$\overline{\overline{\underline{\bar{I}}} \overline{\overline{\overline{\bar{u}}}}}$ MACRONIX INC.

MACRONIX INC.

MEMORY DATA BOOK

MACRONIX, INC.

The Company

Macronix Inc., a leader in high density non-volatile memory technology, designs, manufactures, and markets high performance ROMs, EPROMs and FLASH memory components for the world's most sophisticated computers, data communication devices and electronics products.

Dedicated to providing a wide range of advanced communication solutions, the company's innovative product line includes integrated FAX modems, LAN controllers and UARTs, as well as high resolution graphic and PC chip sets.

History

Macronix Inc., operational since 1987 was founded by former members of the VLSI Technology Inc. start-up group. The dynamic Macronix management team has more than eighty years combined experience in the semiconductor field and is committed to providing the most advanced VLSI solutions for the woridwide electronics industry. Headquartered in San Jose, the company has grown significantly and will continue to expand to serve the rapidly evolving global electronics market.

Dedicated to innovative design, superior quality products and responsive customer service, Macronix is one of the major U.S. semiconductor suppliers providing total turnkey solutions and a fully compatible product line for ROM, EPROM and FLASH memory.

Macronix International was established December, 1989 in Taiwan to provide a world class semiconductor fabrication facility to meet the industry's needs on a more global scale. A member of the Semiconductor Industry Association (SIA) since 1990, Macronix has formed significant alliances around the world.

Quality Assurance

Dedicated to the highest level of quality assurance, Macronix has invested significant capital in the most advanced manufacturing and testing equipment to insure the superior quality and reliability that is so critical in large volume production.

Quality and reliability are built into products throughout the development and manufacturing stages, then verified through rigorous testing, characterization and qualification phases before shipping.
TABLE OF CONTENTS PAGE
I. GENERAL INFORMATION

1. ALPHANUMERIC INDEX 1-1
2. PRODUCT INTRODUCTION 2-1
3. PRODUCT SELECTION GUIDE 3-1
4. CROSS REFERENCE GUIDE 4-1
5. ORDERING INFORMATION 5-1
II. EPROMs (ERASABLE PROGRAMMABLE READ ONLY MEMORIES) DATA SHEETS
6. MX27C256 256K (32K x 8)
CMOS EPROM 6-1
7. MX27C512 512K (64K x 8) CMOS EPROM 7-1
8. MX27C1000/1001 $1 \mathrm{M} \quad(128 \mathrm{~K} \times 8)$
CMOS EPROM 8-14. MX27C1100$1 \mathrm{M} \quad(128 \mathrm{~K} \times 8 / 64 \mathrm{~K} \times 16)$CMOS EPROM9-1
9. MX27C1024 $1 \mathrm{M} \quad(64 \mathrm{~K} \times 16)$ CMOS EPROM 10-1
10. MX27C2000 2M (256K x 8) CMOS EPROM 11-17. MX27C2100
2M (256K x 8/128K x16) CMOS EPROM 11-1
$2 \mathrm{M} \quad(128 \mathrm{~K} \times 16)$ CMOS EPROM 12-1
$4 \mathrm{M} \quad(512 \mathrm{~K} \times 8)$ CMOS EPROM 12-1
$4 \mathrm{M} \quad(512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16)$ CMOS EPROM 13-1
$4 \mathrm{M} \quad(256 \mathrm{~K} \times 16)$ CMOS EPROM 13-1
III . MASK ROMs (MASK PROGRAMMABLE READ ONLY MEMORIES) DATA SHEETS
11. $M X 23 C 1000 / 1010$
12. MX 23 C 2000
13. MX23C2100
14. MX23C4000
15. MX23C4100
16. MX23C8000
17. MX23C8100
18. $M X 23 C 1610$
$1 \mathrm{M} \quad(128 \mathrm{~K} \times 8)$
CMOS
MASK ROM14-1
2M • (256K x 8) CMOS MASK ROM 15-1
2M (256K x 8/128K x 16) MASK ROM 16-1
$4 \mathrm{M} \quad$ (512K $\times 8$) 17-1
$4 \mathrm{M} \quad(512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16)$ CMOS MASK ROM 18-1
$8 \mathrm{M} \quad(1 \mathrm{M} \times 8)$ CMOS MASK ROM 19-1$8 \mathrm{M} \quad(1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16)$$16 \mathrm{M}(2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16)$
CMOS MASK ROM 20-1
CMOS MASK ROM 21-1

IV. FLASH MEMORY

1. MX28F1000	1 M	$(128 \mathrm{~K} \times 8)$
2. MX28F4000	4 M	$(512 \mathrm{~K} \times 8)$

$1 \mathrm{M} \quad(128 \mathrm{~K} \times 8)$
$4 \mathrm{M} \quad(512 \mathrm{~K} \times 8)$

CMOS FLASH MEMORY 22-1
CMOS FLASH MEMORY 23-1

V. PACKAGE INFORMATION

VI. DISTRIBUTION CHANNEL

GENERAL INFORMATION

EPROM DATA SHEETS

MASK ROM DATA SHEETS III

FLASH MEMORY

PACKAGE INFORMATION
IV

DISTRIBUTION CHANNEL
 VI

I. GENERAL INFORMATION

MACRONIX, INC.

1. ALPHANUMERIC INDEX

2. PRODUCT INTRODUCTION

2-1. EPROM

2-2. MASK ROM

2-3. FLASH MEMORY

CAPACITY PROCESS CONFIGURATION PART NO. REMARKS

FLASH MEMORY

MACRONIX, INC.

3. PRODUCT SELECTION GUIDE

3.1 EPROM

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
256K	MX27C256DC	32K $\times 8$	55/70/90/100/120/150	CMOS	28 PIN CERAMIC DIP
	M $\times 27 \mathrm{C} 256 \mathrm{PC}$	$32 \mathrm{~K} \times 8$	55/70/90/100/120/150	cmos	28 PIN PLASTIC DIP
	MX27C256MC	32K $\times 8$	55/70/90/100/120/150	cmos	28 PIN PLASTIC SOP
	MX27C256QC	$32 \mathrm{~K} \times 8$	55/70/90/100/120/150	CMOS	32 PIN PLCC
$512 \mathrm{~K}$	MX27C512DC	$64 \mathrm{~K} \times 8$	55/70/90/100/120/150	cmos	28 PIN CERAMIC DIP
	MX27C512PC	$64 \mathrm{~K} \times 8$	55/70/90/100/120/150	CMOS	28 PIN PLASTIC DIP
	MX27C512MC	$64 \mathrm{~K} \times 8$	55/70/90/100/120/150	CMOS	28 PIN PLASTIC SOP
	M $\times 27 \mathrm{C} 512 \mathrm{C}$	$64 \mathrm{~K} \times 8$	55/70/90/100/120/150	CMOS	32 PIN PLCC
1 M	M ${ }^{\text {27C1000DC }}$	$128 \mathrm{~K} \times 8$	55/70/90/120/150	CMOS	32 PIN CERAMIC DIP
	MX27C1000PC	$128 \mathrm{~K} \times 8$	55/70/90/120/150	CMOS	32 PIN PLASTIC DIP
	MX27C1000QC	$128 \mathrm{~K} \times 8$	55/70/90/120/150	CMOS	32 PIN PLCC
	MX27C1000MC	$128 \mathrm{~K} \times 8$	55/70/90/120/150	CMOS	32 PIN PLASTIC SOP
	MX27C1001DC	$128 \mathrm{~K} \times 8$	70/90/120/150	CMOS	32 PIN CERAMIC DIP
	MX27C1024DC	$64 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN CERAMIC DIP
	MX27C1024PC	$64 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN PLASTIC DIP
	MX27C1024QC	$64 \mathrm{~K} \times 16$	90/120/150	CMOS	44 PIN PLCC
	MX27C1100DC	$128 \mathrm{~K} \times 8 / 64 \mathrm{~K} \times 16$	90/120/150	cmos	40 PIN CERAMIC DIP
	MX27C1100PC	$128 \mathrm{~K} \times 8 / 64 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN PLASTIC DIP
2M	MX27C2000DC	$256 \mathrm{~K} \times 8$	90/120/150	CMOS	32 PIN CERAMIC DIP
	MX27C2000PC	$256 \mathrm{~K} \times 8$	90/120/150	cmos	32 PIN PLASTIC DIP
	MX27C2048DC	$128 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN CERAMIC DIP
	MX27C2048PC	$128 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN PLASTIC DIP
	MX27C2048QC	$128 \mathrm{~K} \times 16$	90/120/150	CMOS	44 PIN PLCC
	MX27C2100DC	256K $\times 8 / 128 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN CERAMIC DIP
	MX27C2100PC	$256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16$	90/120/150	CMOS	40 PIN PLASTIC DIP
4M	MX27C4000DC	$512 \mathrm{~K} \times 8$	120/150	CMOS	32 PIN CERAMIC DIP
	MX27C4000PC	$512 \mathrm{~K} \times 8$	120/150	CMOS	32 PIN PLASTIC DIP
	MX27C4096DC	$256 \mathrm{~K} \times 16$	120/150	CMOS	40 PIN CERAMIC DIP
	MX27C4096PC	$256 \mathrm{~K} \times 16$	120/150	CMOS	40 PIN PLASTIC DIP
	MX27C4096QC	256K $\times 16$	120/150	CMOS	44 PIN PLCC
	MX27C4100DC	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	120/150	CMOS	40 PIN CERAMIC DIP
	MX27C4100PC	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	120/150	cmos	40 PIN PLASTIC DIP

3.2 MASK ROM

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
1 M	MX23C1000PC	$128 \mathrm{~K} \times 8$	150/200	CMOS	28 PIN PLASTIC DIP
	MX23C1000MC	$128 \mathrm{~K} \times 8$	150/200	CMOS	28 PIN PLASTIC SOP
	MX23C1010PC	$128 \mathrm{~K} \times 8$	150/200	CMOS	32 PIN PLASTIC DIP
	MX23C1010MC	128K x 8	150/200	CMOS	32 PIN PLASTIC SOP
2M	MX23C2000PC	256K x 8	150/200	CMOS	32 PIN PLASTIC DIP
	MX23C2000MC	$256 \mathrm{~K} \times 8$	150/200	CMOS	32 PIN PLASTIC SOP
	MX23C2100PC	$256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16$	150/200	CMOS	40 PIN PLASTIC DIP
4M	MX23C4000PC	$512 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX23C4000MC	$512 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX23C4100PC	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	120/150/200	CMOS	40 PIN PLASTIC DIP
8M	MX23C8000PC	$1 \mathrm{M} \times 8$	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX23C8000MC	$1 \mathrm{M} \times 8$	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX23C8100PC	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	120/150/200	CMOS	42 PIN PLASTIC DIP
	MX23C8100MC	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	120/150/200	cmos	44 PIN PLASTIC SOP
16M	MX23C1610PC	$2 \mathrm{M} \mathrm{x} \mathrm{8/1M} \times 16$	120/150/200	CMOS	42 PIN PLASTIC DIP
	MX23C1610MC	$2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16$	120/150/200	CMOS	44 PIN PLASTIC SOP

3.3 FLASH MEMORY

CAPACITY	PART NUMBER	CONFIGURATION	SPEED (NS)	TECHNOLOGY	PACKAGE
1 M	MX28F1000PC	$128 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX28F1000MC	$128 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX28F1000QC	$128 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLCC
	MX28F1000TC	$128 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC TSOP
4M	MX28F4000PC	$512 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC DIP
	MX28F4000MC	$512 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC SOP
	MX28F4000TC	$512 \mathrm{~K} \times 8$	120/150/200	CMOS	32 PIN PLASTIC TSOP

.
4. CROSS-REFERENCE GUIDE

4.1 EPROM

CAPACITY	CONFIGRUATION	MACRONIX	INTEL	AMD	N.S.	S.G.S.	NEC	TOSHIBA	HITACHI	FUJITSU	MITSUBISHI	T
256K	$32 \mathrm{~K} \times 8$	M $\times 27 \mathrm{C} 256$	i27C256	Am27C256	NMC27C256	M27C256	$\mu \mathrm{PD} 27 \mathrm{C} 256$	TC57256	HN27C256	MB27C256	M5M27C256	TMS27C256
512K	$64 \mathrm{~K} \times 8$	M $\times 27 \mathrm{C} 512$	i27C512	Am27C512	NMC27C512	M27C512	$\mu \mathrm{PD} 27 \mathrm{C} 512$	TC57512	HN27C512	MB27C512	M5M27C512	TMS27C512
1M	128K $\times 8$	MX27C1000	i27C010	Am27C010	NMC27C010	M27C1001	μ PD27C1001	TC571000	HN27C101	MB27C1001	M5M27C101	TMS27C010
	$128 \mathrm{~K} \times 8$	MX27C1001				M27C1000		TC571001	HN27C301	MB27C1000		
	$64 \mathrm{~K} \times 16$	MX27C1024	i27C210	Am27C1024	NMC27C1024	M27C1024	μ PD27C1024	TC571024	HN27C1024	MB27C1024	M5M27C102	
	$64 \mathrm{~K} \times 16 / 128 \mathrm{~K} \times 8$	MX27C1100										

4.2 MASK ROM

CAPACITY	CONFIGURATION	MACRONIX	SHARP	NEC	TOSHIBA	HITACHI	FUJITSU	MITSUBISHI	SAMSUNG
1M	$128 \mathrm{~K} \times 8$	MX23C1000	LH531000	$\mu \mathrm{PD} 23 \mathrm{C} 1000$	TC531000	HN62321	MB831000		KM23C1000
	$128 \mathrm{~K} \times 8$	MX23C1010	LH530800	$\mu \mathrm{PD} 23 \mathrm{C} 1001$	TC531001				KM23C1010
			LH530900						
2M	$256 \mathrm{~K} \times 8$	MX23C2000	LH532100	$\mu \mathrm{PD} 23 \mathrm{C} 2001$	TC532000	HN62302	MB832000		KM23C2000
	$256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16$	MX23C2100	LH532000						KM23C2100
4M	$512 \mathrm{~K} \times 8$	MX23C4000	LH534300	μ PD23C4000	TC534000	HN62314	MB834000	M5M23401	KM23C4000
	512K x 8/256Kx16	MX23C4100	LH534000	$\mu \mathrm{PD} 23 \mathrm{C4001}$	TC534200	HN62414	MB834100	M5M23400	KM23C4100
8M	$1 \mathrm{M} \times 8$	MX23C8000	LH538100	μ PD23C8001	TC538000	HN62328	MB838000	M5M23801	KM23C8000
	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	MX23C8100	LH538000	$\mu \mathrm{PD} 23 \mathrm{C8000}$	TC538200	HN62428	MB838200	M5M23800	KM23C8100
16M	$2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16$	MX23C1610	LH5316000	$\mu \mathrm{PD} 23 \mathrm{C} 16000$	TC5316200	HN624017		M5M23160	KM23C1610

5. ORDERING INFORMATION

* C : CMOS

SPEED

* 55 : 50 ns
* 90 : 90 ns
* 10 : 100 ns
* 12 : 120 ns
* 15 : 150 ns
* 20 : 200 ns

TEMPERATURE RANGE
${ }^{*} \mathrm{C}: \quad 0 \sim 70^{\circ} \mathrm{C}$
*। : $-40 \sim 85^{\circ} \mathrm{C}$

* M : $-55 \sim 125^{\circ} \mathrm{C}$

PACKAGE

* P : PLASTIC DIP
* M : PLASTIC SOP
* Q : PLASTIC PLCC
*D : CERAMIC DIP
* F : PLASTIC QFP
* T : PLASTIC TSOP (Normal type)
*R : PLASTIC TSOP
(Reverse type)
REVERSION
*BLANK : NONE
*A : FIRST
* B : SECOND
II. EPROM

(ERASABLE PROGRAMMABLE READ ONLY MEMORY)

MACRONIX, INC

256K-BIT(32K x 8) CMOS EPROM

FEATURES

- $32 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- +12.5 V programming voltage
- Fast access time: 55/70/90/100/120/150 ns
- Totally static operation
- Completely TTL compatible
- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 28 pin ceramic DIP, plastic DIP
- 32 pin PLCC

GENERAL DESCRIPTION

The MX27C256 is a 5 V only, 256 K -bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 32 K by 8 bits, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming
from outside the system, existing EPROM programmers may be used. The MX27C256 supports intelligent quick pulse programming algorithm which can result in programming times of less than ten seconds.

This EPROM is packaged in industry standard 28 pin, dual-in-line packages or 32 lead, PLCC packages.

PIN CONFIGURATIONS

 CDIP/PDIP

PLCC

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A14	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin (+5V)
GND	Ground Pin

MACRONIX, INC.

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C256

The MX27C256 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm2 is required to completely erase a MX27C256. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm} 2$ for 15 to 20 minutes. The MX27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C256, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C256

When the MX27C256 is delivered, or it is erased, the chip has all 256 K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C256 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the Vpp pin, $\overline{\mathrm{OE}}$ is at VIH, and $\overline{\mathrm{CE}}$ is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C256. This part of the algorithm is done at VCC= 6.0 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits
have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC $=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\mathrm{OE}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the $\overline{C E}$ input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm$ 10%.

PROGRAM INHIBIT MODE

Programming of multiple MX27C256s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C256 may be common. A TTL low-level program pulse applied to an MX27C256 CE input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ and OE HIGH will program that MX27C256. A high-level $\overline{\mathrm{CE}}$ input inhibits the other MX27C256s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{CE}}$ at VIH, $\overline{\mathrm{OE}}$ at VIL and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C256.

To activate this mode, the programming equipment must force 12.0 ± 0.5 (VH) on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during

MACRONIX, INC.
auto identify mode.
Byte $0(\mathrm{AO}=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{AO}=\mathrm{VIH})$, the device identifier code. For the MX27C256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs tOE after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27C256 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at $\mathrm{VCC} \pm 0.3 \mathrm{~V}$. The MX27C256 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTLstandby when $\overline{\mathrm{CE}}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

MODE	PINS					
	$\overline{C E}$	$\overline{\mathbf{O E}}$	AO	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	x	VCC	High Z
Standby (CMOS)	VCC $\pm 0.3 \mathrm{~V}$	x	x	x	vcc	High Z
Program	VIL	VIH	X	X	VPP	DIN
Program Verify	VIH	VIL	x	X	VPP	DOUT
Program Inhibit	VIH	VIH	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	VIL	VH	VCC	C2H
Device Code	VIL	VIL	VIH	VH	VCC	10 H
NOTES: 1. X can be either VIL or VIH 2. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ 3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 12=\mathrm{VIL}($ For auto select $)$			4. A 5. S	$4=x$ ogran g.	select) aracteri	VPP voltage

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

FIGURE 2．FAST PROGRAMMING FLOW CHART

SWITCHING TEST CIRCUITS

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance(30pF for 55/70 ns parts)

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic " 1 " and 0.4 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

AC TESTING: (1) Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.
(2) For MX27C256-55, MX27C256-70 only

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output Hign Voltage	2.4		V	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	VCC +0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{A}$	VOUT $=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{A}$	$\overline{C E}=V C C \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{C E}=V I H$
1 CCl	VCC Active Current		40	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
IPP	VPP Supply Current Read		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	$\mathrm{VIN}=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	$\mathrm{VOUT}=0 \mathrm{~V}$
VPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

MACRONIX, INC.

