DEVICES INCORPORATED

> The Power
> of Signal Processing

 DEVICES INCORPORATED

1997 Data Book

March 1997

Copyright © 1997, LOGIC Devices Incorporated

IMPORTANT NOTICE

LOGIC DEVICES INCORPORATED (LDI) reserves the right to make changes to or to discontinue any semiconductor product or service identified in this publication without notice. LDI advises its customers to obtain the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current.

LDI warrants performance of its semiconductor products to current specifications in accordance with LDI's standard warranty. Testing and other quality control techniques are utilized to the extent that LDI deems necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.

LDI assumes no liability for LDI applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does LDI warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of LDI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

LOGIC DEVICES INCORPORATED products are not intended for use in life support applications, devices or systems. Use of a LOGIC Devices product in such application without the prior written consent of the appropriate LOGIC Devices officer is prohibited.

Copyright © 1997, LOGIC Devices Incorporated

DEVICES INCORPORATED
Ordering InformationVideo Imaging Products2
Arithmetic Logic Units \& Special Arithmetic FunctionsMultipliers \& Multiplier-Accumulators4
Register ProductsPeripheral ProductsMemory Products7
FIFO ProductsQuality and ReliabilityTechnology and Design Features10Package Information11
Product Listing 12
Sales Offices

PUBLICATIONTEAM

Darren Andrus: Production Team, Technical Editing
Tim Flaherty: Technical Editing, Cover Design
David Grant: Project Leader, Press Coordinator, Production Team, Technical Editing

Herman Nakamura: Production Team, Technical Editing
Patricia Reed: Cover Design, Cover Production

Täble of Contents

1. ORDERING INFORMATION 1-1
2. VIDEO IMAGING PRODUCTS 2-1
LF2242 12/16-bit Half-Band Digital Filter 2-3
LF2246 11×10-bit Image Filter 2-11
LF2247 $11 \times$ 10-bit Image Filter with Coefficient RAM 2-19
LF2249 12×12-bit Digital Mixer 2-29
LF2250 12×10-bit Matrix Multiplier 2-37
LF2272 Colorspace Converter/Corrector (3×12-bits) 2-53
LF2301 Image Resampling Sequencer 2-63
LF3310 Horizontal/Vertical Digital Image Filter 2-81
LF3320 Horizontal Digital Image Filter 2-97
LF3330 Vertical Digital Image Filter 2-113
LF3347 High Speed Digital Image Filter with Coefficient RAM 2-123
LF43168 Dual 8-Tap FIR Filter 2-133
LF43881 8×8-bit Digital Filter 2-149
LF43891 9x9-bit Digital Filter 2-161
LF48212 Alpha Mixer 2-173
LF48410 1024×24-bit Video Histogrammer 2-183
LF48908 Two Dimensional Convolver 2-199
LF9501 1K Programmable Line Buffer 2-215
LF9502 2K Programmable Line Buffer 2-223
3. ARITHMETIC LOGIC UNITS \& SPECIAL ARITHMETIC FUNCTIONS 3-1
Arithmetic Logic Units
L4C381 16-bit Cascadable ALU 3-3
L4C383 16-bit Cascadable ALU (Extended Set) 3-15
Special Arithmetic Functions
LSH32 32-bit Cascadable Barrel Shifter 3-27
LSH33 32-bit Cascadable Barrel Shifter with Registers 3-37
L10C23 64×1 Digital Correlator 3-45
L2330 16×16-bit Coordinate Transformer 3-53
L2340 Digital Synthesizer 3-67
L64230 Template Matcher 3-79
4. MULTIPLIERS \& MULTIPLIER-ACCUMULATORS 4-1
Multipliers
LMU08 8×8-bit Parallel Multiplier, Signed 4-3
LMU8U 8×8-bit Parallel Multiplier, Unsigned 4-3
LMU12 12×12-bit Parallel Multiplier 4-11
LMU112 12×12-bit Parallel Multiplier, Reduced Pinout 4-17
LMU16 16×16-bit Parallel Multiplier 4-23
LMU216 16×16-bit Parallel Multiplier, Surface Mount 4-23
LMU18 16×16-bit Parallel Multiplier, 32 Outputs 4-31
LMU217 16×16-bit Parallel Multiplier, Microprogrammable, Surface Mount 4-39

Table of Contents

Multiplier-Accumulators
LMA1008 8×8-bit Multiplier-Accumulator 4-45
LMA1009 12×12-bit Multiplier-Accumulator 4-51
LMA2009 $12 \times$ 12-bit Multiplier-Accumulator, Surface Mount 4-51
LMA1010 16×16-bit Multiplier-Accumulator 4-59
LMA2010 16×16-bit Multiplier-Accumulator, Surface Mount 4-59
Multiplier-Summers
LMS12 $12 \times 12+26$-bit Cascadable Multiplier-Summer, FIR 4-67
5. REGISTER PRODUCTS 5-1
Pipeline Registers
L29C520 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
L29C521 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
LPR520 4×16-bit Multilevel Pipeline Register (1-4 Stages) 5-11
LPR200 8×16-bit Multilevel Pipeline Register (1-8 Stages) 5-17
L29C525 16×8-bit Dual 8-Deep Pipeline Register (1-16 Stages) 5-25
L10C11 4/8-bit Variable Length Shift Register (3-18 Stages) 5-33
L21C11 8 -bit Variable Length Shift Register (1-16 Stages) 5-39
Shadow Registers
L29C818 8-bit Serial Scan Shadow Register 5-45
6. PERIPHERAL PRODUCTS 6-1
L5380 SCSI Bus Controller 6-3
L53C80 SCSI Bus Controller 6-3
7. MEMORY PRODUCTS 7-1
64K Static RAMs
L7C162 16K x 4, Separate I/O, 2 Chip Enables + Output Enable. 7-3
L7C164 16K x 4, Common I/O, 1 Chip Enable 7-11
L7C166 16K x 4, Common I/O, 1 Chip Enable + Output Enable 7-11
256K Static RAMs
L7C194 64K x 4, Common I/O, 1 Chip Enable 7-21
L7C195 $64 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-21
L7C197 $256 \mathrm{~K} \times 1$, Separate I/O, 1 Chip Enables 7-29
L7C199 32K x 8, Common I/O, 1 Chip Enable + Output Enable 7-37
1M Static RAMs
L7C106 $256 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-45
L7C108 $\quad 128 \mathrm{~K} \times 8$, Common I/O, 1 Chip Enable + Output Enable 7-51
L7C109 128K x 8, Common I/O, 2 Chip Enables + Output Enable 7-51
Special Architecture RAMs
L7C174 8K x 8, Cache-Tag 7-61

Table of Contents

8. FIFO PRODUCTS 8-1
L8C201 512×9, Asynchronous 8-3
L8C202 $1 \mathrm{~K} \times 9$, Asynchronous 8-3
L8C203 2K x9, Asynchronous 8-3
L8C204 4K x9, Asynchronous 8-3
L8C211 512×9, Synchronous 8-21
L8C221 1Kx9, Synchronous 8-21
L8C231 $2 \mathrm{~K} \times 9$ 9, Synchronous 8-21
L8C241 4K x9, Synchronous 8-21
9. QUALITY AND RELIABILITY 9-1
10. TECHNOLOGY AND DESIGN FEATURES 10-1
Latchup and ESD Protection 10-3
Power Dissipation in LOGIC Devices Products 10-7
11. PACKAGE INFORMATION 11-1
LOGIC Devices/MIL-STD-1835 Package Code Cross-Reference 11-4
Thermal Considerations 11-7
Package Marking Guide 11-9
Mechanical Drawings 11-11
12. PRODUCT LISTING 12-1
13. SALES OFFICES 13-1

Numeric Table of Contents

L10C11 4/8-bit Variable Length Shift Register (3-18 Stages) 5-33
L10C23 64×1 Digital Correlator 3-45
L21C11 8-bit Variable Length Shift Register (1-16 Stages) 5-39
L2330 Coordinate Transformer 3-53
L2340 Digital Synthesizer 3-67
L29C520 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
L29C521 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
L29C525 16×8-bit Dual 8-Deep Pipeline Register (1-16 Stages) 5-25
L29C818 8-bit Serial Scan Shadow Register 5-45
L4C381 16-bit Cascadable ALU 3-3
L4C383 16-bit Cascadable ALU 3-15
L5380 SCSI Bus Controller 6-3
L53C80 SCSI Bus Controller 6-3
L64230 Template Matcher 3-79
L7C106 $256 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-45
L7C108 $\quad 128 \mathrm{~K} \times 8$, Common I/O, 1 Chip Enable + Output Enable 7-51
L7C109 $128 \mathrm{~K} \times 8$, Common I/O, 2 Chip Enables + Output Enable 7-51
L7C162 $16 \mathrm{~K} \times 4$, Separate I/O, 2 Chip Enables + Output Enable 7-3
L7C164 16K x4, Common I/O, 1 Chip Enable 7-11
L7C166 $16 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-11
L7C174 $8 \mathrm{~K} \times 8$, Cache-Tag 7-61
L7C194 64K x4, Common I/O, 1 Chip Enable 7-21
L7C195 $64 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-21
L7C197 $256 \mathrm{~K} \times 1$, Separate I/O, 1 Chip Enable 7-29
L7C199 $32 \mathrm{~K} \times 8$, Common I/O, 1 Chip Enable + Output Enable 7-37
L8C201 512×9, Asynchronous FIFO 8-3
L8C202 1K x 9, Asynchronous FIFO 8-3
L8C203 2K x 9, Asynchronous FIFO 8-3
L8C204 4K x 9, Asynchronous FIFO 8-3
L8C211 512×9, Synchronous FIFO 8-21
L8C221 1K x9, Synchronous FIFO 8-21
L8C231 2K x 9, Synchronous FIFO 8-21
L8C241 $4 \mathrm{~K} \times 9$, Synchronous FIFO 8-21
LF2242 12/16-bit Half-Band Digital Filter 2-3
LF2246 11×10-bit Image Filter 2-11

Numeric Tāble of Contents

LF2247 $11 \times$ 10-bit Image Filter with Coefficient RAM 2-19
LF2249 12×12-bit Digital Mixer 2-29
LF2250 12×10-bit Matrix Multiplier 2-37
LF2272 Colorspace Converter/Corrector (3×12-bits) 2-53
LF2301 Image Resampling Sequencer 2-63
LF3310 Horizontal/Vertical Digital Image Filter 2-81
LF3320 Horizontal Digital Image Filter 2-97
LF3330 Vertical Digital Image Filter 2-113
LF3347 High Speed Digital Image Filter with Coefficient RAM 2-123
LF43168 Dual 8-Tap FIR Filter 2-133
LF43881 8×8-bit Digital Filter 2-149
LF43891 9×9-bit Digital Filter 2-161
LF48212 Alpha Mixer 2-173
LF48410 1024×24-bit Video Histrogrammer 2-183
LF48908 Two Dimensional Convolver 2-199
LF9501 1K Programmable Line Buffer 2-215
LF9502 2K Programmable Line Buffer. 2-223
LMA1008 8×8-bit Multiplier-Accumulator 4-45
LMA1009 12×12-bit Multiplier-Accumulator 4-51
LMA1010 $16 \times$ 16-bit Multiplier-Accumulator 4-59
LMA2009 $12 \times$ 12-bit Multiplier-Accumulator, Surface Mount 4-51
LMA2010 16×16-bit Multiplier-Accumulator, Surface Mount 4-59
LMS12 $12 \times 12+26$-bit Cascadable Multiplier-Summer, FIR 4-67
LMU08 8×8-bit Parallel Multiplier, Signed 4-3
LMU112 $12 \times$ 12-bit Parallel Multiplier, Reduced Pinout 4-17
LMU12 12×12-bit Parallel Multiplier 4-11
LMU16 16×16-bit Parallel Multiplier 4-23
LMU18 16×16-bit Parallel Multiplier, 32 Outputs 4-31
LMU216 16×16-bit Parallel Multiplier, Surface Mount 4-23
LMU217 16×16-bit Parallel Multiplier, Microprogrammable, Surface Mount 4-39
LMU8U 8×8-bit Parallel Multiplier, Unsigned 4-3
LPR200 8×16-bit Multilevel Pipeline Register (1-8 Stages) 5-17
LPR520 4×16-bit Multilevel Pipeline Register (1-4 Stages) 5-11
LSH32 32-bit Cascadable Barrel Shifter 3-27
LSH33 32-bit Cascadable Barrel Shifter with Registers 3-37

Eatic
DEVICES INCORPORATED

Ordering Information

Ordering information

至金垂竟
DEVICES INCORPORATED

TO CONSTRUCT A VALID PART NUMBER:

In order to construct a valid LOGIC Devices part number, begin with the generic number obtained from the data sheet header. To this number, append two or three characters from the tables below indicating the desired package code, temperature range, and screening. Finally, append one or two digits indicating the performance grade desired. Most devices are offered in several speed grades with the part number suffix indicating a critical path delay in nanoseconds.

FOR MORE INFORMATION ON AVAILABLE PART NUMBERS:

All products are not offered with all combinations of package styles, temperature ranges, and screening. The Ordering Information table on the last page of each data sheet indicates explicitly all valid combinations of package, temperature, screening, and performance codes for a given product.

[^0]
DEVICES INCORPORATED
Ordering Information

Video Imaging Products

暒金垂冓
DEVICES INCORPORATED

Vidēo lmaging Products

VIDEO IMAGING PRODUCTS 2-1
LF2242 12/16-bit Half-Band Digital Filter 2-3
LF2246 11×10-bit Image Filter 2-11
LF2247 11×10-bit Image Filter with Coefficient RAM 2-19
LF2249 12×12-bit Digital Mixer 2-29
LF2250 12×10-bit Matrix Multiplier 2-37
LF2272 Colorspace Converter/Corrector (3×12-bits) 2-53
LF2301 Image Sampling Resequencer 2-63
LF3310 Horizontal/Vertical Digital Image Filter 2-81
LF3320 Horizontal Digital Image Filter 2-97
LF3330 Vertical Digital Image Filter 2-113
LF3347 High Speed Digital Image Filter with Coefficient RAM 2-123
LF43168 Dual 8-Tap FIR Filter 2-133
LF43881 8×8-bit Digital Filter 2-149
LF43891 9×9-bit Digital Filter 2-161
LF48212 Alpha Mixer 2-173
LF48410 1024×24-bit Video Histogrammer 2-183
LF48908 Two Dimensional Convolver 2-199
LF9501 1K Programmable Line Buffer 2-215
LF9502 2K Programmable Line Buffer 2-223

要垂童
DEVICES INCORPORATED

LF2242 12/16-bit Half-Band Interpolating/ Decimating Digital Filter

FEATURES

- 40 MHz Clock Rate
- Passband (0 to $0.22 f_{\mathrm{s}}$)

Ripple: $\pm 0.02 \mathrm{~dB}$
\square Stopband ($0.28 \mathrm{f}_{\mathrm{S}}$ to $0.5 \mathrm{f}_{\mathrm{S}}$)
Rejection: 59.4 dB

- User-Selectable 2:1 Decimation or 1:2 Interpolation
- 12-bit Two's Complement Input and 16 -bit Output with UserSelectable Rounding to 9 through 16 Bits
- User-Selectable Two's Complement or Inverted Offset Binary Output Formats
T Three-State Outputs
- Replaces TRW/Raytheon TMC2242
- Package Styles Available:
- 44-pin Plastic LCC, J-Lead
- 44-pin Plastic Quad Flatpack

DESCRIPTION

The LF2242 is a linear-phase, halfband (low pass) interpolating/ decimating digital filter that, unlike intricate analog filters, requires no tuning. The LF2242 can also significantly reduce the complexity of traditional analog anti-aliasing prefilters without compromising the signal bandwidth or attenuation. This can be achieved by using the LF2242 as a decimating post-filter with an A/D converter and by sampling the signal at twice the rate needed. Likewise, by using the LF2242 as an interpolating pre-filter with a D/A converter, the corresponding analog reconstruction postfilter circuitry can be simplified.
The coefficients of the LF2242 are fixed, and the only user programming required is the selection of the mode (interpolate, decimate, or passthrough) and rounding. The asynchronous three-state output enable control simplifies interfacing to a bus.

Data can be input into the LF2242 at a rate of up to 40 million samples per second. Within the 40 MHz I/O limit, the output sample rate can be one-half, equal to, or two times the
input sample rate. Once data is clocked in, the 55 -value output response begins after 7 clock cycles and ends after 61 clock cycles. The pipeline latency from the input of an impulse response to its corresponding output peak is 34 clock cycles.

The output data may be in either two's complement format or inverted offset binary format. To avoid truncation errors, the output data is always internally rounded before it is latched into the output register. Rounding is user-selectable, and the output data can be rounded from 16 bit values down to 9 bit values.

DC gain of the LF2242 is 1.0015 (0.0126 dB) in pass-through and decimate modes and 0.5007 (-3.004 dB) in interpolate mode. Passband ripple does not exceed $\pm 0.02 \mathrm{~dB}$ from 0 to $0.22 f_{\mathrm{S}}$ with stopband attenuation greater than 59.4 dB from $0.28 \mathrm{fs}_{\mathrm{s}}$ to $0.5 f_{\mathrm{S}}$ (Nyquist frequency). The response of the filter is -6 dB at $0.25 f_{\mathrm{s}}$. Full compliance with CCIR Recommendation 601 (-12 dB at $0.25 f_{\mathrm{s}}$) can be achieved by cascading two devices serially.

LF2242 Block Diagram

LF2242

Figure 1. Frequency Response of Filter

FREQUENCY (NORMALIZED)

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all registers. All timing specifications are referenced to the rising edge of CLK.

SYNC - Synchronization Control

Incoming data is synchronized by holding SYNC HIGH on CLKN, and then by bringing SYNC LOW on CLKN +1 with the first word of input data. SYNC is held LOW until resynchronization is desired, or it can be toggled at half the clock rate. For interpolation ($\overline{\mathrm{INT}}=$ LOW), input data should be presented at the first rising edge of CLK for which SYNC is LOW and then at every alternate rising edge of CLK thereafter. SYNC is inactive if $\overline{\mathrm{DEC}}$ and $\overline{\mathrm{INT}}$ are equal (pass-through mode).

Inputs

SI11-0 — Data Input
12-bit two's complement data input port. Data is latched into the register on the rising edge of CLK. The LSB is SIo (Figure 2).

Outputs

SO15-0 Data Output

The current 16-bit result is available on the SO15-0 outputs. The LF2242's limiter ensures that a valid full-scale (7FFF positive or 8000 negative) output will be generated in the event of an internal overflow. The LSB is SO0 (Figure 2).

Controls

$\overline{I N T}$ - Interpolation Control
When $\overline{\mathrm{INT}}$ is LOW and $\overline{\mathrm{DEC}}$ is HIGH (Table 1), the device internally forces every other incoming data sample to zero. This effectively halves the input data rate and the output amplitude.
$\overline{D E C}$ - Decimation Control
When $\overline{\mathrm{DEC}}$ is LOW and $\overline{\mathrm{INT}}$ is HIGH (Table 1), the output register is strobed on every other rising edge of CLK (driven at half the clock rate), decimating the output data stream.

Table 1.		
Mode Selection		
$\overline{\mathrm{NT}}$	$\overline{\mathrm{DEC}}$	MODE
0	0	Pass-through*
0	1	Interpolate
1	0	Decimate
1	1	Pass-through ${ }^{*}$

*Input and output registers run at full clock rate

LF2242

Figure 2. Input and Output Formats
Two's Complement Input Format

11	10	9	8			
-2^{0}	2^{-1}	2^{-2}	2^{-3}	3	2	1
2^{-8}	2^{-9}	2^{-10}	2^{-11}			

(Sign)
Two's Complement Output Format (TCO =1, Non-interpolate)

15	14	13	12	3	2
-2^{0}	2^{-1}	2^{-2}	2^{-3}	0	
2^{-12}	$2^{-13} 2^{-14} 2^{-15}$				

(Sign)
Two's Complement Output Format (TCO = 1, Interpolate)

15	14	13	12		
-2^{1}	2^{0}	2^{-1}	2^{-2}	3	2

(Sign)
Inverted Offset Binary Output Format (TCO = 0, Non-interpolate)

| 15 | 14 | 13 | 12 | 3 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | $1 \quad 0$

(Sign)
Inverted Offset Binary Output Format (TCO = 0, Interpolate)

15	14	13	12					
2^{1}	2^{0}	2^{-1}	2^{-2}			2	1	0
:---:	:---:	:---:	:---:					
$2^{-11} 2^{-12}$	2^{-13}	2^{-14}						

RND2-0 - Rounding Control

The rounding control inputs set the position of the effective LSB of the output data by adding a rounding bit to the internal bit position that is one below that specified by RND2-0. All bits below the effective LSB position are subsequently zeroed (Table 2).

TCO - Two's Complement Format Control

The TCO input determines the format of the output data. When TCO is HIGH, the output data is presented in two's complement format. When TCO is LOW, the data is in inverted offset binary format (all output bits are inverted except the MSB - the MSB is unchanged).

$\overline{O E}$ - Output Enable

When the $\overline{\mathrm{OE}}$ signal is LOW, the current data in the output register is available on the SO15-0 pins. When $\overline{\mathrm{OE}}$ is HIGH, the outputs are in a high-impedance state.

RND $2-0$	SO15	SO14	SO13	SO12	...	SO8	SO7	SO6	SO5	SO_{4}	SO_{3}	SO_{2}	SO1	SO0
000	X	X	X	X	-••	x	X	X	X	X	X	X	X	R
001	x	x	x	x	...	x	x	x	x	x	x	X	R	0
010	X	X	X	X	...	X	X	X	X	X	X	R	0	0
011	x	X	x	x	...	x	x	x	x	X	R	0	0	0
100	X	X	X	X	-.	X	X	X	X	R	0	0	0	0
101	x	x	X	x	...	x	X	X	R	0	0	0	0	0
110	x	x	x	x	...	x	x	R	0	0	0	0	0	0
111	x	x	x	x	. \cdot	x	R	0	0	0	0	0	0	0

'R' indicates the half-LSB rounded bit (effective LSB position)

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground .. -0.5 V to +7.0 V
Input signal with respect to ground .. -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output ... -0.5 V to Vcc +0.5 V
Output current into low outputs .. 25 mA
Latchup current ... > 400 mA

Operating Conditions To meet specified electrical and switching characteristics
Mode
Active Operation, Commercial

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min}$., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground $\leq \operatorname{VIN} \leq \operatorname{Vcc}$ (Note 12)			± 10	$\mu \mathrm{A}$
loz	Output Leakage Current	(Note 12)			± 40	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			140	mA
ICC2	Vcc Current, Quiescent	(Note 7)			10	mA
Cin	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2242 Decimating Digital Filter

SWITCHING CHARACTERISTICS

Symbol	Parameter	LF2242-			
		33		25	
		Min	Max	Min	Max
tcyc	Cycle Time	33		25	
tPW	Clock Pulse Width	10		10	
ts	Input Setup Time	10		8	
th	Input Hold Time	0		0	
tD	Output Delay		20		16
tDIS	Three-State Output Disable Delay (Note 11)		15		15
tena	Three-State Output Enable Delay (Note 11)		15		15

Switching Waveforms: Pass-Through Mode (INT = $\overline{\text { DEC }}$)

12/16-bit Half-Band Interpolating/ Decimating Digital Filter
Switching Waverorms: Interpolate Mode (INT =0, $\overline{\mathrm{DEC}}=1$)
Switching Waveforms: Decimate Mode $(\overline{(N T}=1, \overline{\mathrm{DEC}}=\mathbf{0})$

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and Vcc noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
 Decimating Digital Filter

FEATURES

- 66 MHz Data and Coefficient Input and Computation Rate
\square Four 11×10-bit Multipliers with Individual Data and Coefficient Inputs and a 25 -bit Accumulator
- User-Selectable Fractional or Integer Two's Complement Data Formats
\square Fully Registered, Pipelined Architecture
- Input and Output Data Registers, with User-Configurable Enables
- Three-State Outputs
\square Fully TTL Compatible
Ideally Suited for Image Processing and Filtering Applications
- Replaces TRW/Raytheon TMC2246
- Package Styles Available:
- 120-pin Pin Grid Array
- 120-pin Plastic Quad Flatpack

DESCRIPTION

The LF2246 consists of an array of four 11×10-bit registered multipliers followed by a summer and a 25 -bit accumulator. All multiplier inputs are user accessible and can be updated every clock cycle with either fractional or integer two's complement data. The pipelined architecture has fully registered input and output ports and an asynchronous three-state output enable control to simplify the design of complex systems. The pipeline latency for all inputs is five clock cycles.
Storage for mixing and filtering coefficients can be accomplished by holding the data or coefficient inputs over multiple clock cycles. A 25-bit accumulator path allows cumulative word growth which may be internally rounded to 16 bits. Output data is updated every clock cycle and may be held under user control. All inputs,
outputs, and controls are registered on the rising edge of clock, except for $\overline{\text { OEN }}$. The LF2246 operates at a clock rate of 66 MHz over the full temperature and supply voltage ranges.
The LF2246 is applicable for performing pixel interpolation in image manipulation and filtering applications. The LF2246 can perform a bilinear interpolation of an image (4pixel kernels) at real-time video rates when used with an image resampling sequencer. Larger kernels or more complex functions can be realized by utilizing multiple devices.
Unrestricted access to all data and coefficient input ports provides the LF2246 with considerable flexibility in applications such as digital filters, adaptive FIR filters, mixers, and other similar systems requiring high-speed processing.

LF2246
Figure 1a. Input Formats

Data	Coefficient
Fractional Two	ment (FSEL $=0$)
$\begin{array}{llllllll}9 & 8 & 7\end{array}$	10 9 8
$\begin{array}{ll}-2^{0} 2^{-1} 2^{-2} & 2^{-7} 2^{-8} 2^{-9} \\ \text { (Sign) }\end{array}$	$\frac{-2^{1} 2^{0} 2^{-1} \quad 2^{-7} 2^{-8} 2^{-9}}{(\text { Sign })}$

Integer Two's Complement (FSEL = 1)
$\left.\begin{array}{|llllll|}\hline 9 & 8 & 7\end{array} \longrightarrow \begin{array}{llll|}\hline-2^{9} & 2^{8} & 2^{7} & 1\end{array}\right)$

Figure 1b. Output Formats

SIGNAL DEFINITIONS

Power

$V \mathrm{Cc}$ and GND
+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all enabled registers. All timing specifications are referenced to the rising edge of CLK.

Inputs

D19-0-D49-0 - Data Input
D1-D4 are 10-bit data input registers. The LSB is Dno (Figure 1a).

C110-0-C410-0 - Coefficient Input
C1-C4 are 11-bit coefficient input registers. The LSB is CNo (Figure 1a).

Outputs

S15-0 - Data Output
The current 16-bit result is available on the S_{15-0} outputs (Figure 1b).

Controls

ENB1-ENB4 - Input Enable
The ENBN ($\mathrm{N}=1,2,3$, or 4) input allows either or both the DN and CN registers to be updated on each clock cycle. When ENBN is LOW, registers DN and CN are both strobed by the next rising edge of CLK. When ENBN is HIGH and ENSEL is LOW, register DN is strobed while register CN is held. If both ENBN and ENSEL are HIGH, register DN is held, and register CN is strobed (Table 1).

ENSEL - Enable Select

The ENSEL input in conjunction with the individual input enables ENB1ENB4 determines whether the data or the coefficient input registers will be held on the next rising edge of CLK (Table 1).

$\overline{O E N}$ - Output Enable

When the $\overline{O E N}$ signal is LOW, the current data in the output register is available on the $\mathrm{S} 15-0$ pins. When $\overline{\mathrm{OEN}}$ is HIGH, the outputs are in a high-impedance state.

Table 1.		
Input Register Control		
ENB1-4	ENSEL	INPUT REGISTER HELD
1	1	Data ' N '
1	0	Coefficient ' N '
0	X	None

X = "Don't Care"
$' \mathrm{~N}$ ' $=1,2,3$, or 4

$\overline{O C E N}$ - Clock Enable

When $\overline{\text { OCEN }}$ is LOW, data in the premux register (accumulator output) is loaded into the output register on the next rising edge of CLK. When OCEN is HIGH, data in the pre-mux register is held preventing the output register's contents from changing (if FSEL does not change). Accumulation continues internally as long as ACC is HIGH, despite the state of OCEN.

FSEL - Format Select

When the FSEL input is LOW, the data input during the current clock cycle is assumed to be in fractional two's complement format, and the upper 16 bits of the accumulator are presented at the output. Rounding of the accumulator result to 16 bits is performed if the accumulator control input ACC is LOW. When FSEL is HIGH, the data input is assumed to be in integer two's complement format, and the lower 16 bits of the accumulator are presented at the output. No rounding is performed when FSEL is HIGH.

ACC - Accumulator Control

The ACC input determines whether internal accumulation is performed on the data input during the current clock cycle. If ACC is LOW, no accumulation is performed, the prior accumulated sum is cleared, and the current sum of products is output. IfFSEL is also LOW, one-half LSB rounding to 16 bits is performed on the result. This allows summations without propagating roundoff errors. When ACC is HIGH, the emerging product is added to the sum of the previous products, without additional rounding.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$Output current into low outputs25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VcC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 40	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			100	mA
ICC2	Vcc Current, Quiescent	(Note 7)			6	mA
Cin	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2246

SWITCHING CHARACTERISTICS

Comme	cial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	33		25		15	
tPWL	Clock Pulse Width Low	15		10		7	
tPWH	Clock Pulse Width High	10		10		7	
ts	Input Setup Time	10		8		5	
th	Input Hold Time	0		0		0	
tD	Output Delay		15		13		11
tDIS	Three-State Output Disable Delay (Note 11)		15		15		15
tena	Three-State Output Enable Delay (Note 11)		15		15		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Larameter		LF2246-		
	33		$\mathbf{2 5}$		
tCYC	Cycle Time	Min	Max	Min	Max
tPWL	Clock Pulse Width Low	33		25	
tPWH	Clock Pulse Width High	15		10	
ts	Input Setup Time	10		10	
tH	Input Hold Time	10		8	
tD	Output Delay	0		0	
tDIS	Three-State Output Disable Delay (Note 11)		15		13
tENA	Three-State Output Enable Delay (Note 11)		15		15

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathbf{V c c}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 30 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and $\mathrm{VOL} \max$ respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

LF2246

DEVICES INCORPORATED

-LF2247 Image Filter with Coefficient RAM

FEATURES

- 66 MHz Data Input and Computation Rate
- Four 11×10-bit Multipliers with Individual Data and Coefficient Inputs and a 25 -bit Accumulator
- Four 32×11-bit Serially Loadable Coefficient Registers
- Fractional or Integer Two's

Complement Operands

- Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 100-pin Plastic Quad Flatpack
- 84-pin Pin Grid Array

DESCRIPTION

The LF2247 consists of an array of four 11×10-bit registered multipliers followed by a summer and a 25 -bit accumulator. The LF2247 provides a coefficient register file containing four 32×11-bit registers which are capable of storing 32 different sets of filter coefficients for the multiplier array. All multiplier data inputs are user accessible and can be updated every clock cycle with either fractional or integer two's complement data. The pipelined architecture has fully registered input and output ports and
an asynchronous three-state output enable control to simplify the design of complex systems. The pipeline latency for all inputs is five clock cycles.

A 25-bit accumulator path allows cumulative word growth which may be internally rounded to 16 bits. Output data is updated every clock cycle and may be held under user control. The data inputs/outputs and control inputs are registered on the rising edge of CLK. The Serial Data In signal, SDIN, is registered on the

rising edge of SCLK. The LF2247 operates at a clock rate of 66 MHz over the full temperature and supply voltage ranges.

The LF2247 is applicable for performing pixel interpolation in image manipulation and filtering applications. The LF2247 can perform a bilinear interpolation of an image (4pixel kernels) at real-time video rates when used with an image resampling sequencer. Larger kernels or more complex functions can be realized by utilizing multiple devices.

Unrestricted access to all data ports and an addressable coefficient register file provides the LF2247 with considerable flexibility in applications such as digital filters, adaptive FIR filters, mixers, and other similar systems requiring high-speed processing.

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply. All pins must be connected.

Clocks

CLK - Master Clock
The rising edge of CLK strobes all enabled registers except for the coefficient registers.

SCLK - Serial Clock
The rising edge of SCLK shifts data into and through the coefficient register file when it is enabled for serial data shifting.

Inputs

D19-0 - D49-0 — Data Input
D1-D4 are the 10-bit registered data input ports. Data is latched on the rising edge of CLK.

A4-0 - Row Address

A4-0 determines which row of data in the coefficient register file is used to feed data to the multiplier array. A4-0 is latched on the rising edge of CLK. When a new row address is loaded into the row address register, data from the register file will be latched into the multiplier input registers on the next rising edge of CLK.

SDIN - Serial Data Input

SDIN is used to serially load data into the coefficient registers. Data present on SDIN is shifted into the coefficient register file on the rising edge of SCLK when $\overline{\text { SEN }}$ is LOW. The 11 -bit coefficients are loaded into the coefficient register file in 16-bit words as shown in Figure 2. The five most significant bits of the first 16-bit word determine which row the data is written to in the coefficient registers. Note that the five most significant bits of the remaining three 16 -bit words are ignored. After. all four 16 -bit words are shifted into the register file, the lower eleven bits of each word (the coefficient data) are stored into the coefficient registers.

Outputs

S15-0 - Data Output
S15-0 is the 16 -bit registered data output port.

Controls

ENB1-ENB4 - Data Input Enables
The ENBN ($\mathrm{N}=1,2,3$ or 4) inputs allow the DN registers to be updated on each clock cycle. When ENBN is LOW, data on DN9-0 is latched into

LF2247
the DN register on the rising edge of CLK. When ENBN is HIGH, data on DN9-0 is not latched into the DN register and the register contents will not be changed.

ENBA - Row Address Input Enable

The ENBA input allows the row address register to be updated on each clock cycle. When ENBA is LOW, data on A4-0 is latched into the row address register on the rising edge of CLK. When ENBA is HIGH, data on A4-0 is not latched into the row address register and the register contents will not be changed.

OEN - Output Enable

When $\overline{\mathrm{OEN}}$ is LOW, $\mathrm{S} 15-0$ is enabled for output. When $\overline{\mathrm{OEN}}$ is HIGH, S_{15-0} is placed in a high-impedance state.

$\overline{\text { OCEN }}$-Clock Enable

When $\overline{\mathrm{OCEN}}$ is LOW, data in the premux register (accumulator output) is loaded into the output register on the next rising edge of CLK. When OCEN is HIGH, data in the pre-mux register is held preventing the output register's contents from changing (if FSEL does not change). Accumulation continues internally as long as ACC is HIGH, despite the state of OCEN.

FSEL - Format Select

When FSEL is LOW, the data input during the current clock cycle is assumed to be in fractional two's complement format, and the upper 16 bits of the accumulator are presented at the output. Rounding of the accumulator result to 16 bits is per-

formed if the accumulator control input ACC is LOW. When FSEL is HIGH, the data input is assumed to be in integer two's complement format, and the lower 16 bits of the accumulator are presented at the output. No rounding is performed when FSEL is HIGH.

ACC - Accumulator Control

The ACC input determines whether internal accumulation is performed on the data input during the current clock cycle. If ACC is LOW, no accumulation is performed, the prior accumulated sum is cleared, and the current sum of products is output. If FSEL is also LOW, one-half LSB rounding to 16 bits is performed on the result. When ACC is HIGH, the emerging product is added to the sum of the previous products, without additional rounding.

$\overline{S E N}$ - Serial Input Enable

The $\overline{\mathrm{SEN}}$ input enables the shifting of serial data through the registers in the coefficient register file. When $\overline{\text { SEN }}$ is LOW, serial data on SDIN is shifted into the coefficient register file on the rising edge of SCLK. SEN must remain LOW until all four coefficients have been clocked in. $\overline{\text { SEN }}$ does not need to be pulsed between consecutive data sets. It can remain LOW while the entire register file is loaded by a constant bit stream. When SEN is HIGH, data can not be shifted into the register file and the register file's contents will not be changed. When enabling the coefficient register file for serial data input, the LF2247 requires a HIGH to LOW transition of $\overline{\mathrm{EEN}}$ in order to function properly. Therefore, $\overline{\mathrm{SEN}}$ needs to be set HIGH immediately after power up to ensure proper operation of the serial input circuitry.

LF2247

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$
Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 40	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			100	mA
Icce	Vcc Current, Quiescent	(Note 7)			6.0	mA
CIN	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2247

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF2247-					
		33		25		15	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	33		25		15	
tPWL	Clock Pulse Width Low	15		10		7	
tPWH	Clock Pulse Width High	10		10		7	
ts	Input Setup Time	10		8		5	
th	Input Hold Time	0		0		0	
to	Output Delay		15		13		11
tols	Three-State Output Disable Delay (Note 11)		15		15		15
tENA	Three-State Output Enable Delay (Note 11)		15		15		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	Min	Max	Min
Max				
tcYC	Cycle Time	33		25
tPWL	Clock Pulse Width Low	15		10
tPWH	Clock Pulse Width High	10		10
ts	Input Setup Time	10		8
tH	Input Hold Time	0		0
tD	Output Delay		15	
tDIS	Three-State Output Disable Delay (Note 11)		15	
tENA	Three-State Output Enable Delay (Note 11)	15		13

Switching Waveforms: Data l/O

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LF2247-					
		33		25		15	
		Min	Max	Min	Max	Min	Max
tscyc	Serial Interface Cycle Time	62		62		62	
tswL	Serial Clock Pulse Width Low	30		30		30	
tswh	Serial Clock Pulse Width High	30		30		30	
tsens	Serial Enable Setup Time	20		20		20	
tSENH	Serial Enable Hold Time	0		0		0	
tss	Serial Data Input Setup Time	20		20		20	
tsh	Serial Data Input Hold Time	0		0		0	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)					
Symbol	Parameter	LF2247-			
		33		25	
		Min	Max	Min	Max
tscyc	Serial Interface Cycle Time	62		62	
tswL	Serial Clock Pulse Width Low	30		30	
tswh	Serial Clock Pulse Width High	30		30	
tsens	Serial Enable Setup Time	20		20	
tsenh	Serial Enable Hold Time	0		0	
tss	Serial Data Input Setup Time	20		20	
tsh	Serial Data Input Hold Time	0		0	

Switching Waveforms: Serial Data Input

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 30 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VOH} \min$ and $\mathrm{VOL} \max$ respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VcC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

	ORDERING INFORMATION
	84-pin
Speed	Plastic J-Lead Chip Carrier (J3)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening
$\begin{aligned} & 33 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	LF2247JC33 LF2247JC25 LF2247JC15

LE2249 12×12-bit Digital Mixer

FEATURES

- 40 MHz Data and Computation Rate

Two 12×12-bit Multipliers with Individual Data Inputs

- Separate 16-bit Input Port for Cascading Devices
\square Independent, User-Selectable 1-16 Clock Pipeline Delay for Each Data Input
- User-Selectable Rounding of Products
- Fully Registered, Pipelined Architecture
Three-State Outputs
\square Fully TTL Compatible
- Replaces TRW/Raytheon TMC2249
\square Package Styles Available:
- 120-pin Ceramic PGA
- 120-pin Plastic Quad Flatpack

DESCRIPTION

The LF2249 is a high-speed digital mixer comprised of two 12-bit multipliers and a 24-bit accumulator. All multiplier inputs are user accessible, and each can be updated on every clock cycle. The LF2249 utilizes a pipelined architecture with fully registered inputs and outputs and an asynchronous three-state output enable control for optimum flexibility.
Independent input register clock enables allow the user to hold the data inputs over multiple clock cycles. Each multiplier input also includes a user-selectable 1-16 clock pipeline delay. The output of each multiplier can be independently negated under
user control for subtraction of products. The sum of the products can also be internally rounded to 16 bits during the accumulation process.

A separate 16 -bit input port connected to the accumulator is included to allow cascading of multiple LF2249s. Access to all 24 bits of the accumulator is gained by switching between upper or lower 16-bit words. The accumulated output data is updated on every clock cycle.
All inputs and outputs of the LF2249 are registered on the rising edge of clock, except for $\overline{\mathrm{OE}}$. Internal pipeline registers for all data and control inputs are provided to maintain

LF2249 Block Diagram

LF2249
synchronous operation between the incoming data and all available control functions. The LF2249 operates at a clock rate of 40 MHz over the full commercial temperature and supply voltage ranges.
Because of its flexibility, the LF2249 is ideally suited for applications such as image switching and mixing, digital quadrature mixing and modulating, FIR filtering, and arithmetic function and waveform synthesis.

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK — Master Clock

The rising edge of CLK strobes all enabled registers. All timing specifications are referenced to the rising edge of CLK.

Inputs

A11-0-D11-0 — Data Inputs

A11-0-D11-0 are 12-bit data input registers. Data is latched into the input registers on the rising edge of CLK. The contents of the input registers are clocked into the top of the corresponding 16-stage pipeline delay (pushing the contents of the register stack down one register position) on the next clock cycle if the pipeline register stack is enabled. The LSBs are A0-D0 (Figure 1a).

CAS15-0 — Cascade Data Input

CAS15-0 is the 16 -bit cascade data input port. Data is latched into the register on the rising edge of CLK. The LSB is CAS0 (Figure 1a).

Detalled View of Block Diagram Outlined Area

Figure 1a. Input Formats

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-2^{23}	2^{22}	2^{21}	2^{20}	2^{19}	2^{18}	2^{17}	2^{16}	2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}

Figure 1b. Output Formats

Sum Output (Lower 16 bits)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

LF2249

12 x 12-bit Digital Mixer

Outputs

S15-0 — Data Output

The current 16 -bit result is available on the $\mathrm{S} 15-0$ outputs. The output data may be either the upper or lower 16 bits of the accumulator output, depending on the state of SWAP. The LSB is So (Figure 1b).

Controls

$\overline{E N A}-\overline{E N D}$ - Pipeline Register Enable
Input data in the $\mathrm{N}(\mathrm{N}=\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D$)$ input register is latched into the corresponding pipeline register stack on each rising edge of CLK for which $\overline{\mathrm{ENN}}$ is LOW. Data already in the N register stack is pushed down one register position. When ENN is HIGH, the data in the N pipeline register stack does not change, and the data in the N input register will not be stored in the register stack.

ADEL3-0-DDEL3-0 — Pipeline Delay Select

NDEL ($\mathrm{N}=\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D) is the 4 -bit registered pipeline delay select word. nDEL determines which stage of the N pipeline register stack is routed to the multiplier inputs. The minimum delay is one clock cycle ($\mathrm{NDEL}=0000$), and the maximum delay is 16 clock cycle ($\mathrm{NDEL}=1111$). Upon power up, the values of ADEL-DDEL and the contents of the pipeline register stacks are unknown and must be initialized by the user.

NEG1-NEG2 - Negate Control

The NEG1 and NEG2 controls determine whether a subtraction or accumulation of products is performed. When NEG1 is HIGH, the product $A x B$ is negated, causing the product to be subtracted from the accumulator contents. Likewise, when NEG2 is HIGH, the product $C \times D$ is negated, causing the product to be subtracted as well. NEG1 and NEG2 determine the operation to be performed on the data input during the current clock cycle when ADELDDEL $=0000$.

CASEN - Cascade Enable

When CASEN is LOW, data being input on the CAS15-0 inputs during that clock cycle will be registered and accumulated internally. When CASEN is HIGH, the CAS15-0 inputs are ignored.

FT -Feedthrough Control

When FT is LOW and ADEL-DDEL $=$ 0000, data being input on the CAS15-0 inputs is delayed three clock cycles to align the data with the data being input on the A11-0-D11-0 inputs. When FT is HIGH, the cascade data being input is routed around the three delay registers to simplify the cascading of multiple devices.

ACC - Accumulator Control

The ACC input determines whether internal accumulation is performed on the data input during the current clock cycle. If ACC is LOW, no accumulation is performed, the prior accumulated sum is cleared, and the current sum of products is output. When ACC is HIGH, the emerging products are added to the sum of the previous products.

RND - Rounding Control

When RND is HIGH, the sum of the products of the data being input on the current clock cycle will be rounded to 16 bits. To avoid the accumulation of roundoff errors, rounding is only performed during the first cycle of each accumulation process.

$\overline{S W A P}$ - Output Select

The $\overline{\text { SWAP }}$ control allows the user to access all 24 bits of the accumulator output by switching between upper and lower 16 -bit words. When SWAP is HIGH, the upper 16 bits of the accumulator are always output. When $\overline{S W A P}$ is LOW, the lower 16 bits of the accumulator are output on every other clock cycle. As long as SWAP remains LOW, new output data will not be clocked into the output registers.

$\overline{O E}$ —Output Enable

When the $\overline{\mathrm{OE}}$ signal is LOW, the current data in the output registers is available on the S15-0 pins. When $\overline{\mathrm{OE}}$ is HIGH, the outputs are in a high-impedance state.

LF2249

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	- 0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to Vcc +0.5 V
Signal applied to high impedance output	-0.5 V to Vcc +0.5 V
Output current into low outputs	.. 25 mA
Latchup current	400 m

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial
Active Operation, Military

Temperature Range (Ambient) Supply Voltage
$\begin{array}{cl}0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & 4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & 4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}\end{array}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 40	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			100	mA
Icc2	Vcc Current, Quiescent	(Note 7)			6	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF2249-					
		40		33		25	
		Min	Max	Min	Max	Min	Max
tCre	Cycle Time	40		33		25	
tPWL	Clock Pulse Width, LOW	15		15		10	
tPWH	Clock Pulse Width, HIGH	10		10		10	
ts	Input Setup Time	8		8		7	
th	Input Hold Time	0		0		0	
to	Output Delay		17		15		14
tena	Three-State Output Enable Delay (Note 11)		15		15		15
tols	Three-State Output Disable Delay (Note 11)		15		15		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)					
Symbol	Parameter	LF2249-			
		40		33	
		Min	Max	Min	Max
tcyc	Cycle Time	40		33	
tPWL	Clock Pulse Width, LOW	15		15	
tPWH	Clock Pulse Width, HIGH	10		10	
ts	Input Setup Time	8		8	
th	Input Hold Time	0		0	
to	Output Delay		17		15
tena	Three-State Output Enable Delay (Note 11)		15		15
toIs	Three-State Output Disable Delay (Note 11)		15		15

Switching Waveforms

[^1]
NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$F=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 25 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z to -1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

Vol* Measured Vol with $\mathrm{lOH}=-10 \mathrm{~mA}$ and $\mathrm{lol}=10 \mathrm{~mA}$ VOH* Measured VOH with $\mathrm{OH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$

LF2249

	ORDERING INFORMATION	
	120-pin A B c D E F G J K L M	
Speed	Ceramic Pin Grid Array (G4)	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
40 ns 33 ns 25 ns		LF2249GC40 LF2249GC33 LF2249GC25
\%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screning	
$\left\|\begin{array}{l} 40 \mathrm{~ns} \\ 33 \mathrm{~ns} \end{array}\right\|$		$\begin{aligned} & \text { LF2249GM40 } \\ & \text { LF2249GM33 } \end{aligned}$
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-$ MIL-STD-883 CoMPLIANT	
$\begin{aligned} & 40 \mathrm{~ns} \\ & 33 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & \text { LF2249GMB40 } \\ & \text { LF2249GMB33 } \end{aligned}$

DEVICES INCORPORATED

FEATURES

- 50 MHz Data and Computation Rate
- Nine Multiplier Array with 12-bit Data and 10-bit Coefficient Inputs
\square Separate 16-bit Cascade Input and Output Ports
O On-board Coefficient Storage
\square Four User-Selectable Filtering and Transformation Functions:
- 3×3 Matrix Multiplier
- Cascadable 9-Tap FIR Filter
- Cascadable 3×3 Convolver
- Cascadable 4×2 Convolver
- Replaces TRW/Raytheon TMC2250
- DECC SMD No. 5962-93260Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 120-pin Pin Grid Array
- 120-pin Plastic Quad Flatpack

DESCRIPTION

The LF2250 is a high-speed matrix multiplier consisting of an array of nine 12×10-bit multipliers. Internal summing adders are also included to provide the configurations needed to implement matrix multiplications, cascadable FIR filters, and pixel convolvers.

The 3×3 matrix multiplier (triple dot product) configuration of the LF2250 allows users to easily perform threedimensional perspective translations or video format conversions at real-time video rates. By using the LF2250 in this configuration, conversions can be made from the RGB (color component) format to the YIQ (quadrature encoded chrominance) or YUV (color difference) formats and vice versa (YIQ or YUV to RGB).

In addition to color space conversions, the LF2250 offers a range of selectable configurations designed for filtering applications. When configured as a 9tap FIR filter, the LF2250 automatically
selects the necessary internal bus structure and inserts the appropriate data path delay elements. In addition, a 16-bit cascade input port allows for the creation of larger filters without a reduction in throughput.

Real-time video image filtering using the convolver modes of the LF2250 can provide edge detection, texture enhancement, and detail smoothing. Both pixel convolver configurations, 3 $\times 3$ and 4×2, deliver high-speed data manipulation in a single chip solution. By using the 16 -bit cascade input port to cascade two devices, cubic convolutions (4×4-pixel) can be easily accommodated with no decrease in throughput rates.

All inputs and outputs, as well as all control lines, are registered on the rising edge of clock. The LF2250 operates at clock rates up to 50 MHz over the full commercial temperature and supply voltage ranges.

LF2250 Block Diagram

Table 1．	
Mode Selection	
MODE1－0	OPERATING MODE
00	3×3 Matrix Multiplier
01	9 －Tap FIR Filter
10	3×3 Convolver
11	4×2 Convolver

OPERATING MODES

The LF2250 can realize four different user－selectable digital filtering architec－ tures as determined by the state of the mode（MODE1－0）inputs．Upon selection of the desired function，the LF2250 automatically chooses the appropriate internal data paths and input／output bus structure．Table 1 details the modes of operation．

DATA FORMATTING

The coefficient input ports（KA，KB， KC ）are 10－bit fractional two＇s comple－ ment format regardless of the operat－ ing mode．The data input ports（A，B， C）are 12－bit integer two＇s complement format regardless of the operating mode．

In the matrix multiplier mode（Mode 00 ），the data output ports（ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ）are 12－bit integer two＇s complement format．In the FIR filter and convolver modes（Modes 01，10，11），the X, Y ，and Z ports are configured as the cascade－ in（CASIN15－0）and cascade－out （CASOUT15－0）ports．These ports assume 16－bit（12－bit integer， 4 －bit fractional）two＇s complement data on both the inputs and outputs．Table 2 shows the data port formatting for each of the four operating modes．

BIT WEIGHTING

The internal sum of products of the LF2250 can grow to 23 bits．However， in order to keep the output format of the matrix multiply mode（Mode 00） identical to the input format，the X, Y ， and Z outputs are truncated to 12－bit integer words．In the filter modes （Modes 01，10，11），the cascade output is always half－LSB rounded to 16 bits （12 integer bits and 4 fractional bits）． The user may half－LSB round the output to any size less than 16 bits by simply forcing a＂ 1 ＂into the bit position of the cascade input immedi－ ately below the desired LSB．For example，if half－LSB rounding to 12 bits is desired，then a＂ 1 ＂must be forced into the CASIN3 bit position （CASOUT4 would then be the LSB）．

In all four modes，the user may adjust the bit weighting，by applying an identical scaling correction factor to both the input and output data streams．If the coefficients are re－ scaled，then the relative weightings of the cascade－in and cascade－out ports will differ accordingly．Figure 1 illustrates the input and output bit weightings for all four modes．

DATA OVERFLOW

Because the LF2250＇s matched input and output data formats accommodate unity gain（ 0 dB ），input conditions that could lead to numeric overflow may exist．To ensure that no overflow conditions occur，the user must be aware of the maximum input data and coefficient word sizes allowable for each specific algorithm being per－ formed．

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply．All pins must be connected．

Clock

> CLK - Master Clock

The rising edge of CLK strobes all enabled registers．All timing specifi－ cations are referenced to the rising edge of CLK．

Inputs

A11－0，B11－0，C11－0 — Data Inputs
A, B ，and C are the 12－bit registered data input ports．Data presented to these ports is latched into the multi－ plier input registers for the current operating mode（Table 1）．In the filter modes（Modes 01，10，11），the rising edge of CLK internally right－shifts new data to the next filter tap．

KA9－0，KB9－0，KC9－0 — Coefficient Inputs

$K A, K B$ ，and $K C$ are the 10 －bit regis－ tered coefficient input ports．Data presented to these ports is latched into the corresponding internal coefficient register set defined by CWE1－0（Table 4）on the next rising edge of CLK．Table 3 shows which coefficient registers are available for each coefficient input port．

MODE1－0	PIN NAMES										
	A11－0	B11－0	C11－0	KA9－0	KB9－0	KC9－0	XC11－0	YC_{11-8}	Y7－4	YC_{3-0}	Z $\mathbf{C l}_{11-0}$
00	A11－0	B11－0	C_{11}	KA9－0	KB9－0	KC9－0	X11－0	Y $11-8$	Y7－4	Y 3 －0	$\mathrm{Z}_{11 \text {－0 }}$
01	A11－0	A11－0	NC	KA9－0	KB9－0	KC9．0	CASIN15－4	CASIN3－0	NC	CASOUT3－0	CASOUT15－4
10	A11－0	B11－0	C_{11-0}	KA9－0	KB9－0	KC9．0	CASIN15－4	CASIN3－0	NC	CASOUT3－0	CASOUT15－4
11	A11．0	B11－0	NC	KAg－0	KB9－0	KC9．0	CASIN15－4	CASIN3－0	NC	CASOUT3－0	CASOUT15－4

LF2250

Figure 1a. Input Formats

Coefficient Input (All Modes)

9	8	7	6	5	4	3	2	1	0
-2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}

Cascade Input (Modes 01, 10, 11)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}

Figure 1b. Output Formats

CASIN15-0 - Cascade Input

In the filter modes (Modes 01, 10, 11), the 12 -bit X port and four bits of the Y port are internally reconfigured as the 16-bit registered cascade input port. Data presented to this port will be added to the internal sum of products.

Outputs

X11-0, Y11-0, Z11-0 - Data Outputs
X, Y, and Z are the 12 -bit registered output ports for the matrix multiply mode (Mode 00). These ports are automatically reconfigured for the filter modes (Modes 01, 10, 11) as the cascade-in and cascade-out ports.

CASOUT15-0 - Cascade Output

In the filter modes (Modes 01, 10, 11), the 12 -bit Z port and four bits of the Y port are internally reconfigured as the 16-bit registered cascade output port.

NOTE: The X, Y, and Z ports are automatically reconfigured by the LF2250 as the cascade-in and cascade-out ports as required for each operating mode. Because both the X and Z ports are used for the cascade ports, all X port pins and all Z port pins are labelled as XC and ZC, respectively. All Y port pins that are used for the cascade ports are labelled as YC. Those Y port pins which are not used for the cascade ports are labelled as Y.

Controls

MODE1-0 — Mode Select
The registered mode select inputs determine the operating mode of the LF2250 (Table 1) for data being input on the next clock cycle. When switching between modes, the internal pipeline latencies of the device must be observed. After switching operating modes, the user must allow enough clock cycles to pass to flush the internal registers before valid data will appear on the outputs.

CWE1-0 - Coefficient Write Enable

The registered coefficient write enable inputs determine which internal coefficient register set to update (Table 4) on the next clock cycle.

Table 3. Coefficient Inputs	
Input port	REG. AVAILABLE
KA	KA1, KA2, KA3
KB	$\mathrm{KB} 1, \mathrm{~KB} 2, \mathrm{KB3}$
KC	$\mathrm{KC} 1, \mathrm{KC2}, \mathrm{KC} 3$

LF2250

Table 4. Coeff, Reg. Update	
CWE1-0	COEffiCIENT SET
00	Hold All Registers
01	KA1, KB1, KC1
10	KA2, KB2, KC2
11	KA3, KB3, KC3

DETAILS OF OPERATION

3×3 Matrix Multiplier — Mode 00

In this mode, all three input ports (A, B, C) and all three output ports (X, Y, Z) are utilized to implement a 3×3 matrix multiplication (triple dot product). Each rounded 12-bit output is the sum of all three input words multiplied by the appropriate coefficients (Table 5). The pipeline latency for this mode is five clock cycles. Therefore, the sum of products will be output five clock cycles after the input data has been latched. New output data is subsequently available every clock cycle thereafter.

9-Tap FIR Filter - Mode 01

This mode utilizes the 12-bit A and B data input ports as well as the 16 -bit CASIN port. The input data should be presented to the A and B ports simultaneously. The resulting 9 sample response, which is half-LSB rounded to 16 bits, begins after five clock cycles and ends after 13 clock cycles (Table 5). The pipeline latency from the input of an impulse response to the center of the output response is nine clock cycles. The latency from the CASIN port to the CASOUT port is four clock cycles. New output data is available every clock cycle.

3×3-Pixel Convolver - Mode 10

When configured in this mode, line delayed data is loaded through the A, B, and C input ports. During each cycle, a new rounded 16-bit output
(comprising of the summation of the multiplications of the last nine data inputs with their related coefficients) becomes available (Table 5). The CASIN term is also added to each new output. The internal bus structure and pipeline delays allow new input data to be added every cycle while maintaining the structure of the filtering operation. This addition of new data every cycle produces the effect of the convolution window moving to the next pixel column.
4×2-Pixel Convolver - Mode 11
Using the A and B ports, input data is loaded and multiplied by the onboard coefficients. These products are then summed with the CASIN data and rounded to create the 16 -bit output. The cascade ports allow multiple devices to be used together for use with larger kernels. As with Mode 10, each cycle results in a 16 -bit output created from the products and summations performed.

Table 5. Latency Equations

Figure 2． 3×3 Matrix Multiplier－Mode 00

Figure 3. 9-Tap Fir Filter - Mode 01

Figure 4. 3×3-Pixel Convolver - Mode 10

Figure 5. 4×2-Pixel Convolver - Mode 11

LF2250
DEVICES INCORPORATED

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	.. -0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to Vcc +0.5 V
Signal applied to high impedance outpu	-0.5 V to Vcc +0.5 V
Output current into low outputs 25 mA
Latchup current	... $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{Vcc}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
ViL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq VcC ((ote 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 40	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			160	mA
IcC2	Vcc Current, Quiescent	(Note 7)			12	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2250

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
		LF2250-					
		33		25		20	
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	33		25		20	
tPWL	Clock Pulse Width Low	15		10		6	
tPWH	Clock Pulse Width High	10		10		8	
ts	Input Setup Time	8		6		6	
t H	Input Hold Time	0		0		0	
tD	Output Delay		18		16		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	LF2250-				
	33		25		
tcYC	Cycle Time	Min	Max	Min	Max
tPWL	Clock Pulse Width Low	33		25	
tPWH	Clock Pulse Width High	15		10	
ts	Input Setup Time	10		10	
tH	Input Hold Time	12		9	
tD	Output Delay	2		2	

LF2250

Switching Waveforms: 9-Tap FIR Filter - Mode 01

Switching Waveforms: 4×2-Pixel Convolver - Mode 11

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

LF2250

LF2272 Colorspace Converter/ Corrector (3 x 12-bits)

FEATURES

- 50 MHz Data and Computation Rate
- Full Precision Internal Calculations with Output Rounding
- On-board 10-bit Coefficient Storage
\square Overflow Capability in Low Resolution Applications
- Two's Complement Input and Output Data Format
- 3 Simultaneous 12-bit Channels (64 Giga Colors)
- Applications:
- Component Color Standards Translations (RGB, YIQ, YUV)
- Color-Temperature Conversion
- Image Capturing and Manipulation
- Composite Color Encoding/ Decoding
- Three-Dimensional Perspective Translation
\square Replaces TRW/Raytheon TMC2272
\square Package Styles Available:
- 120-pin Pin Grid Array
- 120-pin Plastic Quad Flatpack

DESCRIPTION

The LF2272 is a high-speed digital colorspace converter/corrector consisting of three simultaneous 12 bit input and output channels for functionality up to $64 \mathrm{Giga}\left(\mathbf{(2}^{36}\right)$ colors. Some of the applications the LF2272 can be used for include phosphor colorimetry correction, image capturing and manipulation, composite color encoding/decoding, color matching, and composite color standards conversion/transcoding.

The 3×3 matrix multiplier (triple dot product) allows users to easily perform three-dimensional perspective translations or video format conversions at real-time video rates. By using the LF2272, conversions can be made from the RGB (color component) format to the YIQ (quadrature encoded chrominance) or YUV (color difference) formats and vice versa (YIQ or YUV to RGB). Differing signal formats in each stage of a system can be disregarded. For
example, using an LF2272 at each format interface allows each stage of a system to operate on the data while in the appropriate format.
All inputs and outputs, as well as all control lines, are registered on the rising edge of clock. The LF2272 operates at clock rates up to 50 MHz over the full commercial temperature and supply voltage ranges. A narrower data path can be used to allow the LF2272 to work with many different imaging applications.

DETAILS OF OPERATION

All three input ports ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) and all three output ports ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) are utilized to implement a 3×3 matrix multiplication (triple dot product). Each truncated 12-bit output is the sum of all three input words multiplied by the appropriate coefficients (Table 1). The pipeline latency is five clock cycles. Therefore, the sum of

LF2272 Block Diagram

products will be output five clock cycles after the input data has been registered. New output data is subsequently available every clock cycle thereafter.

DATA FORMATTING

The data input ports ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) and data output ports (X, Y, Z) are 12-bit integer two's complement format.

The coefficient input ports (KA, KB, KC) are 10 -bit fractional two's complement format. Refer to Figures 1a and 1b.

BIT WEIGHTING

The internal sum of products of the LF2272 can grow to 23 bits. However, in order to keep the output format identical to the input format, the X, Y, and Z outputs are rounded to 12 -bit integer words. The rounding is done only at the final output stage to allow accuracy, with correct rounding and overflow, for applications requiring less than 12-bit integer words. The user may adjust the bit weighting by applying an identical scaling correction factor to both the input and output data streams.

Table 1. Latency Equations

$$
\begin{aligned}
& X(n+4)=A(n) K A 1(n)+B(n) K B 1(n)+C(n) K C 1(n) \\
& Y(n+4)=A(n) K A 2(n)+B(n) K B 2(n)+C(n) K C 2(n) \\
& Z(n+4)=A(n) K A 3(n)+B(n) K B 3(n)+C(n) K C 3(n)
\end{aligned}
$$

DATA OVERFLOW

Because the LF2272's matched input and output data formats accommodate unity gain (0 dB), input conditions that could lead to numeric overflow may exist. To ensure that no overflow conditions occur, the user must be aware of the maximum input data and coefficient word sizes allowable for each specific algorithm being performed.

SYSTEMS SMALLER THAN 12-BITS

Using a data path less than 12-bits requires the input data to be right justified and sign extended to 12-bits because the LF2272 carries out all calculations to full precision. Since all least-significant bits are used, the desired X, Y, and Z outputs are rounded correctly and upper-order output bits are used for overflow.

Figure 1a. Input Formats

110	Data Input										
11	10	9	8	7	6	5	4	3	2	1	0
-2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
(Sign)											

Coefficient Input

9	8	7	6	5	4	3	2	1
-2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}

(Sign)

(Sign)

Figure 1b. Output Format

11	10	9	8	7	6	5	4	3	2	1	0
-2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
(Sign)											

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all enabled registers. All timing specifications are referenced to the rising edge of CLK.

Inputs

A11-0, B11-0, C11-0 - Data Inputs
A, B, and C are the 12-bit registered data input ports. Data presented to these ports is latched into the multiplier input registers.

KA9-0, KB9-0, KC9-0 — Coefficient Inputs

KA, KB, and KC are the 10 -bit registered coefficient input ports. Data presented to these ports is latched into the corresponding internal coefficient register set defined by CWEL1-0 (Table 3) on the next rising edge of CLK. Table 2 shows which coefficient registers are available for

Table 2.	Coefficient Inputs
InPUT PORT	REG. AVAILABLE
KA	KA1, KA2, KA3
KB	KB1, KB2, KB3
KC	KC1, KC2, KC3

Table 3.	Coeff. ReG. Update
CWEL1-0	COEFFICIENT SET
00	Hold All Registers
01	KA1, KB1, KC1
10	KA2, KB2, KC2
11	KA3, KB3, KC3

Outputs
X11-0, Y11-0, Z11-0 - Data Outputs
X, Y, and Z are the 12 -bit registered data output ports.

Controls

CWEL1-0 - Coefficient Write Enable
The registered coefficient write enable inputs determine which internal coefficient register set to update (Table 3) on the next clock cycle.

Figure 2. Detailed Functional Diagram

Maximum Ratings above which useful life may be impaired (Notes 1, 2, 3, 8)

Storag	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature.	... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VcC supply voltage with respect to ground	.. -0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output	-0.5 V to Vcc +0.5 V
Output current into low outputs	... 25 mA
Latchup current	.. $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{Vcc}=\mathrm{Min}$., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{IoL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 40	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			160	mA
IcC2	Vcc Current, Quiescent	(Note 7)			12	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2272

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF2272-					
		33		25		20	
		Min	Max	Min	Max	Min	Max
tcre	Cycle Time	33		25		20	
tPWL	Clock Pulse Width Low	15		10		6	
tPWH	Clock Pulse Width High	10		10		8	
ts	Input Setup Time	8		6		6	
th	Input Hold Time	0		0		0	
tD	Output Delay		18		16		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Larameter					
	33		25			
tcYC	Cycle Time	Min	Max	Min	Max	
tPWL	Clock Pulse Width Low	33		25		
tPWH	Clock Pulse Width High	15		10		
ts	Input Setup Time	10		10		
tH	Input Hold Time	12		9		
tD	Output Delay	0		0		

Switching Waveform

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. $\mathrm{A} 0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

LF2272

DEVICES INCORPORATED

FEATURES

- 40 MHz Clock Rate
- High-Speed ImageManipulation
- Maximum Image Size: 4096×4096 Pixels
- SupportsFollowing Interpolation Algorithms:
- Nearest-Neighbor
- Bilinear Interpolation
- CubicConvolution
\square Applications:
- VideoSpecial-Effects
- Image Recognition
- High-Speed Data Encoding/ Decoding
A Available 100\% Screened to MIL-STD-883, Class B
- Replaces TRW/Raytheon TMC2301
\square Package Styles Available:
- 68-pin Pin Grid Array
- 68-pin Plastic LCC, J-Lead

DESCRIPTION

The LF2301 is a self-sequencing address generator designed to filter a two-dimensional image or remap and resample it from one set of Cartesian coordinates (x, y) into a new set (u,v).

The LF2301 can resample digitized images or perform such manipulations as rotation, panning, zooming, and warping as well as compression in real-time.

By using two LF2301s in a Image Transformation System (ITS), near-est-neighbor, bilinear interpolation, and cubic convolution algorithms, with kernel sizes up to 4×4 pixels, are all possible (see Figure 1). This system can also implement simple static filters with kernel sizes up to 16×16 pixels.

LF2301 Block Diagram

DETAILS OF OPERATION

Most video applications use a pair of LF2301s in tandem to construct an ITS. One LF2301 is the row coordinate generator (x to u) and the other is the column generator (y to v). External RAM is needed for storage of the interpolation coefficient lookup table, as well as for buffers of the source and destination images. An external Multiplier-Accumulator is required when performing interpolation or implementing static filters.

The ITS is capable of performing the general second-order coordinate transformation of the form:
$x(u, v)=A u^{2}+B u+C u v+D v^{2}+E v+F$
$y(u, v)=G u^{2}+H u+K u v+L v^{2}+M v+N$
where parameters A through N of the transform are user-defined. The system steps sequentially through each pixel in the "target" image lying within a user-defined rectangle. For each "target" pixel at (u,v), the LF2301 points to a corresponding "source" pixel at (x, y).

LF2301

SIGNALDEFINITIONS

Power

Vcc and GND

+5 V power supply. All pins must be connected.

Clock

CLK—Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

P11-0 — Parameter Register Data Input
P_{11-0} is the 12 -bit Parameter Register Data input port. P11-0 is latched on the rising edgeof CLK.
B3-0 — Parameter Register Address Input
B3-0 is the 4-bit Parameter Register
Address input port. $\mathrm{B} 3-0$ is latched on the rising edge of CLK.

Outputs

X11-0 — Source Address Output
X_{11-0} is the 12-bit registered Source Address outputport.

CA7-0 — Coefficient Address Output
CA7-0 is the 8-bit registered Coefficient Address outputport.

U11-0 — Target Address Output
U11-0 is the 12-bit registered Target Address outputport.

Controls

INIT-Initialize
When INIT is HIGH for a minimum of two clock cycles, the control logic is cleared and initialized for the start of a new image transformation. When INIT goes LOW, normal operation begins after two clock cycles. INIT is latched on the rising edge of CLK.

WEN — Write Enable

When $\overline{\text { WEN }}$ is LOW, data latched into the device on P11-0 is loaded into the preload register addressed by the data

Figure 1. Image Transformation System (ITS)

latched into the device on $\mathrm{B} 3-0$. When WEN is HIGH, data cannot be loaded into the preload registers and their contents will not be changed. WEN is latched on the rising edge of CLK.

LDR — Load Data Register

When LDR is HIGH, data in all preload registers is latched into the Transformation Parameter Registers. When LDR is LOW, data cannot be loaded into the Transformation Parameter Registers and their contents will not be changed. LDR is latched on the rising edge of CLK.
$\overline{A C C}$-Accumulate
The registered $\overline{\mathrm{ACC}}$ output initializes the accumulation register of the external multiplier-accumulator. At the start of each interpolation "walk," $\overline{\text { ACC }}$ goes LOW for one cycle effectively clearing the storage register by loading in only the new first product. ACC from either the row or column LF2301 may be used.
$\overline{U W R I}$ — Target Memory Write Enable The TargetMemory WriteEnablegoes LOW for one clock cycle after the end of each interpolation "walk." When $\overline{\text { OETA }}$ is HIGH, this registered output is forced to the high-impedance state. UWRI from either the row or column LF2301 may be used.

INTER-Interconnect

When two LF2301s are used to form an ITS, the END flag on each device is connected to INTER on the other device. The END flag from the row device indicates an "end of line" to the column device. The END flag from the column device indicates a "bottom of frame" to the row device, forcing a reset of the address counter.
$\overline{N O O P}$ - No Operation
When $\overline{\mathrm{NOOP}}$ is LOW, the clock is overridden holding all address generators in their current state. X11-0 and CA7-0 are forced to the high-
impedance state. Users may then access external memory. Normal operation resumes on the next clock cycle after NOOP goes HIGH. NOOP is latched on the rising edge of CLK.
$\overline{O E T A}$ - Target Memory Output Enable
When $\overline{\text { OETA }}$ is HIGH, $\overline{\text { UWRI }}$ and U11-0 are forced to the high-impedance state. When OETA is LOW, UWRI and U11-0 are enabled on the next clock cycle. OETA is latched on the rising edge of CLK.

Flags

$\overline{\text { CZERO }}$ - Coefficient Zero
If in a row device $x<0$, XMIN $\leq x \leq$ XMAX, or $x \geq 4096$, the registered CZERO flag goes HIGH. If $0 \leq x<$ XMIN or XMAX $<x<4096$, $\overline{\text { CZERO }}$ goes LOW. In an ITS, when the source address falls outside a rectangle with vertices (XMIN, YMIN), (XMAX, YMIN),(XMIN, YMAX), and (XMAX, YMAX), the logical AND of the $\overline{\text { CZERO }}$ flags from the row and column of the LF2301s will go LOW representing an invalid address.

END — End of Row/Frame

When two LF2301s are used to form an ITS, the END flag on each device is connected to INTER on the other device. The END flag from the row device indicates an "end of line" to the column device. The END flag from the column device indicates a "bottom of frame" to the row device, forcing a reset of the address counter.

When Mode is set to " 00 " or " 10 " END goes HIGH on the row device for $(\mathrm{K}+1) \times(\mathrm{K}+1)$ clock cycles starting $[2 x(K+1) x(K+1)]+1$ clock cycles before the last X address of a row. END goes HIGH on the column device for $(\mathrm{K}+1)^{3} \mathrm{x}$ (UMAX-UMIN) clock cycles starting at $(\mathrm{K}+1)^{3} \times($ UMAX-UMIN $)+1$ clock cycles before the last X address of a frame.

When Mode is set to " 01 " or " 11 " END goes HIGH on the row device for $K+1$ clock cycles starting at $(K+1)+2$ clock cycles before the last X address of a row. END goes HIGH on the column device for $(\mathrm{K}+1) \times(\mathrm{K}+1)$ clock cycles starting at $[(K+1) x(K+1)]+1$ clock cycles before the last X address of a frame.

DONE—End of Transform

In a two LF2301 system, after the last walk of the last row of an image, the registered DONE flag goes HIGH indicating the end of the transform. DONE goes HIGH one clock cycle before the last X address of a frame. If AIN is HIGH, DONE will remain HIGH for one clock cycle. If AIN is LOW, DONE will remain HIGH until a new transform begins.

Transformation Control Parameters

XMIN, XMAX,YMIN,YMAX
XMIN, XMAX, YMIN, YMAX define the valid area in the source image from which pixels may be read. The CZERO flags will denote a valid memory read whenever the LF2301s generate an (x, y) address within this boundary.

UMIN,UMAX,VMIN,VMAX

UMIN, UMAX, VMIN, VMAXdefine the area in the destination image into which pixels will be written. (UMIN, VMIN) is the top left corner and (UMAX $+1, \mathrm{VMAX}$) is the bottom right corner. The following conditions mustbemet:UMAX>UMINand VMAX $>V M I N$.

x_{0}, y_{0}

xo, yo determine what the first pixel read out of the source image will be at the beginning of an image transformation. x_{0}, y_{0} will be the upper left corner of the original image in non-inverting, non-reversing applications.
$d x / d u$
$\mathrm{dx} / \mathrm{du}$ is the displacement along the x axis corresponding to a one-pixel movement along the u axis.

$d x / d v$

$\mathrm{dx} / \mathrm{dv}$ is the displacement along the x axis corresponding to each one-pixel movement along the v axis.

$d y / d u$

dy/du is the displacement along the y axis corresponding to each one-pixel movement along the uaxis.

$d y / d v$

$\mathrm{dy} / \mathrm{dv}$ is the displacement along the y axis corresponding to each one-pixel movement along the vaxis.
$d^{2} x / d u^{2}$
$\mathrm{d}^{2} \mathrm{x} / \mathrm{du}^{2}$ determines the rate of change of $d x / d u$ with each step along a line in theoutputimage.

$d^{2} x / d v^{2}$

$\mathrm{d}^{2} \mathrm{x} / \mathrm{dv}^{2}$ determines the rate of change of $d x / d v$ with each step down a column in the output image.
$d^{2} y / d u^{2}$
$d^{2} y / d u^{2}$ determines the rate of change of dy/du with each step along a line in theoutputimage.
$d^{2} y / d v^{2}$
$d^{2} y / d v^{2}$ determines the rate of change of $d y / d v$ with each step down a column in the outputimage.

$d^{2} x / d u d v$

$\mathrm{d}^{2} \mathrm{x} /$ dudv determines the rate of change of $d x /$ du while moving vertically through the outputimage. $\mathrm{d}^{2} \mathrm{x} /$ dudv also determines the rate of change of $d x / d v$ while moving horizontally through the output image.

$d^{2} y / d u d v$

$\mathrm{d}^{2} \mathrm{y} /$ dudv determines the rate of change of $d y / d v$ while moving horizontally through the output image. $\mathrm{d}^{2} \mathrm{y} /$ dudv also determines the rate of change of dy/du while moving vertically through the outputimage.

Table 1. Mode Selection		
M1 Mo	MODE	
0	0	single-pass operation (CW)
0	1	pass 1 of two-pass operation
1	0	single-pass operation (CCW)
1	1	pass 2 of two-pass operation

R/C—Row/Column Select

When set to 0 , the LF2301 functions as a row device. When set to 1 , the LF2301 functions as a column device.

M1-0 — Mode
This 2-bit control word defines four modes as follows (see table 1):

The 1st and 3rd modes are singlepass operations where the device walks through a $(K+1) \times(K+1)$ kernel for each output pixel. K is the kernel size determined by $\mathrm{K} 3-0$ in Parameter Register 7. In mode 00, the spiral walk is in the clockwise direction. In mode 10, the spiral walk is in the counter clockwise direction.

The 2nd and 4th modes are used together to perform a two-pass operation. The first pass (mode 01) performs a ($K+1$) kernel in the horizontal dimension. The second pass (mode 11) performs a $(\mathrm{K}+1)$ kernel in the vertical dimension.

The result of pass 1 is stored in the destination image memory and is used as the source image data for the second pass. A system to switch source and destination memory banks could be designed, or utilization of a second LF2301 pair in a pipelined architecture could be used. In this case, the system would require a third image buffer for the final destination image.
K3-0 - Kernel
Kernel determines the length of the spiral walk when performing image transformations and the size of the filter when implementing static filters (see table 2). When performing image transformations, the longest spiral walk
possible is 4×4 pixels (Kernel $=3$). For static filters, kernels of up to 16×16 pixels (Kernel $=15$) are possible.

FOV — Field of View
FOV determines the distancebetween pixels in a spiral walk. An FOV of 1 means each step in a spiral walk is one pixel. An. FOV of 2 means each step is two pixels, and so on. FOV can be set as high as 7 (see Table 3). It is important to note when FOV is 0 , the x and y addresses will not change during a spiral walk. They will remain fixed at the first pixel address of the spiral walk.

ALR-Autoload

When set HIGH and upon INIT being strobed, the LDR control is automatically asserted which causes the data currently stored in the Preload Registers to be loaded into the Transformation Parameter Registers.

AIN-Autoinit

A new transform automatically begins if the AIN bit is HIGH when the end of an image is reached. The DONE flag will go HIGH for one clock cycle. If AIN is LOW, UWRI and the DONE flag remain HIGH until the user strobes the INIT control to begin a new image transformation.

PIPE—Pipe Control

In order to compensate forbuffered source image RAM, PIPE adjusts the timing of $\overline{U W R I}$ and $\overline{\mathrm{ACC}}$. If the PIPE bit is HIGH, UWRI and $\overline{A C C}$ will have a one clock cycle delay added relative to the generation of the target address.

TM — Test Mode

Calculations of the source image and coefficient addresses are made by an internal 28 -bit accumulator. TM allows access to the sign bit and the seven bits below the four coefficient address bits in the accumulator. When TM is HIGH the sign bit and 11 bits below the source image address are fed to X_{11-0} (see Figure 2). When TM is

LOW, the source image address is fed to $\mathrm{X}_{11-0 .}$. Two clock cycles are required to access both the MS and LS words of the internal accumulator.

Functional Description

The LF2301 is an address generator designed to be used in an image transformation system (ITS). When implementing an LF2301-based ITS, second-order image transformations can be performed like resampling, rotation, warping, panning, and rescaling, all at real-time video rates. 2D filtering operations, like pixel convolutions, can also be performed.
In most applications two LF2301s are used, one to generate the row addresses and the other to generate the column

Table 2. Kernel				
K3	K 2	K1	K0	Kernel
0	0	0	0	1×1
0	0	0	1	2×2
0	0	1	0	3×3
0	0	1	1	4×4
0	1	0	0	5×5
0	1	0	1	6×6
0	1	1	0	7×7
0	1	1	1	8×8
1	0	0	0	9×9
1	0	0	1	10×10
1	0	1	0	11×11
1	0	1	1	12×12
1	1	0	0	13×13
1	1	0	1	14×14
1	1	1	0	15×15
1	1	1	1	16×16

Table 3. Field Of View				
F2	F1	Fo	FOV	
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

LF2301
addresses. An example of an ITS implemented with two LF2301s is shown in Figure 1. In this system the following components are used: two LF2301s, a multiplier-accumulator (MAC), interpolation coefficient RAM, and source/target image RAM. Maximum image size is 4096×4096 pixels. Data word size is determined by the word size of the external RAM.
A typical ITS performs image transformations as follows:
a. The LF2301s generate sequential pixel addresses (left to right, top to bottom) which fill the rectangle in the target image RAM defined by (UMIN,VMIN) and (UMAX +1 ,VMAX). It is important to note that the U value of the last pixel address on each line of the target RAM is UMAX +1 .
b. The LF2301s calculate the address of the corresponding pixel in the source image RAM for each target pixel address generated.
c. If interpolation is needed, the external MAC sums the products of the source pixels and the interpolation coefficients. Control signals for the MAC and address signals for the interpolation coefficient RAM are provided by the LF2301s.
d. The new pixel value is written into the targetimage RAM.

The LF2301s generate source pixel addresses according to the following general second order equations:
$x=\mathrm{Au}^{2}+\mathrm{Bu}+\mathrm{Cuv}+\mathrm{Dv}^{2}+\mathrm{Ev}+\mathrm{F}$
$\mathrm{y}=\mathrm{Gu}^{2}+\mathrm{Hu}+\mathrm{Kuv}+\mathrm{Lv}^{2}+\mathrm{Mv}+\mathrm{N}$
where (x, y) and (u, v) are the source and target coordinates respectively. A through N are user-defined parameters. The actual second order equations used are shown in Figure 3.

Figure 2. Test Mode Data Routing

Figure 3. Address Transformation Equations

$$
\begin{aligned}
x & =x_{0}+\left(\frac{d x}{d u}\right) m+\left(\frac{d x}{d v}\right) n+\left(\frac{d^{2} x}{d u d v}\right) m n+\left(\frac{d^{2} x}{d u^{2}}\right)\left(\frac{m^{2}-m}{2}\right)+\left(\frac{d^{2} x}{d v^{2}}\right)\left(\frac{n^{2}-n}{2}\right) \\
& + \text { FOV } \cdot C A X(w)+F O V \cdot m \cdot C A X(k e r) \\
y & =y_{0}+\left(\frac{d y}{d u}\right) m+\left(\frac{d y}{d v}\right) n+\left(\frac{d^{2} y}{d u d v}\right) m n+\left(\frac{d^{2} y}{d u^{2}}\right)\left(\frac{m^{2}-m}{2}\right)+\left(\frac{d^{2} y}{d v^{2}}\right)\left(\frac{n^{2}-n}{2}\right) \\
& +F O V \cdot C A Y(w)+F O V \cdot m \cdot C A Y(k e r) \\
u & =U M I N+m \\
v & =V M I N+n \\
& \text { NOTE: }\left(\frac{m^{2}-m}{2}\right) \text { APPROXIMATES THE EXPONENTIAL CHARACTERISTIC OF } m^{2} .
\end{aligned}
$$

LF2301

Transformation Parameter Register Loading

The LF2301 allows Transformation Parameters to be updated on-the-fly. The loading of these registers is double-buffered (see Figure 4). Any or all of the first level registers can be loaded using P11-0, B3-0, and WEN without affecting the parameters currently in use.

LDR simultaneously updates all Transformation Parameter Registers. If Autoload (ALR) is active, these registers will be updated automatically at the beginning of each new image. Note that NOOP does not affect the loading of the Transformation Parameter Registers.

Figure 4. LDR Control for Parameter Update

Table 4. Parameter Register Formats (Row or Column Mode)

StaticFilter

Static filtering at real-time video rates can be performed as shown in Figure 5. This mode is selected by loading M1-0 with " 00 " for a clockwise spiral walk. A counterclockwise spiral walk could be selected by loading M1-0 with " 10 ." In this example, a static filter with a kernel size of 3×3 pixels is desired. Loading K $3-0$ with " 0010 " selects a kernel size of 3×3. The first pixel selected is determined by x_{0} and $y o$. In this example, the first pixel is $(6,6)$. In this case, the LF2301s should address consecutive pixels during each spiral walk. For this to occur, FOV must be set to 1 (F2-0 loaded with " 001 ").

After the last pixel of a spiral walk has been selected, the next pixel address is determined by adding $\mathrm{dx} / \mathrm{du}$ to the current X address and by adding dy/du to the current Y address (unless the kernel just
completed was the last for that line). At the end of the first spiral walk, pixel $(7,5)$ is addressed. Since the first pixel of the next spiral walk should be $(7,6), \mathrm{dx} / \mathrm{du}$ is selected to be 0 and dy/du is selected to be 1 .
After the last pixel of the last spiral walk on the first line has been selected, the first pixel address of the second line is determined by adding $d x / d v$ to x_{0} and by adding $d y / d v$ to yo. Since the first pixel of the first spiral walk on the second line should be (6,7), $\mathrm{dx} / \mathrm{dv}$ is selected to be 0 and $\mathrm{dy} / \mathrm{dv}$ is selected to be 1 . Second order differential terms are not used in this filter and are therefore set to 0 .
UMIN and VMIN are both selected to be 6. UMAX and VMAX are both selected to be 7. Table 5 shows the values loaded into all Parameter Registers. Table 6 shows the ITS outputs for the 3×3 static filter.

TAble 5. Parameter Registers		
ADDR	Row (HEX)	Column (HEX)
0000	000	000
0001	FFF	FFF
0010	0 C0	0 C0
0011	000	100
0100	000	000
0101	100	101
0110	000	000
0111	200	201
1000	000	000
1001	000	000
1010	000	000
1011	000	000
1100	000	000
1101	000	000
1110	006	006
1111	007	007

Table 6. ITS Outputs For 3×3 Static Filter

Cycle	\mathbf{x}	y	CAx (HEX)	CAy (HEX)	\mathbf{u}	V	INIT	$\overline{\text { ACC }}$	UWRI	ENDX	ENDy	DONE
1	6	6	00	00	X	X	1	0	1	0	0	0
2	6	6	00	00	x	X	0	0	1	0	0	0
3	6	6	00	00	x	x	0	0	1	0	0	0
4	6	6	00	00	x	x	0	0	1	0	0	0
5	7	6	01	01	x	x	0	1	0	0	0	0
6	7	7	02	02	x	x	0	1	1	0	0	0
7	6	7	03	03	x	x	0	1	1	0	0	0
8	5	7	04	04	x	x	0	1	1	0	0	0
9	5	6	05	05	x	x	0	1	1	0	0	0
10	5	5	06	06	x	x	0	1	1	0	0	0
11	6	5	07	07	x	x	0	1	1	1	0	0
12	7	5	08	08	x	x	0	1	1	1	0	0
13	7	6	00	00	6	6	0	0	1	1	0	0
14	8	6	01	01	6	6	0	1	0	1	0	0
15	8	7	02	02	6	6	0	1	1	1	0	0
16	7	7	03	03	6	6	0	1	1	1	0	0
17	6	7	04	04	6	6	0	1	1	1	0	0
18	6	6	05	05	6	6	0	1	1	1	0	0
19	6	5	06	06	6	6	0	1	1	1	0	0
20	7	5	07	07	6	6	0	1	1	0	0	0
21	8	5	08	08	6	6	0	1	1	0	0	0
22	8	6	00	00	7	6	0	0	1	0	0	0
23	9	6	01	01	7	6	0	1	0	0	0	0
24	9	7	02	02	7	6	0	1	1	0	0	0
25	8	7	03	03	7	6	0	1	1	0	0	0
26	7	7	04	04	7	6	0	1	1	0	0	0
27	7	6	05	05	7	6	0	1	1	0	0	0
28	7	5	06	06	7	6	0	1	1	0	0	0
29	8	5	07	07	7	6	0	1	1	0	1	0
30	9	5	08	08	7	6	0	1	1	0	1	0
31	6	7	00	00	8	6	0	0	1	0	1	0
32	7	7	01	01	8	6	0	1	0	0	1	0
33	7	8	02	02	8	6	0	1	1	0	1	0
34	6	8	03	03	8	6	0	1	1	0	1	0
35	5	8	04	04	8	6	0	1	1	0	1	0
36	5	7	05	05	8	6	0	1	1	0	1	0
37	5	6	06	06	8	6	0	1	1	0	1	0
38	6	6	07	07	8	6	0	1	1	1	1	0
39	7	6	08	08	8	6	0	1	1	1	1	0
40	7	7	00	00	6	7	0	0	1	1	1	0
41	8	7	01	01	6	7	0	1	0	1	1	0
42	8	8	02	02	6	7	0	1	1	1	1	0
43	7	8	03	03	6	7	0	1	1	1	1	0
44	6	8	04	04	6	7	0	1	1	1	1	0
45	6	7	05	05	6	7	0	1	1	1	1	0
46	6	6	06	06	6	7	0	1	1	1	1	0
47	7	6	07	07	6	7	0	1	1	0	1	0
48	8	6	08	08	6	7	0	1	1	0	1	0
49	8	7	00	00	7	7	0	0	1	0	1	0
50	9	7	01	01	7	7	0	1	0	0	1	0
51	9	8	02	02	7	7	0	1	1	0	1	0
52	8	8	03	03	7	7	0	1	1	0	1	0
53	7	8	04	04	7	7	0	1	1	0	1	0
54	7	7	05	05	7	7	0	1	1	0	1	0
55	7	6	06	06	7	7	0	1	1	0	1	0
56	8	6	07	07	7	7	0	1	1	0	0	1
57	9	6	08	08	7	7	0	1	1	0	0	1
58	6	6	00	00	8	7	0	0	1	0	0	1

LF2301
DEVICES INCORPORATED

Image Resampling Sequencer

ImageRotation\&BilinearInterpolation
Figure 8 shows an example of rotating an image 30° and using bilinear interpolation. This mode is selected by loading M1-0 with " 00 " for a clockwise spiral walk. A counterclockwise spiral walk could be selected by loading M1-0 with " 10. ." Bilinear interpolation requires a kernel size of 2×2 pixels. Loading K3-0 with " 0001 " selects a kernel size of 2×2. The first pixel selected is determined by x_{0} and y_{0}. In this example, the first pixel is $(0,0)$. In this case, the LF2301s should address consecutive pixels during each spiral walk. For this to occur, FOV must be set to 1 (F2-0 loaded with " 001 ").

After the last pixel of a spiral walk has been selected, the next pixel address is determined by adding $\mathrm{dx} / \mathrm{du}$ to the current X address and by adding $\mathrm{dy} / \mathrm{du}$ to the current Y address (unless the kernel just completed was the last for that line). At the end of the first spiral walk, pixel $(0,1)$ is addressed. Since the next calculated pixel should be $(0.866,0.5), \mathrm{dx} / \mathrm{du}$ is selected to be 0.866 and dy/du is selected to be 0.5 . However, after adding dx/du and $\mathrm{dy} / \mathrm{du}$ to the X and Y addresses respectively, the generated address is $(0.866,1.5)$. The Y address is off by a value of 1 . This is due to the fact that the last pixel address of a spiral walk is used to calculate the first pixel address of the next spiral walk. In order for the LF2301s to generate the correctresult,dy/du must be modified by subtracting a 1 from it. The correct value of dy/du is -0.5 . Figure 6 shows how the unmodified differential terms were calculated.

After the last pixel of the last spiral walk on the first line has been selected, the first pixel address of the second line is determined by adding $\mathrm{dx} / \mathrm{dv}$ to x_{0} and by adding dy/dv to yo. Since the first calculated pixel of the first
spiral walk on the second line should be $(-0.5,0.866), \mathrm{dx} / \mathrm{dv}$ is selected to be -0.5 and $d y / d v$ is selected to be 0.866 . Second order differential terms are not used in this transform and are therefore set to 0 .

It is important to note that the integer portion of the address generated in the LF2301 is used as the X or Y pixel address. The fractional portion (subpixel portion) is used as the coefficient RAMaddress.

UMIN and VMIN are both selected to be 0 . UMAX and VMAX are both selected to be 2 . Table 7 shows the values loaded into all Parameter Registers. Table 8 shows the ITS outputs for this example.

Figure 6. Differential Terms
$\frac{d x}{d u}=\cos 30^{\circ}=0.866$
$\frac{d y}{d u}=\sin 30^{\circ}=0.5$
$\frac{d x}{d v}=-\sin 30^{\circ}=-0.5$
$\frac{d y}{d v}=\cos 30^{\circ}=0.866$

Figure 7. 30° Image Rotation

Figure 8. 30° Image Rotation

$1=1$ st pixel of 1 st spiral walk, $2=1$ st pixel of 2nd spiral walk, etc. - source image pixels * calculated pixels

Table 7. Parameter Registers		
ADDR	Row (HEX)	Column (HEX)
0000	000	000
0001	FFF	FFF
0010	000	000
0011	000	100
0100	DDB	800
0101	100	1FF
0110	800	DDB
0111	1 FF	100
1000	000	000
1001	000	000
1010	000	000
1011	000	000
1100	000	000
1101	000	000
1110	000	000
1111	002	002

LF2301

Table 8. ITS Outputs For $\mathbf{3 0}$ Image Rotation With Bilinear Interpolation

Cycle	x	y	CAX (HEX)	CAy (HEX)	u	v	INIT	$\overline{\text { ACC }}$	UWRI	END ${ }_{x}$	END y	DONE
1	0	0	00	00	X	X	1	0	1	0	0	0
2	0	0	00	00	x	x	0	0	1	0	0	0
3	0	0	00	00	x	x	0	0	1	0	0	0
4	0	0	00	00	x	x	0	0	1	0	0	0
5	1	0	01	01	X	x	0	1	0	0	0	0
6	1	1	02	02	x	x	0	1	1	0	0	0
7	0	1	03	03	X	x	0	1	1	0	0	0
8	0	0	D0	80	0	0	0	0	1	0	0	0
9	1	0	D1	81	0	0	0	1	0	0	0	0
10	1	1	D2	82	0	0	0	1	1	1	0	0
11	0	1	D3	83	0	0	0	1	1	1	0	0
12	1	1	B0	00		0	0	0	1	1	0	0
13	2	1	B1	01	1	0	0	1	0	1	0	0
14	2	2	B2	02	1	0	0	1	1	0	0	0
15	1	2	B3	03	1	0	0	1	1	0	0	0
16	2	1	90	80	2	0	0	0	1	0	0	0
17	3	1	91	81	2	0	0	1	0	0	0	0
18	3	2	92	82	2	0	0	1	1	0	0	0
19	2	2	93	83	2	0	0	1	1	0	0	0
20	-1	0	80	D0	3	0	0	0	1	0	0	0
21	0	0	81	D1	3	0	0	1	0	0	0	0
22	0	1	82	D2	3	0	0	1	1	0	0	0
23	-1	1	83	D3	3	0	0	1	1	0	0	0
24	0	1	50	50	0	1	0	0	1	0	0	0
25	1	1	51	51	0	1	0	1	0	0	0	0
26	1	2	52	52	0	1	0	1	1	1	0	0
27	0	2	53	53	0	1	0	1	1	1	0	0
28	1	1	30	D0	1	1	0	0	1	1	0	0
29	2	1	31	D1	1	1	0	1	0	1	0	0
30	2	2	32	D2	1	1	0	1	1	0	0	0
31	1	2	33	D3	1	1	0	1	1	0	0	0
32	2	2	10	50	2	1	0	0	1	0	0	0
33	3	2	11	51	2	1	0	1	0	0	0	0
34	3	3	12	52	2	1	0	1	1	0	1	0
35	2	3	13	53	2	1	0	1	1	0	1	0
36	-1	1	00	B0	3	1	0	0	1	0	1	0
37	0	1	01	B1	3	1	0	1	0	0	1	0
38	0	2	02	B2	3	1	0	1	1	0	1	0
39	-1	2	03	B3	3	1	0	1	1	0	1	0
40	-1	2	D0	30	0	2	0	0	1	0	1	0
41	0	2	D1	31	0	2	0	1	0	0	1	0
42	0	3	D2	32	0	2	0	1	1	1	1	0
43	-1	3	D3	33	0	2	0	1	1	1	1	0
44	0	2	B0	B0		2	0	0	1	1	1	0
45	1	2	B1	B1	1	2	0	1	0	1	1	0
46	1	3	B2	B2	1	2	0	1	1	0	1	0
47	0	3	B3	B3	1	2	0	1	1	0	1	0
48	1	3	90	30	2	2	0	0	1	0	1	0
49	2	3	91	31	2	2	0	1	0	0	1	0
50	2	4	92	32	2	2	0	1	1	0	0	1
51	1	4	93	33	2	2	0	1	1	0	0	1
52	0	0	00	00	3	2	0	0	1	0	0	1
53	1	0	01	01	3	2	0	1	0	0	0	1
54	1	1	02	02	3	2	0	1	1	0	0	1
55	0	1	03	03	3	2	0	1	1	0	0	1

Pass 1 of Two-Pass Operation

Pass 1 of the two-pass operation performs horizontal filtering on an image as shown in Figure 9. This mode is selected by loading M1-0 with " 01. ." In this example, a horizontal filter with a kernel size of 3 pixels is desired. Loading K 3 -0 with " $0010^{\prime \prime}$ selects a kernel size of 3 . The first pixel selected is determined by x_{0} and y_{0}. In this example, the first pixel is $(0,0)$. In this case, the LF2301s should address consecutive pixels during each pixel walk. For this to occur, FOV must be set to 1 (F2-0 loaded with " 001 ").

