

Ш

MACRONIX INC.

MEMORY DATA BOOK

1993-1994

MACRONIX INC.

MEMORY DATA BOOK

The Company

Macronix Inc., a leader in high density non-volatile memory technology, designs, manufactures, and markets high performance ROMs, EPROMs and FLASH memory components for the world's most sophisticated computers, data communication devices and electronics products.

Dedicated to providing a wide range of advanced communication solutions, the company's innovative product line includes integrated FAX modems, LAN controllers and UARTs, as well as high resolution graphic and PC chip sets.

History

Macronix Inc., operational since 1987 was founded by former members of the VLSI Technology Inc. start-up group. The dynamic Macronix management team has more than eighty years combined experience in the semiconductor field and is committed to providing the most advanced VLSI solutions for the worldwibe electronics industry. Headquartered in San Jose, the company has grown significantly and will continue to expand to serve the rapidly evolving global electronics market.

Dedicated to innovative design, superior quality products and responsive customer service, Macronix is one of the major U.S. semiconductor suppliers providing total turnkey solutions and a fully compatible product line for ROM, EPROM and FLASH memory.

Macronix International was established December, 1989 in Taiwan to provide a world class semiconductor fabrication facility to meet the industry's needs on a more global scale. A member of the Semiconductor Industry Association (SIA) since 1990, Macronix has formed significant alliances around the world.

Quality Assurance

Dedicated to the highest level of quality assurance, Macronix has invested significant capital in the most advanced manufacturing and testing equipment to insure the superior quality and reliability that is so critical in large volume production.

Quality and reliability are built into products throughout the development and manufacturing stages, then verified through rigorous testing, characterization and qualification phases before shipping.

TABLE OF CONTENTS

I. GENERAL INFORMATION

1.	ALPHANUMERIC INDEX	.1-1
2.	PRODUCT INTRODUCTION	.2-1
З.	PRODUCT SELECTION GUIDE	.3-1
4.	CROSS REFERENCE GUIDE	.4-1
	ORDERING INFORMATION	

II. EPROMs (ERASABLE PROGRAMMABLE READ ONLY MEMORIES) DATA SHEETS

1.	MX27C256	256K	(32K x 8)	CMOS	EPROM6-1
2.	MX27C512	512K	(64K x 8)	CMOS	EPROM7-1
3.	MX27C1000/1001	1M	(128K x 8)	CMOS	EPROM8-1
4.	MX27C1100	1M	(128K x 8/64K x 16)	CMOS	EPROM9-1
5.	MX27C1024	1M	(64K x 16)	CMOS	EPROM 10-1
6.	MX27C2000	2M	(256K x 8)	CMOS	EPROM11-1
7.	MX27C2100	2M	(256K x 8/128K x16)	CMOS	EPROM 11-1
8.	MX27C2048	2M	(128K x 16)	CMOS	EPROM12-1
9.	MX27C4000	4M	(512K x 8)	CMOS	EPROM 12-1
10.	MX27C4100	4M	(512K x 8/256K x 16)	CMOS	EPROM 13-1
11.	MX27C4096	4M	(256K x 16)	CMOS	EPROM13-1

III . MASK ROMs (MASK PROGRAMMABLE READ ONLY MEMORIES) DATA SHEETS

1.	MX23C1000/1010	1M	(128K x 8)	CMOS	MASK ROM14-1
2.	MX23C2000	2M ·	(256K x 8)	CMOS	MASK ROM 15-1
3.	MX23C2100	2M	(256K x 8/128K x 16)	CMOS	MASK ROM16-1
4.	MX23C4000	4M	(512K x 8)	CMOS	MASK ROM17-1
5.	MX23C4100	4M	(512K x 8/256K x 16)	CMOS	MASK ROM18-1
6.	MX23C8000	8M	(1M x 8)	CMOS	MASK ROM19-1
7.	MX23C8100	8M	(1M x 8/512K x 16)	CMOS	MASK ROM20-1
8.	MX23C1610	16M	(2M x 8/1M x 16)	CMOS	MASK ROM21-1
IV. FI	LASH MEMORY				

1.	MX28F1000	1M	(128K x 8)	CMOS	FLASH MEMORY22-1
2.	MX28F4000	4M	(512K x 8)	CMOS	FLASH MEMORY23-1

4

V. PACKAGE INFORMATION

VI. DISTRIBUTION CHANNEL

PAGE

GENERAL INFORMATION	I	
EPROM DATA SHEETS	11	
MASK ROM DATA SHEETS	111	
FLASH MEMORY	IV	
PACKAGE INFORMATION	v	
DISTRIBUTION CHANNEL	VI	

GENERAL INFORMATION

EPROM DATA SHEETS

MASK ROM DATA SHEETS

FLASH MEMORY

PACKAGE INFORMATION

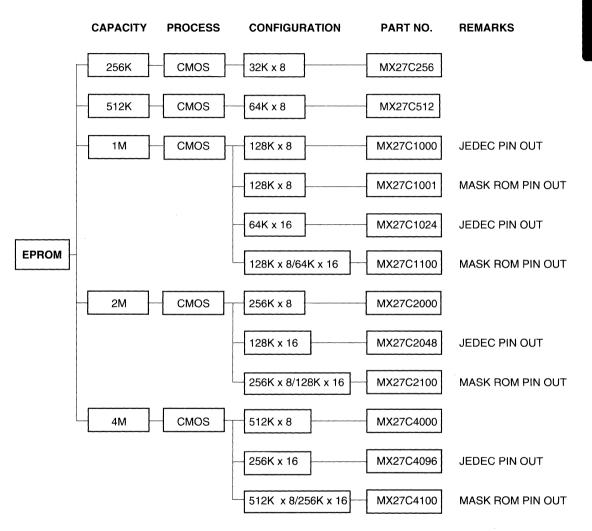
DISTRIBUTION CHANNEL

I. GENERAL INFORMATION

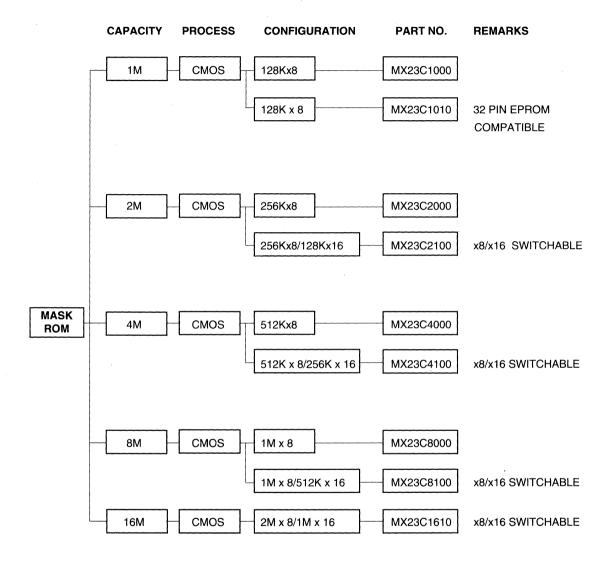
.

1. ALPHANUMERIC INDEX

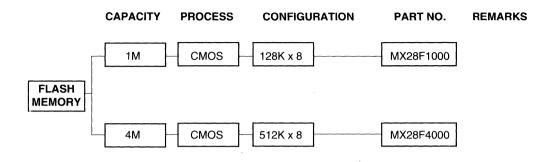
MX23C1000/1010	1M	(128K x 8)	CMOS MASK ROM14-1
MX23C2000	2M	(256K x 8)	CMOS MASK ROM 15-1
MX23C2100	2M	(256K x 8/128K x 16)	CMOS MASK ROM 16-1
MX23C4000	4M	(512K x 8)	CMOS MASK ROM 17-1
MX23C4100	4M	(512K x 8/256K x 16)	CMOS MASK ROM 18-1
MX23C8000	8M	(1M x 8)	CMOS MASK ROM 19-1
MX23C8100	8M	(1M x 8/512K x 16)	CMOS MASK ROM 20-1
MX23C1610	16M	(2M x 8/1M x 16)	CMOS MASK ROM21-1
MX27C256	256K	(32K x 8)	CMOS EPROM6-1
MX27C512	512K	(64K x 8)	CMOS EPROM7-1
MX27C1000/1001	1M	(128K x 8)	CMOS EPROM8-1
MX27C1024	1M	(128K x 8)	CMOS EPROM9-1
MX27C1100	1M	(128K x 8/64K x 16)	CMOS EPROM9-1
MX27C2000	2M	(256K x 8)	CMOS EPROM 10-1
MX27C2048	2M	(128K x 16)	CMOS EPROM11-1
MX27C2100	2M	(256K x 8/128K x 16)	CMOS EPROM11-1
MX27C4000	4M	(512K x 8)	CMOS EPROM 12-1
MX27C4096	4M	(256K x 16)	CMOS EPROM13-1
MX27C4100	4M	(512K x 8/256K x 16)	CMOS EPROM13-1
MX28F1000	1M	(128K x 8)	CMOS FLASH MEMORY 22-1
MX28F4000	4M	(512K x 8)	CMOS FLASH MEMORY 23-1


GENERAL NFORMATION

• •


2. PRODUCT INTRODUCTION

2-1. EPROM



2-2. MASK ROM

2-3. FLASH MEMORY

3. PRODUCT SELECTION GUIDE

3.1 EPROM

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
256K	MX27C256DC	32K x 8	55/70/90/100/120/150	CMOS	28 PIN CERAMIC DI
	MX27C256PC	32K x 8	55/70/90/100/120/150	CMOS	28 PIN PLASTIC DI
	MX27C256MC	32K x 8	55/70/90/100/120/150	CMOS	28 PIN PLASTIC SC
	MX27C256QC	32K x 8	55/70/90/100/120/150	CMOS	32 PIN PLCC
512K	MX27C512DC	64K x 8	55/70/90/100/120/150	CMOS	28 PIN CERAMIC D
	MX27C512PC	64K x 8	55/70/90/100/120/150	CMOS	28 PIN PLASTIC DI
	MX27C512MC	64K x 8	55/70/90/100/120/150	CMOS	28 PIN PLASTIC SC
	MX27C512QC	64K x 8	55/70/90/100/120/150	CMOS	32 PIN PLCC
1M	MX27C1000DC	128K x 8	55/70/90/120/150	CMOS	32 PIN CERAMIC D
	MX27C1000PC	128K x 8	55/70/90/120/150	CMOS	32 PIN PLASTIC DI
	MX27C1000QC	128K x 8	55/70/90/120/150	CMOS	32 PIN PLCC
	MX27C1000MC	128K x 8	55/70/90/120/150	CMOS	32 PIN PLASTIC SC
	MX27C1001DC	128K x 8	70/90/120/150	CMOS	32 PIN CERAMIC D
	MX27C1024DC	64K x 16	90/120/150	CMOS	40 PIN CERAMIC D
	MX27C1024PC	64K x 16	90/120/150	CMOS	40 PIN PLASTIC DI
	MX27C1024QC	64K x 16	90/120/150	CMOS	44 PIN PLCC
	MX27C1100DC	128K x 8/64K x 16	90/120/150	CMOS	40 PIN CERAMIC D
u.,	MX27C1100PC	128K x 8/64K x 16	90/120/150	CMOS	40 PIN PLASTIC DI
2M	MX27C2000DC	256K x 8	90/120/150	CMOS	32 PIN CERAMIC D
	MX27C2000PC	256K x 8	90/120/150	CMOS	32 PIN PLASTIC DI
	MX27C2048DC	128K x 16	90/120/150	CMOS	40 PIN CERAMIC D
	MX27C2048PC	128K x 16	90/120/150	CMOS	40 PIN PLASTIC DI
	MX27C2048QC	128K x 16	90/120/150	CMOS	44 PIN PLCC
	MX27C2100DC	256K x 8/128K x16	90/120/150	CMOS	40 PIN CERAMIC D
	MX27C2100PC	256K x 8/128K x16	90/120/150	CMOS	40 PIN PLASTIC DI
4M	MX27C4000DC	512K x 8	120/150	CMOS	32 PIN CERAMIC D
	MX27C4000PC	512K x 8	120/150	CMOS	32 PIN PLASTIC DI
	MX27C4096DC	256K x 16	120/150	CMOS	40 PIN CERAMIC D
	MX27C4096PC	256K x 16	120/150	CMOS	40 PIN PLASTIC DI
	MX27C4096QC	256K x 16	120/150	CMOS	44 PIN PLCC
	MX27C4100DC	512K x 8/256K x 16	120/150	CMOS	40 PIN CERAMIC D
	MX27C4100PC	512K x 8/256K x 16	120/150	CMOS	40 PIN PLASTIC DI

3.2 MASK ROM

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
1M	MX23C1000PC	128K x 8	150/200	CMOS	28 PIN PLASTIC DIP
	MX23C1000MC	128K x 8	150/200	CMOS	28 PIN PLASTIC SOF
	MX23C1010PC	128K x 8	150/200	CMOS	32 PIN PLASTIC DIP
	MX23C1010MC	128K x 8	150/200	CMOS	32 PIN PLASTIC SO
2M	MX23C2000PC	256K x 8	150/200	CMOS	32 PIN PLASTIC DIP
	MX23C2000MC	256K x 8	150/200	CMOS	32 PIN PLASTIC SO
	MX23C2100PC	256K x 8/128K x16	150/200	CMOS	40 PIN PLASTIC DIF
4M	MX23C4000PC	512K x 8	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX23C4000MC	512K x 8	120/150/200	CMOS	32 PIN PLASTIC SO
	MX23C4100PC	512K x 8/256K x16	120/150/200	CMOS	40 PIN PLASTIC DIF
8M	MX23C8000PC	1M x 8	120/150/200	CMOS	32 PIN PLASTIC DIF
	MX23C8000MC	1M x 8	120/150/200	CMOS	32 PIN PLASTIC SO
	MX23C8100PC	1M x 8/512K x16	120/150/200	CMOS	42 PIN PLASTIC DIF
	MX23C8100MC	1M x 8/512K x16	120/150/200	CMOS	44 PIN PLASTIC SO
16M	MX23C1610PC	2M x 8/1M x 16	120/150/200	CMOS	42 PIN PLASTIC DIF
	MX23C1610MC	2M x 8/1M x 16	120/150/200	CMOS	44 PIN PLASTIC SO

3.3 FLASH MEMORY

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
1M	MX28F1000PC	128K x 8	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX28F1000MC	128K x 8	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX28F1000QC	128K x 8	120/150/200	CMOS	32 PIN PLCC
	MX28F1000TC	128K x 8	120/150/200	CMOS	32 PIN PLASTIC TSO
4M	MX28F4000PC	512K x 8	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX28F4000MC	512K x 8	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX28F4000TC	512K x 8	120/150/200	CMOS	32 PIN PLASTIC TSO

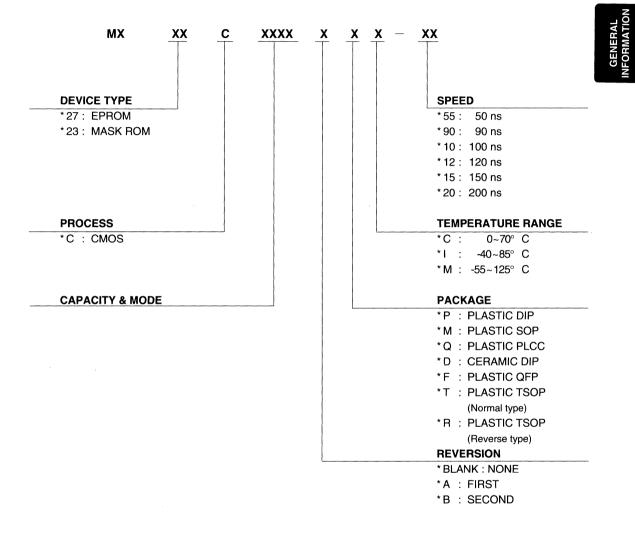
م .

4. CROSS-REFERENCE GUIDE

4.1 EPROM

4-1

CAPACITY	CONFIGRUATION	MACRONIX	INTEL	AMD	N.S.	S.G.S.	NEC	TOSHIBA	НІТАСНІ	FUJITSU	MITSUBISHI	TI
256K	32K x 8	MX27C256	i27C256	Am27C256	NMC27C256	M27C256	μPD27C256	TC57256	HN27C256	MB27C256	M5M27C256	TMS27C256
512K	64K x 8	MX27C512	i27C512	Am27C512	NMC27C512	M27C512	μPD27C512	TC57512	HN27C512	MB27C512	M5M27C512	TMS27C512
1M	128K x 8 128K x 8	MX27C1000 MX27C1001	i27C010	Am27C010	NMC27C010	M27C1001 M27C1000	μPD27C1001	TC571000 TC571001	HN27C101 HN27C301	MB27C1001 MB27C1000	M5M27C101	TMS27C010
	64K x 16		i27C210	Am27C1024	NMC27C1024		μPD27C1024				M5M27C102	
2M	256K x 8 64K x 16	MX27C2000 MX27C2048	i27C020	Am27C020 Am27C2048	NMC27C020 NMC27C2048	M27C2001	μPD27C2001				M5M27C201 M5M27C202	TMS27C020
	64K x 16/256K x8	MX27C2100										
4M ·	512K x 8 256K x 16		i27C040 i27C240	Am27C040 Am27C4096		M27C4001 M27C4002	μPD27C4001 μPD27C4096 μPD27C4000	TC574096	HN27C4001 HN27C4096		M5M27C401 M5M27C402	



4.2 MASK ROM

CAPACITY	CONFIGURATION	MACRONIX	SHARP	NEC	TOSHIBA	HITACHI	FUJITSU	MITSUBISHI	SAMSUNG
1 M	128K x 8	MX23C1000	LH531000	μPD23C1000	TC531000	HN62321	MB831000		KM23C1000
	128K x 8	MX23C1010	LH530800	μPD23C1001	TC531001				KM23C1010
			LH530900						
2M	256K x 8	MX23C2000	LH532100	μPD23C2001	TC532000	HN62302	MB832000		KM23C2000
	256K x 8/128Kx16	MX23C2100	LH532000	,					KM23C2100
4M	512K x 8	MX23C4000	LH534300	μPD23C4000	TC534000	HN62314	MB834000	M5M23401	KM23C4000
	512K x 8/256Kx16	MX23C4100	LH534000	μPD23C4001	TC534200	HN62414	MB834100	M5M23400	KM23C4100
8M	1M x 8	MX23C8000	LH538100	μPD23C8001	TC538000	HN62328	MB838000	M5M23801	KM23C8000
	1M x 8/512Kx16	MX23C8100	LH538000	μPD23C8000	TC538200	HN62428	MB838200	M5M23800	KM23C8100
16M	2M x 8/1Mx16	MX23C1610	LH5316000	μPD23C16000	TC5316200	HN624017		M5M23160	KM23C1610

5. ORDERING INFORMATION

5-1

II. EPROM

(ERASABLE PROGRAMMABLE READ ONLY MEMORY)

256K-BIT(32K x 8) CMOS EPROM

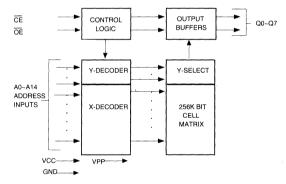
FEATURES

- 32K x 8 organization
- Single +5V power supply
- +12.5V programming voltage
- Fast access time: 55/70/90/100/120/150 ns
- · Totally static operation

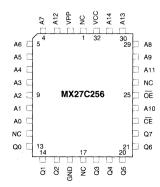
- Completely TTL compatible
- Operating current: 40mA
- Standby current: 100µA
- Package type:
 - 28 pin ceramic DIP, plastic DIP
 - 32 pin PLCC

GENERAL DESCRIPTION

The MX27C256 is a 5V only, 256K-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 32K by 8 bits, operates from a single + 5volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming from outside the system, existing EPROM programmers may be used. The MX27C256 supports intelligent quick pulse programming algorithm which can result in programming times of less than ten seconds.


This EPROM is packaged in industry standard 28 pin, dual-in-line packages or 32 lead, PLCC packages.

PIN CONFIGURATIONS


CDIP/PDIP

	- [7			1	
VPP		1		\sim	28		VCC
A12	51	2			27	Π.	A14
A7		3			26	1	A13
A6	[]	4			25	13	A8
A5	Π.	5		9	24	n	A9
A4	4	6		52	23	þ	A11
A3	LT.	7		õ	22	1	ÕE
A2	11	8		MX27C256	21	þ.	A10
A1		9		ŝ.	20	h	CE
A0	C	10		_	19	þ	Q7
Q0		11			18	þ	Q6
Q1		12			17	þ.	Q5
Q2		13			16		Q4
GND	\square	14			15	ţ.	Q3
	L]	

BLOCK DIAGRAM

PLCC

PIN DESCRIPTION

PIN NAME
Address Input
Data Input/Output
Chip Enable Input
Output Enable Input
Program Supply Voltage
No Internal Connection
Power Supply Pin (+5V)
Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C256

The MX27C256 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm2 is required to completely erase a MX27C256. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm2 for 15 to 20 minutes. The MX27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C256, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C256

When the MX27C256 is delivered, or it is erased, the chip has all 256K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C256 through the procedure of programming.

The programming mode is entered when 12.5 ± 0.5 V is applied to the Vpp pin, \overrightarrow{OE} is at VIH, and \overrightarrow{CE} is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C256. This part of the algorithm is done at VCC= 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits

have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and \overline{OE} = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100µs pulse to the CE input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V ± 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C256s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for \overrightarrow{CE} and \overrightarrow{OE} , all like inputs of the parallel MX27C256 may be common. A TTL low-level program pulse applied to an MX27C256 \overrightarrow{CE} input with VPP = 12.5 ± 0.5 V and \overrightarrow{OE} HIGH will program that MX27C256. A high-level \overrightarrow{CE} input inhibits the other MX27C256s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with CE at VIH, OE at VIL and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C256.