AC CHARACTERISTICS $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C256-55		27C256-70		27C256-90		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		55		70		90	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		55		70		90	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		30		35		40	ns	$\overline{C E}=$ VIL
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, $\overline{C E}$ or $\overline{O E}$ which ever occurred first	0		0		0		ns	

SYMBOL	PARAMETER	27C256-10		27C256-12		27C256-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		100		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		100		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		45		50		55	ns	$\overline{C E}=$ VIL
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH $=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current(Program \& Verify)		40	mA	
IPP2	VPP Supply Current(Program)		30	mA	CE = VIL, OE $=$ VIH
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

MACRONIX, INC.

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		$\mu \mathrm{S}$	
tOES	$\overline{\text { OE Setup Time }}$		2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time		2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time		0		$\mu \mathrm{S}$	
tDH	Data Hold Time		2.0		$\mu \mathrm{S}$	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay		0	50	nS	
tVPS	VPP Setup Time		2.0		$\mu \mathrm{S}$	
tVCS	VCC Setup Time		2.0		$\mu \mathrm{S}$	
tOE	Data Valid from $\overline{\mathrm{OE}}$			150	nS	
tPW	$\overline{\mathrm{CE}}$ Initial Program Pulse Width	Fast	95	105	$\mu \mathrm{S}$	
		Interactive	0.95	1.05	mS	
tOPW	$\overline{\mathrm{CE}}$ Over program Pulse Width (Interactive)		1.95	2.05	mS	
tDV	$\text { Data Valid from } \overline{\mathrm{CE}}$			250	nS	
tOEH	$\overline{\mathrm{OE}}$ Hold Time		2.0		$\mu \mathrm{S}$	
tVR	$\overline{\mathrm{OE}}$ Recovery Time		2.0		$\mu \mathrm{S}$	

MACRONIX, INC.

WVEFORMS
READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION

CERAMIC PACKAGE

CERAMIC PACKAGE	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENTMAX. $(\mu$ A)	PACKAGE
MX27C256DC-55	55	40	100	28 Pin DIP
MX27C256DC-70	70	40	100	28 Pin DIP
MX27C256DC-90	90	40	100	100
MX27C256DC-10	100	40	100	28 Pin DIP
MX27C256DC-12	120	40	100	28 Pin DIP
MX27C256DC-15	150	40	28 Pin DIP	

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu$ A)	PACKAGE
MX27C256PC-55	55	40	100	28 Pin DIP
MX27C256QC-55	55	40	100	32 Pin PLCC
MX27C256PC-70	70	40	100	28 Pin DIP
MX27C256QC-70	70	40	100	32 Pin PLCC
MX27C256PC-90	90	40	100	28 Pin DIP
MX27C256QC-90	90	40	100	32 Pin PLCC
MX27C256PC-12	120	40	100	28 Pin DIP
MX27C256QC-12	120	40	100	32 Pin PLCC
MX27C256PC-15	150	40	100	28 Pin DIP
MX27C256QC-15	150	40	100	32 Pin PLCC

512K-BIT(64K x 8) CMOS EPROM

FEATURES

- $64 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- +12.5V programming voltage
- Fast access time: 55/70/90/100/120/150ns
- Totally static operation
- Completely TTL compatible
- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 28 pin ceramic DIP, plastic DIP
- 32 pin PLCC

GENERAL DESCRIPTION

The MX27C512 is a 5 V only, 512 K -bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 64 K words by 8 bits per word, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For
programming outside from the system, existing EPROM programmers may be used. The MX27C512 supports intelligent quick pulse programming algorithm which can result in programming times of less than fifteen seconds.

This EPROM is packaged in industry standard 28 pin, dual-in-line packages or 32 lead, PLCC packages.

PIN CONFIGURATIONS

CDIP/PDIP

A15	1		28	F	VCC
A12	2		27	\square	A14
A7	3		26	\square	A13
A6	4		25	\square	A8
A5	5	N	24	\square	A9
A4	6	5	23	\square	A11
A3	7	-	22	\square	OENPP
A2	8	N	21	-	A 10
A1	9	X	20]	$\overline{\mathrm{CE}}$
AO	10		19	\square	Q7
Q0	11		18	F	Q6
Q1	12		17	\square	Q5
Q2	13		16	\square	Q4
GND	14		15		Q3

PLCC

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
AO~A15	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\text { OE }}$	Output Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C512

The MX27C512 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm2 is required to completely erase a MX27C512. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm} 2$ for 15 to 20 minutes. The MX27C512 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C512, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C512

When the MX27C512 is delivered, or it is erased, the chip has all 512 K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C512 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the OE/VPP pin and CE is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C512. This part of the algorithm is done at VCC $=$ 6.0 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is
completed, the entire EPROM memory is verified at VCC $=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage OE/VPP $=12.75 \mathrm{~V}$ is applied, with VCC $=6.25 \mathrm{~V}$, (Algorithm is shown in Figure 2). The programming is achieved by appling a single TTL low level 100μ s pulse to the CE input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=5 \mathrm{~V}$ $\pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C512s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C512 may be common. A TTL low-level program pulse applied to an MX27C512 CE input with OE/VPP $=12.5 \pm 0.5 \mathrm{~V}$ will program that MX27C512. A high-level CE input inhibits the other MX27C512s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed hits to determine that they were correctly programmed. The verification should be performed with OE/VPP and CE, at VIL. Data should be verified tDV after the falling edge of CE.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C512.

To activate this mode, the programming equipment must force $12: 0 \pm 0.5(\mathrm{VH})$ on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code，and byte $1(\mathrm{AO}=\mathrm{VIH})$ ，the device identifier code．For the MX27C512，these two identifier bytes are given in the Mode Select Table．All identifiers for manufacturer and device codes will possess odd parity，with the MSB（DQ7） defined as the parity bit．

READ MODE

The MX27C512 has two control functions，both of which must be logically satisfied in order to obtain data at the outputs．Chip Enable（CE）is the power control and should be used for device selection．Output Enable（ $\overline{\mathrm{OE}}$ ） is the output control and should be used to gate data to the output pins，independent of device selection．Assuming that addresses are stable，address access time（tACC）is equal to the delay from CE to output（tCE）．Data is available at the outputs tOE after the falling edge of OE， assuming that CE has been LOW and addresses have been stable for at least tACC－tOE．

STANDBY MODE

The MX27C512 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$ ．It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at VCC $\pm 0.3 \mathrm{~V}$ ．The MX27C512 also has a TTL－standby mode which reduces the maximum VCC current to 1.5 mA ．It is placed in TTL－ standby when CE is at VIH．When in standby mode，the outputs are in a high－impedance state，independent of the OE input．

TWO－LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections，a two－ line control function is provided to allow for：

1．Low memory power dissipation，
2．Assurance that output bus contention will not occur．
It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device－selecting function，while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus． This assures that all deselected memory devices are in their low－power standby mode and that the output pins are only active when data is desired from a particular

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions， transient current peaks are produced on the rising and falling edges of Chip Enable．The magnitude of these transient current peaks is dependent on the output capacitance loading of the device．At a minimum，a 0.1 $\mu \mathrm{F}$ ceramic capacitor（high frequency，low inherent inductance）should be used on each device between VCC and GND to minimize transient effects．In addition， to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays，a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices．The location of the capacitor should be close to where the power supply is connected to the array．

MODE SELECT TABLE

			PINS		
MODE	$\overline{C E}$	OE／VPP	AO	A9	OUTPUTS
Read	VIL	VIL	X	X	DOUT
Output Disable	VIL	VIH	X	X	High Z
Standby（TTL）	VIH	X	X	x	High Z
Standby（CMOS）	VCC $\pm 0.3 \mathrm{~V}$	x	x	x	High Z
Program	VIL	VPP	X	X	DIN
Program Verify	VIL	VIL	x	X	DOUT
Program Inhibit	VIH	VPP	X	x	High Z
Manufacturer Code	VIL	VIL	VIL	VH	C 2 H
Device Code	VIL	VIL	VIH	VH	91H
NOTES：1． $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ 2． $\mathrm{X}=$ Either VIH or VIL（For auto select）			3． $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 15=\mathrm{VIL}($ For auto select $)$		

MACRONIX, INC.

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

$C L=100 \mathrm{pF}$ including jig capacitance(30pF for $55 / 70$ ns parts)

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic "1" and 0.4 V for a logic " 0 ". input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

AC TESTING: (1) inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ".
Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.
(2) For MX27C512-55, MX27C512-70 only

MACRONIX, INC

ABSOLUTE MAXIMUM RATINGS	
RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.2	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{~A}$	$\overline{\mathrm{VOUT}=0 \text { to } 5.5 \mathrm{~V}}$
ICC3	VCC Power-Down Current		100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current	1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$	
ICC1	VCC Active Current	40	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	$\mathrm{VIN}=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	$\mathrm{VOUT}=0 \mathrm{~V}$
Vpp	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

MACRONIX, INC.

AC CHARACTERISTICS $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C512-55		27C512-70		27C512-90		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		55		70		90	ns	$\overline{C E}=\overline{O E}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		55		70		90	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		30		35		40	ns	$C E=$ VIL
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		0		ns	
		27C512-10		27C512-12		27C512-15			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		100		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		100		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
toe	Output Enable to Output Delay		45		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{C E}$ High to Output Float	0	30	0	35	0	50	ns	
tOH	Qutput Hold from Address, CE or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH $=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.2	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current(Program \& Verify)		40	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CE}=\mathrm{VIL}}$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

MACRONIX, INC.

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		$\mu \mathrm{S}$	
tOES	OE/VPP Setup Time	2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time	2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time	0		$\mu \mathrm{S}$	
tDH	Data Hold Time	2.0		$\mu \mathrm{S}$	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	60	nS	
tVPS	VPP Setup Time	2.0		$\mu \mathrm{S}$	
tPW	$\overline{\mathrm{CE}}$ Initial Program Pulse Width Fast	95	105	$\mu \mathrm{S}$	
	Interactive	0.95	1.05	mS	
tOPW	$\overline{\mathrm{CE}}$ Overprogram Pulse Width(Interactive)	1.95	2.05	mS	
tVCS	VCC Setup Time	2.0		$\mu \mathrm{S}$	
tDV	Data Valid from $\overline{\mathrm{CE}}$		250	nS	
tOEH	$\overline{\text { OE/ NPP Hold Time }}$	2.0		$\mu \mathrm{S}$	
tVR	$\overline{\text { OE }} /$ NPP Recovery Time	2.0		$\mu \mathrm{S}$	

WAVEFORMS

READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION
CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu$ A)	PACKAGE
MX27C512DC-55	55	40	100	28 Pin DIP
MX27C512DC-70	70	40	100	28 Pin DIP
MX27C512DC-90	90	40	100	28 Pin DIP
MX27C512DC-10	100	40	100	28Pin DIP
MX27C512DC-12	120	40	100	28Pin DIP
MX27C512DC-15	150	40	100	28 Pin DIP

PLASTIC PACKAGE				
PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu$ A)	PACKAGE
MX27C512PC-55	55	40	100	28 Pin DIP
MX27C512QC-55	55	40	100	32 Pin PLCC
MX27C512PC-70	70	40	100	28 Pin DIP
MX27C512QC-70	70	40	100	32 Pin PLCC
MX27C512PC-90	90	40	100	28 Pin DIP
MX27C512QC-90	90	40	100	32 Pin PLCC
MX27C512PC-12	120	40	100	$28 P i n ~ D I P ~$
MX27C512QC-12	120	40	100	32 Pin PLCC
MX27C512PC-15	150	40	100	28 Pin DIP
MX27C512QC-15	150	40	100	32 Pin PLCC

FEATURES

- $128 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- +12.5V programming voltage
- Fast access time: 55/70/90/120/150 ns
- Totally static operation
- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin ceramic DIP, plastic DIP
- 32 pin SOP
- 32 pin PLCC

GENERAL DESCRIPTION

The MX27C1000/27C1001 is a 5 V only, 1M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 128 K words by 8 bits per word, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing

EPROM programmers may be used. The MX27C1000/ 27C1001 supports a intelligent quick pulse programming algorithm which can result in programming times of less than thirty seconds.

This EPROM is packaged in industry standard 32 pin dual-in-line packages or 32 lead, PLCC packages.

PIN CONFIGURATIONS

CDIP/PDIP(MX27C1000)

PLCC(MX27C1000)

SOP(MX27C1000)

CDIP(MX27C1001)

VPP	1		32	$\square \mathrm{VCC}$
$\overline{O E}$	2		31	-] PGM
A15	3		30	$\square \mathrm{NC}$
A12	4		29	$\square \mathrm{A} 14$
A7	5		28	$\square \mathrm{A} 13$
A6	6	$\overline{8}$	27	$\square \mathrm{AB}$
A5	7	응	26	$\square \mathrm{A} 9$
A4	8	-	25	C A11
A3	9	$\stackrel{N}{\sim}$	24] A16
A2	10	区	23	A10
A1	11		22	$\square \overline{\mathrm{CE}}$
AO	12		21	\square Q7
Q0	13		20	\square Q6
Q1	14		19	$\square \mathrm{Q} 5$
Q2	15		18	$\square \mathrm{Q} 4$
GND	16		17	$\square \mathrm{Q} 3$

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C1000/27C1001

The MX27C1000/27C1001 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C1000/27C1001. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C1000/27C1001 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C1000/27C1001, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C1000/ 27C1001 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C1000/27C1001

When the MX27C1000 is delivered, or it is erased, the chip has all 1 M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C1000/27C1001 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the VPP pin, OE is at VIH, and CE and

PIN DESCRIPTION

SYMBOL	PIN NAME
AO~A16	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\text { PGM }}$	Programmable Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

$\overline{P G M}$ at VIL.
For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C100027C1001. This part of the algorithm is done at VCC $=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the $\overline{\mathrm{PGM}}$ input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C1000/27C1001s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C1000/27C1001 may be common. A TTL low-level program pulse applied to an MX27C1000/27C1001 CE input with VPP $=12.5$ $\pm 0.5 \mathrm{~V}$ and PGM LOW will program that MX27C1000/ 27C1001. A high-level CE input inhibits the other MX27C1000/27C1001s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with OE and $\overline{\mathrm{CE}}$, at VIL, PGM at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C1000/ 27C1001.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{~A} 0=\mathrm{VIH})$, the device identifier code. For the MX27C1000/1001, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C1000/27C1001 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate
data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A \mathrm{CC}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs tQE after the falling edge of $\overline{O E}$, assuming that CE has been LOW and addresses have been stable for at least tACC - tQE.

STANDBY MODE

The MX27C1000/27C1001 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when CE is at VCC ± 0.3 V. The MX27C1000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby
 mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

MODE	PINS						
	$\overline{\mathbf{C E}}$	$\overline{O E}$	$\overline{\text { PGM }}$	AO	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
OutputDisable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	X	VCC	High Z
Standby (CMOS)	$\mathrm{VCC} \pm 0.3 \mathrm{~V}$	X	X	X	X	vcc	High Z
Program	VIL	VIH	VIL	X	X	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	X	VIL	VH	VCC	C 2 H
DeviceCode(27C1000)	VIL	VIL	X	VIH	VH	VCC	OEH
Device Code(27C1001)	VIL	VIL	X	VIH	VH	VCC	OFH

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}$ (For auto select)
4. See DC Programming Characteristics for VPP voltage during programming.

FIGURE 1．INTERACTIVE PROGRAMMING FLOW CHART

MACRONIX, INC.

FIGURE 2. FAST PROGRAMMING FLOW CHART

SWITCHING TEST CIRCUITS

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance(30pF for 55/70 ns parts)

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic "1" and 0.4 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

AC TESTING:(1) Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$. (2) For MX27C1000/1001-55, MX27C1000/1001-70 only

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS	
RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
V9 \& Vpp	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	mA	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	mA	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	mA	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current	1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$	
ICC1	VCC Active Current	60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}, \mathrm{lout}=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	100	mA	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

MACRONIX, INC.

AC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	$\begin{gathered} 27 \mathrm{C} 10001001 \\ -55 \end{gathered}$		$\begin{gathered} 27 \mathrm{C} 1000 / 1001 \\ -70 \end{gathered}$		$\begin{gathered} \text { 27C1000/1001 } \\ -90 \end{gathered}$		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		55		70		90	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		55		70		90	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		30		35		40	ns	$\overline{\overline{C E}}=$ VIL
tDF	OE High to Output Float, or CE High to Output Float	0	20	0	20	0	25	ns	
tOH	Output Hold from Address, $\overline{C E}$ or $\overline{O E}$ which ever occurred first			0		0		ns	
		$\begin{gathered} 27 C 10001001 \\ -12 \end{gathered}$		$\begin{gathered} 27 C 1000 / 1001 \\ -15 \end{gathered}$					
SYMBOL	PARAMETER	MIN.	max.	MIN.	MAX.			UNIT	CONDITIONS
tACC	Address to Output Delay		120		150			ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		120		150			ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
!OE	Output Enable to Output Delay		50		65			ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	OE High to Output Float, or CE High to Output Float	0	35	0	50			ns	
tOH	Output Hold from Address, CE or $\bar{O} E$ which ever occurred first	0		0				ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CE}=\overline{\mathrm{PGM}}=\mathrm{VIL},}$
					$\overline{\mathrm{OE}=\mathrm{VIH}}$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		ms	
tOES	$\overline{\text { OE Setup Time }}$		2.0		nS	
tDS	Data Setup Time		2.0		ns	
tAH	Address Hold Time		0		$n \mathrm{~m}$	
tDH	Data Hold Time		2.0		nS	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		ms	
tPW	$\overline{\text { PGM }}$ Program Pulse Width	Fast	95	105	ms	
		Interactive	0.95	1.05	mS	
topw	$\overline{\text { PGM Overprogram Pulse(Interactive) }}$		1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		nS	
tDV	Data Valid from CE			250	nS	
tCES	$\overline{\mathrm{CE}}$ Setup Time		2.0		$n \mathrm{~s}$	
tOE	Data valid from $\overline{\mathrm{OE}}$			150	nS	

M×27C1000/27C1001

WAVEFORMS
READCYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 \& 2)

ORDERING INFORMATION
CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENTMAX.(mA)	STANDBYCURRENTMAX.(mA)	PACKAGE
MX27C1000DC-55	55	60	100	32 Pin DIP
MX27C1000DC-70	70	60	100	32 Pin DIP
MX27C1000DC-90	90	60	100	32 Pin DIP
MX27C1000DC-12	120	60	100	32 Pin DIP
MX27C1000DC-15	150	60	100	32 Pin DIP
MX27C1001DC-55	55	60	100	32 Pin DIP
MX27C1001DC-70	70	60	100	32 Pin DIP
MX27C1001DC-90	90	60	100	32 Pin DIP
MX27C1001DC-12	120	60	100	32 Pin DIP
MX27C1001DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

PARTNO.	ACCESS TIME(ns)	OPERATING CURRENTMAX.(mA)	STANDBYCURRENTMAX.(mA)	PACKAGE
MX27C1000PC-55	55	60	100	32 Pin DIP
MX27C1000MC-55	55	60	100	32 Pin SOP
MX27C1000QC-55	55	60	100	32 Pin PLCC
MX27C1000PC-70	70	60	100	32 Pin DIP
MX27C1000MC-70	70	60	100	32 Pin SOP
MX27C1000QC-70	70	60	100	32 Pin PLCC
MX27C1000PC-90	90	60	100	32 Pin DIP
MX27C1000MC-90	90	60	100	32 Pin SOP
MX27C1000QC-90	90	60	100	32 Pin PLCC
MX27C1000PC-12	120	60	100	32 Pin DIP
MX27C1000MC-12	120	60	100	32 Pin SOP
MX27C1000QC-12	120	60	100	32 Pin PLCC
MX27C1000PC-15	150	60	100	32 Pin DIP
MX27C1000MC-15	150	60	100	32 Pin SOP
MX27C1000QC-15	150			32 Pin PLCC

FEATURES

- $64 \mathrm{~K} \times 16$ organization(MX27C1024, JEDEC pin out)
- $128 \mathrm{~K} \times 8$ or $64 \mathrm{~K} \times 16$ organization(MX27C1100, ROM pin out compatible)
- +12.5 V programming voltage
- Fast access time: $90 / 120 / 150 \mathrm{~ns}$
- Totally static operation

GENERAL DESCRIPTION

The MX27C1024 is a 5 V only, 1 M -bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 64 K words by 16 bits per word(MX27C1024), $128 \mathrm{~K} \times 8$ or 64 K x 16(MX27C1100), operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM programmers

- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 40 pin ceramic DIP
- 40 pin plastic DIP
-44 pin PLCC
may be used. The MX27C1100/1024 supports a intelligent quick pulse programming algorithm which can result in programming times of less than thirty seconds.