After the last pixel of a pixel walk has been selected, the next pixel address is determined by adding $\mathrm{dx} / \mathrm{du}$ to the current X address and by adding dy/du to the current Y address (unless the kernel just completed was the last for that line). At the end of the first pixel walk, pixel (2,0) is addressed. Since the first pixel of the next pixel walk should be (1,0), $\mathrm{dx} / \mathrm{du}$ is selected to be -1 and $\mathrm{dy} / \mathrm{du}$ is selected to be 0 . After the last pixel of the last pixel walk on the first line has been selected, the first

Figure 9. Pass 1 Of Two-Pass

	0	1	2	3	4
-1	-	-	-	-	-
	1				

$1=1$ st pixel of 1 st walk,
$2=1$ st pixel of 2nd walk, etc.
pixel address of the second line is determined by adding $\mathrm{dx} / \mathrm{dv}$ to x_{0} and by adding dy/dv to yo. Since the first pixel of the first pixel walk on the second line should be (0,1), $\mathrm{dx} / \mathrm{dv}$ is selected to be 0 and $\mathrm{dy} / \mathrm{dv}$ is selected to be 1 . Second order differential terms are not used in this filter and are therefore set to 0 .

Table 9. Parameter Registers		
ADDR	Row (HEX)	Column (HEX)
0000	000	000
0001	FFF	FFF
0010	000	000
0011	040	140
0100	000	000
0101	1FF	000
0110	000	000
0111	200	201
1000	000	000
1001	000	000
1010	000	000
1011	000	000
1100	000	000
1101	000	000
1110	005	005
1111	006	006

UMIN and VMIN are both selected to be 5. UMAX and VMAX are both selected to be 6 . Table 9 shows the values loaded into all Parameter Registers. Table 10 shows the ITS outputs for the Pass 1 of a Two-Pass operation.

Table 10. ITS Outputs For Pass 1 Of Two-Pass

Cycle	x	y	CAX (HEX)	CAy (HEX)	u	v	INIT	$\overline{\text { ACC }}$	UWRI	END ${ }_{x}$	ENDy	DONE
1	0	0	00	00	x	X	1	0	1	0	0	0
2	0	0	00	00	x	x	0	0	1	0	0	0
3	0	0	00	00	X	x	0	0	1	0	0	0
4	0	0	00	00	X	X	0	0	1	0	0	0
5	1	0	01	01	x	x	0	1	0	1	0	0
6	2	0	02	02	x	x	0	1	1	1	0	0
7	1	0	00	00	5	5	0	0	1	1	0	0
8	2	0	01	01	5	5	0	1	0	0	0	0
9	3	0	02	02	5	5	0	1	1	0	0	0
10	2	0	00	00	6	5	0	0	1	0	0	0
11	3	0	01	01	6	5	0	1	0	0	1	0
12	4	0	02	02	6	5	0	1	1	0	1	0
13	0	1	00	00	7	5	0	0	1	0	1	0
14	1	1	01	01	7	5	0	1	0	1	1	0
15	2	1	02	02	7	5	0	1	1	1	1	0
16	1	1	00	00	5	6	0	0	1	1	1	0
17	2	1	01	01	5	6	0	1	0	0	1	0
18	3	1	02	02	5	6	0	1	1	0	1	0
19	2	1	00	00	6	6	0	0	1	0	1	0
20	3	1	01	01	6	6	0	1	0	0	0	1
21	4	1	02	02	6	6	0	1	1	0	0	1
22	0	0	00	00	7	6	0	0	1	0	0	1
23	1	0	01	01	7	6	0	1	0	1	0	1
24	2	0	02	02	7	6	0	1	,	1	0	1

Pass 2 of Two－Pass Operation

Pass 2 of the two－pass operation performs vertical filtering on an image as shown in Figure 10．This mode is selected by loading M1－0 with＂ 11. ．＂In this example，a vertical filter with a kernel size of 3 pixels is desired． Loading K3－0 with＂ 0010 ＂selects a kernel size of 3 ．The first pixel selected is determined by x_{0} and $y o$ ．In this example，the first pixel is（ 0,0 ）．In this case，the LF2301s should address consecutive pixels during each pixel walk．For this to occur，FOV must be set to 1 （F2－0 loaded with＂ 001 ＂）．

After the last pixel of a pixel walk has been selected，the next pixel address is determined by adding $\mathrm{dx} / \mathrm{du}$ to the current X address and by adding $\mathrm{dy} / \mathrm{du}$ to the current Y address （unless the kernel just completed was the last for that line）．At the end of the first pixel walk，pixel（ 0,2 ）is addressed． Since the first pixel of the next pixel walk should be $(1,0), \mathrm{dx} / \mathrm{du}$ is selected to be 1 and dy／du is selected to be－2．After the last pixel of the last pixel walk on the first line has been

Figure 10．Pass 2 Of Two－Pass				
－1	0	1	2	3
0		\bigcirc		\bullet
1	6	\％		－
2 －				－
3 －				\bullet
4 －		－		\bullet
$1=1$ st pixel of 1 st walk， 2 ＝1st pixel of 2nd walk，etc．				

selected，the first pixel address of the second line is determined by adding $\mathrm{dx} / \mathrm{dv}$ to x_{0} and by adding $\mathrm{dy} / \mathrm{dv}$ to yo．Since the first pixel of the first pixel walk on the second line should be（ 0,1 ）， $d x / d v$ is selected to be 0 and dy／dv is selected to be 1 ．Second order differential terms are not used in this filter and are therefore set to 0 ．

Table 11．Parameter Registers		
ADDR	Row（HEX）	Column（HEX）
0000	000	000
0001	FFF	FFF
0010	000	000
0011	0 C0	1 C0
0100	000	000
0101	101	1 FE
0110	000	000
0111	200	201
1000	000	000
1001	000	000
1010	000	000
1011	000	000
1100	000	000
1101	000	000
1110	005	005
1111	006	006

UMIN and VMIN are both selected to be 5．UMAX and VMAX are both selected to be 6 ．Table 11 shows the values loaded into all Parameter Registers．Table 12 shows the ITS outputs for the Pass 2 of a Two－Pass operation．

Table 12．ITS Outputs For Pass 2 Of Two－Pass

Cycle	X	y	CAx（HEX）	CAy（HEX）	u	V	INIT	$\overline{\text { ACC }}$	UWRI	END ${ }^{\text {x }}$	END ${ }^{\text {y }}$	DONE
1	0	0	00	00	X	x	1	0	1	0	0	0
2	0	0	00	00	X	X	0	0	1	0	0	0
3	0	0	00	00	X	X	0	0	1	0	0	0
4	0	0	00	00	X	X	0	0	1	0	0	0
5	0	1	01	． 01	x	x	0	1	0	1	0	0
6	0	2	02	02	X	x	0	1	1	1	0	0
7	1	0	00	00	5	5	0	0	1	1	0	0
8	1	1	01	01	5	5	0	1	0	0	0	0
9	1	2	02	02	5	5	0	1	1	0	0	0
10	2	0	00	00	6	5	0	0	1	0	0	0
11	2	1	01	01	6	5	0	1	0	0	1	0
12	2	2	02	02	6	5	0	1	1	0	1	0
13	0	1	00	00	7	5	0	0	1	0	1	0
14	0	2	01	01	7	5	0	1	0	1	1	0
15	0	3	02	02	7	5	0	1	1	1	1	0
16	1	1	00	00	5	6	0	0	1	1	1	0
17	1	2	01	01	5	6	0	1	0	0	1	0
18	1	3	02	02	5	6	0	1	1	0	1	0
19	2	1	00	00	6	6	0	0	1	0	1	0
20	2	2	01	01	6	6	0	1	0	0	0	1
21	2	3	02	02	6	6	0	1	1	0	0	1
22	0	0	00	00	7	6	0	0	1	0	0	1
23	0	1	01	01	7	6	0	1	0	1	0	1
24	0	2	02	02	7	6	0	1	1	1	0	1

LF2301

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storagetemperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operatingambienttemperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output	-0.5 V to Vcc +0.5 V
Output current into low outputs	... 25 mA
Latchupcurren	... > 400 mA

Operating Conditions Tomeetspecifiedelectricalandswitching characteristics

Mode	Temperature Range(Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics OverOperating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
ViL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	InputCurrent	Ground $\leq \operatorname{VIN} \leq \operatorname{VcC}$ (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	OutputLeakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			75	mA
Icc2	Vcc Current, Quiescent	(Note 7)			5	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	OutputCapacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF2301

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LF2301-					
		66		55		25	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	66		55		25	
tpw	Clock Pulse Width	30		25		10	
ts	Input Setup Time	20		18		10	
th	Input Hold Time	2		2		0	
tHi	Input Hold Time, INTER	10		10		5	
to	Output Delay		35		27		15
toe	Output Delay, END		45		37		15
tena	Three-State Output Enable Delay (Note 11)		35		27		15
tols	Three-State Output Disable Delay (Note 11)		20		18		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	LF2301-					
		66		55		30	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	66		55		30	
tPW	Clock Pulse Width	30		25		10	
ts	Input Setup Time	20		18		12	
th	Input Hold Time	2		2		0	
tHI	Input Hold Time, INTER	10		10		6	
tD	Output Delay		35		27		18
tde	Output Delay, END		45		37		18
tena	Three-State Output Enable Delay (Note 11)		35		27		18
tDIS	Three-State Output Disable Delay (Note 11)		20		18		18

Switching Waveforms: Data Inputs (Parameter Storage)

Switching Waveforms: Data Outputs and Control Lines

LF2301

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with no output load at 15 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worstcase requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z-to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circurt

Figure B. Threshold Levels

	ORDERING INFORMATION
	68－pin
Speed	Plastic J－Lead Chip Carrier (J2)
\％	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$－Commercial Screening ${ }^{\text {a }}$－
$\begin{aligned} & 66 \mathrm{~ns} \\ & 55 \mathrm{~ns} \\ & 25 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { LF2301JC66 } \\ & \text { LF2301JC55 } \\ & \text { LF2301JC25 } \end{aligned}$

	ORDERING INFORMATION	
	68-pin A B c D E F G H J K	
Speed	Ceramic Pin Grid Array (G1)	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$-Commercial ${ }^{\text {a }}$ creening	
$\begin{array}{\|l\|} \hline 66 \mathrm{~ns} \\ 55 \mathrm{~ns} \\ 25 \mathrm{~ns} \end{array}$		LF2301GC66 LF2301GC55 LF2301GC25
	$-55^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C}$-Commercial Screening	
$\begin{aligned} & 66 \mathrm{~ns} \\ & 55 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$		LF2301GM66 LF2301GM55 LF2301GM30
5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MLL}-$ STD-883 COMPLIANT	
$\begin{aligned} & 66 \mathrm{~ns} \\ & 55 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$		LF2301GMB66 LF2301GMB55 LF2301GMB30

Horizontal / Vertical Digital Image Filter

FEATURES

- 80 MHz Data Rate12-bit Data and Coefficients
\square On-board Memory for 256 Horizontal and Vertical Coefficient Sets
- LF Interface ${ }^{\mathrm{TM}}$ Allows All 512 Coefficient Sets to be Updated Within Vertical Blanking
- Selectable 12-bit Data Output with User-Defined Rounding and Limiting
\square Seven 3K x 12-bit, Programmable Two-Mode Line Buffers
- 16 Horizontal Filter Taps
- 8 Vertical Filter Taps
- Two Operating Modes: Dimensionally Separate and Orthogonal
- Supports Interleaved Data Streams
- Horizontal Filter Supports Decimation up to 16:1 for Increasing Number of Filter Taps 3.3 Volt Power Supply 5 Volt I/O Tolerant
- Available 100\% Screened to MIL-STD-883, Class B

DESCRIPTION

The LF3310 is a two-dimensional digital image filter capable of filtering data at real-time video rates. The device contains both a horizontal and a vertical filter which may be cascaded or used concurrently for two-dimensional filtering. The input, coefficient, and output data are all 12 bits and in two's complement format.

The horizontal filter is designed to take advantage of symmetric coefficient sets. When symmetric coefficient sets are used, the horizontal filter can be configured as a 16 -tap FIR filter. When asymmetric coefficient sets are used, it can be configured as an 8-tap FIR filter. The vertical filter is an 8 -tap FIR filter with all required line buffers contained on-chip. The line buffers can store video lines with lengths from 4 to 3076 pixels.

Horizontal filter Interleave/Decimation Registers (I/D Registers) and the vertical filter line buffers allow interleaved data to be fed directly into the
device and filtered without separating the data into individual data streams. The horizontal filter can handle a maximum of sixteen data sets interleaved together. The vertical filter can handle interleaved video lines which contain 3076 or less data values. The I/ D Registers and horizontal accumulator facilitate using decimation to increase the number of filter taps in the horizontal filter. Decimation of up to $16: 1$ is supported.

The device has on-chip storage for 256 horizontal coefficient sets and 256 vertical coefficient sets. Each filter's coefficients are loaded independently of each other allowing one filter's coefficients to be updated without affecting the other filter's coefficients. In addition, a horizontal or vertical coefficient set can be updated independently from the other coefficient sets in the same filter.

LF3310

Figure 1. LF3310 Functional Block Diagram

LF3310

SIGNAL DEFINITIONS

Power

VCC and GND
+3.3 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

DIN11-0 — Data Input

DIN11-0 is the 12-bit registered data input port. Data is latched on the rising edge of CLK.

HCF11-0 - Horizontal Coefficient Input

HCF11-0 is used to load data into the horizontal coefficient banks and the configuration/control registers. Data present on HCF11-0 is latched into the Horizontal LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when HLD is LOW (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

HCA7-0 - Horizontal Coefficient Address

HCA7-0 determines which row of data in the horizontal coefficient banks is fed to the multipliers in the horizontal filter. HCA7-0 is latched into the Horizontal Coefficient Address Register on the rising edge of CLK when HCEN is LOW.

VCF11-0 — Vertical Coefficient Input

VCF11-0 is used to load data into the vertical coefficient banks and the configuration/control registers. Data present on VCF11-0 is latched into the Vertical LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when VLD is LOW (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

Figure 2. Input Formats

Input Data
11 10 9 2 1
$-2^{11} 2^{10}$
:---

Coefficient Data

| $11 \quad 10 \quad 9$ | $2 \quad 1 \quad 0$ |
| :--- | :--- | :--- | :--- |
| $-2^{0} 2^{-1} 2^{-2}$ | $2^{-9} 2^{-10} 2^{-11}$ |

(Sign)
(Sign)

Figure 3. Horizontal and Vertical Accumulator Formats

Horizontal Accumulator Output

(Sign)

Vertical Accumulator Output

$3130 \quad 29$	2	$1 \quad 0$
$-2^{20} 2^{19} 2^{18}$	$2^{-9} 2^{-10} 2^{-11}$	

(Sign)

SLCT4-0	S_{11}	Sto	S_{9}	. .	S_{6}	S_{5}	. .	S_{2}	S_{1}	So
00000	F_{11}	F_{10}	F9		F6	F5	.	F2	F_{1}	Fo
00001	F_{12}	F_{11}	F_{10}		F7	F_{6}		F3	F2	F_{1}
00010	F_{13}	F_{12}	F_{11}		F8	F_{7}	.	F4	F3	F_{2}
-	-	-	-		-	-		-	-	-
		-	-		-	-			-	-
10010	F_{29}	F28	F_{27}		F_{24}	F_{23}	.	F_{20}	F_{19}	F_{18}
10011	F_{30}	F_{29}	F_{28}		F_{25}	F_{24}		F_{21}	F_{20}	F_{19}
10100	F31	F30	F_{29}		F_{26}	F_{25}		F_{22}	F_{21}	F_{20}

VCA7-0 — Vertical Coefficient Address

VCA7-0 determines which row of data in the vertical coefficient banks is fed to the multipliers in the vertical filter. VCA7-0 is latched into the Vertical Coefficient Address Register on the rising edge of CLK when VCEN is LOW.

Outputs

DOUT11-0 — Data Output
DOUT11-0 is the 12-bit registered data output port.

Controls

$\overline{H L D}$ - Horizontal Coefficient Load When $\overline{\text { HLD }}$ is LOW, data on HCF11-0 is latched into the Horizontal LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK. When $\overline{\text { HLD }}$ is HIGH, data can not be latched into the Horizontal LF Interface ${ }^{T M}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of $\overline{\mathrm{HLD}}$ is required in order for the input circuitry to function properly. Therefore, HLD must be set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

$\overline{\text { HCEN }}$ - Horizontal Coefficient Address Enable

When HCEN is LOW, data on HCA7-0 is latched into the Horizontal Coefficient Address Register on the rising edge of CLK. When HCEN is HIGH, data on HCA7-0 is not latched and the register's contents will not be changed.

$\overline{V L D}$ - Vertical Coefficient Load

When $\overline{\mathrm{VLD}}$ is LOW, data on $\mathrm{VCF1}_{1-0}$ is latched into the Vertical LF Interface ${ }^{\text {TM }}$ on the rising edge of CLK. When VLD is HIGH, data can not be latched into the Vertical LF Interface ${ }^{\mathrm{TM}}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of $\overline{\mathrm{VLD}}$ is required in order for the input circuitry to function properly. Therefore, $\overline{\mathrm{VLD}}$ must be set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

$\overline{\text { VCEN }}$ - Vertical Coefficient Address Enable

When $\overline{\text { VCEN }}$ is LOW, data on VCA7-0 is latched into the Vertical Coefficient Address Register on the rising edge of CLK. When VCEN is HIGH, data on VCA7-0 is not latched and the register's contents will not be changed.

$\overline{T X F R}$ - Horizontal Filter LIFO Transfer Control

$\overline{\mathrm{TXFR}}$ is used to change which LIFO in the data reversal circuitry sends data to the reverse data path and which LIFO receives data from the forward data path. When TXFR goes LOW, the LIFO sending data to the reverse data path becomes the LIFO receiving data from the forward data path, and the LIFO receiving data from the forward data path becomes the LIFO sending data to the reverse data path. The device must see a HIGH to LOW transition of $\overline{\text { TXFR }}$ in order to switch LIFOs.

HACC - Horizontal Accumulator Control

When HACC is HIGH, the horizontal accumulator is enabled for accumulation and the accumulator output register is disabled for loading. When HACC is LOW, no accumulation is performed and the accumulator output register is enabled for loading. HACC is latched on the rising edge of CLK.

VACC - Vertical Accumulator Control

When VACC is HIGH, the vertical accumulator is enabled for accumulation and the accumulator output register is disabled for loading. When VACC is LOW, no accumulation is performed and the accumulator output register is enabled for loading. VACC is latched on the rising edge of CLK.

HSHEN - Horizontal Shift Enable

$\overline{\text { HSHEN }}$ enables or disables the loading of data into the forward and reverse I/D Registers in the horizontal filter when the device is in Dimensionally Separate Mode. If the device is configured such that the horizontal filter feeds the vertical filter, $\overline{\text { HSHEN }}$ also enables or disables the loading of data into the input register (DIN11-0). If the device is configured such that the vertical filter feeds the horizontal filter and the vertical limit register is under shift control, $\overline{\text { HSHEN also }}$ enables or disables the loading of data into the vertical limit register in the vertical round/select/limit circuitry. In Orthogonal Mode, $\overline{H S H E N}$ also enables or disables the loading of data into the input register (DIN11-0) and the line buffers in the vertical filter. It is important to note that in Orthogonal Mode, either $\overline{\text { HSHEN }}$ or $\overline{\text { VSHEN }}$ can disable data loading. Both must be active to enable data loading in Orthogonal Mode. Also in Orthogonal Mode, the horizontal and vertical limit registers can not be disabled.

When HSHEN is LOW, data is loaded into and shifted through the registers HSHEN controls and the forward and reverse I/D Registers on the rising edge of CLK. When HSHEN is HIGH, data is not loaded into or shifted through the registers $\overline{\text { HSHEN }}$ controls and the I/D Registers, and their contents will not be changed. HSHEN is latched on the rising edge of CLK.

$\overline{\text { VSHEN }}$ - Vertical Shift Enable

VSHEN enables or disables the loading of data into the line buffers in the vertical filter when the device is in Dimensionally Separate Mode. If the device is configured such that the vertical filter feeds the horizontal filter, VSHEN also enables or disables the loading of data into the input register (DIN11-0). If the device is configured such that the horizontal filter feeds the vertical filter and the horizontal limit register is under shift control, VSHEN also enables or disables the loading of data into the horizontal limit register in the horizontal round/select/limit circuitry. In Orthogonal Mode, VSHEN also enables or disables the loading of data into the input register (DIN11-0) and the forward and reverse I/D Registers in the horizontal filter. It is important to note that in Orthogonal Mode, either $\overline{\text { HSHEN }}$ or VSHEN can disable data loading. Both must be active to enable data loading in Orthogonal Mode. Also in Orthogonal Mode, the horizontal and vertical limit registers can not be disabled.
When $\overline{\text { VSHEN }}$ is LOW, data is loaded into and shifted through the registers $\overline{\mathrm{V} H E N}$ controls and the line buffers on the rising edge of CLK. When VSHEN is HIGH, data is not loaded into or shifted through the registers VSHEN controls and the line buffers, and their contents will not be changed. $\overline{\mathrm{VSHEN}}$ is latched on the rising edge of CLK.

LF3310

HRSL3-0 - Horizontal Round/Select/ Limit Control

HRSL3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the horizontal round/select/limit circuitry. A value of 0 on HRSL3-0 selects round/select/limit register 0 . A value of 1 selects round/select/ limit register 1 and so on. HRSL $3-0$ is latched on the rising edge of CLK (see the horizontal round, select, and limit sections for a complete discussion).

VRSL3-0 — Vertical Round/Select/Limit Control

VRSL3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the vertical round/select/limit circuitry. A value of 0 on VRSL3-0 selects round/select/limit register 0 . A value of 1 selects round/select/limit register 1 and so on. VRSL $3-0$ is latched on the rising edge of CLK (see the vertical round, select, and limit sections for a complete discussion).

$\overline{O E}$ - Output Enable

When $\overline{O E}$ is LOW, DOUT $11-0$ is enabled for output. When $\overline{\mathrm{OE}}$ is HIGH, DOUT11-0 is placed in a highimpedance state.

OPERATIONAL MODES

Dimensionally Separate

In Dimensionally Separate Mode, the horizontal and vertical filters are cascaded together to form a twodimensional image filter (see Figures 4 and 5). Bit 1 in Configuration Register 4 determines the cascade order. If this bit is set to " 0 ", data on DIN $11-0$ is fed into the horizontal filter first. The horizontal filter then feeds data into the vertical filter. If this bit is set to " 1 ", data on DIN11-0 is fed into the vertical filter first. The vertical filter then feeds data into the horizontal filter.

Figure 4. Dimensionally Separate Mode: H to V

Figure 5. Dimensionally Separate Mode: V to H

Orthogonal

In Orthogonal Mode, the horizontal and vertical filters are used concurrently to implement an orthogonal kernel on the input data (see Figure6). The HV Filter can handle kernel sizes of 3-3,5-5, and 7-7 (see Figure 7). Data delay elements at the input of the horizontal filter and the output of the vertical filter are used to properly align data so that the orthogonal kernel is implemented correctly. The data delays are automatically set to the correct lengths based on the programmed length of the line buffers and the kernel size.

Kernel sizes of 3-3, 5-5, and 7-7 require that the horizontal filter's output be delayed by LB $-2,2(L B)-3$, and 3(LB) - 4 clock cycles respectively before being added to the vertical filter's output (LB is the programmed line buffer length). The data delay at the input of the horizontal filter handles the LB, 2(LB), and 3(LB) delays. The data delay at the output of the vertical filter handles the $-2,-3$, and -4 delays. For example, if the line buffers are programmed for a length of 720 and a $5-5$ kernel is selected, the

Figure 6. Orthogonal Mode

Figure 7. 3-3, 5-5, and 7-7 Orthogonal Kernels

horizontal filter input data delay will be 1440 clock cycles and the vertical filter output data delay will be 3 clock cycles.
It is important to note that the first 3 , 5 , or 7 multipliers of the horizontal and vertical filters must be used in Orthogonal Mode. If other multipliers are used, data from the horizontal and vertical filters will not line up correctly because the data delays are calculated assuming that the first 3,5 , or 7 multipliers are used. Also, the ALUs in the horizontal filter should be configured to accept data from the forward I/D Register path into ALU Input A and force ALU Input B to 0 .

FUNCTIONAL DESCRIPTION

Horizontal Filter

The horizontal filter is designed to filter a digital image in the horizontal dimension. This FIR filter can be configured to have as many as 16 taps when symmetric coefficient sets are used and 8 taps when asymmetric coefficient sets are used.

ALUs

The ALUs double the number of filter taps available, when symmetric coefficient sets are used, by pre-adding data values which are then multiplied
by a common coefficient (see Figure 8). The ALUs can perform two operations: $\mathrm{A}+\mathrm{B}$ and $\mathrm{B}-\mathrm{A}$. Bit 0 of Configuration Register 0 determines the ALU operation. $\mathrm{A}+\mathrm{B}$ is used with evensymmetric coefficient sets. B-A is used with odd-symmetric coefficient sets. Also, either the A or B operand may be set to 0 . Bits 1 and 2 of Configuration Register 0 control the ALU inputs. $\mathrm{A}+0$ or $\mathrm{B}+0$ are used with asymmetric coefficient sets.

Interleave/Decimation Registers

The Interleave/Decimation Registers (I/D Registers) feed the ALU inputs. They allow the device to filter up to sixteen data sets interleaved into the same data stream without having to separate the data sets. The I/D Registers should be set to a length equal to the number of data sets interleaved together. For example, if two data sets are interleaved together, the I/D Registers should be set to a length of two. Bits 1 through 4 of Configuration Register 1 determine the I/D Register length.

The I/D Registers also facilitate using decimation to increase the number of filter taps. Decimation by N is accomplished by reading the horizontal filter's output once every N clock cycles. The device supports decimation up to 16:1. With no decimation, the maximum number of filter taps is sixteen. When decimating by N , the number of filter taps becomes 16 N because there are $\mathrm{N}-1$ clock cycles when the horizontal filter's output is not being read. The extra clock cycles are used to calculate more filter taps.

When decimating, the I/D Registers should be set to a length equal to the decimation factor. For example, when performing a 4:1 decimation, the I/D Registers should be set to a length of four. When not decimating or when only one data set (non-interleaved data) is fed into the device, the I/D Registers should be set to a length of one.

Figure 8. Symmetric Coefficient Set Examples

Even-Tap, Even-Symmetric Coefficient Set

Odd-Tap, Even-Symmetric
Coefficient Set

Even-Tap, Odd-Symmetric Coefficient Set

Figure 9. I/D Register Data Paths

EVEN-TAP MODE

ODD-TAP MODE

ODD-TAP INTERLEAVE MODE

HSHEN enables or disables the loading of data into the forward and reverse I/D Registers when the device is in Dimensionally Separate Mode (see the HSHEN section for a full discussion). When in Orthogonal Mode, HSHEN also enables or disables the loading of data into the input register (DIN11-0) and the line buffers.

It is important to note that in Orthogonal Mode, either HSHEN or VSHEN can disable the loading of data into the input register (DIN11-0), I/D Registers, and line buffers. Both must be active to enable data loading in Orthogonal Mode.

I/D Register Data Path Control

The multiplexer in the middle of the I/D Register data path controls how data is fed to the reverse data path.
The forward data path contains the I/D Registers in which data flows from left to right in the block diagram in Figure 1. The reverse data path contains the I/D Registers in which data flows from right to left. When the filter is configured for an even number of taps, data from the last I/D Register in the forward data path is fed into the first I/D Register in the reverse data path (see Figure 9). When the filter is configured for an odd number of taps, the data which will appear at the output of the last I/D Register in the
forward data path on the next clock cycle is fed into the first I/D Register in the reverse data path. Bit 5 in Configuration Register 1 configures the filter for an even or odd number of taps.
When interleaved data is fed through the device and an even tap filter is desired, the filter should be configured for an even number of taps (Bit 5 of CR1 set to " 0 ") and the I/D Register length should match the number of data sets interleaved together. When interleaved data is to be fed through the device and an odd tap filter is desired, the filter should be set to Odd-Tap Interleave Mode. Bit 0 of Configuration Register 1 configures

LF3310

Figure 10. Data Reversal

the filter for Odd-Tap Interleave Mode. When the filter is configured for Odd-Tap Interleave Mode, data from the next to last I/D Register in the forward data path is fed into the first I/D Register in the reverse data path.
When the filter is configured for an odd number of taps (interleaved or non-interleaved modes), the filter is structured such that the center data value is aligned simultaneously at the A and B inputs of the last ALU in the forward data path. In order to achieve the correct result, the user must divide the coefficient by two.

Data Reversal

Data reversal circuitry is placed after the multiplexer which routes data from the forward data path to the reverse data path (see Figure 10). When decimating, the data stream must be reversed in order for data to be properly aligned at the inputs of the ALUs. When data reversal is enabled, the circuitry uses a pair of LIFOs to reverse the order of the data sent to the reverse data path. When TXFR goes LOW, the LIFO sending data to the reverse data path becomes the LIFO receiving data from the forward data path, and the LIFO receiving data from the forward data path becomes the LIFO sending data to the reverse data path. The device must see a HIGH to LOW transition of TXFR in order to switch LIFOs. If decimating by $\mathrm{N}, \overline{\mathrm{TXFR}}$ should go low
once every N clock cycles. When data reversal is disabled, the circuitry functions like an I/D Register. When feeding interleaved data through the filter, data reversal should be disabled. Bit 6 of Configuration Register 1 enables or disables data reversal.

Horizontal Rounding

The horizontal filter output may be rounded by adding the contents of one of the sixteen horizontal round registers to the horizontal filter output (see Figure 11). Each round register is 32 bits wide and user-programmable. This allows the filter's output to be rounded to any precision required. Since any 32 -bit value may be pro-
grammed into the round registers, the device can support complex rounding algorithms as well as standard HalfLSB rounding. HRSL3-0 determines which of the sixteen horizontal round registers are used in the rounding operation. A value of 0 on HRSL3-0 selects horizontal round register 0 . A value of 1 selects horizontal round register 1 and so on. HRSL3-0 may be changed every clock cycle if desired. This allows the rounding algorithm to be changed every clock cycle. This is useful when filtering interleaved data. If rounding is not desired, a round register should be loaded with 0 and selected as the register used for rounding. Round register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Figure 11. Horizontal and Vertical Round/Select/Limit Circuitry

LF3310

BITS	FUNCTION	DESCRIPTION
0	ALU Mode	$\begin{aligned} & 0: A+B \\ & 1: B-A \end{aligned}$
1	Pass A	$0: A L U \operatorname{Input} A=0$ 1: ALU Input $A=$ Forward Register Path
2	Pass B	0 : $A L U \operatorname{Input} B=0$ 1: ALU Input B = Reverse Register Path
11-3	Reserved	Must be set to "0"

BITS	FUNCTION	DESCRIPTION
0	Odd-Tap Interleave Mode	0: Odd-Tap Interleave Mode Disabled 1: Odd-Tap Interleave Mode Enabled
4-1	I/D Register Length	0000: 1 Register 0001: 2 Registers 0010: 3 Registers 0011: 4 Registers 0100: 5 Registers 0101: 6 Registers 0110: 7 Registers 0111: 8 Registers 1000: 9 Registers 1001: 10 Registers 1010: 11 Registers 1011: 12 Registers 1100: 13 Registers 1101: 14 Registers 1110: 15 Registers 1111: 16 Registers
5	Horizontal Tap Number	0 : Even Number of Taps 1: Odd Number of Taps
6	Horizontal Data Reversal	0 : Data Reversal Enabled 1: Data Reversal Disabled
11-7	Reserved	Must be set to "0"

Horizontal Select

The word width of the horizontal filter output is 32 bits. However, only 12 bits may be sent to the filter output. The horizontal filter select circuitry determines which 12 bits are passed (see Table 1). The horizontal select registers control the horizontal select circuitry. There are sixteen horizontal select registers. Each select register is 5 bits wide and user-programmable. HRSL3-0 determines which of the
sixteen horizontal select registers are used in the horizontal select circuitry. A value of 0 on HRSL $3-0$ selects horizontal select register 0 . A value of 1 selects horizontal select register 1 and so on. HRSL3-0 may be changed every clock cycle if desired. This allows the 12 -bit window to be changed every clock cycle. This is useful when filtering interleaved data. Select register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Horizontal Limiting

An output limiting function is provided for the output of the horizontal filter. The horizontal limit registers determine the valid range of output values when limiting is enabled (Bit 1 in Configuration Register 5). There are sixteen 24-bit horizontal limit registers. HRSL3-0 determines which horizontal limit register is used during the limit operation. A value of 0 on HRSL3-0 selects horizontal limit register 0 . A value of 1 selects horizontal limit register 1 and so on. Each limit register contains both an upper and lower limit value. If the value fed to the limiting circuitry is less than the lower limit, the lower limit value is passed as the filter output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit value is passed as the filter output. HRSL $3-0$ may be changed every clock cycle if desired. This allows the limit range to be changed every clock cycle. This is useful when filtering interleaved data. When loading limit values into the device, the upper limit must be greater than the lower limit. Limit register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Vertical Filter

The vertical filter is designed to filter a digital image in the vertical dimension. It is a FIR filter which can be configured to have as many as 8 taps.

Line Buffers

There are seven on-chip line buffers. The maximum delay length of each line buffer is 3076 cycles and the minimum is 4 cycles. Configuration Register 2 (CR2) determines the delay length of the line buffers. The line buffer length is equal to the value of CR2 plus 4. A value of 0 for CR 2 sets the line buffer length to 4 . A value of 3072 for CR2 sets the line buffer length to 3076. Any values for CR2 greater than 3072 are not valid.

LF3310

The line buffers have two modes of operation: delay mode and recirculate mode. Bit 0 of Configuration Register 3 determines which mode the line buffers are in. In delay mode, the data input to the line buffer is delayed by an amount determined by CR2. In recirculate mode, the output of the line buffer is routed back to the input of the line buffer allowing the line buffer contents to be read multiple times.
Bit 1 of Configuration Register 3 allows the line buffers to be loaded in parallel. When Bit 1 is " 1 ", the input register (DIN11-0) loads all seven line buffers in parallel. This allows all the line buffers to be preloaded with data in the amount of time it normally takes to load a single line buffer.
$\overline{\text { VSHEN }}$ enables or disables the loading of data into the line buffers when the device is in Dimensionally Separate Mode (see the VSHEN section for a full discussion). When in Orthogonal Mode, VSHEN also enables or disables the loading of data into the input register (DIN11-0) and the forward and reverse I/D Registers.

It is important to note that in Orthogonal Mode, either HSHEN or VSHEN can disable the loading of data into the input register (DIN11-0), I/D Registers, and line buffers. Both must be active to enable data loading in Orthogonal Mode.

Interleaved Data

The vertical filter is capable of handling interleaved data. The number of data sets it can handle is determined by the number of data values contained in a video line. If the interleaved video line has 3076 data values or less, the vertical filter can handle it no matter how many data sets are interleaved together.

Vertical Rounding

The vertical filter output may be rounded by adding the contents of one of the sixteen vertical round registers to the vertical filter output (see Figure 11). Each round register is 32 bits wide and user-programmable. This allows the filter's output to be rounded to any precision required. Since any 32-bit value may be programmed into the round registers, the device can support complex rounding
algorithms as well as standard HalfLSB rounding. VRSL3-0 determines which of the sixteen vertical round registers are used in the rounding operation. A value of 0 on VRSL3-0 selects vertical round register 0 . A value of 1 selects vertical round register 1 and so on. VRSL3-0 may be changed every clock cycle if desired. This allows the rounding algorithm to be changed every clock cycle. This is useful when filtering interleaved data.

Table 4.		
Configuration Register $\mathbf{2}$ - Address 202H		
$11-0$	FUNCTION	Line Buffer Length

Table 5. Configuration Register 3 - Address 203H		
Bits	FUNCTION	DESCRIPTION
0	Line Buffer Mode	$0:$ Delay Mode $1:$ Recirculate Mode
1	Line Buffer Load	$0:$ Normal Load $1:$ Parallel Load
$11-2$	Reserved	Must be set to "0"

TABLE 6.		
Configuration Register 4 - Adddess 204H		
BITS	FUNCTION	DESCRIPTION
0	HV Filter Mode	0: Orthogonal Mode $1:$ Dimensionally Separate
1	HV Direction	$0:$ Horizontal to Vertical $1:$ Vertical to Horizontal
$3-2$	Orthogonal Kernel Size	00: 3-3 Kernel $01: 5-5$ Kernel
$10: 7-7$ Kernel		
$11:$ Not Used		

TABLE 7. Configuration Register 5 - Address 205H		
BITS	FUNCTION	DESCRIPTION
0	Vertical Limit Enable	$0:$ Vertical Limiting Disabled $1:$ Vertical Limiting Enabled
1	Horizontal Limit Enable	$0:$ Horizontal Limititing Disabled $1:$ Horizontal Limiting Enabled
$11-2$	Reserved	Must be set to "0"

LF3310

TABLE 8. HCF/VCF11-9 Decode		
11	10	9

If rounding is not desired, a round register should be loaded with 0 and selected as the register used for rounding. Round register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Vertical Select

The word width of the vertical filter output is 32 bits. However, only 12 bits may be sent to the filter output. The vertical filter select circuitry determines which 12 bits are passed (see Table 1). The vertical select registers control the vertical select circuitry. There are sixteen vertical select registers. Each select register is 5 bits wide and user-programmable. VRSL3-0 determines which of the sixteen vertical select registers are used in the vertical select circuitry. A value of 0 on VRSL $3-0$ selects vertical select register 0 . A value of 1 selects vertical select register 1 and so on. VRSL3-0 may be changed every clock cycle if desired. This allows the 12 -bit window to be changed every clock cycle. This is useful when filtering interleaved data. Select register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Vertical Limiting

An output limiting function is provided for the output of the vertical filter. The vertical limit registers determine the valid range of output values when limiting is enabled (Bit 0 in Configuration Register 5). There are sixteen 24 -bit vertical limit registers. VRSL3-0 determines which

Table 9. Hzz. Round Registers	
REGISter	address (HEX)
0	800
1	801
\vdots	\vdots
14	80 E
15	80 F

Table 10. Hrz. Select Registers	
Register	address (HeX)
0	400
1	401
\vdots	\vdots
14	40 E
15	40 F

Table 11. Hrz. Limit Registers	
REGISTER	ADDRESS (HEX)
0	C00
1	C 01
\vdots	\vdots
14	CoE
15	COF

vertical limit register is used during the limit operation. A value of 0 on VRSL3-0 selects vertical limit register 0 . A value of 1 selects vertical limit register 1 and so on. Each limit register contains both an upper and lower limit value. If the value fed to the limiting circuitry is less than the lower limit, the lower limit value is passed as the filter output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit value is passed as the filter output. VRSL3-0 may be changed every clock cycle if desired. This allows the limit range to be changed every clock cycle. This is useful when filtering interleaved data. When loading limit values into the device, the upper limit must be greater than the lower limit. Limit register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Table 12. Vrt. Round Registers	
REGISTER	AdDress (HEX)
0	A00
1	A01
\vdots	\vdots
14	AOE
15	AOF

Table 13. Vrt. Select Registers	
REGISTER	ADDRESS (HEX)
0	600
1	601
\vdots	\vdots
14	60 E
15	60 F

Table 14. Vrt. Limit Registers	
REGISTER	ADDRESS (HEX)
0	E00
1	E01
\vdots	\vdots
14	E0E
15	EOF

Coefficient Banks

The coefficient banks store the coefficients which feed into the multipliers in the horizontal and vertical filters. There is a separate bank for each multiplier. Each bank can hold 256 12-bit coefficients. The banks are loaded using an LF Interface ${ }^{\mathrm{TM}}$. There is a separate LF Interface ${ }^{\mathrm{TM}}$ for the horizontal and vertical banks. Coefficient bank loading is discussed in the LF Interface ${ }^{\text {TM }}$ section.

Configuration and Control Registers

The configuration registers determine how the HV Filter operates. Tables 2 through 7 show the formats of the six configuration registers. There are three types of control registers: round, select, and limit. There are sixteen round registers for the horizontal filter and sixteen for the

Figure 12. Coefficient Bank Loading Sequence

W1: Coefficient Set 1 written to coefficient banks during this clock cycle.
W2: Coefficient Set 2 written to coefficient banks during this clock cycle.
W3: Coefficient Set 3 written to coefficient banks during this clock cycle.

vertical filter. Each register is 32 bits wide. HRSL $3-0$ and VRSL $3-0$ determine which horizontal and vertical round registers respectively are used for rounding.

There are sixteen select registers for the horizontal filter and sixteen for the vertical filter. Each register is 5 bits wide. HRSL3-0 and VRSL3-0 determine which horizontal and vertical select registers respectively are used in the select circuitry.

There are sixteen limit registers for the horizontal filter and sixteen for the vertical filter. Each register is 24 bits wide and stores both an upper and lower limit value. The lower limit is stored in bits 110 and the upper limit is stored in bits $23-$ 12. HRSL3-0 and VRSL $3-0$ determine which horizontal and vertical limit registers respectively are used for limiting when limiting is enabled. Configuration and control register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

LF Interface ${ }^{\text {TM }}$

The Horizontal and Vertical LF Interfaces ${ }^{\mathrm{TM}}$ are used to load data into the horizontal and vertical coefficient banks respectively. They are also used to load data into the configuration and control registers.

The following section describes how the Horizontal LF Interface ${ }^{\text {TM }}$ works. The Horizontal and Vertical LF Interfaces ${ }^{\mathrm{TM}}$ are identical in function. If $\overline{\mathrm{HLD}}$ and HCF_{11-0} are replaced with $\overline{\text { VLD }}$ and VCF11-0, the following section will describe how the Vertical LF Interface ${ }^{T \mathrm{TM}}$ works.
$\overline{\mathrm{HLD}}$ is used to enable and disable the Horizontal LF Interface ${ }^{\mathrm{TM}}$. When $\overline{\mathrm{HLD}}$ goes LOW, the Horizontal LF Interface ${ }^{\mathrm{TM}}$ is enabled for data input. The first value fed into the interface on HCF_{11-0} is an address which determines what the interface is going
to load. The three most significant bits (HCF11-9) determine if the LF Interface ${ }^{\mathrm{TM}}$ will load coefficient banks or configuration/control registers (see Table 8). The nine least significant bits (HCF_{8-0}) are the address for whatever is to be loaded (see Tables 9-14). For example, to load address 15 of the horizontal coefficient banks, the first data value into the LF Interface ${ }^{\mathrm{TM}}$ should be 00 FH . To load horizontal limit register 10, the first data value should be COAH. The first address value should be loaded into the interface on the same clock cycle that latches the HIGH to LOW transition of $\overline{\text { HLD }}$ (see Figures 12 and 13).

The next value(s) loaded into the interface are the data value(s) which will be stored in the bank or register defined by the address value. When loading coefficient banks, the inter-
face will expect eight values to be loaded into the device after the address value. The eight values are coefficients 0 through 7 . When loading configuration or select registers, the interface will expect one value after the address value. When loading round registers, the interface will expect four values after the address value. When loading limit registers, the interface will expect two values after the address value. Figures 12 and 13 show the data loading sequences for the coefficient banks and configuration/control registers.

Table 15 shows an example of loading data into the coefficient banks. The following data values are written into address 10 of coefficient banks 0 through $7: 210 \mathrm{H}, 543 \mathrm{H}, \mathrm{C} 76 \mathrm{H}, 9 \mathrm{E} 3 \mathrm{H}$, $701 \mathrm{H}, 832 \mathrm{H}, \mathrm{F} 20 \mathrm{H}, 143 \mathrm{H}$. Table 16 shows an example of loading data into a configuration register. Data value 003 H is written into Configuration Register 4. Table 17 shows an example of loading data into a round register. Data value 7683F4A2H is written into horizontal round register 12. Table 18 shows an example of loading data into a select register. Data value 00 FH is loaded into
horizontal select register 2 . Table 19 shows an example of loading data into vertical limit register 7. Data value 390 H is loaded as the lower limit and 743 H is loaded as the upper limit.

It takes 9 clock cycles to load S coefficient sets into the device. Therefore, it takes 2304 clock cycles to load all 256 coefficient sets. Assuming an 80 MHz clock rate, all 256 coefficient sets can be updated in 28.8 $\mu \mathrm{s}$, which is well within vertical blanking time. It takes 5 S or 3 S clock cycles to load S round or limit registers respectively. Therefore, it takes

	H/VCF11	H/VCF10	H/VCF9	H/VCF8	H/VCF7	H/VCF6	H/VCF5	H/VCF4	H/VCF3	H/VCF2	H/NCF1	H/VCF0
1st Word - Address	0	0	0	0	0	0	0	0	1	0	1	0
2nd Word - Bank 0	0	0	1	0	0	0	0	1	0	0	0	0
3rd Word - Bank 1	0	1	0	1	0	1	0	0	0	0	1	1
4th Word - Bank 2	1	1	0	0	0	1	1	1	0	1	1	0
5th Word - Bank 3	1	0	0	1	1	1	1	0	0	0	1	1
6th Word - Bank 4	0	1	1	1	0	0	0	0	0	0	0	1
7th Word - Bank 5	1	0	0	0	0	0	1	1	0	0	1	0
8th Word - Bank 6	1	1	1	1	0	0	1	0	0	0	0	0
9th Word - Bank 7	0	0	0	1	0	1	0	0	0	0	1	1

Table 16. Configuration Register Loading Format

| | H/NCF11 | H/VCF10 | H/VCF9 | H/VCF | H/VCF7 | H/VCF6 | H/VCF5 | H/VCF4 | H/NCF3 | H/VCF2 | H/VCF1 | H/VCF0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st Word - Address | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 2nd Word - Data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

	H/VCF11	H/VCF10	H/VCF9	H/VCF8	H/VCF7	H/VCF6	H/VCF5	H/VCF4	H/NCF3	H/VCF2	H/VCF1	H/VCFo
1st Word - Address	1	0	0	0	0	0	0	0	1	1	0	0
2nd Word- Data	R	R	R	R	1	0	1	0	0	0	1	0 *
3rd Word - Data	R	R	R	R	1	1	1	1	0	1	0	0
4th Word - Data	R	R	R	R	1	0	0	0	0	0	1	1
5th Word - Data	R	R	R	R	0**	1	1	1	0	1	1	0

$\mathrm{R}=$ Reserved. Must be set to " 0 ".

* This bit represents the LSB of the Round Register.
** This bit represents the MSB of the Round Register.

LF3310

256 clock cycles to update all round and limit registers (both horizontal and vertical). Assuming an 80 MHz clock rate, all horizontal and vertical round/limit registers can be updated in $3.2 \mu \mathrm{~s}$.

The coefficient banks and configuration/control registers are not loaded with data until all data values for the specified address are loaded into the LF Interface ${ }^{\text {TM }}$. In other words, the coefficient banks are not written to until all eight coefficients have been loaded into the LF Interface ${ }^{\mathrm{TM}}$. A round register is not written to until all four data values are loaded.

After the last data value is loaded, the interface will expect a new address value on the next clock cycle. After the next address value is loaded, data loading will begin again as previously discussed. As long as data is loaded
into the interface, $\overline{\mathrm{HLD}}$ must remain LOW. After all desired coefficient banks and configuration/control registers are loaded with data, the LF Interface ${ }^{\mathrm{TM}}$ must be disabled. This is done by setting HLD HIGH on the clock cycle after the clock cycle which latches the last data value. It is important that the LF Interface ${ }^{\mathrm{TM}}$ remain disabled when not loading data into it.

The horizontal coefficient banks may only be loaded with the Horizontal LF Interface ${ }^{T M}$ and the vertical coefficient banks may only be loaded with the Vertical LF Interface ${ }^{\mathrm{TM}}$. The configuration and control registers may be loaded with either the Horizontal or Vertical LF Interfaces ${ }^{\mathrm{TM}}$. Since both LF Interfaces ${ }^{\mathrm{TM}}$ operate independently of each other, both LF Interfaces ${ }^{\text {TM }}$ can load data into their respective coeffi-
cient banks at the same time. Or, one LF Interface ${ }^{\mathrm{TM}}$ can load the configuration/control registers while the other loads it's respective coefficient banks. If both LF Interfaces ${ }^{\mathrm{TM}}$ are used to load a configuration or control register at the same time, the Vertical LF Interface ${ }^{\mathrm{TM}}$ will be given priority over the Horizontal LF Interface ${ }^{\text {TM }}$. For example, if the Horizontal LF Interface ${ }^{\mathrm{TM}}$ attempts to load data into a configuration register at the same time that the Vertical LF Interface ${ }^{\mathrm{TM}}$ attempts to load a horizontal round register, the Vertical LF Interface ${ }^{\text {TM }}$ will be allowed to load the round register while the Horizontal LF Interface ${ }^{\mathrm{TM}}$ will not be allowed to load the configuration register. However, the Horizontal LF Interface ${ }^{\mathrm{TM}}$ will continue to function as if the write occurred.

| Table 18. Select Register Loading Format | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | H/NCF11 | H/NCF10 | H/NCF9 | H/NCF | H/NCF7 | H/NCF6 | H/NCF5 | H/NCF | H/NCF3 | H/NCF2 | H/NCF1 | H/NCF0 |
| 1st Word - Address | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 2nd Word - Data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

	H/NCF11	H/VCF10	H/VCF9	H/VCF8	H/NCF7	H/NCF6	H/NCF5	H/VCF4	H/NCF3	H/NCF2	H/NCF1	H/NCF0
1st Word - Address	1	1	1	0	0	0	0	0	0	1	1	1
2nd Word- Data	0^{*}	0	1	1	1	0	0	1	0	0	0	0
3rd Word - Data	0**	1	1	1	0	1	0	0	0	0	1	1

* This bit represents the MSB of the Lower Limit.
** This bit represents the MSB of the Upper Limit.

Contact factory for additional information.

DEVICES INCORPORATED

FEATURES

- 80 MHz Data Rate12-bit Data and CoefficientsOn-board Memory for 256
Coefficient Sets
\square LF Interface ${ }^{\text {TM }}$ Allows All 256 Coefficient Sets to be Updated Within Vertical Blanking
\square Selectable 16-bit Data Output with User-Defined Rounding and Limiting32-Tap FIR Filter
- Cascadable for More Filter TapsSingle or Dual Filter Modes
\square Supports Interleaved Data Streams
- Supports Decimation up to 16:1 for Increasing Number of Filter Taps3.3 Volt Power Supply
$\square 5$ Volt I/O Tolerant
\square Available 100\% Screened to MIL-STD-883, Class B

DESCRIPTION

The LF3320 filters digital images in the horizontal dimension at real-time video rates. The input and coefficient data are both 12 bits and in two's complement format. The output is also in two's complement format and may be rounded to 16 bits.

The LF3320 is designed to take advantage of symmetric coefficient sets. When symmetric coefficient sets are used, the device can be configured as a single 32-tap FIR filter or as two separate 16 -tap FIR filters. When asymmetric coefficient sets are used, the device can be configured as a single 16-tap FIR filter or as two separate 8-tap FIR filters. Multiple LF3320s can be cascaded to create larger filters.

Interleave/Decimation Registers (I/D Registers) allow interleaved data to be fed directly into the device and filtered without separating the data into individual data streams. The LF3320 can handle a maximum of sixteen data sets interleaved together. The I/D Registers and on-chip accumulators facilitate using decimation to increase the number of filter taps. Decimation of up to $16: 1$ is supported.

The LF3320 contains enough on-board memory to store 256 coefficient sets. Two separate LF Interfaces ${ }^{\text {TM }}$ allow all 256 coefficient sets to be updated within vertical blanking.

LF3320 Block Diagram

Figure 1. LF3320 Functional Block Diagram

LF3320

SIGNAL DEFINITIONS

Power

VCC and GND
+3.3 V power supply. All pins must be connected.

Clock

CLK — Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

DIN11-0 — Data Input
DIN11-0 is the 12-bit data input port to Filter A. In Dual Filter Mode, DIN11-0 can also be the 12-bit input port to Filter B. Data is latched on the rising edge of CLK.

RIN11-0 — Reverse Cascade Input

In Single Filter Mode, RIN11-0 is the 12-bit reverse cascade input port. This port is connected to ROUT11-0 of another LF3320. In Dual Filter Mode, RIN11-0 can be the 12 -bit input port to Filter B. Data is latched on the rising edge of CLK.

CFA11-0 - Coefficient A Input

CFA11-0 is used to load data into the Filter A coefficient banks (banks 0 through 7) and the configuration/ control registers. Data present on CFA11-0 is latched into the Filter A LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when LDA is LOW (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

CAA7-0 - Coefficient Address A

CAA7-0 determines which row of data in coefficient banks 0 through 7 is fed to the multipliers. CAA7-0 is latched into Coefficient Address Register A on the rising edge of CLK when CENA is LOW.

Figure 2. Input Formats

Input Data

11	10	9	2	1

| -2^{11} | 2^{10} | 2^{9} |
| :--- | :--- | :--- | :--- | :--- |
| $($ Sign $)$ | | |

Coefficient Data

(Sign)

Figure 3. Accumulator Output Formats

Accumulator A Output

313029	
$-2^{20} 2^{19} 2^{18}$	$2 \quad 1 \quad 0$
$2^{-9} 2^{-10} 2^{-11}$	

(Sign)
Accumulator B Output

$\begin{array}{\|lll} 31 & 30 & 29 \\ -2^{20} 2^{19} 2^{18} \end{array} \frac{2}{} 2^{-9} 2^{-10} 2^{-11}$	

(Sign)

SLCT4-0	S_{15}	S_{14}	S_{13}	. .	S8	S_{7}	-••	S_{2}	S_{1}	So
00000	F_{15}	F_{14}	F_{13}	-••	F_{8}	F_{7}	\cdots	F_{2}	F_{1}	Fo
00001	F_{16}	F_{15}	F_{14}		F_{9}	F_{8}	. .	F_{3}	F_{2}	F_{1}
00010	F_{17}	F_{16}	F_{15}		F_{10}	F_{9}	.	F4	F3	F_{2}
-	-	-	-		-	-		-	-	-
-	-	-	-		-	-		-	-	-
-	-	-	-		-	-		-	-	-
01110	F_{29}	F_{28}	F_{27}		F_{22}	F_{21}		F_{16}	F_{15}	F_{14}
01111	F_{30}	F_{29}	F_{28}	. .	F_{23}	F_{22}	\cdots	F_{17}	F_{16}	F_{15}
10000	F_{31}	F_{30}	F_{29}		F_{24}	F_{23}		F_{18}	F17	F_{16}

CFB11-0 - Coefficient B Input
CFB11-0 is used to load data into the Filter B coefficient banks (banks 8 through 15) and the configuration/ control registers. Data present on CFB11-0 is latched into the Filter B LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when LDB is LOW (see the LF
Interface ${ }^{T M}$ section for a full discussion).

CAB7-0 — Coefficient Address B

$\mathrm{CAB} 7-0$ determines which row of data in coefficient banks 8 through 15 is fed to the multipliers. CAB7-0 is latched into Coefficient Address Register B on the rising edge of CLK when CENB is LOW.

Outputs
DOUT15-0 — Data Output
DOUT $15-0$ is the 16 -bit registered data output port for the overall filter (Single Filter Mode) or Filter A (Dual Filter Mode).

COUT11-0 — Cascade Output

In Single Filter Mode, COUT11-0 is a 12bit registered cascade output port. COUT11-0 should be connected to DIN11-0 of another LF3320. In Dual Filter Mode, COUT $11-0$ is a 12 -bit registered output port for the lower twelve bits of the 16-bit Filter B output.

LF3320

ROUT11-0 - Reverse Cascade Output

In Single Filter Mode, ROUT11-0 is a 12bit registered cascade output port. ROUT11-0 on one device should be connected to RIN11-0 of another LF3320. In Dual Filter Mode, ROUT3-0 is a 4-bit registered output port for the upper four bits of the 16 -bit Filter B output. In this mode, ROUT11-4 is disabled.

Controls

$\overline{L D A}$ - Coefficient A Load
When $\overline{\text { LDA }}$ is LOW, data on CFA11-0 is latched into the Filter A LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK. When $\overline{\text { LDA }}$ is HIGH, data is not loaded into the Filter A LF Interface ${ }^{\mathrm{TM}}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of $\overline{\mathrm{LDA}}$ is required in order for the input circuitry to function properly. Therefore, $\overline{\mathrm{LDA}}$ must be set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).
$\overline{C E N A}$ - Coefficient Address Enable A
When CENA is LOW, data on CAA7-0 is latched into Coefficient Address Register A on the rising edge of CLK. When CENA is HIGH, data on CAA7-0 is not latched and the register's contents will not be changed.

$\overline{L D B}$-Coefficient B Load

When $\overline{\mathrm{LDB}}$ is LOW, data on CFB11-0 is latched into the Filter B LF Interface ${ }^{T M}$ on the rising edge of CLK. When $\overline{\mathrm{LDB}}$ is HIGH, data is not loaded into the Filter B LF Interface ${ }^{\mathrm{TM}}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of LDB is required in order for the input circuitry to function properly. Therefore, $\overline{\mathrm{LDB}}$ must be set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).
$\overline{C E N B}$ - Coefficient Address Enable B
When $\overline{\mathrm{CENB}}$ is LOW, data on CAB7-0 is latched into Coefficient Address Register B on the rising edge of CLK. When $\overline{\mathrm{CENB}}$ is HIGH, data on CAB7-0 is not latched and the register's contents will not be changed.

$\overline{T X F R A}$ - Filter A LIFO Transfer Control

$\overline{\text { TXFRA }}$ is used to change which LIFO in the data reversal circuitry sends data to the reverse data path and which LIFO receives data from the forward data path in Filter A. When TXFRA goes LOW, the LIFO sending data to the reverse data path becomes the LIFO receiving data from the forward data path, and the LIFO receiving data from the forward data path becomes the LIFO sending data to the reverse data path. The device must see a HIGH to LOW transition of TXFRA in order to switch LIFOs. TXFRA is latched on the rising edge of CLK.

$\overline{T X F R B}$ - Filter B LIFO Transfer Control

$\overline{\mathrm{TXFRB}}$ is used to change which LIFO in the data reversal circuitry sends data to the reverse data path and which LIFO receives data from the forward data path in Filter B. When TXFRB goes LOW, the LIFO sending data to the reverse data path becomes the LIFO receiving data from the forward data path, and the LIFO receiving data from the forward data path becomes the LIFO sending data to the reverse data path. The device must see a HIGH to LOW transition of $\overline{\text { TXFRB }}$ in order to switch LIFOs. $\overline{\text { TXFRB }}$ is latched on the rising edge of CLK.

ACCA - Accumulator A Control
When ACCA is HIGH, Accumulator A is enabled for accumulation and the Accumulator A Output Register is
disabled for loading. When ACCA is LOW, no accumulation is performed and the Accumulator A Output Register is enabled for loading. ACCA is latched on the rising edge of CLK.

ACCB - Accumulator B Control

When ACCB is HIGH, Accumulator B is enabled for accumulation and the Accumulator B Output Register is disabled for loading. When ACCB is LOW, no accumulation is performed and the Accumulator B Output Register is enabled for loading. ACCB is latched on the rising edge of CLK.

$\overline{S H E N A}$ - Filter A Shift Enable

In Dual Filter Mode, $\overline{\text { SHENA }}$ enables or disables the loading of data into the Input (DIN11-0), Reverse Cascade Output (ROUT11-0) and Filter A I/D Registers. When SHENA is LOW, data is latched into the Input/Cascade Registers and shifted through the I/D Registers on the rising edge of CLK. When SHENA is HIGH, data can not be loaded into the Input/Cascade Registers or shifted through the I/D Registers and their contents will not be changed.
In Single Filter Mode, SHENA also enables or disables the loading of data into the Reverse Cascade Input (RIN11-0), Cascade Output (COUT110), and Filter B I/D Registers. It is important to note that in Single Filter Mode, either SHENA or SHENB can disable data loading. Both must be active to enable data loading in Single Filter Mode. $\overline{\text { SHENA }}$ is latched on the rising edge of CLK.

$\overline{\text { SHENB }}$ - Filter B Shift Enable

In Dual Filter Mode, $\overline{\text { SHENB }}$ enables or disables the loading of data into the Reverse Cascade Input (RIN11-0), Cascade Output (COUT11-0), and Filter B I/D Registers. When SHENB is LOW, data is latched into the Cascade Registers and shifted through

LF3320
the I/D Registers on the rising edge of CLK. When SHENB is HIGH, data can not be loaded into the Cascade Registers or shifted through the I/D Registers and their contents will not be changed.
In Single Filter Mode, $\overline{\text { SHENB }}$ also enables or disables the loading of data into the Input (DIN11-0), Reverse Cascade Output (ROUT11-0) and Filter A I/D Registers. It is important to note that in Single Filter Mode, either $\overline{\text { SHENA }}$ or SHENB can disable data loading. Both must be active to enable data loading in Single Filter Mode. $\overline{\text { SHENB }}$ is latched on the rising edge of CLK.

RSLA3-0 — Filter A Round/Select/Limit Control

RSLA3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the Filter A round/select/limit circuitry. A value of 0 on RSLA3-0 selects round/select/limit register 0 . A value of 1 selects round/select/limit register 1 and so on. RSLA3-0 is latched on the rising edge of CLK (see the round, select, and limit sections for a complete discussion).

RSLB3-0 — Filter B Round/Select/Limit

 ControlRSLB3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the Filter B round/select/limit circuitry. A value of 0 on RSLB3-0 selects round/select/limit register 0 . A value of 1 selects round/select/limit register 1 and so on. RSLB3-0 is latched on the rising edge of CLK (see the round, select, and limit sections for a complete discussion).

$\overline{O E D}$ - DOUT Output Enable

When OED is LOW, DOUT15-0 is enabled for output. When $\overline{\mathrm{OED}}$ is HIGH, DOUT $15-0$ is placed in a highimpedance state.
$\overline{O E C}$ - COUT/ROUT Output Enable
When $\overline{\mathrm{OEC}}$ is LOW, COUT11-0 and ROUT3-0 are enabled for output. When $\overline{\mathrm{OEC}}$ is HIGH, COUT $11-0$ and ROUT3-0 are placed in a high-impedance state.

OPERATIONAL MODES

Single Filter Mode

In this mode, the device operates as a single FIR filter (see Figure 4). It can be configured to have as many as 32
taps if symmetric coefficient sets are used. If asymmetric coefficient sets are used, the device can be configured to have as many as 16 taps. Cascade ports are provided to facilitate cascading multiple devices to increase the number of filter taps. Bit 1 in Configuration Register 5 determines the filter mode. In Single Filter Mode, DIN11-0 is the data input for the filter and DOUT $15-0$ is the data output for the filter.

Figure 6. Symmetric Coefficient Set Examples

Even-Tap, Even-Symmetric Coefficient Set

Odd-Tap, Even-Symmetric
Coefficient Set

Even-Tap, Odd-Symmetric Coefficient Set

Figure 7. I/D Register Data Paths

EVEN-TAP MODE

ODD-TAP MODE

ODD-TAP INTERLEAVE MODE

Dual Filter Mode

In this mode, the device operates as two separate FIR filters (see Figure 5). Each filter can be configured to have as many as 16 taps if symmetric coefficient sets are used. If asymmetric coefficient sets are used, each filter can be configured to have as many as 8 taps. In Dual Filter Mode, DIN11-0 is the data input for Filter A. Either RIN11-0 or DIN11-0 can be the data input for Filter B. The Filter B input is determined by Bit 2 in Configuration Register 5. DOUT $15-0$ is the data output for Filter A. COUT11-0 and ROUT3-0 together form the data output for Filter B. COUT $11-0$ is the twelve least significant bits and ROUT3-0 is the four most significant bits of the 16-bit Filter B output.

FUNCTIONAL DESCRIPTION

ALUs
The ALUs double the number of filter taps available, when symmetric coefficient sets are used, by preadding data values which are then multiplied by a common coefficient (see Figure 6). The ALUs can perform two operations: $\mathrm{A}+\mathrm{B}$ and $\mathrm{B}-\mathrm{A}$. Bit 0 of Configuration Register 0 determines the operation of the ALUs in Filter A. Bit 0 of Configuration Register 2 determines the operation of the ALUs in Filter B. A+B is used with evensymmetric coefficient sets. B-A is used with odd-symmetric coefficient sets. Also, either the A or B operand may be set to 0 . Bits 1 and 2 of Configuration Register 0 and Configuration Register 2 control the ALU
inputs in Filters A and B respectively. $\mathrm{A}+0$ or $\mathrm{B}+0$ are used with asymmetric coefficient sets.

Interleave/Decimation Registers

The Interleave/Decimation Registers (I/D Registers) feed the ALU inputs. They allow the device to filter up to sixteen data sets interleaved into the same data stream without having to separate the data sets. The I/D Registers should be set to a length equal to the number of data sets interleaved together. For example, if two data sets are interleaved together, the I/D Registers should be set to a length of two. Bits 1 through 4 of Configuration Register 1 and Configuration Register 3 determine the length of the I/D Registers in Filters A and B respectively.

BITS	FUNCTION	DESCRIPTION
0	ALU Mode Filter A	$\begin{aligned} & 0: A+B \\ & 1: B-A \end{aligned}$
1	Pass A Filter A	```0: ALU Input A =0 1: ALU Input A = Forward Register Path```
2	Pass B Filter A	0 ：$A L U$ Input $B=0$ 1：ALU Input B＝Reverse Register Path
11－3	Reserved	Should be set to＂0＂

BITS	FUNCTION	DESCRIPTION
0	Filter A Odd－Tap Interleave Mode	0：Odd－Tap Interleave Mode Disabled 1：Odd－Tap Interleave Mode Enabled
4－1	Filter A I／D Register Length	0000： 1 Register 0001： 2 Registers 0010： 3 Registers 0011： 4 Registers 0100： 5 Registers 0101： 6 Registers 0110： 7 Registers 0111： 8 Registers 1000： 9 Registers 1001： 10 Registers 1010： 11 Registers 1011： 12 Registers 1100： 13 Registers 1101： 14 Registers 1110： 15 Registers 1111： 16 Registers
5	Filter A Tap Number	0 ：Even Number of Taps 1：Odd Number of Taps
6	Filter A Data Reversal	0 ：Data Reversal Enabled 1：Data Reversal Disabled
11－7	Reserved	Should be set to＂0＂

The I／D Registers also facilitate using decimation to increase the number of filter taps．Decimation by N is accom－ plished by reading the filter＇s output once every N clock cycles．The device supports decimation up to 16：1．With no decimation，the maximum number of filter taps is sixteen．When deci－ mating by N ，the number of filter taps becomes 16 N because there are $\mathrm{N}-1$ clock cycles when the filter＇s output is not being read．The extra clock cycles are used to calculate more filter taps．

When decimating，the I／D Registers should be set to a length equal to the decimation factor．For example， when performing a $4: 1$ decimation， the I／D Registers should be set to a length of four．When not decimat－ ing or when only one data set（non－ interleaved data）is fed into the device，the I／D Registers should be set to a length of one．

I／D Register Data Path Control

The three multiplexers in the I／D Register data path control how data is routed through the forward and reverse data paths．The forward data path contains the I／D Registers in which data flows from left to right in the block diagram in Figure 1．The reverse data path contains the I／D Registers in which data flows from right to left．
In Single or Dual Filter Modes，data is fed from the forward data path to the reverse data path as follows． When the filter is configured for an even number of taps，data from the last I／D Register in the forward data path is fed into the first I／D Register in the reverse data path（see Figure 7）． When the filter is configured for an odd number of taps，the data which will appear at the output of the last I／D Register in the forward data path on the next clock cycle is fed into the first I／D Register in the reverse data path．Bit 5 in Configu－ ration Register 1 and Configuration Register 3 configures Filters A and B respectively for an even or odd number of taps．
When interleaved data is fed through the device and an even tap filter is desired，the filter should be configured for an even number of taps and the I／D Register length should match the number of data sets interleaved together．When interleaved data is fed through the device and an odd tap filter is desired，the filter should be set to Odd－Tap Interleave Mode．Bit 0 of Configuration Register 1 and Con－ figuration Register 3 configures Filters A and B respectively for Odd－Tap Interleave Mode．When the filter is configured for Odd－Tap Interleave Mode，data from the next to last I／D Register in the forward data path is fed into the first I／D Register in the reverse data path．

LF3320

When the filter is configured for an odd number of taps (interleaved or non-interleaved modes), the filter is structured such that the center data value is aligned simultaneously at the A and B inputs of the last ALU in the forward data path. In order to achieve the correct result, the user must divide the coefficient by two.

Figure 8. Data Reversal

Data Reversal

Data reversal circuitry is placed after the multiplexers which route data from the forward data path to the reverse data path (see Figure 8). When decimating, the data stream must be reversed in order for data to be properly aligned at the inputs of the ALUs. When data reversal is enabled, the circuitry uses a pair of LIFOs to reverse the order of the data sent to the reverse data path. TXFRA and TXFRB control the LIFOs in Filters A and B respectively. When TXFRA/ $\overline{\text { TXFRB }}$ goes LOW, the LIFO sending data to the reverse data path becomes the LIFO receiving data from the forward data path, and the LIFO receiving data from the forward data path becomes the LIFO sending data to the reverse data path. The device must see a HIGH to LOW transition of $\overline{\text { TXFRA }} / \overline{\mathrm{TXFRB}}$ in order to switch LIFOs. If decimating by $\mathrm{N}, \mathrm{TXFRA} /$ $\overline{T X F R B}$ should go LOW once every N clock cycles. When data reversal is disabled, the circuitry functions like
an I/D Register. When feeding interleaved data through the filter, data reversal should be disabled. Bit 6 of Configuration Register 1 and Configuration Register 3 enables or disables data reversal for Filters A and B respectively.

Cascading

Three cascade ports are provided to allow cascading of multiple devices for more filter taps (see Figure 9). COUT11-0 of one device should be connected to DIN11-0 of another device. ROUT11-0 of one device should be connected to RIN11-0 of another device. As many LF3320s as desired may be cascaded together. However, the outputs of the LF3320s must be added together with external adders.

Bit 0 of Configuration Register 5 determines how the device will send data to the reverse data path when multiple LF3320s are cascaded together. If a LF3320 is the last in the

Figure 9. Multiple LF3320s Cascaded Together

LF3320
cascade chain, Bit 0 of Configuration Register 5 should be set to a " 0 ". This will cause the data from the end of the forward data path to be routed to the beginning of the reverse data path based on how the filter is configured (even/odd number of taps or interleave mode). If a LF3320 is not the last in the cascade chain, Bit 0 of Configuration Register 5 should be set to a " 1 ". This will cause RIN11-0 to feed data to the reverse data path. When not cascading, Bit 0 of Configuration Register 5 should be set to a " 0 ".
Special data routing circuitry is used to feed the COUT and ROUT output registers. The data routing circuitry is required to correctly align data in the
forward and reverse data paths as data passes from one LF3320 to another. The COUT and ROUT registers are loaded with data which is two clock cycles behind the current output of the I/D Register just before the ROUT or COUT register. This correctly accounts for the extra delays added to the forward and reverse data paths by the input/output cascade registers.

Output Adder

The Output Adder adds the Filter A and B outputs together when the device is in Single Filter Mode. If 24bit data and 12 -bit coefficients or 12 bit data and 24 -bit coefficients are desired, the LF3320 can facilitate this

Figure 10. Filter A and B Round/Select/Limit Circuitry

by scaling the Filter B output by 2^{-12} before adding it to the Filter A output. Bit 3 in Configuration Register 5 determines if the Filter B output is scaled before being added to the Filter A output.

Rounding

The overall filter output (Single Filter Mode) or Filter A and B outputs (Dual
adding the contents of one of the sixteen Filter A or B round registers to the overall filter, Filter A, or Filter B outputs (see Figure 10). The Filter A round registers are used for the overall filter (Single Filter Mode) or Filter A (Dual Filter Mode). The Filter B round registers are used for Filter B (Dual Filter Mode). Each round register is 32 bits wide and userprogrammable. This allows the filter's output to be rounded to any precision required. Since any 32-bit value may be programmed into the round registers, the device can support complex rounding algorithms as well as standard Half-LSB rounding. RSLA3-0 determines which of the sixteen Filter A round registers are used in the Filter A rounding circuitry. RSLB3-0 determines which of the sixteen Filter B round registers are used in the Filter B rounding circuitry. A value of 0 on RSLA/RSLB3-0 selects Filter A / B round register 0 . A value of 1 selects Filter A/B round register 1 and so on. RSLA/RSLB3-0 may be changed every clock cycle if desired. This allows the rounding algorithm to be changed every clock cycle. This is useful when filtering interleaved data. If rounding is not desired, a round register should be loaded with 0 and selected as the register used for rounding. Round register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Output Select

The word width of the overall filter, Filter A, and Filter B outputs is 32 bits. However, only 16 bits may be sent to DOUT15-0 (Single or Dual Filter Modes)

LF3320

Table 4. Configuration Register 2 - Address 202H		
Bits	FUNCTION	DESCRIPTION
0	ALU Mode Filter B	$0: \mathrm{A}+\mathrm{B}$ $1: \mathrm{B}-\mathrm{A}$
1	Pass A Filter B	$0:$ ALU Innut $\mathrm{A}=0$ $1:$ ALU Input $\mathrm{A}=$ Forward Register Path
2	Pass B Filter B	$0:$ ALU Input $\mathrm{B}=0$ $1: A L U$ Input $\mathrm{B}=$ Reverse Register Path
$11-3$	Reserved	Must be set to " 0 "

BITS	FUNCTION	DESCRIPTION
0	Filter B Odd-Tap Interleave Mode	0: Odd-Tap Interleave Mode Disabled 1: Odd-Tap Interleave Mode Enabled
4-1	Filter B I/D Register Length	0000: 1 Register 0001: 2 Registers 0010: 3 Registers 0011: 4 Registers 0100: 5 Registers 0101: 6 Registers 0110: 7 Registers 0111: 8 Registers 1000: 9 Registers 1001: 10 Registers 1010: 11 Registers 1011: 12 Registers 1100: 13 Registers 1101: 14 Registers 1110: 15 Registers 1111: 16 Registers
5	Filter B Tap Number	0 : Even Number of Taps 1: Odd Number of Taps
6	Filter B Data Reversal	0 : Data Reversal Enabled 1: Data Reversal Disabled
11-7	Reserved	Must be set to "0"

and COUT11-0/ROUT3-0 (Dual Filter Mode). The Filter A/B select circuitry determines which 16 bits are passed (see Table 1). The Filter A/B select registers control the Filter A/B select circuitry. There are sixteen Filter A and B select registers. The Filter A select registers are used for the overall filter (Single Filter Mode) or Filter A (Dual Filter Mode). The Filter B select registers are used for Filter B (Dual Filter Mode). Each select register is 5 bits wide and user-programmable. RSLA 3 -- determines which of the sixteen

Filter A select registers are used in the Filter A select circuitry. RSLB3-0 determines which of the sixteen Filter B select registers are used in the Filter B select circuitry. A value of 0 on RSLA/RSLB3-0 selects Filter A/B select register 0. A value of 1 selects Filter A/B select register 1 and so on. RSLA/RSLB3-0 may be changed every clock cycle if desined. This allows the 16 -bit window to be changed every clock cycle. This is useful when filtering interleaved data. Select register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Output Limiting

An output limiting function is provided for the overall filter, Filter A, and Filter B outputs. The Filter A limiting circuitry is used to limit the overall filter output (Single Filter Mode) and the Filter A output (Dual Filter Mode). The Filter B limiting circuitry is used to limit the Filter B output (Dual Filter Mode). The Filter A and B limit registers determine the valid range of output values for the Filter A and B limiting circuitry respectively. There are sixteen 32-bit user-programmable limit registers for both Filters A and B. The Filter A limit registers are used for the overall filter (Single Filter Mode) or Filter A (Dual Filter Mode). The Filter B limit registers are used for Filter B (Dual Filter Mode). RSLA3-0 determines which of the sixteen Filter A limit registers are used in the Filter A limit circuitry. RSLB3-0 determines which of the sixteen Filter B limit registers are used in the Filter B limit circuitry. A value of 0 on RSLA/RSLB3-0 selects Filter A/B limit register 0 . A value of 1 selects Filter A / B limit register 1 and so on. Each limit register contains an upper and lower limit value. If the value fed to the limiting circuitry is less than the lower limit, the lower limit value is passed as the filter output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit value is passed as the filter output. Bit 1 and 0 in Configuration Register 4 enable and disable Filter A and B limiting respectively. RSLA/RSLB3-0 may be changed every clock cycle if desired. This allows the limit range to be changed every clock cycle. This is useful when filtering interleaved data. When loading limit values into the device, the upper limit must be greater than the lower limit. Limit register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Coefficient Banks

The coefficient banks store the coefficients which feed into the multipliers in Filters A and B. There

LF3320
is a separate bank for each multiplier. Each bank can hold 256 12-bit coefficients. The banks are loaded using an LF Interface ${ }^{\mathrm{TM}}$. There is a separate LF Interface ${ }^{\mathrm{TM}}$ for the Filter A and B banks. Coefficient bank loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Configuration and Control Registers

The configuration registers determine how the LF3320 operates. Tables 2 through 7 show the formats of the six configuration registers. There are three types of control registers: round, select, and limit. There are sixteen round registers for Filter A and sixteen for Filter B. Each register is 32 bits wide. RSLA3-0 and RSLB3-0 determine which Filter A and B round registers respectively are used for rounding.

Table 6.		
Configuration Register 4 - Address 204H		
BITS	FUNCTION	DESCRIPTION
0	Filter B Limit Enable	$0:$ Limiting Disabled $1:$ Limiting Enabled
1	Filter A Limit Enable	$0:$ Limiting Disabled $1:$ Limiting Enabled
$11-2$	Reserved	Must be set to "0"

Table 7. Configuration Register 5 - Address 205H

BITS	FUNCTION	DESCRIPTION
0	Cascade Mode	$0:$ Last In Line $1:$ First or Middle in Line
1	Single/Dual Filter Mode	$0:$ Single Filter Mode $1:$ Dual Filter Mode
2	Filter B Input	$0:$ RIN $11-0$ $1:$ DIN $11-0$
3	Output Adder Control	$0:$ Filter A + Filter B $1:$ Filter A + Filter B (Filter B Scaled by 2-12)
$11-4$	Reserved	Must be set to "0"

Figure 11. Coefficient Bank Loading Sequence

Wt: Coefficient Set 1 written to coefficient banks during this clock cycle.
W2: Coefficient Set 2 written to coefficient banks during this clock cycle.
W3: Coefficient Set 3 written to coefficient banks during this clock cycle.

Figure 12. Configuration/Control Register Loading Sequence

W1: Configuration Register loaded with new data on this rising clock edge.
W2: Select Register loaded with new data on this rising clock edge.
W3: Round Register loaded with new data on this rising clock edge.
W4: Limit Register loaded with new data on this rising clock edge.

Table 8．CFAVCFB11－9 Decode	
11109	DESCRIPTION
000	Coefficient Banks
0001	Configuration Registers
0 0 1 0	Filter A Select Registers
$\begin{array}{llll}0 & 1 & 1\end{array}$	Filter B Select Registers
100	Filter A Round Registers
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	Filter B Round Registers
110	Filter A Limit Registers
$\begin{array}{lll}1 & 1 & 1\end{array}$	Filter B Limit Registers

There are sixteen select registers for Filter A and sixteen for Filter B．Each register is 5 bits wide．RSLA3－0 and RSLB3－0 determine which Filter A and B select registers respectively are used in the select circuitry．

There are sixteen limit registers for Filter A and sixteen for Filter B．Each register is 32 bits wide and stores both an upper and lower limit value．The lower limit is stored in bits 15－0 and the upper limit is stored in bits 31－16． RSLA $3-0$ and RSLB3－0 determine which Filter A and B limit registers respec－ tively are used for limiting when limiting is enabled．Configuration and control register loading is dis－ cussed in the LF Interface ${ }^{T M}$ section．

LF Interface ${ }^{\text {TM }}$

The Filter A and B LF Interfaces ${ }^{\mathrm{TM}}$ are used to load data into the Filter A and B coefficient banks respectively．They are also used to load data into the configuration and control registers．
The following section describes how the Filter A LF Interface ${ }^{\mathrm{TM}}$ works．The Filter A and B LF Interfaces ${ }^{\text {TM }}$ are identical in function．If $\overline{\mathrm{LDA}}$ and CFA11－0 are replaced with $\overline{\mathrm{LDB}}$ and CFB11－0，the following section will describe how the Filter B LF Interface ${ }^{T M}$ works．
$\overline{\mathrm{LDA}}$ is used to enable and disable the Filter A LF Interface ${ }^{\text {TM }}$ ．When $\overline{\text { LDA }}$ goes LOW，the Filter A LF Interface ${ }^{\mathrm{TM}}$ is enabled for data input．The first value fed into the interface on CFA11－0 is an address which determines what the interface is going to load．The

Table 9．Fltr．A Round Registers	
REGISTER	ADDRESS（HEX）
0	800
1	801
\vdots	\vdots
14	80 E
15	80 F

Table 10．Fltr．A Select Registers	
REGISTER	ADDRESS（HEX）
0	400
1	401
\vdots	\vdots
14	40 E
15	40 F

Table 11．Fltr．A Limit Registers	
Register	address（Hex）
0	C00
1	C01
\vdots	\vdots
14	COE
15	COF

three most significant bits（CFA11－9） determine if the LF Interface ${ }^{\mathrm{TM}}$ will load coefficient banks or configura－ tion／control registers（see Table 8）． The nine least significant bits（CFA8－0） are the address for whatever is to be loaded（see Tables 9 through 14）．For example，to load address 15 of the Filter A coefficient banks，the first data value into the LF Interface ${ }^{\mathrm{TM}}$ should be 00 FH ．To load Filter A limit register 10 ，the first data value should be COAH．The first address value should be loaded into the interface on the same clock cycle that latches the HIGH to LOW transition of $\overline{\text { LDA }}$（see Figures 11 and 12）．
The next value（s）loaded into the interface are the data value（s）which will be stored in the bank or register defined by the address value．When loading coefficient banks，the interface will expect eight values to be loaded

Table 12．Fltr．B Round Registers				
REGISTER	ADDRESS（HEX）			
0	A00			
1	A01			
\vdots	\vdots			
14	AOE			
15	AOF		TABLE 13．FLtr．B SELECT REGISTERS	
:---:	:---:			
REGISTER	ADDRESS（HEX）			
0	600			
1	601			
\vdots	\vdots			
14	$60 E$			
15	$60 F$			

Table 14．Fltr．B Limit Registers	
REGister	AdDress（HEX）
0	E00
1	E01
\vdots	\vdots
14	EOE
15	EOF

into the device after the address value． The eight values are coefficients 0 through 7．When loading configura－ tion or select registers，the interface will expect one value after the address value．When loading round or limit registers，the interface will expect four values after the address value．Fig－ ures 11 and 12 show the data loading sequences for the coefficient banks and configuration／control registers．

Table 15 shows an example of loading data into the coefficient banks．The following data values are written into address 10 of coefficient banks 0 through $7: 210 \mathrm{H}, 543 \mathrm{H}, \mathrm{C} 76 \mathrm{H}, 9 \mathrm{E} 3 \mathrm{H}$ ， $701 \mathrm{H}, 832 \mathrm{H}, \mathrm{F} 20 \mathrm{H}, 143 \mathrm{H}$ ．Table 16 shows an example of loading data into a configuration register．Data value 003 H is written into Configura－ tion Register 4．Table 17 shows an example of loading data into a round register．Data value 7683F4A2H is

LF3320
written into Filter A round register 12. Table 18 shows an example of loading data into a select register. Data value 00 FH is loaded into Filter A select register 2. Table 19 shows an example of loading data into Filter B limit register 7. Data value 3 B 60 H is loaded as the lower limit and 72A4H is loaded as the upper limit.

It takes 9 clock cycles to load S coefficient sets into the device. Therefore, it takes 2304 clock cycles to load all 256 coefficient sets. Assuming an 80 MHz clock rate, all 256 coefficient sets can be updated in $28.8 \mu \mathrm{~s}$, which is well within vertical blanking time.

It takes 5 S clock cycles to load S round or limit registers. Therefore, it takes 320 clock cycles to update all round and limit registers (both Filters A and B). Assuming an 80 MHz clock rate, all Filter A and B round/limit registers can be updated in $4.0 \mu \mathrm{~s}$.

The coefficient banks and configuration/ control registers are not loaded with data until all data values for the specified address are loaded into the LF Interface ${ }^{\mathrm{TM}}$. In other words, the coefficient banks are not written to until all eight coefficients have been loaded into the LF Interface ${ }^{\mathrm{TM}}$. A round register is not written to until all four data values are loaded.

After the last data value is loaded, the interface will expect a new address value on the next clock cycle. After the next address value is loaded, data loading will begin again as previously discussed. As long as data is loaded into the interface, LDA must remain LOW. After all desired coefficient banks and configuration/control registers are loaded with data, the LF Interface ${ }^{T M}$ must be disabled. This is done by setting $\overline{\text { LDA }}$ HIGH on the clock cycle after the clock cycle which latches the last data value. It is important that the LF Interface ${ }^{\mathrm{TM}}$ remain disabled when not loading data into it.

Table 15. Coefficient Bank Loading Format

| | CFA/B11 | CFA/B10 | CFA/B9 | CFA/B8 | CFA/B7 | CFA/B6 6 | CFA/B5 | CFA/B4 | CFA/B3 | CFA/B2 | CFA/B1 | CFA/B0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st Word - Address | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 2nd Word - Bank 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 3rd Word - Bank 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 4th Word - Bank 2 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| 5th Word - Bank 3 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 6th Word - Bank 4 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 7th Word - Bank 5 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 8th Word - Bank 6 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9th Word - Bank 7 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |

Table 16. Configuration Register Loading Format

	CFA/B11	CFA/B 10	CFA/B9	CFA/B8	CFA/B7	CFA/B6	CFA/B5	CFA/B4	CFA/B3	CFA/B2	CFA/B1	CFA/B0
1st Word - Address	0	0	1	0	0	0	0	0	0	1	0	0
2nd Word - Data	0	0	0	0	0	0	0	0	0	0	1	1

	CFA/B11	CFA/B10	CFA/B9	CFA/B8	CFA/B7	CFA/B6	CFA/B5	CFA/B4	CFA/B3	CFA/B2	CFA/B1	CFA/B0
1st Word - Address	1	0	0	0	0	0	0	0	1	1	0	0
2nd Word- Data	R	R	R	R	1	0	1	0	0	0	1	0^{*}
3rd Word - Data	R	R	R	R	1	1	1	1	0	1	0	0
4th Word - Data	R	R	R	R	1	0	0	0	0	0	1	1
5th Word - Data	R	R	R	R	0**	1	1	1	0	1	1	0

$R=$ Reserved. Must be set to " 0 ".

* This bit represents the LSB of the Round Register.
** This bit represents the MSB of the Round Register.

The Filter A coefficient banks may only be loaded with the Filter A LF Interface ${ }^{\text {TM }}$ and the Filter B coefficient banks may only be loaded with the Filter B LF Interface ${ }^{\text {TM }}$. The configuration and control registers may be loaded with either the Filter A or B LF Interfaces ${ }^{\text {TM }}$. Since both LF Interfaces ${ }^{\mathrm{TM}}$ operate independently of each other, both LF Interfaces ${ }^{\mathrm{TM}}$ can load data into their respective coeffi-
cient banks at the same time. Or, one LF Interface ${ }^{\mathrm{TM}}$ can load the configuration/control registers while the other loads it's respective coefficient banks. If both LF Interfaces ${ }^{\text {TM }}$ are used to load a configuration or control register at the same time, the Filter B LF Interface ${ }^{\mathrm{TM}}$ will be given priority over the Filter A LF Interface ${ }^{\text {TM }}$. For example, if the Filter A LF Interface ${ }^{\mathrm{TM}}$ attempts to load data into a configura-
tion register at the same time that the Filter B LF Interface ${ }^{\mathrm{TM}}$ attempts to load a Filter A round register, the Filter B LF Interface ${ }^{\text {TM }}$ will be allowed to load the round register while the Filter A LF Interface ${ }^{\mathrm{TM}}$ will not be allowed to load the configuration register. However, the Filter A LF Interface ${ }^{\mathrm{TM}}$ will continue to function as if the write occurred.

Table 18. Select Register Loading Format

	CFA/B11	CFA/B10	CFA/B9	CFA/B8	CFA/B7	CFA/B6	CFA/B5	CFA/B4	CFA/B3	CFA/B2	CFA/B1	CFA/B0
1st Word - Address	0	1	0	0	0	0	0	0	0	0	1	0
2nd Word - Data	0	0	0	0	0	0	0	0	1	1	1	1

	CFA/B11	CFA/B10	CFA/B9	CFA/B8	CFA/B7	CFA/B6	CFA/B5	CFA/B4	CFA/B3	CFA/B2	CFA/B1	CFA/B0
1st Word - Address	1	1	1	0	0	0	0	0	0	1	1	1
2nd Word- Data	R	R	R	R	0	1	1	0	0	0	0	0
3rd Word - Data	R	R	R	R	0^{*}	0	1	1	1	0	1	1
4th Word - Data	R	R	R	R	1	0	1	0	0	1	0	0
5th Word - Data	R	R	R	R	0**	1	1	1	0	0	1	0

$\mathrm{R}=$ Reserved. Must be set to " 0 ".

* This bit represents the MSB of the Lower Limit.
** This bit represents the MSB of the Upper Limit.

Contact factory for additional information．

LF3330Vertical Digital Image Filter

FEATURES

- 80 MHz Data Rate
- 12-bit Data and Coefficients
- On-board Memory for 256 Coefficient Sets
\square LF Interface ${ }^{\mathrm{TM}}$ Allows All 256 Coefficient Sets to be Updated Within Vertical Blanking
- Selectable 16-bit Data Output with User-Defined Rounding and Limiting
\square Seven 3K x 12-bit, Programmable Two-Mode Line Buffers
- 8 Filter Taps
- Cascadable for More Filter Taps
- Supports Interleaved Data Streams
3.3 Volt Power Supply
- 5 Volt I/O Tolerant
- Available 100% Screened to MIL-STD-883, Class B

DESCRIPTION

The LF3330 filters digital images in the vertical dimension at real-time video rates. The input and coefficient data are both 12 bits and in two's complement format. The output is also in two's complement format and may be rounded to 16 bits.
The filter is an 8-tap FIR filter with all required line buffers contained onchip. The line buffers can store video lines with lengths from 4 to 3076 pixels.
Multiple LF3330s can be cascaded together to create larger vertical filters.

Due to the length of the line buffers, interleaved data can be fed directly into the device and filtered without
separating the data into individual data streams. The number of interleaved data sets that the device can handle is limited only by the length of the on-chip line buffers. If the interleaved video line has 3076 data values or less, the filter can handle it.

The LF3330 contains enough on-board memory to store 256 coefficient sets. The LF Interface ${ }^{\text {TM }}$ allows all 256 coefficient sets to be updated within vertical blanking.
Selectable 16-bit data output with user-defined rounding and limiting minimizes the constraints put on coefficient sets for various filter implementations.

LF3330 Block Diagram

Figure 1．LF3330 Functional Block Diagram

LF3330

SIGNAL DEFINITIONS

Power

VCC and GND
+3.3 V power supply. All pins must be connected.

Clock

CLK — Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

DIN11-0 — Data Input
DIN11-0 is the 12-bit registered data input port. Data is latched on the rising edge of CLK.

CF11-0 — Coefficient Input

CF11-0 is used to load data into the coefficient banks and configuration/ control registers. Data present on CF11-0 is latched into the LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when LD is LOW (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

CA7-0 — Coefficient Address

CA7-0 determines which row of data in the coefficient banks is fed to the multipliers. CA7-0 is latched into the Coefficient Address Register on the rising edge of CLK when CEN is LOW.

Outputs

DOUT15-0 — Data Output
DOUT15-0 is the 16-bit registered data output port.

COUT11-0 - Cascade Data Output

COUT11-0 is a 12 -bit cascade output port. COUT11-0 on one device should be connected to DIN11-0 of another LF3330.

Figure 2. Input Formats.											
Input Data					Coefficient Data						
$\begin{array}{\|lllll} \hline 11 & 10 & 9 & 2 & 1 \\ \hline-2^{11} & 2^{10} & 2^{9} \\ \text { (Sign) } \end{array}$					$\begin{array}{\|l} \hline 11 \\ \hline 10 \\ -2^{0} 2^{-1} \\ (\text { Sign }) \end{array}$						
Table 1. Output Formats											
SLCT4-0	S_{15}	S_{14}	S_{13}		S8	S_{7}		.	S_{2}	S_{1}	So
00000	F_{15}	F_{14}	F_{13}		F8	F_{7}			F_{2}	F_{1}	Fo
00001	F_{16}	F_{15}	F_{14}		F9	F_{8}			F_{3}	F_{2}	F_{1}
00010		F_{16}	F_{15}		F_{10}	F9			F4	F_{3}	F2
-	-	-	-		-	-			-	-	
-			-		-	-			-	.	
01110		F_{28}	F_{27}		F_{22}	F_{21}		.	F_{16}	F_{15}	F_{14}
01111		F_{29}	F_{28}		F_{23}				F_{17}	F_{16}	F_{15}
10000		F30	F_{29}		F_{24}	F_{23}			F_{18}	F_{17}	F_{16}

Controls

$\overline{L D}$ - Coefficient Load

When $\overline{\mathrm{LD}}$ is LOW, data on CF_{11-0} is latched into the LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK. When $\overline{\mathrm{LD}}$ is HIGH, data can not be latched into the LF Interface ${ }^{\mathrm{TM}}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of $\overline{\text { LD }}$ is required in order for the input circuitry to function properly. Therefore, $\overline{\mathrm{LD}}$ must be set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

$\overline{C E N}$ - Coefficient Address Enable

When $\overline{\mathrm{CEN}}$ is LOW, data on CA7-0 is latched into the Coefficient Address Register on the rising edge of CLK. When CEN is HIGH, data on CA7-0 is not latched and the register's contents will not be changed.

Figure 3. Accumulator Format
Accumulator Output

ACC-Accumulator Control

When ACC is HIGH , the accumulator is enabled for accumulation and the accumulator output register is disabled for loading. When ACC is LOW, no accumulation is performed and the accumulator output register is enabled for loading. ACC is latched on the rising edge of CLK.

SHEN — Shift Enable

SHEN enables or disables the loading of data into the input/cascade registers and the line buffers. When SHEN is LOW, data is loaded into the input/cascade registers and shifted through the line

LF3330

Table 2. Configuration Register $\mathbf{0}$ - Address 200H		
BITS	FUNCTION	DESCRIPTION
$11-0$	Line Buffer Length	See Line Buffer Description Section

Table 3.		Configuration Register 1 - Address 201H	
Bits	FUNCTION	DESCRIPTION	
0	Line Buffer Mode	$0:$ Delay Mode $1:$ Recirculate Mode	
1	Line Buffer Load	$0:$ Normal Load $1: ~ P a r a l l e l ~ L o a d ~$	
$11-2$	Reserved	Must be set to " 0 "	

Table 4.		
Configuration Register $\mathbf{2}$ - Address 202H		
0	FUNCTION	DESCRIPTION
$11-1$	Reserved Enable	$0:$ Limiting Disabled $1:$ Limiting Enabled

Table 5.		
Configuration Register 3 - Address 203H		
0	FUNCTION	DESCRIPTION
$11-1$	Cascade Mode	$0:$ First Device $1:$ Cascaded Device

buffers on the rising edge of CLK. When SHEN is HIGH, data can not be loaded into the input/cascade registers or shifted through the line buffers and thier contents will not be changed.

RSL3-0 — Round/Select/Limit Control

RSL3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the round/select/limit circuitry. A value of 0 on RSL3-0 selects round/select/ limit register 0 . A value of 1 selects round/select/limit register 1 and so on. RSL3-0 is latched on the rising edge of CLK (see the round, select, and limit sections for a complete discussion).

$\overline{O E}$ —Output Enable

When $\overline{\mathrm{OE}}$ is LOW, DOUT $15-0$ is enabled for output. When $\overline{\mathrm{OE}}$ is HIGH , DOUT15-0 is placed in a high-impedance state.

FUNCTIONALDESCRIPTION

Line Buffers

The maximum delay length of each line buffer is 3076 cycles and the minimum is 4 cycles. Configuration Register 0 (CR0) determines the delay length of the line buffers. The line buffer length is equal to the value of $C R 0$ plus 4 . A value of 0 for CRo sets the line buffer length to 4 . A value of 3072 for CR0 sets the line buffer length to 3076. Any values for CR0 greater than 3072 are not valid.
The line buffers have two modes of operation: delay mode and recirculate mode. Bit 0 of Configuration Register 1 determines which mode the line buffers are in. In delay mode, the data input to the line buffer is delayed by an amount determined by CRO. In recirculate mode, the output of the line buffer is routed back to the input of the line buffer allowing the line buffer contents to be read multiple times.

