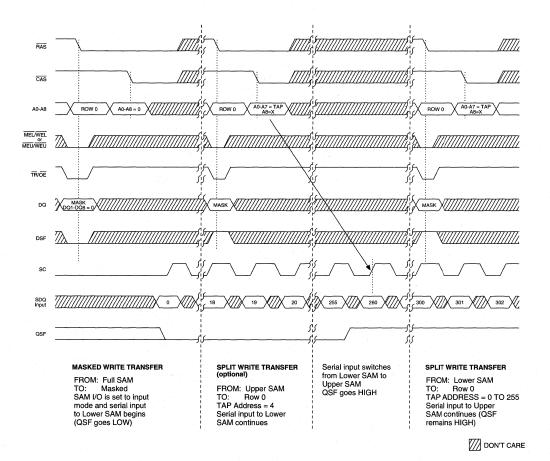
MASKED WRITE TRANSFER (MWT)

The operation of the MASKED WRITE TRANSFER (MWT) is identical to that of the READ TRANSFER described previously except either $\overline{\text{MEL}}/\overline{\text{WEL}}$ or $\overline{\text{MEU}}/\overline{\text{WEU}}$ is LOW and a DQ plane mask is applied when RAS goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap)

indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A DQ mask must be applied to all MWTs as shown in Figure 6. This may be done using persistent or nonpersistent modes. When using persistent mode, the mask will be supplied by the mask register. When in nonpersistent mode, the DQ pins are used to input a bit plane mask at the falling edge of RAS. An MWT changes the direction of the SAM I/O buffers to the input mode. To change the SAM I/O buffers to input mode without SAM data being transferred to the DRAM, a mask of all 0's must be presented on the DQ pins when RAS falls. QSF is LOW if serial input is to the lower half of the SAM, and HIGH if it is to the upper half.

		Figure	6	
DQ	MASKE	D WRIT	E TRAN	SFER

D


MASKED SPLIT WRITE TRANSFER (MSWT)

The MASKED SPLIT WRITE TRANSFER (MSWT) cycle allows serial input data to be transferred to the DRAM without interrupting the serial clock. Operation of the SWT cycle is very similar to the SPLIT READ TRANSFER cycle. It will transfer the idle half of the SAM to the DRAM and set the Tap address to where the new serial data will be loaded in that half. Selection of the MSWT cycle is the same as that of the MASKED WRITE TRANSFER with the exception of the state of DSF. When DSF is HIGH at the falling edge of RAS, an MSWT will occur. The initiation sequence for MSWT is shown in Figure 7. An MSWT will not change the direction of the SAM I/O buffers.

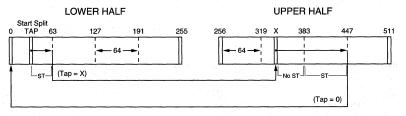
PROGRAMMABLE SPLIT SAM

Programmable split SAM operation is an extension of the split SAM mode. This mode optimizes SAM performance by allowing user-programmable stop points to be defined in the split SAM. The stop points define a SAM location at which the access will change from one half of the SAM to the other half (at the loaded Tap address). The locations of the stop points are programmable in power-of-two increments. The stop points and size of the resulting partitions are shown in Figure 8, along with an example.

The stop points are set by performing a CBR (Reset Stop Addrs) cycle (CBRS). A CBRS cycle is a CBR with either $\overline{\text{MEL}/\text{WEL}}$ or $\overline{\text{MEU}/\text{WEU}}$ LOW and DSF HIGH at the

Figure 7 TYPICAL SPLIT-WRITE-TRANSFER INITIATION SEQUENCE

RAS HIGH-to-LOW transition. This is a special CBR refresh cycle that, in addition to refreshing the DRAM, will sample the address pins (A4-A8) and set the stop point partition to the addressed value (See Figure 8). The programmable stop points will not become valid until a SPLIT TRANSFER (READor WRITE) is done, following the CBRS. Both halves of the SAM will be programmed simultaneously to the same partition lengths and stop points.


Access will progress from the Tap address to the end of the programmable partition into which the Tap fell. When the end of the "addressed" partition is reached, the access will jump to the Tap address of the next half, provided that a SPLITTRANSFER (READ or WRITE) was done before the partition boundary was reached. If a SPLITTRANSFER (ST) is not done prior to the terminal count of the partition, the partition is not recognized and the address count will continue in the same half (this is shown Figure 8 at stop address 383). The count will continue in the same half until a SPLIT TRANSFER (READ or WRITE) occurs or the SAM half boundary is reached. In Figure 8, an ST occurs some time between addresses 383 and 447 and the boundary is recognized at 447. The programmable stop points may be reprogrammed at any time by performing another CBRS cycle, the new stop points will not be valid until an ST is performed.

Disabling the programmable split SAM requires a CBRR. This is a CBR cycle with DSF LOW at the RAS HIGH-to-LOW transition. The CBRR will take effect immediately; it does not require an ST to become active valid.

Number Stop	A	dres	s @ A	ASLO	W	Number and Size
Points/Half	A8	A7	A6	A5	A 4	of Partition(s)
1 (Default)	Х	1	1	1	1	1 x 256
2	Х	0	1	1	1	2 x 128
4	Х	0	0	1	1	4 x 64
8	X	0	0	0	1	8 x 32
16	X	0	0	0	0	16 x 16

A0-A3 = "don't care"

EXAMPLE (4 stop points)

Programmed Partition (A4-A8) = 000111111 MSB....LSB

Figure 8 PROGRAMMABLE SPLIT SAM OPERATION

MT42C256K16A1 256K x 16 VRAM

SERIAL INPUT AND SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SPLIT READ TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 16-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half, for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated in Figure 5. Address count will wrap around (after count 511) to Tap address 0 if in the "full" SAM modes.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the SAM address counter (loaded when the serial input mode was enabled) will determine the serial address of the first 16-bit word written. \overline{SE} acts as a write enable for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

POWER-UP AND INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight \overrightarrow{RAS} cycles must be executed to initialize the dynamic memory array. Micron recommends that $\overrightarrow{RAS} = (\overrightarrow{TR})/\overrightarrow{OE} \ge V_{IH}$ during power-up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data, and the nonpersistent MASKED WRITE mode is enabled.

The SAM portion of the MT42C256K16A1 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (MASKED WRITE TRANSFER) and the I/O pins (SDQs) will be High- Z, regardless of the state of SE. QSF initializes in the LOW state. The mask and color register will contain random data after power-up.

TRUTH TABLE

MICRON

			RAS FAI	LING EDG	E	CAS FALL	A0-	A81	DQ1-	DQ8 ²	REGIS	STERS
CODE	FUNCTION	CAS	TR/OE	ME/WE ⁸	DSF	DSF	RAS	CAS	RAS	CAS ³	MASK	COLOR
	DRAM OPERATIONS		1									
CBRR	CBR REFRESH (RESET ALL OPTIONS)	0	X	X	0	·	х	X	_	X	x	X
CBRS	CBR REFRESH (RESET STOP ADDRESS)	0	x	0	1	-	STOP7	x	-	X	x	X
CBRN	CBR REFRESH (NO RESET)	0	X	1	1	-	х	X	· ·	х	x	x
ROR	RAS ONLY REFRESH	1 .	1	X	X	$\rightarrow c^{*}$	ROW		X	· - · ·	x	x
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	×	VALID DATA	x	x
RWM	MASKED WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	0	ROW	COLUMN	WRITE MASK ⁴	VALID DATA	USE ⁴	x
BW	BLOCK WRITE TO DRAM	. 1	1	1	0	1	ROW	COLUMN (A3-A8)	x	COLUMN MASK	x	USE
BWM	MASKED BLOCK WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	0	1	ROW	COLUMN (A3-A8)	WRITE MASK ⁴	COLUMN MASK	USE ⁴	USE
FWM	MASKED FLASH WRITE TO DRAM (OLD OR NEW MASK)	1	1	0	· 1	X	ROW	X	WRITE MASK ⁴	X	USE ⁴	USE
	REGISTER OPERATIONS			2 - C								
LMR	LOAD MASK REGISTER	1	1	1	1	0	ROW ⁵	x	x	REG DATA	LOAD	x
LCR	LOAD COLOR REGISTER	1	1	1	1	1	ROW ⁵	×	x	REG DATA	×	LOAD
	TRANSFER OPERATIONS											
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	ROW	TAP ⁶	x	x	X	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	X	ROW	TAP ⁶	X	x	X	X
MWT	MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER) (NEW OR OLD MASK)	1	0	0	0	x	ROW	TAP ⁶	WRITE MASK ⁴	x	USE ⁴	x
MSWT	MASKED SPLIT WRITE TRANSFER (SAM-TO-DRAM TRANSFER, NEW OR OLD MASK)	1	0	0	1	×	ROW	TAP ⁶	WRITE MASK ⁴	X	USE ⁴	×

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.

2. These columns show what must be present on the DQ1-DQ16 inputs when RAS falls and when CAS falls.

3. During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or MEL,U/WEL,U, whichever is later. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or TR/OE, whichever is later.

- 4. After an LMR cycle, all masked WRITEs use the mask register (old mask). Data on the DQs at RAS falling edge will be ignored. A CBRR will reset to new mask state and mask data must be presented on the DQs at every RAS falling edge.
- 5. The ROW that is addressed will be refreshed, but a ROW address is not required.
- 6. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half or Programmable Stop Address boundary).
- 7. Defines the column addresses where access moves to the next half, see Programmable Split SAM functional description.
- 8. ME/WE = 1 if both MEL/WEL and MEU/WEU are HIGH at the falling edge of RAS. ME/WE = 0 if either or both of those signals is LOW at that time.

MICRON

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)
Power Dissipation1.3W
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$	IL.	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	-
Output Low Voltage (lout = -2.5mA)	Vol		0.4	v	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		5	pF	2
Input Capacitance: RAS, CAS, MEL,U/WEL,U, TR/OE, SC, SE, DSF	Ci2		8	pF	2
Input/Output Capacitance: DQ, SDQ	Ci/o		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

VRAM

MT42C256K16A1 256K x 16 VRAM

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C < T_{A} < 70^{\circ}C; Vcc = 5V \pm 10\%)$

(0°C ≤ T _A ≤ 70°C; Vcc = 5V ±10%)	-		MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc1	180	170	160	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC [MIN])	ICC2	130	120	110	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after eight RAS cycles [MIN])	Іссз	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	ICC4	180	170	160	mA	3, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC5	180	170	160	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	180	170	160	mA	3

CURRENT DRAIN, SAM ACTIVE (^tSC = MIN)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$			MAX]	
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	ICC7	220	210	195	mA	3, 4, 25
OPERATING CURRENT: FAST-PAGE-MODE (RAS = Vi∟; CAS = Cycling: ¹ PC = ¹ PC [MIN])	ICC8	170	160	145	mA	3, 4, 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮ after eight RAS cycles [MIN])	Icc9	50	50	45	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	Icc10	220	210	195	mA	3, 4, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	ICC11	220	210	195	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	220	210	195	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS			-6*		-7		-8		
PARAMETER	SYM	MIN	MAX	MiN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150	4.5	ns	
READ-MODIFY-WRITE cycle time	^t RWC	150		175		195		ns	
FAST-PAGE-MODE READ or EARLY WRITE	^t PC	24		27		30		ns	
cycle time (Extended Data-Out (READ))			1.19					1997 - M	
FAST-PAGE-MODE LATE WRITE, MASKED	^t PC	30		35		40		ns	1
WRITE or BLOCK WRITE cycle time.							de la compañía	1.11	
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	85		90		100		ns	
cycle time			- 40 a 1						$e_{1} = e_{1}^{2}$
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		18	i dh	20	ns	11,15
Access time from (TR)/OE	^t OE		15		20		20	ns	1.0
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	15		18		20		ns	
RAS precharge time	tRP	40		50		60		ns	1
CAS pulse width (FAST-PAGE-MODE,	^t CAS	10	100,000	10	100,000	12	100,000	ns	
READ or EARLY WRITE cycles only)		ta de la composición de la composición Composición de la composición de la comp	gang dire.						
CAS pulse width (All other cycles)	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CP	10	Sec. 1	10		10	1.1.1.1	ns	16
RAS to CAS delay time	^t RCD	20	45	20	52	20	60	ns	17
CAS to RAS precharge time	^t CRP	5	$f_{i}^{(1)} \in [g_{i}^{(1)}]$	5		5		ns	
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997
RAS to column-address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	12		12		15		ns	
Column-address hold time (referenced to RAS)	^t AR	45		55		60		ns	$g^{(1)}(k) f$
Column-address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	^t RCS	0	1.100.00	0		0	n (gaag) i	ns	
Read command hold time (referenced to CAS)	^t RCH	0	1.199	0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	3		3		3		ns	
CAS HIGH to RAS HIGH lead time	^t CRL	0		0		0		ns	
RAS HIGH to CAS HIGH lead time	^t RCL	0		0		0		ns	

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS		-6*		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay from CAS or RAS	tOFF	3	20	3	20	3	20	ns	20, 23
Output disable delay from (TR)/OE	tod	3	15	3	15	3	15	ns	20, 23
Output enable delay from (TR)/OE	^t OELZ	3		3		3		ns	
(TR)/OE HIGH hold time from CAS HIGH	^t OEHC	10		10		10		ns	
(TR)/OE HIGH pulse width	^t OEP	10		10		10		ns	
Output disable delay from (ME)/WE	tWHZ	3	10	3	10	3	10	ns	
Output disable hold time from start of WRITE	^t OEH	10		10		10		ns	27
Output Enable to RAS delay	tORD	0		0		0		ns	
Data output hold after CAS LOW	^t COH	5		5		5		ns	11
Write command setup time	^t WCS	0		0		0		ns	21
Write command hold time	tWCH	12		15		15		ns	
Write command hold time	tWCR	45		55		60		ns	
(referenced to RAS)									
Write command pulse width	tWP	12		12		15		ns	
Write command to RAS lead time	^t RWL	18		18		20		ns	
Write command to CAS lead time	^t CWL	18		18		20		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	tĎH	12		12		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	85		95		105		ns	21
Column address	^t AWD	55		60		65		ns	21
to WE delay time									15
CAS to WE delay time	^t CWD	40		43		45		ns	21
Transition time (rise or fall)	tT		35		35		35	ns	9, 10
Refresh period (512 cycles)	^t REF		16.7		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time	^t CSR	10		10		10		ns	5
(CBR REFRESH)								1.1	
CAS hold time	^t CHR	10		10		10		ns	5
(CBR REFRESH)								-	
ME/WE to RAS setup time	tWSR	0		0		0		ns	
ME/WE to RAS hold time	tRWH	15		15		15	1	ns	
Mask data to RAS setup time	tMS	0		0		0		ns	
Mask data to RAS hold time	^t MH	15		15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS PARAMETER		-6*		-7		-8			1 days
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	[†] TLS	0		0		0		ns	
TR/(OE) LOW to RAS hold time	[†] TLH	15	10,000	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	60	10,000	70	10,000	80	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	tCTH	15		20		20		ns	
TR/(OE) HIGH to RAS precharge time	^t TRP	50		50		50		ns	
TR/(OE) precharge time	^t TRW	15		20		25		ns	
TR/(OE) LOW to last SC hold time	^t TSL	5		5		5		ns	28
TR/(OE) HIGH to first SC setup time	^t TSD	50		50		50		ns	28
Serial output buffer turn-off delay from RAS	^t SDZ	7	40	7	40	7	40	ns	
SC to RAS setup time	^t SRS	20		25		30		ns	
Serial data input to SE delay time	tSZE	0		0		0		ns	0.00
Serial data input delay from RAS	tSDD	50		50		50		ns	10.52
Serial data input to RAS delay time	^t SZS	0		0		0		ns	
Serial-input-mode Enable (SE) to RAS setup time	tESR	0		0		0		ns	
Serial-input-mode Enable (SE) to RAS hold time	^t REH	15		15		15		ns	
TR/(OE) HIGH to RAS setup time	tYS	0	1999 - 1999 -	0		0		ns	
TR/(OE) HIGH to RAS hold time	tYH	15		15	a di se di seg	15	e en en en en	ns	12.12
DSF to RAS setup time	tFSR	0		0		0		ns	
DSF to RAS hold time	^t RFH	15		15		15		ns	
SC to QSF delay time	tSQD		20		25		30	ns	
SPLIT TRANSFER setup time	^t STS	20		25		30		ns	
SPLIT TRANSFER hold time	^t STH	10		10		10		ns	
DSF (at CAS LOW) to RAS hold time	^t FHR	45		55		60		ns	
DSF to CAS setup time	^t FSC	0		0		0		ns	
DSF to CAS hold time	^t CFH	15		15		15		ns	
TR/OE to QSF delay time	^t TQD		30		30		30	ns	
RAS to QSF delay time	^t RQD		70		75		75	ns	
CAS to QSF delay time	^t CQD		35		40		45	ns	
RAS to first SC delay	^t RSD	95		105		115		ns	
CAS to first SC delay	^t CSD	50		55		55		ns	

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_A \le + 70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-6*		* -7			-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	18		20		22		ns	
Access time from SC	^t SAC		15		17		20	ns	11,24
SC precharge time (SC LOW time)	tSP	7		8		9		ns	
SC pulse width (SC HIGH time)	^t SAS	7		8		9		ns	
Access time from SE	^t SEA		12		12		15	ns	24
SE precharge time	^t SEP	7		8		9		ns	
Serial data-out hold time after SC high	^t SOH	3		3		3		ns	11,24
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	3	12	ns	20, 24
Serial output buffer turn-on delay from SE	tSOO	3		3		3		ns	
Serial data-in setup time	^t SDS	0		0		0		ns	
Serial data-in hold time	^t SDH	10		10		10		ns	
Serial input (Write) Enable setup time	tSWS	3		3		3		ns	
Serial input (Write) Enable hold time	tSWH	15		15		15		ns	
Serial input (Write) disable setup time	tSWIS	3		3		3		ns	
Serial input (Write) disable hold time	^t SWIH	15		15		15		ns	

MT42C256K16A1

256K x 16 VRAM


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$, f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ($0^{\circ}C \leq T_A \leq 70^{\circ}C$) is assured.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from 0 to 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. ^tSAC/^tCAC are MAX at 70° C and 4.5V Vcc; ^tSOH/ ^tCOH are MIN at 0° C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. This is guaranteed by design (^tSOH/ ^tCOH = ^tSAC/^tCAC - output transition time).
- 12. If $\overline{CAS} = VIL$, DRAM data output (DQ1-DQ16) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gates and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as

a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

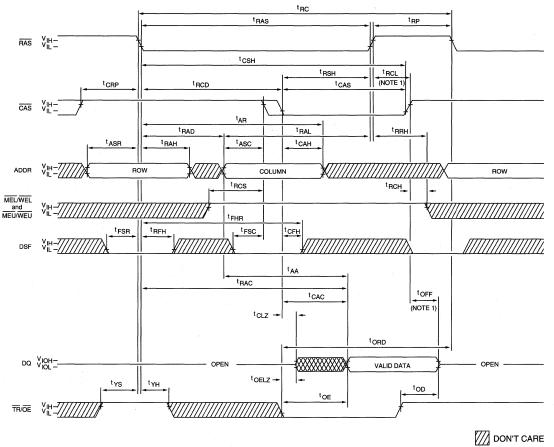
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}}/\overline{\mathrm{OE}}$ must control the output buffers during the WRITE to avoid data contention. If $^{t}RWD \ge ^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until ^tOD is met) is indeterminate, but the WRITE will be valid if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and MEL, U/WEL, U leading edge in LATE-WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE HIGH or when RAS and CAS go HIGH, whichever occurs first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: $V_{OH} = 2.0V$; $V_{OL} = 0.8V$.
- 25. Address (A0-A8) may be changed two times or less while $\overline{RAS} = V_{IL}$.
- 26. Address (A0-A8) may be changed once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS and RAS go HIGH prior to OE going back LOW, the DQs will remain open.
- 28.The "last" SC edge causes the last data from the previous row to appear on the SDQ pins. The "first" SC, the first data from the new row.

MT42C256K16A1 256K x 16 VRAM

DRAM READ CYCLE¹

NOTE: 1. ^tCRL is a reference parameter. If CAS = HIGH ^tCRL before RAS, ^tOFF is referenced from the rising edge of RAS.

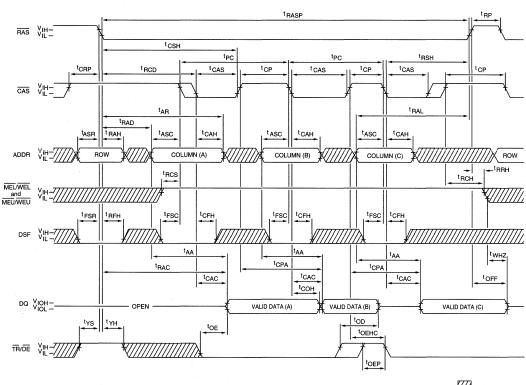
TR/OE


DON'T CARE

VRAM

DRAM READ CYCLE¹

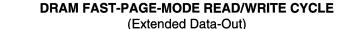
(Outputs controlled by \overline{CAS})

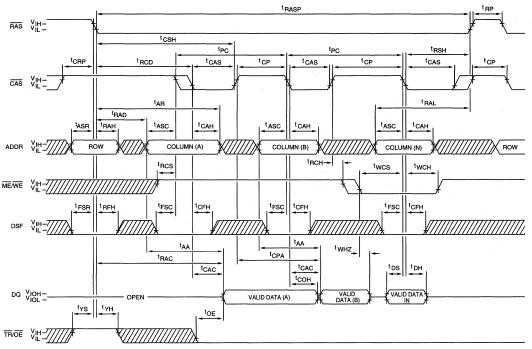


NOTE: 1. ^tRCL is a reference parameter. If RAS = HIGH ^tRCL before CAS, ^tOFF is referenced from the rising edge of CAS.

MICRON

DRAM FAST-PAGE-MODE READ CYCLE (Extended Data-Out)


DON'T CARE


- **NOTE:** 1. WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.
 - 2. If ^tOEHC and ^tOEP are met, the DQs will remain in High-Z (even if TR/OE goes LOW again) until the next CAS cycle.

VRAM

MT42C256K16A1 256K x 16 VRAM

DON'T CARE

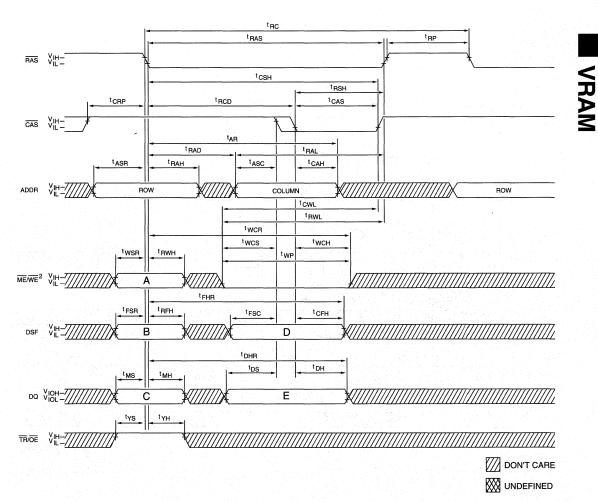
NOTE: MEL/WEL and MEU/WEU are both HIGH for READs; either or both are LOW for WRITEs.

WRITE CYCLE FUNCTION TABLE 1

		LOGIC STATES								
	Ī	RAS Falli	ng Edge	CAS Falling Edge						
FUNCTION	A ME/WE ⁴	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)					
Normal DRAM WRITE	1	0	X	0	DRAM Data					
MASKED WRITE to DRAM	0	0	Write Mask ³	0	DRAM Data (Masked)					
BLOCK WRITE to DRAM (No Bit-Plane Mask)	1	0	X	1	Column Mask					
MASKED BLOCK WRITE to DRAM	0	0	Write Mask ³	1	Column Mask					
MASKED FLASH WRITE to DRAM	0	1	Write Mask ³	Х	Х					
Load Mask Data Register	1	1	Х	0	Write Mask Data					
Load Color Register	1	1	Х	1	Color Data					

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

2. CAS or MEL, U/WEL, U falling edge, whichever occurs last.

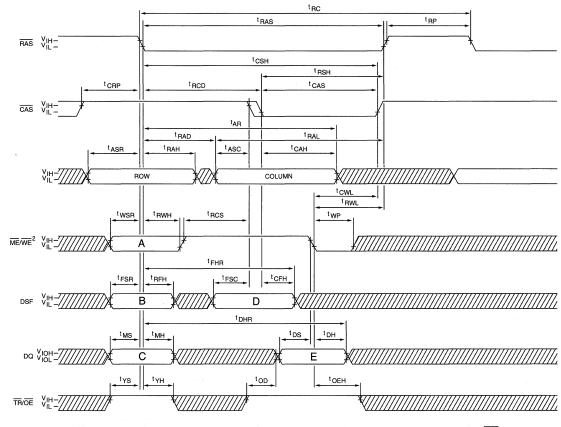

3. Mask data is loaded at RAS falling if nonpersistent mode is active. If persistent mode is active, mask data is supplied by the mask data register and the DQs are "don't care" at the RAS falling edge.

4. ME/WE = 1 if both MEL/WEL and MEU/WEU are HIGH at the falling edge of RAS. ME/WE = 0 if either or both of those signals is LOW at that time.

MT42C256K16A1 256K x 16 VRAM

DRAM EARLY-WRITE CYCLE¹

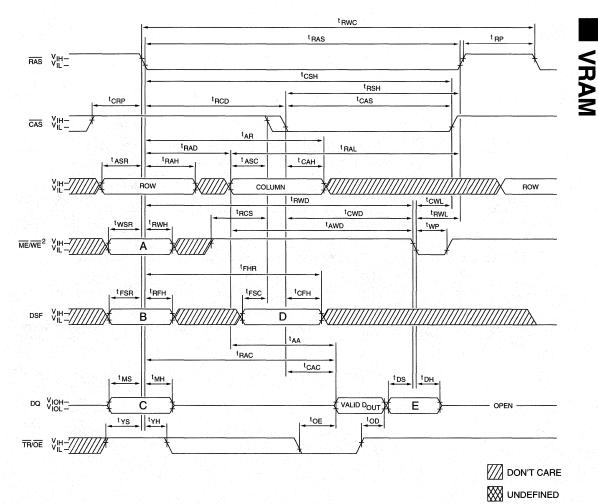
RON



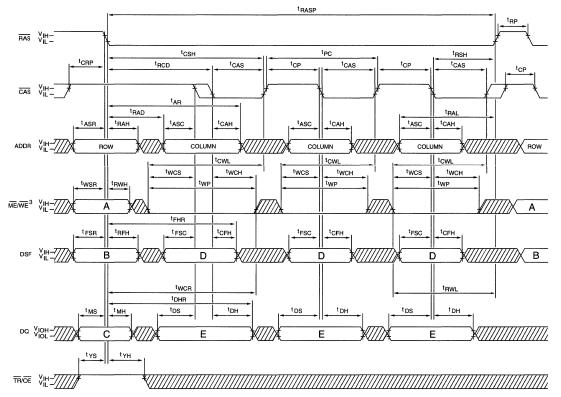
NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

2. Either or both of MEL/WEL and MEU/WEU may be LOW at the CAS falling edge. If one is LOW a BYTE WRITE is performed; if both are LOW a WORD WRITE is performed.

DRAM LATE-WRITE CYCLE


DON'T CARE

- **NOTE:** 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
 - 2. Either or both of MEL/WEL and MEU/WEU may go LOW while CAS is LOW. If one goes LOW, a BYTE WRITE is performed; if both go LOW, a WORD WRITE is performed.

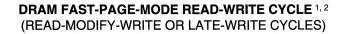

MT42C256K16A1 256K x 16 VRAM

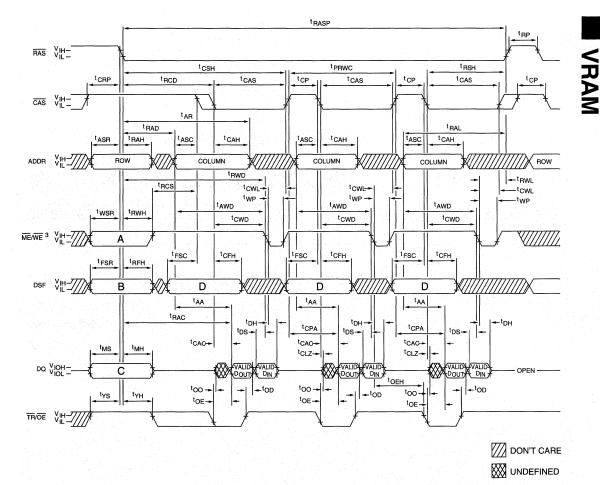
DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

- **NOTE:** 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
 - 2. Either or both of MEL/WEL and MEU/WEU may go LOW while CAS is LOW. If one goes LOW, a BYTE WRITE is performed; if both go LOW, a WORD WRITE is performed.

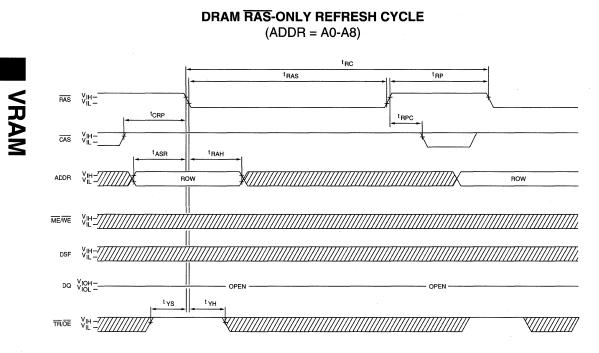
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1, 2

NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.


- 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 3. Either or both of MEL/WEL and MEU/WEU may be LOW at the CAS falling edge. If one is LOW a BYTE WRITE is performed; if both are LOW a WORD WRITE is performed.


MICRON

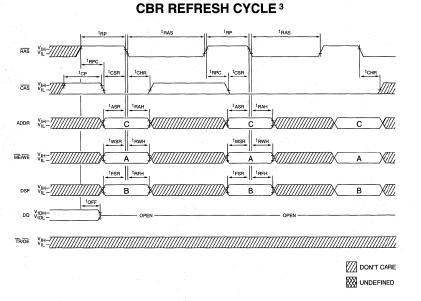
VRAM



NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

- The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 3. Either or both of MEL/WEL and MEU/WEU may be LOW while CAS is LOW. If one goes LOW, a BYTE WRITE is performed; if both go LOW, a WORD WRITE is performed.

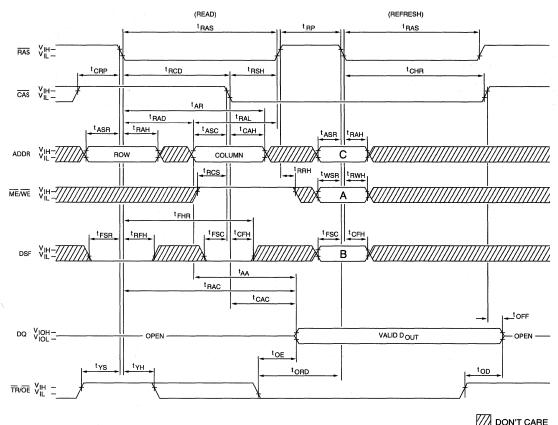
MT42C256K16A1 256K x 16 VRAM



VRAM

CBR CYCLE FUNCTION TABLE

		LOGIC STATES			
		RAS Falling Edge (CAS = LOW)			
FUNCTION	CODE	A ¹ ME/WE	B DSF	С А0-А8	
CBR REFRESH (Reset All Options)	CBRR	X	0	X	
CBR REFRESH (Set/Reset Stop Address)	CBRS	0	1	STOP ADDRESS ²	
CBR REFRESH (No Reset)	CBRN	1	1	X	


- **NOTE:** 1. ME/WE = 1 if both MEL/WEL and MEU/WEU are HIGH at the falling edge of RAS. ME/WE = 0 if either or both of those signals is LOW at that time.
 - 2. Programmable Stop Point column addresses:

Number Stop	Address @ RAS LOW					Number and Size		
Points/Half	A8	A7	A6	A5	A4	of Partition(s)		
1 (Default)	Х	1	1	1	1	1 x 256		
2	Х	0	1	1	1	2 x 128		
4	Х	0	0	1	1	4 x 64		
8	Х	0	0	0	1	8 x 32		
16	X	0	0	0	0	16 x 16		

A0-A3 = "don't care"

3. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

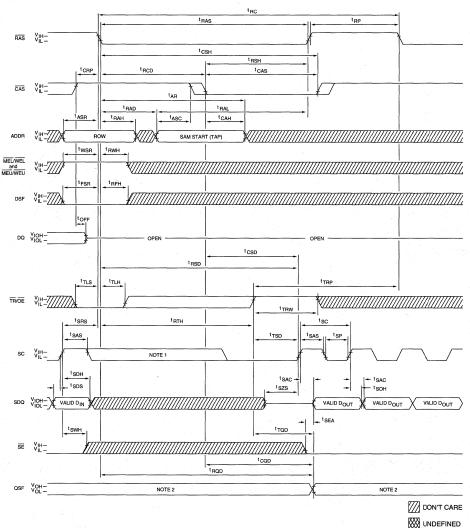
MT42C256K16A1 256K x 16 VRAM

DRAM HIDDEN-REFRESH CYCLE 1, 2

DON'T CARE

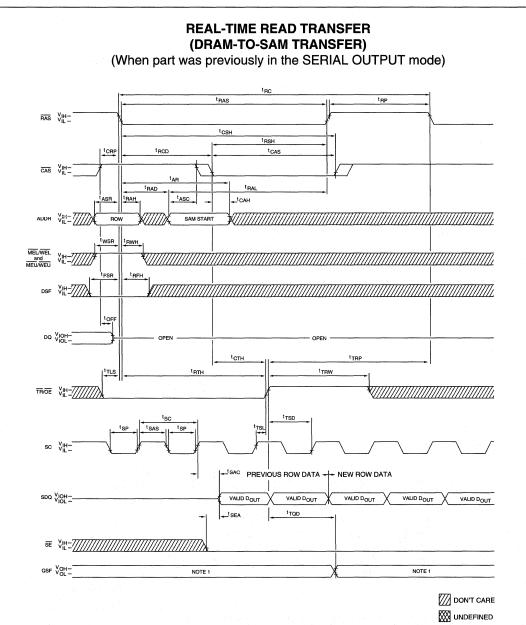
 NOTE: 1. A HIDDEN-REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case, MEL,U/WEL,U = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.
 2. The logic states of "A", "B" and "C" determine the type of CBR operation performed. See the CBR Cycle Function Table for a detailed description.

MICRON


VRAM

VRAM

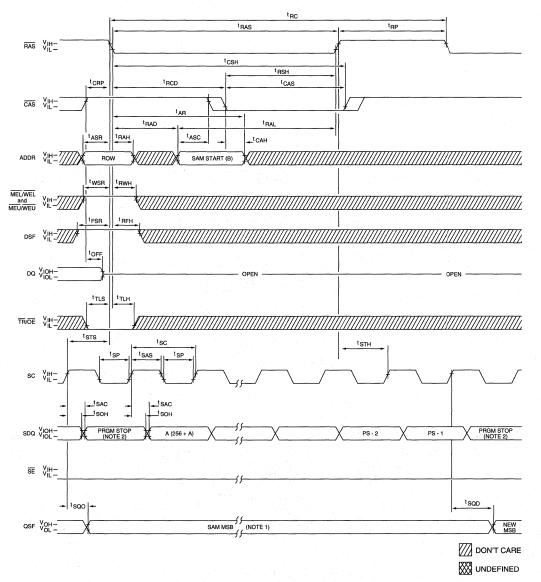
MT42C256K16A1 256K x 16 VRAM


NOTE: 1. There must be no rising edges on the SC input during this time period.

- 2. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.

MT42C256K16A1 256K x 16 VRAM

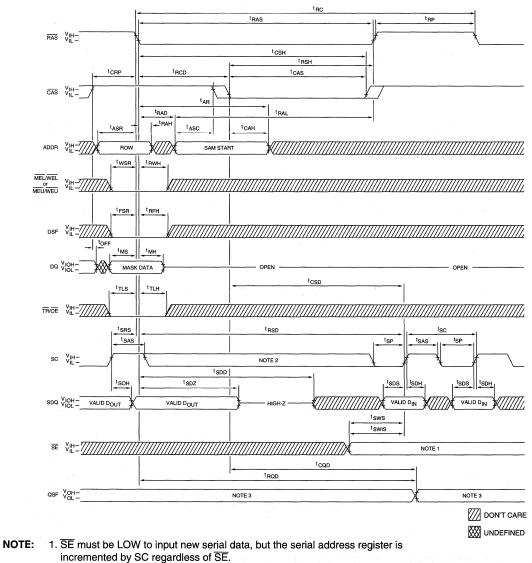
VRAM


NOTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 256–511) is being accessed.

VRAM

MT42C256K16A1 256K x 16 VRAM

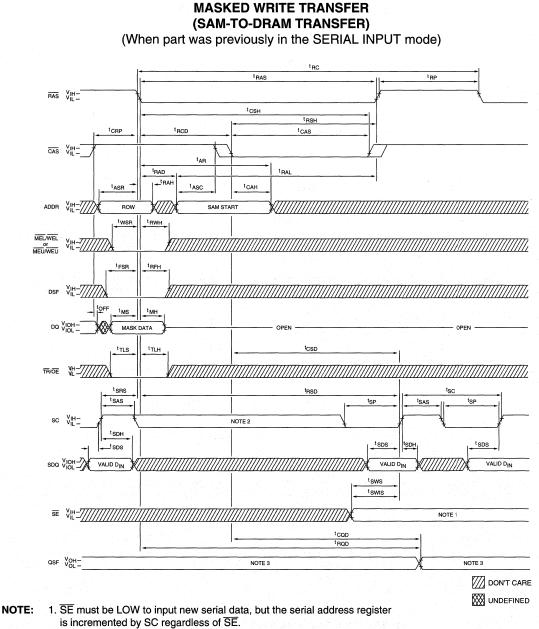
NOTE: 1. QSF = 0 when the lower SAM (bits 0–255) is being accessed.


- QSF = 1 when the upper SAM (bits 256-511) is being accessed.
- 2. Programmable stop address or SAM half boundary (255 or 511). See the programmable split SAM functional description for detail.

MT42C256K16A1 256K x 16 VRAM

VRAM

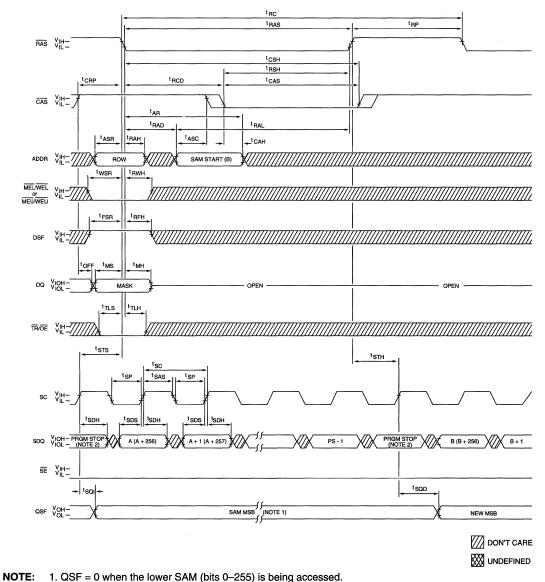
MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)



- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the lower SAM (bits 0–255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256-511) is being accessed.

VRAM

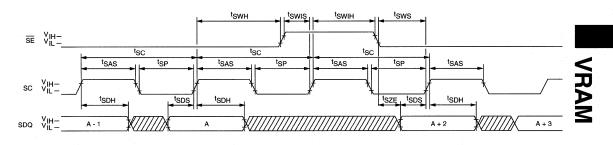
MT42C256K16A1 256K x 16 VRAM


- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 255-511) is being accessed.

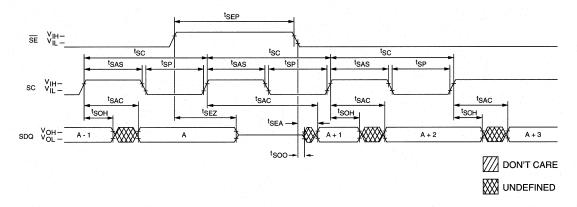
MT42C256K16A1 256K x 16 VRAM

VRAM

MASKED SPLIT WRITE TRANSFER (SAM-TO-DRAM TRANSFER)



- QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- Programmable stop address or SAM half boundary (255 or 511). See the programmable split SAM functional description for detail.



MT42C256K16A1 256K x 16 VRAM

SAM SERIAL INPUT

MT42C256K16C1 256K x 16 VRAM

VRAM

256K x 16 DRAM WITH 512 x 16 SAM

VRAN

NEW

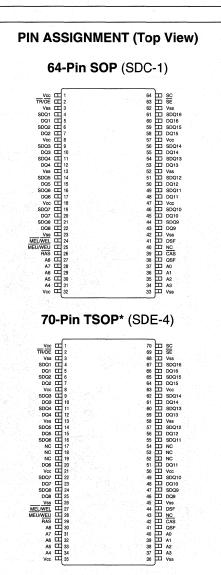
FEATURES

- Industry-standard pinout, timing and functions
- High-performance, CMOS silicon-gate process
- Single +5V ±10% power supply (consult factory regarding 3.3V operation)
- Fully TTL and CMOS compatible inputs and TTL compatible outputs
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh within 16.7ms
- FAST-PAGE-MODE access
- Upper and lower byte WE control
- Dual-port organization: 256K x 16 DRAM port 512 x 16 SAM port
- No refresh required for serial access memory
- Fast access times: 70ns random, 17ns serial
 - 60ns random, 15ns serial*

SPECIAL FUNCTIONS

- JEDEC Basic Feature Set, plus:
- PERSISTENT MASKED WRITE
- EIGHT COLUMN BLOCK WRITE (MASK)
- MASKED FLASH WRITE
- MASKED WRITE TRANSFER/SERIAL INPUT
- MASKED SPLIT WRITE TRANSFER
- PROGRAMMABLE SPLIT SAM

OPTIONS


MARKING

01110110	TTTTTT AC
• Timing (DRAM, SAM [cycle/access])	
60ns, 18/15ns	-6*
70ns, 20/17ns	-7
80ns, 22/20ns	-8
Packages	
Plastic SOP (12 mm)	SG
PLASTIC TSOP (400mil)	TG*

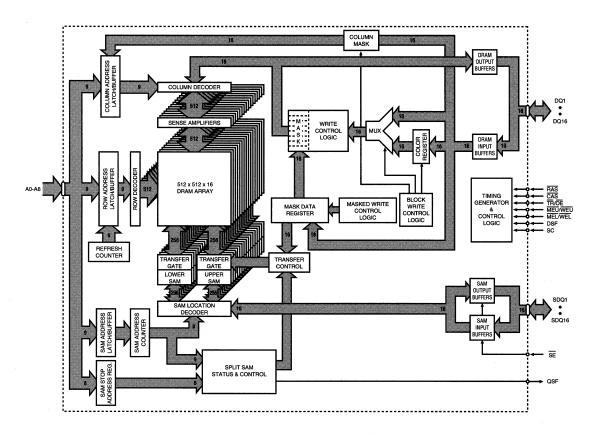
• Part Number Example: MT42C256K16C1SG-7

GENERAL DESCRIPTION

The MT42C256K16C1 is a high-speed, dual-port CMOS dynamic random access memory, or video RAM (VRAM) containing 4,194,304 bits. These bits may be accessed by a 16-bit-wide DRAM port or by a 512 x 16 bit serial access memory (SAM) port. Data may be transferred bidirection-ally between the DRAM and the SAM.

*Consult factory for availability.

MT42C256K16C1 256K x 16 VRAM


The DRAM portion of the VRAM is similar to standard 256K x 16-bit DRAMs, with the addition of BLOCK WRITEand FLASH WRITE. Sixteen 512-bit data registers make up the serial access memory portion of the VRAM. Data1/O and internal data transfer are accomplished using three separate bidirectional data paths: the 16-bit random access I/O port, the 16 internal 512-bit-wide paths between the DRAM and the SAM, and the 16-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

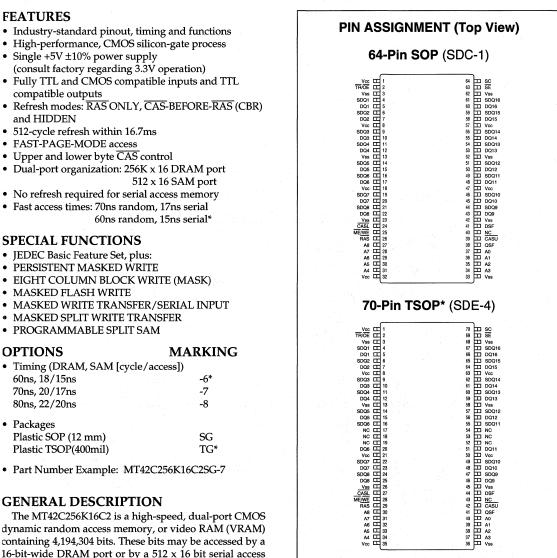
BON

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS}

addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C256K16C1 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial, parallel networking and data communications. Special features such as SPLIT READ TRANSFER, extended data-out and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM



MT42C256K16C2 256K x 16 VRAM

VRAM

256K x 16 DRAM [™] WITH 512 x 16 SAM [™]

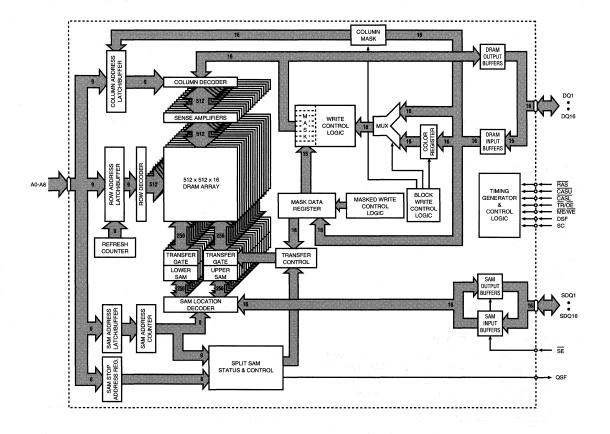
VRAM

memory (SAM) port. Data may be transferred bidirection-

ally between the DRAM and the SAM.

MICHON

MT42C256K16C2 256K x 16 VRAM


NEW VRAM

The DRAM portion of the VRAM is similar to standard 256K x 16-bit DRAMs, with the addition of BLOCK WRITE and FLASH WRITE. Sixteen 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 16-bit random access I/O port, the 16 internal 512-bit-wide paths between the DRAM and the SAM, and the 16-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS}

addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C256K16C2 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial, parallel networking and data communications. Special features such as SPLIT READ TRANSFER, extended data-out and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MICHON EEMCONUCTOR MC

WIDE DRAMS	-
VRAMS ************************************	2
TRIPLE-PORT DRAMS	က
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	ιņ
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	Ν
SALES INFORMATION	8

Memory	Access Part Acces		Access	Power Di	Package/Number of Pins					
Configuration	Cycle	Number	Time (ns)	Standby	Active	SOJ	SOG	TSOP	PLCC	Page
256K x 4	FP, BW, QSF pin	MT43C4257	80, 100	15mW	500mW	40		40/44	-	3-1
256K x 4	FP, BW, SSF pin	MT43C4258	80, 100	15mW	500mW	40	-	40/44	-	3-1
256K x 4	FP, BW, QSF pin	MT43C4257A	70, 80	15mW	500mW	40	. - 44	40/44	.	3-3
256K x 4	FP, BW, SSF pin	MT43C4258A	70, 80	15mW	500mW	40		40/44	-	3-3
128K x 8	FP, BW, QSF pin	MT43C8128	80, 100	15mW	550mW	-	-	-	52	3-49
128K x 8	FP, BW, SSF pin	MT43C8129	80, 100	15mW	550mW	-		-	52	3-49
128K x 8	FP, BW, QSF pin	MT43C8128A	70, 80	15mW	550mW	-	-	· · ·	52	3-51
128K x 8	FP, BW, SSF pin	MT43C8129A	70, 80	15mW	550mW	-	-	-	52	3-51
256K x 8	FP, BW	MT43C256K8A1	60, 70, 80	15mW	400mW	-	64	-	-	3-97

TRIPLE-PORT DRAM SELECTION GUIDE

FP = FAST-PAGE-MODE, BW = BLOCK WRITE

(SUPERSEDED BY MT43C4257A/8A)

MT43C4257/8 256K x 4 TRIPLE-PORT DRAM

TRIPLE-PORT DRAM

FEATURES

- Three asynchronous, independent, data-access ports
- Fast access times: 80ns random, 25ns serial
- Operation and control compatible with 1 Meg VRAM
- High-performance, CMOS silicon-gate process
- Inputs and outputs are fully TTL compatible
- Low power: 15mW standby; 500mW active, typical
- 512-cycle refresh within 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST-PAGE-MODE access cycles
- Two bidirectional serial access memories (SAMs)
- Fully static SAM and Mask Register, no refresh required
- 2,048-bit Bit Mask Register
- SERIAL MASK DATA INPUT mode

SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE
- BIT MASKED TRANSFERs

OPTIONS

MARKING

 Timing (DRAM, SAMs [cycle/accord) 	ess])
80ns, 28ns/25ns	- 8
100ns, 30ns/27ns	-10
Packages	
Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TG
• Functionality	
QSF output	MT43C4257
(indicates SAM-half accessed)	
SSF input	MT43C4258
(Split SAM special function, stop o	count)

• Part Number Example: MT43C4257DJ-8

GENERAL DESCRIPTION

The MT43C4257/8 are high-speed, triple-port CMOS dynamic random access memories (TPDRAMs) containing 1,048,576 bits. Data may be accessed by a 4-bit-wide DRAM port or by either of two independently clocked 512 x 4-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and either SAM.

256K x 4 DRAM WITH DUAL 512 x 4 SAMS

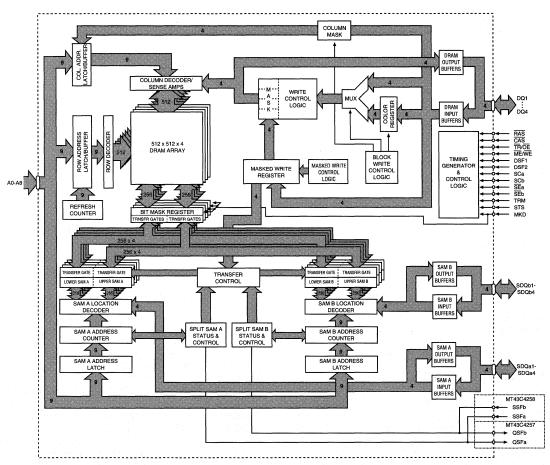
The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4 DRAM). Eight 512-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 4-bit random access I/O port, the pair of internal 2,048-bit-

(SUPERSEDED BY MT43C4257A/8A)

MICRON

MT43C4257/8 256K x 4 TRIPLE-PORT DRAM

wide paths between the DRAM and the SAMs, and the pair of 4-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing and address decoding logic.


All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2,048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 512 x 4-bit bit mask data register can be parallel loaded from the DRAM or either SAM, or serial loaded through the MKD serial input.

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all

512 combinations of $\overline{\text{RAS}}$ addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require refresh.

The operation and control of the MT43C4257/8 are optimized for high performance graphics and communication designs. The triple-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT READ TRANSFER, BIT MASKED TRANSFERs and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

256K x 4 DRAM WITH

DUAL 512 x 4 SAMS

TRIPLE-PORT DRAM

FEATURES

- Three asynchronous, independent, data-access ports
- Fast access times: 70ns random, 22ns serial
- Operation and control compatible with 1 Meg VRAM
- High-performance, CMOS silicon-gate process
- Inputs and outputs are fully TTL compatible
- Low power: 15mW standby; 500mW active, typical
- 512-cycle refresh within 16.7ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST-PAGE-MODE access cycles
- Two bidirectional serial access memories (SAMs)
- Fully static SAM and Mask Register, no refresh required
- 2,048-bit Bit Mask Register
- SERIAL MASK DATA INPUT mode

SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE
- BIT MASKED TRANSFERs

OPTIONS

• Timing (DRAM, SAMs [read cy 70ns, 22ns/20ns 80ns, 25ns/20ns	cle/write cycle]) -7 -8
• Packages Plastic SOJ (400 mil) Plastic TSOP (400 mil)	DJ TG
• Functionality QSF output (indicates SAM-half accessed)	MT43C4257A
SSF input	MT43C4258A

MARKING

- (Split SAM special function, stop count)
- Part Number Example: MT43C4257ADJ-7

GENERAL DESCRIPTION

The MT43C4257A/8A are high-speed, triple-port CMOS dynamic random access memories (TPDRAMs) containing 1,048,576 bits. Data may be accessed by a 4-bit-wide DRAM port or by either of two independently clocked 512 x 4-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and either SAM.

PIN ASSIGNMENT (Top View)									
4	0-Pin S (SDB-3	_	J						
SCb [1	40	Vss						
SDQb1	2	39	SDQb4						
SDQb2	3	38	SDQb3						
TRM [4	37	SEb						
SCa 🛙	5	36	MKD						
SDQa1	6	35	SDQa4						
SDQa2	7	34	SDQa3						
TR/OE C	8	33] SEa						
DQ1 C	9	32	DQ4						
DQ2	10	31	DQ3						
Vcc [11	30	Vss						
ME/WE D	12	29	DSF1						
STS [13	28	QSFb/SSFb*						
RAS [14	27	CAS						
DSF2	15	26] QSFa/SSFa*						
A8 [16	25] A0						
A6 [17	24	A1						
A5 [18	23] A2						
A4 [19	22	A3						

40/44-Pin TSOP** (SDE-2)

21 A7

Vcc 220

	ш,	2 1	43	
SDQb2		3	42	SDQb3
TRM		4	41	SEb
SCa	E	5	40	DI MKD
SDQa1	ш	6	39	SDQa4
SDQa2	Ē	7	38	SDQa3
TR/OE		8	37	III SEa
DQ1		9	36	10 DQ4
DQ2		10	35	DQ3
	ŝ. j			
	11			
Voc	TT I	13	32	U Vss
ME/WE			31	DSF1
ME/WE STS	Ξ			
	ΗH	14 15	31 30	DSF1
STS	HBB	14 15	31 30	DSF1 DSF5/SSFb*
STS RAS	HBB	14 15 16 17	31 30 29	DSF1 DSF5/SSF6* CAS
STS RAS DSF2 A8	HHHH	14 15	31 30 29 28	DSF1 DSFb/SSFb* CAS QSFa/SSFa*
STS RAS DSF2 A8 A6	BABAB	14 15	31 30 29 28 27	DSF1 CAS CAS CAS CAS A0
STS RAS DSF2 A8 A6	ввявв	14	31 30 29 28 27 26 25 24	DSF1 <u>QSFb/SSFb*</u> CAS QSFa/SSFa* A0 A1
STS RAS DSF2 A8 A6 A5	<u> В В В В В В В В В В В В В В В В В В В</u>	14 15 16 17 18 19 20	31 30 29 28 27 26 25	DSF1 QSFb/SSFb* CAS QSFa/SSFa* A0 A1 A2

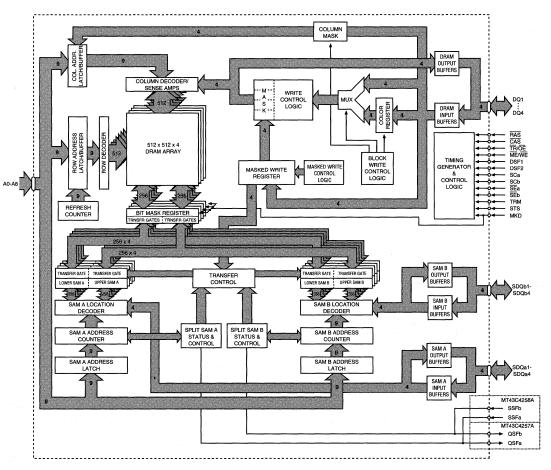
*MT43C4257A/MT43C4258A

**Consult factory for TSOP availability.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4 DRAM). Eight 512-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 4-bit random access I/O port, the pair of internal 2,048-bit-

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

wide paths between the DRAM and the SAMs, and the pair of 4-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing and address decoding logic.


All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2,048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 512 x 4-bit bit mask data register may be parallel loaded from the DRAM or either SAM, or serial loaded through the MKD serial input.

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all

512 combinations of $\overline{\text{RAS}}$ addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require refresh.

The operation and control of the MT43C4257A/8A are optimized for high-performance graphics and communication designs. The triple-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT READ TRANSFER, BIT MASKED TRANSFERs and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
5	5	SCa	Input	Serial Clock, SAMa: Clock input to the serial address counter for the SAMa registers and strobe for SAMa control and data inputs.
1	1	SCb	Input	Serial Clock, SAMb: Clock input to the serial address counter for the SAMb registers and strobe for SAMb control and data inputs.
8	8	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at the falling edge of RAS, or
				Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW); otherwise the output buffers are in a High-Z state.
12	14	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or
				Write Enable: $\overline{ME}/\overline{WE}$ is also used to select a READ ($\overline{ME}/\overline{WE}$ = H) or WRITE ($\overline{ME}/\overline{WE}$ = L) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{ME}/\overline{WE}$ = H) or WRITE TRANSFER ($\overline{ME}/\overline{WE}$ = L).
33	37	SEa	Input	Serial Port Enable SAMa: SEa enables Port A serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEa is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
37	41	SEb	Input	Serial Port Enable, SAMb: SEb enables Port B serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEb is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
29	31	DSF1	Input	Special Function (Control) 1: DSF1 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description.
15	17	DSF2	Input	Special Function (Control) 2: DSF2 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description.
14	16	RAS	Input	Row Address Strobe: RAS is used to clock-in the 9 row-address bits and strobe the control and data inputs.
27	29	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock-in the 9 column- address bits, enable the DRAM output buffers (along with $\overline{TR/OE}$), and strobe control inputs and data inputs.

NEW TRIPLE-PORT DRAM

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

SOJ PIN Numbers	TSOP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
25, 24, 23, 22, 19, 18, 17, 21, 16	27, 26, 25, 24, 21, 20, 19, 23, 18	A0-A8	Input	Address Inputs: For DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 4-bit word out of the 256K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW).
13	15	STS	Input	SAM Transfer Select: The state of STS at \overrightarrow{RAS} time determines which SAM is involved in a transfer (SAMa = LOW, SAMb = HIGH).
36	40	MKD	Input	Mask Data Input: MKD is used during BIT MASK REGISTER LOAD cycles to enable or disable the serial mask input mode (SMI). If SMI is enabled (MKD = HIGH at \overline{RAS}), then MKD is used as mask data input and is clocked by SCb into the mask data register.
4	4	TRM	Input	Transfer Mask Select: TRM is used to select between NORMAL TRANSFER cycles and BIT MASKED TRANSFER or BIT MASK REGISTER LOAD cycles.
9, 10, 31, 32	9, 10, 35, 36	DQ1-DQ4	Input/ Output	DRAM Data I/O: Data inputs and outputs for the DRAM memory array; inputs for the MASK and COLOR REGISTER load cycles; address mask inputs for BLOCK WRITE cycles.
6, 7, 34, 35	6, 7, 38, 39	SDQa1-SDQa4	Input/ Output	Serial Data I/O, SAMa: Input, Output, or High-Z.
2, 3, 38, 39	2, 3, 42, 43	SDQb1-SDQb4	Input/ Output	Serial Data I/O, SAMb: Input, Output, or High-Z.
26	28	QSFa/SSFa	Output	Split SAM Status, SAMa (MT43C4257A): QSFa indicates which half of SAMa is being accessed (Lower = LOW, Upper = HIGH).
			Input	Split SAM Special Function, SAMa (MT43C4258A): SSFa = HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFa is synchronized with SCa.
28	30	QSFb/SSFb	Output	Split SAM Status, SAMb (MT43C4257A): QSFb indicates which half of SAMb is being accessed (Lower = LOW, Upper = HIGH).
			Input	Split SAM Special Function, SAMb (MT43C4258A): SSFb = HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFb is synchronized with SCb.
11, 20	13, 22	Vcc	Supply	Power Supply: +5V ±5%
30, 40	32, 44	Vss	Supply	Ground

MT43C4257A/8A

FUNCTIONAL DESCRIPTION

The MT43C4257A/8A may be divided into four functional blocks: the DRAM and its special functions, the bit mask register (BMR), the two serial access memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

DRAM REFRESH (ROR, CBR, and HR)

Like any DRAM-based memory, the MT43C4257A/8A TPDRAM must be refreshed to retain data. All 512 rowaddress combinations must be accessed within 16.7ms. The MT43C4257A/8A support CBR, RAS ONLY and HIDDEN types of refresh cycles.