This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

PIN CONFIGURATIONS

 CDIP/PDIP(MX27C1100)NC

BLOCK DIAGRAM (MX27C1100)

MACRONIX, INC.

PIN CONFIGURATIONS

CDIP/PDIP(MX27C1024)

PLCC(MX27C1024)

BLOCK DIAGRAM (MX27C1024)

PIN DESCRIPTION(MX27C1100)

SYMBOL	PIN NAME
AO~A15	Address Input
Q0~Q14	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{BYTE} / \text { NPP }}$	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5 V)
GND	Ground Pin

PIN DESCRIPTION(MX27C1024)

SYMBOL	PIN NAME
A0~A15	Address Input
Q0~Q15	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{PGM}}$	Program Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin (+5V)
GND	Ground Pin

TRUTH TABLE OF BYTE FUNCTION(MX27C1100)

BYTE MODE($\overline{\mathrm{BYTE}}=$ GND $)$

$\overline{\mathbf{C E}}$	OE/ $\overline{\mathrm{EE}}$	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE $(\overline{\mathrm{BYTE}}=\mathrm{VCC})$

$\overline{\text { CE }}$	OE/ $\overline{\text { OE }}$	D15/A-1	MODE	DO-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	U/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $X=H$ or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C1100/1024

The MX27C1100/1024 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C1100/1024. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C1100/1024 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C1100/1024, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much. longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C1100/1024 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C1100/1024

When the MX27C1100/1024 is delivered, or it is erased, the chip has all 1M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C1100/1024 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the VPP pin, OE is at VIH and PGM is at VIL (MX27C1024) and programming mode entered when $12.5 \pm 5 \mathrm{~V}$ is applied to the $\overline{\mathrm{BYTE}}$ VPP pin, $\overline{\mathrm{OE}}$ at VIH and CE at VIL (MX27C1100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the

MX27C1100/1024. This part of the algorithm is done at $\mathrm{VCC}=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C1100/1024's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C1100/1024 may be common. A TTL low-level program pulse applied to an MX27C1100/1024 CE input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ will program the MX27C1100/1024. A high-level CE input inhibits the other MX27C1100/1024s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$, at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its

MACRONIX, INC.
corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C1100/ 1024.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{AO}=\mathrm{VIH})$, the device identifier code. For the MX27C1100/1024, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C1100/1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of OE's, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t A C C-t O E$.

WORD-WIDE MODE

With BYTE/VPP at VCC $\pm 0.2 \mathrm{~V}$ outpuits Q0-7 present data D0-7 and outputs Q8-15 present data D8-15, after CE and $\overline{\mathrm{OE}}$ are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND $\pm 0.2 \mathrm{~V}$, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits D8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits D0-7.

STANDBY MODE

The MX27C1100/1024 has a CMOS standby mode which reduce the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C1100/1024 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a two-

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C1024)

MODE	PINS						
	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	AO	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	X	VCC	High Z
Standby (CMOS)	$\mathrm{VCC} \pm 0.3 \mathrm{~V}$	X	X	X	X	vcc	High Z
Program	VIL	VIH	VIL	x	x	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	X	VIL	VH	VCC	00C2H
Device Code	VIL	VIL	X	VIH	VH	VCC	0111H

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}($ For auto select)
4. See DC Programming Characteristics for VPP voltage during programming.

MODE SELECT TABLE (MX27C1100)

MODE	NOTES	$\overline{C E}$	$\overline{O E}$	A9	A0	Q15/A-1	$\overline{\text { BYTE }}$ VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	X	X	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	X	X	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	X	X	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	X	X	High Z	X	High Z	High Z
Standby		VIH	X	X	X	High Z	X	High Z	High Z
Program	2	VIL	VIH	X	X	D15 ln	VPP	D8-14 in	D0-7 In
Program Verify		VIH	VIL	X	X	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	X	X	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	OB	VCC	OOH	C 2 H
Device Code		VIL	VIL	VH	VIH	OB	VCC	01H	12 H

NOTES: 1. X can be VIL or VIH.
2. See DC Programming Characteristics for VPP voltages.
3. $\mathrm{A} 1-\mathrm{A} 8, \mathrm{~A} 10-\mathrm{A} 15=\mathrm{VIL}, \mathrm{A} 9=\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
4. $\bar{B} Y T E / V P P$ is intended for operation under DC Voltage conditions only.

FIGURE 1．INTERACTIVE PROGRAMMING FLOW CHART

MACRONIX, INC.

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

$C L=100 \mathrm{pF}$ Including jig capacitance

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic "1" and 0.4 V for a logic " 0 ". Input pulse rise and fall times are <20ns.

M×27c1100/27c1024

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current	60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C1100/1024-90		27C1100/1024-12		27C1100/1024-15			CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	
tACC	Address to Output Delay		90		120		150	ns	$\overline{\overline{C E}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		90		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		40		50		65	ns	CE = VIL
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	25	0	35	0	50	ns	
toh	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred first	0		0		0		ns	

M×27C1100/27c1024

AC CHARACTERISTICS(Continued)

SYMBOL	PARAMETER	27C1100-90		27C1100-12		27C1100-15			UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		MIN.	MAX.		
tBHA	$\overline{\text { BYTE }}$ Access Time		90		120			150	ns	
tOHB	$\overline{\text { BYTE Output Hold Time }}$	0		0	0				ns	
tBHZ	$\overline{\text { BYTE }}$ Output Delay Time		70		70			70	ns	
tBLZ	$\overline{\text { BYTTE Output Set Time }}$	10		10	10				ns	
DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$										
SYMBOL	PARAMETER		MIN.		MAX.			UNIT	CONDITIONS	
VOH	Output High Voltage		2.4					V	$1 \mathrm{OH}=-0.40 \mathrm{~mA}$	
VOL	Output Low Voltage				0.4			V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$	
VIH	Input High Voltage		2.0		VCC + 0.5			V		
VIL	Input Low Voltage			-0.3	0.8			V		
ILI	Input Leakage Current			-10		10		$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V	
VH	A9 Auto Select Voltage			11.5		12.5		V		
ICC3	VCC Supply Current (Program \& Verify)					50		mA		
IPP2	VPP Supply Current(Program)				30			mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{VIH}$	
VCC1	Interactive Supply Voltage			5.75	6.25			V		
VPP1	Interactive Programming Voltage			12.0	13.0			V		
VCC2	Fast Programming Supply Voltage			6.00	6.50			V		
VPP2	Fast Programming Voltage			12.5	13.0			V		

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		MIN.	MAX	UNIT	CONDITIONS
tAS	Address Setup Time		2.0		$\mu \mathrm{S}$	
tOES	$\overline{\text { OE Setup Time }}$		2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time		2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time		0		$\mu \mathrm{S}$	
tDH	Data Hold Time		2.0		$\mu \mathrm{S}$	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay		0	130	nS	
tVPS	VPP Setup Time		2.0		$\mu \mathrm{S}$	
tPW	$\overline{C E}$ Program Pulse Width	Fast	95	105	$\mu \mathrm{S}$	
		Interactive	0.95	1.05	mS	
toPW	$\overline{\overline{C E}}$ Overprogram Pulse(Interactive)		1.95	2.05	mS	
tVCS	VCC Setup Time		2.0		$\mu \mathrm{S}$	
tDV	Data Valid from $\overline{\mathrm{CE}}$			250	nS	
tCES	$\overline{C E}$ Setup Time		2.0		$\mu \mathrm{S}$	
tOE	Data valid from $\overline{\mathrm{OE}}$			150	nS	

WAVEFORMS（MX27C1024）
READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

WAVEFORMS(MX27C1100)
PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

MACRONIX, INC.

ORDERING INFORMATION

CERAMIC PACKAGE

PARTNO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE
MX27C1100DC-90	90	60	100	40 Pin DIP(ROM pin out)
MX27C1100DC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C1100DC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C1024DC-90	90	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024DC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024DC-15	150	60	100	40 Pin DIP(JEDEC pin out)

PLASTIC PACKAGE

PART NO.	ACCESS TIME $(\mathbf{n s})$	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(mA)	PACKAGE
MX27C1100PC-90	90	60	100	40 Pin DIP(ROM pin out)
MX27C1100PC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C1100PC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C1024PC-90	90	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024PC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024PC-15	150	60	100	40 Pin DIP(JEDEC pin out)
MX27C1024QC-90	90	60	100	44 Pin PLCC
MX27C1024QC-12	120	60	100	44 Pin PLCC
MX27C1024QC-15	150	60	100	44 Pin PLCC

FEATURES

- 256 Kx 8 organization
- Single +5 V power supply
- +12.5V programming voltage
- Fast access time: 90/120/150 ns
- Totally static operation

GENERAL DESCRIPTION

The MX27C2000 is a 5V only, 2M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 256K words by 8 bits per word, operates from a single + 5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For

- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin ceramic DIP, plastic DIP
- 32 pin SOP
programming outside from the system, existing EPROM programmers may be used. The MX27C2000 supports a intelligent quick pulse programming algorithm which can result in programming times of less than one minute.

This EPROM is packaged in industry standard 32 pin dual-in-line packages or 32 lead, SOP packages.

PIN CONFIGURATIONS

32 CDIP/PDIP

32 SOP

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q7	Data Input/Output
$\overline{\text { CE }}$	Chip Enable Input
$\overline{\text { OE }}$	Output Enable Input
$\overline{\text { PGM }}$	Programmable Enable Input
VPP	Program Supply Voitage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C2000

The MX27C2000 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C2000. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C2000 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C2000, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C2000 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C2000

When the MX27C2000 is delivered, or it is erased, the chip has all 2M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C2000 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the VPP pin, $\overline{\mathrm{OE}}$ is at VIH , and $\overline{\mathrm{CE}}$ and PGM are at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C2000. This part of the algorithm is done at VCC= 6.0 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits
have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC $=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\text { PGM }}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC $=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C2000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C2000 may be common. A TTL low-level program pulse applied to an MX27C2000 CE input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ and PGM LOW will program that MX27C2000. A high-level $\overline{\mathrm{CE}}$ input inhibits the other MX27C2000s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{O E}$ and $\overline{C E}$, at VIL, PGM at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C2000.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

MACRONIX, INC.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{~A} 0=\mathrm{VIH})$, the device identifier code. For the MX27C2000, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C2000 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs tQE after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least tACC - tQE.

STANDBY MODE

The MX27C2000 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when CE is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C2000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

MODE	PINS						
	$\overline{C E}$	$\overline{O E}$	PGM	AO	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	x	X	VCC	High Z
Standby (CMOS)	VCC $\pm 0.3 \mathrm{~V}$	X	X	x	x	vCC	High Z
Program	VIL	VIH	VIL	x	x	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	x	VIL	VH	VCC	C 2 H
Device Code	VIL	VIL	X	VIH	VH	VCC	2 H

NOTES: $1 . \mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}$ (For auto select)
4. See DC Programming Characteristics for VPP voltage during programming.

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

MACRONIX, INC.

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

$$
\mathrm{CL}=100 \mathrm{pF} \text { Including jig capacitance }
$$

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic " 1 " and 0.4 V for a logic "0".
Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
V9 \& VPP	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$V C C+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current		60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
IPP	VPP Supply Current Read		100	$\mu \mathrm{A}$	$C E=O E=V I L, V P P=5.5 \mathrm{~V}$

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	$\mathrm{VOUT}=\mathrm{OV}$
CVPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

AC CHARACTERISTICS $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C2000-90		27C2000-12		27C2000-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		90		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		90		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		40		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	25	0	35	0	50	ns	
toh	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	VCC +0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{VIH}$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programmirg Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

AC PROGRAMMING CHARACTERISTICS $T A=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		$\mu \mathrm{S}$	
tOES	OE Setup Time	2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time	2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time	0		$\mu \mathrm{S}$	
tDH	Data Hold Time	2.0		$\mu \mathrm{S}$	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	130	nS	
tVPS	VPP Setup Time	2.0		mS	
tPW	PGM Program Pulse Width Fast	95	105	mS	
	Interactive	0.95	1.05	mS	
tOPW	PGM Overprogram Pulse(Interactive)	1.95	2.05	mS	
tVCS	VCC Setup Time	2.0		mS	
tDV	Data Valid from $\overline{\mathrm{CE}}$		250	nS	
tCES	CE Setup Time	2.0		$\mu \mathrm{S}$	
tOE	Data valid from OE		150	nS	

WAVEFORMS

read cycle

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 \& 2)

MACRONIX, INC.

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX. $(\mathbf{m A})$	STANDBYCURRENTMAX. $(\mu$ A)	PACKAGE
MX27C2000DC-90	90	60	100	32 Pin DIP
MX27C2000DC-12	120	60	100	32 Pin DIP
MX27C2000DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENTMAX. $(\mu$ A)	PACKAGE
MX27C2000PC-90	90	60	100	32 Pin DIP
MX27C2000MC-90	90	60	100	32 Pin SOP
MX27C2000PC-12	120	60	100	32 Pin DIP
MX27C2000MC-12	120	60	100	32 Pin SOP
MX27C2000PC-15	150	60	100	32 Pin DIP
MX27C2000MC-15	150	60	100	32 Pin SOP

M×27C2100/27C2048

FEATURES

- 128K x 16 organization(MX27C2048, JEDEC pin out)
- 256 K x 8 or 128K x 16 organization(MX27C2100, ROM pin out compatible)
- +12.5V programming voltage
- Fast access time: 90/120/150 ns
- Totally static operation
- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 40 pin ceramic DIP
- 40 pin plastic DIP
- 44 pin PLCC (MX27C2048)

GENERAL DESCRIPTION

The MX27C2100/2048 is a 5 V only, 2M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 128K words by 16 bits per word(MX27C2048), $256 \mathrm{~K} \times 8$ or $128 \mathrm{~K} \times 16(\mathrm{MX27C2100})$, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single
pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C2100/ 2048 supports a intelligent quick pulse programming algorithm which can result in programming times of less than one minute.

This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

PIN CONFIGURATIONS CDIP/PDIP(MX27C2100)

BLOCK DIAGRAM (MX27C2100)

MACRONIX, INC.

PIN CONFIGURATIONS

CDIP/PDIP(MX27C2048)

VPP	1		40	VCC
CE	2		39	$\square \mathrm{PGM}$
Q15	3		38	$\square \mathrm{A} 16$
Q14	4		37	A15
Q13	5		36	A14
Q12	6		35	$\square \mathrm{A} 13$
Q11	7		34	A12
Q10	8	O	33	-A11
Q9	9	N	32	$\square \mathrm{A} 10$
Q8	10	N	31	- ${ }^{\text {a }}$
GND	11	N	30	$\square \mathrm{GND}$
Q7 5	12	区	29	-A8
Q6	13		28	$\mathrm{P}^{\text {A }}$
Q5	14		27	$\square{ }^{\text {a }}$
Q4	15		26	$\square \mathrm{A} 5$
Q3 ${ }^{\text {a }}$	16		25	$\square \mathrm{P}_{4}$
Q2	17		24	A3
Q1	18		23	A2
Q0 ${ }^{-1}$	19		22	-A1
OE	20		21	PAO

PIN CONFIGURATIONS

PLCC(MX27C2048)

BLOCK DIAGRAM (MX27C2048)

MX27C2100/27C2048

PIN DESCRIPTION(MX27C2100)

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q14	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{BYTE} / V P P}$	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PIN DESCRIPTION(MX27C2048)

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q15	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{PGM}}$	Program Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

TRUTH TABLE OF BYTE FUNCTION(MX27C2100)
BYTE MODE $(\overline{B Y T E}=$ GND $)$

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE ($\overline{\mathrm{BYTE}}=\mathrm{VCC})$

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $\mathrm{X}=\mathrm{H}$ or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C2100/2048

The MX27C2100/2048 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C2100/2048. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (A) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C2100/2048 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C2100/2048, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C2100/2048 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C2100/2048

When the MX27C2100/2048 is delivered, or it is erased, the chip has all 2M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C2100/2048 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the VPP pin, $\overline{\mathrm{OE}}$ is at VIH and PGM is at VIL (MX27C2048) and programming mode entered when $12.5 \pm 5 \mathrm{~V}$ is applied to the BYTE/VPP pin, $\overline{\mathrm{OE}}$ at VIH and $\overline{C E}$ at VIL (MX27C2100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the

MX27C2100/2048. This part of the algorithm is done at $\mathrm{VCC}=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C2100/2048's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$, all like inputs of the parallel MX27C2100/2048 may be common. A TTL low-level program pulse applied to an MX27C2100/2048 $\overline{\mathrm{CE}}$ input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ will program the MX27C2100/2048. A high-level $\overline{C E}$ input inhibits the other MX27C2100/2048s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$, at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its
corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C2100/ 2048.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{~A} 0=\mathrm{VIH})$, the device identifier code. For the MX27C2100/2048, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C2100/2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of OE's, assuming that CE has been LOW and addresses have been stable for at least $t A C C$ - t OE.