Figure 4. RSL Circuitry

Bit 1 of Configuration Register 1 allows the line buffers to be loaded in parallel. When Bit 1 is " 1 ", the input register (DIN11-0) loads all seven line buffers in parallel. This allows all the line buffers to be preloaded with data in the amount of time it normally takes to load a single line buffer.

Interleaved Data

The LF3330 is capable of handling interleaved data. The number of data sets it can handle is determined by the number of data values contained in a video line. If the interleaved video line has 3076 data values or less, the LF3330 can handle it no matter how many data sets are interleaved together.

LF3330

Cascading

A cascade port is provided to allow cascading of multiple devices for more filter taps (see Figure 5). COUT11-0 of one device should be connected to DIN11-0 of another device. As many LF3330s as desired may be cascaded together. However, the outputs of the LF3330s must be added together with external adders.

The first line buffer on a cascaded device must have its length shortened by two delays. This is to account for the added delays of the input register on the device and the cascade output register from the previous LF3330. If Bit 0 of Configuration Register 3 is set to " 1 ", the length of the first line buffer will be reduced by two. This will make its effective length the same as the other line buffers on the device. If Bit 0 of Configuration Register 3 is set to " 0 ", the length of the first line buffer will be the same as the other line buffers. When cascading devices, the first LF3330 should have Bit 0 of Configuration Register 3 set to " 0 ". Any LF3330s cascaded after the first LF3330 should have Bit 0 of Configu-
ration Register 3 set to " 1 ". When not cascading, Bit 0 of Configuration Register 3 should be set to " 0 ".

It is important to note that the first multiplier on all cascaded devices should not be used. This is because the first multiplier does not have a line buffer in front of it. The coefficient value sent to the first multiplier on a cascaded device should be " 0 ".

Rounding

The filter output may be rounded by adding the contents of one of the sixteen round registers to the filter output (see Figure 4). Each round register is 32 bits wide and userprogrammable. This allows the filter's output to be rounded to any precision required. Since any 32-bit value may be programmed into the round registers, the device can support complex rounding algorithms as well as standard Half-LSB rounding. RSL3-0 determines which of the sixteen round registers are used in the rounding operation. A value of 0 on RSL3-0 selects round register 0 . A value of 1 selects round register 1 and so on.

RSL3-0 may be changed every clock cycle if desired. This allows the rounding algorithm to be changed every clock cycle. This is useful when filtering interleaved data. If rounding is not desired, a round register should be loaded with 0 and selected as the register used for rounding. Round register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Output Select

The word width of the filter output is 32 bits. However, only 16 bits may be sent to DOUT15-0. The select circuitry determines which 16 bits are passed (see Table 1). There are sixteen select registers which control the select circuitry. Each select register is 5 bits wide and userprogrammable. RSL3-0 determines which of the sixteen select registers are used in the select circuitry. Select register 0 is chosen by loading a 0 on RSL3-0. Select register 1 is chosen by loading a 1 on RSL3-0 and so on. RSL3-0 may be changed every clock cycle if desired. This allows the 16 -bit window to be changed every clock cycle. This is useful when filtering interleaved data. Select register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Figure 5. Multiple LF3330s Cascaded Together

Limiting

An output limiting function is provided for the output of the filter. The limit registers determine the valid range of output values when limiting is enabled (Bit 0 in Configuration Register 2). There are sixteen 32-bit limit registers. RSL3-0 determines which limit register is used during the limit operation. A value of 0 on RSL3-0 selects limit register 0 . A value of 1 selects limit register 1 and so on. Each limit register contains both an upper and lower limit value. If the value fed to the limiting circuitry is less than the lower limit, the lower limit value is passed as the filter output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit value is passed as the filter output. RSL3-0 may be changed every clock cycle if desired. This allows the limit range to be changed every clock
cycle. This is useful when filtering interleaved data. When loading limit values into the device, the upper limit must be greater than the lower limit. Limit register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Coefficient Banks

The coefficient banks store the coefficients which feed into the multipliers in the filter. There is a separate bank for each multiplier. Each bank can hold 256 12-bit coefficients. The banks are loaded using the LF Interface ${ }^{\mathrm{TM}}$. Coefficient bank loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Configuration and Control Registers

The configuration registers determine how the LF3330 operates. Tables 2 through 5 show the formats of the four configuration registers. There are
three types of control registers: round, select, and limit. There are sixteen round registers. Each round register is 32 bits wide. RSL3-0 determines which round register is used for rounding.
There are sixteen select registers. Each select register is 5 bits wide. RSL3-0 determines which select register is used for the select circuitry.

There are sixteen limit registers. Each limit register is 32 bits wide and stores both an upper and lower limit value. The lower limit is stored in bits $15-0$ and the upper limit is stored in bits 31-16. RSL3-0 determines which limit register is used for limiting when limiting is enabled. Configuration and control register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Figure 6. Coefficient Bank Loading Sequence

W1: Coefficient Set 1 written to coefficient banks during this clock cycle. W2: Coefficient Set 2 written to coefficient banks during this clock cycle. W3: Coefficient Set 3 written to coefficient banks during this clock cycle.

Figure 7. Configuration/Control Register Loading Sequence

[^2]LF3330

LF Interface ${ }^{T M}$

The LF Interface ${ }^{\mathrm{TM}}$ is used to load data into the coefficient banks and configuration/control registers. $\overline{\mathrm{LD}}$ is used to enable and disable the LF Interface ${ }^{\mathrm{TM}}$. When $\overline{\text { LD }}$ goes LOW, the LF Interface ${ }^{\mathrm{TM}}$ is enabled for data input. The first value fed into the interface on CF11-0 is an address which determines what the interface is going to load. The three most significant bits (CF11-9) determine if the LF Interface ${ }^{\mathrm{TM}}$ will load coefficient banks or configuration/control registers (see Table 6). The nine least significant bits (CF8-0) are the address for whatever is to be loaded (see Tables 7 through 9). For example, to load address 15 of the coefficient banks, the first data value into the LF Interface ${ }^{\text {TM }}$ should be 00 FH . To load limit register 10 , the first data value should be E0AH. The first address value should be loaded into the interface on the same clock cycle that latches the HIGH to LOW transition of $\overline{L D}$ (see Figures 6 and 7).
The next value(s) loaded into the interface are the data value(s) which will be stored in the bank or register

TABLE 6. CF11-9 Decode			
11	10	9	DESCRIPTION
0	0	0	Coefficient Banks
0	0	1	Configuration Registers
0	1	1	Select Registers
1	0	1	Round Registers
1	1	1	Limit Registers

defined by the address value. When loading coefficient banks, the interface will expect eight values to be loaded into the device after the address value. The eight values are coefficients 0 through 7. When loading configuration or select registers, the interface will expect one value after the address value. When loading round or limit registers, the interface will expect four values after the address value. Figures 6 and 7 show the data loading sequences for the coefficient banks and configuration/control registers.
Table 10 shows an example of loading data into the coefficient banks. The following data values are written into address 10 of coefficient banks 0 through $7: 210 \mathrm{H}, 543 \mathrm{H}, \mathrm{C} 76 \mathrm{H}, 9 \mathrm{E} 3 \mathrm{H}$, $701 \mathrm{H}, 832 \mathrm{H}, \mathrm{F} 20 \mathrm{H}, 143 \mathrm{H}$. Table 11 shows an example of loading data

TAble 7. Round Registers	
REGISTER	ADDRESS (HEX)
0	A00
1	A01
\vdots	\vdots
14	AOE
15	AOF

Table 8. Select Registers	
Register	ADDRESS (HEX)
0	600
1	601
\vdots	\vdots
14	60 E
15	60 F

Table 9. Limit Registers	
REGISTER	ADDRESS (HEX)
0	E00
1	E01
\vdots	\vdots
14	EOE
15	EOF

Table 10. Coefficient Bank Loading Format

	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
1st Word - Address	0	0	0	0	0	0	0	0	1	0	1	0
2nd Word - Bank 0	0	0	1	0	0	0	0	1	0	0	0	0
3rd Word - Bank 1	0	1	0	1	0	1	0	0	0	0	1	1
4th Word - Bank 2	1	1	0	0	0	1	1	1	0	1	1	0
5th Word - Bank 3	1	0	0	1	1	1	1	0	0	0	1	1
6th Word - Bank 4	0	1	1	1	0	0	0	0	0	0	0	1
7th Word - Bank 5	1	0	0	0	0	0	1	1	0	0	1	0
8th Word - Bank 6	1	1	1	1	0	0	1	0	0	0	0	0
9th Word - Bank 7	0	0	0	1	0	1	0	0	0	0	1	1

Table 11. Configuration Register Loading Format

	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
1st Word - Address	0	0	1	0	0	0	0	0	0	1	0	0
2nd Word - Data	0	0	0	0	0	0	0	0	0	0	1	1

LF3330
into a configuration register. Data value 003 H is written into Configuration Register 4. Table 12 shows an example of loading data into a round register. Data value 7683F4A2H is written into round register 12. Table 13 shows an example of loading data into a select register. Data value 00 FH is loaded into select register 2. Table 14 shows an example of loading data into limit register 7. Data value 3B60H is loaded as the lower limit and 72 A 4 H is loaded as the upper limit.

It takes 9 clock cycles to load S coefficient sets into the device. Therefore, it takes 2304 clock cycles to load all 256 coefficient sets. Assuming an 80 MHz clock rate, all 256 coefficient
sets can be updated in $28.8 \mu \mathrm{~s}$, which is well within vertical blanking time. It takes 5 S clock cycles to load S round or limit registers. Therefore, it takes 160 clock cycles to update all round and limit registers. Assuming an 80 MHz clock rate, all round/limit registers can be updated in $2.0 \mu \mathrm{~s}$.

The coefficient banks and configuration/control registers are not loaded with data until all data values for the specified address are loaded into the LF Interface ${ }^{\mathrm{TM}}$. In other words, the coefficient banks are not written to until all eight coefficients have been loaded into the LF Interface ${ }^{\text {TM }}$. A round register is not written to until all four data values are loaded.

After the last data value is loaded, the interface will expect a new address value on the next clock cycle. After the next address value is loaded, data loading will begin again as previously discussed. As long as data is loaded into the interface, $\overline{\mathrm{LD}}$ must remain LOW. After all desired coefficient banks and configuration/control registers are loaded with data, the LF Interface ${ }^{\mathrm{TM}}$ must be disabled. This is done by setting $\overline{\text { LD }}$ HIGH on the clock cycle after the clock cycle which latches the last data value. It is important that the LF Interface ${ }^{\mathrm{TM}}$ remain disabled when not loading data into it.

TABLE 12. Round REGISTER LOADING FORMAT												
	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
1st Word - Address	1	0	1	0	0	0	0	0	1	1	0	0
2nd Word- Data	R	R	R	R	1	0	1	0	0	0	1	0^{*}
3rd Word - Data	R	R	R	R	1	1	1	1	0	1	0	0
4th Word - Data	R	R	R	R	1	0	0	0	0	0	1	1
5th Word - Data	R	R	R	R	$0^{* *}$	1	1	1	0	1	1	0

$\mathrm{R}=$ Reserved. Must be set to " 0 ".

* This bit represents the LSB of the Round Register.
** This bit represents the MSB of the Round Register.
Table 13. Select Register Loading Format

	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
1st Word - Address	0	1	1	0	0	0	0	0	0	0	1	0
2nd Word - Data	0	0	0	0	0	0	0	0	1	1	1	1

TABLE 14. Limit Register Loading Format												
	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
1st Word - Address	1	1	1	0	0	0	0	0	0	1	1	1
2nd Word- Data	R	R	R	R	0	1	1	0	0	0	0	0
3rd Word - Data	R	R	R	R	0^{*}	0	1	1	1	0	1	1
4th Word - Data	R	R	R	R	1	0	1	0	0	1	0	0
5th Word - Data	R	R	R	R	$0^{* *}$	1	1	1	0	0	1	0

[^3]
Contact factory for additional information.

High-Speed Image Filter with Coefficient RAM

FEATURES

- 80 MHz Data Input and Computation Rate
- Four 12×12-bit Multipliers with Individual Data and Coefficient Inputs
- Four 256×12-bit Coefficient Banks
- 32-bit Accumulator
\square Selectable 16-bit Data Output with User-Defined Rounding and LimitingTwo's Complement Operands
- 3.3 Volt Power Supply
$\square 5$ Volt I/O Tolerant
\square Package Styles Available:
- 120-pin Plastic Quad Flatpack
- 120-pin Ceramic PGA

DESCRIPTION

The LF3347 consists of an array of four 12×12-bit registered multipliers followed by two summers and a 32-bit accumulator. The LF3347 provides four 256×12-bit coefficient banks which are capable of storing 256 different sets of filter coefficients for the multiplier array. All multiplier data inputs are user accessible and can be updated every clock cycle with two's complement data. The pipelined architecture has fully registered input and output ports and an asynchronous three-state output enable control to simplify the design of complex systems.

A 32-bit accumulator allows cumulative word growth which may be internally rounded to 16 -bits. Output data is updated every clock cycle and may be held under user control. The data inputs/outputs and control inputs are registered on the rising edge of CLK. The Control/Coefficient Data Input, CC11-0, is registered on the rising edge of CCCLK.
The LF3347 is ideal for performing pixel interpolation in image manipulation and filtering applications. The LF3347 can perform a bilinear interpolation of an image (4-pixel kernels) at real-time video rateswhen

LF3347 Block Diagram

used with an image resampling sequencer. Largerkernels or more complex functions can be realized by utilizing multiple devices.
Unrestricted access to all data ports and addressable coefficient banks provides the LF3347 with considerable flexibility in applications such as digital filters, adaptive FIR filters, mixers, and other similar systems requiring highspeed processing.

SIGNAL DEFINITIONS

Power

VCCand GND
+3.3 V power supply. All pins must be connected.

Clocks

CLK—Master Clock

The rising edge of CLK strobes all enabled registers.

CCCLK—Coefficient/Control Clock

When $\overline{\mathrm{LD}}$ is LOW, the rising edge of CCCLK latches data on CC11-0 into the device.

Inputs

D111-0 - D411-0 - Data Input
D1-D4 are the 12-bit registered data input ports. Data is latched on the rising edge of CLK.

A7-0 - Row Address

A7-0 determines which row in the coefficient banks feed data to the multipliers. A7-0 is latched on the rising edge of CLK. When a new row address is loaded into the row address register, data from the coefficient banks will be latched into the multiplier input registers on the next rising edge of CLK.

Figure 1. Input Formats	
Data	Coefficient
Fractional Two's Complement	
$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}\right.$	$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}\right.$
_ Integer Two's Complement ___	
	11 10 9
	$\begin{array}{llll} -2^{11} 2^{10} & 2^{9} & 2^{2} & 2^{1} \end{array} 2^{0}$

SHIFT4-0	S15	S_{14}	S_{13}	. .	S_{8}	S_{7}	-••	S_{2}	S_{1}	So
00000	F_{15}	F_{14}	F_{13}	-••	F_{8}	F_{7}	\cdots	F2	F_{1}	Fo
00001	F_{16}	F15	F_{14}		F_{9}	F_{8}	. .	F3	F_{2}	F_{1}
00010	F17	F_{16}	F_{15}		F_{10}	F9	.	F4	F3	F_{2}
	-		-		-	-		-	-	
-	-	-	-		-	-		-	-	
01110	F_{29}	F28	F_{27}	-••	F_{22}	F_{21}	. \cdot	F16	F15	F_{14}
01111	F_{30}	F_{29}	F_{28}	\cdots	F_{23}	F_{22}	-••	F_{17}	F_{16}	F_{15}
10000	F_{31}	F30	F_{29}		F_{24}	F_{23}		F_{18}	F17	F_{16}

CC11-0 — Control/Coefficient Data Input

CC11-0 is used to load data into the coefficient banks and control registers. Data present on CC11-0 is latched on the rising edge of CCCLK when $\overline{\mathrm{LD}}$ is LOW.

Outputs

S15-0 - Data Output
S15-0 is the 16 -bit registered data output port.

Controls

$\overline{E N B 1}-\overline{E N B 4}$ - Data Input Enables
The ENBN ($\mathrm{N}=1,2,3$, or 4) inputs allow the DN registers to be updated on each clock cycle. When ENBN is LOW, data on DN11-0 is latched into the DN register on the rising edge of

CLK. When ENBN is HIGH, data on DN11-0 is not latched into the DN register and the register contents will not be changed.

ENBA - Row Address Input Enable

The ENBA input allows the row address register to be updated on each clock cycle. When ENBA is LOW, data on A7-0 is latched into the row address register on the rising edge of CLK. When ENBA is HIGH, data on A7-0 is not latched into the row address register and the register contents will not be changed.

$\overline{O E}$-Output Enable

When $\overline{\mathrm{OE}}$ is LOW, $\mathrm{S} 15-0$ is enabled for output. When $\overline{\mathrm{OE}}$ is $\mathrm{HIGH}, \mathrm{S} 15-0$ is placed in a high-impedance state.

LF3347

TABLE 2.								Register Formats		
Register	Load Address	Bits	Register Description	A7-0	SELRND3-0	SELLMT3-0				
CS0	000 H	$11-0$	Coefficient Set 0	00 H						
CS1	001 H	$11-0$	Coefficient Set 1	01 H						
\vdots	\vdots	\vdots	\vdots	\vdots						
CS255	0 FFH	$11-0$	Coefficient Set 255	FFH						
RND0	800 H	$31-0$	Rounding Register 0		0000					
RND1	801 H	$31-0$	Rounding Register 1		0001					
\vdots	\vdots	\vdots	\vdots		\vdots					
RND15	80 FH	$31-0$	RoundingRegister 15		1111					
LMT0	C00H	$31-16 / 15-0$	Upper/Lower Limit Register 0			0000				
LMT1	C01H	$31-16 / 15-0$	Upper/Lower Limit Register 0			0001				
\vdots	\vdots	\vdots		\vdots						
LMT15	C0FH	$31-16 / 15-0$	Upper / Lower Limit Register 15			1111				

$\overline{\text { OCEN }}$ —Output Clock Enable

When $\overline{\mathrm{OCEN}}$ is LOW, the output register is enabled for data loading. When OCEN is HIGH, output register loading is disabled and the register's contents will not change.

ACC-Accumulator Control

The ACC input determines whether internal accumulation is performed. If ACC is LOW, no accumulation is performed, the prior accumulatedsum is cleared, and the current sum of products is output. When ACC is HIGH, the emerging product is added to the sum of the previous products.

$\overline{L D}$-Load Control

$\overline{\mathrm{LD}}$ enables the loading of data into the coefficient banks and control registers (control registers are the round and limit registers). When $\overline{\mathrm{LD}}$ is LOW, data on $\mathrm{CC} 11-0$ is latched into the device on the rising edge of CCCLK. When $\overline{\mathrm{LD}}$ is HIGH, data cannot be loaded into the coefficient banks and control registers. When enabling the input circuitry for data loading, the LF3347 requires a HIGH to LOW transition of $\overline{\mathrm{LD}}$ in order tofunction properly. Therefore, $\overline{\mathrm{LD}}$ needs to be set HIGH immediately after
power up to ensure proper operation of theinput circuitry.

Ittakes fiveCCCLKclock cycles toload onecoefficientsetintothefour coefficient banks or toload one control register. When theinput circuitry is enabled ($\overline{\mathrm{LD}}$ goes LOW), the first valueloaded into the device on CC11-0 is an address which determines what will be loaded (see Table2). Thenext four values loaded on $\mathrm{CC} 11-0$ is the data to be loaded into the coefficientbanksorcontrol register (see Tables 3-5). After the last data value is loaded, another coefficient bank address or control registermay beloaded by feeding another address into $\mathrm{CC} 11-0$. When all desired coefficient banks and control registers areloaded, the inputcircuitry mustbedisabled by setting $\overline{\mathrm{LD}} \mathrm{HIGH}$.

SELRND3-0—Round Select

SELRND3-0 allows the user to select which rounding register will be used in the rounding circuit to round/offset the data.

SHIFT4-0 — Shift
SHIFT 4 -0 determines which 16-bits of the 32-bits from the accumulator are passed to the output (see Table 1).

SELLMT3-0—Limit Select
SELLMT3-0 allows the user to control which limiting register will be used in the limiting circuit to set the upper and lower limits on the data.

LMTEN-Limit Enable
When LMTEN is LOW, limiting is enabled and the selected limit register is used to determine the valid range of output values for the overall filter. When HIGH, limiting is disabled.

LF3347

FUNCTIONAL DESCRIPTION

CoefficientBanks

The LF3347 has four coefficient banks which feed coefficient values to the multipliers. Each bank can store 256 12-bit coefficients. In the example shown in Table 3, address 10 in coefficient banks 1 through 4 is loaded with the following values: $\mathrm{ABCH}, 789 \mathrm{H}, 456 \mathrm{H}, 123 \mathrm{H}$. The coefficient banks are not written to until all four coefficients have been loaded into the device.

A7-0 determines which coefficient set is sent to the multipliers. A value of 0 on A7-0 selects set 0 . A value of 1 selects set 1 and so on.

Rounding/Offset

Theaccumulatoroutputmayberounded before being sent to the output select section. Rounding is user-selectable and is accomplished by adding the contents of a round register to theaccumulatoroutput (seeFigure2). Thereare sixteen 32 -bit round registers. In the example in Table 4, round register 10 is loaded with 76543210 H . A round register is not written to until all four data values have beenloaded intothedevice.

SELRND3-0 determines which round register is used for rounding. A value of0 onSELRND3-0 selects round register 0 . A value of 1 selects round register 1 and so on. If rounding is not desired, a round register should be loaded with 0 and selected as the register for rounding.

OutputSelect

The filter output word width is 32 -bits. However, only 16-bits may be sent to the device output. SHIFT4-0 determines which 16 bits are passed to the device output (See Table 1).

OutputLimiting

An output limiting function is provided for the output of the filter. When limiting is enabled (LMTENLOW), thelimitregister selected with SELLMT3-0 determines the valid range of output values for the overall filter. There are sixteen 32-bit limit
registers. Each limit register contains both an upper and lower limit value. The lower limit is stored in bits $15-0$ and the upper limit is stored in bits $31-16$. If the value fed to the limiting circuitry is less than the lower limit, the lower limit is passed to the device output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit is passed to the device output. When loading limit values into the device, the upperlimit must
be greater than the lower limit. In the example shown in Table 4,limit register 15 is loaded with a lower limit of 0123 H and an upper limit of 7FEDH. Alimitregister is not written to until all four data values have been loaded into the device.

SELLMT3-0 determines which limit register is used forlimiting. A value of 0 on SELLMT3-0 selects limit register 0 . A value of 1 selects limit register 1 and so on.

	CC1	CC10	CC9	CC8	CC7	CC6	CC5	CC4	CC3	CC2	CC1	CC0
1st Word Address	0	0	0	0	0	0	0	0	1	0	1	0
2nd Word Bank 1	1	0	1	0	1	0	1	1	1	1	0	0
3rd Word Bank 2	0	1	1	1	1	0	0	0	1	0	0	1
4th Word Bank 3	0	1	0	0	0	1	0	1	0	1	1	0
5th Word Bank 4	0	0	0	1	0	0	1	0	0	0	1	1

	CC11	CC10	CC9	CC8	CC7	CC6	CC5	CC4	CC3	CC2	CC1	CC0
1st Word Address	1	0	0	0	0	0	0	0	1	0	1	0
2nd Word	R	R	R	R	0	0	0	1	0	0	0	*0
3rd Word	R	R	R	R	0	0	1	1	0	0	1	0
4th Word	R	R	R	R	0	1	0	1	0	1	0	0
5th Word	R	R	R	R	**	1	1	1	0	1	1	0

$R=$ Reserved. Must be set to " 0 ".

* This bit represents the LSB of the Round Register.
** This bit represents the MSB of the Round Register.

	CC_{11}	CC_{10}	CC9	CC8	CC7	CC6	CC5	CC4	CC_{3}	CC_{2}	CC1	CC0
1st Word Address	1	1	0	0	0	0	0	0	1	1	1	1
2nd Word	R	R	R	R	0	0	1	0	0	0	1	1
3rd Word	R	R	R	R	* 0	0	0	0	0	0	0	1
4th Word	R	R	R	R	1	1	1	0	1	1	0	1
5th Word	R	R	R	R	**0	1	1	1	1	1	1	1

[^4]LF3347

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground .. -0.5 V to +7.0 V
Input signal with respect to ground .. -0.5 V to 5.5 V
Signal applied to high impedance output ... -0.5 V to 5.5 V
Output current into low outputs
25 mA
Latchup current
$>400 \mathrm{~mA}$
ESD (MIL-STD-883D METHOD 3015.7)
$>2000 \mathrm{~V}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range(Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.00 \mathrm{~V} \leq \mathrm{Vcc} \leq 3.60 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$3.00 \mathrm{~V} \leq \mathrm{Vcc} \leq 3.60 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min}$., $\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL.	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
ICC1	Vcc Current, Dynamic	(Notes 5, 6)			150	mA
Icce	Vcc Current, Quiescent	(Note 7)			2	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF3347

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LF3347-					
		25		15		12	
		Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	25		15		12	
tPWL	Clock Pulse Width Low	10		7		5	
tPWH	Clock Pulse Width High	10		7		5	
ts	Input Setup Time	8		5		3	
t H	Input Hold Time	0		0		0	
tD	Output Delay		13		10		8
tols	Three-State Output Disable Delay (Note 11)		15		12		10
tena	Three-State Output Enable Delay (Note 11)		13		11		8

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	LF3347-					
		25		15		12	
		Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	25		15		12	
tPWL	Clock Pulse Width Low	10		7		5	
tPWH	Clock Pulse Width High	10		7		5	
ts	Input Setup Time	8		5		3	
th	Input Hold Time	0		0		0	
tD	Output Delay		13		10		8
tols	Three-State Output Disable Delay (Note 11)		15		12		10
tena	Three-State Output Enable Delay (Note 11)		13		11		8

Switching Waveforms: Data I/O

Comme	cial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tccerc	Control Coefficient Interface Cycle Time	25		15		12	
tccwl	Control Coefficient Clock Pulse Width Low	10		7		5	
tcCWH	Control Coefficient Clock Pulse Width High	10		7		5	
tccens	Control Coefficient Enable Setup Time	8		5		3	
tcCenh	Control Coefficient Enable Hold Time	0		0		0	
tccs	Control Coefficient Data Input Setup Time	8		5		5	
tcch	Control Coefficient Data Input Hold Time	0		0		0	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	LF3347-					
		25		15		12	
		Min	Max	Min	Max	Min	Max
tcccrc	Control Coefficient Interface Cycle Time	25		15		12	
tccwl	Control Coefficient Clock Pulse Width Low	10		7		5	
tccwh	Control Coefficient Clock Pulse Width High	10		7		5	
tCCENS	Control Coefficient Enable Setup Time	8		5		3	
tCCENH	Control Coefficient Enable Hold Time	0		0		0	
tccs	Control Coefficient Data Input Setup Time	8		5		5	
tcen	Control Coefficient Data Input Hold Time	0		0		0	

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . The device can withstand indefinite operation with inputs or outputs in the range of -0.5 V to +5.5 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actualtest conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
F =clock frequency
6. Tested with all outputs changing every cycle and no load, at a 30 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.

8. These parameters are guaranteed but not 100% tested.

9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures arerecommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground andVcC supplyplanes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages on a test fixture should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximumsince worst-caseoperation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.0 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured VoL with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{lot}=10 \mathrm{~mA}$

FEATURES

- 66 MHz Data and Computation Rate
\square Two Independent 8-Tap or Single 16-Tap FIR Filters
10-bit Data and Coefficient Inputs
- 32 Programmable Coefficient Sets
- Supports Interleaved Coefficient Sets
- User Programmable Decimation up to $16: 1$
- Maximum of 256 FIR Filter Taps, 16×16 2-D Kernels, or 10×20-bit Data and Coefficients
- Replaces Harris HSP43168
\square DECC SMD No. 5962-97504
- Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 100-pin Plastic Quad Flatpack
- 84-pin Ceramic PGA

DESCRIPTION

The LF43168 is a high-speed dual FIR filter capable of filtering data at realtime video rates. The device contains two FIR filters which may be used as two separate filters or cascaded to form one filter. The input and coefficient data are both 10-bits and can be in unsigned, two's complement, or mixed mode format.

The filter architecture is optimized for symmetric coefficient sets. When symmetric coefficient sets are used, each filter can be configured as an 8-tap FIR filter. If the two filters are cascaded, a 16-tap FIR filter can be implemented. When asymmetric coefficient sets are used, each filter is configured as a 4 -tap FIR filter. If both filters are cascaded, an 8-tap filter can
be implemented. The LF43168 can decimate the output data by as much as $16: 1$. When the device is programmed to decimate, the number of clock cycles available to calculate filter taps increases. When configured for 16:1 decimation, each filter can be configured as a 128-tap FIR filter (if symmetric coefficient sets are used). By cascading these two filters, the device can be configured as a 256-tap FIR filter.

There is on-chip storage for 32 different sets of coefficients. Each set consists of eight coefficients. Access to more than one coefficient set facilitates adaptive filtering operations. The 28 -bit filter output can be rounded from 8 to 19 bits.

LF43168 Block Diagram

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK — Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs
INA9-0 — Data Input (FIR Filter A)
INA9-0 is the 10 -bit registered data input port for FIR Filter A. INA9-0 can also be used to send data to FIR Filter B. Data is latched on the rising edge of CLK.

INB9-0 — Data Input (FIR Filter B)
INB9-0 is the 10-bit registered data input port for FIR Filter B. Data is latched on the rising edge of CLK. INB9-1 is also used as OUT8-0, the nine least significant bits of the data output port (see OUT27-0 section).

CIN9-0 — Coefficient/Control Data Input

 CIN9-0 is the data input port for the coefficient and control registers. Data is latched on the rising edge of $\overline{W R}$.
A8-0 - Coefficient/Control Address

A8-0 provides the write address for data on $\mathrm{CIN} 9-0$. Data is latched on the falling edge of $\overline{W R}$.
$\overline{W R}$-Coefficient/Control Write
The rising edge of $\overline{W R}$ latches data on CIN9-0 into the coefficient/control register addressed by A8-0.

CSEL4-0 — Coefficient Select

CSEL4-0 determines which set of coefficients is sent to the multipliers in both FIR filters. Data is latched on the rising edge of CLK.

Figure 2a. Input Formats

Data
 Coefficient

Fractional Unsigned

9	8	7	2	1	0							
2^{0}	2^{-1}	2^{-2}	2^{-7}	2^{-8}	2^{-9}		9	8	7	2	1	0
:---:	:---:	:---:	:---:	:---:	:---:							
2^{0}	2^{-1}	2^{-2}	2^{-7}	2^{-9}	2^{-9}							

(Sign)
(Sign)

Figure 2b. Output Formats

Fractional Two's Complement

27	26	25	2
-2^{9} 2^{8} (Sign)	2^{7}	0	
$2^{-16} 2^{-17} 2^{-18}$			

Outputs

OUT27-0 — Data Output

OUT $27-0$ is the 28 -bit registered data output port. OUT8-0 is also used as INB9-1, the nine most significant bits of the FIR Filter B data input port (see INB9-0 section). If both filters are configured for even-symmetric coefficients, and both input and coefficient data is unsigned, the filter output data will be unsigned. Otherwise, the output data will be in two's complement format.

Controls

$\overline{\text { SHFTEN }}$ - Shift Enable
When SHFTEN is LOW, data on INA9-0 and INB9-0 can be latched into the device and data can be shifted through the decimation registers. When SHFTEN is HIGH, data on INA9-0 and INB9-0 can not be latched into the device and data in the input and decimation registers is held. This signal is latched on the rising edge of CLK.
$\overline{F W R D}$ - Forward ALU Input
When $\overline{F W R D}$ is LOW, data from the forward decimation path is sent to the " A " inputs on the ALUs. When FWRD is HIGH, " 0 " is sent to the " A " inputs on the ALUs. This signal is latched on the rising edge of CLK.

$\overline{\text { RVRS }}$ - Reverse ALU Input

When $\overline{\mathrm{RVRS}}$ is LOW, data from the reverse decimation path is sent to the " B " inputs on the ALUs. When RVRS is HIGH, " 0 " is sent to the " B " inputs on the ALUs. This signal is latched on the rising edge of CLK.

$\overline{T X F R}$ - LIFO Transfer Control

When $\overline{\text { TXFR }}$ goes LOW, the LIFO sending data to the reverse decimation path becomes the LIFO receiving data from the forward decimation path, and the LIFO receiving data from the forward decimation path becomes the LIFO sending data to the reverse decimation path. The device must see a HIGH to LOW transition of TXFR in order to switch LIFOs. This signal is latched on the rising edge of CLK.

LF43168

ACCEN - Accumulate Enable

When ACCEN is HIGH, both accumulators are enabled for accumulation and writing to the accumulator output registers is disabled (the registers hold their values). When ACCEN goes LOW, accumulation is halted (by sending zeros to the accumulator feedback inputs) and writing to the accumulator output registers is enabled. This signal is latched on the rising edge of CLK.

MUX1-0 — Mux/Adder Control

MUX1-0 controls the Mux/Adder as shown in Table 3. Data is latched on the rising edge of CLK.

$\overline{O E L}$ - Output Enable Low

When $\overline{\mathrm{OEL}}$ is LOW, OUT8-0 is enabled for output and INB9-1 can not be used. When OEL is HIGH, OUT8-0 is placed in a high-impedance state and INB9-1 is available for data input.

$\overline{O E H}$ - Output Enable High

When $\overline{\mathrm{OEH}}$ is LOW, OUT27-9 is enabled for output. When $\overline{\mathrm{OEH}}$ is HIGH, OUT27-9 is placed in a highimpedance state.

FUNCTIONAL DESCRIPTION

Control Registers

There are two control registers which determine how the LF43168 is configured. Tables 1 and 2 show how each register is organized. Data on CIN9-0 is latched into the addressed control register on the rising edge of $\overline{W R}$. Address data is input on A8-0. Control Register 0 is written to using address 000 H . Control Register 1 is written to using address 001 H (Note that addresses 002 H to 0 FFH are reserved and should not be written to). When a control register is written to, a reset occurs which lasts for 6 CLK cycles from when WR goes HIGH. This reset does not alter any data in the coefficient banks. Control data can be loaded asynchronously to CLK.

BITS	FUNCTION	DESCRIPTION
0-3	Decimation Factor/ Decimation Register Delay Length	$0000=$ No Decimation, Delay by 1 $0001=$ Decimate by 2, Delay by 2 $0010=$ Decimate by 3, Delay by 3 $0011=$ Decimate by 4, Delay by 4 $0100=$ Decimate by 5 , Delay by 5 $0101=$ Decimate by 6 , Delay by 6 $0110=$ Decimate by 7 , Delay by 7 0111 = Decimate by 8, Delay by 8 $1000=$ Decimate by 9 , Delay by 9 $1001=$ Decimate by 10 , Delay by 10 1010 = Decimate by 11, Delay by 11 1011 = Decimate by 12, Delay by 12 $1100=$ Decimate by 13, Delay by 13 1101 = Decimate by 14, Delay by 14 1110 = Decimate by 15 , Delay by 15 1111 = Decimate by 16, Delay by 16
4	Filter Mode Select	0 = Single Filter Mode 1 = Dual Filter Mode
5	Coefficient Symmetry Select	$\begin{aligned} & 0=\text { Even-Symmetric Coefficients } \\ & 1=\text { Odd-Symmetric Coefficients } \end{aligned}$
6	FIR Filter A: Odd/Even Taps	$0=$ Odd Number of Filter Taps 1 = Even Number of Filter Taps
7	FIR Filter B: Odd/Even Taps	$0=$ Odd Number of Filter Taps $1=$ Even Number of Filter Taps
8	FIR Filter B Input Source	$\begin{aligned} & 0=\text { Input from INA9-0 } \\ & 1=\text { Input from INB9-0 } \\ & \hline \end{aligned}$
9	Interleaved/Non-Interleaved Coefficient Sets	$0=$ Non-Interleaved Coefficient Sets 1 = Interleaved Coefficient Sets

Bits 0-3 of Control Register 0 control the decimation registers. The decimation factor and decimation register delay length is set using these bits. Bit 4 determines if FIR filters A and B operate separately as two filters or together as one filter. Bit 5 is used to select even or odd-symmetric coefficients. Bits 6 and 7 determine if there are an even or odd number of taps in filters A and B respectively. When the FIR filters are set to operate as two separate filters, bit 8 selects either INA9-0 or INB9-0 as the filter B input source. Bit 9 determines if the coefficient set used is interleaved or noninterleaved (see Interleaved Coefficient Filters section). Most applications use non-interleaved coefficient sets (bit 9 set to " 0 ").

Bits 0 and 1 of Control Register 1 determine the input and coefficient data formats respectively for filter A. Bits 2 and 3 determine the input and coefficient data formats respectively for filter B. Bit 4 is used to enable or disable data reversal on the reverse decimation path. When data reversal is enabled, the data order is reversed before being sent to the reverse decimation path. Bits $5-8$ select where rounding will occur on the output data (See Mux/Adder section). Bit 9 enables or disables output rounding.

Coefficient Banks

The coefficient banks supply coefficient data to the multipliers in both FIR filters. The LF43168 can store 32 different coefficient sets. A coefficient

BITS	FUNCTION	DESCRIPTION
0	FIR Filter A Input Data Format	$\begin{aligned} & 0=\text { Unsigned } \\ & 1=\text { Two's Complement } \end{aligned}$
1	FIR Filter A Coefficient Format	$\begin{aligned} & 0=\text { Unsigned } \\ & 1=\text { Two's Complement } \end{aligned}$
2	FIR Filter B Input Data Format	$\begin{aligned} & 0=\text { Unsigned } \\ & 1=\text { Two's Complement } \end{aligned}$
3	FIR Filter B Coefficient Format	$\begin{aligned} & 0=\text { Unsigned } \\ & 1=\text { Two's Complement } \end{aligned}$
4	Data Order Reversal Enable	$\begin{aligned} & 0=\text { Enabled } \\ & 1=\text { Disabled } \end{aligned}$
5-8	Output Round Position	$\begin{aligned} & 0000=2^{-10} \\ & 0001=2^{-9} \\ & 0010=2^{-8} \\ & 0011=2^{-7} \\ & 0100=2^{-6} \\ & 0101=2^{-5} \\ & 0110=2^{-4} \\ & 0111=2^{-3} \\ & 1000=2^{-2} \\ & 1001=2^{-1} \\ & 1010=2^{0} \\ & 1011=2^{1} \\ & \hline \end{aligned}$
9	Output Round Enable	$\begin{aligned} & 0=\text { Enabled } \\ & 1=\text { Disabled } \end{aligned}$

set consists of 8 coefficient values. Each bank can hold 32 10-bit values. CSEL4-0 is used to select which coefficient set is sent to the filter multipliers. The coefficient set fed to the multipliers may be switched every CLK cycle if desired.

Data on CIN9-0 is latched into the addressed coefficient bank on the rising edge of $\overline{W R}$. Address data is input on A8-0 and is decoded as follows: A1-0 determines the bank number (" $00^{\prime \prime}$, " 01 ", " 10 ", and " 11 " correspond to banks $0,1,2$, and 3 respectively), A2 determines which filter (" 0 " = filter A, " 1 " = filter B), A7-3 determines which set number the coefficient is in, and A8 must be set to " 1 ". For example, an address of "100111011" will load coefficient set 7 in bank 3 of filter A with data. Coefficient data can be loaded asynchronously to CLK.

Decimation Registers

The decimation registers are provided to take advantage of symmetric filter coefficients and to provide data storage for 2-D filtering. The outputs of the registers are fed into the ALUs. Both inputs to an ALU need to be multiplied by the same filter coefficient. By adding or subtracting the two data inputs together before being sent to the filter multiplier, the number of filter taps needed is cut in half. Therefore, an 8 -tap FIR filter can be made with only four multipliers. The decimation registers are divided into two groups, the forward and reverse decimation registers. As can be seen in Figure 1, data flows left to right through the forward decimation registers and right to left through the reverse decimation registers. The decimation registers can be pro-
grammed to decimate by 2 to 16 (see Decimation section and Table 1). SHFTEN enables and disables the shifting of data through the decimation registers. When SHFTEN is LOW, data on INA9-0 and INB9-0 can be latched into the device and data can be shifted through the decimation registers. When SHFTEN is HIGH, data on INA9-0 and INB9-0 can not be latched into the device and data in the input and decimation registers is held.
Data feedback circuitry is positioned between the forward and reverse decimation registers. It controls how data from the forward decimation path is fed to the reverse decimation path. The feedback circuitry can either reverse the data order or pass the data unchanged to the reverse decimation path. The mux/demux sends incoming data to one of the LIFOs or the data feedback decimation register. The LIFOs and decimation register feed into a mux. This mux determines if one of the LIFOs or the decimation register sends data to the reverse decimation path.
If the data order needs to be reversed before being sent to the reverse decimation path (for example, when decimating), Data Reversal Mode should be enabled by setting bit 4 of Control Register 1 to " 0 ". When Data Reversal is enabled, data from the forward decimation path is written into one of the LIFOs in the data feedback section while the other LIFO sends data to the reverse decimation path. When TXFR goes LOW, the LIFO sending data to the reverse decimation path becomes the LIFO receiving data from the forward decimation path, and the LIFO receiving data from the forward decimation path becomes the LIFO sending data to the reverse decimation path. The device must see a HIGH to LOW transition of TXFR in order to switch LIFOs. The size of data blocks sent to the reverse decimation path is determined by how often TXFR goes LOW. To send data blocks of size 8 to
the reverse decimation path，$\overline{\mathrm{TXFR}}$ would have to be set LOW once every 8 CLK cycles．Once a data block size has been established（by asserting TXFR at the proper frequency）， changing the frequency or phase of TXFR assertion will cause unknown results．

If data should be passed to the reverse decimation path with the order unchanged，Data Reversal Mode should be disabled by setting bit 4 of Control Register 1 to＂ 1 ＂and TXFR must be set LOW．When Data Rever－ sal is disabled，data from the forward decimation path is written into the data feedback decimation register． The output of this register sends data to the reverse decimation path．The delay length of this register is the same as the forward and reverse decimation register＇s delay length．

When the LF43168 is configured to operate as a single FIR filter，the forward and reverse decimation paths in filters A and B are cascaded together． The data feedback section in filter B routes data from the forward decima－ tion path to the reverse decimation path．The configuration of filter B＇s feedback section determines how data is sent to the reverse decimation path． Data going through the feedback section in filter A is sent through the decimation register．

The point at which data from the forward decimation path is sent to the data feedback section is determined by whether the filter is set to have an even or odd number of filter taps．If the filter is set to have an even number of taps，the output of the third for－ ward decimation register is sent to the feedback section．If the filter is set to have an odd number of taps，the data that will be output from the third forward decimation register on the next CLK cycle is sent to the feedback section．

Decimation

Decimation by N is accomplished by only reading the LF43168＇s output once every N clock cycles．For example，to decimate by 10 ，the output should only be read once every 10 clock cycles．When not decimating，the maximum number of taps possible with a single filter in dual filter mode is eight．When decimating by N ，there are $\mathrm{N}-1$ clock cycles between output readings when the filter output is not read．These extra clock cycles can be used to calculate more filter taps．As the decimation factor increases，the number of available filter taps increases also．When programmed to decimate by N ，the number of filter taps for a single filter in dual filter mode increases to 8 N ．

Arithmetic Logic Units

The ALUs can perform the following operations： $\mathrm{B}+\mathrm{A}, \mathrm{B}-\mathrm{A}$ ，pass A ，pass B ，and negate $A(-A)$ ．If FWRD is LOW，the forward decimation path provides the A inputs to the ALUs．If FWRD is HIGH，the A inputs are set to ＂ 0 ＂．If RVRS is LOW，the reverse decimation path provides the B inputs to the ALUs．If RVRS is HIGH，the B inputs are set to＂ 0 ＂．$\overline{\text { FWRD }}, \overline{\text { RVRS }}$, and the filter configuration determine which ALU operation is performed．If $\overline{\text { FWRD }}$ and $\overline{\text { RVRS }}$ are both set LOW， and the filter is set for even－symmetric coefficients，the ALU will perform the $B+A$ operation．If FWRD and $\overline{\text { RVRS }}$ are both set LOW，and the filter is set for odd－symmetric coefficients，the ALU will perform the $\mathrm{B}-\mathrm{A}$ operation． If $\overline{\text { FWRD }}$ is set LOW，$\overline{\text { RVRS }}$ is set HIGH，and the filter is set for even－ symmetric coefficients，the ALU will perform the pass A operation．If FWRD is set LOW，RVRS is set HIGH， and the filter is set for odd－symmetric coefficients，the ALU will perform the negate A operation．If $\overline{F W R D}$ is set HIGH，$\overline{\text { RVRS }}$ is set LOW，and the filter is set for either even or odd－symmetric coefficients，the ALU will perform the pass B operation．

Accumulators

The multiplier outputs are fed into an accumulator．Each filter has its own accumulator．The accumulator can be set to accumulate the multiplier outputs or sum the multiplier outputs and send the result to the accumulator output register．When ACCEN is HIGH，both accumulators are enabled for accumulation and writing to the accumulator output registers is disabled（the registers hold their values）．When ACCEN goes LOW， accumulation is halted（by sending zeros to the accumulator feedback inputs）and writing to the accumula－ tor output registers is enabled．

Mux／Adder

When the LF43168 is configured as two FIR filters，the Mux／Adder is used to determine which filter drives the output port．When the LF43168 is configured as a single FIR filter，the Mux／Adder is used to sum the outputs of the two filters and send the result to the output port．If 10 －bit data and 20 －bit coefficients or 20－bit data and 10－bit coefficients are required， the Mux／Adder can facilitate this by scaling filter B^{\prime} s output by 2^{-10} before being added to filter A＇s output． MUX1－0 determines what function the Mux／Adder performs（see Table 3）．
The Mux／Adder is also used to round the output data before it is sent to the output port．Output data is rounded by adding a＂ 1 ＂to the bit position selected using bits 5－8 of Control Register 1 （see Table 2）．For example，to round the

TABLE 3．	MUX1－0 Function
MUX1－0	FUNCTION
00	Filter A＋Filter B （Filter B Scaled by 2^{-10} ）
01	Filter A＋Filter B
10	Filter A
11	Filter B

LF43168

Figure 3. Symmetric Coefficient Set Examples

Even-Tap, Odd-Symmetric Coefficient Set

Figure 4. Even-Symmetric Coefficient Filter Configurations (No Decimation)

ODD-TAP FILTER
output to 16 bits, bits 5-8 of Control Register 1 should be set to " 0011 ". This will cause a " 1 " to be added to bit position 2^{-7}.

Symmetric Coefficients

The LF43168 filter architecture is optimized for symmetric filter coefficient sets. Figure 3 shows examples of the different types of symmetric coefficient sets. In even-symmetric sets, each coefficient value appears twice (except in odd-tap sets where the middle value appears only once). In odd-symmetric sets, each coefficient appears twice, but one value is positive and one is negative. If the
two data input values that will be multiplied by the same coefficient are added or subtracted before being sent to the filter multiplier, the number of multipliers needed for an N -tap filter is cut in half. Therefore, an 8 -tap filter can be implemented with four multipliers if a symmetric coefficient set is used.

FILTER CONFIGURATIONS

Figures 4-6 show the data paths from filter input to filter multipliers for all symmetric coefficient filters. Figure 7 shows the interleaved coefficient filter configuration. Each diagram shows
one of the two FIR filters when the device is configured for dual filter mode. The diagrams can be expanded to include both filters when the device is configured for single filter mode.

Even-Symmetric Coefficient Filters

Figure 4 shows the two possible configurations when the device is programmed for even-symmetric coefficients and no decimation. Note that coefficient 3 on the oddtap filter must be divided by two to get the correct result (The coefficient must be input to the device already divided by two).

Figure 6．Odd－Symmetric Coefficient Fllter Configurations

EVEN－TAP FILTER（NO DECIMATION）

DECIMATING，EVEN－TAP FILTER

Figure 5 shows the two possible configurations when the device is programmed as a decimating，even－ symmetric coefficient filter．The delay length of the decimation registers will be equal to the decimation factor that the device is programmed for．Since only four coefficients（effectively eight）can be sent to the filter multipli－
ers on a clock cycle，it may be neces－ sary（depending on the coefficient set） to change the coefficients fed to the multipliers on different CLK cycles for filters with more than eight taps．Note that for the odd－tap filter，the middle coefficient of the coefficient set must be divided by two to get the correct result．

Odd－Symmetric Coefficient Filters

Figure 6 shows the two possible configurations when the device is programmed for odd－symmetric coefficients．Note that odd－tap，odd－ symmetric coefficient filters are not possible．

LF43168

Interleaved Coefficient Filters

Figure 7 shows the filter configuration when the device is programmed for interleaved coefficients. An interleaved coefficient set contains two separate odd-tap, even-symmetric coefficient sets which have been interleaved together (see Figure 8). If two data sets are interleaved into the same serial data stream, they can both be filtered by different coefficient sets if the two coefficient sets are also interleaved. The LF43168 is configured as an interleaved coefficient filter by programming the device for interleaved coefficient sets, evensymmetric coefficients, odd number of filter taps, and data reversal disabled. Note that coefficient 3, in Figure 7, must be divided by two to get the correct result.

Asymmetric Coefficient Filters

It is possible to have asymmetric coefficient filters. Asymmetric coefficient sets do not exhibit even or odd symmetric properties. A 4-tap asymmetric filter is possible by putting the device in even-tap, pass A mode and then feeding the asymmetric coefficient set to the multipliers. An 8-tap asymmetric filter is possible if the device is clocked twice as fast as the input data rate. It will take two CLK cycles to calculate the output. On the first CLK cycle, the reverse decimation path is selected to feed data to the filter multipliers. On the second CLK cycle, the coefficients sent to the multipliers are changed (if necessary) and the forward decimation path is selected to feed data to the filter multipliers.

Figure 7. Interleaved Coefficient Filter Configuration

Figure 8. Interleaved Coefficient Set Example

Odd-Tap, Even-Symmetric Coefficient Set A

Interleaved Coefficient Set Consisting of Sets A and B

Consisting of Sets A and B

Odd-Tap, Even-Symmetric Coefficient Set B

LF43168

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VcC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.6			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
ViL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground $\leq \operatorname{VIN} \leq \operatorname{VcC}$ (Note 12)			± 10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			300	mA
IcC2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
Cin	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF

SWITCHING CHARACTERISTICS

Commercial Operating Range Notes 9,10 (ns)

Symbol	Parameter	LF43168-					
		30		22		15	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	30		22		15	
tPW	Clock Pulse Width	12		8		7	
ts	Input Setup Time	15		12		5	
tH	Input Hold Time	0		0		0	
twp	Write Period	30		22		15	
twPW	Write Pulse Width	12		10		7	
tWHCH	Write High to Clock High	5		3		2	
tcws	CIN9-0 Setup Time	12		10		5	
tcwh	CIN9-0 Hold Time	0		0		0	
taws	Address Setup Time	10		8		5	
tawh	Address Hold Time	0		0		0	
tD	Output Delay		14		12		11
tena	Three-State Output Enable Delay (Note 11)		12		12		12
tols	Three-State Output Disable Delay (Note 11)		12		12		12

Switching Waveforms

[^5]
SWITCHING CHARACTERISTICS

Military Operating Range Notes 9,10 (ns)

Symbol	Parameter	LF43168-					
		39		30		22	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	39		30		22	
tPW	Clock Pulse Width	15		12		8	
ts	Input Setup Time	17		15		12	
th	Input Hold Time	0		0		0	
twp	Write Period	39		30		22	
twPW	Write Pulse Width	15		12		10	
twhCH	Write High to Clock High	8		5		3	
tcws	CIN9-0 Setup Time	15		12		10	
tcwn	CINg-0 Hold Time	0		0		0	
taws	Address Setup Time	10		10		8	
tawh	Address Hold Time	0		0		0	
tD	Output Delay		17		15		12
tena	Three-State Output Enable Delay (Note 11)		12		12		12
tols	Three-State Output Disable Delay (Note 11)		12		12		12

Switching Waveforms

*includes INA9-0, INB9-0, CSEL4-0, ACCEN, MUX $1-0, \overline{\text { SHFTEN }}$, $\overline{\text { FWRD }}$, $\overline{\text { RVRS }}$, and TXFR.

LF43168

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This deviceprovides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where $\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}$
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VcC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH , is set at 3.5 V for Z -to- 0 and 0 -to- Z tests, and set at 0 V for Z -
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

Voc* Measured Vot with $\mathrm{lOH}=-10 \mathrm{~mA}$ and $\mathrm{lol}=10 \mathrm{~mA}$ Voh* * Measured VOH with $10 \mathrm{H}=-10 \mathrm{~mA}$ and $10 \mathrm{~L}=10 \mathrm{~mA}$

LF43168

	ORDERING INFORMATION
	84-pin .
Speed	Ceramic Pin Grid Array (G3)
$\begin{array}{\|l\|} \hline 30 \mathrm{~ns} \\ 22 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	$\begin{array}{ll}0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { - Commercial Screening } & \\ & \text { LF43168GC30 } \\ & \text { LF43168GC22 } \\ & \text { LF43168GC15 }\end{array}$
39 ns 30 ns 22 ns	$\begin{array}{ll}-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { - Commercial Screening } & \\ & \text { LF43168GM39 } \\ & \text { LF43168GM30 } \\ & \text { LF43168GM22 }\end{array}$
$\begin{aligned} & 39 \mathrm{~ns} \\ & 30 \mathrm{~ns} \\ & 22 \mathrm{~ns} \end{aligned}$	

LF43881 8×8-bit Digital Filter

FEATURES

- 40 MHz Maximum Sampling Rate320 MHz Multiply-Accumulate Rate8 Filter Cells8-bit Unsigned or Two's Complement Data

8-bit Unsigned or Two's Complement Coefficients

26-bit Data Outputs
\square Shift-and-Add Output Stage for Combining Filter Outputs

- Expandable Data Size, Coefficient Size, and Filter Length
- User-Selectable 2:1, 3:1, or 4:1 Decimation
- Available 100\% Screened to MIL-STD-883, Class B
- Replaces Harris HSP43881 and HSP43881/883
\square Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 100-pin Plastic Quad Flatpack
- 84-pin Ceramic PGA

DESCRIPTION

The LF43881 is a video-speed digital filter that contains eight filter cells (taps) cascaded internally and a shift-and-add output stage. An 8×8 multiplier, three decimation registers, and a 26 -bit accumulator are contained in each filter cell. The output stage of the LF43881 contains a 26 -bit accumulator which can add the contents of any filter stage to the output stage accumulator shifted right by 8 bits. 8 -bit unsigned or two's complement format for data and coefficients can be independently selected.

Expanded coefficients and word sizes can be processed by cascading multiple LF43881s to implement larger filter lengths without affecting the sample rate. By reducing the sample
rate, a single LF43881 can process larger filter lengths by using multiple passes. The sampling rate can range from 0 to 40 MHz . Over 1000 taps may be processed without overflows due to the architecture of the device.

The output sample rate can be reduced to one-half, one-third, or onefourth the input sample rate by using the three decimation registers contained in every filter cell. Matrix multiplication, $\mathrm{N} \times \mathrm{N}$ spatial correlations/convolutions, and other 2-D operations for image processing can also be achieved using these registers.

LF43881 Block Diagram

Figure 1. Filter Cell Diagram

LF43881

FILTER CELL DESCRIPTION

8-bit coefficients are loaded into the C register (CIN7-0) and are output as COUT7-0 (the COENB signal enables the COUT7-0 outputs). The path taken by the coefficients varies according to the decimation mode chosen. With no decimation, the coefficients move directly from the C register, bypassing all decimation registers, and are available at the output on the following clock cycle. When decimation is chosen, the coefficient output is delayed by 1,2 , or 3 clock cycles depending on how many decimation registers the coefficients pass through (D1, D2, or D3). The number of decimation registers the coefficients pass through is determined by DCM1-0. Refer to Table 1 for choosing a decimation mode.
$\overline{\text { CIENB }}$ enables the C and D registers for coefficient loading. The registers are loaded on the rising edge of CLK when CIENB is LOW. CIENB is latched and delayed internally which enables the registers for loading one clock cycle after CIENB goes active (loading takes place on the second rising edge of CLK after CIENB goes LOW). Therefore, CIENB must be LOW one clock cycle before the coefficients are placed on the CIN7-0 inputs. The coefficients are held when CIENB is HIGH.
$\overline{\mathrm{DIENB}}$ enables the X register for the loading of data. The X register is loaded on the rising edge of CLK when $\overline{\text { DIENB }}$ is LOW. DIENB is latched and delayed internally (loading takes place on the second rising edge of CLK after DIENB goes LOW). Therefore, DIENB must be LOW one clock cycle before the data is placed on the DIN7-0 inputs. The X register is loaded with all zeros when DIENB is HIGH.

The output of the C register ($\mathrm{C} 8-0$) and X register ($\mathrm{X} 8-0$) provide the inputs of the 8×8 multiplier. The multiplier is followed by two pipeline registers,

Figure 2. Output Stage Diagram

M REG0 and M REG1. The output of the multiplier is sign extended and is used as one of the inputs to the 26 -bit adder. The output of the 26 -bit accumulator provides the second input to the adder. Both the accumulator and T register are loaded simultaneously with the output of the adder.

The accumulator is loaded with the output of the adder on every clock cycle unless cleared. Clearing the accumulator can be achieved using two methods. The first method, when both $\overline{\text { RESET }}$ and ERASE are LOW, causes all accumulators and all
registers in the device to be cleared together. $\overline{\text { RESET }}$ and ERASE are latched and delayed internally causing the clearing to occur on the second clock cycle after RESET and ERASE go active.

The second method, when only ERASE is LOW, clears a single accumulator of a selected cell. The cell is selected using the ADR2-0 inputs (decoded to Cell n). $\overline{\text { ERASE }}$ is latched and delayed internally causing the clearing to occur on the second clock cycle after ERASE goes active. Refer to Table 2 for clearing registers and accumulators.

Table 1．Decimation Mode Selection		
DCM1	DCM0	Decimation Function
0	0	Decimation registers not used
0	1	One decimation register used（decimation by one－half）
1	0	Two decimation registers used（decimation by one－third）
1	1	Three decimation registers used（decimation by one－fourth）

TABLe 2．Register and Accumulator Clearing		
$\overline{\text { ERASE }}$	$\overline{\text { RESET }}$	Clearing Effect
0	0	All accumulators and all registers are cleared
0	1	Only the accumulator addressed by ADR2－0 is cleared
1	0	All registers are cleared（accumulators are not cleared）
1	1	No clearing occurs，internal state remains the same

OUTPUT STAGE DESCRIPTION

The 26 －bit adder contained in the output stage can add the contents of any filter cell accumulator（selected by ADR2－0）with the 18 most significant bits of the output buffer．The result is stored back into the output buffer． The complete operation takes only one clock cycle．The eight least significant bits of the output buffer are lost．
The Zero multiplexer is controlled by the SHADD input signal．This allows selection of either the 18 most signifi－ cant bits of the output buffer or all zeros for the adder input．When SHADD is LOW，all zeros will be selected．When SHADD is HIGH，the 18 most significant bits of the output buffer are selected enabling the shift－ and－add operation．SHADD is latched and delayed internally by one clock cycle．

The output multiplexer is also con－ trolled by the SHADD input signal． This allows selection of either a filter cell accumulator，selected by ADR2－0， or the output buffer to be output to the SUM25－0 bus．Only the 26 least significant bits from either a filter cell accumulator or the output buffer are output on SUM25－0．If SHADD is LOW during two consecutive clock cycles（low during the current and previous clock cycle），the output
multiplexer selects the contents of a filter cell accumulator addressed by ADR2－0．Otherwise，the output multiplexer selects the contents of the output buffer．
If the same address remains on the ADR2－0 inputs for more than one clock cycle，SUM25－0 will not change to reflect any updates to the addressed cell accumulator．Only the result from the first selection of the cell（first clock cycle）will be output．This allows the interface of slow memory devices where the output needs to be active for more than one clock cycle．Normal FIR operation is not affected because ADR2－0 is changed sequentially．

NUMBER SYSTEMS

Data and coefficients can be repre－ sented as either unsigned or two＇s complement numbers．The TCS and TCCI inputs determine which of the two formats is to be used．All values are represented as 9－bit two＇s comple－ ment numbers internally．The value of the ninth bit is determined by the number system selected．The ninth bit is a sign extended bit when the two＇s complement mode is chosen．When the unsigned mode is chosen，the ninth bit is zero．

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply．All pins must be connected．

Clock

> CLK - Master Clock

The rising edge of CLK strobes all registers．All timing specifications are referenced to the rising edge of CLK．

Inputs

DIN7－0 — Data Input

8 －bit data is latched into the X register of each filter cell simultaneously．The TCS signal selects the appropriate data format type．The DIENB signal enables loading of the data．

CIN7－0 — Coefficient Input

8－bit coefficients are latched into the C register of Filter Cell 0．The TCCI signal selects the appropriate coeffi－ cient format type．The CIENB signal enables loading of the coefficients．

Outputs

SUM25－0 — Data Output
The 26－bit result from an individual filter cell will appear when ADR2－0 is used to select the filter cell result． SHADD in conjunction with ADR2－0 is used to select the output from the shift－and－add output stage．

COUT7－0－Coefficient Output

The 8－bit coefficient output from Filter Cell 7 can be connected to the CIN7－0 coefficient input of the same LF43881 to recirculate the coefficients． COUT7－0 can also be connected to the CIN7－0 of another LF43881 to cascade the devices．The $\overline{\text { COENB }}$ signal enables the output of the coefficients．

Controls

TCS - Data Format Control
The TCS input determines the interpretation of the input data. When TCS is HIGH, two's complement arithmetic is used. When TCS is LOW, unsigned arithmetic is used.

TCCI - Coefficient Input Format Control

The TCCI input determines the interpretation of the coefficients. When TCCI is HIGH, two's complement arithmetic is used. When TCCI is LOW, unsigned arithmetic is used.

TCCO - Coefficient Output Format

The TCCO output shows the format of the COUT7-0 coefficient output. TCCO follows the TCCI input. When cascading multiple LF43881s, the TCCO output of one device should be connected to the TCCI input of another device. The COENB signal enables TCCO.

$\overline{\text { DIENB }}$ - Data Input Enable

The $\overline{\text { DIENB }}$ input enables the X register of every filter cell. While DIENB is LOW, the X registers are loaded with the data present at the DIN7-0 inputs on the rising edge of CLK. While $\overline{\text { DIENB }}$ is HIGH, all bits of DIN7-0 are forced to zero and a rising edge of CLK will load the X register of every filter cell with all zeros. $\overline{\text { DIENB }}$ must be low one clock cycle prior to presenting the input data on the DIN7-0 input since it is latched and delayed internally.
$\overline{C I E N B}$ - Coefficient Input Enable
The $\overline{\text { CIENB }}$ input enables the C and D registers of every filter cell. While $\overline{\mathrm{CIENB}}$ is LOW, the C and appropriate D registers are loaded with the coefficient data on the rising edge of CLK. While $\overline{\text { CIENB }}$ is HIGH, the contents of the C and D registers are held and the CLK signal is ignored.
By using $\overline{\text { CIENB }}$ in its active state, coefficient data can be shifted from cell to cell. $\overline{\text { CIENB }}$ must be low one clock cycle prior to presenting the coefficient data on the CIN7-0 input since it is latched and delayed internally.

$\overline{\text { COENB }}$ - Coefficient Output Enable

The $\overline{\text { COENB }}$ input enables the COUT7-0 and TCCO outputs. When COENB is LOW, the outputs are enabled. When $\overline{\mathrm{COENB}}$ is HIGH , the outputs are placed in a high-impedance state.

DCM1-0 — Decimation Control

The DCM1-0 inputs select the number of decimation registers to use (Table 1). Coefficients are passed from one cell to another at a rate determined by DCM1-0. When no decimation registers are selected, the coefficients are passed from cell to cell on every rising edge of CLK (no decimation). When one decimation register is selected, the coefficients are passed from cell to cell on every other rising edge of CLK (2:1 decimation). When two decimation registers are selected, the coefficients are passed from cell to cell on every third rising edge of CLK (3:1 decimation) and so on. DCM1-0 is latched and delayed internally.

ADR2-0 - Cell Accumulator Select

The ADR2-0 inputs select which cell's accumulator will available at the SUM25-0 output or added to the output stage accumulator. In both cases, ADR2-0 is latched and delayed by one clock cycle. If the same address remains on the ADR2-0 inputs for more than one clock cycle, SUM25-0 will not change if the contents of the accumulator changes. Only the result from the first selection of the cell (first clock cycle) by ADR2-0 will be available. ADR2-0 is also used to select which accumulator to clear when ERASE is LOW.

$\overline{S E N B H}$ - MSB Output Enable

When $\overline{\text { SENBH }}$ is LOW, SUM $25-16$ is enabled. When SENBH is HIGH, SUM25-16 is placed in a high-impedance state.

$\overline{\text { SENBL }}$ - LSB Output Enable

When $\overline{\text { SENBL }}$ is LOW, SUM $15-0$ is enabled. When SENBL is HIGH, SUM15-0 is placed in a high-impedance state.

$\overline{\text { RESET }}$ — Register Reset Control

When $\overline{\text { RESET }}$ is LOW, all registers are cleared simultaneously except the cell accumulators. $\overline{\text { RESET }}$ can be used with ERASE to clear all cell accumulators. $\overline{\text { RESET }}$ is latched and delayed internally. Refer to Table 2.

$\overline{E R A S E}$ - Accumulator Erase Control

When $\overline{\text { ERASE }}$ is LOW, the cell accumulator specified by ADR2-0 is cleared. When RESET is LOW in conjunction with ERASE, all cell accumulators are cleared. Refer to Table 2.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs 25 mA
Latchup current

\qquad

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.6			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=2.0 \mathrm{~mA}$			0.4	V
VH_{H}	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 10	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			160	mA
ICC2	Vcc Current, Quiescent	(Note 7)			750	$\mu \mathrm{A}$
CIN	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

SWITCHING CHARACTERISTICS

Comme	al Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)	10 (
					LF4	81-			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		39		33		25	
tPW	Clock Pulse Width	20		16		13		10	
ts	Input Setup Time	16		14		13		10	
th	Input Hold Time	0		0		0		0	
tode	Coefficient Output Delay		24		20		18		16
tods	Sum Output Delay		27		25		21		18
tena	Three-State Output Enable Delay (Note 11)		20		15		15		12
tDIS	Three-State Output Disable Delay (Note 11)		20		15		15		12

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	LF43881-					
		50		40		33	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		39		33	
tPW	Clock Pulse Width	20		16		13	
ts	Input Setup Time	20		17		13	
th	Input Hold Time	0		0		0	
todc	Coefficient Output Delay		24		20		18
tods	Sum Output Delay		31		25		21
tena	Three-State Output Enable Delay (Note 11)		20		15		15
tDIs	Three-State Output Disable Delay (Note 11)		20		15		15

*includes $\overline{\text { DIENB }}, \overline{C I E N B}, \overline{E R A S E}, \overline{R E S E T}$, TCS, TCCI, SHADD, DCM1-0, and ADR2-0.
$\dagger_{\text {includes }}$ TCCO, SUM25-0, and COUT7-0.
$\ddagger_{\text {includes }} \overline{\text { SENBL }}, \overline{\text { SENBH }}$, and $\overline{\text { COENB }}$.

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
Figure A. Output Loading Circuit

Figure B. Threshold Levels

$$
\text { VoL* Measured VoL with } 1 \mathrm{OH}=-10 \mathrm{~mA} \text { and } 10 \mathrm{~L}=10 \mathrm{~mA}
$$ VOH^{*} Measured VOH with $\mathrm{OH}=-10 \mathrm{~mA}$ and $1 \mathrm{OL}=10 \mathrm{~mA}$

LF43881

	ORDERING INFORMATION
	84-pin
Speed	Plastic J-Lead Chip Carrier (J3)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening
50 ns 40 ns 33 ns 25 ns	LF43881JC50 LF43881JC40 LF43881JC33 LF43881JC25

LF43881

FEATURES

DESCRIPTION

- 40 MHz Maximum Sampling Rate
- 320 MHz Multiply-Accumulate Rate
- 8 Filter Cells
- 8-bit Unsigned or 9-bit Two's Complement Data/Coefficients
- 26-bit Data Outputs
- Shift-and-Add Output Stage for Combining Filter Outputs
- Expandable Data Size, Coefficient Size, and Filter Length
- User-Selectable 2:1, 3:1, or 4:1 Decimation
- DECC SMD No. 5962-92097
- Available 100\% Screened to MIL-STD-883, Class B
- Replaces Harris HSP43891 and HSP43891/883
- Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 100-pin Plastic Quad Flatpack
- 84-pin Ceramic PGA

The LF43891 is a video-speed digital filter that contains eight filter cells (taps) cascaded internally and a shift-and-add output stage. A 9×9 multiplier, three decimation registers, and a 26-bit accumulator are contained in each filter cell. The output stage of the LF43891 contains a 26-bit accumulator which can add the contents of any filter stage to the output stage accumulator shifted right by 8 bits. 8 -bit unsigned or 9-bit two's complement format for data and coefficients can be independently selected.
Expanded coefficients and word sizes can be processed by cascading multiple LF43891s to implement larger filter lengths without affecting the sample rate. By reducing the sample
rate, a single LF43891 can process larger filter lengths by using multiple passes. The sampling rate can range from 0 to 40 MHz . Over 1000 taps may be processed without overflows

The output sample rate can be reduced to one-half, one-third, or onefourth the input sample rate by using the three decimation registers contained in every filter cell. Matrix multiplication, $\mathrm{N} \times \mathrm{N}$ spatial correlations/convolutions, and other 2-D operations for image processing can also be achieved using these registers.

LF43891

Figure 1. Filter Cell Diagram

FILTER CELL DESCRIPTION

9-bit coefficients are loaded into the C register ($\mathrm{CIN8} 8$-0) and are output as COUT8-0 (the COENB signal enables the COUT8-0 outputs). The path taken by the coefficients varies according to the decimation mode chosen. With no decimation, the coefficients move directly from the C register, bypassing all decimation registers, and are available at the output on the following clock cycle. When decimation is chosen, the coefficient output is delayed by 1,2 , or 3 clock cycles depending on how many decimation registers the coefficients pass through (D1, D2, or D3). The number of decimation registers the coefficients pass through is determined by DCM1-0. Refer to Table 1 for choosing a decimation mode.
$\overline{C I E N B}$ enables the C and D registers for coefficient loading. The registers are loaded on the rising edge of CLK when $\overline{C I E N B}$ is LOW. $\overline{\text { CIENB }}$ is latched and delayed internally which enables the registers for loading one clock cycle after $\overline{\text { CIENB }}$ goes active (loading takes place on the second rising edge of CLK after CIENB goes LOW). Therefore, $\overline{\mathrm{CIENB}}$ must be LOW one clock cycle before the coefficients are placed on the CIN8-0 inputs. The coefficients are held when $\overline{\text { CIENB }}$ is HIGH.
$\overline{\mathrm{DIENB}}$ enables the X register for the loading of data. The X register is loaded on the rising edge of CLK when $\overline{\text { DIENB }}$ is LOW. DIENB is latched and delayed internally (loading takes place on the second rising edge of CLK after $\overline{\text { DIENB }}$ goes LOW). Therefore, $\overline{\text { DIENB }}$ must be LOW one clock cycle before the data is placed on the DIN8-0 inputs. The X register is loaded with all zeros when DIENB is HIGH.

The output of the C register ($\mathrm{C} 8-0$) and X register ($\mathrm{X} 8-0$) provide the inputs of the 9×9 multiplier. The multiplier is followed by two pipeline registers,

Figure 2. Output Stage Diagram

M REG0 and M REG1. The output of the multiplier is sign extended and is used as one of the inputs to the 26 -bit adder. The output of the 26 -bit accumulator provides the second input to the adder. Both the accumulator and T register are loaded simultaneously with the output of the adder.

The accumulator is loaded with the output of the adder on every clock cycle unless cleared. Clearing the accumulator can be achieved using two methods. The first method, when both RESET and ERASE are LOW, causes all accumulators and all
registers in the device to be cleared together. $\overline{\text { RESET }}$ and ERASE are latched and delayed internally causing the clearing to occur on the second clock cycle after $\overline{\text { RESET }}$ and $\overline{\text { ERASE }}$ go active.

The second method, when only ERASE is LOW, clears a single accumulator of a selected cell. The cell is selected using the ADR2-0 inputs (decoded to Cell n). ERASE is latched and delayed internally causing the clearing to occur on the second clock cycle after ERASE goes active. Refer to Table 2 for clearing registers and accumulators.

Table 1．Decimation Mode Selection

DCM1	DCMO	Decimation Function
0	0	Decimation registers not used
0	1	One decimation register used（decimation by one－half）
1	0	Two decimation registers used（decimation by one－third）
1	1	Three decimation registers used（decimation by one－fourth）

Table 2．		
Register and Accumulator Clearing		
$\overline{\text { ERASE }}$	$\overline{\text { RESET }}$	Clearing Effect
0	0	All accumulators and all registers are cleared
0	1	Only the accumulator addressed by ADR2－0 is cleared
1	0	All registers are cleared（accumulators are not cleared）
1	1	No clearing occurs，internal state remains the same

OUTPUT STAGE DESCRIPTION

The 26 －bit adder contained in the output stage can add the contents of any filter cell accumulator（selected by ADR2－0）with the 18 most significant bits of the output buffer．The result is stored back into the output buffer． The complete operation takes only one clock cycle．The eight least significant bits of the output buffer are lost．
The Zero multiplexer is controlled by the SHADD input signal．This allows selection of either the 18 most signifi－ cant bits of the output buffer or all zeros for the adder input．When SHADD is LOW，all zeros will be selected．When SHADD is HIGH，the 18 most significant bits of the output buffer are selected enabling the shift－ and－add operation．SHADD is latched and delayed internally by one clock cycle．
The output multiplexer is also con－ trolled by the SHADD input signal． This allows selection of either a filter cell accumulator，selected by ADR2－0， or the output buffer to be output to the SUM25－0 bus．Only the 26 least significant bits from either a filter cell accumulator or the output buffer are output on SUM25－0．If SHADD is LOW during two consecutive clock
cycles（low during the current and previous clock cycle），the output multiplexer selects the contents of a filter cell accumulator addressed by ADR2－0．Otherwise，the output multiplexer selects the contents of the output buffer．
If the same address remains on the ADR2－0 inputs for more than one clock cycle，SUM25－0 will not change to reflect any updates to the addressed cell accumulator．Only the result from the first selection of the cell（first clock cycle）will be output．This allows the interface of slow memory devices where the output needs to be active for more than one clock cycle．Normal FIR operation is not affected because ADR2－0 is changed sequentially．

NUMBER SYSTEMS

Data and coefficients can be repre－ sented as either 8－bit unsigned or 9－bit two＇s complement numbers．All values are represented as 9－bit two＇s complement numbers internally．If the most significant or sign bit is a zero，the multiplier can multiply 8－bit unsigned numbers．

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply．All pins must be connected．

Clock

CLK－Master Clock

The rising edge of CLK strobes all registers．All timing specifications are referenced to the rising edge of CLK．

Inputs

DIN8－0－Data Input
9－bit data is latched into the X register of each filter cell simultaneously．The $\overline{\text { DIENB }}$ signal enables loading of the data．

CIN8－0 — Coefficient Input

9－bit coefficients are latched into the C register of Filter Cell 0．The CIENB signal enables loading of the coeffi－ cients．

Outputs

SUM25－0 — Data Output

The 26－bit result from an individual filter cell will appear when ADR2－0 is used to select the filter cell result． SHADD in conjunction with ADR2－0 is used to select the output from the shift－and－add output stage．

COUT8－0－Coefficient Output

The 9－bit coefficient output from Filter Cell 7 can be connected to the $\mathrm{CIN8} 80$ coefficient input of the same LF43891 to recirculate the coefficients． COUT8－0 can also be connected to the CIN8－0 of another LF43891 to cascade the devices．The $\overline{\mathrm{COENB}}$ signal enables the output of the coefficients．

LF43891

Controls

$\overline{\text { DIENB - Data Input Enable }}$
The $\overline{\text { DIENB }}$ input enables the X register of every filter cell. While DIENB is LOW, the X registers are loaded with the data present at the DIN8-0 inputs on the rising edge of CLK. While $\overline{\text { DIENB }}$ is HIGH, all bits of DIN8-0 are forced to zero and a rising edge of CLK will load the X register of every filter cell with all zeros. $\overline{\text { DIENB }}$ must be low one clock cycle prior to presenting the input data on the $\mathrm{DIN} 8-0$ input since it is latched and delayed internally.

$\overline{\text { CIENB }}$ - Coefficient Input Enable

The $\overline{\text { CIENB }}$ input enables the C and D registers of every filter cell. While $\overline{\text { CIENB }}$ is LOW, the C and appropriate D registers are loaded with the coefficient data on the rising edge of CLK. While CIENB is HIGH, the contents of the C and D registers are held and the CLK signal is ignored. By using CIENB in its active state, coefficient data can be shifted from cell to cell. $\overline{\text { CIENB }}$ must be low one clock cycle prior to presenting the coefficient data on the CIN8-0 input since it is latched and delayed internally.

$\overline{\text { COENB }}$ - Coefficient Output Enable

The COENB input enables the COUT8-0 output. When COENB is LOW, the outputs are enabled. When COENB is HIGH, the outputs are placed in a high-impedance state.

DCM1-0 - Decimation Control

The DCM1-0 inputs select the number of decimation registers to use (Table 1). Coefficients are passed from one cell to another at a rate determined by DCM1-0. When no decimation registers are selected, the coefficients are passed from cell to cell on every rising edge of CLK (no decimation). When one decimation register is selected, the coefficients are passed from cell to cell on every other rising edge of CLK (2:1 decimation). When two decimation registers are selected, the coefficients are passed from cell to cell on every third rising edge of CLK (3:1 decimation) and so on. DCM1-0 is latched and delayed internally.

ADR2-0 - Cell Accumulator Select

The ADR2-0 inputs select which cell's accumulator will available at the SUM25-0 output or added to the output stage accumulator. In both cases, ADR2-0 is latched and delayed by one clock cycle. If the same address remains on the ADR2-0 inputs for more than one clock cycle, SUM25-0 will not change if the contents of the accumulator changes. Only the result from the first selection of the cell (first clock cycle) by ADR2-0 will be available. ADR2-0 is also used to select which accumulator to clear when ERASE is LOW.

$\overline{\text { SENBH }}$ - MSB Output Enable

When SENBH is LOW, SUM25-16 is enabled. When SENBH is HIGH, SUM25-16 is placed in a high-impedance state.

$\overline{\text { SENBL }}$ - LSB Output Enable

When SENBL is LOW, SUM15-0 is enabled. When SENBL is HIGH, SUM15-0 is placed in a high-impedance state.

$\overline{\text { RESET }}$ — Register Reset Control

When RESET is LOW, all registers are cleared simultaneously except the cell accumulators. RESET can be used with ERASE to clear all cell accumulators. RESET is latched and delayed internally. Refer to Table 2.

$\overline{E R A S E}$ - Accumulator Erase Control

When ERASE is LOW, the cell accumulator specified by $\mathrm{ADR}_{2}-0$ is cleared. When RESET is LOW in conjunction with ERASE, all cell accumulators are cleared. Refer to Table 2.

LF43891

$9 \times$ 9-bit Digital Filter

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance outp	-0.5 V to Vcc +0.5 V
Output current into low outputs	... 25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.6			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=2.0 \mathrm{~mA}$			0.4	V
Vн	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 12)			± 10	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			160	mA
IcC2	Vcc Current, Quiescent	(Note 7)			750	$\mu \mathrm{A}$
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF43891

9×9-bit Digital Filter

SWITCHING CHARACTERISTICS

Symbol	Parameter	LF43891-							
		50		40		33		25	
		Min	Max	Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	50		39		33		25	
tPW	Clock Pulse Width	20		16		13		10	
ts	Input Setup Time	16		14		13		10	
th	Input Hold Time	0		0		0		0	
tode	Coefficient Output Delay		24		20		18		16
tods	Sum Output Delay		27		25		21		18
tENA	Three-State Output Enable Delay (Note 11)		20		15		15		12
tols	Three-State Output Disable Delay (Note 11)		20		15		15		12

Symbol	Parameter	LF43891-					
		50		40		33	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		39		33	
tPW	Clock Pulse Width	20		16		13	
ts	Input Setup Time	20		17		13	
th	Input Hold Time	0		0		0	
tode	Coefficient Output Delay		24		20		18
tods	Sum Output Delay		31		25		21
tena	Three-State Output Enable Delay (Note 11)		20		15		15
tDIS	Three-State Output Disable Delay (Note 11)		20		15		15

Switching Waveforms

*includes $\overline{\text { DIENB }}, \overline{C I E N B}, \overline{E R A S E}, \overline{R E S E T}$, SHADD, DCM1-0, and ADR2-0.
$\dagger_{\text {includes }}$ SUM25-0 and COUTB-0.
$\ddagger_{\text {includes }} \overline{\text { SENBL }}, \overline{\text { SENBH }}$, and $\overline{\text { COENB }}$.

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDis test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. $\mathrm{A} 0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDis test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured Vot with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$

	ORDERING INFORMATION
	84-pin
Speed	Plastic J-Lead Chip Carrier (J3)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screenina
50 ns 40 ns 33 ns 25 ns	LF43891JC50 LF43891JC40 LF43891JC33 LF43891JC25

LF43891

DEVICES INCORPORATED

LF48212 12×12-bit Alpha Mixer

FEATURES

- 50 MHz Data and Computation Rate
Two's Complement or Unsigned Operands
- On-board Programmable Delay Stages
- Programmable Output Rounding
\square Replaces Harris HSP48212
\square Package Styles Available:
- 68-pin Plastic LCC, J-Lead
- 64-pin Plastic Quad Flatpack

DESCRIPTION

The LF48212 is a high-speed video alpha mixer capable of mixing video signals at real-time video rates. It takes two 12-bit video signals and mixes them together using an alpha mix factor. Alpha determines the weighting that each video signal receives during the mix operation. The input video data can be in either unsigned or two's complement format, but both inputs must be in the
same format. Independently controlled programmable delay stages are provided for the input and control signals to allow for allignment of input data if necessary. The delay stages can be programmed to have from 0 to 7 delays. The 13-bit output of the alpha mixer is registered with three-state drivers and may be rounded to $8,10,12$, or 13 -bits.

LF48212 Block Diagram

LF48212

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all enabled registers except for the Delay Control Register.

Inputs

DINA11-0 — Pixel Data Input A

DINA11-0 is one of the 12-bit registered data input ports. Data is latched on the rising edge of CLK.
DINB11-0 — Pixel Data Input B
DINB11-0 is the other 12-bit registered data input port. Data is latched on the rising edge of CLK.

α_{11-0} - Alpha Mix Input

α_{11-0} determines the weighting applied to the data input signals before being mixed together. DINA11-0 and DINB11-0 receive weightings of α and $1.0-\alpha$ respectively. α_{11-0} is unsigned and restricted to the range of 0 to 1.0. Figure 1 shows the data format for α_{11-0}. If a value greater than 1.0 is latched into the Alpha Mix Input, internal circuitry will force the value to be equal to 1.0. Data is latched on the rising edge of CLK.

DEL — Delay Data Input

DEL is used to load the Delay Control Register. The Delay Control Register contains a 15 -bit value which determines the number of delay stages added to the input and control signals. The 15 -bit data value is loaded serially into the Delay Control Register using DEL and $\overline{L D}$. Data present on DEL is latched on the rising edge of $\overline{\mathrm{LD}}$.

Figure 1. Alpha Mix Input Format

11	10	9	8	7	6	5	4	3	2	1	0
2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}

Outputs

DOUT12-0 - Data Output

DOUT $12-0$ is the 13 -bit registered data output port.

Controls

$\overline{T C}$ — Data Format Control
$\overline{\mathrm{TC}}$ determines if the input data is in unsigned or two's complement format. If $\overline{\mathrm{TC}}$ is LOW, the data is in two's complement format. If $\overline{\mathrm{TC}}$ is HIGH, the data is in unsigned format. Data present on $\overline{T C}$ is latched on the rising edge of CLK. TC only affects the data that is being latched into the LF48212. Changing TC does not affect internal data already in the pipeline.

MIXEN - Alpha Mix Input Enable

When HIGH, data on α_{11-0} is latched into the LF48212 on the rising edge of CLK. When LOW, data on α_{11-0} is not latched and the last value loaded is held as the alpha mix value.

$\overline{L D}$ - Load Strobe

The rising edge of $\overline{\mathrm{LD}}$ latches the data on DEL into the Delay Control Register.

BYPASS - Bypass Delay Stage Control

The BYPASS control is used to bypass the internal programmable delay stages. When BYPASS is set HIGH, the Delay Control Register will automatically be loaded with a " 0 ". This will set the number of programmable delay stages to zero for all input and control signals. When BYPASS is LOW, the desired number of delay stages can be set by loading
the Delay Control Register with the appropriate value. Note that this signal is not intended to change during active operation of the LF48212.

RND1-0 - Output Rounding Control

RND1-0 determines how the output of the LF48212 is rounded. The output may be rounded to $8,10,12$, or 13 -bits. Table 1 lists the different rounding possibilities and the associated value for RND1-0. Rounding is accomplished by adding a " 1 " to the bit to the right of what will become the least significant bit. Then the bit that had the " 1 " added to it and all bits to the right of it are set to " 0 ". Data present on RND1-0 is latched on the rising edge of CLK. When RND1-0 is latched in, it only applies to the video input data latched in at the same time. Changing RNDI-0 does not affect the rounding format for internal data already in the pipeline.
$\overline{O E}$-Output Enable
When $\overline{\mathrm{OE}}$ is LOW, DOUT $12-0$ is enabled for output. When $\overline{\mathrm{OE}}$ is HIGH, DOUT12-0 is placed in a highimpedance state.

Table 1.	OUTPut Rounding
RND1-0	ROUNDING FORMAT
00	Round to 8-bits
01	Round to 10-bits
10	Round to 12-bits
11	Round to 13-bits

FUNCTIONAL DESCRIPTION

The two video signals to be mixed together are input to the LF48212 using DINA11-0 and DINB11-0. Data present on DINA11-0 and DINB11-0 is latched on the rising edge of CLK. The input data may be in either unsigned or two's complement format, but both inputs must be in the same format. $\overline{\mathrm{TC}}$ determines the format of the input data. When $\overline{T C}$ is HIGH, the input data is in unsigned format. When $\overline{\mathrm{TC}}$ is LOW, the input data is in two's complement format. $\overline{\mathrm{TC}}$ is latched on the rising edge of CLK and only affects the input data latched in at the same time. The data already in the pipeline is not affected when TC changes.
DINA11-0 and DINB11-0 are mixed together using an alpha mix factor (α_{11-0}) as defined by the equation listed in Figure 2. α_{11-0} is unsigned and restricted to the range of 0 to 1.0. MIXEN controls the loading of alpha mix data. When MIXEN is HIGH, data present on α_{11-0} is latched on the rising edge of CLK. When MIXEN is LOW, data present on α_{11-0} is not latched and the last value loaded is held as the alpha mix value.
It is possible to add extra delay stages to the input data and control signals by using the programmable delay stages. The 15 -bit value (DELAY $14-0$) stored in the Delay Control Register determines the number of delay stages added. DELAY $14-0$ is divided into 5 groups of 3-bits each. Each 3-bit group contains the delay information for one of the input data or control signals. Figure 3 shows the block diagram of the Delay Control Register as well as a list of the input data and control signals that may be delayed and the DELAY signals that control them. The delay length can be programmed to be from 0 to 7 stages. The delay length is set by loading the binary equivalent of the desired delay length into the appropriate 3-bit group. For example, to add four extra
delay stages to DINB11-0, DELAY5-3 should be set to " 100 ". DELAY $14-0$ is loaded serially into the Delay Control Register using DEL and LD. DELAY0 is the first value loaded and DELAY 14 is the last. Data present on DEL is latched on the rising edge of $\overline{\mathrm{LD}}$. BYPASS is used to disable the programmable delay stages. When BYPASS is HIGH, the Delay Control Register is automatically loaded with a " 0 ". This sets all programmable delay stages to a length of zero. When BYPASS is LOW, the Delay Control Register may be loaded to set the desired number of delay stages. Note that BYPASS is not intended to change during active operation of the LF48212.

The Adjust stage of the LF48212 is used to maximize the precision of the output data. Since α can never be larger than 1.0 , the most significant bit
of the internal summer output is not needed. The Adjust stage takes the output of the internal summer and left shifts the data one bit position. This removes the MSB of the internal summer output and provides one more bit of precision for the output data.

The output data of the LF48212 may be rounded to $8,10,12$, or 13 -bits. RND1-0 determines how the output is rounded (See Table 1). RND1-0 is latched on the rising edge of CLK and only affects the input data latched in at the same time. The data already in the pipeline is not affected when RND1-0 changes.

Figure 2. Output Equation

OUTPUT $=\alpha($ DINA $)+(1-\alpha)$ DINB

Figure 3. Delay Control Register Block Diagram

LF48212

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground .. -0.5 V to +7.0 V
Input signal with respect to ground .. -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output.. -0.5 V to $\mathrm{VCc}+0.5 \mathrm{~V}$
Output current into low outputs ... 25 mA
Latchup current ... $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.6			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=2.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	v
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq VouT \leq VcC ((ote 12)			± 10	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			120	mA
Icc2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
CIN	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

SWITCHING CHARACTERISTICS

Comme	cial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)				
Symbol	Parameter	Min	Max	Min	Max
tcyc	Cycle Time	25		20	
tPW	Clock Pulse Width	10		10	
ts	Input Setup Time	10		10	
th	Input Hold Time	0		0	
tD	Output Delay		13		13
tena	Three-State Output Enable Delay (Note 11)		13		13
tols	Three-State Output Disable Delay (Note 11)		13		13

Switching Waveforms: Data I/O

*includes MIXEN, $\overline{\mathrm{TC}}$, and RND1-0.

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9, 10 (ns)					
Symbol	Parameter	LF48212-			
		25		20	
		Min	Max	Min	Max
tLC	LD Cycle Time	25		20	
tLPW	LD Pulse Width	10		10	
tDS	DEL Setup Time	12		12	
tDH	DEL Hold Time	0		0	

Switching Waveforms: Delay Control Register Data

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress'values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2 F}}{4}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { total number of device outputs } \\
& \mathrm{C}=\text { capacitive load per output } \\
& \mathrm{V}=\text { supply voltage } \\
& \mathrm{F}=\text { clock frequency }
\end{aligned}
$$

6. Tested with all outputs changing every cycle and no load, at a 40 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, Vth, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

LF48212

DEVICES INCORPORATED

LF48410 1024×24-bit Video Histogrammer

FEATURES

- 40 MHz Data Input and Computation Rate
- 1024×24-bit Memory Array
- Histograms of Images up to $4 \mathrm{~K} x$ 4 K with 10-bit Pixel Resolution
- Memory Array Flash Clear
\square User-Programmable Modes: Histogram, Histogram Accumulate, Look Up Table, Bin Accumulate, Delay Memory, Delay and Subtract, Single Port RAM
- DECC SMD No. 5962-94573
- Available 100\% Screened to MIL-STD-883, Class B
- Replaces Harris HSP48410 and HSP48410/883
- Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 84-pin Ceramic PGA

DESCRIPTION

The LF48410 is capable of generating histograms and Cumulative Distribution Functions of video images. It may also be used as a look up table, a bin accumulator, a delay memory (delay and subtract also possible), or a single port RAM. The on-chip 1024 $\times 24$-bit memory array facilitates histograms of images up to $4 \mathrm{~K} \times 4 \mathrm{~K}$ pixels with a 10-bit pixel resolution. Once the histogram of a video image is stored in the memory array, the Cumulative Distribution Function can be calculated by putting the device in Histogram Accumulate Mode. Transformation functions can be performed on pixel values when the
device is in Look Up Table Mode. If the Cumulative Distribution Function is the desired transformation function, the LF48410 can calculate it and have it available for Look Up Table Mode. When the device is in Delay Memory Mode, it functions as a video row buffer. In this mode, the LF48410 can buffer video lines as long as 1029 pixels. The device can also function as an asynchronous single port RAM. During asynchronous modes, the device can be configured as a $1024 \times$ $24,1024 \times 16$, or 1024×8-bit RAM. A Flash Clear function is provided which sets all memory array locations and data path registers to " 0 ".

LF48410 Block Diagram

LF48410

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
When operating in a synchronous mode, the rising edge of CLK strobes all enabled registers. CLK has no effect when operating in an asynchronous mode.

Inputs

PIN9-0 - Pixel Data Input

PIN9-0 provides address information to the memory array in Histogram, Bin Accumulate, and Look Up Table Modes. Data is latched on the rising edge of CLK.

DIN23-0 — Data Input

In Bin Accumulate Mode, DIN23-0 provides data to the internal summer to be added to data already in the memory array. In Look Up Table Mode, DIN23-0 is used to load the memory array with the desired values. In Delay Memory Mode, the data to be delayed is input to the memory array using DIN23-0, and in Delay and Subtract Mode it also provides data to be subtracted from the delayed data. In all four modes, DIN23-0 is latched on the rising edge of CLK.

IOA9-0 - Asynchronous Address Input
IOA9-0 provides address information to the memory array in Asynchronous 16 and 24 Modes.

FCT2-0 - Function Input

FCT2-0 is used to put the LF48410 into one of its eight modes of operation (Table 1). Data is latched on the
rising edge of $\overline{\mathrm{LD}}$. To ensure proper operation of the device, $\overline{\text { START must }}$ be HIGH while changing modes, and there must be at least one rising edge of CLK between the rising edge of LD and the falling edge of START.

Inputs/Outputs

DIO23-0 - Data Input/Output

In all synchronous modes, DIO23-0 is the 24 -bit registered data output port. In all asynchronous modes, DIO_{23-0} is both the data input and data output port for the memory array.

Controls

$\overline{\text { START - Device Enable }}$
$\overline{\text { START }}$ is used to enable and disable the synchronous modes of operation (except for the Delay Memory and Delay and Subtract Modes). The synchronous mode sections explain how START functions in each mode. $\overline{\text { START }}$ has no effect in asynchronous modes. Data is latched on the rising edge of CLK. START must be held HIGH when changing from one mode to another. To ensure proper operation of the device, there must be at least one rising edge of CLK between the rising edge of LD and the falling edge of START.

$\overline{R D}$ - Read/Output Enable

In all synchronous modes, $\overline{\mathrm{RD}}$ is used as an output enable for DIO23-0.
When $\overline{\mathrm{RD}}$ is LOW, DIO23-0 is enabled for output. When $\overline{\mathrm{RD}}$ is HIGH, DIO230 is placed in a high-impedance state. In all asynchronous modes, $\overline{\mathrm{RD}}$ is used as a read enable for the memory array (see asynchronous mode sections for details).

$\overline{W R}$ - Write Enable

In all asynchronous modes, $\overline{\mathrm{WR}}$ is used as a write enable for the memory array (see asynchronous mode sections for details). $\overline{\mathrm{WR}}$ has no effect in the synchronous modes.

UWS - Upper Word Select

UWS is only used in Asynchronous 16 Mode. If UWS is LOW and a memory write is performed, data on DIO15-0 is written to the lower 16 bits of the addressed 24 -bit word. If UWS is LOW and a memory read is performed, the lower 16 bits of the addressed 24 -bit word will be output on DIO15-0. If UWS is HIGH and a memory write is performed, data on DIO7-0 is written to the upper 8 bits of the addressed 24 -bit word. If UWS is HIGH and a memory read is performed, the upper 8 bits of the addressed 24 -bit word will be output on DIO7-0.

$\overline{F C}$ - Flash Clear

When $\overline{\mathrm{FC}}$ is LOW, all memory array locations and data path registers are set to " 0 ". To ensure that Flash Clear functions properly, $\overline{\mathrm{FC}}$ should not be set LOW until START is HIGH (synchronous modes) or $\overline{\mathrm{WR}}$ is HIGH (asynchronous modes).

$\overline{L D}$-Function Load Strobe

Data present on FCT2-0 is latched into the LF48410 on the rising edge of LD. To ensure proper operation of the device, there must be at least one rising edge of CLK between the rising edge of $\overline{\mathrm{LD}}$ and the falling edge of START.

TABLE 1.			LF48410 MODES
FCT2-0		MODE	
0	0	0	Histogram
0	0	1	Histogram Accumulate
0	1	0	Delay and Subtract
0	1	1	Look Up Table
1	0	0	Bin Accumulate
1	0	1	Delay Memory
1	1	0	Asynchronous 24
1	1	1	Asynchronous 16

HISTOGRAM MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 1. The memory array keeps track of how many times a particular pixel value is used in a video image. The pixel value is input on PIN9-0 and is latched on the rising edge of CLK. Data at the address defined by PIN9-0 is read out of the memory array and incremented by one. The data is then written back to the memory array, in the same location it was read from, and is also output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). As long as START is LOW, the device will be enabled for Histogram Mode. When START is HIGH, the device will still read pixel values, but the addres-sed data will not be incremented. The unchanged data is output on DIO23-0 and is not written back to the memory array (writing is disabled). START is delayed internally three clock cycles to match the latency of the address generator.