To activate this mode, the programming equipment must force 12.0 ± 0.5 (VH) on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during

auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27C256 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C256 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while \overrightarrow{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

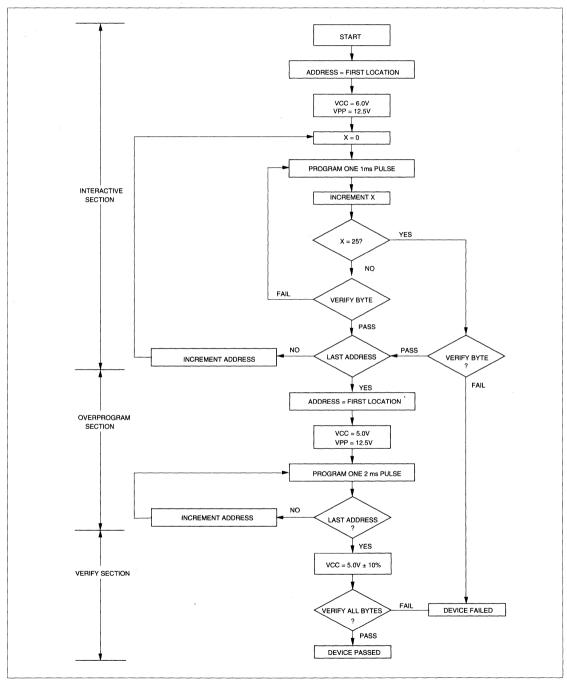
During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

				PINS		
MODE	CE	ŌĒ	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	Х	х	VCC	DOUT
Output Disable	VIL	VIH	Х	Х	VCC	High Z
Standby (TTL)	VIH	х	Х	х	VCC	High Z
Standby (CMOS)	VCC±0.3V	х	Х	х	VCC	High Z
Program	VIL	VIH	Х	х	VPP	DIN
Program Verify	VIH	VIL	Х	х	VPP	DOUT
Program Inhibit	VIH	VIH	Х	х	VPP	High Z
Manufacturer Code	VIL	VIL	VIL	VH	VCC	C2H
Device Code	VIL	VIL	VIH	VH	VCC	10H

MODE SELECT TABLE

NOTES: 1. X can be either VIL or VIH

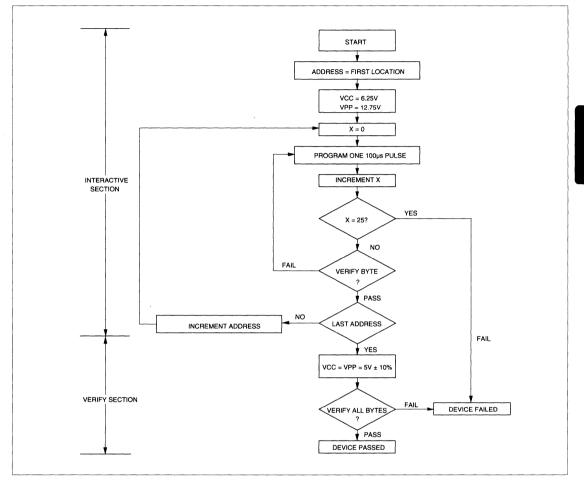
2. VH = 12.0 V \pm 0.5 V


3. A1 - A8 = A10 - A12 = VIL(For auto select)

4. A13 and A14 = X (For auto select)

5. See DC Programming characteristics for VPP voltage during programming.

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART



EETS

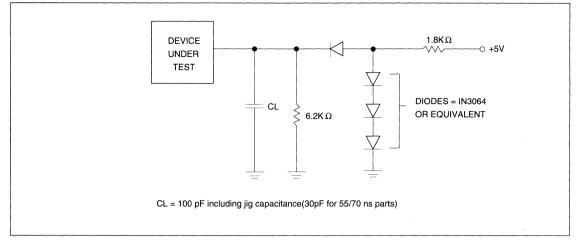
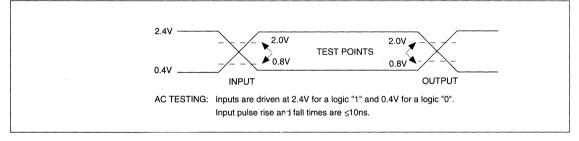
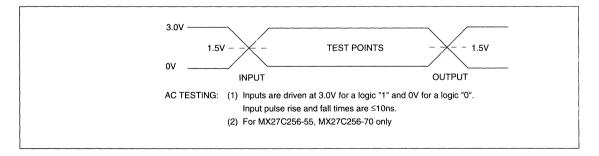

EPRO s

FIGURE 2. FAST PROGRAMMING FLOW CHART





SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE		
Ambient Operating Temperature	0°C to 70°C		
Storage Temperature	-65°C to 125°C		
Applied Input Voltage	-0.5V to 7.0V		
Applied Output Voltage	-0.5V to VCC + 0.5V		
VCC to Ground Potential	-0.5V to 7.0V		
A9 & Vpp	-0.5V to 13.5V		

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	CE = VCC ± 0.3V
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		40	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read	,	100	μA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
VPP	VPP Capacitance	18	25	pF	VPP = 0V

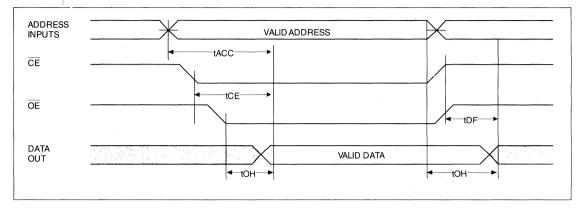
AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V\pm 10\%$

		27C	256-55	27C2	256-70	27C2	256-90		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		55		70		90	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		55		70		90	ns	OE = VIL
tOE	Output Enable to Output Delay		30		35		40	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

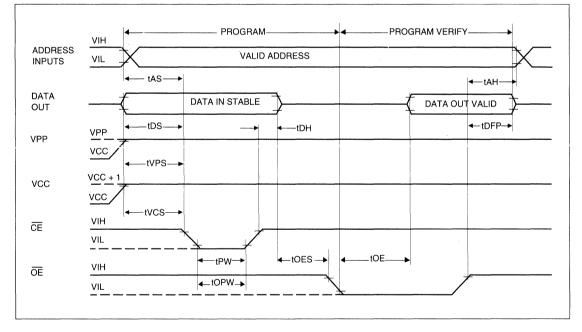
		27C	256-10	27C	256-12	27C2	256-15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		100		120		150	ns	$\overrightarrow{CE} = \overrightarrow{OE} = VIL$
tCE	Chip Enable to Output Delay		100		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay		45		50		55	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	ann i an stàite an tha an stàite an tha an stàite an tha an stàite an stàite an stàite an stàite an stàite an s
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current(Program & Verify)		40	mA	
IPP2	VPP Supply Current(Program)		30	mA	CE = VIL, OE = VIH
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage 12.5		13.0	V	



AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$


SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		μS	
tOES	OE Setup Time	2.0		μS	
tDS	Data Setup Time	2.0	an a	μS	
tAH	Address Hold Time	0		μS	
tDH	Data Hold Time	2.0		μS	
tDFP	CE to Output Float Delay	0	50	nS	
tVPS	VPP Setup Time	2.0		μS	
tVCS	VCC Setup Time	2.0		μS	
tOE	Data Valid from OE		150	nS	
tPW	CE Initial Program Pulse Width Fast	95	105	μS	
	Interac	<i>tive</i> 0.95	1.05	mS	
tOPW	CE Over program Pulse Width (Interactiv	e) 1.95	2.05	mS	
tDV	Data Valid from CE		250	nS	
tOEH	OE Hold Time	2.0		μS	
tVR	OE Recovery Time	2.0		μS	

WVEFORMS READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C256DC-55	55	40	100	28 Pin DIP
MX27C256DC-70	70	40	100	28 Pin DIP
MX27C256DC-90	90	40	100	28 Pin DIP
MX27C256DC-10	100	40	100	28 Pin DIP
MX27C256DC-12	120	40	100	28 Pin DIP
MX27C256DC-15	150	40	100	28 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C256PC-55	55	40	100	28 Pin DIP
MX27C256QC-55	55	40	100	32 Pin PLCC
MX27C256PC-70	70	40	100	28 Pin DIP
MX27C256QC-70	70	40	100	32 Pin PLCC
MX27C256PC-90	90	40	100	28 Pin DIP
MX27C256QC-90	90	40	100	32 Pin PLCC
MX27C256PC-12	120	40	100	28 Pin DIP
MX27C256QC-12	120	40	100	32 Pin PLCC
MX27C256PC-15	150	40	100	28 Pin DIP
MX27C256QC-15	150	40	100	32 Pin PLCC

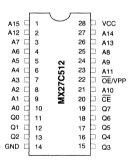
512K-BIT(64K x 8) CMOS EPROM

FEATURES

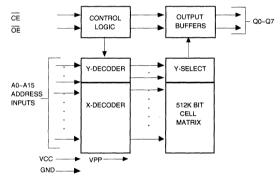
- 64K x 8 organization
- Single +5V power supply
- +12.5V programming voltage
- Fast access time: 55/70/90/100/120/150ns
- · Totally static operation

- · Completely TTL compatible
- · Operating current: 40mA
- Standby current: 100µA
- · Package type:
 - 28 pin ceramic DIP, plastic DIP
 - 32 pin PLCC

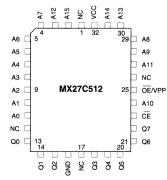
DATA SHEETS


GENERAL DESCRIPTION

The MX27C512 is a 5V only, 512K-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 64K words by 8 bits per word, operates from a single +5volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C512 supports intelligent quick pulse programming algorithm which can result in programming times of less than fifteen seconds.


This EPROM is packaged in industry standard 28 pin, dual-in-line packages or 32 lead, PLCC packages.

PIN CONFIGURATIONS


CDIP/PDIP

BLOCK DIAGRAM

PLCC

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A15	Address Input
Q0~Q7	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin (+5V)
GND	Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C512

The MX27C512 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm2 is required to completely erase a MX27C512. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm2 for 15 to 20 minutes. The MX27C512 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C512, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C512

When the MX27C512 is delivered, or it is erased, the chip has all 512K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C512 through the procedure of programming.

The programming mode is entered when 12.5 ± 0.5 V is applied to the OE/VPP pin and CE is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C512. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is

completed, the entire EPROM memory is verified at VCC = 5V \pm 10%.

FAST PROGRAMMING

The device is set up in the <u>fast</u> programming mode when the programming voltage OE/VPP = 12.75V is applied, with VCC = 6.25 V, (Algorithm is shown in Figure 2). The programming is achieved_by appling a single TTL low level 100µs pulse to the CE input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = 5V \pm 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C512s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C512 may be common. A TTL low-level program pulse applied to an MX27C512 CE input with OE/VPP = $12.5 \pm 0.5V$ will program that MX27C512. A high-level CE input inhibits the other MX27C512s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with OE/VPP and CE, at <u>VIL</u>. Data should be verified tDV after the falling edge of CE.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C512.

To activate this mode, the programming equipment must force 12.0 ± 0.5 (VH) on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C512, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27C512 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C512 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

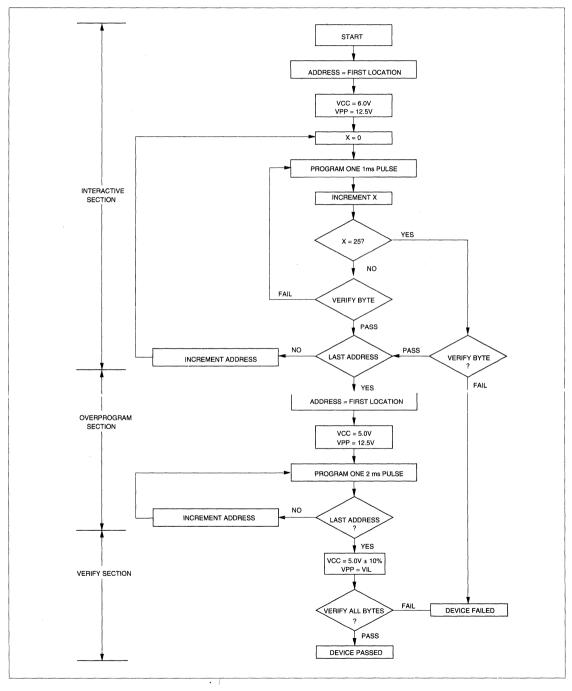
- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

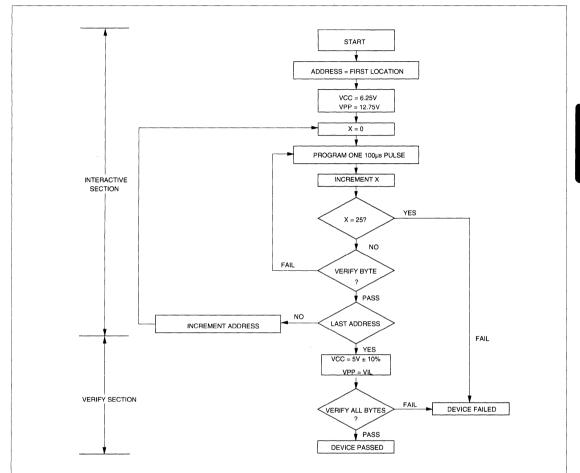
During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

			PINS		
MODE	ĈĒ	OE/VPP	A 0	A9	OUTPUTS
Read	VIL	VIL	х	х	DOUT
Output Disable	VIL	VIH	Х	х	High Z
Standby (TTL)	VIH	х	х	х	High Z
Standby (CMOS)	VCC±0.3V	x	X	х	High Z
Program	VIL	VPP	Х	x	DIN
Program Verify	VIL	VIL	Х	х	DOUT
Program Inhibit	VIH	VPP	Х	х	High Z
Manufacturer Code	VIL	VIL	VIL	VH	C2H
Device Code	VIL	VIL	VIH	VH	91H


MODE SELECT TABLE

NOTES: 1. VH = $12.0 V \pm 0.5 V$ 2. X = Either VIH or VIL(For auto select) 3. A1 - A8 = A10 - A15 = VIL(For auto select)

 See DC Programming Characteristics for VPP voltage during programming.


FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

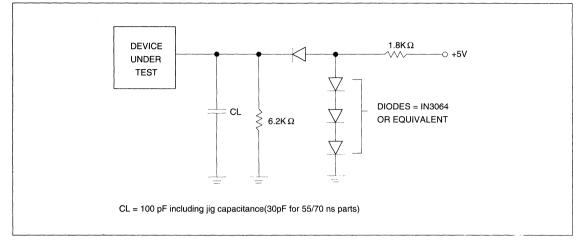
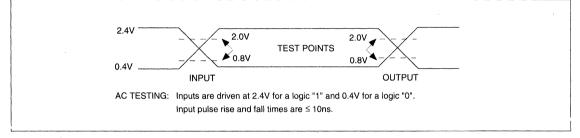
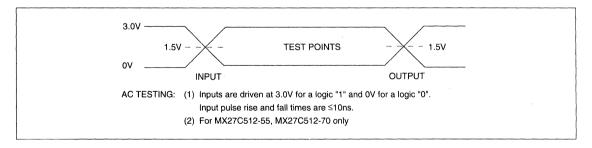

MX27C512

FIGURE 2. FAST PROGRAMMING FLOW CHART





SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
A9 & Vpp	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V \pm 10%

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.2	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		40	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	$\overline{CE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS	
CIN	Input Capacitance	8	12	pF	VIN = 0V	
COUT	Output Capacitance	8	12	pF	VOUT = 0V	
Vpp	VPP Capacitance	18	25	pF	VPP = 0V	

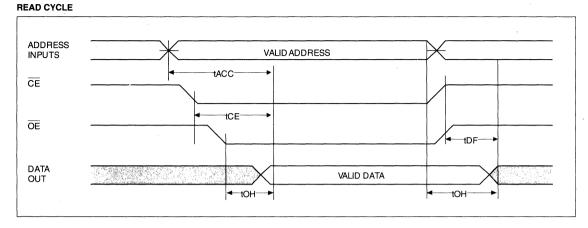
AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

		27C	512-55	2705	512-70	27C	51 <u>2-90</u>		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		55		70		90	ns	CE = OE = VIL
tCE	Chip Enable to Output Delay		55		70		90	ns	OE = VIL
tOE	Output Enable to Output Delay		30		35		40	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

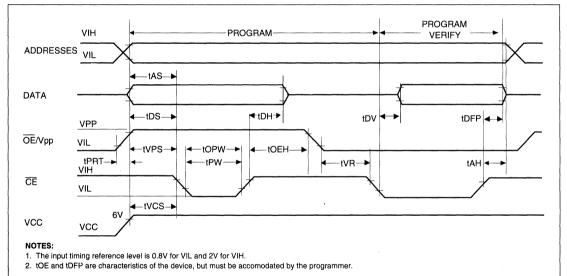
		270	512-10	2705	512-12	2705	512-15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		100		120		150	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		100		120		150	ns	ÕË = VIL
tOE	Output Enable to Output Delay		45		50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.2	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current(Program & Verify)	anna ann an ann an ann an ann ann an ann a	40	mA	
IPP2	VPP Supply Current(Program)		30	mA	CE = VIL
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	ν	



AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$


SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	Address Setup Time			μS	
tOES	OE/VPP Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time		0		μS	and add a resonance of the second
tDH	Data Hold Time		2.0		μS	
tDFP	CE to Output Float Delay	CE to Output Float Delay		60	nS	
tVPS	VPP Setup Time		2.0		μS	
tPW	CE Initial Program Pulse Width	Fast	95	105	μS	
		Interactive	0.95	1.05	mS	
tOPW	CE Overprogram Pulse Width(In	teractive)	1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		μS	
tDV	Data Valid from CE			250	nS	
tOEH	OE/VPP Hold Time		2.0		μS	
tVR	OE/VPP Recovery Time		2.0		μS	

WAVEFORMS

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C512DC-55	55	40	100	28 Pin DIP
MX27C512DC-70	70	40	100	28 Pin DIP
MX27C512DC-90	90	40	100	28 Pin DIP
MX27C512DC-10	100	40	100	28Pin DIP
MX27C512DC-12	120	40	100	28Pin DIP
MX27C512DC-15	150	40	100	28 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C512PC-55	55	40	100	28 Pin DIP
MX27C512QC-55	55	40	100	32 Pin PLCC
MX27C512PC-70	70	40	100	28 Pin DIP
MX27C512QC-70	70	40	100	32 Pin PLCC
MX27C512PC-90	90	40	100	28 Pin DIP
MX27C512QC-90	90	40	100	32 Pin PLCC
MX27C512PC-12	120	40	100	28Pin DIP
MX27C512QC-12	120	40	100	32 Pin PLCC
MX27C512PC-15	150	40	100	28 Pin DIP
MX27C512QC-15	150	40	100	32 Pin PLCC

· Operating current: 60mA

Standby current: 100µA

32 pin ceramic DIP, plastic DIP

Package type:

- 32 pin SOP

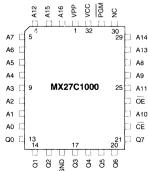
- 32 pin PLCC

1M-BIT(128K x 8) CMOS EPROM

FEATURES

- 128K x 8 organization
- Single +5V power supply
- +12.5V programming voltage
- Fast access time: 55/70/90/120/150 ns
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION


The MX27C1000/27C1001 is a 5V only, 1M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 128K words by 8 bits per word, operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C1000/ 27C1001 supports a intelligent quick pulse programming algorithm which can result in programming times of less than thirty seconds.

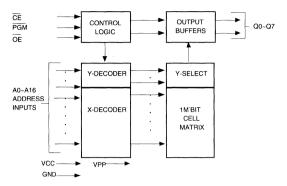
This EPROM is packaged in industry standard 32 pin dual-in-line packages or 32 lead, PLCC packages.


PIN CONFIGURATIONS CDIP/PDIP(MX27C1000)

VPP	C	1	$\overline{}$	32	b	VCC
A16	0	2		31		PGN
A15	Ľ	3		30	-	NC
A12		4		29	1	A14
A7	1	5		28		A13
A6	C	6	8	27	D.	A8
A5	1	7	ē	26	En.	A9
A4	1.1	8	ý	25		A11
AЗ		9	MX27C1000	24	þ.	ŌĒ
A2		10	ŝ	23	5	A10
A1		11	-	22	1	ĈĒ
A0		12		21	5	Q7
QO		13		20	þ.	Q6
Q1		14		19	È1	Q5
Q2		15		18		Q4
GND		16		17	b.	Q3

PLCC(MX27C1000)

SOP(MX27C1000)



CDIP(MX27C1001)

VPP	12	1		32	b	VCC
ŌE	0	2		31	b	PGM
A15	0	3		30		NC
A12	1	4		29	Þ	A14
A7		5		28		A13
A6	Γ.	6	5	27		A8
A5	1	7	ē	26		A9
A4	0	8	ò	25		A11
A3		9	MX27C1001	24	þ.	A16
A2	11	10	ŝ	23		A10
A1	C.,	11	_	22	Þ	ĈĒ
A0	0	12		21	Þ	Q7
Q0		13		20	Þ.	Q6
. Q1		14		19	Þ.	Q5
Q2		15		18	13	Q4
GND		16		17		Q3
	. L					

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C1000/27C1001

The MX27C1000/27C1001 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C1000/27C1001. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C1000/27C1001 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C1000/27C1001, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C1000/ 27C1001 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C1000/27C1001

When the MX27C1000 is delivered, or it is erased, the chip has all 1M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C1000/27C1001 through the procedure of programming.

The programming mode is <u>en</u>tered when 12.5 \pm 0.5 V is applied to the VPP pin, OE is at VIH, and CE and

PIN DESCRIPTION

SYMBOL	PINNAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Programmable Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PGM at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C100027C1001. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and PGM = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100µs pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V ± 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C1000/27C1001s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C1000/27C1001 may be common. A TTL low-level program pulse applied to an MX27C1000/27C1001 CE input with VPP = 12.5 \pm 0.5 V and PGM LOW will program that MX27C1000/ 27C1001. A high-level CE input inhibits the other MX27C1000/27C1001s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly <u>programmed</u>. The verification should be performed with OE and CE, at VIL, PGM at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C1000/27C1001.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C1000/1001, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C1000/27C1001 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate

data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overrightarrow{CE} to output (tCE). Data is available at the outputs tQE after the falling edge of \overrightarrow{OE} , assuming that \overrightarrow{CE} has been LOW and addresses have been stable for at least tACC - tQE.

STANDBY MODE

The MX27C1000/27C1001 has a CMOS standby mode which reduces the maximum VCC <u>current</u> to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C1000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

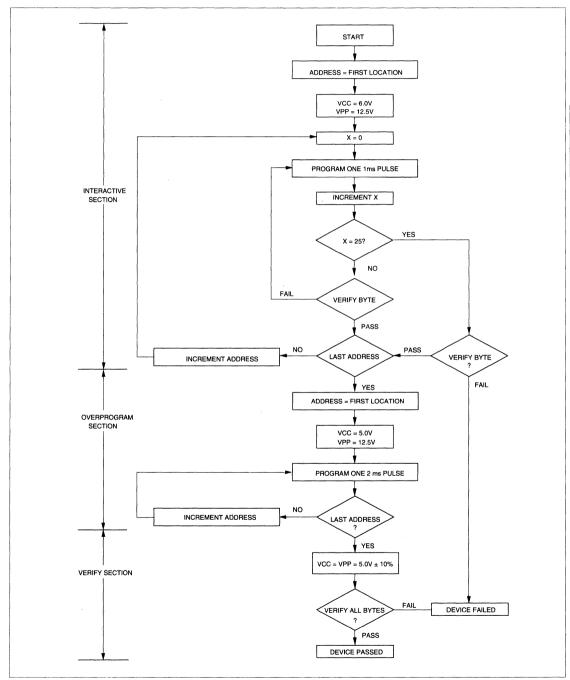
It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

				PINS			
MODE	CE	ŌĒ	PGM	A 0	A9	VPP	OUTPUTS
Read	VIL	VIL	х	х	х	VCC	DOUT
Output Disable	VIL	VIH	х	х	х	VCC	High Z
Standby (TTL)	VIH	х	х	х	х	VCC	High Z
Standby (CMOS)	VCC±0.3V	х	х	х	х	VCC	High Z
Program	VIL	VIH	VIL	х	х	VPP	DIN
Program Verify	VIL	VIL	VIH	х	х	VPP	DOUT
Program Inhibit	VIH	х	х	х	х	VPP	High Z
Manufacturer Code	VIL	VIL	х	VIL	VH	VCC	C2H
Device Code(27C1000)	VIL	VIL	Х	VIH	VH	VCC	0EH
Device Code(27C1001)	VIL	VIL	х	VIH	VH	VCC	0FH


NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

2. X = Either VIH or VIL(For auto select)

3. A1 - A8 = A10 - A16 = VIL(For auto select) 4. See DC Programming Characteristic: for VPP voltage during programming.

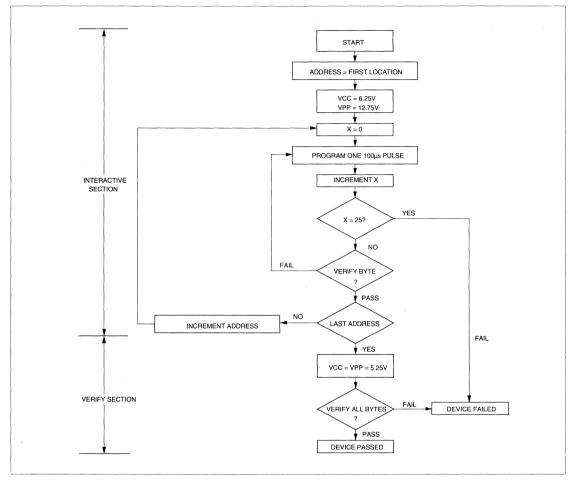


FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

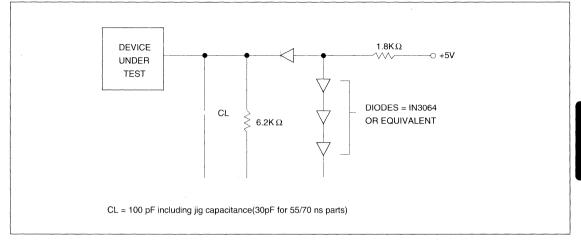
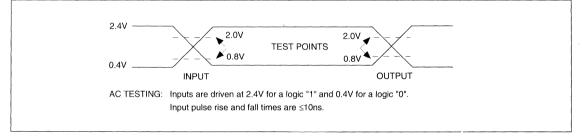
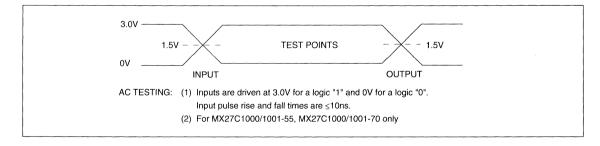