WORD-WIDE MODE

With BYTE/VPP at VCC $\pm 0.2 \mathrm{~V}$ outputs Q0-7 present data D0-7 and outputs Q8-15 presení data D8-15, after CE and OE are appropriately enabled.

BYTE-WIDE MODE

With $\overline{\mathrm{BYTE}} / \mathrm{VPP}$ at GND $\pm 0.2 \mathrm{~V}$, outputs Q8-15 are tristated. If Q15/A-1 $=\mathrm{VIH}$, outputs Q0-7 present data bits D8-15. If Q15/A-1 $=$ VIL, outputs $\mathrm{Q} 0-7$ present data bits D0-7.

The MX27C2100/2048 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C2100/2048 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C2048)

MODE	PINS						
	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	VIH	X	X	VCC	DOUT
Output Disable	VIL	VIH	VIH	X	X	VCC	High Z
Standby (TTL)	VIH	x	X	X	X	VCC	High Z
Standby (CMOS)	$\mathrm{VCC} \pm 0.3 \mathrm{~V}$	X	X	X	X	vCC	High Z
Program	VIL	VIH	VIL	X	X	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	x	X	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	X	VIL	VH	VCC	00 C 2 H
Device Code	VIL	VIL	X	VIH	VH	VCC	0122H

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}$ (For auto select)
4. See DC Programming Characteristics for VPP voltage during programming.

MODE SELECT TABLE (MX27C2100)

MODE	NOTES	$\overline{C E}$	$\overline{O E}$	A9	A0	Q15/A-1	$\overline{\text { BYTE }}$ VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	X	X	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	X	X	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	X	X	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	X	X	High Z	X	High Z	High Z
Standby		VIH	X	X	X	High Z	X	High Z	High Z
Program	2	VIL	VIH	X	x	D15 in	VPP	D8-14 In	D0-7 In
Program Verify		VIH	VIL	X	X	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	x	X	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	OB	VCC	0 OH	C 2 H
Device Code		VIL	VIL	VH	VIH	OB	VCC	OOH	8AH

NOTES: 1. X can be VIL or VIH.
2. See DC Programming Characteristics for VPP voltages.
3. $\mathrm{A} 1-\mathrm{A} 8, \mathrm{~A} 10-\mathrm{A} 15=\mathrm{VIL}, \mathrm{A} 9=\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
4. $\overline{B Y T E} /$ PPP is intended for operation under DC Voltage conditions only.

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic " 1 " and 0.4 V for a logic " 0 ". Input pulse rise and fall times are $<20 \mathrm{~ns}$.

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$10 \mathrm{~L}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current	1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$	
ICC1	VCC Active Current	60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}, \mathrm{lout}=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{O}$
CVPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{~V}$

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

		27C2100/2048-90		27C2100/2048-12		27C2100/2048-15			CONDITIONS
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	
tACC	Address to Output Delay		90		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		90		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
toe	Output Enable to Output Delay		40		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{O E}$ High to Output Float, or $\overline{\text { CE }}$ High to Output Float	0	25	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred first	0		0		0		ns	

MX27C2100/27C2048

AC CHARACTERISTICS(Continued)

SYMBOL	PARAMETER	27C2100-90		27C2100-12		27C2100-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tBHA	$\overline{\text { BYTE Access Time }}$		90		120		150	ns	
tOHB	$\overline{\text { BYTE }}$ Output Hold Time	0		0		0		ns	
tBHZ	$\overline{\text { BYTE Output Delay Time }}$		70		70		70	ns	
tBLZ	$\overline{\text { BYTE Output Set Time }}$	10		10		10		ns	

| DC PROGRAMMING CHARACTERISTICS | TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SYMBOL | PARAMETER | MIN. | MAX. | UNIT | CONDITIONS |
| VOH | Output High Voltage | 2.4 | | V | $10 \mathrm{H}=-0.40 \mathrm{~mA}$ |
| VOL | Output Low Voltage | | 0.4 | V | $\mathrm{IOL}=2.1 \mathrm{~mA}$ |
| VIH | Input High Voltage | 2.0 | $\mathrm{VCC}+0.5$ | V | |
| VIL | Input Low Voltage | -0.3 | 0.8 | V | |
| ILI | Input Leakage Current | -10 | 10 | $\mu \mathrm{~A}$ | $\mathrm{VIN}=0$ to 5.5 V |
| VH | A9 Auto Select Voltage | 11.5 | 12.5 | V | |
| ICC3 | VCC Supply Current (Program \& Verify) | | 50 | mA | |
| IPP2 | VPP Supply Current(Program) | | 30 | mA | $\overline{\mathrm{CE}=\mathrm{VIL}, \overline{O E}=\mathrm{VIH}}$ |
| VCC1 | Interactive Supply Voltage | 5.75 | 6.25 | V | |
| VPP1 | Interactive Programming Voltage | 12.0 | 13.0 | V | |
| VCC2 | Fast Programming Supply Voltage | 6.00 | 6.50 | V | |
| VPP2 | Fast Programming Voltage | 12.5 | 13.0 | V | |

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		$\mu \mathrm{S}$	
tOES	$\overline{O E}$ Setup Time	2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time	2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time	0		$\mu \mathrm{S}$	
tDH	Data Hold Time	2.0		$\mu \mathrm{S}$	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	130	nS	
tVPS	VPP Setup Time	2.0		$\mu \mathrm{S}$	
tPW	$\overline{\mathrm{CE}}$ Program Pulse Width Fast	95	105	$\mu \mathrm{S}$	
	Interactive	0.95	1.05	mS	
tOPW	$\overline{\mathrm{CE}}$ Overprogram Pulse(Interactive)	1.95	2.05	mS	
tVCS	VCC Setup Time	2.0		$\mu \mathrm{S}$	
tDV	Data Valid from $\overline{\mathrm{CE}}$		250	nS	
tCES	$\overline{\text { CE Setup Time }}$	2.0		$\mu \mathrm{S}$	
tOE	Data valid from $\overline{\mathrm{OE}}$		150	nS	

WAVEFORMS（MX27C2048）
READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

WAVEFORMS(MX27C2100)
PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO．	ACCESS TIME $(\mathbf{n s})$	OPERATING CURRENT MAX．（mA）	STANDBY CURRENT MAX．（ μ A）	PACKAGE
MX27C2100DC－90	90	60	100	40 Pin DIP（ROM pin out）
MX27C2100DC－12	120	60	100	40 Pin DIP（ROM pin out）
MX27C2100DC－15	150	60	100	40 Pin DIP（ROM pin out）
MX27C2048DC－90	90	60	100	40 Pin DIP（JEDEC pin out）
MX27C2048DC－12	120	60	100	40 Pin DIP（JEDEC pin out）
MX27C2048DC－15	150	60	100	40 Pin DIP（JEDEC pin out）

PLASTIC PACKAGE

PART NO．	ACCESS TIME （ns）	OPERATING CURRENT MAX．（mA）	STANDBY CURRENT MAX．$(\mu$ A）	PACKAGE
MX27C2100PC－90	90	60	100	40 Pin DIP（ROM pin out）
MX27C2100PC－12	120	60	100	40 Pin DIP（ROM pin out）
MX27C2100PC－15	150	60	100	40 Pin DIP（ROM pin out）
MX27C2048PC－90	90	60	100	40 Pin DIP（JEDEC pin out）
MX27C2048PC－12	120	60	100	40 Pin DIP（JEDEC pin out）
MX27C2048PC－15	150	60	100	40 Pin DIP（JEDEC pin out）
MX27C2048QC－90	90	60	100	44 Pin PLCC
MX27C2408QC－12	120	60	100	44 Pin PLCC
MX27C2408QC－15	150	60	44 Pin PLCC	

FEATURES

- $512 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- +12.5V programming voltage
- Fast access time: 120/150 ns
- Totally static operation

GENERAL DESCRIPTION

The MX27C4000 is a 5V only, 4M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 512 K words by 8 bits per word, operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For

- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin ceramic DIP, plastic DIP

$$
0+10 \text { enter }
$$

programming outside from the system, existing EPROM programmers may be used. The MX27C4000 supports a intelligent quick pulse programming algorithm which can result in programming times of less than two minutes.

This EPROM is packaged in industry standard 32 pin dual-in-line packages.

PIN CONFIGURATIONS

32 CDIP/PDIP

P	1		32	$\square \mathrm{Vcc}$
A16	2		31	A18
A15	3		30	$\square \mathrm{A} 17$
A12	4		29	$\square \mathrm{A} 14$
A7	5		28	A13
A6	6	8	27	A8
A5	7	O	26	$\square \mathrm{A} 9$
A4	8	O	25	$\square \mathrm{A} 11$
A3	9		24	$\square \overline{O E}$
A2	10	X	23	$\square \mathrm{A} 10$
A1	11		22	$\square \overline{C E}$
AO	12		21	$\square \mathrm{Q}^{\text {7 }}$
Q0	13		20	$\square \mathrm{Q} 6$
Q1	14		19	$\square \mathrm{Q} 5$
Q2	15		18	$\bigcirc \mathrm{Q} 4$
GND	16		17	Q3

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A18	Address Input
Q0~Q7	Data Input/Output
$\overline{\text { CE }}$	Chip Enable Input
$\overline{\text { OE }}$	Output Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

MACRONIX, INC.

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C4000

The MX27C4000 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C4000. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (Å) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C4000 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C4000, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C4000 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C4000

When the MX27C4000 is delivered, or it is erased, the chip has all 4 M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C4000 through the procedure of programming.

The programming mode is entered when $12.5 \pm 0.5 \mathrm{~V}$ is applied to the VPP pin, $\overline{\mathrm{OE}}$ is at VIH, and CE is at VIL.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the MX27C4000. This part of the algorithm is done at VCC $=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is
completed, the entire EPROM memory is verified at VCC $=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{OE}}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the $\overline{C E}$ input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C4000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$, all like inputs of the parallel MX27C4000 may be common. A TTL low-level program pulse applied to an MX27C4000 $\overline{\mathrm{CE}}$ input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ and CE LOW will program that MX27C4000. A high-level $\overline{\mathrm{CE}}$ input inhibits the other MX27C4000s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{O E}$ at VILand CE, at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C4000.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{AO}=\mathrm{VIL})$ represents the manufacturer code, and
byte $1(\mathrm{AO}=\mathrm{VIH})$, the device identifier code. For the MX27C4000, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C4000 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs tOE after the falling edge of OE's, assuming that CE has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27C4000 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when CE is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C4000 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

	PINS					
MODE	$\overline{C E}$	$\overline{O E}$	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	vCC	DOUT
Output Disable	VIL	VIH	X	X	VCC	High Z
Standby (TTL)	VIH	x	x	X	VCC	High Z
Standby (CMOS)	$\mathrm{VCC} \pm 0.3 \mathrm{~V}$	X	X	X	VCC	High Z
Program	VIL	VIH	x	X	VPP	DIN
Program Verify	VIH	VIL	x	x	VPP	DOUT
Program Inhibit	VIH	X	x	X	VPP	High Z
Manufacturer Code	VIL	VIL	VIL	VH	VCC	C 2 H .
Device Code	VIL	VIL	VIH	VH	VCC	40 H
NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ 2. $X=$ Either VIH or VIL(For auto select)				A1-A See progra	3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=$ VIL(For auto select)	auto select) eristics for

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

$C L=100 \mathrm{pF}$ Including jig capacitance

SWITCHING TEST WAVEFORMS

AC TESTING: Inputs are driven at 2.4 V for a logic "1" and 0.4 V for a logic " 0 ".
Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
V9 \& VPP	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$V C C+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current		60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
IPP	VPP Supply Current Read		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$
IPP2	VPP Supply Current (Program)		50	mA	

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	$\mathrm{VIN}=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	$\mathrm{VOUT}=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	$\mathrm{VPP}=0 \mathrm{OV}$

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C4000-12		27C4000-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		120		'150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		120		150	ns	$\overline{O E}=$ VIL
tOE	Output Enable to Output Delay		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	35	0	50	ns	
tOH	Output Hold from Address, CE or OE which ever occurred first	0		0		ns	

MACRONIX, INC.

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$10 \mathrm{~L}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CEE}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{VIH}}$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

WAVEFORMS

READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS(NOTE1 \& 2)

MACRONIX, INC.

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENTMAX. $(\mu$ A)	PACKAGE
MX27C4000DC-12	120	60	100	32 Pin DIP
MX27C4000DC-15	150	60	100	32 Pin DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBYCURRENTMAX. $(\mu$ A)	PACKAGE
MX27C4000PC-12	120	60	100	32 Pin DIP
MX27C4000PC-15	150	60	100	32 Pin DIP

M×27C4100/27C4096

FEATURES

- $256 \mathrm{~K} \times 16$ organization(MX27C4096, JEDEC pin out)
- $512 \mathrm{~K} \times 8$ or $256 \mathrm{~K} \times 16$ organization(MX27C4100, ROM pin out compatible)
- +12.5V programming voltage
- Fast access time: $120 / 150 \mathrm{~ns}$
- Totally static operation

GENERAL DESCRIPTION

The MX27C4100/4096 is a 5 V only, 4 M -bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 256 K words by 16 bits per word(MX27C4096), $512 \mathrm{~K} \times 8$ or $256 \mathrm{~K} \times 16$ (MX27C4100), operates from a single +5 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single

- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 40 pin ceramic DIP
- 40 pin plastic DIP
- 44 pin PLCC
pulse. For programming outside from the system, existing EPROM programmers may be used. The MX27C4100/ 4096 supports a intelligent quick pulse programming algorithm which can result in programming times of less than two minutes.

This EPROM is packaged in industry standard 40 pin dual-in-line ceramic packages or 40 pin plastic packages.

PIN CONFIGURATIONS

CDIP/PDIP(MX27C4100)

BLOCK DIAGRAM (MX27C4100)

PIN CONFIGURATIONS

PLCC(MX27C4096)

BLOCK DIAGRAM (MX27C4096)

PIN CONFIGURATIONS

CDIP/PDIP(MX27C4096)

MACRONIX, INC.
MX27C4100/27C4096

PIN DESCRIPTION(MX27C4100)	
SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q14	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\text { BYTE/VPP }}$	Word/Byte Selection /Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
GND	Ground Pin

PIN DESCRIPTION(MX27C4096)	
SYMBOL	
A0~A17	PIN NAME
Q0~Q15	Address Input
$\overline{\mathrm{CE}}$	Data Input/Output
$\overline{\mathrm{OE}}$	Chip Enable Input
VPP	Output Enable Input
VCC	Program Supply Voltage
GND	Power Supply Pin $(+5 \mathrm{~V})$

TRUTH TABLE OF BYTE FUNCTION(MX27C4100)

BYTE MODE ($\overline{\text { BYTE }}=$ GND $)$

$\overline{\mathbf{C E}}$	OE// $\overline{O E}$	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE $(\overline{B Y T E}=\mathrm{VCC})$

$\overline{\text { CE }}$	OE/ $\overline{\text { EE }}$	D15/A-1	MODE	DO-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $\mathrm{X}=\mathrm{H}$ or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C4100/4096

The MX27C4100/4096 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase a MX27C4100/4096. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C4100/4096 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C4100/4096, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than that with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C4100/4096 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C4100/4096

When the MX27C4100/4096 is delivered, or it is erased, the chip has all 4 M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27C4100/4096 through the procedure of programming.

The programming mode is entered when $12.5 \pm 5 \mathrm{~V}$ is applied to the VPP pin, OE is at VIH and CE is at VIL (MX27C4096) and programming mode entered when $12.5 \pm 5 \mathrm{~V}$ is applied to the $\overline{\text { BYTE }} / \mathrm{VPP}$ pin, $\overline{\mathrm{OE}}$ at VIH and $\overline{C E}$ at VIL (MX27C4100).

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

The flowchart in Figure 1 shows MXIC's interactive algorithm. Interactive algorithm reduces programming time by using short programming pulses and giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data is not verified, additional pulses are given until it is verified or the maximum is reached. This process is repeated while sequencing through each address of the

MX27C4100/4096. This part of the algorithm is done at $\mathrm{VCC}=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the interactive programming is completed, an overprogram pulse is given to each memory location; this ensures that all bits have sufficient margin. After the final address is completed, the entire EPROM memory is verified at VCC $=5 \mathrm{~V} \pm 10 \%$.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{OE}}=\mathrm{VIH}$ (Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 100μ s pulse to the CE input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=$ $V P P=5 V \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C4100/4096's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for $\overline{C E}$ and $\overline{O E}$, all like inputs of the parallel MX27C4100/4096 may be common. A TTL low-level program pulse applied to an MX27C4100/4096 CE input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ will program the MX27C4100/4096. A high-level CE input inhibits the other MX27C4100/4096s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$, at VIL, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a biriary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its
corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C4100/ 4096.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line AO from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{AO}=\mathrm{V} / \mathrm{H})$, the device identifier code. For the MX27C4100/4096, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ15) defined as the parity bit.

READ MODE

The MX27C4100/4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}})$ is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of OE's, assuming that CE has been LOW and addresses have been stable for at least $\mathrm{tACC}-\mathrm{t}$ OE.

WORD-WIDE MODE

With $\overline{\text { BYTE }} / \mathrm{VPP}$ at $\mathrm{VCC} \pm 0.2 \mathrm{~V}$ outputs Q0-7 present data D0-7 and outputs Q8-15 present data D8-15, after CE and OE are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND $\pm 0.2 \mathrm{~V}$, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits D8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits D0-7.

STANDBY MODE

The MX27C4100/4096 has a CMOS standby mode which reduces the maximum VCC current to $100 \mu \mathrm{~A}$. It is placed in CMOS standby when CE is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C4100/4096 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a two-

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27C4096)

MODE	PINS					
	$\overline{C E}$	$\overline{\mathrm{OE}}$	AO	A9	VPP	OUTPUTS
Read	VIL	VIL	x	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	VCC	High Z
Standby (CMOS)	VCC $\pm 0.3 \mathrm{~V}$	x	X	X	vcc	High Z
Program	VIL	VIH	X	x.	VPP	DIN
Program Verify	VIH	VIL	X	X	VPP	DOUT
Program Inhibit	VIH	x	X	x	VPP	High Z
Manufacturer Code	VIL	VIL	VIL	VH	VCC	00 C 2 H
Device Code	VIL	VIL	VIH	VH	VCC	0151H

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=$ VIL(For auto select)
4. See DC Programming Characteristics for VPP voltage during programming

MODE SELECT TABLE (MX27C4100)

MODE	NOTES	$\overline{C E}$	$\overline{O E}$	A9	A0	Q15/A-1	BYTE VPP(4)	Q8-14	Q0-7
Read (Word)	1	VIL	VIL	X	X	D15 Out	VCC	D8-14 Out	D0-7 Out
Read (Upper Byte)		VIL	VIL	X	X	VIH	GND	High Z	D8-15 Out
Read (Lower Byte)		VIL	VIL	X	X	VIL	GND	High Z	D0-7 Out
Output Disable		VIL	VIH	X	X	High Z	X	High Z	High Z
Standby		VIH	X	x	X	High Z	x	High Z	High Z
Program	2	VIL	VIH	x	X	D15 In	VPP	D8-14 In	D0-7 In
Program Verify		VIH	VIL	X	X	D15 Out	VPP	D8-14 Out	D0-7 Out
Program Inhibit		VIH	VIH	X	X	High Z	VPP	High Z	High Z
Manufacturer Code	2,3	VIL	VIL	VH	VIL	OB	VCC	OOH	C 2 H
Device Code		VIL	VIL	VH	VIH	OB	VCC	98H	B800H

NOTES: 1. X can be VIL or VIH.
2. See DC Programming Characteristics for VPP voltages.
3. $\mathrm{A} 1-\mathrm{A} 8, \mathrm{~A} 10-\mathrm{A} 15=\mathrm{VIL}, \mathrm{A} 9=\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
4. BYTE/NPP is intended for operation under DC Voltage conditions only.