HISTOGRAM ACCUMULATE MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 2. This mode is used to calculate the Cumulative Distribution Function of a video image. Before this can be done, the histogram of the image must already be in the memory array. The internal counter is used to generate address data for the memory array. Data at the address defined by the counter is read out of the memory array and added to the sum of the data from all previous address locations. This new value is written back to the memory array, in the same location where the last read occurred, and is also output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). After all memory locations with histogram data are accumulated, the memory array will contain the Cumulative Distribution Function.

After this mode is selected, the internal counter and all data path registers are reset to zero when

$\overline{\text { START }}$ is set LOW. Every rising edge of CLK causes the counter to increment its output by one until the counter reaches a value of 1023. At this point, the counter will hold the value of 1023 and writing to the memory array will be disabled. As long as START is LOW, the device will be enabled for Histogram Accumulate Mode. When START is HIGH, the counter will still increment its address values, but the addressed data will not be added to anything. The unchanged data is output on DIO_{23-0} and is not written back to the memory array (writing is disabled). START is delayed internally three clock cycles to match the latency of the address generator.

LOOK UP TABLE MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 3. This mode is used to perform fixed transformation functions on pixel values. The transformation function can be loaded into the memory array in Look Up Table Write Mode, Asynchronous 16/24 Mode, or Histogram Accumulate Mode. In Look Up Table Write Mode, data is loaded into the memory array using DIN23-0, CLK, and START. The internal counter is used to generate address data for the memory array. When START goes LOW, the counter is reset to zero. As long as START is LOW, data on DIN23-0 is latched on the rising edge of CLK and loaded

LF48410

into the memory array at the address defined by the counter. The value already in the memory array at that address is output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). Every rising edge of CLK causes the counter to increment its output by one until the counter reaches a value of 1023. At this point, the counter will hold the value of 1023 and writing to the memory array will be disabled. DIN23-0 is delayed internally three clock cycles to match the latency of the address generator. In Asynchronous 16/24 Mode, data is loaded into the memory array as detailed in the asynchronous mode
sections. If the Cumulative Distribution Function is the desired transformation function, the memory array will contain this data as soon as the Histogram Accumulate function has been completed.

Once the memory array contains the desired data, the device needs to be put in Look Up Table Read Mode by setting START HIGH. In Look Up Table Read Mode, pixel values are input on PIN9-0 and are latched on the rising edge of CLK. Data at the address defined by PIN9-0 is read out of the memory array and output on

DIO23-0 (if $\overline{R D}$ is LOW). If Look Up Table Write Mode was used to load the memory array, it is important to wait until the third clock cycle after START goes HIGH to input data on PIN9-0 to insure that all data is written into the memory array before any reading is done.

BIN ACCUMULATE MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 4. PIN9-0 provides address data for the memory array and is latched on the rising edge of CLK. Data at the address defined by PIN9-0 is read out of the memory array and added to the data on DIN23-0. This new value is written back to the memory array, in the same location where the last read occured, and is also output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). As long as START is LOW, the device will be enabled for Bin Accumulate Mode. When START is HIGH, the device will still read address values on PIN90 , but the addressed data will not be added to anything. The unchanged data will be output on DIO23-0 and is not written back to the memory array (writing is disabled). $\widetilde{\text { START }}$ and DIN23-0 are delayed internally three clock cycles to match the latency of the address generator.

DELAY MEMORY MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 5. This mode allows the device to function as a row buffer. The internal counter is used to generate address data for the memory array. When START goes LOW, the counter is reset to zero. Delay length (row length) is determined by reseting the counter every $\mathrm{N}-4$ clock cycles, where N is the number of delays. For
example, to set the number of delays to $10, \overline{\text { START }}$ would have to be set LOW every 6 cycles. The maximum delay length is 1029 and the minimum delay length is 6 . Data on DIN23-0 is latched on the rising edge of CLK and loaded into the memory array at the address defined by the counter. Data is output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). If the counter reaches the value of 1023 , the counter will hold this value and writing to the memory array will be disabled.

DELAY AND SUBTRACT MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 6. The internal counter is used to generate address data for the memory array. When START goes LOW, the counter is reset to zero. Delay length (row length) is determined by reseting the counter every $\mathrm{N}-4$ clock cycles, where N is the number of delays. The maximum delay length is 1029 and the minimum delay length is 6 . Data on DIN23-0 is latched on the rising edge of CLK and loaded into the memory array at the address defined by the counter. Data is output on DIO23-0 (if $\overline{\mathrm{RD}}$ is LOW). Before data read from the memory array is output to DIO23-0, input data is subtracted from it according to the following formula: OUTC $=\mathrm{D}(\mathrm{C}-\mathrm{N}+1)$ - $\mathrm{D}(\mathrm{C}-3)$. OUTC is the data sent to the output port (DIO23-0) on clock cycle C. $\mathrm{D}(\mathrm{C}-\mathrm{N}+1)$ is the data latched into the device on clock cycle $\mathrm{C}-\mathrm{N}+1$, and $\mathrm{D}(\mathrm{C}-3)$ is the data latched into the device on clock cycle $\mathrm{C}-3$. N is the number of delays. For example, to determine what will be output on DIO23-0 on clock cycle 12 when the device is set for 10 delays, set $\mathrm{C}=12$ and $\mathrm{N}=10$ to obtain: OUT12 $=\mathrm{D} 3-\mathrm{D} 9$. If the counter reaches the value of 1023 , the counter will hold this value and writing to the memory array will be disabled.

Figure 5. Delay Memory Mode

Figure 6. Delay And Subtract Mode

ASYNCHRONOUS 16 MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 7. This mode allows the device to function as an asynchronous single port RAM. Each 24-bit memory location is split into two parts, the lower 16 bits and the upper 8 bits. IOA9-0 addresses the 24-bit memory locations, and UWS addresses the lower 16 or upper 8 bits of those locations. If UWS is LOW, the lower 16 bits of the 24-bit memory location are addressed. If UWS is HIGH, the upper 8 bits are addressed. Address
data on IOA9-0 and UWS is latched into the device on the falling edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$. If $\overline{\mathrm{RD}}$ latches the address data, a memory read is performed. Data at the specified address is output on DIO15-0 (if UWS was latched LOW) or DIO7-0 (if UWS was latched HIGH). If UWS was latched LOW/HIGH, DIO16-23/DIO8-23 will output zeros during a memory read. If $\overline{W R}$ latches the address data, a memory write is performed. After the falling edge of $\overline{W R}$ latches the address, data on DIO15-0 (if UWS was latched LOW) or DIO7-0 (if UWS was latched HIGH) is written to the RAM on the rising edge of $\overline{W R}$.

ASYNCHRONOUS 24 MODE

When the LF48410 is in this mode, the chip is configured as shown in Figure 7. In this mode, the device functions the same as when in Asynchronous 16 Mode except that the 24-bit memory locations are not split into two parts. All 24 bits are used during a read or write operation. When reading, data is output on DIO23-0. When writing, data is input on DIO23-0. UWS is not used in this mode.

Figure 7. Asynchronous 16/24 Mode

LF48410

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$Signal applied to high impedance output... -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$Output current into low outputs25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode

Active Operation, Commercial
Active Operation, Military

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.6			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH_{H}	Input High Voltage		2.2		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq VCC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VCC (Note 12)			± 10	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			310	mA
IcC2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF48410-			
		30		25	
		Min	Max	Min	Max
tcyc	Cycle Time	30		25	
tPWL	Clock Pulse Width Low	12		10	
tPWH	Clock Pulse Width High	12		10	
tPS	PIN9-0 Setup Time	13		12	
tPH	PIN9-0 Hold Time	0		0	
tos	DIN23-0 Setup Time	13		12	
tDH	DIN23-0 Hold Time	0		0	
tss	$\overline{\text { START }}$ Setup Time	13		12	
tsh	START Hold Time	0		0	
ter	Read/Write Cycle Time	65		55	
tAS	Address Setup Time	15		13	
tah	Address Hold Time	1		1	
twL	$\overline{\text { WR Pulse Width Low }}$	15		12	
twh	WR Pulse Width High	15		12	
twDS	DIO23-0 Setup Time	15		12	
twDH	DIO23-0 Hold Time	1		1	
tRL	$\overline{\mathrm{RD}}$ Pulse Width Low	43		35	
tah	$\overline{\mathrm{RD}}$ Pulse Width High	17		15	
tRD	$\overline{\mathrm{RD}}$ Low to DIO23-0 Valid		43		35
toh	$\overline{\mathrm{RD}}$ High to DIO23-0 Valid		0		0
tLL	$\overline{\text { LD Pulse Width }}$	12		10	
tLS	$\overline{\text { LD Setup to START }}$	30		25	
tFS	FCT2-0 Setup Time	10		10	
tFH	FCT2-0 Hold Time	0		0	
tFL	$\overline{\text { FC Pulse Width }}$	35		35	
tD	Output Delay		19		15
tena	Three-State Output Enable Delay (Note 11)		19		18
tols	Three-State Output Disable Delay (Note 11)		19		18

SWITCHING CHARACTERISTICS

Military Operating Range（ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ）Notes 9,10 （ns）					
Symbol	Parameter	LF48410－			
		39		30	
		Min	Max	Min	Max
tcyc	Cycle Time	39		30	
tPWL	Clock Pulse Width Low	15		12	
tPWH	Clock Pulse Width High	15		12	
tPS	PIN9－0 Setup Time	16		15	
tPH	PIN9－0 Hold Time	1		1	
tDS	DIN23－0 Setup Time	16		15	
tDH	DIN23－0 Hold Time	1		1	
tss	START Setup Time	16		15	
tSH	$\overline{\text { START Hold Time }}$	0		0	
tcy	Read／Write Cycle Time	80		65	
tAS	Address Setup Time	20		16	
taH	Address Hold Time	2		2	
twL	$\overline{\text { WR Pulse Width Low }}$	20		15	
twh	$\overline{\text { WR Pulse Width High }}$	20		15	
twDs	DIO23－0 Setup Time	20		16	
twDH	DIO23－0 Hold Time	2		2	
tRL	$\overline{\mathrm{RD}}$ Pulse Width Low	55		43	
tri	$\overline{\mathrm{RD}}$ Pulse Width High	20		17	
trd	$\overline{\mathrm{RD}}$ Low to DIO23－0 Valid		55		43
toh	$\overline{\mathrm{RD}}$ High to DIO23－0 High Z	0		0	
tLL	$\overline{\overline{L D}}$ Pulse Width	15		12	
tLS	$\overline{\text { LD }}$ Setup to START	39		30	
tFS	FCT2－0 Setup Time	15		12	
tFH	FCT2－0 Hold Time	1		1	
tFL	$\overline{\text { FC Pulse Width }}$	35		35	
tD	Output Delay		24		19
tena	Three－State Output Enable Delay（Note 11）		24		19
tDIS	Three－State Output Disable Delay（Note 11）		27		27

Switching Waveforms: Histogram Mode

*RAM contents not changed.

Switching Waveforms: Histogram Accumulate Mode

*RAM contents not changed.

Switching Waveforms: Bin Accumulate Mode

Switching Waveforms：Look Up Table Write Mode

＊START must be held LOW a minimum of tSH after the rising edge of CLK that loads the last value of DIN23－0．

Switching Waveforms：Look Up Table Read Mode

＊START must be held HIGH a minimum of tSH after the rising edge of CLK that loads the last value of PIN9－0．

Shown are the waveforms for a delay length of 10 ．

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, Vth, is set at 3.5 V for Z -to-0 and 0 -to- Z tests, and set at 0 V for Z -
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

	ORDERING INFORMATION
	84-pin
Speed	Plastic J-Lead Chip Carrier (J3)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening
$\begin{aligned} & 30 \mathrm{~ns} \\ & 25 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { LF48410JC30 } \\ & \text { LF48410JC25 } \end{aligned}$

DEVICES INCORPORATED

FEATURES

40 MHz Data and Computation Rate- Nine Multiplier Array with 8-bit Data and 8-bit Coefficient Inputs
\square Separate Cascade Input and Output Ports
- On-board Programmable Row Buffers
- Two Coefficient Mask RegistersOn-board 8-bit ALUTwo's Complement or Unsigned OperandsReplaces Harris HSP48908DECC SMD No. 5962-93007Available 100\% Screened to MIL-STD-883, Class B
\square Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 100-pin Plastic Quad Flatpack
- 84 -pin Ceramic PGA

DESCRIPTION

The LF48908 is a high-speed two dimensional convolver that implements a 3×3 kernel convolution at real-time video rates. Programmable row buffers are located on-chip, eliminating the need for external data storage. Each row buffer can store up to 1024 pixels. Two internal register banks are provided allowing two separate sets of filter coefficients to be stored simultaneously. Adaptive filter operations are possible when both register banks are used. An on-chip ALU is provided, allowing real-time arithmetic and logical pixel point operations to be performed on the image data. The 3×3 convolver comprises nine 8×8-bit multipliers, various pipeline registers, and summers. A complete sum-of-products operation is performed every clock
cycle. The FRAME signal resets all data registers without affecting the control and coefficient registers.

Pixel and coefficient input data are both 8 -bits and can be either signed or be in a raster scan non-interlaced format. The LF48908 can internally store images as wide as 1024 pixels for the 3×3 convolution. By using external row buffers and multiple LF48908s, longer pixel rows can be used and convolutions with larger kernel sizes can be performed. Output data is 20 -bits and this guarantees no overflow for kernel sizes up to 4×4. A separate cascade input is used as the data input for summing results from multiple LF48908s. It can also function as the data input path when external line buffers are used.

Figure 1. LF48908 Block Diagram

LF48908

Figure 2. LF48908 Functional Block Diagram

NOTE: NUMBERS IN REGISTER INDICATE NUMBER OF PIPELINE DELAYS.

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The rising edge of CLK strobes all enabled registers except for the Control Logic Registers.

Inputs

DIN7-0 - Pixel Data Input
DIN7-0 is the 8-bit registered pixel data input port. Data is latched on the rising edge of CLK.

CIN9-0 — Coefficient and Control Logic

 Register InputCIN7-0 is used to load the Coefficient Registers or can be used to provide a second operand input to the ALU. CIN8-0 is used to load the Initialization Register. CIN9-0 is used to load the ALU Microcode and Row Buffer Length Registers. The Control Register Address Lines, A2-0, determine which register will receive the CIN data. The CIN data is loaded into the addressed register by using the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$ control inputs.

CASI15-0 - Cascade Input

The cascade input is used when multiple LF48908s are cascaded together or when external row buffers are needed. This allows convolutions of larger kernels or longer row sizes.

Outputs

DOUT19-0 — Data Output
DOUT19-0 is the 20-bit registered data output port.

CASO7-0 - Cascade Output

The data presented on CASO7-0 is the internal ALU output delayed by twice the programmed internal row buffer length.

Controls

$\overline{\text { RESET }}$ - Reset Control
When RESET is LOW, all internal circuitry is reset, all outputs are forced LOW, all Control Logic Registers are loaded with their default values (which is 0 for each one except the ALU Microcode Register which has a default value of " 0000011000 "), and all other internal registers are loaded with a " 0 ".

$\overline{\text { FRAME }}$ - New Frame Input Control

When asserted, FRAME signals the start of a new frame. When FRAME is LOW, all internal circuitry is reset except for the ALU Microcode, Row Length, Initialization, Coefficient, and ALU Registers.

EALU - Enable ALU Register Input

When HIGH, data on CIN7-0 is latched into the ALU Register on the next rising edge of CLK. When LOW, data on CIN7-0 will not be latched into the ALU Register and the register contents will not be changed.

HOLD - Hold Control

The HOLD input is used to disable CLK from all of the internal circuitry. HOLD is latched on the rising edge of CLK and takes effect on the next rising edge of CLK. When HOLD is HIGH,
CLK will have no effect on the LF48908 and all internal data will remain unchanged.
$\overline{O E}$-Output Enable
When $\overline{\mathrm{OE}}$ is LOW, DOUT $19-0$ is enabled for output. When $\overline{\mathrm{OE}}$ is HIGH, DOUT $19-0$ is placed in a highimpedance state.

A2-0 - Control Logic Address Lines

A2-0 determines which Control Logic Register will receive the CIN9-0 data.

$\overline{C S}$ - Chip Select

When $\overline{\mathrm{CS}}$ is LOW, data can be loaded into the Control Logic Registers. When CS is HIGH, data can not be loaded and the register contents will not be changed.
$\overline{L D}$ — Load Strobe
If $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$ are LOW, the data present on CIN9-0 will be latched into the Control Logic Register addressed by $\mathrm{A} 2-0$ on the rising edge of $\overline{\mathrm{LD}}$.

FUNCTIONAL DESCRIPTION

The LF48908, a two-dimensional convolver, executes convolutions using internal row buffers to reduce design complexity and board space requirements. 8 -bit image data, in raster scan, non-interlace format, is convolved with one of two internal, 3×3 userprogramable filter kernels. Two 1024×8 bit row buffers provide the data delay needed to perform two-dimensional convolutions on a single chip. The result output of 20-bits allows for word growth during the convolution operation.

The input data path (DIN7-0) provides access to an 8 -bit ALU. This allows point operations to be performed on the incoming data stream before reaching the row buffers and the convolver. The length of these buffers is programmable for use in various video formats without the need for additional external delay.
This device is configured by loading the coefficent data (filter kernels) and row buffer length through the coefficent data path (CIN7-0). Internal registers are addressed using the A2-0 address lines. Chip Select ($\overline{\mathrm{CS}}$) and Load Strobe (LD) complete the configuration interface which may be controlled by standard microprocessors without additional external logic.

The filtered image data is output on the Data Output bus (DOUT19-0). This bus is registered with three-state drivers to facilatate use on a standard microprocessor system bus.

Data Input

Image data is input to the 3×3 convolver using DIN7-0. Data present on DIN7-0 is latched into a programmable pipeline delay on the rising edge of CLK. The programmable pipeline delay (1 to 4 clock cycles) allows for synchronization of input data when multiple LF48908s are cascaded together to perform larger convolutions. This delay is programed via the Initialization Register (see Table 3). The image data format, unsigned or two's complement, is also controlled by this register.
Coefficient data is input to the 3×3 convolver using either of two Coefficient Registers (CREG0 or CREG1). The Coefficient Registers are loaded through CIN7-0 using the A2-0, $\overline{\mathrm{CS}}$, and $\overline{\mathrm{LD}}$ controls. The coefficient data format, unsigned or two's complement, is determined by the Initialization Register.

Arithmetic Logic Unit

The input data path ALU with shifter allows pixel point operations to be performed on the incoming image. These operations include arithmetic functions, logical masking, and left/ right shifts. The 10-bit ALU Microcode Register controls the various operations. The three upper bits control the shift amount and direction while the seven lower bits determine the arithmetic or logical operation. The shift operation is performed on the output of the ALU. This shift operation is independent of the arithmetic or logical operation of the ALU.

Tables 1 and 2 show the operations of the ALU Microcode Register. The " A " operand comes from the DIN input
data path, while the " B " operand is taken from the ALU Register. The ALU Register is loaded using CIN7-0 and EALU. With EALU HIGH, data from CIN7-0 is loaded into the ALU Register on the rising edge of CLK. With EALU LOW, the data is held in the ALU Register. Since CIN7-0 is also used to load the Control Logic Registers, it is possible to overwrite data in those registers if $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$ are active when loading the ALU Register. Therefore, special care must be taken to ensure that $\overline{C S}$ and $\overline{\mathrm{LD}}$ are not active when writing to the ALU Register.

Programmable Row Buffers

The two internal row buffers provide the delay needed to perform the twodimensional convolution. The row buffers function like 8 -bit serial shift registers with a user-programmable delay from 1 to 1024 stages (it is possible to select delay stages of 1 or 2, but this leads to meaningless results for a 3×3 kernel convolution). The row buffer length is set via the Row Length Register (see Row Length Register Section). The row buffers are connected in series to provide the proper pixel information to the
multiplier array. The Cascade Output (CASO7-0) provides a 2 X row delay of the input data allowing for cascading of LF48908s to handle larger frames and/or kernel sizes. If more than 1024 delay stages are needed, it is possible to use external row buffers and bypass the internal row buffers. Bit 0 of the Initialization Register determines if internal or external row buffers are used. If Bit 0 is a " 0 ", the internal row buffers are used. If Bit 0 is a " 1 ", the internal row buffers are bypassed and external row buffers may be used.

3×3 Multiplier Array

The multiplier array comprises nine 8×8-bit multipliers. The active Coefficient Register supplies the coefficents to each of the multipliers, while the pixel data comes from the data input path and row buffers. The array forms a sum-of-products result as defined by the equation listed in Figure 3.

CONTROL LOGIC

Four sets of registers, the ALU Microcode, Row Length, Initialization, and Coefficient, define the Control Logic section. These registers are updated

Figure 3. Multiplier Array Output

PIXEL INPUT DATA

P1	P2	P3
P4	P5	P6
$P 7$	$P 8$	$P 9$

FILTER KERNEL

A	B	C
D	E	F
G	H	I

$$
\begin{aligned}
\text { MULTIPLIER ARRAY OUTPUT } & =\mathrm{A}(\mathrm{P} 1)+\mathrm{B}(\mathrm{P} 2)+\mathrm{C}(\mathrm{P} 3) \\
& +\mathrm{D}(\mathrm{P} 4)+\mathrm{E}(\mathrm{P} 5)+\mathrm{F}(\mathrm{P} 6) \\
& +\mathrm{G}(\mathrm{P} 7)+\mathrm{H}(\mathrm{P} 8)+\mathrm{I}(\mathrm{P} 9)
\end{aligned}
$$

Figure 4. LF48908 Control Logic Block Diagram

through the CIN bus using A2-0, $\overline{\mathrm{CS}}$, and $\overline{\text { LD }}$ (see Figure 4). All the Control Logic Registers are set to their default values when $\overline{\text { RESET }}$ is active. $\overline{\text { FRAME }}$ does not affect the values in these registers.

ALU Microcode Register

Operation of the ALU and shifter are determined by the value stored in the ALU Microcode Register. This 10-bit instruction word is divided into two fields. The lower seven bits define the arithmetic and logical operations of the ALU. The upper three bits specify shift distance and direction. Tables 1 and 2 detail the various instruction words. This register is loaded through CIN9-0 using the $\mathrm{A} 2-0, \overline{\mathrm{CS}}$, and $\overline{\mathrm{LD}}$ controls. Also see Arithmetic Logic Unit section.

Row Length Register

The value stored in the Row Length Register determines the number of delay stages for each row buffer. The number of delay stages should be set equal to the row length of the input image. The Row Length Register may be loaded with the values 0 through 1023 (0 represents 1024 delay stages). It is possible to program the row buffers to have 1 or 2 delay stages, but this will lead to meaningless results for a 3×3 convolution. This register is loaded through CIN9-0 using the A2-0, $\overline{\mathrm{CS}}$, and $\overline{\mathrm{LD}}$ controls. Once the Row Length Register has been loaded, a new value can not be loaded until the LF48908 has been reset. This is done by asserting $\overline{\text { RESET. After }} \overline{\text { RESET }}$ goes HIGH, the Row Length Register must
be loaded within 1024 CLK cycles. If the Row Length Register is not loaded within 1024 CLK cycles, the register will automatically be loaded with a " 0 ".

Initialization Register

The Initialization Register configures various functions of the device including: input data delay, input data format, coefficent data format, output rounding, cascade mode, and cascade input shift (see Table 3). This register is loaded through CIN8-0 using the $\mathrm{A} 2-0, \overline{\mathrm{CS}}$, and $\overline{\mathrm{LD}}$ controls.

Coefficient Registers - CREG0, CREG1

The Coefficient Registers are used to store the filter coefficients for the multiplier array. Each Coefficient

Register can hold nine 8 -bit values. This allows two different 3×3 filter kernels to be stored simultaneously on the LF48908. The outputs of CREG0 and CREG1 are connected to the coefficient inputs of the multiplier array (A through I). The register used to supply the coefficient data is determined by the address written to the Address Decoder. If a " 101 " is written to the Address Decoder, CREG0 will provide the coefficient data. If a " 110 " is written to the Address Decoder, CREG1 will be used. It is possible to switch between the two Coefficient Registers in real time. This facilitates adaptive filtering operations. It is important to remember to meet the tLCS timing specification when switching the Coefficient Registers. When a Coefficient Register is selected to supply data to the multiplier array (one of the registers is always selected), all of its outputs are enabled simultaneously. When RESET is asserted, CREG 0 is the default register selected to supply the coefficient data.

CREG0 and CREG1 are loaded through CIN $7-0$ using the $\mathrm{A} 2-0, \overline{\mathrm{CS}}$, and $\overline{\mathrm{LD}}$ controls. The nine coefficient values are presented on CIN7-0 one by one, in order from A to I. As each value is placed on CIN7-0, it is latched into the selected Coefficient Register using $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$. The register to be

ALU MICROCODE REGISTER							
			TE				
6	5	4	3	2	1	0	OPERATION
0	0	0	0	0	0	0	Logical (00000000)
1	1	1	1	0	0	0	Logical (11111111)
0	0	1	1	0	0	0	Logical (A) (Default)
0	1	0	1	0	0	0	Logical (B)
1	1	0	0	0	0	0	Logical ($\overline{\mathrm{A}}$)
1	0	1	0	0	0	0	Logical ($\overline{\mathrm{B}}$)
0	1	1	0	0	0	1	Arithmetic ($\mathrm{A}+\mathrm{B}$)
1	0	0	1	0	1	0	Arithmetic ($A-B$)
1	0	0	1	1	0	0	Arithmetic ($B-A$)
0	0	0	1	0	0	0.	Logical (AND B)
0	0	1	0	0	0	0	Logical (A AND $\overline{\mathrm{B}}$)
0	1	0	0	0	0	0	Logical (\bar{A} AND B)
0	1	1	1	0	0	0	Logical (A OR B)
1	0	1	1	0	0	0	Logical ($\mathrm{A} O R \bar{B}$)
1	1	0	1	0	0	0	Logical (\bar{A} OR B)
1	1	1	0	0	0	0	Logical (A NAND B)
1	0	0	0	0	0	0	Logical (A NOR B)
0	1	1	0	0	0	0	Logical (A XOR B)
1	0	0	1	0	0	0	Logical (A XNOR B)

loaded is determined by the data on A2-0 during the load operation. If CREG 0 is to be loaded, " 010 " must be placed on $\mathrm{A} 2-0$ during the load operation. If CREG1 is to be loaded, " 011 " must be placed on A2-0. If desired, the Coefficient Register that is not being used to send data to the multiplier array can be loaded with coefficient data while the LF48908 is in active operation.

Address Decoder

The Address Decoder is used to load the Control Logic Registers and to determine which Coefficient Register sends data to the multiplier array. To load a Control Logic Register, the address of the register must be placed on A2-0, the data to be written must be placed on the CIN bus, and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$ must be asserted. The data is
latched into the addressed register when $\overline{\text { LD }}$ goes HIGH. To select a Coefficient Register (CREG0 or CREG1) to send data to the multiplier array, the appropriate address must be placed on $\mathrm{A} 2-0$, and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{LD}}$ must be asserted. When $\overline{\mathrm{LD}}$ goes HIGH, the addressed register will begin supplying coefficient data to the multiplier array. Table 4 lists all of the register addresses.
The Control Logic Registers can be modified during active operation of the LF48908. If this is done, it is very important to meet the tLCS timing specification. This is to ensure that the outputs of the Control Logic Registers have enough time to change before the next rising edge of CLK. If tLCS is not met, unexpected results may occur on DOUT19-0 for one clock cycle. There are two situations in which tLCS may
be ignored. If the LF48908 is not in active operation or if the innactive Coefficient Register is being written to during active operation.

Cascade Operation

The Cascade Input lines (CASI15-0) and Cascade Output lines (CASO7-0) are used to allow convolutions of kernel sizes larger than 3×3. The Cascade Input lines are also used to allow convolutions on row lengths longer than 1024 pixels. The Cascade Mode Bit (Bit 0) of the Initialization Register determines the function of the Cascade Input lines. If the Cascade Mode Bit is a " 0 ", then the Cascade Input lines are to be used to cascade multiple LF48908s together to perform convolutions of larger kernel sizes. CASI15-0 will be left shifted (by an amount determined by bits 7 and 8 of the Initialization Register) and then added to DOUT $19-0$. Cascading is accomplished by connecting CASO7-0 and DOUT19-0 of one LF48908 to DIN7-0 and CASI15-0 respectively of another LF48908. If the Cascade Mode Bit is a " 1 ", then the Cascade Input lines are to be used with external row buffers to allow for longer row lengths. In this mode, the Cascade Input lines are split into two 8 -bit data busses (CASI15-8 and CASI7-0) which are fed directly into the multiplier array.

Table 3. Intialzation Register		
		FUNCTION
		cascade mode
		Multiplier input from internal row buffers Multiplier input from external buffers
2	1	PUUT DATA DEL
0 0 1 1		No data delay registers used One data delay register used Two data delay registers used Three data delay registers used
		PUT DATA FO
		Unsigned integer format Two's complement format
		COEFFICIENT DATA FORMAT
		Unsigned integer format Two's complement format
6	5	OUTPUT ROUNDING
0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	No rounding Round to 16 bits (i.e. DOUT19-4) Round to 8 bits (i.e. DOUT19-12) Not valid
8	7	CASI15-0 INPUT SHIFT
0 0 1	0 1 0 1	No shift Shift CASI15-0 left two Shift CASI15-0 left four Shift CASI15-0 left eight

Table 4.Control Logic Address MAP	
A2-0	FUNCTION
000	Load Row Buffer Length Register
001	Load ALU Microcode Register
010	Load Coefficient Register 0
011	Load Coefficient Register 1
100	Load Initialization Register
101	Select Coefficient Register 0
for Internal Processing	
110	Select Coefficient Register 1 for Internal Processing
111	No Operation

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground
-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output... -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs
25 mA
Latchup current
$>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.8			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=2.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
ViL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground $\leq \operatorname{VIN} \leq$ VcC (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 10	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			110	mA
IcC2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
CIN	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LF48908-					
		50		31		25	
		Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	50		31		25	
tPWH	Clock Pulse Width High	20		12		8	
tPWL	Clock Pulse Width Low	20		13		8	
tDS	Data Input Setup Time	14		13		8	
tDH	Data Input Hold Time	0		0		0	
tcs	CIN7-0 Setup Time	16		14		10	
tch	CIN7-0 Hold Time	0		0		0	
tES	EALU Setup Time	14		12		10	
tEH	EALU Hold Time	0		0		0	
tD	Output Delay		22		16		15
tENA	Three-State Output Enable Delay (Note 11)		22		16		15
tDIS	Three-State Output Disable Delay (Note 11)		32		28		8

Switching Waveforms: Convolver Data I/O

LF48908

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LF48908-					
		50		37		25	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		37		25	
tPWH	Clock Pulse Width High	20		15		8	
tPWL	Clock Pulse Width Low	20		15		8	
tDs	Data Input Setup Time	17		16		8	
tDH	Data Input Hold Time	0		0		0	
tcs	CIN7-0 Setup Time	20		17		10	
tCH	CIN7-0 Hold Time	0		0		0	
tes	EALU Setup Time	17		15		10	
teh	EALU Hold Time	0		0		0	
tD	Output Delay		28		19		15
tena	Three-State Output Enable Delay (Note 11)		28		19		15
tols	Three-State Output Disable Delay (Note 11)		40		35		8

Switching Waveforms: Convolver Data I/O

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LF48908-					
		50		31		25	
		Min	Max	Min	Max	Min	Max
tLPW	$\overline{\text { LD }}$ Pulse Width	20		12		8	
tlcs	$\overline{\text { LD }}$ Setup Time (Applies only during active operation)	30		25		15	
tcDs	Configuration Data Setup Time	16		14		10	
tcDH	Configuration Data Hold Time	0		0		0	
tAS	Address Setup Time	13		13		10	
tah	Address Hold Time	0		0		0	
tcss	$\overline{\text { CS Setup Time }}$	0		0		0	
tCSH	$\overline{\text { CS }}$ Hold Time	0		0		0	

Militar	Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tLPW	$\overline{\text { LD Pulse Width }}$	20		15		8	
tLCS	$\overline{\mathrm{LD}}$ Setup Time (Applies only during active operation)	37		30		15	
tcDs	Configuration Data Setup Time	20		17		10	
tcDh	Configuration Data Hold Time	0		0		0	
tas	Address Setup Time	15		15		10	
tah	Address Hold Time	0		0		0	
tcss	$\overline{\text { CS S Setup Time }}$	0		0		0	
tCSH	$\overline{\text { CS }}$ Hold Time	0		0		0	

Switching Waveforms: Configuration Data

*applies only when the LF48908 is in active operation.

LF48908

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to +70 ${ }^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LF48908-					
		50		31		25	
		Min	Max	Min	Max	Min	Max
tHS	HOLD Setup Time	12		11		9	
the	HOLD Hold Time	1		1		0	
tFPW	FRAME Pulse Width	50		31		8	
tFS	FRAME Setup Time	25		21		20	
tRPW	$\overline{\text { RESET Pulse Width }}$	50		31		8	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LF48908-					
		50		37		25	
		Min	Max	Min	Max	Min	Max
tHS	HOLD Setup Time	14		13		9	
the	HOLD Hold Time	2		2		0	
tFPW	FRAME Pulse Width	50		37		8	
tFS	FRAME Setup Time	30		25		20	
trPW	RESET Pulse Width	50		37		8	

Switching Waveforms: Control Signals

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, Vth, is set at 3.5 V for Z -to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circut

Figure B. Threshold Levels

LF48908

	ORDERING INFORMATION	
	84-pin	
Speed	Ceramic Pin Grid Array (G3)	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
50 ns 31 ns 25 ns	-	LF48908GC50 LF48908GC31 LF48908GC25
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening	
50 ns 37 ns 25 ns		LF48908GM50 LF48908GM37 LF48908GM25
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL}-$ STD-883 Compliant	
50 ns 37 ns 25 ns		LF48908GMB50 LF48908GMB37 LF48908GMB25

LF9501 Programmable Line Buffer

FEATURES

50 MHz Maximum Operating FrequencyProgrammable Buffer Length from 2 to 1281 Clock Cycles10-bit Data Inputs and OutputsData Delay and Data Recirculation Modes

- Supports Positive or Negative Edge System Clocks
- Expandable Data Word Width or Buffer LengthReplaces Harris HSP9501Package Style Available:
- 44-pin Plastic LCC, J-Lead

DESCRIPTION

The LF9501 is a high-speed, 10-bit programmable line buffer. Some applications the LF9501 is useful for include sample rate conversion, data time compression/expansion, software controlled data alignment, and programmable serial data shifting. By using the MODSEL pin, two different modes of operation can be selected: delay mode and data recirculation mode. The delay mode provides a minimum of 2 to a maximum of 1281 clock cycles of delay between the input and output of the device. The data recirculation mode provides a feedback path from the data output to the data input for use as a programmable circular buffer.

By using the length control input (LC10-0) and the length control enable ($\overline{\mathrm{LCEN}}$) the length of the delay buffer or amount of recirculation delay can
be programmed. Providing a delay value on the LC10-0 inputs and driving LCEN LOW will load the delay value into the length control register on the next selected clock edge. Two registers, one preceeding the programmable delay RAM and one following, are included in the delay path. Therefore, the programmed delay value should equal the desired delay minus 2. This consequently means that the value loaded into the length control register must range from 0 to 1279 (to provide an overall range of 2 to 1281).

The active edge of the clock input, either positive or negative edge, can be selected with the clock select (CLKSEL) input. All timing is based on the active clock edge selected by CLKSEL. Data can be held temporarily by using the clock enable (CLKEN) input.

LF9501

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK - Master Clock
The active edge of CLK, selected by CLKSEL, strobes all registers. All timing specifications are referenced to the active edge of CLK.

Inputs

DI9-0 — Data Input
10-bit data, from the data input, is latched into the device on the active edge of CLK when MODSEL is LOW.

LC10-0 - Length Control Input

The 11-bit value is used to specify the length of the delay buffer, between DI9-0 and DO9-0, or the amount of recirculation delay. An integer value ranging from 0 to 1279 is used to select a delay ranging from 2 to 1281 clock cycles. The value placed on the $\mathrm{LC} 10-0$ inputs is equal to the desired delay minus 2. The data presented on LC10-0 is loaded into the device on the active edge of CLK, selected by CLKSEL, in conjunction with LCEN being driven LOW.

Outputs

DO9-0 — Data Output
The 10-bit data output appears on DO9-0 on the Nth clock cycle, where N is the overall delay (desired delay).

Controls

$\overline{L C E N}$ - Length Control Enable
When $\overline{\text { LCEN }}$ is driven LOW, the next active clock edge will cause the loading of the delay value present at the $\mathrm{LC} 10-0$ input.

$\overline{O E}-$ Output Enable

The Output Enable controls the state of DO9-0. Driving $\overline{\mathrm{OE}}$ LOW enables the output port. When $\overline{\mathrm{OE}}$ is HIGH, DO9-0 is placed in a high-impedance state. The internal transfer of data is not affected by this control.

MODSEL - Mode Select

The Mode Select pin is used to choose the desired mode of operation: data delay mode or data recirculation mode. Driving MODSEL LOW places the device in the delay mode. The device operates as a programmable pipeline register. New data from the DI9-0 input is loaded on every active edge of CLK. Driving MODSEL HIGH places the device in the data recirculation mode. The device operates as a programmable circular buffer. The output of the device is routed back to the input. MODSEL may be changed during device operation (synchronously), however, the required setup and hold times, with respect to CLK, must be met.

CLKSEL - Clock Select

The CLKSEL control allows the selection of the active edge of CLK. A LOW on CLKSEL selects negativeedge triggering of the device. Driving CLKSEL HIGH selects positive-edge triggering. All timing specifications are referrenced to the selected active edge of CLK.

$\overline{\text { CLKEN }}$ - Clock Enable

The Clock Enable control enables and disables the CLK input. Driving CLKEN LOW enables CLK and causes the device to operate in a normal fashion. When CLKEN is HIGH, CLK is disabled and the device will hold all internal operations and data. CLKEN may be changed during device operation (synchronously), however, the required setup and hold times, with respect to CLK, must be met. The changing of $\overline{\text { CLKEN }}$ takes effect on the active edge of CLK following the edge in which it was latched.

LF9501

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground $\leq \operatorname{VIN} \leq \operatorname{VcC}$ (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			125	mA
IcC2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF9501

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF9501-							
		40		31		25		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	40		31		25		20	
tPW	Clock Puise Width	15		12		10		8	
tDS	Data Input Setup Time	12		10		8		6	
tDH	Data Input Hold Time	2		2		2		2	
tES	Clock Enable to Clock Setup Time	12		10		8		6	
tEH	Clock Enable to Clock Hold Time	2		2		2		2	
tLS	Length Control Input Setup Time	13		10		8		6	
tLH	Length Control Input Hold Time	2		2		2		2	
tLES	Length Control Enable to Clock Setup Time	13		10		8		6	
tLEH	Length Control Enable to Clock Hold Time	2		2		2		2	
tMS	Mode Select Setup Time	13		10		8		6	
tMH	Mode Select Hold Time	2		2		2		2	
tout	Clock to Data Out		22		16		15		14
tor	Output Hold Time (Note 8)	4		4		4		4	
tENA	Three-State Output Enable Delay (Note 11)		25		20		15		14
tDIS	Three-State Output Disable Delay (Note 11)		25		24		15		14

Functional Timing - CLKSEL LOW

*When CLKSEL is HIGH, assume CLK is inverted.

LF9501

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF9501-							
		40		31		25		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tCYC	Cycle Time	40		31		25		20	
tPW	Clock Pulse Width	15		12		10		8	
tos	Data Input Setup Time	12		10		8		6	
tDH	Data Input Hold Time	2		2		2		2	
tES	Clock Enable to Clock Setup Time	12		10		8		6	
tEH	Clock Enable to Clock Hold Time	2		2		2		2	
tLS	Length Control Input Setup Time	13		10		8		6	
tLH	Length Control Input Hold Time	2		2		2		2	
tLES	Length Control Enable to Clock Setup Time	13		10		8		6	
tLEH	Length Control Enable to Clock Hold Time	2		2		2		2	
tMS	Mode Select Setup Time	13		10		8		6	
tMH	Mode Select Hold Time	2		2		2		2	
tOUT	Clock to Data Out		22		16		15		14
toh	Output Hold Time (Note 8)	4		4		4		4	
tENA	Three-State Output Enable Delay (Note 11)		25		20		15		14
tDIS	Three-State Output Disable Delay (Note 11)		25		24		15		14

Clock Enable Timing - CLKSEL LOW

LF9501

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 25 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1μ F ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

FEATURES

- 50 MHz Maximum Operating Frequency
- Programmable Buffer Length from 2 to 2049 Clock Cycles
- 10-bit Data Inputs and Outputs
\square Data Delay and Data Recirculation Modes
\square Supports Positive or Negative Edge System Clocks
- Expandable Data Word Width or Buffer Length
- Package Style Available:
- 44-pin Plastic LCC, J-Lead

DESCRIPTION

The LF9502 is a high-speed, 10-bit programmable line buffer. Some applications the LF9502 is useful for include sample rate conversion, data time compression/expansion, software controlled data alignment, and programmable serial data shifting. By using the MODSEL pin, two different modes of operation can be selected: delay mode and data recirculation mode. The delay mode provides a minimum of 2 to a maximum of 2049 clock cycles of delay between the input and output of the device. The data recirculation mode provides a feedback path from the data output to the data input for use as a programmable circular buffer.

By using the length control input ($\mathrm{LC} 10-0$) and the length control enable ($\overline{\mathrm{LCEN}}$) the length of the delay buffer or amount of recirculation delay can
be programmed. Providing a delay value on the LC10-0 inputs and driving LCEN LOW will load the delay value into the length control register on the next selected clock edge. Two registers, one preceeding the programmable delay RAM and one following, are included in the delay path. Therefore, the programmed delay value should equal the desired delay minus 2. This consequently means that the value loaded into the length control register must range from 0 to 2047 (to provide an overall range of 2 to 2049).
The active edge of the clock input, either positive or negative edge, can be selected with the clock select (CLKSEL) input. All timing is based on the active clock edge selected by CLKSEL. Data can be held temporarily by using the clock enable (CLKEN) input.

LF9502 Block Diagram

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK — Master Clock
The active edge of CLK, selected by CLKSEL, strobes all registers. All timing specifications are referenced to the active edge of CLK.

Inputs

DIg-0 — Data Input
10 -bit data, from the data input, is latched into the device on the active edge of CLK when MODSEL is LOW.

LC10-0 - Length Control Input

The 11-bit value is used to specify the length of the delay buffer, between DI9-0 and DO9-0, or the amount of recirculation delay. An integer value ranging from 0 to 2047 is used to select a delay ranging from 2 to 2049 clock cycles. The value placed on the $\mathrm{LC} 10-0$ inputs is equal to the desired delay minus 2. The data presented on LC10-0 is loaded into the device on the active edge of CLK, selected by CLKSEL, in conjunction with LCEN being driven LOW.

Outputs

DO9-0 — Data Output
The 10-bit data output appears on DO9-0 on the Nth clock cycle, where N is the overall delay (desired delay).

Controls

$\overline{L C E N}$ - Length Control Enable
When $\overline{\text { LCEN }}$ is driven LOW, the next active clock edge will cause the loading of the delay value present at the LC10-0 input.

$\overline{O E}$ —Output Enable

The Output Enable controls the state of DO9-0. Driving OE LOW enables the output port. When OE is HIGH, DO9-0 is placed in a high-impedance state. The internal transfer of data is not affected by this control.

MODSEL — Mode Select

The Mode Select pin is used to choose the desired mode of operation: data delay mode or data recirculation mode. Driving MODSEL LOW places the device in the delay mode. The device operates as a programmable pipeline register. New data from the DI9-0 input is loaded on every active edge of CLK. Driving MODSEL HIGH places the device in the data recirculation mode. The device operates as a programmable circular buffer. The output of the device is routed back to the input. MODSEL may be changed during device operation (synchronously), however, the required setup and hold times, with respect to CLK, must be met.

CLKSEL — Clock Select

The CLKSEL control allows the selection of the active edge of CLK. A LOW on CLKSEL selects negativeedge triggering of the device. Driving CLKSEL HIGH selects positive-edge triggering. All timing specifications are referrenced to the selected active edge of CLK.

$\overline{C L K E N}$ - Clock Enable

The Clock Enable control enables and disables the CLK input. Driving CLKEN LOW enables CLK and causes the device to operate in a normal fashion. When CLKEN is HIGH, CLK is disabled and the device will hold all internal operations and data. CLKEN may be changed during device operation (synchronously), however, the required setup and hold times, with respect to CLK, must be met. The changing of CLKEN takes effect on the active edge of CLK following the edge in which it was latched.

LF9502

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to Vcc +0.5 V
Signal applied to high impedance output	-0.5 V to Vcc +0.5 V
Output current into low outputs	25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC ((ote 12)			± 10	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			125	mA
IcC2	Vcc Current, Quiescent	(Note 7)			500	$\mu \mathrm{A}$
Cin	Input Capacitance	$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF9502

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)									
Symbol	Parameter	LF9502-							
		40		31		25		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	40		31		25		20	
tPW	Clock Pulse Width	15		12		10		8	
tDS	Data Input Setup Time	12		10		8		6	
toh	Data Input Hold Time	2		2		2		2	
tes	Clock Enable to Clock Setup Time	12		10		8		6	
teh	Clock Enable to Clock Hold Time	2		2		2		2	
tLS	Length Control Input Setup Time	13		10		8		6	
tLH	Length Control Input Hold Time	2		2		2		2	
tLES	Length Control Enable to Clock Setup Time	13		10		8		6	
tLEH	Length Control Enable to Clock Hold Time	2		2		2		2	
tMS	Mode Select Setup Time	13		10		8		6	
tMH	Mode Select Hold Time	2		2		2		2	
tout	Clock to Data Out		22		16		15		14
toh	Output Hold Time (Note 8)	4		4		4		4	
tena	Three-State Output Enable Delay (Note 11)		25		20		15		14
tols	Three-State Output Disable Delay (Note 11)		25		24		15		14

Functional Timing - CLKSEL LOW

*When CLKSEL is HIGH, assume CLK is inverted.

LF9502

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LF9502-							
		40		31		25		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	40		31		25		20	
tPW	Clock Pulse Width	15		12		10		8	
tDS	Data Input Setup Time	12		10		8		6	
tDH	Data Input Hold Time	2		2		2		2	
tes	Clock Enable to Clock Setup Time	12		10		8		6	
tEH	Clock Enable to Clock Hold Time	2		2		2		2	
tLS	Length Control Input Setup Time	13		10		8		6	
tLH	Length Control Input Hold Time	2		2		2		2	
tLES	Length Control Enable to Clock Setup Time	13		10		8		6	
tLEH	Length Control Enable to Clock Hold Time	2		2		2		2	
tMS	Mode Select Setup Time	13		10		8		6	
tMH	Mode Select Hold Time	2		2		2		2	
tOUT	Clock to Data Out		22		16		15		14
toh	Output Hold Time (Note 8)	4		4		4		4	
tENA	Three-State Output Enable Delay (Note 11)		25		20		15		14
tDIS	Three-State Output Disable Delay (Note 11)		25		24		15		14

Clock Enable Timing - CLKSEL LOW

Length Control Timing - CLKSEL LOW

*When CLKSEL is HIGH, assume CLK is inverted.

LF9502

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{V} C \mathrm{C}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2 F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 25 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured Vou with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $\mathrm{lOL}=10 \mathrm{~mA}$

DEVICES INCORPORATED

Ordering Information

Arithmetic Logic Units \& Special Arithmetic Functions

Register Products	5
Peripheral Products	6
Memory Products	71
FRO Products	8
Qually and Rellability	9
Technology and Design Features	10
Package Informaxion	14.
Product Listing	42
Sales Offices	¢\%

Arithmetic Logic Units \& Speciäl Arithmetic Functions

ARITHMETIC LOGIC UNITS \& SPECIAL ARITHMETIC FUNCTIONS 3-1
Arithmetic Logic Units
L4C381 16-bit Cascadable ALU 3-3
L4C383 16-bit Cascadable ALU 3-15
Special Arithmetic Functions
LSH32 32-bit Cascadable Barrel Shifter 3-27
LSH33 32-bit Cascadable Barrel Shifter with Registers 3-37
L10C23 64×1 Digital Correlator 3-45
L2330 16×16-bit Coordinate Transformer 3-53
L2340 Digital Synthesizer 3-67
L64230 Template Matcher 3-79

FEATURES

- High-Speed (15ns), Low Power 16-bit Cascadable ALU
I Implements Add, Subtract, Accumulate, Two's Complement, Pass, and Logic Operations
- All Registers Have a Bypass Path for Complete Flexibility
- DECC SMD No. 5962-89959
- Available 100% Screened to MIL-STD-883, Class B
\square Package Styles Available:
- 68-pin Plastic LCC, J-Lead
- 68 -pin Ceramic LCC
- 68 -pin Ceramic PGA

DESCRIPTION

The L4C381 is a flexible, high speed, cascadable 16-bit Arithmetic and Logic Unit. It combines four 381-type 4-bit ALUs, a look-ahead carry generator, and miscellaneous interface logic - all in a single 68 -pin package. While containing new features to support high speed pipelined architectures and single 16 -bit bus configurations, the L4C381 retains full performance and functional compatibility with the bipolar '381 designs.
The L4C381 can be cascaded to perform 32-bit or greater operations. See "Cascading the L4C381" toward

the end of this data sheet for more information.

ARCHITECTURE

The L4C381 operates on two 16-bit operands (A and B) and produces a 16-bit result (F). Three select lines control the ALU and provide 3 arithmetic, 3 logical, and 2 initialization functions. Full ALU status is provided to support cascading to longer word lengths. Registers are provided on both the ALU inputs and the output, but these may be bypassed under user control. An internal feedback path allows the registered ALU output to be routed to one of the ALU inputs, accommodating chain operations and accumulation. Furthermore, the A or B input can be forced to Zero allowing unary functions on either operand.

ALU OPERATIONS

The S2-S0 lines specify the operation to be performed. The ALU functions and their select codes are shown in Table 1.

The two functions, B minus A and A minus B, can be achieved by setting the carry input of the least significant slice and selecting codes 001 and 010 respectively.

S2-S0	FUNCTION
000	CLEAR ($\mathrm{F}=00 \cdots 00$)
001	$\mathrm{NOT}(\mathrm{A})+\mathrm{B}$
010	$\mathrm{A}+\mathrm{NOT}(\mathrm{B})$
011	A +B
100	A XOR B
101	A OR B
110	A AND B
111	PRESET ($F=11 \cdots 11$)

ALU STATUS

The ALU provides Overflow and Zero status bits. Carry, Propagate, and Generate outputs are also provided for cascading. These outputs are defined for the three arithmetic functions only. The ALU sets the Zero output when all 16 output bits are zero. The Generate, Propagate, C16, and OVF flags for the $\mathrm{A}+\mathrm{B}$ operation are defined in Table 2. The status flags produced for NOT(A) +B and $\mathrm{A}+\mathrm{NOT}(\mathrm{B})$ can be found by complementing Ai and Bi respectively in Table 2.

OPERAND REGISTERS

The L4C381 has two 16-bit wide input registers for operands A and B. These registers are rising edge triggered by a common clock. The A register is enabled for input by setting the ENA control LOW, and the B register is enabled for input by setting the $\overline{\text { ENB }}$ control LOW. When either the ENA control or $\overline{\text { ENB }}$ control is HIGH, the data in the corresponding input register will not change.
This architecture allows the L4C381 to accept arguments from a single 16-bit data bus. For those applications that do not require registered inputs, both the A and B operand registers can be bypassed with the FTAB control line. When the FTAB control is asserted ($\mathrm{FTAB}=\mathrm{HIGH}$), data is routed around the A and B input registers; however, they continue to function normally via the ENA and ENB controls. The contents of the input registers will again be available to the ALU if the FTAB control is released.

OUTPUT REGISTER

The output of the ALU drives the input of a 16 -bit register. This rising-edge-triggered register is clocked by the same clock as the input registers. When the $\overline{E N F}$ control is LOW, data from the ALU will be clocked into the

Table 2. ALU Status Flags

$$
\begin{array}{ll}
\text { Bit Carry Generate }=g i=A i B i & \text { for } i=0 \ldots 15 \\
\text { Bit Carry Propagate }=p i=A i+B i & \text { for } i=0 \ldots 15 \\
P_{0}=p 0 & \\
P_{i}=p i\left(P_{i-1}\right) & \text { for } i=1 \ldots 15
\end{array}
$$

and
$\mathrm{G} 0=\mathrm{go}$
$\mathrm{Gi}=\mathrm{gi}+\mathrm{pi}\left(\mathrm{Gi}_{\mathrm{i}-1}\right) \quad$ for $\mathrm{i}=1 \ldots 15$
$\mathrm{Ci}_{\mathrm{i}}=\mathrm{Gi}_{\mathrm{i}-1}+\mathrm{Pi}_{\mathrm{i}-1}\left(\mathrm{C}_{0}\right)$
for $\mathrm{i}=1$... 15
then
$\overline{\mathrm{G}}=\operatorname{NOT}\left(\mathrm{G}_{15}\right)$
$\overline{\mathrm{P}}=\operatorname{NOT}\left(\mathrm{P}_{15}\right)$
$\mathrm{C}_{16}=\mathrm{G}_{15}+\mathrm{P}_{15} \mathrm{C}_{0}$
OVF $=\mathrm{C}_{15} \mathrm{XOR} \mathrm{C}_{16}$
output register. By disabling the output register, intermediate results can be held while loading new input operands. Three-state drivers controlled by the $\overline{\mathrm{OE}}$ input allow the L4C381 to be configured in a single bidirectional bus system.
The output register can be bypassed by asserting the FTF control signal ($\mathrm{FTF}=\mathrm{HIGH}$). When the FTF control is asserted, output data is routed around the output register, however, it continues to function normally via the $\overline{\mathrm{ENF}}$ control. The contents of the output register will again be available on the output pins if FTF is released. With both FTAB and FTF true (HIGH) the L4C381 is functionally identical to four cascaded 54S381-type devices.

OPERAND SELECTION

The two operand select lines, OSA and OSB, control multiplexers that precede the ALU inputs. These multiplexers provide an operand force-to-zero function as well as F register feedback to the B input. Table 3 shows the inputs to the ALU as a function of the operand select inputs. Either the A or B operands may be forced to zero.

Table 3. Operand Selection			
OSB	OSA	OPERAND B	OPERAND A
0	0	F	A
0	1	0	A
1	0	B	0
1	1	B	A

When both operand select lines are low, the L4C381 is configured as a chain calculation ALU. The registered ALU output is passed back to the B input to the ALU. This allows accumulation operations to be performed by providing new operands via the A input port. The accumulator can be preloaded from the A input by setting OSA true. By forcing the function select lines to the CLEAR state (000), the accumulator may be cleared. Note that this feedback operation is not affected by the state of the FTF control. That is, the F outputs of the L4C381 may be driven directly by the ALU. The output register continues to function, however, and provides the ALU B operand source.

L4C381
Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground $\leq \operatorname{VIN} \leq \operatorname{VCC}$ (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc ((Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		15	30	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.5	mA

L4C381

SWITCHING CHARACTERISTICS - Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
Guaranteed Maximum Combinational Delays Notes 9, 10 (ns)

To Output From Input	L4C381-55				L4C381-40				L4C381-26			
	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16
FTAB $=0$, FTF $=0$												
Clock	32	38	53	36	26	30	44	32	22	22	26	22
Co	-	-	34	22	-	-	28	20	-	-	18	18
S2-So, OSA, OSB	-	42	42	42	-	32	34	35	-	22	22	22
FTAB $=0, \mathrm{FTF}=1$												
Clock	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
S2-S0, OSA, OSB	55	42	42	42	40	32	34	35	26	22	22	22
FTAB $=1, \mathrm{FTF}=0$												
A15-A0, B15-B0	-	36	46	37	-	30	40	32	-	22	22	22
Clock	32	-	-	-	26	-	-	-	22	-	-	-
Co	-	-	34	22	-	-	28	20	-	-	18	18
S2-S0, OSA, OSB	-	42	42	42	-	32	34	35	-	22	22	22
FTAB $=1, \mathrm{FTF}=1$												
A15-A0, B15-B0	55	36	46	37	40	30	40	32	26	22	22	22
Clock (OSA, OSB = 0)	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
S2-S0, OSA, OSB	55	42	42	42	40	32	34	35	26	22	22	22

Input	L4C381-55				L4C381-40				L4C381-26			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$	
	Setup	Hold										
A15-A0, B15-B0	8	2	35	2	8	2	28	2	8	2	16	2
Co	21	0	21	0	16	0	16	0	8	0	8	0
S2-So, OSA, OSB	44	0	44	0	32	0	32	0	18	0	18	0
ENA, ENB, ENF	10	2	10	2	10	2	10	2	8	2	8	2

Tri-State Enable/Disable Times Notes 9, 10,11 (ns)

	L4C381-55	L4C381-40	L4C381-26
tENA	20	18	16
tDIs	20	18	16

Clock Cycle Time and Pulse Width Notes 9,10 (ns)

	L4C381-55	L4C381-40	L4C381-26
Minimum Cycle Time	43	34	20
Highgoing Pulse	15	10	10
Lowgoing Pulse	15	10	10

SWITCHING CHARACTERISTICS - Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Tri-State Enable/Disable Times Notes 9, 10, 11 (ns)				
	L4C381-20	L4C381-15		
tena	8	6		
tdis	8	6		

Clock Cycle Time and Pulse Width Notes 9, 10 (ns)			
	L4C381-20	L4C381-15	
Minimum Cycle Time	18	14	
Highgoing Pulse	5	4	
Lowgoing Pulse	5	4	

SWITCHING CHARACTERISTICS - Mlitary Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
Guaranteed Maximum Combinational Delays Notes 9, 10 (ns)

To Output	L4C381-65				L4C381-45				L4C381-30			
From Input	F15-F0	$\overline{\mathrm{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16
FTAB $=0, \mathrm{FTF}=0$												
Clock	37	44	63	45	28	34	50	34	26	28	34	28
Co	-	-	42	25	-	-	32	23	-	-	22	22
S2-S0, OSA, OSB	-	48	48	48	-	38	38	38	-	28	28	28
FTAB $=0, \mathrm{FTF}=1$												
Clock	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
S2-S0, OSA, OSB	66	48	48	48	46	38	38	38	30	28	28	28
FTAB $=1, \mathrm{FTF}=0$												
A15-A0, B15-B0	-	44	56	44	-	32	46	36	-	28	28	28
Clock	37	-	-	-	28	-	-	-	26	-	-	-
Co	-	-	42	25	-	-	32	23	-	-	22	22
S2-S0, OSA, OSB	-	48	48	48	-	38	38	38	-	28	28	28
FTAB $=1, \mathrm{FTF}=1$												
A15-A0, B15-B0	65	44	56	44	45	32	46	36	30	28	28	28
Clock (OSA, OSB = 0)	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
S2-S0, OSA, OSB	66	48	48	48	46	38	38	38	30	28	28	28

Input	L4C381-65				L4C381-45				L4C381-30			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$	
	Setup	Hold										
A15-A0, B15-B0	10	3	43	3	8	3		3	8	3	20	3
Co	25	0	25	0	20	0	20	0	12	0	12	0
S2-So, OSA, OSB	50	0	50	0	36	0	36	0	20	0	20	0
ENA, $\overline{\text { ENB }}$, $\overline{\text { ENF }}$	12	2	12	2	10	2	10	2	10	2	10	2

Tri-State Enable/Disable Times Notes 9, 10, 11 (ns)				
	L4C381-65	L4C381-45	L4C381-30	
tena	22	20	18	
tDis	22	20	18	

Clock Cycle Time and Pulse Width Notes 9, 10 (ns)			
	L4C381-65	L4C381-45	L4C381-30
Minimum Cycle Time	52	38	26
Highgoing Pulse	20	15	12
Lowgoing Pulse	20	15	12

SWITCHING CHARACTERISTICS - Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Guaranteed Maximum Combinational Delays Notes 9,10 (ns)

To Output		L4C38	1-25			L4C381	1-20		
From Input	F15-F0	$\overline{\mathbf{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	F15-F0	$\overline{\mathrm{P}}, \overline{\mathbf{G}}$	OVF, Z	C16	
FTAB $=0, \mathrm{FTF}=0$									
Clock	14	24	24	24	14	20	20	20	
Co	-	-	18	18	-	-	16	16	
S2-So, OSA, OSB	-	22	24	22	-	18	20	18	
FTAB $=0, \mathrm{FTF}=1$									
Clock	25	24	24	24	20	20	20	20	
Co	21	-	18	18	17	-	16	16	
S2-So, OSA, OSB	25	22	24	22	20	18	20	18	
FTAB $=1, \mathrm{FTF}=0$									
A15-A0, B15-B0	-	20	25	22	-	17	20	17	
Clock	14	-	-	-	14	-	-	-	
Co	-	-	18	18	-	-	16	16	
S2-So, OSA, OSB	-	22	24	22	-	18	20	18	
FTAB $=1, \mathrm{FTF}=1$									
A15-A0, B15-B0	25	20	25	22	20	17	20	17	
Clock (OSA, OSB $=0$)	25	24	24	24	20	20	20	20	
Co	21	-	18	18	17	-	16	16	
S2-So, OSA, OSB	25	22	24	22	20	18	20	18	

Thi-State Enable/Disable Times Notes 9, 10, 11 (ns)				
	L4C381-25	L4C381-20		
tena	14	10		
tols	14	10		

Clock Cycle Time and Pulse Width Notes 9, 10(ns)			
	L4C381-25	L4C381-20	
Minimum Cycle Time	20	18	
Highgoing Pulse	8	6	
Lowgoing Pulse	8	6	

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to-Z tests, and set at 0 V for Z -to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

L4C381

Cascading the L4C381

Cascading the L4C381 to 32 bits is accomplished simply by connecting the C16 output of the least significant slice to the C 0 input of the most significant slice. The S2-S0, OSA, OSB, $\overline{\mathrm{ENA}}, \overline{\mathrm{ENB}}$, and $\overline{\mathrm{ENF}}$ lines are common to both devices. The Zero output flags should be logically ANDed to produce the Zero flag for the 32-bit result. The OVF and C16 outputs of the most significant slice are valid for the 32-bit result.

Propagation delay calculations for this configuration require two steps: First determine the propagation delay from the input of interest to the C 16 output of the lower slice. Add this number to the delay from the C 0 input of the upper slice to the output of interest
(of the Co setup time, if the F register is used). The sum gives the overall input-to-output delay (or setup time) for the 32 -bit configuration. This method gives a conservative result, since the C16 output is very lightly loaded. Formulas for calculation of all critical delays for a 32-bit system are shown in Figures 4A through 4D.
Cascading to greater than 32 bits can be accomplished in two ways: The simplest (but slowest) method is to simply connect the C16 output of each slice to the C 0 input of the next more significant slice. Propagation delays are calculated as for the 32-bit case, except that the C 0 to C 16 delays for all intermediate slices must be added to the overall delay for each path. A
faster method is to use an external carry-lookahead generator. The $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ outputs of each slice are connected as inputs to the CLA generator, which in turn produces the C 0 inputs for each slice except the least significant. The C16 outputs are not used in this case, except for the most significant one, which is the carry out of the overall system. The carry in to the system is connected to the C 0 input of the least significant slice, and also to the carry lookahead generator. Propagation delays for this configuration are the sum of the time to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$, for the least significant slice, the propagation delay of the carry lookahead generator, and the C 0 to output time of the most significant slice.

Figure 4A. FTAB $=0$, FTF $=0$

Figure 4B. $F T A B=0, F T F=1$

From	To		Calculated Specification Limit
Clock	F	=	(Clock $\rightarrow \mathrm{C}_{16}$) $+(\mathrm{Co} \rightarrow \mathrm{F}$)
Clock	\rightarrow Other	$=$	(Clock $\rightarrow \mathrm{C}_{16}$) $+(\mathrm{Co} \rightarrow$ Out)
Co	$\rightarrow \mathrm{F}$	=	$(\mathrm{Co} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{F})$
Co	\rightarrow Other	=	$\left(\mathrm{Co}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
S2-S0, OSA, OSB	$\rightarrow \mathrm{F}$	=	$\left(\mathrm{S} 2-\mathrm{So}, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{C}_{0} \rightarrow \mathrm{~F}\right)$
S2-S0, OSA, OSB	\rightarrow Other	=	$\left(\mathrm{S} 2-\mathrm{S} 0, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow \mathrm{Out})$
A, B	Setup time	=	Same as 16-bit case
Co	Setup time	=	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co}$ Setup time)
S2-S0, OSA, OSB	Setup time	=	(S2-So, OSA, OSB \rightarrow C16) + (C0 Setup time)
ENA, ENB, ENF	Setup time	=	Same as 16-bit case
Minimum cycle time		=	(Clock $\rightarrow \mathrm{C}_{16}$) + (Co Setup time)

L4C381

Figure 4C. $\mathrm{FTAB}=1, \mathrm{FTF}=0$

From	To	Calculated Specification Limit
Clock	$\rightarrow \mathrm{F}$	$=$ Same as 16-bit case
A, B	\rightarrow Other	$=\cdot\left(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow$ Out $)$
Co	\rightarrow Other	$\left(\mathrm{Co}_{0} \rightarrow \mathrm{C} 16\right)+(\mathrm{Co} \rightarrow$ Out)
S2-S0, OSA, OSB	\rightarrow Other	$=\left(S_{2}-\mathrm{So}_{0}, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{C}_{0} \rightarrow\right.$ Out $)$
A, B	Setup time	$=\left(A, B \rightarrow C_{16}\right)+\left(\mathrm{Co}^{\text {Setup time }}\right.$)
Co	Setup time	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0}\right.$ Setup time)
S2-S0, OSA, OSB	Setup time	$=$ (S2-So, OSA, OSB $\rightarrow \mathrm{C}_{16}$) + (Co_{0} Setup time)
ENA, ENB, ENF	Setup time	$=$ Same as 16-bit case
Minimum cycle time		$=\left(\right.$ Clock $\left.\rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co}$ Setup time $)$

Figure 4D. FTAB = 1, FTF = 1

From	To		Calculated Specification Limit
A, B	$\rightarrow \mathrm{F}$	=	$\left(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow \mathrm{F})$
A, B	\rightarrow Other	=	$\left(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
Co	\rightarrow F	=	$(\mathrm{Co} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{F})$
Co	\rightarrow Other	=	$\left(\mathrm{Co}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
S2-S0, OSA, OSB	$\rightarrow \mathrm{F}$	=	$(\mathrm{S} 2-\mathrm{So}, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C} 16)+\left(\mathrm{C}_{0} \rightarrow \mathrm{~F}\right)$
S2-S0, OSA, OSB	\rightarrow Other	=	$\left(\mathrm{S} 2-\mathrm{S} 0, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow$ Out)
A, B	Setup time	=	($\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}$) + (Co Setup time)
Co	Setup time	=	$\left(\mathrm{Co} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0}\right.$ Setup time)
S2-S0, OSA, OSB	Setup time	$=$	(S2-S0, OSA, OSB $\rightarrow \mathrm{C}_{16}$) + (Co Setup time)
ENA, ENB, ENF	Setup time	=	Same as 16-bit case
Minimum cycle time (F register accumul		=	(Clock $\rightarrow \mathrm{C} 16)+(\mathrm{Co}$ Setup time)

MOST
SIGNIFICANT SLICE

16-bit Cascadable ALU (Extended Set)

FEATURES

High-Speed (15ns), Low Power 16-bit Cascadable ALU- Extended Function Set (32 Advanced ALU Functions)
- All Registers Have a Bypass Path for Complete FlexibilityReplaces IDT7383
- Available 100% Screened to MIL-STD-883, Class B
\square Package Styles Available:
- 68-pin Plastic LCC, J-Lead
- 68 -pin Ceramic LCC
- 68 -pin Ceramic PGA

DESCRIPTION

The L4C383 is a flexible, high speed, cascadable 16-bit Arithmetic and Logic Unit. The L4C383 is capable of performing up to 32 different arithmetic or logic functions.

The L4C383 can be cascaded to perform 32-bit or greater operations. See "Cascading the L4C383" on the next page.

ARCHITECTURE

The L4C383 operates on two 16-bit operands (A and B) and produces a 16 -

L4C383 Block Diagram

bit result (F). Five select lines control the ALU and provide 19 arithmetic and 13 logical functions. Registers are provided on both the ALU inputs and the output, but these may be bypassed under user control. An internal feedback path allows the registered ALU output to be routed to one or both of the ALU inputs, accommodating chain operations and accumulation.

ALU OPERATIONS

The $S_{4}-$ S $_{0}$ lines specify the operation to be performed. The ALU functions and their select codes are shown in Table 1.

ALU STATUS

The ALU provides Overflow and Zero status bits. A Carry output is also provided for cascading multiple devices, however it is only defined for the 19 arithmetic functions. The ALU sets the Zero output when all 16 output bits are zero. The N, C16 and OVF flags for the arithmetic operations are defined in Table 2.

OPERAND REGISTERS

The L4C383 has two 16-bit wide input registers for operands A and B. These registers are rising edge triggered by a common clock. The A register is enabled for input by setting the ENA control LOW, and the B register is enabled for input by setting the $\overline{\mathrm{ENB}}$ control LOW. When either the ENA control or $\overline{\mathrm{ENB}}$ control is HIGH, the data in the corresponding input register will not change.
This architecture allows the L4C383 to accept arguments from a single 16-bit data bus. For those applications that do not require registered inputs, both the A and B operand registers can be bypassed with the FTAB control line.

Table 1. Alu Functions	
S4-S0	FUNCTION
00000	$\mathrm{A}+\mathrm{B}+\mathrm{C}_{0}$
00001	A OR B
00010	$\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}_{0}$
00011	$\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C}_{0}$
00100	A + C0
00101	\bar{A} OR F
00110	$\mathrm{A}-1+\mathrm{C} 0$
00111	$\overline{\mathrm{A}}+\mathrm{C}_{0}$
01000	$\mathrm{A}+\mathrm{F}+\mathrm{C}_{0}$
01001	A OR F
01010	$A+\vec{F}+C_{0}$
01011	$\bar{A}+\mathrm{F}+\mathrm{C}_{0}$
01100	$\mathrm{F}+\mathrm{B}+\mathrm{C}_{0}$
01101	$\overline{\mathrm{A}}$ OR B
01110	$\mathrm{F}+\overline{\mathrm{B}}+\mathrm{Co}$
01111	$\overline{\mathrm{F}}+\mathrm{B}+\mathrm{C}_{0}$
10000	A XOR B
10001	A AND B
10010	$\overline{\text { A AND B }}$
10011	A XNOR B
10100	A XOR F
10101	A AND F
10110	$\overline{\text { A AND F }}$
10111	ALL 1's + Co
11000	$\mathrm{B}+\mathrm{C}_{0}$
11001	A AND \bar{B}
11010	$\overline{\mathrm{B}}+\mathrm{C}_{0}$
11011	$\mathrm{B}-1+\mathrm{C}_{0}$
11100	$\mathrm{F}+\mathrm{C} 0$
11101	A OR \bar{B}
11110	$\mathrm{F}-1+\mathrm{C}_{0}$
11111	$\overline{\mathrm{F}}+\mathrm{C}_{0}$

When the FTAB control is asserted ($\mathrm{FTAB}=\mathrm{HIGH}$), data is routed around the A and B input registers; however, they continue to function normally via the ENA and ENB controls. The contents of the input registers will again be available to the ALU if the FTAB control is released.

Table 2. AlU Status Flags

$$
\begin{array}{ll}
\text { Bit Carry Generate }=g i=A i B i & \text { for } i=0 \ldots 15 \\
\text { Bit Carry Propagate }=p i=A i+B i & \text { for } i=0 \ldots 15 \\
P 0=p 0 & \\
P_{i}=p i\left(P_{i-1}\right) & \text { for } i=1 \ldots 15
\end{array}
$$

and

$$
\begin{aligned}
& \mathrm{G}_{0}=\mathrm{go}_{0} \\
& \mathrm{Gi}_{\mathrm{i}}=\mathrm{gi}_{\mathrm{i}}+\mathrm{pi}_{\mathrm{i}}(\mathrm{Gi}-1) \\
& \mathrm{Ci}_{\mathrm{i}}=\mathrm{Gi}_{\mathrm{i}-1}+\mathrm{P}_{\mathrm{i}-1}(\mathrm{C} 0)
\end{aligned}
$$

$$
\text { for } \mathrm{i}=1 \ldots 15
$$

$$
\text { for } \mathrm{i}=1 \ldots 15
$$

then

```
C16 = G15 + P15C0
OVF = C15 XOR C16
Zero = All Output Bits Equal Zero
N = Sign Bit of ALU Operation
```


OUTPUT REGISTER

The output of the ALU drives the input of a 16-bit register. This rising-edgetriggered register is clocked by the same clock as the input registers. When the $\overline{\mathrm{ENF}}$ control is LOW, data from the ALU will be clocked into the output register. By disabling the output register, intermediate results can be held while loading new input operands. Three-state drivers controlled by the $\overline{\mathrm{OE}}$ input allow the LAC383 to be configured in a single bidirectional bus system.

The output register can be bypassed by asserting the FTF control signal (FTF = HIGH). When the FTF control is asserted, output data is routed around the output register, however, it continues to function normally via the ENF control. The contents of the output register will again be available on the output pins if FTF is released.

CASCADING THE L4C383

Cascading the LAC383 to 32 bits is accomplished simply by connecting the C16 output of the least significant slice to the $C 0$ input of the most sig-nificant slice. The $\mathrm{S} 4-\mathrm{SO}, \overline{\mathrm{ENA}}, \overline{\mathrm{ENB}}$, and $\overline{\mathrm{ENF}}$ lines are
common to both devices. The Zero output flags should be logically ANDed to produce the Zero flag for the 32-bit result. The OVF and C16 outputs of the most significant slice are valid for the 32 bit result.
Propagation delay calculations for this configuration require two steps: First determine the propagation delay from the input of interest to the C 16 output of the lower slice. Add this number to the delay from the Coinput of the upper slice to the output of interest (of the C0 setup time, if the F register is used). The sum gives the overall input-to-output delay (or setup time) for the 32-bit configuration. This method gives a conservative result, since the C 16 output is very lightly loaded. Formulas for calculation of all critical delays for a 32-bit system are shown in Figures 4A through 4D.
Cascading to greater than 32 bits can be accomplished by simply connecting the C 16 output of each slice to the C 0 input of the next more significant slice.
Propagation delays are calculated as for the 32-bit case, except that the C0 to C16 delays for all intermediate slices must be added to the overall delay for each path.

Figure 4A．FTAB $=0$, FTF $=0$

From	To		Calculated Specification Limit
Clock	$\rightarrow \mathrm{F}$	$=$	Same as 16－bit case
Clock	\rightarrow Other	＝	（Clock $\rightarrow \mathrm{C}_{16}$ ）$+(\mathrm{Co} \rightarrow$ Out）
Co	\rightarrow Other	＝	$\left(\mathrm{Co}_{0} \mathrm{C} 16\right)+\left(\mathrm{C}_{0} \rightarrow\right.$ Out）
S4－S0	\rightarrow Other	＝	$(\mathrm{S} 4-\mathrm{So} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow$ Out）
A，B	Setup time	$=$	Same as 16－bit case
Co	Setup time	＝	$(\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{Co}$ Setup time）
S4－S0	Setup time	＝	（ $\mathrm{S}_{4}-\mathrm{S}_{0} \rightarrow \mathrm{C}_{16}$ ）＋（Co Setup time）
ENA，ENB，ENF	Setup time	＝	Same as 16－bit case
Minimum cycle time		＝	（Clock \rightarrow C16）＋（Co Setup time）

Figure 4B．FTAB $=0, F T F=1$

From	To		Calculated Specification Limit
Clock	$\rightarrow \mathrm{F}$	$=$	（Clock $\rightarrow \mathrm{C}_{16}$ ）$+(\mathrm{Co} \rightarrow \mathrm{F}$ ）
Clock	\rightarrow Other	＝	$\left(\right.$ Clock $\rightarrow \mathrm{C}_{16}$ ）$+\left(\mathrm{Co}_{0} \rightarrow\right.$ Out）
Co	$\rightarrow \mathrm{F}$	$=$	$\left(\mathrm{Co}_{0} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow \mathrm{F})$
Co	\rightarrow Other	＝	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C} 16\right)+(\mathrm{Co} \rightarrow$ Out）
S4－So	$\rightarrow \mathrm{F}$	$=$	$\left(\mathrm{S}_{4} \mathrm{So}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{~F}\right)$
S4－S0	\rightarrow Other	＝	$\left(\mathrm{S} 4-\mathrm{So} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{C}_{0} \rightarrow \mathrm{Out}\right)$
A，B	Setup time	＝	Same as 16－bit case
Co	Setup time	＝	$\left(\mathrm{Co} \rightarrow \mathrm{C}_{16}\right.$ ）＋（Co Setup time）
S4－S0	Setup time	＝	（S4－S0 $\rightarrow \mathrm{C}_{16}$ ）＋（C0 Setup time）
ENA，$\overline{E N B}, \overline{E N F}$	Setup time	$=$	Same as 16 －bit case
Minimum cycle time		＝	（Clock $\rightarrow \mathrm{C}_{16}$ ）$+($ Co Setup time）

Figure 4C. $F T A B=1, F T F=0$

From	To		Calculated Specification Limit
Clock	$\rightarrow \mathrm{F}$	=	Same as 16-bit case
A, B	Other	$=$	$(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow$ Out)
Co	\rightarrow Other	$=$	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
S4-S0	\rightarrow Other	$=$	$\left(\mathrm{S}_{4} \mathrm{~S}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow\right.$ Out)
A, B	Setup time	=	($\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}$) $+(\mathrm{Co}$ Setup time)
Co	Setup time	$=$	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right.$) + (Co Setup time)
S4-S0	Setup time	$=$	($\mathrm{S}_{4}-\mathrm{S}_{0} \rightarrow \mathrm{C}_{16}$) + (Co Setup time)
ENA, ENB, ENF	Setup time	$=$	Same as 16-bit case
Minimum cycle time (F register accumula		=	(Clock $\rightarrow \mathrm{C} 16)+(\mathrm{Co}$ Setup time)

Figure 4D. $\mathrm{FTAB}=1, \mathrm{FTF}=1$

From	To		Calculated Specification Limit
A, B	$\rightarrow \mathrm{F}$	=	$(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \mathrm{~F})$
A, B	\rightarrow Other	=	$\left(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow$ Out $)$
Co	F	$=$	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+(\mathrm{Co} \rightarrow \mathrm{F})$
Co	\rightarrow Other	=	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
S4-S0	$\rightarrow \mathrm{F}$	=	$(\mathrm{S} 4-\mathrm{S} 0 \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{F})$
S4-S0	\rightarrow Other	=	$\left(\mathrm{S}_{4}-\mathrm{So}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0} \rightarrow \mathrm{Out}\right)$
A, B	Setup time	=	$\left(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{C}_{0}\right.$ Setup time)
Co	Setup time	=	$\left(\mathrm{C}_{0} \rightarrow \mathrm{C}_{16}\right)+\left(\mathrm{Co}_{0}\right.$ Setup time)
S4-S0	Setup time	=	(S4-S0 $\rightarrow \mathrm{C}_{16}$) + (Co Setup time)
ENA, ENB, $\overline{E N F}$	Setup time	=	Same as 16-bit case
Minimum cycle time (F register accumula		=	(Clock $\rightarrow \mathrm{C} 16)+(\mathrm{Co} \mathrm{Setup} \mathrm{time})$

L4C383

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	v
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc ((Note 12)			± 20	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)		15	30	mA
Icc2	Vcc Current, Quiescent	(Note 7)			1.5	mA

L4C383

SWITCHING CHARACTERISTICS - Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Guaranteed Maximum Combinational Delays Notes 9,10 (ns)

To Output From Input	L4C383-55				L4C383-40				L4C383-26			
	F15-F0	N	OVF, Z	C16	F15-F0	N	OVF, Z	C16	F15-F0	N	OVF, Z	C_{16}
FTAB $=0, \mathrm{FTF}=0$												
Clock	32	38	53	36	26	30	44	32	22	22	26	22
Co	-	-	34	22	-	-	28	20	-	-	18	18
S4-S0	-	42	42	42	-	32	34	35	-	22	22	22
$\mathrm{FTAB}=0, \mathrm{FTF}=1$												
Clock	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
S4-So	55	42	42	42	40	32	34	35	26	22	22	22
FTAB $=1, \mathrm{FTF}=0$												
A15-A0, B15-B0	-	36	46	37	-	30	40	32	-	22	22	22
Clock	32	-	-	-	26	-	-	-	22	-	-	-
Co	-	-	34	22	-	-	28	20	-	-	18	18
S4-So	-	42	42	42	-	32	34	35	-	22	22	22
FTAB $=1, \mathrm{FTF}=1$												
A15-A0, B15-B0	55	36	46	37	40	30	40	32	26	22	22	22
Clock	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
S4-So	55	42	42	42	40	32	34	35	26	22	22	22

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge Notes 9, 10 (ns)												
Input	L4C383-55				L4C383-40				L4C383-26			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$	
	Setup	Hold										
A15-A0, B15-B0	8	2	35	2	8	2	28	2	8	2	16	2
Co	21	0	21	0	16	0	16	0	8	0	8	0
S4-S0	44	0	44	0	32	0	32	0	18	0	18	0
$\overline{\text { ENA }}$, ENB, $\overline{\text { ENF }}$	10	2	10	2	10	2	10	2	8	2	8	2

Tri-State Enable/Disable Times Notes 9, 10,11 (ns)				
	L4C383-55	L4C383-40	L4C383-26	
tena	20	18	16	
tdis	20	18	16	

Clock Cycle Time and Pulse Width Notes 9, 10 (ns)			
	L4C383-55	L4C383-40	L4C383-26
Minimum Cycle Time	43	34	20
Highgoing Pulse	15	10	10
Lowgoing Pulse	15	10	10

SWITCHING CHARACTERISTICS - Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge Notes 9, 10 (ns)

Tri-State Enable/Disable Times Notes 9; 10, 11 (ns)				
	L4C383-20	L4C383-15		
tena	8	6		
tDis	8	6		

Clock Cycle Time and Pulse WidTh Notes 9, 10 (ns)			
	L4C383-20	L4C383-15	
Minimum Cycle Time	18	14	
Highgoing Pulse	5	4	
Lowgoing Pulse	5	4	

SWITCHING CHARACTERISTICS - Milttary Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
Guaranteed Maximum Combinational Delays Notes 9,10 (ns)

To Output From Input	L4C383-65				L4C383-45				L4C383-30			
	F15-F0	N	OVF, Z	C16	F15-F0	N	OVF, Z	C16	F15-F0	N	OVF, Z	C16
FTAB $=0, \mathrm{FTF}=0$												
Clock	37	44	63	45	28	34	50	34	26	28	34	28
Co	-	-	42	25	-	-	32	23	-	-	22	22
S4-S0	-	48	48	48	-	38	38	38	-	28	28	28
FTAB $=0, \mathrm{FTF}=1$												
Clock	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
S4-S0	66	48	48	48	46	38	38	38	30	28	28	28
$\mathrm{FTAB}=1, \mathrm{FTF}=0$												
A15-A0, B15-B0	-	44	56	44	-	32	46	36	-	28	28	28
Clock	37	-	-	-	28	-	-	-	26	-	-	-
Co	-	-	42	25	-	-	32	23	-	-	22	22
S4-S0	-	48	48	48	-	38	38	38	-	28	28	28
FTAB $=1, \mathrm{FTF}=1$												
A15-A0, B15-B0	65	44	56	44	45	32	46	36	30	28	28	28
Clock	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
S4-S0	66	48	48	48	46	38	38	38	30	28	28	28

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge Notes 9, 10 (ns)												
Input	L4C383-65				L4C383-45				L4C383-30			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB = 1	
	Setup	Hold										
A15-A0, B15-B0	10	3	43	3	8	3	33	3	8	3	20	3
Co	25	0	25	0	20	0	20	0	12	0	12	0
S4-So	50	0	50	0	36	0	36	0	20	0	20	0
ENA, ENB, ENF	12	2	12	2	10	2	10	2	10	2	10	2

Tri-State Enable/Disable Times Notes 9, 10, 11 (ns)				
	L4C383-65	L4C383-45	L4C383-30	
tena	22	20	18	
tdis	22	20	18	

Clock Cycle Time and Pulse Width Notes 9, 10 (ns)			
	L4C383-65	L4C383-45	L4C383-30
Minimum Cycle Time	52	38	26
Highgoing Pulse	20	15	12
Lowgoing Pulse	20	15	12

SWITCHING CHARACTERISTICS - Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge Notes 9,10 (ns)

Til-State Enable/Disable Times Notes 9, 10, 11 (ns)				
	L4C383-25	L4C383-20		
tena	14	10		
tols	14	10		

Clock Cycle Time and Pulse Width Notes 9, 10(ns)			
	L4C383-25	L4C383-20	
Minimum Cycle Time	20	18	
Highgoing Pulse	8	6	
Lowgoing Pulse	8	6	

L4C383

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum sinceworst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1-to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured Vol with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$
Vor ${ }^{*}$ Measured VOH with $\mathrm{lOH}=-10 \mathrm{~mA}$ and $\mathrm{lOL}=10 \mathrm{~mA}$

L4C383

要金重冓
DEVICES INCORPORATED

32-bit Cascadable Barrel Shifter

FEATURES

- 32-bit Input, 32-bit Output Multiplexed to 16 Lines
- Full 0-31 Position Barrel Shift Capability
- Integral Priority Encoder for 32-bit Floating Point Normalization
- Sign-Magnitude or Two's Complement Mantissa Representation
- 32-bit Linear Shifts with Sign or Zero Fill
- Independent Priority Encoder Outputs for Block Floating Point
- DECC SMD No. 5962-89717
- Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 68-pin Plastic LCC, J-Lead
- 68-pin Ceramic LCC
- 68-pin Ceramic PGA

DESCRIPTION

The LSH32 is a 32-bit high speed shifter designed for use in floating point normalization, word pack/ unpack, field extraction, and similar applications. It has 32 data inputs, and 16 output lines. Any shift configuration of the 32 inputs, including circular (barrel) shifting, left shifts with zero fill, and right shift with sign extend are possible. In addition, a built-in priority encoder is provided to aid floating point normalization.

SHIFT ARRAY

The 32 inputs to the LSH32 are applied to a 32-bit shift array. The 32 outputs of this array are multiplexed down to 16 lines for presentation at the device outputs. The array may be

configured such that any contiguous 16-bit field (including wraparound of the 32 inputs) may be presented to the output pins under control of the shift code field (wrap mode). Alternatively, the wrap feature may be disabled, resulting in zero or sign bit fill, as appropriate (fill mode). The shift code control assignments and the resulting input to output mapping for the wrap mode are shown in Table 1.

Essentially the LSH32 is configured as a left shift device. That is, a shift code of 000002 results in no shift of the input field. A code of 000012 provides an effective left shift of 1 position, etc. When viewed as a right shift, the shift code corresponds to the two's complement of the shift distance, i.e., a shift code of $111112(-110)$ results in a right shift of one position, etc.

When not in the wrap mode, the LSH32 fills bit positions for which there is no corresponding input bit. The fill value and the positions filled depend on the RIGHT/ $\overline{\mathrm{LEFT}}(\mathrm{R} / \overline{\mathrm{L}})$ direction pin. This pin is a don't care input when in wrap mode. For left shifts in fill mode, lower bits are filled with zero as shown in Table 2. For right shifts, however, the SIGN input is used as the fill value. Table 3 depicts the bits to be filled as a function of shift code for the right shift case. Note that the $\mathrm{R} / \overline{\mathrm{L}}$ input changes only the fill convention, and does not affect the definition of the shift code.

In fill mode, as in wrap mode, the shift code input represents the number of shift positions directly for left shifts, but the two's complement of the shift code results in the equivalent right shift. However, for fill mode the R / \bar{L} input can be viewed as the most

LSH32

Shift Code	Y31	Y30	Y29	...	Y16	Y15	...	Y2	Y1	Yo
00000	131	130	129	...	116	115	-••	12	11	10
00001	130	129	128	...	115	114	...	11	10	131
00010	129	128	127	...	114	113	...	10	131	130
00011	128	127	126	...	113	112	...	I31	130	129
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	-••	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
01111	116	115	114	...	11	10	...	119	118	117
10000	115	114	H_{1}	...	10	131	...	118	117	116
10001	114	113	112	. \cdot	131	130	...	117	116	115
10010	113	112	111	-••	130	129	-••	116	115	114
-	-	-	-	-••	-	-	...	-	-	-
-	-	-	-	-••	-	-	-	-	-	-
-	-	-	-	...	-	-	...	-	-	-
11100	13	12	11	...	120	119	...	16	15	14
11101	12	11	10	-••	119	118	...	15	14	13
11110	11	10	131	- \cdot	118	117	. \cdot	14	13	12
11111	10	131	130	-••	117	116	-••	13	12	11

Shift Code	Y31	Y 30	Y29	...	Y_{16}	Y15	...	Y2	Y1	Yo
00000	131	130	129	-••	116	115	-••	12	11	10
00001	130	129	128	- \cdot	It5	114	- \cdot	11	10	0
00010	129	128	127	. \cdot	114	113	-••	10	0	0
00011	128	127	126	...	113	112	...	0	0	0
-	-	-	-	...	-	-	-	-	-	-
-	-	-	-	-••	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
01111	116	115	114	...	11	10	...	0	0	0
10000	115	114	113	...	10	0	...	0	0	0
10001	114	113	112	. \cdot	0	0	...	0	0	0
10010	113	112	111	...	0	0	...	0	0	0
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	- \cdot	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
11100	13	12	11	...	0	0	...	0	0	0
11101	12	11	10	-••	0	0	\cdots	0	0	0
11110	11	10	0	- \cdot	0	0	-	0	0	0
11111	10	0	0	-•	0	0	...	0	0	0

significant bit of a 6-bit two's complement shift code, comprised of R/ $\overline{\mathrm{L}}$ concatenated with the SI4-SIo lines. Thus a positive shift code ($\mathrm{R} / \overline{\mathrm{L}}=0$) results in a left shift of $0-31$ positions, and a negative code $(R / \bar{L}=1)$ a right shift of up to 32 positions. The LSH32 can thus effectively select any contiguous 32 -bit field out of a (sign extended and zero filled) 96 -bit "input."

OUTPUT MULTIPLEXER

The shift array outputs are applied to a $2: 1$ multiplexer controlled by the $\mathrm{MS} / \overline{\mathrm{LS}}$ select line. This multiplexer makes available at the output pins either the most significant or least significant 16 outputs of the shift array.

PRIORITY ENCODER

The 32 -bit input bus drives a priority encoder which is used to determine the first significant position for purposes of normalization. The priority encoder produces a five-bit code representing the location of the first non-zero bit in the input word. Code assignment is such that the priority encoder output represents the number of shift positions required to left align the first non-zero bit of the input word. Prior to the priority encoder, the input bits are individually exclusive OR'ed with the SIGN input. This allows normalization in floating point systems using two's complement mantissa representation. A negative value in two's complement representation will cause the exclusive OR gates to invert the input data to the encoder. As a result the leading significant digit will always be "1." This affects only the encoder inputs; the shift array always operates on the raw input data. The priority encoder function table is shown in Table 4.

Shift Code	Y31	Y 30	Y29	...	Y16	Y15	...	Y2	Y1	Yo
00000	S	S	S	...	S	S	-••	S	S	S
00001	S	S	S	. \cdot	S	S	-••	S	S	131
00010	S	S	S	-	S	S	-••	S	131	130
00011	S	S	S	...	S	S	...	131	130	129
-	-	-	-	...	-	-	.	-	-	-
-	-	-	-	-••	-	-	-.	-	-	-
-	-	-	-	...	-	-	...	-	-	-
01111	S	S	S	...	S	S	...	119	118	117
10000	S	S	S	...	S	131	...	118	117	116
10001	S	S	S	...	131	130	.	117	116	115
10010	S	S	S	...	130	129	...	116	115	114
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	-••	-	-	-
-	-	-	-	. \cdot	-	-	. \cdot	-	-	-
11100	S	S	S	...	120	119	...	16	15	14
11101	S	S	S	...	119	118	-.	15	14	13
11110	S	S	131	...	118	117	-•	14	13	12
11111	S	131	130	...	117	116	...	13	12	11

131	130	129	...	${ }_{16}$	${ }_{115}$...	12	11	10	Shift Code
1	x	x	...	x	x	...	x	x	x	00000
0	1	X	...	x	x	...	x	X	X	00001
0	0	1	...	X	X	...	X	X	X	00010
-	-	-	...	-	-	...	-	-	-	-
-	-	-	...	-	-	...	-	-	-	-
0	0	0	...	1	x	...	x	X	x	01111
0	0	0	...	0	1	...	x	x	x	10000
0	0	0	...	0	0	...	x	x	x	10001
-	-	-	...	-	-	...	-	-	-	-
-	-	-	...	-	-	...	-	-	-	-
0	0	0	...	0	0	...	0	1	X	11110
0	0	0	...	0	0	...	0	0	1	11111
0	0	0	...	0	0	...	0	0	0	11111

NORMALIZE MULTIPLXER

The $\overline{\text { NORM }}$ input, when asserted results in the priority encoder output driving the internal shift code inputs directly. It is exactly equivalent to routing the $\mathrm{SO} 4-\mathrm{SO} 0$ outputs back to the SI4-SI0 inputs. The NORM input provides faster normalization of 32-bit data by avoiding the delay associated with routing the shift code off chip. When using the NORM function, the LSH32 should be placed in fill mode, with the $\mathrm{R} / \overline{\mathrm{L}}$ input low.

APPLICATIONS EXAMPLES

Normalization of mantissas up to 32 bits can be accomplished directly by a single LSH32. The $\overline{\text { NORM }}$ input is asserted, and fill mode and left shift are selected. The normalized mantissa is then available at the device output in two 16-bit segments, under the control of the output data multiplexer select, the MS/ $\overline{\mathrm{LS}}$.

If it is desirable to avoid the necessity of multiplexing output data in 16-bit segments, two LSH32 devices can be used in parallel. Both devices receive the same input word, with the MS/ $\overline{\mathrm{LS}}$ select line of one wired high, and the other low. Each device will then independently determine the shift distance required for normalization, and the full 32 bits of output data will be available simultaneously.

LONG-WORD NORMALIZATION (MULTIPLE CYCLES)

Normalization of floating point mantissas longer than 32 bits can be accomplished by cascading LSH32 units. When cascading for normalization, the device inputs are overlapped such that each device lower in priority than the first shares 16 inputs with its more significant neighbor. Fill mode and left shift are selected, however, internal normalization ($\overline{\mathrm{NORM}}$) is not used. The most significant result half of each device is enabled to the output. The shift out ($\mathrm{SO}_{4}-\mathrm{SO}_{0}$) lines of the most significant slice are connected to the shift in lines of all
slices, including the first. The exception is that all SI4 lines are grounded, limiting the shift distance to 16 positions. The shift distance required for normalization is produced by the priority encoder in the most significant slice. The priority encoder will produce the shift code necessary to normalize the input word if the leading non-zero digit is found in the upper 16 bits. If this is the case, the number of shift positions necessary to accomplish normalization is placed on the $\mathrm{SO}_{4}-\mathrm{SO}_{0}$ outputs for use by all slices, and the appropriate $0-15$ bit shift is accomplished. If the upper 16 bits are all zero, then the maximum shift of 15 places is executed. Single
clock normalization requiring shifts longer than 16 bits can be accomplished by a bank-select technique described below.

SINGLE CYCLE LONG-WORD NORMALIZATION

An extension of the above concept is a single clock normalization of long words (potentially requiring shifts of more than 15 places). The arrangement of LSH32s required is shown in Figure 1. Cascading of LSH32 units is accomplished by connecting the $\mathrm{SI}_{3}-$ SI0 input lines of each unit to the SO3SO0 outputs of the most significant device in the row as before. Essen-

Figure 1. Single Cycle Long-Word Normalization Using LSH32s

LSH32
tially the LSH32s are arranged in multiple rows or banks such that the inputs to successive rows are leftshifted by 16 positions. The outputs of each row are multiplexed onto a three-state bus. The normalization problem then reduces to selecting from among the several banks that one which has the first non-zero bit of the input value among its 16 most significant positions. If the most significant one in the input file was within the upper 16 locations of a given bank, the SO_{4} output of the most significant slice in that bank will be low. Single clock normalization can thus be accomplished simply by enabling onto the three-state output bus the highest priority bank in which this condition is met. In this way the input word will be normalized regardless of the number of shift positions required to accomplish this.