For the CBR REFRESH cycle, the row-addresses are generated and stored in an internal address counter. The user need not supply any address data but must simply perform 512 CBR cycles within the 16.7ms time period.

For \overline{RAS} -ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs. The DQ pins remain in a High-Z state for both the \overline{RAS} -ONLY and CBR cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling \overline{RAS} (while keeping \overline{CAS} LOW) after a READ or WRITE cycle. This performs CBR REFRESH cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and BMR portions of the MT43C4257A/8A are fully static and do not require any refreshing.

DRAM READ AND WRITE CYCLES (RW)

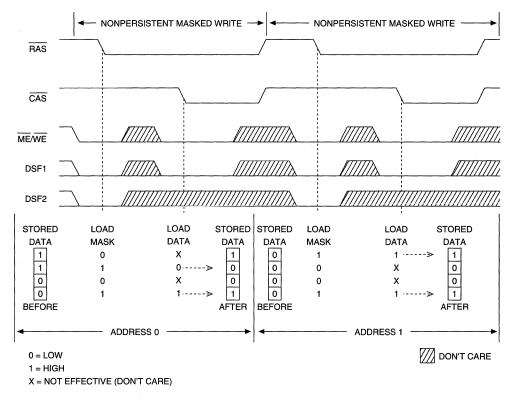
The DRAM portion of the TPDRAM is nearly identical to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM.

These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

256K x 4 TRIPLE-PORT DRAM

The 18 address bits used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, RAS, and CAS inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 9 column-address bits are set up on the address inputs and clocked-in when CAS goes from HIGH to LOW.

Note: RAS also acts as a "master" chip enable for the TPDRAM. If RAS is inactive, HIGH, all other DRAM control pins (CAS, TR/OE, ME/WE, etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.


For single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $\overline{TR}/(\overline{OE})$ is used when \overline{RAS} goes LOW to select between DRAM and TRANS-FER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH to LOW transition for all DRAM operations.

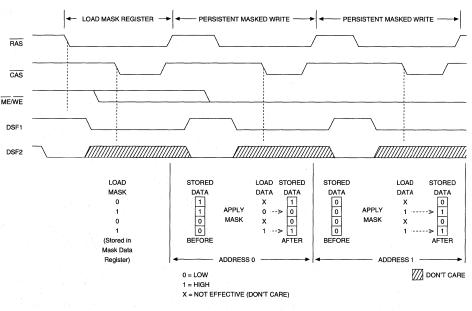
If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH to LOW some time after RAS falls to enable the DRAM output port.

For single-port DRAMs, $\overline{\text{WE}}$ is a "don't care" when $\overline{\text{RAS}}$ goes LOW. For the TPDRAM, $\overline{\text{ME}}/(\overline{\text{WE}})$ is used, when $\overline{\text{RAS}}$ goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{\text{ME}}/(\overline{\text{WE}})$ is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any TPDRAM non-masked access cycle (READ or WRITE), $\overline{\text{ME}}/(\overline{\text{WE}})$ must be HIGH at the $\overline{\text{RAS}}$ HIGH-to-LOW transition. If ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ is LOW when $\overline{\text{CAS}}$ goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE


NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within a 4-bit word. The MT43C4257A/8A support two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

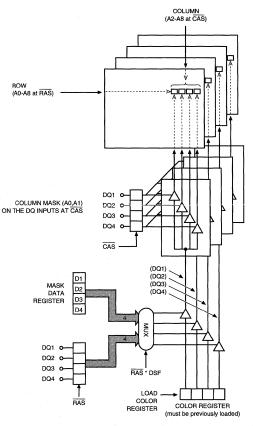
If $\overline{\text{ME}}/(\overline{\text{WE}})$, DSF1 and DSF2 are LOW at the $\overline{\text{RAS}}$ HIGH-to-LOW transition, the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic 0) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C4257A/8A. Note that \overline{CAS} is still HIGH. When \overline{CAS} or $(\overline{ME})/\overline{WE}$ go LOW, the bits present on the DQ1-DQ4 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of \overline{RAS} . FAST-PAGE-MODE can be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one \overline{RAS} cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 1.

MICRON

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE (RWOM)

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF1 HIGH, and DSF2 LOW, when RAS goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description). PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF2 LOW, and DSF1 HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs.


Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the DQ inputs is not loaded into the mask register when RAS falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 2 shows the LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycle operations. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at RAS time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST-PAGE-MODE.

BLOCK WRITE (BW)

The MT43C4257A/8A will perform a BLOCK WRITE cycle if DSF1 is HIGH when CAS goes LOW. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 3). A total of 16 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However, when \overline{CAS} goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" (out of the 128 possible) of four adjacent column locations that will be accessed. When the latter of $\overline{ME}/\overline{WE}$ and \overline{CAS} go LOW, the DQ inputs are latched and used to determine which of the four column locations will be written. DQ1 acts as a write enable for column location A0 = 0, A1 = 0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0 = 1, A1 = 1. The write enable controls are active HIGH; the WRITE function is enabled by a logic 1 and disabled by a logic 0.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color

Figure 3 BLOCK WRITE EXAMPLE

register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.

NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions may be used during BLOCK WRITE cycles also. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPER-SISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF1 LOW when $\overline{\text{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

pin must be driven HIGH when \overline{CAS} goes LOW to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the four column locations may be masked.

PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when \overline{CAS} goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

DRAM REGISTER OPERATIONS

The MT43C4257A/8A contain two 4-bit registers that are used as data registers for special functions. This section describes how to load these registers.

LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF1 is HIGH when RAS goes LOW. As shown in the Truth Table, the combination of TR/(\overline{OE}), ME/(WE), and DSF1 being HIGH when RAS goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when \overline{CAS} goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless NON-PERSISTENT MASKED WRITE LOAD MASK REGISTER cycles are performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable WRITEs to the four DQ planes.

LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when \overline{CAS} goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

TRANSFER OPERATIONS

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect to the DRAM portion of the device. A WRITE is referenced to the DRAM array and a READ is referenced from the array.

Note: The three ports of the TPDRAM are independent of, and asynchronous to, one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affect access from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.

TRANSFER operations are initiated when $\overline{\text{TR}}/(\overline{\text{OE}})$ is LOW at the falling edge of $\overline{\text{RAS}}$. The state of STS when $\overline{\text{RAS}}$ goes LOW indicates which SAM the TRANSFER will address. The state of $(\overline{\text{ME}})/\overline{\text{WE}}$ when $\overline{\text{RAS}}$ goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANS-FER cycles. A TRANSFER cycle can be performed without dropping $\overline{\text{CAS}}$. In this case, the previously loaded Tap address will be used.

The MT43C4257A/8A include a feature called BIT MASKED TRANSFER, which uses a third 2,048-bit data register to individually mask every bit involved in a transfer operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERs. The TRM pin is used to select between NORMAL and BIT MASKED TRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of RAS.

NORMAL TRANSFERS

The MT43C4257A/8A support all of the popular transfer cycles available on Micron's 1 Meg Video RAMs. Each of these is described in the following section.

READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH, DSF1, DSF2 and TR/($\overline{\text{OE}}$) are LOW when RAS goes LOW. When RAS goes LOW, the READ TRANSFER is to SAMa if STS = LOW, or to SAMb if STS = HIGH. The rowaddress bits indicate the four 512-bit DRAM rows that are to be transferred to the four SAM data registers. The column-address bits indicate the start address (or Tap point) of the next serial output cycle from the designated SAM data registers. QSF indicates the SAM half being accessed: LOW if the lower half, HIGH if the upper half. Performing a READ TRANSFER cycle sets the direction of the selected SAM's I/O buffers to the output mode.

To complete a REAL-TIME READ-TRANSFER, $\overline{TR}/(\overline{OE})$ is taken HIGH while RAS and CAS are LOW. In order to synchronize the REAL-TIME READ TRANSFER to the serial clock, the rising edge of $\overline{TR}/(\overline{OE})$ must occur between the rising edges of successive clocks on the SC input (refer to the AC timing diagrams). A "regular" READ TRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{TR}/(\overline{OE})$ is taken HIGH "early," without regard to the falling edge of \overline{CAS} . The transfer will be completed internally by the device. The first serial clock must meet the tRSD and tCSD delays (see READ TRANSFER AC timing diagram). The 2,048 bits of DRAM data are then written into the SAM data registers, and the selected SAM's Tap address that was stored in the internal, 9-bit Tap address register is loaded into the address counter. If SE for the SAM selected (SEa for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. SE enables the serial outputs, and may be either HIGH or LOW during this operation.

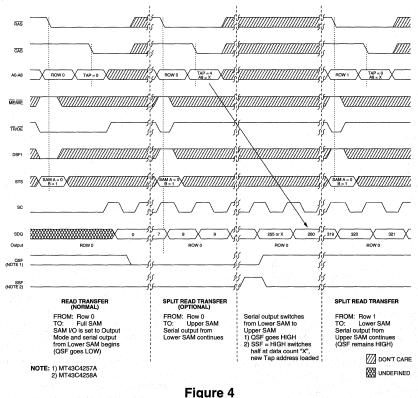
SPLIT READ TRANSFER (SRT)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out of the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and need not be synchronized with the SC clock.

The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is relaxed for SRT cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle, and therefore is independent of the rising edges of RAS and $\overline{\text{CAS}}$. The transfer timing is generated internally for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (non-split) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAM I/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT can be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of the SAM not actively being accessed will be the half


MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

that receives the transfer. When CAS falls, address pins A0-A7 determine the Tap address for the SAM-half selected; A8 = "don't care." If CAS does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional and need only be done if the Tap for the upper half $\neq 0$. For the MT43C4257A, serial access continues, and when the SAM address counter reaches 255 ("A8" = 1, A0-A7 = 0), the QSF output for that SAM goes HIGH. Then the Tap address for the upper half is automatically loaded. Since the serial access has switched to the upper half of the SAM, new data may be transferred to the lower half. This sequence of waiting for the state of QSF to change and then transferring new data to the SAM half that is not being accessed may now be repeated. For example, the next step in Figure 4 would be to wait until QSF went

LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM. \overline{CAS} is used to load the Tap address. If \overline{CAS} does not fall, the last Tap address load for the addressed SAM will be reused.

The split SAM operation is slightly different for the MT43C4258A. Instead of having a QSF, this device has a Split SAM Special Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half (255; lower, 511; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the current SAM-half is reached. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

WRITE TRANSFER (WT)

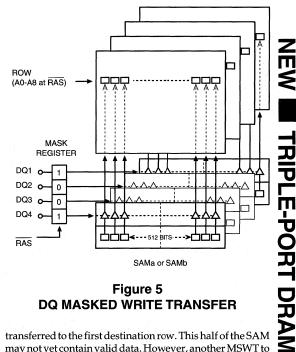
The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except (ME)/WE and SE must be LOW when RAS goes LOW. The DSF2 input is used to select between the WT and DO MASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pin is also taken LOW or HIGH to select SAMa or SAMb, respectively, when RAS goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper half. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle may be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER $cycle with the \overline{SE} of the appropriate SAM held HIGH instead$ of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of the SAM port without disturbing the addressed row data.

DQ MASKED WRITE TRANSFER (MWT)

The data being transferred from either SAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the four DQ planes (see Figure 5). The MWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of RAS.


The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

DO MASKED SPLIT WRITE TRANSFER (MSWT)

The DO MASKED SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 6 shows a typical initiation sequence for SWT cycles.

Like the SRT, the DQ MASKED SPLIT WRITE TRANS-FER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDO WRITE TRANSFER cycle is required to set the Tap address and set the SAM I/O direction to input mode.

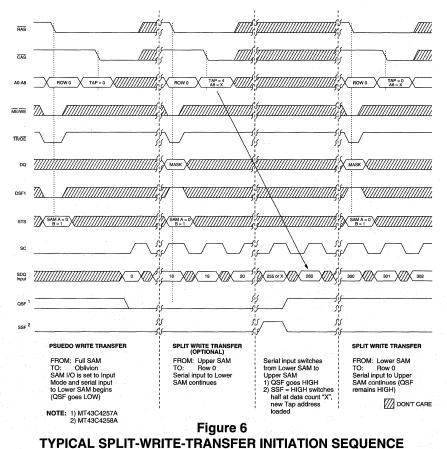
After the WT, an MSWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately

Figure 5 DQ MASKED WRITE TRANSFER

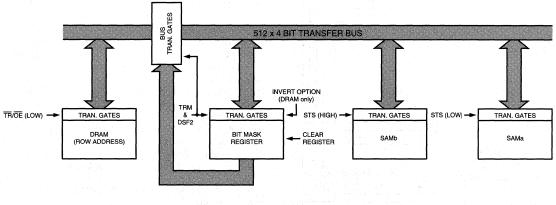
transferred to the first destination row. This half of the SAM may not yet contain valid data. However, another MSWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an MSWT addressed to any DRAM row, but mask (disable) all four of the DQ planes. This method can be used to initiate the MSWT sequence without disturbing any DRAM data. The MSWT to the upper half is optional, it is only needed if the Tap for the upper half is $\neq 0$.

Write mask data must be supplied to the DQ inputs during every MSWT cycle at RAS time. The mask data acts as an individual write enable for each of the four DRAM DQ planes. For example, DQ1, at RAS time, during a MASKED WRITE enables or disables the transfer of the SAM SDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANS-FER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A7) for the other half is loaded when CAS falls (A8 is a "don't care"). If CAS does not fall, the previously loaded Tap address, A0-A7, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb outputs (MT43C4257A) indicate which half of SAMa or SAMb, respectively, is currently accepting data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower half of the SAM may be transferred to any DRAM row. The cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 6 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0. If the terminal count of the SAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded Tap address (access will not move to the next half).


When operating the MT43C4258A in the MSWT mode, the address pointer may be changed to the new Tap address of the next half when the final desired input data is clocked in. When the final data is input, the SSF input is taken HIGH

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM


at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap address will be automatically loaded when the maximum Tap address count is reached for the current half (255 or 511). If SSF is HIGH at SC before an MSWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not proceed to the next half. If terminal count is reached before an MSWT, the access will proceed as it does for the MT43C4257A.

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SCa,b, SEa,b and SSFa,b (MT43C4258A). The rising edge of SC increments the serial address counter and provides access to the next SAM location. SE enables or disables the serial input/output buffers.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

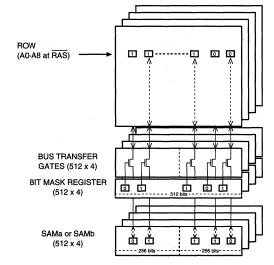
Figure 7 BIT MASKED TRANSFER BLOCK DIAGRAM

Serial output of the SAM contents will start at the serial Tap address that was loaded in the SAMa, b address counter during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. For the MT43C4257A, the address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half, for split modes. The address 0 if in the "full" SAM modes.

For the MT43C4258A, the address count will wrap as it does for the MT43C4257A, or it may be triggered, at will, to the next half by the SSF input (split SAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The subsequent LOW-to-HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address counter (loaded when the serial input mode was enabled) will determine the serial address of the first 4-bit word written. SE acts as a write enable for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the SE input. The

operation of SSF (MT43C4258A) is the same as described for serial output.


BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BIT MASKED TRANSFER capability. Before performing these BIT MASKED TRANSFERs, the bit mask register must be loaded with the mask data. See the next section, BIT MASK REGISTER OPERATIONS, for instructions on how to load the bit mask register (BMR).

The BMR is a 2,048-bit register that individually controls each of the 2,048 transfer gates on the internal 512 x 4 transfer bus (see Figure 7). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic "1" in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic "0" will select the masked mode for that bit.

BIT MASKED TRANSFERs may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERs. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERs between the DRAM and either of the two SAM registers are possible. Figure 8 illustrates the BIT MASKED TRANSFER functions.

MICRON

Figure 8 BIT MASK TRANSFER BLOCK DIAGRAM

BIT MASKED READ TRANSFER (BMRT)

BITMASKED READ TRANSFER may be used to transfer any combination of the 2,048 bits contained in any DRAM row address to either of the two SAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except that TRM and DSF2 are HIGH to select the BIT MASKED feature. If a bit in the BMR is a logic "1", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).

BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKED SPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when RAS falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the bit mask register before the data is written to the DRAM.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANS-FER, except TRM and DSF2 are HIGH when RAS falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at RAS time. If a DQ input is LOW at RAS time, none of the 256 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 256 SAM bits for that row half will be masked by the corresponding 256 mask register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

DQ MASKED BIT MASKED WRITE TRANSFER (BMWT-DQM)

The BMWT-DQM cycle is nearly identical to the BIT MASKED WRITE TRANSFER, except TRM is LOW and DSF1 is HIGH when \overline{RAS} falls. Two masks are applied during a BMWT-DQM operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at \overline{RAS} time. If a DQ input is LOW at \overline{RAS} time, none of the 512 SAM bits for that DQ plane will be transferred to the DRAM row selected. If a DQ input is HIGH, the 512 SAM bits for that row will be masked by the corresponding 512 mask register bits when written to the selected DRAM row. The remaining control timing is identical to the requirements for a normal WRITE TRANSFER.

BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMR contents. Data may be inverted when being transferred between the BMR and DRAM also.

BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the BMR by using the BMR READ TRANSFER function. When \overline{RAS} falls, $\overline{TR}/(\overline{OE})$ is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.

Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS = LOW) or inverted (STS = HIGH) data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when \overline{RAS} falls selects whether the serial mask input (SMI) feature is enabled (see the Functional Truth

MT43C4257A/8A

Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). When RAS falls, MKD is LOW to disable SMI, or HIGH to enable SMI. After the transfer is completed, the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD input is tied to the four bit-planes, the data on the MKD pin is written to each bit plane simultaneously.

BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at $\overline{\text{RAS}}$ time the DRAM data will be inverted before being written to the BMR. All 2,048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMR INVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. To select a write transfer from the BMR, $(\overline{\text{ME}})/\overline{\text{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\text{RAS}}$ falls. The DQ inputs are used to input a DQ bit-plane mask when $\overline{\text{RAS}}$ falls. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\text{RAS}}$ time to transfer non-inverted BMR data to the DRAM row selected.

BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2,048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at RAS time will cause the BMR data to be inverted before it is stored in the selected DRAM row. The other control and DQ (mask) inputs are the same as the BMR-WT.

SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM, instead of the DRAM, is the source of the data. $(\overline{\text{ME}})/\overline{\text{WE}}$ is used to indicate the direction of the transfer, and must be LOW when RAS falls for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM, the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI mode will be enabled after the transfer is completed. Since

no DRAM access is involved, it is not necessary to provide any particular ROW address at \overline{RAS} time. However, the ROW-address present at \overline{RAS} time will be used as the address for a \overline{RAS} -ONLY REFRESH. Since a SAM is involved in the transfer, a new SAM starting address (or Tap) will be loaded at \overline{CAS} time. This address will be loaded into the serial address counter of the SAM selected by STS at \overline{RAS} time.

256K x 4 TRIPLE-PORT DRAM

Note: Any SAM/BMR TRANSFER will take the SAM involved in the transfer out of the split SAM mode, if it was in that mode before the transfer.

BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The $(\overline{\text{ME}})/\overline{\text{WE}}$ input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAM TRANSFER. STS is LOW to select SAMa or HIGH to select SAMb as the destination for the BMR data. The remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANSFER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will beloaded when CAS falls.

CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bits LOW) within a single transfer cycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at \overline{RAS} time for the CLEAR BIT MASK REG-ISTER function. $\overline{TR}/(\overline{OE})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overline{ME}/(\overline{WE})$, DSF1 and DSF2 are HIGH when \overline{RAS} falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.

The BMR INVERTED WRITE and BMR WRITE TRANS-FERS may be used with the CLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.

The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at \overline{RAS} time the serial mask input (SMI) mode is disabled and the BMR may only be loaded via internal transfer cycles. If MKD is HIGH when \overline{RAS} falls, during a

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

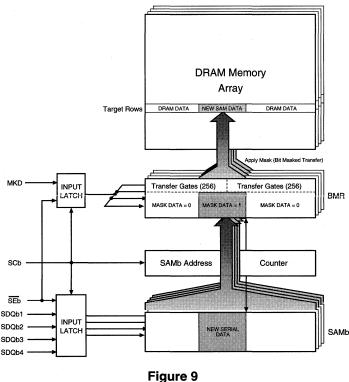


Figure 9 SERIAL-MASK-INPUT MODE BLOCK DIAGRAM

BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.

-RON

When SMI is enabled, the MKD input is coupled to all four of the bit mask register's DQ planes (see Figure 9). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR; the address count will increment regardless of the state of SEb.

The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb. To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD = HIGH at RAS time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location to which data is written in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all four planes of the BMR will be written). After the input of data to SAMb is complete, a BIT MASKED WRITE TRANSFER or DQ-MASKED BIT-MASKED-WRITE TRANSFER may be performed and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER or DQ-MASKED BIT-MASKED-WRITE TRANSFER from SAMb, if the device is in the SMI mode. A BMSWT from SAMb will clear only half of the BMR. This allows a new mask to be loaded during the next fill of SAMb, without performing a CLR-BMR cycle. If data is to be masked during the BMWT, then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/O direction of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," and no new data may be

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied to a SAMa TRANSFER cycle, if the mask has not been cleared by a SAMb TRANSFER or a CLR-BMR cycle. The BMR will not be cleared after a TRANS-FER involving SAMa.

POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 16.7ms, the device must be initialized.

After Vcc is at specified operating conditions, for $100\mu s$ (MIN), eight RAS cycles must be executed to initialize the dynamic memory array. When the device is initialized the

DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of (TR)/OE. The DRAM array will contain random data.

The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power-up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQs) are in a High-Z state, regardless of the state of SE ab. Also, SPLIT TRANSFER and SMI modes are disabled. Both QSF (MT43C4257A) outputs power up in a LOW state. The SAMs, as well as the bit mask, color, and DRAM mask registers all contain random data after power-up.

TRUTH TABLE 1

CODE	FUNCTION	RAS FALLING EDGE									CAS FALL	A0-A8 ²		DQ1-DQ4 ³		REGISTERS	
		CAS	TR/ DE	ME/WE ¹	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS	RAS	CAS,WE ⁴	MASK	COLOR
	DRAM OPERATIONS	1									I						
CBR	CAS-BEFORE-RAS REFRESH	0	x	111	X	X	х	X	X	X	x	X	x	x	x	1	_
ROR	RAS-ONLY REFRESH	1	1	X	X	X	х	X	x	х	-	ROW		X			
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0 ¹¹	х	x	x	x	0	ROW	COLUMN	×	VALID DATA	-	
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	011	x	x	x	x	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	011	x	x	x	X	0	ROW	COLUMN	×	VALID DATA	USE	
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	011	x	x	x	x	1	ROW	COLUMN (A2-A8)	x	COLUMN MASK		USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	011	x	x	х	х	1	ROW	COLUMN (A2-A8)	WRITE MASK	COLUMN MASK	LOAD & USE	USE
BWOM	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	011	x	x	x	x	1	ROW	COLUMN (A2-A8)	x	COLUMN MASK	USE	USE
	REGISTER OPERATIONS		1.1				1.	<u>.</u>	1					a ha a sh			
LMR	LOAD MASK REGISTER	1	1	1	1	011	x	X	x	x	0	X ⁵	x	×	WRITE MASK	LOAD	, - ,
LCR	LOAD COLOR REGISTER	1	1	1	1	011	х	x	х	х	1	X ⁵	x	×	COLOR DATA		LOAD
	TRANSFER OPERATIONS	5 G.		1.11					\$ 1.0								
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	0	x	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	×	x	-	-
SRT ⁹	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	0	x	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	x	x	1 - 1 - 1	1
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	0	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	x	x	-	-
PWT	PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE)	1	0	0	0	0	1	0	x	0=SAMa 1=SAMb	x	X ⁵	TAP ⁶	x	x	1997 – 1993 1997–1993	
MSWT ⁹	SPLIT WRITE TRANSFER (SPLIT SAM- TO-DRAM TRANSFER WITH DQ MASK)	1	0	0	1	0	x	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	DQ MASK	x	-	-
MWT	DQ MASKED WRITE TRANSFER	1	0	0	0	1	x	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	DQ MASK	x	—	-

MICRON

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

TRUTH TABLE 1

		[RA	S FAL	LING	EDGE				CAS FALL	A0-	A8 ²	DQ1-	DQ4 ³	REGIS	TERS
CODE	FUNCTION	CAS	TR/ OE	ME/WE ¹⁰	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS	RAS	CAS,WE ⁴	MASK	COLOR
	BIT MASK REGISTER OPERATIONS										·						
BMR- RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	1	0	0	x	1	0/17	0	×	ROW	×	×	x	-	-
BMR- IRT	BMR READ TRANSFER (DRAM→INVERT→BMR TRANSFER)	1	0	1	0	0	×	1	0/1 ⁷	1	x	ROW	×	×	x	-	-
BMR- WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	1	0	0	0	0	x	1	0/1 ⁷	0	×	ROW	x	DQ MASK	x	_	-
BMR- IWT	BMR WRITE TRANSFER (BMR→INVERT→DRAM TRANSFER)	1	0	0	0	0	x	1	0/17	1	x	ROW	x	DQ MASK	x	-	-
SAM- BMR	SAM→BMR TRANSFER	1	0	0	1	0	x	1	0/1 ⁷	0=SAMa 1=SAMb		X ⁵	TAP ⁶	x	x	—	-
BMR- SAM	BMR→SAM TRANSFER	1	0	1	1	0	×	1	0/1 ⁷	0=SAMa 1=SAMb		X ⁵	TAP ⁶	x	х	_	-
CLR- BMR	CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's")	1	0	1	1	1	x	0	0/1 ⁷	×	x	X ⁵	x	x	Х		-
	BIT MASKED TRANSFER OPERATIONS								_								
BMRT	BIT MASKED READ TRANSFER (BM DRAM→SAM TRANSFER)	1	0	1	0	1	x	1	x	0=SAMa 1=SAMb		ROW	TAP ⁶	x	×	-	-
BMSRT ⁹	BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM→SAM TRANSFER)	1	0	1	1	1	x	1	x	0=SAMa 1=SAMb		ROW	TAP ⁶	x	x		-
BMWT	BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	0	1	x	1	X8	0=SAMa 1=SAMb		ROW	TAP ⁶	×	X		-
BMSWT ⁹	BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM→DRAM TRANSFER)	1	0	0	1	1	x	1	X8	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	×	-	-
BMWT- DQM	DQ/BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	1	1	x	0	X8	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	×	-	-

NOTE: 1. 0 = LOW (VIL); 1 = HIGH (VIH); X = "don't care;" — = "not applicable."

2. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.

- 3. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.
- 4. With WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, with READ cycles, the output data is enabled on the falling edge of CAS or TR/OE, whichever is later.
- 5. The ROW that is addressed will be refreshed, but no particular row address is required.
- 6. Tap address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERs, the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A8 is a "don't care" for SPLIT TRANSFERs.
- 7. The serial mask input mode (SMI) is enabled ("1") or disabled ("0") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = "1"), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE, DQ MASKED BIT MASKED WRITE TRANSFER or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and DQ MASKED BIT MASKED WRITE TRANSFERs or BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
- 8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb.
- 9. SPLIT TRANSFERs do not change SAM I/O direction.
- 10. SAM I/O direction is a function of the state of ME/WE at RAS time. If ME/WE is LOW, then the selected SAM is an input; if ME/WE is HIGH, then the SAM is an output (except for SPLIT TRANSFERS).
- 11. The MT43C4257A/8A operates properly if this state is "X", but to allow for future functional enhancements it is recommended that they be driven as shown in the Truth Table.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)0	°C to +70°C
Storage Temperature (plastic)55%	C to +150°C
Power Dissipation	1.5W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.75	5.25	V	1
Input High (Logic 1) Voltage, all inputs	Vін	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	ViL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

(0°C \leq T_{Δ} \leq 70°C; Vcc = 5V ±5%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$	IL.	-10	10	μA	
OUTPUT LEAKAGE CURRENT (Dout is disabled, 0V ≤ Vouτ ≤ Vcc).	loz	-10	10	μA	
OUTPUT LEVELS	Vон	2.4	1.5.8	V	
Output High Voltage ($Iout = -2.5mA$, SDQs; -5mA all other outputs) Output Low Voltage ($Iout = 2.5mA$, SDQs; 5mA all other outputs)	Vol		0.4	v	

CAPACITANCE

 $(T_{A} = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8, TRM, MKD, SEa,b, DSF1,2, STS	Ci1	-	5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SCa,b SSFa,b	Cı2	a sel s States	7	pF	2
Input/Output Capacitance: DQ, SDQa,b	Cı/o		9	pF	2
Output Capacitance: QSFa,b	Co		9	pF	2

TSOP THERMAL CONSIDERATIONS (preliminary)

DESCRIPTION	SYMBOL	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	øJA	85	°C/W	203
Thermal resistance - Junction to Case	øJC	15	°C/W	
Maximum Case Temperature	тс	110	°C	

TRIPLE-PORT DRAM

Ш

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

DRAM CURRENT DRAIN; SAMa, SAMb and SERIAL MASK INPUT (SMI) INACTIVE

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 5\%)$

$(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 5\%)$		M	AX	7	
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC [MIN])	Icc1	100	90	mA	3, 4 25
OPERATING CURRENT: PAGE MODE (RAS = VI∟ CAS = Cycling; ^t PC = ^t PC [MIN])	Icc2	95	85	mA	3, 4 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH, after 8 RAS cycles [MIN])	Іссз	8	8	(mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc-0.2V, after 8 RAS cycles min). All other inputs \ge Vcc -0.2V or \le Vss +0.2V	ICC4	2	2	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	ICC5	105	90	mA	3, 25
REFRESH CURRENT: CBR $(RAS and CAS = Cycling)$	Icc6	105	90	mA	3, 5 25
TRANSFER CURRENT: SAM/DRAM DATA TRANSFER	Icc7	100	90	mA	3

SERIAL PORT CURRENT DRAIN; SAMa, SAMb and/or SMI MODE

(Notes 3, 4) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±5%)	1	М	AX			
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES	
OPERATING CURRENT: SERIAL PORT (SAMa/SAMb) (SCa/SCb = Cycling; ^t SC = ^t SC [MIN]; SEa/SEb = VIL)	ICC8	40	35	mA		
OPERATING CURRENT: SMI MODE (SAMb) (SCb = Cycling; ${}^{t}SC = {}^{t}SC [MIN]; \overline{SEb} = VIL$)	Icc9	20	20	mA		
STANDBY CURRENT: SERIAL PORT (SAMa/SAMb) Power supply standby current (SCa/SCb = VIH or VIL; SEa/SEb = VIH)	ICC10	0	0	mA		
STANDBY CURRENT: SMI MODE (SAMb) Power supply standby current (SCb = VIH or VIL; SEb = VIH)	ICC11	0	0.00	mA	Sec.	

TOTAL CURRENT DRAIN

(Notes 3, 4) ($0^{\circ}C \le T_{\Delta} \le 70^{\circ}C$; Vcc = 5V ±5%)

= DRAM CURRENT (Icc1-7) + SAMa CURRENT (Icc8 or Icc10) + SAMb CURRENT (Icc8 or Icc10) + ICC(TOTAL) SMI CURRENT (Icc9 or Icc11) (+ 10mA [If DRAM CURRENT = Icc3 or Icc4])

Example 1:

Operating current (-8) with DRAM operating in FAST-PAGE-MODE, SAMa active, SAMb and SMI inactive:

ICC(TOTAL)	= DRAM CURRENT (Icc2) + SAMa CURRENT (Icc8) + SAMb CURRENT (Icc10) +	
	SMI CURRENT (Icc11) [+ 0]	
	= 85 + 35 + 0 + 0 = 120mA (MAX)	

Example 2:

Operating current (-7) with DRAM operating in CMOS Standby, SAMa and SAMb active, SMI active:

= DRAM CURRENT (Icc4) + SAMa CURRENT (Icc8) + SAMb CURRENT (Icc8) + ICC(TOTAL) SMI CURRENT (Icc9) [+ 10] = 2 + 40 + 40 + 20 + 10 = 112mA (MAX)

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V \pm 5%)

AC CHARACTERISTICS			-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
Random READ or WRITE cycle time	tRC	130		150	-	ns		
READ-MODIFY-WRITE cycle time	tRWC	170		190		ns		
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		ns		
cycle time					1.1.1.1		1.1	
FAST-PAGE-MODE READ-MODIFY-	^t PRWC	90		95		ns	4	
WRITE cycle time								
Access time from RAS	^t RAC		70		80	ns	14, 1	
Access time from CAS	^t CAC		17		20	ns	15	
Access time from (TR)/OE	tOE		20		20	ns	1.1	
Access time from column address	^t AA		35		40	ns		
Access time from CAS precharge	^t CPA		40		45	ns		
RAS pulse width	^t RAS	70	20,000	80	20,000	ns		
RAS pulse width (FAST-PAGE-MODE)	tRASP	70	100,000	80	100,000	ns		
RAS hold time	tRSH	20		20		ns		
RAS precharge time	^t RP	50		60		ns		
CAS pulse width	^t CAS	15	10,000	20	10,000	ns		
CAS hold time	^t CSH	70		80		ns		
CAS precharge time	^t CP	10		10		ns	16	
RAS to CAS delay time	^t RCD	20	50	20	60	ns	17	
CAS to RAS precharge time	^t CRP	10		10		ns		
Row address setup time	^t ASR	0		0		ns		
Row address hold time	^t RAH	10		12		ns	1.000	
RAS to column	^t RAD	15	35	17	40	ns	18	
address delay time								
Column address setup time	tASC	0		0		ns		
Column address hold time	^t CAH	12		15		ns		
Column address hold time	^t AR	55		60		ns		
(referenced to RAS)								
Column address to	tRAL	35		40		ns		
RAS lead time								
Read command setup time	^t RCS	0		0	1. A. A.	ns		
Read command hold time	^t RCH	0		0		ns	19	
(referenced to CAS)								
Read command hold time	tRRH	0		0		ns	19	
(referenced to RAS)		-					-	
CAS to output in Low-Z	tCLZ	3	1 · · ·	3		ns		
Output buffer turn-off delay	tOFF	3	20	3	20	ns	20, 23	
Output disable	tOD	3	10	3	10	ns	20, 23	
Output disable hold time from start of WRITE	^t OEH	10		15		ns	27	
Output Enable to RAS delay	tORD	0		0		ns		

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±5%)

AC CHARACTERISTICS			-7		-8	2.1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		ns	21
Write command hold time	tWCH	15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		60		ns	
Write command pulse width	tWP	15		15	1.1	ns	
Write command to RAS lead time	tRWL	20		20		ns	
Write command to CAS lead time	^t CWL	20		20		ns	
Data-in setup time	^t DS	0		0		ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		ns	
RAS to WE delay time	^t RWD	90		100		ns	21
Column address to WE delay time	^t AWD	55		60		ns	21
CAS to WE delay time	^t CWD	40		40		ns	21
Transition time (rise or fall)	tT	3	35	3	35	ns	9, 10
Refresh period (512 cycles)	tREF		16.7		16.7	ms	
RAS to CAS precharge time	^t RPC	0		0		ns	
CAS setup time (CBR refresh)	^t CSR	10		10		ns	5
CAS hold time (CBR refresh)	^t CHR	10		30		ns	5
ME/WE to RAS setup time	tWSR	0		0		ns	
ME/WE to RAS hold time	^t RWH	15		15		ns	in and
Mask data to RAS setup time	tMS	0		0		ns	
Mask data to RAS hold time	tMH	15		15		ns	<u> </u>

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1993, Micron Semiconductor, Inc.

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 5%)

AC CHARACTERISTICS			-7	-8		1.00	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		ns	
TR/(OE) LOW to RAS hold time	^t TLH	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time	^t RTH	65	10,000	70	10,000	ns	10 A
(REAL-TIME READ TRANSFER only)					-	1.1.1.1.1	1.1
TR/(OE) LOW to CAS hold time	^t СТН	20		20		ns	
(REAL-TIME READ TRANSFER only)							
TR/(OE) HIGH to SC lead time	^t TSL	5		5		ns	
TR/(OE) HIGH to RAS precharge time	^t TRP	60		70		ns	1.1
TR/(OE) precharge time	^t TRW	20		25		ns	
First SC edge to TR/(OE) HIGH delay time	^t TSD	15		15		ns	
RAS to first SC edge delay time	^t RSD	80		80		ns	2.2.5
CAS to first SC edge delay time	tCSD	25		25		ns	
Serial output buffer turn-off delay from RAS	^t SDZ	7	40	10	50	ns	- 201
SC to RAS setup time	^t SRS	25	1.0	30		ns	
Serial data input to SE delay time	^t SZE	0		0		ns	1
RAS to SD buffer turn on time	^t SRO	10		10		ns	
Serial data input delay from RAS	^t SDD	50		60		ns	
Serial data input to RAS delay time	tSZS	0		0		ns	5.1
Serial-Input-Mode enable	tESR	0		0		ns	
(SE) to RAS setup time							1.12
Serial-Input-Mode enable (SE) to RAS hold time	^t REH	15		15		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		ns	11.00
TR/(OE) HIGH to RAS hold time	^t YH	15		15		ns	1.0
DSF, TRM, STS, MKD to RAS setup time	^t FSR	0		0		ns	
DSF, TRM, STS, MKD to RAS hold time	^t RFH	15		15		ns	12.
DSF to RAS hold time	^t FHR	55		60	T	ns	
DSF to CAS setup time	tFSC	0		0	1	ns	
DSF to CAS hold time	^t CFH	15		15		ns	1.1.1.1.1
SC to QSF delay time	tSQD		20		20	ns	28
RAS to QSF delay time	tRQD		65		65	ns	28
CAS to QSF delay time	tCQD		35		35	ns	28
TR/OE to QSF delay time	^t TQD		25		25	ns	28
SPLIT TRANSFER setup time	^t STS	25		30	1	ns	28
SPLIT TRANSFER hold time	^t STH	0		0		ns	28

MICRON

PRELIMINARY

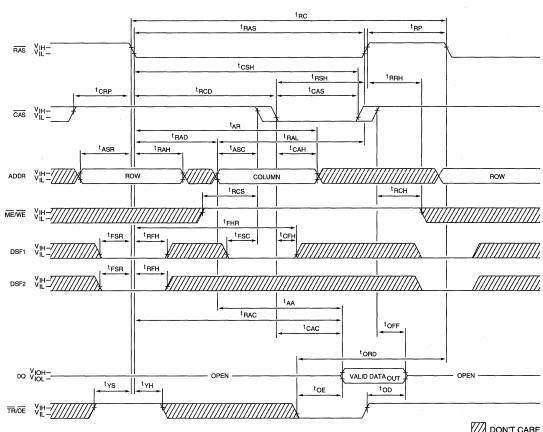
MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_{A} \le + 70^{\circ}C$; Vcc = 5V ±5%)

AC CHARACTERISTICS		-	-7 -8				
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time (Read)	^t SCR	22	1	25		ns	1
Serial clock cycle time (Write)	^t SCW	20		20		ns	
Access time from SC	^t SAC		22		25	ns	24, 30
SC precharge time (SC LOW time)	^t SP	7		7	1.1	ns	
SC pulse width (SC HIGH time)	^t SAS	7		7		ns	1.0
Access time from SE	^t SEA		12		15	ns	24
SE precharge time	^t SEP	10		10		ns	
Serial data out hold time after	^t SOH	5		5		ns	24, 30
SCHIGH							a d'
Serial output buffer turn off	^t SEZ	3	12	3	12	ns	20, 24
delay from SE				L			and the
Serial data in setup time	^t SDS	0		0		ns	24
Serial data in hold time	^t SDH	10		10		ns	24
Serial mask data in setup time	^t MDS	0		0		ns	
Serial mask data in hold time	^t MDH	10		10		ns	
SERIAL INPUT (Write) Enable	tSWS	0		0		ns	
setup time							
SERIAL INPUT (Write) Enable	^t SWH	10		15		ns	
hold time	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
SERIAL INPUT (Write) disable	tSWIS	0	1	0		ns	1.1
setup time							
SERIAL INPUT (Write) disable	tSWIH	10		15	1.0	ns	1.4
hold time							1997 B.
SSF to SC setup time	^t SFS	0		0		ns	29
SSF to SC hold time	^t SFH	10		15		ns	29
SSF LOW to SC HIGH delay	^t SFD	5		5		ns	29



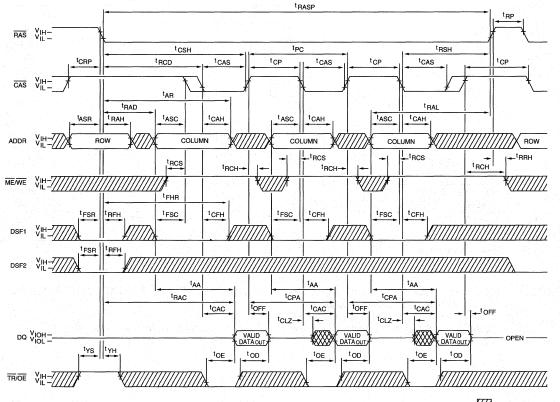
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 5\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by any 8 RAS cycles before proper device operation is assured. The 8 RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 3$ to 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition between 0V and 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If \overrightarrow{CAS} = VIH, DRAM data outputs (DQ1-DQ4) are High-Z.
- 12. If $\overrightarrow{CAS} = VIL$, DRAM data outputs (DQ1-DQ4) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\text{TR}}/\overline{\text{OE}}$ must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ^tAWD \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to \overline{CAS} leading edge in early WRITE cycles and $\overline{ME}/\overline{WE}$ leading edge in late WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 25. Addresses (A0-A8) change two times or less while $\overline{RAS} = V_{IL}$.
- 26. Addresses (A0-A8) change once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have 'OD and 'OEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after 'OEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. Applies to the MT43C4257A only.
- 29. Applies to the MT43C4258A only.
- 30. ^tSAC is MAX at 70° C and 4.75V Vcc; ^tSOH is MIN at 0°C and 5.25V Vcc. These limits will not occur simultaneously at any given voltage or temperature. ^tSOH = ^tSAC output transition time, this is guaranteed by design.

DRAM READ CYCLE

DON'T CARE


PRELIMIN/.RY

NEW

FRIPLE-PORT DRAM

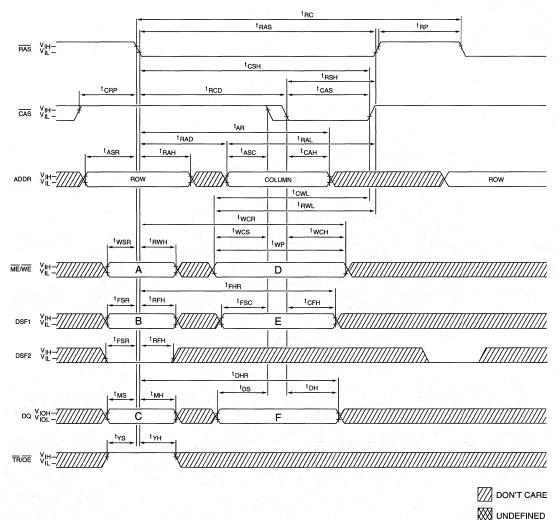
DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

WRITE CYCLE FUNCTION TABLE 1

		LOGIC STATES ²						
			RAS Falling	Edge	CAS Falling Edge			
CODE	FUNCTION	A ME/WE	B DSF1	C DQ (Input)	D ME/WE	E DSF1	F DQ (Input)	
RW	Normal DRAM WRITE	1	0	X	0	0	DRAM	
RWNM	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	0	.0	Write Mask	0/1 ³	0	DRAM (Masked)	
RWOM	PERSISTENT (Use Register) MASKED WRITE to DRAM	0	1	X	0/1 ³	0	DRAM (Masked)	
BW	BLOCK WRITE to DRAM (No DQ Mask)	1	0	X	0/1 ³	1	Column Mask	
BWNM	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	0	0	Write Mask	0/1 ³	1	Column Mask	
BWOM	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	0	1	X	0/1 ³	1	Column Mask	
LMR	Load Mask Data Register	1	1	X	0/1 ³	0	Write Mask	
LCR	Load Color Register	1	1	X	0/1 ³	1	Color Mask	

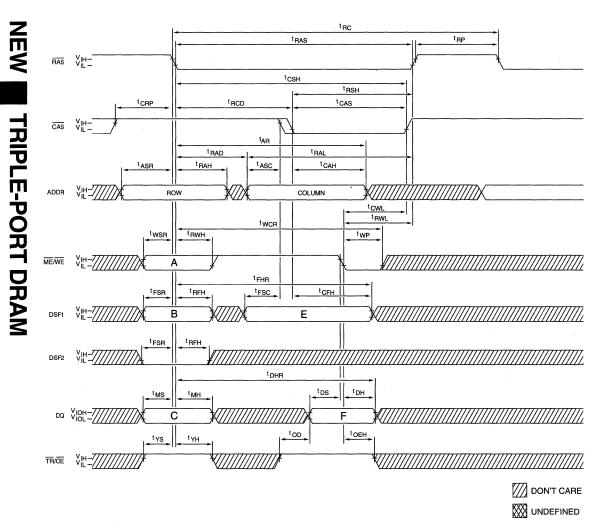

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E" and "F" for the WRITE cycle timing diagrams on the following pages.

2. TRM, MKD and STS are "don't care" for all WRITE cycles.

3. If ME/WE is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if ME/WE falls after CAS.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

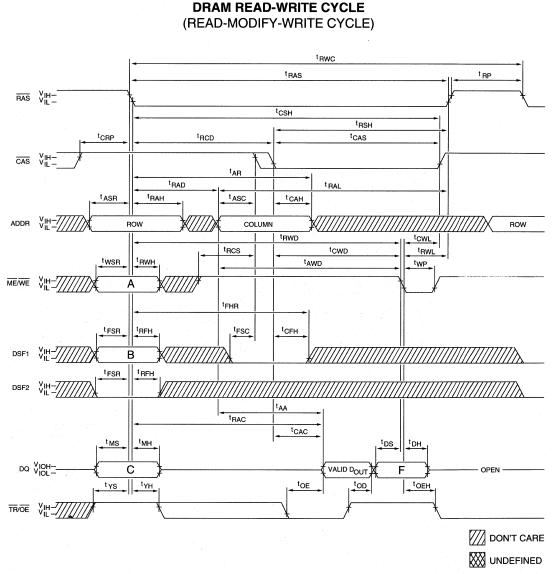
DRAM EARLY-WRITE CYCLE


NOTE: The logic states of "A", "B", "C", "E" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

3-31

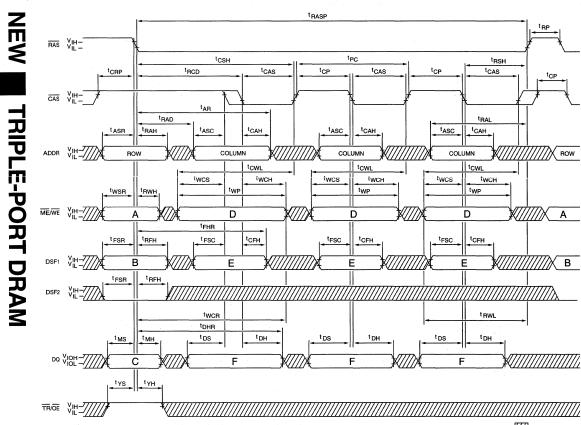
1T43C4257A/8A IEV. 5/93

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM


DRAM LATE-WRITE CYCLE¹

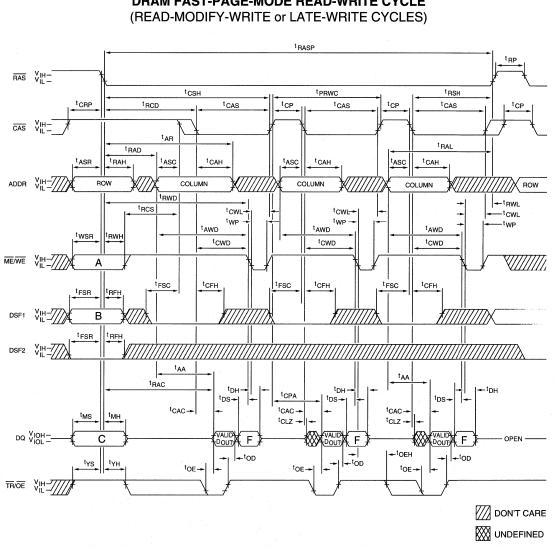
NOTE: 1. The logic states of "A", "B", "C", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MICRON



MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

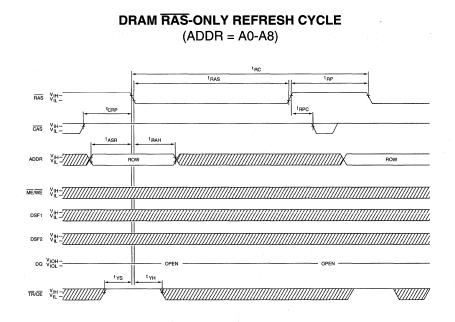
NOTE: The logic states of "A", "B", "C" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1, 2

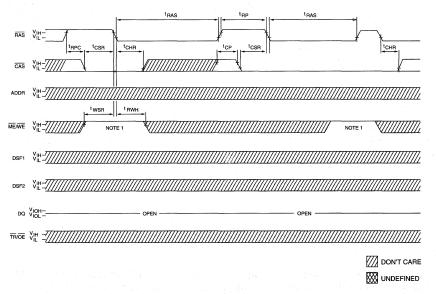
RON

- NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles may be mixed with WRITE cycles while in FAST-PAGE-MODE.
 - 2. The logic states of "A", "B", "C", "D", "E" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

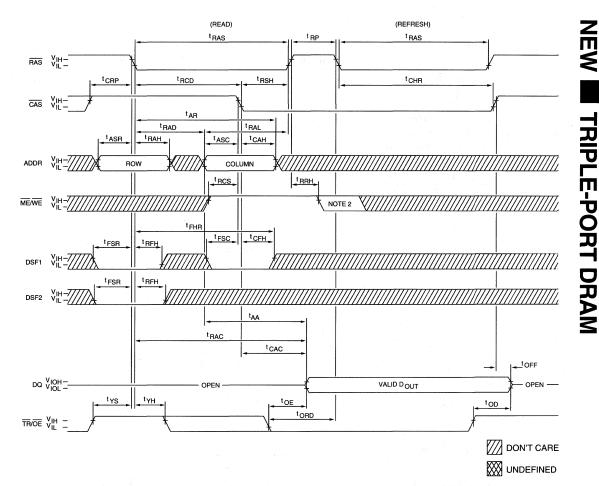
MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM



DRAM FAST-PAGE-MODE READ-WRITE CYCLE


- NOTE: 1. READ or WRITE cycles may be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
 - 2. The logic states of "A", "B", "C" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

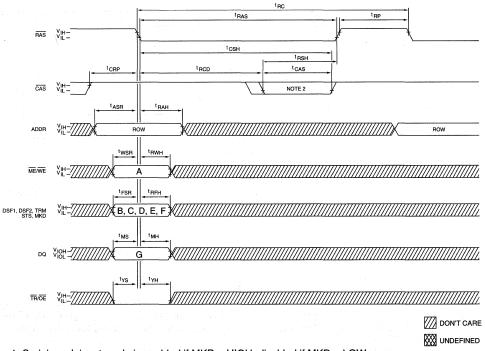
IRON


CBR REFRESH CYCLE

NOTE: 1. The MT43C4257A/8A operates with this state as "don't care," but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

DRAM HIDDEN-REFRESH CYCLE

NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH and the DQ pins stay High-Z. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.


The MT43C4257A/8A operates with this state as "don't care," but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

DRAM/BMR TRANSFER CYCLE FUNCTION TABLE 1

				5	LOGIC STA	TES	-			
		RAS Falling Edge								
CODE	FUNCTION	A ME/WE	B DSF1	C DSF2	D TRM	E STS	F MKD	G DQ(Input)		
BMR-RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	0	1	0	0/11	X		
BMR-IRT	BMR READ TRANSFER (DRAM→invert→BMR TRANSFER)	1	0	0	1	1	0/11	X		
BMR-WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	0	0	0	1	0	0/11	Mask		
BMR-IWT	BMR WRITE TRANSFER (BMR→invert→DRAM TRANSFER)	0	0	0	. 1	1	0/11	Mask		
CLR-BMR	CLEAR BMR (CLR-BMR)	1	1	1	0	X	0/1 ¹	X		

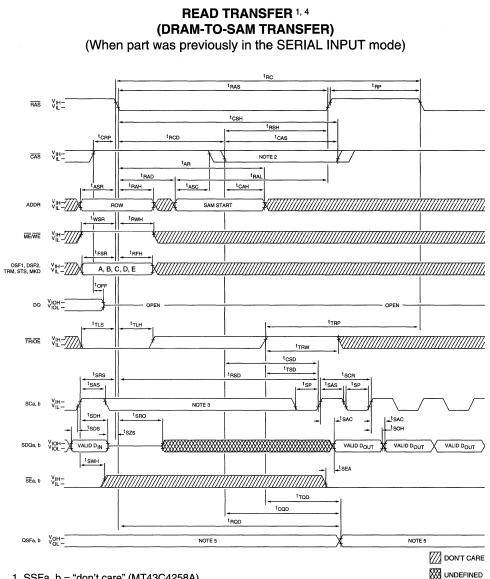
DRAM/BMR TRANSFERS

NOTE: 1. Serial mask input mode is enabled if MKD = HIGH; disabled if MKD = LOW. 2. It is not necessary to drop CAS during a DRAM/BMR TRANSFER.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

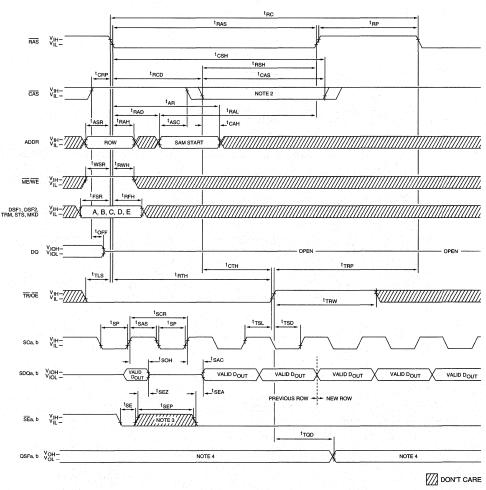
READ TRANSFER CYCLE FUNCTION TABLE 1

		LOGIC STATES RAS Falling Edge					
CODE	FUNCTION	A DSF1	B DSF2	C TRM	D STS	E MKD	
RW	READ TRANSFER	0	0	0	0/1 ²	X	
SRT	SPLIT READ TRANSFER (DRAM→SAM)	1	0	0	0/1 ²	X	
BMRT	BIT MASKED READ TRANSFER	0	1	1	0/1 ²	X	
BMSRT	BIT MASKED SPLIT READ TRANSFER	1	1	1	0/1 ²	X	
BMR-SAM	BMR→SAM TRANSFER	1	0	1	0/12	0/13	


NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for READ TRANSFER cycle timing diagrams on the following pages.

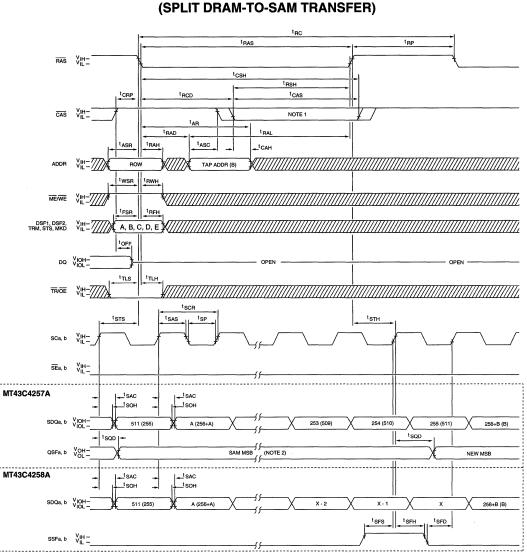
2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW, the transfer is to SAMa; when STS = HIGH, the transfer is to SAMb.

3. Serial mask input mode is enabled if MKD = HIGH; disabled if MKD = LOW.


MICRON

- NOTE: 1. SSFa, b = "don't care" (MT43C4258A).
 - 2. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
 - 3. There must be no rising edges on the SC input during this time period.
 - 4. The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
 - 5. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256–511) is being accessed.

REAL-TIME READ TRANSFER ^{1, 5} (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)



NOTE: 1. SSFa, b = "don't care" (MT43C4258A).

- 2. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed.
- 3. The SE pulse is shown to illustrate the serial output enable and disable timing. It is not required.
- 4. QSF = 0 when the lower SAM (bits 0–255) is being accessed.
- QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- 5. The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

MICRON

SPLIT READ TRANSFER 3

DON'T CARE

NOTE: 1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half.

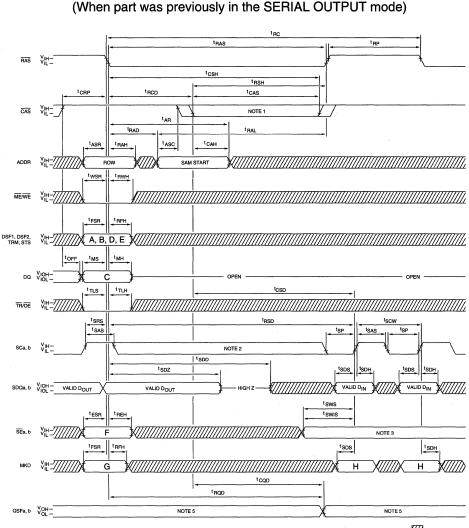
- 2. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 256-511) is being accessed.
- The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

WRITE TRANSFER CYCLE FUNCTION TABLE 1

		LOGIC STATES								
		RAS Falling Edge							SC	
CODE	FUNCTION	A DSF1	B DSF2	C DQ	D TRM	E STS	F SE	G MKD	H MKD	
WT	WRITE TRANSFER (SAM→DRAM)	0	0	X	0	0/1²	0	x	-	
PWT	PSEUDO WRITE TRANSFER	0	0	X	0	0/1²	1	X	-	
MSWT	DQ MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	1	0	Mask	0	0/1 ²	X	х		
MWT	DQ MASKED WRITE TRANSFER (SAM→DRAM)	0	1. 	Mask	0	0/1 ²	X	x	-	
BMWT	BIT MASKED WRITE TRANSFER (SAM→DRAM)	0	1	X	1	0/1 ²	X	х	0/14	
BMSWT	BIT MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	1	1	Mask	1	0/1²	Х	x	0/14	
SAM-BMR	(SAM→BMR) TRANSFER	1	0	X	1	0/1 ²	Х	0/1 ³	-	
BMWT- DQM	DQ/BIT MASKED WRITE TRAN- SFER (SAM→DRAM)	1	1	Mask	0	0/1²	х	х	0/14	

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E", "F", "G", and "H" for WRITE TRANSFER cycle timing diagrams on the following pages.