FIGURE 1. INTERACTIVE PROGRAMMING FLOW CHART

MACRONIX, INC.

FIGURE 2. FAST PROGRAMMING FLOW CHART

MACRONIX, INC.

SWITCHING TEST CIRCUITS

AC TESTING: Inputs are driven at 2.4 V for a logic "1" and 0.4 V for a logic " 0 ". Input pulse rise and fall times are <20ns.

MX27C4100/27C4096

ABSOLUTE MAXIMUM RATINGS	
RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& VPP	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	$\mu \mathrm{~A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current	60	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}, \mathrm{lout}=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read		100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	VPP $=0 \mathrm{~V}$

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	27C4100/4096-12		27C4100/4096-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		. 120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or CE High to Output Float	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred first	0		0		ns	

M×27C4100/27C4096

AC CHARACTERISTICS(Continued)

		27C4100-12		27C4100-15		UNIT	CONDITIONS
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX		
tBHA	$\overline{\text { BYTE Access Time }}$		120		150	ns	
tOHB	$\overline{\text { BYTE }}$ Output Hold Time	0		0		ns	
$t B H Z$	$\overline{\text { BYTE Output Delay Time }}$		70		70	ns	
tBLZ	$\overline{\text { BYTE Output Set Time }}$	10		10		ns	

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$V C C+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{VIH}$
VCC1	Interactive Supply Voltage	5.75	6.25	V	
VPP1	Interactive Programming Voltage	12.0	13.0	V	
VCC2	Fast Programming Supply Voltage	6.00	6.50	V	
VPP2	Fast Programming Voltage	12.5	13.0	V	.

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		$\mu \mathrm{S}$	
tOES	$\overline{\text { OE Setup Time }}$	2.0		$\mu \mathrm{S}$	
tDS	Data Setup Time	2.0		$\mu \mathrm{S}$	
tAH	Address Hold Time	0		$\mu \mathrm{S}$	
tDH	Data Hold Time	2.0		μS	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	130	nS	
tVPS	VPP Setup Time	2.0		$\mu \mathrm{S}$	
tPW	$\overline{\text { CE Program Pulse Width Fast }}$	95	105	$\mu \mathrm{S}$	
	Interactive	0.95	1.05	mS	
tOPW	$\overline{\mathrm{CE}}$ Overprogram Pulse(Interactive)	1.95	2.05	mS	
tVCS	VCC Setup Time	2.0		$\mu \mathrm{S}$	
tDV	Data Valid from $\overline{\mathrm{CE}}$		250	nS	
tCES	$\overline{\text { CE Setup Time }}$	2.0		$\mu \mathrm{S}$	
tOE	Data valid from $\overline{O E}$		150	nS	

WEFORMS(MX27C4096)

READ CYCLE

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

MX27C4100/27C4096

WAVEFORMS(MX27C4100)
PROPAGATION DELAY FROM CHIP ENABLE(ADDRESS VALID)

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS

ORDERING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu$ A $)$	PACKAGE
MX27C4100DC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C4100DC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C4096DC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096DC-15	150	60	100	40 Pin DIP(JEDEC pin out)

PLASTIC PACKAGE				
PART NO.	ACCESS TIME (ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu$ A)	PACKAGE
MX27C4100PC-12	120	60	100	40 Pin DIP(ROM pin out)
MX27C4100PC-15	150	60	100	40 Pin DIP(ROM pin out)
MX27C4096PC-12	120	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096PC-15	150	60	100	40 Pin DIP(JEDEC pin out)
MX27C4096QC-12	120	60	100	44 Pin PLCC
MX27C4096QC-15	150	60	100	44 Pin PLCC

III. MASK ROM

(MASK PROGRAMMABLE READ ONLY MEMORY)

M×23C1000/MX23C1010

FEATURES

- $131,072 \times 8$ organization
- Single +5 V power supply
- Fast access time: 150/200ns
- Totally static operation
- Completely TTL compatible
- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 28 pin plastic DIP
- 32 pin plastic DIP/SOP

DESCRIPTION

The MX23C1000/1010 is a 5 V static CMOS ROM with an access time of $150 / 200$ ns and low standby current of $100 \mu \mathrm{~A}$. It has a total of 1 M programmable bits arranged as $128 \mathrm{~K} \times 8$-bit words. It offers a broad range of compatibility to nowaday's high speed and large program storage system designs.

The MX23C1000 is available in 28 pin DIP and MX23C1010 is 32 pin DIP. MX23C1000 pin 20 chip enable (CE/CE) may be programmabled either active HIGH or LOW. MX23C1000 pin 20 output enable (OE/ $\overline{\mathrm{OE}})$ may be programmed either active HIGH or LOW.

MX23C1010 pin 22 chip enable(CE/CE) and pin 24(OE/OE) maybe programmed either active HIGH or LOW.

PIN CONFIGURATIONS

28 PDIP

32 SOP

N.C.	\bigcirc		32		vcc
A16	2		31		N.C.
A15	3		30	\square	N.C.
A12	4		29		A14
A7	5		28		A13
A6	6	응	27		A8
A5	7	은	26		A9
A4	8	O	25	\square	A11
А3	9	N	24	-	OE/OE
A2	10	E	23		A10
A1	11		22		CE/CE
A0	12		21		Q7
Q0 -	13		20		
Q1	14		19		
Q2	15		18		Q4
vSS	16		17		Q3

32 PDIP

PIN FUNCTIONS

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Output
CE/CE	Chip Enable Input
OE/ $\overline{\mathrm{OE}}$	Output Enable Input
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	0.5 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		$1{ }^{\text { }}$	mA	$\overline{C E}=\mathrm{VIH}$
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONTITIONS
CIN	Input Capacitance	10	pF	VIN $=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	VOUT $=0 \mathrm{~V}$	

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C1000/1010-15		23C1000/1010-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	150		200		ns	
tAA	Address Access Time		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		ns	
tACE	Chip Enable Access Time		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		100	ns	
$t L Z$	Output Low Z Delay	0		0		ns	Note 3
$t H Z$	Output High Z Delay		70		70	ns	Note 4

NOTE:

1. Measured with device selected at $\mathrm{f}=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from $\overline{C E}$ going low.
4. Output high-impedance delay (tHZ) is measured from $\overline{\mathrm{CE}}$ going high.

FIGURE 1. OUTPUT LOAD CIRCUIT

* Including scope and jig.

M×23C1000/M×23C1010

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CUF 「ENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu \mathbf{A})$	PACKAGE
MX23C1000PC-15	150	40	100	28 Pin DIP
MX23C1010PC-15	150	40	100	32 Pin DIP
M X23C1000MC-15	150	40	100	28 Pin SOP
MX23C1010MC-15	150	40	100	32 Pin SOP
MX23C1000PC-20	200	40	100	28 Pin DIP
MX23C1010PC-20	200	40	100	32 Pin DIP
M $23 \mathrm{C} 1000 \mathrm{MC}-20$	200	40	100	28 Pin SOP
MX23C1010MC-20	200	40	100	32 Pin SOP

MACRONIX, INC.

FEATURES

- 256 K x 8 organization
- Single +5 V power supply
- Fast access time: $150 / 200$ ns (max)
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION

The MX23C2000 is a 5V only, 2M-bit, Read Only Memory. It is organized as 256 K words by 8 bit, operates from a single +5 volt supply, has a static standby mode, and has an access time of $150 / 200$ ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

PIN CONFIGURATIONS

 32 PDIP

32 SOP

C	0		32		vcc
A16	2		31	\square	NC
A15	3		30	\square	A17
A12	4		29	\square	A14
A7 -7	5		28	-	A13
A6	6		27	\square	A8
A5	7	8	26	-	A9
A4 -	8	N	25	\square	A11
A3 -	9	\%	24	E	OE/OE
A2	10	-	23	\square	A10
A1	11	Σ	22	\square	CE/CE
A0 \square	12		21	\square	Q7
Q0 -	13		20	\square	Q6
Q1	14		19	\square	Q5
Q2	15		18	\square	Q4
VSS	16		17		Q3

- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin plastic DIP
- 32 pin plastic SOP

The MX23C2000 offers automatic power-down, with power-down controlled by the chip enable($\overline{C E}$) Input. When $\overline{\mathrm{CE}}$ goes high, the device automatically powers down and remains in a low-power standby mode as long as $\overline{C E}$ remains high.

MX23C2000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A17	Address Input
Q0~Q7	Data Output
$C E / \overline{C E}$	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

M×23C2000

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS $\mathrm{TA}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	10	$\mu \mathrm{~A}$	$\mathrm{VIN}=0$ to 5.5 V	
ILO	Output Leakage Current	10	$\mu \mathrm{~A}$	$\mathrm{VOUT}=0$ to 5.5 V	
ICC3	Power-Down Supply Current	100	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$	
ICC2	Standby Supply Current	1.0	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$	
ICC1	Operating Supply Current	40	mA	Note 1	

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	VIN $=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	VOUT $=0 \mathrm{~V}$	

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C2000-15		23C2000-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	150		200		ns	
tAA	Address Access Time		150		200	ns	
OH	Output Hold Time After Address Change	10		10		ns	
tACE	Chip Enable Access Time		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		100	ns	
tLZ	Output Low Z Delay	0		0		ns	Note 3
$t H Z$	Output High Z Delay		70		70	ns	Note 4

NOTE:

1. Measured with device selected at $\mathrm{f}=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from $\overline{\mathrm{CE}}$ going low.
4. Output high-impedance delay (tHZ) is measured from $\overline{\mathrm{CE}}$ going high.

MACRONIX, INC.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

WAVEFORMS

FIG 1. OUTPUT LOAD CIRCUIT

PROPAGATION DELAY FROM ADDRESS ($\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{ACTIVE})$

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. (μA)	PACKAGE
MX23C2000PC-15	150	40	100	32 Pin DIP
MX23C2000MC-15	150	40	100	32 Pin SOP
MX23C2000PC-20	200	40	100	32 Pin DIP
MX23C2000MC-20	200	40	100	32 Pin SOP

MACRONIX, INC.

FEATURES

- Switchable organization
- 256K x 8(byte mode)
- 128K x 16(word mode)
- Single +5 V power supply
- Fast access time: 150/200ns
- Totally static operation
- Completely TTL compatible
- Operating current: 60mA
- Standby current: $100 \mu \mathrm{~A}$
- Package
- 40 pin DIP(600 mil)

GENERAL DESCRIPTION

The MX23C2100 is a 5V only, 2M-bit, Read Only Memory. It is organized as 256 Kx 8 bits (byte mode) or as $128 \mathrm{Kx16}$ bit (word mode) depending on BYTE (pin 31) voltage level. MX23C2100 has a static standby mode, and has an access time of 150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

MX23C2100 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When $C E / \overline{C E}$ is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/ $\overline{\mathrm{OE}}$ inputs as well as $\mathrm{CE} / \overline{\mathrm{CE}}$ input may be programmed either active High or Low.

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO \sim A16	Address Input
QO~Q14	Data Output
CE/CE	Chip Enable Input
OE/OE	Output Enable Input
$\overline{\text { BYTE }}$	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION

BYTE MODE($\overline{\text { BYTE }}=\mathrm{VSS}$)

$\overline{C E}$	OE/ $\overline{\text { EE }}$	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	LH	X	Non selected	High Z	Operating(ICC1)	1
L	H / L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE $(\overline{B Y T E}=V C C)$

| $\overline{\mathrm{CE}}$ | OE/ $\overline{\mathrm{OE}}$ | D15/A-1 | MODE | DO-D14 | SUPPLY CURRENT | NOTE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H | X | High Z | Non selected | High Z | Standby(ICC2) | 1 |
| L | L/H | High Z | Non selected | High Z | Operating(ICC1) | 1 |
| L | H/L | DOUT | Selected | DOUT | Operating(ICC1) | 1 |

NOTE1: $X=H$ or L

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to 7.0 V
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
1CC2	Standby Supply Current		1.0	mA	$C E=V I H$
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
CIN	Input Capacitance	10	pF	CONDITIONS
COUT	Output Capacitance	10	pF	

MACRONIX, INC.

AC CHARACTERISTICS: $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C2100-15		23C2100-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	150		200		ns	
tAA	Address Access Time		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		ns	
tACE	Chip Enable Access Time		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		90	ns	
tLZ	Output Low Z Delay	0		0		ns	Note 3
$t H Z$	Output High Z Delay		70		70	ns	Note 4
tBHA	$\overline{\text { BYTE }}$ Access Time		150		200	ns	
tOHB	$\overline{\text { BYTE Output Hold Time }}$	0		0		ns	
tBHZ	$\overline{\text { BYTE Output Delay Time }}$		70		70	ns	
tBLZ	$\overline{\text { BYTE Output Set Time }}$	10		10		ns	

NOTE:

1. Measured with device selected at $\mathrm{f}=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from CE going low.
4. Output high-impedance delay (tHZ) is measured from CE going high.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

FIG. 1 OUTPUT LOAD CIRCUIT
*Including scope and jig.

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. (μA)	PACKAGE
MX23C2100PC-15	150	60	100	40 Pin DIP
MX23C2100PC-20	200	60	100	40 Pin DIP

FEATURES

- $512 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- Fast access time: 120/150/200ns (max)
- Totally static operation
- Completely TTL compatible
- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin plastic DIP
- 32 pin plastic SOP

GENERAL DESCRIPTION

The MX23C4000 is a 5 V only, 4 M -bit, Read Only Memory. It is organized as 512 K words by 8 bit, operates from a single +5 volt supply, has a static standby mode, and has an access time of $120 / 150 / 200 \mathrm{~ns}$. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations. The MX23C4000 offers automatic power-down, with
power-down controlled by the chip enable(CE) Input. When CE goes high, the device automatically powers down and remains in a low-power standby mode as long as $\overline{\mathrm{CE}}$ remains high.

MX23C4000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

PIN CONFIGURATIONS

32 PDOP

NC \square	1		32	$\square \mathrm{vcc}$
A16	2		31	$\because \mathrm{A} 18$
A15	3		30	F. A17
A12	4		29	$\square \mathrm{A} 14$
A7 \square	5		28	$\square \mathrm{A} 13$
A6	6	8	27	$\square \mathrm{A} 8$
A5	7	O	26	$\square \mathrm{A} 9$
A4	8	O	25	$\square \mathrm{A} 11$
A3	9	N	24	$\square \mathrm{OE} / \overline{\mathrm{OE}}$
A2	10	$\underset{\Sigma}{X}$	23	$\square \mathrm{A} 10$
A1	11		22	$\square C E / \overline{C E}$
A0	12		21	\square Q7
Q0	13		20	$\square \mathrm{Q} 6$
Q1	14		19	\square Q5
Q2	15		18	$\square \mathrm{Q} 4$
vSS	16		17	$\square \mathrm{Q} 3$

32 PSOP

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A18	Address Input
QO~Q7	Data Output
$\overline{C E / \overline{C E}}$	Chip Enable Input
OE/OE	Output Enable Input
VCC	Power Suppiy Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to $\mathrm{VCC}+0.5$
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5$
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$V C C+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		1.0	mA	$\mathrm{CE}=\mathrm{VIH}$
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	VIN $=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	VOUT $=0 \mathrm{~V}$	

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C4000-12		23C4000-15		23C4000-20		UNIT	CONDITIONS
		MIN .	MAX.	MIN.	MAX.	MIN.	MAX .		
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		80		100	ns	
$t L Z$	Output Low Z Delay	0		0		0		ns	Note 3
thZ	Output High Z Delay		70		70		70	ns	Note 4

NOTE:

1. Measured with device selected at $f=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay ($t L Z$) is measured from $\overline{\mathrm{CE}}$ going low.
4. Output high-impedance delay (tHZ) is measured from $\overline{\mathrm{CE}}$ going high.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2．0V
Output Load	See Figure 1

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS（ $\overline{C E} / \overline{O E}=$ ADDRESS）

PROPAGATION DELAY FROM CHIP ENABLE（ADDRESS VALID）

ORDERING INFORMATION

PART NO．	ACCESS TIME（ns）	OPERATING CURRENT MAX．(mA)	STANDBY CURRENT MAX．(μA)	PACKAGE
MX23C4000PC－12	120	40	100	32 Pin DIP
MX23C4000MC－12	120	40	100	32 Pin SOP
MX23C4000PC－15	150	40	100	32 Pin DiP
MX23C4000MC－15	150	40	100	32 Pin SOP
MX23C4000PC－20	200	40	100	32 Pin DIP
MX23C4000MC－20	200	40	32 Pin SOP	

MACRONIX, INC.

FEATURES

- Switchable configuration
- $512 \mathrm{~K} \times 8$ (byte mode)
- 256K x 16(word mode)
- Single +5 V power supply
- Fast access time: 120/150/200ns
- Completely TTL compatible
- Operating current: 60 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package
- 40 pin DIP(600 mil)
- Totally static operation

GENERAL DESCRIPTION

The MX23C4100 is a 5 V only, 4 M -bit, Read Only Memory. It is organized as $512 \mathrm{~K} \times 8$ bits (byte mode) or as $256 \mathrm{~K} \times 16$ bit (word mode) depending on BYTE (pin 31) voltage level. MX23C4100 has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

MX23C4100 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When $C E / \overline{C E}$ is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/ $\overline{O E}$ inputs as well as CE/ $\overline{C E}$ input may be programmed either active High or Low.