The number of shift positions can be determined simply by concatenation of the SO3-SOn outputs of the most significant slice in the selected row with the encoded Output Enable-bits determining the row number. Note that lower rows need not be fully populated. This is because they represent left shifts in multiples of 16 positions, and the lower bits of the output word will be zero filled. In order to accomplish this zero fill, the least significant device in each row is always enabled, and the row select is instead connected to the SI4 input. This will force the shift length of the least significant device to a value greater than 15 whenever the row containing that device is not selected. This results in zero fill being accomplished by the equivalently positioned slice in a higher bank, as shown in the diagram.

BLOCK FLOATING POINT

With a small amount of external logic, block floating point operations are easily accomplished by the LSH32. Data resulting from a vector operation are applied to the LSH32 with the NORM-input deasserted. The SO4SO 0 outputs fill then represent the normalization shift distance for each vector element in turn. By use of an external latch and comparator, the maximum shift distance encountered across all elements in the vector is saved for use in the next block operation (or block normalization). During this subsequent pass through the data, the shift code saved from the previous pass is applied uniformly across all elements of the vector. Since the LSH32 is not used in the internal normalize mode, this operation can be pipelined, thereby obtaining the desired shift distance for the next pass while simultaneously applying the normalization required from the previous pass.

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
ViL	Input Low Voltage	(Note 3)	0.0		0.8	V
$11 \times$	Input Current	Ground \leq VIN \leq VCC (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		10	30	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.5	mA

LSH32

SWITCHING CHARACTERISTICS

Comme	cial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tIY	I, SIGN Inputs to Y Outputs		42		32		20
tiyn	I, SIGN Inputs to Y Outputs, Normalize Mode		75		60		20
tiso	I, SIGN Inputs to SO Outputs		55		42		20
tSIY	SI, RIGHT/[EFTT to Y Outputs		52		40		20
tMSY	MS/LS Select to Y Outputs		28		24		15
tois	Three-State Output Disable Delay (Note 11)		20		20		15
tena	Three-State Output Enable Delay (Note 11)		20		20		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	LSH32-					
		50		40		30	
		Min	Max	Min	Max	Min	Max
tIY	I, SIGN Inputs to Y Outputs		50		40		30
tivn	I, SIGN Inputs to Y Outputs, Normalize Mode		85		75		58
tiso	I, SIGN Inputs to SO Outputs		65		52		42
tSIY	SI, RIGHT//EFT to Y Outputs		62		52		40
tMsy	MS//̄S Select to Y Outputs		32		26		24
tols	Three-State Output Disable Delay (Note 11)		22		20		17
tena	Three-State Output Enable Delay (Note 11)		22		20		17

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{V} C \mathrm{C}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{N^{2} V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of

VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to-0 and 0 -to-Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured VoL with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $10 \mathrm{~L}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{OH}=-10 \mathrm{~mA}$ and $1 \mathrm{OL}=10 \mathrm{~mA}$

FEATURES

32-bit Input, 32-bit Output Multiplexed to 16 Lines
Full 0-31 Position Barrel Shift Capability
I Integral Priority Encoder for 32-bit Floating Point Normalization

- Sign-Magnitude or Two's Complement Mantissa Representation
- 32-bit Linear Shifts with Sign or Zero Fill

Independent Priority Encoder Outputs for Block Floating Point
\square Available 100\% Screened to MIL-STD-883, Class B
\square Package Styles Available:

- 68-pin Plastic LCC, J-Lead
- 68-pin Ceramic LCC
- 68-pin Ceramic PGA

DESCRIPTION

The LSH33 is a 32-bit high speed shifter designed for use in floating point normalization, word pack/ unpack, field extraction, and similar applications. It has 32 data inputs, and 16 output lines. Any shift configuration of the 32 inputs, including circular (barrel) shifting, left shifts with zero fill, and right shifts with sign extension are possible. In addition, a built-in priority encoder is provided to aid floating point normalization.

Input/Output registers provide complete pipelined operation. Both have independent bypass paths for complete flexibility. When FTI = 1 , the input registers are bypassed. Likewise, when $\mathrm{FTO}=1$, the output registers are bypassed.

SHIFT ARRAY

The 32 inputs, which can be registered, to the LSH33 are applied to a 32-bit shift array. The 32 outputs, which can also be registered, of this array are then multiplexed down to 16 lines for presentation at the device outputs. The array may be configured (including wraparound of the 32 inputs) may be presented to the output pins under control of the shift code field (wrap mode). Alternatively, the wrap feature may be disabled, resulting in zero or sign bit fill, as appropriate (fill mode). The shift code control assignments and the resulting input to output mapping for the wrap mode are shown in Table 1.

Essentially the LSH33 is configured as a left shift device. That is, a shift code of 000002 results in no shift of the input field. A code of 000012 provides an effective left shift of 1 position, etc. When viewed as a right shift, the shift code corresponds to the two's complement of the shift distance, i.e., a shift code of $111112(-110)$ results in a right shift of one position, etc.

When not in the wrap mode, the LSH33 fills bit positions for which there is no corresponding input bit. The fill value and the positions filled depend on the RIGHT/ $\overline{\mathrm{LEFT}}(\mathrm{R} / \overline{\mathrm{L}})$ direction pin. This pin is a don't care input when in wrap mode. For left shifts in fill mode, lower bits are filled with zero as shown in Table 2. For right shifts, however, the SIGN input is used as the fill value. Table 3 depicts the bits to be filled as a function of shift code for the right shift case. Note that the $\mathrm{R} / \overline{\mathrm{L}}$ input changes only the fill convention, and does not affect the definition of the shift code.

Shift Code	Y31	Y30	Y29	...	Y16	Y15	...	Y2	Y1	Yo
00000	131	130	129	...	116	115	-•	12	11	10
00001	130	129	128	...	115	114	...	11	10	131
00010	129	128	127	...	114	113	...	10	131	130
00011	128	127	126	...	113	l 12	...	131	130	129
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	-••	-	-	...	-	-	
-	-	-	-	...	-	-	-	-	-	-
01111	116	115	114	...	11	10	. \cdot	119	118	117
10000	115	114	113	...	10	131	-••	118	117	116
10001	114	113	112	...	131	130	...	117	116	115
10010	113	112	111	...	130	129	...	116	115	114
-	-	-	-	-••	-	-	-••	-	-	-
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
11100	13	12	11	...	120	119	-	16	15	14
11101	12	11	10	-	119	118	-	15	14	13
11110	11	10	131	-••	118	117	-••	14	13	12
11111	10	131	130	...	117	116	-•	13	12	11

Shift Code	Y31	Y30	Y29	...	Y16	Y15	...	Y2	Y1	Yo
00000	131	130	129	...	116	115	...	12	11	10
00001	130	129	128	...	115	114	...	11	10	0
00010	129	128	127	...	114	113	...	10	0	0
00011	128	127	126	. \cdot	113	112	...	0	0	0
-	-	-	-	...	-	-	-••	-	-	-
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
01111	116	115	114	...	11	10	-••	0	0	0
10000	115	114	113	-	10	0	-••	0	0	0
10001	114	113	112	\cdots	0	0	...	0	0	0
10010	113	112	111	-••	0	0	...	0	0	0
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	-••	-	-	-
-	-	-	-	...	-	-	...	-	-	-
11100	13	12	11	...	0	0	...	0	0	0
11101	12	11	10	...	0	0	-..	0	0	0
11110	11	10	0	...	0	0	...	0	0	0
11111	10	0	0	...	0	0	...	0	0	0

In fill mode, as in wrap mode, the shift code input represents the number of shift positions directly for left shifts, but the two's complement of the shift code results in the equivalent right shift. However, for fill mode the R/ $\overline{\mathrm{L}}$ input can be viewed as the most significant bit of a 6-bit two's complement shift code, comprised of $\mathrm{R} / \overline{\mathrm{L}}$ concatenated with the SI4-SIo lines. Thus, a positive shift code ($R / \bar{L}=0$) results in a left shift of $0-31$ positions, and a negative code ($R / \bar{L}=1$) a right shift of up to 32 positions. The LSH33 can thus effectively select any contiguous 32-bit field out of a (sign extended and zero filled) 96-bit "input."

OUTPUT MULTIPLEXER

The shift array outputs can be registered and then applied to a $2: 1$ multiplexer controlled by the MS/ $\overline{\mathrm{LS}}$ select line. This multiplexer makes available at the output pins either the most significant or least significant 16 outputs of the shift array.

PRIORITY ENCODER

The 32-bit input bus drives a priority encoder which is used to determine the first significant position for purposes of normalization. The priority encoder produces a five-bit code representing the location of the first non-zero bit in the input word. Code assignment is such that the priority encoder output represents the number of shift positions required to left align the first non-zero bit of the input word. Prior to the priority encoder, the input bits are individually exclusive OR'ed with the SIGN input. This allows normalization in floating point systems using two's complement mantissa representation. A negative value in two's complement representation will cause the exclusive OR gates to invert the input data to the encoder. As a result, the leading significant digit will always be "1."

LSH33

Shift Code	Y31	Y 30	Y29	...	Y16	Y15	...	Y2	Y1	Yo
00000	S	S	S	...	S	S	...	S	S	S
00001	S	S	S	...	S	S	...	S	S	131
00010	S	S	S	...	S	S	...	S	131	130
00011	S	S	S	...	S	S	...	131	130	129
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
01111	S	S	S	...	S	S	...	119	118	117
10000	S	S	S	...	S	131	...	118	117	116
10001	S	S	S	...	131	130	...	117	116	l15
10010	S	S	S	-••	130	129	-••	116	115	114
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	...	-	-	-
-	-	-	-	...	-	-	-••	-	-	-
11100	S	S	S	...	120	119	-..	16	15	14
11101	S	S	S	-..	119	118	-.	15	14	13
11110	S	S	131	-••	118	117	-••	14	13	12
11111	S	131	130	...	117	116	-••	13	12	11

131	130	129	...	116	115	...	12	11	10	Shift Code
1	X	X	-••	X	X	-••	X	X	X	00000
0	1	X	...	X	X	...	X	X	X	00001
0	0	1	-••	X	X	-••	X	X	X	00010
-	-	-	-••	-	-	...	-	-	-	-
-	-	-	...	-	-	...	-	-	-	-
0	0	0	...	1	X	...	X	X	X	01111
0	0	0	...	0	1	...	X	X	X	10000
0	0	0	...	0	0	...	X	X	X	10001
-	-	-	-	-	-	-••	-	-	-	-
-	-	-	...	-	-	-	-	-	-	-
0	0	0	-••	0	0	-••	0	1	X	11110
0	0	0	...	0	0	...	0	0	1	11111
0	0	0	-••	0	0	-••	0	0	0	11111

This affects only the encoder inputs; the shift array always operates on the raw input data. The priority encoder function table is shown in Table 4.

NORMALIZE MULTIPLEXER

The $\overline{\text { NORM }}$ input, when asserted, results in the priority encoder output driving the internal shift code inputs directly. When using the $\overline{\text { NORM }}$ function, the LSH33 should be placed in fill mode, with the $\mathrm{R} / \overline{\mathrm{L}}$ input low.

When $\overline{\text { NORM }}$ is high (not asserted), the SI/O4-SI/O0 port acts as the shift code input to the shifter.

APPLICATIONS EXAMPLES

Normalization of mantissas up to 32 bits can be accomplished directly by a single LSH33. To do this, the NORM input is asserted, and fill mode and left shift are selected. The normalized mantissa is then available at the device output in two 16-bit segments, under the control of the output data multiplexer select, the MS $/ \overline{\mathrm{LS}}$ signal.

If it is desirable to avoid the necessity of multiplexing output data in 16-bit segments, two LSH33 devices can be used in parallel. Both devices receive the same input word, with the MS/ $\overline{\mathrm{LS}}$ select line of one wired high, and the other low. Each device will then independently determine the shift distance required for normalization, and the full 32 bits of output data will be available simultaneously.

Maximum Ratings Above which useful life may be impaired（Notes 1，2，3， 8 ）

Storage te	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to gro	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to＋7．0 V
Output current into low outputs	．． 25 mA
Latchup current	．．．．＞ 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range（Ambient）	Supply Voltage
Active Operation，Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation，Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions（Note 4）

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	VcC $=$ Min．，IOH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	VCC $=$ Min．，IOL $=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	（Note 3）	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc（Note 12）			± 20	$\mu \mathrm{~A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc（Note 12）			± 20	$\mu \mathrm{~A}$
Icc1	Vcc Current，Dynamic	（Notes 5，6）		10	30	mA
Icc2	Vcc Current，Quiescent	（Note 7）		1.5	mA	

SWITCHING CHARACTERISTICS - Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Guaranteed Maximum Combinational Delays Notes 9, 10 (ns)						
To Output From Input	LSH33-40		LSH33-30		LSH33-20	
	Y15-Y0	SO4-SO0	$\mathrm{Y}_{15} \mathrm{Y} 0$	SO4-SO0	$\mathrm{Y}_{15} \mathrm{Y}_{0}$	SO4-SO0
$\begin{aligned} & \mathrm{FTI}=0, \mathrm{FTO}=0 \\ & \mathrm{CLK} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 28 \\ & - \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	24	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & - \end{aligned}$
$\begin{aligned} & \mathrm{FTI}=\mathbf{0}, \mathrm{FTO}=\mathbf{1} \\ & \mathrm{CLK}(\overline{\mathrm{NORM}}=0 / 1) \\ & \mathrm{SI} 4-\mathrm{S} 10 \\ & \mathrm{R} / \overline{\mathrm{L}}, \mathrm{~F} \overline{\mathrm{~W}} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{gathered} 73 / 40 \\ 52 \\ 52 \\ 28 \end{gathered}$	55/- - -	$\begin{gathered} 58 / 30 \\ 40 \\ 40 \\ 24 \end{gathered}$	42/- -	$\begin{gathered} 20 / 20 \\ 20 \\ 20 \\ 15 \end{gathered}$	20/- —
$\begin{aligned} & \mathrm{FTI}=1, \mathrm{FTO}=0 \\ & \mathrm{CLK} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	28	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	24	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	15
$\begin{aligned} & \mathrm{FTI}=1, \text { FTO }=1 \\ & \mathrm{I} 31-\mathrm{-IO}, \mathrm{SIGN} \\ & \quad(\overline{\mathrm{NORM}}=0 / 1) \\ & \mathrm{SI} 4-\mathrm{SIO} \\ & \mathrm{R} / \overline{\mathrm{L}}, \mathrm{~F} \overline{\mathrm{~W}} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{gathered} 73 / 40 \\ 52 \\ 52 \\ 28 \end{gathered}$	$55 /-$ - - -	$\begin{gathered} 58 / 30 \\ 40 \\ 40 \\ 24 \end{gathered}$	$42 /-$ - -	$\begin{gathered} 20 / 20 \\ 20 \\ 20 \\ 15 \end{gathered}$	$20 /-$ - -

Input	LSH33-40				LSH33-30				LSH33-20			
	$\mathrm{FTI}=0$		$\mathrm{FTI}=1$		$\mathrm{FTI}=0$		$\mathrm{FTI}=1$		$\mathrm{FTI}=0$		FTI $=1$	
	Setup	Hold										
I31-I0, SIGN	12	3	20	2	10	3	15	2	8	0	8	2
Sl4-Sio	17	0	17	0	15	0	15	0	8	0	8	0
R/L, F/ \bar{W}	12	0	12	0	10	0	10	0	8	0	8	0
ENI, ENO	12	0	12	0	10	0	10	0	8	0	8	0

Thi-State Enable/Disable Times Notes 9, 10,11 (ns)				
	LSH33-40	LSH33-30	LSH33-20	
tena	20	17	15	
tols	20	17	15	

Clock Cycle Time and Pulse Width Notes 9,10 (ns)			
	LSH33-40	LSH33-30	LSH33-20
Minimum Cycle Time	30	20	15
Highgoing Pulse	12	9	7
Lowgoing Pulse	12	9	7

SWITCHING CHARACTERISTICS - Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

To Output From Input	LSH33-50		LSH33-40		LSH33-30	
	Y_{15} - Y_{0}	SO4-SO0	Y_{15} - Y_{0}	SO4-SO0	Y $15-\mathrm{Y} 0$	SO4-SO0
$\begin{aligned} & \mathrm{FTI}=\mathbf{0}, \mathrm{FTO}=\mathbf{0} \\ & \mathrm{CLK} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 32 \\ & - \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 28 \\ & - \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	24
$\begin{aligned} & \mathrm{FTI}=0, \mathrm{FTO}=1 \\ & \mathrm{CLK}(\overline{\mathrm{NORM}}=0 / 1) \\ & \mathrm{SI} 4-\mathrm{S} 10 \\ & \mathrm{R} / \bar{L}, \mathrm{~F} \overline{\mathrm{~N}} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{gathered} 80 / 50 \\ 62 \\ 62 \\ 32 \end{gathered}$	65/- - -	$\begin{gathered} 73 / 40 \\ 52 \\ 52 \\ 28 \end{gathered}$	55/- - - -	$\begin{gathered} 58 / 30 \\ 40 \\ 40 \\ 24 \end{gathered}$	42/--
$\begin{aligned} & \mathrm{FTI}=\mathbf{1}, \mathrm{FTO}=\mathbf{0} \\ & \mathrm{CLK} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 28 \\ & 28 \end{aligned}$	28	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	24
$\begin{aligned} & \mathrm{FTI}=1, \mathrm{FTO}=1 \\ & \mathrm{I} 31-\mathrm{IO}, \mathrm{SIGN} \\ & \quad(\overline{\mathrm{NORM}}=0 / 1) \\ & \mathrm{S} \mid 4-\mathrm{SIO} \\ & \mathrm{R} / \overline{\mathrm{L}}, \mathrm{~F} \overline{\mathrm{~N}} \\ & \mathrm{MS} / \overline{\mathrm{LS}} \end{aligned}$	$\begin{gathered} 80 / 50 \\ 62 \\ 62 \\ 62 \end{gathered}$	65/- - - -	$\begin{gathered} 73 / 40 \\ 52 \\ 52 \\ 28 \end{gathered}$	55/- - - -	$\begin{gathered} 58 / 30 \\ 40 \\ 40 \\ 24 \end{gathered}$	$42 /-$ - -

Input	LSH33-50				LSH33-40				LSH33-30			
	$\mathrm{FTI}=0$		FTI $=1$		FTI $=0$		FTI $=1$		$\mathrm{FTI}=0$		FTI $=1$	
	Setup	Hold										
131-I0, SIGN	15	3	20	2	12	3	20	2	10	0	15	2
Sl4-SIo	20	0	20	0	17	0	17	0	15	0	15	0
R/L, F/ \bar{W}	15	0	15	0	12	0	12	0	10	0	10	0
$\overline{\mathrm{ENI}}, \overline{\mathrm{ENO}}$	15	0	15	0	12	0	12	0	10	0	10	0

Tri-State Enable/Disable Times Notes 9, 10,11 (ns)				
	LSH33-50	LSH33-40	LSH33-30	
tena	22	20	17	
tols	22	20	17	

Clock Cycle Time and Pulse Width Notes 9, 10 (ns)			
	LSH33-50	LSH33-40	LSH33-30
Minimum Cycle Time	35	30	20
Highgoing Pulse	15	12	9
Lowgoing Pulse	15	12	9

LSH33

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

FEATURES

\square High Speed (50 MHz), Low Power (125 mW), CMOS 64-bit Digital Correlator

- Replaces TRW/Raytheon TDC1023/TMC2023
- Bit Can be Selectively Masked
- Three-State Outputs DECC SMD No. 5962-89711
- Available 100\% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 24-pin Plastic DIP
- 24-pin Ceramic DIP
- 28-pin Ceramic LCC

L10C23 Block Diagram

DESCRIPTION

The L10C23 is a high speed CMOS 64-bit digital correlator. It is pin-for-pin equivalent to the TRW/ Raytheon TDC1023/TMC2023. The L10C23 operates over the full military ambient temperature range using advanced CMOS technology.

The L10C23 produces the 7-bit correlation score of two input words of up to 64 bits, denoted A and B. The A and B inputs are serially shifted into two independently clocked 64-bit registers. The A register is clocked on
the rising edge of CLK A, and the B register is clocked on the rising edge of CLK B.

The outputs of the B register drive a 64-bit transparent latch, denoted the C latch. The C latch is controlled by the LCL (Load C Latch) input. A HIGH level on the LCL input causes the C latch to be transparent, allowing the contents of the B register to be applied directly to the correlator array. When the LCL input is LOW, the data in the C latch is held, so that the B input may be loaded with a new correlation reference without affecting the current reference value stored in C.

Each bit in the A register is exclusive NOR'ed with the corresponding bit in the C latch, implementing a single bit multiplication at each bit position.
The mask register, denoted by M, is a third 64-bit register, which is serially loaded from the M input on the rising edge of CLK M. Bit positions in the M register which are set to zero mask the corresponding bits in the A and C registers from participating in the correlation score. This can be used to reduce the effective length of the correlation, or to correlate against only one channel of a bit-multiplexed datastream without deinterleaving the data.

The output of the masking process is a 64-bit vector which contains ones in the locations in which A and B data match, and which are unmasked (M register contains a ' 1 '). This 64-bit vector is applied to a pipelined digital summer which calculates the total number of ones in the vector (the correlation score). The summer network contains three pipeline stages, which are clocked on the rising edge of CLK S. Calculation of a
correlation score therefore requires three clock cycles, but a new result can be obtained on each cycle once the pipeline is filled.

Because a portion of the summer logic is located between the input registers and the first pipeline register, some timing restrictions exist between CLK S and CLK A, CLK B, or CLK M. CLK S may be tied to an input clock (usually CLK A) to obtain a continuously updated correlation score, delayed by three cycles from the data. Under this condition, CLK S may be skewed later than CLK A by no more than tsk to assure that the A register outputs have not changed before the S clock occurs.

Alternatively, CLK S may be asyncronous to the input clocks, as long as data is stable at the pipeline register inputs prior to the CLK S rising edge. This condition can be met by assuring that CLK S occurs at least tPS after the input clock.

The summer output represents a count of the number of matching positions in the input data streams. This 7-bit result can be inverted (one's complemented) by loading a ' 1 ' into the INV register.

Correlation values which exceed a predetermined threshold can be detected via the Threshold register and Comparator. The Threshold register is loaded with a 7 -bit value via the R $6-0$ pins at the rising edge of CLK C and while $\overline{\mathrm{OE}}$ is HIGH. To achieve synchronization with the digital summer, the Threshold register contents are fed into pipeline registers clocked by CLK S. The compare flag output (CFL) goes HIGH when the summer output is equal to or greater than the contents of the Threshold register.

Cascading the L10C23 devices for longer correlation lengths and more bits of reference or data precision is easily accomplished. The A, B, and M registers have serial outputs to directly drive the corresponding inputs of succeeding devices. The correlation scores of multiple devices in such a system should be added together to obtain the overall correlation score.

Correlation on data exceeding one bit of precision can be accomplished by first calculating single-bit correlation scores at each bit position, then adding the results after weighting them appropriately. Thus, one L10C23 would be used for each bit of precision in the data.

Logic Devices' L4C381 16-bit ALU can be used to assist in adding the outputs of several L10C23 correlators. When adding several 7 -bit correlation scores, advantage can be taken of the fact that the sum of two 7 -bit numbers will not exceed 8 bits. Thus the L4C381 can simultaneously perform two 7 -bit additions. The first two operands are applied to $\mathrm{A} 6-0$ and $\mathrm{B} 6-0$, with the result appearing on $\mathrm{F} 7-0$. The second pair of operands are applied to A14-8 and B14-8, with the result appearing in F15-8. The unused inputs are tied to ground. If it can be guaranteed that at least one of the input scores will not reach its maximum value of 64 , then this technique can also be applied in the second tier of adders. In this case, while the inputs have 8 bits of precision, the maximum value that their sum can assume is 255 , which is expressable in 8 bits.

Alternatively, when performing long correlations on relatively slow datastreams, one L4C381 can be configured using its feedback mode to accumulate the correlation scores of a number of L10C23s. To accomplish this, the outputs of all the correlators are tied together on a three-state bus. Each one is sequentially enabled and clocked into the L4C381, which accumulates the total resulting score.

L10C23

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage tempera	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=4.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	v
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC ((Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		25	100	mA
ICC2	Vcc Current, Quiescent	(Note 7)			0.5	mA

L10C23

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$							
Symbol	Parameter	L10C23-					
		50		30		20	
		Min	Max	Min	Max	Min	Max
tPabm	A, B, M Clock Period	50		28		20	
tPW	A, B, M, S, C Clock Pulse Width	20		12		8	
ts	Input Setup Time	20		10		10	
t H	Input Hold Time	0		0		0	
tBLCL	B Clock to LCL Hold	20		12		8	
tcs	C Clock to S Clock	50		28		20	
tDabm	A, B, M Clock to A, B, M Out		25		20		18
tPS	S Clock Period, A, B, M Clock to S Clock Delay	50		28		20	
tsk	A, B, M Clock to S Clock Skew (Note 8)		3		3		3
tDR	S Clock to R6-0		35		30		22
toc	S Clock to CFL		25		20		18
tena	Output Enable Time (Note 11)		30		18		16
tois	Output Disable Time (Note 11)		35		16		14

SWITCHING CHARACTERISTICS

Militar	Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) No	(ns)					
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tPABM	A, B, M Clock Period	58		33		20	
tPw	A, B, M, S, C Clock Pulse Width	20		14		8	
ts	Input Setup Time	22		12		12	
tH	Input Hold Time	0		0		0	
tBLCL	B Clock to LCL Hold	20		14		8	
tcs	C Clock to S Clock	58		33		20	
tDABM	A, B, M Clock to A, B, M Out		30		23		20
tPS	S Clock Period, A, B, M Clock to S Clock Delay	58		33		20	
tsk	A, B, M Clock to S Clock Skew (Note 8)		3		3		3
tDR	S Clock to R6-0		40		35		27
toc	S Clock to CFL		30		23		18
tena	Output Enable Time (Note 11)		35		20		18
tbIs	Output Disable Time (Note 11)		40		18		16

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensatefor inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

FEATURES

\square Rectangular-to-Polaror Polar-toRectangular at 50 MHz24-Bit Polar Phase Angle AccuracyReplaces Raytheon TMC2330AAvailable 100\% Screened to MIL-STD-883, Class B

- PackageStyles Available:
- 120-pin Plastic Quad Flatpack
- 120-pin Ceramic PGA

DESCRIPTION

The L2330 is a coordinate transformer that converts bidirectionally between Rectangular and Polar coordinates.

When in Rectangular-to-Polar mode, the L2330 is able to retrieve phase and magnitude information or backward map from a rectangular raster display to a radial data set.

When in Polar-to-Rectangularmode, the L2330 is able to execute direct digital waveform synthesis and modulation. Real-timeimage-space conversions are achieved fromradiallygenerated images, such as RADAR, SONAR, and ultrasound to raster display formats.

Functional Description

The L2330 converts bidirectionally between Rectangular (Cartesian) and Polar (Phase and Magnitude) coordinates. The user selects the numeric format. A valid transformed result is
seen at the output after 22 clock cycles and will continue upon every clock cycle thereafter.

When in Rectangular-to-Polar mode, the user inputs a 16-bit Rectangular coordinate and the output generates a Polar transformation with 16-bit magnitude and 16 -bit phase. The user two's complement or sign-andmagnitude Cartesian data format. Polar Magnitude data is always in magnitude format only. Polar Phase Angle data is modulo 2π so it may be regarded as either unsigned or two's complementformat.

When in Polar-to-Rectangular mode, the user inputs 16 -bit Polar Magnitude and 32 -bit Phase data and the output generates a 16-bit Rectangular coordinate. The use may select the data format to be either two's complement or sign-and-magnitude Cartesian data format.

L2330 Block Diagram

L2330

L2330 Functional Block Diagram

*REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED

* WHEN RTP IS HIGH ' n ' IS 16 -BITS, WHEN RTP IS LOW ' n ' IS 24-BITS

SIGNALDEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK—Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs
XRIN15-0 - x-coordinate/Magnitude Data Input

XRIN15-0 is the 16-bit Cartesian x-coordinate/PolarMagnitude Data input port. XRIN15-0 is latched on the rising edge of CLK.

YPIN31-0 - y-coordinate/Phase Angle
DataInput
YPIN31-0 is the 32-bit Cartesian y-coordinate/Polar Phase AngleData input port. When RTP is HIGH, the input accumulators should not be used. When ACC is LOW, the upper 16 bits of YPIN are the input port and the lower 16 bits become "don't cares". YPIN31-0 is latched on the rising edge of CLK.

Outputs

RXOUT15-0 - x-coordinate/Magnitude Data Output

RXOUT15-0 is the 16 -bit Cartesian x-coordinate/Polar Magnitude Data output port. When OERX is HIGH, RXOUT15-0 is forced into the highimpedance state.

PYOUT15-0 - y-coordinate/Phase Angle

 Data OutputPYOUT15-0 is the 16-bit Cartesian y-coordinate/Polar Phase Angle Data output port. When OEPY is HIGH, PYOUT15-0 is forced into the highimpedance state.

Controls

ENXR - x-coordinate/Magnitude Data Input Enable

When ENXR is HIGH, XRIN is latched into the input register on the rising edge of clock. When ENXR is LOW, the value stored in the register is unchanged.

ENYP1-0 - y-coordinate/Phase Angle Data Input Control

ENYP1-0 is the 2-bit y-coordinate/ Phase Angle Data Input Control that determines four modes as shown in

Table 1. Register Operation			
ENYP1-0	M	C	
00	Hold	Hold	
01	Load	Hold	
10	Hold	Load	
11	Clear	Load	

Table 2. Accumulator Control

ACC1-0	Configuration
00	No accumulation (normal operation)
01	PM accumulator path enabled
10	FM accumulator path enabled
11	Logical OR of PM and FM (Nonsensical)

Table 1. ' M ' is the Modulation Register and ' C ' is the Carrier Register as shown in the Functional Block Diagram.

RTP — Rectangular-to-Polar
When RTP is HIGH, Rectangular-toPolar conversion mode is selected. When RTP is LOW, Polar-to-Rectangular conversion mode is selected.

ACC1-0 - Accumulator Control
$\mathrm{ACC} 1-0$ is the 2 -bit accumulator control that determines four modes as shown in Table 2. Changing of the internal phase Accumulator structure is very useful when RTP is LOW allowing for waveform synthesis and modulation. ACC1-0 set to ' 00 ' is most commonly used when RTP is

HIGH unless performing backward mapping from Cartesian to Polar coordinates.

TCXY — Data Input/Output Format Select

When TCXY is HIGH, two's complement format is selected. When TCXY is LOW, sign-and-magnitude format is selected.

Figure 1a. Input Formats

XRIN	YPIN
Integer Unsigned Magnitude	Fract. Unsigned Mag./Two's Comp.
	$313029 \Rightarrow 210$
$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	${ }^{*} \pm 2^{0} 2^{-1} 2^{-2} \quad 2^{-29} 2^{-30} 2^{-31}$

	$31 \quad 30 \quad 29 \Longrightarrow 18 \quad 1716$
NS $2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	NS $2^{14} 2^{13} \quad 2^{2} \quad 2^{1} 2^{0}$

	$313029 \Longrightarrow 18 \quad 17 \quad 16$
$-2^{15} 2^{14} 2^{13} \quad 2^{2} \quad 2^{1} 2^{0}$	$-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

$\overline{\text { Fractional Unsigned Magnitude }}($ RTP $=0)$

15	14	13	2	1	0
2^{0}	2^{-1}	2^{-2}	2^{-13}	2^{-14}	2^{-15}

Fract. Unsigned Mag./Two's Comp.

31	30	29	2
${ }^{*} \pm 2^{0} 2^{-1}$	2^{-2}	1	0
2^{-29}	$2^{-30} 2^{-31}$		

	$3130 \quad 29 \Rightarrow 18 \quad 17 \quad 16$
NS $2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	NS $2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

[^6]L2330

OVF — Overflow Flag
OVF will go HIGH on the clock the magnitude of either of the current Cartesian coordinate outputs exceed the maximum range. OVF will return LOW on the clock that the Cartesian output value(s) return within range. An overflow condition can only occur when RTP is LOW.
$\overrightarrow{O E R X}-x$-coordinate/Magnitude Data
Output Enable

When $\overline{\text { OERX }}$ is LOW, RXOUT $15-0$ is enabled for output. When $\overline{\mathrm{OERX}}$ is HIGH, RXOUT $15-0$ is placed in a high-impedancestate.

$\overline{O E P Y}$ - y-coordinate/Phase Angle Data Output Enable

When $\overline{\mathrm{OEPY}}$ is LOW, PYOUT $15-0$ is enabled for output. When OEPY is HIGH, PYOUT15-0 is placed in a high-impedance state.

Figure 1b. Output Formats

RXOUT
PYOUT
Integer Signed Magnitude (RTP = 0, TCXY = 0)

Integer Two's Complement (RTP $=0$, TCXY $=1$)

| 15 | 14 | 13 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -2^{15} | 2^{14} | 2^{13} | 2^{2} | 2^{1} | 2^{0} |

| 15 | 14 | 13 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -2^{15} | 2^{14} | 2^{13} | 2^{2} | 2^{1} | 2^{0} |

(RTP = 1)

Integer Unsigned Magnitude

15	14	13	2	1	0
2^{15}	2^{14}	2^{13}	2^{2}	2^{1}	2^{0}

Fract. Unsigned Mag./Two's Comp.

15	14	13	2

NS $2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	NS $2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

-20 $2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

Fractional Unsigned Magnitude	Fract. Unsigned Mag./Two's Comp.
$2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	${ }^{*} \pm 2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

[^7]
Conversion Ranges

The L2330 supports 16－bit unsigned radii and 16 －bit signed Cartesian coordinates．Since the 16－bit rectangu－ lar coordinate space does not com－ pletely cover the polar space defined by 16 －bit radii，certain values of＂r＂ will not map correctly．This condition is indicated by the overflow（OVF）flag．

In Polar－to－Rectangular conversions， no overflow occurs for $\mathrm{r} \leq 32767$ （7FFFH）．Overflow will always occur when $r>46341$（B505H）．Note that in signed magnitude mode $r=46340$ （ B 504 H ）will also cause an overflow． For $32767 \leq r \leq 46340$ ，overflow may occur depending on the exact values of r and θ ．Figure 2 shows，for the first quadrant，these three regions： $A=$ no overflow（correct conversion）， $B=$ possible overflow，$C=$ overflow． The other quadrants are mapped in a similar manner．

When in signed magnitude mode，the overflows on the other three quadrants are the same as in the first．This occurs because the signed magnitude number system is symmetric about zero．For example，if a given r and angle θ cause an overflow，the same r will cause an overflow for the angles $-\theta, \pi+\theta, \pi-\theta$ ．

However，when in two＇s complement mode，the overflows aren＇t quite the same．This occurs because the two＇s
complement numbersystemis not symmetric about zero．For example，if the X or Y component of the input is $-32768(8000 \mathrm{H})$ ，no overflow occurs． But if the X or Y component of the input is +32768 ，overflow does occur．

When converting from Rectangular－to－ Polar，if both inputs are zero the radius is zero but the angle is not defined． The L2330 will output 4707 H in this case．Since the angle is not defined for a zero length vector，this is not an error．

Figure 2．Conversion Ranges

L2330

Internal Precision

When performing a coordinate transformation, inaccuracies are introduced by a combination of quantization and approximation errors. The accuracy of a coordinate transformer is dependent on the word length used for the input variables, the word length used for internal calculations, as well as the number of iterations or steps performed. Truncation errors are due to the finite word length, and approximation errors are due to the finite number of iterations. For example, in the case of performing a polar-torectangular transformation, the accuracy of the rotation will be determined by how closely the input rotation angle was approximated by the summation of sub-rotation angles.

In this study, we examine the effectiveness of 16 -bit internal precision versus 24 -bit internal precision. 10,000 random Rectangular coordinates were converted to Polar and back to Rectangular. The resulting Rectangular coordinates from this double conversion were then compared to the original Rectangular
coordinates input to the device. These vectors, with maximum word width of 16 -bits, were sent through a 16 -bit internal processor versus a 24 bit internal processor. The Rectangular coordinates were limited to the following conditions:

$$
\begin{aligned}
& -32769<x<32768 \\
& -32769<y<32768
\end{aligned}
$$

Using the 16-bit internal processor, the resulting Rectangular coordinates were compared to the original Rectangular coordinates (see Table 3). Using the 24 -bit internal processor, the resulting Rectangular
coordinates were compared to the original Rectangular coordinates (see Table 3). By way of comparison between the 16 -bit internal processor and the 24 -bit internal processor, we find that the 24 -bit internal processor is significantly more accurate. This accuracy is due to internal word length. During coordinate transformation, the number of bits truncated within a 24 -bit internal processor are much smaller than in a 16 -bit internal processor resulting in smaller error.

Table 3. Double Conversion Error

Error	Internal 16-bit	Internal 24-bit
Mean Error (X)	0.0216	-0.0118
Mean Error (Y)	-0.0036	-0.0028
Mean Absolute Error (X)	1.5736	0.5116
Mean Absolute Error (Y)	1.0756	0.5160
Root Mean Square Error (X)	2.0168	0.7664
Root Mean Square Error (Y)	1.4356	0.7738
Max Error (X)	$6.0 /-7.0$	$3.0 /-3.0$
Max Error (Y)	$5.0 /-5.0$	$3.0 /-3.0$
Standard Deviation of Error (X)	2.0168	0.7664
Standard Deviation of Error (Y)	1.4357	0.7739

Circle Test

When performing a polar-to-rectangular transformation, a 24 -bit internal processor proves to be significantly more accurate than a 16-bit internal processor.

In this study, we compare how accurately a coordinate transformer with a 16 -bit internal processor versus a 24 bit internal processor can calculate all the coordinates of a circle. By setting the radius to 7FFFH (maximumbefore overflow, θ is incremented using the accumulator of the L2330 in steps of 00004000 H until all the points of a full circle are calculated into rectangular coordinates.

The resulting rectangular coordinates were plotted and graphed. A graphical representation of the resulting vectors for both 16 -bit and 24 -bit internal processors are compared near 45°. Theoretically, a perfect circle is the desired output but when the resulting vectors from a coordinate transformer with 16-bit internal processor are graphed and displayed as shown in Figure 3, we see significant errors due to the inherent properties of a digital coordinate transformation system. In comparison, the 24 -bit internal processor proves to be significantly more accurate than a 16-bit internal processor due to minimization of truncation errors. In many applications, this margin of error is of great significance especially when being used in applications such as medical ultrasound or modulation techniques.
Data values for Figure 3 and Figure 4 are shown in Table 4. By looking at these values, we observe the step resolution on a 16-bit internal processor is not 1 unit in the x and y. In most cases, the minimum step resolution is 2 units in the x and y. On the other
hand, step resolution on a 24 -bit internal processor is 1 unit in the x and y thus resulting in greater accuracy.
The minimum theoretical angle resolution that could be produced is 0.00175° when $x=7$ FFFH and $y=1 H$. A 16-bit internal processor can produce a minimum angle resolution of only
0.00549° and will not be able to properly calculate the theoretical minimum angle resolution. On the other hand, a 24 -bit internal processor can produce a minimum angle resolution of 0.00002° and could therefore properly calculate the theoretical minimum angle resolution.

Figure 3. Circle TestResult Near 45 ${ }^{\circ}$ (16-Bit Internal Processor)

Figure 4. Circle Test Result Near 45 ${ }^{\circ}$ (24-Bit Internal Processor)

16-bit Internal Processor				24-bit Internal Processor			
x	x (HEX)	y	y (HEX)	x	x (HEX)	y	y (HEX)
23201	5AA1	23139	5A63	23199	5A9F	23140	5A64
23199	5A9F	23141	5A65	23198	5A9E	23141	5A65
23199	5A9F	23141	5A65	23198	5A9E	23141	5A65
23199	5A9F	23141	5A65	23197	5A9D	23142	5A66
23199	5A9F	23141	5A65	23197	5A9D	23142	5A66
23197	5A9D	23143	5A67	23196	5A9C	23143	5A67
23197	5A9D	23143	5A67	23196	5A9C	23143	5A67
23197	5A9D	23143	5A67	23195	5A9B	23144	5A68
23197	5A9D	23143	5A67	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23193	5A99	23146	5A6A
23195	5A9B	23145	5A69	23192	5A98	23147	5A6B
23192	5A98	23148	5A6C	23191	5A97	23148	5A6C
23192	5A98	03148	5A6C	23191	5A97	23148	5A6C
23192	5A98	23148	5A6C	23191	5A97	23148	5A6C
23192	5A98	23148	5A6C	23190	5A96	23149	5A6D
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23188	5A94	23151	5A6F
23187	5A93	23152	5A70	23187	5A93	23152	5A70
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23185	5A91	23154	5A72	23185	5A91	23154	5A72
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23183	5A8F	23156	5A74	23183	5A8F	23156	5A74

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range(Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min}$., $\mathrm{IOH}=\mathbf{- 2 . 0} \mathrm{mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	InputCurrent	Ground \leq VIN \leq Vcc ((0 ote 12)			± 10	$\mu \mathrm{A}$
loz	OutputLeakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
ICC,	Vcc Current, Dynamic	(Notes 5, 6)			95	mA
Icc2	Vcc Current, Quiescent	(Note 7)			5	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	OutputCapacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

L2330

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	L2330-					
		50		25		20	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20	
tpwL	Clock Pulse Width Low	10		8		7	
tPWH	Clock Pulse Width High	8		7		6	
ts	Input Setup Time	12		7		6	
tH	Input Hold Time	1		0		0	
tD	OutputDelay		22		18		16
tena	Three-State Output Enable Delay (Note 11)		13		13		13
tols	Three-State Output Disable Delay (Note 11)		13		13		13

Militar	Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20	
tPWL	Clock Pulse Width Low	11		9		7	
tPWH	Clock Pulse Width High	8		7		6	
ts	Input Setup Time	13		7		6	
t H	Input Hold Time	2		2		1	
to	Output Delay		25		20		18
tena	Three-State Output Enable Delay (Note 11)		15		14		13
tols	Three-State Output Disable Delay (Note 11)		15		14		13

Switching Waveforms: Phase Modulation

CLK \qquad
RTP, TCXY $\triangle \triangle \triangle$

XRIN15-0 $_{\text {N }}^{\text {X }}$

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designedtoprotect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or aboveVCC will be clamped beginning at- 0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{N^{2} C V^{2}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
V = supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may bedistributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures arerecommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground andVCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate forinductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimumsince theexternal systemmust supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worstcase operation of any devicealways provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VOL* Measured VOL with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $10 \mathrm{~L}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$

FEATURES

D Digital Waveform Synthesis at 50 MHz

- 24-Bit Polar Phase Angle Accuracy
- User-selectableWaveformSynthesis, Frequency Modulation, or Phase Modulation.Amplitude Input for Amplitude Modulation and Gain Adjustment.Replaces Raytheon TMC2340A
- Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 120-pin Plastic Quad Flatpack
- 120-pin Ceramic PGA

DESCRIPTION

The L2340 is a digital synthesizer that performs waveform synthesis, modulation, and demodulation.

The L2340 automatically generates quadrature matched pairs of 16-bit sine and cosine waves in DACcompatible 16-bit offset binary format with15-bit amplitude and 32-bit phase inputs.

Output waveforms can be phase or frequency modulated. Digital output frequencies are restricted to the Nyquist limit.

Functional Description

The L2340 converts Polar (Phase and Magnitude) data into Rectangular (Cartesian) coordinates. The user
selects the numeric format. A valid transformed result is seen at the output after 22 clock cycles and will continue upon every clock cycle thereafter.

15-bit amplitude and 32-bit phase data are input into the L2340 to produce an output of 16 -bit rectangular data. The user may select the data
or 15-bit unsigned magnitude format. High accuracy phase increment values with minimal accumulation error is accomplished by use of a 32bit phase accumulator.

The phase accumulator structure supports frequency or phase modulation and is selected by ENP1-0 and accumulator controls FM and PM.

L2340

L2340 Functional Block Diagram

*REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED

SIGNALDEFINITIONS

Power

Vccand GND
+5 V power supply. All pins must be connected.

Clock
CLK—Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

AM14-0-Amplitude Modulation Data Input
AM14-0 is the 15-bit Amplitude Modulation Data input port. AM14-0 is latched on the rising edge of CLK.

PH31-0 - Phase Angle Data Input

PH31-0 is the 32-bit Phase Angle Data input port. Input phase accumulators are loaded through this port into registers enabled by ENP1-0. PH31-0 is latched on the rising edge of CLK.

Outputs

I15-0 x-coordinate Data Output
I15-0 is the 16 -bit Cartesian x-coordinate Data output port. When $\overline{\mathrm{OEI}}$ is HIGH, $\mathrm{I} 15-0$ is forced into the highimpedance state. I15 is forced HIGH if OBIQisLOW.

Q15-0-y-coordinate Data Output
Q15-0 is the 16-bit Cartesian y-coordinate Data output port. When OEQ is HIGH, Q15-0 is forced into the highimpedance state. Q15 is forced HIGH if OBIQ is LOW.

Controls
ENA—Amplitude Modulation Data Input Enable

When ENA is HIGH, AM is latched into the input register on the rising edge of clock. When ENA is LOW, the value stored in the register is unchanged.

ENP1-0 — Phase Modulation Data Input

 ControlENP1-0 is the 2-bit Phase Modulation Data Input Control that determines one of the four modes shown in Table 1. ' M ' is the Modulation Register and ' C ' is the Carrier Register as shown in the Functional Block Diagram.

TABLE 1. Register OPERATION	
ENP1-0	Configuration
00	No registers enabled, current data held
01	M register input enabled, C data held
10	C register input enabled, M data held
11	M register $=0, C$ register input enabled

FM, PM — Frequency Modulation, Phase Modulation Control

FM and PM is the 2-bit Frequency Modulation/PhaseModulation Control that determines one of the four modes shown in Table 2. When fullscale is exceeded, the accumulator will roll over correctly allowing continuous phase accumulation through 2π radians.

OBIQ — Data Input/Output Format Select

When OBIQ is HIGH, offset binary format is selected. When OBIQ is LOW, unsigned format is selected.
$\overline{O E I}$ - x-coordinate Data Output Enable

When $\overline{\mathrm{OEI}}$ is LOW, $\mathrm{I} 15-0$ is enabled for data output. When OEI is HIGH, I15-0 is placed in a high-impedance state.

$\overline{O E Q}-y$-coordinate Data Output Enable

When $\overline{\mathrm{OEQ}}$ is LOW, $\mathrm{Q} 15-0$ is enabled for data output. When $\overline{\mathrm{OEQ}}$ is HIGH , Q15-0 is placed in a high-impedance state.

Figure 1a. Input Formats

Figure 1b. Output Formats

NS $2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	NS $2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

[^8]
Circle Test

When performing a coordinate transformation, inaccuracies are introduced by a combination of quantization and approximation errors. The accuracy of a coordinate transformer is dependent on the word length used for the input variables, the word length used for internal calculations, as well as the number of iterations or steps performed. Truncation errors are due to the finite word length and approximation errors are due to the finite number of iterations. For example, in the case of performing a polar-torectangular transformation, the accuracy of the rotation will be determined by how closely the input rotation angle was approximated by the summation of sub-rotation angles.
In this study, we compare how accurately a coordinate transformer with a 16 -bit internal processor versus a 24 -bit internal processor can calculate all the coordinates of a circle. By setting the radius to $7 \mathrm{FFFH}, \theta$ is incremented using the accumulator of the L2340 in steps of 00004000 H until all the points of a full circle are calculated into rectangular coordinates.

The resulting rectangular coordinates were plotted and graphed. A graphical representation of the resulting vectors for both 16 -bit and 24-bit internal processors are compared at 45°. Theoretically, a perfect circle is the desired output but when the resulting vectors from a coordinate transformer with 16 -bit internal processor are graphed and displayed as shown in Figure 2, we see significant errors due to the inherent properties of a digital synthesizer. In comparison, the 24 -bit internal processor proves to be significantly more accurate than a 16-bit internal processor due to minimization of truncation errors. In many applications, this margin of error will
introduce noise when performing waveform sythesis, modulation, and demodulation.

Data values for Figure 2 and Figure 3 are shown in Table 3. By looking at these values, we observe the step resolution on a 16 -bit internal processor is not 1 unit in the x and y. In most cases, the minimum step resolution is 2 units in the x and y. On the other hand, step resolution on a 24 -bit internal processor is 1 unit in the x and y thus resulting in greater accuracy.

Figure 3. Circle Test Result Near 45° (24-Bit Internal Processor)

The minimum theoretical angle resolution that could be produced is 0.00175° when $x=7 \mathrm{FFFH}$ and $\mathrm{y}=1 \mathrm{H}$. A 16-bit internal processor can produce a minimum angle resolution of only 0.00549° and will not be able to properly calculate the theoretical minimum angle resolution. On the other hand, a 24-bit internal processor can produce a minimum angle resolution of 0.00002° and could therefore properly calculate the theoretical minimum angle resolution.
Figure 2. Circle Test Result Near 45 ${ }^{\circ}$ (16-Bit Internal. Processor)

16-bit Internal Processor				24-bit Internal Processor			
x	\mathbf{x} (HEX)	y	y (HEX)	x	x (HEX)	y	y (HEX)
23201	5AA1	23139	5A63	23199	5A9F	23140	5A64
23199	5A9F	23141	5A65	23198	5A9E	23141	5A65
23199	5A9F	23141	5A65	23198	5A9E	23141	5A65
23199	5A9F	23141	5A65	23197	5A9D	23142	5A66
23199	5A9F	23141	5A65	23197	5A9D	23142	5A66
23197	5A9D	23143	5A67	23196	5A9C	23143	5A67
23197	5A9D	23143	5A67	23196	5A9C	23143	5A67
23197	5A9D	23143	5A67	23195	5A9B	23144	5A68
23197	5A9D	23143	5A67	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23194	5A9A	23145	5A69
23195	5A9B	23145	5A69	23193	5A99	23146	5A6A
23195	5A9B	23145	5A69	23192	5A98	23147	5A6B
23192	5A98	23148	5A6C	23191	5A97	23148	5A6C
23192	5A98	03148	5A6C	23191	5A97	23148	5A6C
23192	5A98	23148	5A6C	23191	5A97	23148	5A6C
23192	5A98	23148	5A6C	23190	5A96	23149	5A6D
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23189	5A95	23150	5A6E
23190	5A96	23150	5A6E	23188	5A94	23151	5A6F
23187	5A93	23152	5A70	23187	5A93	23152	5A70
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23187	5A93	23152	5A70	23186	5A92	23153	5A71
23185	5A91	23154	5A72	23185	5A91	23154	5A72
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23185	5A91	23154	5A72	23184	5A90	23155	5A73
23183	5A8F	23156	5A74	23183	5A8F	23156	5A74

```
Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
```

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range(Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics OverOperating Conditions (Note 4)

Symbol	Parameter	TestCondition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min}$., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground $\leq \operatorname{VIN} \leq \operatorname{VCC}$ (Note 12)			± 10	$\mu \mathrm{A}$
Ioz	OutputLeakage Current	Ground \leq Vout \leq VcC (Note 12)			± 10	$\mu \mathrm{A}$
ICC1	Vcc Current, Dynamic	(Notes 5, 6)			95	mA
Icc2	Vcc Current, Quiescent	(Note 7)			5	mA
CIN	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

L2340

SWITCHING CHARACTERISTICS

Comme	rcial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20	
tPWL	Clock Pulse Width Low	10		8		7	
tPWH	Clock Pulse Width High	8		7		6	
ts	Input Setup Time	12		7		6	
th	Input Hold Time	1		0		0	
tD	Output Delay		22		18		16
tena	Three-State Output Enable Delay (Note 11)		13		13		13
tols	Three-State Output Disable Delay (Note 11)		13		13		13

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	L2340-					
		50		25		20	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20	
tPWL	Clock Pulse Width Low	11		9		7	
tPWH	Clock Pulse Width High	8		7		6	
ts	Input Setup Time	13		7		6	
t H	Input Hold Time	2		2		1	
tD	OutputDelay		25		20		18
tena	Three-State Output Enable Delay (Note 11)		15		14		13
tois	Three-State Output Disable Delay (Note 11)		15		14		13

Switching Waveforms: No Accumulation

Switching Waveforms: Phase Modulation

```
    CLK_C
овіа }\triangle\mathbb{ZX
```



```
AM14.0 
```


NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designedtoprotect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or aboveVcc will be clamped beginning at- 0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will notbeadversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where

> N = total number of device outputs
> $\mathrm{C}=$ capacitive load per output
> V = supply voltage
> F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures arerecommended:
a. A 0.1μ F ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground andVcCsupply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum ormaximum value. Inputrequirements arespecified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimumsince the external system must supply at least thatmuch timeto meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worstcase operation of any devicealways provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is

Figure A. Output Loading Circut

Figure B. Threshold Levels

Vo.: Measured VoL with $10 \mathrm{H}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$
Voti Measured Vor with $10 \mathrm{H}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$

DEVICES INCORPORATED

L64230 Template Matcher

FEATURES

- 40 MHz Data and Computation Rate
- 1024-tap High-Speed Digital Transversal Filter and Template Matcher
- Variable Window Sizes: 1×1024, $2 \times 512,4 \times 256,8 \times 128,16 \times 64$, and 32×32
- Processor Cascadability can be Implemented for Extended Data/ Coefficient Precision, Increased Filter-Tap Power, and Increased Window Sizes

DECC SMD No. 5962-90504Available 100\% Screened to MIL-STD-883, Class B

- Package Styles Available:
- 132-pin Ceramic Flatpack
- 144-pin Plastic Quad Flatpack

DESCRIPTION

The L64230 is a high-speed, 1024-tap Digital Filter and Template Matcher. The device can be configured as a 1-D (one-dimensional) filter used in such applications as radar, sonar, or other forms of signal processing. The L64230 can also be implemented in 2-D (two-dimensional) applications, such as real-time image processing such as: pattern matching, correlation, convolution, noise elimination, morphing, dilation and erosion.

The L64230 is arranged as 32 (total) 32-tap filters with the outputs of each of the filters being summed and then delayed by the variable-length shift registers. In a multiprocessor system, this delayed output is then summed with the incoming partial result to form the complete output. In addition to carrying in the partial result into the L64230, the input can be used to vary the threshold when clipping the output to a single bit.

Each filter performs the basic XNOR and AND logic operations. The Ai, j and $B i, j$ are stored in double buffered registers. Bi, j controls the XNOR gate while the $A \mathrm{i}, \mathrm{j}$ controls the AND gate. The XNOR gate performs inversion (erosion) or magnitude differencing (template matching). The AND gate
or 1-bit multiplication (FIR filtering, dilation erosion). The outputs of all taps are summed to produce the final result. It should be noted that no significant bits of any signal are lost.

The L64230 has 32 single-bit inputs (DI31-0). For 1-D filtering, the only active input is DI0. However, when performing 2-Doperations overa window of size $N \times M, N$ of the inputs are active. A video shift register, with a raster scanned signal as its input would provide the N active data inputs.

L64230 Block Diagram

CLK

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clock

CLK—Master Clock
The rising edge of CLK strobes all registers. All timing specifications are referenced to the rising edge of CLK.

Inputs

DI31-0 - Data Input
When the L64230 is implemented in a 1-D filtering application, only pin DIo is used. Pins, DI31-1 are left disconnected. However, in a 2-D filtering application with a window size of 32 x 32 , the L64230 operates with all 32 data inputs active.

CI7-0 — Coefficient/Control Input

Eight control bits or four sets of coefficients (both A_{i}, and Bi_{i}) are loaded into the master section of the coefficient/control registers. CI7 is the MSB.

PR15-0 — Partial Result Input

The partial result is summed with the processor results to provide the final data output. In a multiprocessor system, DO31-0outputs of the preceding L64230 are connected to the corresponding partial result input. The partial results can be used in varying the threshold of the output, like clipping the output to a single bit. Disconnected PR pins are automatically assigned a LOW value. PR15 is the MSB.

BNKLDI—BankLoad Input

In order to bank load coefficients/ control inputs from master to slave registers, set BNKLDI to HIGH. When asynchronously loading coefficients/ control inputs, BNKLDI is held LOW until bank loading occurs. When coefficient/control input loading is performed synchronously, BNKLDI is always held HIGH.

REGADR7-0—Coefficient/Control Register Address Inputs

Controls the master register location that will be loaded with the coefficient/control inputs. Loading occurs only when WE is LOW. REGADR7 is the MSB.

Outputs

DO15-0 — Data Output

The value of the output is the sum of delayed output of the 1024 taps and the partial result (PR15-0). DO15 is the MSB.

$\overline{S R O}$ - Shift Register Output

In a 1-D filter application, $\overline{\mathrm{SRO}}$ is the DIo input delayed by 1025 cycles and inverted. This signal is usually connected to the DI0 of the next L64230 in a 1-D, multiprocessor system. $\overline{\text { SRO }}$ is not used in 2-D processing.

BNKLDO—Bank Load Output

BNKLDO is the BNKLDI signal delayed by one CLK cycle. BNKLDO was designed to be used in a 1-D multiprocessor system as input for BNKLDI in the next L 64230 .

Controls

$\overline{\text { SELALL }}$ - Coefficient Register Select-All
When LOW, $\overline{\text { SELALL }}$ enables the loading of the values at CI7-0 into the master latches of all 256,4 -tap groups in the processor simultaneously. This quickly initializes the L64230. When HIGH, SELALL enables the loading of the values into the master latches found at the locations determined by COEFF and REGADR7-0.

$\overline{\text { WE }}$ —Write Enable

When $\overline{\mathrm{WE}}$ is held LOW, the coefficient/control signals are loaded into the register location indicated by COEFF and REGADR7-0.

COEFF-Coefficient Input Indicator

The data on the CI bus is interpreted as coefficient data when COEFF is held HIGH. When COEFF is held LOW, data is interpreted as control inputs. (See Table 1,the Processor Control/ CoefficientMemory Map, for more detail.)

OPERATION

L64230 operation is fairly straightforward. After the internal master registers have been loaded with the data indicating the operating mode, the user need only supply a system/ data clock and the input data. Once the L64230 is setup and running, some or all of the coefficients (the set of $\mathrm{Al}_{\mathrm{i}, \mathrm{j}}$ and $\mathrm{Bi}_{\mathrm{i}, \mathrm{j}}$) can be changed while the processor is operating.

CONTROL SIGNALS

As mentioned in the previous para－ graph，the operation of the L64230 is simple．However，both the initializa－ tion of the processor and loading of the Control／Coefficient Data will prove to be a bit more interesting．

To initialize the processor and all the coefficients，the delay value of the variable delay element and the con－
figuration must be specified．The ProcessorControl／CoefficientMemory Map（Table 1）gives more detail as to the memory map of L 64230 ．

If $\overline{\text { SELALL }}$ is HIGH，only one of the eight Control／Coefficient bits will be latched each time WE goes LOW． When SELALL is pulsed LOW，all 1024 Ai ，Bi coefficients will be loaded as shown（WE can be HIGH or LOW）．

However，the $\overline{M U X C O N}$ and OUTDEL values will change only when $\overline{W E}$ is LOW．

OUTDEL4－0 variable set the number of delays performed by the variable delay element．The Window Configurations （Table 2）displays the various window shapes and corresponding active data inputs for the most common window configurations．Other configurations can be obtained．

Table 1．Processor Control／Coefficient Memory Map

Coeff	REGADR7－0	Cl7	Cl6	Cl5	Cl_{4}	Cl3	Cl2	Clı	Clo
0	0	X	X	X	$\overline{\mathrm{MUXCON} 4}$	$\overline{\text { MUXCON3 }}$	$\overline{\mathrm{MUXCON} 2}$	$\overline{\text { MUXCON }} 1$	$\overline{\text { MUXCONo }}$
0	1	X	X	X	X	OUTDEL3	OUTDEL2	OUTDEL1	OUTDELo
1	0	B0， 3	A0，3	B0，2	A0， 2	B0， 1	A0， 1	B0，0	A0， 0
1	1	B0， 7	A0， 7	B0，6	A0， 6	B0，5	A0， 5	B0， 4	A0， 4
1	2	B0， 11	Ao， 11	B0， 10	A0， 10	B0，9	A0，9	B0， 8	A0， 8
							．	．	．
1	7	Bo，31	A0，31	Bo， 30	A0， 30	B0， 29	A0，29	B0，28	A0，28
1	8	B1，3	A1，3	B1，2	A1，2	$\mathrm{B}_{1,1}$	$\mathrm{Al}_{1,1}$	B1，0	A1，0
．	$\cdots \cdot$. .	．	－	．	－	．
1	15	B1，31	A1，31	B1，30	A1，30	B1，29	A1，29	B1，28	At， 28
	－		. .	．		－	．	. .	．
1	247	В30，31	A30，31	B30，30	А30，30	B30，29	A30，29	B30，28	A30，28
1	248	B31，3	A31，3	B31．2	A31，2	B31， 1	A31， 1	B31，0	A31， 0
	．	－	，	－	．	\cdots	．	．	．
1	255	B31，31	A31，31	B31，30	A31，30	B31，29	A31，29	B31，28	A31，28

Table 2．Window Configurations

MUXCON ${ }_{4-0}$	Conflguration	Active Inputs
11111	1×1024	Dlo
11110	2×512	DIo，DI16
11100	4×256	
11000	8×128	
10000	16×16	
00000	32×32	All

L64230

FUNCTIONAL OVERVIEW

The L64230 is designed to perform FIR Filtering, Template Matching and MorphologicalOperations over a variety of window sizes. Figure 1 shows the two basic functions performed by the L64230.

For these equations, all $\mathrm{DI}_{\mathrm{i}}, \mathrm{Ai}, \mathrm{j}$, and $\mathrm{Bi}_{\mathrm{i}} \mathrm{j}$ are one bit wide. Depending upon the application the L 64230 is being used in, the control variables: $\mathrm{Ai}_{\mathrm{i}}, \mathrm{j}$ and Bi, j can be set appropriately to implement one of the four previously mentioned functions. For FIR Filtering, $\mathrm{Bi}_{\mathrm{i}} \mathrm{j}=1$ and $\mathrm{Ai}_{\mathrm{i}} \mathrm{j}$ is the inverted impulse response. For the application of Template Matching, Bi , j is the template and $A i, j$ is the "don't care" mask. Erosion is implemented by setting $\mathrm{Bi}, \mathrm{j}=0$ and Ai, j as the inverted structuring element. Dilation is setup much the same way as FIR Filtering, with the exception being that the multi-bit output is clipped to a single bit. In addition, for all functions it is possible to reduce the effective window size by masking some elements within the window by setting $\mathrm{Ai}, \mathrm{j}=1$ (refer to Table 2). DLY is the value of the variable length output delay, controlled by OUTDEL4-0. The preceding functions are outlined in Table 3.

COEFFICIENT/CONTROLSIGNAL LOADING METHODS

Coefficients and control signals are double-buffered by master and slave registers. To load a new coefficient or control signal, the data must first be placed on the CI bus. The data is then latched into the the master register designated by REGADR7-0 and COEFF, when WE is LOW. An alternative method to loading the master

Figure 1.

$$
\begin{aligned}
& 1 \mathrm{D}: y(n)=\operatorname{PR}(n-1)+\sum_{1023}^{i=0}\left[(B i \text { XNOR DIo }(n-i-\operatorname{DLY}-3)) \text { AND } \overline{A_{i}}\right] \\
& 2 D: y(n)=\operatorname{PR}(n-1)+\sum_{i=0}^{31} \sum_{j=0}^{31}[(B i, j \text { XNOR DII }(n-j-D L Y-3)) \text { AND } \overline{A i}, i]
\end{aligned}
$$

registers with coefficient data individually, is to hold SELALL LOW. This makes it possible to quickly initialize the processor by simultaneously loading all the coefficient registers with the data loaded on the CI bus. Now that the master registers are loaded, the user is given three different choices as to how to transfer the data from the master latches into the slave or active latches.

METHOD I

The first method is to load the coefficient or control signal to the master latch asynchronously (in reference to CLK), then transfer the data to the slave latch synchronously. Once all 256 master latches have been loaded (implementing either of methods mentioned in the above paragraph), the coefficients can be made active simultaneously by enabling the slave latches, when both BNKLDI and CLK are HIGH. This method extends to the user, the ability to update the coefficient sets into the processor without modifying the active set of coefficients.

METHOD II

The second method involves both the loading and transferring of the coefficients synchronously. This can be done by simply tying BNKLDI HIGH.
$\overline{\mathrm{WE}}$ is then pulsed low when CLK is LOW. During this time, a new coefficient on the CI bus is loaded into the master latch, again determined by REGADR7-0 and COEFF. On the next rising edge of CLK, the coefficient is transferred to the slave latch, thus becoming the active coefficient or control signal. In this way, a new coefficient can replace the current one within one clock cycle. This can be done only with slower clock speed, with cycle time 80 ns (COM) or more.

METHOD III

The third method is to asynchronously load and transfer over several cycles the new coefficients. If it is not convenient to supply BNKLDI or $\overline{\text { WE }}$ signals synchronous to CLK, this technique is used. BNKLDI can be tied HIGH and WE operated asynchronously. In this case every time a new coefficient is loaded, the processor output could be invalid for up to 20 cycles after the rising edge of $\overline{W E}$. The processor could be invalid for up to 1050 cycles after the rising edge of $\overline{\mathrm{WE}}$ if control signals $(C O E F F=0)$ are loaded.

Table 3. Functional Summary

Functions	Al,I	BR	Output	
FIR Filter	Inverted Impulse Response	1	0	D0 is the Filter Output
Template Matching	"Don't Care" Mask	Template	0	D0 Represents Correlation to Template
Erosion	Inverted Structuring Element	$\mathbf{0}$	-1	D015 is Output
Dilation	Inverted Structuring Element	$\mathbf{1}$	-1	D015 is Inverted Output

Maximum Ratings Above which usefullife may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambienttemperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Signal applied to high impedance output -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Output current into low outputs 25 mA
Latchupcurrent $>400 \mathrm{~mA}$

Operating Conditions Tomeetspecifiedelectricalandswitching characteristics		
Mode	Temperature Range(Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-3.2 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=3.2 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.25		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 200	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			300	mA
ICC2	Vcc Current, Quiescent	(Note 7)			10	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			15	pF
Cout	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			20	pF

L64230

SWITCHING CHARACTERISTICS

Comme	rcial Operating Range ($0^{\circ} \mathrm{C}$ to +70	(ns)					
				LF64			
		85		50		25	
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	85		50		25	
tPWH	Clock Pulse Width HIGH	25		20		10	
tPWL	Clock Pulse Width LOW	25		20		10	
tols	Input Data Setup Time	20		15		10	
tDIH	Input Data Hold Time	7		5		2	
tout	Output Delay of DO		20		15		15
tod	Output Delay of $\overline{\text { SRO }}$ and BNKLDO		20		15		15
tRS	REGADR to $\overline{W E}$ LOW Setup Time	15		10		10	
tRH	REGADR to $\overline{\text { WE HIGH Hold Time }}$	15		10		0	
tcs	Cl to $\overline{\mathrm{WE}}$ LOW Setup Time	15		10		10	
tCH	Cl to WE HIGH Hold Time	15		10		0	
tww	WE Pulse Width LOW	25		20		10	
twc	WE Cycle Time	65		50		25	
tcss	Cl to SELALL LOW Setup Time	150		100		50	
tchs	Cl to SELALL HIGH Hold Time	150		100		50	
tws	$\overline{\text { SELALL }}$ Pulse Width LOW	150		100		50	
tsc	$\overline{\text { SELALL }}$ Cycle Time	350		250		100	
tLS	BNKLDI Setup Time	20		15		10	
tLH	BNKLDI Hold Time	7		5		0	
twL	WE to BNKLDI HIGH Setup Time	7		5		5	
t LW	WE to BNKLDI LOW Hold Time	tPWH+20		tPWH+15		tPWH+10	
tssb	SELALL to BNKLDI HIGH Setup Time	150		100		50	
tHSB	$\overline{\text { SELALL }}$ to BNKLDI LOW Hold Time	150		100		50	
tclw	CLK LOW before WE LOW	25		20		15	
twCL	CLK HIGH after WE HIGH	25		20		15	
tPRS	Input Partial Result Setup Time	40		30		20	
tPRH	Input Partial Result Hold Time	7		5		20	

[^9]
SWITCHING CHARACTERISTICS

Military Operating Range（ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ）Notes 9,10 （ ns ）							
Symbol	Parameter	LF64230					
		75		60		45＊	
		Min	Max	Min	Max	Min	Max
tCyc	Cycle Time	75		60		45	
tPWH	Clock Pulse Width HIGH	30		25		15	
tPWL	Clock Pulse Width LOW	30		25		15	
toIs	Input Data Setup Time	25		20		15	
tid	Input Data Hold Time	15		7		5	
tout	Output Delay of DO		25		20		20
tod	Output Delay of $\overline{\text { SRO }}$ and BNKLDO		25		20		20
trs	REGADR to $\overline{\text { WE }}$ LOW Setup Time	20		15		15	
tri	REGADR to $\overline{\text { WE HIGH Hold Time }}$	20		15		5	
tcs	Cl to $\overline{\mathrm{WE}}$ LOW Setup Time	20		15		15	
tCH	Cl to WE HIGH Hold Time	20		15		5	
tww	WE Pulse Width LOW	30		25		15	
twc	$\overline{\text { WE Cycle Time }}$	75		60		45	
tcss	CI to SELALL LOW Setup Time	200		150		50	
tchs	CI to SELALL HIGH Hold Time	200		150		50	
tws	$\overline{\text { SELALL }}$ Pulse Width LOW	200		150		50	
tsc	$\overline{\text { SELALL }}$ Cycle Time	400		300		100	
tLS	BNKLDI Setup Time	25		20		15	
tLH	BNKLDI Hold Time	15		7		5	
twL	$\overline{\text { WE }}$ to BNKLDI HIGH Setup Time	15		7		5	
tLw	$\overline{\text { WE }}$ to BNKLDI LOW Hold Time	tPWH＋25		tPWH＋20		tPWH＋20	
tSSB	SELALL to BNKLDI HIGH Setup Time	200		150		50	
thSB	$\overline{\text { SELALL }}$ to BNKLDI LOW Hold Time	200		150		50	
tcLw	CLK LOW before $\overline{\text { WE }}$ LOW	30		25		20	
twCL	CLK HIGH after $\overline{\text { WE HIGH }}$	30		25		20	
tPRS	Input Partial Result Setup Time	50		40		25	
tPRH	Input Partial Result Hold Time	15		7		5	

＊Advanced Information

Switching Waveforms：Loading Controls into Master Registers Using WE（SELALL HIGH）

Switching Waveforms：Loading Controls into Master Registers Using SELALL（WE HIGH）

NOTES

1．Maximum Ratings indicate stress specifications only．Functional oper－ ation of these products at values beyond those indicated in the Operating Condi－ tions table is not implied．Exposure to maximum rating conditions for ex－ tended periods may affect reliability．
2．The products described by this spec－ ification include internal circuitry de－ signed to protect the chip from damag－ ing substrate injection currents and ac－ cumulations of static charge．Neverthe－ less，conventional precautions should be observed during storage，handling， and use of these circuits in order to avoid exposure to excessive electrical stress values．

3．This device provides hard clamping of transient undershoot and overshoot．In－ put levels below ground or above VCC will be clamped beginning at -0.6 V and VCC +0.6 V ．The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V ．Device opera－ tion will not be adversely affected，how－ ever，input current levels will be well in excess of 100 mA ．

4．Actual test conditions may vary from those designated but operation is guar－ anteed as specified．
5．Supply current for a given applica－ tion can be accurately approximated by：
where $\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}$
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6．Tested with all outputs changing ev－ ery cycle and no load，at a 10 MHz clock rate．

7．Tested with all inputs within 0.1 V of Vcc or Ground，no load．
8．These parameters are guaranteed but not 100% tested．

9．AC specifications are tested with input transition times less than 3 ns ， output reference levels of 1.5 V （except tDIS test），and input levels of nominally 0 to 3.0 V ．Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of VOH min and Vol max respectively．Alternatively，a diode bridge with upper and lower current sources of IOH and IOL respectively， and a balancing voltage of 1.5 V may be used．Parasitic capacitance is 30 pF minimum，and may be distributed．
This device has high－speed outputs ca－ pable of large instantaneous current pulses and fast turn－on／turn－off times． As a result，care must be exercised in the testing of this device．The following measures are recommended：
a．A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test （DUT）as possible．Similar capacitors should be installed between device Vcc and the tester common，and device ground and tester common．
b．Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers．
c．Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin．

10．Each parameter is shown as a min－ imum or maximum value．Input re－ quirements are specified from the point of view of the external system driving the chip．Setup time，for example，is specified as a minimum since the exter－ nal system must supply at least that much time to meet the worst－case re－ quirements of all parts．Responses from the internal circuitry are specified from the point of view of the device．Output delay，for example，is specified as a maximum since worst－case operation of any device always provides data within that time．

11．For the tENA test，the transition is measured to the 1.5 V crossing point with datasheet loads．For the tDIs test， the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady－state output voltage with $\pm 10 \mathrm{~mA}$ loads．The balancing volt－ age，Vth，is set at 3.5 V for Z －to－0 and 0 －to－Z tests，and set at 0 V for Z － to－ 1 and 1 －to－ Z tests．

12．These parameters are only tested at the high temperature extreme，which is the worst case for leakage current．

Figure B．Threshold Levels

Ordering Information

Arithmetic Logic Units a Special Anthmetic Funotions

Multipliers-\&-Multiplier-Accumulators

MULTIPLIERS \& MULTIPLIER-ACCUMULATORS 4-1
Multipliers
LMU08 8×8-bit Parallel Multiplier, Signed 4-3
LMU8U 8×8-bit Parallel Multiplier, Unsigned 4-3
LMU12 12×12-bit Parallel Multiplier 4-11
LMU112 12×12-bit Parallel Multiplier, Reduced Pinout 4-17
LMU16 16×16-bit Parallel Multiplier 4-23
LMU216 16×16-bit Parallel Multiplier, Surface Mount 4-23
LMU18 16×16-bit Parallel Multiplier, 32 Outputs 4-31
LMU217 16×16-bit Parallel Multiplier, Microprogrammable, Surface Mount 4-39
Multiplier-Accumulators
LMA1008 8×8-bit Multiplier-Accumulator 4-45
LMA1009 12×12-bit Multiplier-Accumulator 4-51
LMA2009 12×12-bit Multiplier-Accumulator, Surface Mount 4-51
LMA1010 16×16-bit Multiplier-Accumulator 4-59
LMA2010 16×16-bit Multiplier-Accumulator, Surface Mount 4-59
Multiplier-Summers
LMS12 $12 \times 12+26$-bit Cascadable Multiplier-Summer, FIR 4-67

青弿重复
DEVICES INCORPORATED

FEATURES

20 ns Worst-Case Multiply TimeLow Power CMOS TechnologyLMU08 Replaces TRW TMC208K - LMU8U Replaces TRW TMC28KUTwo's Complement (LMU08), or Unsigned Operands (LMU8U)Three-State OutputsDECC SMD No. 5962-88739
\square Available 100\% Screened to MIL-STD-883, Class B

- Package Styles Available:
- 40-pin Plastic DIP
- 40-pin Ceramic DIP
- 44-pin Plastic LCC, J-Lead
- 44-pin Ceramic LCC

DESCRIPTION

The LMU08 and LMU8U are highspeed, low power 8-bit parallel multipliers. They are pin-for-pin equivalents with TRW TMC208K and TMC28KU type multipliers. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

Both the LMU08 and the LMU8U produce the 16 -bit product of two 8 -bit numbers. The LMU08 accepts operands in two's complement format, and produces a two's complement result. The product is provided in two halves with the sign bit replicated as the most significant bit of both halves.

This facilitates use of the LMU08 product as a double precision operand in 8-bit systems. The LMU8U operates on unsigned data, producing an unsigned magnitude result.

Both the LMU08 and the LMU8U feature independently controlled registers for both inputs and the product, which along with three-state outputs allows easy interfacing with microprocessor busses. Provision is made in the LMU08 and LMU8U for proper rounding of the product to 8 -bit precision. The round input is loaded at the rising edge of the logical OR of CLK A and CLK B for the LMU08. The LMU8U latches RND on the rising edge of CLK A only. In either case, a ' 1 ' is added in the most significant position of the lower product byte when RND is asserted. Subsequent truncation of the least significant product byte results in a correctly rounded 8-bit result.

Figure 1a．Input Formats

AIN	BIN
－LMU08	lement
$\begin{array}{llll}7 & 6 & 5\end{array}$	$\begin{array}{llll}7 & 6 & 5\end{array}$
$\frac{-2^{0} 2^{-1} 2^{-2} \quad 2^{-5} 2^{-6} 2^{-7}}{(\text { ign })}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-5} 2^{-6} 2^{-7}$

LMU08 Integer Two＇s Complement

| 7 | 6 | 5 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -7^{7} | 2^{6} | 2^{5} | 2^{2} | 2^{1} | 2^{0} |
| （Sign） | | | | | |

7	6	5	2	1	0				
$($ Sign $)$						$2^{-2^{7}} 2^{6} \Rightarrow$	2^{2}	2^{1}	2^{0}
:---	:---	:---	:---						

LMU8U Unsigned Integer
7 6 5 2 1 0 2^{7} 2^{6} 2^{5} 2^{2} 2^{1} 2^{0}
7 6 5 1 2 1 2^{7} 2^{6} 2^{5} 2^{2} 2^{1} 2^{0}

Figure 1b．Output Formats

MSP	LSP
LMU08	mplement
	7 6 5
$\underset{(\text { Sign })}{ } 2^{-1} 2^{-2} \quad 2^{-5} 2^{-6} 2^{-7}$	$\underset{(\text { Sign })}{ } 2^{-8} 2^{-9} \quad 2^{-12} 2^{-13} 2^{-14}$

LMU08 Integer Two＇s Complement

| 15 | 14 | 13 | 10 | 9 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -2^{14} | 2^{13} | 2^{12} | 2^{9} | 2^{8} | 2^{7} |

（Sign）

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol		Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	Vcc $=$ Min., IOH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	Vcc $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)		± 20	$\mu \mathrm{~A}$	
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		8	24	mA
Icc2	Vcc Current, Quiescent	(Note 7)		1.0	mA	

SWITCHING CHARACTERISTICS

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU08/8U-							
		70		50		35		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		70		50		35		20
tPW	Clock Pulse Width	20		20		10		8	
ts	Input Register Setup Time	14		14		14		10	
th	Input Register Hold Time	4		0		0		0	
to	Output Delay		25		20		20		15
tena	Three-State Output Enable Delay (Note 11)		24		22		22		15
toIs	Three-State Output Disable Delay (Note 11)		22		20		20		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU08/8U-							
		90		60		45		25	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		90		60		45		25
tPW	Clock Pulse Width	25		20		15		10	
ts	Input Register Setup Time	20		15		15		15	
th	Input Register Hold Time	5		2		2		2	
to	Output Delay		35		22		22		20
tena	Three-State Output Enable Delay (Note 11)		35		24		24		20
tois	Three-State Output Disable Delay (Note 11)		35		22		22		20

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VcC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VcC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDis test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTh, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

LMU08/8U

\qquad

DEVICES INCORPORATED

FEATURES

- 20 ns Worst-Case Multiply Time
\square Low Power CMOS Technology
\square Replaces TRW MPY012H
\square Two's Complement, Unsigned, or Mixed Operands
\square Three-State Outputs
Available 100% Screened to
MIL-STD-883, Class B
\square Package Styles Available:
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Ceramic PGA

DESCRIPTION

The LMU12 is a high-speed, low power 12-bit parallel multiplier. It is pin and functionally compatible with TRW MPY012H devices. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU12 produces the 24 -bit product of two 12-bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A. B data and the TCB control bit are similarly loaded by CLK B.

The TCA and TCB controls specify the A and B operands as two's complement when HIGH, or unsigned magnitude when LOW.
RND is loaded on the rising edge of the logical OR of CLK A and CLK B. RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 12 least significant bits produces a result correctly rounded to 12 -bit precision.
At the output, the Right Shift control (RS) selects either of two output formats. RS LOW produces a 23 -bit product with a copy of the sign bit inserted in the MSB position of the least significant half. RS HIGH gives a full 24-bit product. Two 12-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK M and CLK L respectively. For asynchronous output, these registers may be made transparent by setting the feed through control (FT) HIGH.

Figure 1a. Input Formats
Ain Bin
Fractional Two's Complement (TCA, TCB = 1)

11	10	9	2	1
-2^{0}				
(Sign)	2^{-1}	2^{-2}		
2^{-9}	$2^{-10} 2^{-11}$			

11	10	9
-2^{0} 2^{-1} 2^{-2} (Sign)	2	1
2^{-9}	2^{-10}	0

Integer Two's Complement (TCA, TCB = 1)

${\underset{\text { (Sign) }}{-2^{11}} 2^{10} 2^{9} \quad 2^{2} \quad 2^{1} \quad 2^{0}}^{0}$	$-2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional (TCA, TCB $=0$)

11	10	9		
2^{-1}	2^{-2}	2^{-3}	2	1
2^{-10}	$2^{-11} 2^{-12}$			

11	10	9	\leftrightarrows	2	1
2^{-1}	2^{-2}	2^{-3}	0		
2^{-10}	2^{-11}	2^{-12}			

Unsigned Integer (TCA, TCB = 0)

11	10	9	2	1	0
2^{11}	2^{10}	2^{9}	2^{2}	2^{1}	2^{0}

Figure 1b. Output Formats

MSP	LSP
Fractio	(RS = 0)
$23 \quad 22214141312$	
$\left(\begin{array}{ll} \left(2^{0}\right)^{0} 2^{-1} & 2^{-2} \\ 2^{-9} 2^{-10} 2^{-11} \end{array}\right.$	$\begin{aligned} & -2^{0} 2^{-12} 2^{-13} \quad 2^{-20} 2^{-21} 2^{-22} \\ & (\text { Sign }) \end{aligned}$

Fractional Two's Complement (RS $=\mathbf{1})$

| 23 | 22 | 21 | 14 | 13 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{1} | 2^{0} | 2^{-1} | 2^{-8} | $2^{-9} 2^{-10}$ | |

(Sign)

Integer Two's Complement (RS = 1)

(Sign)
Unsigned Fractional (RS = 1)

CUnsigned Integer $($ RS $=1)$

| 23 | 22 | 21 | 14 | 13 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{23} | 2^{22} | 2^{21} | 2^{14} | 2^{13} | 2^{12} |

| 11 | 10 | 9 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{14} | 2^{10} | 2^{9} | 2^{2} | 2^{1} | 2^{0} |

LMU12

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VCC ((Note 12)			± 20	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)		17	35	mA
Icc2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)									
Symbol	Parameter	LMU12-							
		65		45		35		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		65		45		35		20
tmuc	Unclocked Multiply Time		95		65		55		40
tpw	Clock Pulse Width	25		15		15		8	
ts	Input Register Setup Time	18		15		12		10	
t H	Input Register Hold Time	2		2		2		0	
tD	Output Delay		26		25		25		15
tena	Three-State Output Enable Delay (Note 11)		22		22		20		15
tols	Three-State Output Disable Delay (Note 11)		20		20		18		15

Military Operating Range ($55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)									
Symbol	Parameter	LMU12-							
		75		55		45		25	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		75		55		45		25
tmuc	Unclocked Multiply Time		110		75		65		45
tPW	Clock Pulse Width	25		20		15		10	
ts	Input Register Setup Time	18		15		15		12	
th	Input Register Hold Time	2		2		2		2	
tD	Output Delay		30		30		25		20
tena	Three-State Output Enable Delay (Note 11)		26		26		24		20
tois	Three-State Output Disable Delay (Note 11)		24		24		22		20

Switching Waveforms

LMU12

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{N^{2} C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VoH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1μ F ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDis test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circutt

LMU12

FEATURES

- 25 ns Worst-Case Multiply Time
- Low Power CMOS Technology
- Replaces TRW MPY112K

Two's Complement or Unsigned Operands
\square Three-State Outputs

- Available 100\% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 48-pin Plastic DIP
- 48-pin Sidebraze, Hermetic DIP
- 52-pin Plastic LCC, J-Lead

DESCRIPTION

The LMU112 is a high-speed, low power 12-bit parallel multiplier built using advanced CMOS technology. The LMU112 is pin and functionally compatible with TRW's MPY112K.

The A and B input operands are loaded into their respective registers on the rising edge of the separate clock inputs (CLK A and CLK B). Two's complement or unsigned magnitude operands are accommodated via the operand control bit (TC)

which is loaded along with the B operands. The operands are specified to be in two's complement format when TC is asserted and unsigned magnitude when TC is deasserted. Mixed mode operation is not allowed.

For two's complement operands, the 17 most significant bits at the output of the asynchronous multiplier array are shifted one bit position to the left. This is done to discard the redundant most significant bit position, and extend the bit precision by one bit. The result is then truncated to the 16 MSB's and loaded into the output register on the rising edge of CLK B.

The contents of the output register are made available via three-state buffers by asserting $\overline{\mathrm{OE}}$. When $\overline{\mathrm{OE}}$ is deasserted, the outputs ($\mathrm{R} 23-8$) are in the high impedance state.

Figure 1a．Input Formats

AIN	Bin
1110942	11 10 9
$\begin{aligned} & -2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11} \\ & (\text { Sign }) \end{aligned}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$
\square Integer Two＇s Complement（TC＝1）	
$\mathbf{- 2}_{(\text {Sign })}^{11} 2^{10} 2^{9} \quad 2^{2} \quad 2^{1} \quad 2^{0}$	$\begin{array}{llll} -2^{11} 2^{10} & 2^{9} & 2^{2} & 2^{1} \end{array} 2^{0}$
Unsigned Fractional（ $\mathrm{TC}=0$ ）	
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$
\square Unsigned Integer（ $\mathrm{TC}=0$ ）\square	
$2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} 2^{0}$	$2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} 2^{0}$

Figure 1b．Output Formats

MSP	LSP
Fractional	
23 22 $21 \rightarrow 141312$	11 10 9 8
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$	$2^{-12} 2^{-13} 2^{-14} 2^{-15}$

23 22 21 141312	11 10 9 8
$-2^{22} 2^{21} 2^{20} \quad 2^{13} 2^{12} 2^{11}$	$\begin{array}{lllll} & 2^{10} & 2^{9} & 2^{8} & 2^{7}\end{array}$

$23 \quad 2221 \xrightarrow{14} 1312$	11 10 9 8
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$	$2^{-13} 2^{-14} 2^{-15} 2^{-16}$

Unsigned Integer
23 22 21 14 13 12 2^{23} 2^{22} 2^{21} 2^{14} 2^{13} 2^{12}
11 10 9 8 2^{11} 2^{10} 2^{9} 2^{8}

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial
Active Operation, Military

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	Vcc $=$ Min., IoH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	Vcc $=$ Min., IOL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{~A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)		± 20	$\mu \mathrm{~A}$	
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			1.0	mA
Icc2	Vcc Current, Quiescent	(Note 7)	mA			

LMU112

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes $9,10(\mathrm{~ns})$

Symbol	Parameter	LMU112-					
		60		50		25	
		Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		60		50		25
tPW	Clock Pulse Width	15		15		10	
ts	Input Register Setup Time	15		15		10	
th	Input Register Hold Time	3		3		1	
tD	Output Delay		25		25		20
tena	Three-State Output Enable Delay (Note 11)		25		25		20
tois	Three-State Output Disable Delay (Note 11)		25		25		20

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU112-					
		65		55		30	
		Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		65		55		30
tpw	Clock Pulse Width	20		20		12	
ts	Input Register Setup Time	15		15		12	
th	Input Register Hold Time	3		3		3	
to	Output Delay		30		30		25
tena	Three-State Output Enable Delay (Note 11)		30		30		25
tDIs	Three-State Output Disable Delay (Note 11)		30		30		25

Switching Waveforms

LMU112

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provideshard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual testconditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDis test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1μ F ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensatefor inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximumsince worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to-1 and 1-to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circut

LMU112

	ORDERING INFORMATION		
	48-pin		52-pin
Speed	Plastic DIP (P5)	Sidebraze Hermetic DIP (D5)	Plastic J-Lead Chip Carrier (J5)
$\begin{array}{\|l\|} \hline 60 \mathrm{~ns} \\ 50 \mathrm{~ns} \\ 25 \mathrm{~ns} \end{array}$	$\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}-$ Commerc	Screening LMU112DC60 LMU112DC50 LMU112DC25	$\begin{aligned} & \text { LMU112JC60 } \\ & \text { LMU112JC50 } \\ & \text { LMU112JC25 } \end{aligned}$
$\begin{aligned} & 65 \mathrm{~ns} \\ & 55 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-$ Cомм	Cial Screening LMU112DM65 LMU112DM55 Limu112DM 30	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL}-$ STD-883 Compliant		
65 ns 55 ns 30 ns		LMU112DMB65 LMU112DMB55 LMU112DMB30	

LMU16/216$16 \times 16$-bit Parallel Multiplier

FEATURES

20 ns Worst-Case Multiply TimeLow Power CMOS TechnologyReplaces TRW MPY016/TMC216, Cypress CY7C516, IDT 7216L, and AMD Am29516Two'sComplement,Unsigned, or Mixed OperandsThree-StateOutputsDECC SMD No. 5962-86873Available 100\% Screened to MIL-STD-883, Class B- PackageStyles Available:
- 64-pin Sidebraze,Hermetic DIP
- 68-pin Ceramic PGA
- 68-pin Plastic LCC, J-Lead
- 68-pin Ceramic LCC

DESCRIPTION

The LMU16 and LMU216 are highspeed, low power 16-bit parallel multipliers. The LMU16 and LMU216 are functionally identical; they differ only in packaging. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU16 and LMU216 produce the 32-bit product of two 16-bit numbers.
Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A . B data and the TCB control bit are similarly loaded by CLK B. The TCA and TCB controls specify the A and B operands as two's complement when HIGH, or unsigned magnitude when LOW.

LMU16/216 Block Diagram

RND is loaded on the rising edge of the logical OR of CLK A and CLK B. RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16-bit precision.
At the output, the Right Shift control (RS) selects either of two output formats. RS LOW produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS HIGH gives a full 32 -bit product. Two 16 -bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK M and CLK L respectively. For asynchronous output, these registers may be made transparent by setting the feed through control (FT) HIGH.

The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. MSPSEL LOW causes the MSP outputs to be driven by the most significant half of the result. $\overline{\text { MSPSEL }}$ HIGH routes the least significant half of the result to the MSP outputs. In addition, the LSP is available via the B port through a separate three-state buffer.

The output multiplexer control MSPSEL uses a pin which is a supply ground in the TRW MPY016H/
TMC216H. When this control is LOW (GND), the function is that of the MPY016H/TMC216H, thus allowing full compatibility.

LMU16/216

Figure 1a. Input Formats
AIN
Bin

$151413 \Longrightarrow 2 \begin{array}{lll}14 & 1\end{array}$	
$\begin{aligned} & -2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15} \\ & (\text { Sign }) \end{aligned}$	$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}\right.$

$\begin{array}{llll} -2^{15} 2^{14} \\ (\text { Sign }) \end{array} 2^{13} \quad 2^{1} \quad 2^{0}$	$\overline{-2}_{(\text {Sign })}^{15} 2^{14} 2^{13} \quad 2^{2} \quad 2^{1} \quad 2^{0}$

Unsigned Fractional (TCA, TCB $=0$)

| 15 | 14 | 13 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{-1} | 2^{-2} | 2^{-3} | 2^{-14} | $2^{-15} 2^{-16}$ | |

| 15 | 14 | 13 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{-1} | 2^{-2} | 2^{-3} | 2^{-14} | $2^{-15} 2^{-16}$ | |

CUnsigned Integer (TCA, TCB $=0$)

| 15 | 14 | 13 | | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{15} | 2^{14} | 2^{13} | 2^{2} | 2^{1} | 2^{0} | |

| 15 | 14 | 13 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{15} | 2^{14} | 2^{13} | 2^{2} | 2^{1} | 2^{0} |

Figure 1b. Output Formats

MSP ${ }^{\text {Fraction }}$	LSP
	Fractional Two's Complement (RS $=0$)
$\frac{-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}}{(\text { Sign })}$	$\begin{aligned} & -2^{0} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30} \\ & (\text { Sign }) \end{aligned}$
Fractional Two's Complement (RS = 1)	
31 30 29 $18 \quad 17 \quad 16$ 18	$\begin{array}{llll}15 & 14 & 13\end{array}$
$\frac{-2^{1} 2^{0} 2^{-1} \quad 2^{-12} 2^{-13} 2^{-14}}{(\text { Sign })}$	$2^{-15} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30}$
- Integer Two's Complement (RS = 1) \square	
$-_{(\text {Sign })}^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$
Unsigned Fractional (RS $=1$)	
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-17} 2^{-18} 2^{-19} \quad 2^{-30} 2^{-31} 2^{-32}$
Unsigned Integer (RS = 1)	
$2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Min	Typ	Max	Unit	
VoH	Output High Voltage	VCC $=$ Min., IOH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	VCC $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VHH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
ICC1	Vcc Current, Dynamic	(Notes 5, 6)		12	25	mA
ICC2	Vcc Current, Quiescent	(Note 7)		1.0	mA	

LMU16/216

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9, 10 (ns)													
Symbol	Parameter	LMU16/216-											
		65		55		45		35		25		20	
		Min	Max										
tuc	Clocked Multiply Time		65		55		45		35		25		20
tmuc	Unclocked Multiply Time		85		75		65		55		38		30
tPW	Clock Pulse Width	15		15		15		10		10		9	
ts	Input Setup Time	15		15		15		12		12		11	
tH	Input Hold Time	1		1		1		1		1		1	
t	Output Delay		30		30		30		25		20		18
tsEL	Output Select Delay		25		25		25		25		20		18
tena	Three-State Output Enable Delay (Note 11)		25		25		25		25		20		18
tols	Three-State Output Disable Delay (Note 11)		25		25		25		22		20		18

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)													
Symbol	Parameter	LMU16/216-											
		75		65		55		40		30		25	
		Min	Max										
tuc	Clocked Multiply Time		75		65		55		40		30		25
tmuc	Unclocked Multiply Time		95		85		75		60		43		38
tpw	Clock Pulse Width	20		15		15		15		10		10	
ts	Input Setup Time	15		15		15		15		12		12	
th	Input Hold Time	2		2		2		2		2		2	
t	Output Delay		35		30		30		25		20		20
tsEL	Output Select Delay		30		30		30		25		20		20
tena	Three-State Output Enable Delay (Note 11)		25		25		25		25		20		20
tols	Three-State Output Disable Delay (Note 11)		25		25		25		25		22		22

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. Thisdevice provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where

$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device $V C C$ and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, Vth, is set at 3.5 V for Z-to-0 and 0 -to-Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

DEVICES INCORPORATED

FEATURES

20 ns Worst-Case Multiply Time

- Low Power CMOS Technology
- Full 32-bit Output Port -

No Multiplexing Required

- Two's Complement, Unsigned, or Mixed Operands
- Three-State Outputs
- DECC SMD No. 5962-94523
- Available 100\% Screened to

MIL-STD-883, Class B
\square Package Styles Available:

- 84-pin Plastic LCC, J-Lead
- 84-pin Ceramic PGA

DESCRIPTION

The LMU18 is a high-speed, low power 16-bit parallel multiplier. The LMU18 is an 84-pin device which provides simultaneous access to all outputs. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU18 produces the 32-bit product of two 16 -bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK. B

LMU18 Block Diagram

data and the TCB control bit are similarly loaded. Loading of the A and B registers is controlled by the $\overline{E N A}$ and $\overline{E N B}$ controls. When HIGH, these controls prevent application of the clock to the respective register. The TCA and TCB controls specify the operands as two's complement when HIGH, or unsigned magnitude when LOW.

RND is loaded on the rising edge of CLK, providing either ENA or $\overline{E N B}$ are LOW. RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16 -bit precision.

At the output, the Right Shift control (RS) selects either of two output formats. RS LOW produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS HIGH gives a full 32-bit product. Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK, subject to the $\overline{\text { ENR }}$ control. When ENR is HIGH, clocking of the result registers is prevented. For asynchronous output these registers may be made transparent by setting the feed through control (FT) HIGH.

The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. $\overline{\text { MSPSEL }}$ LOW causes the MSP outputs to be driven by the most significant half of the result. MSPSEL HIGH routes the least significant half of the result to the MSP pins. The MSB of the result is available in both true and complemented form to aid implementation of higher precision multipliers.