FIGURE 2. FAST PROGRAMMING FLOW CHART





SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

VALUE
0°C to 70°C
-65°C to 125°C
-0.5V to 7.0V
-0.5V to VCC + 0.5V
-0.5V to 7.0V
-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	mA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	mA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	mA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	mA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

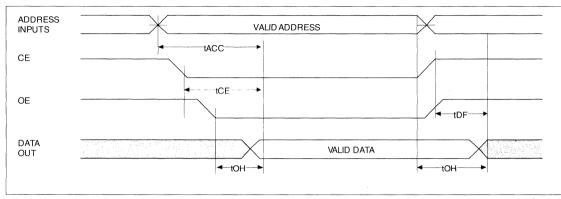
	27C10001001 27C1000/1001 -55 -70			27C1000/1001 -90					
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		55		70		90	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		55		70		90	ns	OE = VIL
tOE	Output Enable to Output Delay		30		35		40	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

		27C10001001			00/1001		
			-12	-	15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		120		150	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay		50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		ns	

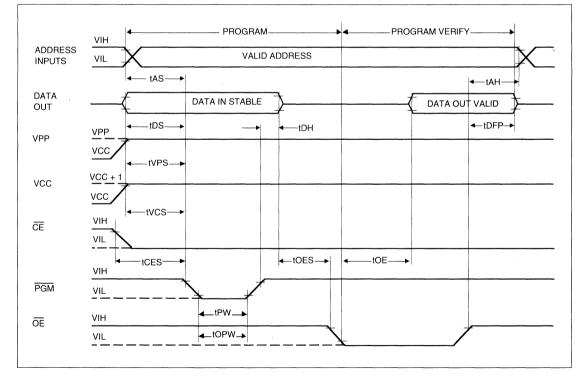
DC PROGRAMMING CHARACTERISTICS TA = 25°C ± 5°C

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{CE} = \overline{PGM} = VIL,$
					OE = VIH
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

EPROM TA SHEET



AC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$


SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		mS	
tOES	OE Setup Time		2.0		mS	
tDS	Data Setup Time		2.0		mS	
tAH	Address Hold Time		0		mS	
tDH	Data Hold Time	Data Hold Time			mS	
tDFP	CE to Output Float Delay	CE to Output Float Delay		130	nS	
tVPS	VPP Setup Time		2.0		mS	
tPW	PGM Program Pulse Width	Fast	95	105	mS	
		Interactive	0.95	1.05	mS	
tOPW	PGM Overprogram Pulse(Inte	ractive)	1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		mS	
tDV	Data Valid from CE	Data Valid from CE		250	nS	
tCES	CE Setup Time	CE Setup Time			mS	
tOE	Data valid from OE			150	nS	

WAVEFORMS READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 & 2)

EPROM DATA SHEETS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE
MX27C1000DC-55	55	60	100	32 Pin DIP
MX27C1000DC-70	70	60	100	32 Pin DIP
MX27C1000DC-90	90	60	100	32 Pin DIP
MX27C1000DC-12	120	60	100	32 Pin DIP
MX27C1000DC-15	150	60	100	32 Pin DIP
MX27C1001DC-55	55	60	100	32 Pin DIP
MX27C1001DC-70	70	60	100	32 Pin DIP
MX27C1001DC-90	90	60	100	32 Pin DIP
MX27C1001DC-12	120	60	100	32 Pin DIP
MX27C1001DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

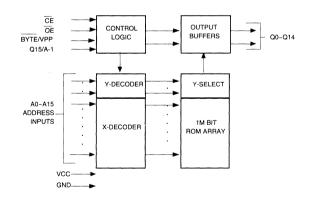
PARTNO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE
MX27C1000PC-55	55	60	100	32 Pin DIP
MX27C1000MC-55	55	60	100	32 Pin SOP
MX27C1000QC-55	55	60	100	32 Pin PLCC
MX27C1000PC-70	70	60	100	32 Pin DIP
MX27C1000MC-70	70	60	100	32 Pin SOP
MX27C1000QC-70	70	60	100	32 Pin PLCC
MX27C1000PC-90	90	60	100	32 Pin DIP
MX27C1000MC-90	90	60	100	32 Pin SOP
MX27C1000QC-90	90	60	100	32 Pin PLCC
MX27C1000PC-12	120	60	100	32 Pin DIP
MX27C1000MC-12	120	60	100	32 Pin SOP
MX27C1000QC-12	120	60	100	32 Pin PLCC
MX27C1000PC-15	150	60	100	32 Pin DIP
MX27C1000MC-15	150	60	100	32 Pin SOP
MX27C1000QC-15	150	60	100	32 Pin PLCC

1M-BIT(128K x 8/64K x 16) CMOS EPROM

FEATURES

- 64K x 16 organization(MX27C1024, JEDEC pin out)
- 128K x 8 or 64K x 16 organization(MX27C1100, ROM pin out compatible)
- +12.5V programming voltage
- Fast access time: 90/120/150 ns
- Totally static operation

GENERAL DESCRIPTION

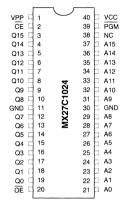

The MX27C1024 is a 5V only, 1M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 64K words by 16 bits per word(MX27C1024), 128K x 8 or 64K x 16(MX27C1100), operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers

- · Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100μA
- Package type:
 - 40 pin ceramic DIP
 - 40 pin plastic DIP
 - -44 pin PLCC

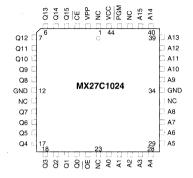
may be used. The MX27C1100/1024 supports a intelligent quick pulse programming algorithm which can result in programming times of less than thirty seconds.

This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

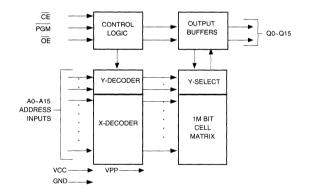
BLOCK DIAGRAM (MX27C1100)


PIN CONFIGURATIONS CDIP/PDIP(MX27C1100)

			7		 	1	
NC	Γ.	1		\sim	40	p	A8
A7		2			39	Þ	A9
A6		3			38	þ.	A10
A5		4			37	Þ	A11
A4		5			36	Þ	A12
A3		6			35	þ	A13
A2	0	7			34	þ	A14
A1		8		0	33	Þ	A15
A0	C	9		MX27C1100	32	b	NC
CE	d	10		Ξ.	31	b	BYTE/VPP
GND	C	11		ĸ	30	þ.	GND
ŌĒ		12		S.	29	Ь	Q15/A-1
Q0		13		Σ	28	Ь	Q7
Q8		14			27	Ь	Q14
Q1	d	15			26	Ь	Q6
Q9	d	16			25	Ь	Q13
Q2	d	17			24	Ь	Q5
Q10		18			23	Ь	Q12
Q3	Р	19			22	Б	Q4
Q11	Н	20			21	H.	VCC
Q11		-0			~ · ·	- ⁻	



PIN CONFIGURATIONS


CDIP/PDIP(MX27C1024)

PLCC(MX27C1024)

BLOCK DIAGRAM (MX27C1024)

ş

PIN DESCRIPTION(MX27C1100)

SYMBOL	PIN NAME
A0~A15	Address Input
Q0~Q14	Data Input/Output
ĈĒ	Chip Enable Input
ŌĒ	Output Enable Input
BYTE/VPP	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PIN DESCRIPTION(MX27C1024)

PIN NAME
Address Input
Data Input/Output
Chip Enable Input
Output Enable Input
Program Enable Input
Program Supply Voltage
Power Supply Pin (+5V)
Ground Pin

TRUTH TABLE OF BYTE FUNCTION(MX27C1100)

BYTE MODE(BYTE = GND)

ĈĒ	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE	
н	x	х	Non selected	High Z	Standby(ICC2)	1	
L	L/H	· X	Non selected	High Z	Operating(ICC1)	1	
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1	

WORD MODE(BYTE = VCC)

CE	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	x	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	. 1

NOTE1: X = H or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C1100/1024

The MX27C1100/1024 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C1100/1024. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C1100/1024 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C1100/1024, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C1100/1024 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C1100/1024

When the MX27C1100/1024 is delivered, or it is erased, the chip has all 1M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C1100/1024 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5V$ is applied to the VPP pin, \overrightarrow{OE} is at VIH and PGM is at VIL (MX27C1024) and programming mode entered when $12.5 \pm 5V$ is applied to the BYTE/VPP pin, \overrightarrow{OE} at VIH and \overrightarrow{CE} at VIL (MX27C1100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the

MX27C1100/1024. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and PGM = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100 μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V \pm 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C1100/1024's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C1100/1024 may be common. A TTL low-level_program pulse applied to an MX27C1100/1024 CE input with VPP = 12.5 ± 0.5 V will program the MX27C1100/1024. A high-level CE input inhibits the other MX27C1100/1024s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with \overrightarrow{OE} and \overrightarrow{CE} , at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its

corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C1100/ 1024.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C1100/1024, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C1100/1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} 's, assuming that CE has been LOW and addresses have been stable for at least tACC - t OE.

WORD-WIDE MODE

With BYTE/VPP at VCC \pm 0.2V outputs Q0-7 present data D0-7 and outputs Q8-15 present data D8-15, after CE and \overline{OE} are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND \pm 0.2V, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits D8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits D0-7.

STANDBY MODE

The MX27C1100/1024 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C1100/1024 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs_are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C1024)

				PINS			
MODE	ĈĒ	ŌĒ	PGM	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	х	х	х	VCC	DOUT
Output Disable	VIL	VIH	Х	х	Х	VCC	High Z
Standby (TTL)	VIH	х	х	х	х	VCC	High Z
Standby (CMOS)	VCC±0.3V	х	х	Х	х	VCC	High Z
Program	VIL	VIH	VIL	х	х	VPP	DIN
Program Verify	VIL	VIL	VIH	х	х	VPP	DOUT
Program Inhibit	VIH	х	х	Х	х	VPP	High Z
Manufacturer Code	VIL	VIL	х	VIL	VH	VCC	00C2H
Device Code	VIL	VIL	X	VIH	VH	VCC	0111H

NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

2. X = Either VIH or VIL(For auto select)

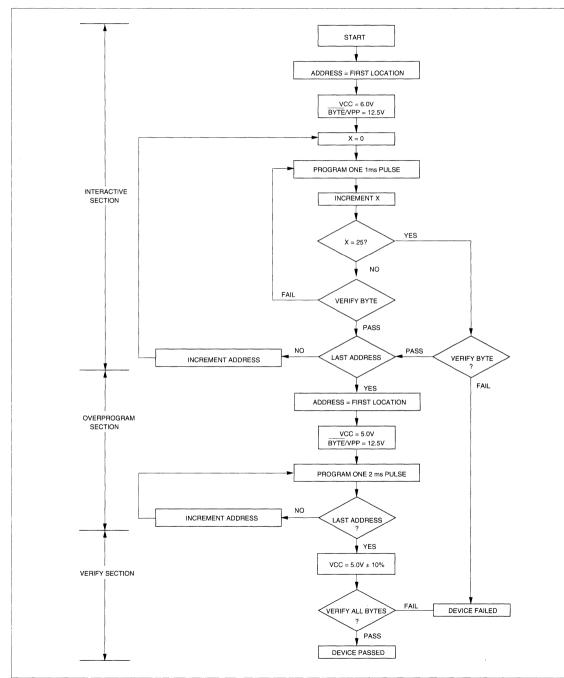
3. A1 - A8 = A10 - A16 = VIL(For auto select)

 See DC Programming Characteristics for VPP voltage during programming.

MODE SELECT TABLE (MX27C1100)

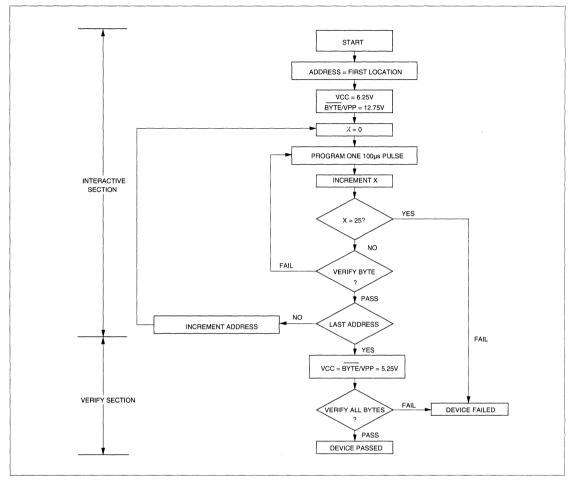
MODE	NOTES	CE	ŌĒ	A9	A0	Q15/A-1	BYTE/ VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	х	Х	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	х	Х	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	Х	х	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	Х	х	High Z	Х	High Z	High Z
Standby		VIH	х	х	х	High Z	х	High Z	High Z
Program	2	VIL	VIH	х	Х	D15 In	VPP	D8-14 in	D0-7 In
Program Verify		VIH	VIL	Х	х	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	х	х	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	0B	VCC	00H	C2H
Device Code		VIL	VIL	VH	VIH	0B	VCC	01H	12H

NOTES: 1. X can be VIL or VIH.

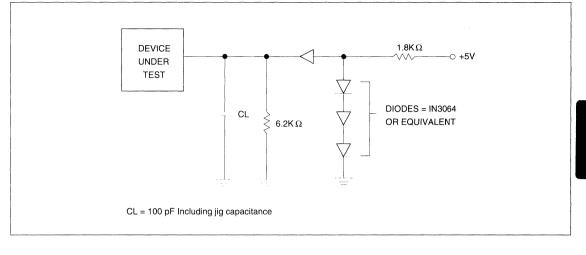

2. See DC Programming Characteristics for VPP voltages.

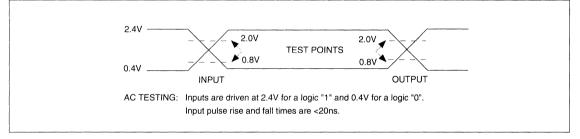
3. A1 - A8, A10 - A15 = VIL , A9 = VH = 12.0V \pm 0.5V

 BYTE/VPP is intended for operation under DC Voltage conditions only.


FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

EPROM ATA SHEET


FIGURE 2. FAST PROGRAMMING FLOW CHART



EPROM TA SHEET

SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
A9 & Vpp	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	Output High Voltage 2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V\pm$ 10%

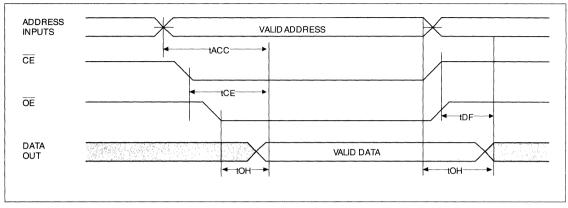
		27C1100/1024-90 27C1100/1024-12		27C1100/1024-15					
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		90		120	· · · · · · · · · · · · · · · · · · ·	150	ns	$\overline{\overline{CE}} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		90		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay		40		50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	25	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

AC CHARACTERISTICS(Continued)

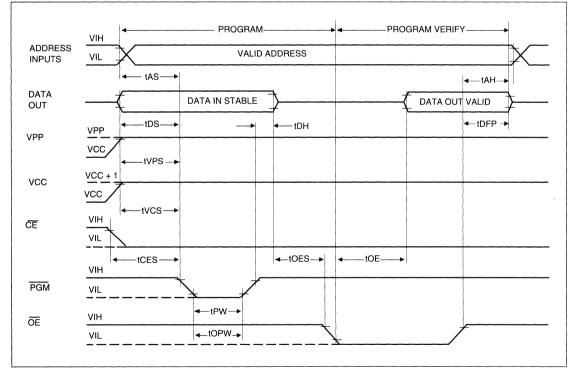
		27C1100-90 27C11		100-12 <u>27C1100-15</u>				<u></u>	
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tBHA	BYTE Access Time		90		120		150	ns	
tOHB	BYTE Output Hold Time	0		0		0		ns	
tBHZ	BYTE Output Delay Time		70		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		10		ns	

DC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$

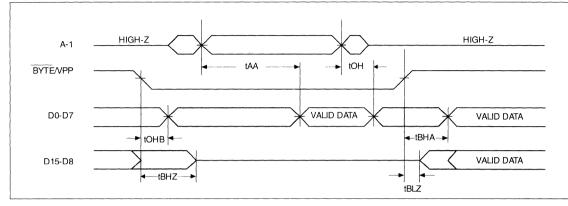
SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		v	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	v	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	CE = VIL, OE = VIH
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	and the second
VCC2	Fast Programming Supply Voltage	6.00	6.50	v	
VPP2	Fast Programming Voltage	12.5	13.0	V	

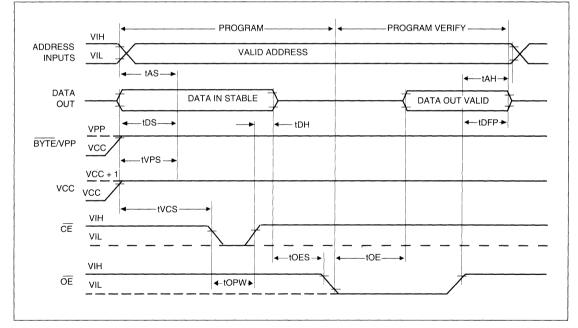

AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		μS	
tOES	OE Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time		0		μS	
tDH	Data Hold Time		2.0		μS	
tDFP	CE to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		μS	
tPW	CE Program Pulse Width	Fast	95	105	μS	
		Interactive	0.95	1.05	mS	
tOPW	CE Overprogram Pulse(Interactive)		1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		μS	
tDV	Data Valid from CE			250	nS	
tCES	CE Setup Time		2.0		μS	
tOE	Data valid from OE			150	nS	



WAVEFORMS(MX27C1024)


INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS



WAVEFORMS(MX27C1100)

PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

EPROM DATA SHEETS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESSTIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE	
MX27C1100DC-90	90	60	100	40 Pin DIP(ROM pin out)	
MX27C1100DC-12	120	60	100	40 Pin DIP(ROM pin out)	
MX27C1100DC-15	150	60	100	40 Pin DIP(ROM pin out)	
MX27C1024DC-90	90	60	100	40 Pin DIP(JEDEC pin out)	
MX27C1024DC-12	120	60	100	40 Pin DIP(JEDEC pin out	
MX27C1024DC-15	150	60	100	40 Pin DIP(JEDEC pin out)	

PLASTIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE
MX27C1100PC-90	90	60	100	40 Pin DIP(ROM pin out)
MX27C1100PC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C1100PC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C1024PC-90	90	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024PC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024PC-15	150	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024QC-90	90	60	100	44 Pin PLCC
MX27C1024QC-12	120	60	100	44 Pin PLCC
MX27C1024QC-15	150	60	100	44 Pin PLCC

MX27C2000

2M-BIT(256K x 8) CMOS EPROM

FEATURES

- 256Kx 8 organization
- Single +5V power supply
- +12.5V programming voltage
- Fast access time: 90/120/150 ns
- Totally static operation

GENERAL DESCRIPTION

The MX27C2000 is a 5V only, 2M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 256K words by 8 bits per word, operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For

- · Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100µA
- Package type:
 - 32 pin ceramic DIP, plastic DIP
 - 32 pin SOP

programming outside from the system, existing EPROM programmers may be used. The MX27C2000 supports a intelligent quick pulse programming algorithm which can result in programming times of less than one minute.

This EPROM is packaged in industry standard 32 pin dual-in-line packages or 32 lead, SOP packages.

PIN CONFIGURATIONS


32 CDIP/PDIP

32 SOP

VPP 🗖	0		32	VCC
A16 🗖	2		31	E I PGM
A15 🗆	3		30	E I A17
A12 🗆	4		29	E.⊢A14
A7 🗖	5	_	28	E A13
A6 🗆	6	8	27	A8 :
A5 🗆	7	5	26	E A9
A4 🗆	8	2	25	L I A11
A3 🗆	9	MX27C2000	24	OE
A2 🗆	10	Σ	23	1 A10
A1 🗆	11		22	L CE
A0 🗆	12		21	D Q7
Q0 🗆	13		10	🗆 Q6
Q1 🗖	14		19	L. Q5
Q2 🗆	15		18	🗆 Q4
GND 🖂	16		17	□ Q3
				_

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q7	Data Input/Output
ĈĒ	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Programmable Enable Input
VPP	Program Supply Voitage
NC	No Internal Connection
VCC	Power Supply Pin (+5V)
GND	Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C2000

The MX27C2000 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C2000. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C2000 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C2000, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C2000 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C2000

When the MX27C2000 is delivered, or it is erased, the chip has all 2M bits in the "ONE", or HIGH state. "ZEROS" are loaded into the MX27C2000 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 V$ is applied to the VPP pin, \overline{OE} is at VIH, and \overline{CE} and \overline{PGM} are at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C2000. This part of the algorithm is done at VCC= 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits

have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and PGM = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100 μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V \pm 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C2000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for \overrightarrow{CE} and \overrightarrow{OE} , all like inputs of the parallel MX27C2000 may be common. A <u>TTL</u> low-level program pulse applied to an MX27C2000 \overrightarrow{CE} input with VPP = 12.5 ± 0.5 V and PGM LOW will program that MX27C2000. A high-level \overrightarrow{CE} input inhibits the other MX27C2000s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with \overrightarrow{OE} and \overrightarrow{CE} , at VIL, PGM at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C2000.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C2000, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C2000 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable $\overline{(OE)}$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tQE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tACC - tQE.