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A17	Address Input
QO~Q14	Data Output
$\overline{C E / \overline{C E}}$	Chip Enable Input
$\overline{O E / \overline{O E}}$	Output Enable Input
$\overline{\text { BYTE }}$	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION
BYTE MODE($\overline{\mathrm{BYTE}}=\mathrm{VSS})$

$\overline{\mathbf{C E}}$	$\overline{\text { OE/OE}}$	D15/A-1	MODE	DO-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE $(\overline{B Y T E}=$ VCC $)$

$\overline{\mathbf{C E}}$	OE/ $\overline{\text { EE }}$	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $X=H$ or L

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to 7.0 V
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 O L=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		1.0	mA	$C E=V I H$
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	$\mathrm{VIN}=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	$\mathrm{VOUT}=0 \mathrm{~V}$	

AC CHARACTERISTICS: $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C4100-12		23C4100-15		23C4100-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		70		80		90	ns	
$t L Z$	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4
tBHA	$\overline{\text { BYTE }}$ Access Time		120		150		200	ns	
tOHB	$\overline{\text { BYTE }}$ Output Hold Time	0		0		0		ns	
$t \mathrm{BHZ}$	$\overline{\text { BYTE }}$ Output Delay Time		70		70		70	ns	
tBLZ	$\overline{\text { BYTE }}$ Output Set Time	10		10	-	10		ns	

NOTE:

1. Measured with device selected at $f=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay ($t L Z$) is measured from CE going low.
4. Output high-impedance delay (tHZ) is measured from CE going high.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

FIG. 1 OUTPUT LOAD CIRCUIT

MACRONIX, INC.
M×23C4100

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(μ A)	PACKAGE
MX23C4100PC-12	120	60	100	40 Pin DIP
MX23C4100PC-15	150	60	100	40 Pin DIP
MX23C4100PC-20	200	60	100	40 Pin DIP

MACRONIX, INC.

FEATURES

- $1 \mathrm{M} \times 8$ organization
- Single +5 V power supply
- Fast access time: 120/150/200ns (max)
- Totally static operation
- Completely TTL compatible
- Operating current: 40 mA
- Standby current: $100 \mu \mathrm{~A}$
- Package type:
- 32 pin plastic DIP
- 32 pin plastic SOP

The MX23C8000 offers automatic power-down, with power-down controlled by the chip enable(CE) Input. When CE goes high, the device automatically powers down and remains in a low-power standby mode as long as $\overline{\mathrm{CE}}$ remains high.

MX23C8000 pin 24 may also be programmed either active HIGH or LOW in order to eliminate bus contention in multiple-bus microprocessor systems.

PIN CONFIGURATIONS

32 PDIP
A19
A16
A15

BLOCK DIAGRAM

32 SOP

A19 -	\bigcirc		32		vcc
A16	2		31		A18
A15 -	3		30	\square	A17
A12	4		29	\square	A14
A7 -	5		28	\square	A13
A6 -	6		27	\square	A8
A5	7	8	26	曰	A9
A4 -	8	O	25	\square	A11
A3	9	\%	24	\bullet	OE/OE
A2 \square	10	N	23	\square	A10
A1	11	Σ	22	\square	CE/CE
A0	12		21	\square	Q7
Q0	13		20	\square	Q6
Q1	14		19	ص	Q5
Q2	15		18	\bullet	Q4
vSS	16		17		Q3

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A19	Address Input
QO~Q7	Data Output
CE/ $\overline{C E}$	Chip Enable Input
OE/ $\overline{O E}$	Output Enable Input
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

M×23C8000

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to $\mathrm{VCC}+0.5$
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5$
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS \quad TA $=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$V C C+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		1.0	mA	$C E=V I H$
ICC1	Operating Supply Current		40	mA	Note 1

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MAN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	VIN $=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	VOUT $=0 \mathrm{OV}$	

AC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C8000-12		23C8000-15		23C8000-20		UNHT	CONDITIONS
		MHN.	MAX	MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	120		150		200		ns	
:AA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		80		80		100	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4

NOTE:

1. Measured with device selected at $\mathrm{f}=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from $\overline{\mathrm{CE}}$ going low.
4. Output high-impedance delay (tHZ) is measured from $\overline{\mathrm{CE}}$ going high.

MACRONIX, INC.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

WAVEFORMS

FIG 1. OUTPUT LOAD CIRCUIT

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. (μA)	PACKAGE
MX23C8000PC-12	120	40	100	32 Pin DIP
MX23C8000MC-12	120	40	100	32 Pin SOP
MX23C8000PC-15	150	40	100	32 Pin DIP
MX23C8000MC-15	150	40	100	32 Pin SOP
MX23C8000PC-20	200	40	100	32 Pin DIP
MX23C8000MC-20	200	40	32 Pin SOP	

MACRONIX，INC．

FEATURES

－Switchable configuration
－ $1 \mathrm{M} \times 8$（byte mode）
－ $512 \mathrm{~K} \times 16$（word mode）
－Single +5 V power supply
－Fast access time：120／150／200ns（max）
－Totally static operation
－Completely TTL compatible
－Operating current： 60 mA
－Standby current： $100 \mu \mathrm{~A}$
－Package
－ 42 pin DIP（600 mil）
－ 44 pin SOP（500 mil）

GENERAL DESCRIPTION

The MX23C8100 is a 5 V only， 8 M －bit，Read Only Mem－ ory．It is organized as $1 \mathrm{M} \times 8$ bits（byte mode）or as 512 K $x 16$ bit（word mode）depending on BYTE（pin 32）voltage level．MX23C8100 has a static standby mode，and has an access time of $120 / 150 / 200 \mathrm{~ns}$ ．It is designed to be com－ patible with all microprocessors and similar applications in which high performance，large bit storage and simple interfacing are important design considerations．

MX23C8100 offers automatic power－down，with power－ down controlled by the chip enable（CE／CE）Input．When $C E / \overline{C E}$ is not selected，the device automatically powers down and remains in a low－power standby mode as long as CE／CE stays in the unselected mode．

The OE／$\overline{\mathrm{OE}}$ inputs as well as CE／$\overline{\mathrm{CE}}$ input may be pro－ grammed either active High or Low．

PIN CONFIGURATIONS 42 PDIP

44 SOP

NC	0		44	\square	NC
A18	2		43	\square	NC
A17	3		42	－	A8
A7 -	4		41	\square	A9
A6 -	5		40	\square	A10
A5	6		39	\square	Al1
A4	7		38	\square	A12
A3	8		37	\square	A13
A2	9	8	36	\bullet	A14
A1	10	$\stackrel{\square}{\infty}$	35	ص	A15
A0	11	¢	34	\square	A16
CE／CE	12	N	33	曰	BYTE
vss 5	13	X	32	\square	VSS
OE／OE	14		31	曰	Q15／A－1
Q0 \square	15		30	\square	Q7
Q8	16		29	\square	Q14
Q1 7	17		28	$ص$	Q6
Q9 4	18		27	\square	Q13
Q2	19		26	\square	Q5
Q10 9	20		25	\square	Q12
Q3 5	21		24	\square	Q4
Q11	22		23		VCC

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A18	Address Input
Q0~Q14	Data Output
CE/ $\overline{C E}$	Chip Enable Input
OE/ $\overline{O E}$	Output Enable Input
$\overline{\text { BYTE }}$	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin (+5V)
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION
BYTE MODE ($\overline{\text { BYTE }}=\mathrm{VSS}$)

$\overline{\mathbf{C E}}$	OE/OE	D15/A-1	MODE	DO-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE ($\overline{\mathrm{BYTE}}=\mathrm{VCC})$

$\overline{\mathrm{CE}}$	OE/ $\overline{\mathrm{OE}}$	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	L/H	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $\mathrm{X}=\mathrm{H}$ or L

ABSOLUTE MAXIMUM RATINGS*	
RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to 7.0 V
VcC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		1	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	VIN $=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	VOUT $=0 \mathrm{~V}$	

MACRONIX, INC.

AC CHARACTERISTICS: $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C8100-12		23C8100-15		23C8100-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	120		150		200		ns	
tAA	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tace	Chip Enable Access Time		120		150		200	ns	
tAOE	Output Enable/Chip Select Access Time		70		80		90	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
tHZ	Output High Z Delay		70		70		70	ns	Note 4
tBHA	$\overline{\text { BYTE }}$ Access Time		120		150		200	ns	
tOHB	$\overline{\text { BYTE Output Hold Time }}$	0		0		0		ns	
tBHZ	$\overline{\text { BYTE Output Delay Time }}$		70		70		70	ns	
tBLZ	$\overline{\text { BYTE }}$ Output Set Time	10		10		10		ns	

NOTE:

1. Measured with device selected at $f=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from CE going low.
4. Output high-impedance delay (tHZ) is measured from CE going high.

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

FIG. 1 OUTPUT LOAD CIRCUIT

WAVEFORMS

PROPAGATION DELAY FROM ADDRESS (CE/OE = ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu \mathbf{A})$	PACKAGE
MX23C8100PC-12	120	60	100	42 Pin DIP
MX23C8100MC-12	120	60	100	44 Pin SOP
MX23C8100PC-15	150	60	100	42 Pin DIP
MX23C8100MC-15	150	60	100	44 Pin SOP
MX23C8100PC-20	200	60	100	42 Pin DIP
MX23C8100MC-20	200	60	100	44 Pin SOP

FEATURES

- Switchable configuration
- 2M x 8(byte mode)
$-1 \mathrm{M} \times 16$ (word mode)
- Single +5 V power supply
- Fast access time: 120/150/200ns (max)
- Totally static operation
- Completely TTL compatible
- Operating current: 60mA
- Standby current: $100 \mu \mathrm{~A}$
- Package
- 42 pin DIP (600 mil)
- 44 pin SOP (500 mil)

GENERAL DESCRIPTION

The MX23C1610 is a 5V only, 16M-bit, Read Only Memory. It is organized as $2,097,152 \times 8$ bits (byte mode) or as $1 \mathrm{M} \times 16$ bit (word mode) depending on BYTE (pin 32) voltage level. MX23C1610 has a static standby mode, and has an access time of 120/150/200ns. It is designed to be compatible with all microprocessors and similar applications in which high performance, large bit storage and simple interfacing are important design considerations.

MX23C1610 offers automatic power-down, with powerdown controlled by the chip enable(CE/CE) Input. When $C E / \overline{C E}$ is not selected, the device automatically powers down and remains in a low-power standby mode as long as CE/CE stays in the unselected mode.

The OE/ $\overline{O E}$ inputs as well as $C E / \overline{C E}$ input may be programmed either active High or Low.

PIN CONFIGURATIONS

NC	0		44		
A18	2		43		A19
A17	3		42	\square	A8
A7	4		41		A9
A6 5	5		40	\square	A10
A5	6		39		A11
A 4	7		38	\square	A12
А 30	8		37	\square	A13
A2	9	안	36	\square	A14
A1	10	$\stackrel{+}{0}$	35	\bullet	A15
A 0	11	O	34	\square	A16
CE/ $\overline{C E}$	12	N	33	\square	BYTE
vSs 5	13	¢	32	E	VSS
OE/ $\overline{O E}$	14		31	\square	Q15/A-1
QO 4	15		30	\square	
Q8	16		29	-	Q14
Q1 9	17		28	\square	
Q9 ${ }^{-1}$	18		27		Q13
Q2	19		26	\bigcirc	
Q10	20		25		Q12
Q3 \square	21		24		Q4
Q11	22		23		VCC

BLOCK DIAGRAM

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A19	Address Input
Q0~Q14	Data Output
CE/ $\overline{C E}$	Chip Enable Input
OE/OE	Output Enable Input
$\overline{\text { BYTE }}$	Word/Byte Selection
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin $(+5 \mathrm{~V})$
VSS	Ground Pin

TRUTH TABLE OF BYTE FUNCTION
BYTE MODE($\overline{B Y T E}=V S S$)

$\overline{\text { CE }}$	OE/ $\overline{\text { EE }}$	D15/A-1	MODE	D0-D7	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High Z	Standby(ICC2)	1
L	L/H	X	Non selected	High Z	Operating(ICC1)	1
L	H/L	A-1 input	Selected	DOUT	Operating(ICC1)	1

WORD MODE $(\overline{B Y T E}=\mathrm{VCC})$

$\overline{\text { CE }}$	OE/ $\overline{\text { EE }}$	D15/A-1	MODE	D0-D14	SUPPLY CURRENT	NOTE
H	X	High Z	Non selected	High Z	Standby(ICC2)	1
L	LH	High Z	Non selected	High Z	Operating(ICC1)	1
L	H/L	DOUT	Selected	DOUT	Operating(ICC1)	1

NOTE1: $\mathrm{X}=\mathrm{H}$ or L

MACRONIX, INC.

ABSOLUTE MAXIMUM RATINGS*

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to 7.0 V
VCC to Ground Potential	-0.5 V to 7.0 V
Power Dissipation	1.0 W

*NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress. rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

DC CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	VOUT $=0$ to 5.5 V
ICC3	Power-Down Supply Current		100	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}>\mathrm{VCC}-0.2 \mathrm{~V}$
ICC2	Standby Supply Current		1	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	Operating Supply Current		60	mA	Note 1

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	10	pF	$\mathrm{VIN}=0 \mathrm{~V}$	
COUT	Output Capacitance	10	pF	$\mathrm{VOUT}=0 \mathrm{~V}$	

AC CHARACTERISTICS: $T A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	23C1610-12		23C1610-15		23C1610-20		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tCYC	Cycle Time	120		150		200		ns	
tAA.	Address Access Time		120		150		200	ns	
tOH	Output Hold Time After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		120		150		200	ns	
taOE	Output Enable/Chip Select Access Time		70		80		90	ns	
tLZ	Output Low Z Delay	0		0		0		ns	Note 3
thz	Output High Z Delay		70		70		70	ns	Note 4
tBHA	BYTE Access Time		120		150		200	ns	
tOHB	$\overline{\text { BYTE Output Hold Time }}$	0		0				ns	
tBHZ	$\overline{\text { BYTE Output Delay Time }}$		70		70		70	ns	
tBLZ	$\overline{\text { BYTE Output Set Time }}$	10		10		10		ns	

NOTE:

1. Measured with device selected at $f=5 \mathrm{MHz}$ and output unloaded.
2. This parameter is periodically sampled and is not 100% tested.
3. Output low-impedance delay (tLZ) is measured from CE going low.
4. Output high-impedance delay (tHZ) is measured from CE going high

AC TEST CONDITIONS

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	10 ns
Input Timing Level	1.5 V
Output Timing Level	0.8 V and 2.0 V
Output Load	See Figure 1

FIG. 1 OUTPUT LOAD CIRCUIT

WAVEFORMS

PROPAGATION DELDELAY FROM ADDRESS ($\overline{C E} / \overline{O E}=$ ACTIVE)

PN DELAY FROM CHIP ENABLE CHIP (ADDRESS VALID)

PROPAGATION DELAY FROM CHIP ENABLE (ADDRESS VALID)

ORDERING INFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX. $(\mu \mathbf{A})$	PACKAGE
MX23C1610PC-12	120	60	100	42 Pin DIP
MX23C1610MC-12	120	60	100	44 Pin SOP
MX23C1610PC-15	150	60	100	42 Pin DIP
MX23C1610MC-15	150	60	100	44 Pin SOP
MX23C1610PC-20	200	60	100	42 Pin DIP
MX23C1610MC-20	200	60	100	44 Pin SOP

IV. FLASH MEMORY

FEATURES

- 131,072 bytes by 8 -bit organization
- Fast access time: 90/120/150 ns
- Low power consumption
- 50mA maximum active current
- 100μ A maximum standby current
- Programming and erasing voltage $12 \mathrm{~V} \pm 0.6 \mathrm{~V}$
- Command register architecture
- Byte Programming ($10 \mu \mathrm{~s}$ typical)
- Chip Erase (1 sec typical)
- Block Erase (16384 bytes by 8 blocks)
- Auto Erase (chip \& block) and Auto Program
- DATA polling
- Toggle bit

GENERAL DESCRIPTION

The MX28F1000 is a 1-mega bit Flash memory organized as 128 K bytes of 8 bits each. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX28F1000 is packaged in 32-pin PDIP, PLCC, SOP and TSOP. It is designed to be reprogrammed and erased in-system or in-standard EPROM programmers.

The standard MX28F1000 offers access times as fast as 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX28F1000 has separate chip enable ($\overline{C E}$) and output enable (OE) controls.

MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX28F1000 uses a command register to manage this functionality, while maintaining a standard 32-pin pinout. The command register allows for 100% TTL level control inputs and fixed power supply levels during erase and programming, while maintaining maximum EPROM compatibility.

MXIC Flash technology reliably stores memory contents even after 10,000 erase and program cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX28F1000 uses a $12.0 \mathrm{~V}+5 \%$ VPP supply to perform the High

- 10,000 minimum erase/program cycles
- Latch-up protected to 100 mA from -1 to VCC+1V
- Advanced CMOS Flash memory technology
- Compatible with JEDEC-standard byte-wide 32-pin EPROM pinouts
- Package type:
- 32-pin plastic DIP
- 32-pin PLCC
- 32-pin SOP
- 32-pin TSOP (Type 1)

Reliability Erase and High Reliability Program algorithms.

The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1 V to $\mathrm{VCC}+1 \mathrm{~V}$.

MACRONIX, INC.

PIN CONFIGURATIONS

32 PDIP

VPP	1		32	$\square \mathrm{VCC}$
A16	2		31	$\square \mathrm{WE}$
A15	3		30	$\square \mathrm{NC}$
A12	4		29	- A14
A7	5		28	\square - 13
A6	6	8	27	$\square \mathrm{A} 8$
A5	7	응	26	$\square \mathrm{A} 9$
A4	8	$\stackrel{1}{0}$	25	二 A11
A3 -	9	N	24	$\square \overline{O E}$
A. -	10	X	23	$\square \mathrm{A} 10$
A1	11		22	$\overline{C E}$
A0	12		21	- Q7
Q0 [-1	13		20	\square Q6
Q1:	14		19	Q5
Q2	15		18	Q4
GND	16		17	Q3

32 SOP

vPP	\bigcirc		32		Vcc
A16	2		31		WE
A15 -	3		30	\square	NC
A12	4		29	U	A14
A7	5		28		A13
A6	6		27		A8
A5	7	8	26	\square	A9
A4 -	8	아	25		A11
A3 -	9	${ }_{\infty}$	24	\square	
A2	10	N	23		A10
A1 ${ }^{\text {a }}$	11	Σ	22		
A 0	12		21		
Q0 -	13		20		
Q1-	14		19		
Q2	15		18		
GND -	16		17		Q3

32 PLCC

TSOP (TYPE 1)

(NORMAL TYPE)

(REVERSE TYPE)

PIN DESCRIPTION:

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{WE}}$	Write enable Pin
VPP	Program Supply Voltage
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

MACRONIX, INC.