Figure 1a. Input Formats

Bin

Fractional Two's Complement (TCA, TCB = 1)

15	14	13
-2^{0} (Sign)	2^{-1}	2^{-2}
$2^{-13} 2^{-14} 2^{-15}$		

15	14	13	2

$151413 \Rightarrow 210$	15 14 13
$\mathbf{- 2}_{(\mathrm{Sign})}^{15} 2^{14} 2^{13} \quad 2^{2} \quad 2^{1} 2^{0}$	$\begin{array}{lll} -2^{15} 2^{14} & 2^{13} & 2^{2} 2^{1} 2^{0} \\ (\mathrm{Sign}) \end{array}$

$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$

$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Figure 1b. Output Formats
MSP LSP

Fractional Two's Complement (RS = 0)

Fractional Two's Complement (RS = 1)

$31 \quad 30$	29	$18 \quad 17 \quad 16$
-2^{1}	2^{0}	2^{-1}
$2^{-12} 2^{-13} 2^{-14}$		

$$
\begin{array}{|llllll|}
\hline 15 & 14 & 13 & 2 & 1 & 0 \\
2^{-15} & 2^{-16} & 2^{-17} & 2 & 2^{-28} & 2^{-29} 2^{-30} \\
\hline
\end{array}
$$

(Sign)

$-2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

(Sign)
Unsigned Fractional (RS = 1)

Unsigned Integer (RS = 1)

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Test Condition	Min	Max	Unit	
VoH	Output High Voltage	Vcc $=$ Min., IoH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	VcC $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{~A}$
IOZ	Output Leakage Current	Ground \leq VouT \leq Vcc (Note 12)		± 20	$\mu \mathrm{~A}$	
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		25	45	mA
Icc2	Vcc Current, Quiescent	$($ Note 7)		1.0	mA	

LMU18

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max
	Clocked Multiply Time		65		45		35		20
tMUC	Unclocked Multiply Time		85		65		55		30
tpW	Clock Pulse Width	15		15		15		9	
ts	Input Setup Time	15		15		12		11	
tH	Input Hold Time	5		5		5		1	
tD	Output Delay		30		30		28		18
tseL	Output Select Delay		25		25		25	.	18
tENA	Three-State Output Enable Delay (Note 11)		25		20		20		18
tDIS	Three-State Output Disable Delay (Note 11)		24		20		20		18

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU18-							
		75		55		45		25	
		Min	Max	Min	Max	Min	Max		
tMC	Clocked Multiply Time		75		55		45		25
tmuc	Unclocked Multiply Time		95		85		65		38
tpw	Clock Pulse Width	20		15		15		10	
ts	Input Setup Time	15		15		12		12	
th	Input Hold Time	5		5		5		2	
tD	Output Delay		35		35		33		20
tSEL	Output Select Delay		30		30		30		20
tena	Three-State Output Enable Delay (Note 11)		25		20		20		20
tois	Three-State Output Disable Delay (Note 11)		24		20		20		20

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.

2. The products described by this spec-

 ification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.3. Thisdevice provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1μ F ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDis test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTh, is set at 3.5 V for Z -to-0 and 0 -to- Z tests, and set at 0 V for Z -to-1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
Figure A. Output Loading Circut

Figure B. Threshold Levels

	ORDERING INFORMATION
	84-pin
Speed	Plastic J-Lead Chip Carrier (J3)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening
65 ns 45 ns 35 ns 20 ns	LMU18JC65 LMU18JC45 LMU18JC35 LMU18JC20

LMU18
DEVICES INCORPORATED

FEATURES

- 20 ns Worst-Case Multiply Time
\square Low Power CMOS Technology
- Replaces Cypress CY7C517, IDT 7217L, and AMD Am29517
\square Single Clock Architecture with Register Enables
- Two's Complement, Unsigned, or Mixed Operands
\square Three-State Outputs
- DECC SMD No. 5962-87686
- Available 100\% Screened to

MIL-STD-883, Class B
\square Package Styles Available:

- 68 -pin Plastic LCC, J-Lead
- 68 -pin Ceramic LCC
- 64-pin Ceramic Flatpack

DESCRIPTION

The LMU217 is a high-speed, low power 16-bit parallel multiplier. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU217 produces the 32-bit product of two 16 -bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK. B data and the TCB control bit are similarly loaded. Loading of the A and B registers is controlled by the $\overline{\text { ENA }}$ and ENB controls. When HIGH, these controls prevent application of the clock to the respective register. The TCA and TCB controls specify

the operands as two's complement when HIGH, or unsigned magnitude when LOW.

RND is loaded on the rising edge of CLK, provided either ENA or ENB are LOW. RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16 -bit precision.

At the output, the Right Shift control (RS) selects either of two output formats. RS LOW produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS HIGH gives a full 32-bit product. Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK, subject to the $\overline{E N R}$ control. When ENR is HIGH, clocking of the result registers is prevented. For asynchronous output, these registers may be made transparent by setting the feed through control (FT) HIGH.

The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. MSPSEL LOW causes the MSP outputs to be driven by the most significant half of the result. $\overline{\text { MSPSEL }}$ HIGH routes the least significant half of the result to the MSP pins. In addition, the LSP is available via the B port through a separate three-state buffer.

Figure 1a. Input Formats

Fractional Two's Complement (TCA, TCB = 1)

	15 14 13
$\begin{array}{llll} \left(\text { Sign }^{15} 2^{14}\right. & 2^{13} & 2^{2} & 2^{1} \end{array} 2^{0}$	-2^{15} (Sign) $2^{14} \quad 2^{13} \quad 2^{2} \quad 2^{1} \quad 2^{0}$

$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-1}$

$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Figure 1b. Output Formats

MSP	LSP
Fraction	(RS = 0)
$(\text { Sign }) 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$\begin{aligned} & -2^{0} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30} \\ & (\text { Sign }) \end{aligned}$

Fractional Two's Complement (RS = 1)

| 31 | 30 | 29 | 18 | 17 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -2^{1} | 2^{0} | 2^{-1} | $2^{-12} 2^{-13} 2^{-14}$ | | |

15	14	13	2	1	0
$2^{-15} 2^{-16} 2^{-17}$	$2^{-28} 2^{-29} 2^{-30}$				

(Sign)

$\begin{aligned} & -2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16} \\ & (\text { Sign }) \end{aligned}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

31 30 29 \square_{181716}	
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-17} 2^{-18} 2^{-19} \quad 2^{-30} 2^{-31} 2^{-2}$

31 30 29 4181716	
$2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Storage temperature .	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	... 25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial

Active Operation, Military

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Mest Condition	Typ	Max	Unit	
VoH	Output High Voltage	Vcc $=$ Min., IOH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	Vcc $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VCC (Note 12)			± 20	$\mu \mathrm{~A}$
IOZ	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
ICC1	Vcc Current, Dynamic	(Notes 5, 6)		12	25	mA
Icc2	Vcc Current, Quiescent	$($ Note 7)		1.0	mA	

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU217-											
		65		55		45		35		25		20	
		Min	Max										
tmC	Clocked Multiply Time		65		55		45		35		25		20
tmuc	Unclocked Multiply Time		85		75		65		55		38		30
tPW	Clock Pulse Width	15		15		15		10		10		9	
ts	Input Setup Time	15		15		15		12		12		11	
th	Input Hold Time	3		3		3		1		1		1	
to	Output Delay		30		30		30		25		20		18
tSEL	Output Select Delay		25		25		25		25		20		18
tena	Three-State Output Enable Delay (Note 11)		25		25		25		25		20		18
tDIs	Three-State Output Disable Delay (Note 11)		25		25		25		25		20		18

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMU217-											
		75		65		55		40		30		25	
		Min	Max										
tMC	Clocked Multiply Time		75		65		55		40		30		25
tmuc	Unclocked Multiply Time		95		85		75		60		43		38
tpW	Clock Pulse Width	20		15		15		15		10		10	
ts	Input Setup Time	15		15		15		15		12		12	
th	Input Hold Time	3		3		3		2		2		2	
to	Output Delay		35		30		30		25		20		20
tSEL	Output Select Delay		30		30		30		25		20		20
tena	Three-State Output Enable Delay (Note 11)		25		25		25		25		20		20
tois	Three-State Output Disable Delay (Note 11)		25		25		25		25		20		20

Switching Waveforms

NOTES

1．Maximum Ratings indicate stress specifications only．Functional oper－ ation of these products at values beyond those indicated in the Operating Condi－ tions table is not implied．Exposure to maximum rating conditions for ex－ tended periods may affect reliability．
2．The products described by this spec－ ification include internal circuitry de－ signed to protect the chip from damag－ ing substrate injection currents and ac－ cumulations of static charge．Neverthe－ less，conventional precautions should be observed during storage，handling， and use of these circuits in order to avoid exposure to excessive electrical stress values．

3．This device provides hard clamping of transient undershoot and overshoot．In－ put levels below ground or above VCC will be clamped beginning at -0.6 V and VCC +0.6 V ．The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V ．Device opera－ tion will not be adversely affected，how－ ever，input current levels will be well in excess of 100 mA ．

4．Actual test conditions may vary from those designated but operation is guar－ anteed as specified．
5．Supply current for a given applica－ tion can be accurately approximated by：
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
C＝capacitive load per output
$\mathrm{V}=$ supply voltage
F＝clock frequency
6．Tested with all outputs changing ev－ ery cycle and no load，at a 5 MHz clock rate．
7．Tested with all inputs within 0.1 V of Vcc or Ground，no load．
8．These parameters are guaranteed but not 100% tested．

9．AC specifications are tested with input transition times less than 3 ns ， output reference levels of 1.5 V （except tDIS test），and input levels of nominally 0 to 3.0 V ．Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively．Alternatively，a diode bridge with upper and lower current sources of IOH and IOL respectively， and a balancing voltage of 1.5 V may be used．Parasitic capacitance is 30 pF minimum，and may be distributed．

This device has high－speed outputs ca－ pable of large instantaneous current pulses and fast turn－on／turn－off times． As a result，care must be exercised in the testing of this device．The following measures are recommended：
a．A 0.1μ F ceramic capacitor should be installed between VcC and Ground leads as close to the Device Under Test （DUT）as possible．Similar capacitors should be installed between device VCC and the tester common，and device ground and tester common．
b．Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers．
c．Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin．
10．Each parameter is shown as a min－ imum or maximum value．Input re－ quirements are specified from the point of view of the external system driving the chip．Setup time，for example，is specified as a minimum since the exter－ nal system must supply at least that much time to meet the worst－case re－ quirements of all parts．Responses from the internal circuitry are specified from the point of view of the device．Output delay，for example，is specified as a maximum since worst－case operation of any device always provides data within that time．

11．For the tENA test，the transition is measured to the 1.5 V crossing point with datasheet loads．For the tDIS test， the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady－state output voltage with $\pm 10 \mathrm{~mA}$ loads．The balancing volt－ age，VTH，is set at 3.5 V for Z－to－0 and 0 －to－ Z tests，and set at 0 V for Z － to－ 1 and $1-$ to－ Z tests．

12．These parameters are only tested at the high temperature extreme，which is the worst case for leakage current．

VoL＊Measured VoL with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $1 \mathrm{OL}=10 \mathrm{~mA}$
VOH＊Measured VOH with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $\mathrm{tOL}=10 \mathrm{~mA}$

LMU217

8×8-bit Multiplier-Accumulator

FEATURES

20 ns Multiply-Accumulate TimeLow Power CMOS TechnologyReplaces Raytheon TMC2208Two's Complement or Unsigned Operands- Accumulator Performs Preload, Accumulate, and Subtract
- Three-State OutputsDECC SMD No. 5962-90708Available 100\% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 48-pin Plastic DIP
- 48-pin Sidebraze, Hermetic DIP
- 68-pin Plastic LCC, J-Lead

DESCRIPTION

The LMA1008 is a high-speed, low power 8-bit multiplier-accumulators. It is pin-for-pin equivalent to the Raytheon TMC2208 multiplieraccumulators. Full ambient temperature range operation is achieved by the use of advanced CMOS technology.

The LMA1008 produces the 16 -bit product of two 8 -bit numbers. The results of a series of multiplications may be accumulated to form the sum of products. Accumulation is performed to 19 -bit precision with the multiplier product sign extended as appropriate.

Data present at the A and B input registers is latched on the rising edges of CLK A and CLK B respectively. RND, TC, ACC, and SUB controls are latched on the rising edge of the logical OR of CLK A and CLK B. TC specifies the input as two's complement (TC HIGH) or unsigned magnitude (TC LOW). RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 8 least significant bits produces a result correctly rounded to 8 -bit precision.

The ACC and SUB inputs control accumulator operation. ACC HIGH results in addition of the multiplier product and the accumulator contents, with the result stored in the accumulator register on the rising edge of CLK R. ACC and SUB HIGH results in subtraction of the accumulator contents from the multiplier product, with the result stored in the accumulator register. With ACC LOW, no accumulation occurs and the next product is loaded directly into the accumulator register.

The LMA1008 output register (accumulator register) is divided into three independently controlled sections. The least significant result (LSR) and most significant result (MSR) registers are 8 bits in length. The extended result register (XTR) is 3 bits long.

Each output register has an independent output enable control. In addition to providing control of the three-state output buffers, when $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, or $\overline{\mathrm{OEL}}$ are HIGH and PREL is HIGH, data can be preloaded via the bidirectional output pins into the respective output registers. Data present on the output pins is latched on the rising edge of CLK R. The interrelation of PREL and the enable controls is summarized in Table 1.

Table 1.	Preload	Truth Table				
prel	$\overline{\text { OEX }}$	$\overline{\text { OEM }}$	$\overline{\text { OEL }}$	xtr	msR	LsR
L	L	L	L	OUT	OUT	OUT
L	L	L	H	OUT	OUT	Z
L	L	H	L	OUT	Z	OUT
L	L	H	H	OUT	Z	Z
L	H	L	L	Z	OUT	OUT
L	H	L	H	Z	OUT	Z
L	H	H	L	Z	Z	OUT
L	H	H	H	Z	Z	Z
H	L	L	L	Z	Z	Z
H	L	L	H	Z	Z	PREL
H	L	H	L	Z	PREL	Z
H	L	H	H	Z	PREL	PREL
H	H	L	L	PREL	Z	Z
H	H	L	H	PREL	Z	PREL
H	H	H	L	PREL PREL	Z	
H	H	H	H	PREL	PREL	PREL

PREL = Preload data to appropriate register OUT = Register available on output pins Z = High impedance state

Figure 1a. Input Formats

AIN

Bin
Fractional Two's Complement ($\mathrm{TC}=1$)

(Sign)
(Sign)
Integer Two's Complement (TC=1)

7	6	5	2	1	0
-2^{7}	2^{6}	2^{5}	2^{2}	2^{1}	2^{0}

7	6	5	2	1	0
(Sign)	2^{6}	2^{5}	2^{2}	2^{1}	2^{0}

C Unsigned Integer $(\mathbf{T C}=\mathbf{0})$

7	6	5	2	1	0							
2^{7}	2^{6}	2^{5}	2^{2}	2^{1}	2^{0}		7	6	5	4	2	1
:---	:---	:---	:---	:---	:---							
2^{7}	2^{6}	2^{5}	2^{2}	2^{1}	2^{0}							

Figure 1b. Output Formats
XTR MSR LSR

$18 \quad 1716$ 174		$\begin{array}{llllllllllllll}7 & 6 & 5 & 1 & 0\end{array}$
$\mathrm{-2}^{4} 2^{3} 2^{2}$	$2^{1} 2^{0} 2^{-1} \quad 2^{-4} 2^{-5} 2^{-6}$	$2^{-7} 2^{-8} 2^{-9} \quad 2^{-12} 2^{-13} 2^{-14}$

Integer Two's Complement

$18 \quad 17$ 16 -2^{18} 2^{17} 2^{16} $($ Sign $)$

		7 6 5 \geqq
$2^{2} \quad 2^{1} \quad 2^{0}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-6} 2^{-7} 2^{-8}$	$2^{-9} 2^{-10} 2^{-11} \quad 2^{-14} 2^{-15} 2^{-16}$

1817 16		
$2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{10} 2^{9} \quad 2^{8}$	

LMA1008

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current	... > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Min	Typ	Max	Unit	
VoH	Output High Voltage	Vcc $=$ Min., IOH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	Vcc $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{~A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)		± 20	$\mu \mathrm{~A}$	
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			25	mA
Icc2	Vcc Current, Quiescent	(Note 7)	12	mA		

LMA1008

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$ Notes 9, 10 (ns)					
Symbol	Parameter	LMA1008-			
		40		20	
		Min	Max	Min	Max
tMC	Clocked Multiply Time		40		20
tPW	Clock Pulse Width	15		8	
ts	Input Register Setup Time	10		10	
tH	Input Register Hold Time	0		0	
tsp	Preload Setup Time	12		12	
tHP	Preload Hold Time	2		2	
tD	Output Delay		23		18
tena	Three-State Output Enable Delay (Note 11)		19		18
toIs	Three-State Output Disable Delay (Note 11)		16		16

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)					
Symbol	Parameter	LMA1008-			
		50		25	
		Min	Max	Min	Max
tmC	Clocked Multiply Time		50		25
tpW	Clock Pulse Width	15		10	
ts	Input Register Setup Time	11		11	
th	Input Register Hold Time	2		2	
tSP	Preload Setup Time	13		13	
tHP	Preload Hold Time	2		2	
tD	Output Delay		25		20
tena	Three-State Output Enable Delay (Note 11)		21		20
tDIs	Three-State Output Disable Delay (Note 11)		18		18

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDis test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDis test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
Figure A. Output Loading Circutt

L-MA1:009/2009
 12×12-bit Multiplier-Accumulator

FEATURES

- 20 ns Multiply-Accumulate Time

L Low Power CMOS Technology

- Replaces TRW TDC1009/TMC2009
- Two's Complement or Unsigned Operands
- Accumulator Performs Preload, Accumulate, and Subtract
\square Three-State Outputs
- DECC SMD No. 5962-90996
- Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Ceramic PGA
- 68 -pin Plastic LCC, J-Lead
- 68 -pin Ceramic LCC

DESCRIPTION

The LMA1009 and LMA2009 are highspeed, low power 12-bit multiplieraccumulators. They are pin-for-pin equivalent to the TRW TDC1009/ TMC2009 multiplier-accumulators. The LMA1009 and LMA2009 are functionally identical; they differ only in packaging. Full ambient temperature range operation is achieved by the use of advanced CMOS technology.

The LMA1009/2009 produces the 24bit product of two 12 -bit numbers. The results of a series of multiplications may be accumulated to form the sum of products. Accumulation is performed to 27-bit precision with the multiplier product sign extended as appropriate.

Data present at the A and B input registers is latched on the rising edges of CLK A and CLK B respectively. RND, TC, ACC, and SUB controls are latched on the rising edge of the logical OR of CLK A and CLK B. TC specifies the input as two's complement (TC HIGH) or unsigned magnitude (TC LOW). RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 12 least significant bits produces a result correctly rounded to 12 -bit precision.

The ACC and SUB inputs control accumulator operation. ACC HIGH results in addition of the multiplier product and the accumulator contents, with the result stored in the accumulator register on the rising edge of CLK R . ACC and SUB HIGH results in subtraction of the accumulator contents from the multiplier product, with the result stored in the accumulator register. With ACC LOW, no accumulation occurs and the next product is loaded directly into the accumulator register.
The LMA1009/2009 output register (accumulator register) is divided into three independently controlled sections. The least significant result (LSR) and most significant result (MSR) registers are 12 bits in length. The extended result register (XTR) is 3 bits long.

Each output register has an independent output enable control. In addition to providing control of the three-state output buffers, when $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, or $\overline{\mathrm{OEL}}$ are HIGH and PREL is HIGH, data can be preloaded via the bidirectional output pins into the respective output registers. Data present on the output pins is latched on the rising edge of CLK R. The interrelation of PREL and the enable controls is summarized in Table 1.

LMA1009/2009

PREL	$\overline{\text { OEX }}$	OEM	$\overline{\text { OEL }}$	XTR	MSR	LSR
L	L	L	L	OUT	OUT	out
L	L	L	H	Out	OUT	z
L	L	H	L	out	z	OUT
L	L	H	H	our	z	z
L	H	L	L	z	Our	OUT
L	H	L	H	z	OUT	z
	H	H	L	z	z	out
L	H	H	H	z	z	z
H	1	L	L	z	z	z
H	L	L	H	z	z	PREL
H	L	H	L	z	PREL	z
H	L.	H	H	z	PREL	PREL
	H	L	L	PREL	Z	z
H	H	L	H	PREL	Z	PreL
H	H	H	L			Z
H	H	H	H		PREL	PREL

PREL=Preload data to appropriate register OUT = Register available on output pins
Z = High impedance state

Figure 1a. Input Formats
Ain Bin

11 9	
${\underset{\text { (Sign) }}{ } \mathrm{-}^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}}^{\text {a }}$	${ }_{\text {(Sign) }} \mathrm{C}^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$

Integer Two's Complement (TC = 1)

| 11 | 10 | 9 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -2^{11} | 2^{10} | 2^{9} | 2^{2} | 2^{1} | 2^{0} |

| Sign) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

11	10	9	2	1
2^{-1}	2^{-2}	2^{-3}	0	
$2^{-10} 2^{-11} 2^{-12}$				

11	10	9	2	1
2^{-1}	2^{-2}	2^{-3}	$2^{-10} 2^{-11} 2^{-12}$	

————Unsigned Integer ($\mathrm{TC}=0$)

Figure 1b. Output Formats

XTR

26	25	24
-2^{4}	2^{3}	2^{2}
(Sign)		

MSR
LSR
Fractional Two's Complement

Integer Two's Complement

| $26 \quad 25 \quad 24$ |
| :--- | :--- |
| $-2^{26} 2^{25} \quad 2^{24}$ | (Sign)

$2625 \quad 24$ 6	23 $2221 \geqslant 141312$	
$2^{2} 2^{1} 2^{0}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$	$2^{-13} 2^{-14} 2^{-15} \quad 2^{-22} 2^{-23} 2^{2}$

Unsigned Integer

$$
\begin{array}{|lll|}
\hline 26 & 25 & 24 \\
\hline 2^{26} & 2^{25} & 2^{24} \\
\hline
\end{array}
$$

LMA1009/2009

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial
Active Operation, Military

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min}$., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
Vн	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
lix	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		12	25	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

LMA1009/2009

12×12-bit Multiplier-Accumulator

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMA1009/2009-							
		75		55		45		20	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		75		55		45		20
tPW	Clock Pulse Width	15		15		15		8	
ts	Input Register Setup Time	15		15		12		10	
th	Input Register Hold Time	2		2		2		2	
tsp	Preload Setup Time	15		15		12		10	
thP	Preload Hold Time	2		2		2		2	
tD	Output Delay		30		25		25		18
tena	Three-State Output Enable Delay (Note 11)		30		30		25		18
toIs	Three-State Output Disable Delay (Note 11)		25		25		25		18

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMA1009/2009-							
		95		65		55		25	
		Min	Max	Min	Max	Min	Max	Min	Max
tMC	Clocked Multiply Time		95		65		55		25
tPW	Clock Pulse Width	20		20		15		10	
ts	Input Register Setup Time	20		20		15		12	
th	Input Register Hold Time	2		2		2		2	
tsp	Preload Setup Time	20		20		15		12	
thP	Preload Hold Time	2		2		2		2	
to	Output Delay		35		30		25		20
tena	Three-State Output Enable Delay (Note 11)		35		35		30		20
tols	Three-State Output Disable Delay (Note 11)		30		30		30		20

Switching Waveforms

*includes $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}, \overline{\mathrm{OEL}}$

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This deviceprovides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VcC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditionsmay vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of VOH min and $\mathrm{VOL} \max$ respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to- 0 and 0 -to-Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured VoL with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$ VoH^{*} Measured VOH with $\mathrm{loH}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$

LMA1009/2009

LMA1009/2009

DEVICES INCORPORATED

FEATURES

- 20 ns Multiply-Accumulate Time
- Replaces TRW TMC2210, Cypress CY7C510, IDT 7210L, and AMD Am29510
- Two'sComplementor Unsigned Operands
\square Accumulator Performs Preload, Accumulate, and Subtract
- Three-StateOutputs
- DECC SMD No. 5962-88733
- Available 100% Screened to MIL-STD-883, Class B
- PackageStyles Available:
- 64-pin Sidebraze,Hermetic DIP
- 68 -pin Ceramic PGA
- 68 -pin Plastic LCC, J-Lead
- 68-pin Ceramic LCC

DESCRIPTION

The LMA1010 and LMA2010 are highspeed, low power 16-bit multiplieraccumulators. The LMA1010 and LMA2010 are functionally identical; they differ only in packaging. Full military ambient temperature range operation is achieved with advanced CMOS technology.

The LMA1010 and LMA2010 produce the 32-bit product of two 16-bit numbers. The results of a series of multiplications may be accumulated to form the sum of products. Accumulation is performed to 35-bit precision with the multiplier product sign extended as appropriate.
Data present at the A and B input registers is latched on the rising edges

LMA1010/2010 Block Diagram

of CLK A and CLK B respectively. RND, TC, ACC, and SUB controls are latched on the rising edge of the logical OR of CLK A and CLK B. TC specifies the input as two's complement (TC HIGH) or unsigned magnitude (TC LOW). RND, when HIGH, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16-bit precision.
ACC and SUB control accumulator operation. ACC HIGH results in addition of the multiplier product and the accumulator contents, with the result stored in the accumulator register on the rising edge of CLK R. ACC and SUB HIGH results in subtraction of the accumulator contents from the multiplier product, with the result stored in the accumulator register. With ACC LOW, no accumulation occurs and the next product is loaded directly into the accumulator register.

The LMA1010/2010 output register (accumulator register) is divided into three independently controlled sections. The least significant result (LSR) and most significant result (MSR) registers are 16 bits in length. The extended result register (XTR) is 3 bits long. The output signals R15-0 and input signals B15-0 share the same bidirectional pins.
Each output register has an independent output enable control. In addition to providing three-state control of the output buffers, when $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, or $\overline{\mathrm{OEL}}$ are HIGH and PREL is HIGH, data can be preloaded via the bidirectional output pins into the respective output registers. Data present on the output pins is latched on the rising edge of CLK R. The interrelation of PREL and the enable controls is summarized in Table 1.

PREL	$\overline{\text { OEX }}$	OEM	OEL	XTR	MSR	LSR
L	L	L	L	OUT	OUT	OUT
L	L	L	H	Out	out	z
L	L	H	L	out	z	out
L	L	H	H	OUT	z	z
L	H	L	L	z	OUT	OUT
L	H	L	H	z	OUT	z
L	H	H	L	z	z	ou
L	H	H	H	z	z	z
H	L	L	L	z	z	z
H	L	L	H	z	z	PREL
H	L	H	L	z		z
H	L	H	H	z	PREL	PREL
H	H	L	L	PREL	Z	
	H	L	H	PREL	Z	PREL
H	H	H	L		PREL	z
H	H	H	H	PREL	PREL	PREL

PREL $=$ Preload data to appropriate register OUT＝Register available on output pins Z＝High impedance state

Figure 1a．Input Formats
AIN
Bin
Fractional Two＇s Complement（TC＝1）

Integer Two＇s Complement（TC＝1）

（Sign）

	1514 13
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$

Unsigned Integer（TC＝0）

Figure 1b．Output Formats
XTR MSR LSR

343332		
$-2^{4} 2^{3} \quad 2^{2}$	$2^{1} 2^{0} 2^{-1} \quad 2^{-12} 2^{-13} 2^{-14}$	$2^{-15} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30}$

$3433 \quad 32$	$3130 \quad 29 \xrightarrow{481716}$	
$\begin{aligned} & \left(2^{34} 2^{33}\right) \\ & 2^{32} \end{aligned}$	$2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional

34 3332	31 30 29	
$2^{2} 2^{1} 2^{0}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-17} 2^{-18} 2^{-19} \quad 2^{-30} 2^{-31} 2^{-32}$

$34 \quad 33 \quad 32$	$313029 \xrightarrow{481716}$	
$2^{34} 2^{33} 2^{32}$	$2^{31} 2^{30} 2^{29} \quad 2^{18} 2^{17} 2^{16}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Operating Conditions To meet specified electrical and switching characteristics		
Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Min	Typ	Max	Unit	
VoH	Output High Voltage	Vcc $=$ Min., IoH $=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	Vcc $=$ Min., IoL $=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		VCC	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
IOz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)		12	25	mA
ICC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

LMA1010/2010

SWITCHING CHARACTERISTICS

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMA1010/2010-											
		65		55		45		35		25		20	
		Min	Max										
tMC	Clocked Multiply Time		65		55		45		35		25		20
tPW	Clock Pulse Width	15		15		15		10		10		9	
ts	Input Register Setup Time	15		15		12		12		12		10	
th	Input Register Hold Time	2		2		2		2		2		2	
tsp	Preload Setup Time	15		15		12		12		12		10	
tHP	Preload Hold Time	2		2		2		2		2		2	
tD	Output Delay		30		25		25		25		20		18
tena	Three-State Output Enable Delay (Note 11)		30		30		25		25		20		18
tDIS	Three-State Output Disable Delay(Note 11)		30		25		25		25		20		18

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LMA1010/2010-											
		75		65		55		40		30		25	
		Min	Max										
tMc	Clocked Multiply Time		75		65		55		40		30		25
tPW	Clock Pulse Width	20		15		15		15		10		10	
ts	Input Register Setup Time	20		15		15		15		12		12	
th	Input Register Hold Time	2		2		2		2		2		2	
tsp	Preload Setup Time	20		15		15		15		12		12	
tHP	PreloadHold Time	2		2		2		2		2		2	
tD	Output Delay		35		30		30		25		20		20
tena	Three-State Output Enable Delay(Note 11)		35		30		30		25		20		20
toIs	Three-State Output Disable Delay (Note 11)		35		25		25		25		20		20

Switching Waveforms

[^10]
NOTES

1．Maximum Ratings indicate stress specifications only．Functional oper－ ation of these products at values beyond those indicated in the Operating Condi－ tions table is not implied．Exposure to maximum rating conditions for ex－ tended periods may affect reliability．

2．The products described by this spec－ ification include internal circuitry de－ signed to protect the chip from damag－ ing substrate injection currents and ac－ cumulations of static charge．Neverthe－ less，conventional precautions should be observed during storage，handling， and use of these circuits in order to avoid exposure to excessive electrical stress values．

3．This deviceprovideshard clamping of transient undershoot and overshoot．In－ put levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V ．The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V ．Device opera－ tion will not be adversely affected，how－ ever，input current levels will be well in excess of 100 mA ．

4．Actual test conditions may vary from those designated but operation is guar－ anteed as specified．

5．Supply current for a given applica－ tion can be accurately approximated by：
where

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

$\mathrm{N}=$ total number of device outputs
C＝capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6．Tested with all outputs changing ev－ ery cycle and no load，at a 5 MHz clock rate．

7．Tested with all inputs within 0.1 V of Vcc or Ground，no load．

8．These parameters are guaranteed but not 100% tested．

9．AC specifications are tested with input transition times less than 3 ns ， output reference levels of 1.5 V （except tDIS test），and input levels of nominally 0 to 3.0 V ．Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively．Alternatively，a diode bridge with upper and lower current sources of IOH and Iol respectively， and a balancing voltage of 1.5 V may be used．Parasitic capacitance is 30 pF minimum，and may be distributed．

This device has high－speed outputs ca－ pable of large instantaneous current pulses and fast turn－on／turn－off times． As a result，care must be exercised in the testing of this device．The following measures are recommended：
a．A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test （DUT）as possible．Similar capacitors should be installed between deviceVCC and the tester common，and device ground and tester common．
b．Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers．
c．Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin．
10．Each parameter is shown as a min－ imum or maximum value．Input re－ quirements are specified from the point of view of the external system driving the chip．Setup time，for example，is specified as a minimum since the exter－ nal system must supply at least that much time to meet the worst－case re－ quirements of all parts．Responses from the internal circuitry are specified from the point of view of the device．Output delay，for example，is specified as a maximum since worst－case operation of any device always provides data within that time．

11．For the tENA test，the transition is measured to the 1.5 V crossing point with datasheet loads．For the tDIS test， the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady－state output voltage with $\pm 10 \mathrm{~mA}$ loads．The balancing volt－ age，VTH，is set at 3.5 V for Z －to－ 0 and 0 －to－ Z tests，and set at 0 V for Z － to－ 1 and 1 －to－Z tests．

12．These parameters are only tested at the high temperature extreme，which is the worst case for leakage current．

Figure B．Threshold Levels

VoL＊Measured VOL with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $1 \mathrm{OL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{ICL}=10 \mathrm{~mA}$

LMA1010/2010

	LMA2010 - ORDERING INFORMATION		
	68-pin		
Speed	Plastic J-Lead Chip Carrier (J2)	Ceramic Leadless Chip Carrier (K3)	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercia	reening	
65 ns 55 ns 45 ns 35 ns 25 ns 20 ns	LMA2010JC65 LMA2010JC55 LMA2010JC45 LMA2010JC35 LMA2010JC25 LMA2010JC20		
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Сомme	Screening	
75 ns 65 ns 55 ns 40 ns 30 ns 25 ns			
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL-S}$	83 Compliant	-
75 ns 65 ns 55 ns 40 ns 30 ns 25 ns		LMA2010KMB75 LMA2010KMB65 LMA2010KMB55 LMA2010KMB40 LMA2010KMB30 LMA2010KMB25	

DEVICES INCORPORATED

FEATURES

- 12×12-bit Multiplier with Pipelined 26-bit Output Summer
- Summer has 26-bit Input Port Fully Independent from Multiplier Inputs
- Cascadable to Form Video Rate FIR Filter with 3-bit Headroom
- A, B, and C Input Registers Separately Enabled for Maximum Flexibility
- 28 MHz Data Rate for FIR Filtering Applications
\square High Speed, Low Power CMOS Technology
- DECC SMD No. 5962-94608
- Available 100% Screened to MIL-STD-883, Class B
\square Package Styles Available:
- 84-pin Plastic LCC, J-Lead
- 84-pin Ceramic PGA

DESCRIPTION

The LMS12 is a high-speed 12×12-bit combinatorial multiplier integrated with a 26 -bit adder in a single 84 -pin package. It is an ideal building block for the implementation of very highspeed FIR filters for video, RADAR, and other similar applications. The LMS12 implements the general form $(\mathrm{A} \cdot \mathrm{B})+\mathrm{C}$. As a result, it is also useful in implementing polynomial approximations to transcendental functions.

ARCHITECTURE

A block diagram of the LMS12 is shown below. Its major features are discussed individually in the following paragraphs.

MULTIPLIER

The A11-0 and B11-0 inputs to the LMS12 are captured at the rising edge of the clock in the 12-bit A and B input registers, respectively. These registers are independently enabled by the

$\overline{\mathrm{ENA}}$ and $\overline{\mathrm{ENB}}$ inputs. The registered input data are then applied to a 12×12-bit multiplier array, which produces a 24 -bit result. Both the inputs and outputs of the multiplier are in two's complement format. The multiplication result forms the input to the 24 -bit product register.

SUMMER

The C25-0 inputs to the LMS12 form a 26-bit two's complement number which is captured in the C register at the rising edge of the clock. The C register is enabled by assertion of the ENC input. The summer is a 26 -bit adder which operates on the C register data and the sign extended contents of the product register to produce a 26 -bit sum. This sum is applied to the 26 -bit S register.

OUTPUT

The FTS input is the feedthrough control for the S register. When FTS is asserted, the summer result is applied directly to the S output port. When FTS is deasserted, data from the S register is output on the S port, effecting a one-cycle delay of the summer result. The S output port can be forced to a high-impedance state by driving the $\overline{\mathrm{OE}}$ control line high. FTS would be asserted for conventional FIR filter applications, however the insertion of zero-coefficient filter taps may be accomplished by negating FTS. Negating FTS also allows application of the same filter transfer function to two interleaved datastreams with successive input and output sample points occurring on alternate clock cycles.

Figure 1. Flow Diagram for 5-Tap Fir Filter

APPLICATIONS

The LMS12 is designed specifically for high-speed FIR filtering applications requiring a throughput rate of one output sample per clock period. By cascading LMS12 units, the transpose form of the FIR transfer function is implemented directly, with each of the LMS12 units supplying one of the filter weights, and the cascaded summers accumulating the results. The signal flow graph for a 5-tap FIR filter and the equivalent implementation using LMS12's is shown in Figure 1.

The operation of the 5-tap FIR filter implementation of Figure 1 is depicted in Table 1. The filter weights h4-h0 are assumed to be latched in the B input registers of the LMS12 units. The $x(n)$ data is applied in parallel to the A input registers of all devices.
For descriptive purposes in the table, the A register contents and sum output data of each device is labelled
according to the index of the weight applied by that device; i.e., S_{0} is produced by the rightmost device, which has ho as its filter weight and A0 as its input register contents. Each column represents one clock cycle, with the data passing a particular point in the system illustrated across each row.

LMS12

Table 1. Timing Example for 5-Tap Nondecimating FIR Filter

CLK Cycle	1	2	3	4	5	6	7	8	9
$X_{\text {(n) }}$	X ${ }^{\text {n }}$	$\mathrm{X}_{\mathrm{n}+1}$	$\mathrm{X}_{\mathrm{n}+2}$	$\mathrm{X}+3$	$\mathrm{X}_{\mathrm{n}+4}$	$\mathrm{X}_{\mathrm{n}+5}$	$\mathrm{X}_{\mathrm{n}+6}$	$\mathrm{X}_{\mathrm{n}+7}$	$\mathrm{X}+8$
A4 Register Sum 4		Xn	$\begin{gathered} \mathrm{X}_{\mathrm{n}+1} \\ \mathrm{~h}_{4} \mathrm{X}_{\mathrm{n}} \end{gathered}$	X_{n+2} $h_{4} X_{n+1}$	$\mathrm{X}_{\mathrm{n}+3}$ $h_{4} \mathrm{X}_{\mathrm{n}+2}$	$\begin{gathered} \mathrm{X}_{n+4} \\ \mathrm{~h}_{4} \mathrm{X}_{\mathrm{n}+3} \end{gathered}$	X_{n+5} $h_{4} \mathrm{X}_{\mathrm{n}+4}$	$\begin{gathered} x_{n+6} \\ h 4 X_{n+5} \end{gathered}$	X_{n+7} $h_{4} \mathrm{Xn}_{\mathrm{n}} 6$
A3 Register Sum 3		Xn	X_{n+1} $h_{3} X_{n}$ $+h 4 \mathrm{Xn}_{\mathrm{n}}$	X_{n+2} $h_{3} X_{n+1}$ $+h 4 X_{n}$	X_{n+3} $h_{3} X_{n+2}$ $+h 4 X_{n+1}$	X_{n+4} $h_{3} X_{n+3}$ $+h_{4} X_{n+2}$	X_{n+5} $h_{3} X_{n+4}$ $+h_{4} X_{n+3}$	X_{n+6} $h_{3} X_{n+5}$ $+h_{4} X_{n+4}$	$\mathrm{Xn}_{\mathrm{n}+7}$ h3 $\mathrm{X}_{\mathrm{n}+6}$ $+h 4 X_{n+5}$
A2 Register Sum 2		Xn	$\begin{aligned} & X_{n+1} \\ & h_{2} X_{n} \\ & +h_{3} X_{n-1} \\ & +h_{4} X_{n-2} \end{aligned}$	$\begin{aligned} & X_{n+2} \\ & h_{2} X_{n+1} \\ & +h_{3} X_{n} \\ & +h_{4} X_{n-1} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h 2 X_{n+2} \\ & +h 3 X_{n+1} \\ & +h_{4} X_{n} \end{aligned}$	$\begin{gathered} X_{n+4} \\ h_{2} X_{n+3} \\ +h_{3} X_{n+2} \\ +h_{4} X_{n+1} \end{gathered}$	$\begin{aligned} & X_{n+5} \\ & h_{2} X_{n+4} \\ & +h_{3} X_{n+3} \\ & +h_{4} X_{n+2} \end{aligned}$	$\begin{aligned} & X_{n+6} \\ & h 2 X_{n+5} \\ & +h_{3} X_{n+4} \\ & +h_{4} X_{n+3} \end{aligned}$	$\begin{gathered} X_{n+7} \\ h_{2} X_{n+6} \\ +h_{3} X_{n+5} \\ +h_{4} X_{n+4} \end{gathered}$
A1 Register Sum 1		Xn	$\begin{aligned} & \hline X_{n+1} \\ & h_{1} X_{n} \\ & +h_{2} X_{n-1} \\ & +h_{3} X_{n-2} \\ & +h_{4} X_{n-3} \end{aligned}$	$\begin{aligned} & X_{n+2} \\ & h_{1} X_{n+1} \\ & +h_{2} X_{n} \\ & +h_{3} X_{n-1} \\ & +h_{4} X_{n-2} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h 1 X_{n+2} \\ & +h 2 X_{n+1} \\ & +h_{3} X_{n} \\ & +h 4 X_{n-1} \end{aligned}$	$\begin{aligned} & X_{n+4} \\ & h_{1} X_{n+3} \\ & +h_{2} X_{n+2} \\ & +h_{3} X_{n+1} \\ & +h_{4} X_{n} \end{aligned}$	$\mathrm{X}_{\mathrm{n}+5}$ $h_{1} X_{n+4}$ $+h_{2} \mathrm{X}_{\mathrm{n}+3}$ $+\mathrm{h}_{3} \mathrm{X}_{\mathrm{n}+2}$ $+h_{4} X_{n+1}$	$\begin{array}{r} X_{n+6} \\ h_{1} X_{n+5} \\ +h_{2} X_{n+4} \\ +h_{3} X_{n+3} \\ +h_{4} X_{n+2} \end{array}$	$\mathrm{X}_{\mathrm{n}+7}$ $h_{1} X_{n+6}$ $+\mathrm{h}_{2} \mathrm{X}_{\mathrm{n}+5}$ $+\mathrm{h}_{3} \mathrm{Xn}_{\mathrm{n}+4}$ $+h 4 \mathrm{Xn}_{\mathrm{n}} \mathrm{3}$
Ao Register Sum 0		Xn	$\begin{aligned} & X_{n+1} \\ & h_{0} X_{n} \\ & +h_{1} X_{n-1} \\ & +h_{2} X_{n-2} \\ & +h_{3} X_{n-3} \\ & +h_{4} X_{n-4} \end{aligned}$	X_{n+2} ho X_{n+1} $+h_{1} X_{n}$ $+h 2 X_{n-1}$ $+h 3 X_{n-2}$ $+h 4 X_{n-3}$	$\begin{aligned} & X_{n+3} \\ & h_{0} X_{n+2} \\ & +h_{1} X_{n+1} \\ & +h_{2} X_{n} \\ & +h_{3} X_{n-1} \\ & +h_{4} X_{n-2} \end{aligned}$	X_{n+4} ho X_{n+3} $+h_{1} X_{n+2}$ $+h 2 X_{n+1}$ $+h_{3} X_{n}$ $+h_{4} X_{n-1}$	X_{n+5} ho X_{n+4} $+h_{1} X_{n+3}$ $+h 2 X_{n+2}$ $+h_{3} X_{n+1}$ $+h_{4} X_{n}$	$\mathrm{X}_{\mathrm{n}+6}$ ho X_{n+5} $+h_{1} X_{n+4}$ $+\mathrm{h}_{2} \mathrm{X}_{\mathrm{n}+3}$ $+h 3 X_{n+2}$ $+h_{4} X_{n+1}$	$\mathrm{X}_{\mathrm{n}+7}$ ho $\mathrm{Xn}_{\mathrm{n}+6}$ $+h_{1} X_{n+5}$ $+\mathrm{h} 2 \mathrm{X}_{\mathrm{n}+4}$ $+h_{3} X_{n+3}$ $+h 4 X_{n+2}$

Figure 2a. Input Formats

$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}\right.$	$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}\right.$

$\begin{array}{lll} -2^{11} 2^{10} & 2^{9} & 2^{2} \end{array} 2^{1} 2^{0}$	$\frac{-2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} 2^{0}}{(\text { Sign })}$

Figure 2b. Output Formats

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics		
Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VcC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{loL}=4.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		15	25	mA
ICC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS

Symbol	Parameter	LMS12-							
		65		50		40		35	
		Min	Max	Min	Max	Min	Max	Min	Max
tCP	Clock Period	40		35		30		25	
tPW	Clock Pulse Width	15		15		12		8	
tSAB	A, B, Data Setup Time	15		12		12		10	
tsc	C Data Setup Time	15		10		7		7	
tsen	ENA, ENB, ENC Setup Time	15		12		12		10	
thab	A, B, Data Hold Time	5		5		5		2	
thC	C Data Hold Time	5		5		5		2	
then	ENA, ENB, ENC Hold Time	5		5		5		2	
tD	Clock to S-FT $=1$		50		40		35		30
	Clock to S-FT $=0$		25		25		25		20
tena	Three-State Output Enable Delay (Note 11)		25		25		25		20
tols	Three-State Output Disable Delay (Note 11)		22		22		22		20

Switching Waveforms

LMS12

SWITCHING CHARACTERISTICS

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LMS12-					
		65		50		40	
		Min	Max	Min	Max	Min	Max
tcP	Clock Period	40		35		30	
tPW	Clock Pulse Width	15		15		12	
tsab	A, B, Data Setup Time	15		15		12	
tsc	C Data Setup Time	15		15		12	
tsen	ENA, $\overline{E N B}, \overline{\text { ENC }}$ Setup Time	15		15		12	
thab	A, B, Data Hold Time	5		5		5	
thc	C Data Hold Time	5		5		5	
then	$\overline{\mathrm{ENA}}, \overline{\mathrm{ENB}}, \overline{\mathrm{ENC}}$ Hold Time	5		5		5	
to	Clock to S-FT = 1		50		45		35
	Clock to S-FT $=0$		25		25		25
tena	Three-State Output Enable Delay (Note 11)		25		25		25
tols	Three-State Output Disable Delay (Note 11)		22		22		22

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}$

where

> N = total number of device outputs
> $\mathrm{C}=$ capacitive load per output
> V = supply voltage
> F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of

VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and Iol respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTh, is set at 3.5 V for Z -to- 0 and 0 -to-Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
Figure A. Output Loading Circut

Figure B. Threshold Levels

Vol* Measured Vol with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $1 \mathrm{OL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$

DEVICES INCORPORATED
Ordening Information
Video imaging Products
Arithmetic Logic Units \& Special Arthmatic FunctionsMultipliers a Multiplier-Accumulators
Register ProductsParipheral ProductsMemory Products
FlFo Products
Package information
Protuct Lisung

Register Products

REGISTER PRODUCTS 5-1
Pipeline Registers
L29C520 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
L29C521 4×8-bit Multilevel Pipeline Register (1-4 Stages) 5-3
LPR520 4×16-bit Multilevel Pipeline Register (1-4 Stages) 5-11
LPR200 8×16-bit Multilevel Pipeline Register (1-8 Stages) 5-17
L29C525 16×8-bit Dual 8-Deep Pipeline Register (1-16 Stages) 5-25
L10C11 4/8-bit Variable Length Shift Register (3-18 Stages) 5-33
L21C11 8-bit Variable Length Shift Register (1-16 Stages) 5-39
Shadow Registers
L29C818 8-bit Serial Scan Shadow Register 5-45

FEATURES

- Four 8-bit Registers
- Implements Double 2-Stage Pipeline or Single 4-Stage Pipeline Register
- Hold, Shift, and Load Instructions
- Separate Data In and Data Out Pins
- High-Speed, Low Power CMOS Technology
\square Three-State Outputs
\square DECC SMD No. 5962-91762
- Available 100\% Screened to MIL-STD-883, Class B
- Replaces IDT29FCT520/IDT29FCT521 and AMD Am29520/Am29521
- Package Styles Available:
- 24-pin Plastic DIP
- 24-pin Ceramic DIP
- 28-pin Plastic LCC, J-Lead
- 28-pin Ceramic LCC
- 24-pin Ceramic Flatpack
- 24-pin Plastic SSOP

DESCRIPTION

The L29C520 and L29C521 are pin-for-pin compatible with the IDT29FCT520/IDT29FCT521 and AMD Am29520/Am29521, implemented in low power CMOS.

The L29C520 and L29C521 contain four registers which can be configured as two independent, 2-level pipelines or as one 4-level pipeline.

The Instruction pins, I1-0, control the loading of the registers. For either device, the registers may be configured as a four-stage delay line, with data loaded into R1 and shifted sequentially through R2, R3, and R4. Also, for the L29C520, data may be loaded from the inputs into either R1 or R3 with only R2 or R4 shifting. The L29C521 differs from the L29C520 in that R2 and R4 remain unchanged during this type of data load, as shown in Tables 1 and 2. Finally, I1-0 may be set to prevent any register from changing.

L29C520/521 Block Diagram

The S1-0 select lines control a 4-to-1 multiplexer which routes the contents of any of the registers to the Y output pins. The independence of the I and S controls allows simultaneous write and read operations on different registers.

Table 1. L29C520 Instruction Table					
11	10	Descr	tion		
L	L	$\mathrm{D} \rightarrow \mathrm{R} 1$	$\mathrm{R} 1 \rightarrow \mathrm{R} 2$	$\mathrm{R} 2 \rightarrow \mathrm{R} 3$	$\mathrm{R} 3 \rightarrow \mathrm{R} 4$
L	H	HOLD	HOLD	$\mathrm{D} \rightarrow \mathrm{R} 3$	$\mathrm{R} 3 \rightarrow \mathrm{R} 4$
H	L	$\mathrm{D} \rightarrow \mathrm{R} 1$	$\mathrm{R} 1 \rightarrow \mathrm{R} 2$	HOLD	HOLD
H	H	ALL REGISTERS ON HOLD			

Table 2. L29C521 Instruction Table					
11	10	Descrip	tion		
L	L	$\mathrm{D} \rightarrow \mathrm{R} 1$	$\mathrm{R} 1 \rightarrow \mathrm{R} 2$	$\mathrm{R} 2 \rightarrow \mathrm{R} 3$	$\mathrm{R} 3 \rightarrow \mathrm{R} 4$
L	H	HOLD	HOLD	$\mathrm{D} \rightarrow \mathrm{R} 3$	HOLD
H	L	$\mathrm{D} \rightarrow \mathrm{R} 1$	HOLD	HOLD	HOLD
H	H	ALL RE	GISTERS	ON HOLD	

Table 3. OUTPut Select		
S $_{1}$	S $_{0}$	Register Selected
L	L	Register 4
L	H	Register 3
H	L	Register 2
H	H	Register 1

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	... 25 mA
Latchup current ..	> 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-15.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{ILL}=24.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)			30	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.5	mA

SWITCHING CHARACTERISTICS

Symbol	Parameter	L29C520／521－			
		22		14	
		Min	Max	Min	Max
tPD	Clock to Output Delay		22		14
tsel	Select to Output Delay		20		13
tPW	Clock Pulse Width	10		7	
tsi	Instruction Setup Time	10		5	
tHI	Instruction Hold Time	3		1	
tSD	Data Setup Time	10		5	
tHD	Data Hold Time	3		1	
tena	Three－State Output Enable Delay（Note 11）		21		15
tDIS	Three－State Output Disable Delay（Note 11）		15		12

Military Operating Range（ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ）Notes 9， 10 （ns）							
		L29C520／521－					
		30		24		16	
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tPD	Clock to Output Delay		30		24		16
tSEL	Select to Output Delay		30		22		15
tpw	Clock Pulse Width	15		10		8	
tsi	Instruction Setup Time	15		10		6	
tHI	Instruction Hold Time	5		3		2	
tSD	Data Setup Time	15		10		6	
tHD	Data Hold Time	5		3		2	
tena	Three－State Output Enable Delay（Note 11）		25		22		16
tols	Three－State Output Disable Delay（Note 11）		20		16		13

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and Iól at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z to -1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circuit

	L29C520-ORDERING INFORMATION			
	24-pin - $0.3^{\prime \prime}$ wide		28-pin	
Speed	Plastic DIP (P2)	$\begin{gathered} \text { Ceramic DIP } \\ \text { (C1) } \end{gathered}$	Plastic J-Lead Chip Carrier (J4)	Ceramic Leadless Chip Carrier (K1)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screenina			
$\begin{aligned} & 22 \mathrm{~ns} \\ & 14 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { L29C520PC22 } \\ & \text { L29C520PC14 } \end{aligned}$	$\begin{aligned} & \text { L29C520CC22 } \\ & \text { L29C520CC14 } \end{aligned}$	L29C520JC22 L29C520JC14	L29C520KC22 L29C520KC14
,	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening			
$\begin{aligned} & 30 \mathrm{~ns} \\ & 24 \mathrm{~ns} \\ & 16 \mathrm{~ns} \end{aligned}$		L29C520CM30 L29C520CM24 L29C520CM16		L29C520KM30 L29C520KM24 L29C520KM16
\%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$-MIL-STD-883 Complant			
30 ns 24 ns 16 ns		$\begin{aligned} & \text { L29C520CMB30 } \\ & \text { L29C520CMB24 } \\ & \text { L29C520CMB16 } \end{aligned}$		L29C520KMB30 L29C520KMB24 L29C520KMB16

E

FEATURES

Four 16-bit Registers
\square Implements Double 2-Stage Pipeline or Single 4-Stage Pipeline Register
\square Hold, Shift, and Load InstructionsSeparate Data In and Data Out PinsHigh-Speed, Low Power CMOS TechnologyThree-State Outputs
DECC SMD No. 5962-89716
\square Available 100\% Screened to
MIL-STD-883, Class B
\square Package Styles Available:

- 40-pin Plastic DIP
- 40-pin Ceramic DIP
- 44-pin Plastic LCC, J-Lead
- 44-pin Ceramic LCC

DESCRIPTION

The LPR520 is functionally compatible with the L29C520 but have 16 -bit inputs and outputs. The LPR520 is implemented in low power CMOS.

The LPR520 contains four registers which can be configured as two independent, 2-level pipelines or as one 4-level pipeline.

The Instruction pins, I1-0, control the loading of the registers. The registers may be configured as a four-stage delay line, with data loaded into R1 and shifted sequentially through R2, R3, and R4. Also, data may be loaded from the inputs into either R1 or R3 with only R2 or R4 shifting. Finally, I1-0 may be set to prevent any register from changing.

The S1-0 select lines control a 4-to-1 multiplexer which routes the contents of any of the registers to the Y output pins. The independence of the I and S controls allows simultaneous write and read operations on different registers.

Table 1.
LPR520 Instruction Table

I1	lo	Description			
L	L	D \rightarrow R1	R1 \rightarrow R2	R2 $\rightarrow R 3$	R3 $\rightarrow R 4$
L	H	HOLD	HOLD	D $\rightarrow R 3$	R3 $\rightarrow R 4$
H	L	D \rightarrow R1	R1 $\rightarrow R 2$	HOLD	HOLD
H	H	ALL REGISTERS ON HOLD			

Table 2. Output Select

Si	So	Register Selected
L	L	Register 4
L	H	Register 3
H	L	Register 2
H	H	Register 1

LPR520

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$
Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		10	40	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

LPR520

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
		LPR520-					
		25		22		15	
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tPD	Clock to Output Delay		25		22		15
tSEL	Select to Output Delay		25		20		15
tPW	Clock Pulse Width	10		10		8	
tsi	Instruction Setup Time	13		10		6	
tHI	Instruction Hold Time	3		3		1	
tsD	Data Setup Time	13		10		6	
thD	Data Hold Time	3		3		1	
tena	Three-State Output Enable Delay (Note 11)		25		21		15
tols	Three-State Output Disable Delay (Note 11)		25		15		12

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	LPR520-					
		30		24		18	
		Min	Max	Min	Max	Min	Max
tPD	Clock to Output Delay		30		24		18
tSEL	Select to Output Delay		30		22		18
tPW	Clock Pulse Width	15		10		9	
tsi	Instruction Setup Time	15		10		8	
tHI	Instruction Hold Time	5		3		2	
tsD	Data Setup Time	15		10		8	
thD	Data Hold Time	5		3		2	
tena	Three-State Output Enable Delay (Note 11)		25		22		16
tols	Three-State Output Disable Delay (Note 11)		20		16		13

LPR520

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{V} C \mathrm{C}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate forinductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and $1-$ to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured Vol with $1 \mathrm{OH}=-10 \mathrm{~mA}$ and $\mathrm{IoL}=10 \mathrm{~mA}$
VOH* Measured VOH with $10 \mathrm{H}=-10 \mathrm{~mA}$ and $\mathrm{loL}=10 \mathrm{~mA}$

DEVICES INCORPORATED

FEATURES

Eight 16-bit High-Speed Pipeline Registers- Programmable Multilevel Register ConfigurationsAccess time of 12 ns
Hold, Shift, and Load InstructionsReplaces IDT73200Available 100\% Screened to MIL-STD-883, Class B
\square Package Styles Available:

- 48-pin Plastic DIP
- 48 -pin Sidebraze, Hermetic DIP
- 52-pin Plastic LCC, J-Lead
- 52-pin Ceramic LCC

DESCRIPTION

The LPR200 is a programmable multilevel pipeline register. This device is pin-for-pin compatible with the IDT73200.

The LPR200 contains eight 16 -bit high-speed pipeline registers which can be configured as eight independent, 1 -level pipelines; four independent, 2-level pipelines; two independent, 4-level pipelines; or as one 8 -level pipeline.
The Instruction pins, I3-0, control the loading of the registers. The registers can be configured as an eight-stage delay line with data loaded into A and shifted sequentially through B, C, D, E, F, G and H as shown in Table 1. The Instruction pins may also be set to prevent any register from changing.

The Select lines, S2-0, control an 8-to-1 multiplexer which routes the contents of any of the registers to the Y output pins. The independence of the I and S controls allow simultaneous write and read operations on different registers.

SIGNAL DEFINITIONS

Power

VCC and GND

+5 V power supply．All pins must be connected．

Clock

CLK－Master Clock
The rising edge of CLK strobes all registers．

Inputs

D15－0 — Data Input
16－bit data input port．Data is latched into the registers on the rising edge of CLK．

Outputs

Y15－0－Data Output

16－bit data output port．

Controls

I3－0－Instruction Control
The instruction control pins select which register operation will be carried out．Refer to Table 2.

SEL2－0－Output Select

The output select pins control which register contents will appear at the Y15－0 output pins．Refer to Table 3.

$\overline{C E N}$－Clock Enable

When $\overline{\text { CEN }}$ is LOW，the instruction designated by $\mathrm{I}-0$ is performed on the registers．When CEN is HIGH，no register operations are performed．

$\overline{O E}$－Output Enable

When $\overline{\mathrm{OE}}$ is LOW，the register data specified by SEL2－0 is available on the Y15－0 output pins．When $\overline{\mathrm{OE}}$ is HIGH， the output port is in a high－impedance state．

Mnemonics	Inputs				Description
	13	12	11	10	
LDA	0	0	0	0	$\mathrm{D}_{15-0 \rightarrow \mathrm{~A}}$
LDB	0	0	0	1	$\mathrm{D}_{15-0 \rightarrow B}$
LDC	0	0	1	0	$\mathrm{D}_{15-0 \rightarrow}$ C
LDD	0	0	1	1	$\mathrm{D}_{15-0 \rightarrow \mathrm{D}}$
LDE	0	1	0	0	$\mathrm{D}_{15-0 \rightarrow \mathrm{E}}$
L.DF	0	1	0	1	$\mathrm{D}_{15-0 \rightarrow F}$
LDG	0	1	1	0	$\mathrm{D}_{15-0 \rightarrow G}$
LDH	0	1	1	1	$\mathrm{D}_{15-0 \rightarrow H}$
LSHAH	1	0	0	0	$\mathrm{D}_{15-0 \rightarrow A \quad A \rightarrow B \quad B \rightarrow C \quad C \rightarrow D \quad D \rightarrow E \quad E \rightarrow F \quad F \rightarrow G \quad G \rightarrow H}$
LSHAD	1	0	0	1	$\mathrm{D}_{15-0 \rightarrow A \quad A \rightarrow B \quad B \rightarrow C \quad C \rightarrow D}$
LSHEH	1	0	1	0	$\mathrm{D}_{15-0 \rightarrow E} \mathrm{E} \rightarrow \mathrm{F} \quad \mathrm{F} \rightarrow \mathrm{G}$ G \rightarrow H
LSHAB	1	0	1	1	$D_{15-0 \rightarrow A ~ A ~}^{\text {a }}$,
LSHCD	1	1	0	0	$\mathrm{D}_{15-0 \rightarrow C} \mathrm{C} \rightarrow \mathrm{D}$
LSHEF	1	1	0	1	$\mathrm{D}_{15} 50 \rightarrow \mathrm{E}$ E \rightarrow F
LSHGH	1	1	1	0	$\mathrm{D}_{15-0 \rightarrow \mathrm{G}} \mathrm{G} \rightarrow \mathrm{H}$
HOLD	1	1	1	1	ALL REGISTERS ON HOLD

Table 3. LPR200
Output Select

SEL2	SEL1	SELo	Y $_{15-0}$
0	0	0	A
0	0	1	B
0	1	0	C
0	1	1	D
1	0	0	E
1	0	1	F
1	1	0	G
1	1	1	H

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage te	$-65^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
Operating ambient temperature	.. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	.. -0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to Vcc +0.5 V
Signal applied to high impedance output	-0.5 V to Vcc +0.5 V
Output current into low outputs	... 50 mA
Latchup current > 400 mA

Operating Conditions To meet specified electrical and switching characteristics		
Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{Vcc}=\mathrm{Min}$., $\mathrm{IOH}=-8.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{IOL}=16 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	(Note 3)	0.0		0.8	V
lix	Input Current	Ground \leq VIN \leq Vcc ((tote 12)			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	(Note 12)			± 20	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)		10	30	mA
IcC2	Vcc Current, Quiescent	(Note 7)		2.0	10	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			12	pF

SWITCHING CHARACTERISTICS

Commercial Operating Range（ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ）Notes 9,10 （ns）

Symbol	Parameter	LPR200－					
		20		15		12	
		Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	20		15		12	
tPW	Clock Pulse Width	5		5		5	
tPD	Clock to Output Delay		20		15		12
tSEL	Select to Output Delay		20		15		12
tsi	Instruction Setup Time	5		5		4	
tHI	Instruction Hold Time	2		2		2	
tSD	Data Setup Time	4		4		3	
tHD	Data Hold Time	2		2		1	
tsc	Clock Enable Setup Time	5		5		5	
thc	Clock Enable Hold Time	2		2		2	
tols	Three－State Output Disable Delay（Note 11）		10		9		8
tena	Three－State Output Enable Delay（Note 11）		15		10		9

SWITCHING CHARACTERISTICS

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)					
Symbol	Parameter	LPR200-			
		20		15	
		Min	Max	Min	Max
tcyc	Cycle Time	20		15	
tPW	Clock Pulse Width	6		5	
tPD	Clock to Output Delay		20		15
tSEL	Select to Output Delay		20		15
tsi	Instruction Setup Time	6		5	
tHI	Instruction Hold Time	3		2	
tsD	Data Setup Time	5		4	
tHD	Data Hold Time	3		2	
tsc	Clock Enable Setup Time	6		5	
thc	Clock Enable Hold Time	2		2	
tDIS	Three-State Output Disable Delay (Note 11)		13		9
tena	Three-State Output Enable Delay (Note 11)		13		10

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chipfrom damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{N C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 10 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circuit

LPR200

FEATURES

- Dual 8-Deep Pipeline Register

Configurable to Single 16-DeepLow Power CMOS Technology
Replaces AMD Am29525
Load, Shift, and Hold Instructions
Separate Data In and Data Out Pins
\square Three-State Outputs

- DECC SMD No. 5962-91696
- Available 100% Screened to

MIL-STD-883, Class B
\square Package Styles Available:

- 28-pin Plastic DIP
- 28 -pin Ceramic DIP
- 28-pin Plastic LCC, J-Lead
- 28 -pin Ceramic LCC

DESCRIPTION

The L29C525 is a high-speed, low power CMOS pipeline register. It is pin-for-pin compatible with the AMD Am29525. The L29C525 can be configured as two independent 8 -level pipelines or as a single 16-level pipeline. The configuration implemented is determined by the instruction code ($\mathrm{I} 1-0$) as shown in Table 2.
The I1-0 instruction code controls the internal routing of data and loading of each register. For instruction I1-0 $=00$ (Push A and B), data applied at the D7-0 inputs is latched into register A0 on the rising edge of CLK. The contents of A0 simultaneously move to register A1, A1 moves to A2, and so on. The contents of register A7 are wrapped back to register BO. The registers on the B side are similarly shifted, with the contents of register B7 lost.

Instruction I1-0 $=01$ (Push B) acts similarly to the Push A and B instruction, except that only the B side registers are shifted. The input data is applied to register BO, and the contents of register B7 are lost. The contents of the A side registers are unaffected. Instruction I1-0 $=10$ (Push A) is identical to the Push B instruction, except that the A side registers are shifted and the B side registers are unaffected.

Instruction $\mathrm{It}-0=11$ (Hold) causes no internal data movement. It is equivalent to preventing the application of a clock edge to any internal register.

The contents of any of the registers is selectable at the output through the use of the $\mathrm{S} 3-0$ control inputs. The independence of the I and S control lines allows simultaneous reading and writing. Encoding for the $\mathrm{S} 3-0$ controls is given in Table 3.

L29C525

Table 1. Register Load Operations

Table 2. Instruction Set

Mnemonics	Inputs		
	\mathbf{I}	$\mathbf{I 0}$	
Shift	0	0	Push A and B
LDB	0	1	Push B
LDA	1	0	Push A
HLD	1	1	Hold All Registers

Table 3. Output Select				
S3	S $_{2}$	\mathbf{S}^{2}	So	Y7-0
0	0	0	0	A0
0	0	0	1	A1
0	0	1	0	A2
0	0	1	1	A3
0	1	0	0	A4
0	1	0	1	A5
0	1	1	0	A6
0	1	1	1	A7
1	0	0	0	B0
1	0	0	1	B1
1	0	1	0	B2
1	0	1	1	B3
1	1	0	0	B4
1	1	0	1	B5
1	1	1	0	B6
1	1	1	1	B7

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground ... -0.5 V to +7.0 V
Input signal with respect to ground .. -3.0 V to +7.0 V
Signal applied to high impedance output ... -3.0 V to +7.0 V
Output current into low outputs
25 mA
Latchup current .. $>400 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
Voh	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-12 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=24 \mathrm{~mA}$			0.5	\checkmark
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq Vin \leq Vcc ((Note 12)			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vout \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		10	35	mA
Icc2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS

Comme	cial Operating Range ($0^{\circ} \mathrm{C}$ to +70				
			L29	25-	
Symbol	Parameter	Min	Max	Min	Max
tPD	Clock to Output Delay		20		15
tsel	Select to Output Delay		20		15
tpw	Clock Pulse Width	12		10	
tsD	Data Setup Time	7		5	
tHD	Data Hold Time	0		0	
tsi	Instruction Setup Time	7		5	
tH1	Instruction Hold Time	2		2	
tena	Three-State Output Enable Delay (Note 11)		15		15
tols	Three-State Output Disable Delay (Note 11)		13		13

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)

		L29C525-			
	Symbol	Parameter	$\mathbf{2 5}$		20
tPD	Clock to Output Delay	Min	Max	Min	Max
tSEL	Select to Output Delay		25		20
tPW	Clock Pulse Width		25		20
tSD	Data Setup Time	12		12	
tHD	Data Hold Time	7		7	
tSI	Instruction Setup Time	2		2	
tHI	Instruction Hold Time	7		7	
tENA	Three-State Output Enable Delay (Note 11)	2		2	
tDIS	Three-State Output Disable Delay (Note 11)		15		15

NOTES

1．Maximum Ratings indicate stress specifications only．Functional oper－ ation of these products at values be－ yond those indicated in the Operating Conditions table is not implied．Expo－ sure to maximum rating conditions for extended periods may affect reliability．

2．The products described by this spec－ ification include internal circuitry de－ signed to protect the chip from damag－ ing substrate injection currents and ac－ cumulations of static charge．Never－ theless，conventional precautions should be observed during storage， handling，and use of these circuits in order to avoid exposure to excessive electrical stress values．

3．This device provides hard clamping of transient undershoot and overshoot． Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$ ．The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V ．Device opera－ tion will not be adversely affected，how－ ever，input current levels will be well in excess of 100 mA ．

4．Actual test conditions may vary from those designated but operation is guaranteed as specified．

5．Supply current for a given applica－ tion can be accurately approximated by：

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6．Tested with all outputs changing ev－ ery cycle and no load，at a 5 MHz clock rate．

7．Tested with all inputs within 0.1 V of VCC or Ground，no load．
8．These parameters are guaranteed but not 100% tested．

9．AC specifications are tested with input transition times less than 3 ns ， output reference levels of 1.5 V （except tDIS test），and input levels of nominally 0 to 3.0 V ．Output loading may be a resistive divider which provides for specified IOH and Iol at an output voltage of VOH min and VOL max respectively．Alternatively，a diode bridge with upper and lower current sources of IOH and IOL respectively， and a balancing voltage of 1.5 V may be used．Parasitic capacitance is 30 pF minimum，and may be distributed．

This device has high－speed outputs ca－ pable of large instantaneous current pulses and fast turn－on／turn－off times． As a result，care must be exercised in the testing of this device．The following measures are recommended：
a．A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test （DUT）as possible．Similar capacitors should be installed between device VcC and the tester common，and device ground and tester common．
b．Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers．
c．Input voltages should be adjusted to compensatefor inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin．

10．Each parameter is shown as a min－ imum or maximum value．Input re－ quirements are specified from the point of view of the external system driving the chip．Setup time，for example，is specified as a minimum since the exter－ nal system must supply at least that much time to meet the worst－case re－ quirements of all parts．Responses from the internal circuitry are specified from the point of view of the device． Output delay，for example，is specified as a maximum since worst－case opera－ tion of any device always provides data within that time．

11．For the tENA test，the transition is measured to the 1.5 V crossing point with datasheet loads．For the tDIs test， the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady－state output voltage with $\pm 10 \mathrm{~mA}$ loads．The balancing volt－ age，VTH，is set at 3.5 V for Z －to－0 and 0 －to－Z tests，and set at 0 V for Z － to－1 and 1－to－Z tests．

12．These parameters are only tested at the high temperature extreme，which is the worst case for leakage current．

Figure B．Threshold Levels

L29C525

	ORDERING INFORMATION		
	28－pin		
Speed	Plastic J－Lead Chip Carrier （J4）	Ceramic Leadless Chip Carrier（K1）	
－	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-\mathrm{Commercia}$	Reening	－
$\begin{aligned} & 20 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	L29C525JC20 L29C525JC15		
＝	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$－Сомmı	Screening	
\square	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL}-\mathrm{S}$	83 Compliant	24th
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$		L29C525KMB25 L29C525KMB20	

DEVICES INCORPORATED

FEATURES

Variable Length 4 or 8-bit Wide Shift Register
\square Selectable Delay Length from 3 to 18 Stages
Low Power CMOS Technology

- Replaces TRW/Raytheon TMC2011
\square Load, Shift, and Hold Instructions
\square Separate Data In and Data Out Pins
DECC SMD No. 5962-96793
Available 100\% Screened to
MIL-STD-883, Class B
\square Package Styles Available:
- 24-pin Plastic DIP
- 24-pin Ceramic DIP
- 28-pin Plastic LCC, J-Lead
- 28 -pin Ceramic LCC

DESCRIPTION

The L10C11 is a high-speed, low power CMOS variable length shift register. The L10C11 consists of two 4 -bit wide, adjustable length shift registers. These registers share control signals and a common clock. Both shift registers can be programmed together to any length from 3 to 18 stages inclusive, or one register can be fixed at 18 stages of delay while the other is variable. The configuration implemented is determined by the Length Code (L3-0) and the MODE control line as shown in Table 1.

Each input is applied to a chain of registers which are clocked on the rising edge of the common CLK input. These registers are numbered R1 through R17 and R1' through R17', corresponding to the D3-0 and D7-4 data fields respectively. A multiplexer serves to route the contents of any of registers R2 through R17 to the output register, denoted R18. A similar multiplexer operates on the contents of R2' through R17' to load
$\mathrm{R} 18^{\prime}$. Note that the minimum-length path from data inputs to outputs is R1 to R2 to R18, consisting of three stages of delay.
The MODE input determines whether one or both of the internal shift registers have variable length. When MODE $=0$, both D3-0 and D7-4 are delayed by an amount which is controlled by L3-0. When MODE $=1$, the D7-4 field is delayed by 18 stages independent of L3-0.

The Length Code (L3-0) controls the number of stages of delay applied to

When the Length Code is 0 , the inputs are delayed by 3 clock periods. When the Length Code is 1 , the delay is 4 clock periods, and so forth. The Length Code and MODE inputs are latched on the rising edge of CLK. Both the Length Code and MODE values may be changed at any time without affecting the contents of registers R1 through R17 or R1' through R17'.

L10C11

Length Code				Mode $=0$ Delay		$\begin{gathered} \text { Mode }=1 \\ \hline \text { Delay } \end{gathered}$	
L3	L2	L1					
				Y 3 -0	Y7-4	Y3-0	Y7-4
0	0	0	0	3	3	3	18
0	0	0	1	4	4		18
0	0	1	0		5		18
0	0	1	1	6	6	6	18
0	1	0	0	7	7	7	18
0	1	0	1	8	8	8	18
0	1	1	0	9	9	9	18
0	1	1	1		10	10	18
1	0	0	0		11	11	18
1	0	0	1		12	12	18
1	0	1	0		13	13	18
1	0	1	1		14	14	18
1	1	0	0	15	15	15	18
1	1	0	1		16	16	18
	1	1	0		17	17	18
1	1	1	1		18	18	

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)		
Storage temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Vcc supply voltage with respect to ground -0.5 V to +7.0 VInput signal with respect to ground -3.0 V to +7.0 VSignal applied to high impedance output ...		
Operating Conditions To meet specified electrical and switching characteristics		
Mode Active Operation, Com. Active Operation, Mil.	Temperature Range $\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Supply Voltage $\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V} c \mathrm{c} \leq 5.25 \mathrm{~V} \\ & 4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V} \end{aligned}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-12 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOL}=24 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq ViN \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
Icc1	Vcc Current, Dynamic	(Notes 5, 6)		10	20	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	L10C11-					
		25		20		15	
		Min	Max	Min	Max	Min	Max
tPD	Output Delay		25		20		15
tPW	Clock Pulse Width	15		12		10	
tsD	Data Setup Time	20		10		8	
thD	Data Hold Time	2		0		0	
tSL	L3-0, MODE Setup Time	20		10		8	
thL	L3-0, MODE Hold Time	2		0		0	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)							
Symbol	Parameter	L10C11-					
		30		25		20	
		Min	Max	Min	Max	Min	Max
tPD	Output Delay		30		25		20
tPW	Clock Pulse Width	15		12		12	
tsD	Data Setup Time	25		10		10	
thD	Data Hold Time	2		2		0	
tsL	L3-0, MODE Setup Time	25		10		10	
thL	L3-0, MODE Hold Time	2		2		0	

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and VCC +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$N=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensateforinductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and $0-$ to -Z tests, and set at 0 V for Z to -1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure A. Output Loading Circuit

L10C11

L21.611 8-bit Variable Length Shift Register

FEATURES

- Variable Length 8-bit Wide Shift Register
- Selectable Delay Length from 1 to 16 Stages
- Low Power CMOS Technology
- Replaces TRW/Raytheon TMC2111
\square Load, Shift, and Hold Instructions
- Separate Data In and Data Out Pins
\square DECC SMD No. 5962-96793
Available 100% Screened to MIL-STD-883, Class B
- Package Styles Available:
- 24-pin Plastic DIP
- 24-pin Ceramic DIP
- 28-pin Plastic LCC, J-Lead
- 28-pin Ceramic LCC

DESCRIPTION

The L21C11 is a high-speed, low power CMOS variable length shift register. It consists of a single 8 -bit wide, adjustable length shift register. The shift register can be programmed to any length from 1 to 16 stages inclusive. The length of the shift register is determined by the Length Code (L3-0) as shown in Table 1.

The data input is applied to a chain of registers which are clocked on the rising edge of the CLK input. These registers are numbered R1 through R15. A multiplexer serves to route the contents of any register, R1 through R15, or the data input, D7-0, to the output register, denoted R16. Note that the minimum-length path from data input to output is through R16, consisting of a single stage of delay.

The Length Code (L3-0) controls the number of delay stages applied to the D7-0 inputs as shown in Table 1. When the Length Code is 0 , the input is delayed by 1 clock period. When the Length Code is 1 , the delay is 2 clock periods, and so forth. The Length Code inputs are latched on the rising edge of CLK. The Length Code value may be changed at any time without affecting the contents of registers R1 through R15.

L21C11 Block Diagram

L21C11

Table 1. Control Encoding

Length Code				Delay
L3	L2	L1	L0	Y7-0
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range	Supply Voltage
Active Operation, Com.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Mil.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VcC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)

Symbol	Parameter	Min	Typ	Max	Unit	
VoH	Output High Voltage	Vcc $=$ Min., IoH $=-12 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	VcC = Min., IOL $=24 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc (Note 12)			± 20	$\mu \mathrm{~A}$
ICC1	Vcc Current, Dynamic	(Notes 5, 6)		10	20	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS

Comme	cial Operating Range						
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tPD	Output Delay		25		20		15
tPW	Clock Pulse Width	15		12		10	
tsD	Data Setup Time	20		10		8	
tHD	Data Hold Time	2		0		0	
tSL	Length Code Setup Time	20		10		8	
tHL	Length Code Hold Time	2		0		0	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	L21C11-					
		30		25		20	
		Min	Max	Min	Max	Min	Max
tPD	Output Delay		30		25		20
tPW	Clock Pulse Width	15		12		12	
tsD	Data Setup Time	25		10		10	
tHD	Data Hold Time	2		2		0	
tsL	Length Code Setup Time	25		10		10	
thL	Length Code Hold Time	2		2		0	

Switching Waveforms

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ supply voltage
$F=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except toIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of $\mathrm{VOH} \min$ and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between deviceVCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tena test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

	ORDERING INFORMATION			
	24-pin - $0.3^{1 "}$ wide		28-pin	
Speed	$\begin{gathered} \hline \text { Plastic DIP } \\ \text { (P2) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ceramic DIP } \\ & \text { (C1) } \end{aligned}$	Plastic J-Lead Chip Carrier (J4)	Ceramic Leadless Chip Carrier (K1)
,	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening			
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L21C11PC25 L21C11PC20 L21C11PC15		L21C11JC25 L21C11JC20 L21C11JC15	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening			
$\begin{array}{\|l\|} \hline 30 \mathrm{~ns} \\ 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$		L21C11CM30 L21C11CM25 L21C11CM20		
-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - MIL-STD-883 Compliant			
$\left.\begin{array}{l\|} \hline 30 \mathrm{~ns} \\ 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array} \right\rvert\,$		L21C11CMB30 L21C11CMB25 L21C11CMB20		L21C11KMB30 L21C11KMB25 L21C11KMB20

DEVICES INCORPORATED

8-bit Serial Scan Shadow Register

FEATURES

Octal Register with Additional 8-bit Shiftable Shadow Register\square
Serial Load/Verify of Writable Control Store RAMSerial Stimulus/Observation of Sequential Logic
High-Speed, Low Power CMOS Technology
Replaces AMD Am29818DECC SMD No. 5962-90515Available 100\% Screened to MIL-STD-883, Class B

- Package Styles Available:
- 24 -pin Plastic DIP
- 24-pin Sidebraze, Hermetic DIP
- 28 -pin Ceramic LCC

DESCRIPTION

The L29C818 is a high-speed octal register designed especially for applications using serial-scan diagnostics or writable control store. It is pin and functionally compatible with the AMD Am 29818 bipolar device.

The L29C818 consists of an octal register, the P register, internally connected to an 8 -bit shift register, the S register. Each has its own corresponding clock pin and the P register has a three-state output control.

An input control signal, MODE, in combination with the S register serial data input (SDI) pin controls data routing within the L29C818. When the MODE input is LOW, indicating normal operation, data present on the D7-0 pins is loaded into the P register on the rising edge of CLK P. The contents of the P register are visible on the output pins $\mathrm{Y} 7-0$ when the $\overline{\mathrm{OE}}$ control line is LOW.

Also, data present on the SDI pin is loaded into the least significant position of the S register on the rising edge of CLK S. In this mode, the S register performs a right-shift operation with the contents of each bit position replaced by the value in the next least significant location. The value in S 7 is shifted out on the serial data output (SDO) pin. The SDI and SDO pins allow serial connection of multiple L29C818 devices into a diagnostic loop. When MODE is LOW, the operation of the P and S registers are completely independent and no timing relationship is enforced between CLK P and CLK S.

When MODE is HIGH, the internal multiplexers route data between the S and P registers and the Y port. The contents of the S register are loaded into the P register on the rising edge of

L29C818 Block Diagram

CLK P. In diagnostic applications, this allows a data value input via serial scan to be loaded into the active data path of the machine.

When the MODE pin is HIGH, CLK S causes a parallel, rather than serial, load of the S register. In this mode, the S register is loaded from the Y_{7-0} pins at the rising edge of CLK S. This is useful in writable control store applications for read-back of the control store via the serial path.

When MODE is HIGH, the SDI pin is used as a control input to enable or disable the loading of the S register. It also affects routing of the S register contents onto the D7-0 outputs. When SDI is LOW, the S register is enabled for loading as above. When SDI is HIGH however, CLK S is prevented from reaching the S register and no load occurs. In order to allow the SDI pin to serve as an enable signal for all L29C818 devices in a serial configuration, special handling of the SDI input
is required. When MODE is HIGH, the SDI input drives the SDO output directly, bypassing the S register. This means that the SDI value will apply simultaneously to all L29C818s in a serial loop. However, to ensure proper operation of a given device, the user must ensure that the SDI setup time to CLK S is extended by the sum of the SDI to SDO delays of all previous devices in the serial path.

The D7-0 port is normally used as the input port to the D register. For writable control store applications however, this port is connected to the I/O pins of the RAM used as a control store. In order to load this RAM through the serial path, it is necessary to drive the S register contents onto the D7-0 pins. This is accomplished when MODE and SDI are HIGH and a CLK S rising edge occurs. Note from above that with SDI HIGH, no loading of the S register occurs. However, a flip-flop is set which synchronously enables the D port output buffer. The

D output remains enabled until the first rising edge of CLK S during which either SDI or MODE is LOW. Thus to load a control store RAM, data would be shifted in with MODE LOW. When an entire control store word is present in the serial S registers, the SDI and MODE pins are brought HIGH for one or more cycles, preventing further shifting of the S registers and enabling the contents onto the D port for writing into the RAM.

To verify the contents of a control store RAM, the RAM is read into the D register in the normal fashion. Then, the D contents are transferred in parallel to the S register by driving MODE HIGH with SDI LOW. The S register contents are then scanned out serially by returning MODE LOW and applying CLK S pulses.

Table 1. Function Table

Inputs				Outputs			Action		
MODE	SDI	CLK S	CLK P	P REG	S REG	Y7-0	D7-0	SDO	
0	X	-	X	N/A	SHIFT	Normal	HI-Z	S_{7}	
0	X	X	-	LOAD D	N/A	Normal	Input	$\mathrm{S7}$	
1	0	-	X	N/A	LOAD Y	Input ${ }^{*}$	HI-Z	SDI	
1	1	-	X	N/A	HOLD	Normal	Output	SDI	
1	X	X	-	LOAD S	N/A	Normal	HI-Z	SDI	

*If $\overline{O E}$ is LOW, the P register value will be loaded into the S register. If $\overline{O E}$ is HIGH, a value may be applied externally to the Y_{7-0} pins.

L29C818

Maximum Ratings Above which useful life may be impaired (Notes 1, 2, 3, 8)

Stora	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	.. 25 mA
Latchup current	... > 400 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOH}=-12.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=24.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIx	Input Current	Ground \leq VIN \leq VcC (Note 12)			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 20	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)		10	15	mA
Icc2	Vcc Current, Quiescent	(Note 7)			1.0	mA

SWITCHING CHARACTERISTICS - NORMAL REGISTER OPERATION

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)					
Symbol	Parameter	L29C818-			
		25		15	
		Min	Max	Min	Max
tPWP	CLK P Pulse Width	15		10	
tPDY	CLK P to Y7-0		13		9
tSDP	D7-0 to CLK P Setup Time	8		6	
tHDP	CLK P to D7-0 Hold Time	2		2	
tSMP	MODE to CLK P Setup Time	15		15	
thMP	CLK P to MODE Hold Time	2		2	
tena	Three-State Output Enable Delay (Note 11)		25		25
tols	Three-State Output Disable Delay (Note 11)		15		15

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9,10 (ns)					
Symbol	Parameter	L29C818-			
		30		24	
		Min	Max	Min	Max
tPWP	CLK P Pulse Width	15		15	
tPDY	CLK P to Y7-0		18		12
tSDP	D7-0 to CLK P Setup Time	10		8	
tHDP	CLK P to D7-0 Hold Time	2		2	
tsmp	MODE to CLK P Setup Time	15		15	
tHMP	CLK P to MODE Hold Time	2		2	
tena	Three-State Output Enable Delay (Note 11)		30		30
tols	Three-State Output Disable Delay (Note 11)		20		20

SWITCHING CHARACTERISTICS - SERIAL SHIFT OPERATION

Comme	cial Operating Range (0 ${ }^{\circ}$				
Symbol	Parameter	Min	Max	Min	Max
tpws	CLK S Pulse Width	25		15	
tDsso	CLK S to SDO		25		25
tssis	SDI to CLK S Setup Time	10		10	
tHSSI	CLK S to SDI Hold Time	0		0	
tSms	MODE to CLK S Setup Time	12		12	
tHSM	CLK S to MODE Hold Time	2		2	
tDmso	MODE to SDO	16		16	
tDsiso	SDI to SDO	16		15	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Notes 9, 10 (ns)					
Symbol	Parameter	L29C818-			
		30		24	
		Min	Max	Min	Max
tPWs	CLK S Pulse Width	25		25	
tdsso	CLK S to SDO		30		30
tssis	SDI to CLK S Setup Time	12		12	
tHSSI	CLK S to SDI Hold Time	0		0	
tsms	MODE to CLK S Setup Time	12		12	
thSm	CLK S to MODE Hold Time	5		5	
tDmso	MODE to SDO	18		18	
tosiso	SDI to SDO	18		18	

Switching Waveforms - Serial Shift Operation

SWITCHING CHARACTERISTICS - PIPELINE LOAD FROM SHADOW

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9, 10 (ns)					
Symbol	Parameter	L29C818-			
		25		15	
		Min	Max	Min	Max
tSMP	MODE to CLK P	15		15	
tHPM	CLK P to MODE Hold Time	2		2	
tSSP	CLK S to CLK P	10		10	

Symbol	Parameter	L29C818-			
		30		24	
		Min	Max	Min	Max
tsMP	MODE to CLK P	15		15	
tHPM	CLK P to MODE Hold Time	2		2	
tssp	CLK S to CLK P	15		15	

L29C818

SWITCHING CHARACTERISTICS - SHADOW LOAD FROM Y PORT

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)

Symbol	Parameter	L29C818-			
		25		15	
		Min	Max	Min	Max
tsys	Y7-0 to CLK S Setup Time	5		5	
tHSY	CLK S to Y7-0 Hold Time	5		5	
tsms	MODE to CLK S Setup Time	12		12	
tHSM	CLK S to MODE Hold Time	2		2	
tssis	SDI to CLK S Setup Time	10		10	
thssi	CLK S to SDI Hold Time	0		0	

Symbol	Parameter	L29C818-			
		30		24	
		Min	Max	Min	Max
tsys	Y7-0 to CLK S Setup Time	5		5	
tHSY	CLK S to Y7-0 Hold Time	5		5	
tsms	MODE to CLK S Setup Time	12		12	
tHSM	CLK S to MODE Hold Time	5		5	
tssis	SDI to CLK S Setup Time	12		12	
thSsi	CLK S to SDI Hold Time	0		0	

Switching Waveforms - Shadow Load from Y Port

SWITCHING CHARACTERISTICS - SHADOW READ VIA D PORT

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) Notes 9,10 (ns)					
Symbol	Parameter	L29C818-			
		25		15	
		Min	Max	Min	Max
tsms	MODE to CLK S Setup Time	12		12	
tHSM	CLK S to MODE Hold Time	2		2	
tssis	SDI to CLK S Setup Time	10		10	
tHSSI	CLK S to SDI Hold Time	0		0	
tenad	CLK S to D7-0 Enable Delay (Note 11)	85		80	
toISD	CLK S to D7-0 Disable Delay (Note 11)	30		25	

8-bit Serial Scan Shadow Register

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and Vcc +0.6 V . The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
> $\mathrm{N}=$ total number of device outputs
> $C=$ capacitive load per output
> $\mathrm{V}=$ supply voltage
> $\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductiveground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z -to-0 and 0 -to- Z tests, and set at 0 V for Z -to- 1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Vo.* Measured Vol with $10 H=-10 \mathrm{~mA}$ and $\mathrm{lOL}=10 \mathrm{~mA}$ VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{lOL}=10 \mathrm{~mA}$

Peripheral Products

\square Qually and Rellability
PERIPHERAL PRODUCTS 6-1
L5380 SCSI Bus Controller 6-3
L53C80 SCSI Bus Controller 6-3

FEATURES

- Asynchronous Transfer Rate Up to 4 Mbytes/sec
- Low Power CMOS Technology
- Replaces NCR 5380/53C80/ 53C80-40 and AMD Am5380/ 53C80
O On-Chip SCSI Bus Drivers
- Supports Arbitration, Selection/ Reselection, Initiator or Target Roles
- Programmed or DMA I/O, Handshake or Wait State DMA Interlock
- DECC SMD No.

5962-90548 - L53C80
\square Package Styles Available:

- 40/48-pin Plastic DIP
- 48-pin Sidebraze, Hermetic DIP
- 44-pin Plastic LCC, J-Lead

DESCRIPTION

The L5380/53C80 are high performance SCSI bus controllers which support the physical layer of the SCSI (Small Computer System Interface) bus as defined by the ANSI X3T9.2 committee. It is pin and functionally compatible with the NMOS NCR5380, while offering up to a 2.5 x performance improvement, 10 x power reduction, and lower cost. Replacement of the NMOS 5380 by the LOGIC Devices L5380/53C80 will result in an immediate transfer rate improvement due to $\overline{\mathrm{REQ}} / \overline{\mathrm{ACK}}$ and $\mathrm{DRQ} / \overline{\mathrm{DACK}}$ handshake response times up to 5 times faster than previous devices. While remaining firmware compatible with the NCR5380, the L5380/53C80 provides bug fixes and state machine enhancements allowing even larger throughput gains for new designs.

The L5380/53C80 supports asynchronous data transfer between initiator and target at up to $4 \mathrm{Mbytes} / \mathrm{sec}$. It operates in either initiator or target roles and offers a choice of programmed I/O (direct microprocessor manipulation of handshake) or any of several DMA modes (autonomous handshake and data transfer operations). The L5380/53C80 has internal hardware to support arbitration and can monitor and generate interrupts for a variety of error conditions. It provides extensive bus status monitoring features and includes buffers capable of directly driving a terminated SCSI bus for a compact implementation.

L5380/53C80 Block Diagram

PIN DEFINITIONS

A. SCSI Bus

$\overline{\text { SDB7-0 }}$ - SCSI DATA BUS 7-0
Bidirectional/Active low. The 8-bit SCSI data bus is defined by these pins. $\overline{\mathrm{SDB7}}$ is the most significant bit. During arbitration phase, these lines contain the SCSI ID numbers of all initiators arbitrating for the SCSI bus; $\overline{\text { SDB7 }}$ represents the initiator with the highest priority. During the selection/reselection phase, these lines contain the ID number of the device that won the arbitration along with the ID number of the device to be selected/reselected.

$\overline{S D B P}-$ SCSI DATA BUS PARITY

Bidirectional/Active low. $\overline{\mathrm{SDBP}}$ is the parity bit of the SCSI data bus. Odd parity is used, meaning that the total number of ones on the bus, including the parity bit, is odd. Parity is always generated when sending information, however checking for parity errors when receiving information is a user option. Parity is not valid during arbitration phase.

$\overline{S E L}-S E L E C T$

Bidirectional/Active low. $\overline{\mathrm{SEL}}$ is asserted by the initiator to select a target. It is also asserted by the target when reselecting it as an initiator.
$\overline{B S Y}-B U S Y$
Bidirectional/Active low. $\overline{\mathrm{BSY}}$ is asserted to indicate that the SCSI bus is active.

$\overline{A C K}-A C K N O W L E D G E$

Bidirectional/Active low. $\overline{\mathrm{ACK}}$ is asserted by the initiator during any information transfer phase in response to assertion of $\overline{R E Q}$ by the target. Similarly, $\overline{\mathrm{ACK}}$ is deasserted after $\overline{\mathrm{REQ}}$ becomes inactive. These two signals form the data transfer hand-
shake between the initiator and target. Data is latched by the target on the lowgoing edge of $\overline{\mathrm{ACK}}$ for target receive operations.

$\overline{A T N}$ - ATTENTION

Bidirectional/Active low. $\overline{\mathrm{ATN}}$ is asserted by the initiator after successful selection of a target, to indicate an intention to send a message to the target. The target responds to ATN by entering the MESSAGE OUT phase.

$\overline{R S T}-\operatorname{SCSI}$ BUS RESET

Bidirectional/Active low. $\overline{\mathrm{RST}}$ when active indicates a SCSI bus reset condition.

İ/O - INPUT/OUTPUT

Bidirectional/Active low. $\overline{\mathrm{I}} / \mathrm{O}$ is controlled by the target and specifies the direction of information transfer. When \bar{I} / O is asserted, the direction of transfer is to the initiator. $\overline{\mathrm{I}} / \mathrm{O}$ is also asserted by the target during RESELECTION phase to distinguish it from SELECTION phase.
$\bar{C} / D-\operatorname{CONTROL} / D A T A$
Bidirectional/Active low. $\overline{\mathrm{C}} / \mathrm{D}$ is controlled by the target and when asserted, indicates CONTROL (command or status) information is on the SCSI data bus. DATA is specified when \bar{C} / D is deasserted.
$\overline{M S G}-M E S S A G E$
Bidirectional/Active low. $\overline{\mathrm{MSG}}$ is controlled by the target, and when asserted indicates MESSAGE phase.

$\overline{R E Q}-$ REQUEST

Bidirectional/Active low. $\overline{\mathrm{REQ}}$ is asserted by the target to begin the handshake associated with transfer of a byte over the SCSI data bus. $\overline{\mathrm{REQ}}$ is deasserted upon receipt of $\overline{\mathrm{ACK}}$ from the initiator. Data is latched by the initiator on the lowgoing edge of $\overline{\mathrm{REQ}}$ for initiator receive operations.

B. Microprocessor Bus

$\overline{C S}-$ CHIP SELECT
Input/Active low. This signal enables reading or writing of the internal registers by the microprocessor, using memory mapped I/O. An alternate method for reading selected registers is available for DMA.

$D R Q$ - DMA REQUEST

Output/Active high. This signal is used to indicate that the L5380/53C80 is ready to execute the next cycle of a DMA transfer on the microprocessor bus. For send operations, it indicates that the output data register is ready to receive the next byte from the DMA controller or CPU. For receive operations, it indicates that the input data register contains the next byte to be read by the DMA controller or CPU.

IRQ - INTERRUPT REQUEST

Output/Active high. The L5380/ 53C80 asserts this signal to indicate to the microprocessor that one of the several interrupt conditions have been met. These include SCSI bus fault conditions as well as other events requiring microprocessor intervention. Most interrupt types are individually maskable.

$\overline{I O R}-I / O R E A D$

Input/Active low. $\overline{\mathrm{IOR}}$ is used in conjunction with $\overline{\mathrm{CS}}$ and $\mathrm{A} 2-0$ to execute a memory mapped read of a L5380/ 53C80 internal register. It is also used in conjunction with $\overline{\mathrm{DACK}}$ to execute a DMA read of the SCSI Input Data Register.