STANDBY MODE

The MX27C2000 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C2000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

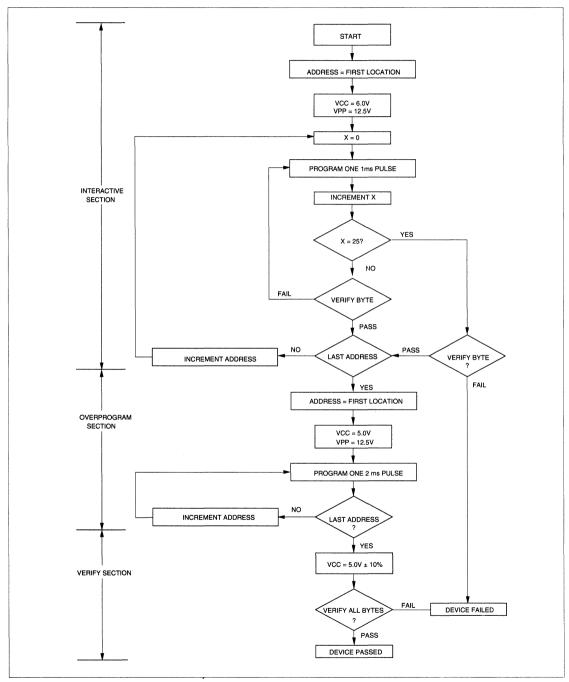
SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

				PINS			
MODE	CE	ŌE	PGM	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	х	Х	х	VCC	DOUT
Output Disable	VIL	VIH	Х	X	X	VCC	High Z
Standby (TTL)	VIH	Х	Х	Х	Х	VCC	High Z
Standby (CMOS)	VCC±0.3V	х	X	Х	X	VCC	High Z
Program	VIL	VIH	VIL	Х	х	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	Х	Х	Х	Х	VPP	High Z
Manufacturer Code	VIL	VIL.	Х	VIL	VH	VCC	C2H
Device Code	VIL	VIL	х	VIH	VH	VCC	20H

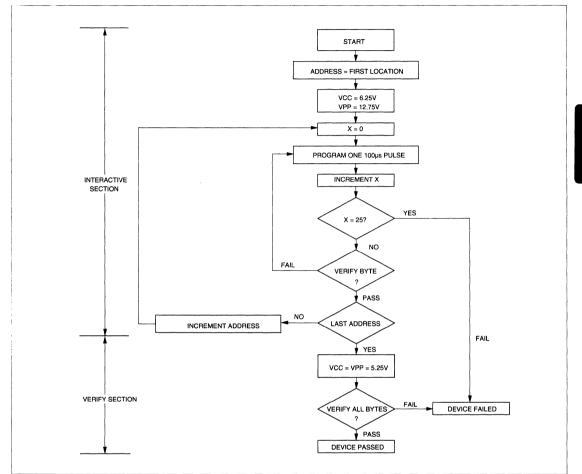
MODE SELECT TABLE

NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$


2. X = Either VIH or VIL(For auto select)

3. A1 - A8 = A10 - A16 = VIL(For auto select)

 See DC Programming Characteristics for VPP voltage during programming. DATA SHEETS


FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

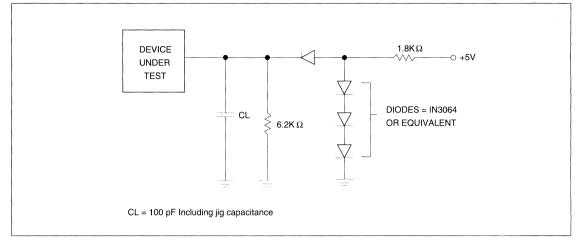
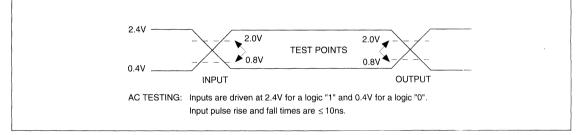

MX27C2000

FIGURE 2. FAST PROGRAMMING FLOW CHART



SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
V9 & VPP	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μΑ	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	CE = OE = VIL, VPP = 5.5V

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

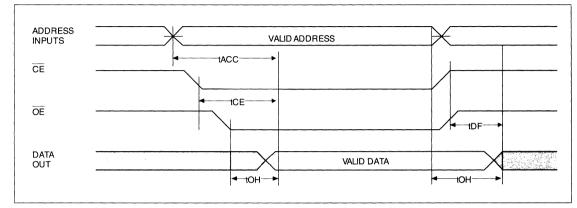
SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

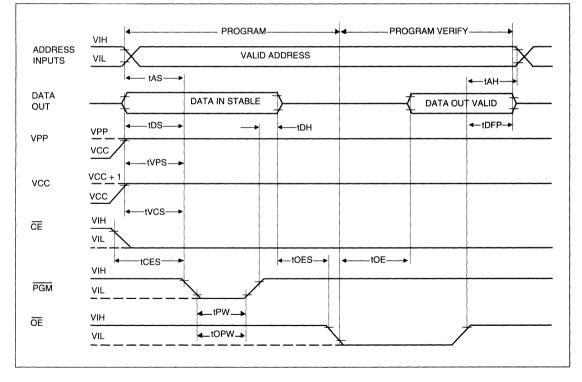
		27C2	000-90	27C2	000-12	27C2	000-15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		90		120		150	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		90		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay		40		50		65	ns	$\overline{CE} = VIL$
tDF	OE High to Output Float, or CE High to Output Float	0	25	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		v	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	v	
VIL	Input Low Voltage	-0.3	0.8	v	
ILI	Input Leakage Current	-10	10	μΑ	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	CE=PGM =VIL,OE=VIH
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	v	
VPP2	Fast Programming Voltage	12.5	13.0	v	


AC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		μS	
tOES	OE Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time		0		μS	
tDH	Data Hold Time		2.0		μS	
tDFP	CE to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		mS	
tPW	PGM Program Pulse Width	Fast	95	105	mS	
		Interactive	0.95	1.05	mS	
tOPW	PGM Overprogram Pulse(Inter	ractive)	1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		mS	
tDV	Data Valid from CE			250	nS	
tCES	CE Setup Time		2.0		μS	
tOE	Data valid from OE			150	nS	



WAVEFORMS READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 & 2)

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C2000DC-90	90	60	100	32 Pin DIP
MX27C2000DC-12	120	60	100	32 Pin DIP
MX27C2000DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C2000PC-90	90	60	100	32 Pin DIP
MX27C2000MC-90	90	60	100	32 Pin SOP
MX27C2000PC-12	120	60	100	32 Pin DIP
MX27C2000MC-12	120	60	100	32 Pin SOP
MX27C2000PC-15	150	60	100	32 Pin DIP
MX27C2000MC-15	150	60	100	32 Pin SOP

MX27C2100/27C2048

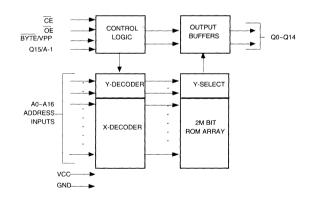
2M-BIT(256K x 8/128K x 16) CMOS EPROM

FEATURES

- 128K x 16 organization(MX27C2048, JEDEC pin out)
- 256K x 8 or 128K x 16 organization(MX27C2100, ROM pin out compatible)
- +12.5V programming voltage
- Fast access time: 90/120/150 ns
- · Totally static operation

- · Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100μA
- · Package type:
 - 40 pin ceramic DIP
 - 40 pin plastic DIP
 - 44 pin PLCC (MX27C2048)

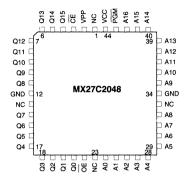
GENERAL DESCRIPTION


The MX27C2100/2048 is a 5V only, 2M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 128K words by 16 bits per word(MX27C2048), 256K x 8 or 128K x 16(MX27C2100), operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C2100/2048 supports a intelligent quick pulse programming algorithm which can result in programming times of less than one minute.

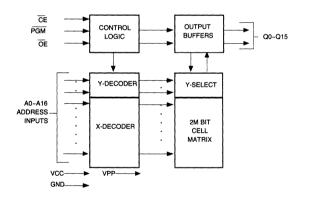
This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

PIN CONFIGURATIONS CDIP/PDIP(MX27C2100)


BLOCK DIAGRAM (MX27C2100)


PIN CONFIGURATIONS

CDIP/PDIP(MX27C2048)



PIN CONFIGURATIONS

PLCC(MX27C2048)

BLOCK DIAGRAM (MX27C2048)

MX27C2100/27C2048

PIN DESCRIPTION(MX27C2100)

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q14	Data Input/Output
CE	Chip Enable Input
ÕĒ	Output Enable Input
BYTE/VPP	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PIN DESCRIPTION(MX27C2048)

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q15	Data Input/Output
ĈĒ	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Program Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin (+5V)
GND	Ground Pin

TRUTH TABLE OF BYTE FUNCTION(MX27C2100)

BYTE MODE(BYTE = GND)

ĈĒ	ŌĒ	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	Х	x	Non selected	High Z	Standby(ICC2)	1
L	L/H	х	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE(BYTE = VCC)

CE	ŌĒ	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	х	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C2100/2048

The MX27C2100/2048 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C2100/2048. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C2100/2048 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C2100/2048, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C2100/2048 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C2100/2048

When the MX27C2100/2048 is delivered, or it is erased, the chip has all 2M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C2100/2048 through the procedure of programming.

The programming mode is entered when 12.5 ± 0.5 V is applied to the VPP pin, \overrightarrow{OE} is at VIH and PGM is at VIL (MX27C2048) and programming mode entered when 12.5 ± 5 V is applied to the BYTE/VPP pin, \overrightarrow{OE} at VIH and \overrightarrow{CE} at VIL (MX27C2100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C2100/2048. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and PGM = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100 μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V \pm 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C2100/2048's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C2100/2048 may be common. A TTL low-level_program pulse applied to an MX27C2100/2048 CE input with VPP = 12.5 ± 0.5 V will program the MX27C2100/2048. A high-level CE input inhibits the other MX27C2100/2048s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with \overrightarrow{OE} and \overrightarrow{CE} , at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its

corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C2100/2048.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C2100/2048, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C2100/2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} 's, assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC - t OE.

WORD-WIDE MODE

With BYTE/VPP at VCC \pm 0.2V outputs Q0-7 present data <u>D0-7</u> and outputs Q8-15 present data D8-15, after CE and OE are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND \pm 0.2V, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits D8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits D0-7.

STANDBY MODE

The MX27C2100/2048 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS standby when \overline{CE} is at VCC \pm 0.3 V. The MX27C2100/2048 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when \overline{CE} is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C2048)

				PINS			
MODE	CE	ŌĒ	PGM	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	VIH	х	х	VCC	DOUT
Output Disable	VIL	VIH	VIH	Х	Х	VCC	High Z
Standby (TTL)	VIH	х	X	Х	х	VCC	High Z
Standby (CMOS)	VCC±0.3V	х	Х	Х	х	VCC	High Z
Program	VIL	VIH	VIL	х	х	VPP	DIN
Program Verify	VIL	VIL	VIH	Х	Х	VPP	DOUT
Program Inhibit	VIH	х	х	х	х	VPP	High Z
Manufacturer Code	VIL	VIL	X	VIL	VH	VCC	00C2H
Device Code	VIL	VIL	X	VIH	VH	VCC	0122H

NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

2. X = Either VIH or VIL(For auto select)

3. A1 - A8 = A10 - A16 = VIL(For auto select)

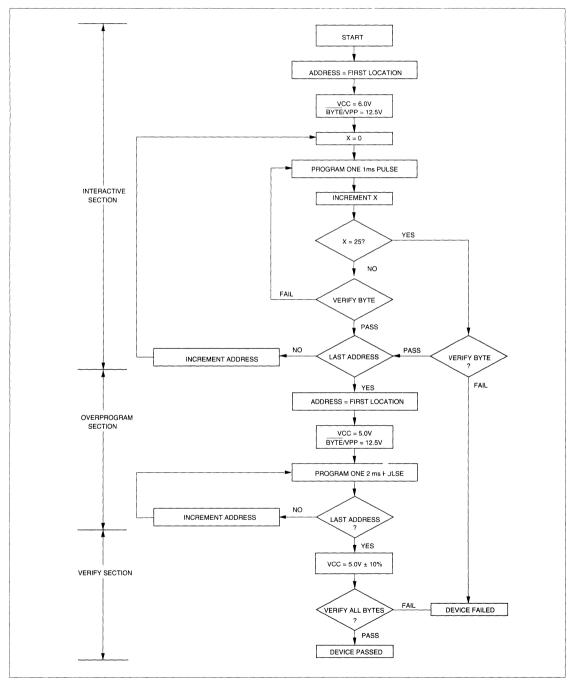
 See DC Programming Characteristics for VPP voltage during programming.

MODE SELECT TABLE (MX27C2100)

							BYTE/		
MODE	NOTES	CE	OE	A9	A0	Q15/A-1	VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	х	х	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	х	х	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	Х	х	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	X	х	High Z	Х	High Z	High Z
Standby		VIH	х	х	х	High Z	X	High Z	High Z
Pr ogram	2	VIL	VIH	х	х	D15 In	VPP	D8-14 In	D0-7 In
Program Verify		VIH	VIL	х	х	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	х	х	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	0B	VCC	00H	C2H
Device Code		VIL	VIL	VH	VIH	0B	VCC	00H	8AH

NOTES: 1. X can be VIL or VIH.

2. See DC Programming Characteristics for VPP voltages.


3. A1 - A8, A10 - A15 = VIL , A9 = VH = 12.0V $\pm 0.5V$

 BYTE/VPP is intended for operation under DC Voltage conditions only.

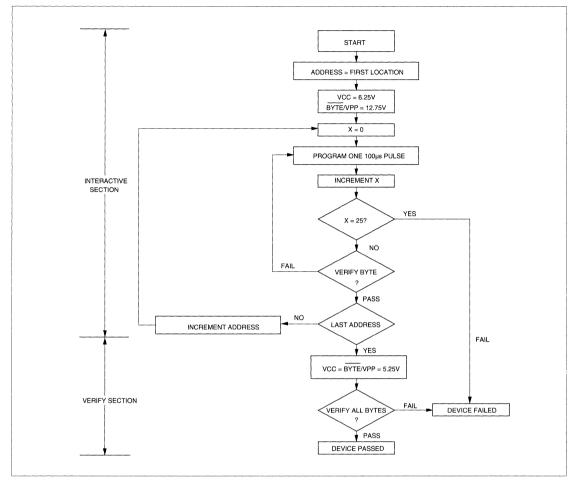
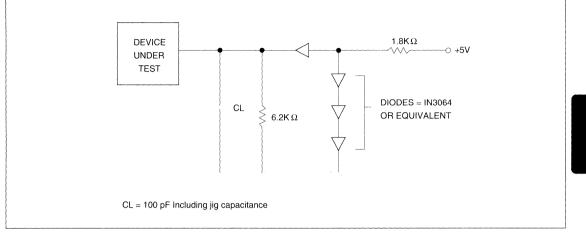
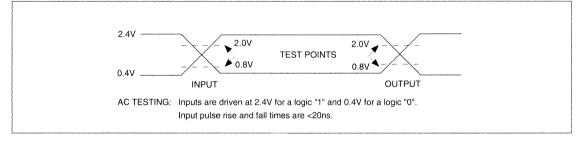

MX27C2100/27C2048

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART


FIGURE 2. FAST PROGRAMMING FLOW CHART



MX27C2100/27C2048

SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

EPROM ATA SHEE1

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
A9 & Vpp	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. **NOTICE:**

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	v	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	CE = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	ТҮР	MAX.	UNIT	CONDITIONS	
CIN	Input Capacitance	8	12	pF	VIN = 0V	
COUT	Output Capacitance	8	12	pF	VOUT = 0V	
CVPP	VPP Capacitance	18	25	pF	VPP = 0V	

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V\pm 10\%$

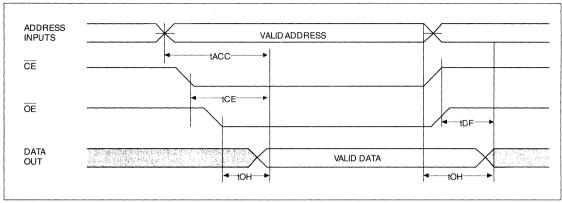
<u></u>		27C2100/2048-90		27C2100/2048-12		27C2100/2048-15			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		90		120		150	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		90		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay		40		50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	25	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

AC CHARACTERISTICS(Continued)

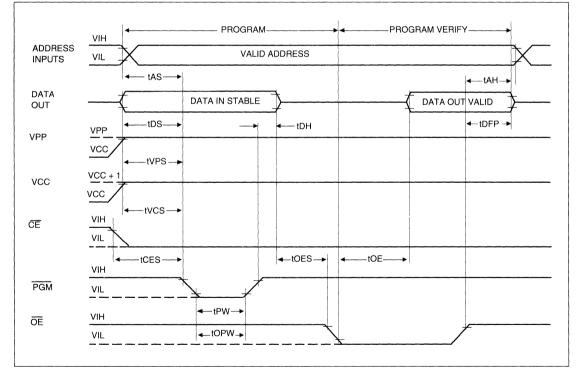
		27C21	00-90	27C2	100-12	27C2	100-15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tBHA	BYTE Access Time		90		120		150	ns	
tOHB	BYTE Output Hold Time	0		0		0		ns	
tBHZ	BYTE Output Delay Time		70		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		10		ns	

DC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage	ar dan bar bar an	0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{CE} = VIL, \overline{OE} = VIH$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	an th' gan a Magana Ama
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	


AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

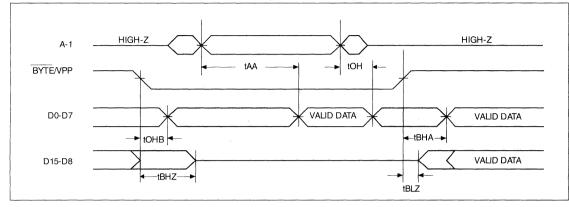
SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		μS	
tOES	OE Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time	Address Hold Time			μS	
tDH	Data Hold Time	Data Hold Time			μS	
tDFP	CE to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		μS	
tPW	CE Program Pulse Width	Fast	95	105	μS	
		Interactive	0.95	1.05	mS	
tOPW	CE Overprogram Pulse(Intera	active)	1.95	2.05	mS	
tVCS	VCC Setup Time	- Malance - Addree - Malance -	2.0		μS	
tDV	Data Valid from CE			250	nS	
tCES	CE Setup Time		2.0		μS	
tOE	Data valid from OE			150	nS	

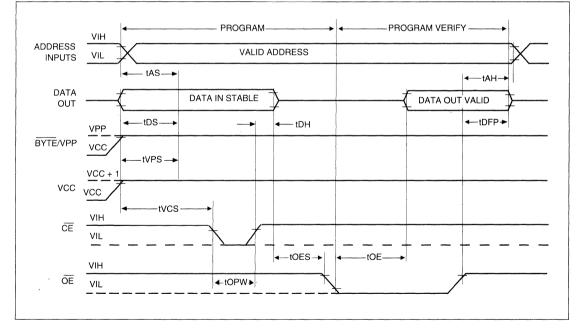


WAVEFORMS(MX27C2048)

READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS




MX27C2100/27C2048

WAVEFORMS(MX27C2100)

PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

EPROM ATA SHEEÎ:

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C2100DC-90	90	60	100	40 Pin DIP(ROM pin out)
MX27C2100DC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C2100DC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C2048DC-90	90	60	100	40 Pin DIP(JEDEC pin out)
MX27C2048DC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C2048DC-15	150	60	100	40 Pin DIP(JEDEC pin out)

PLASTIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C2100PC-90	90	60	100	40 Pin DIP(ROM pin out)
MX27C2100PC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C2100PC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C2048PC-90	90	60	100	40 Pin DIP(JEDEC pin out)
MX27C2048PC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C2048PC-15	150	60	100	40 Pin DIP(JEDEC pin out)
MX27C2048QC-90	90	60	100	44 Pin PLCC
MX27C2408QC-12	120	60	100	44 Pin PLCC
MX27C2408QC-15	150	60	100	44 Pin PLCC

MX27C4000

4M-BIT(512K x 8) CMOS EPROM

FEATURES

- 512K x 8 organization
- Single +5V power supply
- +12.5V programming voltage
- Fast access time: 120/150 ns
- Totally static operation

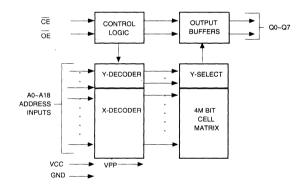
GENERAL DESCRIPTION

The MX27C4000 is a 5V only, 4M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 512K words by 8 bits per word, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For

- Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100μA
- · Package type:
 - 32 pin ceramic DIP, plastic DIP

ROM WORLS WO

programming outside from the system, existing EPROM programmers may be used. The MX27C4000 supports a intelligent quick pulse programming algorithm which can result in programming times of less than two minutes.


This EPROM is packaged in industry standard 32 pin dual-in-line packages.

PIN CONFIGURATIONS

32 CDIP/PDIP

VPP		1	\sim	32	þ	vcc
A16		2		31		A18
A15		з		30	Þ	A17
A12		4		29	Þ	A14
A7		5		28	þ	A13
A6		6	8	27		A8
A5		7	MX27C4000	26	Þ	A9
A4		8	Č.	25		A11
A3		9	8	24		ŌĒ
A2		10	ŝ	23		A10
A1	d	11		22	Þ	ĈĒ
A0	-	12		21	Þ	Q7
Q0		13		20		Q6
Q1		14		19		Q5
Q2		15		18		Q4
GND		16		17	þ	Q3

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NAME
Address Input
Data Input/Output
Chip Enable Input
Output Enable Input
Program Supply Voltage
Power Supply Pin (+5V)
Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C4000

The MX27C4000 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C4000. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C4000 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C4000, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C4000 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C4000

When the MX27C4000 is delivered, or it is erased, the chip has all 4M bits in the "ONE", or HIGH state. "ZEROS" are loaded into the MX27C4000 through the procedure of programming.

The programming mode is entered when 12.5 ± 0.5 V is applied to the VPP pin, \overrightarrow{OE} is at VIH, and \overrightarrow{CE} is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C4000. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is

completed, the entire EPROM memory is verified at VCC = 5V \pm 10%.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and \overrightarrow{OE} = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100µs pulse to the \overrightarrow{CE} input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V ± 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C4000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for \overrightarrow{CE} and \overrightarrow{OE} , all like inputs of the parallel MX27C4000 may be common. A \overrightarrow{TTL} low-level program pulse applied to an MX27C4000 \overrightarrow{CE} input with VPP = 12.5 \pm 0.5 V and \overrightarrow{CE} LOW will program that MX27C4000. A high-level \overrightarrow{CE} input inhibits the other MX27C4000s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with OE at VILand CE, at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C4000.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and

byte 1 (A0 = VIH), the device identifier code. For the MX27C4000, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C4000 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} 's. assuming that CE has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27C4000 has a CMOS standby mode which reduces the maximum VCC current to 100 µA. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C4000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state. independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

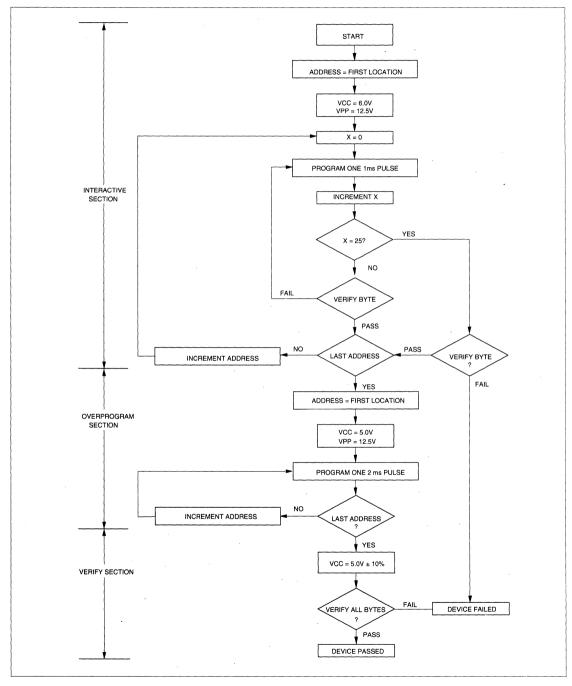
SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition. to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 µF bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

				PINS		
ODE	ĈĒ	ŌĒ	A0	A9	VPP	OUTPUTS
ead	VIL	VIL	х	х	VCC	DOUT
utput Disable	VIL	VIH	Х	Х	VCC	High Z
tandby (TTL)	VIH	Х	Х	х	VCC	High Z
tandby (CMOS)	VCC±0.3V	х	x	х	VCC	High Z
rogram	VIL	VIH	х	X	VPP	DIN
ogram Verify	VIH	VIL	х	х	VPP	DOUT
rogram Inhibit	VIH	х	Х	Х	VPP	High Z
anufacturer Code	VIL	VIL	VIL	VH	VCC	C2H
evice Code	VIL	VIL	VIH	VH	VCC	40H

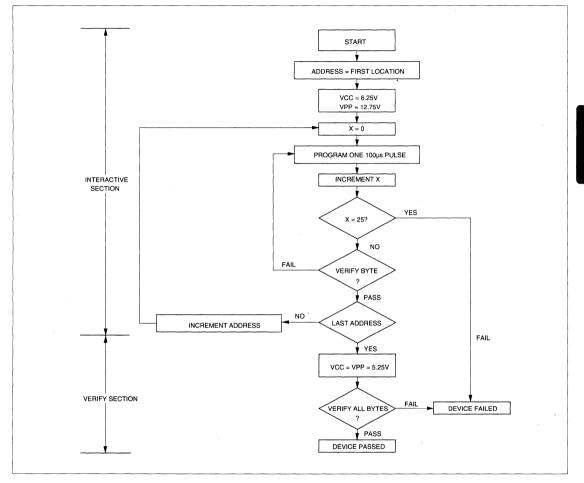
NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

MODE SELECT TABLE


2. X = Either VIH or VIL(For auto select)

3. A1 - A8 = A10 - A16 = VIL(For auto select)

See DC Programming Characteristics for VPP voltage during programming.


FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

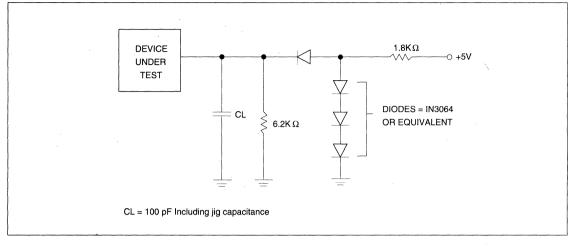
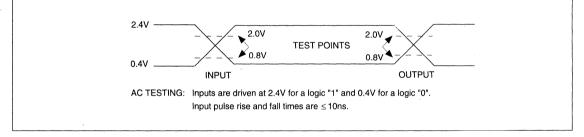

MX27C4000

FIGURE 2. FAST PROGRAMMING FLOW CHART



SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
V9 & VPP	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	$\overline{CE} = VIL$, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$
IPP2	VPP Supply Current (Program)		50	mA	

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

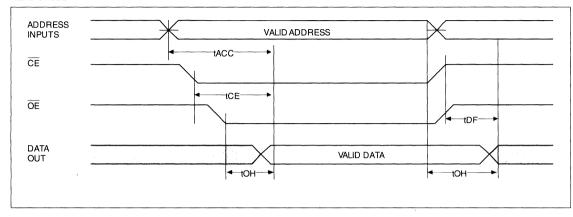
SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	рF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V\pm 10\%$

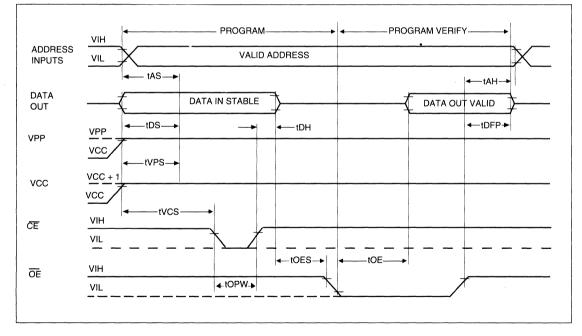
		27C4000-12		27C4000-15			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		120		150	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		120		150	ns	OE = VIL
tOE	Output Enable to Output Delay	1 mar 11 mar 11 mar 11 mar 140 mar	50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0 ·		0		ns	

DC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	v	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{CE} = VIL, \overline{OE} = VIH$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	v	


AC PROGRAMMING CHARACTERISTICS $TA = 25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		μS	
tOES	OE Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time		0		μS	
tDH	Data Hold Time		2.0		μS	
tDFP	CE to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		μS	
tPW	CE Program Pulse Width	Fast	95	105	μS	
		Interactive	0.95	1.05	mS	
tOPW	CE Overprogram Pulse(Interactive)		1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		μS	
tDV	Data Valid from CE			250	nS	
tCES	CE Setup Time		2.0		μS	
tOE	Data valid from OE			150	nS	



MX27C4000

WAVEFORMS READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 & 2)

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C4000DC-12	120	60	100	32 Pin DIP
MX27C4000DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C4000PC-12	120	60	100	32 Pin DIP
MX27C4000PC-15	150	60	100	32 Pin DIP

MX27C4100/27C4096

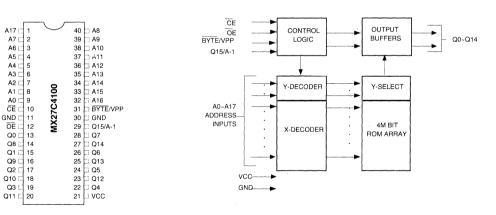
4M-BIT(512K x 8/256K x 16) CMOS EPROM

FEATURES

- 256K x 16 organization(MX27C4096, JEDEC pin out)
- 512K x 8 or 256K x 16 organization(MX27C4100, ROM pin out compatible)
- +12.5V programming voltage
- Fast access time: 120/150 ns
- Totally static operation

Completely TTL compatibleOperating current: 60mA

- Standby current: 100uA
- Package type:
 - 40 pin ceramic DIP
 - 40 pin plastic DIP
 - 44 pin PLCC
 - 44 pin PLCC

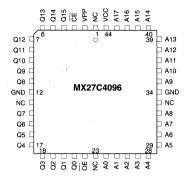

GENERAL DESCRIPTION

The MX27C4100/4096 is a 5V only, 4M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 256K words by 16 bits per word(MX27C4096), 512K x 8 or 256K x 16(MX27C4100), operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C4100/4096 supports a intelligent quick pulse programming algorithm which can result in programming times of less than two minutes.

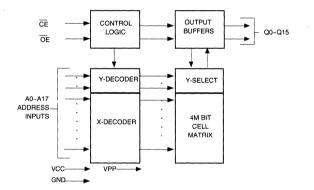
This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

BLOCK DIAGRAM (MX27C4100)

PIN CONFIGURATIONS CDIP/PDIP(MX27C4100)



5 IER X 0/ 230R X 10 JUNUS EPH



PIN CONFIGURATIONS

PLCC(MX27C4096)

BLOCK DIAGRAM (MX27C4096)

PIN CONFIGURATIONS CDIP/PDIP(MX27C4096)

		\neg		1
VPP 🗆	1	\bigcirc	40	b vcc
CE 🖂	2		39	D A17
Q15 🗆	3		38	🗅 A16
Q14 🗆	4		37	A15
Q13 🗆	5		36	A14
Q12 🗆	6		35	A13
Q11 🗆	7	(0	34	A12
Q10 🗆	8	ð	33	A11
Q9 🗆	9	MX27C4096	32	A10
Q8 🗆	10	2	31	🗅 A9
GND 🗆	11	9	30	🗅 GND
Q7 🗆	12	ŝ	29	🗅 A8
Q6 🗆	13	-	28	🗆 A7
Q5 🗆	14		27	🗅 A6
Q4 🗆	15		26	🗅 A5
Q3 🗆	16		25	⊨ A4
Q2 🗆	17		24	🗅 A3
Q1 🗆	18		23	🗅 A2
Q0 🗆	19		22	D A1
OE 🗆	20		21	D A0

MX27C4100/27C4096

PIN DESCRIPTION(MX27C4100)

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q14	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
BYTE/VPP	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PIN DESCRIPTION(MX27C4096)

SYMBOL	PIN NAME	
A0~A17	Address Input	
Q0~Q15	Data Input/Output	
ĈĒ	Chip Enable Input	
ŌĒ	Output Enable Input	
VPP	Program Supply Voltage	
VCC	Power Supply Pin (+5V)	
GND	Ground Pin	

TRUTH TABLE OF BYTE FUNCTION(MX27C4100)

BYTE MODE(BYTE = GND)

ĈĒ	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	x	x	Non selected	High Z	Standby(ICC2)	1
L	L/H	x	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE(BYTE = VCC)

CE	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	x	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L.	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

MX27C4100/27C4096

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C4100/4096

The MX27C4100/4096 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27C4100/4096. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27C4100/4096 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C4100/4096, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C4100/4096 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C4100/4096

When the MX27C4100/4096 is delivered, or it is erased, the chip has all 4M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C4100/4096 through the procedure of programming.

The programming mode is entered when <u>12.5</u> \pm 5V is applied to the VPP pin, \overline{OE} is at VIH and CE is at VIL (MX27C4096) and programming mode entered when <u>12.5</u> \pm 5V is applied to the BYTE/VPP pin, \overline{OE} at VIH and \overline{CE} at VIL (MX27C4100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the

MX27C4100/4096. This part of the algorithm is done at VCC = 6.0V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC = $5V \pm 10\%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and \overline{OE} = VIH (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100µs pulse to the CE input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = 5V \pm 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C4100/4096's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C4100/4096 may be common. A TTL low-level_program pulse applied to an MX27C4100/4096 CE input with VPP = 12.5 ± 0.5 V will program the MX27C4100/4096. A high-level CE input inhibits the other MX27C4100/4096s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with \overrightarrow{OE} and \overrightarrow{CE} , at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27C4100/4096.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27C4100/4096, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C4100/4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} 's, assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC - t OE.

WORD-WIDE MODE

With $\overrightarrow{\text{BYTE}}/\text{VPP}$ at VCC \pm 0.2V outputs Q0-7 present data <u>D0</u>-7 and outputs Q8-15 present data D8-15, after $\overrightarrow{\text{CE}}$ and $\overrightarrow{\text{OE}}$ are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND \pm 0.2V, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits D8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits D0-7.

STANDBY MODE

The MX27C4100/4096 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27C4100/4096 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs_are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C4096)

v	PINS						
MODE	ĈĒ	ŌĒ	A0	A9	VPP	OUTPUTS	
Read	VIL	VIL	x	х	VCC	DOUT	
Output Disable	VIL	VIH	Х	х	VCC	High Z	
Standby (TTL)	VIH	х	X	х	VCC	High Z	
Standby (CMOS)	VCC±0.3V	х	x	х	VCC	High Z	
Program	VIL	VIH	x	х.	VPP	DIN .	
Program Verify	VIH	VIL	X	х	VPP	DOUT	
Program Inhibit	VIH	х	х	х	VPP	High Z	
Manufacturer Code	VIL	VIL	VIL	VH	VCC	00C2H	
Device Code	VIL	VIL	VIH	VH	VCC	0151H	

NOTES: 1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

2. X = Either VIH or VIL(For auto select)

3. A1 - A8 = A10 - A16 = VIL(For auto select)

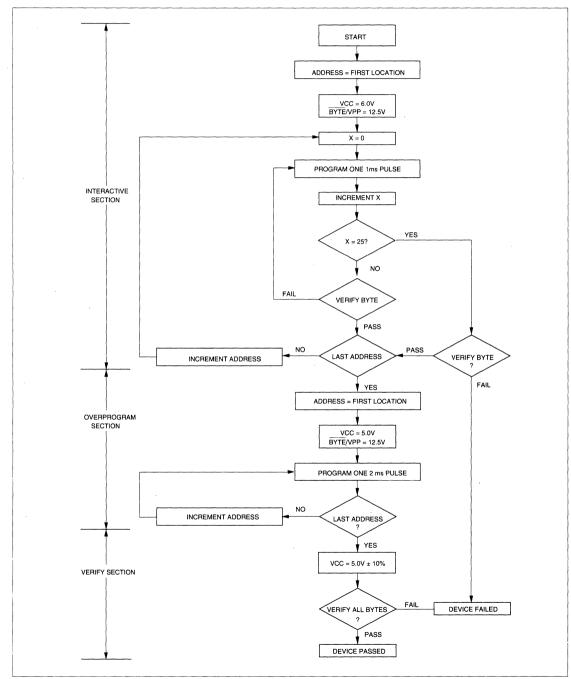
4. See DC Programming Characteristics for VPP voltage during programming.

MODE SELECT TABLE (MX27C4100)

	、 、						BYTE/		
MODE	NOTES	CE	OE	A9	A0	Q15/A-1	VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	х	х	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	х	х	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	х	х	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	х	х	High Z	х	High Z	High Z
Standby		VIH	х	х	X	High Z	X .	High Z	High Z
Program	2	VIL	VIH	х	х	D15 In	VPP	D8-14 In	D0-7 In
Program Verify		VIH	VIL	х	х	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	х	X	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	0B	VCC	00H	C2H
Device Code		VIL	VIL	VH	VIH	0B	VCC	98H	B800H

NOTES: 1. X can be VIL or VIH.

2. See DC Programming Characteristics for VPP voltages.


3. A1 - A8, A10 - A15 = VIL , A9 = VH = $12.0V \pm 0.5V$

 BYTE/VPP is intended for operation under DC Voltage conditions only.

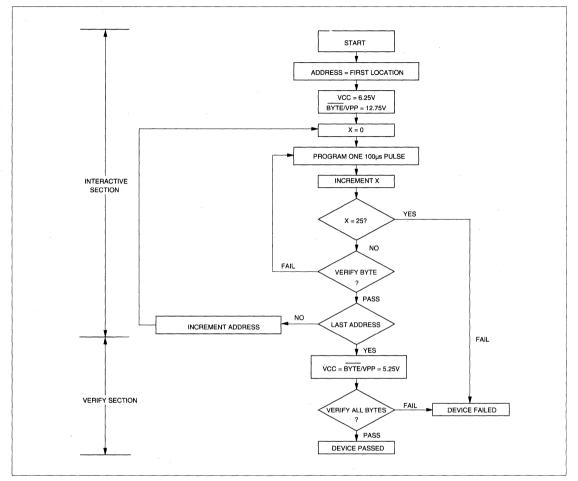

MX27C4100/27C4096

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

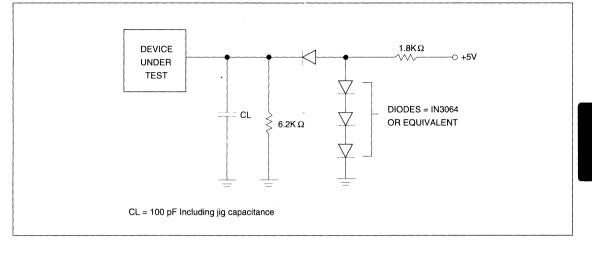
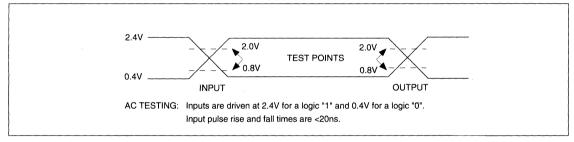


FIGURE 2. FAST PROGRAMMING FLOW CHART



SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
A9 & VPP	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.4mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current	-10	10	μA	VOUT = 0 to 5.5V
ICC3	VCC Power-Down Current		100	μA	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		1.5	mA	CE = VIH
ICC1	VCC Active Current		60	mA	\overline{CE} = VIL, f=5MHz, lout = 0mA
IPP	VPP Supply Current Read		100	μA	$\overline{CE} = \overline{OE} = VIL, VPP = 5.5V$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

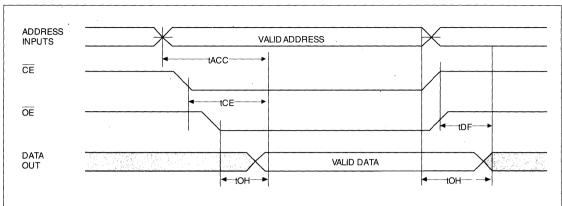
		27C4100/4096-12 27C4100/4096-1		/4096-15			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		120		150	ns	CE = OE = VIL
tCE	Chip Enable to Output Delay		.120		150	ns	ŌĒ = VIL
tOE	Output Enable to Output Delay		50		65	ns	CE = VIL
tDF	OE High to Output Float, or CE High to Output Float	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		ns	

AC CHARACTERISTICS(Continued)

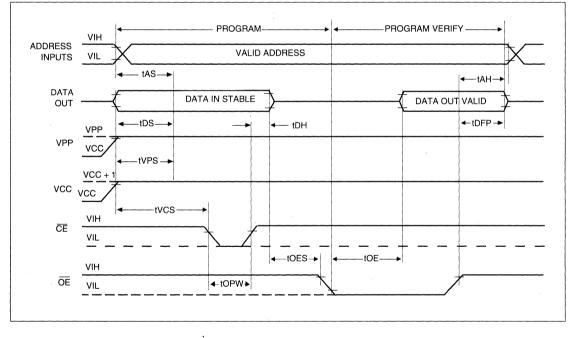
		<u>27C4</u>	100-12	27C41	00-15		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tBHA	BYTE Access Time		120		150	ns	
tOHB	BYTE Output Hold Time	0		0		ns	
tBHZ	BYTE Output Delay Time		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		ns	

DC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μΑ	VIN = 0 to 5.5V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{CE} = VIL, \overline{OE} = VIH$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

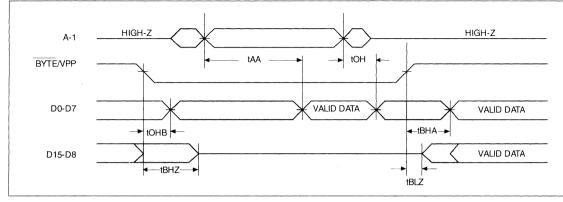

AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

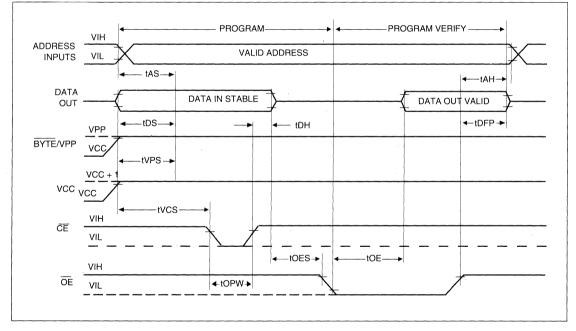
SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		μS	
tOES	OE Setup Time		2.0		μS	
tDS	Data Setup Time		2.0		μS	
tAH	Address Hold Time		0		μS	
tDH	Data Hold Time	Data Hold Time			μS	
tDFP	CE to Output Float Delay	CE to Output Float Delay		130	nS	
tVPS	VPP Setup Time	VPP Setup Time			μS	
tPW	CE Program Pulse Width	Fast	95	105	μS	
		Interactive	0.95	1.05	mS	
tOPW	CE Overprogram Pulse(Intera	active)	1.95	2.05	mS	
tVCS	VCC Setup Time	VCC Setup Time			μS	
tDV	Data Valid from CE	Data Valid from CE		250	nS	
tCES	CE Setup Time	CE Setup Time			μS	
tOE	Data valid from OE			150	nS	



WEFORMS(MX27C4096)

READ CYCLE


INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS



WAVEFORMS(MX27C4100)

PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

EPROM ATA SHEETS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C4100DC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C4100DC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C4096DC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096DC-15	150	60	100	40 Pin DIP(JEDEC pin out)

PLASTIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX27C4100PC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C4100PC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C4096PC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096PC-15	150	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096QC-12	120	60	100	44 Pin PLCC
MX27C4096QC-15	150	60	100	44 Pin PLCC

III. MASK ROM

(MASK PROGRAMMABLE READ ONLY MEMORY)

• •

MX23C1000/MX23C1010

1M-BIT(128K x 8) CMOS MASK ROM

FEATURES

- 131,072 x 8 organization
- Single +5V power supply
- Fast access time: 150/200ns
- Totally static operation
- · Completely TTL compatible

DESCRIPTION

The MX23C1000/1010 is a 5V static CMOS ROM with an access time of 150/200ns and low standby current of 100 μ A. It has a total of 1M programmable bits arranged as 128K x 8-bit words. It offers a broad range of compatibility to nowaday's high speed and large program storage system designs.

- Operating current: 40mA
- Standby current: 100µA
- Package type:
- 28 pin plastic DIP
- 32 pin plastic DIP/SOP

The MX23C1000 is available in 28 pin DIP and MX23C1010 is 32 pin DIP. MX23C1000 pin 20 chip enable (CE/CE) may be programmabled either active HIGH or LOW. MX23C1000 pin 20 output enable (OE/ \overline{OE}) may be programmed either active HIGH or LOW.

 $MX23C\underline{1010}$ pin 22 chip enable(CE/CE) and pin 24(OE/OE) maybe programmed either active HIGH or LOW.

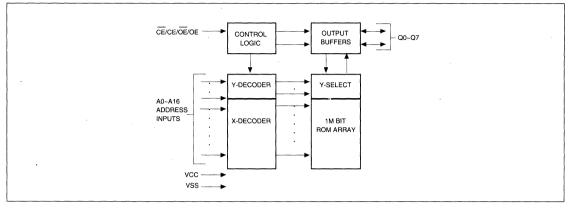
PIN CONFIGURATIONS 28 PDIP

20 - 01

32 SOP

N.C.	d	0		32		VCC
A16		2		31	Þ	N.C.
A15		3		30		N.C.
A12		4		29	Þ	A14
A7	口	5		28	Þ	A13
A6		6	2	27	Þ	A8
A5		7	MX23C1010	26		A9
A4		8	ò	25	Ь	A11
A3		9	8	24	Þ	OE/OE
A2		10	ŝ	23	Þ	A10
A1		11	_	22	Þ	CE/CE
A0		12		21	Þ	Q7
Q0		13		20	Þ	Q6
Q1	<u> </u>	14		19	Þ	Q5
Q2		15		18	Þ	Q4
VSS	\square	16		17		Q3

32 PDIP


N.C.	1	1	\sim	32	1	VCC
A16	č	2		31		N.C.
A15	0	3		30		N.C.
A12		4		29		A14
A7		5		28		A13
A6		6	6	27		A8
A5		7	ê	26		A9
A4		8	ÿ	25		A11
A3		9	MX23C1010	24		OE/OE
A2	0.	10	ŝ	23		A10
A1	C	11	-	22		CE/CE
A0	11	12		21		Q7
Q0	0	13		20		Q6
Q1	0	14		19		Q5
Q2		15		18		Q4
VSS		16		17	_	Q3

PIN FUNCTIONS

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Supply Pin(+5V)
VSS	Ground Pin

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to VCC + 0.5V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	0.5W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

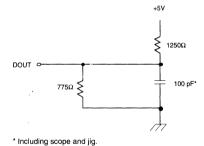
SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1 mA
VIH	Input High Voltage	2.2	VCC + 0.3	v ·	,
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μÄ	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	\overline{CE} > VCC - 0.2V
ICC2	Standby Supply Current		1	mA	CE = VIH
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE TA = 25°C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONTITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

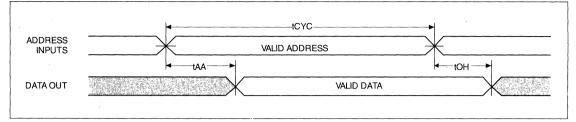
		23C100	23C1000/1010-15		23C1000/1010-20		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	150		200		ns	
tAA	Address Access Time		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		ns	
tACE	Chip Enable Access Time		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		100	ns	
tLZ	Output Low Z Delay	0		0		ns	Note 3
tHZ	Output High Z Delay		70		70	ns	Note 4

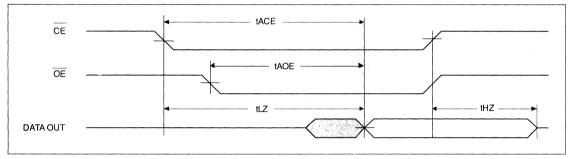

NOTE:

- 1. Measured with device selected at f = 5 MHz and output unloaded.
- 2. This parameter is periodically sampled and is not 100% tested.
- Output low-impedance delay (tLZ) is measured from CE going low.
- 4. Output high-impedance delay (tHZ) is measured from $\overline{\text{CE}}$ going high.

AC TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1


FIGURE 1. OUTPUT LOAD CIRCUIT



WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CUE VENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C1000PC-15	150	40	100	28 Pin DIP
MX23C1010PC-15	150	40	100	32 Pin DIP
MX23C1000MC-15	150	40	100 .	28 Pin SOP
MX23C1010MC-15	150	40	100	32 Pin SOP
MX23C1000PC-20	200	40	100	28 Pin DIP
MX23C1010PC-20	200	40	100	32 Pin DIP
MX23C1000MC-20	200	40	100	28 Pin SOP
MX23C1010MC-20	200	40	100	32 Pin SOP

2M-BIT(256K x 8) CMOS MASK ROM

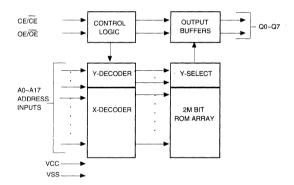
FEATURES

- 256K x 8 organization
- Single +5V power supply
- Fast access time: 150/200ns (max)
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION

The MX23C2000 is a 5V only, 2M-bit, Read Only Memory. It is organized as 256K words by 8 bit, operates from a single +5 volt supply, has a static standby mode, and has an access time of 150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

- · Operating current: 40mA
- Standby current: 100μ A
- Package type:
- 32 pin plastic DIP
- 32 pin plastic SOP


The MX23C2000 offers automatic power-down, with power-down controlled by the chip enable(\overline{CE}) Input. When \overline{CE} goes high, the device automatically powers down and remains in a low-power standby mode as long as \overline{CE} remains high.