BLOCK DIAGRAM

4M-BIT (512K x 8) CMOS FLABH MEMORY

FEATURES

- 524,288 bytes by 8 -bit organization
- Fast access time: 120/150/200 ns
- Low power consumption
- 50 mA maximum active current
- $100 \mu \mathrm{~A}$ maximum standby current
- Programming and erasing voltage $12 \mathrm{~V} \pm 0.6 \mathrm{~V}$
- Command register architecture
- Byte Programming (10μ s typical)
- Chip Erase (1 sec typical)
- Block Erase (16384 bytes by 32 blocks)
- Auto Erase (chip \& block) and Auto Program
- DATA polling
- Toggle bit

GENERAL DESCRIPTION

The MX28F4000 is a 4-mega bit Flash memory organized as 512 K bytes of 8 bits each. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX28F4000 is packaged in 32-pin PDIP, SOP and TSOP. It is designed to be reprogrammed and erased in-system or in-standard EPROM programmers.

The standard MX28F4000 offers access times as fast as 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX28F4000 has separate chip enable (CE) and output enable (OE) controls.

MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX28F4000 uses a command register to manage this functionality, while maintaining a standard 32-pin pinout. The command register allows for 100% TTL level control inputs and fixed power supply levels during erase and programming, while maintaining maximum EPROM compatibility.

MXIC Flash technology reliably stores memory contents even after 10,000 erase and program cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX28F4000 uses a $12.0 \mathrm{~V}+5 \%$ VPP supply to perform the High

- 10,000 minimum erase/program cycles
- Latch-up protected to 100 mA from -1 to VCC+1V
- Advanced CMOS Flash memory technology
- Compatible with JEDEC-standard byte-wide 32-pin EPROM pinouts
- Package type:
- 32-pin plastic DIP
- 32-pin SOP
- 32-pin TSOP (Type 1)

Reliability Erase and High Reliability Program algorithms.

The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1 V to VCC +1 V .

PIN CONFIGURATIONS

32 PDIP

VPP	1		32	$\square \mathrm{VCC}$
A16	2		31	A18
A15	3		30	A17
A12	4		29	$\square \mathrm{A} 14$
A7	5		28	A13
A6	6	8	27	A8
A5	7	\%	26	$\square \mathrm{A} 9$
A4	8	\%	25	$\square \mathrm{Al1}$
A3	9	N	24	$\square \overline{O E}$
A2	10	ㅊ	23	$\square \mathrm{A} 10$
A1	11		22	$\square \overline{C E}$
A 0	12		21	Q ${ }^{\text {P }}$
Q0 -	13		20	$\square \mathrm{Q6}$
Q1	14		19	$\square \mathrm{Q}^{\square}$
Q2	15		18	$\square \mathrm{Q} 4$
GND	16		17	

32 SOP

VPP	O		32	\square VCC
A16	2		31	\square A18
A15	3		30	\square A17
A12	4		29	$\square \mathrm{A} 14$
A7	5		28	$\square \mathrm{A} 13$
A6	6		27	- A8
A5	7	8	26	$\square \mathrm{A} 9$
A4	8	\%	25	$\square \mathrm{A} 11$
A3 -	9	${ }_{0}$	24	- $O E$
A2	10	N	23	- A10
A1	11	Σ	22	$\bullet C E$
A0	12		21	\square Q7
Q0	13		20	\square Q6
Q1	14		19	\boxminus Q5
Q2	15		18	\because Q4
GND	16		17	\square Q3

BLOCK DIAGRAM

TSOP (TYPE 1)

(NORMAL TYPE)

PIN DESCRIPTION:

SYMBOL	PIN NAME
AO~A18	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

V. PACKAGE INFORMATION

28－PIN CERDIP（MSI）WITH WINDOW（ 600 mil ）

ITEM	MILLIMETERS	INCHES
A	37.69 max	1.485 max
B	$1.85 \pm .30$	$.073 \pm .012$
C	$2.54[\mathrm{TP}]$	$.100[\mathrm{TP}]$
D	$.46 \pm .05$	$.018 \pm .002$
E	33.02	1.300
F	$1.40 \pm .05$	$.055 \pm .002$
G	$3.43 \pm .38$	$.135 \pm .015$
H	$.96 \pm .43$	$.038 \pm .017$
I	4.87	.198
J	$15.48 \pm .13$	$.610 \pm .005$
K	$13.38 \pm .38$	$.527 \pm .015$
L	$.25 \pm .13$	$.010 \pm .005$
M	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
N	$\varnothing 7.11$	$\varnothing .280$

NOTE：Each lead centerline is located within .25 $\mathrm{mm}[.01 \mathrm{inch}]$ of its true position［TP］at a maximum material condition．

28－PIN PLASTIC DIP（ 600 mil ）

ITEM	MILLIMETERS	INCHES
A	37.34 max	$\cdot 1.470$ max
B	2.03 ［REF］	． 080 ［REF］
C	2.54 ［TP］	． 100 ［TP］
D	． 46 ［Typ．］	． 018 ［Typ．］
E	32.99	1.300
F	1.52 ［Typ．］	． 060 ［Typ．］
G	$3.30 \pm .25$	． $130 \pm .010$
H	． 51 ［REF］	． 020 ［REF］
1	$3.94 \pm .25$	． $155 \pm .010$
J	5.33 max．	． 210 max．
K	$15.22 \pm .25$	$.600 \pm .010$
L	$13.84 \pm .25$	． $545 \pm .010$
M	． 25 ［Typ．］	． 010 ［Typ．］

NOTE：Each lead centerline is located within 25 $\mathrm{mm}[.01$ inch］of its true position［TP］at a maximum material condition

28－PIN PLASTIC SOP（450 mil）

ITEM	MILLIMETERS	INCHES
A	18.42 max．	.725 max．
B	.71 ［REF］	.028 ［REF］
C	$1.27[$ TP］	$.050[$ TP］
D	$.41[$ Typ．］	$.016[$ Typ．］
E	.10 min.	.004 min．
F	2.79 max．	.110 max．
G	$2.36 \pm .13$	$.093 \pm .005$
H	$10.30 \pm .25$	$.406 \pm .010$
I	$7.49 \pm .13$	$.295 \pm .005$
J	1.42	.056
K	$.25[$ Typ．］	$.010[$ Typ．］
L	.76	.030

NOTE：Each lead centerline is located within ． 25 mm（． 01 inch］of its true position［TP］at a maximum material condition．

32－PIN CERDIP（MSI）WITH WINDOW（ 600 mil ）

MACRONIX, INC.

32-PIN PLASTIC DIP (600 mil)

ITEM	MILLIMETERS	INCHES
A	42.13 max.	1.660 max.
B	$1.90[$ REF]	.075 [REF]
C	$2.54[$ TP] $]$	$.100[$ TP]
D	$.46[$ Typ.]	$.018[$ Typ.]
E	38.07	1.500
F	$1.27[$ Typ.]	$.050[$ Typ.]
G	$3.30 \pm .25$	$.130 \pm .010$
H	.51 [REF]	$.020[$ REF]
I	$3.94 \pm .25$	$.155 \pm .010$
J	5.33 max.	.210 max.
K	$15.22 \pm .25$	$.600 \pm .010$
L	$13.97 \pm .25$	$.550 \pm .010$
M	$.25[$ Typ.]	$.010[$ Typ.]

NOTE: Each lead centerline is located within . 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at a maximum material condition.

32-PIN PLASTIC SOP (450 mil)

ITEM	MILLIMETERS	INCHES
A	20.95 max.	.825 max.
B	$1.00[$ REF]	.039 [REF]
C	1.27 [TP]	$.050[$ TP]
D	$.40[$ Typ.]	$.016[$ Typ.]
E	.05 min.	.002 min.
F	3.05 max.	.120 max.
G	$2.69 \pm .13$	$.106 \pm .005$
H	$14.12 \pm .25$	$.556 \pm .010$
I	$11.30 \pm .13$	$.445 \pm .005$
J	1.42	.056
K	$.20[$ Typ. $]$	$.008[$ Typ.]
L	.79	.031

NOTE: Each lead centerline is located within .25 $\mathrm{mm}[.01 \mathrm{inch}]$ of its true position [TP] at a maximum material condition.

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM	MILLIMETERS	INCHES
A	$12.44 \pm .13$	$.490 \pm .005$
B	$11.50 \pm .13$. $453 \pm .005$
C	$14.04 \pm .13$	$.553 \pm .005$
D	$14.98 \pm .13$. $590 \pm .005$
E	1.93	. 076
F	$3.30 \pm .25$. $130 \pm .010$
G	$2.03 \pm .13$. $080 \pm .005$
H	$.51 \pm .13$. $020 \pm .005$
1	1.27 [Typ.]	. 050 [Typ.]
J	.71[REF]	. 028[REF]
K	. 46 [REF]	. 018 [REF]
L	$\begin{aligned} & 10.40 / 12.94 \\ & (\mathrm{~W})_{(L)} \end{aligned}$	$\begin{aligned} & 410 / .510 \\ & \text { (W) }(\mathrm{L}) \end{aligned}$
M	.89R	. 035 R
N	. 25 (TYP.)	. 010 (TYP.)

32-PIN PLASTIC TSOP

ITEM	MILLIMETERS	INCHES
A	$20.0 \pm .20$	$.078 \pm .006$
B	$18.40 \pm .10$	$.724 \pm .004$
C	8.20 max.	.323 max.
D	$0.15[$ Typ. $]$	$.006[$ Typ. $]$
E	$.80[$ Typ. $]$.031 [Typ.]
F	$.20 \pm .10$	$.008 \pm .004$
G	$.30 \pm .10$	$.012 \pm .004$
H	$.50[$ Typ. $]$	$.020[$ Typ. $]$
I	.45 max.	.018 max.
J	$0 \sim .20$	$0 \sim .008$
K	$1.00 \pm .10$	$.039 \pm .004$
L	1.27 max.	.050 max.
M	.50	.020
N	19.00	.748
O	$0 \sim 5$.500

NOTE: Each lead centerline is located within 25 $\mathrm{mm}[.01$ inch $]$ of its true position [TP] at a maximum material condition.

40－PIN CERDIP（MSI）WITH WINDOW（ 600 mil ）

ITEM		MILLIMETERS
INCHES		
B	53.34 max．	2.100 max.
B	$1.85 \pm .30$	$.073 \pm .012$
D	$2.54[$ TP］	$.100[\mathrm{TP}]$
E	$.46 \pm .05$	$.018 \pm .002$
F	18.22	1.900
G	$3.43 \pm .05$	$.055 \pm .002$
H	$.94 \pm .41$	$.135 \pm .015$
I	5.00	$.037 \pm .016$
J	$15.51 \pm .08$	$.611 \pm .003$
K	$14.82 \pm .38$	$.584 \pm .015$
L	$.25 \pm .13$	$.010 \pm .005$
M	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
N	$\phi 9.64$	$\phi .380$

NOTE：Each lead centerline is located within ． 25 $\mathrm{mm}[.01$ inch］of its true position［TP］at a maximum material condition．

40－PIN PLASTIC DIP（ 600 mil ）

ITEM	MILLIMETERS	INCHES
A	52.54 max．	2.070 max．
B	$2.03[$ REF $]$	$.080[$ REF］
C	$2.54[$ TP］	$.100[$ TP］
D	$.46[$ Typ．］	$.018[$ Typ．］
E	48.22	1.900
F	$1.52[$ Typ．$]$	$.060[$ Typ．$]$
G	$3.30 \pm .25$	$.130 \pm .010$
H	$.51[R E F]$	$.020[R E F]$
I	$3.94 \pm .25$	$.155 \pm .010$
J	5.33 max．	.210 max．
K	$15.22 \pm .25$	$.600 \pm .010$
L	$13.97 \pm .25$	$.550 \pm .010$
M	$.25[$ Typ．］	$.010[$ Typ．］

NOTE：Each lead centerllne is located within .25 $\mathrm{mm}[.01$ inch］of its true position［TP］at a maximum material condition．

42-PIN PLASTIC DIP (600 mil)

ITEM	MILLIMETERS	INCHES
A	52.54 max.	2.070 max.
B	$0.76[$ REF]	$.030[R E F]$
C	$2.54[T P]$	$.100[$ TP]
D	$.46[$ Typ.]	$.018[$ Typ.]
E	50.76	2.000
F	$1.27[$ Typ.]	$.050[$ Typ.]
G	$3.30 \pm .25$	$.130 \pm .010$
H	$.51[R E F]$	$.020[R E F]$
I	$3.94 \pm .25$	$.155 \pm .010$
J	5.33 max.	.210 max.
K	$15.22 \pm .25$	$.600 \pm .010$
L	$13.97 \pm .25$	$.550 \pm .010$
M	$.25[$ Typ.]	$.010[$ Typ.]

NOTE: Each lead centerline is located within .25 $\mathrm{mm}[.01$ inch $]$ of its true position [TP] at a maximum material condition.
 maximumater condion.

44-PIN PLASTIC SOP

ITEM	MILLIMETERS	INCHES
A	28.70 max.	1.130 max.
B	$1.10[R E F]$.043 [REF]
C	$1.27[T P]$.050 [TP]
D	$.40 \pm .10[T y p]$.	$.016 \pm .004$ [Typ.]
E	.010 min.	.004 min.
F	3.00 max.	.118 max.
G	$2.80 \pm .13$	$.110 \pm .005$
H	$16.04 \pm .30$	$.631 \pm .012$
I	12.60	0.496
J	1.72	.068
K	$.15 \pm .10[$ Typ.]	$.006 \pm .004[$ [Typ.]
L	$.80 \pm .20$	$.031 \pm .008$

NOTE: Each lead centerline is located within $.25 \mathrm{~mm}[.01$ inch] of its true position [TP] at a maximum material condition.

MACRONIX, INC.

44-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM	MILLIMETERS	INCHES
A	$17.53 \pm .12$	$.690 \pm .005$
B	$16.59 \pm .12$	$.653 \pm .005$
C	$16.59 \pm .12$	$.653 \pm .005$
D	$17.53 \pm .12$	$.690 \pm .005$
E	1.95	.077
F	4.70 max.	.185 max
G	$2.55 \pm .25$	$.100 \pm .010$
H	.51 min.	.020 min.
I	$1.27[$ Typ. $]$	$.050[$ Typ.]
J	$.71 \pm .10$	$.028 \pm .004$
K	$.46 \pm .10$	$.018 \pm .004$
L	$15.50 \pm .51$	$.610 \pm .020$
M	.63 R	.025 R
N	$.25[$ Typ.]	$.010[$ Typ. $]$

NOTE: Each lead centerline is located within .25 $\mathrm{mm}[.01$ inch] of its true position [TP] at a maximum material condition.

VI. DISTRIBUTION CHANNEL

Domestic Representatives

ALABAMA

Concord Components
190 Lime Quarry Road, Ste. 102
Madison, AL 35758
Ph: (205) 772-8883
Fx: (205) 772-8262

CALIFORNIA

BAE Sales Inc.
2001 Gateway Place Suite 315W
San Jose, CA 95110
Ph: (408) 452-8133
Fx: (408)452-8139
BAE Sales Inc.
9119 Eden Oak Circle
Loomis, CA 95650
Ph: (916) 652-6777
Fx: (916) 652-5678
Littlefield \& Smith Assoc.
11230 Sorrento Valley Road, Ste. 115
San Diego, CA 92121
Ph: (619) 455-0055
Fx: (619) 455-1218
Spectrum Rep. Co.
31368 Via Colinas, Suite 101
Westlake Village, CA 91362
Ph: (818) 706-2919
Fx: (818) 706-2978
Spectrum Rep. Co.
25 Mauchly, Suite 311
Irvine, CA 92718
Ph: (714) 453-1525
Fx: (714) 453-1925

CANADA

Kayronics Inc.
5800 Thimens Blvd.
Ville St-Laurent, Quebec H4S IS5
Ph: (514) 745-5800
Fx: (514) 745-5858
Kaytronics Inc.
6815-8th Street NE \#179
Calgary, Alberta
T2E 7H7
Ph: (604) 294-2000
Fx: (604) 294-4585
Kaytronics Inc.
300 March Road, \#303
Kanata, Ontarjo
K2K 2E2
Ph: (613) 564-0080
Fx: (613) 592-0373
Kaytronics Inc.
405 Britannia Rd. E. \#206
Mississauga, Ontario
L4Z 3E6
Ph: (416) 507-6400
Fx: (416) 507-6444

CONNECTICUT

Datamark
2514 Boston Post Road
Guilford, CT 06437
Ph: (203) 453-0575
Fx: (203)453-5935

COLORADO
Lange Sales Inc.
1500 West Canal Court
Building A - Suite 100
Littleton, CO 80120
Ph: (303) 795-3600
Fx: (303) 795-0378

FLORIDA

VG Sales
1001 NW 62nd Street
Suite 205
Fe. Lauderdale, FL 33309
Ph: (305) 938-4333
Fx: (305) 938-4331
(800) 654-8287

VG Sales
407 Whooping Loop
Suite 1655
Altamonte Springs, FL 32701
Ph: (407) 831-8688
Fx: (407) 831-0305
(800) 228-8088

VG Sales
7901 4th Street North
Suite 202
St. Petersburg, FL 33702
Ph: (813) 576-0020
Fx: (813) 579-9905
VG Sales
PO BOX 3431
Marina Staaon
Mataguez, PR 00681
Ph: (809) 831-4050
Fx: (809) 831-4250
Mendez Vigo So. \#69, S 601
Mayaguez, PR 00680

GEORGIA

Concord Components 6048 Tracy Valley Drive Norcross, GA 30093 Ph: (404) 416-9597 Fx: (404) 441-0790

IDAHO

Quest Marketing 301 Southwest Grady Wy. Renton, WA 98055
Ph: (206) 228-2660
Fx: (206) 228-2916

INDIANA

Arete Sales Inc.
2260 Lake Ave., Ste 250
Fe. Wayne, IN 46805
Ph: (219) 423-1478
Fx: (219) 420-1440

ILLINOIS

Martan Inc.
1930 Thoreau Dr., Ste 167
Schaumburg, IL 60173
$\mathrm{Ph}:(708) 303-5660$
Fx: (708) 303-5745

IOWA

AEM
4001 Shady Oak
Marion, IA 52302
Ph: (319) 377-1129
Fx: to AEM (319) 377-1539

KANSAS

AEM
8843 Long So.
Lenexa, KS 66215
Ph: (913) 888-0022
Fx: (913) 888-4848

MARYLAND

Beacon North
8513 Luceme Road
Randallstown, MD 21133
Ph: (703) 478-2480
Fx: (703) $435-7115$

MASSACHUSETTS

Eastern Micro
22 Green So.
Waltham, MA 02154
Ph: (617) 890-6790
Fx: (617) 899-0619

MICHIGAN

Rathsburg Assoc.
41100 Bridge St.
Novi, MI 480375-1300
Ph: (810) 615-4000
MINNESOTA
George Russell \& Associates
8030 Cedar Ave., Suite 114
Minneapolis, MN 55425
Ph: (612) 854-1166
Fx: (612) 854-6799

MISSOURI

AEM
11520 Chas Rock Road
So. Louis, MO 63044
Ph: (314) 298-9900
Fx: (314) 298-8660

NEW JERSEY

Metro Logic
271 Route 46 West
Suite D-202
Fairfield, NJ 07006
Ph: (201) 575-5585
Fx: (201) 575-8023