2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW, the transfer is to SAMa; when SAM = HIGH, the transfer is to SAMb.

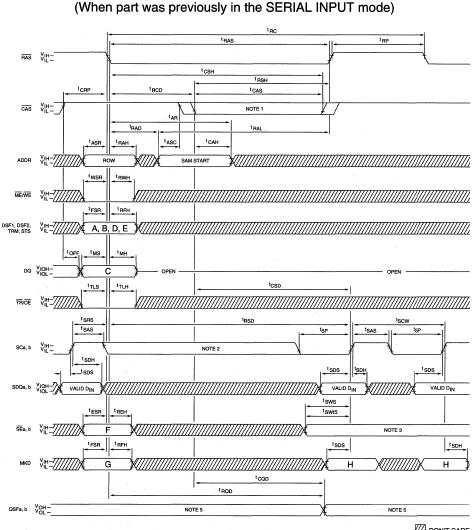

3. Serial mask input (SMI) mode is enabled if MKD = HIGH and disabled if MKD = LOW.

4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic "1" on MKD will allow data to pass through the mask; a logic "0" will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

NEW TRIPLE-PORT DRAM

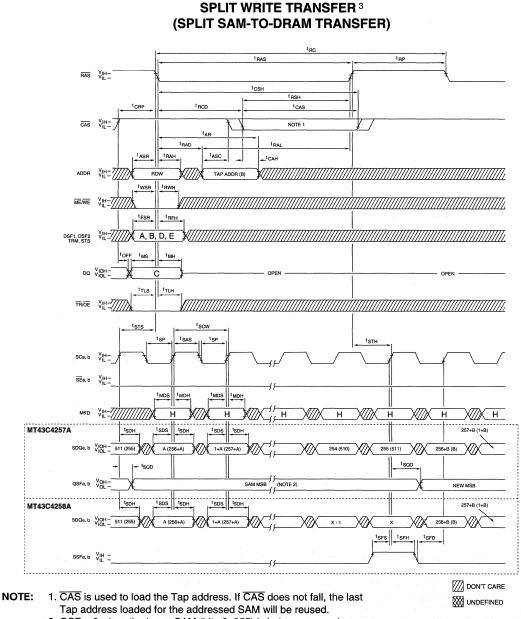
RON


WRITE TRANSFER 4

NOTE: 1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.

- 2. There must be no rising edges on the SC input during this time period.
- 3. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the lower SAM (bits 0–255) is being accessed. QSF = 1 when the upper SAM (bits 256–511) is being accessed. SSFa,b = "don't care" (MT43C4258A).

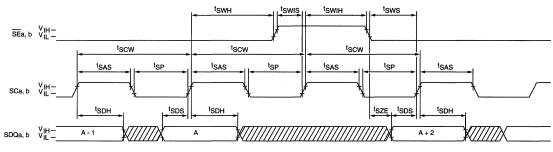
WRITE TRANSFER 4

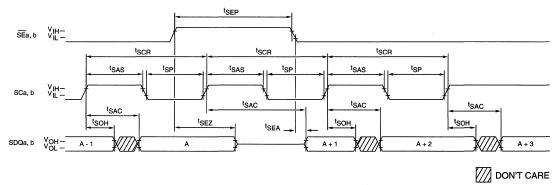

NOTE:

 CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.

- DON'T CARE
- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the upper SAM (bits 256–511) is being accessed. SSFa,b = "don't care" (MT43C4258A).

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM




- 2. QSF = 0 when the lower SAM (bits 0-255) is being accessed.
- QSF = 1 when the upper SAM (bits 256–511) is being accessed.
- 3. The logic states of "A", "B", "C", "D", "E" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.

NEW TRIPLE-PORT DRAM

SAMa or SAMb SERIAL INPUT

SAMa or SAMb SERIAL OUTPUT

NOTE: SEa, SCa and SDQa are used when accessing SAMa and SEb; SCb and SDQb are used when access in SAMb.

MT43C4257A/8A 256K x 4 TRIPLE-PORT DRAM

(SUPERSEDED BY MT4C8128A/9A)

MT43C8128/9 128K x 8 TRIPLE-PORT DRAM

TRIPLE-PORT DRAM

FEATURES

- Three asynchronous, independent, data-access ports
- Fast access times: 80ns random, 25ns serial
- Operation and control compatible with 1 Meg VRAMs
- High-performance, CMOS silicon-gate process
- Inputs and outputs are fully TTL compatible
- Low power: 15mW standby; 550mW active, typical
- 512-cycle refresh within 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST-PAGE-MODE access cycles
- Two bidirectional serial access memories (SAMs)
- Fully static SAMs and Mask Register, no refresh required
- 2,048-bit Bit Mask Register
- SERIAL MASK DATĂ INPUT mode

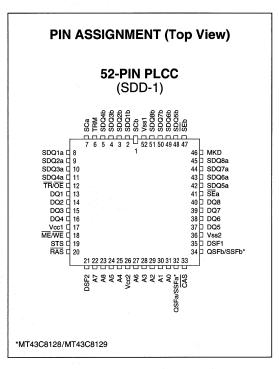
SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE
- BIT MASKED TRANSFERs

OPTIONS

MARKING

• Timing (DRAM, SAMs [cycle/ 80ns, 28ns/25ns 100ns, 30ns/27ns	/access]) - 8 -10
• Packages Plastic LCC (750 mil)	EJ
Functionality	


- Functionality
 QSF output MT43C8128
 (indicates SAM half accessed)

 SSF input MT43C8129
 (Split SAM special function, stop count)
- Part Number Example: MT43C8128EJ-8

GENERAL DESCRIPTION

The MT43C8128/9 are high-speed, triple-port CMOS dynamic random access memories (TPDRAM) containing 1,048,576 bits. Data may be accessed by an 8 bit wide DRAM port or by either of two independently-clocked 256 x 8-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and the SAMs.

FRIPLE-PORT DRAM

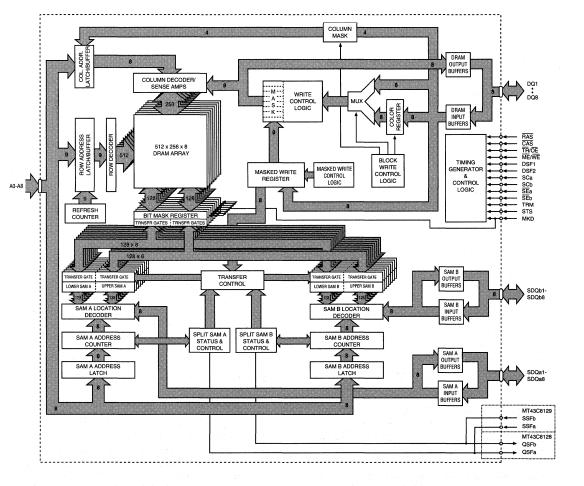
The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4) DRAM. Sixteen 256-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 8-bit random access I/O port, a pair of internal 2,048-bitwide paths between the DRAM and the SAMs, and the pair of 8-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing, and address decoding logic.

All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2,048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 256×8 -bit bit mask data register may be parallel loaded from the DRAM or either SAM, or it may be serial loaded through the MKD serial input.

(SUPERSEDED BY MT4C8128A/9A)

MT43C8128/9 128K x 8 TRIPLE-PORT DRAM


As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of $\overline{\text{RAS}}$ addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require any refresh.

MICRON

The operation and control of the MT43C8128/9 are optimized for high performance graphics and communication designs. The triple-port architecture is well suited to buffering the sequential data types used in raster graphics display, video windowing, serial/parallel networking and data communications. Special features, such as SPLIT TRANSFER, BIT MASKED TRANSFERs and BLOCK WRITE allow further enhancements to system performance.

TRIPLE-PORT DRAM

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

128K x 8 DRAM WITH

DUAL 256 x 8 SAMS

TRIPLE-PORT DRAM

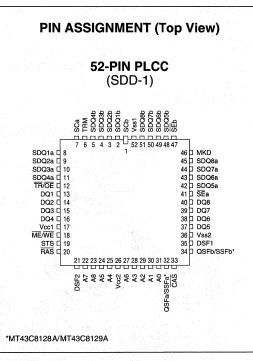
FEATURES

- Three asynchronous, independent, data access ports
- Fast access times: 70ns random, 22ns serial
- Operation and control compatible with 1 Meg VRAMs
- High-performance, CMOS silicon-gate process
- Inputs and outputs are fully TTL compatible
- Low power: 15mW standby; 550mW active, typical
- 512-cycle refresh within 16.7ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST-PAGE-MODE access cycles
- Two bidirectional serial access memories (SAMs)
- Fully static SAMs and Mask Register, no refresh required
- 2,048-bit Bit Mask Register
- SERIAL MASK DATĂ INPUT mode

SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE
- BIT MASKED TRANSFERs

OPTIONS


٠	Timing (DRAM, SAMs [read c	ycle/write cycle])
	70ns, 22ns/20ns	-7
	80ns, 25ns/20ns	-8
•	Packages Plastic LCC (750 mil)	EJ

MARKING

- Functionality
 QSF output
 MT43C8128A
 (indicates SAM half accessed)
 SSF input
 (Split SAM special function, stop count)
- Part Number Example: MT43C8128AEJ-7

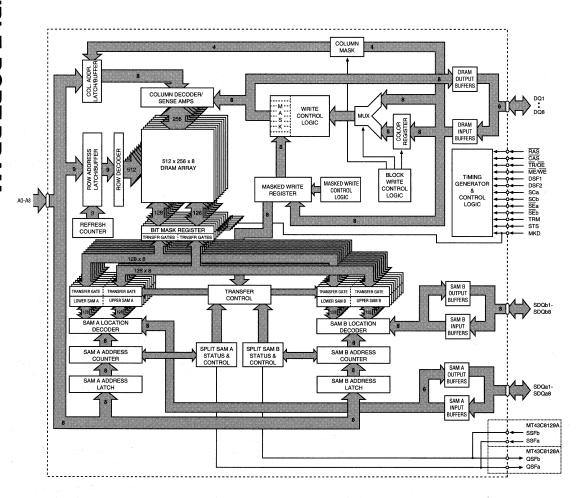
GENERAL DESCRIPTION

The MT43C8128A/9A are high-speed, triple-port CMOS dynamic random access memories (TPDRAM) containing 1,048,576 bits. Data may be accessed by an 8 bit wide DRAM port or by either of two independently-clocked 256 x 8-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and the SAMs.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4) DRAM. Sixteen 256-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 8-bit random access I/O port, a pair of internal 2,048 bit wide paths between the DRAM and the SAMs, and the pair of 8-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing, and address decoding logic.

All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2,048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 256×8 -bit bit mask data register may be parallel loaded from the DRAM or either SAM, or it may be serial loaded through the MKD serial input.



MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require any refresh.

The operation and control of the MT43C8128A/9A are optimized for high-performance graphics and communication designs. The triple-port architecture is well suited to buffering the sequential data types used in raster graphics display, video windowing, serial/parallel networking and data communications. Special features, such as SPLIT TRANSFER, BIT MASKED TRANSFERs and BLOCK WRITE allow further enhancements to system performance.

FUNCTIONAL BLOCK DIAGRAM

3-52

©1993, Micron Semicond

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

PIN DESCRIPTIONS

PLCC PIN NUMBER	SYMBOL	ТҮРЕ	DESCRIPTION
7	SCa	Input	Serial Clock, SAMa: Clock input to the serial address counter for the SAMa registers and strobe for SAMa control and data inputs.
1 	SCb	Input	Serial Clock, SAMb: Clock input to the serial address counter for the SAMb registers and strobe for SAMb control and data inputs.
12	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at the falling edge of $\overline{\text{RAS}}$, or
			Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z state.
18	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or
			Write Enable: $\overline{ME/WE}$ is also used to select a READ ($\overline{ME/WE}$ = H) or WRITE ($\overline{ME/WE}$ = L) cycle when accessing the DRAM. This includes a READ TRANSFER ($\overline{ME/WE}$ = H) or WRITE TRANSFER ($\overline{ME/WE}$ = L).
41	SEa	Input	Serial Port Enable SAMa: SEa enables Port A serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEa is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
47	SEb	Input	Serial Port Enable, SAMb: SEb enables Port B serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEb is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
35	DSF1	Input	Special Function (Control) 1: DSF1 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description.
21	DSF2	Input	Special Function (Control) 2: DSF2 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description.
20	RAS	Input	Row Address Strobe: $\overline{\text{RAS}}$ is used to clock-in the 9 row-address bits and strobe the control and data inputs.
33	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock-in the 8 column- address bits, enable the DRAM output buffers (along with $\overline{TR/OE}$), and strobe control inputs and data inputs.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

PIN DESCRIPTIONS (continued)

PLCC PIN NUMBER(S)	SYMBOL	ТҮРЕ	DESCRIPTION
31, 30, 29, 28, 25, 24, 27, 22, 23	A0-A8	Input	Address Inputs: For DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 128K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A7 indicate the SAM start address (when CAS goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFER.
19	STS	Input	SAM Transfer Select: The state of STS at \overrightarrow{RAS} time determines which SAM is involved in a transfer (SAMa = LOW, SAMb = HIGH).
46	MKD	Input	Mask Data Input: MKD is used during BIT MASK REGISTER LOAD cycles to enable or disable the serial mask input mode (SMI). If SMI is enabled (MKD = HIGH at RAS), then MKD is used as mask data input and is clocked by SCb into the mask data register.
6	TRM	Input	Transfer Mask Select: TRM is used to select between NORMAL TRANSFER cycles and BIT MASKED TRANSFER or BIT MASK REGISTER LOAD cycles.
13, 14, 15, 16, 37, 38, 39, 40	DQ1-DQ8	Input/ Output	DRAM Data I/O: Data inputs and outputs for the DRAM memory array; inputs for the MASK and COLOR REGISTER load cycles; address mask inputs for BLOCK WRITE cycles.
8, 9, 10, 11, 42, 43, 44, 45	SDQa1-SDQa8	Input/ Output	Serial Data I/O, SAMa: Input, Output, or High-Z.
2, 3, 4, 5, 48, 49, 50, 51	SDQb1-SDQb8	Input/ Output	Serial Data I/O, SAMb: Input, Output, or High-Z.
32	QSFa/SSFa	Output	Split SAM Status, SAMa (MT43C8128A): QSFa indicates which half of SAMa is being accessed (Lower = LOW, Upper = HIGH).
		Input	Split SAM Special Function, SAMa (MT43C8129A): SSFa = HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFa is synchronized with SCa.
34	QSFb/SSFb	Output	Split SAM Status, SAMb (MT43C8128A): QSFb indicates which half of SAMb is being accessed (Lower = LOW, Upper = HIGH).
		Input	Split SAM Special Function, SAMb (MT43C8129A): SSFb = HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFb is synchronized with SCb.
17, 26	Vcc	Supply	Power Supply: +5V ±5%
52, 36	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT43C8128A/9A may be divided into four functional blocks: the DRAM and its special functions, the bit mask register (BMR), the two serial access memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

DRAM REFRESH (ROR, CBR, and HR)

Like any DRAM-based memory, the MT43C8128A/9A TPDRAM must be refreshed to retain data. All 512 rowaddress combinations must be accessed within 16.7ms. The MT43C8128A/9A support CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data but must simply perform 512 CBR cycles within the 16.7ms time period.

For \overline{RAS} -ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs. The DQ pins remain in a High-Z state for both the \overline{RAS} ONLY and CBR cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling \overline{RAS} (while keeping \overline{CAS} LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and BMR portions of the MT43C8128A/9A are fully static and do not require any refreshing.

DRAM READ AND WRITE CYCLES (RW)

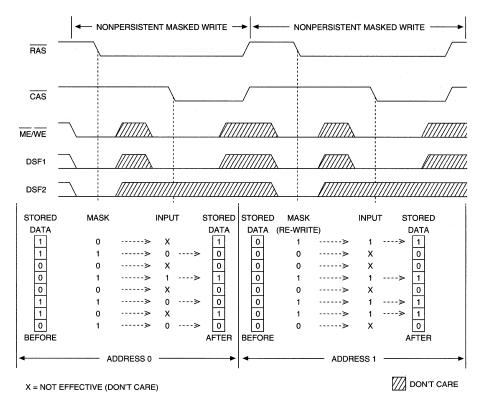
The DRAM portion of the TPDRAM is nearly identical to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

The 17 address bits used to select an 8-bit word from the 131,072 available are latched into the chip using the A0-A8, RAS, and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 8 column-address bits (A0-A7) are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

Note: RAS also acts as a "master" chip enable for the TPDRAM. If RAS is inactive, HIGH, all other DRAM control pins (CAS, TR/OE, ME/WE, etc.) are a "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without RAS falling.


For single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $\overline{TR}/(\overline{OE})$ is used when \overline{RAS} goes LOW to select between DRAM and TRANS-FER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations.

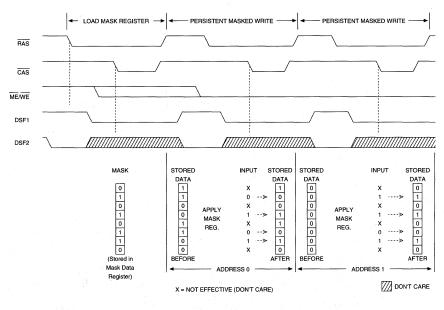
If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH to LOW some time after RAS falls to enable the DRAM output port.

For single-port DRAMs, $\overline{\text{WE}}$ is a "don't care" when $\overline{\text{RAS}}$ goes LOW. For the TPDRAM, $\overline{\text{ME}}/(\overline{\text{WE}})$ is used, when $\overline{\text{RAS}}$ goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{\text{ME}}/(\overline{\text{WE}})$ is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any TPDRAM non-masked access cycle (READ or WRITE), $\overline{\text{ME}}/(\overline{\text{WE}})$ must be HIGH at the $\overline{\text{RAS}}$ HIGH-to-LOW transition. If ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ is LOW when $\overline{\text{CAS}}$ goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE


NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within an 8-bit word. The MT43C8128A/9A support two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If ME/(WE), DSF1 and DSF2 are LOW at the \overline{RAS} HIGHto-LOW transition, the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic 0) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C8128A/9A. Note that \overline{CAS} is still HIGH. When \overline{CAS} or $(\overline{ME})/\overline{WE}$ go LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of \overline{RAS} . FAST-PAGE-MODE may be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one \overline{RAS} cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

MICRON

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

Figure 2 PERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE (RWOM)

IRON

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF1 HIGH, and DSF2 LOW, when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description). PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF2 LOW and DSF1 HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs.

Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the DQ inputs is not loaded into the mask register when RAS falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 2 shows the LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycle operations. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at RAS time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST-PAGE-MODE.

BLOCK WRITE (BW)

If DSF1 is HIGH when \overline{CAS} goes LOW, the MT43C8128A/9A will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 3). A total of 32 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However, when \overline{CAS} goes LOW, only the A2-A7 inputs are used. A2-A7 specify the "block" (out of the 64 possible) of four adjacent column locations that will be accessed. When the latter of $\overline{ME}/\overline{WE}$ and \overline{CAS} go LOW, the DQ inputs latched and used to determine which of the four column locations will be written. DQ1 acts as a write enable for column location A0 = 0, A1 = 0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0 = 1, A1 = 1. The write enable controls are active HIGH; the WRITE function is enabled by a logic 1 and disabled by a logic 0.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

COLUMN (A2-A7 at CAS) NEW TRIPLE-PORT DRAM ROW (A0-A8 at RAS) , , , , , , , , , , , , , , , , , DQ1 COLUMN MASK (A0,A1) ON THE INPUTS AT CAS DQ2 DQ3 DQ4 CAS (DQ1) (DQ2) (DQ3) DQ1 0 DQ2 0 0P DQ3 O MASK DATA DQ4 DQ5 0 REGISTE DQ6 0 DQ7 • DQ8 ۰ (MASKED WRITE IS OPTIONAL AND MAY BE FITHER PERSISTENT BAS OR NONPERSISTENT. LOAD COLOR BEGISTEF COLOR REGISTER (must be pr heheol vizuoi

Figure 3 BLOCK WRITE EXAMPLE

register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.

NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions may be used during BLOCK WRITE cycles also. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPER-SISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\mathrm{ME}}/(\overline{\mathrm{WE}})$ LOW and DSF1 LOW when $\overline{\mathrm{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF

pin must be driven HIGH when CAS goes LOW to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the eight column locations may be masked.

PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

DRAM REGISTER OPERATIONS

The MT43C8128A/9A contain two 8-bit registers that are used as data registers for special functions. This section describes how to load these registers.

LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF1 is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF1 being HIGH when \overline{RAS} goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when \overline{CAS} goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NON-PERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable WRITEs to the eight DQ planes.

LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGIS-TER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

(DQ8) (DQ7) (DQ6)

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect to the DRAM portion of the device. A WRITE is referenced to the DRAM array and a READ is referenced from the array.

Note: The three ports of the TPDRAM are independent of, and asynchronous to, one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affect access from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.

TRANSFER operations are initiated when $\overline{TR}/(\overline{OE})$ is LOW at the falling edge of \overline{RAS} . The state of STS when \overline{RAS} goes LOW indicates which SAM the TRANSFER will address. The state of $(\overline{ME})/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANS-FER cycles. A TRANSFER cycle can be performed without dropping \overline{CAS} . In this case, the previously loaded Tap address will be used.

The MT43C8128A/9A include a feature called BIT MASKED TRANSFER, which uses a third 2,048-bit data register to individually mask every bit involved in a TRANS-FER operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERs. The TRM pin is used to select between NORMAL and BIT MASKED TRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of RAS.

NORMAL TRANSFERS

The MT43C8128A/9A support all of the popular transfer cycles available on Micron's 1 Meg Video RAMs. Each of these is described in the following section.

READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH, and DSF1, DSF2 and $\overline{\text{TR}}/(\overline{\text{OE}})$ are LOW when RAS goes LOW. When RAS goes LOW, the READ TRANSFER is to SAMa if STS = LOW, or to SAMb if STS = HIGH. The rowaddress bits indicate the eight 256-bit DRAM rows that are to be transferred to the eight SAM data registers. The column-address bits indicate the start address (or Tap point) of the next serial output cycle from the designated SAM data registers. QSF indicates the SAM half being accessed: LOW if the lower half; HIGH if the upper half. Performing a READ TRANSFER cycle sets the direction of the selected SAMs I/O buffers to the output mode.

To complete a REAL-TIME READ-TRANSFER, $\overline{TR}/(\overline{OE})$ is taken HIGH while RAS and CAS are LOW. In order to synchronize the REAL-TIME READ-TRANSFER to the serial clock, the rising edge of $\overline{TR}/(\overline{OE})$ must occur between the rising edges of successive clocks on the SC input (refer to the AC timing diagrams). A "regular" READ TRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{TR}/(\overline{OE})$ is taken HIGH "early," without regard to the falling edge of \overline{CAS} . The transfer will be completed internally by the device. The first serial clock must meet the tRSD and tCSD delays (see READ TRANSFER AC timing diagram). The 2,048 bits of DRAM data are then written into the SAM data registers, and the selected SAM's Tap address that was stored in the internal, 8-bit Tap address register is loaded into the address counter. If SE for the SAM selected (SEa for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. \overline{SE} enables the serial outputs, and may be either HIGH or LOW during this operation.

SPLIT READ TRANSFER (SRT)

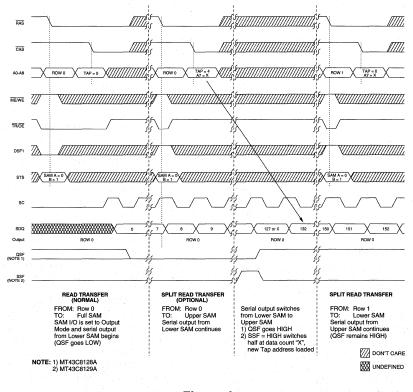
The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out of the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer may occur at any time while the other half is sending data, and need not be synchronized with the SC clock.

The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is relaxed for SRT cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle, and therefore is independent of the rising edges of RAS and $\overline{\text{CAS}}$. The transfer timing is generated internally for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (nonsplit) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAM I/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT may be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of the SAM not actively being accessed will be the half that

MICRON. SEMICONDUCTOR, INC.


MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

receives the transfer. When \overline{CAS} falls, address pins A0-A6 determine the Tap address for the SAM-half selected; A7 = "don't care." If \overline{CAS} does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.

Figure 4 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need only be done if the Tap for the upper half is $\neq 0$. For the MT43C8128A, serial access continues, and when the SAM address counter reaches 127 ("A7" = 1, A0-A6 = 0), the QSF output for that SAM goes HIGH. Then the Tap address for the upper half is automatically loaded. Since the serial access has now switched to the upper half of the SAM, new data may be transferred to the lower half. This sequence of waiting for the sAM half that is not being accessed may now be repeated. For example, the next step in Figure 4 would be to wait until QSF went

LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM. \overline{CAS} is used to load the Tap address. If \overline{CAS} does not fall, the last Tap address load for the addressed SAM will be reused.

The split SAM operation is slightly different for the MT43C8129A. Instead of having a QSF, this device has a Split SAM Special Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half (127; lower, 255; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the current SAM-half is reached.QSF = 0 when the Lower SAM (bits 0–127) is being accessed. QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

Figure 4 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

WRITE TRANSFER (WT)

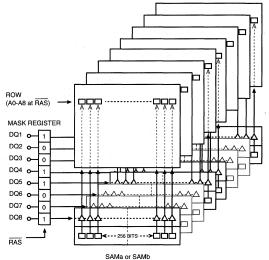
The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except $(\overline{ME})/\overline{WE}$ and \overline{SE} must be LOW when \overline{RAS} goes LOW. The DSF2 input is used to select between the WT and DQ MASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pin is also taken LOW or HIGH to select SAMa or SAMb, respectively, when \overline{RAS} goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper half. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle may be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with the SE of the appropriate SAM held HIGH instead of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of the SAM port without disturbing the addressed row data.

DQ MASKED WRITE TRANSFER (MWT)

The data being transferred from either SAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the eight DQ planes (see Figure 5). The DMWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of RAS.


The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

DQ MASKED SPLIT WRITE TRANSFER (MSWT)

The SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 6 shows a typical initiation sequence for SWT cycles.

Like the SRT, the DQ MASKED SPLIT WRITE TRANS-FER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDO WRITE TRANSFER cycle is required to set the Tap address and set the SAM I/O direction to input mode.

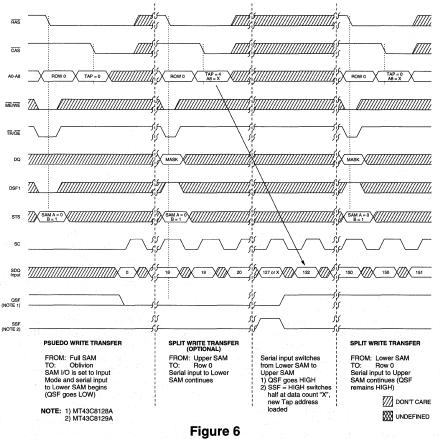
After the WT, an MSWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately transferred to the first destination row. This half of the SAM

Figure 5 DQ MASKED WRITE TRANSFER

may not yet contain valid data. However, another MSWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an MSWT addressed to any DRAM row, but mask (disable) all eight of the DQ planes. This method can be used to initiate the MSWT sequence without disturbing any DRAM data. The MSWT to the upper half is optional, and it is only needed if the Tap for the upper half is $\neq 0$.

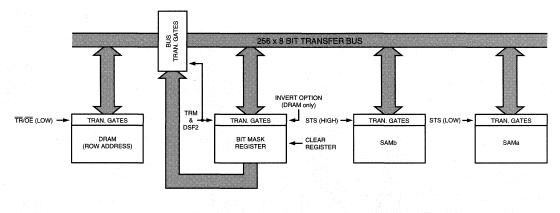
Write mask data must be supplied to the DQ inputs during every SWT cycle at RAS time. The mask data acts as an individual write enable for each of the eight DRAM DQ planes. For example, DQ1, at RAS time, during a DQ1 MASKED WRITE, enables or disables the transfer of the SAM SDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANSFER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A6) for the other half is loaded when CAS falls (A7 is a "don't care"). If CAS does not fall, the previously loaded Tap address, A0-A6, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb outputs (MT43C8128A) indicate which half of SAMa or SAMb, respectively, is currently accepting


MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower half of the SAM may be transferred to any DRAM row. The cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 6 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0. If the terminal count of the SAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded Tap address (access will not move to the next half).

When operating the MT43C8129A in the MSWT mode, the address pointer may be changed to the new Tap address of the next half when the final desired input data is clockedin. When the final data is input, the SSF input is taken HIGH at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap address will be automatically loaded when the maximum Tap address count is reached for the current half (127 or 255). If SSF is HIGH at SC before an MSWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not preceed to the next half. If terminal count is reached before an MSWT, the access will proceed as it does for the MT43C8128A.


SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SCa,b, SEa,b and SSFa,b (MT43C8128A). The rising edge of SC increments the serial address counter and provides access to the next SAM location. SE enables or disables the serial input/output buffers.

TYPICAL SPLIT-WRITE-TRANSFER INITIATION SEQUENCE

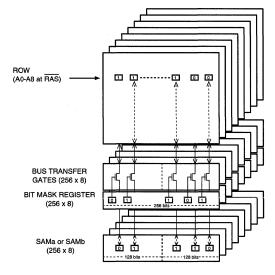
MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

Figure 7 BIT MASKED TRANSFER BLOCK DIAGRAM

Serial output of the SAM contents will start at the serial Tap address that was loaded in the SAMa, b address counter during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. SE is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. For the MT43C8128A, the address progresses through the SAM and will wrap around (after count 127 or 255) to the Tap address of the next half, for split modes. Address count will wrap around (after count 255) to Tap address 0 if in the "full" SAM modes. For the MT43C8129A, the address count will wrap as it does for the MT43C8128A or it may be triggered, at will, to the next half by the SSF input (split SAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The subsequent LOW-to-HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address counter (loaded when the serial input mode was enabled) will determine the serial address of the first 8-bit word written. SE acts as a WRITE ENABLE for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input. The

operation of SSF(MT43C8129A) is the same as described for serial output.


BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BIT MASKED TRANSFER capability. Before performing these BIT MASKED TRANSFERs, the bit mask register must be loaded with the mask data. See the next section, BIT MASK REGISTER OPERATIONs, for instructions on how to load the bit mask register (BMR).

The BMR is a 2,048-bit register that individually controls each of the 2,048 transfer gates on the internal 256×8 transfer bus (see Figure 7). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic "1" in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic "0" will select the masked mode for that bit.

BIT MASKED TRANSFERs may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERs. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERs between the DRAM and either of the two SAM registers are possible. Figure 8 illustrates the BIT MASKED TRANSFER functions.

Figure 8 BIT MASK TRANSFER BLOCK DIAGRAM

BIT MASKED READ TRANSFER (BMRT)

BIT MASKED READ TRANSFER may be used to transfer any combination of the 2,048 bits contained in any DRAM row address to either of the two SAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except that TRM and DSF2 are HIGH select the BIT MASKED feature. If a bit in the BMR is a logic "1", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).

BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKED SPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when RAS falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the bit mask register before the data is written to the DRAM.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANS-FER, except TRM and DSF2 are HIGH when RAS falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at RAS time. If a DQ input is LOW at RAS time, none of the 128 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 128 SAM bits for that row-half will be masked by the corresponding 128 mask register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

DQ MASKED BIT MASKED WRITE TRANSFER (BMWT-DQM)

The BMWT-DQM cycle is nearly identical to the BIT MASKED WRITE TRANSFER, except TRM is LOW and DSF1 is HIGH when \overline{RAS} falls. Two masks are applied during a BMWT-DQM operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at \overline{RAS} time. If a DQ input is LOW at \overline{RAS} time, none of the 256 SAM bits for that DQ plane will be transferred to the DRAM row selected. If a DQ input is HIGH, the 256 SAM bits for that row will be masked by the corresponding 256 mask register bits when written to the selected DRAM row. The remaining control timing is identical to the requirements for a normal WRITE TRANSFER.

BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMR's contents. Data may be inverted when being transferred between the BMR and DRAM also.

BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the bit mask register by using the BMR READ TRANSFER function. When \overline{RAS} falls, $\overline{TR}/(\overline{OE})$ is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.

Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS = LOW) or inverted (STS = HIGH) data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when \overline{RAS} falls selects whether the Serial Mask

MT43C8128A/9A

MICRON

Input (SMI) feature is enabled (see the Functional Truth Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). MKD is LOW when RAS falls to disable SMI, or HIGH to enable SMI. After the transfer is completed, the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD pin is tied to the eight bit-planes, the data on the MKD pin is written to each bit-plane simultaneously.

BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at $\overline{\text{RAS}}$ time the DRAM data will be inverted before being written to the BMR. All 2,048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMR INVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. To select a write transfer from the BMR, $(\overline{\text{ME}})/\overline{\text{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\text{RAS}}$ falls. The DQ inputs are used to input a DQ bit-plane mask when $\overline{\text{RAS}}$ falls. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\text{RAS}}$ time to transfer non-inverted BMR data to the DRAM row selected.

BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2,048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at RAS time will cause the BMR data to be inverted before it is stored in the selected DRAM row. The other control and DQ (mask) inputs are the same as the BMR-WT.

SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM is the source of the data instead of the DRAM. (ME)/WE is used to indicate the direction of the transfer, and must be LOW when RAS falls for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM, the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI

mode will be enabled after the transfer is completed. Since no DRAM access is involved, it is not necessary to provide any particular ROW address at RAS time. However, the ROW address present at RAS time will be used as the address for a RAS-ONLY REFRESH. Since a SAM is involved in the transfer, a new SAM starting address (or Tap) will be loaded at CAS time. This address will be loaded into the serial address counter of the SAM selected by STS at RAS time.

128K x 8 TRIPLE-PORT DRAM

Note: Any SAM/BMR TRANSFER will take the SAM involved in the transfer out of the split SAM mode, if it was in that mode before the transfer.

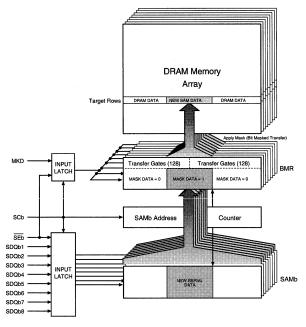
BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The $(\overline{\text{ME}})/\overline{\text{WE}}$ input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAM TRANSFER. STS is LOW to select SAMa or HIGH to select SAMb as the destination for the BMR data. The remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANS-FER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will be loaded when CAS falls.

CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bits LOW) within a single transfer cycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at \overrightarrow{RAS} time for the CLEAR BIT MASK REG-ISTER function. $\overrightarrow{TR}/(\overrightarrow{OE})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overrightarrow{ME}/(\overrightarrow{WE})$, DSF1 and DSF2 are HIGH when RAS falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.


The BMR INVERTED WRITE and BMR WRITE TRANS-FERS may be used with the CLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.

The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at \overline{RAS} time the Serial Mask Input (SMI) mode is disabled and the BMR may only be loaded via internal

MICRON

transfer cycles. If MKD is HIGH when \overline{RAS} falls, during a BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.

When SMI is enabled, the MKD input is coupled to all eight of the bit mask register's DQ planes (see Figure 9). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR; the address count will increment regardless of the state of SEb.

The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb. To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD = HIGH at RAS time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location to which data is written in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all eight planes of the BMR will be written). After the input of data to SAMb is complete, a BIT MASKED WRITE TRANSFER or DQ MASKED BIT MASKED WRITE TRANSFER may be per-

formed and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER or DQ-MASKED BIT-MASKED-WRITE TRANSFER from SAMb, if the device is in the SMI mode. A BMSWT from SAMb will clear on half of the BMR. This allows a new mask to be loaded during the next fill of SAMb, without performing a CLR-BMR cycle. If data is to be masked during the BMWT, then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/O direction of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," and no new data may be written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied to a SAMa TRANSFER cycle, if the mask has not been cleared by a SAMb TRANSFER or a CLR-BMR cycle. The BMR will not be cleared after a TRANS-FER involving SAMa.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interupted for more than 16.7ms, the device must be initialized.

After Vcc is at specified operating conditions, for $100\mu s$ (minimum), eight RAS cycles must be executed to initalize the dynamic memory array. When the device is initialized, the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of (TR)/OE. The DRAM array will contain random data.

The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQ's) are in a High-Z state, regardless of the state of \overline{SE} ab. Also, SPLIT TRANSFER and SMI modes are disabled. Both QSF (MT43C8128A) outputs power up in a LOW state. Both SAMs as well as bit mask, color, and DRAM mask registers all contain random data after power-up.

TRUTH TABLE 1

1			1.1	RA	S FAL	LING	EDGE	2.57			CAS FALL	AC	-A8 ²	DQ1-	DQ83	REGIS	TERS
CODE	FUNCTION	CAS	TR/OE	ME/WE 10	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS, A8=X	RAS	CAS,WE ⁴	MASK	COLOF
	DRAM OPERATIONS						12.0		1.00	1.46.1					100		
CBR	CBR REFRESH	0	X	111	X	X	X	x	X	x	x	х	X	Х	X	<u> </u>	1
ROR	RAS-ONLY REFRESH	1	1	x	X	x	x	x	х	X		ROW		x	$ _{\mathcal{C}} \to \mathcal{C}$		1 <u>-</u> 1
RW	NORMAL DRAM READ OR WRITE	· • 1.	1	1	0	011	x	x	х	х	0	ROW	COLUMN	x	VALID DATA		· · · · · · · · · · · ·
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	011	x	x	х	x	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	-
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	-1-	0	1	011	x	×	x	x	0	ROW	COLUMN	x	VALID DATA	USE	-
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	011	x	×	x	x	1	ROW	COLUMN (A2-A7)	x	COLUMN MASK	-	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	011	x	x	х	x	1	ROW	COLUMN (A2-A7)	WRITE MASK	COLUMN MASK	LOAD & USE	USE
BWOM	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	011	х	x	X	х	1	ROW	COLUMN (A2-A7)	х	COLUMN MASK	USE	USE
	REGISTER OPERATIONS				×.	1.1.4		en 1 d									1. A.
LMR	LOAD MASK REGISTER	1	1	1	1	011	x	x	×	х	0	X2	x	x	WRITE MASK	LOAD	
LCR	LOAD COLOR REGISTER		1	1	1	011	x	×	x	х	1	X ⁵	x	x	COLOR DATA	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	LOAD
1356	TRANSFER OPERATIONS	de l'			uns 13	11	1.4	31.1	1.12	an a	lan di se			- 611 - 14	Sec. Select	8	
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	0	х	0	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	x	x	-	-
SRT ⁹	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	0	x	0	х	0=SAMa 1=SAMb	x	ROW	TAP ⁶	x	x		-
WΤ	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	0	0	x	0=SAMa 1=SAMb	×	ROW	TAP ⁶	x	x	-	
PWT	PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE)	1	0	0	0	0	1	0	х	0=SAMa 1=SAMb	x	X2	TAP ⁶	x	x	-	
MSWT ⁹	SPLIT WRITE TRANSFER (SPLIT SAM- TO-DRAM TRANSFER DQ WITH MASK)	1	0	0	1	0	x	0	X	0=SAMa 1=SAMb	x	ROW	TAP ⁶	DQ MASK	x		
MWT	DQ MASKED WRITE TRANSFER	1	0	0	0	1	х	0	х	0=SAMa 1=SAMb	x	ROW	TAP ⁶	DQ MASK	x		

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

TRUTH TABLE¹

	i	<u> </u>		BA	Š FAL	LING	DGE				CAS FALL	AO	-A8 ²	D01-	D083	REGIS	TERS
CODE	FUNCTION	CAS	TR/OE	ME/WE ¹⁰				TRM	MKD	STS	DSF1		CAS,A8=X	RAS	CAS,WE ⁴		COLOR
	BIT MASK REGISTER OPERATIONS	.				4											
BMR- RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	1	0	0	x	1	0/17	0	X	ROW	x	х	×		
BMR- IRT	BMR READ TRANSFER (DRAM→INVERT→BMR TRANSFER)	1	0	1	0	0	x	1	0/1 ⁷	1	x	ROW	x	х	×	-	-
BMR- WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	1	0	0	0	0	x	1	0/17	0	X	ROW	X	DQ MASK	x	-	-
BMR- IWT	BMR WRITE TRANSFER (BMR→INVERT→DRAM TRANSFER)	1	0	0	0	0	x	1	0/1 ⁷	. 1	x	ROW	X	DQ MASK	X	-	-
SAM- BMR	SAM→BMR TRANSFER	1	0	0	1	0	х	1	0/1 ⁷	0=SAMa 1=SAMb	x	X ⁵	TAP ⁶	х	x	_	-
BMR- SAM	BMR→SAM TRANSFER	1	0	1	1	0	×	1	0/1 ⁷	0=SAMa 1=SAMb	x	X ⁵	TAP ⁶	х	X	-	-
CLR- BMR	CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's")	1	0	1	1	1	x	0	0/1 ⁷	×	x	X ⁵	x	х	x	-	-
	BIT MASKED TRANSFER OPERATIONS	;															
BMRT	BIT MASKED READ TRANSFER (BM DRAM→SAM TRANSFER)	1	0	1	0	1	x	1	x	0=SAMa 1=SAMb	x	ROW	TAP ⁶	x	x		—
BMSRT ⁹	BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM→SAM TRANSFER)	1	0	1	1	1	x	1	x	0=SAMa 1=SAMb	×	ROW	TAP ⁶	x	x		-
BMWT	BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	0	1	x	1	X8	0=SAMa 1=SAMb	x	ROW	TAP ⁶	х	x		-
BMSWT ⁹	BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM→DRAM TRANSFER)	1	0	0	1	1	x	1	X8	0=SAMa 1=SAMb	x	ROW	TAP ⁶	DQ MASK	x	-	—
BMWT- DQM	DQ/BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	1	1	x	0	X8	0=SAMa 1=SAMb	×	ROW	TAP ⁶	DQ MASK	×	-	-

1. 0 = LOW(VIL); 1 = HIGH(VIH); X = "don't care;" - = "not applicable."

- 2. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when CAS falls.
- 3. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.
- 4. With WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, with READ cycles, the output data is enabled on the falling edge of CAS or TR/OE, whichever is later.
- 5. The row that is addressed will be refreshed, but no particular row address is required.
- 6. Tap address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERs, the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A7 is a "don't care" for SPLIT TRANSFERs.
- 7. The Serial Mask Input mode (SMI) is enabled ("1") or disabled ("0") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = "1"), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE, DQ MASKED BIT MASKED WRITE TRANSFER or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and BIT MASKED WRITE TRANSFERs or DQ MASKED BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
- 8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb.
- 9. SPLIT TRANSFERs do not change SAM I/O direction.
- SAM I/O direction is a function of the state of ME/WE at RAS time. If ME/WE is LOW, then the selected SAM
 is an input; if ME/WE is HIGH, then the SAM is an output (except for SPLIT TRANSFERS).
- 11. The MT43C8128A/9A operates properly if this state is "X", but to allow for future functional enhancements it is recommended that they be driven as shown in the Truth Table.

NOTE:

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

ABSOLUTE MAXIMUM RATINGS*

 $\label{eq:Voltage on Vcc Supply Relative to Vss $$ -1V$ to +7V$ Operating Temperature, T_A (ambient) $$ 0°C$ to +70°C Storage Temperature (plastic) $$ 55°C$ to +150°C Power Dissipation $$ 1.5W$ Short Circuit Output Current $$ 50mA $$ 50$

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.75	5.25	V	1
Input High (Logic 1) Voltage, all inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 5\%)$

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = 0	٧	IL.	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (Dout is disabled, $0V \le V_{OUT} \le V_{CC}$).		loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)		Vон	2.4		V	- 1
Output Low Voltage ($IouT = 2.5mA$)		Vol		0.4	V	

CAPACITANCE

(T_A = 25°C)

MT43C8128A/9A REV. 5/93

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8, TRM, MKD, SEa,b, DSF1,2, STS	CI1	· · · · · · ·	5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SCa,b SSFa,b	Cı2		7	pF	2
Input/Output Capacitance: DQ, SDQa,b	Cı/o		9	pF	2
Output Capacitance: QSFa,b	Co		9	pF	2

MAY

Г

DRAM CURRENT DRAIN; SAMa, SAMb and SERIAL MASK INPUT (SMI) INACTIVE

 $(0^{\circ}C \leq T_{\Delta} \leq 70^{\circ}C; Vcc = 5V \pm 5\%)$

		IVI.	AX	1.1	
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC [MIN])	Icc1	105	95	mA	3, 4 25
OPERATING CURRENT: PAGE MODE (RAS = VIL CAS = Cycling; ^t PC = ^t PC [MIN])	ICC2	100	90	mA	3, 4 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = V⊮, after 8 RAS cycles [MIN])	Іссз	8	8	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc-0.2V, after 8 RAS cycles min). All other inputs \ge Vcc -0.2V or \le Vss +0.2V	ICC4	2	2	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V⊮)	ICC5	110	95	mA	3, 25
REFRESH CURRENT: CBR (RAS and CAS = Cycling)	Icce	110	95	mA	3, 5 25
TRANSFER CURRENT: SAM/DRAM DATA TRANSFER	ICC7	105	95	mA	3

SERIAL PORT CURRENT DRAIN; SAMa, SAMb and/or SMI MODE

(Notes 3, 4) ($0^{\circ}C \le T_{\Delta} \le 70^{\circ}C$; Vcc = 5V ±5%)

(Notes 3, 4) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±5%)	i e si	M	AX		
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT: SERIAL PORT (SAMa/SAMb) (SCa/SCb = Cycling; ^t SC = ^t SC [MIN]; SEa/SEb = VI∟)	Icc8	45	40	mA	
OPERATING CURRENT: SMI MODE (SAMb) (SCb = Cycling; ^t SC = ^t SC [MIN]; SEb = VIL)	lcc9	20	20	mA	
STANDBY CURRENT: SERIAL PORT (SAMa/SAMb) Power supply standby current (SCa/SCb = VIH or VIL; SEa/SEb = VIH)	Icc10	0	0	mA	
STANDBY CURRENT: SMI MODE (SAMb) Power supply standby current (SCb = VIH or VIL; SEb = VIH)	Icc11	0	0	mA	

TOTAL CURRENT DRAIN

(Notes 3, 4) ($0^{\circ}C \le T_{\Delta} \le 70^{\circ}C$; Vcc = 5V ±5%)

ICC(TOTAL) = DRAM CURRENT (ICC1-7) + SAMA CURRENT (ICC8 or ICC10) + SAMb CURRENT (ICC8 or ICC10) + SMI CURRENT (Icc9 or Icc11) (+ 10mA [If DRAM CURRENT = Icc3 or Icc4])

Example 1:

Operating current (-8) with DRAM operating in FAST-PAGE-MODE, SAMa active, SAMb and SMI inactive:

	ICC(TOTAL)	= DRAM CURRENT (Icc2) + SAMa CURRENT (Icc8) + SAMb CURRENT (Icc10) +
1		SMI CURRENT (lcc11) [+ 0]
		= 90 + 40 + 0 + 0 = 130mA (MAX)

Example 2:

Operating current (-7) with DRAM operating in CMOS Standby, SAMa and SAMb active, SMI active:

ICC(TOTAL)	= DRAM CURRENT (Icc4) + SAMa CURRENT (Icc8) + SAMb CURRENT (Icc8) +
	SMI CURRENT (Icc9) [+ 10]
	= 2 + 45 + 45 + 20 + 10 = 122mA (MAX)

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±5%)

AC CHARACTERISTICS			-7		-8		S. Sec.
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150		ns	
READ-MODIFY-WRITE cycle time	^t RWC	170		190		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		ns	
cycle time					a tan		1.1
FAST-PAGE-MODE READ-MODIFY-	^t PRWC	90		95		ns	
WRITE cycle time				÷		10	
Access time from RAS	^t RAC	·	70		80	ns	14, 17
Access time from CAS	^t CAC		17		20	ns	15
Access time from (TR)/OE	tOE		20		20	ns	
Access time from column address	^t AA		35		40	ns	
Access time from CAS precharge	^t CPA		40		45	ns	
RAS pulse width	^t RAS	70	20,000	80	20,000	ns	
RAS pulse width (FAST-PAGE-MODE)	^t RASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		20		ns	
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
CAS hold time	^t CSH	70		80		ns	
CAS precharge time	^t CP	10		10		ns	16
RAS to CAS delay time	tRCD	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	10		10		ns	1
Row address setup time	tASR	0		0		ns	
Row address hold time	tRAH	10		12		ns	
RAS to column	^t RAD	15	35	17	40	ns	18
address delay time							
Column address setup time	tASC	0		0		ns	
Column address hold time	^t CAH	12		15	1	ns	
Column address hold time	tAR	55		60		ns	
(referenced to RAS)							
Column address to	^t RAL	35		40		ns	
RAS lead time							
Read command setup time	tRCS	0		0		ns	
Read command hold time	tRCH	0		0		ns	19
(referenced to CAS)							
Read command hold time	tRRH	0		0	1	ns	19
(referenced to RAS)							
CAS to output in Low-Z	tCLZ	3		3		ns	
Output buffer turn-off delay	tOFF	3	20	3	20	ns	20, 23
Output disable	tOD	3	10	3	10	ns	20, 23
Output disable hold time from start of WRITE	tOEH	10		15	1	ns	27
Output Enable to RAS delay	tORD	0		0		ns	

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±5%)

AC CHARACTERISTICS		-	.7		8	. · · ·	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0	1 - A	ns	21
Write command hold time	tWCH	15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		60		ns	
Write command pulse width	tWP	15		15		ns	
Write command to RAS lead time	^t RWL	20		20		ns	
Write command to CAS lead time	tCWL	20		20		ns	
Data-in setup time	tDS	0		0		ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		ns	
RAS to WE delay time	tRWD	90		100		ns	21
Column address to WE delay time	^t AWD	55		60	ta en	ns	21
CAS to WE delay time	tCWD	40		40		ns	21
Transition time (rise or fall)	tT	3	35	3	35	ns	9, 10
Refresh period (512 cycles)	^t REF		16.7		16.7	ms	
RAS to CAS precharge time	tRPC	0		0		ns	
CAS setup time (CBR refresh)	^t CSR	10		10		ns	5
CAS hold time (CBR refresh)	^t CHR	10		30		ns	5
ME/WE to RAS setup time	tWSR	0		0		ns	
ME/WE to RAS hold time	tRWH	15		15	1.1	ns	
Mask data to RAS setup time	tMS	0		0		ns	
Mask data to RAS hold time	tMH	15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 5%)

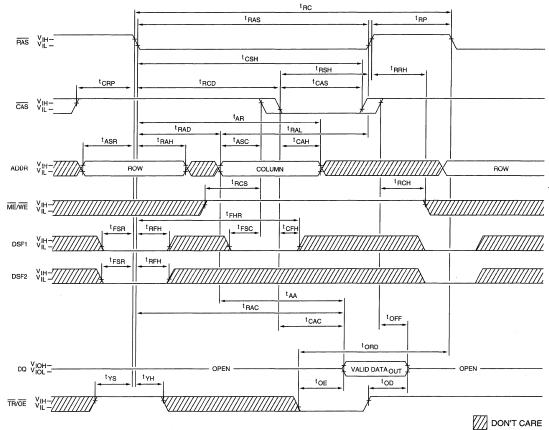
AC CHARACTERISTICS			-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0	1.1	ns	1. A. A.
TR/(OE) LOW to RAS hold time	TLH	15	10,000	15	10,000	ns	
TR/(OE) LOW to RAS hold time (REAL-TIME READ TRANSFER only)	^t RTH	65	10,000	70	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ TRANSFER only)	^t CTH	20		20		ns	
TR/(OE) HIGH to SC lead time	tTSL	5	5.0 S	5	1	ns	
TR/(OE) HIGH to RAS precharge time	tTRP	60		70		ns	
TR/(OE) precharge time	trrw	20		25		ns	
First SC edge to TR/(OE) HIGH delay time	^t TSD	15		15		ns	1.04
RAS to first SC edge delay time	^t RSD	80		80		ns	1.00
CAS to first SC edge delay time	^t CSD	25		25		ns	1.000
Serial output buffer turn-off delay from RAS	^t SDZ	7	40	10	50	ns	
SC to RAS setup time	^t SRS	25		30	- 1 - 1 - 1	ns	
Serial data input to SE delay time	tSZE	0		0		ns	
RAS to SD buffer turn-on time	tSRO	10		10	1.1.1.1.1.	ns	
Serial data input delay from RAS	tSDD	50		60		ns	
Serial data input to RAS delay time	tSZS	0		0		ns	
Serial Input Mode enable (SE) to RAS setup time	tESR	0		0		ns	
Serial Input Mode enable (SE) to RAS hold time	^t REH	15		15		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		ns	
TR/(OE) HIGH to RAS hold time	tYH	15		15		ns	
DSF, TRM, STS, MKD to RAS setup time	tFSR	0		0		ns	
DSF, TRM, STS, MKD to RAS hold time	^t RFH	15		15	1.21	ns	
DSF to RAS hold time	tFHR	55		60		ns	
DSF to CAS setup time	tFSC	0		0		ns	1
DSF to CAS hold time	^t CFH	15		15		ns	
SC to QSF delay time	tSQD		20		20	ns	28
RAS to QSF delay time	tRQD		65		65	ns	28
CAS to QSF delay time	^t CQD		35		35	ns	28
TR/OE to QSF delay time	^t TQD	1	25		25	ns	28
SPLIT TRANSFER setup time	tSTS	25		30		ns	28
SPLIT TRANSFER hold time	^t STH	0		0		ns	28

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_{A} \le + 70^{\circ}C$; Vcc = 5V ±5%)

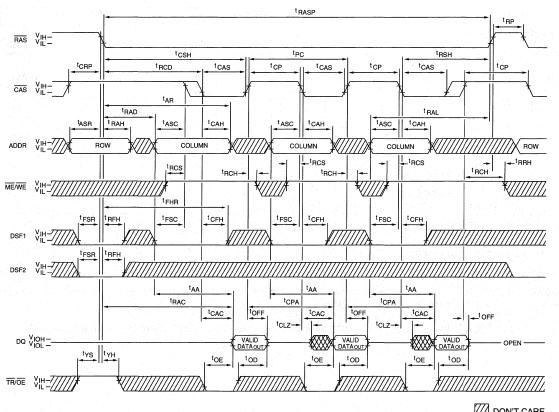
AC CHARACTERISTICS		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time (Read)	^t SCR	22		25	- de la compañía	ns	
Serial clock cycle time (Write)	tSCW	20		20		ns	
Access time from SC	^t SAC		22		25	ns	24, 30
SC precharge time (SC LOW time)	tSP	7		7		ns	
SC pulse width (SC HIGH time)	^t SAS	7		7		ns	
Access time from SE	^t SEA		12		15	ns	24
SE precharge time	^t SEP	10		10		ns	
SE pulse width	^t SE	10	· .	10		ns	
Serial data out hold time after SC HIGH	^t SOH	5		5		ns	24, 30
Serial output buffer turn-off delay from SE	tSEZ	3	12	3	12	ns	20, 24
Serial data in setup time	^t SDS	0		0	1. S. 1.	ns	24
Serial data in hold time	^t SDH	10		10		ns	24
Serial mask data in setup time	^t MDS	0		0		ns	
Serial mask data in hold time	^t MDH	10		10		ns	
SERIAL INPUT (Write) Enable setup time	tSWS	0		0		ns	
SERIAL INPUT (Write) Enable hold time	^t SWH	10		15		ns	
SERIAL INPUT (Write) disable setup time	tSWIS	0		0		ns	
SERIAL INPUT (Write) disable hold time	tSWIH	10		15		ns	
SSF to SC setup time	^t SFS	0		0		ns	29
SSF to SC hold time	^t SFH	10		15		ns	29
SSF LOW to SC HIGH delay	^t SFD	5		5		ns	29


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 5\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by any 8 RAS cycles before proper device operation is assured. The 8 RAS cycle wake-up should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 3$ to 5ns.
- 9. VIH MIN and VIL MAX are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition between 0V and 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data outputs (DQ1-DQ8) is High-Z.
- 12. If \overrightarrow{CAS} = VIL, DRAM data outputs (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{\text{TR}}/\overline{\text{OE}}$ must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), $^{t}AWD \ge ^{t}AWD$ (MIN) and $^{t}CWD \ge ^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to \overline{CAS} leading edge in early WRITE cycles and $\overline{ME}/\overline{WE}$ leading edge in late WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 25. Addresses (A0-A8) change two times or less while \overline{RAS} = VIL.
- 26. Addresses (A0-A8) change once or less while $\overline{CAS} = V_{IH}$ and $\overline{RAS} = V_{IL}$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. Applies to the MT43C8128A only.
- 29. Applies to the MT43C8129A only.
- 30. ^tSAC is MAX at 70° C and 4.75V Vcc; ^tSOH is MIN at 0°C and 5.25V Vcc. These limits will not occur simultaneously at any given voltage or temperature ^tSOH = ^tSAC output transition time; this is guaranteed by design.

DRAM READ CYCLE



RON

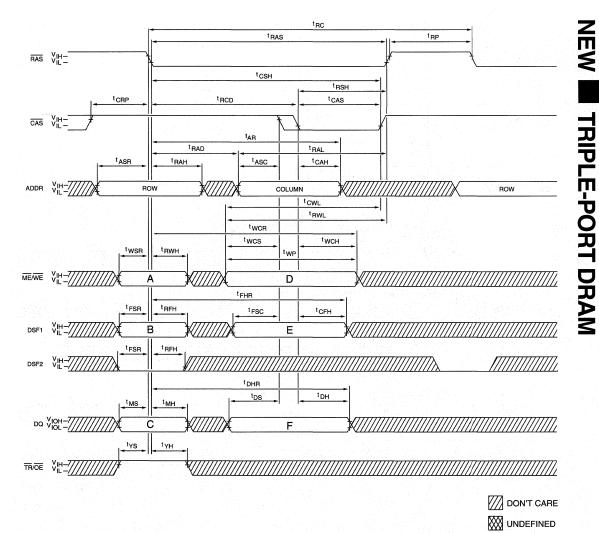
MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

DRAM FAST-PAGE-MODE READ CYCLE

NEW

WRITE CYCLE FUNCTION TABLE 1

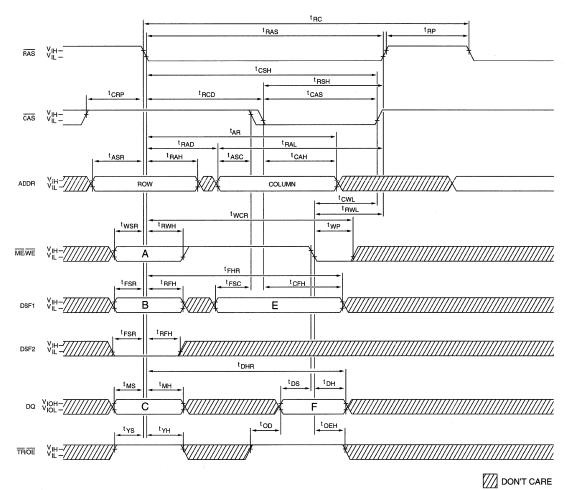
		LOGIC STATES ²								
	FUNCTION		RAS Falling	j Edge	CAS Falling Edge					
CODE		A ME/WE	B DSF1	C DQ (Input)	D ME/WE	E DSF1	F DQ (Input			
RW	Normal DRAM WRITE	1	0	X	0	0	DRAM			
RWNM	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	0	0	Write Mask	0/1 ³	0	DRAM (Masked			
RWOM	PERSISTENT (Use Register) MASKED WRITE to DRAM	0	1	X	0/1 ³	0	DRAM (Masked			
BW	BLOCK WRITE to DRAM (No DQ Mask)	1	0	X	0/1 ³	1	Columr Mask			
BWNM	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	0	0	Write Mask	0/1 ³	1	Columr Mask			
BWOM	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	0	1	X	0/1 ³	1	Columr Mask			
LMR	Load Mask Data Register	1	1	X	0/1 ³	0	Write Mask			
LCR	Load Color Register	1	1	X	0/1 ³	1	Color Mask			


NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E" and "F" for the WRITE cycle timing diagrams on the following pages.