MX23C2000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

PIN CONFIGURATIONS 32 PDIP

NC	С.	1	$\overline{\mathbf{\nabla}}$	32	🗅 vcc
A16	(<u>~</u>	2		31	
A15	Ε.,	3		30	🗀 A17
A12		4		29	🗆 A14
Α7	0	5		28	🗅 A13
A6	C	6	8:	27	🗀 A8
A5	С.,	7	2	26	- A9
A4	Ľ	8	ő	25	🗖 A11
A3	1	9	ğ	24	OE/OE
A2	C	10	MX23C2000	23	A10
A1	C	11	_	22	CE/CE
A0		12		21	🗆 Q7
Q0	C	13		20	🗆 Q6
Q1		14		19	🗆 Q5
Q2	0.	15		18	🗅 Q4
vss	C	16		17	D Q3

BLOCK DIAGRAM

32 SOP

PIN DESCRIPTION:

SYMBOL	
A0~A17	Address Input
Q0~Q7	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to VCC + 0.5V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	v	IOL = 2.1mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	CE > VCC - 0.2V
ICC2	Standby Supply Current		1.0	mA	CE = VIH
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE TA = 25°C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

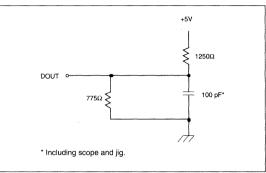
AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

	· · · · · · · · · · · · · · · · · · ·	23C2000-15		23C2000-20				
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS	
tCYC	Cycle Time	150		200		ns		
tAA	Address Access Time		150		200	ns		
tOH	Output Hold Time After Address Change	10		10		ns		
tACE	Chip Enable Access Time		150		200	ns		
tAOE	Output Enable/Chip Select Access Time		80		100	ns		
tLZ	Output Low Z Delay	0		0		ns	Note 3	
tHZ	Output High Z Delay		70		70	ns	Note 4	

NOTE:

- 1. Measured with device selected at f = 5 MHz and output unloaded.
- 2. This parameter is periodically sampled and is not 100% tested.
- 3. Output low-impedance delay (tLZ) is measured from CE going low.

4. Output high-impedance delay (tHZ) is measured from $\overrightarrow{\text{CE}}$ going high.



MX23C2000

AC TEST CONDITIONS

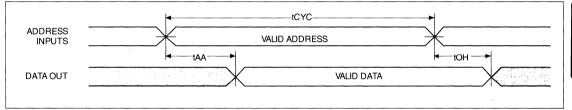
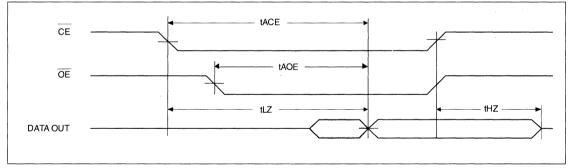

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1

FIG 1. OUTPUT LOAD CIRCUIT



WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

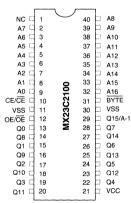
PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C2000PC-15	150	40	100	32 Pin DIP
MX23C2000MC-15	150	40	100	32 Pin SOP
MX23C2000PC-20	200	40	100	32 Pin DIP
MX23C2000MC-20	200	40	100	32 Pin SOP

2M-BIT(256K x 8/128K x 16) CMOS MASK ROM

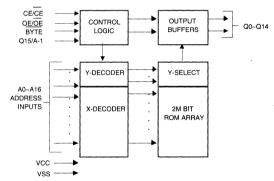
FEATURES

- Switchable organization
 - 256K x 8(byte mode)
 - 128K x 16(word mode)
- Single +5V power supply
- Fast access time: 150/200ns
- Totally static operation

GENERAL DESCRIPTION


The MX23C2100 is a 5V only, 2M-bit, Read Only Memory. It is organized as 256Kx 8 bits (byte mode) or as 128Kx16 bit (word mode) depending on BYTE (pin 31) voltage level. MX23C2100 has a static standby mode, and has an access time of 150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

- Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100μ A
- Package
 - 40 pin DIP(600 mil)


MX23C2100 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When CE/CE is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/OE inputs as well as CE/CE input may be programmed either active High or Low.

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q14	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
BYTE	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION

BYTE MODE(BYTE = VSS)

ĈĒ	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	x	x	Non selected	High Z	Standby(ICC2)	1
L	L/H	x	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD $MODE(\overline{BYTE} = VCC)$

CE	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	X	High Z	Non selected	High Z	Standby(ICC2)	<u> 1 </u>
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
Ĺ	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to 7.0V
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

VOH	Output High Voltage	2.4			
VOI				V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V .	
ILI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	CE > VCC - 0.2V
ICC2	Standby Supply Current		1.0	mA	CE = VIH
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

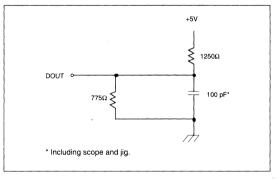
.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS: TA = 0°C to 70°C, VCC = $5V \pm 10\%$

		23C210	00-15	23C21	00-20		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	150		200		ns	
tAA	Address Access Time		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		ns	
tACE	Chip Enable Access Time		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		90	ns	
tLZ	Output Low Z Delay	0		0		ns	Note 3
tHZ	Output High Z Delay		70		70	ns	Note 4
tBHA	BYTE Access Time		150		200	ns	
tOHB	BYTE Output Hold Time	0		0		ns	
tBHZ	BYTE Output Delay Time		70		70	ns	
tBLZ	BYTE Output Set Time	10	n,	10		ns	

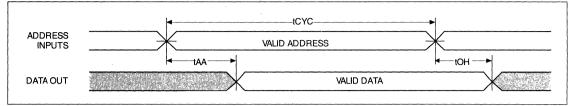
NOTE:

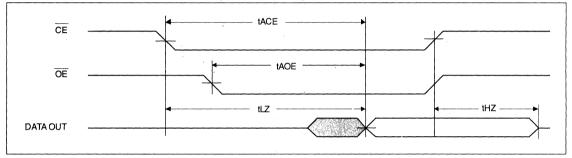

1. Measured with device selected at f = 5 MHz and output unloaded.

This parameter is periodically sampled and is not 100% tested.
 Output low-impedance delay (tLZ) is measured from CE going low.
 Output high-impedance delay (tHZ) is measured from CE going high.

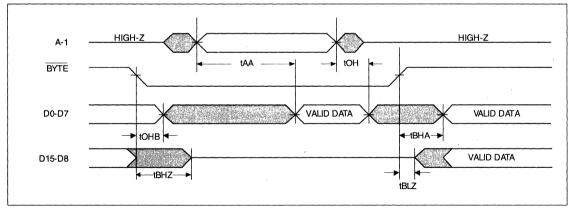
AC TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1


FIG. 1 OUTPUT LOAD CIRCUIT



WAVEFORMS


PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

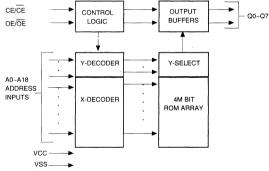
PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C2100PC-15	150	60	100	40 Pin DIP
MX23C2100PC-20	200	60	100	40 Pin DIP

4M-BIT(512K x 8) CMOS MASK ROM

FEATURES

- 512K x 8 organization
- Single +5V power supply ٠
- Fast access time: 120/150/200ns (max) ٠
- · Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION


The MX23C4000 is a 5V only, 4M-bit, Read Only Memory. It is organized as 512K words by 8 bit, operates from a single +5 volt supply, has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations. The MX23C4000 offers automatic power-down, with

- Operating current: 40mA
- Standby current: 100µ A
- Package type:
 - 32 pin plastic DIP
 - 32 pin plastic SOP

power-down controlled by the chip enable(CE) Input. When CE goes high, the device automatically powers down and remains in a low-power standby mode as long as CE remains high.

MX23C4000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

BLOCK DIAGRAM

PIN CONFIGURATIONS 32 PDOP

NC	Ε.	1	\mathcal{O}	32	Þ	VCC
A16	[2		31	þ	A18
A15	E	3		30	IJ	A17
A12		4		29		A14
Α7		5		28	Þ	A13
A6		6	8	27	Þ	A8
A5		7	MX23C4000	26	Þ	A9
A4		8	ő	25		A11
A3	C	9	ö	24		OE/OE
A2		10	ŝ	23		A10
A1	Γ.,	11		22		CE/CE
A0		12		21		Q7
Q0	0	13		20	Þ	Q6
Q1		14		19		Q5
Q2		15		18	Þ	Q4
/SS		16		17	Þ	Q3

32 PSOP

NC		0		32	Þ	VCC
A16		2		31	Þ	A18
A15		3		30	Þ	A17
A12		4		29	Þ	A14
Α7		5		28	Þ	A13
A6		6	-	27		A8
A5	11	7	MX23C4000	26	Þ	A9
A4		8	4	25	22	A11
A3	4	9	S	24	Þ	OE/OE
A2		10	S.	23		A10
A1	q	11	Ξ.	22	Þ	CE/CE
A0		12		21		Q7
Q0		13		20		Q6
Q1	с.	14		19	Þ	Q5
Q2		15		18	Þ	Q4
VSS		16		17	Þ	Q3
					-	

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A18	Address Input
Q0~Q7	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

MASK ROM

17-1

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to VCC + 0.5
Applied Output Voltage	-0.5V to VCC + 0.5
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1 mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	CE > VCC - 0.2V
ICC2	Standby Supply Current	•	1.0	mA	CE = VIH
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

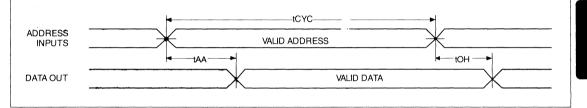
		23C4000-12		23C4000-15		23C4000-20			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	,
tAOE	Output Enable/Chip Select Access Time		80		80		100	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4

NOTE:

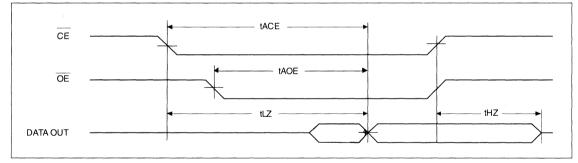
- 1. Measured with device selected at f = 5 MHz and output unloaded.
- 2. This parameter is periodically sampled and is not 100% tested.
- 3. Output low-impedance delay (tLZ) is measured from CE going low.
- 4. Output high-impedance delay (tHZ) is measured from $\overline{\text{CE}}$ going high.

MX23C4000

AC TEST CONDITIONS


Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1

+5V DOUT 775Ω 1250Ω 100 pF⁻ 100 pF⁻ 100 pF⁻


FIG 1. OUTPUT LOAD CIRCUIT

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ADDRESS)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C4000PC-12	120	40	100	32 Pin DIP
MX23C4000MC-12	120	40	100	32 Pin SOP
MX23C4000PC-15	150	40	100	32 Pin DÌP
MX23C4000MC-15	150	40	100	32 Pin SOP
MX23C4000PC-20	200	40	100	32 Pin DIP
MX23C4000MC-20	200	40	100	32 Pin SOP

MASK ROM DATA SHEETS

MX23C4100

4M-BIT(512K x 8/256K x 16) CMOS MASK ROM

FEATURES

- Switchable configuration
 512K x 8(byte mode)
 - 256K x 16(word mode)
- Single +5V power supply
- Fast access time: 120/150/200ns
- · Totally static operation

GENERAL DESCRIPTION

The MX23C4100 is a 5V only, 4M-bit, Read Only Memory. It is organized as 512K x 8 bits (byte mode) or as 256K x16 bit (word mode) depending on BYTE (pin 31) voltage level. MX23C4100 has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

- Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100µ A
- Package
- 40 pin DIP(600 mil)

MX23C4100 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When CE/CE is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/OE inputs as well as CE/CE input may be programmed either active High or Low. MASK ROM DATA SHEETŠ

PIN CONFIGURATIONS

	_					••
A17	ч	1		40	P	A8
A7	С	2		39	Π.	A9
A6	C1	з		38	Ξ.	A10
A5	0	4		37	D	A11
A4	C	5		36		A12
A3	C	6		35	3	A13
A2		7		34	Þ	A14
A1		8	0	33		A15
AO		9	2	32	2	A16
CE/CE	D	10	MX23C4100	31	Þ	BYTE
VSS	E.	11	ĕ	30	Þ	VSS
OE/OE		12	Ξ.	29	þ.	Q15/A-
QO	Γ.	13	Σ	28	þ	Q7
Q8		14		27	b.	Q14
Q1	C	15		26	þ.	Q6
Q9	C	16		25	Þ	Q13
Q2	C	17		24	h.	Q5
Q10	đ	18		23	b.	Q12
Q3	đ	19		22	Ь	Q4
Q11	d.	20		21	h.	VCC
Serie	_				Г	

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q14	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
BYTE	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION

BYTE MODE(BYTE = VSS)

ĈĒ	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	x	x	Non selected	High Z	Standby(ICC2)	1
L	L/H	x	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE(BYTE = VCC)

ĈE	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

ABSOLUTE MAXIMUM RATINGS*

VALUE
0°C to 70°C
-65°C to 125°C
-0.5V to 7.0V
-0.5V to 7.0V
-0.5V to 7.0V
1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	v	IOL = 2.1 mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5\
ICC3	Power-Down Supply Current		100	μΑ	CE > VCC - 0.2V
ICC2	Standby Supply Current		1.0	mA	CE = VIH
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

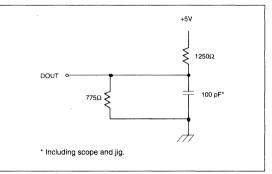
AC CHARACTERISTICS: TA = 0°C to 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	23C4100-12		23C4100-15		23C4100-20			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		70		80		90	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4
tBHA	BYTE Access Time		120		150		200	ns	
tOHB	BYTE Output Hold Time	0		0		0		ns	
tBHZ	BYTE Output Delay Time		70		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		10		ns	

NOTE:

1. Measured with device selected at f = 5 MHz and output unloaded.

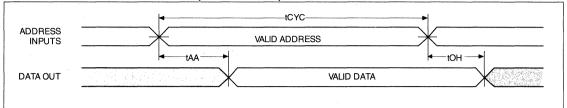
2. This parameter is periodically sampled and is not 100% tested.

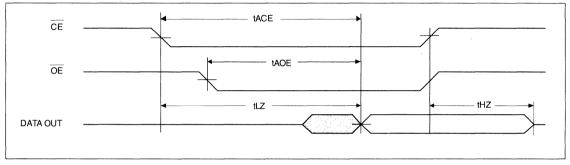

3. Output low-impedance delay (tLZ) is measured from CE going low.

4. Output high-impedance delay (tHZ) is measured from CE going high.

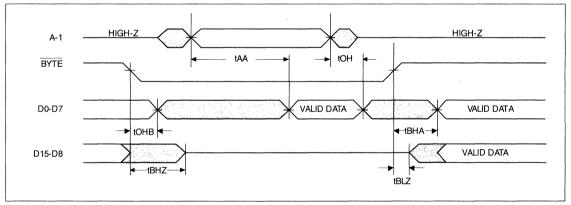
AC TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V			
Input Rise and Fall Times	10ns			
Input Timing Level	1.5V			
Output Timing Level	0.8V and 2.0V			
Output Load	See Figure 1			


FIG. 1 OUTPUT LOAD CIRCUIT



WAVEFORMS


PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C4100PC-12	120	60	100	40 Pin DIP
MX23C4100PC-15	150	60	100	40 Pin DIP
MX23C4100PC-20	200	60	100	40 Pin DIP

MX23C8000

8M-BIT(1M x 8) CMOS MASK ROM

FEATURES

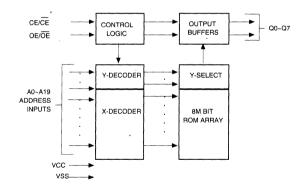
- 1M x 8 organization
- Single +5V power supply
- Fast access time: 120/150/200ns (max)
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION

The MX23C8000 is a 5V only, 8M-bit, Read Only Memory. It is organized as 1M words by 8 bit, operates from a single +5 volt supply, has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

- Operating current: 40mA
- Standby current: 100µ A
- Package type:
 - 32 pin plastic DIP
 - 32 pin plastic SOP

The MX23C8000 offers automatic power-down, with power-down controlled by the chip enable(\overline{CE}) Input. When CE goes high, the device automatically powers down and remains in a low-power standby mode as long as \overline{CE} remains high.


MX23C8000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

PIN CONFIGURATIONS

32 PDIP

A19 C A16 C A15 C A12 C A7 C A6 C A5 C A4 C A3 C A1 C A0 C Q1 C	3 4 5 6 7 8 9 10 11 12 13 14	MX23C8000	32 31 30 29 28 27 26 25 24 23 22 21 20 19	VCC A18 A17 A14 A13 A8 A9 A11 OE/OE A10 CE/CE Q7 Q6 Q5
			19	D Q5
Q2 🖂	15		18	- Q4
vss 🗆	16		17	_ Q3
	L		-	

BLOCK DIAGRAM

32 SOP

A19 🗖	0		32	b vcc
A16 🗖	2		31	🗖 A18
A15 🗖	3		30	🗅 A17
A12 🗖	4		29	🗀 A14
A7 🗖	5		28	🗀 A13
A6 🗖	6	-	27	🗆 A8
A5 🗖	7	MX23C8000	26	🗖 A9
A4 🗖	8	8	25	D A11
A3 🗖	9	ŝ	24	D OE/OE
A2 🗖	10	S	23	🗀 A10
A1 🗖	11	Σ	22	CE/CE
A0 🗖	12		21	🗆 Q7
Q0 🗖	13		20	🗆 Q6
Q1 🗖	14		19	🗅 Q5
Q2 🗖	15		18	⊨ Q4
vss 🗖	16		17	🗅 Q3

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A19	Address Input
Q0~Q7	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to VCC + 0.5
Applied Output Voltage	-0.5V to VCC + 0.5
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	CE > VCC - 0.2V
ICC2	Standby Supply Current		1.0	mA	CE = VIH
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS TA = 0°C to 70°C, VCC = $5V \pm 10\%$

		23C80	00-12	23C8	000-15	23C8	000-20		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	120		150		200		ns	
(AA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		80		100	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4

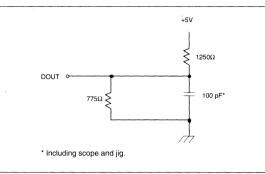
NOTE:

- 1. Measured with device selected at f = 5 MHz and output unloaded.
- 2. This parameter is periodically sampled and is not 100% tested.
- 3. Output low-impedance delay (tLZ) is measured from CE going low.

4. Output high-impedance delay (tHZ) is measured from $\overline{\text{CE}}$ going high.

MX23C8000

EETS


HS M.

ASK RON

AC TEST CONDITIONS

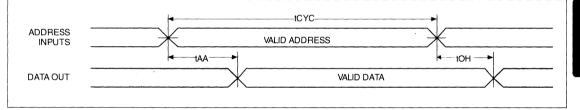

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1

FIG 1. OUTPUT LOAD CIRCUIT



WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C8000PC-12	120	40	100	32 Pin DIP
MX23C8000MC-12	120	40	100	32 Pin SOP
MX23C8000PC-15	150	40	100	32 Pin DIP
MX23C8000MC-15	150	40	100	32 Pin SOP
MX23C8000PC-20	200	40 .	100	32 Pin DIP
MX23C8000MC-20	200	40	100	32 Pin SOP

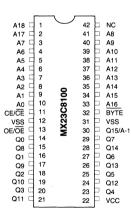
19-3

MX23C8100

8M-BIT(1M x 8/512K x 16) CMOS MASK ROM

FEATURES

- · Switchable configuration
 - 1M x 8(byte mode)
 - 512K x 16(word mode)
- Single +5V power supply
- Fast access time: 120/150/200ns (max)
- Totally static operation

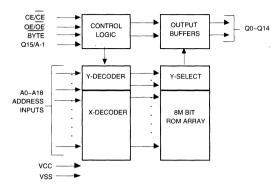

- Completely TTL compatible
- · Operating current: 60mA
- Standby current: 100μ A
- Package
 - 42 pin DIP(600 mil)
 - 44 pin SOP(500 mil)

GENERAL DESCRIPTION

The MX23C8100 is a 5V only, 8M-bit, Read Only Memory. It is organized as 1M x 8 bits (byte mode) or as 512K x 16 bit (word mode) depending on \overrightarrow{BYTE} (pin 32) voltage level. MX23C8100 has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations. MX23C8100 offers automatic power-down, with powerdown controlled by the chip enable(CE/ \overline{CE}) Input. When CE/ \overline{CE} is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/ \overline{CE} stays in the unselected mode.

The OE/OE inputs as well as CE/CE input may be programmed either active High or Low. MASK ROM DATA SHEET

PIN CONFIGURATIONS



44 SOP

NC		0		44		NC
A18		2		43	Ь	NC
A17		3		42		A8
A7		4		41	\Box	A9
A6		5		40		A10
A5		6		39		A11
A4		7		38		A12
A3		8	_	37		A13
A2	C	9	8	36	Þ	A14
A1	0	10	5	35		A15
A0	-	11	õ	34		A16
CE/CE	d	12	ŝ	33	Þ	BYTE
VSS		13	MX23C8100	32	Þ	VSS
OE/OE		14		31	Þ	Q15/A-1
Q0		15		30		Q7
Q8		16		29		Q14
Q1		17		28	Þ	Q6
Q9	-	18		27	Þ	Q13
Q2		19		26	Þ	Q5
Q10		20		25	Þ	Q12
Q3		21		24	Þ	Q4 .
Q11	9	22		23	P	VCC

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A18	Address Input
Q0~Q14	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
BYTE	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION

BYTE MODE(BYTE = VSS)

ČĒ	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	x	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	×	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE(BYTE = VCC)

ČE	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
Н	x	High Z	Non selected	High Z	Standby(ICC2)	11
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to 7.0V
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1 mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V ·	
ÍLI	Input Leakage Current		10	μA	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	CE > VCC - 0.2V
ICC2	Standby Supply Current		1	mA	CE = VIH
ICC1	Operating Supply Current		60	mA	Note 1

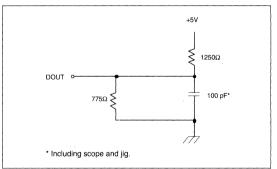
CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS: TA = 0°C to 70°C, VCC = $5V \pm 10\%$

		23C8100-12		23C8	100-15	23C8100-20			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10	/	ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		70		80		90	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4
tBHA	BYTE Access Time		120		150		200	ns	
tOHB	BYTE Output Hold Time	0		0		0		ns	
tBHZ	BYTE Output Delay Time		70		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		10		ns	

NOTE:

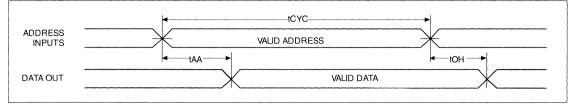

1. Measured with device selected at f = 5 MHz and output unloaded.

This parameter is periodically sampled and is not 100% tested.
 Output low-impedance delay (ILZ) is measured from CE going low.
 Output high-impedance delay (tHZ) is measured from CE going high.

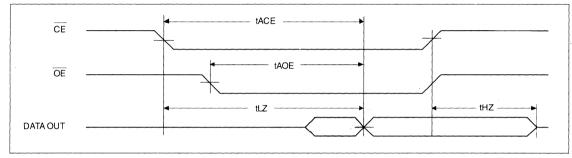
AC TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1

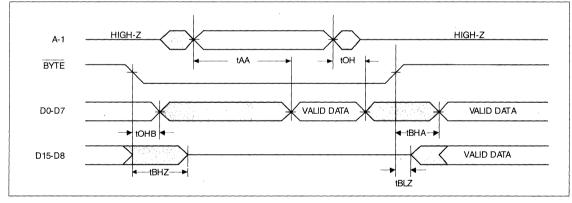
FIG. 1 OUTPUT LOAD CIRCUIT



ROM


IASK I TA SH

WAVEFORMS


PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C8100PC-12	120	60	100	42 Pin DIP
MX23C8100MC-12	120	60	100	44 Pin SOF
MX23C8100PC-15	150	60	100	42 Pin DIP
MX23C8100MC-15	150	60	100	44 Pin SOF
MX23C8100PC-20	200	60	100	42 Pin DIP
MX23C8100MC-20	200	60	100	44 Pin SOF

MX23C1610

16M-BIT(2M x 8/1M x 16) CMOS MASK ROM

FEATURES

- · Switchable configuration
 - 2M x 8(byte mode)
 - 1M x 16(word mode)
- Single +5V power supply

GENERAL DESCRIPTION

- Fast access time: 120/150/200ns (max)
- · Totally static operation

Completely TTL compatible

- Operating current: 60mA
- Standby current: 100μ A
- Package
 - 42 pin DIP (600 mil) - 44 pin SOP (500 mil)
 - 44 pin SOP (500 mil

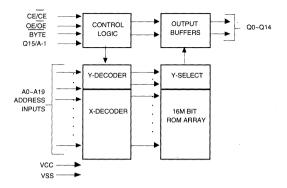
The MX23C1610 is a 5V only, 16M-bit, Read Only Memory. It is organized as 2,097,152 x 8 bits (byte mode) or as 1M x 16 bit (word mode) depending on BYTE (pin 32) voltage level. MX23C1610 has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations. MX23C1610 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When CE/CE is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/\overline{OE} inputs as well as CE/\overline{CE} input may be programmed either active High or Low.