READY - READY

Output/Active high. Ready is used rather than DRQ as an alternate method for controlling DMA data transfer. This DMA type is termed blockmode DMA and must be specifically enabled by the CPU. In block-
mode DMA，data is throttled by treat－ ing the L5380／53C80 as wait state memory．I／O（DMA）cycles are initiated at the maximum rate sustain－ able by the DMA controller／memory subsystem，but all cycles are extended （wait－states inserted）until READY is asserted by the L5380／53C80．This is generally the fastest DMA method since memory subsystem addressing can be overlapped with SCSI opera－ tions（flyby mode）．

$\overline{D A C K}$－DMA ACKNOWLEDGE

Input／Active low．$\overline{\text { DACK }}$ is used in conjunction with $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ to enable reading or writing of the SCSI Input and Output Data Registers when in DMA mode．$\overline{\text { DACK }}$ resets DRQ and must not occur simultane－ ously with $\overline{\mathrm{CS}}$ ．

$\overline{E O P}$－END OF PROCESS

Input／Active low．This input is used to indicate to the L5380／53C80 that a DMA transfer is to be concluded．The L5380／53C80 can automatically generate an interrupt in response to receiving $\overline{\mathrm{EOP}}$ from the DMA control－ ler．

$\overline{\text { RESET }}$－CPU BUS RESET

Input／Active low．This input clears all internal registers and state machines． It does not result in assertion of the $\overline{\text { RST }}$ signal on the SCSI bus and therefore affects only the local L5380／ 53 C 80 and not other devices on the bus．
$\overline{I O W}-I / O$ WRITE
Input／Active low．$\overline{\mathrm{IOW}}$ is used in conjunction with $\overline{\mathrm{CS}}$ and $\mathrm{A} 2-0$ to execute a memory mapped write of a L5380／53C80 internal register．It is also used in conjunction with $\overline{\text { DACK }}$ to execute a DMA write of the SCSI Output Data Register．

A2－0－ADDRESS 2－0
Inputs／Active high．These signals，in conjunction with $\overline{\mathrm{CS}}, \overline{\mathrm{IOR}}$ ，and $\overline{\mathrm{IOW}}$ ， address the L5380／53C80 internal registers for CPU read／write opera－ tions．

D7－0－DATA 7－0
Bidirectional／Active high．These signals are the microprocessor data bus． D^{7} is the most significant bit．

L5380／53C80
 INTERNAL REGISTERS

Overview

The L5380／53C80 contains registers that are directly addressed by the microprocessor．These registers allow for monitoring of SCSI bus activity， controlling the operation of the L5380／53C80，and determining the cause of interrupts．In many cases，a read－only and a write－only register are mapped to the same address．Some addresses are dummy registers which are used to implement a control operation but do not correspond to a physical register．The state of the CPU data bus when writing or reading these dummy registers is＇don＇t care＇． Tables 1 and 3 show the address and name of each register as well as bit definitions．

Register Descriptions

A．Write Operations

The following paragraphs give detailed descriptions of the function of each bit in the L5380／53C80 internal registers for write operations as shown in Table 1.

WRITE ADDRESS 0 Output Data Register

The Output Data Register is a write－ only register used for sending infor－ mation to the SCSI data bus．During arbitration，the arbitrating SCSI device
asserts its ID via this register．The device which wins arbitration also asserts the＂OR＂of its ID and the ID of the target／initiator to be selected／ reselected．In programmed I／O mode this register is written using $\overline{\mathrm{CS}}$ and $\overline{\mathrm{IOW}}$ with $\mathrm{A} 2-0=000$ ．In DMA mode， it is written when $\overline{\mathrm{IOW}}$ and $\overline{\mathrm{DACK}}$ are simultaneously active，irrespective of the state of the address lines．Note that a＂ 1 ＂written to the Output Data Register becomes a low state when asserted on the active－low SCSI bus．

WRITE ADDRESS 1
 Initiator Command Register

The Initiator Command Register is a read／write register which allows CPU control of the SCSI signals asserted by the initiator．Some bits in this register are not readable，and these positions are mapped to status bits useful in monitoring the progress of arbitration． These，along with the initiation of system－wide reset and test functions， may also be of use to the target．
R1 Bit 7 －Assert $\overline{R S T}$
When this bit is set，the L5380／53C80 asserts the RST line on the SCSI bus， initializing all devices on the bus to the reset condition．All logic and internal registers of the L5380／53C80 are reset，except for the Assert RST bit itself，the Testmode bit（R1 bit 6）and the IRQ（interrupt request）latch．The IRQ pin becomes active indicating a SCSI bus reset interrupt．This inter－ rupt is not maskable．

R1 Bit 6 －Testmode

When this bit is set，the L5380／53C80 places all outputs，including both SCSI and CPU signals，in a high impedance state．This effectively removes the device from the system as an aid to system diagnostics．Note that internal registers may still be written to while in Testmode．The L5380／53C80 returns to normal operation when Testmode is reset．The Testmode bit is reset by either writing a＂ 0 ＂to R1 bit 6
or via the $\overline{\text { RESET (CPU reset) pin. }}$ Testmode is not affected by the RST (SCSI bus reset) signal, or by the Assert $\overline{\mathrm{RST}}$ bit in the Initiator Command Register (R1 bit 7).

R1 Bit 5 - Not Used

R1 Bit 4 - Assert $\overline{A C K}$
When this bit is set, $\overline{\mathrm{ACK}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{ACK}}$. Note that $\overline{\mathrm{ACK}}$ will be asserted only if the Targetmode bit (R 2 bit 6) is reset, indicating that the L5380/53C80 is acting as an initiator.

R1 Bit 3 - Assert $\overline{B S Y}$

When this bit is set, $\overline{\mathrm{BSY}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{BSY}} . \overline{\mathrm{BSY}}$ is asserted to indicate that the device has been selected or reselected, and deasserting $\overline{B S Y}$ causes a bus free condition.

R1 Bit 2 -Assert $\overline{S E L}$

When this bit is set, $\overline{\mathrm{SEL}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\text { SEL }} . \overline{\text { SEL }}$ is normally asserted after a successful arbitration.

R1 Bit 1 -Assert $\overline{A T N}$
When this bit is set, $\overline{\text { ATN }}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\text { ATN }} . \overline{\text { ATN }}$ is asserted by the initiator to request message out phase. Note that ATN will be asserted only if the Targetmode bit (R 2 bit 6) is reset, indicating that the L5380/53C80 is acting as an initiator.

R1 Bit 0 - Assert Data Bus

When this bit is set, the open drain SCSI data bus and parity drivers are enabled and the contents of the Output Data Register are driven onto the SCSI data lines. In addition to the Assert Data Bus bit, enabling of the SCSI bus drivers requires one of the following two sets of conditions:
When the L5380/53C80 is operating as an initiator, the Targetmode bit (R2 bit 6) must be reset, the $\overline{\mathrm{I}} / \mathrm{O}$ pin must be negated (initiator to target
transfer) and no phase mismatch condition can exist. A phase mismatch occurs when the $\overline{\mathrm{MSG}}, \overline{\mathrm{C}} / \mathrm{D}$, and \bar{I} / O bits of the Target Command Register (R3) do not match the corresponding SCSI control lines.
When the L5380/L53C80 is operating as a target, the Targetmode bit will be set, and in this case Assert Data Bus will enable the outputs unconditionally.
The Assert Data Bus bit need not be set for arbitration to occur; when the Arbitrate bit (R 2 bit 0) is set, and a bus free condition is detected, the data bus will be enabled for arbitration regardless of the state of the Assert Data Bus bit.

Finally, note that the Testmode bit (R1 bit 6) overrides all other controls, including Assert Data Bus and Arbitrate, and disables all outputs.

WRITE ADDRESS 2

Mode Register

The Mode register is a read/write register which provides control over several aspects of L5380/53C80 operation. Programmed I/O or two different types of DMA transfer may be selected, initiator or target device operation is accommodated, and parity checking and interrupts may be enabled via this register. The function of each individual bit is described as follows:

R2 Bit 7 -Blockmode

This bit must be used in conjunction with DMA Mode (R 2 bit 1). It is used to select the type of handshake desired between the L5380/53C80 and the external DMA controller. See "L5380/53C80 Data Transfers" for a complete discussion of the transfer types supported.

R2 Bit 6-Targetmode
When this bit is set, the L5380/53C80 will operate as a SCSI target device. This enables the SCSI signals $\overline{\mathrm{I}} / \mathrm{O}$, $\overline{\mathrm{C}} / \mathrm{D}, \overline{\mathrm{MSG}}$, and $\overline{\mathrm{REQ}}$ to be asserted.

When Targetmode is reset, the device will operate as an initiator. This enables the SCSI signals $\overline{\mathrm{ATN}}$ and $\overline{A C K}$ to be asserted. Targetmode also affects state machine operation for DMA transfers and the conditions necessary for enabling the SCSI Data bus drivers. (See Assert Databus, R1 bit 0).

R2 Bit 5 - Enable Parity Check

When this bit is set, information received on the SCSI data bus is checked for odd parity. The Parity Error latch will be set whenever data is received under DMA control or the Current SCSI Data Register (Read Register 0) is read by the CPU. The state of the Parity Error latch can be determined by reading R5 bit 5, and it can be reset by a read to Address 7. Note that ENABLE PARITY CHECK must be set if parity error interrupts are to be generated. This interrupt can be separately masked by the Enable Parity Interrupt bit (R2 bit 4) while retaining the state of the Parity Error latch for later examination by the CPU.

R2 Bit 4 - Enable Parity Interrupt

When this bit is set, the L5380/53C80 will set the interrupt request latch, and assert IRQ (interrupt request) if it detects a parity error. Enable Parity Check (R2 bit 5) must also be set if parity error interrupts are desired.

R2 Bit 3 - Enable End Of DMA Interrupt

When this bit is set, the L5380/53C80 will set the interrupt request latch, and assert IRQ (interrupt request) if it detects a valid EOP (End of Process) signal. $\overline{\mathrm{EOP}}$ is normally generated by a DMA controller to indicate the end of a DMA transfer. $\overline{\mathrm{EOP}}$ is valid only when coincident with $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ and $\overline{\text { DACK. }}$

L5380/53C80

R2 Bit 2 -Monitor Busy

When this bit is set, the L5380/53C80 continuously monitors the state of the $\overline{\mathrm{BSY}}$ signal. Absence of $\overline{\mathrm{BSY}}$ for a period longer than 400 ns (but less than 1200 ns) will cause the L5380/53C80 to set the BSYERR and IRQ (interrupt request) latches. In addition, the six least significant bits of the Initiator Command Register are reset, and all SCSI data and control outputs are disabled until the BSYERR latch is reset. This effectively disconnects the L5380/ 53 C 80 from the SCSI bus in response to an unexpected disconnect by another device. It also allows the CPU to be interrupted when the SCSI bus becomes free in systems where arbitration is not used and an $\overline{\mathrm{EOP}}$ signal is not available.

R2 Bit 1 -DMA Mode

When this bit is set, the L5380/53C80's internal state machines automatically control the SCSI signals $\overline{\mathrm{REQ}}$ and $\overline{\mathrm{ACK}}$ (as appropriate for initiator or target operation) and the CPU signals DRQ and READY. DMA Mode must be set prior to starting a DMA transfer in either direction. The DMA Mode bit is reset whenever a bus free condition is detected ($\overline{\mathrm{BSY}}$ is not active). This aborts DMA operations when a loss of $\overline{\mathrm{BSY}}$ occurs, regardless of the state of the Monitor Busy bit (R2 bit 2.) The DMA Mode bit is not reset when EOP is received, but must be specifically reset by the CPU. $\overline{\text { EOP }}$ does, however, inhibit additional DMA cycles from occurring.

R2 Bit 0 - Arbitrate

This bit is set to indicate a desire to arbitrate for use of the SCSI bus. Before setting the Arbitrate bit, the SCSI Output Data Register (Write Register 0) must be written with the SCSI ID assigned to the arbitrating SCSI device. The bit position of register R 0 which is set represents the priority number of the SCSI device, with bit 7 the highest priority. See the section on "Arbitration" for a full discussion of the L5380/ $53 C 80$ arbitration procedure.

Table 1. Write Registers

Address 0 - Output Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB}}$	$\overline{\mathrm{SDB}} 6$	$\overline{\mathrm{SDB} 5}$	$\overline{\mathrm{SDB} 4}$	$\overline{\mathrm{SDB} 3}$	$\overline{\mathrm{SDB} 2}$	$\overline{\mathrm{SDB}} 1$	$\overline{\mathrm{SDB}} 0$

Address 1 - Initiator Command Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASSERT
 $\overline{\text { RST }}$ | TEST
 MODE | | ASSERT
 $\overline{\text { ACK }}$ | ASSERT
 $\overline{\mathrm{BSY}}$ | ASSERT
 $\overline{\mathrm{SEL}}$ | ASSERT
 $\overline{\mathrm{ATN}}$ | ASSERT
 DATA
 BUS |

Address 2 - Mode Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	\mathbf{c}	$\mathbf{1}$	$\mathbf{0}$
BLOCK	TARGET	ENABLE	ENABLE	ENABLE	MONI-	DMA	ARBI-	
MODE	MODE	PARITY	PARITY	EODMA	TOR	MODE	TRATE	
		CHECK	INT'RPT	INT'RPT	BUSY			

Address 3 - Target Command Register

7	6	5	4	3	2	1	0
$\begin{aligned} & \hline \text { LAST } \\ & \text { BYTE } \\ & \text { CENIT } \end{aligned}$				$\overline{\mathrm{ASSERT}}$	$\begin{aligned} & \text { ASSERT } \\ & \hline \mathrm{MSG} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { ASSERT } \\ \hline \overline{\mathrm{C}} / \mathrm{D} \\ \hline \end{array}$	$\begin{aligned} & \text { ASSERT } \\ & \hline \text { I/O } \end{aligned}$

Address 4 - ID Select Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB7}}$	$\overline{\mathrm{SDB}} 6$	$\overline{\mathrm{SDB5}}$	$\overline{\mathrm{SDB4}}$	$\overline{\mathrm{SDB}}$	$\overline{\mathrm{SDB2}}$	$\overline{\mathrm{SDB} 1}$	$\overline{\mathrm{SDB}} 0$

Address 5 - Start DMA Send

Address 6 - Start DMA Target Receive

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

Address 7 - Start DMA Initiator Receive

7	6	5	4	3	2	1	0

WRITE ADDRESS 3
 Target Command Register

The Target Command Register is a read/write register which allows CPU control of the SCSI signals asserted by the target. In addition, this register contains a read-only status flag useful in unambiguously determining when the last byte of a DMA transfer has actually been sent over the SCSI bus.
When operating as an initiator with DMA mode set, the Assert MSG, Assert \bar{C} / D, and Assert \bar{I} / O bits are used as a template to compare against the corresponding SCSI control signals provided by the target. A phase mismatch interrupt will be generated on the falling edge of the $\widehat{\operatorname{REQ}}$ input if the template does not match the state of the signals. Therefore the CPU should initialize these bits to the phase of the expected data transfer. An interrupt, then, will signal an intent by the target to change to a new phase. The SCSI information transfer phases and their associated direction of data transfer are given in Table 2.

R3 Bits 7-4 - Not Used

R3 Bit 3 - Assert $\overline{R E Q}$
When this bit is set, $\overline{\mathrm{REQ}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{REQ}}$. Note that $\overline{\mathrm{REQ}}$ will be asserted only if the Targetmode bit (R2 bit 6) is set, indicating that the L5380/53C80 is acting as a target.

R3 Bit 2 - Assert $\overline{M S G}$

When this bit is set, MSG is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\text { MSG. Note that MSG }}$ will be asserted only if the Targetmode bit (R 2 bit 6) is set, indicating that the L5380/53C80 is acting as a target. When operating as an initiator, this bit is compared against the $\overline{\mathrm{MSG}}$ input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

R3 Bit 1-Assert \bar{C} / D
When this bit is set, $\overline{\mathrm{C}} / \mathrm{D}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{C}} / \mathrm{D}$. Note that $\overline{\mathrm{C}} / \mathrm{D}$ will be asserted only if the Targetmode bit (R 2 bit 6) is set, indicating that the L5380/53C80 is acting as a target. When operating as an initiator, this bit is compared against the $\overline{\mathrm{C}} / \mathrm{D}$ input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

R3 Bit 0 - Assert \bar{I} / O

When this bit is set, $\overline{\mathrm{I}} / \mathrm{O}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{I}} / \mathrm{O}$. Note that $\overline{\mathrm{I}} / \mathrm{O}$ will be asserted only if the Targetmode bit (R 2 bit 6) is set, indicating that the L5380/53C80 is acting as a target. When operating as an initiator, this bit is compared against the $\overline{\mathrm{I}} / \mathrm{O}$ input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

WRITE ADDRESS 4

ID Select Register

The ID Select Register is a write-only register which is used to monitor selection or reselection attempts to the L5380/53C80. In arbitrating systems, an ID number is assigned to each SCSI device by setting a single bit position of the ID Select Register. Each SCSI data pin is inverted and compared with the corresponding bit in the ID Select Register. If any matches are found while a bus free condition exists
and $\overline{\mathrm{SEL}}$ is active, the $\mathrm{L} 5380 / 53 \mathrm{C} 80$ will generate an interrupt to indicate a selection or reselection. During selection or reselection, parity checking may be enabled by setting the Enable Parity Check bit (R2 bit 5). This interrupt may be masked by resetting all bits in this register.

WRITE ADDRESS 5 Start DMA Send

This is a dummy register. Writes to this location are detected and cause the L5380/53C80 internal state machine to execute a DMA send operation. This location is used for either initiator or target DMA send. The DMAMODE bit (R2 bit 1) must be set prior to writing this location.

WRITE ADDRESS 6
 Start DMA Target Receive

This is a dummy register. Writes to this location are detected and cause the L5380/53C80 internal state machine to execute a target DMA receive operation. The DMAMODE bit (R2 bit 1) and the Targetmode bit (R2 bit 6) must be set prior to writing this location.

WRITE ADDRESS 7

Start DMA Initiator Receive
This is a dummy register. Writes to this location are detected and cause the L5380/53C80 internal state machine to execute an initiator DMA

Table 2.						
SCSI Information Transfer Phases						
$\overline{\text { MSG }} \overline{\mathbf{C}} / \mathbf{D}$	$\overline{\mathbf{I}} \mathbf{O}$	Phase	Direction			
0	0	0	Message In	Target	\rightarrow	Initiator
0	0	1	Message Out	Initiator	\rightarrow	Target
0	1	0	Unused			
0	1	1	Unused			
1	0	0	Status In	Target	\rightarrow	Initiator
1	0	1	Command	Initiator	\rightarrow	Target
1	1	0	Data In	Target	\rightarrow	Initiator
1	1	1	Data Out	Initiator	\rightarrow	Target

receive operation. The DMAMODE bit (R2 bit 1) must be set and the Targetmode bit (R2 bit 6) must be reset prior to writing this location.

B. READ OPERATIONS

The following paragraphs give detailed descriptions of the function of each bit in the L5380/53C80 internal registers for read operations as shown in Table 3.

READ ADDRESS 0 Current SCSI Data Bus

The Current SCSI Data Bus Register allows the microprocessor to monitor the SCSI data bus at any time, by asserting $\overline{\mathrm{CS}}$ and $\overline{\mathrm{IOR}}$ with address lines $\mathrm{A}_{2}-0=000$. The SCSI data lines are not actually registered, but gated directly onto the CPU bus whenever Address 000 is read by the CPU. Therefore, reads of this location should only be done when the SCSI data lines are guaranteed to be stable by the SCSI protocol. For systems which implement SCSI bus arbitration, this location is read to determine whether devices having higher priorities are also arbitrating. Programmed I/O data transfer uses this location for reading data transferred on the SCSI data bus. With parity checking enabled, SCSI data bus parity checking is done at the beginning of the read cycle for fast error detection. Note that the SCSI data bus is inverted to become active high when presented to the CPU.

READ ADDRESS 1
 Initiator Command Register

Reading bit 7 or bits $4-0$ of the Initiator Command Register simply reflects the status of the corresponding bit in the register. Bits 6 and 5 are mapped to other signals as discussed below:
R1 Bit 6 - Arbitration In Progress
For this bit to be active, the Arbitrate bit (R2 bit 0) must be set. When ARBITRATION IN PROGRESS is set,
it indicates that the L5380/53C80 has detected a bus free condition and is currently arbitrating for control of the bus. See the section on "Arbitration" for a complete discussion of the L5380/53C80 arbitration mechanism. Resetting the Arbitrate bit will reset ARBITRATION IN PROGRESS.

R1 Bit 5-Lost Arbitration

For this bit to be active, the Arbitrate bit (R2 bit 0) must be set. When LOST ARBITRATION is set, it indicates that the L5380/53C80 has arbitrated for the SCSI bus (see R1 bit 6 above) and has detected the assertion of $\overline{S E L}$ by another (higher priority) device. The L5380/53C80 responds to loss of arbitration by immediately discontinuing the arbitration attempt. Resetting the Arbitrate bit will reset LOST ARBITRATION.

READ ADDRESS 2

Mode Register
Reading the Mode Register simply reflects the status of the bits in that register.

READ ADDRESS 3

Target Command Register

Reading the Target Command Register simply reflects the status of the bits in that register, except for bit 7, LAST BYTE SENT.

R3 bit 7 —Last Byte Sent

This read only bit indicates that the last byte of data loaded into the L5380/53C80 during a DMA send operation has actually been transferred over the SCSI bus. Note that the end of process flag and the corresponding interrupt occur when this byte is loaded into the L5380/53C80, but do not reflect whether it has actually been sent. This bit is not present in the NCR5380, but is present in the NCR53C80. Last Byte Sent is reset when the DMAMODE bit (R 2 bit 1) is reset.

READ ADDRESS 4
 Current SCSI Control Register

The Current SCSI Control Register provides a means for the CPU to directly monitor the state of the SCSI bus control signals. The SCSI control lines are not actually registered, but gated directly onto the CPU bus whenever Address 100 is read by the CPU. The value of each bit position represents the complement of the corresponding (low true) SCSI Signal Pin.

READ ADDRESS 5
 DMA Status Register

The DMA Status Register provides a means for the CPU to determine the status of a DMA transfer and to determine the cause of an interrupt. It also makes available the final two SCSI bus signals which are not included in the Current SCSI Control Register. The function of each individual bit is defined as follows:

R5 Bit 7 - End of DMA

When this bit is set, it indicates that a valid $\overline{\mathrm{EOP}}$ has been received during a DMA transfer. A valid $\overline{E O P}$ occurs when $\overline{\mathrm{EOP}}, \overline{\mathrm{DACK}}$, and either $\overline{\mathrm{IOR}}$ or IOW are simultaneously active for the minimum specified time. End of DMA is reset when the DMAMODE bit (R 2 bit 1) is reset.

Note that for DMA send operations, an END OF DMA status indicates only that the last byte of the transfer is loaded into the Output Data Register of the sending device, not that it has actually been transferred over the SCSI bus. For this reason, the L5380/ 53C80 provides an additional status bit; Last Byte Sent (R3 bit 7) which indicates that this final byte has been transferred to the receiving end. This bit is not present in the NCR5380.
Also, note that the DMAMODE bit is reset automatically whenever a loss of busy condition is detected, which in turn resets END OF DMA. Therefore
the DMA Status Register should be read prior to resetting the Assert $\overline{\text { BSY }}$ bit（R1 bit 3）at the conclusion of a DMA transfer．

R5 Bit 6 －DMA Request

This bit reflects the state of the DRQ （DMA Request）signal．In program－ med I／O，this bit can be polled by the CPU to determine whether there is a pending request for byte transfer． For DMA send operations，DMA REQUEST is reset when DACK and IOW are simultaneously asserted．For DMA receive operations，simultane－ ous $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{IOR}}$ will reset DMA REQUEST．DMA REQUEST is reset unconditionally when the DMAMODE bit（ R 2 bit 1 ）is reset．

R5 Bit 5 －Parity Error

This bit can only be sel if Enable Parity Check（R2 bit 5）is set．When enabled，the Parity Error bit is set if incoming SCSI data in either initiator or target mode，or during selection phase，does not correctly reflect odd parity．PARITY ERROR can be reset by a read to the Reset Error／Interrupt Register（Register 7）．

R5 Bit 4－Interrupt Request

This bit reflects the state of the IRQ signal．The L5380／53C80 asserts IRQ to generate an interrupt to the CPU． See the section on＂Interrupts＂for further information on the possible sources of interrupts in the L5380／ 53C80．INTERRUPT REQUEST can be reset by a read to the Reset Error／ Interrupt Register（Register 7）．

R5 Bit 3 －Phase Match

When this bit is set，it indicates that the $\overline{\mathrm{MSG}}, \overline{\mathrm{C}} / \mathrm{D}$ ，and $\overline{\mathrm{I}} / \mathrm{O}$ lines match the state of the Assert MSG，Assert $\overline{\mathrm{C}} / \mathrm{D}$ ，and Assert $\overline{\mathrm{I}} / \mathrm{O}$ bits in the Target Command Register．PHASEMATCH is not actually registered，but repre－ sents a continuous comparison of these three phase bits to the corre－ sponding internal register locations． This bit is intended for use by the

Table 3．Read Registers

Address 0 －Current SCSI Data Bus

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB7}}$	$\overline{\mathrm{SDB6}}$	$\overline{\mathrm{SDB5}}$	$\overline{\mathrm{SDB}}$	$\overline{\mathrm{SDB3}}$	$\overline{\mathrm{SDB} 2}$	$\overline{\mathrm{SDB}} 1$	$\overline{\mathrm{SDB}}$

Address 1 －Initiator Command Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASSERT
 $\overline{\text { RST }}$ | ARB．IN
 PRO－
 GRESS | LOST
 ARB． | ASSERT
 $\overline{\text { ACK }}$ | ASSERT
 $\overline{B S Y}$ | ASSERT
 $\overline{S E L}$ | ASSERT
 $\overline{A T N}$ | ASSERT
 DATA
 BUS |

Address 2 －Mode Register

7	6	5	4	3	2	1	0
BLOCK	TARGET	ENABLE	ENABLE	ENABLE	MONI－	DMA	
MODE	MODE	PARITY	PARITY	EODMA	TOR	MODE	TRATE
		CHECK	INT＇RPT	INT＇RPT	BUSY		

Address 3 －Target Command Fegister

7	6	5	4	3	2	1	0
LAST				ASSERT	ASSERT	ASSERT	ASSERT
BYTE				REQ	MSG	C／D	I／O

Address 4 －Current SCSI Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{RST}}$	$\overline{\mathrm{BSY}}$	$\overline{\mathrm{REQ}}$	$\overline{\mathrm{MSG}}$	$\overline{\mathrm{C}} / \mathrm{D}$	$\overline{\mathrm{I}} / \mathrm{O}$	$\overline{\mathrm{SEL}}$	$\overline{\mathrm{PARITY}}$

Address 5 －DMA Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
END OF DMA	DMA REQ．	PARITY ERROR	INTER－ RUPT REQ．	PHASE MATCH	BUSY ERROR	$\overline{\text { ATN }}$	$\overline{\text { ACK }}$

Address 6 －Input Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB}}$	$\overline{\mathrm{SDB} 6}$	$\overline{\mathrm{SDB} 5}$	$\overline{\mathrm{SDB}} 4$	$\overline{\mathrm{SDB} 3}$	$\overline{\mathrm{SDB} 2}$	$\overline{\mathrm{SDB} 1}$	$\overline{\mathrm{SDB}} 0$

Address 7 －Reset Error／Interrupt Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

initiator to detect that the target device has changed to a different information transfer phase. When the L5380/53C80 detects a phase mismatch, PHASEMATCH is reset, and information transfer to or from the SCSI bus is inhibited.

R5 Bit 2 - Busy Error

This bit can only be set if the Monitor Busy bit (R2 bit 2) is set. When set, Busy Error indicates that the BSY pin has been false for a period at least equal to a bus settle delay (400 ns). When the Busy Error condition is detected, all SCSI signal pins are disabled, and the DMAMODE bit (R2 bit 1) and bits 5-0 of the Initiator Command Register are reset. Busy Error can be reset by a read to the Reset Error/Interrupt Register (Register 7).
R5 Bits 1, $0-\overline{A T N}, \overline{A C K}$
Like the Current SCSI Control Register, these bits provide a means for the CPU to directly monitor the state of the SCSI bus control signals. The SCSI control lines are not actually registered, but gated directly onto the CPU bus whenever Address 5 is read by the CPU. The value of each bit position represents the complement of the corresponding (low true) SCSI Signal Pin.

READ ADDRESS 6
 Input Data Register

This register acts as a temporary holding register for information received from the SCSI data bus during DMA transfers (DMAMODE bit, R2 bit 1 is set). In the initiator mode, the L5380/53C80 latches the SCSI data when $\overline{R E Q}$ goes active. In the target mode, data is latched when $\overline{\mathrm{ACK}}$ goes active. The contents of this register represent the negation of the low-true SCSI data. The contents of the SCSI Input Data Register are gated onto the CPU data bus when $\overline{\text { DACK }}$ and $\overline{\mathrm{IOR}}$ are simultaneously true, or by a CPU read of location 6. Note that DACK and $\overline{\mathrm{CS}}$ must never be active simulta-
neously in order to prevent conflicting read operations. Parity may optionally be checked on the data as it is loaded into this register.

READ ADDRESS 7

Reset Error/Interrupt Register

This is a dummy register. Reads to this location are detected and used to reset the Interrupt Request Latch (IRQ signal) and the PARITY ERROR, INTERRUPT REQUEST, and BUSY ERROR latches (visible as bits 5, 4 , and 2 of Register 5).

INTERRUPTS

The L5380/53C80 generates interrupts to the CPU by setting the Interrupt Request Latch, which directly drives the IRQ (Interrupt Request) line. The IRQ output will reflect the state of the Interrupt Request Latch under all conditions except when Testmode (R1 bit 6) is active, when it is in a high impedance state. The Interrupt Request Latch may be reset by reading Address 7, the Reset Error/Interrupt Register. A read of this location also resets several error condition latches as discussed in the section on "Internal Registers".
Interrupts may be caused by any of six conditions, most of which may be masked by resetting enable bits in the appropriate registers. The following sections describe each interrupt type, its cause, and how it may be reset. Upon receiving an interrupt, the CPU may read the Current SCSI Control Register (R4) and the DMA Status Register (R5) to determine the cause of the interrupt. While the following discussions indicate the expected values of these registers following an interrupt, it is recommended that bits in these registers which are not germane to determining the cause of an interrupt be masked off in firmware prior to implementing a comparison. A typical operational sequence for an interrupt service routine is given at the end of this section.

SCSI Bus Reset Interrupt

A SCSI Bus Reset Interrupt occurs when the SCSI $\overline{\operatorname{RST}}$ signal becomes active. This may be due to another SCSI device driving the $\overline{\mathrm{RST}}$ line, or because the Assert RST bit (R1 bit 7) has been set, causing the L5380/53C80 to drive the SCSI RST line. The value of the SCSI RST line is visible as R4 bit 7; however, this line is not latched and therefore may have changed state by the time the CPU responds to the interrupt and polls this location. For this reason, a SCSI Bus Reset Interrupt should be assumed if no other interrupt condition is active when reading Registers 4 and 5.

The SCSI Bus Reset Interrupt is nonmaskable. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Selection/Reselection Interrupt

A Selection/Reselection Interrupt occurs when the SCSI $\overline{\text { SEL }}$ signal becomes active, the SCSI bus matches the bit set in the ID Select Register, and $\overline{B S Y}$ has been false for at least a bus settle delay. When the $\overline{\mathrm{I}} / \mathrm{O}$ pin is asserted, the interrupt should be interpreted as a reselection. The Selection/Reselection Interrupt may be masked by resetting all bits in the ID Select Register. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Loss of Busy Interrupt

A Loss of Busy Interrupt occurs when the SCSI $\overline{B S Y}$ signal has been inactive for at least a bus settle delay (400 ns). The Loss of Busy Interrupt may be masked by resetting the Monitor Busy bit (R2 bit 2). Resetting Monitor Busy also prevents the Busy Error latch (Read R5 bit 2) from being set. The expected read values for the Current

L5380/53C80

SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Phase Mismatch Interrupt
A Phase Mismatch Interrupt occurs when the DMAMODE bit (R 2 bit 1) is set, $\overline{\mathrm{REQ}}$ is active on the SCSI bus, and the SCSI phase signals $\overline{\mathrm{MSG}}, \overline{\mathrm{C}} / \mathrm{D}$, and $\overline{\mathrm{I}} / \mathrm{O}$ do not match the corresponding bits in the Target Command Register. This interrupt is intended for use by the initiator to detect a change of phase by the target during a DMA transfer. When operating as a target, the SCSI phase lines will normally be asserted via the Target Command Register, so no phase mismatch will be generated unless another SCSI device is erroneously driving the phase lines to an unintended state.

The result of the continuous comparison of the SCSI phase lines to the Target Command Register contents is visible as the Phase Match bit (Read R5 bit 3). This flag operates irrespective of the state of DMAMODE and REQ. As long as a phase mismatch condition persists, the $\mathrm{L} 5380 / 53 \mathrm{C} 80$ is prevented from recognizing active REQ inputs, and SCSI output data drivers are disabled.

The Phase Mismatch Interrupt is nonmaskable, however it will only occur when operating in DMAMODE. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Parity Error Interrupt

A Parity Error Interrupt occurs when incorrect parity is detected during a read of the SCSI bus. Parity checking occurs under the following conditions: Parity is checked during a programmed I/O read of the Current SCSI Data Register (Read R0), when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{IOR}}$ are active and the A2-0 lines are 000 . Parity is also checked during

DMA read operations (DMAMODE bit, $R 2$ bit 1 is set) when $\overline{\mathrm{ACK}}$ is active for target receive, or $\overline{\mathrm{REQ}}$ is active for initiator receive.

The Parity Error latch is set when parity error checking is enabled and one of the above parity error conditions is encountered. This latch is

Table 4. Interrupt Read Values

Read Address 4 - Current SCSI Control Register

7	6	5	4	3	2	1	0
$\overline{\mathrm{RST}}$	$\overline{\text { BSY }}$	$\overline{\mathrm{REQ}}$	$\overline{\text { MSG }}$	$\overline{\mathrm{C}}$ / D	İ/O	$\overline{\text { SEL }}$	$\overline{\text { PARITY }}$
SCSI Bus Reset Interrupt							
X	0	0	0	0	0	0	0
Selection/Reselection Interrupt							
0	0	0	x	x	1=RESEL	1	x
Loss of Busy interrupt							
0	0	0	0	0	0	0	0
Phase Mismatch Interrupt							
0	1	1	X	X	X	0	X
Parity Error Interrupt							
0	x	X	x	x	x	X	X
End of DMA Interrupt							
0	1	X	x	X	X	0	X

Read Address 5 - DMA Status Register

7	6	5	4	3	2	1	0
$\begin{gathered} \text { END } \\ \text { OF } \\ \text { DMA } \end{gathered}$	$\begin{aligned} & \text { DMA } \\ & \text { REQ } \end{aligned}$	PARITY ERROR	INTERRUPT REQ	PHASE MATCH	BUSY ERROR	$\overline{\text { ATN }}$	$\overline{\text { ACK }}$
SCSI Bus Reset Interrupt							
0	0	0	1	1	0	0	0
Selection/Reselection Interrupt							
0	0	0	1	X	0	X	0
Loss of Busy Interrupt							
0	0	0	1	X	1	0	0
Fhase nismatch Interrupt							
0	0	0	1	0	X	X	0
Parity Error Interrupt							
X	X	1	1	X	X	X	X
End of DMA Interrupt							
1	0	0	1	X	0	0	X

visible as bit 5 of the DMA Status Register（Read R5）．The Parity Error Interrupt may be masked and setting of the Parity Error latch prevented by resetting the Enable Parity Check bit （Write R2 bit 5）．The Parity Error latch can be reset by reading the Reset Error／Interrupt Register（Read R7）． The expected read values for the Current SCSI Control Register and the DMA Status Register upon encounter－ ing this interrupt are given in Table 4.

End of DMA Interrupt

An End of DMA Interrupt occurs when a valid $\overline{\mathrm{EOP}}$（End of Process） signal is detected during a DMA transfer．$\overline{\mathrm{EOP}}$ is valid when $\overline{\mathrm{EOP}}$ ， $\overline{\mathrm{DACK}}$ ，and either $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ are simultaneously asserted for the mini－ mum specified time．$\overline{\text { EOP }}$ inputs not occurring during I／O read or write operations are ignored．
The End of DMA latch is set whenever the DMAMODE bit（ R 2 bit 1 ）is set and a valid $\overline{\mathrm{EOP}}$ is received．This latch is visible as bit 7 of the DMA Status Register（Read R5）．The End of DMA Interrupt may be masked by resetting the Enable EODMA Inter－ rupt bit（Write R2 bit 3）．This bit does not affect the End of DMA latch， however．The End of DMA latch can be reset by resetting the DMAMODE bit in the Mode Register．The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

DATA TRANSFERS

The L5380／53C80 supports program－ med I／O under CPU control or DMA transfer via a DMA controller when transferring information to and from the SCSI data bus．Programmed I／O can be implemented entirely in firmware or using minimum external logic for accessing the appropriate registers．Under DMA control，the L5380／53C80＇s DMA interface logic and internal state machines provide
the necessary control of the $\overline{\mathrm{REQ}}-\overline{\mathrm{ACK}}$ handshake．Each type of transfer is fully described in the following sections．

Programmed I／O

Two forms of programmed I／O are supported by the L5380／53C80．For normal programmed I／O，the SCSI handshake is accomplished by setting bits in the Initiator or Target Com－ mand registers to assert SCSI control lines，and polling the Current SCSI Control and DMA Control registers for the appropriate responses．Since for this method the control is contained in firmware，the cycle times are relatively slow．It is most appropriate
for transferring small blocks of data such as SCSI command blocks or messages，where the overhead of setting up a DMA controller could be significant．

Pseudo DMA

An alternate method of programmed I／O allows the state machines of the L5380／53C80 to handle the SCSI handshake，thereby improving performance in systems which do not employ a hardware DMA controller． To implement Pseudo DMA，the DMAMODE bit is set．The CPU polls the DRQ bit in the DMA Control Register to determine when a byte should be written to or read from the

Read Address 5 ＞TEMP	：Read DMA Status Reg to variable TEMP
IF TEMP＂AND＂HEX（10）＝ 0 THEN GO TO NEXT DEVICE	：IRQ not active，so L5380／L53C80 was not the source of this interrupt
TEMP＂AND＂HEX（AC）\rightarrow TEMP	：Mask off irrevelant bits
$\begin{aligned} & \text { IF TEMP > HEX (7F) THEN } \\ & \text { GO TO EODMA } \end{aligned}$	：End of DMA Interrupt
IF TEMP＞HEX（1F）THEN GO TO PARERR	：Parity Error Interrupt
IF TEMP＞HEX（03）THEN GO TO BYSERR	：Loss of Busy Interrupt
$\begin{aligned} & \text { IF TEMP }=\operatorname{HEX}(00) \text { THEN } \\ & \text { GO TO PHASERR } \end{aligned}$	：Phase Mismatch Interrupt
Read Address $4 \rightarrow$ TEMP	：Read Current SCSI Control Reg to variable TEMP
TEMP＂AND＂HEX（06）\rightarrow TEMP	：Mask off irrevelant bits
$\begin{aligned} & \text { IF TEMP = HEX (06) THEN } \\ & \text { GO TO RESEL } \end{aligned}$	：Reselection Interrupt
$\begin{aligned} & \text { IF TEMP = HEX (02) THEN } \\ & \text { GO TO SEL } \end{aligned}$	：Selection Interrupt
$\begin{aligned} & \text { IF TEMP }=\text { HEX (} 00 \text {) THEN } \\ & \text { GO TO RESET } \end{aligned}$	：SCSI Bus Reset Interrupt

L5380/53C80. When reading or writing, external logic must be used to decode the L5380/53C80 location and produce $\overline{\text { DACK, }}$, since it is used by the internal state machines. Also, $\overline{\mathrm{CS}}$ must be suppressed since it may not be asserted simultaneously with DACK.

Normal DMA Mode

Normal DMA mode is obtained when the DMAMODE bit is set but the Blockmode bit is reset. The DMA process is started by writing to the Start DMA Send, Start DMA Initiator Receive, or Start DMA Target Receive locations as appropriate. Once started, the internal state machines of the L5380/53C80 manage the $\overline{\text { REQ }}$ $\overline{\mathrm{ACK}}$ handshake protocol, as well as the DRQ-DACK handshake with the DMA controller.

The L5380/53C80 will assert DRQ whenever it is ready to transfer a byte to or from the DMA controller. In response to DRQ, the controller asserts $\overline{\text { DACK }}$ and $\overline{\text { IOR }}$ to read the byte, or DACK and IOW to write a byte to the L5380/53C80. For write operations, the byte is latched at the rising edge of the logical AND of DACK and IOW. The transfer can be terminated by asserting $\overline{\mathrm{EOP}}$ during a read or write operation, or by resetting the
DMAMODE bit.

Block DMA Mode

When the Blockmode bit is set, the DMA handshake is no longer dependent on interlocked DRQ-DACK cycles. Instead, the DMA controller may be allowed to free-run, with data flow throttled by inserting "wait-states" in the DMA transfer to or from the L5380/53C80. Wait-states, which are idle clock cycles inserted during the I/O read or write operation, are inserted by the DMA controller until the READY output of the L5380/ 53 C 80 goes true, allowing the bus cycle to conclude.

The READY output will be deasserted under the following conditions: For send operations, READY will be false whenever the Output Data Register contains a byte which has not been transferred over the SCSI bus. This allows the DMA controller to access RAM to fetch the next byte, but postpones the end of the CPU bus cycle until the previous byte has been transferred, freeing the Output Data Register to receive it.
For receive operations, READY will be false whenever the Input Data Register is empty. This allows the DMA controller to address the RAM for a write operation, but postpones the end of the CPU bus cycle until the incoming byte is stored in the Input Data Register and is available on the CPU bus.

Note that when blockmode is employed, $\overline{\text { DACK }}$ may optionally remain asserted throughout the DMA transfer, since it is not used in an interlocked DMA handshake (Its interlock function is replaced by $\overline{\mathrm{IOR}}$ or IOW). Also, DRQ will be asserted in the normal way when operating in blockmode. To gain the abovementioned performance benefits, it should be used only to initiate the first byte transfer, with READY used to throttle succeeding transfers. This methodology is compatible with DMA controllers such as the Intel 8237 and AMD Am9516/9517.

In summary, blockmode operation offers the potential for improved transfer rates by overlapping the DMA memory access with the SCSI transfer. This is of particular value when used with DMA controllers capable of "flyby" operation, where the data is transferred directly from memory to the peripheral, and does not pass through the DMA controller itself. This transfer rate gain is achieved at the expense of locking up the CPU bus for a time equal to the SCSI transit time of the entire block.

This may be strongly preferable in some systems where net disk access time is a crucial performance factor. Also, the time required to arbitrate for the CPU bus on a byte-by-byte basis may well be longer than the cycles wasted waiting for SCSI transfers to take place, especially with fast peripherals which operate from a high speed sector buffer.

Terminating DMA Transfers

DMA transfers, either normal or blockmode, may be terminated in a number of ways. The following sections describe these methods, along with providing information about correct sequencing of various signals to effect a clean exit from a DMA process.

$\overline{\mathrm{EOP}}$ Signal

The $\overline{\mathrm{EOP}}$ signal is usually generated by a DMA controller to indicate that its transfer counter has decremented to zero. In order to be recognized by the L5380/53C80, it should be asserted simultaneously with the $\overline{\mathrm{DACK}}$ and $\overline{\text { IOR }}$ or IOW signals corresponding to the last byte in the transfer. Note that in the case of send operations, asserting $\overline{\mathrm{EOP}}$ indicates to the L5380/53C80 that SCSI transfers should cease after transmission of the byte loaded while $\overline{\mathrm{EOP}}$ is asserted. In order to determine when this last byte has actually been sent, the Last Byte Sent flag in the Target Command Register may be examined. This flag is not present in the NCR implementation of the 5380 , but is available in the 53 C 80 , a non-pin-compatible variant. The $\overline{\mathrm{EOP}}$ input does not reset the DMAMODE bit, but after transmission of the last byte causes the internal state machine to return to an idle condition, so that no further SCSI handshaking will occur until another transmission is explicitly initiated. Note that the NCR version of the 5380, upon receiving an $\overline{\mathrm{EOP}}$, will stop asserting DRQ, but will continue to issue $\overline{A C K}$ in response to additional $\overline{\mathrm{REQ}}$ inputs,
potentially causing data loss if the target initiates another data transmission without an intervening phase change. The L5380/53C80 prevents this spurious DMA handshake from occurring.

DMA Mode Bit

Resetting the DMAMODE bit in the Mode Register causes a hard reset of the internal DMA state machines, and thus an effective termination of a DMA transfer. Since unlike the $\overline{\mathrm{EOP}}$ case the state machine is not allowed to exit gracefully, care must be taken in the timing of DMAMODE reset.

For receive operations, the DMAMODE bit should be reset after the last DRQ is received, but prior to asserting DACK to prevent an additional $\overline{\mathrm{REQ}}$ or $\overline{\mathrm{ACK}}$ from occurring. For normal DMA mode, resetting this bit will cause DRQ to go inactive. However, the last byte received remains in the SCSI Input Data Register and may be read either by the normal $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{IOR}} \mathrm{DMA}$ read or using a CPU read of Address 6. For blockmode DMA, READY will remain asserted when DMAMODE is reset, allowing the DMA controller to retrieve the last byte in the normal fashion. The NCR version of the 5380 fails to keep READY asserted when DMAMODE is reset, potentially causing deadlock on the CPU bus.

Bus Phase Mismatch

When operating in DMAMODE as an initiator, a bus phase mismatch can be used to terminate a data transfer. If the $\overline{\mathrm{C}} / \mathrm{D}, \overline{\mathrm{I}} / \mathrm{O}$, and $\overline{\mathrm{MSG}}$ lines fail to match the corresponding bits in the Target Command Register, it will prevent recognition of REQ , and will disable the SCSI data and parity output drivers. Also, when $\overline{\mathrm{REQ}}$ becomes active, an interrupt will be generated. Because $\overline{\mathrm{REQ}}$ is not recognized, the effect is to stop the DMA transfer, although the state machine does not return to idle until either DMAMODE is reset or a valid $\overline{\mathrm{EOP}}$ is received.

One caution should be observed when using phase changes to end DMA transfers: While this method does not require the initiator to keep a transfer counter, it depends on the target causing a phase change between any two consecutive information transfer phases. Since this is not required by the protocol, it must be guaranteed by the target software. Otherwise the target may begin a new information transfer without the initiator recognizing the boundary between the two.

ARBITRATION

The L5380/53C80 contains on-chip hardware to assist in arbitrating for the SCSI bus. This arbitration logic cooperates with the host firmware to effect SCSI arbitration, as described in the following paragraphs:

The SCSI arbitration timeline begins with detection of a bus free condition at time $t 0$. Bus free is defined as $\overline{\mathrm{BSY}}$ and $\overline{\text { SEL }}$ inactive for at least a bus settle delay (400 ns). Following the bus settle delay, the SCSI device must wait an additional bus free delay of 800 ns , for a total of 1200 ns after to, prior to driving any signal. Thus a minimum of 1200 ns must elapse from initial deassertion of $\overline{\mathrm{BSY}}$ to the beginning of an arbitration attempt. A final constraint is that arbitration may not begin if more than a bus set delay (1800 ns) has elapsed since $\overline{\text { BSY }}$ became active (arbitration began), corresponding to 2200 ns after to.

The CPU indicates a desire to arbitrate by setting the Arbitrate bit (R2 bit 0). When Arbitrate is set, the L5380/53C80 will monitor the state of $\overline{\mathrm{BSY}}$ and $\overline{\text { SEL }}$ to detect a bus free condition. The actual implementation uses an internal delay line to provide a time reference for detection of a bus free condition. This delay is nominally 800 ns during which $\overline{\mathrm{BSY}}$ and $\overline{\text { SEL }}$ must be inactive. This time represents the center of the window between the Bus Settle Delay (400 ns)
and the Bus Free Delay $(400+800=$ 1200 ns). When Bus Free is detected, the L5380/53C80 waits for an additional time of nominally 900 ns (1700 ns nominal since \mathbf{t}) and asserts $\overline{\mathrm{BSY}}$ and the contents of the Output Data Register. This time represents the center of the $1200 \mathrm{~ns}-2200 \mathrm{~ns}$ window between the earliest and latest legal arbitration attempt. Since the actual delays are process and temperature dependent, they will vary in practice, but will always remain well within the specified limits.
Once arbitration has begun ($\overline{\mathrm{BSY}}$ and the Output Data Register asserted,) the Arbitration In Progress bit (R1 bit 6) will be set, allowing the CPU to detect the fact that arbitration has begun. The CPU should then wait one arbitration delay $(2.2 \mu \mathrm{~s})$ before reading the bus to determine whether arbitration has been won or lost. The Lost Arbitration bit (R 2 bit 7) will be active if the L5380/53C80 has detected $\overline{\text { SEL }}$ active on the SCSI bus, indicating that another SCSI device has declared itself the winner of the arbitration. $\overline{\text { SEL }}$ active also disables the SCSI output drivers, allowing the winning arbitrator to proceed with its transfer.

BUG FIXES/ENHANCMENTS

The NCR5380 and the Am5380 have some architectural bugs, both published and unpublished. The LOGIC Devices L5380/53C80 was designed to eliminate these bugs while maintaining pin and architectural compatibility. A list of these errors along with solutions implemented in the L5380/ 53 C 80 is itemized below.

1. When executing blockmode DMA send operations, the READY signal is intended to insert memory wait states as a mechanism to throttle data transfer, with the DMA controller in a free-running loop. The NCR/ Am5380 erroneously allows the contents of the Output Data Register to be overwritten by subsequent bytes prior to acknowledgment of the
current byte by the SCSI receiver. This causes loss of data when operating in blockmode if the sender's DMA cycle is faster than the receiver's.
2. Assertion of $\overline{\mathrm{EOP}}$ during blockmode DMA transfers fails to cause assertion of READY in the NCR/Am5380. This may prevent the CPU from becoming bus master and can result in lockup of the CPU bus in a not-ready state. In block DMA send mode when EOP is received, the L5380/53C80 reasserts READY immediately after transmitting the final byte. For receive mode, READY is asserted immediately.
3. When a valid $\overline{\mathrm{EOP}}$ is detected, the NCR/Am5380 prevents assertion of additional DRQ's, but continues to respond to SCSI handshakes. This means that additional data transmitted without phase change may be lost. The L5380/53C80, like the NCR/ Am5380 remains in DMAMODE after an EOP. However, the internal state machine returns to an idle condition and does not respond to additional SCSI handshake attempts until another data transfer is explicitly initiated.
4. When operating as an initiator in DMAMODE, the NCR/Am5380 leaves ACK asserted after receipt of a valid EOP , requiring the CPU to deassert it. When a valid EOP is detected, the L5380/53C80 deasserts $\overline{\mathrm{ACK}}$ properly.
5. If the NCR/Am5380 is not terminated on the SCSI side, the floating $\overline{\operatorname{RST}}$ pin will cause spurious interrupts. The L5380/53C80 contains internal high value pullups to set unterminated SCSI pins to the inactive state.
6. During DMA send operations, when a valid $\overline{\mathrm{EOP}}$ signal is received by the NCR/Am5380, no convenient indication exists to indicate that the last byte of data (loaded simultaneously with $\overline{\mathrm{EOP}}$) has in fact been successfully transmitted. The L5380/53C80 provides Last Byte status bit mapped to bit 7 of the Target Command Register. This bit will be set after a valid EOP has occurred, and the final byte has been transmitted successfully.
7. During the reselection phase, the NCR/AM5380 may reset the reselection interrupt if the contents of the Target Command Register do not match the current SCSI bus phase. The L5380/53C80 does not spuriously reset this interrupt.
8. In the NCR/Am5380, the phase mismatch interrupt is captured in an edge triggered fashion on the active edge of REQ. During reselection, this interrupt might not be generated even though a phase change has occurred. The reason for this is as follows:

- The initiator DMAMODE bit must be set in order to receive a phase-match interrupt.
- However, the DMAMODE bit cannot be set unless $\overline{\mathrm{BSY}}$ is active.
- $\overline{\mathrm{BSY}}$ will be driven active by the target only after the relesection has occurred.
- Once $\overline{B S Y}$ has been asserted by the target, it may then assert $\overline{\mathrm{REQ}}$ before the initiator has set the DMAMODE bit, and the initiator will then fail to generate an interrupt.

The L5380/53C80 interrupt latch will be set if a phase mismatch condition exists when the later of $\overline{\mathrm{REQ}}$ or DMAMODE become active. In this way, the mismatch will always be detected, even if the target asserts $\overline{\mathrm{REQ}}$ before the initiator sets DMAMODE.

L5380/53C80

Maximum Ratings Above which useful life may be impaired

Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Output voltage	0.0 V to Vcc
Input voltage	. 0.0 V to +5.5 V
IoL Low Level Output Current (SCSI Bus)	48 mA
IoL Low Level Output Current (other pins)	.. 8 mA
IoH High Level Output Current (other pins).	.. -4 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation, Commercial

Temperature Range (Ambient)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage
$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
ViL	Input Low Voltage		0.0		0.8	V
VH	Input High Voltage		2.0		Vcc	V
VoL	Output Low Voltage (SCSI bus)	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=48 \mathrm{~mA}$			0.5	V
Vol	Output Low Voltage (other pins)	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=8 \mathrm{~mA}$			0.5	V
VoH	Output High Voltage (other pins)	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOH}=-4 \mathrm{~mA}$	3.5			V
In	Input Current*	$\mathrm{Vcc}=$ Max, Vin $=0-\mathrm{Vcc}($ (SCSI bus)			65	$\mu \mathrm{A}$
In	Input Current*	$\mathrm{VCC}=\mathrm{Max}, \mathrm{VIN}=0-\mathrm{Vcc}$ (other pins)			20	$\mu \mathrm{A}$
Icc	Supply Current	$\mathrm{V} C \mathrm{C}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=2.4,$ $\mathrm{VIL}=0.4,4 \mathrm{MHz}$ cycle, No Load, No Termination		10	20	mA
Icc	Supply Current Quiescent	Same as above, inputs stable			1.5	mA

[^11]DMA Interface with 8237 A

ADDRESS BUS A15-0

SWITCHING CHARACTERISTICS

Arbitration Timing (ns - except where noted)

Symbol	Parameter		L5380/53C80-	
	Commercial			
T1	$\overline{\text { BSY }}$ False Duration to Detect Bus Free Condition	$0.4 \mu \mathrm{~s}$	$1.2 \mu \mathrm{~s}$	
T2	SCSI Bus Clear (High Z) from $\overline{\text { BSY }}$ False		$1.2 \mu \mathrm{~s}$	
T3	Arbitrate ($\overline{\mathrm{BSY}}$ and SCSI ID Asserted) from $\overline{\text { BSY }}$ False (Bus Free Detected)	$1.2 \mu \mathrm{~s}$	$2.2 \mu \mathrm{~s}$	
T4	SCSI Bus Clear (High Z) from $\overline{\text { SEL }}$ True (Lost Arbitration)		60	

Arbitration Waveforms

L5380/53C80

CPU Write Cycle Timing (ns)					
Symbol	Parameter	Commercial			
		2 Mbytes/sec		4 Mbytes/sec	
		Min	Max	Min	Max
T1	Address Setup to Write Enable	10		5	
T2	Address Hold from End of Write Enable	5		5	
T3	Width of Write Enable	40		20	
T4	Data Setup to End of Write Enable	20		5	
T5	Data Hold from End of Write Enable	10		5	

CPU Read Cycle Timing (ns)					
Symbol	Parameter	Commercial			
		2 Mbytes/sec		4 Mbytes/sec	
		Min	Max	Min	Max
T1	Address Setup to Read Enable	10		5	
T2	Address Hold from End of Read Enable	5		5	
T3	Data Access Time from Read Enable		50		30

DMA	rite Initiator Send Timing (ns)				
			Com	rcial	
		2 Mb	//sec	4 Mb	/sec
Symbol	Parameter	Min	Max	Min	Max
	The following				
T1	DRQ False from Write Enable (concurrence of $\overline{\text { IOW }}$ and $\overline{\text { DACK }}$)		60		30
T2	Width of Write Enable (concurrence of $\overline{\text { OWW }}$ and $\overline{\text { DACK) }}$	60		20	
T4	Data Setup to End of Write Enable	20		5	
T5	Data Hold from End of Write Enable	15		5	
T6	Concurrent Width of EOP, $\overline{\text { IOW, }}$, and $\overline{\text { DACK }}$	50		20	
T9	$\overline{\mathrm{REQ}}$ False to $\overline{\mathrm{ACK}}$ False		90		45
T13	End of Write Enable to Valid SCSI Data		65		45
T14	SCSI Data Setup Time to $\overline{\text { ACK }}$ True	60		65	
	The following app				
T7	$\overline{\mathrm{REQ}}$ False to DRQ True		60		30
T8	$\overline{\mathrm{DACK}}$ False to $\overline{\mathrm{ACK}}$ True ($\overline{\mathrm{REQ}}$ True)		185		165
T10	$\overline{\mathrm{REQ}}$ True to $\overline{\mathrm{ACK}}$ True ($\overline{\mathrm{DACK}}$ False)		70		35
	The following ap				
T3	IOW Recovery Time	40		20	
T8	$\overline{\text { IOW }}$ False to $\overline{\text { ACK }}$ True ($\overline{\mathrm{REQ}}$ True)		185		165
T10	$\overline{\mathrm{REQ}}$ True to $\overline{\mathrm{ACK}}$ True ($\overline{\mathrm{IOW}}$ False)		70		35
T11	$\overline{\text { REQ }}$ False to READY True		60		30
T12	$\overline{\text { IOW }}$ False to READY False		70		35

DMA Write Initiator Send Waveforms

L5380/53C80

DMA Read Initiator Receive Timing (ns)

Symbol	Parameter	Commercial			
		2 Mbytes/sec		4 Mbytes/sec	
		Min	Max	Min	Max
The following apply for all DMA Modes					
T1	DRQ False from Concurrence of $\overline{\mathrm{IOR}}$ and $\overline{\mathrm{DACK}}$		60		30
T3	Data Access Time from Concurrence of $\overline{\text { IOR }}$ and DACK		60		20
T4	Concurrent Width of $\overline{\mathrm{OOP}}, \overline{\mathrm{OR}}$, and $\overline{\mathrm{DACK}}$	50		20	
77	$\overline{\mathrm{REQ}}$ True to $\overline{\mathrm{ACK}}$ True		70		35
T12	SCSI Data Setup Time to $\overline{\mathrm{REQ}}$ True	20		5	
T13*	SCSI Data Hold Time from $\overline{R E Q}$ True	15		10	
The following apply for Normal DMA Mode only					
T5	$\overline{\mathrm{REQ}}$ True to DRQ True		60		30
T6	$\overline{\text { DACK False to } \overline{\text { ACK }} \text { False (} \overline{\mathrm{REQ}} \text { False) }}$		90		55
T8	$\overline{\mathrm{REQ}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\mathrm{DACK}}$ False)		80		55

The following apply for Blockmode DMA only

T2	$\overline{\mathrm{OR}}$ Recovery Time	40		20	
T6	$\overline{\mathrm{IOR}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\mathrm{REQ}}$ False)		90		45
T8	$\overline{\mathrm{REQ}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\mathrm{IOR}}$ False)		80		45
T9	$\overline{\mathrm{REQ}}$ True to READY True		60		30
T10	READY True to CPU Data Valid		15		15
T11	$\overline{\mathrm{IOR}}$ False to READY False		70		35

DMA Read Initiator Receive Waveforms

DMA Write Target Send Timing (ns)

Symbol	Parameter	Commercial			
		2 Mbytes/sec		4 Mbytes/sec	
		Min	Max	Min	Max
The following apply for all DMA Modes					
T1	DRQ False from Write Enable (concurrence of $\overline{\mathrm{OW}}$ and $\overline{\mathrm{DACK}}$)		60		30
T2	Width of Write Enable (concurrence of $\overline{\mathrm{OW}}$ and $\overline{\mathrm{DACK}}$)	60		20	
T4	Data Setup to End of Write Enable	20		5	
T5	Data Hold from End of Write Enable	15		5	
T6	Concurrent Width of EOP, $\overline{\mathrm{OWW}}$, and $\overline{\text { DACK }}$	50		20	
T9	$\overline{\text { ACK }}$ True to $\overline{\mathrm{REQ}}$ False		90		45
T13	End of Write Enable to Valid SCSI Data		60		45
T14	SCSI Data Setup Time to $\overline{\mathrm{REQ}}$ True	60		65	
The following apply for Normal DMA Mode only					
T7	$\overline{\text { ACK }}$ True to DRQ True		60		30
T8	$\overline{\mathrm{DACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		185		165
T10	$\overline{\mathrm{ACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{DACK}}$ False)		70		35
The following apply for Blockmode DMA only					
T3	İW Recovery Time	40		20	
T8	$\overline{\mathrm{OWW}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		185		165
T10	$\overline{\mathrm{ACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\overline{O W}}$ False)		70		35
T11	$\overline{\text { ACK }}$ True to READY True		60		30
T12	$\overline{\text { IOW }}$ False to READY False		70		35

L5380/53C80

DMA Read Target Receive Timing (ns)					
Symbol	Parameter	Commercial			
		2 Mbytes/sec		4 Mbytes/sec	
		Min	Max	Min	Max
The following apply for all DMA Modes					
T1	DRQ False from Concurrence of $\overline{\text { IOR }}$ and $\overline{\text { DACK }}$		60		30
T3	Data Access Time from Concurrence of $\overline{\text { IOR }}$ and DACK		60		20
T4	Concurrent Width of EOP, $\overline{\overline{O R}}$, and $\overline{\text { DACK }}$	50		20	
T7	$\overline{\mathrm{ACK}}$ True to $\overline{\mathrm{REQ}}$ False	70		45	
T12	SCSI Data Setup Time to $\overline{A C K}$ True	20		10	
T13*	SCSI Data Hold Time from $\overline{\text { ACK }}$ True	15		10	
The following apply for Normal DMA Mode only					
T5	$\overline{\text { ACK }}$ True to DRQ True		60		30
T6	$\overline{\mathrm{DACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		90		45
T8	$\overline{\mathrm{ACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{DACK}}$ False)		80		45
The following apply for Blockmode DMA only					
T2	$\overline{\mathrm{OR}}$ Recovery Time	40		20	
T6	$\overline{\text { OR }}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		90		45
T8	$\overline{\text { ACK }}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{OR}}$ False)		80		45
T9	$\overline{\text { ACK }}$ True to READY True		60		30
T10	READY True to CPU Data Valid		15		15
T11	$\overline{\text { IOR }}$ False to READY False		70		35

DMA READ TARGET RECEIVE WAVEFORMS
*Data must be held on the SCSI bus until $\overline{R E Q}$ becomes False

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -0.5 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and Vol max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0 -to- Z tests, and set at 0 V for Z -to-1 and 1 -to- Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

Vol* Measured Vol with $10 \mathrm{H}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$
VOH^{*} Measured VOH with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$

L5380/53C80

Memory Products

FFO Products

Qually and Reliablity

Technology and Design Features
Package Intomation

Product Listing

DEVICES INCORPORATED

Memory-Products

MEMORY PRODUCTS 7-1
64K Static RAMs
L7C162 16K x 4, Separate I/O, 2 Chip Enables + Output Enable 7-3
L7C164 16K x 4, Common I/O, 1 Chip Enable 7-11
L7C166 16K x 4, Common I/O, 1 Chip Enable + Output Enable 7-11
256K Static RAMs
L7C194 64K x 4, Common I/O, 1 Chip Enable 7-21
L7C195 $64 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable + Output Enable 7-21
L7C197 $256 \mathrm{~K} \times 1$, Separate I/O, 1 Chip Enable 7-29
L7C199 $32 \mathrm{~K} \times 8$, Common I/O, 1 Chip Enable + Output Enable 7-37
1M Static RAMs
L7C106 256K x 4, Common I/O, 1 Chip Enable + Output Enable 7-45
L7C108 $128 \mathrm{~K} \times 8$, Common I/O, 1 Chip Enable + Output Enable 7-51
L7C109 $\quad 128 \mathrm{~K} \times 8$, Common I/O, 2 Chip Enables + Output Enable 7-51
Special Architecture RAMs
L7C174 $8 \mathrm{~K} \times 8$, Cache-Tag 7-61

ETitite
DEVICES INCORPORATED

FEATURES

$\square 16 \mathrm{~K} \times 4$ Static RAM with Separate I/O and High Impedance WriteAuto-Powerdown ${ }^{\text {TM }}$ DesignAdvanced CMOS TechnologyHigh Speed - to 12 ns maximum
\square Low Power Operation
Active: 325 mW typical at 25 ns
Standby: $400 \mu \mathrm{~W}$ typicalData Retention at 2 V for Battery Backup OperationDECC SMD No. 5962-89712Available 100\% Screened to MIL-STD-883, Class B
\square Plug Compatible with IDT 71982 and Cypress CY7C162
\square Package Styles Available:

- 28-pin Plastic DIP
- 28 -pin Ceramic DIP
- 28-pin Plastic SOJ
- 28-pin Ceramic LCC

DESCRIPTION

The L7C162 is a high-performance, low-power CMOS static RAM. The storage cells are organized as 16,384 words by 4 bits per word. Data In and Data Out are separate. This device is available in four speeds with maximum access times from 12 ns to 25 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 325 mW (typical) at 25 ns . Dissipation drops to 60 mW (typical) when the memory is deselected.
Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive
L7C162 Block Diagram

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current	.. > 200 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode

Active Operation, Commercial
Active Operation, Industrial
Active Operation, Military Data Retention, Commercial Data Retention, Industrial Data Retention, Military

Temperature Range (Ambient)

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)

Symbol	Parameter	Test Condition	L7C162			Unit
			Min	Typ	Max	
VOH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.2		$\begin{gathered} \mathrm{Vcc} \\ +0.3 \end{gathered}$	V
VL	Input Low Voltage	(Note 3)	-3.0		0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq VCC	-10		+ 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
ICC2	Vcc Current, TTL Inactive	(Note 7)		12	25	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		80	300	$\mu \mathrm{A}$
Icc4	Vcc Current, Data Retention	$\mathrm{VCC}=3.0 \mathrm{~V}$ (Note 9)		10	150	$\mu \mathrm{A}$
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance	$\text { Test Frequency = } 1 \mathrm{MHz} \text { (Note 10) }$			7	pF

Symbol	Parameter	Test Condition	L7C162-				
			25	20	15	12	Unit
Icc1	Vcc Current, Active	(Note 6)	100	120	140	165	mA

L7C162

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	25		20		15		12	
tavav	Address Valid to Output Valid (Notes 13, 14)		25		20		15		12
taxax	Address Change to Output Change	3		3		3		3	
tclQv	Chip Enable Low to Output Valid (Notes 13, 15)		25		20		15		12
tCLQZ	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3	
tCHQZ	Chip Enable High to Output High Z (Notes 20, 21)		10		8		8		5
toLQv	Output Enable Low to Output Valid		12		10		8		6
toLQZ	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0	
tohQZ	Output Enable High to Output High Z (Notes 20, 21)		10		8		5		5
tPU	Input Transition to Power Up (Notes 10, 19)	0		0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		25		20		20		20
tchVL	Chip Enable High to Data Retention (Note 10)	0		0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\mathbf{C E}} / \overline{\mathrm{OE}}$ Controlled Notes 13,15

Data Retention note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes $5,11,12,22,23,24$ (ns)									
Symbol	Parameter	L7C162-							
		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	20		20		15		12	
tclew	Chip Enable Low to End of Write Cycle	15		15		12		10	
tavBw	Address Valid to Beginning of Write Cycle	0		0		0		0	
tavew	Address Valid to End of Write Cycle	15		15		12		10	
tewax	End of Write Cycle to Address Change	0		0		0		0	
twlew	Write Enable Low to End of Write Cycle	15		15		12		10	
tovew	Data Valid to End of Write Cycle	10		10		7		6	
tewdx	End of Write Cycle to Data Change	0		0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		7		7		5		4

Write Cycle - WE Controlled Notes 16, 17, 18, 19

Write Cycle - CE Controlled Notes 16, 17, 18, 19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vour $\leq \mathrm{VCc}$. The device is disabled, i.e., $\mathrm{CE}_{1}=\mathrm{VCC}, \overline{\mathrm{CE}} 2=\mathrm{VCC}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametricinformation for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE} 1} \leq \mathrm{V}_{\text {IL }}, \overline{\mathrm{CE} 2} \leq \mathrm{VIL}^{2}, \mathrm{WE} \leq \mathrm{V}_{\text {IL }}$. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}_{1}} \geq \mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CE}_{2}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$, $\overline{\mathrm{CE} 2}=\mathrm{VCc}$. Input levels are within 0.2 V of Vcc or GND.
9. Data retention operation requires that Vcc never drop below 2.0 V . CE1 must be $\geq \mathrm{VCc}-0.2 \mathrm{~V}$ or CE_{2} must be $\geq \mathrm{Vcc}-0.2 \mathrm{~V}$. All other inputs must meet Vin $\geq \mathrm{Vcc}-0.2 \mathrm{~V}$ or Vin $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to $\overline{\mathrm{CE}}, \overline{\mathrm{CE}}$, and $\overline{\mathrm{WE}}$; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified Iol and IoH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low, $\overline{\mathrm{CE}} 2 \mathrm{low}$).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}} 1$ and CE 2 transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CE}} 2$ active and $\overline{W E}$ low. All threesignals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with the latter of $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CE} 2}$ going active, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE} 2}$ goes inactive before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}} 2$ ($\overline{\mathrm{CE}}$ active) or the falling edge of $\overline{\mathrm{CE} 1}$ (CE 2 active).
b. Falling edge of $\overline{\mathrm{WE}}(\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$ active).
c. Transition on any address line ($\overline{\mathrm{CE}}, \overline{\mathrm{CE}} 2$ active).
d. Transition on any data line ($\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$, and $\overline{W E}$ active).
The device automatically powers down from ICC1 to ICC2 after tpD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$, or WE must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

L7C162

	ORDERING INFORMATION	
	$28-\mathrm{pin}-0.3^{\prime \prime}$ wide	28-pin - 0.3" wide
Speed	Plastic DIP (P10) Ceramic DIP (C5)	Plastic SOJ (W2)
4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \\ 12 \mathrm{~ns} \end{array}$	L7C162PC20 L7C162CC20 L7C162PC15 L7C162CC15 L7C162PC12 L7C162CC12	$\begin{aligned} & \text { L7C162WC20 } \\ & \text { L7C162WC15 } \\ & \text { L7C162WC12 } \end{aligned}$
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \\ 12 \mathrm{~ns} \end{array}$	L7C162PI20 L7C162PI15 L7C162PI12	L7C162WI20 L7C162WI15 L7C162WI12
m	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{Commercial} \mathrm{Screening}$	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C162CM25 L7C162CM20 L7C162CM15	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL}-$ STD-883 Compliant	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C162CMB25 L7C162CMB20 L7C162CMB15	

DEVICES INCORPORATED

FEATURES

-1
$16 \mathrm{~K} \times 4$ Static RAM with Common I/O
A Ato-Powerdown ${ }^{\text {TM }}$ Design
\square Advanced CMOS Technology
\square High Speed - to 12 ns maximum
\square Low Power Operation Active: 325 mW typical at 25 ns Standby: $400 \mu W$ typical
\square Data Retention at 2 V for Battery Backup Operation
Available 100\% Screened to MIL-STD-883, Class B

- Plug Compatible with IDT 6198/ 7188 and Cypress CY7C164/166
\square Package Styles Available:
- 24-pin Plastic DIP
- 22/24-pin Ceramic DIP
- 24-pin Plastic SOJ
- 22/28-pin Ceramic LCC

DESCRIPTION

The L7C164 and L7C166 are highperformance, low-power CMOS static RAMs. The storage cells are organized as 16,384 words by 4 bits per word. Data In and Data Out signals share I/O pins. The L7C164 has a single active-low Chip Enable. The L7C166 has a single Chip Enable and an Output Enable. These devices are available in four speeds with maximum access times from 12 ns to 25 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 325 mW (typical) at 25 ns . Dissipation drops to 60 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the

memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C164 and L7C166 consume only $30 \mu \mathrm{~W}$ (typical) at 3 V , allowing effective battery backup operation.

The L7C164 and L7C166 provide asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus simplify the connection of several chips for increased capacity.

Memory locations are specified on address pins A0 through A13. For the L7C164, reading from a designated location is accomplished by presenting an address and driving $\overline{\mathrm{CE}}$ LOW while $\overline{W E}$ remains HIGH. For the L7C166, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must be LOW the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is HIGH, or $\overline{\mathrm{WE}}$ is LOW.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{W E}$ inputs are LOW. Either signal may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C164 and L7C166 can withstand an injection current of up to 200 mA on any pin without damage.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>200 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCc} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)						
Symbol	Parameter	Test Condition	L7C164/166			Unit
			Min	Typ	Max	
Voh	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			v
VoL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	v
VH	Input High Voltage		2.2		$\begin{gathered} \mathrm{Vcc} \\ +0.3 \end{gathered}$	v
VLL	Input Low Voltage	(Note 3)	-3.0		0.8	V
IIx	Input Leakage Current	Ground \leq VIN \leq Vcc	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
Icc2	Vcc Current, TTL Inactive	(Note 7)		12	25	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		80	300	$\mu \mathrm{A}$
IcC4	Vcc Current, Data Retention	$\mathrm{Vcc}=3.0 \mathrm{~V}$ (Note 9)		10	150	$\mu \mathrm{A}$
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$ (Note 10)			7	pF

Symbol	Parameter	Test Condition	L7C164/166-				
	Vcc Current, Active	(Note 6)	25	20	15	12	Unit

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)									
Symbol	Parameter	L7C164/166-							
		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	25		20		15		12	
tavav	Address Valid to Output Valid (Notes 13, 14)		25		20		15		12
taxax	Address Change to Output Change	3		3		3		3	
tclav	Chip Enable Low to Output Valid (Notes 13, 15)		25		20		15		12
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3	
tchaz	Chip Enable High to Output High Z (Notes 20, 21)		10		8		8		5
tolqv	Output Enable Low to Output Valid		12		10		8		6
tolaz	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0	
tohaz	Output Enable High to Output High Z (Notes 20, 21)		10		8		5		5
tpu	Input Transition to Power Up (Notes 10, 19)	0		0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		25		20		20		20
tchvi	Chip Enable High to Data Retention (Note 10)	0		0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Controlled Notes 13, 15

Data Retention Note 9

L7C164/166

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes $5,11,12,22,23,24$ (ns)									
Symbol	Parameter	L7C164/166-							
		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	20		20		15		12	
tclew	Chip Enable Low to End of Write Cycle	15		15		12		10	
tavew	Address Valid to Beginning of Write Cycle	0		0		0		0	
tavew	Address Valid to End of Write Cycle	15		15		12		10	
tewax	End of Write Cycle to Address Change	0		0		0		0	
twlew	Write Enable Low to End of Write Cycle	15		15		12		10	
tovew	Data Valid to End of Write Cycle	10		10		7		6	
tewdx	End of Write Cycle to Data Change	0		0		0		0	
twhoz	Write Enable High to Output Low \mathbf{Z} (Notes 20, 21)	0		0		0		0	
twLaz	Write Enable Low to Output High Z (Notes 20, 21)		7		7		5		4

Write Cycle - $\overline{\text { WE }}$ Controlled Notes $16,17,18,19$

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq VCc. The device is disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametricinformation for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{V}_{\text {IL }}, \overline{\mathrm{WE}} \leq \mathrm{V}_{\text {IL }}$. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.2 V of Vcc or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN \geq Vcc -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to CE and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{W E}$ goes low before or concurrent with the latter of CE going active, the output remains in a high impedance state.
18. If $\overline{C E}$ goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{C E}$.
b. Falling edge of WE ($\overline{\mathrm{CE}}$ active).
c. Transition on any address line ($\overline{C E}$ active).
d. Transition on any data line ($\overline{\mathrm{CE}}$, and WE active).
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{C E}$ or WE must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Figure 2.

L7C164/166

	L7C166 - ORDERING INFORMATION	
	24-pin - $0.3^{1 "}$ wide	24-pin - $0.3^{"}$ wide
Speed	Plastic DIP (P2) Ceramic DIP (C1)	Plastic SOJ (W1)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \\ 12 \mathrm{~ns} \end{array}$	L7C166PC20 L7C166CC20 L7C166PC15 L7C166CC15 L7C166PC12 L7C166CC12	L7C166WC20 L7C166WC15 L7C166WC12
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \\ 12 \mathrm{~ns} \end{array}$	L7C166P!20 L7C166Pl15 L7C166PI12	L7C166WI20 L7C166WI15 L7C166WI12
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C166CM25 L7C166CM20 L7C166CM15	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-\mathrm{MIL}-$ STD-883 Compliant	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C166CMB25 L7C166CMB20 L7C166CMB15	

L7C194/195 64K x 4 Static RAM

FEATURES

$\square 64 \mathrm{~K} \times 4$ Static RAM with Common I/O

- Auto-Powerdown ${ }^{\text {TM }}$ Design
\square Advanced CMOS Technology
\square High Speed - to 15 ns maximum
\square Low Power Operation
Active: 210 mW typical at 35 ns Standby: 5 mW typicalData retention at 2 V for Battery Backup Operation
- DECC SMD No. 5962-88681 - L7C194
5962-89524 - L7C195
\square Available 100\% Screened to MIL-STD-883, Class BPlug Compatible with IDT 71258/ 61298 and Cypress CY7C194/195
\square Package Styles Available:
- 24/28-pin Plastic DIP
- 24/28-pin Ceramic DIP
- 24/28-pin Plastic SOJ
- 28-pin Ceramic LCC

DESCRIPTION

The L7C194 and L7C195 are highperformance, low-power CMOS static RAMs. The storage cells are organized as 65,536 words by 4 bits per word. Data In and Data Out signals share I/O pins. The L7C194 has a single active-low Chip Enable. The L7C195 has a single Chip Enable and an Output Enable. These devices are available in four speeds with maximum access times from 15 ns to 35 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 210 mW (typical) at 35 ns . Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\text {TM }}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the

L7C194/195 Block Diagram

minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C194 and L7C195 consume only $150 \mu \mathrm{~W}$ (typical) at 3 V , allowing effective battery backup operation.

The L7C194 and L7C195 provide asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus simplify the connection of several chips for increased capacity.
Memory locations are specified on address pins A0 through A15. For the L7C194, reading from a designated location is accomplished by presenting an address and driving $\overline{\mathrm{CE}}$ LOW while $\overline{\mathrm{WE}}$ remains HIGH. For the L7C195, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must be LOW. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is HIGH, or $\overline{\mathrm{WE}}$ is LOW.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are LOW. Either signal may be used to terminate the write operation. Data In and Data Out signals have the same polarity.
Latchup and static discharge protection are provided on-chip. The L7C194 and L7C195 can withstand an injection current of up to 200 mA on any pin without damage.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>200 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VcC} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)

Symbol	Parameter	Test Condition	L7C194/195			Unit
			Min	Typ	Max	
VOH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.2		$\begin{aligned} & \mathrm{Vcc} \\ & +0.3 \end{aligned}$	V
VIL	Input Low Voltage	(Note 3)	-3.0		0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq Vcc	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
IcC2	Vcc Current, TTL Inactive	(Note 7)		10	20	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		1	3	mA
Icc4	Vcc Current, Data Retention	$\mathrm{Vcc}=3.0 \mathrm{~V}$ (Note 9)		50	200	$\mu \mathrm{A}$
CIN	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$ (Note 10)			7	pF

Symbol	Parameter	Test Condition	L7C194/195-				
			35	25	20	15	Unit
IcC1	Vcc Current, Active	(Note 6)	75	100	125	160	mA

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)									
Symbol	Parameter	L7C194/195-							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	35		25		20		15	
tavav	Address Valid to Output Valid (Notes 13, 14)		35		25		20		15
taxax	Address Change to Output Change	3		3		3		3	
tclov	Chip Enable Low to Output Valid (Notes 13, 15)		35		25		20		15
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3	
tchoz	Chip Enable High to Output High Z (Notes 20, 21)		15		10		8		8
tolav	Output Enable Low to Output Valid		15		12		10		8
toloz	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0	
tohaz	Output Enable High to Output High Z (Notes 20, 21)		10		10		8		5
tPU	Input Transition to Power Up (Notes 10, 19)	0		0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		35		25		20		20
tchul	Chip Enable High to Data Retention (Note 10)	0		0		0		0	

Data Retention Note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C194/195-							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	25		20		20		15	
tclew	Chip Enable Low to End of Write Cycle	25		15		15		12	
tavew	Address Valid to Beginning of Write Cycle	0		0		0		0	
tavew	Address Valid to End of Write Cycle	25		15		15		12	
tewax	End of Write Cycle to Address Change	0		0		0		0	
twLew	Write Enable Low to End of Write Cycle	20		15		15		12	
tovew	Data Valid to End of Write Cycle	15		10		10		7	
tewdx	End of Write Cycle to Data Change	0		0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		10		7		7		5

Write Cycle - $\overline{\text { WE }}$ Controlled Notes 16, 17, 18, 19

Write Cycle - CE Controlled Notes 16, 17, 18, 19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq Vcc. The device is disabled, i.e., $\overline{C E}=V C C$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}^{2}, \overline{\mathrm{WE}} \leq \mathrm{V}_{\mathrm{IL}}$. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.2 V of VCC or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN $\geq \mathrm{VCC}-0.2 \mathrm{~V}$ or $\mathrm{VIN} \leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to CE and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified Iol and IoH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tavew is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{C E}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{W E}$ goes low before or concurrent with the latter of CE going active, the output remains in a high impedance state.
18. If CE goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to IcC1 occurs as a result of any of the following conditions:
a. Falling edge of CE .
b. Falling edge of WE ($\overline{\mathrm{CE}}$ active).
c. Transition on any address line (CE active).
d. Transition on any data line ($\overline{\mathrm{CE}}$, and $\overline{\mathrm{WE}}$ active).
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{C E}$ or $\overline{W E}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

FEATURES

－ $256 \mathrm{~K} \times 1$ Static RAM with Separate I／O，Chip Select PowerdownAuto－Powerdown ${ }^{\text {TM }}$ DesignAdvanced CMOS TechnologyHigh Speed－to 15 ns maximum

－Low Power Operation Active： 165 mW typical at 35 ns Standby： 5 mW typical
－Data Retention at 2 V for Battery Backup Operation
－Available 100\％Screened to MIL－STD－883，Class B
\square Plug Compatible with IDT71257， Cypress CY7C197
\square Package Styles Available：
－ 24 －pin Plastic DIP
－24－pin Ceramic DIP
－24－pin Plastic SOJ
－28－pin Ceramic LCC

DESCRIPTION

The L7C197 is a high－performance， low－power CMOS static RAM．The storage circuitry is organized as 262,144 words by 1 bit per word．This device is available in four speeds with maximum access times from 15 ns to 35 ns ．

Operation is from a single +5 V power supply and all interface signals are TTL compatible．Power consumption is 165 mW （typical）at 35 ns ．Dissipa－ tion drops to 50 mW （typical）when the memory is deselected．
Two standby modes are available． Proprietary Auto－Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time，or when the memory is deselected．In addition， data may be retained in inactive storage with a supply voltage as low

as 2 V ．The L7C197 consumes only $150 \mu \mathrm{~W}$（typical）at 3 V ，allowing effective battery backup operation．
The L7C197 provides asynchronous （unclocked）operation with matching access and cycle times．An active－low Chip Enable and a three－state output simplify the connection of several chips for increased capacity．
Memory locations are specified on ad－ dress pins A0 through A17．Reading from a designated location is accom－ plished by presenting an address and driving $\overline{C E}$ LOW while $\overline{W E}$ remains HIGH．The data in the addressed memory location will then appear on the Data Out pin within one access time．The output pin stays in a high－ impedance state when $\overline{\mathrm{CE}}$ is HIGH or $\overline{\mathrm{WE}}$ is LOW．

Writing to an addressed location is accomplished when the active－low $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW．Either signal may be used to terminate the write operation．Data In and Data Out signals have the same polarity．
Latchup and static discharge pro－ tection are provided on－chip．The L7C197 can withstand an injection current of up to 200 mA on any pin without damage．

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)

Symbol	Parameter	Test Condition	L7C197			Unit
			Min	Typ	Max	
VoH	Output High Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}, \mathrm{loH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.2		$\begin{aligned} & \mathrm{V} c \mathrm{c} \\ & +0.3 \end{aligned}$	V
VL	Input Low Voltage	(Note 3)	-3.0		0.8	V
IIX	Input Leakage Current	Ground \leq ViN \leq Vcc	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
IcC2	Vcc Current, TTL Inactive	(Note 7)		10	20	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		1	3	mA
ICC4	Vcc Current, Data Retention	$\mathrm{Vcc}=3.0 \mathrm{~V}$ (Noto 9)		50	200	$\mu \mathrm{A}$
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance				7	pF

Symbol	Parameter	Test Condition	L7C197-				
			35	25	20	15	Unit
ICCl	Vcc Current, Active	(Note 6)	75	100	125	160	mA

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5,11, 12, 22, 23, 24 (ns)									
Symbol	Parameter	L7C197-							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	35		25		20		15	
tavav	Address Valid to Output Valid (Notes 13, 14)		35		25		20		15
tAXQX	Address Change to Output Change	3		3		3		3	
tCLQV	Chip Enable Low to Output Valid (Notes 13, 15)		35		25		20		15
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3	
tchoz	Chip Enable High to Output High Z (Notes 20, 21)		15		10		8		8
tPu	Input Transition to Power Up (Notes 10, 19)	0		0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		35		25		20		20
tchVL	Chip Enable High to Data Retention (Note 10)	0		0		0		0	

Data Retention note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C197-							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	25		20		20		15	
tclew	Chip Enable Low to End of Write Cycle	25		15		15		12	
tavBw	Address Valid to Beginning of Write Cycle	0		0		0		0	
tavew	Address Valid to End of Write Cycle	25		15		15		12	
tewax	End of Write Cycle to Address Change	0		0		0		0	
twlew	Write Enable Low to End of Write Cycle	20		15		15		12	
tovew	Data Valid to End of Write Cycle	15		10		10		7	
tewdx	End of Write Cycle to Data Change	0		0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		10		7		7		5

Write Cycle - $\overline{\text { WE Controlled Notes 16, 17, } 18,19}$

Write Cycle - $\overline{\text { CE }}$ Controlled Notes 16, 17, 18, 19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq Vcc. The device is disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{V}_{\text {IL }}, \overline{\mathrm{WE}} \leq$ VIL. $^{\text {. Input pulse levels }}$ are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.2 V of VCC or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN \geq VCc -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to CE and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tavew is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If WE goes low before or concurrent with the latter of $\overline{C E}$ going active, the output remains in a high impedance state.
18. If CE goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of CE .
b. Falling edge of WE (CE active).
c. Transition on any address line (CE active).
d. Transition on any data line ($\overline{\mathrm{CE}}$, and $\overline{\mathrm{WE}}$ active).

The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{C E}$ or $\overline{W E}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Figure 1a.

	ORDERING INFORMATION	
	24-pin - $0.3^{\prime \prime}$ wide	24-pin - $0.3^{\prime \prime}$ wide
Speed	Plastic DIP (P2) Ceramic DIP (C1)	Plastic SOJ (W1)
- 4 ar	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C197PC25 L7C197CC25 L7C197PC20 L7C197CC20 L7C197PC15 L7C197CC15	L7C197WC25 L7C197WC20 L7C197WC15
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C197PI25 L7C197PI20 L7C197PI15	L7C197WI25 L7C197WI20 L7C197WI15
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening	
35 ns 25 ns 20 ns	L7C197CM35 L7C197CM25 L7C197CM20	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - MIL-STD-883 CoMPLIANT	
35 ns 25 ns 20 ns	L7C197CMB35 L7C197CMB25 L7C197CMB20	

DEVICES INCORPORATED

FEATURES

32K $\times 8$ Static RAM with Chip Select Powerdown, Output EnableAuto-Powerdown ${ }^{\text {TM }}$ DesignAdvanced CMOS TechnologyHigh Speed - to 15 ns maximumLow Power Operation Active: 350 mW typical at 35 ns Standby: 5 mW typicalData Retention at 2 V for Battery Backup OperationDECC SMD No. 5962-88662Available 100\% Screened to MIL-STD-883, Class BPlug Compatible with IDT71256,
Cypress CY7C198/199

- Package Styles Available:
- 28-pin Plastic DIP
- 28 -pin Ceramic DIP
- 28-pin Plastic SOJ
- 28 -pin Ceramic Flatpack
- 28 -pin Ceramic LCC
- 32-pin Ceramic LCC

DESCRIPTION

The L7C199 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 32,768 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. This device is available in four speeds with maximum access times from 15 ns to 35 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 350 mW (typical) at 35 ns . Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\text {TM }}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low

L7C199 Block Diagram

as 2 V . The L7C199 consumes only $150 \mu \mathrm{~W}$ (typical), at 3 V , allowing effective battery backup operation.
The L7C199 provides asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A14. Reading from a designated location is accomplished by presenting an address and driving $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}} \mathrm{LOW}$ while $\overline{\mathrm{WE}}$ remains HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is HIGH, or $\overline{\mathrm{WE}}$ is LOW.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW. Either signal may be used to terminate the write operation. Data In and Data Out signals have the same polarity.
Latchup and static discharge protection are provided on-chip. The L7C199 can withstand an injection current of up to 200 mA on any pin without damage.
Maximum Ratings Above which useful life may be impaired (Notes 1, 2)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>200 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)						
Symbol	Parameter	Test Condition	L7C199			Unit
			Min	Typ	Max	
VOH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.2		$\begin{array}{r} \mathrm{V} \subset \mathrm{c} \\ +0.3 \end{array}$	V
VL	Input Low Voltage	(Note 3)	-3.0		0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq Vcc	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
ICC2	Vcc Current, TTL Inactive	(Note 7)		10	20	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		1	3	mA
ICC4	Vcc Current, Data Retention	$\mathrm{Vcc}=3.0 \mathrm{~V}$ (Note 9)		50	200	$\mu \mathrm{A}$
CIN	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$ (Note 10)			7	pF

Symbol	Parameter	Test Condition	L7C199-				
			35	25	20	15	Unit
IcC1	Vcc Current, Active	(Note 6)	95	120	145	180	mA

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)									
Symbol	Parameter	L7C199							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	35		25	,	20		15	
tavav	Address Valid to Output Valid (Notes 13, 14)		35		25		20		15
taxax	Address Change to Output Change	3		3		3		3	
tclov	Chip Enable Low to Output Valid (Notes 13, 15)		35		25		20		15
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3	
tCHoz	Chip Enable High to Output High Z (Notes 20, 21)		15		10		8		8
tolav	Output Enable Low to Output Valid		15		12		10		8
tolqz	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0	
tohaz	Output Enable High to Output High Z (Notes 20, 21)		10		10		8		5
tpu	Input Transition to Power Up (Notes 10, 19)	0		0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		35		25		20		20
tCHVL	Chip Enable High to Data Retention (Note 10)	0		0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\mathbf{C E}} / \overline{\mathrm{OE}}$ Controlled Notes 13, 15

Data Retention note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)									
Symbol	Parameter	L7C199-							
		35		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	25		20		20		15	
tclew	Chip Enable Low to End of Write Cycle	25		15		15		12	
tavbw	Address Valid to Beginning of Write Cycle	0		0		0		0	
tavew	Address Valid to End of Write Cycle	25		15		15		12	
tewax	End of Write Cycle to Address Change	0		0		0		0	
twlew	Write Enable Low to End of Write Cycle	20		15		15		12	
tovew	Data Valid to End of Write Cycle	15		10		10		7	
tewdx	End of Write Cycle to Data Change	0		0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0		0	
twloz	Write Enable Low to Output High Z (Notes 20, 21)		10		7		7		5

Write Cycle - $\overline{\text { WE Controlled Notes 16, 17, } 18,19}$

Write Cycle - CE Controlled Notes 16, 17, 18, 19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq VCC. The device is disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}, \overline{\mathrm{WE}} \leq$ VIL. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}_{\text {IH }}$
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.2 V of VCC or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN \geq VCC -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to CE and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{W E}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{W E}$ goes low before or concurrent with the latter of CE going active, the output remains in a high impedance state.
18. If $\overline{C E}$ goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{C E}$.
b. Falling edge of WE ($\overline{\mathrm{CE}}$ active).
c. Transition on any address line ($\overline{C E}$ active).
d. Transition on any data line ($\overline{C E}$, and $\overline{W E}$ active).
The device automatically powers down from ICC1 to ICC2 after tpD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{C E}$ or $\overline{W E}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

L7C199

	ORDERING INFORMATION		
	28-pin - $0.3^{\prime \prime}$ wide	28-pin - $0.6^{\text {" }}$ wide	
Speed	Plastic DIP (P10) Ceramic DIP (C5)	Plastic DIP (P9)	Ceramic DIP (C6)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening		
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C199PC25 L7C199CC25 L7C199PC20 L7C199CC20 L7C199PC15 L7C199CC15	L7C199NC25 L7C199NC20 L7C199NC15	L7C199IC25 L7C199IC20 L7C1991C15
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening		
$\begin{array}{\|l\|} 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C199PI25 L7C199PI20 L7C199PI15	L7C199NI25 L7C199NI20 L7C199NI15	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening		
$\begin{array}{\|l\|} \hline 35 \mathrm{~ns} \\ 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$	L7C199CM35 L7C199CM25 L7C199CM20		L7C1991M35 L7C1991M25 L7C1991M20
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - MIL-STD-883 CoMpLIANT		
35 ns 25 ns 20 ns	L7C199CMB35 L7C199CMB25 L7C199CMB20		L7C199IMB35 L7C199IMB25 L7C1991MB20

L7C199

L7C199

	ORDERING INFORMATION	
	28-pin	32-pin
Speed	Ceramic Leadless Chip Carrier (K5)	Ceramic Leadless Chip Carrier (K7)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screenina	
$\begin{array}{\|l\|} 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$	L7C199KC25 L7C199KC20 L7C199KC15	L7C199TC25 L7C199TC20 L7C199TC15
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$		
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & 35 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \end{aligned}$	L7C199KM35 L7C199KM25 L7C199KM20	L7C199TM35 L7C199TM25 L7C199TM20
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - MIL-STD-883 COMPLIANT	
$\begin{array}{\|l\|} 35 \mathrm{~ns} \\ 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$	L7C199KMB35 L7C199KMB25 L7C199KMB20	L7C199TMB35 L7C199TMB25 L7C199TMB20

-70106 256K x 4 Static RAM

FEATURES

256K x 4 Static RAM with Chip Select Powerdown, Output Enable
\square Auto-Powerdown ${ }^{\text {TM }}$ Design

- Advanced CMOS Technology
\square High Speed - to 17 ns maximum
\square Low Power Operation Active: 400 mW typical at 25 ns Standby: 5 mW typical
\square Data Retention at 2 V for Battery Backup Operation
\square Plug Compatible with Cypress CY7C106
\square Package Styles Available:
- 28-pin Plastic DIP
- 28 -pin Sidebraze, Hermetic DIP
- 28-pin Plastic SOJ

DESCRIPTION

The L7C106 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 262,144 words by 4 bits per word. The 4 Data In and Data Out signals share I/O pins. The L7C106 has an active-low Chip Enable and a separate Output Enable. This device is available in three speeds with maximum access times from 17 ns to 25 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 400 mW (typical) at 25 ns . Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs.	25 mA
Latchup current > 200 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)						
Symbol	Parameter	Test Condition	L7C106			Unit
			Min	Typ	Max	
Voh	Output High Voltage	$\mathrm{VcC}=4.5 \mathrm{~V}, \mathrm{IoH}=-4.0 \mathrm{~mA}$	2.4			v
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	v
VH_{H}	Input High Voltage		2.2		$\begin{array}{\|c} \hline \mathrm{Vcc} \\ +0.3 \end{array}$	v
VL	Input Low Voltage	(Note 3)	-3.0		0.8	v
IIX	Input Leakage Current	GND \leq VIN \leq Vcc	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	(Note 4)	-10		+10	$\mu \mathrm{A}$
Icc2	Vcc Current, TTL Inactive	(Note 7)		10	20	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		1	4.0	mA
Icc4	Vcc Current, Data Retention	$\mathrm{VCC}=3.0 \mathrm{~V}$ (Note 9)		500	1000	$\mu \mathrm{A}$
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$ (Note 10)			7	pF

Symbol	Parameter	Test Condition	L7C106-			
	Vcc Current, Active	(Note 6)	25	20	17	Unit

L7C106

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C106-					
		25		20		17	
		Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	25		20		17	
tavav	Address Valid to Output Valid (Notes 13, 14)		25		20		17
taxax	Address Change to Output Change	3		3		3	
tclav	Chip Enable Low to Output Valid (Notes 13, 15)		25		20		17
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3	
tchoz	Chip Enable High to Output High Z (Notes 20, 21)		10		8		8
tolav	Output Enable Low to Output Valid		10		10		9
tolqz	Output Enable Low to Output Low \mathbf{Z} (Notes 20, 21)	0		0		0	
tohaz	Output Enable High to Output High Z (Notes 20, 21)		10		7		6
tpu	Input Transition to Power Up (Notes 10, 19)	0		0		0	
tPD	Power Up to Power Down (Notes 10, 19)		25		20		17
tchVL	Chip Enable High to Data Retention (Note 10)	0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Controlled Notes 13, 15

Data Retention note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)							
Symbol	Parameter	L7C106-					
		25		20		17	
		Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	20		20		17	
tclew	Chip Enable Low to End of Write Cycle	15		15		13	
tavbw	Address Valid to Beginning of Write Cycle	0		0		0	
tavew	Address Valid to End of Write Cycle	15		15		13	
tewax	End of Write Cycle to Address Change	0		0		0	
twlew	Write Enable Low to End of Write Cycle	15		15		13	
tovew	Data Valid to End of Write Cycle	10		9		8	
tewdx	End of Write Cycle to Data Change	0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		7		7		6

Write Cycle - WE Controlled Notes 16, 17, 18,19

Write Cycle - CE Controlled Notes 16, 17, 18,19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq VOUT \leq VCC. The device is disabled, i.e., $\overline{C E}=$ Vcc.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq$ VIL, $\overline{\mathrm{WE}} \leq$ VIL. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.2 V of VCC or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN \geq Vcc -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IoL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{W E}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and $\overline{W E}$ low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with the latter of $\overline{C E}$ going active, the output remains in a high impedance state.
18. If $\overline{C E}$ goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $C E$.
b. Falling edge of $\overline{W E}(\overline{C E}$ active).
c. Transition on any address line ($\overline{C E}$ active).
d. Transition on any data line ($\overline{\mathrm{CE}}$, and $\overline{\mathrm{WE}}$ active).
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{C E}$ or $\overline{W E}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

	ORDERING INFORMATION		
	28-pin - $0.4^{1 "}$ wide		28-pin -0.4 " wide
Speed	Plastic DIP (P11)	Sidebraze Hermetic DIP (D11)	Plastic SOJ (W7)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - $\mathrm{Commercial}^{\text {Screening }}$		
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 17 \mathrm{~ns} \end{array}$	L7C106PC25 L7C106PC20 L7C106PC17	L7C106DC25 L7C106DC20 L7C106DC17	$\begin{aligned} & \text { L7C106WC25 } \\ & \text { L7C106WC20 } \\ & \text { L7C106WC17 } \end{aligned}$
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening		
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 17 \mathrm{~ns} \end{array}$	L7C106PI25 L7C106PI20 L7C106P117		L7C106WI25 L7C106WI20 L7C106WI17

FEATURES

$128 \mathrm{~K} \times 8$ Static RAM with Chip Select Powerdown, Output Enable
Auto-Powerdown ${ }^{\text {TM }}$ Design

- Advanced CMOS Technology

High Speed - to 17 ns maximum
\square Low Power Operation
Active: 550 mW typical at 25 ns
Standby: 5 mW typicalData Retention at 2 V for Battery Backup Operation
\square DECC SMD No. 5962-89598

- Available 100\% Screened to MIL-STD-883, Class B
\square Plug Compatible with Cypress CY7C108/109, IDT71024/71B024, Micron MT5C1008, Motorola MCM6226A/62L26A, Sony CXK581020
\square Package Styles Available:
- 32-pin Sidebraze, Hermetic DIP
- 32-pin Plastic SOJ
- 32-pin Ceramic LCC

DESCRIPTION

The L7C108 and L7C109 are highperformance, low-power CMOS static RAMs. The storage circuitry is organized as 131,072 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. The L7C108 has a single active-low Chip Enable. The L7C109 has two Chip Enables (one active-low). These devices are available in three speeds with maximum access times from 17 ns to 25 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 550 mW (typical) at 25 ns . Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C108 and L7C109

consume only 1.5 mW (typical), at 3 V , allowing effective battery backup operation.