2. TRM, MKD and STS are "don't care" for all WRITE cycles.

3. If ME/WE is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if ME/WE falls after CAS.

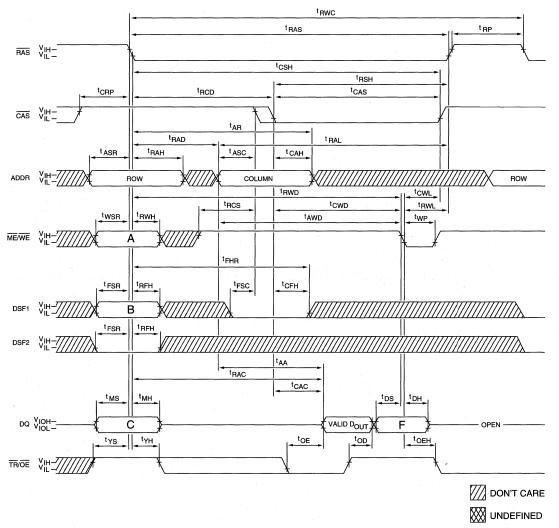
DRAM EARLY-WRITE CYCLE



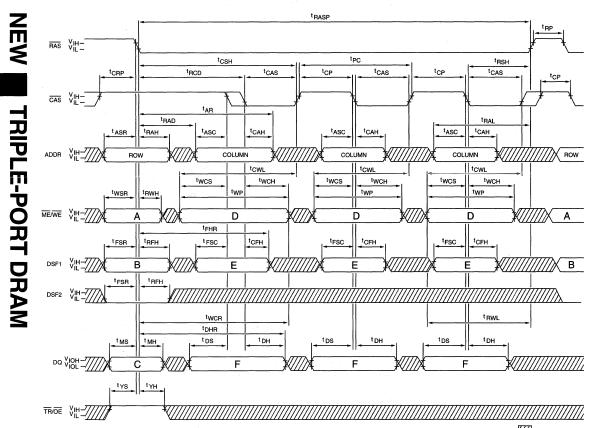
NOTE: The logic states of "A", "B", "C", "D", "E" and "F" determine the type of WRITE operation performed. See the WRITE Cycle Function Table for a detailed description.

MICRON

DRAM LATE-WRITE CYCLE¹

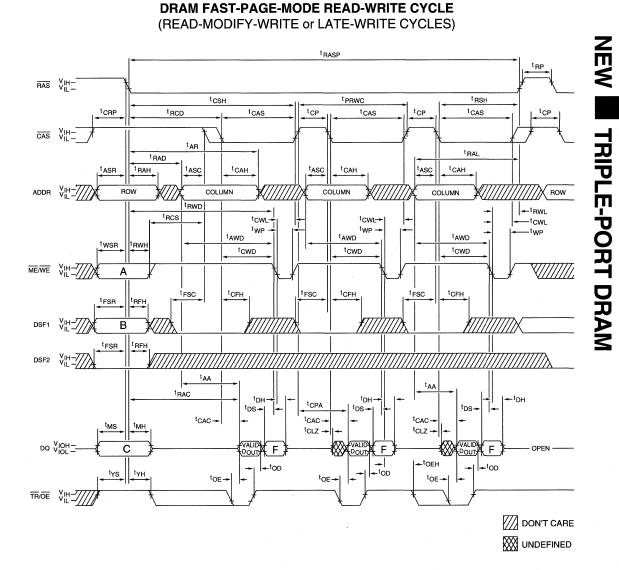

NOTE: 1. The logic states of "A", "B", "C", "E" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MIC


MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

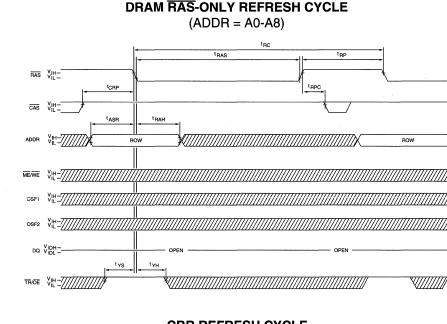
NOTE: The logic states of "A", "B", "C" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

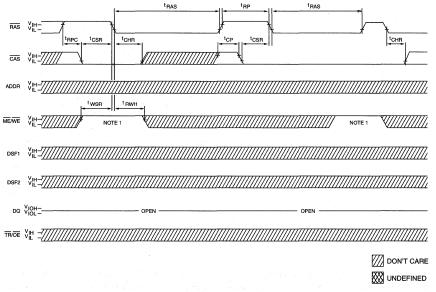
MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM


DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1, 2

RON

- **NOTE:** 1. READ cycles or READ-MODIFY-WRITE cycles may be mixed with WRITE cycles while in FAST-PAGE-MODE.
 - 2. The logic states of "A", "B", "C", "D", "E" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

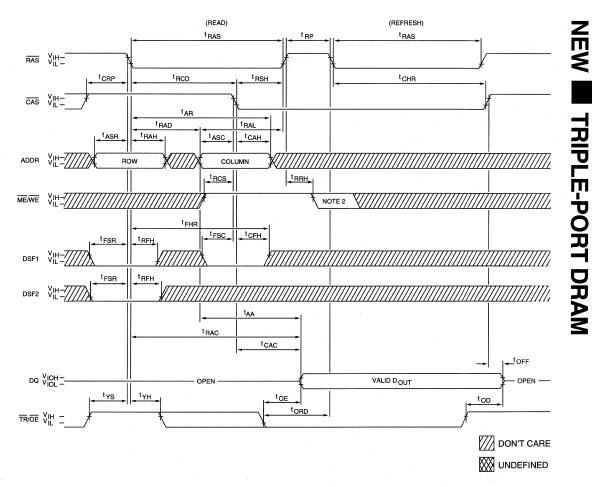

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM



- **NOTE:** 1. READ or WRITE cycles may be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
 - 2: The logic states of "A", "B", "C" and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

CBR REFRESH CYCLE

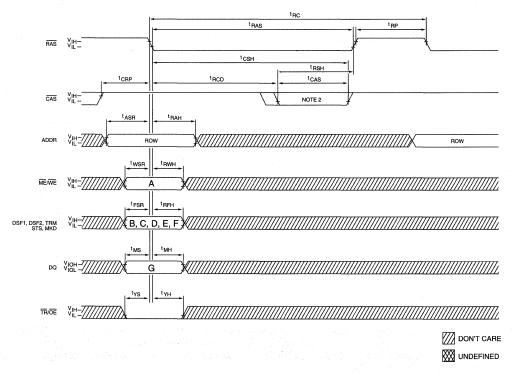


NOTE: 1. The MT43C8128A/9A operates with this state as "don't care," but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

DRAM HIDDEN-REFRESH CYCLE

RON



- NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH and the DQ pins stay HIGH-Z. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.
 - 2. The MT43C8128A/9A operates with this state as "don't care," but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

DRAM/BMR TRANSFER CYCLE FUNCTION TABLE 1

		LOGIC STATES RAS Falling Edge									
CODE	FUNCTION	A ME/WE	B DSF1	C DSF2	D TRM	E STS	F MKD	G DQ(Input)			
BMR-RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	0	1	0	0/11	X			
BMR-IRT	BMR READ TRANSFER (DRAM→invert→BMR TRANSFER)	1	0	0	1	1	0/11	x			
BMR-WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	0	0	0	1	0	0/11	Mask			
BMR-IWT	BMR WRITE TRANSFER (BMR→invert→DRAM TRANSFER)	0	0	0	1	1	0/11	Mask			
CLR-BMR	CLEAR BMR (CLR-BMR)	1	1	1	0	X	0/1 ¹	X			

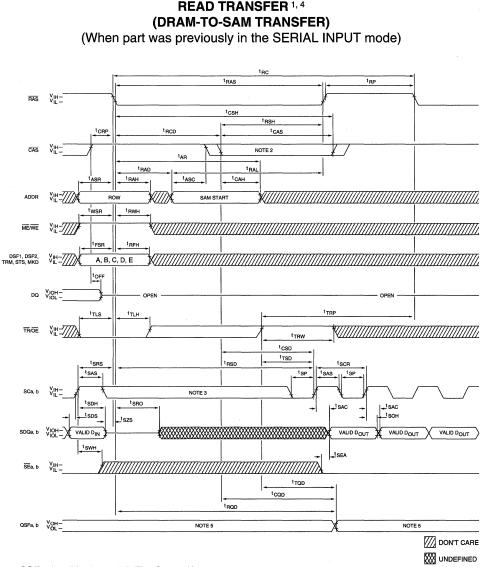
DRAM/BMR TRANSFERS

NOTE: 1. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW. 2. It is not necessary to drop CAS during a DRAM/BMR TRANSFER.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

READ TRANSFER CYCLE FUNCTION TABLE 1

		LOGIC STATES RAS Falling Edge							
CODE	FUNCTION	A DSF1	B DSF2	C TRM	D STS	E MKD			
RW	READ TRANSFER	0	0	0	0/1 ²	X			
SRT	SPLIT READ TRANSFER (DRAM→SAM)	1	0	0	0/1 ²	X			
BMRT	BIT MASKED READ TRANSFER	0	1	. 1 · ·	0/1 ²	X			
BMSRT	BIT MASKED SPLIT READ TRANSFER	1	1	1	0/1 ²	X			
BMR-SAM	BMR→SAM TRANSFER	1	0	1	0/1 ²	0/13			

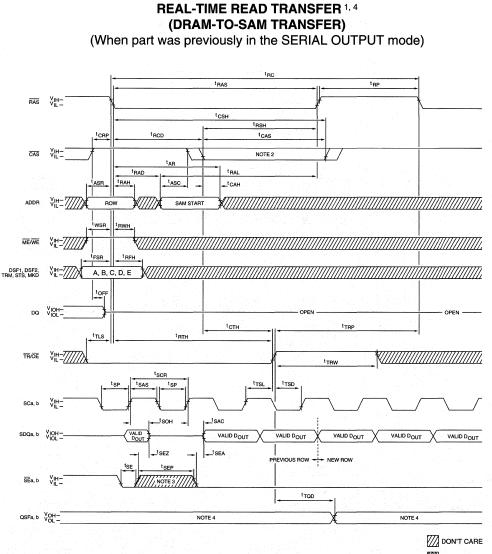

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for READ TRANSFER cycle timing diagrams on the following pages.

 The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW, the transfer is to SAMa; when STS = HIGH, the transfer is to SAMb.

3. Serial mask input mode is enabled if MKD = HIGH; disabled if MKD = LOW.

MICRON

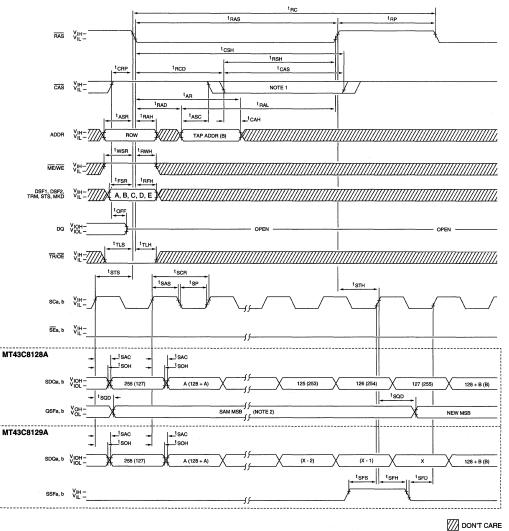
NOTE: 1. SSFa, b = "don't care" (MT43C8129A)


- 2. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- 3. There must be no rising edges on the SC input during this time period.
- 4. The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
- QSF = 0 when the lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the upper SAM (bits 128–255) is being accessed.

NEW

TRIPLE-PORT DRAM

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM


NOTE: 1. SSFa, b = "don't care" (MT43C8129A)

- 2. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed.
- 3. The SE pulse is shown to illustrate the serial output enable and disable timing. It is not required.
- 4. The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
- 5. QSF = 0 when the lower SAM (bits 0–127) is being accessed.
 - QSF = 1 when the upper SAM (bits 128-255) is being accessed.

MICRON

NOTE: 1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half.

- 2. QSF = 0 when the lower SAM (bits 0–127) is being accessed. QSF = 1 when the upper SAM (bits 128–255) is being accessed.
- The logic states of "A", "B", "C", "D" and "E" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

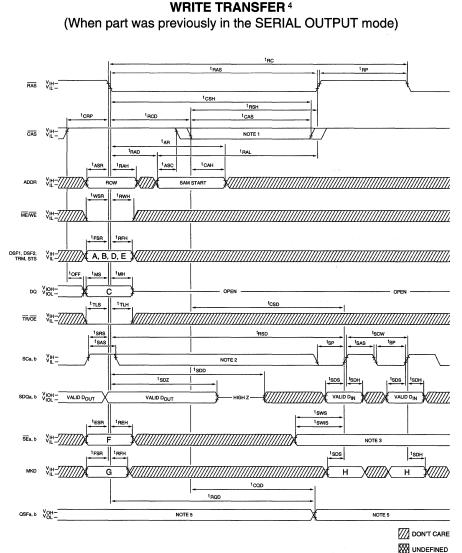
MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

WRITE TRANSFER CYCLE FUNCTION TABLE 1

					LOGIC	STATES								
	FUNCTION	RAS Falling Edge												
CODE		A DSF1	B DSF2	C DQ	D TRM	E STS	F SE	G MKD	H MKD					
WT	WRITE TRANSFER (SAM→DRAM)	0	0	x	0	0/1²	0	х	-					
PWT	PSEUDO WRITE TRANSFER	0	0	x	0	0/1 ²	1	x	-					
MSWT	DQ MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	1	0	Mask	0	0/1 ²	Х	X	-					
MWT	DQ MASKED WRITE TRANSFER (SAM→DRAM)	0	1	Mask	0	0/1²	X	x	-					
BMWT	BIT MASKED WRITE TRANSFER (SAM→DRAM)	0	1	X	1. 1.	0/1 ²	Х	x	0/14					
BMSWT	BIT MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	1	1	Mask	1	0/1²	Х	x	0/14					
SAM-BMR	(SAM→BMR) TRANSFER	1	0	X	int r aig	0/1 ²	Х	0/13	-					
BMWT- DQM	DQ/BIT MASKED WRITE TRAN- SFER (SAM→DRAM)	1	1	Mask	0	0/1 ²	X	x	0/14					

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E", "F", "G" and "H" for WRITE TRANSFER cycle timing diagrams on the following pages.

The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW, the transfer is to SAMa; when SAM = HIGH, the transfer is to SAMb.


3. Serial mask input (SMI) mode is enabled if MKD = HIGH and disabled if MKD = LOW.

4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic "1" on MKD will allow data to pass through all the mask; a logic "0" will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

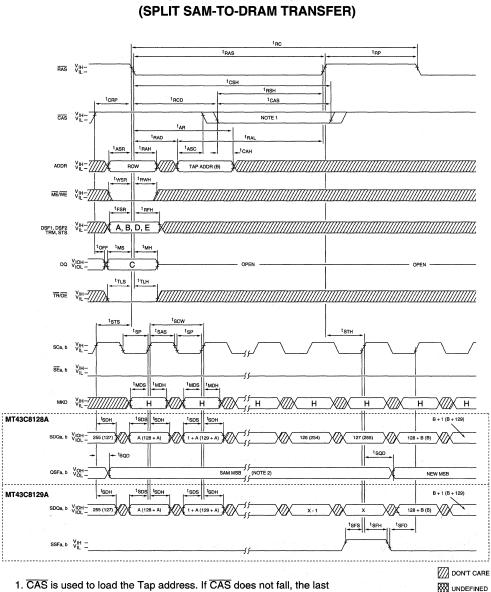
MCBON

- **NOTE:** 1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
 - 2. There must be no rising edges on the SC input during this time period.
 - 3. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
 - 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
 - QSF = 0 when the lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the upper SAM (bits 128–255) is being accessed. SSFa,b = "don't care" (MT43C8129A).

PRELIMINARY

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

WRITE TRANSFER 4 (When part was previously in the SERIAL INPUT mode) tec tRAS t_{RP} RAS VIH-1CSH tesh ^tCRP ^tRCD t CAS VIH-CAS NOTE 1 tAF ^tRAD 1 RAI t_{ASC} t_{CAH} ^tASB ^tBAH V#=7//// ADDB ROW SAM START twsR t RWH MEANE V#=7777 ^tRFH ^tFSR DSF1, DSF2, TRM, STS V#-77 A. B. D. E tOF tMS 1_{ME} DQ VIOH-C tCSD [†]TLS ^tTLH TB/OE V#=777777 tSRS tSAS tep ISAS VIH SCa, b NOTE 2 tsnu tsps tSDS 1sps SDQa, b VIOH VALID DIN VALID D VALID DIN tsws t SWIS t_{ESF} t REF SFa b _____ NOTE 3 t FSR ^tRFH tSDS t SDH MKD VĽ=7///// G н н † CQD t RQD OSFa, b VOH-NOTE 5 NOTE 5 DON'T CARE


NOTE:

- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
 - 2. \overline{SE} must be LOW to input new serial data, but the serial address register is incremented by SC regardless of \overline{SE} .
 - 3. There must be no rising edges on the SC input during this time period.
 - 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
 - 5. QSF = 0 when the lower SAM (bits 0-127) is being accessed.
 - QSF = 1 when the upper SAM (bits 128-255) is being accessed. SSFa,b = "don't care" (MT43C8129A).

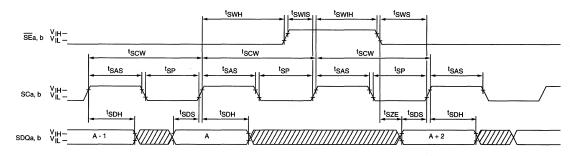
MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

MICRON

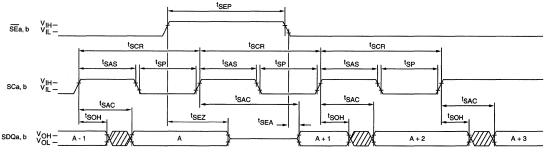
SPLIT WRITE TRANSFER 3

NOTE: 1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.

- QSF = 0 when the lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the upper SAM (bits 128–255) is being accessed.
- 3. The logic states of "A", "B", "C", "D", "E" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.


PRELIMINARY

NEW


TRIPLE-PORT DRAM

SAMa or SAMb SERIAL INPUT

SAMa or SAMb SERIAL OUTPUT

DON'T CARE

NOTE: SEa, SCa and SDQa are used when accessing SAMa and SEb; SCb and SDQb are used when access in SAMb.

MICRON

PRELIMINARY

MT43C8128A/9A 128K x 8 TRIPLE-PORT DRAM

MT43C256K8A1 256K x 8 TRIPLE-PORT DRAM

TRIPLE-PORT DRAM

FEATURES

- Three asynchronous, independent, data-access ports
- Fast access times: 60ns random, 15ns serial
- Operation and control compatible with 2 Meg VRAMs
- High-performance, CMOS silicon-gate process
- Low power: 15mW standby; 450mW active, typical
- 512-cycle refresh within 16.7ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST-PAGE-MODE with Extended Data-Out (^tPC = 30ns)
- Two bidirectional serial access memories (SAMs)
- Fully static SAMs and Mask Register, no refresh required
- 4,096-bit Transfer Mask Register

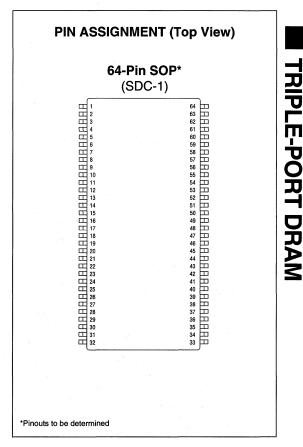
SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- BLOCK WRITE
- SPLIT READ and SPLIT WRITE TRANSFERs
- PROGRAMMABLE SPLIT SAMs
- BIT MASKED TRANSFERs
- SERIAL MASK DATA INPUT mode

OPTIONS

MARKING

• Timing (DRAM, SAMs [cycle/access])
60ns, 20ns/15ns	-6
70ns, 25ns/20ns	-7
80ns, 28ns/25ns	-8
 Packages 	
Plastic SOP (12mm)	SG


• Part Number Example: MT43C256K8A1SG-7

GENERAL DESCRIPTION

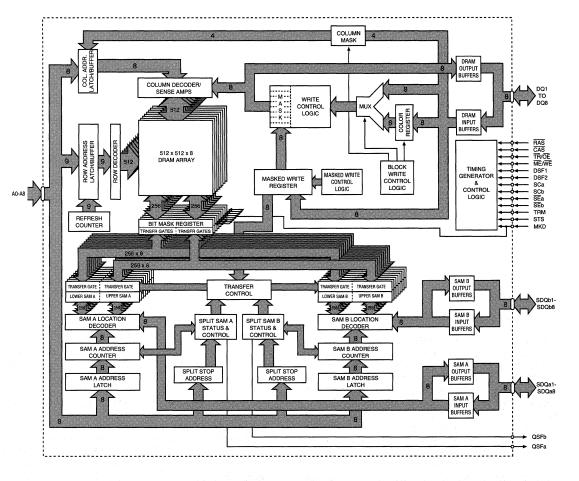
The MT43C256K8A1 is a high-speed, triple-port CMOS dynamic random access memory (TPDRAM) containing 2,097,152 bits. Data may be accessed by an 8-bit-wide DRAM port or by either of two independently clocked 512 x 8-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and the SAMs.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K \times 4) DRAM. Sixteen 256-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 8-bit random access I/O port, a pair of internal 2,048-bit-

wide paths between the DRAM and the SAMs, and the pair of 8-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing, and address decoding logic.

All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 4,096 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 512 x 8-bit, bit mask data register may be parallel loaded from the DRAM or either SAM, or it may be serial loaded through the MKD serial input.


MT43C256K8A1 256K x 8 TRIPLE-PORT DRAM

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require any refresh.

The operation and control of the MT43C256K8A1 are optimized for high-performance graphics and communication designs. The triple-port architecture is well suited to buffering the sequential data types used in raster graphics display, video windowing, serial and parallel networking and data communications. Special features, such as SPLIT TRANSFER, BIT MASKED TRANSFERS and BLOCK WRITE allow further enhancements to system performance.

TRIPLE-PORT DRAM

WIDE DRAMs	**********			*****		
VRAMs	****			* * * * * * * * * * *	*****	2
TRIPLE-PORT	DRAM	S		*****	****	3
VRAM MODUL	.ES					4
APPLICATION	/TECHI	VICAL	NOTE	S	* ** ** ** ** ** **	5
PRODUCT RE	LIABILI	ΤΥ	*****			6
PACKAGE INF	ORMA	FION .	*****	******		74.00
SALES INFOR	MATIO	N				

VRAM MODULE PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Power Dissipation		Package/Number of Pins	
Configuration	Cycle	Number	Time (ns)	Standby	Active	SIMM	Page
256K x 32	FP, BW	MT4V25632	70, 80	40mW	1,200mW	104	4-1

FP = FAST-PAGE-MODE, BW = BLOCK WRITE

MT4V25632 256K x 32 VRAM MODULE

VRAM MODULE

FEATURES

- Proposed industry-standard pinout in a 104-pin singlein-line package
- High-performance, CMOS silicon-gate process
- Single 5V ±10% power supply
- Inputs and outputs are fully TTL compatible
- Low power, 40mW standby; 1,200mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Dual-port organization: 256K x 32 DRAM port 512 x 32 SAM port
- 512-cycle refresh distributed across 16.7ms
- FAST-PAGE-MODE access cycle
- No refresh required for serial access memory

SPECIAL FUNCTIONS

- NONPERSISTENT MASKED WRITE
- BLOCK WRITE
- SPLIT READ TRANSFER

OPTIONS

MARKING

• Timing (DRAM, S	SAM [cycle/	access])
70ns, 22/22ns		-7
80ns, 25/25ns		-8

- Packages Leadless 104-pin SIMM M
- Part Number Example: MT4V25632M-7

GENERAL DESCRIPTION

The MT4V25632 is a high-speed, multiport CMOS dynamic random access memory module containing 262,144 words organized in a x32 configuration. The module may be accessed either by a 32-bit wide DRAM port or by a 512 x 32-bit serial access memory (SAM) port. Data may be transferred from the DRAM to the SAM. The module consists of four 256K x 8, dual-port dynamic RAMs mounted on a 104-pin SIMM, FR4 printed circuit board.

The DRAM portion of the VRAM components is functionally similar to the MT4C4256 (256K x 4-bit DRAM), with the addition of MASKED WRITE and BLOCK WRITE. Thirty two 512-bit data registers make up the serial access memory portion on the VRAM module. Data I/O and internal data transfer are accomplished using three sepa-

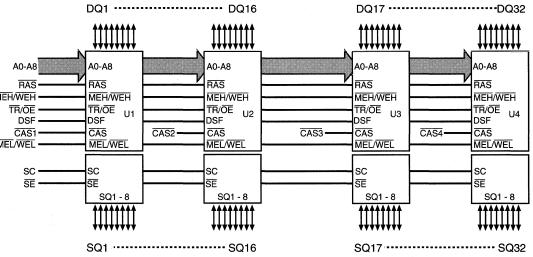
256K x 3	2 DI	RAN	
WITH 51	2 x 3	32 S	AM

PIN ASSIGNMENT (Top View) 104-Pin SIMM (SDF-1)									
	C		MT4V2	5632	2M	· . ·	0		
$\left(-\right)$			~~~~	000000	~~~~~		A		
Ļ		mum		<u>um</u>		шш			
PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL		
1	Vss	27	SQ8	53	DQ18	79	A7		
2	QSF0	28	Vss	54	DQ19	80	A8		
3	RASO	29	NC	55	DQ20	81	NC		
4	PRD0	30	NC	56	DQ21	82	Vss		
5	CAST	31	CAS2	57	DQ22	83	DQ25		
6	PRD1	32	DQ9	58	DQ23	84	DQ26		
7	DSF	33	DQ10	59	DQ24	85	DQ27		
8	DQ1	34	DQ11	60	Vcc	86	DQ28		
9	DQ2	35	DQ12	61	SQ17	87	DQ29		
10	DQ3	36	DQ13	62	SQ18	88	DQ30		
11	DQ4	37	DQ14	63	SQ19	89	DQ31		
12	DQ5	38	DQ15	64	SQ20	90	DQ32		
13	DQ6	39	DQ16	65	SQ21	91	Vcc		
14	DQ7	40	Vcc	66	SQ22	92	SQ25		
15	DQ8	41	SQ9	67	SQ23	93	SQ26		
16	TR/OE	42	SQ10	68	SQ24	94	SQ27		
17	SE0	43	SQ11	69	NC	95	SQ28		
18	SC	44	SQ12	70	CAS4	96	SQ29		
19	Vcc	45	SQ13	71	Vss	97	SQ30		
20	SQ1	46	SQ14	72	AO	98	SQ31		
21	SQ2	47	SQ15	73	A1	99	SQ32		
22	SQ3	48	SQ16	74	A2	100	Vss		
23	SQ4	49	Vss	75	A3	101	PRD2		
24	SQ5	50	ME/WE	76	A4	102	PRD3		
25	SQ6	51	CAS3	77	A5	103	PRD4		
26	SQ7	52	DQ17	78	A6	104	PRD5		

rate data paths for each component on the module: the 32bit random access I/O port, the eight internal 512-bit-wide paths between the DRAM and the SAM, and the 32-bit serial output port for the SAM.

Each port may be operated asynchronously and independently of the other except when data is being transferred internally to each component. As with all DRAM modules, the VRAM module must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 16.7ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh

MT4V25632 256K x 32 VRAM MODULE


cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

-RON

The operation and control of the MT4V25632 are optimized for high-performance graphics and communication designs. The dual-port architecture is well suited to buffering the sequential data types used in raster graphics display, serial/parallel networking and data communications. Special features such as SPLIT READ TRANSFER and BLOCK WRITE allow further enchancements to system performance.

NEW WRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

U1 - U4 = MT42C8255DJ

PRESENCE DETECT

SYMBOL	-7	-8
PRD0	Vss	Vss
PRD1	Vss	Vss
PRD2	NC	NC
PRD3	Vss	NC
PRD4	NC	NC
PRD5	NC	NC

MT4V25632 256K x 32 VRAM MODULE

PIN DESCRIPTIONS

MODULE PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
18	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
16	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at \overline{RAS} (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z state.
50	ME/WE	Input	Mask Enable: If $\overline{\text{ME}/\text{WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{ME}/\text{WE}}$ is also used to select a READ ($\overline{\text{ME}/\text{WE}}$ = H) or WRITE ($\overline{\text{ME}/\text{WE}}$ = L) cycle when accessing the DRAM and READ TRANSFER ($\overline{\text{ME}/\text{WE}}$ = H) to the SAM.
17	SEO	Input	Serial Port Enable: SE enables the serial output buffers and allows a serial READ operation to occur; otherwise, the output buffers are in a High-Z state. The SAM address count will be incremented by the rising edge of SC when SE is inactive (HIGH).
7	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE, SPLIT TRANSFER, etc.) are used for a particular access cycle (see Truth Table).
3	RAS0	Input	Row Address Strobe: RAS is used to clock-in the 9 row-address bits and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It also acts as the master chip enable, and must fall for initiation of any DRAM or TRANSFER cycle.
5, 31, 51, 70	CAS1-4	Input	Column Address Strobe: CAS is used to clock-in the 9 column- address bits and strobe the DSF input (BLOCK WRITE only).
72-80	72-80 A0-A8 Input Addre multip out of indice A0-A8		Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 32-bit word out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A8 indicate the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address during SPLIT READ TRANSFER.
8-15, 32-39, 52-59,83-90	DQ1-DQ32	Input/ Output	DRAM Data I/O: Data input/output for DRAM access cycles: These pins also act as inputs for Color Register load cycles, DQ Mask and Column Mask for BLOCK WRITE.
20-27, 41-48, 61-68, 92-99	SQ1-SQ32	Output	Serial Data Out: Output or High-Z.
2	QSF0	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.
19, 40, 60, 91	Vcc	Supply	Power Supply: +5V ±10%
1, 28, 49, 71, 82, 100	Vss	Supply	Ground

MICRON

MT4V25632 256K x 32 VRAM MODULE

FUNCTIONAL DESCRIPTION

The MT4V25632 can be divided into three functional blocks (see Functional Block Diagram): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function not being discussed will be surrounded by parentheses. For example, the $\overline{TR/OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$ in references to transfer operations.

DRAM OPERATION

DRAM REFRESH

Like any DRAM-based memory module, the MT4V25632 VRAM module must be refreshed to retain data. All 512 row-address combinations must be accessed within 16.7ms. The MT4V25632 supports CBR, RAS-ONLY and HIDDEN types of refresh cycles.

For the CBR cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, but must simply perform 512 CBR cycles within the 16.7ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CBR cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CBR cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row being accessed. The SAM portion of the MT4V25632 is fully static and does not require any refreshing.

DRAM ACCESS CYCLES

The DRAM portion of the VRAM module is similar to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has special functions that can be used when writing to the DRAM.

The 18 address bits used to select an 32-bit word from the 262,144 available are latched into the chip using the A0-A8,

 \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 9 column-address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

Note: \overline{RAS} also acts as a "master" chip enable for the VRAM. If \overline{RAS} is inactive, HIGH, all other DRAM control pins (\overline{CAS} , $\overline{TR}/\overline{OE}$, $\overline{ME}/\overline{WE}$, etc.) are "don't care" and may change state without effect. No DRAM or TRANSFER cycles will be initiated without \overline{RAS} falling.

For standard single-port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $\overline{TR}/(\overline{OE})$ selects between DRAM access or TRANSFER cycles. $\overline{TR}/(\overline{OE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except CBR, where it is "don't care").

A DRAM READ operation is performed if $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW and remains HIGH until $\overline{\text{CAS}}$ goes HIGH. The data from the memory cells selected will appear at the DQ1-DQ32 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH-to-LOW some time after $\overline{\text{RAS}}$ falls to enable the DRAM output port.

For standard single-port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the VRAM, \overline{ME}/WE performs two functions; write mask enable and data write enable. $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any non-masked DRAM access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition. If (\overline{ME})/ \overline{WE} is LOW before \overline{CAS} goes LOW, a DRAM EARLY-WRITE operation is performed. If (\overline{ME})/ \overline{WE} goes LOW after \overline{CAS} goes LOW, a DRAM LATE-WRITE operation is performed (refer to the AC timing diagrams).

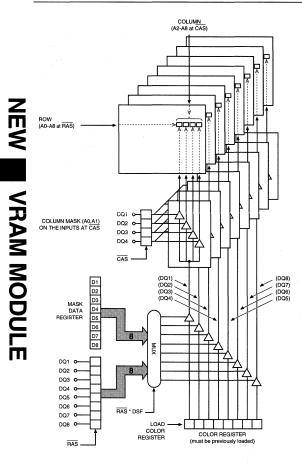
The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

MT4V25632 256K x 32 VRAM MODULE

MASKED WRITE

The MASKED WRITE (RWM) feature eliminates the need for a READ-MODIFY-WRITE cycle when changing individual bits within a 32-bit word. When $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE is performed.

The MT4V25632 supports the nonpersistent mode of MASKED WRITE. In this mode, mask data must be entered with every RAS falling edge. The data (mask data) present on the DQ1-DQ32 inputs will be written into the mask data register (see Figure 1). The mask data acts as an individual write enable for each of the eight DQ1-DQ32 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM


cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ32 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE.

FAST PAGE MODE can be used with MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE RAS cycle.

Figure 1 NONPERSISTENT MASKED WRITE EXAMPLE (PER VRAM COMPONENT)

Figure 2 BLOCK WRITE EXAMPLE (PER VRAM COMPONENT)

MT4V25632 256K x 32 VRAM MODULE

BLOCK WRITE

If DSF is HIGH when CAS goes LOW, the MT4V25632 will perform a BLOCK WRITE (BW) cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 2). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER). Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

The row is addressed as in a normal DRAM WRITE cycle. However, when CAS goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs are then used to determine what combination of the four column locations will be changed. The DQ inputs are "written" at the falling edge of CAS or WE, whichever occurs later (see the WRITE cycle waveforms). The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column locations within the block. The write enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

MASKED BLOCK WRITE

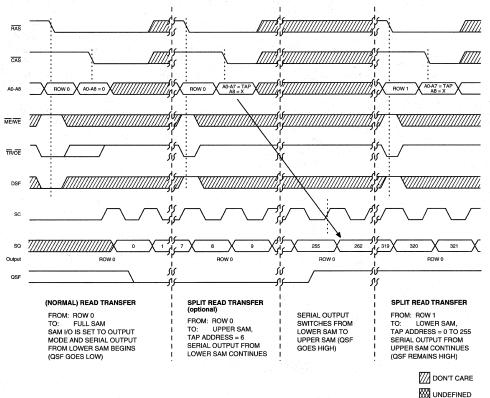
The MASKED WRITE functions may be used during BLOCK WRITE cycles. MASKED BLOCK WRITE (BWM) operates exactly like the normal MASKED WRITE except the mask is now applied to the 32 bit-planes of four column locations instead of just one column location.

The combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF LOW when $\overline{\text{RAS}}$ goes LOW initiates a nonpersistent MASKED WRITE cycle. To perform a MASKED BLOCK WRITE, the DSF pin must be HIGH when $\overline{\text{CAS}}$ goes LOW. By using both the column mask input and the MASKED WRITE function of BLOCK WRITE, any combination of the 32 bit-planes may be masked, along with any combination of the four column locations.

	COLUMN ADDRESS CONTROLLED						
INPUTS	AO	A1					
DQ1	0	0					
DQ2	1	0					
DQ3	0	1					
DQ4	1	1					

MT4V25632 256K x 32 VRAM MODULE

LOAD COLOR REGISTER


A LOAD COLOR REGISTER (LCR) cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when \overline{CAS} goes LOW. The contents of the 32-bit color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/(\overline{OE})$ is LOW at the falling edge of \overline{RAS} . The state of $(\overline{ME})/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of theTRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER and SPLIT TRANS-FER cycles. Each of the TRANSFER cycles is described in this section.

READ TRANSFER

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER (RT) cycle is selected. The rowaddress bits indicate which 32 of the 512-bit DRAM row planes are transferred to the eight SAM data register planes. The column-address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text{CAS}}$ must fall for every RT in order to load a valid Tap address. An RT may be accomplished in two ways. If the transfer is to be synchronized with the serial clock, SC, (REAL-TIME READ TRANSFER), $\overline{\text{TR}}/(\overline{\text{OE}})$ is taken HIGH after $\overline{\text{CAS}}$ goes LOW. The TRANSFER will be made when $\overline{\text{TR}}/(\overline{\text{OE}})$ goes HIGH. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{\text{TR}}/(\overline{\text{OE}})$ may go HIGH before $\overline{\text{CAS}}$ goes LOW and the actual data

Figure 3 TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

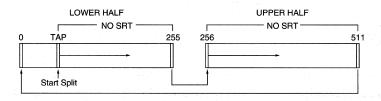
NEW VRAM MODUL

П

TRANSFER will be timed internally (refer to the AC Timing Diagrams). During the TRANSFER, 4,096 bits of DRAM data are written into the SAM data registers, and the Tap address is stored in an internal 9-bit register. The split SAM status pin (QSF) will be LOW if the Tap is in the lower half (addresses 0 through 255), and HIGH if it is in the upper half (256 through 511). If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of \overline{SE} .

SPLIT READ TRANSFER (SRT)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles to do midline reloads, a REAL-TIME READ TRANSFER must be done. The REAL-TIME READ TRANSFER must occur between the last clock of "old" data and first clock of the "new" data of the SAM port.


When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer is not synchronized with the serial clock and may occur at any time while the other half is outputting data.

The $\overline{\text{TR}}/(\overline{\text{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\text{TR}}/(\overline{\text{OE}})$ is not used to complete the TRANSFER cycle and, therefore, is independent of the falling edge of $\overline{\text{CAS}}$ or the rising edge of SC. The transfer timing is generated internally for SPLIT TRANSFER cycles.

MT4V25632 256K x 32 VRAM MODULE

A "full" READ TRANSFER cycle must precede any sequence of SRT cycles to provide a reference to which half of the SAM the access will begin (the state of QSF). Then an SRT may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH-to-LOW transition of CAS. It is internally generated in such a manner that the SPLIT TRANSFER will automatically be to the SAM half not being accessed.

Figure 3 shows a typical SRT initiation sequence. The normal READ TRANSFER is performed first, followed by an SRT of the same row to the upper half of the SAM. The SRT to the upper half is optional, and need be done only if the Tap for the upper half is $\neq 0$. Serial access continues, and when the SAM address counter reaches 255 ("A8" = 0, A0-A7 = 1) the QSF output goes HIGH. If an SRT was done for the upper half, the new Tap address is loaded for the next half ("A8" = 1, A0-A7 = Tap). Once the serial access has switched to the upper SAM (QSF has gone HIGH), new data may be transferred to the lower SAM. For example, the next step in Figure 3 would be to wait until QSF went LOW (indicating that row-1 data is shifting out of the lower SAM) and execute an SRT of the upper half of row 1 to the upper SAM. If the half boundary is reached before an SRT is done for the next half, the device will leave split mode. The access will start from address 256 if going to the upper half or at 0 if going to the lower half (see Figure 4).

Figure 4 SPLIT SAM TRANSFER

MT4V25632 256K x 32 VRAM MODULE

SERIAL OUTPUT

The control inputs for serial output are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded in the SAM address counter during a READ or SRT cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 32-bit port. \overline{SE} is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. The address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half for split modes. If an SRT was not performed before the half boundary is reached, the count will progress as illustrated

in Figure 4. Address count will wrap around (after count 511) to Tap address 0 if in the "full" SAM modes.

POWER-UP and INITIALIZATION

After Vcc is at specified operating conditions, for 100µs minimum, eight RAS cycles must be executed to initialize the dynamic memory array. Micron recommends that RAS = $\overline{\text{TR}}/\overline{\text{OE}} \ge \text{VH}$ during power up to ensure that the DRAM I/O pins (DQs) are in a High-Z state. The DRAM array will contain random data.

The SAM portion of the MT4V25632 module is completely static in operation and does not require refresh or initialization. The SAM port will power-up with the output pins (SQs) in High- *Z*, regardless of the state of SE. QSF initializes in the LOW state. The color register will contain random data after power-up.

MT4V25632

BEV 5/93

MT4V25632 256K x 32 VRAM MODULE

TRUTH TABLE

			RAS FALL	ING EDGE		CAS FALL	A0-	A81	DQ1	-DQ32 ²	REGISTER
CODE	FUNCTION	CAS	TR/OE	ME/WE	DSF	DSF	RAS	CAS	RAS	CAS,WE ³	COLOR
	DRAM OPERATIONS										1
CBR	CAS-BEFORE-RAS REFRESH	0	x	16	1 ⁶	-	х	X	-	Х	X
ROR	RAS ONLY REFRESH	1	1	X	х	- · ·	ROW		х	·	X
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	0	ROW	COLUMN	х	VALID DATA	X
RWM	MASKED WRITE TO DRAM (NEW MASK)	1	1	0	0	0	ROW	COLUMN	WRITE MASK	VALID DATA	x
BW	BLOCK WRITE TO DRAM	, e "1	1	1	0	. 1	ROW	COLUMN (A2-A8)	x	COLUMN MASK	USE
BWM	MASKED BLOCK WRITE TO DRAM (NEW MASK)	1	1	0	0	1	ROW	COLUMN (A2-A8)	WRITE MASK	COLUMN MASK	USE
	REGISTER OPERATIONS										
LCR	LOAD COLOR REGISTER	1	1	1	. 1	1	ROW ⁴	×	x	REG DATA	LOAD
	TRANSFER OPERATIONS	-						1. 			
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	ROW	TAP ⁵	X	X	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	.1	0	1	1	X	ROW	TAP ⁵	X	X	х

- 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.
- These columns show what must be present on the DQ1-DQ32 inputs when RAS falls and when CAS falls.
 During WRITE (including BLOCK WRITE) cycles, the input data is latched at the falling edge of CAS or
- ME/WE, whichever is later. Similarly, with READ cycles, the output data is valid after the falling edge of CAS or TR/OE, whichever is later.
- 4. The ROW that is addressed will be refreshed, but a ROW address is not required.
- 5. This is the first SAM address location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for the lower half, 511 for the upper half).
- 6. The MT4V25632 does not require a "1" on these pins, but to ensure compatibility with other 2 Meg VRAM function sets, it is recommended.

MT4V25632 256K x 32 VRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Operating Temperature, T _A (ambient)0°C to +70°C
Storage Temperature (plastic)55°C to +125°C
Power Dissipation
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT Any input ($0V \le V_{IN} \le V_{CC}$); all other pins not under test = $0V$	IL.	-40	40	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SQ disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	
Output High Voltage ($IOUT = -2.5 \text{mA}$) Output Low Voltage ($IOUT = 2.5 \text{mA}$)	Vol		0.4	v]

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		24	pF	2
Input Capacitance: RAS, ME/WE, TR/OE, SC, SE, DSF	CI2		32	pF	2
Input Capacitance: CAS1-4	Сіз		8	pF	2
Input/Output Capacitance: DQ1-32, SQ1-32	Cı/o		10	pF	2
Output Capacitance: QSF	Co		10	pF	2

MT4V25632 256K x 32 VRAM MODULE

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$		M	AX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	ICC1	500	440	mA	3, 4 25
$\begin{array}{l} \hline \textbf{OPERATING CURRENT: FAST PAGE MODE} \\ \hline (\overline{RAS} = V_{IL}; \ \overline{CAS} = Cycling: {}^{t}PC = {}^{t}PC \ [MIN], \ other \ inputs \geq V_{IH} \ or \leq V_{IL}) \end{array}$	ICC2	460	400	mA	3, 4 26
$\label{eq:rescaled} \begin{array}{ l l l l l l l l l l l l l l l l l l l$	Іссз	40	40	mA	4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	Icc4	500	440	mA	3, 25
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling) SAM/DRAM DATA TRANSFER	ICC5	500	440	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	135	120	mA	3
SAM/DRAM DATA TRANSFER CURRENT DRAIN, SAM ACTIVE (^t SC = MIN) (0°C $\leq T_A \leq 70°$ C; Vcc = 5V ±10%)		, <u> </u>		<u> mA</u>	3
	OVMDOL		AX	UNUTO	NOTE
PARAMETER/CONDITION	SYMBOL	-7	-8		NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	ICC7	700	640	mA	3, 4 25
OPERATING CURRENT: FAST PAGE MODE	ICC8	660	600	mA	3.4

$(0^{\circ}C \le 1_{A} \le 70^{\circ}C; VCC = 5V \pm 10\%)$					
PARAMETER/CONDITION	SYMBOL	-7	-8	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC [MIN])	Icc7	700	640	mA	3, 4 25
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: ¹PC = ¹PC [MIN])	Icc8	660	600	mA	3, 4 26
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles [MIN]; other inputs \ge VIH or \le VIL)	Icca	240	240	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	ICC10	700	640	mA	3, 4 25
REFRESH CURRENT: \overline{CAS} -BEFORE- \overline{RAS} (\overline{RAS} and \overline{CAS} = Cycling)	Icc11	700	640	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	185	170	mA	3, 4

MT4V25632 256K x 32 VRAM MODULE

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS			-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150	4.19	ns	100
READ-MODIFY-WRITE cycle time	tRWC	175		190		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45	1. S. 1. S.	ns	
cycle time		1.1	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1				$[[n_{i}, n_{i}]]$
FAST-PAGE-MODE READ-MODIFY-WRITE	^t PRWC	90		95		ns	
cycle time						$a^{(i)} \in \mathbb{R}^{n}$	$(x,y)_{i\in \mathbb{N}}$
Access time from RAS	^t RAC		70	2011 - E	80	ns	14
Access time from CAS	^t CAC		20		25	ns	15
Access time from (TR)/OE	tOE		20		20	ns	
Access time from column-address	^t AA		35		40	ns	
Access time from CAS precharge	^t CPA		40		45	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	ns	- 394
RAS pulse width (FAST-PAGE-MODE)	tRASP	70	100,000	80	100,000	ns	
RAS hold time	tRSH	20		25		ns	
RAS precharge time	tRP	50		60		ns	
CAS pulse width	^t CAS	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		ns	
CAS precharge time	^t CP	10		10		ns	16
RAS to CAS delay time	tRCD	20	50	20	55	ns	17
CAS to RAS precharge time	tCRP	10		10		ns	
Row-address setup time	^t ASR	0		0		ns	
Row-address hold time	^t RAH	10		10		ns	
RAS to column-	^t RAD	15	35	15	40	ns	18
address delay time					a de la composición d		1997
Column-address setup time	tASC	0		0		ns	1.1.1
Column-address hold time	^t CAH	15		15	and the second	ns	
Column-address hold time	tAR	45		55		ns	
(referenced to RAS)							$\frac{1}{2}$
Column-address to	^t RAL	35		40		ns	
RAS lead time							
Read command setup time	tRCS	0		0		ns	
Read command hold time	tRCH	0		0		ns	19
(referenced to CAS)			1				
Read command hold time	tRRH	0		0		ns	19
(referenced to RAS)							
CAS to output in Low-Z	tCLZ	3		3		ns	1.1
Output buffer turn-off delay from CAS	tOFF	3	20	3	20	ns	20,23
Output disable delay from (TR)/OE	tOD	3	10	3	10	ns	20,23
Output disable hold time from start of WRITE	tOEH	10		10		ns	27
Output Enable to RAS delay	^t ROH	0	1	0		ns	1.1

NEW VRAM MODULE

MT4V25632 256K x 32 VRAM MODULE

DRAM TIMING PARAMETERS (continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5V ±10%)

AC CHARACTERISTICS		-	7	-	8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	tWCS	0		0		ns	21
Write command hold time	tWCH	15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
Write command pulse width	tWP	15		15		ns	
Write command to RAS lead time	^t RWL	20		20		ns	
Write command to CAS lead time	tCWL	20		20		ns	
Data-in setup time	^t DS	0		0		ns	22
Data-in hold time	^t DH	15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
RAS to WE delay time	^t RWD	90		100		ns	21
Column-address to WE delay time	tAWD	55		60		ns	21
CAS to WE delay time	tCWD	40		45		ns	21
Transition time (rise or fall)	tT .		35		35	ns	9, 10
Refresh period (512 cycles)	tREF		8		8	ms	
RAS to CAS precharge time	tRPC	0		0		ns	
CAS setup time (CBR REFRESH)	¹ CSR	10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
ME/WE to RAS setup time	tWSR	0		0		ns	
ME/WE to RAS hold time	^t RWH	15		15		ns	
Mask data to RAS setup time	tMS	0		0		ns	
Mask data to RAS hold time	tMH	15		15		ns	

MT4V25632 256K x 32 VRAM MODULE

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5V \pm 10%)

AC CHARACTERISTICS			-7		-8	1.11.14	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
TR/(OE) LOW to RAS setup time	^t TLS	0		0		ns	
TR/(OE) LOW to RAS hold time	^t TLH	15	10,000	15	10,000	ns	1.401.0
TR/(OE) LOW to RAS hold time (REAL-TIME READ-TRANSFER only)	^t RTH	65	10,000	70	10,000	ns	
TR/(OE) LOW to CAS hold time (REAL-TIME READ-TRANSFER only)	^t CTH	25		25		ns	
TR/(OE) HIGH to RAS precharge time	^t TRP	50		60		ns	
TR/(OE) precharge time	^t TRW	20		25		ns	
TR/(OE) HIGH to SC lead time	tTSL	5		5		ns	
First SC edge to TR/(OE) HIGH delay time	^t TSD	15		15		ns	
SC to RAS setup time	^t SRS	25	$z_{\rm e} = b_{\rm e} z_{\rm e}$	30		ns	
TR/(OE) HIGH to RAS setup time	tYS	0		0		ns	
TR/(OE) HIGH to RAS hold time	tYH	15		15		ns	
DSF to RAS setup time	^t FSR	0		0		ns	
DSF to RAS hold time	^t RFH	15		15		ns	
SC to QSF delay time	^t SQD		25		30	ns	
SPLIT TRANSFER setup time	^t STS	25		30		ns	
SPLIT TRANSFER hold time	^t STH	0		0		ns	
DSF (at CAS LOW) to RAS hold time	^t FHR	45		55		ns	
DSF to CAS setup time	^t FSC	0		0		ns	
DSF to CAS hold time	^t CFH	15		15		ns	
TR/OE to QSF delay time	[†] TQD		25		25	ns	
RAS to QSF delay time	^t RQD		75		75	ns	
CAS to QSF delay time	^t CQD		35		35	ns	
RAS to first SC delay	^t RSD	80		80		ns	
CAS to first SC delay	^t CSD	30		30		ns	

NEW VRAM MODULE

MT4V25632 256K x 32 VRAM MODULE

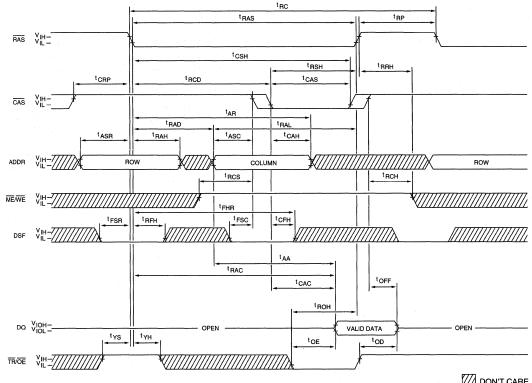
SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ($0^{\circ} C \le T_{A} \le + 70^{\circ}C$; Vcc = 5V ±10%)

AC CHARACTERISTICS		-7		-8			T
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tSC	22		25		ns	
Access time from SC	^t SAC		22		25	ns	24, 28
SC precharge time (SC LOW time)	tSP	8		10		ns	
SC pulse width (SC HIGH time)	^t SAS	8		10		ns	1
Access time from SE	^t SEA		15		15	ns	24
SE precharge time	^t SEP	8		10		ns	
SE pulse width	tSE	8		10		ns	
Serial data-out hold time after SC high	^t SOH	5		5		ns	24, 28
Serial output buffer turn-off delay from SE	^t SEZ	3	12	3	12	ns	20, 24

MT4V25632 256K x 32 VRAM MODULE

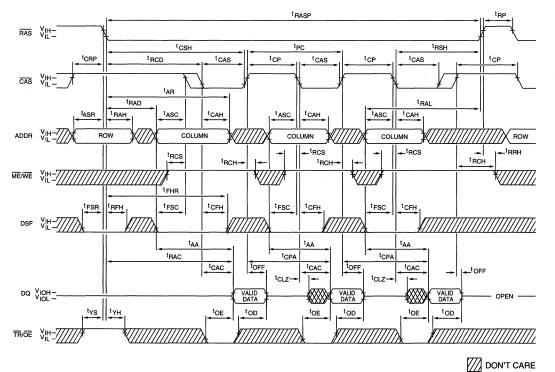

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}C \le T_A \le 70^{\circ}C)$ is assured.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16.7ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). Input signals transition from 0 to 3V for AC testing.
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = VIH, DRAM data output (DQ1-DQ32) is High-Z.
- 12. If $\overline{CAS} = V\pi$, DRAM data output (DQ1-DQ32) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOD, ^tOFF and ^tSEZ define the time when the output achieves open circuit (VOH -200mV, VOL +200mV). This parameter is sampled and not 100 percent tested.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If $^{t}WCS \ge$ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq$ ^tWCS (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the WRITE to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD$ \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), the cycle is a READ-WRITE, and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: VOH = 2.0V; VOL = 0.8V.
- 25. Address (A0-A8) may be changed two times or less while $\overline{RAS} = VIL$.
- 26. Address (A0-A8) may be changed once or less while $\overline{CAS} = VIH$ and $\overline{RAS} = VIL$.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have 'OD and 'OEH met (\overline{OE} HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if \overline{CAS} remains LOW and \overline{OE} is taken LOW after 'OEH is met. If \overline{CAS} goes HIGH prior to \overline{OE} going back LOW, the DQs will remain open.
- 28. ^tSAC is MAX at 70° C and 4.5V Vcc; ^tSOH is MIN at 0°C and 5.5V Vcc. These limits will not occur simultaneously at any given voltage or temperature. (^tSOH = ^tSAC output transition time); this is guaranteed by design.

EW VRAM MODULE

MT4V25632 256K x 32 VRAM MODULE


DRAM READ CYCLE

DON'T CARE

NEW VRAM MODULE

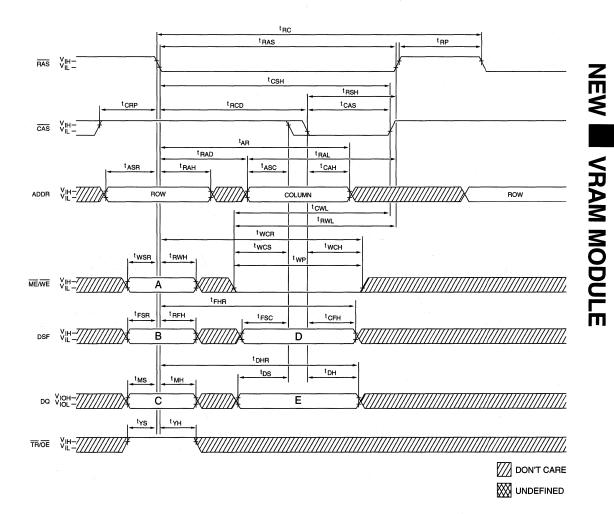
NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST-PAGE-MODE.