MASK ROM DATA SHEETS

PIN CONFIGURATIONS

	r				-	
A18	d	1	\bigcirc	42	Ь	A19
A17		2		41	Þ	A8
A7		3		40	þ	A9
A6		4		39		A10
A5	D	5		38		A11
A4	C	6		37		A12
A3		7		36	Þ	A13
A2	q	8	2	35		A14
A1	C	9	MX23C1610	34	Þ	A15
A0	C	10	5	33	Þ	A16
CE/CE		11	ß	32	P	BYTE
VSS		12	¥	31	P	VSS
OE/OE		13	~	30	P	Q15/A-1
Q0	C	14		29	p.	Q7
Q8	C	15		28	P	Q14
Q1	C,	16		27	P	Q6
Q9		17		26	P	Q13
Q2	0	18		25	P	Q5
Q10	9	19		24	P	Q12
Q3		20		23	P	Q4
Q11	9	21		22	P.	VCC


44 SOP

				_		
NC		0		44	Ь	NC
A18		2		43		A19
A17	C	3		42		A8
A7		4		41		A9
A6		5		40		A10
A5		6		39		A11
A4	C.1	7		38		A12
AЗ		8		37	Þ	A13
A2		9	₽ 2	36	Þ	A14
A1		10	16	35	Þ	A15
AO		11	Ö	34	Þ	A16
CE/CE	C	12	33	33		BYTE
VSS	0	13	MX23C1610	32	Þ	VSS
OE/OE	0	14	~	31		Q15/A-
QO	C	15		30		Q7
Q8	C.	16		29		Q14
Q1		17		28		Q6
Q9	C	18		27	Þ	Q13
Q2	-	19		26	Þ	Q5
Q10	C.,	20		25	Þ	Q12
Q3		21		24	Þ	Q4
Q11		22		23	Þ	VCC
	L				1	

BLOCK DIAGRAM

PIN DESCRIPTION:

distant and the second s	
SYMBOL	PIN NAME
A0~A19	Address Input
Q0~Q14	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
BYTE	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION

BYTE MODE(BYTE = VSS)

CE	OE/OE	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
н	x	х	Non selected	High Z	Standby(ICC2)	1
L	L/H	х	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE(BYTE = VCC)

ĈĒ	OE/OE	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
н	х	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: X = H or L

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to 7.0V
VCC to Ground Potential	-0.5V to 7.0V
Power Dissipation	1.0W

*NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA = 0°C TO 70°C, VCC = $5V \pm 10\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -1.0mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1 mA
VIH	Input High Voltage	2.2	VCC + 0.3	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	μ A	VIN = 0 to 5.5V
ILO	Output Leakage Current		10	μA	VOUT = 0 to 5.5V
ICC3	Power-Down Supply Current		100	μA	\overline{CE} > VCC - 0.2V
ICC2	Standby Supply Current		1	mA	CE = VIH
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA = 25° C, f = 1.0 MHz (Note 2)

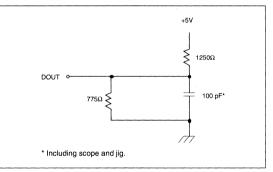
SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance		10	pF	VIN = 0V
COUT	Output Capacitance		10	pF	VOUT = 0V

AC CHARACTERISTICS: TA = 0°C to 70°C, VCC = $5V \pm 10\%$

		23C1	610-12	23C10	610-15	23C1	610-20		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tCYC	Cycle Time	120		150		200		ns	
tAA ·	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		70		80		90	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4
tBHA	BYTE Access Time		120		150		200	ns	
tOHB	BYTE Output Hold Time	0		0				ns	
tBHZ	BYTE Output Delay Time		70		70		70	ns	
tBLZ	BYTE Output Set Time	10		10		10		ns	

NOTE:

1. Measured with device selected at f = 5 MHz and output unloaded.

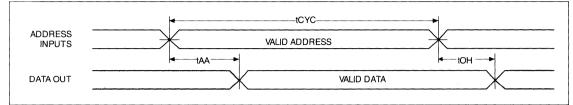

2. This parameter is periodically sampled and is not 100% tested.

Output low-impedance delay (tLZ) is measured from CE going low.
 Output high-impedance delay (tHZ) is measured from CE going high.

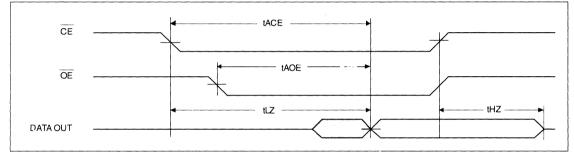
AC TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Fall Times	10ns
Input Timing Level	1.5V
Output Timing Level	0.8V and 2.0V
Output Load	See Figure 1

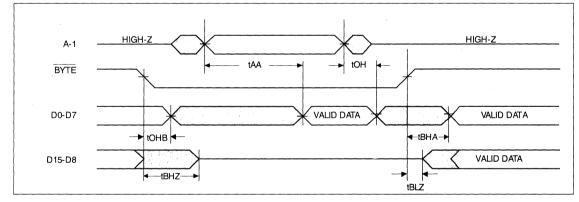
FIG. 1 OUTPUT LOAD CIRCUIT



MASK RON


DATA SH

WAVEFORMS


PROPAGATION DELDELAY FROM ADDRESS (CE/OE = ACTIVE)

PN DELAY FROM CHIP ENABLE CHIP (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(µA)	PACKAGE
MX23C1610PC-12	120	60	100	42 Pin DIP
MX23C1610MC-12	120	60	100	44 Pin SOP
MX23C1610PC-15	150	60	100	42 Pin DIP
MX23C1610MC-15	150	60	100	44 Pin SOP
MX23C1610PC-20	200	60	100	42 Pin DIP
MX23C1610MC-20	200	60	100	44 Pin SOP

IV. FLASH MEMORY

FLASH MEMOR

1M-BIT (128K x 8) CMOS FLASH MEMORY

FEATURES

- 131,072 bytes by 8-bit organization
- Fast access time: 90/120/150 ns
- Low power consumption
 - 50mA maximum active current
 - 100µ A maximum standby current
- + Programming and erasing voltage $12V\pm0.6V$
- Command register architecture
 - Byte Programming (10µ s typical)
 - Chip Erase (1 sec typical)
 - Block Erase (16384 bytes by 8 blocks)
- Auto Erase (chip & block) and Auto Program
 - DATA polling
 - Toggle bit

- 10,000 minimum erase/program cycles
- Latch-up protected to 100mA from -1 to VCC+1V
- · Advanced CMOS Flash memory technology
- Compatible with JEDEC-standard byte-wide 32-pin EPROM pinouts
- Package type:
 - 32-pin plastic DIP
 - 32-pin PLCC
 - 32-pin SOP
 - 32-pin TSOP (Type 1)

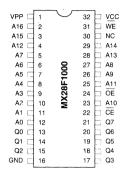
GENERAL DESCRIPTION

The MX28F1000 is a 1-mega bit Flash memory organized as 128K bytes of 8 bits each. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX28F1000 is packaged in 32-pin PDIP, PLCC, SOP and TSOP. It is designed to be reprogrammed and erased in-system or in-standard EPROM programmers.

The standard MX28F1000 offers access times as fast as 120 ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX28F1000 has separate chip enable (\overline{CE}) and output enable (\overline{OE}) controls.

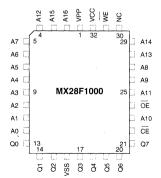
MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX28F1000 uses a command register to manage this functionality, while maintaining a standard 32-pin pinout. The command register allows for 100% TTL level control inputs and fixed power supply levels during erase and programming, while maintaining maximum EPROM compatibility.

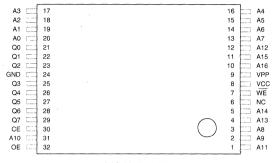
MXIC Flash technology reliably stores memory contents even after 10,000 erase and program cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX28F1000 uses a 12.0V + 5% VPP supply to perform the High Reliability Erase and High Reliability Program algorithms.


The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1V to VCC + 1V.

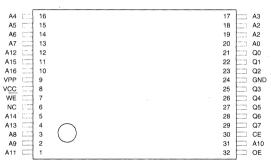
MX28F1000

PIN CONFIGURATIONS


32 PDIP


32 SOP

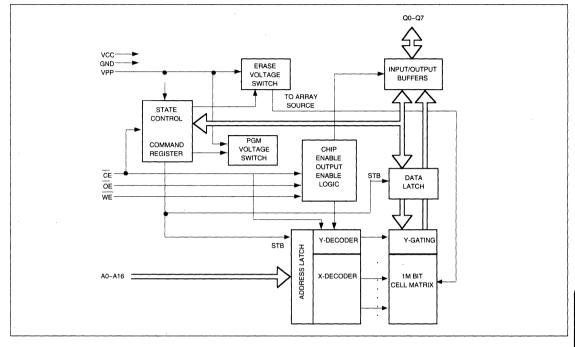
				-	
VPP 🖂	0		32	b.	vcc
A16 😂	2		31	1	WE
A15 🗆	3		30	Þ	NC
A12 🗆	4		29	Þ	A14
A7 🗆	5		28	Þ	A13
A6 🗆	6	-	27	Þ	A8
A5 🗆	7	8	26	Þ	A9
A4 🗆	8	9	25	Þ	A11
A3 🗆	9	MX28F1000	24		OE
A2 🗆	10	S.	23	Þ	A10
A1 🗆	11	Σ	22	Þ	ĈĒ
A0 🗆	12		21	Þ	Q7
Q0 🗆	13		20		Q6
Q1 🗆	14		19	Þ	Q5
Q2 . 🗔	15		18	Þ	Q4
GND 🗆	16		17	Þ	Q3
		The second se		-	


32 PLCC

TSOP (TYPE 1)

(NORMAL TYPE)

(REVERSE TYPE)


PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write enable Pin
VPP	Program Supply Voltage
VCC	Power Supply Pin (+5V)
GND	Ground Pin

MX28F1000

BLOCK DIAGRAM

•

MX28F4000

4M-BIT (512K x 8) CMO8 FLASH MEMORY

FEATURES

- 524,288 bytes by 8-bit organization
- Fast access time: 120/150/200 ns
- Low power consumption
 - 50mA maximum active current
 100µ A maximum standby current
- Programming and erasing voltage $12V \pm 0.6V$
- Command register architecture
 - Byte Programming (10µ s typical)
 - Chip Erase (1 sec typical)
 - Block Erase (16384 bytes by 32 blocks)
- · Auto Erase (chip & block) and Auto Program
 - DATA polling
 - Toggle bit

GENERAL DESCRIPTION

The MX28F4000 is a 4-mega bit Flash memory organized as 512K bytes of 8 bits each. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX28F4000 is packaged in 32-pin PDIP, SOP and TSOP. It is designed to be reprogrammed and erased in-system or in-standard EPROM programmers.

The standard MX28F4000 offers access times as fast as 120 ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX28F4000 has separate chip enable (\overline{CE}) and output enable (\overline{OE}) controls.

MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX28F4000 uses a command register to manage this functionality, while maintaining a standard 32-pin pinout. The command register allows for 100% TTL level control inputs and fixed power supply levels during erase and programming, while maintaining maximum EPROM compatibility.

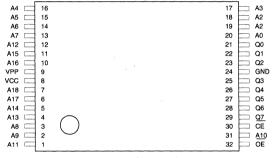
MXIC Flash technology reliably stores memory contents even after 10,000 erase and program cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX28F4000 uses a 12.0V + 5% VPP supply to perform the High

- 10,000 minimum erase/program cycles
- Latch-up protected to 100mA from -1 to VCC+1V
- Advanced CMOS Flash memory technology
- Compatible with JEDEC-standard byte-wide 32-pin EPROM pinouts
- Package type:
 - 32-pin plastic DIP
 - 32-pin SOP
 - 32-pin TSOP (Type 1)

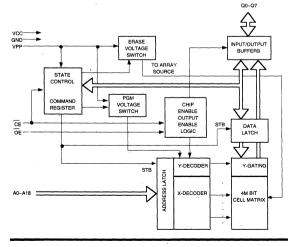
Reliability Erase and High Reliability Program algorithms.

The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1V to VCC + 1V.

MX28F4000

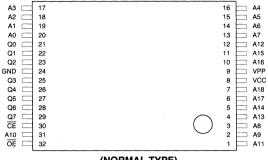

PIN CONFIGURATIONS

32 PDIP


32 SOP

					-	
VPP		0		32	Þ	vcc
A16	d	2		31	Þ	A18
A15		3		30		A17
A12	디	4		29	Þ	A14
A7		5		28		A13
A6	d	6	_	27	Þ	A8
A5		7	8	26	Þ	A9
A4		8	MX28F4000	25	Þ	A11
A3		9	. 160	24	Þ	OE
A2		10	2	23	Þ	A10
A1		11	z	22	Þ	CE
A0		12		21	Þ	Q7
Q0		13		20	Þ	Q6
Q1		14		19	Þ	Q5
Q2		15		18	Þ	Q4
GND		16		17	Þ	Q3

(REVERSE TYPE)

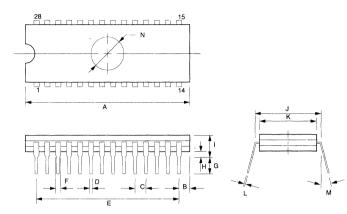

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A18	Address Input
Q0~Q7	Data Input/Output
CE	Chip Enable Input
ŌE	Output Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin (+5V)
GND	Ground Pin

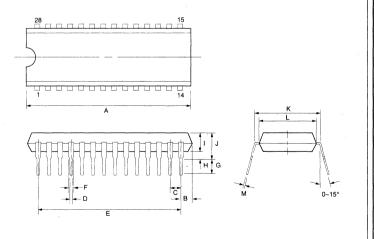
TSOP (TYPE 1)

(NORMAL TYPE)


V. PACKAGE INFORMATION

28-PIN CERDIP(MSI) WITH WINDOW (600 mil)

ITEM	MILLIMETERS	INCHES
А	37.69 max	1.485 max
в	1.85 ± .30	.073 ± .012
С	2.54 [TP]	.100 [TP]
D	.46 ± .05	.018 ± .002
E	33.02	1.300
F	1.40 ± .05	$.055 \pm .002$
G	3.43 ± .38	.135 ± .015
н	.96 ± .43	.038 ± .017
<u> </u>	4.87	.198
J	15.48 ± .13	.610 ± .005
к	13.38 ± .38	.527 ± .015
Ĺ	.25 ± .13	.010 ± .005
м	0 ~ 15°	0 ~ 15°
N	ø7.11	ø.280


NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

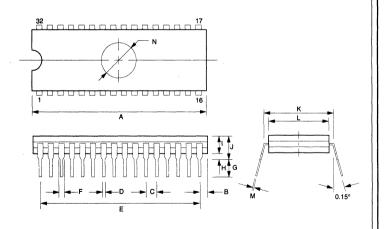
28-PIN PLASTIC DIP (600 mil)

ITEM	MILLIMETERS	INCHES
A	37.34 max	'1.470 max
в	2.03 [REF]	.080 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.018 [Typ.]
E	32.99	1.300
F	1.52 [Typ.]	.060 [Typ.]
G	3.30 ± .25	.130 ± .010
н	.51 [REF]	.020 [REF]
I	3.94 ± .25	.155 ± .010
J	5.33 max.	.210 max.
ĸ	15.22 ± .25	.600 ± .010
L	13.84 ± .25	.545 ± .010
м	.25 [Typ.]	.010 [Typ.]

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

NFORMAT

1

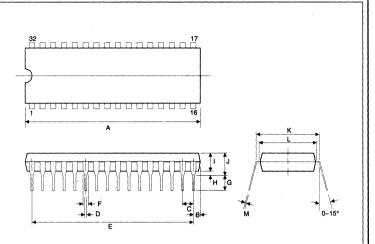

28-PIN PLASTIC SOP (450 mil)

ITE	MILLIMETER	S INCHES
A	18.42 max.	.725 max.
В	.71 [REF]	.028 [REF]
C	1.27 [TP]	.050 [TP]
D	.41 [Typ.]	.016 [Typ.]
E	.10 min.	.004 min.
F	2.79 max.	.110 max.
G	2.36 ± .13	.093 ± .005
н	10.30 ± .25	.406 ± .010
I	7.49 ± .13	.295 ± .005
J	1.42	.056
к	.25 [Typ.]	.010 [Typ.]
L	.76	.030
NOTE:	Each lead centerline mm[.01 inch] of its tri maximum material cor	ue position [TP] at

32-PIN CERDIP (MSI) WITH WINDOW (600 mil)

ITEM	MILLIMETERS	INCHES
Α	42.26 max	1.665 max
в	1.90 ± .38	.075 ± .015
С	2.54 [TP]	.100 [TP]
D	.46 [REF]	.018 [REF]
E	38.07	1.500
F	1.42 [REF]	.056 [REF]
G	3.43 ± .38	.135 ± .015
н	.96 ± .43	.038 ± .017
1	4.06	.160
J	5.00	.203
κ	15.58 ± .13	.614 ± .005
L	13.20 ± .38	.520 ± .015
м	.25 [REF]	.010 (REF)
N	ø8.12	ø.320

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.


2

32-PIN PLASTIC DIP (600 mil)

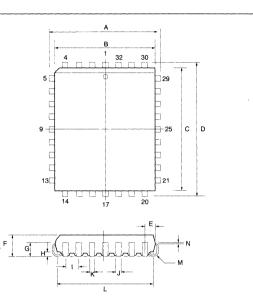
ITEM	MILLIMETERS	INCHES
A	42.13 max.	1.660 max.
в	1.90 [REF]	.075 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.018 [Typ.]
E	38.07	1.500
F	1.27 [Typ.]	.050 [Typ.]
G	3.30 ± .25	.130 ± .010
н	.51 [REF]	.020 [REF]
1	3.94 ± .25	.155 ± .010
J	5.33 max.	.210 max.
к	15.22 ± .25	.600 ± .010
L	13.97 ± .25	.550 ± .010
М	.25 [Typ.]	.010 [Typ.]

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

32-PIN PLASTIC SOP (450 mil)

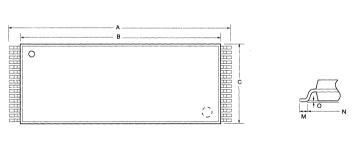
ITEM	MILLIMETERS	INCHES	32 17
Α	20.95 max.	.825 max.	
В	1.00 [REF]	.039 [REF]	
С	1.27 [TP]	.050 [TP]	
D	.40 [Typ.]	.016 [Typ.]	
E	.05 min.	.002 min.	0
F	3.05 max.	.120 max.	
G	2.69 ± .13	.106 ± .005	1 16
н	14.12 ± .25	.556 ± .010	A H
1	11.30 ± .13	.445 ± .005	
J	1.42	.056	
к	.20 [Typ.]	.008 [Typ.]	┤ᢤ᠋᠋ᠠᠠᠠᡳᢤᢤ᠋ᡎᡳᡕᡳᡊ᠇ᠬ᠇ᡳᡧᢢᢩᡀ᠖ᢩ᠋ᢩᠮ᠈᠋ᢩ᠆᠆᠆᠆᠆᠆
L	.79	.031	┉┉┉┉
mm	h lead centerline is [[.01 inch] of its true kimum material conditi	position [TP] at a	

PACKAGE IFORMATION


⊨ĸ

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

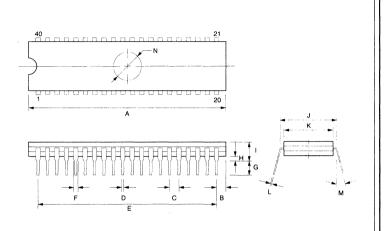
ITE	MILLIMETERS	INCHES
Α	12.44 ± .13	.490 ± .005
в	11.50 ± .13	.453 ± .005
С	14.04 ± .13	.553 ± .005
D	14.98 ± .13	$.590 \pm .005$
Е	1.93	.076
F	3.30 ± .25	.130 ± .010
G	2.03 ± .13	$.080 \pm .005$
н	.51 ± .13	$.020\pm.005$
1	1.27 [Typ.]	.050 [Typ.]
J	.71[REF]	.028[REF]
к	.46 [REF]	.018 [REF]
Ĺ	10.40/12.94 (W) (L)	.410/.510 (W) (L)
М	.89 R	.035 R
N	.25 (TYP.)	.010 (TYP.)
OTE:	Each lead centerline is	located within .2


TE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

32-PIN PLASTIC TSOP

ITEM	MILLIMETERS	INCHES
A	20.0 ± .20	.078 ± .006
в	18.40 ± .10	.724 ± .004
С	8.20 max.	.323 max.
D	0.15 [Typ.]	.006 [Typ.]
E	.80 [Typ.]	.031 [Typ.]
F	.20 ± .10	.008 ± .004
G	.30 ± .10	.012 ± .004
н	.50 [Typ.]	.020 [Typ.]
I	.45 max.	.018 max.
J	0 ~ .20	0 ~ .008
к	1.00 ± .10	.039 ± .004
L	1.27 max.	.050 max.
М	.50	.020
N	19.00	.748
0	0~5	.500

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.


4

40-PIN CERDIP (MSI) WITH WINDOW (600 mil)

ITEM	MILLIMETERS	INCHES
A	53.34 max.	2.100 max.
В	1.85 ± .30	.073 ± .012
С	2.54 [TP]	.100 [TP]
D	.46 ± .05	.018 ± .002
E	48.22	1.900
F	1.40 ± .05	.055 ± .002
G	3.43 ± .38	.135 ± .015
н	.94 ± .41	.037 ± .016
1	5.00	.197
J	15.51 ± .08	.611 ± .003
к	14.82 ± .38	.584 ± .015
L	.25 ± .13	.010 ± .005
М	0~15°	0~15°
N	φ 9.6 4	ф.380

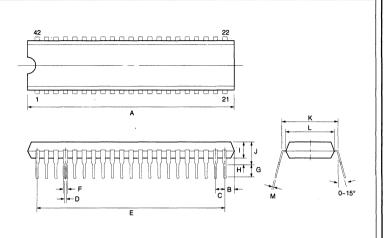
NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

40-PIN PLASTIC DIP (600 mil)

ITEM	MILLIMETERS	INCHES
A	52.54 max.	2.070 max.
В	2.03 [REF]	.080 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.018 [Typ.]
Е	48.22	1.900
F	1.52 [Typ.]	.060 [Typ.]
G	3.30 ± .25	.130 ± .010
Н	.51 [REF]	.020 [REF]
Ļ	3.94 ± .25	.155 ± .010
J	5.33 max.	.210 max.
к	15.22 ± .25	.600 ± .010
L	13.97 ± .25	.550 ± .010
М	.25 [Typ.]	.010 [Typ.]

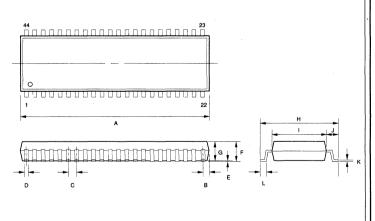
ACKAGE

NOTE: Each lead center ime is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.


5

42-PIN PLASTIC DIP (600 mil)

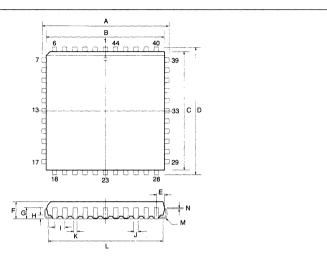
ITEM	MILLIMETERS	INCHES
A	52.54 max.	2.070 max.
в	0.76 [REF]	.030 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.018 [Typ.]
E	50.76	2.000
F	1.27 [Typ.]	.050 [Typ.]
G	3.30 ± . 25	.130 ± .010
н	.51 [REF]	.020 [REF]
I	3.94 ±. 25	.155 ± .010
J	5.33 max.	.210 max.
к	15.22 ± .25	.600 ± .010
L	13.97± .25	.550 ± .010
м	.25 [Typ.]	.010 [Typ.]


NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

44-PIN PLASTIC SOP

ITEM	MILLIMETERS	INCHES
Α	28.70 max.	1.130 max.
В	1.10 [REF]	.043 [REF]
С	1.27 [TP]	.050 [TP]
D	.40 ± .10 [Typ.]	.016 ± .004 [Typ.]
E	.010 min.	.004 min.
F	3.00 max.	.118 max.
G	2.80 ± .13	.110 ± .005
н	16.04 ± .30	.631 ± .012
I	12.60	0.496
J	1.72	.068
к	.15 ± .10 [Typ.]	.006 ± .004 [Typ.]
L	.80 ± .20	.031 ± .008

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.



44-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM	MILLIMETERS	INCHES
A	17.53 ± .12	.690 ± .005
В	16.59 ± .12	$.653 \pm .005$
С	16.59 ± .12	.653 ± .005
D	17.53 ± .12	.690 ± .005
E	1.95	.077
F	4.70 max.	.185 max
G	2.55 ± .25	.100 ± .010
н	.51 min.	.020 min.
1	1.27 [Typ.]	.050 [Typ.]
J	.71 ± .10	.028 ± .004
к	.46 ± .10	.018 ± .004
L	15.50 ± .51	$.610 \pm .020$
м	.63 R	.025 R
N	.25 [Typ.]	.010 [Typ.]

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at a maximum material condition.

.

VI. DISTRIBUTION CHANNEL

Domestic Representatives

ALABAMA

Concord Components 190 Lime Quarry Road, Ste. 102 Madison, AL 35758 Ph: (205) 772-8883 Fx: (205) 772-8262

CALIFORNIA

BAE Sales Inc. 2001 Gateway Place Suite 315W San Jose, CA 95110 Ph: (408) 452-8133 Fx: (408)452-8139

BAE Sales Inc. 9119 Eden Oak Circle Loomis, CA 95650 Ph: (916) 652-6777 Fx: (916) 652-5678

Littlefield & Smith Assoc. 11230 Sorrento Valley Road, Ste. 115 San Diego, CA 92121 Ph: (619) 455-0055 Fx: (619) 455-1218

Spectrum Rep. Co. 31368 Via Colinas, Suite 101 Westlake Village, CA 91362 Ph: (818) 706-2919 Fx: (818) 706-2978

Spectrum Rep. Co. 25 Mauchly, Suite 311 Irvine, CA 92718 Ph: (714) 453- 1525 Fx: (714) 453- 1925

CANADA

Kayronics Inc. 5800 Thimens Blvd. Ville St-Laurent, Quebec H4S IS5 Ph: (514) 745-5800 Fx: (514) 745-5858

Kaytronics Inc. 6815-8th Street NE #179 Calgary, Alberta T2E 7H7 Ph: (604) 294-2000 Fx: (604) 294-4585

Kaytronics Inc. 300 March Road, #303 Kanata, Ontarjo K2K 2E2 Ph: (613) 564-0080 Fx: (613) 592-0373

Kaytronics Inc. 405 Britannia Rd. E. #206 Mississauga, Ontario L4Z 3E6 Ph: (416) 507-6400 Fx: (416) 507-6444

CONNECTICUT

Datamark 2514 Boston Post Road Guilford, CT 06437 Ph: (203) 453-0575 Fx: (203)453-5935

COLORADO

Lange Sales Inc. 1500 West Canal Court Building A - Suite 100 Littleton, CO 80120 Ph: (303) 795-3600 Fx: (303) 795-0378

FLORIDA

VG Sales 1001 NW 62nd Street Suite 205 Fe. Lauderdale, FL 33309 Ph: (305) 938-4333 Fx: (305) 938-4331 (800) 654-8287

VG Sales 407 Whooping Loop Suite 1655 Altamonte Springs, FL 32701 Ph: (407) 831-8688 Fx: (407) 831-0305 (800) 228-8088

VG Sales 7901 4th Street North Suite 202 St. Petersburg, FL 33702 Ph: (813) 576-0020 Fx: (813) 579-9905

VG Sales PO BOX 3431 Marina Staaon Mataguez, PR 00681 Ph: (809) 831-4050 Fx: (809) 831-4250 Mendez Vigo So. #69, S 601 Mayaguez, PR 00680

GEORGIA

Concord Components 6048 Tracy Valley Drive Norcross, GA 30093 Ph: (404) 416-9597 Fx: (404) 441-0790

IDAHO

Quest Marketing 301 Southwest Grady Wy. Renton, WA 98055 Ph: (206) 228-2660 Fx: (206) 228-2916

INDIANA

Arete Sales Inc. 2260 Lake Ave., Ste 250 Fe. Wayne, IN 46805 Ph: (219) 423-1478 Fx: (219) 420-1440

ILLINOIS Martan Inc. 1930 Thoreau Dr., Ste 167 Schaumburg, IL 60173

Ph: (708) 303-5660 Fx: (708) 303-5745

IOWA AEM

4001 Shady Oak Marion, IA 52302 Ph: (319) 377-1129 Fx: to AEM (319) 377-1539

KANSAS

AEM 8843 Long So. Lenexa, KS 66215 Ph: (913) 888-0022 Fx: (913) 888-4848

MARYLAND

Beacon North 8513 Luceme Road Randallstown, MD 21133 Ph: (703) 478-2480 Fx: (703) 435 -7115

MASSACHUSETTS

Eastern Micro 22 Green So. Waltham, MA 02154 Ph: (617) 890-6790 Fx: (617) 899-0619

MICHIGAN

Rathsburg Assoc. 41100 Bridge St. Novi, MI 480375-1300 Ph: (810) 615-4000

MINNESOTA George Russell & Associates 8030 Cedar Ave., Suite 114 Minneapolis, MN 55425 Ph: (612) 854-1166 Fx: (612) 854-6799

MISSOURI AEM 11520 Chas Rock Road So. Louis, MO 63044 Ph: (314) 298-9900 Fx: (314) 298-8660

NEW JERSEY

Metro Logic 271 Route 46 West Suite D-202 Fairfield, NJ 07006 Ph: (201) 575-5585 Fx: (201) 575-8023

NEW YORK Metro Logic 271 Route 46 West Suite D-202 Fairfield, NJ 07006

Ph: (201) 575-5585

Fx: (201) 575-8023

Reagan/Compar 3301 Country Club Rd, Ste. 2211 Enowell, NY 13760 Ph: (607) 754-2171 Fx: (607) 754-4270

N & S CAROLINA

Quantum 4600 Park Road, Ste 300 Charlote, NC 28209 Ph: (704) 523-8822 Fx: (704) 527-5817

Quantum 6604 Six Forks Road, Ste 102 Raleigh, NC 27615 Ph: (919) 846-5728 Fx: (919t 847-8271

OHIO

Midwest Marketing 5001 Mayfield Road, Suite 212 Lyndhurst, OH 44124 Ph: (216) 381-8575 Fx: (216) 381-8857

Midwest Marketing

30 Marco Lane Dayton, OH 45458 Ph: (513) 433-2511 Fx: (513)433-6853

OREGON

Quest Marketing 6700 SW 105 Street, Ste. 206 Beavenon, OR 97005 Ph: (503) 641-7377 Fx: (503) 641-2899

PENNSYLVANIA

TCA Inc. 1570 McDaniel Drive West Chester, PA 19380 Ph: (215) 692-6853 Fx: (215) 692-6873

TEXAS

Thorson Co. 4445 Alpha Road, Ste. 109 Dallas, 17t 75244 Ph: (214) 233-5744 Fx: (214) 702-0993

Thorson Co. 14515 Briarhills Pkwy., Ste. 116 Houston, TX 77077 Ph: (713) 558-8205 Fx: (713) 558-7359

Thorson Co. 8711 Burnet Roao, Ste. A-12 Austin, TX 78758 Ph: (512) 467-2737 Fx: (512)467-0605

UTAH

Lange Sales 772 E. 3300 South Street, Ste. 205 Salt Lake City, UT 84106 Ph: (801)487-0843 Fx: (810) 484-5408

VIRGINIA

Beacon North 103-F Calpenter Drive Sterling, VA 22170 Ph: (703) 478-2480 Fx: (703) 435-7115

WASHINGTON

Quest Marketing 301 Southwest Grady Way Suite A-3 Renton, WA 98055 Ph: (206) 228-2660 Fx: (206) 228-2916

WISCONSIN

Martan Inc. 11431 N. Port Washington, Ste. 201 Mequin, W1 53092 Ph: (414) 241-4955 Fx: (414) 241-8365

Domestic Distributors

ALABAMA

NU Horizons 4801 University Sq., Stc. Huntsville, AL 35816 Ph: (205) 722-9330 Fx: (205) 722-9348

CALIFORNIA

AVED 1582 Parkway Loop, Unit G Tustin, CA 92680 Ph: (714) 259-8258 Fx: (714) 259-0828

AVED 5752 Oberlin Drive, Ste. 105 San Diego, CA 92121 Ph: (619) 558-8890 Fx: (619) 558-3018

Bell Micro 1941 Ringwood Avenue San Jose, CA 95131 Ph: (408) 451-9400 Fx: (408) 451-1699

JACO ELectronics 2282 Towngate Road, Ste. 100 Westlake Village, CA 91361 Ph: (805) 495-9998 Fx: (805) 494-3864

JACO Electronics 1541 Parkway Loop, Unit A Tustin, CA 92608 Ph: (714) 258-9003

Merit Electronics 2070 Ringwood Ave. San Jose, CA 95131 Ph: (408) 434-0800 Fx: (408) 434-0935

Bell Micro 18350 Mt. Langley Fountain Valley, CA 92708 Ph: (714) 963-0667

JACO Electronics 2880 Zanker Rd. Ste. 102 San Jose, CA 95143 Ph: 432-9290 Fx: 432-9298

Western Micro Technology 12900 Saratoga Ave Saratoga, CA 95070 Ph: (408) 725-1660 Fx: (408) 255-6491

Western Micro Technology 1637 North Brian Street Orance, CA 92667 Ph: (714) 637-0200 Fx: (714) 998-1883

Western Micro Technology 28720 Roadsie Drive Ste. 175 Agoura Hills, Ca 91301 Ph: (818) 707-0731 Fx: (818) 706-7651 Western Micro Technology 6837 Nancy Ridge Drive San Diego, CA 92121 Ph: (619) 453-8430 Fx: (619) 453-1465

Milgray/Los Angeles 912 Pancho Road Ste. C Camarillo, CA 93012-3508 Ph: (805) 484-4055/(800) 635-7812 Fx: (805) 388-8169

Milgray/No. California 2860 Zanker Road Ste 209 San Jose, CA 95134 (408) 456-0900/(800) 442-0946 Fx: (408) 456-0300

Milgray/Orange County 16 Technology Drive Ste. 206 Irvine, CA 92718-2329 Ph: (714) 753-1282/(800) 562-3118 Fx: (714) 753-1682

CANADA

Pacific Coast Electronics 564 Hillside Ave. B.C. Canada V8T 1Y9 Ph: (604) 385-5111 Fx: (604) 382-6243

Milgray/Montreal 6600 Trans Canada Hwy Ste 209 Pointe Claire, QUE H9R 452 Ph: (514) 426-5900 Fx: (514) 426 5836

Milgray/Toronto 2783 Thamesgate Drive Mississauga, ONT L4T 1G5 Ph: (416) 678-0953 Fx: (416) 678-1213

CONNECTICUT

Milgray/Connecticut Milford Plains Office Park 326 W. Main Street Milford, CT 06460-0418 Ph: (203) 878-5538/(800) 922-6911 Fx: (203) 878-6970

COLORADO

AVED 4090 Younfield Street Wheat Ridge, CO 80033 Ph: (303) 422-1701 Fx: (303) 422-2529

JACO Electronics 695 Pierce St., Ste. 110 Eric, CO 80516 Ph: (303) 828-3074 Fx: (303) 828-3080

QPS Electronics 14291 E. Founh Ave. Suite 208 Aurora, CO 80011 Ph: (303) 343 -9260 I.E.C. 420 E. 58th Ave. Denver, CO 80216 Ph: (303) 292-5537 Fx: (303) 292-0114

FLORIDA All American 16085 NW 52nd Ave. Miami, FL 33014 Ph: (305) 621-8282 Fx: (305) 620-7831

All American 5009 Hiatus Road Sunrise, FL 33351 Ph: (305) 572-7999 Fx: (305) 749-9229

NU Horizons 3421 N. West 55 Street Fe. Lauderdale, FL 33309 Ph: (305) 735-2555 Fx: (305) 735-2880

JACO Electronics 9900 W. Sample Rd. Suite 404 Coral Spring, FL 33065 Ph: (305) 341-8280 Fx: (305) 341-7848

Milgray/Florida 735 Rinchart Rd Ste. 100 Lake Mary, FL 32746 Ph: (407) 321-2555/(800) 367-0780 Fx: (407) 322-4225

GEORGIA

NU Horizons 5555 Oakbrook Pkwy. #340 Norcross, GA 30093 Ph: (404) 416-8666 Fx: (404) 416-9060

Milgray/Atlanta 3000 Northwoods Pkwy Ste. 115 Norcross, GA 30071-1545 Ph: (404) 446-9777/(800) 241-5523 Fx: (404) 446-1186

ILLINOIS QPS Electronics 101 E. Conmerce Drive Schaumburg, IL 60173 Ph: (708) 884-6620 Fx: (708) 884-7573

I.E.C. 220 N. Stoning Ave. Hoffman Estates, IL 60195 Ph: (708) 843-2040 Fx: (708) 843-2320

Milgray/Chicago Kennedy Corporate Ctr. 1 Ste. 310 1530 E. Dundee Road Palatine, IL 60067-8319 Ph: (708) 202-1900(800) 322-6217 Fx: (708) 202-1985

INDIANA

RM Inc. 1329 W. 96th So., Ste. #1 Indianapolis, IN 46260 Ph: (317) 580-9999

KANSAS

Milgray/Kansas City 6400 Glenwood Ste 313 Overland Park, KS 66202 Ph: (913) 236-8800/(800) 255-6576 Fx: (913) 384-6825

MARYLAND

Vantage Components 6925 R. Oakland Mills Road Columbia, MD 21045 Ph: (301) 720-5100

NU Horizons 8975 Guilford Road Suhe 120 Columbia, MD 21046 Ph: (301) 995-6330

Milgray/Washington 6460 Dobbin Rd. Ste. D Columbia, MD 21045-5813 Ph: (410) 730-6119/(800) 638-6656 Fx: (410) 730-8940

MASSACHUSETTS

Bell Micro 16 Upton Drive Willington, MA 01887 Ph: (617) 658-0222

Cronin Electronics 77 4th Avenue Needham, MA 02194 Ph: (617) 449-5000 Fx: (617) 444-8395

NU Horizons 107 Audubon Road Wakefield, MA 01880 Ph: (617) 246-4442

Vantage 17A Sterling Road Billerica, MA 01862 Ph: 1 (800) 552-4305

Western Micro Technology 20 Blanchard Road Burlington, MA 01803 Ph: (617) 273-2800 Fx: (617) 229-2815

Milgray/New England Ballardvale Park 187 Ballardvale St. Wilmington, MA 01887-1064 Ph: (508) 657-6900/(800) 648-3595 Fx: (508) 658-7989

MICHIGAN

RM Electronics 4310 Roger B. Chaffee Blvd. Grand Rapids, MI 49548 Ph: (616) 531-9300 Fx: (616) 531-2990

MISSOURI

NU Horizons 26 Bald Eagle Drive Kendell, MO 14476 Ph: (716) 292-0777

NEW JERSEY

Vantatge Components 1056 W. Jericho Turnpike Smithtown, NJ 07013 Ph: (201) 777-4100 Fx: (201) 777-6194

JACO PA/NJ 59 Manchester Road Sewell, NJ 08080 Ph: (410) 995-6620 Fx: (410) 995-6032

NU Horizons 39 U.S. Route 46 Pine Brook, NJ 07058 Ph: (201) 882-8300

NU Horizons 2002 C. Green Tree Exec. Campus Marlton, NJ 08053 Ph: (609) 596-1833

GCI 245-D Cliflon Ave. West Berlin, NJ 08091 Ph: (609) 768-6767 Fx: (609) 768-3649

Western Micro Technology 4 A Eves Drive Marlton, NJ 08053 Ph: (609) 596-7775 Fx: (609) 985-2797

Milgray/Delaware Valley 3001 Greentree Exec. Campus Ste. C Marlton, NJ 08053-1551 Ph: (609) 983-5010/(800) 257-7111 Fx: (609) 985-1607

Milgray/New Jersey 1055 Parsippany Blvd. Ste. 102 Parsippany, NJ 07054-1273 Ph: (201) 335-1766/(800) 622-0291 Fx: (201) 335-2110

NEW YORK JACO

145 Oser Avenue Hauppauge, NY 11788 Ph: (516) 273-5500 Fx: (516) 273-5528

NU Horizons 6000 New Horizons Blvd. Amityville, NY 11701 Ph: (516) 226-6000 Fx: (516) 226-5886

NU Horizons 100 Bluff Drive East Rochester, NY 14445 Ph: (716) 248-5980 Vantage 1056 W. Jerico Turnpike Smithtown, NY 11787 Ph: (516) 543-2000 Fx: (516) 543-2030

Milgray/New York 77 Schmitt Blvd. Farmingdale, NY 11735-1410 Ph: (516) 391-3000/(800) MILGRAY Fx: (516) 420-0685

Milgray/Upstate NY One Corporate Place Ste. 200 1170 Pittsford Victor Rd. Pittsford, NY 14534-3807 Ph: (716) 381-9700/ Fx: (716) 381-9493

N & S CAROLINA

Milgray/Raleigh 2925 Huntleigh Drive Ste. 101 Raleigh, NC 27604-3374 Ph: (919) 790-8094/(800) 5652-3118

OHIO

CAM RPC 749 Miner Road Cleveland, OH 44143 Ph: (216)461-4700 Fx: (216) 461-4329

Fx: (919) 872-8851

NU Horizons 6200 Som Center Road, Ste. A 15 Solon, OH 44139 Ph: (216) 349-2008 Fe: (216) 349-2080

Milgray/Cleveland 6155 Rockside Rd Ste. 206 Cleveland OH 44131-2289 Ph: (216) 447-1520/(800) 321-0006 OS (800) 362-2808 OHIO Fx: (216) 447-1761

OREGON I.E.C.

6850 SW 105th Ave., Ste. 8 Beaverton, OR 97005 Ph: (503) 641-1690

Western Micro Technology 1800 NW 169th Place Suite B-300 Beaverton, OR 97006 Ph: (503) 629-2082 Fx: (503) 629-8645

PENNSYLVANIA CAM RPC

620 Alpha Drive Pittsburgh, PA 15238 Ph: (412) 782-3770 Fx: (412) 963-6210

TEXAS

All American 1819 Flrman Drive, Ste. 127 Richardson, TX 75081 Ph: (214) 231-5300 Fx: (214) 437-0353 Bell Micro 100 N. Central Expressway, Ste. 502 Richardson, TX 75080-5300 Ph: (214) 783-4191 Fx: (214) 234-2123

JACO Electronics 1209 N. Glenville Drive Richardson, TX 75081 Ph: (214) 234-5565 Fx: (214) 238-7008

OMNI Pro Electronics 3220 Commander Drive Carrolton, TX 75006 Ph: (214) 713-9000

Milgray/Houston 12919 SW Freeway Ste. 130 Stafford, TX 77477-4113 Ph: (713) 240-5360/(800) 962-1849 Fx: (713) 240-5404

Milgray/Dallas 16610 N. Dallas Pkwy. Ste. 1300 Dallas, TX 75248-2617 Ph: (214) 248-1603/(800) 637-7227 Fx: (214) 248-0218

UTAH

A.V.E.D. 942 E. 7145 S. Ste. A-101 West Valley, UT 84119 Ph: (801) 975-9500 ,Fx: (801) 977-0245

Milgray/Utah 310 E 4500S Ste. 110 Murray, UT 84107 Ph: (801) 261-2999/(800) 837-9739 Fx: (801) 261-0880

WASHINGTON

I.E.C. 1750- 124th Ave., NE Bellevue, WA 98005 Ph: (206) 455-2727

Radar Electronics 168 Western Ave. West Seattle, WA 98119 Ph: (206) 282-2511 Fx: (206) 282-1598

Western Micro Technology Continental Plaza Building 550 Kirkland, Way Ste. 100 Kirkland, Wa 98033 Ph: (206) 828-2741 Fx: (206) 828-2719

International Distributors

JAPAN

NKK Corporation 2-6-3 Hitotsubashi, Chiyoda-Ku Tokyo 101, Japan Ph: (03) 3217-3127 Fx: (03) 3217-3148

HY Associates Co., Ltd. 1-10, Sekimachi-Kita 3 Chome, Nerima-Ku Tokyo 177, Japan Ph: (03) 3929-7111 Fx: (03) 928-0301

HONG KONG

RTI Industries Co., Ltd. Room 402, Nan Fung Commercial Centre No. 19, Lam Lok Street Kowloon Bay, Kowloon, Hong Kong Ph: (852) 795-7421 Fx: (852) 795-7839

KOREA

E-ONE Corporation #1618, Korea Business Center 1338-21, Seocho-Dong, Seocho-Ku, Seoul, 137-070, Korea Ph: (02) 569-3789

SINGAPORE

Valour Marketing Ph: (PTE) LTD. BLK 3005, UBIAVENUE3, #03-88 Singapore 1440 Ph: (65) 7489879 Fx: (65) 7432931

DENMARK

Ditz Schweitzer A-S. Vallensbalvej 41, 2605 - Brondby Denmark Ph: (45) 4245-3044 Fx: (45) 4245-9206

ITALY

ESCO Italiana S.P.A Viale F. Ili Casiraghi, 355 20099 Sesto S. Giovanni Milan, Italy Ph: (02) 240-9241 Fx: (02) 240-9255

GERMANY

Beck GMBH & CO. Electronik Bauelemente KG Eltersdorfer Street, 7, D-8500 Nurenberg, Germany Ph: (49) 911-3-4050 Fx: (49) 911-3-40528

THE NETHERLANDS

Alcom Electronics BV Essebaan 1, 2908 Lj Capelle A/D Ijssel Holland Ph: (010) 451-9533 Fx: (010) 458-6482

BELGIUM

Alcom Electronics BV Singel 3 2550 Kontich Belgium Ph: (03) 458-3033 Fx: (03) 458-3126

SWEDEN

Titan Electronics AB. P.O. Box 92047, S-120 07 Stockholm Sweden Ph: (46)8-644-7260 Fx: (46)8-642-2939

Miko Komponent AB. P.O. Box 2001, S-14502 Norsborg Sweden Ph: 7538-9080 Fx: 7537-5340

UNITED KINGDOM

Force Technologies Ltd. Unit 18, Campbell Court, Bramley Basingstoke, Hants. RG26 5 EG United Kingdom Ph: 2568-80788 Fx: 2568-80307

Silicon Concepts Ltd. Itec Lynchborough Road, Passfield Hampshire GU30 7SB, United Kingdom Ph: 4287-51617 Fx: 4287-51603

ISRAEL

EL-GEV Electronics Building 101 P.O.B. S0 Tirat Yehuda 73175 Israel Ph: 972-3-971-2056 Fx: 972-3-971-2407

The information that appears in this document has been checked and is believed to be reliable. Macronix, however, will not be responsible for any loss or damage which will result from the use of the information contained herein. Macronix makes no representation or warranty concerning the accuracy of sale. Macronix will not extend its warranty on any product beyond that set forth in its standard terms, patent, or other licence implied hereby. Macronix reserves the right to make changes in its products without notification which may make the information contained in this document obsolete or inaccurate. Contact Macronix for the latest information regarding these products.

MACRONIX INC.

1348 Ridder Park Drive San Jose, CA 95131 USA TEL:(408) 453-8088 FAX:(408) 453-8488

MACRONIX INTERNATIONAL CO., LTD 3F, 4 Creation Road IV Hsin-Chu Science-Based Industrial Park Hsin-Chu city, Taiwan, R.O.C. TEL:(035) 783-333 FAX:(035) 778-689 TAIPEI OFFICE Room 223, 2F, 144, Sec. 3, Min-Chuan E. Rd., Taipei, Taiwan, R.O.C. TEL:(02) 719-1977 FAX:(02) 712-7359 MACRONIX JAPAN K.K. 2-6-3 Hitotsubashi, Chiyoda-Ku Tokyo 101, Japan TEL:(03) 3217-3127 FAX:(03) 3217-3147