NEW YORK

Metro Logic
271 Route 46 West
Suite D-202
Fairfield, NJ 07006
Ph: (201) 575-5585
Fx: (201) 575-8023

Reagan/Compar

3301 Country Club Rd, Ste. 2211
Enowell, NY 13760
Ph: (607) 754-2171
Fx: (607) 754-4270

N \& S CAROLINA

Quantum
4600 Park Road, Ste 300
Charlote, NC 28209
Ph: (704) 523-8822
Fx: (704) 527-5817

Quantum

6604 Six Forks Road, Ste 102
Raleigh, NC 27615
Ph : (919) 846-5728
Fx: (919t 847-8271

OHIO

Midwest Marketing
5001 Mayfield Road, Suite 212 Lyndhurst, OH 44124
Ph: (216) 381-8575
Fx: (216) 381-8857

Midwest Marketing

30 Marco Lane
Dayton, OH 45458
Ph: (513) 433-2511
Fx: (513)433-6853

OREGON

Quest Marketing
6700 SW 105 Street, Ste. 206
Beavenon, OR 97005
Ph: (503) 641-7377
Fx: (503) 641-2899

PENNSYLVANIA

TCA Inc.
1570 McDaniel Drive
West Chester, PA 19380
Ph : (215) 692-6853
Fx: (215) 692-6873

TEXAS

Thorson Co.
4445 Alpha Road, Ste. 109
Dallas, 17t 75244
Ph: (214) 233-5744
Fx: (214) 702-0993
Thorson Co.
14515 Briarhills Pkwy., Ste. 116
Houston, TX 77077
$\mathrm{Ph}:(713) 558-8205$
Fx: (713) 558-7359
Thorson Co.
8711 Burnet Roao, Ste. A-12
Austin, TX 78758
Ph: (512) 467-2737
Fx: (512)467-0605

UTAH

Lange Sales
772 E. 3300 South Street, Ste. 205
Salt Lake City, UT 84106
$\mathrm{Ph}:(801) 487-0843$
Fx: (810) 484-5408

VIRGINIA

Beacon North
103-F Calpenter Drive
Sterling, VA 22170
Ph: (703) 478-2480
Fx: (703) 435-7115

WASHINGTON

Quest Marketing
301 Southwest Grady Way Suite A-3
Renton, WA 98055
Ph: (206) 228-2660
Fx: (206) 228-2916

WISCONSIN

Martan Inc.
11431 N. Port Washington, Ste. 201 Mequin, W1 53092
Ph: (414) 241-4955
Fx: (414) 241-8365

Domestic Distributors

ALABAMA

NU Horizons
4801 University Sq., Stc.
Huntsville, AL 35816
Ph: (205) 722-9330
Fx: (205) 722-9348

CALIFORNIA

AVED

1582 Parkway Loop, Unit G
Tustin, CA 92680
Ph: (714) 259-8258
Fx: (714) 259-0828
AVED
5752 Oberlin Drive, Ste. 105
San Diego, CA 92121
Ph: (619) 558-8890
Fx: (619) 558-3018
Bell Micro
1941 Ringwood Avenue
San Jose, CA 95131
Ph: (408) 451-9400
Fx: (408) 451-1699
JACO ELectronics
2282 Towngate Road, Ste. 100
Westlake Village, CA 91361
Ph: (805) 495-9998
Fx: (805) 494-3864
JACO Electronics
1541 Parkway Loop, Unit A
Tustin, CA 92608
Ph: (714) 258-9003
Merit Electronics
2070 Ringwood Ave
San Jose, CA 95131
Ph: (408) 434-0800
Fx: (408) 434-0935
Bell Micro
18350 Mt . Langley
Fountain Valley, CA 92708
Ph: (714) 963-0667
JACO Electronics
2880 Zanker Rd. Ste. 102
San Jose, CA 95143
Ph: 432-9290
Fx: 432-9298
Western Micro Technology
12900 Saratoga Ave
Saratoga, CA 95070
Ph: (408) 725-1660
Fx: (408) 255-6491
Western Micro Technology 1637 North Brian Street
Orance, CA 92667
Ph: (714) 637-0200
Fx: (714) 998-1883
Western Micro Technology
28720 Roadsie Drive Ste. 175
Agoura Hills, Ca 91301
Ph: (818) 707-0731
Fx: (818) 706-7651

Western Micro Technology
6837 Nancy Ridge Drive
San Diego, CA 92121
Ph: (619) 453-8430
Fx: (619) 453-1465
Milgray/Los Angeles
912 Pancho Road Ste. C
Camarillo, CA 93012-3508
Ph: (805) 484-4055/(800) 635-7812
Fx: (805) 388-8169
Milgray/No. California 2860 Zanker Road Ste 209
San Jose, CA 95134
(408) 456-0900/(800) 442-0946

Fx: (408) 456-0300
Milgray/Orange County 16 Technology Drive Ste. 206 Irvine, CA 92718-2329 Ph: (714) 753-1282/(800) 562-3118 Fx: (714) 753-1682

CANADA
Pacific Coast Electronics
564 Hillside Ave.
B.C. Canada

V8T 1 Y9
Ph: (604) 385-5111
Fx: (604) 382-6243
Milgray/Montreal
6600 Trans Canada Hwy Ste 209
Pointe Claire, QUE
H9R 4S2
Ph : (514) 426-5900.
Fx: (514) 4265836
Milgray/Toronto
2783 Thamesgate Drive
Mississauga, ONT
L4T 1 G5
Ph: (416) 678-0953
Fx: (416) 678-1213

CONNECTICUT

Milgray/Connecticut
Milford Plains Office Park
326 W. Main Street
Milford, CT 06460-0418
Ph: (203) 878-5538/(800) 922-6911
Fx: (203) 878-6970

COLORADO

AVED

4090 Younfield Street
Wheat Ridge, CO 80033
Ph: (303) 422-1701
Fx: (303) 422-2529
JACO Electronics
695 Pierce St., Ste. 110
Eric, CO 80516
Ph: (303) 828-3074
Fx: (303) $828-3080$
QPS Electronics
14291 E. Founh Ave.
Suite 208
Aurora, CO 80011
Ph : (303) $343-9260$
I.E.C.

420 E. 58 th Ave.
Denver, CO 80216
$\mathrm{Ph}:(303)$ 292-5537
Fx: (303) 292-0114
FLORIDA
All American 16085 NW 52nd Ave.
Miami, FL 33014
Ph: (305) 621-8282 Fx: (305) 620-7831

All American
5009 Hiatus Road
Sunrise, FL 33351
Ph: (305) 572-7999
Fx: (305) 749-9229

NU Horizons

3421 N. West 55 Street
Fe. Lauderdale, FL 33309
$\mathrm{Ph}:(305)$ 735-2555
Fx: (305) 735-2880
JACO Electronics
9900 W. Sample Rd.
Suite 404
Coral Spring, FL 33065
Ph: (305) 341-8280
Fx: (305) 341-7848
Milgray/Florida
735 Rinchart Rd Ste. 100
Lake Mary, FL 32746
Ph: (407) 321-2555/(800) 367-0780
Fx: (407) 322-4225

GEORGIA

NU Horizons
5555 Oakbrook Pkwy. \#340
Norcross, GA 30093
Ph: (404) 416-8666
Fx: (404) 416-9060
Milgray/Atlanta
3000 Northwoods Pkwy Ste. 115
Norcross, GA 30071-1545
Ph: (404) 446-9777/(800) 241-5523
Fx: (404) 446-1186

ILLINOIS

QPS Electronics
101 E. Conmmerce Drive
Schaumburg, IL 60173
Ph: (708) 884-6620
Fx: (708) 884-7573
I.E.C.

220 N. Stoning Ave.
Hoffman Estates, IL 60195
Ph: (708) 843-2040
Fx: (708) 843-2320
Milgray/Chicago
Kennedy Corporate Ctr. 1 Ste. 310
1530 E. Dundee Road
Palatine, IL 60067-8319 Ph: (708) 202-1900/(800) 322-6217 Fx: (708) 202-1985

INDIANA

RM Inc.
1329 W. 96th So., Ste. \#1
Indianapolis, IN 46260
Ph: (317) 580-9999
KANSAS
Milgray/Kansas City 6400 Glenwood Ste 313
Overland Park, KS 66202 Ph: (913) 236-8800/(800) 255-6576 Fx: (913) 384-6825

MARYLAND

Vantage Components
6925 R. Oakland Mills Road
Columbia, MD 21045
Ph: (301) 720-5100
NU Horizons
8975 Guilford Road
Suhe 120
Columbia, MD 21046
Ph: (301) 995-6330
Milgray/Washington
6460 Dobbin Rd. Ste. D
Columbia, MD 21045-5813
Ph: (410) 730-6119/(800) 638-6656
Fx: (410) 730-8940

MASSACHUSETTS

Bell Micro
16 Upton Drive
Willington, MA 01887
Ph: (617) 658-0222
Cronin Electronics
77 4th Avenue
Needham, MA 02194
Ph: (617) 449-5000
Fx: (617) 444-8395
NU Horizons
107 Audubon Road
Wakefield, MA 01880
Ph: (617) 246-4442

Vantage

17A Sterling Road
Billerica, MA 01862
Ph: 1 (800) 552-4305
Western Micro Technology
20) Blanchard Road

Burlington, MA 01803
Ph: (617) 273-2800
Fx: (617) 229-2815
Milgray/New England
Ballardvale Park
187 Ballardvale St.
Wilmington, MA 01887-1064
Ph: (508) 657-6900)(800) 648-3595
Fx: (508)658-7989

MICHIGAN

RM Electronics
4310 Roger B. Chaffee Blvd.
Grand Rapids. Ml 49548
$\mathrm{Ph}:(616) 531-9300$
Fx: (616) 531-2990

MISSOURI

NU Horizons
26 Bald Eagle Drive
Kendell, MO 14476
Ph: (716) 292-0777

NEW JERSEY

Vantatge Components 1056 W. Jericho Turnpike
Smithtown, NJ 07013
Ph: (201) 777-4100
Fx: (201) 777-6194

JACO PA/NJ

59 Manchester Road
Sewell, NJ 08080
Ph: (410) 995-6620
Fx: (410) 995-6032
NU Horizons
39 U.S. Route 46
Pine Brook, NJ 07058
Ph: (201) 882-8300

NU Horizons

2002 C. Green Tree
Exec. Campus
Marlton, NJ 08053
Ph: (609) 596-1833

GCI

245-D Cliflon Ave.
West Berlin, NJ 08091
Ph: (609) 768-6767
Fx: (609) 768-3649
Western Micro Technology
4 A Eves Drive
Marlton, NJ 08053
Ph: (609) 596-7775
Fx: (609) 985-2797
Milgray/Delaware Valley
3001 Greentree Exec. Campus Ste. C Mariton, NJ 08053-1551
Ph: (609) 983-5010/(800) 257-7111
Fx: (609) 985-1607
Milgray/New Jersey 1055 Parsippany Blvd. Ste. 102 Parsippany, NJ 07054-1273
Ph: (201) 335-1766/(800) 622-0291
Fx: (201) 335-2110

NEW YORK

JACO

145 Oser Avenue
Hauppauge, NY 11788
Ph: (516) 273-5500
Fx: (516) 273-5528
NU Horizons
6000 New Horizons Blyd.
Amityville, NY 11701
Ph: (516) 226-6000
Fx: (516) 226-5886
NU Horizons
100 Bluff Drive
East Rochester, NY 14445
Ph: (716) 248-5980

Vantage
1056 W. Jerico Turnpike
Smithtown, NY 11787
Ph: (516) 543-2000
Fx: (516) 543-2030
Milgray/New York
77 Schmitt Blvd.
Farmingdale, NY 11735-1410
Ph: (516) 391-3000/(800) MILGRAY
Fx: (516) 420-0685
Milgray/Upstate NY
One Corporate Place Ste. 200
1170 Pittsford Victor Rd.
Pittsford, NY 14534-3807
Ph: (716) 381-9700/
Fx: (716) 381-9493

N \& S CAROLINA

Milgray/Raleigh
2925 Huntleigh Drive Ste. 101
Raleigh, NC 27604-3374
Ph: (919) 790-8094/(800) 5652-3118
Fx: (919) 872-8851

OHIO

CAM RPC
749 Miner Road
Cleveland, OH 44143
Ph: (216)461-4700
Fx: (216) 461-4329
NU Horizons
6200 Som Center Road, Ste. A 15
Solon, OH 44139
Ph: (216) 349-2008
Fe: (216) 349-2080
Milgray/Cleveland
6155 Rockside Rd Ste. 206
Cleveland OH 44131-2289
Ph: (216) 447-1520/(800) 321-0006 OS (800) 362-2808 OHIO

Fx: (216) 447-1761

OREGON

I.E.C.

6850 SW 105th Ave., Ste. 8
Beaverton, OR 97005
Ph: (503) 641-1690
Western Micro Technology
1800 NW 169th Place Suite B-300
Beaverton, OR 97006
Ph: (503) 629-2082
Fx: (503) 629-8645

PENNSYLVANIA

CAM RPC
620 Alpha Drive
Pittsburgh, PA 15238
Ph: (412) 782-3770
Fx: (412) 963-6210
TEXAS
All American
1819 Flrman Drive, Ste. 127
Richardson, TX 75081
$\mathrm{Ph}:(214)$ 231-5300
Fx: (214) 437-0353

Bell Micro
100 N. Central Expressway, Ste. 502
Richardson, TX 75080-5300
Ph: (214) 783-4191
Fx: (214) 234-2123
JACO Electronics
1209 N. Glenville Drive
Richardson, TX 75081
Ph: (214) 234-5565
Fx: (214) 238-7008
OMNI Pro Electronics
3220 Commander Drive
Carrolton, TX 75006
Ph: (214) 713-9000
Milgray/Houston
12919 SW Freeway Ste. 130
Stafford, TX 77477-4113
Ph: (713) 240-5360/(800) 962-1849
Fx: (713) 240-5404
Milgray/Dallas
16610 N. Dallas Pkwy. Ste. 1300
Dallas, TX 75248-2617
Ph: (214) 248-1603/(800) 637-7227
Fx: (214) 248-0218

UTAH

A.V.E.D.

942 E. 7145 S. Ste. A-101
West Valley, UT 84119
Ph: (801) 975-9500
Fx: (801) 977-0245
Milgray/Utah
310 E 4500 S Ste. 110
Murray, UT 84107
Ph: (801) 261-2999/(800) 837-9739
Fx: (801) 261-0880

WASHINGTON

I.E.C.

1750-124th Ave., NE
Bellevue, WA 98005
Ph: (206) 455-2727
Radar Electronics
168 Western Ave. West
Seattle, WA 98119
Ph: (206) 282-2511
Fx: (206) 282-1598
Western Micro Technology
Continental Plaza Building
550 Kirkland, Way Ste. 100
Kirkland, Wa 98033
Ph: (206) 828-2741
Fx: (206) 828-2719

MACRONIX, INC.

International Distributors

JAPAN

NKK Corporation
2-6-3 Hitotsubashi, Chiyoda-Ku
Tokyo 101, Japan
Ph: (03) 3217-3127
Fx: (03) 3217-3148
HY Associates Co., Ltd.
1-10, Sekimachi-Kita 3 Chome,
Nerima-Ku Tokyo 177, Japan
Ph: (03) 3929-7111
Fx: (03) 928-0301
HONG KONG
RTI Industries Co., Ltd.
Room 402, Nan Fung Commercial Centre
No. 19, Lam Lok Street
Kowloon Bay, Kowloon,
Hong Kong
Ph: (852) 795-7421
Fx: (852) 795-7839

KOREA

E-ONE Corporation
\#1618, Korea Business Center
1338-21, Seocho-Dong, Seocho-Ku,
Seoul, 137-070, Korea
Ph: (02) 569-3789

SINGAPORE

Valour Marketing Ph: (PTE) LTD.
BLK 3005, UBIAVENUE3, \#03-88
Singapore 1440
Ph: (65) 7489879
Fx: (65) 7432931

DENMARK

Ditz Schweitzer A-S.
Vallensbalvej 41, 2605 - Brondby
Denmark
Ph: (45) 4245-3044
Fx: (45) 4245-9206

ITALY

ESCO Italiana S.P.A
Viale F. Ili Casiraghi, 355
20099 Sesto S. Giovanni
Milan, Italy
Ph: (02) 240-9241
Fx: (02) 240-9255

GERMANY

Beck GMBH \& CO.
Electronik Bauelemente KG
Eltersdorfer Street, 7, D-8500
Nurenberg, Germany
Ph: (49) 911-3-4050
Fx: (49) 911-3-40528

THE NETHERLANDS
Alcom Electronics BV
Essebaan 1, 2908 Lj Capelle A/D Ijssel Holland
Ph: (010) 451-9533
Fx: (010) 458-6482

BELGIUM

Alcom Electronics BV
Singel 3
2550 Kontich
Belgium
Ph: (03) 458-3033
Fx: (03) 458-3126

SWEDEN

Titan Electronics AB.
P.O. Box 92047, S-120 07 Stockholm

Sweden
Ph: (46)8-644-7260
Fx: (46)8-642-2939
Miko Komponent AB.
P.O. Box 2001, S-14502 Norsborg

Sweden
Ph: 7538-9080
Fx: 7537-5340

UNITED KINGDOM
Force Technologies Ltd.
Unit 18, Campbell Court, Bramley Basingstoke, Hants.
RG26 5 EG United Kingdom
Ph: 2568-80788
Fx: 2568-80307
Silicon Concepts Ltd.
Itec Lynchborough Road, Passfield Hampshire
GU30 7SB, United Kingdom
Ph: 4287-51617
Fx: 4287-51603
ISRAEL
EL-GEV Electronics Building 101 P.O.B. S0
Tirat Yehuda
73175 Israel
Ph: 972-3-971-2056
Fx: 972-3-971-2407

The information that appears in this document has been checked and is believed to be reliable. Macronix, however, will not be responsible for any loss or damage which will result from the use of the information contained herein. Macronix makes no representation or warranty concerning the accuracy of sale. Macronix will not extend its warranty on any product beyond that set forth in its standard terms, patent, or other licence implied hereby. Macronix reserves the right to make changes in its products without notification which may make the information contained in this document obsolete or inaccurate. Contact Macronix for the latest information regarding these products.

MACRONIX INC.
1348 Ridder Park Drive
San Jose, CA 95131 USA
TEL:(408) 453-8088
FAX:(408) 453-8488

MACRONIX INTERNATIONAL CO., LTD 3F, 4 Creation Road IV Hsin-Chu Science-Based Industrial Park Hsin-Chu city, Taiwan, R.O.C. TEL:(035) 783-333 FAX:(035) 778-689

TAIPEI OFFICE

Room 223, 2F, 144, Sec. 3, Min-Chuan E. Rd., Taipei, Taiwan, R.O.C.
TEL:(02) 719-1977
FAX:(02) 712-7359