W UNDEFINED

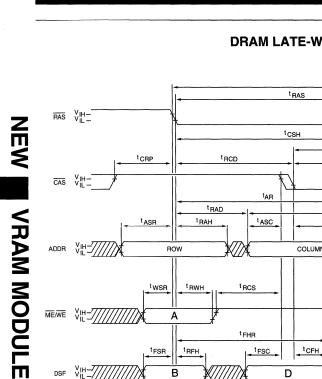
MT4V25632 256K x 32 VRAM MODULE

WRITE CYCLE FUNCTION TABLE 1

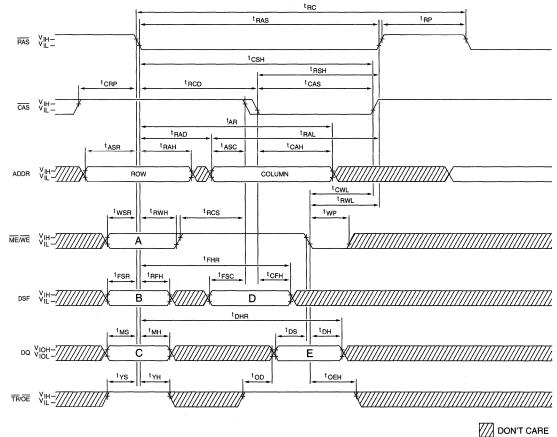
	LOGIC STATES								
		RAS Fall	ing Edge		CAS Falling Edge				
FUNCTION	A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)				
Normal DRAM WRITE	1	0	X	0	DRAM Data				
MASKED WRITE to DRAM	0	0	Write Mask	0	DRAM Data (Masked)				
BLOCK WRITE to DRAM (No Bit-Plane Mask)	1	0	X	1	Column Mask				
MASKED BLOCK WRITE to DRAM	0	0	Write Mask	1	Column Mask				
Load Color Register	1	1	X	1	Color Data				


E: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

2. CAS or ME/WE falling edge, whichever occurs later.


DRAM EARLY-WRITE CYCLE 1

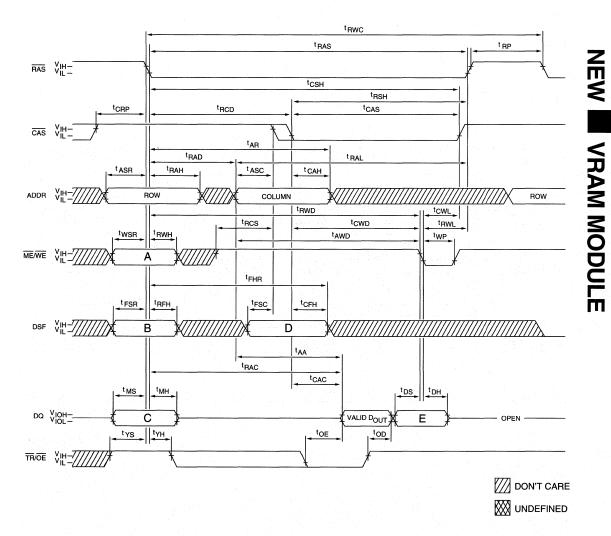
ion


NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

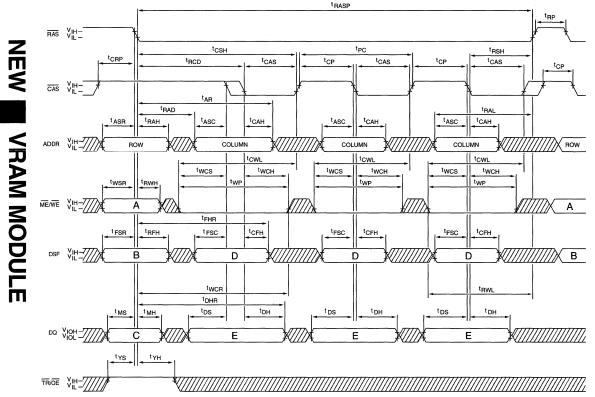
MT4V25632 256K x 32 VRAM MODULE

MICRON

DRAM LATE-WRITE CYCLE


UNDEFINED

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

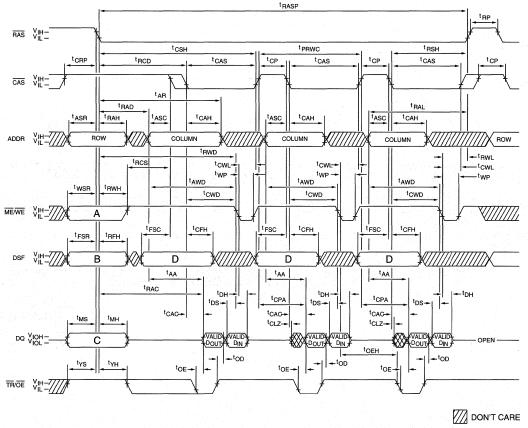

MT4V25632 256K x 32 VRAM MODULE

NOTE: The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT4V25632 256K x 32 VRAM MODULE

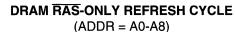
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

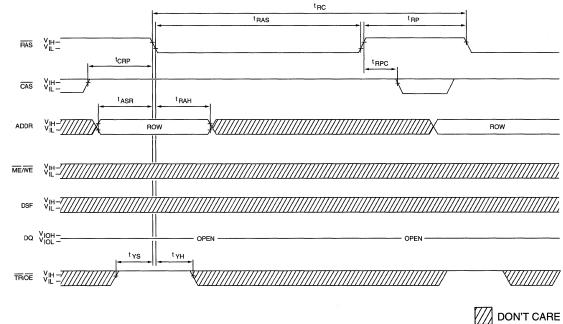
RON


DON'T CARE

- **NOTE:** 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST-PAGE-MODE.
 - 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

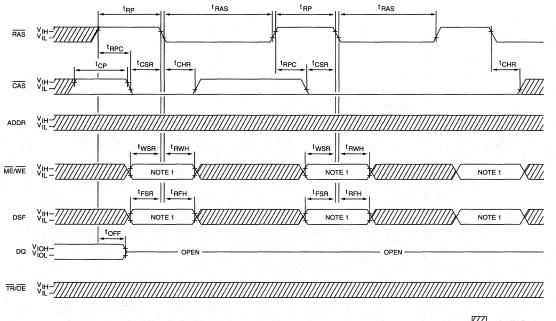
MT4V25632 256K x 32 VRAM MODULE


DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)



NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST-PAGE-MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

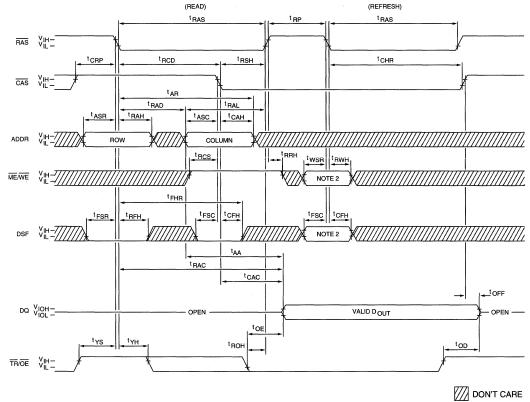
2. The logic states of "A", "B", "C" and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


NEW

VRAM MODULE

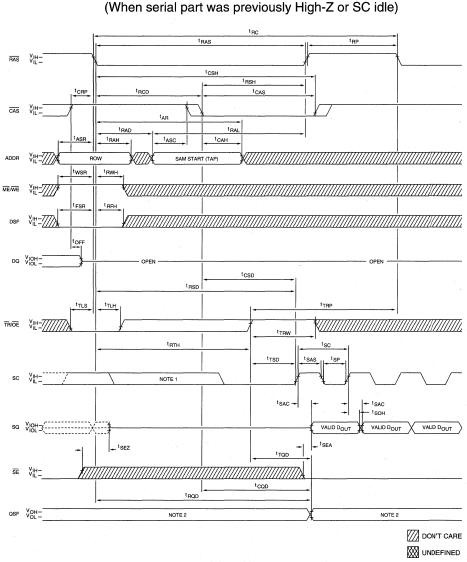
MT4V25632 256K x 32 VRAM MODULE

CBR REFRESH CYCLE



NOTE: 1. The MT4V25632 operates with ME/WE and DSF = "don't care," but to ensure compatibility with all 2 Meg VRAM feature sets, it is recommended that they be HIGH ("1").

DRAM HIDDEN-REFRESH CYCLE

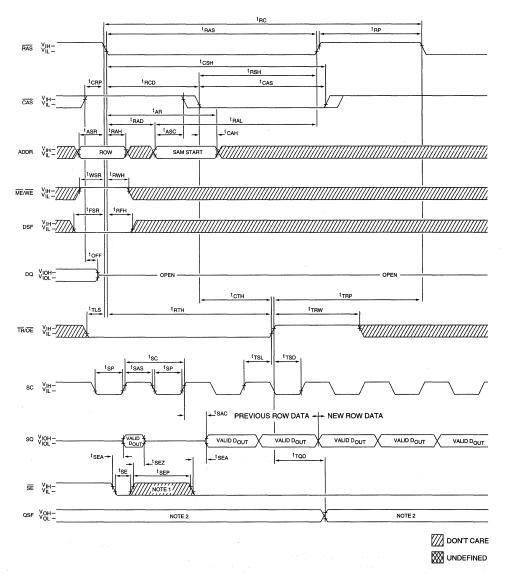

NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In this case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

 The MT4V25632 operates with ME/WE and DSF = "don't care," but to ensure compatibility with all 2 Meg VRAM feature sets, it is recommended that they be HIGH ("1").

NEW 📕 VRAM MODULE

MT4V25632 256K x 32 VRAM MODULE

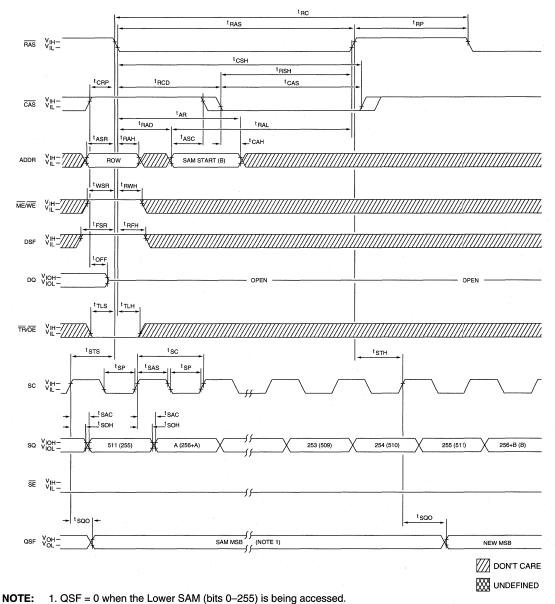
READ TRANSFER ³ (DRAM-TO-SAM TRANSFER)


NOTE: 1. There must be no rising edges on the SC input during this time period.

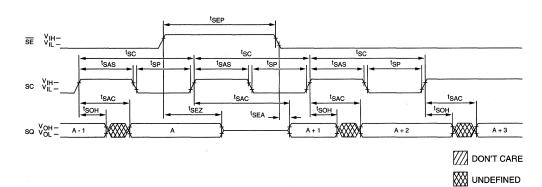
- 2. QSF = 0 when the Lower SAM (bits 0-255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256–511) is being accessed.
- 3. If ^tTLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the ^tCSD and ^tRSD times must be met. If ^tRTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and ^tTSD must be met.

MT4V25632 256K x 32 VRAM MODULE

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)



- NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.
 2. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 - QSF = 1 when the Upper SAM (bits 256–511) is being accessed.


SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

MT4V25632 256K x 32 VRAM MODULE

SAM SERIAL OUTPUT

MICEON SEMICONDUCTOR, INC.

WIDE DRAMs		
VRAMs		. 2
TRIPLE-PORT DRAMs		. 3
VRAM MODULES	*****	. 4
APPLICATION/TECHNICAL	NOTES	. 5
PRODUCT RELIABILITY		. 6
PACKAGE INFORMATION .		. 7
SALES INFORMATION		. 8

MICRON

APPLICATION/TECHNICAL NOTE SELECTION GUIDE

Technical Note	Title	Page
TN-00-01	Moisture Absorption in Plastic Packages	5-1
TN-00-02	Tape-and-Reel Procedures	5-3
TN-04-21	Reduce DRAM Cycle Times with Extended Data-Out	5-9
TN-42-01	Upgrading from 1 Meg to 2 Meg VRAMs	5-17
TN-42-02	Designing with the MT42C4256/8128 VRAM	5-25
TN-42-03	Regular, Real-Time and SPLIT READ TRANSFERs	5-35
TN-42-04	Bank Interleaving with Extended Data-Out VRAMs	5-39
TN-42-05	Four-Column vs Eight-Column BLOCK WRITE	5-43
TN-43-01	MT43C4257/8 Comparison	5-51
AN-43-01	Accelerate Common GUI Operations with a TPDRAM-Based Frame Buffer	5-53
AN-43-02	Use of TPDRAM for Smarter/Faster Network Applications	5-63

TN-00-01 MOISTURE ABSORPTION

TECHNICAL NOTE

INTRODUCTION

All plastic integrated-circuit packages have a tendency to absorb moisture. During surface-mount assembly, this moisture can vaporize when subjected to the heat associated with solder reflow operations. Vaporization creates internal stresses that can cause the plastic molding compound to crack. Cracks in the package allow contamination to penetrate to the die and potentially reduce the reliability of the semiconductor device. The cracking process associated with surface-mountable devices is commonly referred to as the "popcorn effect."

Cracks in the plastic pose several reliability concerns. The moisture path to the die is shortened, allowing ion migration or corrosion to occur more readily. Minor cracks which might not be harmful initially could propagate with time, resulting in a longer-term functional failure.

Since plastic packages absorb moisture, care must be taken to prevent exposure for any long period prior to surface-mounting the devices on the printed circuit board. If exposed to excessive moisture, the devices should be baked to remove moisture prior to solder reflow operations.

This technical note describes the shipping procedures that ensure Micron's customers will receive memory devices that do not exhibit the popcorn effect. It also discusses Micron's recommendations for baking the devices if they are exposed to excessive moisture.

ABSORPTION CHARACTERISTICS

Micron's extensive testing empirically characterizes the moisture absorption characteristics of plastic packages. As the plastic takes on moisture, the weight of the device increases. Micron employs a standard procedure for weighing the device before and after it is exposed to moisture. We calculate the percentage of weight gain to determine the relative efficiency of different packaging techniques used for shipping devices.

MICRON PROCEDURES

Micron has eliminated any chance of having popcorn failures with surface-mount packages by shipping all surface-mount devices in sealed bags containing a desiccant. Devices stored in these bags show no measurable weight gain when subjected to a high-humidity environment for long time periods.

MOISTURE ABSORPTION IN PLASTIC PACKAGES

DEVICE STORAGE

To prevent device failure due to the popcorn effect, store plastic surface-mount packages carefully before PCB assembly. Micron has run tests on devices that have been exposed to 50 percent humidity outside of their shipping containers for time intervals from six months to one year, and no failures have been recorded.

Any concerns about the moisture absorption can be eliminated by storing the devices in Micron's shipping bags. We designed these containers to prevent the passage of water vapor for long periods of time.

DEVICE BAKING

If devices have been removed from their shipping containers and exposed to high levels of moisture, Micron recommends a device bake-out procedure before surface mounting. This bake-out may be accomplished by placing the parts in a tray and baking them in an oven for 160 hours at 40° C. Any moisture is driven out of the devices during the exposure to the heat.

Moisture may be removed faster by baking at 100° C for 24 hours.

SUMMARY

- All plastic packages absorb moisture when exposed to high levels of humidity for long time intervals.
- 2. Micron devices have not exhibited any popcorn effect when exposed to 50 percent humidity for long time periods.
- 3. Micron ships all surface-mount packages in containers that prevent absorption of moisture.
- If devices have been removed from their shipping containers and exposed to excessive moisture, they should be baked before being surface-mounted.

REFERENCES

"Moisture Absorption and Mechanical Performance of Surface Mountable Plastic Packages": Bhattacharyya, B. K., et al. : 1988 Proceedings of the 38th Electronics Components Conference.

"Analysis of Package Cracking During Reflow Soldering Process": Kitano, M., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

"Moisture Induced Package Cracking in Plastic Encapsulated Surface Mounted Components During Solder Reflow Process": Lin, R., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

TN-00-02 TAPE-AND-REEL

TECHNICAL NOTE

TAPE-AND-REEL Procedures

GENERAL DESCRIPTION

Tape-and-reel is becoming the packaging and shipment method of choice for Micron's surface-mounted memory devices. Tape-and-reel minimizes the handling of components by directly interfacing with automatic pick-and-place machines. Micron supports the Electronic Industries Association's (EIA) standardization of tape-and-reel specifications number 481A. The intent of this technical note is to describe Micron's status in support of the EIA standard.

COMPONENT	TAPE WIDTH (W) mm	PITCH (P) mm	DEVICES PER 13-INCH REEL
PLCC	04	10	1 000
18 Pin 52 Pin	24 32	12 16	1,000 500
SOJ (300 mil)			
20/26 Pin	24	12	1,000
24 Pin	24	12	1,000
28 Pin	24	12	1,000
SOJ (400 mil)			
28 Pin	32	16	500
32 Pin	44	16	500
40 Pin	44	16	500

Table 1* MICRON TAPE SIZES AND DEVICES PER REEL

*These are examples of tape-and-reel sizes available. Please contact Micron for all available options.

TN-00-02 TAPE-AND-REEL

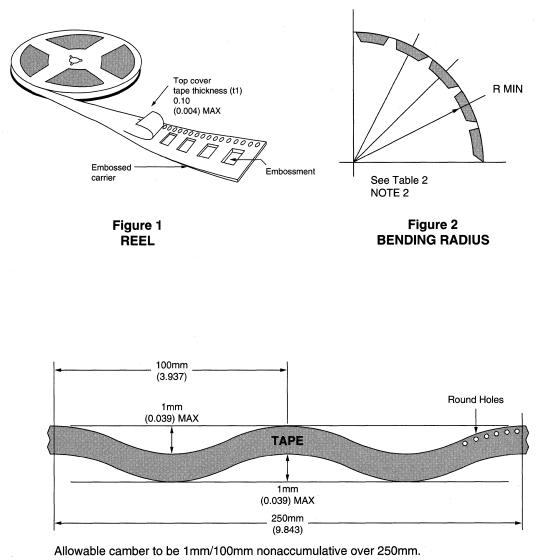


Figure 3 CAMBER (top view)

TN-00-02 TAPE-AND-REEL

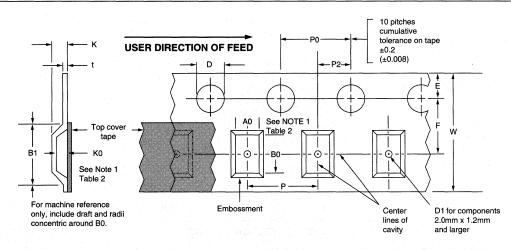
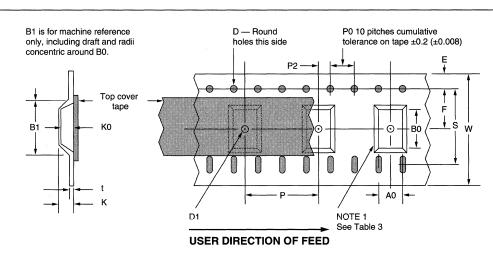
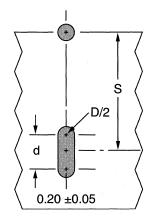


Figure 4 EMBOSSED CARRIER DIMENSIONS (24mm tape only)

		Table 2		
24mm	EMBOSS	ED TAPE	DIMEN	ISIONS ³


TAPE SIZE	D	E service	PO	t (MAX)	A0, B0, K0
24mm	$\begin{array}{c} 1.5 \begin{array}{c} ^{+0.10}_{-0.00} \\ (0.59) \begin{array}{c} ^{+0.004}_{-0.000} \end{array}$	1.75 (0.069 ±0.004)	4 (0.157 ±0.004)	0.400 (0.16)	Note 1

TAPE SIZE	B1 (MAX)	D1 (MIN)	F	K (MAX)	P2	R (MIN)	W
24mm	20.1	1.5	11.5 ±0.10	6.5	2 ±0.10	50	24 ±0.30
	(0.791)	(0.059)	(0.453 ±0.004)	(0.256)	(0.079 ±0.004)	(1.969)	(0.945 ±0.012)


			P			
TAPE SIZE	4 ±0.10 (0.157 ±0.004)	8±0.10 (0.315±0.004)	12±0.10 (0.472±0.004)	16±0.10 (0.630±0.004)	20±0.10 (0.787±0.004)	24 ±0.10 (0.945 ±0.004)
24mm			x	x	x	x

- **NOTE:** 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.
 - 2. Tape and components shall pass around radius "R" without damage.
 - 3. All dimensions in millimeters, (inches).

APPLICATION/TECHNICAL NOTE

TN-00-02 TAPE-AND-REEL

Table 332 AND 44mm EMBOSSED TAPE 3

TAPE SIZE	D	D1 (MIN)	E	K (MAX)	PO	t (MAX)	AO, BO, KO
32 and 44mm	$\begin{array}{c} 1.5 \begin{array}{c} ^{+0.10}_{+0.00} \\ (0.059) \begin{array}{c} ^{+0.004}_{+0.000} \end{array}$	2 (0.079)	1.75 ±0.10 (0.069 ±0.004)	10 (0.394)	4 ±0.10 (0.156 ±0.004)	0.500 (0.20)	NOTE 1

TAPE SIZE	B1 (MAX)	F	P2	S	W	R (MIN)
32mm	23	14.2 ±0.10	2 ±0.10	28.4 ±0.10	32 ±0.30	50
	(0.906)	(0.559 ±0.004)	(0.079 ±0.004)	(1.118 ±0.004)	(1.26 ±0.012)	(1.973)
44mm	35	20.2 ±0.15	2 ±0.15	40.4 ±0.10	44.8 ±0.30	50
	(1.378)	(0.795 ±0.006)	(0.079 ±0.006)	(1.591 ±0.004)	(1.732 ±0.12)	(1.973)

					Р			
TAPE SIZE	16 ±0.10 (0.630 ±0.004)	20 ±0.10 (0.787 ±0.004)	24 ±0.10 (0.945 ±0.004)	28 ±0.10 (1.102 ±0.004)	32 ±0.10 (1.26 ±0.004)	36 ±0.10 (1.417 ±0.004)	40 ±0.10 (1.575 ±0.004)	44 ±0.10 (1.732 ±0.004)
32mm	x	x	x	x	x			
44mm			x	x	x	x	x	x

- **NOTE:** 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.
 - 2. Tape and components shall pass around radius "R" without damage.

3. All dimensions in millimeters (inches).

TN-00-02 TAPE-AND-REEL

TECHNICAL NOTE

INTRODUCTION

As system speeds increase, DRAM manufacturers are developing methods to decrease the cycle times of DRAMs. The most common versions of DRAMs are FAST-PAGE (FP) and STATIC-COLUMN (SC) but the addition of a feature known as extended data-out (EDO) may become more common because it allows shorter page cycle times with only a minor functional change from FP. Because the device with EDO doesn't turn off the output drivers when CAS goes HIGH, it can have a shorter cycle time than FP.

EDO OFFERS ADVANTAGES

- It has a shorter PAGE READ cycle time than either FP or SC devices.
- Data is valid on the falling edge of CAS, so the designer can use that edge to strobe data.
- A 70ns EDO device has the same PAGE READ cycle time as a 40ns DRAM.

REDUCE DRAM CYCLE TIMES WITH EXTENDED DATA-OUT

• Implementing EDO in place of FP devices in a system can be as easy as knowing when the bus needs to be deactivated and using OE instead of CAS to accomplish it.

This article first covers some basic differences between FP, SC, and EDO during a PAGE READ cycle. Then a comparison of cycle times between FP and EDO is done, followed by a few examples under different address setup conditions. When moving from a PAGE READ into a PAGE WRITE, the timing differs slightly between FP and EDO; this difference is discussed. Finally, the issues involved when replacing an FP device with an EDO device are addressed.

BASIC DESCRIPTION

FP, SC and EDO all allow fast data operations within a row. The differences are in the latching of the column-

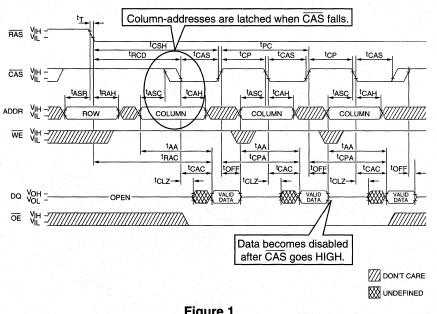


Figure 1 FP READ CYCLE

address and deactivating data-out when \overline{CAS} goes HIGH. The following section highlights differences between the FP, SC and EDO when reading within a page.

FP MODE

Characteristics:

- The column-address is latched when CAS falls.
- The output drivers are turned off when CAS goes HIGH.
- Minimum FP READ cycle time is ^tPC = ^tCPA + ^tT, (^tCPA = ^tAA + ^tT)

The cycle begins with \overline{RAS} strobing-in a row address, followed by \overline{CAS} strobing-in a column-address. To continue to access columns within that row, \overline{CAS} is toggled as addresses change.

Figure 1 shows a typical FP READ cycle. The columnaddress is latched into the part when CAS falls, so columnaddress setup and hold times are referenced to the falling edge of CAS. Notice ^tOFF; this specification tells you that CAS going HIGH turns off the output drivers.

SC MODE

Characteristics:

- The column-address is not latched when \overline{CAS} falls.
- The output drivers are turned off when CAS goes HIGH.
- Minimum SC READ cycle time is ^tSC = ^tAA + ^tT.

TN-04-21 EXTENDED DATA-OUT

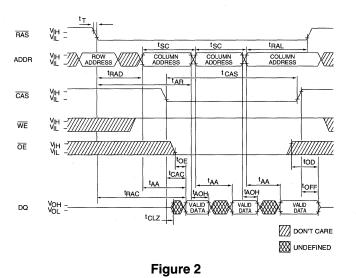

The cycle begins the same as FP, but to continue accessing columns within a row, \overline{CAS} may be left LOW with only the addresses changing. The address is not latched when \overline{CAS} falls. Instead, \overline{CAS} acts as a transparent latch that is enabled when \overline{CAS} is LOW. As long as \overline{CAS} is LOW, the column-address will flow through into the device and the part will start retrieving that address. For this reason, the address is changed before data-out becomes valid, the device will start retrieving the new address and not put out data for the previous address.

Figure 2 shows a typical SC read cycle. Notice that there are no address setup and hold times, because addresses are not latched. The address can be changed once ^tAA has been met and the device will hold data valid for 5ns from the address change (^tAOH). As you can see, the SC READ cycle time would be ^tSC = ^tAA + ^tT. The benefit of SC over the FP is that the cycle time is shorter by one transition (generally 5ns). The disadvantage is that the user must hold the column-address valid throughout the entire cycle.

EDO

Characteristics:

- The column-address is latched when CAS falls.
- The output drivers are not turned off when \overline{CAS} goes HIGH.
- Minimum FP read cycle time is ^tPC = ^tAA.

SC Cycle

EDO allows fast access within a row and uses \overline{CAS} to latch the column-address, as does FP, but does not turn off the output when \overline{CAS} goes HIGH. This last feature allows EDO to cycle faster than either FP or SC, because the user does not have to wait for valid data to appear before starting the next access. In other words, data can appear after \overline{CAS} has been pulled HIGH, and it will stay valid for 5ns after \overline{CAS} transitions LOW again (^tCOH), as shown in Figure 3. Notice that there is no ^tOFF in the PAGE READ of the EDO diagram. The output will deactivate when both \overline{RAS} and \overline{CAS} are HIGH, so ^tOFF will now be referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

PAGE READ CYCLE TIMES

This section examines the different cycle times of FP and EDO and see how they are generated. Figure 1 shows that \overline{CAS} must stay LOW until data-out becomes valid (if \overline{CAS} goes HIGH before valid data, then the output buffers would turn off). The longest access time specified for the device is from \overline{CAS} HIGH to data-out (^tCPA). \overline{CAS} can't go HIGH before ^tCPA, or data-out will not fire. Add a transition time to pull \overline{CAS} HIGH and you have the cycle time ^tPC_{FPM} = ^tCPA + ^tT.

EDO works a bit differently. ^tCPA is still the longest access time, but is no longer the limiting parameter in cycle time. This is because some of this access time includes CAS precharge (CAS HIGH time). In FP, you can't bring

TN-04-21 EXTENDED DATA-OUT

CAS HIGH before data is valid because CAS HIGH turns data off. Since CAS HIGH doesn't turn off data in the EDO device, you can bring CAS HIGH before data is valid and begin precharging CAS while you wait for data-out. This overlap of CAS precharge and getting data-out means ^tCPA is no longer the limiting parameter, because ^tCPA includes CAS precharge. Now ^tAA is the longest access time, so ^tPC_{EDO} = ^tAA. This is the shortest cycle time of the three modes.

EXAMPLES: EDO AND FP

The table below compares page READ cycles of FP and EDO under two different conditions: minimum columnaddress setup and maximum column-address setup time. The timing diagrams for the following examples assume that \overline{RAS} is already LOW, \overline{WE} is HIGH and \overline{OE} is LOW. A 70ns DRAM is used with the following timing:

DESCRIPTION	FP	EDO
^t PC (MIN)	45	35
^t CAS (MIN)	20	15
^t CLZ (MIN)	0	0
tOFF	0-20	0-20
tT	5	5

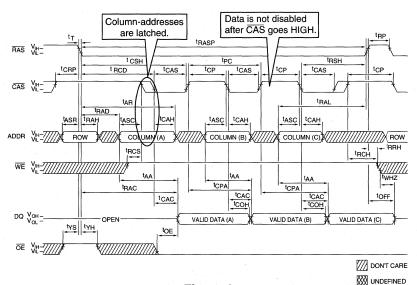


Figure 3 FP READ WITH EDO

Figures 4 and 5 show FP and EDO cycles with plenty of address setup time. On an FP device with plenty of address setup time, we can operate at ${}^{1}PC = 45$ ns (the minimum allowed), and data is valid for 5ns.

EDO under the same address setup time looks different (see Figure 5). Now the minimum cycle time is 35ns. Notice that data doesn't appear on the bus until you are already into the second access (5ns of \overline{CAS} precharge for the next cycle is already completed when data appears). This is the overlap that allows the shorter cycle time. ^tPC is 35ns and data is valid for 15ns.

Under these conditions, EDO cuts the cycle time over an FP device by 22 percent (45ns to 35ns). In addition, even with the shorter cycle time, data-out is valid for 15ns on the EDO as opposed to only 5ns on the FP device.

Figures 6 and 7 show FP and EDO cycles with minimum address setup time. In this case, the address becomes valid coincident with \overrightarrow{CAS} falling. For FP, data won't be valid for ^tAA(35ns), so \overrightarrow{CAS} must be held LOW until that time (see Figure 6). Since the minimum \overrightarrow{CAS} HIGH time is 10ns, the cycle time is 50ns (^tAA + ^tCP + ^tT). Data-out is valid for 5ns.

Looking at EDO under the same conditions, (Figure 7) it still takes ^tAA (35ns) after the addresses are valid to get valid data-out, but now you don't have to wait before pulling CAS HIGH. Notice that CAS has been pulled HIGH and precharge has been completed for the next cycle, before Data 1 appears on the bus. As data becomes valid, \overline{CAS} drops and the second address is latched. Again, there is an overlap of starting one cycle and finishing the other. Now 'PC = 35ns, and data-out is valid for 10ns.

In this case, EDO cycle time (35ns) is 30 percent less than the FP cycle time (50ns); EDO data is valid 5ns longer.

These examples should point out another big advantage of EDO. Not only can you operate at a shorter cycle time, but data is available longer for the system to sample. Since data is guaranteed to be valid as CAS falls, that edge may be used to sample data.

70ns EDO INSTEAD OF 40ns DRAMs

EDO can provide the FP READ speed of a 40ns DRAM. Even though a 40ns DRAM has a 40ns [†]RAC, the FP READ cycle time is 35ns, which is the same page READ cycle time as that of a 70ns EDO device.

EASY TO IMPLEMENT

An additional benefit of EDO is the ease of implementation. PAGE READ or WRITE cycle time is cut by 10ns, but the only difference between FP and FP with EDO is that the FP device will stop driving data-out when CAS goes HIGH

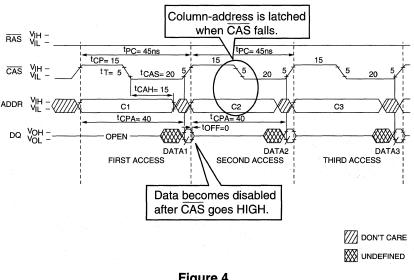
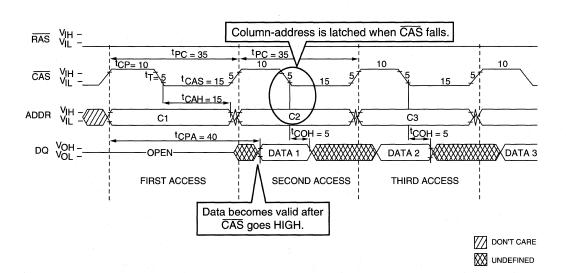
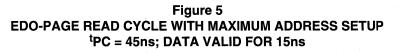


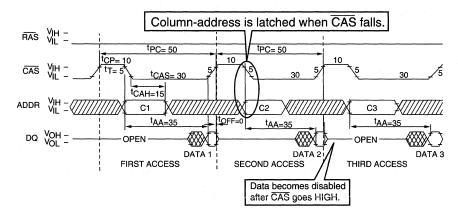
Figure 4 FP PAGE READ CYCLE WITH MAXIMUM ADDRESS SETUP ^tPC = 45ns; DATA VALID FOR 5ns

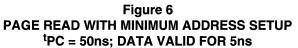
and the EDO device must have both \overline{CAS} and \overline{RAS} HIGH to deactivate the output. This means that any time the designer is counting on \overline{CAS} by itself to turn off the output drivers, bus contention may occur if something else tries to drive the bus. This may occur in the following situations:

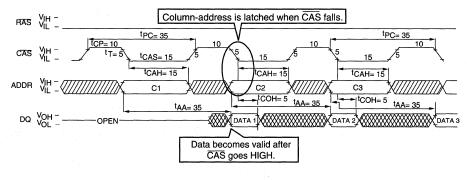
- PAGE interleave memory banks
- Moving from PAGE READ directly into a PAGE WRITE (within the same page)
- Whenever anything other than the DRAM is driving the bus, and $\overline{\text{OE}}$ and $\overline{\text{RAS}}$ are LOW while $\overline{\text{CAS}}$ is HIGH

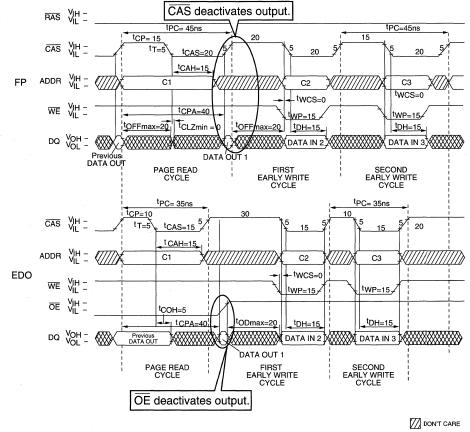

(This last case is uncommon and should not mandate a change for most systems.) Interleaved memory need only make use of \overline{OE} instead of \overline{CAS} when turning off the output drivers; then EDO can be used in place of FP DRAMS.


READ TO WRITE CYCLES


Since \overline{CAS} doesn't turn off the output devices on an EDO device, caution should be used when turning the bus around on a shared I/O device. To demonstrate the difference, Figure 8 shows the transition from a PAGE READ to a PAGE EARLY WRITE on the same page. When using the FP version, \overline{OE} can be tied LOW and \overline{CAS} can be used to deactivate the output. When using the EDO version, \overline{OE} must be used to deactivate the output.


SUMMARY


EDO is simply a modified FP MODE cycle and can be used in systems to increase performance. It allows system designers to improve their cycle times and system performance since data is present for a much longer time, even during short cycle times.



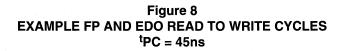

DON'T CARE UNDEFINED

Figure 7 EDO-PAGE READ CYCLE WITH MINIMUM ADDRESS SETUP ^tPC = 35ns; DATA VALID FOR 10ns

TN-04-21 REV. 5/93

TN-42-01 UPGRADING VRAMS

TECHNICAL NOTE

UPGRADING FROM 1 MEG TO 2 MEG VRAMs

INTRODUCTION

Designers of VRAM-based graphics systems are now being presented with the opportunity to switch from 1 Meg to 2 Meg VRAMs. As with any move to higher density memory devices, this allows a system to be modified to either provide the same amount of total memory while using fewer devices, or to provide additional memory without increasing the number of devices used. When the total memory size remains the same, benefits include decreased board space due to fewer components, increased reliability due to fewer connections, and lower component cost when the cost-per-bit of the higher density components falls below that of the lower density components. An additional benefit of switching from 1 Meg to 2 Meg VRAMs is the availability of a more advanced feature set at the 2 Meg level.

Micron offers four versions of the 2 Meg VRAM; each addresses different user needs and each has different design requirements. When switching from 1 Meg VRAMs, the memory configuration, the required feature set and the board layout determine which version of the 2 Meg to switch to and the design effort involved. This article covers each of these three major areas of concern. In the area of memory configuration, the effects of specific factors on the design of the graphics memory controller are discussed. These factors include whether the 1 Meg VRAMs currently used are organized as x4 or as x8, the number of VRAM banks and whether or not the total memory size will be increased. In the area of feature sets, the different sets of functions available at the 2 Meg level are compared to the functions available at the 1 Meg level. Finally, in the area of physical layout, the different packages offered at the 1 Meg and 2 Meg levels are described.

MEMORY CONFIGURATION

Based on the memory configuration factors mentioned above, there are several possible scenarios when switching to 2 Meg VRAMs, ranging from straightforward intrabank replacement transparent to the graphics memory controller, to more involved memory expansion or interbank replacement; the latter two have controller implications. The following examples illustrate the different scenarios.

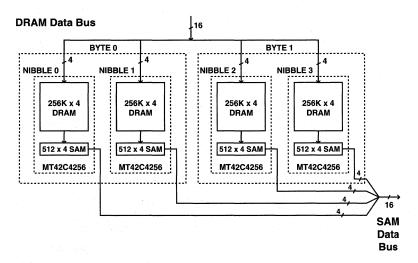


Figure 1 0.5 MB MEMORY ARRAY WITH A 16-BIT INTERFACE USING 1 MEG VRAMs

CASE 1: x4, 1 MEG VRAMS VS x8, 2 MEG VRAMs

Replacement of 4-bit-wide 1 Meg VRAMs with 8-bit-wide 2 Meg VRAMs is the most straightforward case when upgrading. This is illustrated in Examples 1 and 2.

Example 1

A 0.5 MB memory array implemented with a single bank of 4-bit-wide 1 Meg VRAMs (Micron's MT42C4256) is shown in Figure 1. The DRAM portion of the MT42C4256 is organized as 256K x 4, or 512 rows by 512 columns by 4 bits wide. The DRAM portion of 2 Meg VRAMs is organized as 256K x 8, or 512 rows by 512 columns by 8 bits wide. When the data bus interface to the DRAM side of the memory array is 16 bits wide, four 4-bit-wide 1 Meg VRAMs are required, each corresponding to one nibble of the 16-bit bus. A 16-bit data bus also exists on the SAM side.

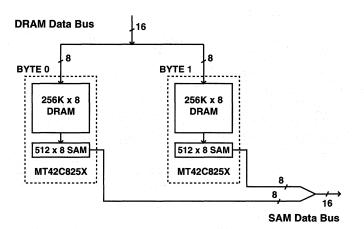
When using 2 Meg VRAMs, only two devices are required (see Figure 2). The first corresponds to the byte formed by nibbles 0 and 1; the second, to nibbles 2 and 3. Similarly, on the SAM side, each pair of 512 x 4 SAMs (1 Meg VRAM) is replaced by a single 512 x 8 SAM (2 Meg VRAMs). Assuming that there is no need for NIBBLE READ accesses, this two-for-one replacement is transparent to the controller (NIBBLE WRITE accesses are available with the MT42C8254, if necessary, and will be covered under Feature Sets).

The examples depicted in figures 1 and 2 can be extended to wider controller-to-memory interfaces as well. (For example, in a 32-bit interface, four 2 Meg VRAMs would replace eight 1 Meg VRAMs.)

Example 2

Example 1 can also be extended to more than one bank of VRAMs simply by performing the two-for-one replacements within each bank. For example, a memory array configured as two banks of eight 1 Meg VRAMs would be replaced with two banks of four 2 Meg VRAMs (see Figures 3 and 4). In either case, the controller must include the necessary bank-select logic.

CASE 2: x8, 1 MEG VRAMs VS x8, 2 MEG VRAMs


Moving from 8-bit-wide 1 Meg VRAMs to 8-bit-wide 2 Meg VRAMs is somewhat more involved. This is shown in Examples 3 and 4.

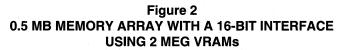
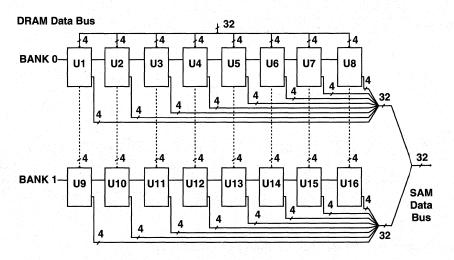

Example 3

Figure 5 shows a 0.5 MB memory array based on 8-bitwide 1 Meg VRAMs (Micron's MT42C8128). An equivalent memory array cannot be implemented with 2 Meg VRAMs due to the fact that four 2 Meg VRAMs are needed to form a 32-bit bus, and the resulting total memory array size then equals 1 MB. To move to 2 Meg VRAMs in this example requires a controller designed to support such memory expansion.

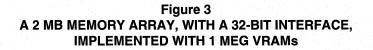
Example 4

On the other hand, a 1 MB memory array implemented with 8-bit-wide 1 Meg VRAMs would contain two banks (see Figure 6). Bank select logic determines which DRAMs and SAMs drive the respective busses at any given time.

In this case, a memory array of equal size can be implemented with 2 Meg VRAMs; however, the array will consist of one bank instead of two (see Figure 7). This can be pictured as two-for-one replacements across the banks rather than within the banks. In this example, moving to 2 Meg VRAMs requires a controller that can address a second megabyte of memory through an additional column-address line rather than the bank-select logic used for the 1 Meg VRAM based implementation.


FEATURE SETS

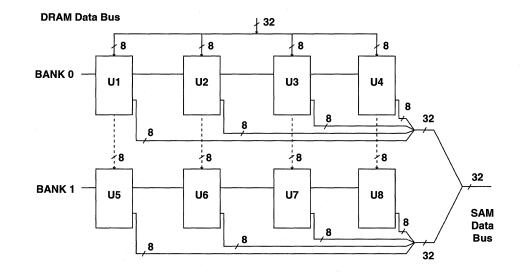
When deciding upon the appropriate 2 Meg VRAM, there are three feature sets to consider. The first set is the one currently implemented in the 1 Meg VRAM-based design, the second and third sets are those offered by the two different categories of 2 Meg VRAMs. The first category, consisting of the Micron MT42C8254 and MT42C8255, provides standard features; the second, consisting of the MT42C8256 and MT42C8257, offers an extended feature set (see Table 1). In general, the standard features satisfy the requirements of PC graphics systems such as VGA/GUI accelerator designs, and the extended feature set addresses the needs of workstation graphics systems and communications systems.


TN-42-01 UPGRADING VRAMS

When switching from 1 Meg VRAMs, designers will need to select an extended feature 2 Meg VRAM under any of the following conditions: 1) PERSISTENT WRITE functions were used at the 1 Meg level, 2) serial input or write transfers are required, 3) any of the functions introduced at the 2 Meg level will be supported. These additional features include the FLASH WRITE cycles, the MASKED WRITE TRANSFER cycles and the programmable split SAM. If an extended feature set 2 Meg VRAM is selected, the designer needs to be aware of some instruction decode changes between 1 Meg and 2 Meg VRAMs. Specifically, the input states which select a PERSISTENT MASKED WRITE to DRAM at the 1 Meg level are now used to select a MASKED FLASH WRITE to DRAM at the 2 Meg level. In order to support both features on one device, PERSISTENT WRITE functions are now selected automatically upon the loading of the mask register (and deselected with special CAS BEFORE RAS (CBR) cycles). Similarly, the input states that select an ALTERNATE WRITE TRANSFER at the 1 Meg level are now used to select a SPLIT WRITE TRANS-FER at the 2 Meg level. The ALTERNATE WRITE TRANS-FER is not offered at the 2 Meg level.

The above guidelines should be used to select the appropriate category of 2 Meg VRAMs. The next step is to determine which of the two devices within each category matches the needs of the specific application.

U1-U16: MT42C4256 VRAM (256K x 4 DRAM plus 512 x 4 SAM)


STANDARD FEATURE SET 2 MEG VRAMs: MT42C8254 VS MT42C8255

HON

Once it is determined that a standard feature set 2 Meg VRAM is appropriate, the designer has a choice of either the MT42C8254 or the MT42C8255. The difference between the two is that the MT42C8254 provides a second WRITE ENABLE input in place of the QSF output. The second WRITE ENABLE provides NIBBLE WRITE capability. The QSF output available on the MT42C8255 indicates which half of the SAM is currently active (the half from which serial data is being read). The controller can use this information to initiate SPLIT READ TRANSFERS; however, many controllers keep track of this internally and do not require the QSF signal from the VRAM. If NIBBLE WRITE capability is required, the MT42C8254 must be used and the controller must monitor the SAM address internally. If NIBBLE WRITE capability is not required, the MT42C8255 is the appropriate choice.

EXTENDED FEATURE SET 2 MEG VRAMs: MT428256 VS MT42C8257

Similarly, once the need for an extended feature 2 Meg VRAM is established, the designer may choose either the MT42C8256 or the MT42C8257. The difference between these is that the MT42C8256 offers EXTENDED DATA-OUT on FAST-PAGE-MODE READ cycles, whereas the MT42C8257 offers standard FAST-PAGE-MODE operation. In FAST-PAGE-MODE operation with EXTENDED DATA-OUT, data being read out of the DRAM port is not disabled with the rising edge of \overline{CAS} as it is in standard FAST-PAGE-MODE operation. This provides a psuedo-pipelined effect and achieves faster page mode cycle times. However, \overline{OE} instead of \overline{CAS} must be used to select banks in an interleaved configuration.

U1-U8: MT42C825X VRAM (256K x 8 DRAM plus 512 x 8 SAM)

Figure 4 A 2 MB MEMORY ARRAY, WITH A 32-BIT INTERFACE, IMPLEMENTED WITH 2 MEG VRAMs

TN-42-01 UPGRADING VRAMS

PHYSICAL LAYOUT

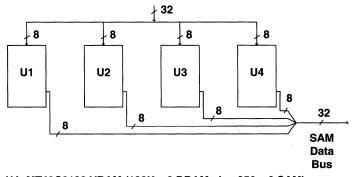
There are no 2 Meg VRAM packages that are drop-in compatible with 1 Meg VRAM footprints. A board designed to accommodate both would have to include two sets of footprints, or a new board could be designed specifically for 2 Meg VRAM packages.

The 4-bit-wide 1 Meg VRAMs are offered in 28-lead ZIP or SOJ packages, while 2 Meg VRAMs are supplied in 40-lead SOJ or 40/44-lead TSOP packages. The 28 pins of the 1 Meg VRAM SOJ do not align with a subset of the 40 pins of the 2 Meg SOJ.

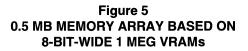
The 8-bit-wide 1 Meg VRAMs are available in 40-lead SOJ packages; however, the pin assignments do not align with those of the 2 Meg VRAM.

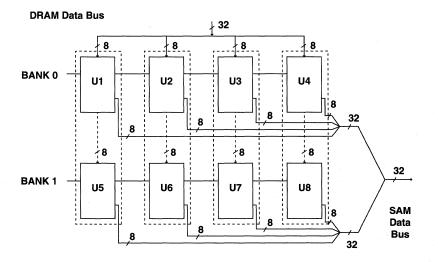
SUMMARY

Designers can increase system performance and reliability, while reducing board size and system costs by moving from 1 Meg VRAMs to 2 Meg VRAMs. The effort required to make this switch depends on memory configuration, required features, and physical layout. The effort might involve controller redesign, board layout redesign, or neither, if it was planned for in advance. In most cases, the added performance and reduced system costs will outweigh any forethought or redesign required.


Table 1 FEATURE SETS OF 1 MEG AND 2 MEG VRAMs

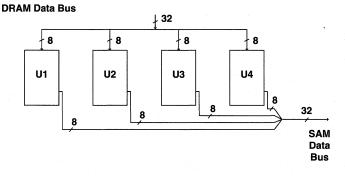
	1 Meg VRAM	2 Meg	VRAM
Feature		Standard Set	Extended Set
DRAM OPERATIONS			
CBR REFRESH (RESET ALL OPTIONS)			
CBR REFRESH (RESET STOP ADDRESS)			
CBR REFRESH (NO RESET)			
RAS ONLY REFRESH	영상 전 전 것이 비용하는 것이 한		
NORMAL DRAM READ OR WRITE			
NON PERSISTENT MASKED WRITE TO DRAM (NEW MASK)			
PERSISTENT MASKED WRITE TO DRAM (OLD MASK)			
BLOCK WRITE TO DRAM			
NON-PERSISTENT MASKED BLOCK WRITE TO DRAM (NEW MASK)	kan <mark>an basa da m</mark> erendekan t		a de la completa 🖬 de la com
PERSISTENT MASKED BLOCK WRITE TO DRAM (OLD MASK)			a se and a 🔳 traine
MASKED FLASH WRITE TO DRAM (NEW MASK)			an a
MASKED FLASH WRITE TO DRAM (OLD MASK)	김 작용으로 가슴 감독		
REGISTER OPERATIONS			
LOAD MASK REGISTER			ala da tra
LOAD COLOR REGISTER			
TRANSFER OPERATIONS			ta di seconda di second
READ TRANSFER (DRAM-TO-SAM TRANSFER)	2월 20일 - 비행 2월		
SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)			
WRITE TRANSFER (SAM-TO-DRAM TRANSFER, NO MASK)			
PSEUDO WRITE TRANSFER	리는 말에 다시 않는 🗖 가지 않는 것이다.		
ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)			
MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER, NEW MASK)			
MASKED WRITE TRANSFER (SAM-TO-DRAM TRANSFER, OLD MASK)	그는 것 같아요. 그는 것 같아요. 같아요.		and a state of the second
MASKED SPLIT WRITE TRANSFER (SPLIT SAM-TO-DRAM TRANSFER) (NEW MASK)			
MASKED SPLIT WRITE TRANSFER (SPLIT SAM-TO-DRAM TRANSFER) (OLD MASK)			
PROGRAMMABLE SPLIT SAM			





MICRON

U1-U4: MT42C8128 VRAM (128K x 8 DRAM plus 256 x 8 SAM)



U1-U8: MT42C8128 VRAM (128K x 8 DRAM plus 256 x 8 SAM)

Figure 6 1 MB MEMORY ARRAY BASED ON 1 MEG VRAMs

TN-42-01 UPGRADING VRAMS

U1-U4: MT42C825X VRAM (256K x 8 DRAM plus 512 x 8 SAM)

Figure 7 1 MB MEMORY ARRAY BASED ON 2 MEG VRAMs NEW APPLICATION/TECHNICAL NOTE

TN-42-01 UPGRADING VRAMS

TECHNICAL NOTE

DESIGNING WITH THE MT42C4256/8128 VRAM

INTRODUCTION

Memory buffers designed with video RAM (VRAM) will outperform similar, DRAM-based designs for a variety of applications, from graphics frame buffers to data communications and networking. Furthermore, the enhanced feature sets offered by Micron's 1 Meg VRAM can simplify and improve the performance of these designs. This note highlights the functional details of the Micron Semiconductor MT42C4256/8128 family of 1 Meg density VRAMs. All references to "VRAM" refer to the MT42C4256/8128 VRAM except where noted. The 1 Meg Triple-Port DRAMs (MT43C4257/8; 8128/9) also share common functionality with the MT42C4256/8128, all modes common between these devices are covered by this technical note.

VIDEO RAM BASICS

A VRAM is created by adding an independent static memory to a dynamic RAM (DRAM) core array. To ad-

dress the bandwidth limitations of standard DRAMs, the static memory is accessed via a separate 4- or 8-bit-wide port.

The second memory buffer is referred to as a serial access memory, or SAM. It is a fully static memory equal in size to one row of the DRAM array. It is addressed in an incremental manner by an address counter/pointer that is incremented by a special clock pin, see Figure 2. This makes it well suited for high speed sequential data streams, as present in raster display graphics subsystems, network data buffers and communications.

To use the SAM as an output port, data must move internally from the DRAM array to the SAM I/O. Data written into the DRAM array from the DRAM I/O is internally moved a row at a time to the SAM by a TRANS-FER cycle. The TRANSFER is facilitated by pass (transfer) gates between the DRAM column sense amplifiers and the SAM storage cells. A TRANSFER begins as any DRAM

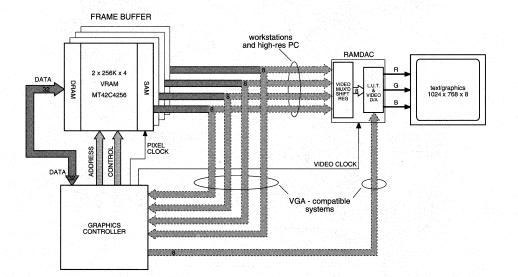
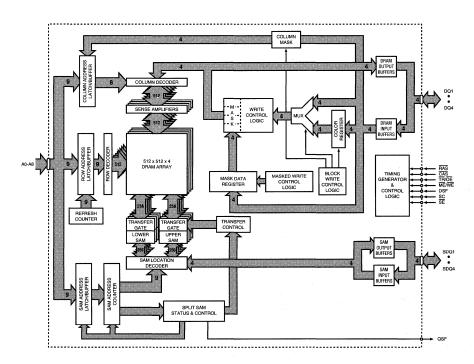


Figure 1 TYPICAL GRAPHICS APPLICATIONS FOR VRAM



access would: a row-address is selected by strobing the RAS pin. When the row is selected, the contents of all its capacitive storage elements are "read" by the column sense amplifiers. Once the data from the row is amplified ("opened"), it is ready to be sent to the output pins or overwritten from the input pins of the DRAM. A TRANS-FER begins by opening a row in the same manner, but there the similarity ends. During a transfer, the data is passed (as an entire row) between the sense amps and the SAM static latches residing at the "end" of each column. Micron VRAMs incorporate bidirectional SAMs that can be configured to output data, as described above, or input data and then "write" it into a DRAM row.

Once the row is open, the DRAM access cycle selects a column-address by strobing \overline{CAS} . This selects the specific column sense amps that will drive a unique word to the outputs. A VRAM TRANSFER cycle does not input or output data at the DRAM I/O. Instead, the column-address is latched into a SAM "Tap" address buffer. The Tap address defines the column-address at which SAM input or output will begin.

The type of TRANSFER cycle performed determines the direction of the data flow of the SAM. Transfers are referenced from the DRAM. A READ TRANSFER means that data is read from the DRAM to the SAM and sets the SAM I/O as an output. A WRITE TRANSFER writes information from the SAM to the DRAM and sets the SAM I/O to the input direction.

Figure 1 illustrates a basic graphics frame buffer using VRAM devices. The DRAM port is accessed and controlled by a graphics controller or coprocessor. This port is used to update the display pixel data, perform DRAM refresh and control TRANSFERS from the DRAM array and the SAM. The SAM supplies the pixel data to the raster-video display circuitry. This consists of a video digital-to-analog converter (DAC) and an SRAM-based look-up table (LUT). Most systems also utilize a high-speed multiplexed shift register, or a DAC incorporating one, to increase the effective pixel rate without requiring the SAM clock to run at the video pixel, or dot clock, rate (80 MHz or more). Many video DACs also incorporate the LUT and are referred to as palette DACs or RAMDAC™s.

Figure 2 MT42C4256 FUNCTIONAL BLOCK DIAGRAM

In systems with VGA-compatible controllers, the SAM data is routed back through the controller. In these cases, the video multiplexer is incorporated in the controller. This reduces the cost and complexity of the DAC required. To get full advantage of the VRAM bandwidth, the VGA controller should have separate I/O for the DRAM and SAM ports.

The serial clock for the SAM is derived by dividing the pixel clock by the number of pixels accessed per SAM clock cycle. It may be generated by the controller or by the palette DAC depending on the implementation and components chosen.

ADVANTAGE OF VRAM OVER DRAM

VRAMs were developed to increase the bandwidth of raster graphic display frame buffers. If DRAM is used to build the frame buffer, it must allow access by both the host/graphics controller and the CRT refresh circuitry. The nature of raster graphics displays requires that a constant, uninterrupted flow of pixel data be available to the CRT driver circuitry. Because of this, it is the host or graphics processor that must be interrupted when a request is made by the CRT driver for a new line of pixel data (scan line). DRAM-based frame buffers suffer from data contention at the DRAM port that reduces screen redraw speed. A 1 Megabyte frame buffer designed with 70ns, single-port DRAMs would use 90 percent or more of the total memory bandwidth to perform screen refresh. This leaves 10 percent or less of the bandwidth for drawing new pixels to the display. Obviously, this will result in a noticeably slower display time when new information is to be displayed. When designed with 70ns VRAM, a similar frame buffer would only utilize two percent of the total bandwidth for screen refresh, resulting in screen redraw performance improvement of roughly an order of magnitude.

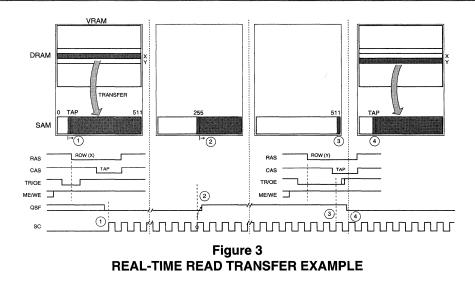
VRAM-based frame buffers are designed to give the CRT driver circuitry access to pixel data from the SAM port, thus alleviating the DRAM-port contention problem as seen with DRAM-based buffers (see Figure 1). This results in improved screen redraw performance over DRAM-based buffers when changing display information. DRAM-port accesses to the VRAM must be interrupted for READ TRANSFERs from the DRAM array to the SAM, but they occur infrequently since an entire row (page) of data is transferred per cycle. DRAM-port access is available to the graphics controller or coprocessor while screen refresh data is constantly supplied, independently, by the SAM port.

Other features of the VRAM further enhance graphics performance. These "special features" of Micron's 1 Meg VRAM include: MASKED WRITE, BLOCK WRITE, and SPLIT READ TRANSFER. These features, and the TRANS-FER cycles, are detailed in the following sections, along with other features of Micron's 1 Meg VRAM.

SAM TRANSFERS

Data TRANSFERs move data between the two VRAM memory arrays. These cycles are variations of a normal DRAM RAS-CAS cycle. To incorporate TRANSFERs, the VRAM's \overline{OE} pin is made a dual-function pin and called Transfer Enable/Output Enable (TR/ \overline{OE}). At the falling edge of RAS, TR/ \overline{OE} is sampled; if it is LOW, the cycle will be a TRANSFER. Once a TRANSFER is selected, its direction must be defined. This also occurs at the falling edge of RAS by the level of the ME/WE pin. When ME/WE is LOW, a WRITE TRANSFER is selected; when ME/WE is HIGH, a READ TRANSFER is selected. A mode-select pin called DSF is used during TRANSFERs to define variants of the standard READ and WRITE TRANSFERs. This pin is also latched at the falling edge of RAS. The following sections describe the detail of all the TRANSFER variations.

Note: All VRAM operations are defined at the falling edge of \overline{RAS} , with the exception of BLOCK WRITE.

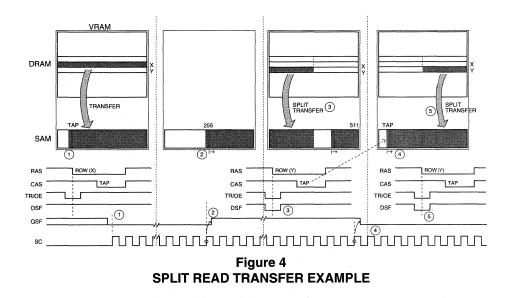

CRT REFRESH USING SERIAL OUTPUT MODE

A design using VRAM for a graphics frame buffer uses the SAM port, in the output mode, to update the CRT with pixel information. When using a VRAM in this manner, the pixel data is transferred a page at a time by READ TRANS-FER cycles to the SAM. Then it is sequentially clocked out of the SAM to the DAC driving the CRT, see Figure 1.

There are three kinds of READ TRANSFERs: normal READ TRANSFER (RT), which is not synchronized with the serial clock (SC); a REAL-TIME RT (RTRT), which is synchronized to an SC cycle; and SPLIT RT (SRT), in which data is asynchronously transferred while the SAM is active.

Pixel data is stored as scan lines in the DRAM array. Each row of the array may contain all, part or many video scan lines depending on the organization and size of the frame buffer and display. Different organizations require different methods of moving data to the SAM in order to optimize performance and reduce timing requirements of the transfer cycles.

If the SAM data is loaded only during retrace time of the CRT, a normal READ TRANSFER may be performed. This will be the case when a VRAM row contains one or more complete scan lines, no partial lines. An RT allows the VRAM to time the movement of screen data from the DRAM array to the SAM internally. The pixel clock will be idle during this TRANSFER. In this case the TR/OE pin


may be taken from LOW to HIGH any time during the RAS-CAS cycle. The exact timing of the internal transfer is not important, except that it be complete before the serial clock is restarted. Figures 3 and 4 illustrate this operation as the first TRANSFER cycle at state ①; here, $\overline{TR}/\overline{OE}$ is taken HIGH "early" (before \overline{CAS} falls).

Note: To implement an all-purpose VRAM design, TR/OE should be taken HIGH before or at the same time RAS and CAS go HIGH to terminate the TRANS-FER cycle.

When screen data must be loaded into the SAM during active display time, a REAL-TIME READ TRANSFER may be performed. This allows the data output to proceed in an uninterrupted fashion required when the VRAM rows contain partial scan lines. RTRTs must be synchronized with the serial clock so that the active pixel data is not disrupted when the next portion of the scan line is moved to the SAM. The $\overline{TR}/\overline{OE}$ pin is used to control the exact moment of the transfer of data from the DRAM row to the SAM. By holding $\overline{TR}/\overline{OE}$ LOW until after \overline{CAS} falls (meeting ^tRTH and ^tCTH), the transfer is "held off" until the LOW-to-HIGH transition. When $\overline{TR}/\overline{OE}$ goes HIGH, the transfer gates open and let the new row move from the sense amps to the SAM, all within a single SC cycle. This is shown from state ③ to state ④ of Figure 3.

Micron's 1 Meg VRAM introduces a transfer feature that greatly reduces the timing demands of REAL-TIME READ TRANSFERs while allowing continuous data streams out of the SAM port. By splitting the SAM and the transfer circuitry into two separately controlled halves, it is possible to transfer screen data to one half of the SAM while the other half is actively supplying screen data. This cycle is called SPLIT READ TRANSFER (SRT), and it eliminates the restriction of having to synchronize the rising TR/OE edge

with the serial clock during an RTRT cycle. Figure 4 illustrates a state sequence for split SAM operation. Before split operation can begin, the SAM must be initialized. A normal RT is used to ensure the SAM I/O is in the output state and that a known Tap address is loaded into the SAM address counter/pointer. There is no restriction regarding the initial Tap address location for the Micron VRAM. Once the RT is performed, any number of SRTs may follow. Most 1 Meg VRAMs, including Micron's, will do the SRT automatically to the "idle" half of the SAM. The most significant column-address bit latched at CAS LOW is a "don't care."

Note: Repetitive TRANSFERs may be done regardless of the occurrence of a serial clock cycle. A READ TRANSFER may be immediately followed by a SPLIT READ TRANSFER, provided RAS precharge time is met per the specification.

When using SRT, the system is given a window of time equal to the time needed to read a SAM-half (about 7.6 μ s for a 256K x 4, 80ns VRAM) to update the idle half and maintain an uninterrupted flow of data from the SAM. This is illustrated from state (2) to (4) of Figure 4. The SRT is performed after the address count of the SAM moves from the "old" half (lower half, as shown at state (2)) to the "new" half (upper half). State (3) of Figure 4 shows the SRT being executed a finite time after the first clock, but before the last clock, of the upper half. This delay ensures that the SAM counter has entered the new half of the SAM, ensuring that

the SRT is invoked to the old half. After address 511, the SAM address counter jumps to the lower half, state M, and to whatever Tap address was loaded during the SRT performed at state M. Now the lower half is the active half again, and a SRT to the upper half may be done, S.

The Split SAM Status (QSF) output pin is provided to indicate which half of the SAM is active. By monitoring the QSF pin, it is possible to update data in the SAM without having to externally track the SAM address. At the transition of the SAM boundary, QSF will change state (LOW for lower half, HIGH for upper). When this occurs, the controller performs an SRT to the idle half and the new screen data will be available when the next portion of the scan line is required. Using SRT will simplify the graphics controller design by reducing the control logic and critical timing associated with REAL-TIME READ TRANSFER.

USING THE SAM FOR SERIAL INPUT

An increasing number of VRAM applications require the serial port to be used as an input port. These include video capture, network data buffers and data communications (satellite, telecom, etc.). In these applications, the SAM is used to input data to be moved to the DRAM with a WRITE TRANSFER (WT) operation. All of these applications deal with sequential data, as is the case with computer graphics data. However, these applications put as much emphasis on serial input streams as graphics does on output streams.

TN-42-02 DESIGNING WITH THE MT42C4256/8128 VRAM

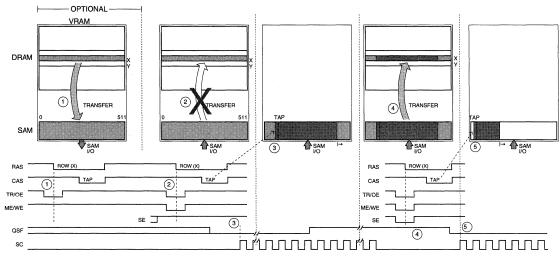


Figure 5 WRITE TRANSFER EXAMPLE

WRITE TRANSFERs are selected in a similar manner to READ TRANSFERs. To perform a WT, the $\overline{\text{ME}}/\overline{\text{WE}}$ pin must be LOW at the falling edge of $\overline{\text{RAS}}$ during the TRANS-FER cycle (indicated by $\overline{\text{TR}}/\overline{\text{OE}}$ = LOW at $\overline{\text{RAS}}$), see Figure 5. Before data can be input, the SAM I/O port must be conditioned as an input port. The initial PSEUDO WRITE TRANSFER conditions the SAM I/O port as an input without actually writing data to the DRAM, this is shown in Figure 5 at state @.

It is possible to preload a row from the DRAM array into the SAM before the PWT (see Figure 5, state ①). This will allow new serial input data to be written over a portion of an existing row in the DRAM array. To perform this operation, an RT is invoked before the PWT, followed by the normal serial input sequence.

After the PSEUDO WRITE TRANSFER has completed, the serial-input data is loaded. This starts at state ③ and progresses until ④. At this time, all the serial data has been loaded and the WRITE TRANSFER is done; the serial clock must be idle. The Tap loaded at the falling edge of \overline{CAS} defines the location where the next string of serial data begins loading, ⑤. An RT and PWT may be inserted between the WT at ④ and the new serial-input at state ⑤.

Note: The serial clock, SC, must be idle during WRITE TRANSFERS. If it is not, the Tap address will be corrupted. WRITE TRANSFERs may also be used to replicate rows within the DRAM. In this operation, a READ TRANSFER is done from the source row to the SAM. Then, without clocking the SAM, a WRITE TRANSFER is done to any row(s) of the DRAM. Once "full," the SAM may be transferred to any row or multiple rows by performing single or multiple WTs. This is useful in accelerating full screen clears. BLOCK WRITE may be used to "color" the source row, further enhancing the performance of this operation.

When selecting a WRITE TRANSFER, the Micron 1 Meg VRAM uses the DSF pin to invoke the ALTERNATE WRITE TRANSFER (AWT) cycle. AWT is a variation of the standard WT, differing in that the \overline{SE} pin, which selects between WT and PWT, is a "don't care" when RAS falls. This will change the SAM I/O direction to input, and transfer the contents of the SAM to the addressed row of the DRAM array. The advantage of this cycle is that the SAM I/O control pins (e.g. SC and \overline{SE}) are not used to invoke the write transfer, separating the SAM control logic and the WT control logic.

Any of the three WRITE TRANSFER cycles will set the SAM I/O to the input direction so it is not necessary to do a PWT between successive WTs or AWTs. Once the port is set as an input, it will stay in that state until an RT is performed. The PWT cycle is only provided to give designers a way to change the I/O direction without corrupting the DRAM array data when initialing the SAM.

Some 1 Meg VRAM manufacturers use the DSF to select SPLIT WRITE TRANSFER in lieu of AWT. Micron provides SPLIT WRITE TRANSFERS on the MT42C8256/7, 2 Meg VRAM. For a description of the 2 Meg VRAM features, refer to Technical Note TN-42-01.

SAM TIMING CONSIDERATIONS

SAM timing is straightforward. Data is output from, or input to, the SAM port under the control of the serial clock (SC) and serial enable (\overline{SE}) pins. The serial clock performs two operations per cycle. First, on the rising edge, it outputs serial data when reading from the SAM, or it latches the serial input data when writing to the SAM. Second, shortly after the rising edge, SC increments the serial address counter/pointer, which holds the Tap address of the SAM. The address counter will increment regardless of the state of \overline{SE} , which is purely a data enable/disable pin.

When the SAM is conditioned as an output, the data is accessed by the rising edge of the SC pin. The incremental data will appear on the SDQ pins an access time after the rising edge. The SE pin may be used to disable the output, allowing the serial ports of multiple VRAM banks to be tied to a common data bus. QSF is always active on the Micron 1 Meg VRAM and will indicate when the address crosses the SAM-half boundaries (e.g. 255 and 511 for the 42C4256, or 127 and 255 for the 42C8128) during all SAM READ and WRITE operations. Some 1 Meg VRAMs only drive an active QSF during split SAM operation. When the device is in "full" SAM operation, QSF will be High-Z.

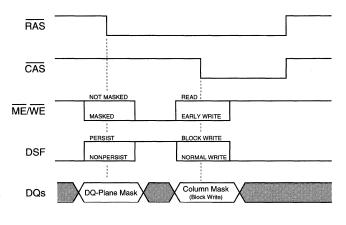
When data is written into the SAM, it must be stable for the setup and hold window specified by the data sheets to ensure it is latched accurately by the rising edge of the SC pin. The SE pin may be used to disable a WRITE to the SAM for any given clock cycle. When SE is disabled (HIGH) the WRITE will be inhibited but the SAM address count will increment. As the SAM is written, the QSF pin may be used as a full or half-full flag similar to those used for first-infirst-out memory devices.

Note: The Micron 1 Meg VRAM does not use the falling edge of the SC pulse for any internal operations. This allows the clock to be idled in either state without affecting the address pointer location. This is not true of all VRAM manufacturers. To ensure compatibility, the SC should be idled in the LOW state.

The \overline{SE} pin provides a faster access time than SC and may be used to bank select. When \overline{SE} goes HIGH, the SAM output drivers are designed to turn off as fast as, or two or three nanoseconds faster than, they turn on. This helps to reduce bus contention when switching banks of VRAM with \overline{SE} . The actual delta between turn-off and turn-on will vary lot by lot, but any lot variation will be of minor impact. Bus contention will be insignificant, if it exists all, even when using opposite polarities of a single serial enable to select between two banks of VRAM. However, systems that require a guaranteed skew between turn-on and turn-off will require additional logic to ensure that every vendor and device will not cause contention. In this case, an asynchronous state machine may be used to skew the rising and falling edges of \overline{SE} to guarantee the desired separation. A skew of 5ns should yield adequate guardband between turn-off and turn-on time.

HARDWARE PIXEL MASKING

The 1 Meg VRAM supports hardware-level pixel or pixel-bit masking with the MASKED WRITE cycle. This feature can ease system design or improve performance by allowing overlay/underlay planes to be written and operations such as window clipping to be done with single WRITE, or continuous PAGE MODE WRITE cycles.


Standard DRAMs require a READ-MODIFIED-WRITE (RMW) cycle to perform a "write-per-bit" operation. During a RMW, data is read from a location in memory, changed by the processor and written back to the same memory location within the same CAS cycle.

MASKED WRITE allows individual DQ bits to be selectively overwritten during a WRITE to the DRAM port. This is done by preloading a write-mask bit for each corresponding DQ bit plane. A mask data register (4 or 8 bits for x4 or x8, respectively) inside the VRAM stores the DQ mask data. A logic 1 in the mask register will enable that bit's corresponding DQ bit (plane) when the data is written to the DRAM after CAS goes LOW. A logic 0 will mask data for that DQ plane when the DRAM WRITE is performed. See Figure 2. During non-PAGE MODE operation, MASKED WRITE is approximately 25 to 30 percent faster than an RMW; when operating in FAST-PAGE-MODE, it is at least 50 percent faster.

Two types of MASKED WRITE cycles are supported by the 1 Meg VRAM; nonpersistent and persistent. When nonpersistent MASKED WRITE is selected, mask data must be presented on the DQ pins for every new RAS cycle. When RAS falls, the data present on the DQ pins is loaded into the mask register. When the WRITE occurs at the falling edge of CAS or WE, the mask is applied to the incoming write data. After RAS goes HIGH, terminating the WRITE cycle, the mask register data is lost and must be reloaded for any subsequent RAS cycles.

Some graphics processors and controllers are not able to provide mask data at the falling edge of RAS. To allow these controllers to perform hardware pixel plane protect directly in the VRAM, a persistent MASKED WRITE (read/ write old mask; RWOM) cycle is provided. When using this cycle, the mask data must be loaded before the WRITE cycle is done. However, once loaded, the mask register will not be

TN-42-02 DESIGNING WITH THE MT42C4256/8128 VRAM

Figure 6 SPECIAL FUNCTION MODE SELECTION

erased at the end of the WRITE cycle. A LOAD MASK REGISTER cycle is performed to permanently load the mask register. During this cycle, data present on the DQ pins will be written to the mask register instead of the DRAM. This mask data will stay in the register until overwritten or until power is lost. The register is fully static and requires no refresh. When the RWOM cycle is performed, the mask is supplied by the mask register. The DQ inputs are "don't care" when RAS falls.

MICRON

The control levels for the special-function DRAM access modes are shown, in a simplified form, in Figure 6. MASKED WRITE and BLOCK WRITE select options are shown. A write mask may be applied to a BLOCK WRITE in the same manner as it is to a normal WRITE. See the MT42C4256 and MT42C8128 data sheets for detailed timing of these cycles.

There is some functional variation between VRAM suppliers regarding these cycles. Some 1 Meg VRAM manufacturers support FLASH WRITE cycles in lieu of persistent MASKED WRITE. The Micron MT42C8256/7, 2 Meg VRAM includes the FLASH WRITE function, see the data sheet and TN-42-01 for more detail.

ACCELERATING WINDOW AND POLY-GON FILLS WITH BLOCK WRITE

As the operating systems of workstations and PCs move toward graphical, windowed environments, the ability to quickly "fill" a window with color or text will become more important to display performance. In addition to windowed environments, demands for real-time imaging require improvement of the solid-color fill rate of drawn polygons. To satisfy these requirements, BLOCK WRITE has been added to the VRAM. This feature provides a fourtimes improvement of pixel drawing speed to the DRAM port of the VRAM. However, there is a penalty for this speed improvement; the pixel data is restricted to a single, preloaded "color" for each cycle. BLOCK WRITE can be used to quickly fill simple background patterns on the screen when the VRAM frame buffer contains more than one pixel per pixel-word.

The color data used during a BW is stored in the color register of the VRAM by the LOAD COLOR REGISTER cycle. This cycle must precede any BLOCK WRITE cycle TN-42-02 DESIGNING WITH THE MT42C4256/8128 VRAM

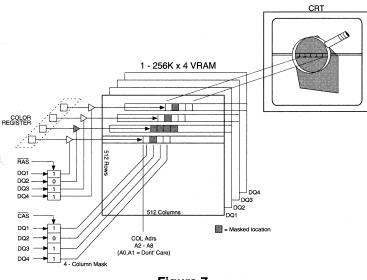


Figure 7 Block Write

because the write data is supplied by the register instead of the DQ pins.

BLOCK WRITE alters the column addressing of the DRAM array. When a BW is performed, the least significant two column-address bits (A0, A1) are ignored. This addressing selects the four-column "block" that will be written to the value stored in the color register. Each bit of the color register corresponds to its associated bit plane and is simultaneously written to all four column locations during the BW, see Figure 7.

BLOCK WRITE is selected by the DSF pin at the falling edge of CAS and is the only VRAM special function that is not selected at the falling edge of RAS. It is important to note that all manufacturers of the 1 Meg VRAM do not perform BW the same way. Some manufacturers (including Micron) perform the BW only at the falling edge of CAS and allow WE to be a "don't care." The BW control and column mask (DQ pins) are latched only at the falling edge of CAS. Some manufacturers allow BW to be either CAS or WE controlled (late BLOCK WRITE). For a robust design, it is recommended that all BWs be done as "early" BW (WE LOW prior to \overline{CAS} LOW). A design done in this manner will accept both BW methods.

There is no need to input data at \overline{CAS} time because the pixel data is already stored in the color register. Therefore, a column mask may be applied on the DQ pins when \overline{CAS} falls. Data present on these pins act as separate write enables to each column location within the block, see Figure 7. The least significant DQ corresponds to the least significant column location, the second least significant to the second least column, and so on. This allows column by column addressibility of the window or polygon to be filled during the BW. For example, if the left side of the window starts at the second column location of the "block", the first column may be masked off and columns 2, 3 and 4 of the block will be written with the new color.

Note: When using the Micron VRAM in "minimum" function applications (no MASKED WRITE, BLOCK WRITE or SPLIT READ TRANSFER), ensure that the DSF pin is grounded or held a logic 0 level.

CONCLUSION

VRAM function sets and system implementations are very diverse. Your function set and system design may differ from what was presented here. These were typical implementation examples and are not exhaustive. The intent is to show the bandwidth advantages of the VRAM over DRAM and how to use them in a memory design. The VRAM bandwidth advantage exists when dealing with sequential data streams in particular, and longer streams in general. The special features, such as MASKED WRITE and BLOCK WRITE further advance the performance of VRAM in graphics systems. Features such as SPLIT READ TRANS-FER simplify high-bandwidth continuous sequential data streams such as those seen in communications and highbandwidth networks.

If your design question was not answered here, feel free to call Micron Application Engineering at 208-368-3905.

TN-42-03 REGULAR, REAL-TIME AND SPLIT READ TRANSFERS

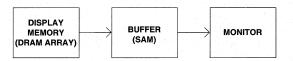
TECHNICAL NOTE

REGULAR, REAL-TIME AND SPLIT READ TRANSFERS

INTRODUCTION

As described in TN-42-02 "Designing with the MT42C4256/8128 VRAM," READ TRANSFER functions on VRAMs are used to perform internal transfers of data from the DRAM array to the Serial-Access-Memory (SAM) portion of the VRAM. In graphics systems, the DRAM array is used to store the data representing pixels to be displayed on the screen. This pixel data is manipulated via the DRAM I/O port, and system performance is optimized by maximizing the bandwidth of the DRAM port that is available for this manipulation. Toward that end, VRAMs include a SAM to handle the task of providing the stream of pixels to the display circuitry. The SAM acts as a buffer between the display memory (DRAM array) and the monitor (see Figure 1).

Display data is transferred, a portion at a time, to the SAM buffer. From there it is clocked out to the display circuitry which drives the monitor. To maintain a continuous flow of data to the monitor, the subsequent portion of data must be transferred to the SAM before the buffer becomes "empty."


This note describes the various forms of read-transfer functions and how each is used to feed data to the SAM buffer in different situations.

READ TRANSFERS

The vast majority of VRAMs available on the market, including all Micron VRAMs, provide a SAM buffer that is equal in size to one row of the DRAM array for that particular VRAM. For example, 2 Meg VRAMs include a DRAM array consisting of 512 rows; each row contains 512 columns of 8-bit-wide locations. Accordingly, the SAM consists of 512 8-bit locations. In "regular" READ TRANSFERs (the most fundamental form) one complete row of data from the DRAM array is copied to the SAM, thereby overwriting the entire contents of the SAM. READ TRANSFERs are used when each row in the DRAM array (and hence, the SAM) contains the pixel data for an integral number of scan lines on the monitor. In this case, the buffer will become empty at the end of a scan line and can be reloaded during the horizontal blanking time of the monitor. The READ TRANSFER cycle can easily be completed within the blanking time; and therefore the specific timing is not critical.

REAL-TIME READ TRANSFERS

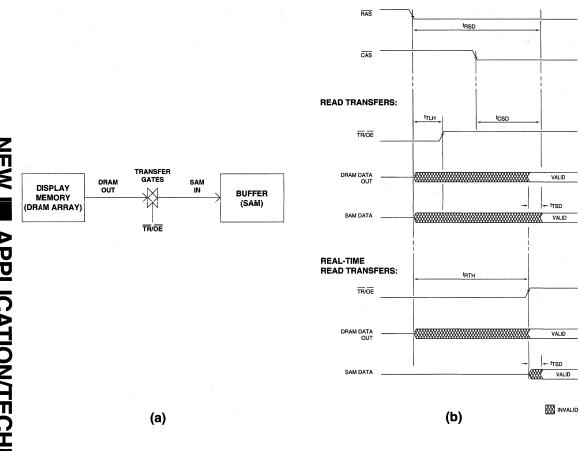

In configurations where part of a scan line is stored in one row of the DRAM array and the remainder is stored in another row, the SAM buffer will become "empty" in the middle of a scan line, and a midline transfer will be required to reload the SAM. Since a read transfer overwrites the entire SAM, this transfer cannot take place until after the data from the last location has been clocked out (read). However, the transfer must also be completed prior to the next serial clock edge. (The serial clock cannot be delayed or disabled while in the middle of a scan-line, or artifacts will appear on the screen.) In other words, the actual transfer of data must take place within one serial clock cycle (the cycle between the positive edge for the last piece of "old" data and the positive edge for the first piece of "new" data). Since a transfer cycle typically spans several serial clock cycles, it is necessary to know where within the transfer cycle the data is actually transferred, and to make sure that that portion of the transfer cycle falls within the window defined between the two specific clock edges. The REAL-TIME READ TRANSFER is specified for this purpose.

Figure 1 SAM BUFFER BETWEEN DISPLAY MEMORY AND MONITOR

П D Π NICAL

TN-42-03 REGULAR, REAL-TIME AND SPLIT READ TRANSFERS

Figure 2 (a) CONTROLLING TRANSFERS BETWEEN DRAM AND SAM (b) RELATED TIMING

Returning for a moment to "regular" READ TRANSFERs, TR/ \overline{OE} goes HIGH "early" in the transfer cycle (sometime after ^tTLH is met, but before ^tRTH is met). When TR/ \overline{OE} goesHIGH early in the cycle, the transfer gates between the DRAM and the SAM open before valid data has propagated completely through the DRAM circuitry (see Figure 2). So, new data reaches the SAM following the propagation de lays through the DRAM circuitry and the transfer gates ('RSD, ^tCSD and ^tTSD). The exact time at which new data arrives at the SAM is not specified (when TR/ \overline{OE} goes HIGH before ^tRTH is met, the resulting transfer is sometimes referred to as "self-timed"). However, the maximum time is specified and is therefore the minimum time that should be met before supplying a positive edge on the serial clock input.

In contrast, in a REAL-TIME READ TRANSFER cycle $\overline{TR}/\overline{OE}$ goes HIGH "late" (after ^tRTH has been met). This way, the DRAM data is guaranteed to be at the transfer gates when they are opened and the only propagation delay is through the transfer gates (^tTSD), which thereby provide a shorter period of invalid SAM data. However, it is still a formidable task to fit this window within the desired clock cycle, and for this reason, SPLIT READ TRANSFERs were created.

MICRON

TN-42-03 REGULAR, REAL-TIME AND SPLIT READ TRANSFERS

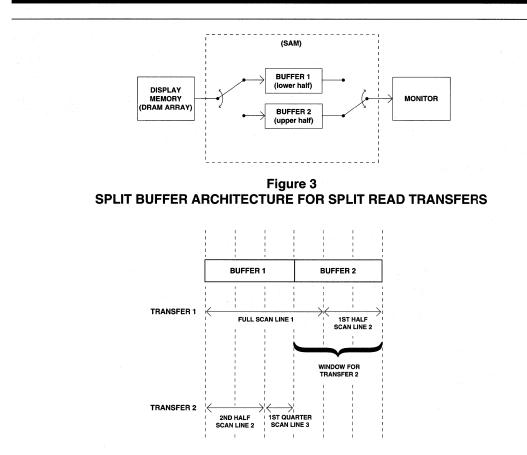


Figure 4 RELAXED TIMING CONSTRAINTS FOR SPLIT READ TRANSFERS

SPLIT READ TRANSFERS

When using SPLIT READ TRANSFERs, the SAM is effectively split into two buffers, each being half the length of the complete SAM. This provides double-buffered transfers between the DRAM and the SAM, with each buffer alternately functioning as the input buffer and the output buffer (data can be transferred into one buffer without corrupting the data being read out of the other buffer; see Figure 3).

This architecture calls for twice the number of transfer cycles, but provides less restrictive timing relative to REAL-TIME READ TRANSFERS. As an example of a case where midline transfers are required, consider a system configuration where one row in the DRAM array contains 1.5 scan lines of the display. A VRAM is always initialized for SPLIT READ TRANSFERs by executing a regular READ TRANS- FER cycle first (see Transfer 1 in Figure 4). Here an entire row of the DRAM is transferred to the entire SAM. If the system continued using full READ TRANSFERS, a REAL-TIME READ TRANSFER would be required halfway through the second scan line of the display. However, with SPLIT READ TRANSFERS, the data for the remainder of the second scan line can be loaded in advance in buffer 1, thereby eliminating the seam that would otherwise exist. Specifically, one half of the next row in DRAM can be transferred to the SAM (Transfer 2 in Figure 4) any time after the SAM address counter passes from buffer 1 to buffer 2. This window is clearly much larger than the window for REAL-TIME READ TRANSFERS. Then, after the SAM address counter wraps from the end of buffer 2 to the beginning of buffer 1, another half-row of data from the DRAM can be transferred to buffer 2. This process is continued for seamless operation of the SAM.

SUMMARY

Several types of read transfer cycles are available to transfer data from the DRAM array to the SAM portion of VRAMs. Each is suited to certain situations.

Regular READ TRANSFERs are used when each row in the DRAM array contains data for an integral number of display scan lines (or to initialize a VRAM prior to using SPLIT READ TRANSFERS). REAL-TIME READ TRANSFERs are used when midline transfers are needed (i.e. when a DRAM row contains a nonintegral number of scan lines). SPLIT READ TRANSFERs are also used when midline transfers are needed. The use of SPLIT READ TRANSFERs increases the number of transfer cycles executed, but avoids the tight timing requirements of REAL-TIME READ TRANSFERs.

EON

TN-42-04 **BANK INTERLEAVING WITH EDO VRAMs**

TECHNICAL NOTE

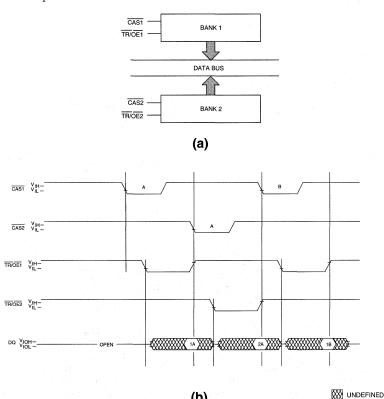
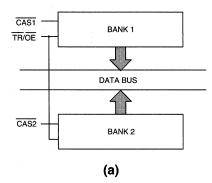
BANK INTERLEAVING WITH **EXTENDED DATA-OUT VRAMs**

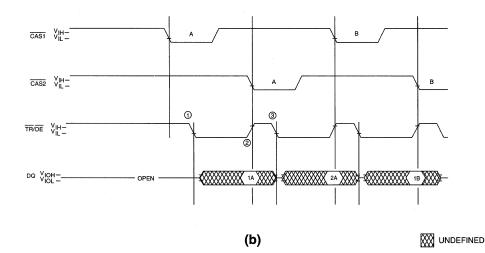
INTRODUCTION

The extended data-out (EDO) functionality introduced on 2 Meg VRAMs provides faster PAGE-MODE cycle times by allowing data to remain or appear on the outputs beyond the deactivation of the related CAS signal (please refer to Technical Note TN-04-21, Reduce DRAM Cycle Times with Extended Data-Out). The tradeoff for this improved performance is that CAS alone can no longer be used to disable the data outputs. In situations where this behavior is required, such as bank-interleaved systems, the \overline{OE} signal must be used to disable the data outputs.

BANK INTERLEAVED SYSTEMS

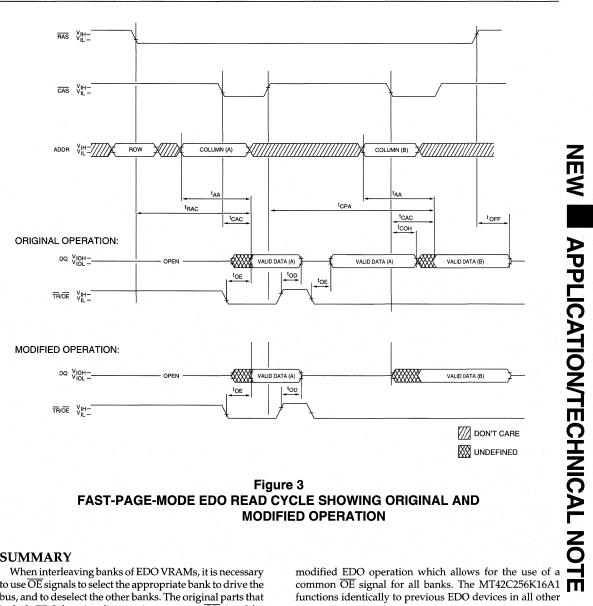
In bank-interleaved systems, the data outputs of nonselected banks must be disabled while data is being read from the selected bank. When using non-EDO parts, this can be achieved by deactivating the CAS signals of the nonselected banks. However EDO parts require that OE signals be used. For example, an interleaved design using two banks of MT42C8256 2 Meg VRAMs requires an OE signal for each bank. This configuration and related general timing are shown in Figure 1.


Figure 1 (a) TWO BANKS, WITH SEPARATE OEs (b) RELATED GENERAL READ TIMING

(b)

TN-42-04 BANK INTERLEAVING WITH EDO VRAMs


Figure 2 (a) TWO BANKS, WITH A COMMON OE (b) RELATED GENERAL READ TIMING

For some designs, providing an \overline{OE} signal for each bank may be considered undesired overhead. For this reason, the EDO operation of the Micron MT42C256K16A1 4 Meg VRAM was modified to allow bank interleaving with a single \overline{OE} line common to all banks. System timing for common \overline{OE} operation is shown in Figure 2. Note that edge (3) of \overline{OE} causes the devices in bank 2 to drive the bus, but the outputs of the devices in bank 1 remain disabled. This reflects the modified EDO functionality provided by the MT42C256K16A1; this operation is shown in more detail in Figure 3. Initial EDO devices cannot be used as shown in Figure 2 because both banks would drive data as a result of OE edge ③. The data from bank 1 that was disabled at edge ② would simply be re-enabled at edge ③.

The "latched output-disable" functionality of modified EDO parts, such as the MT42C256K16A1, takes into account that $\overline{CAS1}$ is HIGH when \overline{OE} goes HIGH at edge @. When this occurs, the data outputs of bank 1 are disabled, and will remain disabled until $\overline{CAS1}$ goes LOW again.

TN-42-04 BANK INTERLEAVING WITH EDO VRAMS

Figure 3 FAST-PAGE-MODE EDO READ CYCLE SHOWING ORIGINAL AND MODIFIED OPERATION

SUMMARY

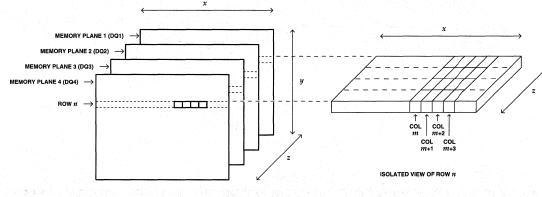
When interleaving banks of EDO VRAMs, it is necessary to use OE signals to select the appropriate bank to drive the bus, and to deselect the other banks. The original parts that include EDO functionality require a separate OE signal for each bank. The MT42C256K16A1 4 Meg VRAM provides common OE signal for all banks. The MT42C256K16A1 functions identically to previous EDO devices in all other cases.

TN-42-04 BANK INTERLEAVING WITH EDO VRAMs

TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

TECHNICAL NOTE

FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE


INTRODUCTION

The BLOCK WRITE feature on VRAMs allows for a single value to be written to several locations in the DRAM array in one WRITE cycle. Prior to the introduction of 4 Meg VRAMs, the BLOCK WRITE feature had been defined to apply to four column locations. This definition has been expanded to eight column locations for 4 Meg VRAMs; this expansion doubles the achievable bandwidth of BLOCK WRITEs.

This note discusses four- and eight-column BLOCK WRITEs in the context of graphics systems, where the data stored in memory represents pixels to be displayed on a screen.

BLOCK WRITE OPERATION

A BLOCK WRITE cycle affects a block of memory cells in the DRAM array. This is shown in Figures 1 and 2 for a fourbit-wide VRAM (four memory planes or DQ pins) with four-column BLOCK WRITE capability. The data to be written to the cells is stored, in advance, in an internal data register known as the COLOR REGISTER. The row-address n is provided on the address inputs at RAS time, and the column-address m, at CAS time. The two least significant column-address bits are ignored, and the four columns corresponding to the four possible combinations of those bits are all selected.

DRAM ARRAY

Figure 1 MEMORY CELLS AFFECTED BY BLOCK WRITE IN 4-BIT-WIDE, FOUR-COLUMN BLOCK WRITE VRAMs

TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

The two-dimensional (x-z) representation of the 16 affected cells shown in Figure 2 illustrates the masking capabilities within a BLOCK WRITE cycle. The write-per-bit (WPB) mask is used to prevent the BLOCK WRITE cycle from affecting the cells associated with a particular DQ line (or lines). The WPB mask is either stored in advance in an internal mask register, or it is presented at \overline{RAS} time on the DQ lines. The column mask, which is presented on the DQ lines at \overline{CAS} time, is used to mask the cells in a particular column (or columns).

FOUR-COLUMN BLOCK WRITES

FOUR-BIT-WIDE VRAMs

As mentioned, when a four column BLOCK WRITE is performed in VRAMs with four-bit-wide data paths (such as the MT42C42561 Meg VRAM), the four-bit column mask is presented on the DQ pins at CAS time. If a 32-bit-wide array is constructed with four-bit-wide VRAMs, the total number of memory cells affected by a BLOCK WRITE cycle

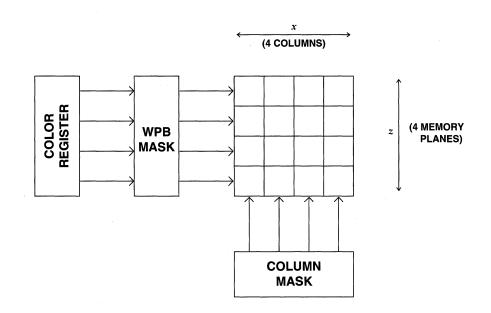
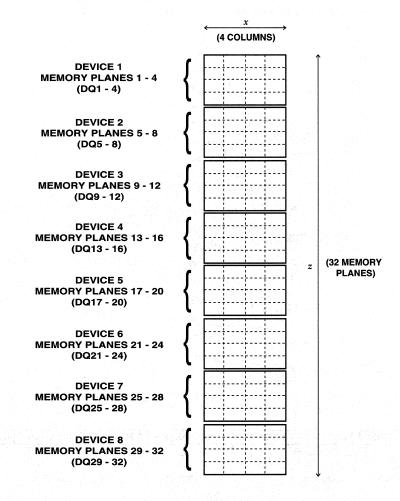


Figure 2 SIMPLIFIED BLOCK WRITE OPERATION SHOWING THE 16 AFFECTED DRAM CELLS

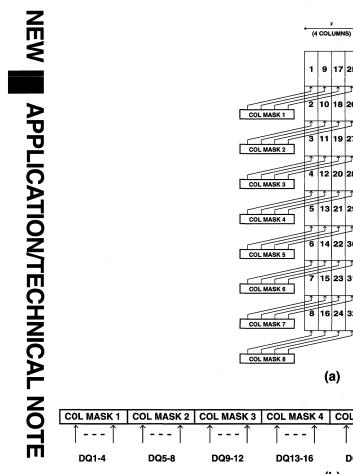

MICHON

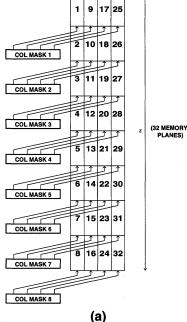
TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

is 128 (32 memory planes multiplied by 4 columns). This is shown in Figure 3.

Assuming four-bit pixels in a packed-pixel implementation, each column in Figure 3 contains 8 pixels. These 4-bit pixels are shown numbered (1-32) in Figure 4(a). In this 32bit-wide implementation, a column mask is presented on each nibble of the bus (see Figure 4[b]). This allows for single pixel granularity during area fills or color expansion operations when using four-bit pixels.

Consider an area fill operation, where a rectangle on the screen is to be filled with a single color. Assume that the left boundary of the rectangle falls on pixel 2 (i.e. pixel 1 should remain unaltered, pixels 2 through 32 should be "colored"). This would be accomplished by performing a BLOCK


Figure 3


DRAM CELLS AFFECTED BY A BLOCK WRITE CYCLE IN A 32-BIT-WIDE ARRAY CONSISTING OF EIGHT MT42C4256 VRAMS

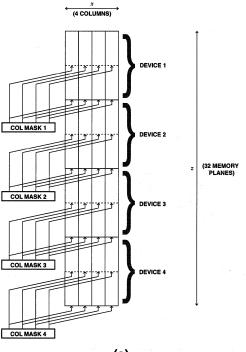
WRITE with column mask 1 = 0111 and column masks 2 through 8 all = 1111 (i.e at \overline{CAS} time, DQ1 = 0, DQ2-32 = 1).

Assume that the above BLOCK WRITE cycle was repeated for the number of rows in the rectangle, and then BLOCK WRITEs were performed on additional columns as needed until the rectangle was completely "colored." Further, assume that this rectangle was to act as a background for text or other objects that consist of a foreground color. The text or other objects are represented by a monochrome bit map, and require color expansion. Returning to the 32 pixels represented in Figure 4, the corresponding section of the monochrome bit map contains a 1 for each of the 32 pixels that is to appear in the foreground color and a 0 for each of the pixels that is to remain as the background color. To "color" the foreground pixels, a BLOCK WRITE is performed with the foreground color value present in the color register, and with the monochrome bit-map presented as the column mask.

COL MASK 1	COL MASK 2	COL MASK 3	COL MASK 4	COL MASK 5	COL MASK 6	COL MASK 7	COL MASK 8
↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑ ↑
DQ1-4	DQ5-8	DQ9-12	DQ13-16	DQ17-20	DQ21-24	DQ25-28	DQ29-32
			(b)			

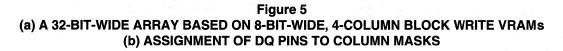
FIGURE 4

(a) 4-BIT PIXELS (1-32) STORED IN THE DRAM CELLS SHOWN IN FIGURE 3 AND THE RELATED COLUMN MASKS (b) ASSIGNMENT OF DQ PINS TO COLUMN MASKS

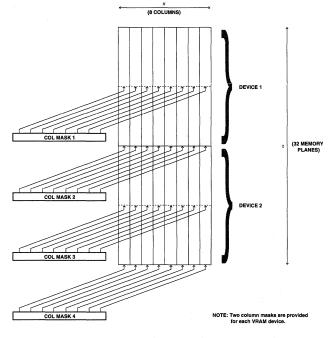

TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

EIGHT-BIT-WIDE VRAMs

When four-column BLOCK WRITEs are performed in 8bit-wide VRAMs, such as the MT42C8128 1 Meg or the MT42C8254/5/6/7 2 Meg VRAMs, the 4-bit column mask is presented on the lower nibble of the DQ pins (DQ1-DQ4). This 4-bit mask is then internally provided to both nibbles within the VRAM. Again, looking at a 32-bit array, a column mask is presented on every other nibble on the bus (see Figure 5). The result is that single-pixel resolution can be achieved on 8-, 16-, 24- or 32-bit pixels, but not for four-bit pixels. In order to achieve the same single-pixel granularity as described previously for four-bit-wide VRAMs, it is necessary to make two passes with the BLOCK WRITE cycles, while using the WPB mask to mask alternating nibbles.


EIGHT-COLUMN BLOCK WRITES

Eight-column BLOCK WRITE is introduced on 4 Meg VRAMs such as the MT42C256K16A1, which is configured as $256K \times 16$. In conjunction with the expansion to eight columns, these devices also allow for two 8-bit column



COL MASK 1		COL MASK 2		COL MASK 3		COL MASK 4	
↑ ↑	↑↑	↑↑	↑↑	↑ ↑	↑ ↑	↑ ↑	↑ ↑
DQ1-4	DQ5-8	DQ9-12	DQ13-16	DQ17-20	DQ21-24	DQ25-28	DQ29-32
			(b)			

masks to be presented on the DQs. The 8-bit column mask for the lower byte is presented on DQ1-DQ8 and the column mask for the upper byte, on DQ9-DQ16. Again, considering a 32-bit array (see Figure 6), a column mask is provided on each byte of the bus. This preserves the single-pixel granularity that was available on 8-bit-wide devices when using

8- , 16- , 24- and 32-bit pixels. In addition, the 2x improvement in bandwidth due to eight columns being included in the BLOCK WRITE cycle negates the penalty of using two passes with four-bit pixels. Therefore, eight-column BLOCK WRITE with two eight-bit column masks is the optimal implementation overall.

(a)

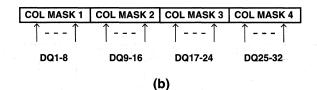


Figure 6 (a) A 32-BIT-WIDE ARRAY BASED ON 16-BIT-WIDE, 8-COLUMN BLOCK WRITE VRAMS (b) ASSIGNMENT OF DQ PINS TO COLUMN MASKS

TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

Table 1 COMPARISON OF BLOCK WRITE IMPLEMENTATIONS

		MINIMUM PIXEL SIZE	NORMALIZED PERFORMANCE				
NUMBER OF COLUMNS	VRAM WIDTH	FOR SINGLE PIXEL GRANULARITY	4-BIT PIXELS	8- , 16- , 24- , AND 32-BIT PIXELS			
1	4 BITS	4 BITS	1.0	1.0			
· • [8 BITS	8 BITS	0.5	1.0			
8	16 BITS	8 BITS	1.0	2.0			

SUMMARY

BLOCK WRITE cycles allow for several locations of the DRAM array within VRAMs to be modified simultaneously. In graphics systems, this operation can improve system performance when executing area fills and/or color expansion functions.

There are several implementations of BLOCK WRITE, depending on the density and width of the VRAM. Relative

to the others, the eight-column BLOCK WRITE, two-mask implementation provided by the MT42C256K16A1, 4 Meg VRAM delivers equivalent performance for four-bit pixels and twice the performance for 8-, 16-, 24- and 32-bit pixels, making it the optimal overall BLOCK WRITE implementation.

TN-42-05 FOUR-COLUMN VS EIGHT-COLUMN BLOCK WRITE

TN-43-01 MT43C4257/8 COMPARISON

TECHNICAL NOTE

INTRODUCTION

Micron offers its Triple-Port DRAM (TPDRAM) in two versions. The MT43C4257 supports the JEDEC split SAM status function (QSF) pin as defined for VRAMs. The MT43C4258 supports a variation of the QSF function called the split SAM special function (SSF) input function. Other than this difference, the function and performance of the two devices are identical.

MT43C4257 — QSF OUTPUT

The QSF output pin of the MT43C4257 is identical in function to the QSF pin of the MT42C4255, 256K x 4 VRAM. The QSF output pin indicates which half of the SAM is being accessed. When data is accessed from the lower half, the QSF is LOW; when data is accessed from the upper half, QSF is HIGH (see Figure 1). When using the MT43C4257 or any standard VRAM in the split SAM mode, the transition between SAM halves occurs only when the SAM-half boundary is reached by the address pointer. This is address count 255 for the lower half and 511 for the upper half. When this

MT43C4257/MT43C4258 COMPARISON

boundary is reached, the new Tap address for the next SAM-half is loaded ("X" for the lower, "Y" for the upper). The following SC will access data from the new half.

MT43C4258 — SSF INPUT

The MT43C4258 introduces functionality to the TPDRAM that is not available on standard VRAMs. The "QSF" pin as an input (SSF) offers a higher degree of design flexibility to the system engineer. The SSF applies only to split transfer cycles. It allows access to be switched from one half of the SAM to the other at will. If SSF is HIGH at the rising edge of the serial clock, the split SAM access will be switched to the other half of the SAM (see Figure 2).

By taking SSF HIGH for the rising edge of a serial clock (location "A" for the lower half, "B" for the upper), the access from the current half may be terminated. Data from this clock will appear on the outputs when in SERIAL OUTPUT mode or will be written if in SERIAL INPUT mode.

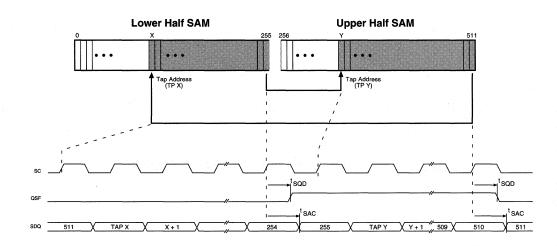


Figure 1 QSF OPERATION FOR THE MT43C4257 (SERIAL OUTPUT)

The next serial clock will access data at the new Tap address ("X" for the lower, "Y" for the upper) of the next half. The SSF input acts as a "stop address" input so the designer can "force" the access from one half to the next when desired. When operating in the split SAM mode, this option allows different sized "blocks" of data to be input or output from the SAM half regardless of the Tap address and stop point. This feature is useful when performing pans, zooms and scrolling in video-graphics systems and for handling distinct packet sizes in networking or controller applications.

HON

SUMMARY

The only difference between the MT43C4257 and MT43C4258 is the variance in the functionality of the "QSF" pin. The MT43C4258 SSF input pin allows more efficient handling, and therefore higher throughput, of input or output data in either SAM. This improves the performance of video-graphics and networking systems by providing high clock speed and no latency time between reaching the stop point of valid data in one half and the loading of the new Tap address for the next half.

The SSF functionality is also available on the x8 versions of the TPDRAM, the MT43C8128 (QSF) and MT43C8129 (SSF). Refer to the data sheets for detailed timing and functional descriptions.

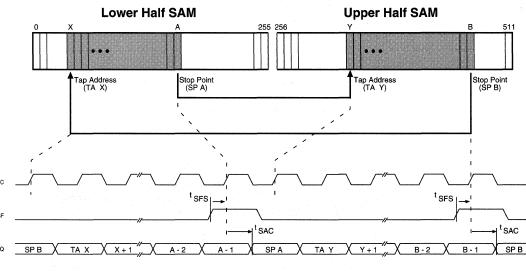


Figure 2 SSF OPERATION FOR THE MT43C4258 (SERIAL OUTPUT)

APPLICATION NOTE

INTRODUCTION

Graphical user interface (GUI) performance is based on the ability of the graphics hardware to efficiently perform primitive graphics operations. Most of these operations rely on the movement of pixels from one area of memory to another. This operation, commonly referred to as BitBLT (short for bit-block transfer), is essential to graphics hardware performance. A BitBLT requires that before pixels are moved or copied, they must be read from one area of memory, then written back to a different area of memory. Graphics hardware that uses normal DRAM or specialized video RAM (VRAM) is forced to perform this operation in two steps because only a single port into the memory is available. Graphics hardware designed around triple-port DRAM (TPDRAM) can perform the BitBLT operation in a single step, because of the additional memory port. This ability, combined with the TPDRAM's other unique features, allows a TPDRAM-based frame buffer to give the highest BitBLT performance possible. This paper discloses a TPDRAM-based frame buffer design that accelerates GUI operations beyond DRAM- and VRAM-based solutions.

BACKGROUND

Basic GUI operation places high demands on the graphics subsystem. Central to the graphics subsystem is the graphics frame buffer. The frame buffer holds the digital representation of the display, and is typically implemented as a three-dimensional memory array. A particular frame buffer architecture must meet three demands placed on the memory bandwidth: screen refresh (supplying display pixels), DRAM refresh and random access. The display generation circuitry requires a stream of pixel data from the frame buffer in order to generate the video signals used to drive the display monitor. Screen refresh usually dominates the available bandwidth of most DRAM frame buffers and led to the development of the dual-ported VRAM. Frame buffers implemented with dynamic memories require continuous refresh cycles in order to retain seldom-accessed data. DRAM refresh usually consumes a small percentage of the available bandwidth but does complicate the frame buffer

ACCELERATE COMMON GUI OPERATIONS WITH A TPDRAM-BASED FRAME BUFFER

controller design. Variance in the first two bandwidth requirements will be proportionate to the display resolution. Additionally, the type of memory used will impact the efficiency of these operations. The remaining bandwidth is what is available to the graphics hardware to update the display. The amount of bandwidth available to random access must be maximized in order to achieve the greatest BitBLT performance.

Given a 72 Hz, 1,024 x 768 x 8 display (implemented as 512 x 512 x 32), 50 percent or more of the available memory bandwidth is consumed performing DRAM and screen refresh due to the single-port architecture of DRAM. An optimal DRAM frame buffer can provide approximately 40 MB/s of random access bandwidth. VRAM-based frame buffers circumvent screen refresh overhead by providing a serial access memory port dedicated to supplying pixel data to the display. This frees up the random port, allowing it to be used for random access operations. Frame buffers based on VRAM must dedicate only two percent of the available memory bandwidth to the screen- and DRAMrefresh overhead, which provides approximately 98 MB/s of random access bandwidth. BitBLT performance for VRAM- and DRAM-based frame buffers is, at best, half that of the available memory bandwidth since the BitBLT data must first be read from the frame buffer, then written back. Greater performance could be attained if the read and write operations were done concurrently.

The TPDRAM provides two serial ports and one random port. A TPDRAM-based frame buffer is similar to a VRAMbased frame buffer in that it provides a dedicated serial port for screen refresh, however it also provides an additional serial port. (The second serial port is available for other functionality. By connecting the second serial port to the random port through an alignment unit, a high performance BitBLT engine can be designed.) The TPDRAM also supports a number of features unavailable in either DRAM or VRAM that can be used to further accelerate GUI operations.

TPDRAM

The TPDRAM is currently based on the 1 megabit generation of VRAM. Internally the memory has an array that is $512 \times 512 \times 4$ bits with two separate 512×4 serial access memories (SAMs) and a 512×4 bit mask register (BMR). The BMR can be used to mask data transfers between the memory array and each one of the SAM registers. Figure 1 provides a detailed block diagram of the TPDRAM.

The random port of the TPDRAM has the same features as the random port of a VRAM. Normal and page mode read/write cycles are supported as well as persistent and nonpersistent MASKED-WRITE operations. BLOCK-WRITE is also offered. The remaining two ports resemble the bidirectional serial port found on VRAM (with additional features). Each serial port is connected to the memory array via a 512 x 4 bus that passes through a 512 x 4 array of transfer gates. These transfer gates are controlled by the contents of the BMR. If bit-masking is enabled and a transfer between one of the SAM registers and the memory array occurs, then the transfer gates will mask those bits involved in the transfer that are not enabled in the BMR.

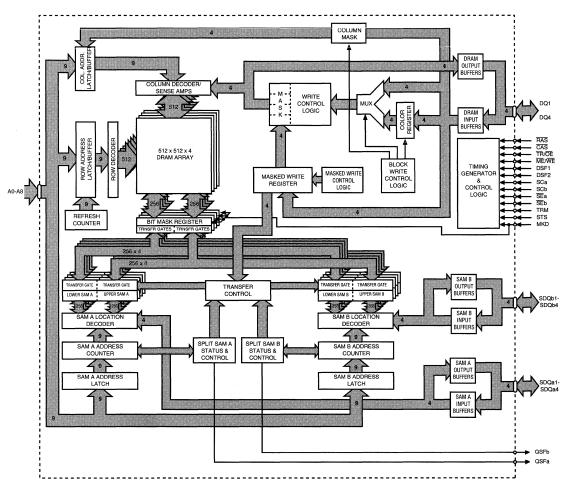


Figure 1 TPDRAM BLOCK DIAGRAM

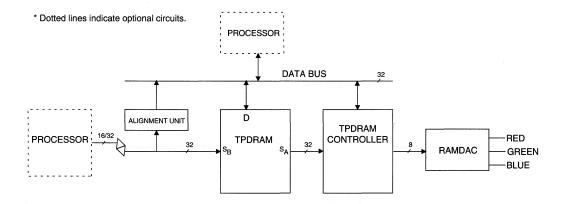
The BMR is intended to be used for clipping operations with data into or out of the serial ports. The BMR may be loaded from a row in the memory array, cleared or inverted, or specified for each SAM cycle through a serial input pin. In addition, the BMR may also be used as a temporary register in order to implement advanced logic functions. Table 1 provides a partial truth table outlining special operations supported by the TPDRAM.

i land		RAS FALLING EDGE									CAS FALL	A0-A8 ²		DQ1-DQ4 ³		REGISTERS	
CODE	FUNCTION	CAS	TR/ OE	ME/WE 10	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS	RAS	CAS,WE ⁴	MASK	COLOR
11 12 14	BIT MASK REGISTER OPERATIONS					·											
BMR- RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	1	0	0	x	1	0/1 ⁷	0	X	ROW	x	×	×		
BMR- IRT	BMR READ TRANSFER (DRAM→INVERT→BMR TRANSFER)	1	0	1	0	0	x	1	0/1 ⁷	1	x	ROW	×	×	x	-	
BMR- WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	1	0	0	0	0	x	- 1 	0/1 ⁷	0	x	ROW	x	DQ MASK	x		
BMR- IWT	BMR WRITE TRANSFER (BMR→INVERT→DRAM TRANSFER)	1	0	0	0	0	x	1	0/1 ⁷	1	x	ROW	x	DQ MASK	x	-	
SAM- BMR	SAM→BMR TRANSFER	1	0	0	1	0	X	1	0/1 ⁷	0=SAMa 1=SAMb		X ⁵	TAP ⁶	×	x		-
BMR- SAM	BMR→SAM TRANSFER	1	0	1	1	0	x	1	0/1 ⁷	0=SAMa 1=SAMb		X2	TAP ⁶	×	X	89 - 1	-
CLR- BMR	CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's")	1	0	1	1. 	1	x	0	0/1 ⁷	x	x	X ⁵	x	×	X		-
	BIT MASKED TRANSFER OPERATIONS	5			4.1	generation de		1.00	8 . ISN	Second	a di tang	1 B 1					1.1
BMRT	BIT MASKED READ TRANSFER (BM DRAM→SAM TRANSFER)	1	0	1	0	1	x	1	x	0=SAMa 1=SAMb		ROW	TAP ⁶	x	x		1.5
BMSRT ⁹	BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM→SAM TRANSFER)	1	0	1	1	1	X	1	×	0=SAMa 1=SAMb		ROW	TAP ⁶	×	X		-
BMWT	BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	0	1	X	1	X8	0=SAMa 1=SAMb		ROW	TAP ⁶	×	x		
BMSWT ⁹	BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM→DRAM TRANSFER)	1	0	0	1	1	x	1	X8	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	x	_	-

Table 1 TPDRAM PARTIAL TRUTH TABLE

A GRAPHICS DISPLAY SUBSYSTEM BASED ON A TPDRAM FRAME BUFFER DESIGN

A graphics display subsystem is usually comprised of a frame buffer memory, a frame buffer controller and video timing generator, a digital-to-analog converter, and circuitry that allows a processor or peripheral bus to access the pixel data. Implementing TPDRAM-assisted BitBLTs requires the addition of an alignment unit to the frame buffer and modification of the frame buffer controller.


A block diagram of a graphics display subsystem that uses TPDRAM for the frame buffer is shown in Figure 2. This graphics display subsystem is capable of performing unaligned BitBLTs at a rate of 100-million 8-bit pixels-persecond. Pattern fill operations and raster logic operations are performed at rates exceeding 1-billion pixels-per-second. Other graphics operations are enhanced in more subtle ways such as improved clipping performance.

The best way to describe a typical TPDRAM-assisted BitBLT operation is to consider a small pseudo-code example. In this case, a portion of a single display line is to be moved from one display line to another.

 Load SAMb (source X, source Y) Wait for completion
 Transfer pixels (Destination X Destination Y Number of pixels) Wait for completion The command LOAD SAMb performs a DRAM to SAM transfer using the specified left-most pixel address. This will load the entire source row into SAMb and set the SAMb column pointer to the left-most pixel in the source space. Since a DRAM or screen refresh takes precedence over this operation, the controller waits for the SAM transfer to complete.

The TRANSFER PIXELS command causes the controller to specify alignment control to the alignment unit and then clock the pixels to be transferred out of SAMb, through the alignment unit and into the random port at the specified destination addresses. Pixel masking of the destination space is controlled entirely by the BitBLT control circuitry. This operation can be interrupted at any time by a screen or DRAM refresh and therefore must be polled to determine completion.

Transferring more than one row of pixels requires that the above routine be involved once for each display line.

Figure 2 SYSTEM BLOCK DIAGRAM

COMPONENTS OF THE TPDRAM FRAME BUFFER

FRAME BUFFER

The TPDRAM frame buffer is required to provide two types of operation within a graphics display subsystem. The frame buffer must provide random access to allow the display to be updated, and must also be able to provide the pixel data that makes up each raster display line. The TPDRAM meets these requirements by providing two serial ports and a random port, all of which can be used to access the memory array.

SAMa provides access to the display memory to deliver pixel data to the display generation circuitry. SAMa is used because it lacks support for serial mask input (SMI) mode. SMI mode is used to specify a BMR mask when writing data into SAMb.

The random port is available to a processor or peripheral bus to support updating of the frame buffer contents. This port supports normal cycles as well as PAGE MODE READ and PAGE MODE WRITE cycles. The random port is used as the write port during BitBLTs involving the pixel alignment unit.

SAMb is used to provide bidirectional access to the display memory. SAMb is connected to the random port through the pixel alignment unit and is used as the read port during BitBLTs. The TPDRAM serial ports deliver a transfer performance rate approximately twice that of the random port during a page mode access. To take advantage of this feature, external bidirectional access into SAMb can be provided to support high bandwidth asynchronous data transfers such as those required to perform pattern-fill operations. The frame buffer is designed in a 256K x 32 array. This results in a 1,024-pixel x 1,024-pixel x 8-bit-perpixel frame buffer. The 32-bit pixel word contains four 8-bit pixels. This configuration supports display resolutions up to 1,024 x 1,024 pixels. Each display line is mapped into

memory so pixels that are vertically aligned on the screen have the same column address. This ensures that pixels are always vertically aligned both in screen coordinates and in physical memory. The BitBLT control circuitry is based on this mapping. Because of this requirement, split-mode transfer VRAM cycles are not required to load SAMa to drive the display generation circuitry.

The TPDRAM offers a number of memory cycles not found in other memory types. It supports cycles that allow powerful macro-level routines to be defined that operate on one or two display lines simultaneously. Programmable control of these additional cycle types is provided to allow the graphics programmer to make efficient use of the added functionality.

ALIGNMENT UNIT

The pixel alignment unit performs a pixel rotate based on the source and destination alignment of the pixel data being moved by a BitBLT operation. If the location of the pixel within the pixel word is different between the source and the destination, the pixel alignment unit shifts the pixels to ensure that the destination alignment requirement is met. The pixel alignment unit is designed to handle 8-bit pixels, but could be easily modified to support other pixel depths if required. The pixel alignment unit adds one pipeline delay to the BitBLT pixel data path.

CONTROLLER

The TPDRAM BitBLT controller manages the data transfer and memory control during BitBLT operations. It provides the capability to initiate most of the TPDRAM cycle types and is also responsible for controlling the entire BitBLT transfer process.

The controller is implemented as a memory-mapped device but could receive communication through a number of means depending on the graphics subsystem design. A block diagram showing the components of a TPDRAM controller is illustrated in Figure 3.

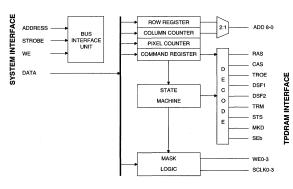
PRINCIPLES OF OPERATION

A BitBLT is defined as a transfer of pixels from one location in memory to another. The transfer can cross row and display line boundaries. The transfer can also require shifting of the pixels within the 32-bit pixel word. A BitBLT is specified by providing a source and destination starting address and the number of pixels to be transferred. It is assumed that the transfer will involve one or more horizontally aligned, adjacent pixels.

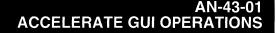
ALIGNMENT UNIT CONTROL

The TPDRAM frame buffer is 256K words deep by 32 bits wide. Given 8-bit pixels, a 32-bit pixel word contains four pixels. The source and destination addresses are pixel addresses; therefore, the two least significant bits (LSBs) of both the source and destination address are used to specify the alignment of the left-most pixel within the pixel word. The shift field required by the alignment unit can be determined by considering both the source and destination LSBs.

BITBLT TRANSFER TYPES


When the source and destination LSBs are both equal to zero and the pixel count is modulo four, the BitBLT is said to be an aligned transfer. Aligned transfers do not require any shifting of the pixel data as it is being transferred. Aligned transfers do not require any masking operations because only whole pixel words are involved in completing the BitBLT. When either the source or destination LSBs are nonzero, or the pixel count is not modulo four (given pixel words of four pixels) then the transfer operation is said to be unaligned. Support for unaligned transfers is more complicated than that for aligned pixels. Unaligned transfers require that some form of masking be done at the start of the transfer, at the end of the transfer, or both. If the source and destination LSBs are zero but the pixel count is not modulo four, then a write enable mask is required to correctly transfer the last partial pixel word to the destination space.

MASK GENERATION


Correctly handling unaligned transfers requires several mask operations. A BitBLT involves reading pixel words from the SAMb port, passing the pixels through the alignment unit, then writing the resulting pixel data back into the frame buffer. Since not all of the pixels in a given pixel word will be updated during every cycle, a write mask on the random port is required. This write mask allows partial pixel words to be written into memory without disturbing the other pixels in the frame buffer. Because the source data resides in each SAM, a SAM shift clock mask is sometimes required. All possible combinations of source and destination alignments have to be supported. A thorough study of all possible combinations indicates that a multistage transfer operation is required to meet the requirements.

BITBLT OPERATION

Performing a BitBLT requires two actions. The first action is to perform a normal read transfer cycle into SAMb using the pixel address of the left-most pixel to be transferred. The column address pointer is specified to point at the pixel word that contains the left-most pixel to be transferred. The address bus is common to all four pixels within the pixel word and, therefore, SAMb is loaded with aligned

Figure 3 TPDRAM CONTROLLER

pixel data. The second action is to initialize the TPDRAM controller, indicating how many pixels are to be transferred and the destination address of the left-most pixel. The action of writing the destination address begins the BitBLT operation.

The BitBLT operation involves four separate steps to handle all possible transfer cases. The first two stages of a BitBLT are required to build the initial pixel word in the destination space. The third stage performs the transfer of all of the full pixel words required for the transfer. The fourth stage performs the writing of the final or rightmost pixel word, which is sometimes partial. All but the third stage use a write enable mask for each pixel in the pixel word. The first and second cycles also require a SAMb serial-port clock mask and a pixel-count enable mask. The value of each of these masks, based on the source and destination LSBs, is provided in Table 2.

THE FIRST CYCLE

The TPDRAM controller uses the two LSBs of the source and destination pixel addresses to form several masks that are used during the first two cycles of the BitBLT operation. As shown in the example in Figure 4, it is sometimes necessary to mask off one or more of the left-most pixels in the first pixel word to be written into the destination address. This mask operation is implemented by deasserting the write enable during the write operation to the first pixel word in the destination.

Also illustrated in the example, there exist scenarios where the first pixel word in the destination space must actually be built from both the first and second pixel words in the source space. A counter is used to generate the column portion of the destination address during a BitBLT. If the first two pixel words in the source are required to build the first pixel word in the destination space then the column pointer must be the same during the first two cycles. The COUNTEN field in Table 2 indicates which scenarios cause this to happen.

It is preferable to write full pixel words during the middle cycles. A mask is applied to the serial clocks for SAMb to keep the controller from having to build each pixel word in the destination space similar to the first two cycles of the BitBLT. By correctly masking the serial clocks, the column pointers for each pixel within the pixel word are set so that during the middle cycles, the correct pixels are identified and all pixels can be clocked simultaneously for the remainder of the transfer operation. Table 2 indicates the serial clock mask operation during the first two cycles for each of the address scenarios. Figure 4a shows the state of the destination space and SAMb after the first cycle.

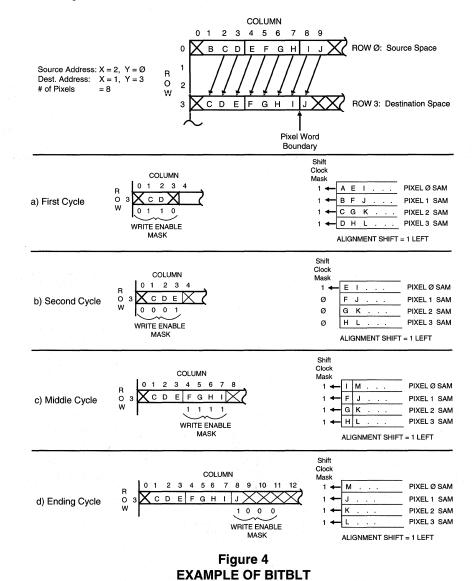

SOURCE	DEST.	LEFT	FIRST	MEMORY C	YCLE	SECON	D MEMORY	CYCLE
ADDRESS	ADDRESS	SHIFT	COUNT	WRITE	SERIAL	COUNT	WRITE	SERIAL
			ENABLE	ENABLE	CLOCK	ENABLE	ENABLE	CLOCK
LSBS	LSBS			MASK	MASK		MASK	MASK
				0123	0123		0123	0123
3	3	0 0	1	0001	1111	1	1111	1111
3	2	0 1	0	0010	1111	1	0001	1000
3	1	10	0	0100	1111	1	0011	1100
3	0	1 1	0	1000	1111	1	0111	1110
2	3	11	1	0001	1110	1 1 1	1111	1111
2	2	0.0	- 66 1 - 6.5	0011	1111	- 1	1111	1111
2	i 1 i	0 1	0	0110	1111	1	0001	1000
2	0	10	0	1100	1111	1 1	0011	1100
1	3	10	1	0001	1100	1	1111	1111
1	2	1 1	1 - 1122	0011	1110	1 , a.e. e	1111	1111
1	1	00	1	0111	1111	1	1111	1111
1	0	0 1	0	1110	1111	1. A. 1 . A. A.	0001	1000
0	3	0 1	1	0001	1000	1	1111	1111
0	2	10	1 1	0011	1100	1	1111	1111
0	1	· . 1. 1	1. 1 . *	0111	0111	1	1111	1111
0	0	00	1	1111	1111	1	1111	1111

Table 2 MASK LOGIC TRUTH TABLE

THE SECOND CYCLE

The second cycle of the BitBLT operation is similar to the first cycle. The controller masks write-enable and serialclock for each pixel based on the source and destination address LSBs. The column counter is allowed to advance in all cases because at the end of the second cycle, the first pixel word of the destination space, at least, has been transferred. Second cycle operation is the same as first cycle operation. Figure 4b shows how both the write enable mask and shift clock masks are used to complete the update of the first pixel word in the destination space and set up SAMb for the middle cycles.

THE MIDDLE CYCLES

The first two cycles of the BitBLT handle all of the masking required to write the first pixel word and align the SAMb pointers for each pixel within the pixel word. Under these conditions, no masking is required during the middle cycles, and the controller can transfer pixels at the full bandwidth of the TPDRAM random port. The following occur for each remaining pixel word: SAMb is clocked and the pixel word is output, aligned, and written into the random port at the destination address. This continues until the pixel counter has counted down to one, where the ending cycle begins. Figure 4c shows a typical middle cycle. Note how the alignment value affects the pixel position within the destination space.

THE ENDING CYCLE

Depending on the destination address and the number of pixels being transferred, a write-enable mask is sometimes required to correctly transfer the final pixel word into the destination space. When the pixel word counter has counted down to a value of one, the destination address LSBs and pixel count LSBs are evaluated to determine how many transfer cycles are required to complete the BitBLT operation and what the write-enable mask should be for the last pixel word. Table 3 lists the possible scenarios. Figure 4d shows how the write enable mask is used.

DESTINATION LSBS	NUMBER PIXELS MOD 4	ENDING WRITE ENABLE MASK 0 1 2 3
0 0	0	1111
0 1	0	1000
10	0	1100
11	0	1110
0 0	1	1000
0 1	1	1100
10	1	1110
11	1	1111
0 0	2	1100
0 1	2	1110
10	2	1111
11	2	1000
0 0	3	1110
0 1	3	1111
10	3	1000
11	3	1100

Table 3 ENDING CYCLE WRITE ENABLE **TRUTH TABLE**

ENHANCING OTHER COMMON GRAPHICS OPERATIONS

The TPDRAM can be used to enhance other primitive graphics operations. Pattern-fill operations may be improved by first loading SAMb with a pattern loaded into off-screen memory, then transferring SAMb through the BMR, which has been previously loaded with a mask. For large shapes, a significant improvement in performance may result.

Row-oriented logical operations may be improved by using the off-screen memory, SAMb and the BMR. BMR-to-DRAM transfer operations, and DRAM-to-BMR transfer operations permit inverting the transfer data. This feature, when combined with the AND operation that the BMR provides, permits complex logic functions to be constructed using a series of transfer cycles.

Additionally, a graphics display architecture can be designed to read and write serial pixel/mask streams using the SAMb serial port. This functionality can be useful for quickly loading masks, pattern data or other pixel data. This port allows for transfer rates up to 200 MB/s.

SUMMARY

5-61

The TPDRAM shows its advantage over DRAM- and VRAM-based solutions when a BitBLT circuit is defined that allows concurrent READ and WRITE operations during BitBLT operations. Performance can approach 100 million pixels-per-second BitBLT rates with logical and pattern fill operations sometimes exceeding several billion pixelsper-second. GUI operations can be modified to take advantage of the additional functionality a TPDRAM frame buffer provides, resulting in more performance and greater flexibility than DRAM- or VRAM-based designs.

MICHON. SEMICONDUCTOR, IRC.

AN-43-02 TPDRAM FOR NETWORK APPLICATIONS

APPLICATION NOTE

INTRODUCTION

Advanced network applications need a high bandwidth memory buffer with serial access that provides full duplex data flow for maximum flexibility and control. Current network designs address these needs with SRAM or dualport DRAM (VRAM) devices. However, Micron Semiconductor's Triple-Port DRAM (TPDRAM) is an alternative. The 8-bit wide, MT43C8128/A and MT438129/A (including "A" versions), provide the optimum density and bandwidths required by high-end network buffers. The TPDRAM is less expensive than SRAM devices and offers higher performance. It also has uninterrupted, bidirectional capabilities, which VRAM devices do not provide. The TPDRAM may be used with all networking standards and protocols. The bandwidth of the three ports provides uninterrupted 40 MHz data flow in each of two directions and data manipulation "off line" at 22 MHz (FAST-PAGE-MODE).

The advancement and merging of network and channel architectures demands higher bandwidths and reduced system cost. The need for total system speed is the main focus of this discussion. However, the TPDRAM can increase overall system bandwidth while reducing the cost of the network/channel buffer. This paper presents the basic TPDRAM architecture, highlighting special features and discussing ideas for system implementation with a TPDRAM network buffer.

Current high-bandwidth network and channel interface boards use DRAM, VRAM or some kind of SRAM for local data buffering. These memories reduce latency in the receive/transmit capabilities of the network. They do this by storing data packets locally before they are sent over the network or forwarded to the system memory via host control or DMA moves. Existing memory solutions have been adequate for this task. However, these solutions are not able to sustain the required bandwidth of high-speed communication channels and networks because of the increasing demands of higher-speed system buses, multiprocessors, network bandwidth and increasing data volumes required by ever-more-powerful workstations. Speeds on future fiber optic networks such as ATM, Sonet, SHIPPI and Fiber Channel will be in excess of 1 Gbit/sec (Gbps).

USE OF TPDRAM FOR SMARTER/FASTER NETWORK APPLICATIONS

THE TPDRAM

ARCHITECTURE

The TPDRAM was introduced by Micron Semiconductor as an evolution of the dual-port DRAM (VRAM) architecture. The device is targeted at two general applications; high-end graphics frame buffers and networking data buffers. Like the VRAM, the TPDRAM is based on a dynamic random access memory (DRAM) array. Both devices were created to enhance standard DRAM bandwidth.

A second memory and I/O port are added to a standard DRAM to make a VRAM (Figure 1). This second memory is an autonomous static RAM that is accessed in a sequential manner with its own address counter and pointer logic. Keep in mind, the data is the same width

A0 - A(8) DQs RAS/CAS/WE/etc Addr DRAM Data Control Col. Dec. R o w DRAM D е с SAM Addr Count SAM Data SC SDQ

Figure 1 DUAL-PORT DRAM

AN-43-02 TPDRAM FOR NETWORK APPLICATIONS

as the DRAM port, 4 or 8 bits—not serial. Because of its serial (as opposed to random) access, this memory is commonly referred to as a serial access memory, or SAM. The SAM, which can be thought of as a FIFO, is well suited for network communication buffers. However, for full duplex communication into and out of the network data buffer, the VRAM is still a restrictive solution because the SAM can only move data one direction at a time.

The TPDRAM expands the VRAM architecture by adding a second SAM and I/O port. This new port gives the TPDRAM one DRAM port and two serially accessed memory ports (Figure 2). The control of the TPDRAM is similar to the control of a VRAM. In fact, it can be operated as a VRAM with no controller modifications.

SERIAL ACCESS MEMORY

The serial access memories in the TPDRAM are equal in length to one row of the DRAM array, and loaded internally by performing a special DRAM RAS-CAS cycle. The load cycles, called "transfer(s)," load a row of DRAM into either SAM, or load either SAM into a row of DRAM, in only one DRAM cycle. The two SAMs run asynchronously and independently of each other and the DRAM, except when they are involved in a transfer (Figure 3). As a result, data can be written into the DRAM, read out of one SAM, and written into one SAM all at the

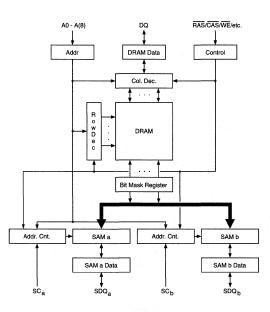
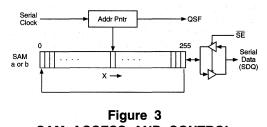


Figure 2 TRIPLE-PORT DRAM ARCHITECTURE

same time and at different rates. The SAM ports of the TPDRAM are capable of speeds of 40 MHz, with 50 MHz planned for the future. They use two control inputs to access data: a serial enable (SE) and serial clock (SC). The rising edge of the serial clock increments the address counter, and inputs or outputs the SAM data.


RANDOM (DRAM) OPERATION

The DRAM port provides the host bus interface with a bidirectional port that may be accessed randomly, and with the option of FAST-PAGE-MODE access. FAST-PAGE-MODE allows the host or local processor to access the DRAM data at a cycle time three times faster than random RAS-CAS access cycles. This feature is very useful for high-speed DMA moves of data packets between the host-system main memory and the network adapter memory. When in FAST-PAGE-MODE, the access is restricted to one row (page) of the array, while the columns may be accessed randomly within the row. If the row address changes, a new RAS-CAS cycle must be performed to "open" the new page.

The random port of the TPDRAM also provides a writeper-bit (MASKED WRITE) function when writing data to the memory array.

In addition, the DRAM (or random port) is used to control data transfers to the SAM ports. All internal movement of data is controlled by the RAS signal in conjunction with control pins that are latched as RAS falls. In fact, all access operations (DRAM access, Transfer, MASKED WRITE, etc.) are defined at the falling edge of RAS. The only cycle that is selected at the falling edge of CAS is BLOCK WRITE, which is geared to graphics systems and not detailed here. Figure 4 illustrates the control setup for cycle definition in the TPDRAM. All function control pins (e.g. TR/OE, STS, DSFI, etc.) are included in the "control" window at RAS LOW.

A transfer cycle requires a temporary interrupt of any access requests to the DRAM port and, for some transfers, will interrupt data into or out of the selected SAM. The three memory elements are independent of, and asynchronous to, each other when not involved in a data transfer.

SAM ACCESS AND CONTROL

AN-43-02 TPDRAM FOR NETWORK APPLICATIONS

TRANSFER OPERATIONS

Operation of data transfers is straightforward. Six control pins are added to the typical DRAM control signals, and \overline{OE} is converted to a dual function (Figure 4). Some of these pins may be permanently tied to a logic state or actively driven by control logic, depending on the functionality required by the system.

Two pins, TRM and MKD, are used to incorporate the internal BIT MASK REGISTER into the transfer (described later). They may be tied to ground to permanently disable the BMR, if it is not required.

Row data may be transferred to either SAM (but not both at once) during a transfer. The STS pin selects the SAM through which a transfer will occur. A transfer to a SAM of a page of the DRAM is called a read transfer. If the transfer is from a SAM to a page of the DRAM, it is called a write transfer.

Split transfers are provided to allow easy, uninterrupted data streams into or out of the SAM. The DSF1 pin is used to select either SPLIT READ TRANSFER or SPLIT WRITE TRANSFER. The SAMs on the TPDRAM offer an added feature that can be very beneficial to networking. Industry standard VRAMs with a split SAM provide a split SAM status pin, or QSF. This pin is LOW if the access is in the lower half address space of the SAM, and HIGH if it is in the upper half address space. Parts with this pin will access data beginning at the starting address (or Tap) of the SAM and progress through the access will jump to the new tap address of the new half and the QSF will change state. The MT43C8128 TPDRAM also operates this way. The function of the QSF pin changes for the MT43C8129; it is made an input and called split SAM special function (SSF). With this pin, it is possible to cease access at any location in one half of the SAM and force a jump to the tap address of the next half. Compared with standard VRAM, this can greatly improve overall bandwidth by allowing more efficient use of the serial clock. Without this function, a packet of data that did not fill the entire half of the SAM would still require enough extra clock cycles to advance the address count to the tap of the next half for a new packet to be input and stored. This would also apply to output packet data. The SSF pin allows the address to jump to the next tap and be ready for new data without adding extra clock cycles as soon as the end of a packet is reached.

BIT MASK REGISTER OPERATION

In addition to the great improvement in data flow, the TPDRAM also adds an extra dimension of memory intelligence. A bit mask is provided to allow masking of the SAM or DRAM data during transfers. To perform the masking function, an internal register that is the same size as a SAM has been added to the part. It is called the BIT MASK REGISTER (BMR). The BMR may also be used as an extra page for scratch pad memory. Data from the DRAM or either SAM may be transferred to the BMR in one RAS-CAS cycle. The data stored in the BMR may be used as a mask when transferring data between the DRAM and SAMs by performing a BIT MASKED TRANS-

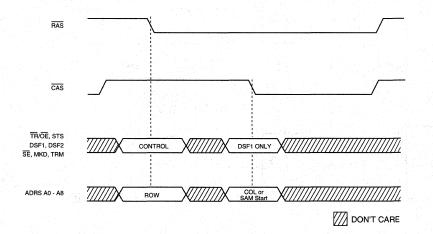


Figure 4 BASIC TPDRAM ACCESS CONTROL

FER cycle in lieu of a normal transfer. The BIT MASKED TRANSFERs can also be done as SPLIT TRANSFER.

During a BIT MASKED TRANSFER, each location in the SAM or DRAM (column location) will be masked by the corresponding location in the BMR. A logic "0" in that location will mask that bit during a BIT MASKED TRANSFER and the addressed destination location will not be changed. A logic "1" will allow the new data to be written.

The BMR may also be loaded serially by clocking-in mask data with the SCb clock pin. This mode is called the serial mask input (SMI) mode. When this mode is enabled (at RAS time), any location addressed by the SAMb address pointer will have the corresponding BMR location written to all 1's or all 0's, whichever is valid on the MKD input pin. In addition, when this mode is enabled, the contents of the BMR will be cleared automatically when a BIT MASKED WRITE TRANSFER is done from SAMb.

The BMR has been found to be useful in high-end networking applications for protecting portions of a row when transferring packets from the SAM to the DRAM. The protected areas may contain constant header and control information used by the host processor. This simplifies packing multiple packets in each DRAM row.

NETWORK APPLICATIONS

The two SAM ports of the MT43C8128/9 provide a network with full duplex input and output from the memory space without interrupting the system access to the DRAM.

In the design of high-speed networks, the overall memory bandwidth can have a great effect on the performance of the entire host system. The local data memory buffer must allow access time for the node CPU and at the same time allow the network interface logic access for incoming or outgoing data. This can tax the total system speed, slowing down the system and the network. The TPDRAM allows each part of the system to access a common memory bank simultaneously and asynchronously (Figure 5).

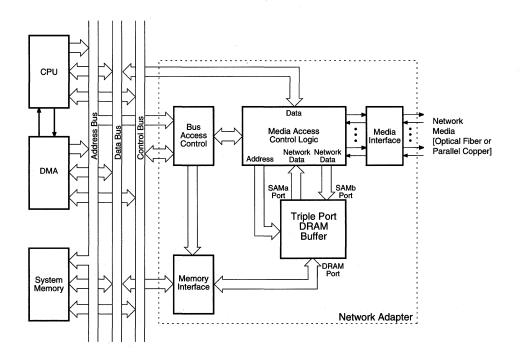


Figure 5 TYPICAL FULL DUPLEX NETWORKING APPLICATION USING TPDRAMS

The access time available to the node processor is as important as the bandwidth of the network port (SAMs). The local (or node) processor must have easy access to header and trailer bits to control packet flow into the system and on the network. Information to be sent on the network must be loaded quickly, either by host processor control or DMA moves. Data from the network must be rapidly routed to the appropriate processor or memory subsystem. All these operations are impacted by memory latency in the network buffer memory.

The node or local processor is allowed more time to access the data stored in the buffer by allowing the SAM ports to be the input and output ports for the network or channel. The DRAM port of the TPDRAM will typically be available for access by the system bus 97 percent of the time (Equation 1). Compare this to the single-port architecture of standard DRAM, which would only allow the node processor 40 to 60 percent of the memory bandwidth, depending on the network speed and interface card architecture.

$\text{\%Dav} = [(^{t}max - ^{t}tran - ^{t}ref)/^{t}max] * 100 (1)$

Where:

- %Dav = Percent of time DRAM port is available for access
- ^tmax = Maximum DRAM cycle time through memory (FAST-PAGE-MODE)
- ^ttran = Transfer time required to maintain constant data at the SAM ports
- ^tref = Time required to perform refresh

The vast improvement to the DRAM bandwidth is translated into faster data throughput. Using four MT43C8128 TPDRAMs, a 128K x 32 memory array can be built with a total data rate of 160 megabytes/sec for data transceivers (SAMs) and 80 megabytes/sec for host access (FAST-PAGE-MODE rate). Futhermore, these data rates can be sustained simultaneously and in any direction.

Figure 6 illustrates how the TPDRAM would fit into a FDDI type network buffer/interface. The TPDRAM ar-

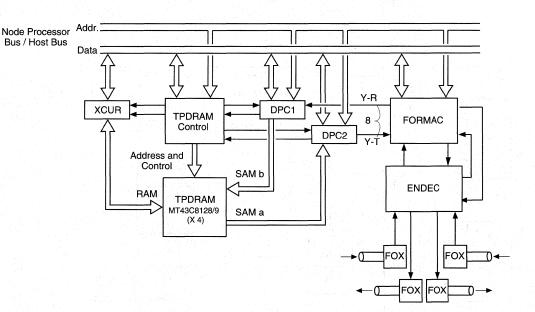


Figure 6 FDDI NETWORKING APPLICATION USING TPDRAMS

AN-43-02 REV. 5/93

chitecture allows full duplex operation with a single bank of continuous memory. This offers flexibility in memory mapping by allowing the amount of memory space for receive and transmit data to be changed and reallocated.

The system shown in Figure 6 is based on the SUPERNET[™] chipset from Advanced Micro Devices. The chip set must be modified by adding an FPLD device to perform the TPDRAM control. This would replace AMD's RAM Buffer Controller chip. A node processor handles data transfers to and from the SAM port when requested by the FORMAC/DPC chips. The data will then be routed to the DPC for byte transmission to the FORMAC and ENDEC.

The TPDRAM's flexibility means it can be used in almost any network or channel application. For example, a half-duplex system could be constructed. In this type of system, the SAMs are dedicated to the network control logic and to the host system bus. The DRAM port is solely accessed and controlled by a local node processor. This example allows faster DMA to the host than the full duplex implementation and allows half duplex access to the network (see figure 7). However, the network type is not restricted.

SUMMARY

The TPDRAM offers system designers a high density, high-bandwidth memory that reduces the chip count and the cost of network adapter boards.

Its flexibility makes the TPDRAM applicable to many network or channel architectures and protocols. The control of the device has been kept close to industry standard VRAMs. Extra features like the SSF input pin and the BIT MASK REGISTER give the TPDRAM even greater flexibility and intelligence.

This architecture can be applied to any network protocol including SONET, ATM, HIPPI, Fiber Channel and other fiber or parallel networks.

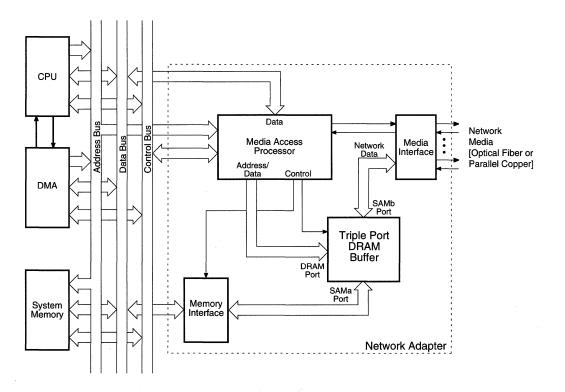


Figure 7

WIDE DRAMs	1
VRAMs	2
TRIPLE-PORT DRAMs	3
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	
SALES INFORMATION	

PRODUCT RELIABILITY OVERVIEW

OVERVIEW

Product reliability is a product's ability to function over time within given performance limits, under specified operating conditions. This section contains a brief overview of some of the issues that affect the reliability of IC devices, and a brief overview of Micron's reliability program.

For a more in-depth discussion of reliability, please refer to Micron's quality/reliability literature.

RELIABILITY GOALS

When we discuss reliability goals of semiconductor ICs, we typically refer to the traditional reliability curve of component life. The reliability curve, or "bathtub curve," appears below, where h(t) is the hazard rate or the probability of a component failing at t_0+1 in time if it has survived at time t_0 .

The reliability curve in Figure 1 is divided into three segments: infant mortality, random failures and wearout. The term "infant mortality" refers to those ICs that would fail early in their lives due to manufacturing defects. To screen out such failures, Micron evaluates products using intelligent burn-in. The unique AMBYX[®] intelligent burn-in/test system developed by Micron is described in the following section.

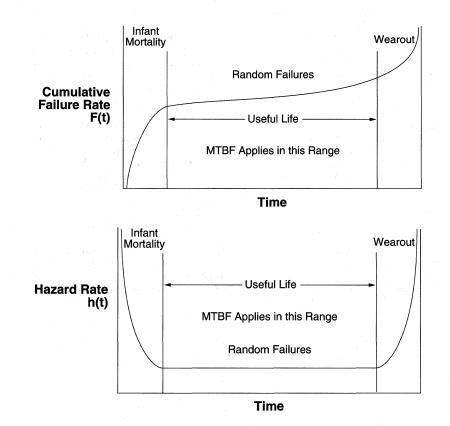


Figure 1 RELIABILITY CURVE

MICRON'S AMBYX[®] INTELLIGENT BURN-IN AND TEST SYSTEM

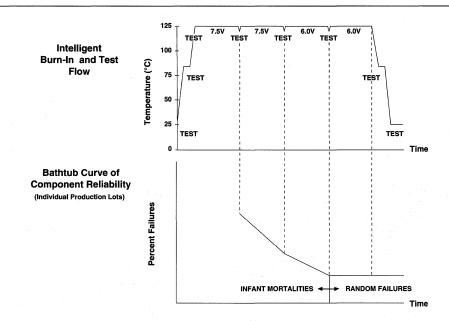
Burn-in refers to the process of accelerating failures that occur during the infant mortality phase of component life to remove the inherently weaker devices. The process has been regarded as critical for ensuring product reliability since the beginning of the semiconductor industry. To effectively screen out infant mortalities, Micron believes it is critical to functionally test devices several times during the burn-in cycle without removing them from the burnin oven. In 1986, when we were unable to find a system that met our requirements, we introduced the concept of "intelligent" burn-in and developed the AMBYX* intelligent burn-in and test system. Today, we use AMBYX to test every component product we make.

With AMBYX, we can determine if the failure rate curves of individual product lots reach the random failure region of the bathtub curve by the end of the burn-in cycle. We subject product lots not exhibiting a stable failure rate to additional burn-in. This burn-in flow also brings to our attention the slightest variation in a product's failure rate.

Since AMBYX allows us to test devices for functionality without removing them from the burn-in oven, we effectively eliminate failures resulting from handling, thereby minimizing "noise" from the test results. During the test phase, output produced by the devices under test is compared to the pattern expected. If a discrepancy occurs, AMBYX records the failure and provides the bit address, device address, board address, temperature, Vcc voltage, test pattern and time set.

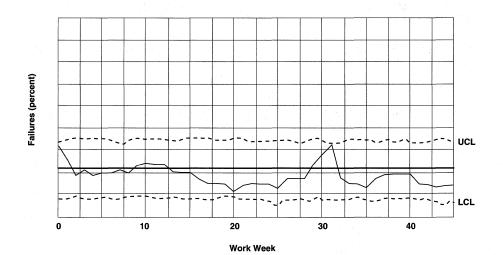
During the burn-in cycle itself, devices are functionally tested in four intervals. The first test begins at room temperature. Then we ramp up the oven to 85°C for more functional testing. This enables us to thermal intermittent failure detection, another unique capability of intelligent burn-in. We conduct the next test at 125°C — any device that does not pass this sequence is eliminated. As the

burn-in process continues, devices are dynamically stressed at high temperature and voltage for a given number of hours. At the end of this period, we functionally test all devices again, followed by another burn-in cycle and further tests. This sequence is repeated four times on every device in every production lot.


These test results allow us to identify individual failures after each burn-in cycle. Figure 2 illustrates how the four burn-in and test cycles flow. The typical test results shown make up the first portion of the bathtub curve of component reliability.

There are two important reasons why Micron conducts the last two burn-in and test periods (or "quarters") at lower Vcc than the first two portions. First, we want the several million device hours that we accumulate weekly on production lots to be conducted at stress conditions identical to the conditions for the extended high-temperature-operating-life (HTOL) test used by IC manufacturers to compute random field failure rates. Second, we want to be sure we are not, by testing at extremely elevated conditions, introducing new failure modes unrelated to normal wearout, such as VOS.

Control charts, such as the one shown in Figure 3, alert us to trends in lot failure rates. When we detect an upward trend in a failure rate, we correlate the lots that need additional burn-in with all the variables that might be influencing the increased rate. Such variables could include fabrication and assembly equipment, manufacturing shifts and time frames when the lots were processed through specific steps.


The overall benefits of intelligent burn-in are wide ranging. Intelligent burn-in allows us to identify early-life failures and failure mechanisms as they would actually occur in customer applications. It also allows us to identify problem lots that, if undetected, could contribute substantially to infant mortalities.

PRODUCT RELIABILITY OVERVIEW

RON

Figure 2 AMBYX BURN-IN/TEST FLOW AND TEST RESULTS

ENVIRONMENTAL PROCESS MONITOR PROGRAM

Micron's environmental process monitor (EPM) program is designed to ensure the reliability of our standard products. Under this program, we subject weekly samples of our various product and package types to a battery of stress tests.

During these tests, we stress the devices for many hours under conditions designed to simulate years of normal field use. We then apply equations derived from intricate engineering models to the data collected from the accelerated tests. From these calculations, we are able to predict failure rates under normal use. Figure 3 shows the conditions for these tests, known as environmental stress tests. The EPM program described in Figure 4 is for Micron's 2 Meg VRAM.

TEST NAME AND DESCRIPTION	TEST DURATION	BIWEEKLY SAMPLE SIZE
HIGH TEMPERATURE OPERATING LIFE (125°C, 6V, Checkerboard and Checkerboard Complement Pattern)	1,008 Hours	60 Devices
TEMPERATURE AND HUMIDITY (85°C, 85% RH, 5.5V, Alternating Bias)	1,008 Hours	60 Devices
AUTOCLAVE (121°C, 100% RH, 15 PSI, No Bias)	96 Hours	30 Devices
LOW TEMPERATURE LIFE (-25°C, 7V, Checkerboard and Checkerboard Complement Pattern)	1,008 Hours	10 Devices
TEMPERATURE CYCLE (0°C for 15 min., +125°C for 15 min, air to air)	1,000 Cycles	30 Devices
THERMAL SHOCK (-55°C for 5 min., +125°C for 5 min., liquid to liquid)	700 Cycles	30 Devices
HIGH TEMPERATURE STORAGE (150°C, No Bias)	1,008 Hours	30 Devices
ELECTROSTATIC DISCHARGE (+ and -)	MIL-STD-3015.7	30 Devices

RELIABILITY

NOTE: Samples used in the EPM program are taken from five different lots at finished goods. Before being subjected to environmental testing, all surface-mount products are run twice through an infrared (IR) reflow furnace, reaching a peak temperature of 220°C.

Figure 4 SAMPLE ENVIRONMENTAL PROCESS MONITOR – 2 MEG VRAM

PRODUCT RELIABILITY OVERVIEW

FAILURE RATE CALCULATION

The failure rate during the useful life of a device is expressed as percent failures per thousand device hours or as FITs (failures in time, per billion device hours). Using Micron's 4 Meg DRAM as an example, the failure rate is calculated as follows:

Failure Rate =

 $\frac{Pn}{Device hours \times AF}$

- where: Pn = Poisson Statistic (at a given confidence level).In our example given one device failure, Pn = 2.022 at 60 percent confidence level.
 - Device hours = sample size multiplied by test time (in hours). In our example, device hours equal 9.479×10^5 in an accelerated environment.
 - AF = acceleration factor between the stress environment and typical use conditions. For the 2 Meg VRAM, the acceleration factor between 125° C, 6V (HTOL stress conditions) and 50°C, 5V (typical operating conditions) equals 56. (Calculation of this acceleration factor is described in the following section.)

Thus, the failure rate of the Micron 2 Meg VRAM family is computed as follows:

Failure Rate = $\frac{2.022}{(9.479 \times 10^5)(56)} = 3.809 \times 10^8$

where: total device hours at test conditions = 2.723×10^6 . Equivalent device hours at typical use conditions (50°C, 5V Vcc) using an acceleration factor of 56 equals 56 (9.479 x 10^5) = 53×10^6 .

To translate this failure rate into percent failures per thousand device hours, we multiply the failure rate obtained from the equation above by 10⁵:

Failure Rate = $(3.809 \times 10^{-8}) \times 10^{5} = 0.003809\%$ or 0.0038% per 1K device hours

To state the failure rate in FITs, we multiply the failure rate obtained from the equation above by 10^9 :

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice

©1993, Micron Semiconductor, Inc.

Failure Rate = $3.809 \times 10^{-8} \times 10^9 = 3.809$ or 38 FITs.

MICRON

PRODUCT RELIABILITY OVERVIEW

ACCELERATION FACTOR CALCULATION

Again, using the 2 Meg VRAM as our example, the acceleration factor between high temperature operating life stress conditions (125° C, 6V) and typical operating conditions (50° C, 5V) is computed using the following models:

ACCELERATION FACTOR DUE TO TEMPERATURE STRESS

The acceleration factor due to temperature stress is computed using the Arrhenius equation, which is stated as follows:

$$AF_{T} = e^{\left[\frac{E_{a}}{kT_{O}} - \frac{E_{a}}{kT_{S}}\right]}$$

where: k = Boltzmann's constant, which is equal to 8.617 x $10^{-5} \text{ eV}/\text{K}$.

- T_O and T_S = typical operating and stress temperatures, respectively, in kelvins.
- E_a = activation energy in eV. (For oxide defects, which is the most common failure mechanism for the 4 Meg DRAM used in our example. The activation energy is determined to be 0.3eV.)

Using these values, the temperature acceleration factor between 125° C and 50° C is computed to be 7.62.

ACCELERATION FACTOR DUE TO VOLTAGE STRESS

The acceleration factor due to voltage stress is computed using the following model:

$$AF_{V} = e^{\left[\beta \left(V_{s} - V_{o}\right)\right]}$$

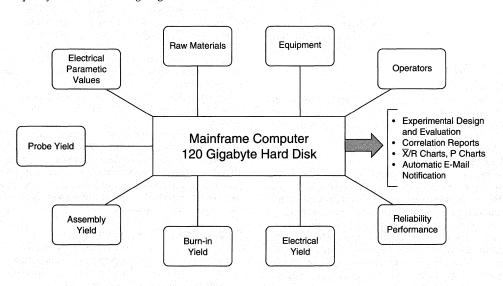
where:

- v_S and v_O = stress voltage and typical operating voltage, respectively, in volts
 - β = constant, the value of which was derived experimentally by running several sessions of Micron's intelligent burn-in test sequence at different voltages on large numbers of the device. (For the 2 Meg VRAM used in our example, β equals 2).

Thus, the voltage acceleration factor for the 2 Meg VRAM between 6V (stress condition) and 5V (typical operating condition) is computed to be 7.39.

Finally, the overall acceleration factor due to temperature and voltage stress is calculated as the product of the two respective acceleration factors or:

$$AF_{overall} = AF_{temperature} \times AF_{voltage}$$
$$= 7.62 \times 7.39$$
$$= 56$$


OUTGOING PRODUCT QUALITY

Before being sent to our finished goods area, where products are prepared for shipping, a special unit within the quality assurance department takes a one percent sample from each production lot. These samples are subjected to visual and electrical testing to measure the acceptable quality level (AQL) of all outgoing product. Test flows for new products that have not met required production volume and ppm levels are more comprehensive than for mature products. Over a period of time, as a product matures, the objective is to eliminate those tests devices never fail. AQL testing, although it is performed on only a small percentage of each product, is much more exhaustive. Conducted at spec conditions without guardband for every known timing, pattern and background, it is a sanity check on the production test flow. Its purpose is to detect subtle shifts in defect mechanisms which the production test flow may not catch. Visual testing for mechanical defects consists of visual inspection of the sample devices for any physical irregularities that could negatively affect device performance. If a sample device is found to have, for example, a bent lead, a package irregularity or excess solder, the entire lot is returned to our test area for a 100 percent visual inspection.

Electrical testing of the sample devices is performed using automatic test equipment (ATE) systems. Testing is conducted at 0°C, or room temperature (~25°C) and at 70°C. Should an electrical failure occur, a quality assurance engineer further evaluates the failing device. After completing this analysis, the quality assurance engineer determines which production monitor/test should have caught the failure, and the devices are retested beginning at that point in the test flow. These are important steps to preserve the integrity of our test process.

AUTOMATED DATA CAPTURE AND ANALYSIS

Micron has developed a sophisticated data capture and analysis system with a computer network tailored to the needs of quality IC manufacturing. Figure 5 shows the various functional areas that provide the input to our VAX data bases.

Figure 5 STATISTICAL CORRELATION

DATA CAPTURE

Automated, real-time data capture makes real-time charting (\overline{X} and R charts, etc.) of all critical operations and processes possible and ensures that appropriate personnel know of any unexpected variation on a timely basis. As production lots move through each manufacturing step, detailed information (including step number, lot number, machine number, date/time, and operator number) is entered into the production data base. Automated, highly-programmable measurement systems capture a host of parameters associated with equipment, on-line process material and environmental variables.

STATISTICAL TECHNIQUES AND TOOLS

By using highly flexible, on-line data extraction programs, system users can tap this vast data base and design their own correlation and trend analyses. Because we can correlate process variables to product performance, we can make online projections of the quality of our finished product for a given lot or process run. In addition, we can estimate the impact of process improvements on quality well in advance and can make the impact of process deviations more visible to our engineers. This approach allows us to model yield and quality parameters based on on-line parameters. We then use this model to predict the final product results through the following means:

GROUP SUMMARIES

Summaries, which provide the means and standard deviations of user-defined parametrics, enable system users to compare the parametric values of production lots as well as special engineering lots.

TREND ANALYSIS

Trend charts are routinely generated for critical parameters. System users can plot the means and ranges of any probe or parametric data captured throughout the manufacturing process.

CORRELATION ANALYSIS

Correlation analysis can be performed on any combination of factors, such as equipment, masks or electrical parameters. One report, regularly produced and disseminated to key personnel, takes two groups of lots (one with a high failure rate, the other with a low failure rate) and identifies all the pieces of equipment that are common to one or the other group. The report quickly alerts us to any correlation between a lot with a high failure rate and particular piece(s) of equipment in the wafer fabrication or assembly areas. Another regularly produced report analyzes a user-selected set of database parametrics against an index, such as manufacturing yield. Lots are divided into three subgroups (upper yielding, middle yielding and lower yielding). The report then correlates the yields with all electrical parametric values taken on individual lots at wafer sort. It helps us determine which processing step may have caused the yields to vary among the three subgroups.

STATISTICAL PROCESS CONTROL (SPC) CHARTS

Micron employs SPC control charts throughout the company to monitor and evaluate critical process parameters, such as critical dimensions (CDs), oxide thickness, chemical vapor depositions (CVDs), particle counts, temperature and humidity, and many other critical process and product quality parameters.

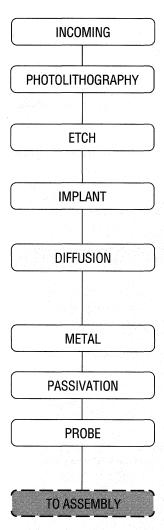
OVERLAYS OR WAFER MAPS

Maps, which are produced for all wafers during probe, show various parameters as a function of position on the wafer and are very useful for problem isolation. Maps may be analyzed individually or in groups. For example, wafers from an entire lot may be analyzed in relation to one particular parameter.

RS/1 DISCOVER/EXPLORE/MULREG

This analysis software is used for experimental design and evaluation of results. The statistical approach supported by this software (*t* tests, ANOVA tables, multiregression analysis, etc.) has proven invaluable in reducing time expended for product development and trouble-shooting. It is also used to determine the relationships between process output, probe and parametric data. Using multiregression analysis, for example, we are able to determine the relationship between L effective and CD dimensions to the speed of a device.

The use of automation in data capture, analysis and feedback greatly enhances the flexibility and speed with which we can view all aspects of the manufacturing process. This effective data analysis and feedback system helps to reduce parametric deviations, improve margin to specifications, increase manufacturing yields and provide more accurate fabrication output planning.


GAUGE CAPABILITY STUDIES

These studies are performed on both new and existing equipment. Gauge studies help us understand the cause of variation in a measurement process and determine the amount of variation in the system.

PRODUCT RELIABILITY PROCESS FLOW CHART

FABRICATION*

Incoming

Verification that the starting material is clean, uniform and compliant with all requirements. Each wafer receives an individual laser scribe for total product traceability.

Photolithography

Wafers are coated with a layer of light-sensitive photoresist. Specified sections of the wafer are exposed by projecting ultraviolet light onto the wafer through a mask. The exposed photoresist hardens and becomes impervious to etchants.

Etch

The areas of the wafer not protected by the exposed photoresist are removed by either plasma (dry etch) or acid (wet etch). The photoresist is then cleaned ("stripped") off of the wafer, leaving a pattern in the exact design of the mask.

Implant

Wafers are bombarded with positively or negatively charged dopant ions, which are implanted into the silicon. This process changes electrical characteristics in selective areas of the silicon. This is called "doping" and forms conductive regions on the wafer.

Diffusion

Silicon dioxide, nitrite and polysilicon layers are formed on the wafer during a number of high-temperature furnace processes. The wafers are exposed to various gases which either react with the silicon, causing it to oxidize and form an SiO₂ layer or react with each other, forming poly and nitrite deposits. These layers are patterned using photolithography and form the layers of the diodes, transistors and capacitors of the circuit. High temperature furnaces are also used to introduce and diffuse dopants into the wafers.

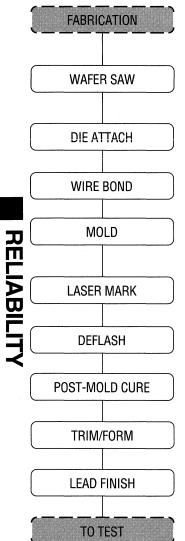
Metal

A thin layer of aluminum or other metal is deposited and patterned, forming interconnections between various regions of the die.

Passivation

The fabrication process is completed by forming a final glass layer on the wafer. This layer protects the circuits from contamination or damage through the testing and packaging process flows.

Probe


When the fabrication process is complete, each wafer consists of many die. Each individual die on the wafer is taken through a series of tests. A computer attached to a probe card tests the die and produces a "wafer map," storing data on each functioning (good) die . All data is collected and stored for each die. Wafer maps are used in assembly to ensure that only good die are packaged.

Assembly (see next page)

PRODUCT RELIABILITY PROCESS FLOW CHART

ASSEMBLY*

Fabrication

Before assembly, incoming raw silicon wafers are processed through a myriad of fabrication steps. This fabrication process yields fully-fabricated wafers containing complete, functioning circuitry in die form. These wafers go to assembly so each individual die may be separated and packaged prior to final testing.

Wafer Saw

Wafers that have finished fab processing and probe are automatically mounted on a carrying film. The wafer is then sawed using an automated, high-speed diamond blade and high-pressure water. This separates each individual die from the others on the wafer without disturbing the carrying film.

Die Attach

With automated pick-and-place equipment, the good die as specified by the probe "wafer map" are removed from the carrier film. Each die is attached to a leadframe with a layer of adhesive.

Wire Bond

With high-speed automated equipment, interconnections are made with gold wire the diameter of a human hair. These interconnections are between the aluminum circuit on the die and the lead fingers of the leadframe.

Mold

A heated mold with a hydraulic press is used to transfer hot thermosetting plastic into mold cavities where the leadframe is placed. This encapsulation protects the die and the interconnections throughout the useful life of the product.

Laser Mark

A laser mark is scribed on the bottom side of the package. This mark is a code used to identify the assembly manufacturing lot.

Deflash

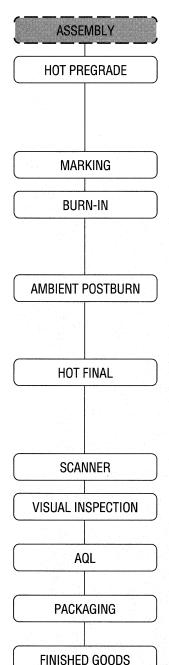
Prior to lead-finish processing, the leadframes are run through chemical baths to remove contaminants. This process is known as deflash.

Post-Mold Cure

Molded leadframes are placed in an oven for four and one-half hours at 175°C to complete the polymerization of the epoxy encapsulant.

Trim/Form

A press with a tool set is used to cut and form leads of the lead frame into specified shapes. Some packages have leads formed for surface-mount applications. Other packages have leads for through-hole applications.


Lead Finish

Each package is given a lead finish of tin/lead (solder) to ensure reliable application by the customer.

Test (see next page)

PRODUCT RELIABILITY PROCESS FLOW CHART

.

Fully fabricated silicon wafers reach assembly after each die has been probed to screen out failures. Passing chips are then carried through a number of steps to become individual units in leaded packages.

TEST*

Hot Pregrade*

Assembly

All testing (including speed sorting, parametric and functional testing) is conducted at 85°C. Parametric tests are performed to detect opens, shorts, input/output leakage, and to determine whether input/output high and low levels and standby and operating currents are within specified limits. Functional tests include low/high Vcc margin, vbump, speed sorting, dynamic and static refresh, long 'RAS and 'CAS lows and a full range of patterns and backgrounds. Patterns performed include row fast, column fast, single/multiple walking columns and diagonals and fast-page or static-column. Backgrounds used include solids, checkerboard, row stripes, column stripes and parity.

Marking

Devices are marked with ink with the following information: year, special process designator, part type, package type and speed grade.

Burn-in

Micron uses its exclusive AMBYX intelligent burn-in and test system to screen out infant mortalities. Devices are dynamically burned-in, using checkerboard and checkerboard-complement patterns in four intervals under the following conditions: $125^{\circ}C$, 7.5V Vcc for the first two intervals and $125^{\circ}C$, 6V Vcc for the final two intervals. During temperature ramping from $25^{\circ}C$ to $85^{\circ}C$ and back to $25^{\circ}C$, AMBYX tests for thermal intermittent opens. Devices are also functionally tested at burn-in conditions ($125^{\circ}C$, 7.5V) at the beginning of the burn-in cycle to verify that the devices under test are being properly exercised.

Ambient Postburn*

All testing is performed at 25°C. Parametric tests are performed to detect opens, shorts, input/output leakage, and to determine whether input/output high and low levels and standby and currents within specified limits. Functional tests include low/high Vcc margin, vbump, speed sorting, dynamic and static refresh, long 'RAS and 'CAS lows and a full range of patterns and backgrounds. Patterns performed include row fast, column fast, single and multiple walking columns and diagonals and fast-page or static-column. Backgrounds used include solids, checkerboard, row stripes, column stripes and parity.

Hot Final*

All testing (including speed grade verification and parametric and functional testing) is conducted at 78°C. Parametric tests are performed to detect opens, shorts, input/output leakage, and to dtermine whether input/output high and low levels and standby and currents within specified limits. Functional tests include low and high Vcc margin, vbump, speed sorting, dynamic and static refresh, long ^tRAS and ^tCAS lows and a full range of patterns and backgrounds. Patterns performed include row fast, column fast, single and multiple walking columns and diagonals and fast-page or static-column. Backgrounds used include solids, checkerboard, row stripes, column stripes and parity.

Scanner

Devices are optically scanned by an automated scanning machine for bent leads, incorrect splay, coplanarity failures and tweeze failures. Passing and failing parts are then sorted into appropriate bins.

Visual Inspection

All devices determined functional are visually inspected for cosmetic defects such as bent leads, poor marks, broken packages and poor solder. Defective products are removed and repaired, if possible. Data on the type of defects found is carefully recorded and used for improving the manufacturing processes in both assembly and test.

AQL

A quality assurance monitoring program overseas the electrical and environmental performance of all production lots. New products which have not met required production volume and ppm levels are held at this stage until it is confirmed that electrical and environmental test results meet Micron's requirements.

Packaging

Devices are prepared for shipping. They may remain in tubes or they may be mechanically placed in tape-and-reel packages, ready for application in automatic pick-and-place machines. Products will be either dry-packed in vacuum sealed bags, or placed in black antistatic bags.

Finished Goods

Devices are shipped through a system that maintains lot identity.

"This flow is general and is based on DRAM and VRAM products. Specific tests and temperatures are incorporated as applicable for specific products.

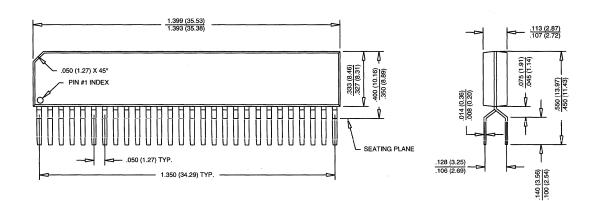
PRODUCT RELIABILITY OVERVIEW

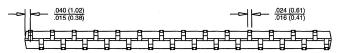
RELIABILITY

WIDE DRAMs	1
VRAMs	2
TRIPLE-PORT DRAMs	3
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	5
PRODUCT RELIABILITY	anna Darait
PACKAGE INFORMATION	7
SALES INFORMATION	8

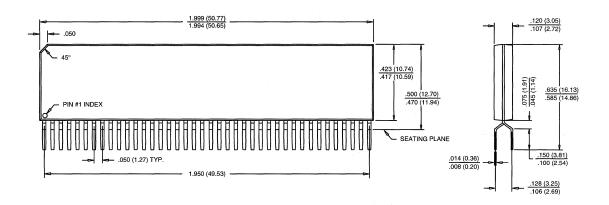
PACKAGING INDEX

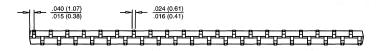
PACKAGE TYPE	PIN COUNT	C set de	PAGE
PLASTIC ZIP			7-2
	40	•••••	7-3
PLASTIC SOJ		•••••	7-4
	40	•••••	7-5
PLASTIC SOP	64		7-6


PACKAGE TYPE	PIN COUNT		PAGE
PLASTIC PLCC			7-7
TSOP	40/44	· · · · · · · · · · · · · · · · · · ·	7-9
MODULE SIMM			7-11


PACKAGING PLASTIC ZIP

SDA - 1


NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

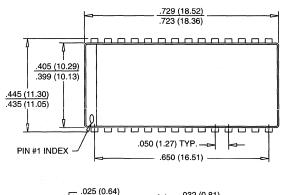


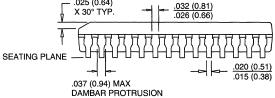
PACKAGING PLASTIC ZIP

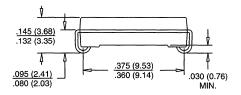
40-PIN PLASTIC ZIP (475 mil)

SDA - 2

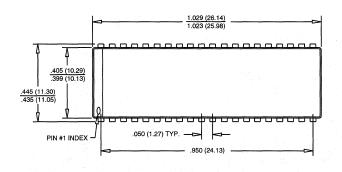
PACKAGE INFORMATION

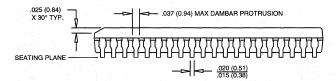

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.




PACKAGING PLASTIC SOJ

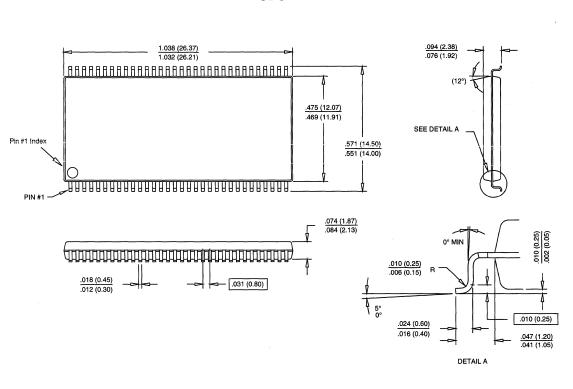
SDB - 1


NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.



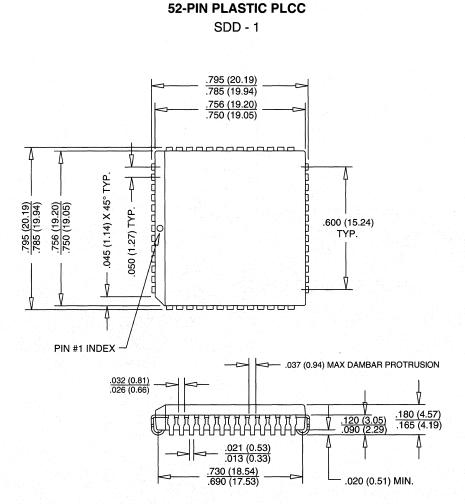
PACKAGING PLASTIC SOJ

SDB - 2, 3



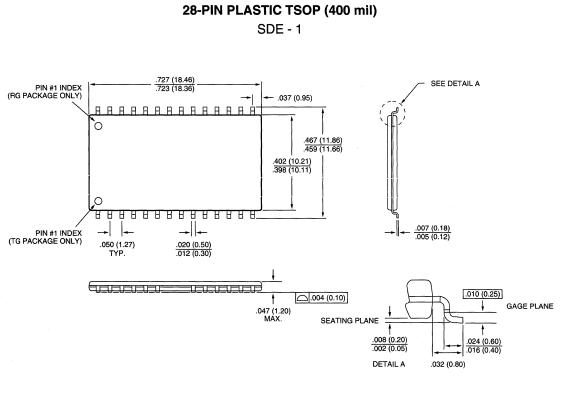
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

PACKAGING PLASTIC SOP



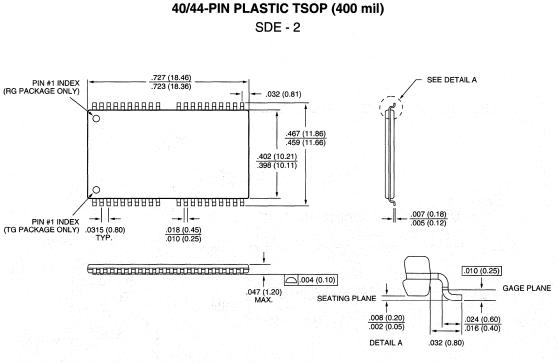
64-PIN PLASTIC SOP (12mm) SDC - 1

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.


PACKAGING PLASTIC PLCC

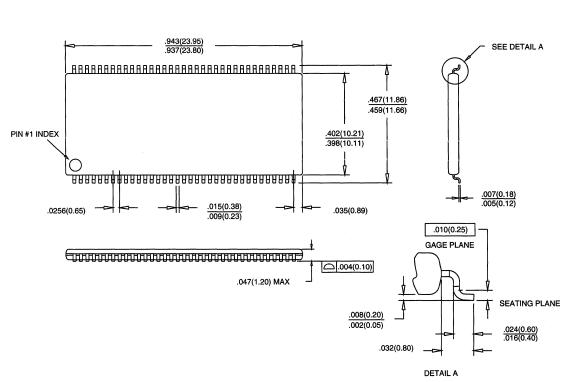
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

PACKAGING PLASTIC TSOP



NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

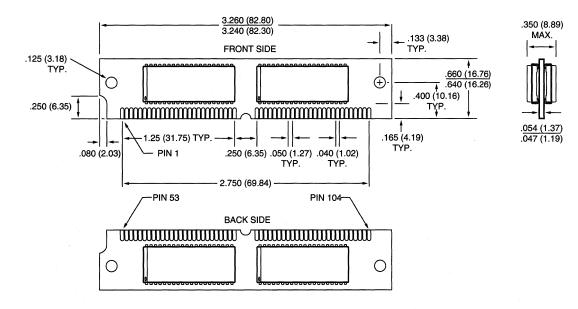
PACKAGING PLASTIC TSOP



PACKAGE INFORMATION

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

PACKAGING PLASTIC TSOP



70-PIN PLASTIC TSOP (400 mil) SDE - 4

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

PACKAGING SIMM MODULE

104-PIN MODULE SIMM SDF - 1

PACKAGE INFORMATION

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

PACKAGE INFORMATION

SALES INFORMATION	8
PACKAGE INFORMATION	7
PRODUCT RELIABILITY	6
APPLICATION/TECHNICAL NOTES	5
VRAM MODULES	4
TRIPLE-PORT DRAMs	3
VRAMs	2
WIDE DRAMs	1

SALES INFORMATION **CSN-01**

CUSTOMER SERVICE NOTE

INTRODUCTION

On July 1, 1991, Micron implemented new standard barcoding labels, which will accompany all shipments. These labels conform to EIA Standard 556.

Samples and tape-and-reel boxes have their own individual bar-code labels. The bar-code labels allow customers to scan individual Micron containers for quick order verification. Figure 1 shows an example of the standard bar-coding label.

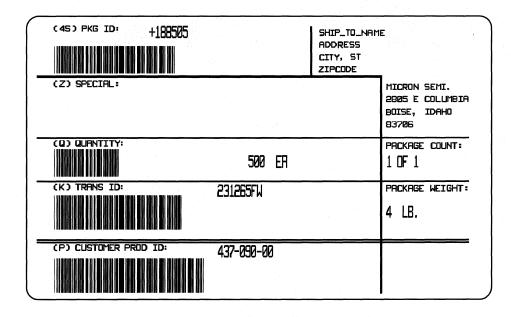
BAR CODE INFORMATION

The information provided on the label is:

- (4S) Invoice/Packing Slip Number
- (Q) Quantity in master container

STANDARD SHIPPING **BAR-CODE LABELS**

- (Z) Special: Individual box number and total number of boxes in the shipment (example: two of ten)
- (K) Trans ID: Customer purchase order number
- (P) Customer Product ID: Customer part number. If a customer part number is not designated, the Micron part number will be printed.


ADDITIONAL SALES INFORMATION

Ship-to-Name: Customer's name and ship-to address Ship-From-Name: Micron name and address Lot Date Code: Indicates date of oldest lot in the box

Human Readable: Master container package count

Package weight Customer and supplier address

SALES INFORMATION

Figure 1 STANDARD BAR-CODE LABEL

SALES INFORMATION CSN-02

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron provides a standard bar-code label on each individual sample and tape-and-reel box. The standard barcode label allows scanning of Micron shipping containers at a receiving dock for quick order verification.

Figure 1 shows an example of the standard bar-code label.

TAPE-AND-REEL/SAMPLE BAR-CODE LABELS

BAR CODE INFORMATION

The information provided on the label is:

Label 1: Micron part number/speed Customer code/internal process code Actual box number Quantity/date code of oldest lot* Country of origin code

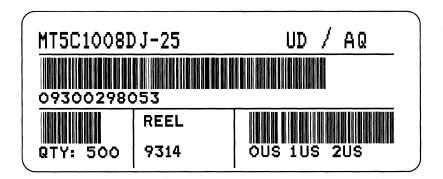


Figure 1 LABEL 1

*Indicates that more than one date code is contained on the reel.

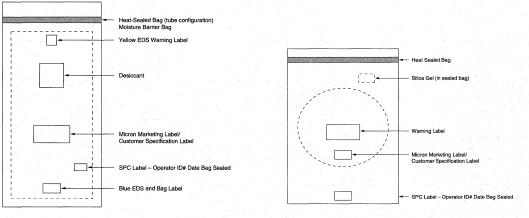
SALES INFORMATION CSN-03

CUSTOMER SERVICE NOTE

SURFACE-MOUNT PRODUCTS' SPC LABELS

INTRODUCTION

On November 15, 1991, Micron began providing a new SPC label on all surface-mount products. The label is attached to the static-proof bag for products packaged in tape-and-reel as well as tubes.


Figure 1 shows an example of the standard SPC label, while Figures 2 and 3 show the difference between the labels for tubed and tape-and-reel packaged products.

DATE INFORMATION

The SPC label includes the date on which the tube or reel was hermetically sealed in drypack. It also lists the ID number of the operator who sealed the product.

Figure 1 SURFACE-MOUNT PRODUCT SPC LABEL

Figure 2 TUBED PRODUCT LABEL

Figure 3 TAPE-AND-REEL PACKAGED PRODUCT LABEL SALES INFORMATION

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron encourages customers to place orders in increments of standard box, tray and reel quantities whenever possible. The chart below will help determine order quantities.

ADDITIONAL SALES INFORMATION

Benefits to Micron's customers by ordering in standard quantities:

1. Cost Savings—It is less expensive to send a shipment containing full boxes.

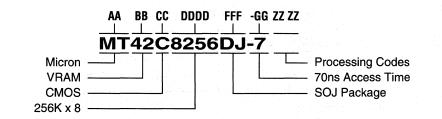
BOX AND TAPE-AND-REEL QUANTITY AND WEIGHT

CHART

SALES INFORMATION

CSN-04

- Process Control—Micron's production tracking system automatically checks speeds, revs, customer codes and quantities. When standard box quantities are ordered, manual errors are eliminated, thus ensuring error-free shipments.
- 3. Lot Integrity—Lot integrity is kept in tact when box quantities are not broken up.
- 4. Fewer returns—fewer errors → fewer complaints and returns.


Ded Town	Quantity	Quantity	LBS	Quantity	Tape & Reel	LBS
Part Type	Per Tray	Per Box	Per Box	Per Tube	Quantity	Per Reel
4 MEG SPECIALTY DRAMS			r	· · · · · · · · · · · · · · · · · · ·		
*MT4C16256DJ		1500		15		
*MT4C16256Z		1000		10		
MT4C16257DJ		1500		15		
MT4C16257Z		1000		10		
MT4C16259DJ		1500		15		
MT4C16259Z		1000		10		
MT4C16260DJ		1500		15		
MT4C16261DJ		1500		15		
MT4C8512DJ		1500		15		
MT4C8512Z		1300		13		
MT4C8513DJ		1500		15		
MT4C8513Z		1300		13		
VRAM—1 MEG	· · · · · · · · · · · · · · · · · · ·					
MT42C4256Z		1300	10.3	13		
MT42C 4256DJ		2000	10.3	25	500	3.5
MT42C 8128DJ		1500	11.9	15	500	3.5
VRAM-2 MEG		• · · · · · · · · · · · · · · · · · · ·	L			
MT42C8254DJ-8256DJ		1500	11.2	15	500	4.5
MT42C8254TG-8256TG	84	1000			500	
MT42C8254RG-8256RG	84	1000		1	500	
TRIPLE-PORT DRAM	·····	·	L			
MT43C4257TG	84	1000				
MT43C4257RG	84	1000				
MT43C4257DJ, 4258DJ		1500	11.1	15	500	
MT43C8128EJ, 8129EJ		1500		15	500	

*Revised 3/12/93

SALES INFORMATION

EXPANDED COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Component	Product			MT

BB – PRODUCT FAMILY

DRAM	4
VRAM	
TPDRAM	
SRAM	5
FIFO	52
Cache Data SRAM	56
Synchronous SBAM	58

CC – PROCESS TECHNOLOGY

CMOS		 	 C
Low-Voltage CN	10S	 	 LC

DDDD – DEVICE NUMBER

(Can be modified to indicate variations)

DRAM	Width, Density
VRAM	Width, Density
TPDRAM	Width, Density
SRAM	Total Bits, Width
CACHE	
Latched SRAM	
FIF0	Width, Total Bits
Synchronous SRAM	Density, Width

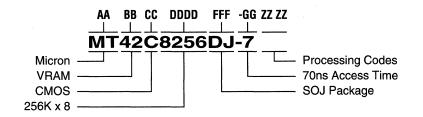
E – DEVICE VERSIONS

(Alphabetic characters only; located between D and F when required)

JEDEC Test Mode (4 Meg DRAM)	J
Errata on Base Part	Q

FFF – PACKAGE CODES

LASTIC DIP			Rian
DIP (Wide Body)			
ZIP			
LCC	 	 	 E
SOP/SOIC	 	 	 S


FFF – PACKAGE CODES (continued)	
QFP	
TSOP (Type II)	TG
TSOP (Reversed)	RG
TSOP (Longer)	TL
SOJ	DJ
SOJ (Skinny)	SJ
SOJ (Reversed)	DR
SOJ (Longer)	
DIE	
Die	XDC
Wafer	
Military Die	
Military Wafer	XW
Ceramic	
DIP	C
DIP (Narrow Body)	CN
DIP (Wide Body)	CW
LCC	EC
LCC (Narrow Body)	ECN
LCC (Wide Body)	ECW
SOP/SOIC	CG
SOJ	DCJ
PGA	CA
FLAT PACK	F
GG – ACCESS TIME	
-5	5ns or 50ns

-5	
-6	6ns or 60ns
-7	7ns or 70ns
-8	
-10	10ns or 100ns
-12	
-15	15ns or 150ns
-17	
-20	
-25	
-35	
-45	
-50 (SRAM only)	

SALES INFORMATION

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

GG – ACCESS TIME (continued)

-53	53ns
-55	55ns
-70 (SRAM only)	

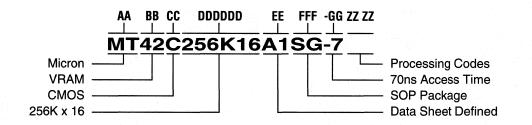
ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as: V L IT

Interim	
Low Voltage	V
DRAMS	
Low Power (Extended Refresh)	L
Low Voltage, Low Power (Extended Refresh)	
Low Power (SELF REFRESH)	S
Low Voltage, Low Power (SELF REFRESH)	VS
SRAMS	
Low Volt Data Retention	L
Low Power	P
Low Power, Low Volt Data Retention	LP
Low Voltage, Low Power	VP


ZZ ZZ – PROCESSING CODES (continued)

ZZ – PROCESSING CODES (continued)	
Low Voltage, Low Volt Data Retention	VL
Low Voltage, Low Volt Data Retention,	
Low Power	VB
EPI Wafer	E
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	
-55°C to +125°C	XT
MIL-STD-883C Testing	
-55°C to +125°C	
-55°C to +110°C (DRAMs)	883C
0°C to +70°C	
Special Processing	
Engineering Sample	ES
Mechanical Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	BC

* Used in device order codes; this code is not marked on device.

NEW COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Component	Draduat			NAT
Component	FIUUUCL	 	 	 IVI I -

BB – PRODUCT FAMILY

DRAM	4
VRAM	42
TPDRAM	
Synchronous DRAM	48
SRAM	
FIFO	52
Latched SRAM	56
Synchronous SRAM	58
· · · · · · · · · · · · · · · · · · ·	

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	 LC

DDDDDD – DEVICE NUMBER

Depth, Width				
Example:				
1M16 = 1 Megab	t deep by 1	6 bits wid	e = 16 Mega	bits of total

No Letter	Bits
К	
Μ	Megabits
G	Gigabits

EE – DEVICE VERSIONS

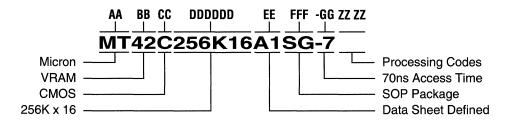
(The first character is an alphabetic character only; the second character is a numeric character only.) Specified by individual data sheet

FFF – PACKAGE CODES

Plastic

DIP (Wide Body)			
ZIP			
LCC			
SOP/SOIC			SC

FFF – PACKAGE CODES (continued)


F – PACKAGE CODES (continued)	
QFP	LG
TSOP (Type II)	TG
TSOP (Reversed)	
TSOP (Longer)	TI
SOJ	D.I
SOJ (Skinny)	S.I.
SOJ (Skinny) SOJ (Reversed) SOJ (Longer)	DR
SOL (Longer)	DI
	DL
DIE	a shikar iy <u>aa</u>
Die	XDC
Wafer	XWC
Military Die	
Military Wafer	XW
CERAMIC	
סוח	c
DIP (Narrow Body) DIP (Wide Body) LCC (Narrow Body)	CN
DIP (Wide Body)	CW/
LCC (Marrow Body)	ECN
LOC (Natiow Body)	EUN
LCC (Wide Body)	EGW
SOP/SOIC	
SOJ	
PGA	CA
FLAT PACK	F

GG – ACCESS TIME

-66ns or 6	
	วบทร
-77ns or 7	70ns
-88ns or 8	80ns
-10 10ns or 10	00ns
-12 12ns or 12	20ns
-15	50ns
-17	17ns
-20	20ns
-25	
-35	

SALES INFORMATION

NEW COMPONENT NUMBERING SYSTEM (continued)

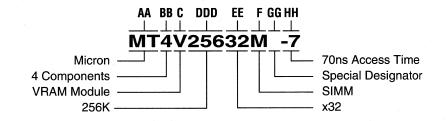
GG – ACCESS TIME (continued)

-45	
-50 (SRAM only)50)ns
-53	
-55	ins
-70 (SRAM only)70)ns

ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:


A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated a V L IT	
Interim	1
Low Voltage	V
DRAMs	
Low Power (Extended Refresh)	L
Low Voltage, Low Power (Extended Refresh)	VL
Low Power (SELF REFRESH)	S
Low Voltage, Low Power (SELF REFRESH)	VS
SRAMs	
Low Volt Data Retention	
Low Power	P

ZZ ZZ – PROCESSING CODES (continued)

Low Power, Low Volt Data RetentionL	Ρ
Low Voltage, Low PowerV	Ρ
Low Voltage, Low Volt Data RetentionV	Ŀ
Low Voltage, Low Volt Data Retention,	
Low PowerV	В
EPI Wafer	Е
Commercial Testing	
0°C to +70°CBlan	ık
-40°C to +85°CI	Т
-40°C to +125°C A	
-55°C to +125°CX	Т
MIL-STD-883C Testing	
-55°C to +125°C	С
-55°C to +110°C (DRAMs) 883	С
0°C to +70°C M07	0
Special Processing	
Engineering Sample E	S
Mechanical Sample M	S
Sample Kit*S	Κ
Tape-and-Reel*T	R
Bar Code*B	С
* Used in device order codes; this code is not marked on device.	

MODULE NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Technology Component ProductMT

BB – NUMBER OF MEMORY COMPONENTS

C – RAM FAMILY

SRAM	 	S
DRAM	 	D
1/D A MA		1 11

DDD – DEPTH

EE – WIDTH

F – PACKAGE CODE

DIP	D
Gold Plate	G
ZIP	Z
SIP	N
SIMM	M

GG – SPECIAL DESIGNATOR

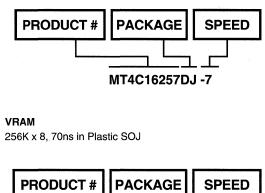
Low Power

HH – ACCESS TIME

-10	10ns or 100ns
-15	15ns
-20	20ns
-25	
-30	
-35	35ns
-45	45ns
-6	60ns
-7	
-8	80ns

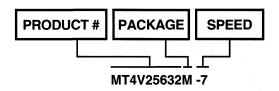
SALES INFORMATION ORDERING INFORMATION

ORDER INFORMATION*

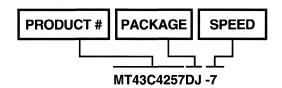

Each Micron component family is manufactured and quality controlled in the U.S.A. at our modern Boise, Idaho, facility employing Micron's low-power, highperformance CMOS silicon-gate process. Micron products are functionally equivalent to other manufacturers' products meeting JEDEC standards. Device functionality is consistently assured over a wider power supply, temperature range and refresh range than specified. Each unit receives continuous system-level testing during many hours of accelerated burn-in prior to final test and shipment. This testing is performed with Micron's exclusive AMBYX* intelligent burn-in and test system. Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributor nearest you. Micron's policy is to offer prompt, accurate and courteous service while assuring reliability and quality.

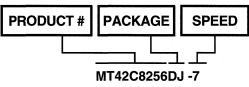
> Telephone: (208) 368-3900 Fax: (208) 368-4431 Customer Comment Line: (800) 932-4992 (U.S.A.) 01 (208) 368-3410 (Intl.)

ORDER EXAMPLES


WIDE DRAM

256K x 16, 70ns in Plastic SOJ


VRAM MODULE


256K x 32, 70ns in SIMM Module

TRIPLE-PORT DRAM

256K x 4, 70ns in Plastic SOJ

*For more detailed information, refer to the product numbering charts on pages 9-5 through 9-10.

ALABAMA

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Hall-Mark Electronics Corporation 4890 University Square Business Center, Suite 1 Huntsville, AL 35816 Phone - 205-837-8700 Fax - 205-830-2565

Hamilton/Avnet Electronics 4960 Corporate Drive, Suite 135 Huntsville, AL 35805 Phone - 205-837-7211 Fax - 205-721-0356

Pioneer Technology 4835 University Square, Suite 5 Huntsville, AL 35816 Phone - 205-837-9300 Fax - 205-837-9358

ARIZONA

Representative

Quatra Associates 4645 South Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 1555 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Hamilton/Avnet Electronics 1626 South Edwards Tempe, AZ 85281 Phone - 602-961-1211 Fax - 602-961-4555

Hall-Mark Electronics Corporation 4637 S. 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 Fax - 602-437-2348 Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088 Fax - 602-437-2124

ARKANSAS

Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-750-6082 Fax - 214-750-6068

Distributors

Anthem Electronics, Inc. 651 N. Plano Road, Suite 429 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Hall-Mark Electronics Corporation 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-343-5988

Hamilton/Avnet Electronics 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-1878

Pioneer Electronics 13765 Beta Road Dallas, TX 75244 Phone - 214-386-7300 Fax - 214-490-6419

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064

CALIFORNIA

Representatives (Northern California)

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 W San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Bay Area Electronics Sales, Inc. 9119 Eden Oak Circle Loomis, CA 95650 Phone - 916-652-6777 Fax - 916-652-5678

SALES INFORMATION NORTH AMERICA

Representatives (Southern California)

Jones & McGeoy Sales, Incorporated 5100 Campus Drive, 3rd Floor Newport Beach, CA 92660 Phone - 714-727-8080 Fax - 714-727-8090

Jones & McGeoy Sales, Incorporated 5060 Shoreham Place, Suite 200 San Diego, CA 92122 Phone - 619-458-5856 Fax - 619-453-0034

Jones & McGeoy Sales, Incorporated 20501 Ventura Blvd., Suite 130 Woodland Hills, CA 91364 Phone - 818-715-7161 Fax - 818-715-7199

Distributors

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-452-2281

Anthem Electronics Incorporated 9131 Oakdale Avenue Chatsworth, CA 91311 Phone - 818-700-1000 Fax - 818-775-1302

Anthem Electronics Incorporated 1 Old Field Drive East Irvine, CA 92718-2809 Phone - 714-768-64444 Fax - 714-768-6456

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Anthem Electronics Incorporated 9369 Carroll Park Drive San Diego, CA 92121 Phone - 619-453-9005 Fax - 619-546-7893

Hall-Mark Electronics Corporation 9420 Topanga Canyon Blvd. Chatsworth, CA 91311 Phone - 818-773-4500 Fax - 818-773-4555

Hall-Mark Electronics Corporation 580 Menlo Drive, Suite 2 Rocklin, CA 95677 Phone - 916-624-9781 Fax - 916-961-0922

Hall-Mark Electronics Corporation 3878 Ruffin Road, Unit 10B San Diego, CA 92123 Phone - 619-268-1201 Fax - 619-268-0209

Hall-Mark Electronics Corporation 2105 Lundy Avenue San Jose, CA 95030 Phone - 408-432-4000 Fax - 408-432-4044

Hall-Mark Electronics Corporation #1 Mauchly Irvine, CA 92718 Phone - 714-727-6000 Fax - 714-727-6066

Hamilton/Avnet Electronics 3170 Pullman Street Costa Mesa, CA 92626 Phone - 714-641-4100 Fax - 714-754-6033

Hamilton/Avnet Electronics 10950 Washington Blvd. Culver City, CA 90232 Phone - 213-327-3693 Fax - 213-327-3794

Hamilton/Avnet Electronics 755 Sunrise Avenue, Suite 150 Roseville, CA 95661 Phone - 916-925-2216 Fax - 916-925-3478

Hamilton/Avnet Electronics 4545 Viewridge Avenue San Diego, CA 92123 Phone - 619-571-1900 Fax - 619-571-8761

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, CA 94089 Phone - 408-743-3300 Fax - 408-745-6679

Hamilton/Avnet Electronics 21150 Califa Street Woodland Hills, CA 91367 Phone - 818-594-0404 Fax - 818-594-8234

Pioneer Technologies 134 Rio Robles San Jose, CA 95134 Phone - 408-954-9100 Fax - 408-954-9113 Pioneer Technologies 217 Technology Drive, Suite 110 Irvine, CA 92718 Phone - 714-753-5500 Fax - 714-753-5074

Wyle Laboratories (Accounting Office Only) 128 Maryland Avenue El Segundo, CA 90245 Phone - 213-322-1763 Fax - 213-322-1763

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-727-5896

Wyle Laboratories 17872 Cowan Avenue Irvine, CA 92714 Phone - 714-863-9953 Fax - 714-863-0473

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

Wyle Laboratories 9525 Chesapeake Drive San Diego, CA 92123 Phone - 619-565-9171 Fax - 619-565-0512

Wyle Laboratories 26010 Mureau Road, Suite 150 Calabasas, CA 91302 Phone - 818-880-9000 Fax - 818-880-5510

CANADA

Representatives

Clark-Hurman Associates 20 Regan Road, Unit 14 Brampton, Ontario L7A 1C3 Phone - 416-840-6066 Fax - 416-840-6091

Clark-Hurman Associates 66 Colonnade Road, Suite 205 Nepean, Ontario K2E 7K7 Phone - 613-727-5626 Fax - 613-727-1707

SALES INFORMATION NORTH AMERICA

Clark-Hurman Associates 4 Chester Pointe Claire, Quebec H9R 4H7 Phone - 514-426-0453 Fax - 514-426-0455

Davetek Marketing 107-3738 North Fraser Way Burnaby, BC V5J 5G1 Phone 604-430-3680 Fax - 604-435-5490

Distributors

Hamilton/Avnet Electronics 8610 Commerce Court Burnaby, BC V5A 4N6 Phone - 604-420-4101 Fax - 604-420-5376

Hamilton/Avnet Electronics 151 Superior Blvd., Unit 1-6 Mississauga, Ontario L5T 2L1 Phone - 416-564-6060 Fax - 416-564-6036

Hamilton/Avnet Electronics 190 Colonnade Road Nepean, Ontario K2E 7J5 Phone - 613-226-1700 Fax - 613-226-1184

Hamilton/Avnet Electronics 2795 Rue Halpern St. Laurent, Quebec H4S 1P8 Phone - 514-335-1000 Fax - 514-335-2481

COLORADO

Representative Wescom Marketing 4860 Ward Road Wheatridge, CO 80033 Phone - 303-422-8957 Fax - 303-422-9892

Distributors

Anthem Electronics Incorporated 373 Inverness Drive Englewood, CO 80112 Phone - 303-790-4500 Fax - 303-790-4532

Hall-Mark Electronics Corporation 12503 E. Euclid Drive, Suite 20 Englewood, CO 80111 Phone - 303-790-1662 Fax - 303-790-4991

Hamilton / Avnet Electronics 9605 Maroon Circle, Suite 200 Englewood, CO 80112 Phone - 303-799-7800 Fax - 303-799-7801

Wyle Laboratories 451 E. 124th Street Thornton, CO 80241 Phone - 303-457-9953 Fax - 303-457-4831

CONNECTICUT

Representative

Advanced Tech Sales Incorporated Westview Office Park Building 2, Suite 1C 850 N. Main Street Extension Wallingford, CT 06492 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hall-Mark Electronics Corporation 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Hamilton/Avnet Electronics Stillriver Corporate Center 55 Federal Road, Suite 103 Dansburry, CT 06810 Phone - 203-743-6077 Fax - 203-791-9050

Pioneer Standard 112 Main Street Norwalk, CT 06851 Phone - 203-853-1515 Fax - 203-838-9901

DELAWARE Representative

Omega Electronic Sales Incorporated Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Distributor

Pioneer Technologies 500 Enterprise Road Horsham, PA 19044 Phone - 215-674-4000 Fax - 215-674-3107

DISTRICT OF COLUMBIA Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 401-255-9686 Fax - 401-255-9688

Distributors

Anthem Electronics, Inc. 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

Hall-Mark Electronics Corporation 10240 Old Columbia Road Columbia, MD 21046 Phone - 301-988-9800 Fax - 301-381-2036

Hamilton/Avnet Electronics 7172 Gateway Drive Columbia, MD 21046 Phone - 301-621-8410 Fax - 301-995-3593

Pioneer Technologies 9100 Gaither Road Gaithersburg, MD 20877 Phone - 301-921-0660 Fax - 301-921-3852

FLORIDA

Representatives

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Photon Sales, Inc. 715 Florida Street Orlando, FL 32806 Phone - 407-896-6064 Fax - 407-896-6197

Photon Sales, Inc. 3475 B. East Bay Drive Largo, FL 34641 Phone - 813-536-6225 Fax - 813-536-4599

SALES INFORMATION NORTH AMERICA

Distributors

Anthem Electronics Incorporated 2555 Enterprise Road, Suite 11-2 Clearwater, FL 34623 Phone - 813-797-2900 Fax - 813-796-4880

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

Hall-Mark Electronics Corporation 10491 72nd Street North, Suite 303 Largo, FL 34647 Phone - 813-541-7440 Fax - 813-544-4394

Hall-Mark Electronics Corporation 3350 NW 53rd Street, Suite 105 Fort Lauderdale, FL 33309 Phone - 305-484-5482 Fax - 305-484-4740

Hall-Mark Electronics Corporation 489 E. Semoran Blvd., Suite 145 Casselberry, FL 32707 Phone - 407-830-5871 Fax - 407-830-5878

Hamilton/Avnet Electronics 5371 N.W. 33rd Avenue, Suite 204 Ft. Lauderdale, FL 33309 Phone - 305-733-6300 Fax - 305-484-8369

Hamilton/Avnet Electronics 58th Street North, Suite 206 Clearwater, FL 34620 Phone - 813-530-0644 Fax - 813-536-6589

Hamilton/Avnet Electronics 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-1878

Pioneer Technologies 337 South-North Lake, Suite 1000 Altamonte Springs, FL 32701 Phone - 407-834-9090 Fax - 407-834-0865

Pioneer Technologies 674 S. Military Trail Deerfield Beach, FL 33442 Phone - 305-428-8877 Fax - 305-481-2950

GEORGIA

Representative

Southeast Technical Group 2620 Deer Isle Cove Lawrenceville, GA 30244 Phone - 404-979-2055 Fax - 404-979-2055

Distributors

Hall-Mark Electronics Corporation 3425 Corporate Way, Suite A Duluth, GA 30136-2552 Phone - 404-623-4400 Fax - 404-476-8806

Hamilton/Avnet Electronics 3425 Corporate Way, Suite G Duluth, GA 30136 Phone - 404-446-0611 Fax - 404-446-1011

Pioneer Technologies 4250 C Rivergreen Parkway Duluth, GA 30136 Phone - 404-623-1003 Fax - 404-623-0665

HAWAII

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Bay Area Electronics Sales, Inc. 5711 Reinhold Street Fair Oaks, CA 95628 Phone - 916-863-0563 Fax - 916-863-0615

Distributors

INFORMATION

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-452-2281

Hall-Mark Electronics Corporation 2105 Lundy Avenue San Jose, CA 95030 Phone - 408-432-4000 Fax - 408-432-4044

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-727-5896

IDAHO

Representative Contact Micron

Component Sales Phone - 208-368-3900

Distributors

Anthem Electronics, Inc. 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 Fax - 801-973-8909

Hall-Mark Electronics Corporation 12503 E. Euclid Drive, Suite 20 Englewood, CO 80111 Phone - 303-790-1662 Fax - 303-790-4991

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, CA 94089 Phone - 408-743-3300 Fax - 408-745-6679

Wyle Laboratories 1325 West 2200 South, Suite E West Valley, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

ILLINOIS

Representatives

Advanced Technical Sales 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Industrial Representatives, Inc. 8430 Gross Point Road Skokie, IL 60077 Phone - 708-967-8430 Fax - 708-967-5903

Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 Fax - 708-884-0480

Hall-Mark Electronics Corporation 210 Mittel Drive Wooddale, IL 60191 Phone - 708-860-3800 Fax - 708-860-0239

SALES INFORMATION NORTH AMERICA

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7700 Fax - 708-860-8530

Pioneer Standard 2171 Executive Drive, Suite 200 Addison, IL 60101 Phone - 708-495-9680 Fax - 708-495-9831

INDIANA

Representatives Scott Electronics, Inc. (S. Indiana) 7321 Shadeland Station, Suite 256 Indianapolis, IN 46256 Phone - 317-841-0010 Fax - 317-841-0107

Scott Electronics, Inc. (N. Indiana) Lima Valley Office Village 8109 Lima Road Fort Wayne, IN 46818 Phone - 219-489-5690 Fax - 219-489-1842

Distributors

Hall-Mark Electronics Corporation 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 Fax - 317-876-7165

Hamilton/Avnet Electronics 655 West Carmel Drive, Suite 160 Carmel, IN 46032 Phone - 317-844-9333 Fax - 317-844-5921

Pioneer Standard 9350 N. Priority Way, West Drive Indianapolis, IN 46240 Phone - 317-573-0880 Fax - 317-573-0979

IOWA

Representative

Advanced Technical Sales 375 Collins Road N.E. Cedar Rapids, IA 52402 Phone - 319-393-8280 Fax - 319-393-7258

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hall-Mark Electronics Corporation 210 Mittel Drive Wooddale, IL 60191 Phone - 708-860-3800 Fax - 708-860-0239

Hamilton/Avnet Electronics 2335-A Blairs Ferry Road, N.E. Cedar Rapids, IA 52402 Phone - 319-393-7050 Fax - 319-362-4757

Pioneer Standard 7625 Golden Triangle Drive Eden Prarie, MN 55344 Phone - 612-944-3355 Fax - 612-944-3794

KANSAS

Representative

Advanced Technical Sales 601 N. Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Hall-Mark Electronics Corporation 10809 Lakeview Avenue Lenexa, KS 66215 Phone - 913-888-4747 Fax - 913-888-0523

Hamilton/Avnet Electronics 15313 West 95th Street Lenexa, KS 66219 Phone - 913-888-8900 Fax - 913-541-7951

Pioneer Electronics 111 Westport Plaza, Suite 625 St. Louis, MO 63146 Phone - 314-542-3077 Fax - 314-542-3078

KENTUCKY

Representative Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821 Phone - 513-791-2513 Fax - 513-791-8059

Distributors

Hall-Mark Electronics Corporation (E. Ky.) 777 Dearborn Park Lane, Suite L Worthington, OH 43085 Phone - 614-888-3313 Fax - 614-888-0767

Hall-Mark Electronics Corporation (W. Ky.) 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 Fax - 317-876-7165

Hamilton/Avnet Electronics 1847 Mercer Road, Suite G Lexington, KY 40511 Phone - 606-259-1475 Fax - 606-288-4936

Pioneer Standard (W. Ky.) 9350 N. Priority Way, W. Drive Indianapolis, IN 46240 Phone - 317-573-0880 Fax - 317-573-0979

Pioneer Standard (E. Ky.) 4433 Interpoint Blvd. Dayton, OH 45424 Phone - 513-236-9900 Fax - 513-236-8133

LOUISIANA

Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-750-6082 Fax - 214-750-6068

Distributors

Hall-Mark Electronics Corporation 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-343-5988

Hamilton/Avnet Electronics 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-1878

Pioneer Electronics 13765 Beta Road Dallas, TX 75244 Phone - 214-386-7300 Fax - 214-490-6419

SALES INFORMATION NORTH AMERICA

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064

MAINE

Representative Advanced Tech Sales Incorporated 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 508-667-0902 Fax - 508-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 Fax - 617-863-1547

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 Fax - 617-272-6809

MARYLAND

Representative Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 410-995-6640 Fax - 410-290-9862

Hall-Mark Electronics Corporation 10240 Old Columbia Road Columbia, MD 21046 Phone - 301-988-9800 Fax - 301-381-2036

Hamilton/Avnet Electric 7172 Gateway Drive Columbia, MD 21046 Phone - 301-995-3500 Fax - 301-995-3593

Pioneer Technologies 9100 Gaither Road Gaithersburg, MD 20877 Phone - 301-921-0660 Fax - 301-921-3852

MASSACHUSETTS Representative

Advanced Tech Sales, Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888

Fax - 508-664-5503 Distributors

Anthem Electronics, Inc. 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 508-667-0902 Fax - 508-667-4129

Mamilton/Avnet Electronics 10D Centennial Drive Peabody, MA 01960 Phone - 508-531-7430 Fax - 508-532-9802

Pioneer Standard INFORMATION 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 Fax - 617-863-1547 Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 Fax - 617-272-6809

MICHIGAN Representative

Rathsburg Associates Incorporated 34605 Twelve Mile Road Farmington Hills, MI 48331-3263 Phone - 313-489-1500 Fax - 313-489-1480

Distributors

Hall-Mark Electronics Corporation 38027 Schoolcraft Road Livonia, MI 48150 Phone - 313-462-1205 Fax - 313-462-1830

Hamilton/Avnet Electronics 2215 29th Street S.E., Space A-5 Grand Rapids, MI 49508 Phone - 616-243-8805 Fax - 616-531-0059

Pioneer Standard 4505 Broadmoor Avenue, S.E. Grand Rapids, MI 49512 Phone - 616-698-1800 Fax - 616-698-1831

Pioneer Standard 44191 Plymouth Oaks Blvd., Suite 1300 Plymouth, MI 48170 Phone - 313-416-5800 Fax - 313-416-5811

MINNESOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Inc. 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hall-Mark Electronics Corporation 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Hamilton/Avnet Electronics 9800 Bren Road East, Suite 410 Minnetonka, MN 55343 Phone - 612-932-0600 Fax - 612-932-6711

Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 Fax - 612-944-3794

SALES INFORMATION NORTH AMERICA

MISSISSIPPI

Representative

Southeast Technical Group Route 10, Box 368 Meridian, MS 39301 Phone - 601-485-7055 Fax - 601-485-7063

Distributors

Hall-Mark Electronics Corporation 4890 University Square Business Center, Suite 1 Huntsville, AL 35816 Phone - 205-837-8700 Fax - 205-830-2565

Hamilton/Avnet Electronics 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-1878

Pioneer Technologies 4835 University Square, Suite 5 Huntsville, AL 35816 Phone - 205-837-9300 Fax - 205-837-9358

MISSOURI

Representative

Advanced Technical Sales 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Distributors

Hall-Mark Electronics Corporation 3783 Rider Trail South Earth City, MO 63045 Phone - 314-291-5350 Fax - 314-291-0362

Hamilton/Avnet Electronics 739 Goddard Avenue Chesterfield, MO 63005 Phone - 314-537-1600 Fax - 314-537-4248

Pioneer Standard 111 Westport Plaza, Suite 625 St. Louis, MO 63146 Phone - 314-542-3077 Fax - 314-542-3078

MONTANA

Distributor Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, CA 94089 Phone - 408-743-3300 Fax - 408-745-6679

NEBRASKA Representative

Advanced Technical Sales 601 North Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Hall-Mark Electronics Corporation 10809 Lakeview Drive Lenexa, KS 66215 Phone - 913-888-4747 Fax - 913-888-0523

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7700 Fax - 708-860-8530

Wyle Laboratories 451 E. 124th Street Thornton, CO 80241 Phone - 303-457-9953 Fax - 303-457-4831

NEVADA

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Quatra Associates (Clark County) 4645 S. Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750 Hall-Mark Electronics Corporation 580 Menlo Drive, Suite 2 Rocklin, CA 95677 Phone - 916-624-9781 Fax - 916-961-0922

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

NEW HAMPSHIRE

Representative

Advanced Tech Sales Incorporated 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 508-667-0902 Fax - 508-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 Fax - 617-863-1547

NEW JERSEY

Representatives Omega Electronics Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Parallax, Inc. 734 Walt Whitman Road Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics, Inc. 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

SALES INFORMATION NORTH AMERICA

Anthem Electronics, Inc. 26 Chapin Road, Unit K Pine Brook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hall-Mark Electronics Corporation Moorestown West Corporate Center 225 Executive Drive, Suite 5 Moorestown, NJ 08057 Phone - 609-235-1900 Fax - 609-235-3381

Hamilton/Avnet Electronics 1 Keystone Avenue, Bldg. #36 Cherry Hill, NJ 08003 Phone - 609-424-0100 Fax - 609-751-2552

Hamilton/Avnet Electronics 10 Lanidex Plaza West Parsippany, NJ 07054 Phone - 201-575-3390 Fax - 201-575-5839

Hall-Mark Electronics Corporation 200 Lanidex Plaza, 2nd Floor Parsippany, NJ 07054 Phone - 201-515-3000 Fax - 201-515-4475

Pioneer Standard 14A Madison Road Fairfield, NJ 07006 Phone - 201-575-3510 Fax - 201-575-3454

Pioneer Technologies 500 Enterprise Road Horsham, PA 19044 Phone - 215-674-4000 Fax - 215-674-3107

NEW MEXICO

Representative

Quatra Associates Incorporated 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics Inc. 1555 W. 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Hall-Mark Electronics Corporation 4637 South 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 Fax - 602-437-2348

Hamilton / Avnet Electronics 7801 Academy Road N.E., Bldg. 1 Suite 204 Albuquerque, NM 87109 Phone - 505-345-0001 Fax - 505-345-1867

Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088 Fax - 602-437-2124

NEW YORK Representatives

Electra Sales Corporation 333 Metro Park, Suite M103 Rochester, NY 14623 Phone - 716-427-7860 Fax - 716-427-0614

Electra Sales Corporation 6700 Old Collamer Road East Syracuse, NY 13057 Phone - 315-463-1248 Fax - 315-463-1717

Parallax, Inc. 734 Walt Whitman Road Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics-Military 47 Mall Drive Commack, NY 11725-5703 Phone - 516-864-6600 Fax - 516-493-2244

Anthem Electronics, Inc. 26 Chapin Road, Unit K Pinebrook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hall-Mark Electronics Corporation 6605 Pittsford - Palmyra Road, Suite E8 Fairport, NY 14450 Phone - 716-425-3300 Fax - 716-425-7195 Hall-Mark Electronics Corporation 3075 Veterans Memorial Hwy. Ronkonkoma, NY 11779 Phone - 516-737-0600 Fax - 516-737-0838

Hall-Mark Electronics Corporation 200 Lanidex Plaza, 2nd Floor Parsippany, NJ 07054 Phone - 201-515-3000 Fax - 201-515-4475

Hamilton/Avnet Electronics 933 Motor Parkway Hauppauge, NY 11788 Phone - 516-231-9800 Fax - 516-434-7426

Hamilton/Avnet Electronics 100 Elwood Davis Road North Syracuse, NY 13212 Phone - 315-437-2641 Fax - 315-432-0740

Hamilton/Avnet Electronics 2060 Townline Road Rochester, NY 14623 Phone - 716-292-0730 Fax - 716-292-0810

Pioneer Standard 68 Corporate Drive Binghamton, NY 13904 Phone - 607-722-9300 Fax - 607-722-9562

Pioneer Standard 14A Madison Road Fairfield, NJ 07006 Phone - 201-575-3510 Fax - 201-575-3454

Pioneer Standard 840 Fairport Park Fairport, NY 14450 Phone - 716-381-7070 Fax - 716-381-5955

Pioneer Standard 60 Crossways Park West Woodbury, NY 11797 Phone - 516-921-8700 Fax - 516-921-2143

NORTH CAROLINA Representative

Southeast Technical Group 700 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

SALES INFORMATION NORTH AMERICA

Distributors

Hall-Mark Electronics Corporation 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Hamilton/Avnet Electronics 3510 Spring Forest Road Raleigh, NC 27604 Phone - 919-878-0810 Fax - 919-872-4435

Pioneer Technologies 2200 Gateway Center Blvd., Suite 215 Morrisville, NC 27560 Phone - 919-460-1530 Fax - 919-460-1540

NORTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hall-Mark Electronics Corporation 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7700 Fax - 708-860-8530

Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 Fax - 612-944-3794

MICRON

OHIO

Representatives

Scott Electronics, Inc. Corporate Headquarters 3131 S. Dixie Drive, Suite 200 Dayton, OH 45439-2223 Phone - 513-294-0539 Fax - 513-294-4769

Scott Electronics, Inc. 30 Alpha Park Cleveland OH 44143-2240 Phone - 216-473-5050 Fax - 216-473-5055

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821 Phone - 513-791-2513 Fax - 513-791-8059

Distributors

Hall-Mark Electronics Corporation 5821 Harper Road Solon, OH 44139 Phone - 216-349-4632 Fax - 216-248-4803

Hall-Mark Electronics Corporation 777 Dearborn Park Lane, Suite L Worthington, OH 43085 Phone - 614-888-3313 Fax - 614-888-0767

Hamilton/Avnet Electronics 2600 Corporate Exchange Drive, Suite 180 Columbus, OH 43231 Phone - 614-882-7004 Fax - 614-882-8650

Hamilton/Avnet Electronics 7760 Washington Village Drive Dayton, OH 45459 Phone - 513-439-6700 Fax - 513-439-6711

Hamilton/Avnet Electronics 2 Summit Park Drive, Suite 520 Independence, OH 44131 Phone - 708-860-7700 Fax - 708-860-8530 Pioneer Standard 4800 E. 131st Street Cleveland, OH 44105 Phone - 216-587-3600 Fax - 216-587-3906

Pioneer Standard 4433 Interpoint Blvd. Dayton, OH 45424 Phone - 513-236-9900 Fax - 513-236-8133

Pioneer Standard 6421 E. Main Street, Suite 201 Reynoldsburg, OH 43608 Phone - 614-221-0043 Fax - 614-759-1955

OKLAHOMA

Representative

Nova Marketing Incorporated 8125D E. 51st Street, Suite 1339 Tulsa, OK 74145 Phone - 918-660-5105 Fax - 918-665-3815

Distributors

Hall-Mark Electronics Corporation 5411 S. 125th East Avenue, Suite 305 Tulsa, OK 74146 Phone - 918-254-3200 Fax - 918-254-6207

Hamilton/Avnet Electronics 12101 East 51st Street, Suite 106 Tulsa, OK 74146 Phone - 918-664-0444 Fax - 918-250-8763

Pioneer Standard 9717 E. 42nd Street, Suite 105 Tulsa, OK 74146 Phone - 918-665-7840 Fax - 918-665-1891

OREGON

Representative Westerberg & Associates 7165 S.W. Fir Loop Portland, OR 97223 Phone - 503-620-1931 Fax - 503-684-5376

Distributors

Anthem Electronics Incorporated 9090 S.W. Gemini Drive Beaverton, OR 97005 Phone - 503-643-1114 Fax - 503-626-7928 SALES INFORMATION NORTH AMERICA

Hamilton/Avnet Electronics 9750 S.W. Nimbus Avenue Beaverton, OR 97005 Phone - 503-526-6200 Fax - 503-641-5939

Wyle Laboratories 9640 Sunshine Court, Suite 200, Bldg. G Beaverton, OR 97005 Phone - 503-643-7900 Fax - 503-646-5466

PENNSYLVANIA

Representatives

Omega Electronic Sales Incorporated Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Scott Electronics, Inc. (W. PA) 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Distributors

Anthem Electronics, Inc. 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

Hall-Mark Electronics Corporation Moorestown W. Corporate Center 225 Executive Drive, Suite 5 Moorestown, NJ 08057 Phone - 609-235-1900 Fax - 609-235-3381

Hall-Mark Electronics Corporation (W. PA) 5821 Harper Road Solon, OH 44139 Phone - 216-349-4632 Fax - 216-248-4803

Hamilton / A vnet Electronics 213 Executive Drive, Suite 320 Mars, PA 16046 Phone - 412-281-4150 (Mars) Phone - 814-455-6767 (Erie) Fax - 412-772-1890

Pioneer Technologies 500 Enterprise Road Horsham, PA 19044 Phone - 215-674-4000 Fax - 215-674-3107

Pioneer Technologies (W. PA) 259 Kappa Drive Pittsburgh, PA 15238 Phone - 412-782-2300 Fax - 412-963-8255

PUERTO RICO

Representative

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Distributor

Hamilton/Avnet Electronics Villas De San Francisco Plaza #87 De Diego Avenue, Suite 215 Rio Piedras, PR 00926 Phone - 809-731-1110 Fax - 809-754-4350

RHODE ISLAND

Representative

Advanced Tech Sales Incorporated 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

m

NFORMATIC

Anthem Electronics 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hall-Mark Electronics Corporation 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Pioneer Standard 112 Main Street Norwalk, CT 06851 Phone - 203-853-1515 Fax - 203-838-9901

SOUTH CAROLINA Representative

Southeast Technical Group 1401 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

Distributors

Hall-Mark Electronics Corporation 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Pioneer Technologies 9401 L. Southern Pine Blvd. Charlotte, NC 28273 Phone - 704-526-8188 Fax - 704-522-8564

Pioneer Technologies 2810 Meridian Parkway, Suite 148 Durham, NC 27713 Phone - 919-544-5400 Fax - 919-544-5885

SOUTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hall-Mark Electronics Corporation 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7700 Fax - 708-860-8530

Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 Fax - 612-944-3794

TENNESSEE

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

SALES INFORMATION NORTH AMERICA

Distributors

Hall-Mark Electronics Corporation 4890 University Square Business Center, Suite 1 Huntsville, AL 35816 Phone - 205-837-8700 Fax - 205-830-2565

Hamilton/Avnet Electronics 3425 Corporate Way, Suite G Duluth, GA 30136 Phone - 800-241-6928 Fax - 404-446-1011

Pioneer Technologies 4835 University Square, Suite 5 Huntsville, AL 35818 Phone - 205-837-9300 Fax - 205-837-9358

TEXAS

Representatives

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600 Fax - 214-265-4668

Nova Marketing Incorporated 9207 Country Creek Road, Suite 141 Houston, TX 77036 Phone - 713-988-6082 Fax - 713-774-1014

Nova Marketing Incorporated 8310 Capitol of Texas Hwy. North, Suite 180 Austin, TX 78731 Phone - 512-343-2321 Fax - 512-343-2487

Quatra Associates, Inc. (El Paso, TX) 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics, Inc. 651 N. Plano Road, Suite 429 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Hall-Mark Electronics Corporation 12211 Technology Blvd. Austin, TX 78727 Phone - 512-258-8848 Fax - 512-258-3777

Hall-Mark Electronics Corporation 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-343-5988

Hall-Mark Electronics Corporation 8000 Westglen Houston, TX 77063 Phone - 713-781-6100 Fax - 713-953-8420

Hamilton/Avnet Electronics 1826 F Kramer Lane Austin, TX 78758 Phone - 512-837-8911 Fax - 512-832-4315

Hamilton/Avnet Electronics 4004 Beltline Road, Suite 200 Dallas, TX 75244 Phone - 214-308-8111 Fax - 214-308-8109

Hamilton/Avnet Electronics 1235 North Loop West, Suite 521 Houston, TX 77008 Phone - 713-240-7733 Fax - 713-861-6541

Pioneer Electronics 13765 Beta Drive Dallas, TX 75244 Phone - 214-419-5503 Fax - 214-490-6419

Pioneer Standard 1826 Kramer Lane, Suite D Austin, TX 78758 Phone - 512-835-4000 Fax - 512-835-9829

Pioneer Standard 10530 Rockley Road, Suite 100 Houston, TX 77099 Phone - 713-495-4700 Fax - 713-495-5642

Wyle Laboratories 4030 W. Braker Lane, Suite 420 Austin, TX 78759 Phone - 512-345-8853 Fax - 512-834-0981

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064 Wyle Laboratories 11001 S. Wilcrest, Suite 100 Houston, TX 77099 Phone - 713-879-9953 Fax - 713-879-6540

UTAH

Representative

Wescom Marketing 3500 S. Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 Fax - 801-269-0665

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 Fax - 801-973-8909

Hall-Mark Electronics Corporation 12503 E. Euclid Drive, Suite 20 Englewood, CO 80111 Phone - 303-790-1662 Fax - 303-790-4991

Hamilton/Avnet Electronics 1100 East 6600 South, Suite 120 Salt Lake City, UT 84121 Phone - 801-263-0104 Fax - 213-558-2845

Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

VERMONT

Representative Advanced Tech Sales Incorporated 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 508-667-0902 Fax - 508-667-4129

SALES INFORMATION NORTH AMERICA

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 Fax - 617-863-1547

VIRGINIA

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

Hall-Mark Electronics Corporation 10240 Old Columbia Road Columbia, MD 21046 Phone - 301-988-9800 Fax - 301-381-2036

Pioneer Technologies 9100 Gaither Drive Gaithersburg, MD 20877 Phone - 301-921-0660 Fax - 301-921-3852

WASHINGTON

Representative Westerberg & Associates 12505 N.E. Bel-Red Road, Suite 112 Bellevue, WA 98005 Phone - 206-453-8881 Fax - 206-453-8758

Distributors

Anthem Electronics Incorporated 19017-120th Avenue N.E., Suite 102 Bothell, WA 98011 Phone - 206-483-1700 Fax - 206-486-0571

Hall-Mark Electronics Corporation 250 N.W. 39th, Suite 4 Seattle, WA 98107 Phone - 206-547-0415 Fax - 206-632-4814

Hamilton/Avnet Electronics 545 West 2925 North Goldie Road, Unit B Oak Harbor, WA 98277 Phone - 206-679-5576 Fax - 206-675-5770

Hamilton / Avnet Electronics 17761 N.E. 78th Place, Bldg. C Redmond, WA 98052 Phone - 206-881-6697 Fax - 206-867-0159

Wyle Laboratories 15385 N.E. 90th Street Redmond, WA 98052-3522 Phone - 206-881-1150 Fax - 206-881-1567

WEST VIRGINIA

Representative

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Distributor

Hall-Mark Electronics Corporation 777 Dearborn Park Lane, Suite L Worthington, OH 43085 Phone - 614-888-3313 Fax - 614-888-0767

WISCONSIN

Representatives

High Technology Sales Associates (E. WI) 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Industrial Representatives, Inc. (W. WI) 2831 N. Grandview, Suite 215 Pewaukee, WI 53072 Phone - 414-574-9393 Fax - 414-574-9394

Distributors

Anthem Electronics, Inc. 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 Fax - 708-884-0480

Hall-Mark Electronics Corporation 210 Mittle Drive Wood Dale, IL 60191 Phone - 708-860-3800 Fax - 708-860-0239

Hall-Mark Electronics Corporation 16255 West Lincoln Avenue New Berlin, WI 53151 Phone - 414-797-7844 Fax - 414-797-9259

Hamilton/Avnet Electronics 20875 Crossroads Circle, Suite 400 Waukesha, WI 53186 Phone - 414-784-4510 Fax - 414-784-9509

SALES INFORMATION NORTH AMERICA

Pioneer Standard 120 Bishops Way, Suite 163 Brookfield, WI 53005 Phone - 414-784-3480 Fax - 414-784-8207

WYOMING

Representative

Wescom Marketing 3500 South Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 Fax - 801- 269-0665

Distributors

Anthem Electronics Incorporated 373 Inverness Drive Englewood, CO 80112 Phone - 303-790-4500 Fax - 303-790-4532

Wyle Laboratories 1325 West 2200 South, Suite E West Valley, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Hamilton / Avnet Electronics 1175 Bordeaux Drive Sunnyvale, CA 94089 Phone - 408-743-3300 Fax - 408-745-6679

MICRON

AUSTRALIA Representative

Reptechnic Pty. Ltd. 3/36 Bydown Street Neutral Bay NSW 2089 Phone - 612-953-9844 Fax - 612-953-9683

AUSTRIA Distributors

EBV Elektronik GmbH Diefenbachgasse 35/6 A-1150 Wien Phone - 43-222-8 94 17 74 Fax - 43-222-8 94 17 75

Thomas Neuroth GmbH Hietzinger Hauptstrasse 22 A/2 A-1130 Wien Phone - 43-1-877-5645 Fax - 43-1-876-4920

BELGIUM

Representative & Distributor

Microtron Generaal Dewittelaan 2800 Mechelen Phone - 32-15-212223 Fax - 32-15-210069

Distributor

EBV Elektronik GmbH Excelsiorlaan 35 B-1930 Zaventem Phone - 32-2 7209936 Fax - 32-2-7208152

CZECH REPUBLIC

Distributor

Neuroth Elektronik obchodni spol, S.R.O. Sumavska 31 - Room 1001 CS - 61254 - Brno Phone - 42-5-7111-0 Fax - 42-5-749150

DENMARK

Representative

Delco A/S Mejeribakken 8 3540 Lynge Phone - 45-42-18-95-33 Fax - 45-42-18-95-30

Distributor

E.V. Johanssen Elektronik A/S Titangade 15 DK-2200 Copenhagen N Phone - 45-31-83-90-22 Fax - 45-31-83-92-22

FINLAND

Representative & Distributor

Integrated Electronics OY AB Turkhaudantie 1 P.O. Box 160 SF-00700 Helsinki Phone - 358-0-351-3133 Fax - 358-0-351-3134

FRANCE

Representative

Rep'Tronic S.A. 1 Bis, rue Marcel Paul Bâtiment A Z.I la Bonde 91300 Massy Phone - 33-1-60-13-93-00 Fax - 33-1-60-13-91-98

Distributors

Arrow Electronique S.A. 73-79, rue des Solets Silic 585 94663 Rungis Cedex Phone - 33-1-49-78-4848 Fax - 33-1-49-78-0699

Avnet EMG SA 79, rue Pierre Semard 92320 Chatillon Phone - 33-1-49-65-2600 Fax - 33-1-49-65-2649

Paris Sud Electronique Composants 12, rue René Cassin 91300 Massy Phone - 33-1-69-20-6699 Fax - 33-1-69-20-7532

Thomson Composants Distribution 30, Avenue de l'Epi d'Or 94807 Villejuif, Cedex Phone - 33-1-46-87-2224 Fax - 33-1-46-87-0711

SALES INFORMATION INTERNATIONAL

GERMANY

Sales & Customer Service Office Micron Semiconductor (Deutschland) GmbH Sternstrasse 20 D-8011 Aschheim Phone - 49-89-9030021 Fax - 49-89-9043114

Distributors

EBV Elektronik GmbH Hans-Pinsel-Str. 4 D-8013 Haar b. München Phone - 49-89-45610-0 Fax - 49-89-464488

Metronik GmbH Leonhardsweg 2 D-8025 Unterhaching b. München Phone - 49-89-61108-0 Fax - 49-89-6112246

Neumüller Elektronik GmbH Eschenstrasse 2 Postfach 1250 D-8028 Taufkirchen Phone - 49-89-61208-0 Fax - 49-89-61208-248

HONG KONG

Sales & Customer Service Office

Micron Semiconductor, Inc. 15 A Pacific View Block 3 38 Tai Tam Road Phone - 852-813-5075 Fax - 852-813-5914

Representative

Lestina International Ltd. 14/F, Park Tower 15 Austin Road Tsimshatsui Phone - 852-735-1736 Fax - 852-730-5260

HUNGARY

Distributor

Thomas Neuroth Elektronikai Gombocz Zoltan U. 12/A, I.6. H-1118 Budapest Phone - 36 1 86 9628 Fax - 36 1 86 9628

INDIA

Distributor

Silicon Electronics 1148 Sonora Court Sunnyvale, CA 94086 Phone - 408-738-8235 Fax - 408-738-0698

INDONESIA

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

IRELAND

Representative

New England Technical Sales The Diamond Malahide County Dublin Phone - 353-18-450635 Fax - 353-18-453625

Distributor

Lyco Ltd. Estuary House New Street Malahide, Dublin Phone - 353-18-452-020 Fax - 353-18-451-741

ISRAEL

Representative & Distributor

 C.R.G. Electronics Ltd. 29 Hagaaton Str.
 P.O.B. 154
 Nahariya 22100
 Phone - 972-4-925-819
 Fax - 972-4-924-065

ITALY

INFORMATIO

Representative

Acsis S.R.L. Via Alberto Mario, 26 Milano 20149 Phone - 39-2-4390-832 Phone - 39-2-4390-838 Fax - 39-2-4801-2289

Distributors

Claitron-Moxel S.R.L. Via Gallarate, 211 20151 Milano Phone - 39-2-33-40-42-05 Fax - 39-2-38-00-67-89

EUR Elettronica S.p.A. Via E. Fermi, 8 20094 Assago Milano Phone - 39-2-45-78-41 Fax - 39-2-48-80-27-5

JAPAN

Distributor

Sanyo Electronic Co. Ltd. Import Promotion Division 1-1-10 Ueno Taito-ku, Tokyo 110 Phone - 81-3-3837-6345 Fax - 81-3-3837-6379

KOREA

Representative

I & C Microsystems Co. Ltd. 3rd Floor, Jungnam Bldg. 191-3 Poi-Dong Kangnam-Ku Seoul Phone - 822-577-9131 Fax - 822-577-9130

MALAYSIA

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

THE NETHERLANDS

Representative & Distributor Microtron Beneluxweg 37 4904 Oosterhout Phone - 31-162-060-308 Fax - 31-162-060-633

SALES INFORMATION INTERNATIONAL

Distributor

EBV Elektronik GmbH Planetenbaan 2 NL-3606 AK Maarssenbroek Phone - 31 34 65-62353 Fax - 31 34 65-64277

NEW ZEALAND

Representative

Reptechnic Pty. Ltd. 3/36 Bydown Street Neutral Bay, NSW 2089 Australia Phone - 612-953-9844 Fax - 612-953 9683

NORWAY

Representative & Distributor BIT Elektronikk A/S Smedsvingen 4 P.O. Box 194 1360 Nesbru Phone - 47-66-981370 Fax - 47-66-981371

PHILLIPINES

Representative Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

PORTUGAL

Representative & Distributor

ATD Electrónica, LDA. Edifício Altejo Rua 3 piso 50–sala 505 Urbanizacão de Matinha 1900 Lisboa Phone - 351-1-8580191/2 Fax - 351-1-8587841

SINGAPORE

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

SLOVAKIA

Distributor Neuroth Elektronik obchodni spol, S.R.O. Sumavska 31 - Room 1001 CS - 61254 - Brno Phone - 42-5-7111-0 Fax - 42-5-749150

SOUTH AFRICA

Distributor

Computer Parts cc CNR Athol and Louis Botha Avenue Highlands North Johannesburg 2192 Phone - 27-11-887-2438 Fax - 27-11-887-2514

SPAIN

Representative & Distributor

ATD Electronica, S.A. Avda. de la Industria 32 Nave 17, 20 B. 28100 Alcobendas Madrid Phone - 341-661-6551 Fax - 341-661-6300

SWEDEN

Representative & Distributor

IE Komponenter AB Box 11 113 S-161 11 Bromma Phone - 46-8-804685 Fax - 46-8-262286

SWITZERLAND

Distributors

Alltron AG Hintermättlistrasse 3 5506 Mägenwil Phone - 41-64-56-00-00 Fax - 41-64-56-00-05 EBV Elektronik GmbH Vorstadtstrasse 37 CH-8953 Dietikon Phone - 41 1-7 40 10 90 Fax - 41 1-7 41 51 10

TAIWAN, R.O.C.

Representative

ASEC International Corporation 4F, 223, Chung Yang Road Nan Kang District Taipei Phone - 886-2-786-6677 Fax - 886-2-786-5257

THAILAND

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

UNITED KINGDOM

Sales & Customer Service Office

Micron Europe Limited Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA Phone - 44-344-360055 Fax - 44-344-869504

Representative

Cedar Technologies U.K. Ltd. The Old Water Works Howse Lane Bicester Oxon OX6 8XF Phone - 44-869-322-366 Fax - 44-869-322-377

SALES INFORMATION INTERNATIONAL

Distributors

Abacus Electronics Ltd. Abacus House Bone Lane Newbury Berkshire RG14 5SF Phone - 44-635-36222 Fax - 44-635-38432

Bytech Components Ltd. 12 A Cedarwood Chineham Business Park Crockford Lane Basingstoke Hampshire RC24 OWD Phone - 44-256-707-107 Fax - 44-256-707-162

Macro Group Burnham Lane Slough Berkshire SL1 6LN Phone - 44-628-604383 Fax - 44-628-666873

Thame Components Ltd. Thame Park Road Thame Oxfordshire OX9 3UQ Phone - 44-84-426-1188 Fax - 44-84-426-1681

SALES INFORMATION

MICRON

WIDE DRAMs	1
VRAMs	2
TRIPLE-PORT DRAMs	3
VRAM MODULES	4
APPLICATION/TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

1	WIDE DRAMs
2	VRAMs
3	TRIPLE-PORT DRAMs
4	VRAM MODULES
5	APPLICATION/TECHNICAL NOTES
6	PRODUCT RELIABILITY
7	PACKAGE INFORMATION
8	SALES INFORMATION

Micron Semiconductor, Inc. 2805 East Columbia Road Boise, Idaho 83706 Tel: (208) 368-3900 Fax: (208) 368-4431 Customer Comment Line: 800-932-4992 (U.S.A.) 01-208-368-3410 (Intl.)

Micron Semiconductor (Deutschland) GmbH Sternstrasse 20 D-8011 Aschheim Germany Tel: 49-89-903-0021 Fax: 49-89-904-3114 Micron Europe Limited Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA United Kingdom Tel: 44-344-360055 Fax: 44-344-869504

Micron Semiconductor, Inc. 15A Pacific View Block 3 38 Tai Tam Road Hong Kong Tel: 852-813-5075 Fax: 852-813-5914