The L7C108 and L7C109 provide asynchronous (unclocked) operation with matching access and cycle times. The Chip Enables and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A16. For the L7C108, reading from a designated location is accomplished by presenting an address and driving $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ LOW while $\overline{W E}$ remains HIGH. For the L7C109, $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{OE}}$ must be LOW while CE2 and $\overline{\mathrm{WE}}$ are HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is HIGH, or CE2 (L7C109) or $\overline{\mathrm{WE}}$ is LOW.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, and CE2 (L7C109) is HIGH. Any of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C108 and L7C109 can withstand an injection current of up to 200 mA on any pin without damage.

L7C108/109

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground.	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	25 mA
atchup current .	.. > 200 m

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)									
Symbol	Parameter	Test Condition	L7C108/109			L7C108-L/109-L			Unit
			Min	Typ	Max	Min	Typ	Max	
Vor	Output High Voltage	$\mathrm{VcC}=4.5 \mathrm{~V}, \mathrm{IoH}=-4.0 \mathrm{~mA}$	2.4			2.4			v
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4			0.4	v
ViH	Input High Voltage		2.2		$\begin{gathered} \mathbf{V c c} \\ +0.3 \end{gathered}$	2.2		$\begin{gathered} \mathrm{Vcc} \\ +0.3 \end{gathered}$	v
VL	Input Low Voltage	(Note 3)	-3.0		0.8	-3.0		0.8	V
lix	Input Leakage Current	GND \leq VIN \leq Vcc	-10		+10	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10		+10	-10		+10	$\mu \mathrm{A}$
IcC2	Vcc Current, TTL Inactive	(Note 7)		10	20			10	mA
IcC3	Vcc Current, CMOS Standby	(Note 8)		1	3.0			0.9	mA
Icc4	Vcc Current, Data Retention	$\mathrm{Vcc}=3.0 \mathrm{~V}$ (Note 9)		500	1000			300	$\mu \mathrm{A}$
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$			5			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$ (Note 10)			7			7	pF

Symbol	Parameter	Test Condition	L7C108/109-			
			25	20	17	Unit
Icci	Vcc Current, Active	(Note 6)	145	180	210	mA

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5，11，12，22，23， 24 （ns）

Symbol	Parameter	L7C108／109－					
		25		20		17	
		Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	25		20		17	
tavav	Address Valid to Output Valid（Notes 13，14）		25		20		17
taxax	Address Change to Output Change	3		3		3	
tclav	Chip Enable Low to Output Valid（Notes 13，15）		25		20		17
tclaz	Chip Enable Low to Output Low Z（Notes 20，21）	3		3		3	
tCHoz	Chip Enable High to Output High Z（Notes 20，21）		10		8		8
tolav	Output Enable Low to Output Valid		10		10		9
tolaz	Output Enable Low to Output Low Z（Notes 20，21）	0		0		0	
tohaz	Output Enable High to Output High Z（Notes 20，21）		10		7		6
tpu	Input Transition to Power Up（Notes 10，19）	0		0		0	
tPD	Power Up to Power Down（Notes 10，19）		25		20		17
tchve	Chip Enable High to Data Retention（Note 10）	0		0		0	

Read Cycle－Address Controlled Notes 13， 14

Read Cycle－$\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Controlled Notes 13,15

Data Retention Note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)							
Symbol	Parameter	L7C108/109-					
		25		20		17	
		Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	20		20		17	
tclew	Chip Enable Low to End of Write Cycle	15		15		13	
tavBw	Address Valid to Beginning of Write Cycle	0		0		0	
tavew	Address Valid to End of Write Cycle	15		15		13	
tewax	End of Write Cycle to Address Change	0		0		0	
twlew	Write Enable Low to End of Write Cycle	15		15		13	
tovew	Data Valid to End of Write Cycle	10		9		8	
tewdx	End of Write Cycle to Data Change	0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		7		7		6

Write Cycle - $\overline{\text { WE }}$ Controlled Notes 16, 17, 18, 19

Write Cycle - CE Controlled Notes 16, 17, 18, 19

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq Vcc. The device is disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}, \mathrm{CE} 2=\mathrm{GND}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2 \geq \mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{WE}} \leq \mathrm{V}_{\text {IL }}$. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{CE} 2 \leq$ VIL .
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$, $\mathrm{CE}_{2}=\mathrm{GND}$. Input levels are within 0.2 V of VCC or GND.
9. Data retention operation requires that Vcc never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$ or CE 2 must be $\leq 0.2 \mathrm{~V}$. All other inputs must meet VIN \geq VCC -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to $\overline{\mathrm{CE}}, \mathrm{CE} 2$, and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low, CE2 high).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}} 1$ and CE 2 transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and CE 2 active and $\overline{W E}$ low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with the latter of $\overline{\mathrm{CE}}$ and CE 2 going active, the output remains in a high impedance state.
18. If $\overline{C E 1}$ and CE2 goes inactive before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Rising edge of CE_{2} ($\overline{\mathrm{CE1}}$ active) or the falling edge of $\overline{\mathrm{CE}}$ (CE2 active).
b. Falling edge of $\overline{\mathrm{WE}}(\overline{\mathrm{CE}}, \mathrm{CE} 2$ active).
c. Transition on any address line ($\overline{\mathrm{CE}}, \mathrm{CE} 2$ active).
d. Transition on any data line ($\overline{\mathrm{CE}}, \mathrm{CE} 2$, and $\overline{W E}$ active).
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}, \mathrm{CE} 2$, or $\overline{\mathrm{WE}}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Figure 2.

	L7C108 ORDERING INFORMATION	
	$32-\mathrm{pin}-0.4$ " wide	32-pin
Speed	Sidebraze Hermetic DIP (D12)	Plastic SOJ ($0.4^{4 "}$ wide) (W6)
$\begin{aligned} & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \\ & 17 \mathrm{~ns} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	L7C108WC25* L7C108WC20* L7C108WC17*
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 17 \mathrm{~ns} \end{array}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	L7C108WI25* L7C108WI20* L7C108WI17*
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$	$\frac{-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}-\text { Commercial Screening }_{\text {L7C108DM25 }}^{\text {L7C108DM20 }} \text { (}}{\text { L }}$	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \end{array}$	$\frac{-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}-\text { MIL-STD-883 Compliant }}{\text { L7C108DMB25 }}$ L7C108DMB20	

*The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108WI17L)

*The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108KC17L)

[^12]
*The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109KC17L)

DEVICES INCORPORATED

FEATURES

$8 \mathrm{~K} \times 8$ CMOS Static RAM with 8 -bit Tag Comparison Logic

- High Speed Address-to-MATCH - 12 ns maximum
- High Speed Flash Clear
- High Speed Read Access Time - 12 ns maximum
- Low Power Operation Active: 300 mW typical at 35 ns Standby: $500 \mu \mathrm{~W}$ typical
Data Retention at 2 V for Battery Backup Operation
- Available 100\% Screened to MIL-STD-883, Class B
\square Plug Compatible with IDT7174, IDT71B74, MK48H74
- Package Styles Available:
- 28-pin Plastic DIP
- 28 -pin Ceramic DIP
- 28-pin Plastic SOJ
- 32-pin Ceramic LCC

DESCRIPTION

The L7C174 is a high-performance, low power CMOS static RAM optimized for use as the address tag comparator in high speed cache memory systems. One L7C174 can be used to map 8 K cache lines into a 1 megabyte address space by comparing 20 address bits organized as 13 -line address bits and 7 -page address bits.

The storage circuitry is organized as 8192 words by 8 bits per word and includes an 8 -bit data comparator with MATCH output. The 8 -bit data is input/output on shared I/O pins and comparison is performed between 8 -bit incoming data and accessed memory locations. Also provided is a high speed $\overline{\text { CLEAR }}$ control which clears all memory locations to zero when activated. This allows all address tag bits to be cleared when powering on or when flushing the cache.

Truth TABLE						
$\overline{\text { WE }}$	$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { CLEAR }}$	MATCH	I／O	FUNCTION
X	X	X	L	H	-	Reset all bits to low
X	H	X	H	H	High－Z	Deselect chip
H	L	H	H	L	Din	No MATCH
H	L	H	H	H	Din	MATCH
H	L	L	H	H	Dout	Read
L	L	X	H	H	Din	Write

X＝Don＇t Care；L＝VIL；H＝VIH

Maximum Ratings

Above which useful life may be impaired（Notes 1，2）
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active Operation，Commercial Active Operation，Industrial Active Operation，Military Data Retention，Commercial Data Retention，Industrial Data Retention，Military

Temperature Range（Ambient）
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage

$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions（Note 5）

Symbol	Parameter	Test Condition	L7C174			Unit
			Min	Typ	Max	
VoH	Output High Voltage（Note 11）	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$（all except MATCH pin）	2.4			V
Vol	Output Low Voltage（Note 11）	$\mathrm{IOL}=8.0 \mathrm{~mA}$（all except MATCH pin）			0.4	V
		$\mathrm{IOL}=18.0 \mathrm{~mA}(\mathrm{MATCH} \mathrm{pin})$			0.4	V
ViH	Input High Voltage		2.2		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	（Note 3）	－3．0		0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq Vcc	－10		＋10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc，$\overline{O E}=$ Vcc（except MATCH pin）	－10		＋10	$\mu \mathrm{A}$
Icc3	Vcc Current，CMOS Standby	（Note 8）		100	500	$\mu \mathrm{A}$
IcC4	Vcc Current，Data Retention	$\mathrm{VCC}=3.0 \mathrm{~V}$（Note 9）		10	200	$\mu \mathrm{A}$
Cin	Input Capacitance	$\begin{aligned} & \text { Ambient Temp }=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \\ & \text { Test Frequency }=1 \mathrm{MHz} \text { (Note } 10 \text {) } \end{aligned}$			5	pF
Cout	Output Capacitance ．				7	pF

Symbol	Parameter	Test Condition	L7C174－					
			35	25	20	15	12	Unit
Icci	Vcc Current，Active	（Note 6）	90	115	140	165	195	mA

SWITCHING CHARACTERISTICS Over Operating Range

MATCH and CLEAR Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C174-									
		35		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
tavav	MATCH Cycle Time	35		25		20		15		12	
tavmv	Address Valid to MATCH Valid		30		22		20		15		12
taxmx	Address Change to MATCH Change	3		3		3		3		3	
tclmv	Chip Enable Low to MATCH Valid		20		15		10		10		8
tCHMH	Chip Enable High to MATCH High	3		3		3		3		3	
tolmh	Output Enable Low to MATCH High	3		3		3		3		3	
twlmh	Write Enable Low to MATCH High	3		3		3		3		3	
tclmb	CLEAR Low to MATCH High	0	25	0	20	0	15	0	12	0	10
tovmv	Data Valid to MATCH Valid		20		15		15		13		10
toxmx	Data Change to MATCH Change	0		0		0		0		0	
tclcl	CLEAR Cycle Time	65		55		45		35		30	
tcler	CLEAR Pulse Width	20		15		15		12		12	
tclux	$\overline{\text { CLEAR Low to Inputs Don't Care }}$	0		0		0		0		0	
tclur	$\overline{\text { CLEAR }}$ Low to Inputs Recognized		70		60		50		50		45

MATCH Cycle

CLEAR Cycle

L7C174

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C174-									
		35		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	35		25		20		15		12	
tavav	Address Valid to Output Valid (Notes 13, 14)		35		25		20		15		12
taxax	Address Change to Output Change	3		3		3		3		3	
tclav	Chip Enable Low to Output Valid (Notes 13, 15)		15		12		10		8		8
tclaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3		3	
tchoz	Chip Enable High to Output High Z (Notes 20, 21)		15		10		8		8		5
tolav	Output Enable Low to Output Valid		15		12		10		8		6
tolaz	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0		0	
tohaz	Output Enable High to Output High Z (Notes 20, 21)		12		10		8		5		5
tchVL	Chip Enable High to Data Retention (Note 10)	0		0		0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Controlled Notes 13, 15

Data Retention note 9

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C174-									
		35		25		20		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	25		20		20		15		12	
tclew	Chip Enable Low to End of Write Cycle	25		15		15		12		10	
tavbw	Address Valid to Beginning of Write Cycle	0		0		0		0		0	
tavew	Address Valid to End of Write Cycle	25		15		15		12		10	
tewax	End of Write Cycle to Address Change	0		0		0		0		0	
twlew	Write Enable Low to End of Write Cycle	20		15		15		12		10	
tovew	Data Valid to End of Write Cycle	15		10		10		7		6	
tewdx	End of Write Cycle to Data Change	0		0		0		0		0	
twhaz	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0		0		0	
twlaz	Write Enable Low to Output High Z (Notes 20, 21)		10		7		7		5		4

Write Cycle - WE Controlled Notes 16, 17, 18

Write Cycle - CE Controlled Notes 16, 17, 18

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\mathrm{CE}} \leq \mathrm{V}_{\text {IL }}, \overline{\mathrm{WE}} \leq$ VIL. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}_{\mathrm{I}}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCC. Input levels are within 0.2 V of Vcc or GND.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.2 \mathrm{~V}$. All other inputs must meet VIN \geq Vcc -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to CE and WE; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output loading for specified IOL and

Ioh plus 30 pF (Figs. 1a and 1c), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tavew is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid prior-to or coincident-with the $\overline{\mathrm{CE}}$ transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ active and $\overline{W E}$ low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with the latter of $\overline{\mathrm{CE}}$ going active, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes inactive before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$.
b. Falling edge of $\overline{\mathrm{WE}}(\overline{\mathrm{CE}}$ active).
c. Transition on any address line ($\overline{\mathrm{CE}}$ active).
d. Transition on any data line ($\overline{\mathrm{CE}}$, and $\overline{\mathrm{WE}}$ active).

The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Figure 1a.

Figure 1b.

Figure 1 c.

Figure 2.

	ORDERING INFORMATION	
	28-pin - $0.3^{\prime \prime}$ wide	32-pin
Speed	Plastic SOJ (W2)	Ceramic Leadless Chip Carrier (K7)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & 35 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \end{aligned}$	L7C174WC35 L7C174WC25 L7C174WC20 L7C174WC15 L7C174WC12	- L7C174KC20 L7C174KC15 L7C174KC12
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & \hline 35 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \end{aligned}$	L7C174WI35 L7C174WI25 L7C174Wi20 L7C174WI15 L7C174WI12	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$		L7C174KM25 L7C174KM20 L7C174KM15
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-$ MIL-STD-883 ${ }^{\text {CompLIANT }}$	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 20 \mathrm{~ns} \\ 15 \mathrm{~ns} \end{array}$		L7C174KMB25 L7C174KMB20 L7C174KMB15

FIFO-Products

FIFO Products 8-1
L8C201 512×9, Asynchronous 8-3
L8C202 1K x 9, Asynchronous 8-3
L8C203 2K x 9, Asynchronous 8-3
L8C204 4K x 9, Asynchronous 8-3
L8C211 512×9, Synchronous 8-21
L8C221 1K $\times 9$, Synchronous 8-21
L8C231 2K x9, Synchronous 8-21
L8C241 4K x 9, Synchronous 8-21

FEATURES

\square First-In/First-Out (FIFO) using Dual-Port Memory

- Advanced CMOS Technology
- High Speed - to 10 ns Access Time
\square Asynchronous and Simultaneous
Read and Write
- Fully Expandable by both Word Depth and/or Bit Width
E Empty and Full Warning Flags
- Half-Full Flag Capability
- Auto Retransmit Capability
\square Plug Compatible with IDT720x, Cypress CY7C4x, and Samsung KM75C0x
- DECC SMD No. 5962-89536 - L8C202
- Package Styles Available:
- 28-pin Plastic DIP
- 32-pin Plastic LCC

DESCRIPTION

The L8C201, L8C202, L8C203, and L8C204 are dual-port First-In/FirstOut (FIFO) memories. The FIFO memory products are organized as:

$$
\begin{aligned}
& \text { L8C201- } 512 \times 9 \text {-bit } \\
& \text { L8C202- } 1024 \times 9 \text {-bit } \\
& \text { L8C203- } 2048 \times 9 \text {-bit } \\
& \text { L8C204-4096 } 9 \text {-bit }
\end{aligned}
$$

Each device utilizes a special algorithm that loads and empties data on a first-in/first-out basis. Full and Empty flags are provided to prevent data overflow and underflow. Three additional pins are also provided to allow for unlimited expansion in both word size and depth. Depth Expansion does not result in a flow-through penalty. Multiple devices are connected with the data and control signals in parallel. The active device is determined by the Expansion In ($\overline{\mathrm{XI}})$ and Expansion Out ($\overline{\mathrm{XO}})$ signals which are daisy chained from device to device.

L8C201/202/203/204 Block Diagram

The read and write operations are internally sequential through the use of ring pointers. No address information is required to load and unload data. The write operation occurs when the Write (\bar{W}) signal is LOW. Read occurs when $\operatorname{Read}(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high impedance state when R is HIGH. Retransmit ($\overline{\mathrm{RT}}$) capability allows for reset of the read pointer when $\overline{\mathrm{RT}}$ is pulsed LOW, allowing for retransmission of data from the beginning. Read Enable $(\overline{\mathrm{R}})$ and Write Enable (W) must both be HIGH during a retransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data. A Half-Full $(\overline{\mathrm{HF}})$ output flag is available in the single device and width expansion modes. In the depth expansion configuration, this pin provides the Expansion Out ($\overline{\mathrm{XO}})$ information which is used to tell the next FIFO that it will be activated.

These FIFOs are designed to have the fastest data access possible. Even in lower cycle time applications, faster access time can eliminate timing bottlenecks as well as leave enough margin to allow the use of the devices without external bus drivers.

The FIFOs are designed for those applications requiring asychronous and simultaneous read/writes in multiprocessing and rate buffer applications.

SIGNAL DEFINITIONS

Inputs

$\overline{R S}$-Reset
Reset is accomplished whenever the Reset ($\overline{\mathrm{RS}}$) input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. Both the Read Enable ($\overline{\mathrm{R}}$) and Write Enable (\bar{W}) inputs must be in the HIGH state during the window shown (i.e., tWHSH before the rising edge of $\overline{\mathrm{RS}}$) and should not change until tSHWL after the rising edge of $\overline{\mathrm{RS}}$. Hall-Full Flag ($\overline{\mathrm{HF}}$) will be reset to high after Reset ($\overline{\mathrm{RS}}$).

\bar{W} - Write Enable

A write cycle is initiated on the falling edge of this input if the Full Flag ($\overline{\mathrm{FF}}$) is not set. Data setup and hold time must be adhered to with respect to the rising edge of the Write Enable (\bar{W}). Data is stored in the RAM array sequentially and independently of any on-going read operation.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Upon the completion of a valid read operation, the Full Flag ($\overline{\mathrm{FF}}$) will go HIGH after tRHFH, allowing a valid write to begin. When the FIFO is full, the internal write pointer is blocked from \bar{W}, so external changes in \bar{W} will not affect the FIFO when it is full.
\bar{R} — Read Enable
A read cycle is initiated on the falling edge of the Read Enable $(\overline{\mathrm{R}})$ provided the Empty Flag ($\overline{\mathrm{EF}})$ is not set. The data is accessed on a First-In/FirstOut basis, independent of any ongoing write operation. After Read Enable ($\overline{\mathrm{R}}$) goes HIGH, the Data Outputs (D8-0) will return to a high impedance condition until the next read operation. When all the data has been read from the FIFO, the Empty Flag $(\overline{\mathrm{EF}})$ will go LOW, allowing the
"final" read cycle but inhibiting further read operations with the data outputs remaining in a high impedance state. Once a valid write operating has been accomplished, the Empty Flag ($\overline{\mathrm{EF}}$) will go HIGH after tWHEH and a valid read can then begin. When the FIFO is empty, the internal read pointer is blocked from $\overline{\mathrm{R}}$ so external changes in $\overline{\mathrm{R}}$ will not affect the FIFO.

$\overline{F L} / \overline{R T}$ — First Load/Retransmit

This is a dual-purpose input. In the Depth Expansion Mode, this pin is grounded to indicate that it is the first loaded (see Operating Modes). In the Single Device Mode, this pin acts as the retransmit input. The Single Device Mode is initiated by grounding the Expansion In ($\overline{\mathrm{XI}}$).

The FIFOs can be made to retransmit data when the Retransmit Enable control ($\overline{\mathrm{RT}})$ input is pulsed LOW. A retransmit operation will set the internal read pointer to the first location and will not affect the write pointer. Read Enable ($\overline{\mathrm{R}}$) and Write Enable $(\overline{\mathrm{W}})$ must be in the HIGH state during retransmit. This feature is useful when less than the full memory has been written between resets. Retransmit will affect the Half-Full Flag $(\overline{\mathrm{HF}})$, depending on the relative locations of the read and write pointers. The retransmit feature is not compatible with the Depth Expansion Mode.

$\overline{X I}-$ Expansion In

This input is a dual-purpose pin. Expansion In ($\overline{\mathrm{XI}})$ is grounded to indicate an operation in the single device mode. Expansion In ($\overline{\mathrm{XI}})$ is connected to Expansion Out $(\overline{\mathrm{XO}})$ of the previous device in the Depth Expansion or Daisy Chain Mode.

D8-0 - Data Input

Data input signals for 9-bit wide data. Data has setup and hold time requirements with respect to the rising edge of \bar{W}.

Outputs

$\overline{F F}$-Full Flag
The Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations, indicating that the device is full. If the read pointer is not moved after Reset $(\overline{\mathrm{RS}})$, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW after 512 writes for the L8C201, 1024 writes for the L8C202, 2048 writes for the L8C203, and 4096 writes for the L8C204.

$\overline{E F}$ - Empty Flag

The Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating that the device is empty.

$\overline{X O} / \overline{H F}$ - Expansion Out/Half-Full Flag

This is a dual-purpose output. In the Single Device Mode, when Expansion In (XI) is grounded, this output acts as an indication of a half-full memory.
After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag ($\overline{\mathrm{HF}}$) will be set to LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one-half of the total memory of the device. The Half-Full Flag ($\overline{\mathrm{HF}}$) is then deasserted by the rising edge of the read operation.

In the Depth Expansion Mode, Expansion In (XI) is connected to Expansion Out $(\overline{\mathrm{XO}})$ of the previous device. This output acts as a signal to the next device in the daisy chain by providing a pulse to the next device when the previous device reaches the last location of memory.

Q8-0 - Data Output

Data outputs for 9-bit wide data. This data is in a high impedance condition whenever Read Enable $(\overline{\mathrm{R}})$ is in a HIGH state or the device is empty.

OPERATING MODES

Single Device Mode

A single FIFO may be used when the application requirements are for the number of words in a single device. The FIFOs are in a Single Device Configuration when the Expansion In $(\overline{\mathrm{XI}})$ control input is grounded. In this mode the Half-Full Flag ($\overline{\mathrm{HF}}$), which is an active-low output, is the active function of the combination pin $\overline{\mathrm{XO}} /$ $\overline{\mathrm{HF}}$.

Width Expansion Mode

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status flags ($\overline{\mathrm{EF}}, \overline{\mathrm{FF}}$, and $\overline{\mathrm{HF}}$) can be detected from any one device. Any word width can be attained by adding additional FIFOs. Flag detection is accomplished by monitoring the $\overline{\mathrm{FF}}$, $\overline{\mathrm{EF}}$, and $\overline{\mathrm{HF}}$ signals on either (any) device used in the width expansion configuration. Do not connect any output signals together.

Depth Expansion (Daisy Chain) Mode
The FIFOs can easily be adapted to applications where the requirements are for greater than the number of words in a single device. Any depth can be attained by adding additional FIFOs. The FIFOs operates in the Depth Expansion configuration when the following conditions are met:

1. The first device must be designated by grounding the First Load (FL) control input.
2. All other devices must have $\overline{\mathrm{FL}}$ in the HIGH state.
3. The Expansion Out $(\overline{\mathrm{XO}})$ pin of each device must be tied to the Expansion In ($\overline{\mathrm{XI}})$ pin of the next device with the last device connecting back to the first.
4. External logic is needed to generate a composite Full Flag ($\overline{\mathrm{FF}}$) and Empty Flag ($\overline{\mathrm{EF}}$). This requires the ORing of all EFs and ORing of all $\overline{\mathrm{FF}}$ s (i.e., all must be set to generate the correct composite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$).
5. The Retransmit $(\overline{\mathrm{RT}})$ function and Half-Full Flag ($\overline{\mathrm{HF}}$) are not available in the Depth Expansion Mode.

Bidirectional Mode

Applications which require data buffering between two systems (each system capable of read and write operations) can be achieved by pairing FIFOs. Care must be taken to assure that the appropriate flag is monitored by each system (i.e., $\overline{\mathrm{FF}}$ is monitored on the device when \bar{W} is used; $\overline{\mathrm{EF}}$ is monitored on the device when \bar{R} is used). Both Depth Expansion and Width Expansion may be used in this mode.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)
Storage temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VcC supply voltage with respect to ground .. -0.5 V to +7.0 V
Input signal with respect to ground .. -0.5 V to +7.0 V
Signal applied to high impedance output ... -3.0 V to +7.0 V
Output current into low outputs
25 mA

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)

Symbol	Parameter	Test Condition	L8C201/202/203/204			Unit
			Min	Typ	Max	
VoH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{lOH}=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{loL}=8.0 \mathrm{~mA}$			0.4	V
V_{H}	Input High Voltage		2.0		$\begin{array}{r} \mathrm{V} c \mathrm{c} \\ +0.3 \end{array}$	V
VL.	Input Low Voltage	(Note 3)	-0.5		0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq Vcc	-1		+1	$\mu \mathrm{A}$
loz	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V} \mathrm{VH}, \mathrm{GND} \leq$ VOUT $\leq \mathrm{Vcc}$	-10		+10	$\mu \mathrm{A}$
IcC2	Vcc Current, TTL Inactive	All Inputs $=$ VIH MIN (Note 6)			15	mA
Icc3	Vcc Current, CMOS Standby	All Inputs = Vcc (Note 12)			5	mA
CIN	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=4.5 \mathrm{~V}$			5	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}($ Note 9)			7	pF

Symbol	Parameter	Test Condition	L8C201/202/203/204-				
			25	15	12	10	Unit
IcC1	Vcc Current, Active	(Note 5)	100	120	150	180	mA

SWITCHING CHARACTERISTICS Over Operating Range

Asynchronous and Reset Timing (n s)									
Symbol	Parameter	L8C201/202/203/204-							
		25		15		12		10	
		Min	Max	Min	Max	Min	Max	Min	Max
trlal	Read Cycle Time (MHz)	35		25		20		15	
trLQV	Read Low to Output Valid (Access Time)		25		15		12		10
trifit	Read High to Read Low (Notes 8, 9)	10		10		8		5	
trLRH	Read Low to End of Read Cycle (Notes 8, 9)	25		15		12		10	
trigl	Read High to Output Valid	5		5		5		5	
trhaz	Read High to Output High Z (Note 14)		20		15		15		15
twLwL	Write Cycle Time (Note 9)	35		25		20		15	
twLwH	Write Low to Write High (Notes 8, 9)	25		15		12		10	
twhwL	Write High to End of Write Cycle (Notes 8, 9)	10		10		8		5	
tovwh	Data Valid to Write High (Notes 8, 9)	15		10		8		8	
twhox	Write High to Data Change (Notes 8, 9)	0		0		0		0	
tsLSH	Reset Cycle Time (Notes 9, 10)	25		15		12		10	
tsL.wL	Reset Low to Write Low (Notes 9, 10)	35		25		20		15	
tWHSH	Write High to Reset High (Notes 9, 10)	25		15		12		10	
trHSH	Read High to Reset High (Notes 9, 10)	25		15		12		10	
tSHWL	Reset High to Write Low (Notes 9, 10)	10		10		8		5	
tsLeL	Reset Low to Empty Flag Low		25		15		12		10
tsLHH	Reset Low to Half-Full Flag High		25		15		12		10
tsLFH	Reset Low to Full Flag High		25		15		12		10

Reset Timing

SWITCHING CHARACTERISTICS Over Operating Range

Fulu Empty Flag and Retransmit Timing（ns）

Symbol	Parameter	，	L8C201／202／203／204－							
			25		15		12		10	
			Min	Max	Min	Max	Min	Max	Min	Max
trLQV	Read Low to Output Valid（Access Time）			25		15		12		10
trLEL	Read Low to Empty Flag Low			25		15		12		10
trhfy	Read High to Full Flag High			25		15		12		10
twher	Write High to Empty Flag High			25		15		12		10
twLFL	Write Low to Full Flag Low			25		15		12		10
ttlal	Retransmit Cycle Time		35		25		20		15	
ttLTH	Retransmit Low to End of Retransmit Cycle（Notes 8，9，10）		25		15		12		10	
tahth	Read／Write High to Retransmit High（Notes 8，9，10）		25		15		12		10	
tthal	Retransmit High to Read／Write Low（Note 9）		10		10		8		5	

Full Flag from Last Write to First Read

Empty Flag from Last Read to First Write

Retransmit

SWITCHING CHARACTERISTICS Over Operating Range

Fuld/Half-Fulu/Empty Flag Timing (ns)

Symbol	Parameter	L8C201/202/203/204-							
		25		15		12		10	
		Min	Max	Min	Max	Min	Max	Min	Max
trhen	Read High to Full Flag High		25		15		12		10
tehri	Read Pulse Width After Empty Flag High	25		15		12		10	
trhHe	Read High to Half-Full Flag High		25		15		12		10
twheh	Write High to Empty Flag High		25		15		12		10
twLHL	Write Low to Half-Full Flag Low		25		15		12		10
tFHWH	Write Pulse Width After Full Flag High (Note 9)	25		15		12		10	

Empty Flag Timing

Full Flag Timing

Half-Full Flag Timing

L8C201/202/203/204

SWITCHING CHARACTERISTICS Over Operating Range

Expansion Timing (ns)									
Symbol	Parameter	L8C201/202/203/204-							
		25		15		12		10	
		Min	Max	Min	Max	Min	Max	Min	Max
talol.	Read/Write to Expansion Out Low (Note 11)		25		15		12		12
taнон	Read/Write to Expansion Out High (Note 11)		25		15		12		12
txLXH	Expansion In Pulse Width (Notes 9, 11)	25		15		12		10	
t \times HXL	Expansion In High to Expansion In Low (Notes 9, 11)	10		10		10		10	
talxL	Read/Write Low to Expansion In Low (Notes 9, 11)	15		12		8		8	

Expansion In

L8C201/202/203/204

Figure 1. FIFO Memory (Depth Expansion) Block Diagram

MODE	InPUTS			INTERNAL STATUS		OUTPUTS		
	$\overline{\text { RS }}$	$\overline{\text { RT }}$	$\overline{\mathrm{X}}$	Read Pointer	Write Pointer	$\overline{\mathrm{EF}}$	$\overline{\text { FF }}$	$\overline{\mathrm{HF}}$
Reset	0	x	0	Location Zero	Location Zero	0	1	1
Retransmit	1	0	0	Location Zero	Unchanged	x	x	x
Read/Write	1	1	0	Increment	Increment	x	x	X

MODE	InPUTS			InTERNAL STATUS		OUTPUTS	
	$\overline{\text { RS }}$	$\overline{\text { RT }}$	$\overline{\mathrm{XI}}$	Read Pointer	Write Pointer	$\overline{\text { EF }}$	$\overline{\text { FF }}$
Reset First Device	0	0	(1)	Location Zero	Location Zero	0	1
Reset All Others	0	1	(1)	Location Zero Disabled	Location Zero Disabled	0	1
Read/Write	1	(2)	(1)	x	x	X	x

(1) See Figure 1 (Depth Expansion Block Diagram)
(2) Unchanged

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as-3 V subject only to power dissipation and bond wire fusing constraints.
4. "Typical" supply current values are not shown but may be approximated. At a Vcc of +5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
5. Tested with outputs open and data inputs changing at the specified read and write cycle rate. The device is neither full or empty for the test.
6. Tested with outputs open in the worst static input control signal combination (i.e., $\overline{\mathrm{W}}, \overline{\mathrm{R}}, \overline{\mathrm{XI}}, \overline{\mathrm{FL}}$, and $\overline{\mathrm{RS}}$).
7. These parameters are guaranteed but not 100% tested.
8. Test conditions assume input transition times of 5 ns or less, reference levels of 1.5 V , output loading for specified IOL and IOH plus 30 pF (Fig. 2a), and input pulse levels of 0 to 3.0 V (Fig. 3).
9. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tRLRH is specified as a minimum since the external system must supply at least that much time to meet the worst-case require-
ments of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
10. When cascading devices, the reset pulse width must be increased to equal tSLSH + tSLHH.
11. It is not recommended that Logic Devices and other vendor parts be cascaded together. The parts are designed to be pin-for-pin compatible but temperature and voltage compensation may vary from vendor to vendor. Logic Devices can only guarantee the cascading of Logic Devices parts to other Logic Devices parts.
12. Tested with output open and $\overline{\mathrm{RS}}=\overline{\mathrm{FL}}$ $=\overline{\mathrm{XI}}=\overline{\mathrm{R}}=\overline{\mathrm{W}}=\mathrm{VCC}$.
13. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
14. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 2b. This parameter is sampled and not 100% tested.
15. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Figure 2b.

Figure 3.

	L8C201 - ORDERING INFORMATION	
	28-pin - $0.3^{\prime \prime}$ wide	28-pin - $0.6^{1 "}$ wide
Speed	Plastic DIP (P10)	Plastic DIP (P9)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C201PC25 L8C201PC15 L8C201PC12 L8C201PC10	L8C201NC25 L8C201NC15 L8C201NC12 L8C201NC10
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Scheening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C201PI25 L8C201P15 L8C201Pl12 L8C201PI10	L8C201N125 L8C201N15 L8C201N112 L8C201N110

	L8C202 - ORDERING INFORMATION	
	28 -pin $-0.3^{1 "}$ wide	28-pin - 0.6^{11} wide
Speed	Plastic DIP (P10)	Plastic DIP (P9)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C202PC25 L8C202PC15 L8C202PC12 L8C202PC10	$\begin{aligned} & \text { L8C202NC25 } \\ & \text { L8C202NC15 } \\ & \text { L8C202NC12 } \\ & \text { L8C202NC10 } \end{aligned}$
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Commercial Screening	
25 ns 15 ns 12 ns 10 ns	L8C202Pl25 L8C202P115 L8C202PI12 L8C202P110	$\begin{aligned} & \text { L8C202NI25 } \\ & \text { L8C202NI15 } \\ & \text { L8C202NI12 } \\ & \text { L8C202NI10 } \end{aligned}$

	L8C203 - ORDERING INFORMATION	
	28-pin - 0.3^{11} wide	$28-\mathrm{pin}-0.6$ wide
Speed	Plastic DIP (P10)	Plastic DIP (P9)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{array}{\|l\|} \hline 25 \mathrm{~ns} \\ 15 \mathrm{~ns} \\ 12 \mathrm{~ns} \\ 10 \mathrm{~ns} \end{array}$	L8C203PC25 L8C203PC15 L8C203PC12 L8C203PC10	L8C203NC25 L8C203NC15 L8C203NC12 L8C203NC10
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - $\mathrm{Commarchal}^{\text {Screening }}$	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { L8C203PI25 } \\ & \text { L8C203PI15 } \\ & \text { L8C203PI12 } \\ & \text { L8C203PI10 } \end{aligned}$	L8C203N125 L8C203N115 L8C203N112 L8C203N110

	L8C204 - ORDERING INFORMATION	
	28-pin - $0.3^{\prime \prime}$ wide	28-pin - 0.6 " wide
Speed	Plastic DIP (P10)	Plastic DIP (P9)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - Commercial Screening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C204PC25 L8C204PC15 L8C204PC12 L8C204PC10	L8C204NC25 L8C204NC15 L8C204NC12 L8C204NC10
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C204PI25 L8C204P115 L8C204PI12 L8C204PI10	L8C204NI25 L8C204NI15 L8C204NI12 L8C204NI10

	L8C204－ORDERING INFORMATION	
	32－pin	
Speed	Plastic J－Lead Chip Carrier （J6）	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$－Commercial Screening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C204JC25 L8C204JC15 L8C204JC12 L8C204JC10	
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$－Commercial Screening	
$\begin{aligned} & 25 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & 12 \mathrm{~ns} \\ & 10 \mathrm{~ns} \end{aligned}$	L8C204JI25 L8C204JI15 L8C204JI12 L8C204JI10	

L8G211/221/231/241512/1K/2K/4K x 9-bit Synchronous FIFO

FEATURES

- First-In/First-Out (FIFO) using Dual-Port Memory
\square Write and Read Clocks can be synchronous or asynchronous
- Advanced CMOS Technology
\square High Speed - to 15 ns Cycle Time
Empty and Full Warning Flags
\square Programmable Almost-Empty and Almost-Full Warning Flags
- Plug Compatible with IDT722x1
- Package Styles Available:
- 32-pin Plastic LCC, J-Lead

DESCRIPTION

The L8C211, L8C221, L8C231, and L8C241 are synchronous dual-port First-In/First-Out (FIFO) memories. The FIFO memory products are organized as:

$$
\begin{aligned}
& \text { L8C211 - } 512 \times 9 \text {-bit } \\
& \text { L8C221 - } 1024 \times 9 \text {-bit } \\
& \text { L8C231 - } 2048 \times 9 \text {-bit } \\
& \text { L8C241 - } 4096 \times 9 \text {-bit }
\end{aligned}
$$

Each device utilizes a special algorithm that loads and empties data on a first-in/first-out basis. Full and Empty Flags are provided to prevent data overflow and underflow. Programmable Almost Full and Almost Empty Flags are provided and may be programmed to trigger at any position in the memory array.

The read and write operations are internally sequential through the use of ring pointers. No address information is required to load and unload data. Data present at the input port is written to the FIFO if the Write Clock is pulsed when the device is enabled for writing. Data is read from the FIFO if the Read Clock is pulsed when the device is enabled for reading. Multiple FIFOs can be connected together to expand the word width and depth.

These FIFOs are designed to have the fastest data access possible. Even in lower cycle time applications, faster access time can eliminate timing bottlenecks as well as leave enough margin to allow the use of the devices without external bus drivers.

L8C211/221/231/241 Block Diagram

SIGNAL DEFINITIONS

Power

VCC and GND
+5 V power supply. All pins must be connected.

Clocks

WCLK - Write Clock

Data present on D8-0 is written into the FIFO on the rising edge of WCLK when the FIFO is configured for writing. The Full Flag ($\overline{\mathrm{FF}}$) and the Programmable Almost-Full Flag ($\overline{\mathrm{PAF}}$) are synchronized to the rising edge of WCLK.

RCLK - Read Clock

Data is read from the FIFO and presented on the output port (Q8-0) after $t D$ has elapsed from the rising edge of RCLK if the FIFO is configured for reading and if the output port is enabled. The Empty Flag ($\overline{\mathrm{EF}}$) and the Programmable Almost-Empty Flag $(\overline{\mathrm{PAE}})$ are synchronized to the rising edge of RCLK. The Write and Read Clocks can be tied together and driven by the same external clock or they may be controlled by seperate external clocks.

Inputs

$\overline{R S}$ - Reset
A reset occurs when $\overline{R S}$ is set LOW. A reset is required after power-up before a write operation can take place. During reset, the internal read and write pointers are set to the first physical location, the output register is initialized to zero, the offset registers are initialized to their default values $(0007 \mathrm{H})$, the Empty Flag ($\overline{\mathrm{EF}}$) and Programmable Almost-Empty Flag (PAE) are set LOW, the Full Flag (FF) and Programmable Almost-Full Flag ($\overline{\mathrm{PAF}}$) are set HIGH, and the WEN2/ $\overline{\mathrm{LD}}$ signal is configured.

WEN1 - Write Enable 1

If the FIFO is configured to allow loading of the offset registers, $\overline{\mathrm{WEN}} 1$ is the only write enable. If $\overline{W E N 1} 1$ is LOW, data on D8-0 is written to the FIFO on the rising edge of WCLK. If WEN1 and LD are LOW, data on D8-0 is written to the programmable offset registers as defined in the WEN $2 / \overline{\mathrm{LD}}$ section. If the FIFO is configured to have two write enables, data on D8-0 is written to the FIFO on the rising edge of WCLK if $\overline{\mathrm{WENI}}$ is LOW and WEN2 is HIGH. When the FIFO is full, WEN1 is ignored except when loading the offset registers.

WEN2 $/ \overline{L D}$ - Write Enable 2/Load

The function of this signal is defined during reset. If during reset WEN2/ $\overline{\mathrm{LD}}$ is HIGH, this signal functions as a second write enable (WEN2). WEN2 is used when depth expansion is needed (see Depth Expansion Mode Section). If during reset WEN2 $2 / \overline{\mathrm{LD}}$ is LOW, this signal functions as an offset register load/read control. When WEN $2 / \overline{\text { LD }}$ is configured to be a write enable, data on D8-0 is written to the FIFO on the rising edge of WCLK if $\overline{\mathrm{WEN}} 1$ is LOW and WEN2 is HIGH. When the FIFO is full, WEN2 is ignored.

Figure 1. Offset Registers

L8C211 OFFSET REGISTERS									
	8	7	6	5	4	3	2	1	0
PAE LSB	X	E7	E6	E5	E4	E3	E2	E1	E0
PAE MSB	X	X	X	X	X	X	X	X	E8
PAF LSB	X	F7	F6	F5	F4	F3	F2	F1	F0
PAF MSB	X	X	X	X	X	X	X	X	F8

L8C221 OFFSET REGISTERS									
	8	7	6	5	4	3	2	1	0
PAE LSB	X	E 7	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1}	E_{0}
PAE MSB	X	X	X	X	X	X	X	E_{9}	E_{8}
PAF LSB	X	F 7	F 6	F 5	F 4	F 3	F 2	$\mathrm{~F}_{1}$	F 0
PAF MSB	X	X	X	X	X	X	X	F 9	F 8

L8C231 OFFSET REGISTERS									
	8	7	6	5	4	3	2	1	0
PAE LSB	X	E7	E6	E5	E4	E3	E2	E1	E0
PAE MSB	X	X	X	X	X	X	E10	E9	E8
PAF LSB	X	F7	F6	F5	F4	F3	F2	F1	Fo
PAF MSB	X	X	X	X	X	X	F10	F9	F8

L8C241 OFFSET REGISTERS									
	8	7	6	5	4	3	2	1	0
PAE LSB	X	E7	E6	E5	E4	E3	E2	E1	E0
PAE MSB	X	X	X	X	X	E11	E10	E9	E8
PAF LSB	X	F7	F6	F5	F4	F3	F2	F1	Fo
PAF MSB	X	X	X	X	X	F11	F10	F9	F8

E0/Fo are the least significant bits.
X = Don't Care.

When WEN2 $2 \overline{\mathrm{LD}}$ is configured to be an offset register load/read control, it is possible to write to or read from the offset registers. The values stored in the offset registers determine how the Programmable Almost-Empty ($\overline{\mathrm{PAE}}$) and Programmable Almost-Full ($\overline{\mathrm{PAF}}$) Flags operate (see $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ sections). There are four 9-bit offset registers. Two are used to control the Programmable Almost-Empty Flag and two are used to control the Programmable Almost-Full Flag (see Figure 1). Data on D8-0 is written to an offset register on the rising edge of WCLK if $\overline{\mathrm{LD}}$ and $\overline{\mathrm{WEN}} 1$ are LOW. After reset, data is written to the offset registers in the following order: PAE LSB, PAE MSB, PAF LSB, PAF MSB. After the PAF MSB register has been loaded, the sequence repeats starting with the PAE LSB register. If register loading is stopped, the next register in sequence will be loaded when the next register write occurs. If $\overline{\mathrm{LD}}, \overline{\mathrm{REN} 1}$, and $\overline{\mathrm{RENz}}$ are LOW, data is read from an offset register and presented on Q8-0 (if the output port is enabled) after tD has elapsed from the rising edge of RCLK. The offset registers are read in the same order they are written to. It is not possible to read from and write to the offset registers at the same time.

$\overline{R E N 1}, \overline{R E N 2}-$ Read Enables 1 and 2

Data is read from the FIFO and presented on Q8-0 after tD has elapsed from the rising edge of RCLK if $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are LOW and if the output port is enabled. If either Read Enable goes HIGH, the last value loaded in the output register will remain unchanged. The Read Enable signals are ignored when the FIFO is empty.

D8-0 - Data Input

D8-0 is the 9 -bit registered data input port.
$\overline{O E}$-Output Enable
When $\overline{\mathrm{OE}}$ is LOW, the output port (Q8-0) is enabled for output. When $\overline{\mathrm{OE}}$ is HIGH, Q8-0 is placed in a highimpedance state. The flag outputs are not affected by $\overline{\mathrm{OE}}$.

Outputs

Q8-0 — Data Output
Q8-0 is the 9-bit registered data output port.

$\overline{F F}$-Full Flag

The Full Flag goes LOW when the FIFO is full of data. When $\overline{\text { FF }}$ is LOW, the FIFO can not be written to. The Full Flag is synchronized to the rising edge of WCLK.

$$
\overline{E F}-\text { Empty Flag }
$$

The Empty Flag goes LOW when the read pointer is equal to the write pointer, indicating that the FIFO is empty. When EF is LOW, read operations can not be performed. The Empty Flag is synchronized to the rising edge of RCLK.

$\overline{P A F}$ — Programmable Almost-Full Flag

$\overline{\text { PAF }}$ goes LOW when the write pointer is (Full -N) locations ahead of the read pointer. N is the value stored in the $\overline{\mathrm{PAF}}$ offset register and has a default value of 7 . $\overline{\text { PAF }}$ is synchronized to the rising edge of WCLK.

$\overline{P A E}$ - Programmable Almost-Empty Flag

$\overline{\text { PAE }}$ goes HIGH when the write pointer is $(\mathrm{N}+1)$ locations ahead of the read pointer. N is the value stored in the PAE offset register and has a default value of 7 . PAE is synchronized to the rising edge of RCLK.

OPERATING MODES

Single Device Mode

A single FIFO may be used when the application requirements are for the number of words in a single device.

Width Expansion Mode

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Any word width can be attained by adding the appropriate number of FIFOs. Status flags can be monitored from any one of the devices.

Depth Expansion Mode

The FIFOs can easily be adapted to applications where the requirements are for greater than the number of words in a single device. If the FIFOs are configured to use WEN2 and external logic is used to direct the flow of data into the cascaded FIFOs, depth expansion can be accomplished.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

Storage temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating ambient temperature .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground ..

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions

Symbol	Parameter	Test Condition	L8C211/221/231/241			Unit
			Min	Typ	Max	
VoH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
V H	Input High Voltage		2.0			V
VL	Input Low Voltage				0.8	V
IIX	Input Leakage Current	Ground \leq VIN \leq Vcc	-1		+1	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vout \leq Vcc	-10		+10	$\mu \mathrm{A}$
Icc1	Vcc Current, Active				90	mA
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=4.5 \mathrm{~V}$			10	pF
Cout	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$			10	pF

SWITCHING CHARACTERISTICS Over Operating Range

Reset Timing Notes 3, 4, 5 (ns)									
Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
trs	Reset Pulse Width	50		25		20		15	
trss	Reset Setup Time	50		25		20		15	
trsf	Reset to Flag and Output Valid		50		25		20		15

Reset Timing

[^13]L8C211/221/231/241

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle Timing Notes 3, 4 (ns)									
Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20		15	
tPWH	Clock Pulse Width HIGH	20		10		8		6	
tPWL	Clock Pulse Width LOW	20		10		8		6	
tos	Data Setup Time	10		6		5		4	
toh	Data Hold Time	1		1		1		1	
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
twFF	Write Clock to Full Flag		25		15		12		10
tSkEW1	Skew Time Between Read and Write Clocks for Empty and Full Flags (Note 6)	15		10		8		6	

Write Crcle Timing

L8C211/221/231/241

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Timing Notes 3, 4 (ns)

Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20		15	
tpwh	Clock Pulse Width HIGH	20		10		8		6	
tpwL	Clock Pulse Width LOW	20		10		8		6	
to	Output Delay	3	25	3	15	2	12	2	10
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
toe	Output Enable to Output Valid	3	25	3	13	3	10	3	8
tolz	Output Enable to Output in Low Impedance (Notes 7, 8)	0		0		0		0	
tohz	Output Enable to Output in High Impedance (Notes 7, 8)	3	25	3	13	3	10	3	8
tref	Read Clock to Empty Flag		25		15		12		10
tskew1	Skew Time Between Read and Write Clocks for Empty and Full Flags (Note 9)	15		10		8		6	

Read Cycle Timing

SWITCHING CHARACTERISTICS Over Operating Range

First Data Word Timing Notes 3,4 (ns)

Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcrc	Cycle Time	50		25		20		15	
tpwh	Clock Pulse Width HIGH	20		10		8		6	
tpWL.	Clock Pulse Width LOW	20		10		8		6	
to	Output Delay	3	25	3	15	2	12	2	10
tos	Data Setup Time	10		6		5		4	
toh	Data Hold Time	1		1		1		1	
toe	Output Enable to Output Valid	3	25	3	13	3	10	3	8
tolz	Output Enable to Output in Low Impedance (Notes 7, 8)	0		0		0		0	
tref	Read Clock to Empty Flag		25		15		12		10
tskew1	Skew Time Between Read and Write Clocks for Empty and Full Flags	15		10		8		6	

First Data Word Timing

*latency timing is only relevant when the Empty Flag is LOW.
when tSKEW 1 is less than minimum specification, tFRL $=$ tCYC + tsKEW 1.
when tSKEW1 is greater than minimum specification, tFRL $=2(\mathrm{tCYC})+$ tSKEW 1 .

L8C211/221/231/241
DEVICES INCORPORATED
512/1K/2K/4K x 9-bit Synchronous FIFO

SWITCHING CHARACTERISTICS Over Operating Range

Empty Flag Timing Notes 3, 4 (ns)

Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20		15	
tpwh	Clock Pulse Width HIGH	20		10		8		6	
tPWL	Clock Pulse Width LOW	20		10		8		6	
to	Output Delay	3	25	3	15	2	12	2	10
tds	Data Setup Time	10		6		5		4	
tDH	Data Hold Time	1		1		1		1	
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
tref	Read Clock to Empty Flag		25		15		12		10
tskew1	Skew Time Between Read and Write Clocks for Empty and Full Flags	15		10		8		6	

Empty Flag Timing

*latency timing is only relevant when the Empty Flag is LOW.
when tSKEW1 is less than minimum specification, tFRL = tCYC $+\mathbf{t S K E W} 1$.
when tSKEW1 is greater than minimum specification, tFRL $=2($ tCYC $)+$ tSKEW1.

L8C211/221/231/241

SWITCHING CHARACTERISTICS Over Operating Range

Full Flag Timing Notes 3, 4 (ns)

Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcre	Cycle Time	50		25		20		15	
trwh	Clock Pulse Width HIGH	20		10		8		6	
tPWL	Clock Pulse Width LOW	20		10		8		6	
tD	Output Delay	3	25	3	15	2	12	2	10
tos	Data Setup Time	10		6		5		4	
toh	Data Hold Time	1		1		1		1	
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
twfF	Write Clock to Full Flag		25		15		12		10
tskewi	Skew Time Between Read and Write Clocks for Empty and Full Flags	15		10		8		6	

Full Flag Timing

SWITCHING CHARACTERISTICS Over Operating Range

Programmable Almost-Empty/Full Flag Timing Notes 3, 4 (ns)									
Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcre	Cycle Time	50		25		20		15	
tpwh	Clock Pulse Width HIGH	20		10		8		6	
tPWL	Clock Pulse Width LOW	20		10		8		6	
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
tPAF	Write Clock to Programmable Almost-Full Flag		25		15		12		10
tpaE	Read Clock to Programmable Almost-Empty Flag		25		15		12		10
tskew2	Skew Time Between Read/Write Clocks for Almost-Empty/Full Flags	30		20		18		15	

Programmable Almost-Empty Flag Note 10

$\cdot \overline{P A E}$ is synchronized to the rising edge of RCLK, but in this case the $\overline{\mathrm{PAE}}$ transition takes place in the next clock cycle.

Programmable Almost-Full Flag Note 11

L8C211/221/231/241

SWITCHING CHARACTERISTICS Over Operating Range

Write/Read Offset Register Timing Notes 3, 4 (ns)									
Symbol	Parameter	L8C211/221/231/241-							
		50		25		20		15	
		Min	Max	Min	Max	Min	Max	Min	Max
tcyc	Cycle Time	50		25		20		15	
tPWH	Clock Pulse Width HIGH	20		10		8		6	
tpWL	Clock Pulse Width LOW	20		10		8		6	
to	Output Delay	3	25	3	15	2	12	2	10
tos	Data Setup Time	10		6		5		4	
tor	Data Hold Time	1		1		1		1	
tens	Enable Setup Time	10		6		5		4	
tenh	Enable Hold Time	1		1		1		1	
toe	Output Enable to Output Valid	3	25	3	13	3	10	3	8
tolz	Output Enable to Output in Low Impedance (Notes 7, 8)	0		0		0		0	

Write Offset Register

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. Test conditions assume input transition times of 5 ns or less, reference levels of 1.5 V , and input pulse levels of 0 to 3.0 V (Fig. 2).
4. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tDS is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
5. The Read and Write Clocks can be freerunning during reset.
6. tSKEW1 is the minimum time between the rising edge of RCLK and the rising edge of WCLK for a Full Flag transition to occur in that clock cycle. If tSKEW1 is not satisfied, a Full Flag transition may not occur until the next rising WCLK edge.
7. These parameters are guaranteed but not 100% tested.
8. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
9. tSKEW1 is the minimum time between the rising edge of WCLK and the rising edge of RCLK for an Empty Flag transition to occur in that clock cycle. If tSKEW1 is not satisfied, an Empty Flag transition may not occur until the next rising RCLK edge.
10. tSKEW2 is the minimum time between the rising edge of WCLK and the rising edge of RCLK to guarantee that the Programmable Almost-Empty Flag will make a transition to HIGH during that clock cycle. If tSKEW2 is not satisfied, the Programmable AlmostEmpty Flag may not make the transition to HIGH until the next rising edge of RCLK.
11.tSKEW2 is the minimum time between the rising edge of RCLK and the rising edge of WCLK to guarantee that the Programmable Almost-Full Flag will make a transition to HIGH during that clock cycle. If tSKEW2 is not satisfied, the Programmable AlmostFull Flag may not make the transition to HIGH until the next rising edge of WCLK.
11. It is not recommended that Logic Devices and other vendor parts be cascaded together. The parts are designed to be pin-for-pin compatible but temperature and voltage compensation may vary from vendor to vendor. Logic Devices can only guarantee the cascading of Logic Devices parts to other Logic Devices parts.
12. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

	L8C231－ORDERING INFORMATION
	32－pin
Speed	Plastic J－Lead Chip Carrier (J6)
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$－Commercial Screening
$\begin{aligned} & 50 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	L8C231JC50 L8C231JC25 L8C231JC20 L8C231JC15
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$－Commercial Screening
$\begin{aligned} & 50 \mathrm{~ns} \\ & 25 \mathrm{~ns} \\ & 20 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline \text { L8C231JI50 } \\ & \text { L8C231JI25 } \\ & \text { L8C231JI20 } \\ & \text { L8C231JI15 } \end{aligned}$

투응
DEVICES INCORPORATED

Ordering Inrormation Video Imaging Products

Arihmekic Logic Units \& Special Amthmetic Functione Muhtpliers \& Mumplier-Accummlators

Quality and Reliability

Technology ancl Design Features

Product Misting

Quality and-Reliability

Copies of the LOGIC Devices "Quality Assurance Program Manual" and "Quality Assurance Reliability Manual" may be obtained from LOGIC Devices by contacting our applications group at (408) 542-5446 between 8:00 AM and 6:00 PM Pacific time, Monday through Friday. Both manuals may also be downloaded from LOGIC Devices Website at http://www.logicdevices.com.

DEVICES INCORPORATED
TECHNOLOGY AND DESIGN FEATURES 10-1
Latchup and ESD Protection 10-3
Power Dissipation in LOGIC Devices Products 10-7

Latchup and ESD Protection

Latchup is a destructive phenomenon which was once common in CMOS circuits but has now been largely eliminated by improved circuit design techniques. Latchup takes place because of the existence in CMOS of an inherent PNPN or NPNP structure between VCC and ground. Either of these two can form a pair of transistors connected so as to form a positive feedback loop, with the collector of one transistor driving the base of the other. The result is a low-impedance path from VCC to ground, which cannot be interrupted except by the removal of power. This condition can be destructive if the area involved is sufficiently large to dissipate excessive power. One example of the formation of such a structure is shown in Figure 1. The equivalent circuit is shown in Figure 2.

As shown in Figure 1, the $\mathrm{N}+$ regions which form the source and drain of an N -channel MOS transistor also act as the emitters of a parasitic NPN transistor. The P-well forms the base region and the N -substrate is the collector. The current gain of this transistor is relatively high because it is formed vertically and therefore the base width is quite small. This is especially true of fine-geometry CMOS processes which tend to have very shallow wells to reduce sidewall capacitance. The $\mathrm{P}+$ region in the well is called a "well tap" and is present to form a low-resistance connection between the well and ground. The source region cannot serve this function because it forms a diode between the $\mathrm{N}+$ source and the P -well.

Also shown in Figure 1 is an additional parasitic PNP transistor. The source and drain regions of the P channel MOS device form the emitters, the N -substrate is the base, and the P-well is the collector. This
transistor is a PNP, and generally has a beta (β) much less than 1 since it is formed laterally and the gate region is relatively large. Like the vertical NPN, it can have multiple emitters. The N+ region tied to VCC in the substrate functions similarly to the well tap discussed above.

Note that the base of the NPN and the collector of the PNP are a common region (the P -well), and similarly the base of the PNP and the collector of the NPN are common (the N-substrate). Thus, the PNPN structure necessary for latchup is formed. Also, due to the the physical distance between the well and substrate taps and the base regions which they attempt to contact, a small resistance exists between the base regions and their respective well taps, denoted Rs (substrate) and RW (well).

Latchup begins when a perturbation causes one of the bipolar transistors to turn on. An example would be excursion of the output pad below ground or above VCC due to transmis-sion-line ringing. If the pad goes more than 0.7 V below ground, the NPN will turn on since its base is at approximately ground potential. The NPN's collector current will cause a voltage drop across Rs, the bulk substrate resistance. This voltage drop turns on the PNP.

The PNP transistor's collector current forces a similar voltage drop across RW, the well resistance. This raises the base voltage of the NPN above ground and can cause the NPN to continue to conduct even after the output pad returns to a normal voltage range. In this case, the current path shifts to the grounded emitter.
Note that any effect which can cause a transient turn-on of either transistor can cause the latchup process.

Common causes include:

1. Ringing of unprotected I / O pins outside the ground to VCC region.
2. Radiation-induced carriers generated in the base of the bipolar transistors.
3. Hot-powerup of the device, with inputs driven HIGH before VCC is applied.
4. Electrostatic discharge.

PROTECTING AGAINST LATCHUP

Latchup, while once a severe problem for CMOS, is now a relatively wellunderstood phenomenon. In order for latchup to occur, the product of the current gains of the two parasitic transistors must exceed 1. Thus, the primary means for avoiding latchup is the insertion of structures known as "guard rings" around all MOS transistors (and other structures) likely to be subjected to latchupcausing transients. This includes output buffer transistors and any devices which form a part of the ESD protection network. These guard rings absorb current which would otherwise drive the base of the lateral device, and thus dramatically reduce its gain.
Since external electrical perturbations are the dominant cause of latchup in non-radiation environments, protecting the "periphery" of the chip is most important. Therefore, since guard rings require a lot of area, they are generally used only in critical areas such as those mentioned above.

As an additional protective measure, strict rules are enforced in the layout regarding the positioning of the substrate and well taps. They are spaced closely together throughout

Latchup and ESD Protection

Figure 1. Parasitic Transistor Structures in Parallel CMOS

Figure 2.
 Equivalent Circurt for Latchup Path

the die, reducing the values of Rs and RW. This makes it more difficult to develop the base drive necessary to regenerate the latchup condition.

Measurement of susceptibility to latchup is done by connecting a current source to an input or output of the device under test. By increasing the current forced to flow into the pin and noting the point at which latchup occurs, a measure of the device's ability to resist latchupinducing carrier injection is obtained. Note that depending on the device, the current source may require a rather large voltage compliance in order to provide an adequate test.

While early CMOS devices had a latchup trigger current of a few tens of milliamps, most current LOGIC Devices products typically can withstand more than 1 amp without latching. As a result, latchup is no longer a practical concern, except for
extreme conditions such as driving multiple inputs HIGH with a lowimpedance source during powerup of the device.

ELECTROSTATICDISCHARGE

Input protection structures on CMOS devices are used to protect against damage to the gate oxides of input transistors when accumulated static charge is discharged through a device. This charge can often reach potentials of several thousand volts. The input protection network is designed to shunt this charge safely to ground or VCC, bypassing the delicate MOS transistors.

Several features are required of a good input protection network. Since static discharge pulses exhibit very fast risetimes, it must have a very fast turn-on time. It must be capable of carrying large instantaneous currents without damage. It must prevent the voltage
at the circuit input from rising above approximately 10 V during the time when the several-thousand-volt discharge is shunted to ground. It must not create appreciable delay for fast edges which are within the $0-5 \mathrm{~V}$ input range. And finally, it must be well protected against latchup caused by inputs which are driven beyond the supply rails, injecting current into the substrate. Much research and experimentation has been devoted to optimizing the tradeoffs between these conflicting goals.

All LOGIC Devices products employ one of the three input protection structures shown in Figure 3. Most devices currently use the Type 1 input protection. This structure is designed to absorb very high static discharge energies and will draw substantial current from the input pin if driven beyond either supply rail. Hence, it provides a "hard" clamp. Besides its advantages for static protection, this clamp can effectively reduce under-
shoot energy, preventing oscillation of an unterminated input back above the 0.8 V VIL MAX level. This makes the circuit ideal for noisy environments and ill-behaved signals. This input structure may not be driven to a high level without power applied to the device, however. To do so would result in current flowing through the diode connected to the device's Vcc rail, and supplying power to the entire board or system backward through the device VCC pin. This may overstress the bond wire or device metallization, resulting in failure.

The Type 2 structure employs a series resistor prior to the two clamp diodes. This results in a "soft" clamping effect. This structure will withstand the transient application of voltages outside the supply rails for brief periods without drawing excessive current. In contrast to the Type 1 structure, this circuit will provide only a modest reduction of the energy in an undershoot pulse. However, it is somewhat
more tolerant of power-up sequences which cause the inputs to be driven before Vcc is applied. In the course of routine product upgrades, devices employing this structure are being redesigned to use a Type 1 input protection.

The Type 3 structure uses a large area N -channel transistor (part of an opendrain output buffer) to protect the input. The drain-well junction of this device serves the function of a diode connected between the input and ground, protecting against negative excursions of the input. The avalanche breakdown of the output device serves to protect against positive pulses, giving the effect of a zener diode between the input and ground. This circuit is used only for inputs which are designed to have their inputs driven without power applied. The lack of a diode to Vcc prevents sourcing of power from the inputs to the VCC supply.

Figure 3. Input Protection Devices

Type 1-A/B

Type 2

Type 3

Power Dissipation in LOGIC Devices Products

In calculating the power dissipation of LOGIC Devices products, attention must be given to a number of formerly second-order effects which were generally ignored when dealing with bipolar and NMOS technologies. By far the dominant contributor to power dissipation in most CMOS devices is the effective current path from the supply to ground, created by the repetitive charging and discharging of the load capacitance. This is distinct from DC loading effects, which may also consume power. The power dissipated in the load capacitance is proportional to $\mathrm{CV}^{2} \mathrm{~F}$, where C is the load capacitance, V is the voltage swing, and Fis the switching frequency. This mechanism can frequently contribute 80% or more of the total device dissipation of a truly complementary device operating at a high clock rate.

The second contributor to the power dissipation of a CMOS device is the DC current path between VCC and ground present in the input level translators. These circuits are voltage amplifiers which are designed to convert worst case $0.8-2.0 \mathrm{~V}$ TTLcompatible input levels to 0 and 5 V internal levels. With 2.0 V applied to the input of most level translator circuits, about 1 mA will flow from the power supply to ground. A floating input will at best have similar results, and may result in oscillations which can dissipate orders of magnitude more power and cause malfunctioning of the device.

The power dissipation of input level translators exhibits a strong peak at about 1.4 V but is reduced substantially when the input voltage exceeds 3.0 V (see Figure 1). Fortunately, this voltage is easy to achieve in practice, even for bipolar devices with TTL I/O
structures. These generally will produce a VOH of at least 3.5 V if not fully loaded. As a result, dissipation in the input structures is usually negligible compared to other sources.
Two further sources of power dissipation in CMOS come from the core logic. The sources of internal power dissipation are the same as those discussed for external nodes, namely repetitive charging of the parasitic load capacitances on each gate output, and the power drawn due to a direct current path to ground when gate
input voltage levels transition through the linear region. In practice, the internal voltage waveforms are characterized by high edge rates and rail-to-rail swings. For this reason, the latter source of dissipation is usually negligible, unless NMOS or other noncomplementary logic design techniques have been used.
The capacitance of typical internal nodes in CMOS logic circuits are a few femtofarads. However, there can be thousands, or tens of thousands of such nodes. As a result, the core

Figure 1.

power dissipation is strongly dependent on the average rate at which these nodes switch (the " F " in $\mathrm{CV}^{2} \mathrm{~F}$). Fortunately, for most complex logic circuits, with non-pathological external stimulus only a small fraction of the logic nodes switch on any given cycle. For this reason, internal power is generally quite small for these device types. Exceptions include devices containing long shift registers or other structures which can exhibit high duty cycles on most internal nodes. These devices can dissipate significant power in the core logic if stimulated with alternating data patterns and clocked at a high rate.

To summarize, of the several contributors to power dissipation, the $\mathrm{CV}^{2} \mathrm{~F}$ power of the outputs is usually dominant. Because output loading is system-dependent, it is not possible
for the manufacturer to accurately predict total power dissipation in actual use. As a result, LOGIC Devices extrapolates measured power dissipation values to a zero-load environment and publishes the resulting value. This value includes the effects of worst-case input and power-supply voltages, temperature, and stimulus pattern, but not $\mathrm{CV}^{2} \mathrm{~F}$. This value is weakly frequency dependent, and the frequency at which it is measured is published in the device data sheet. The maximum value is for worst-case pattern, and the typical is for a more random pattern and is therefore more representative of what would be experienced in actual practice.

A good estimate of total power dissipation in a particular system under worst-case conditions can be
obtained by adding the calculated output power to the typical published figure. The output power is given by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where:
$\mathrm{N}=$ the number of device outputs (divided by 2 to account for the assumption that on average, half of the outputs switch on any given cycle)
$C=$ the output load capacitance, per pin, given in Farads
$\mathrm{V}=$ the power supply voltage
$F=$ the clock frequency (divided by 2 to account for the fact that a registered output can at most switch at only half the clock rate).

A less pessimistic estimate, appropriate for complex devices when reasonable input voltage levels and nonpathological patterns can be expected, would neglect the published value and use only the calculated value as given above.

Package Information

DEVICES INCORPORATED
PACKAGE INFORMATION 11-1
LOGIC Devices/MIL-STD-1835 Package Code Cross-Reference 11-4
Thermal Considerations 11-7
Package Marking Guide 11-9
Mechanical Drawings
Ceramic DIP (Ordering Code: C, I) 11-12
C1 24-pin, $0.3^{\prime \prime}$ wide 11-12
C2 20-pin, $0.3^{\prime \prime}$ wide 11-12
C3 22-pin, $0.3^{\prime \prime}$ wide 11-13
C4 24-pin, $0.6^{\prime \prime}$ wide 11-13
C5 28-pin, $0.3^{\prime \prime}$ wide 11-14
C6 28-pin, $0.6^{\prime \prime}$ wide 11-14
C7 16-pin, $0.3^{\prime \prime}$ wide 11-15
C8 18-pin, $0.3^{\prime \prime}$ wide 11-15
C9 32-pin, $0.6^{\prime \prime}$ wide 11-16
C10 28-pin, $0.4^{\prime \prime}$ wide 11-16
C11 40 -pin, $0.6^{\prime \prime}$ wide 11-17
Sidebraze, Hermetic DIP (Ordering Code: D, H) 11-18
D1 24-pin, $0.6^{\prime \prime}$ wide 11-18
D2 24-pin, $0.3^{\prime \prime}$ wide 11-18
D3 40-pin, $0.6^{\prime \prime}$ wide 11-19
D4 64 -pin, $0.9^{\prime \prime}$ wide, cavity up 11-19
D5 48-pin, $0.6^{\prime \prime}$ wide 11-20
D6 $\quad 64$-pin, $0.9^{\prime \prime}$ wide, cavity down 11-20
D7 20-pin, $0.3^{\prime \prime}$ wide 11-21
D8 22-pin, $0.3^{\prime \prime}$ wide 11-21
D9 28-pin, $0.6^{\prime \prime}$ wide 11-22
D10 28-pin, $0.3^{\prime \prime}$ wide 11-22
D11 28-pin, $0.4^{\prime \prime}$ wide 11-23
D12 32-pin, $0.4^{\prime \prime}$ wide 11-23
Flatpack (Ordering Code: F) 11-24
F1 24-pin 11-24
F2 28-pin 11-24
F3 144-pin 11-25
F4 64-pin 11-26
F5 132-pin 11-27
Ceramic PGA (Ordering Code: G) 11-28
G1 68-pin, cavity up 11-28
G2 68-pin, cavity down 11-28
G3 84-pin 11-29
G4 120-pin 11-29
G5 132-pin 11-30

Package Information

Plastic J-Lead Chip Carrier (Ordering Code: J) 11-31
J1 44-pin, $0.690^{\prime \prime} \times 0.690^{\prime \prime}$ 11-31
J2 68-pin, $0.990^{\prime \prime} \times 0.990^{\prime \prime}$ 11-31
J3 84 -pin, $1.190^{\prime \prime} \times 1.190^{\prime \prime}$ 11-32
J4 28-pin, $0.490^{\prime \prime} \times 0.490^{\prime \prime}$ 11-32
J5 52-pin, $0.790^{\prime \prime} \times 0.790^{\prime \prime}$ 11-33
J6 32-pin, $0.490^{\prime \prime} \times 0.590^{\prime \prime}$ 11-33
J7 20-pin, $0.390^{\prime \prime} \times 0.390^{\prime \prime}$ 11-34
Ceramic Leadless Chip Carrier (Ordering Code: K, T) 11-35
K1 28-pin, $0.450^{\prime \prime} \times 0.450^{\prime \prime}$ 11-35
K2 44-pin, 0.650 " $\times 0.650^{\prime \prime}$ 11-35
K3 68-pin, $0.950^{\prime \prime} \times 0.950^{\prime \prime}$ 11-36
K4 22-pin, $0.290^{\prime \prime} \times 0.490^{\prime}$ 11-36
K5 28-pin, 0.350 " x $0.550^{\prime \prime}$ 11-37
K6 20-pin, $0.290^{\prime \prime} \times 0.425^{\prime \prime}$ 11-37
K7 32-pin, 0.450 " x 0.550 11-38
K8 20-pin, $0.350^{\prime \prime} \times 0.350^{\prime \prime}$ 11-38
K9 48 -pin, 0.550 " $\times 0.550^{\prime \prime}$ 11-39
K10 32-pin, 0.450 " x 0.700" 11-39
Ceramic Flatpack (Ordering Code: M) 11-40
M1 24-pin 11-40
M2 28-pin 11-40
Plastic DIP (Ordering Code: P, N) 11-41
P1 24-pin, 0.6 " wide 11-41
P2 24-pin, $0.3^{\prime \prime}$ wide 11-41
P3 40-pin, $0.6^{\prime \prime}$ wide 11-42
P4 64-pin, $0.9^{\prime \prime}$ wide 11-42
P5 48-pin, $0.6^{\prime \prime}$ wide 11-43
P6 20-pin, $0.3^{\prime \prime}$ wide 11-43
P7 32-pin, $0.3^{\prime \prime}$ wide 11-44
P8 22-pin, $0.3^{\prime \prime}$ wide 11-44
P9 28-pin, $0.6^{\prime \prime}$ wide 11-45
P10 28-pin, $0.3^{\prime \prime}$ wide 11-45
P11 28-pin, 0.4 " wide 11-46
P12 16-pin, $0.3^{\prime \prime}$ wide 11-46
P13 18-pin, $0.3^{\prime \prime}$ wide 11-47
P14 32-pin, $0.6^{\prime \prime}$ wide 11-47
P15 32-pin, $0.4^{\prime \prime}$ wide 11-48
Plastic Quad Flatpack (Ordering Code: \mathbf{Q}) 11-49
Q1 120-pin 11-49
Q2 100-pin 11-50
Q3 64-pin 11-51
Q4 44-pin 11-52
Q5 144-pin 11-53

Package Information

Plastic SSOP (Ordering Code: S) 11-54
S1 24-pin 11-54
Plastic SOJ (Ordering Code: W) 11-55
W1 24-pin, $0.3^{\prime \prime}$ wide 11-55
W2 28-pin, $0.3^{\prime \prime}$ wide 11-55
W3 20-pin, $0.3^{\prime \prime}$ wide 11-56
W4 16 -pin, $0.3^{\prime \prime}$ wide 11-56
W5 18-pin, $0.3^{\prime \prime}$ wide 11-57
W6 32-pin, $0.4^{\prime \prime}$ wide 11-57
W7 28-pin, $0.4^{\prime \prime}$ wide 11-58
Ceramic SOJ (Ordering Code: Y) 11-59
Y1 32-pin, 0.440 " wide 11-59

LOGIC Devices/MIL-STD-1835 Package Code Cross-Reference

LOGIC DEVICES PACKAGE CODE	DESCRIPTION	MIL-STD-1835 PACKAGE DESIGNATOR	$\begin{gathered} \text { MIL-STD-1835 } \\ \text { DIMENSION REFERENCE } \end{gathered}$
CERAMIC DIP			
C1	24 -pin, 0.3 " wide	GDIP3-T24	D-9
C2	20 -pin, 0.3 " wide	GDIP1-T20	D-8
C3	22 -pin, 0.3 " wide	N/A	N/A
C4	24 -pin, 0.6 " wide	GDIP1-T24	D-3
C5	28 -pin, 0.3 " wide	GDIP4-T28	D-15
C6	28 -pin, 0.6 " wide	GDIP1-T28	D-10
C7	16 -pin, 0.3 " wide	GDIP1-T16	D-2
C8	18 -pin, 0.3 " wide	GDIP1-T18	D-6
C9	32 -pin, 0.6 " wide	GDIP1-T32	D-16
C10	28 -pin, 0.4 " wide	N/A	N/A
C11	40 -pin, 0.6 " wide	GDIP1-T40	D-5
SIDEBRAZE, HERMETIC DIP			
D1	24 -pin, $0.6^{\prime \prime}$ wide	CDIP2-T24	D-3
D2	24 -pin, 0.3 " wide	CDIP4-T24	D-9
D3	$40-\mathrm{pin}, 0.6$ " wide	CDIP2-T40	D-5
D4	64 -pin, 0.9 " wide, cavity up	CDIP1-T64	D-13
D5	48 -pin, 0.6 " wide	CDIP2-T48	D-14
D6	64 -pin, 0.9 " wide, cavity down	CDIP1-T64	D-13
D7	$20-\mathrm{pin}, 0.3$ " wide	CDIP2-T20	D-8
D8	22 -pin, $0.3^{\prime \prime}$ wide	N/A	N/A
D9	$28-\mathrm{pin}, 0.6^{\prime \prime}$ wide	CDIP2-T28	D-10
D10	28 -pin, 0.3 " wide	CDIP3-T28	D-15
D11	$28-\mathrm{pin}, 0.4$ " wide	N/A	N/A
D12	32 -pin, 0.4 " wide	N/A	N/A
FLATPACK			
F1	24 -pin	CDFP4-F24	F-6A
F2	28-pin	CDFP4-F28	F-12
F5	132-pin	CQCC1-G132	C-G7
CERAMIC PGA			
G1	68 -pin, cavity up	CMGA3-P68	P-AC
G2	68 -pin, cavity down	CMGA3-P68	P-AC
G3	84 -pin	CMGA15-P84	P-BC
G4	120-pin	CMGA3-P121	P-AC

LOGIC Devices/MIL-STD-1835 Package Code Cross-Reference

LOGIC DEVICES PACKAGE CODE	DESCRIPTION	MIL-STD-1835 PACKAGE DESIGNATOR	MIL-STD-1835 DIMENSION REFERENCE
CERAMIC LEADLESS CHIP CARRIER			
K1	28-pin, 0.450" $\times 0.450^{\prime \prime}$	CQCC1-N28	C-4
K2	44-pin, $0.650^{\prime \prime} \times 0.650^{\prime \prime}$	CQCC1-N44	C-5
K3	68-pin, $0.950^{\prime \prime} \times 0.950^{\prime \prime}$	CQCC1-N68	C-7
K4	22-pin, 0.290" $\times 0.490^{\prime \prime}$	N/A	N/A
K5	$28-\mathrm{pin}, 0.350 " \times 0.550^{\prime \prime}$	CQCC4-N28	C-11A
K6	20-pin, 0.290" $\times 0.425^{\prime \prime}$	CQCC3-N20	C-13
K7	32-pin, 0.450" $\times 0.550^{\prime \prime}$	CQCC1-N32	C-12
K8	20-pin, $0.350{ }^{\prime \prime} \times 0.350^{\prime \prime}$	CQCC1-N20	C-2
K9	$48-\mathrm{pin}, 0.550{ }^{\prime \prime} \times 0.550^{\prime \prime}$	N/A	N/A
K10	32-pin, $0.450{ }^{\prime \prime} \times 0.700 "$	N/A	N/A
CERAMIC FLATPACK			
M1	24-pin	GDFP2-F24	F-6
M2	28-pin	GDFP2-F28	F-11
CERAMIC SOJ			
Y1	32-pin, $0.440^{\prime \prime}$ wide	N/A	N/A

DEVICES INCORPORATED

Thermal Considerations

The temperature at which a semiconductor device operates is one of the primary determinants of its reliability. This temperature is often referred to as the "junction temperature", although this term is more appropriate for bipolar than MOS technologies. Heat dissipated in the device during operation escapes through a path consisting of one or more series thermal impedances terminating in the surrounding air (see Figure. 1).

The presence of this nonzero thermal impedance causes the temperature of the device to rise above that of the air. Each of the components of the overall thermal impedance causes a rise in temperature which is linearly dependent on the power dissipated in the device. The coefficient is called θ, and has the units ${ }^{\circ} \mathrm{C} / \mathrm{W}$. The θ value for each thermal impedance represents the amount of temperature rise across the impedance as a function of the power dissipation. Usually, θ is given a subscript indicating the two points between which the impedance is
measured. Thus the junction temperature of an operating device is given by:

$$
\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{AMB}}+\left(\mathrm{Pd} \bullet \theta_{\mathrm{JA}}\right)
$$

where:
$\mathrm{T}_{\mathrm{j}}=\begin{aligned} & \text { junction temperature of the } \\ & \text { device, }{ }^{\circ} \mathrm{C} \text {, }\end{aligned}$
$\mathrm{T}_{\mathrm{AMB}}=$ ambient air temperature, $\mathrm{in}{ }^{\circ} \mathrm{C}$
$\mathrm{Pd}=$ power dissipation of the device, in W,
$\theta_{\mathrm{JA}}=$ sum of all thermal impedances between the die and the ambient air, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$.

The thermal impedance of a given device is dependent on several factors. The package type is the predominant effect; ceramic packages have much lower thermal impedances than plastic, and packages with large surface areas tend to dissipate heat faster. Another factor which is beyond the control of the device manufacturer but which is nonetheless important is the temperature and flow rate of the cooling air. Secondary
effects include the size of the die, the method of attaching the die to the package, and the organization of high power dissipation elements on the die.
Because all LOGIC Devices products are built with low-power CMOS technology, thermal impedance is less of a concern than it would be for higher power technologies. As an example, consider a typical NMOS multiplier similar to the LMU16, packaged in a 64 -pin plastic DIP. Assuming 1 W power dissipation and θ_{JA} of $50^{\circ} \mathrm{C} / \mathrm{W}$, the actual die temperature would be $50^{\circ} \mathrm{C}$ above the surrounding air. By contrast, the LOGIC Devices LMU16 has a typical power dissipation of only 60 mW . This device in the same package would operate at only 3° above the ambient air temperature. Since operating temperature has an exponential relationship to device failure rate (see Quality and Reliability Manuals), the reduction of die temperature available with LOGIC Devices low-power CMOS translates to a marked increase in expected reliability.

Figure 1.

DEVICES INCORPORATED

Package Marking Guide

NOTE: Package marking may occur on top and bottom of package due to space limitations

DEVICES INCORPORATED

Mechanical Drawings

- Ceramic Dual In-line Package
- Sidebraze, Hermetic Dual In-line Package
- Flatpack
- Ceramic Pin Grid Array
- Plastic J-Lead Chip Carrier
- Ceramic Leadless Chip Carrier
- Ceramic Flatpack
- Plastic Dual In-line Package
- Plastic Quad Flatpack
- Plastic Small Scale Outline Package
- Plastic Small Outline J-Lead
- Ceramic Small Outline J-Lead

Mechanical Drawings
DEVICES INCORPORATED

Ceramic DIP (Ordering Code: C, I)
C1 - 24-pin, $0.3^{1 "}$ wide

C2 - 20-pin, 0.3" wide

Ceramic DIP (Ordering Code: C, I)

C3 - 22-pin, 0.3" wide

C4 - 24-pin, 0.6^{11} wide

Ceramic DIP (Ordering Code: C, I)

C5 - 28 -pin, $0.3^{\prime \prime}$ wide

C6 - 28-pin, $0.6^{\prime \prime}$ wide

Ceramic DIP (Ordering Code: C, I)

C7 - 16-pin, $0.3^{\prime \prime}$ wide

C8 - 18-pin, $0.3^{1 "}$ wide

$$
\text { C10 — 28-pin, } 0.4^{\prime \prime} \text { wide }
$$

Mechanical Drawings
DEVICES INCORPORATED

Sidebraze, Hermetic DIP (Ordering Code: D, H)
D1 - 24-pin, $0.6^{\prime \prime}$ wide

D2 - 24-pin, 0.3" wide

Sidebraze, Hermetic DIP (Ordering Code: D, H)
D3 - 40-pin, 0.6^{11} wide

0.125

0.195

D4 - 64-pin, 0.9 " wide, cavity up

Sidebraze，Hermetic DIP（Ordering Code：D，H）

D5－48－pin， 0.6^{11} wide

D6－64－pin， 0.9 ＂wide，cavity down

64

Sidebraze, Hermetic DIP (Ordering Code: D, H)

D7 - 20-pin, 0.3" wide

D8 - 22-pin, 0.3" wide

Sidebraze，Hermetic DIP（Ordering Code：D，H）

D9－28－pin， 0.6^{11} wide

28

$\underset{\substack{\text { TYPICAL }}}{\substack{0.100}}$

D10－28－pin，0．3＂wide

Sidebraze, Hermetic DIP (Ordering Code: D, H)

D11 - 28-pin, 0.4" wide

D12 - 32-pin, $0.4^{1 "}$ wide

Flatpack (Ordering Code: F)

F1-24-pin

F2 - 28-pin

Flatpack (Ordering Code: F)

F3-144-pin

DEVICES INCORPORATED

Flatpack (Ordering Code: F)

F4-64-pin

Flatpack (Ordering Code: F)
F5 - 132-pin

Ceramic PGA (Ordering Code: G)

G1 - 68-pin, cavity up

G2 - 68-pin, cavity down

Ceramic PGA (Ordering Code: G)

G3 - 84-pin

G4 - 120-pin

Mechanical Drawings
DEVICES INCORPORATED

Ceramic PGA (Ordering Code: G)

G5 - 132-pin

Plastic J-Lead Chip Carrier (Ordering Code: J)

J1 - 44-pin, 0.690" x 0.690"

Reference: JEDEC - MO-047-AC
JEDEC - MS-018-AC

J2 - 68-pin, 0.990" x 0.990"

DEVICES INCORPORATED

Plastic J-Lead Chip Carrier (Ordering Code: J)

J3 - 84-pin, 1.190" x 1.190"

Reference: JEDEC - MO-047-AF

J4 - 28-pin, $0.490^{\prime \prime} \times 0.490^{\prime \prime}$

Reference: JEDEC - MO-047-AB JEDEC - MS-018-AB

Plastic J-Lead Chip Carrier (Ordering Code: J)

J5 - 52-pin, 0.790" x 0.790"

Reference: JEDEC - MO-047-AD

J6 - 32-pin, 0.490" x 0.590"

Mechanical Drawings

Plastic J-Lead Chip Carrier (Ordering Code: J)

J7 - 20-pin, 0.390" x 0.390"

Reference: JEDEC - MO-047-AA JEDEC - MS-018-AA

Mechanical Drawings
DEVICES INCORPORATED

Ceramic Leadless Chip Carrier (Ordering Code: K, T)
K1 - 28-pin, 0.450" x 0.450"

Top View
Side View
Bottom View

$$
\text { K2 - 44-pin, } 0.650 \text { " x 0.650" }
$$

Ceramic Leadless Chip Carrier（Ordering Code：K，T）

$$
\text { K5 — 28-pin, } 0.350^{\prime \prime} \times 0.550^{\prime \prime}
$$

K6－20－pin，0．290＂x 0．425＂

Ceramic Leadless Chip Carrier (Ordering Code: K, T)
K10 - 32-pin, 0.450" x 0.700"

Ceramic Flatpack（Ordering Code：M）
M1－24－pin

M2－28－pin

Plastic DIP (Ordering Code: P, N)

P1 - 24-pin, 0.6" wide

P2 - 24-pin, 0.3" wide

Mechanical Drawings
DEVICES INCORPORATED

Plastic DIP (Ordering Code: P, N)

P3 - 40-pin, 0.6^{11} wide

P4 - 64-pin, 0.9" wide

Plastic DIP (Ordering Code: P, N)

P5 - 48-pin, $0.6^{\prime \prime}$ wide

P6 - 20-pin, 0.3" wide

Mechanical Drawings
DEVICES INCORPORATED

Plastic DIP (Ordering Code: P, N)

P7 - 32-pin, 0.3" wide

P8 - 22-pin, 0.3" wide

Plastic DIP (Ordering Code: P, N)

P9 - 28-pin, $0.6^{\prime \prime}$ wide

P10-28-pin, 0.3^{11} wide

P12 - 16-pin, 0.3" wide

Plastic DIP（Ordering Code：P，N）

P13－18－pin，0．3＂wide

P14－32－pin， $0.6^{\prime \prime}$ wide

Plastic Quad Flatpack (Ordering Code: Q)

Q1 - 120-pin

Plastic Quad Flatpack (Ordering Code: Q)

Q2 - 100-pin

Plastic Quad Flatpack (Ordering Code: Q)

Q3 - 64-pin

Plastic Quad Flatpack (Ordering Code: Q)

Q4 - 44-pin

Reference: JEDEC - MS-022-AB

DEVICES INCORPORATED

Plastic Small Scale Outline Package (Ordering Code: S)
 S1 - 24-pin

Plastic SOJ (Ordering Code: W)

W1 - 24-pin, 0.3" wide

Reference: JEDEC-MS-023-AA

W2 - 28-pin, $0.3^{\prime \prime}$ wide

Reference: JEDEC - MS-023-AD

Plastic SOJ（Ordering Code：W）

W3－20－pin，0．3＂wide

W4－16－pin， $0.3^{1 "}$ wide

Detail A

Plastic SOJ (Ordering Code: W)

W5 - 18-pin, 0.3" wide

W6 - 32-pin, $0.4^{"}$ wide

Reference: JEDEC - MS-027-AC

Plastic SOJ (Ordering Code: W)

W7 - 28-pin, 0.4" wide

Reference: JEDEC - MS-027-AA

Ceramic SOJ (Ordering Code: Y)
Y1 - 32-pin, 0.440" wide

DEVICES INCORPORATED

Ordering Inrommation

Video lmaging Products

Arithmetic Logic Unils \& Special Arlhmetic Functions Multipliers \& Multiplier Accumulators

Peripheral Products

Memory Products
FRO Products
Qually and Rellability
Technology and Design Features
Package Information

Product Listing

Product Listing

DEVICES INCORPORATED

DEVICES INCORPORATED

DSP PRODUCTS				
			(ns)	
PART NO.	PRODUCT DESCRIPTION	COM.	MIL.	PACKAGE AVAILABILITY
VIDEO IMAGING PRODUCTS				
LF2242	12/16-bit Half-Band Digital Filter	25	-	44-lead PLCC/PQFP
LF2246	11×10-bit Image Filter	15	25	120-lead PGA/PQFP
LF2247	11×10-bit Image Filter with Coefficient RAM	15	25	84-lead PGA/PLCC, 100-lead PQFP
LF2249	12×12-bit Digital Mixer	25	33	120-lead PGA/PQFP
LF2250	12×10-bit Matrix Multiplier	20	25	120-lead PGA/PQFP
LF2272	Colorspace Converter (3×12-bits)	20	25	120-lead PGA/PQFP
LF2301	Image Resampling Sequencer	25	30	68-lead PGA/PLCC
LF3310	Horizontal/Vertical Digital Image Filter	TBA	TBA	TBA
LF3320	Horizontal Digital Image Filter	TBA	TBA	TBA
LF3330	Vertical Digital Image Filter	TBA	TBA	TBA
LF3347	HighSpeed Image Filter with Coefficient RAM	12	-	120-lead PGA/PQFP
LF43168	Dual 8-Tap FIR Filter	15	22	84-lead PGA/PLCC, 100-lead PQFP
LF43881	8×8-bit Digital Filter	25	33	84-lead PGA/PLCC, 100-lead PQFP
LF43891	9×9-bit Digtial Filter	25	33	84-lead PGA/PLCC, 100-lead PQFP
LF48212	12×12-bit Alpha Mixer	20	-	68-lead PLCC, 64-lead PQFP
LF48410	1024×24-bit Video Histogrammer	25	30	84-lead PGA/PLCC
LF48908	Two Dimensional Convolver	25	25	84-lead PGA/PLCC, 100-lead PQFP
LF9501	1280×10-bit Frame Buffer	20	-	44-lead PLCC
LF9502	2048×10-bit Frame Buffer	20	-	44-lead PLCC
ARITHMETIC LOGIC UNITS				
L4C381	16-bit Cascadable ALU	15	20	68-lead LCC/PGA/PLCC
L4C383	16-bit Cascadable ALU (Extended Set)	15	20	68-lead LCC/PGA/PLCC
SPECIAL ARITHMETIC FUNCTIONS				
LSH32	32-bit Barrel Shifter	20	30	68-lead LCC/PGA/PLCC
LSH33	32-bit Barrel Shifter with Registers	20	30	68-lead LCC/PGA/PLCC
L10C23	64×1 Digital Correlator	20	20	24-lead DIP, 28-lead LCC
L2330	Coordinate Transformer	20	20	120-lead PGA/PQFP
L2340	Digital Synthesizer	20	20	120-lead PGA/PQFP
L64230	Template Matcher	25	45	132-lead FP/144-lead PQFP

DSP PRODUCTS (CONTINUED)				
		SPEED	(ns)	
PART NO.	PRODUCT DESCRIPTION	COM.	MIL.	PACKAGE AVAILABILITY
MULTIPLIERS				
LMU08	8×8-bit, Signed	20	25	40-lead DIP, 44-lead LCC/PLCC
LMU8U	8×8-bit, Unsigned	20	25	40-lead DIP, 44-lead LCC/PLCC
LMU12	12×12-bit	20	25	64-lead DIP, 68-lead PGA
LMU112	12×12-bit, Reduced Pinout	25	30	48-lead DIP, 52-lead PLCC
LMU16	16×16-bit	20	25	64-lead DIP, 68-lead PGA
LMU216	16×16-bit, Surface Mount	20	25	68-lead LCC/PLCC
LMU18	16×16-bit, 32 Outputs		25	84-lead PGA/PLCC
LMU217	16×16-bit, Microprogramable, Surface Mount	20	25	68-lead LCC/PLCC
MULTIPLIER-ACCUMULATORS				
LMA1008	8×8-bit	20	25	48-lead DIP, 68-lead PLCC
LMA1009	12×12-bit	20	25	64-pin DIP, 68-pin PGA
LMA2009	12×12-bit, Surface Mount	20	25	68-lead LCC/PLCC
LMA1010	16×16-bit	20	25	64-pin DIP, 68-pin PGA
LMA2010	16×16-bit, Surface Mount	20	25	68-lead LCC/PLCC
MULTIPLIER-SUMMERS				
LMS12	$12 \times 12+26$-bit, FIR	35	40	84-pin PGA, 84-lead PLCC
PIPELINE REGISTERS				
L29C520	4×8-bit Multilevel (1-4 Stages)	14	16	24-pin DIP/FP, 28-lead LCC/PLCC
L29C521	4×8-bit Multilevel (1-4 Stages)	22	24	24-pin DIP/FP, 28-lead LCC/PLCC
LPR520	4×16-bit Multilevel (1-4 Stages)	15	18	40-pin DIP, 44-lead LCC/PLCC
LPR200	8×16-bit Multilevel (1-8 Stages)	12	15	48-pin DIP, 52-lead LCC/PLCC
L29C525	16×8-bit Dual 8-Deep (1-16 Stages)	15	20	28-pin DIP/FP, 28-lead PLCC
L10C11	4/8-bit Var. Length (3-18 Stages)	15	20	24-pin DIP, 28-lead PLCC
L21C11	8 -bit Var. Length (1-16 Stages)	15	20	24-pin DIP, 28-lead PLCC

PERIPHERAL PRODUCTS			
		SPEED (ns)	
			PACKAGE AVAILABILITY
SCSI BUS CONTROLLERS			
L5380	SCSI Bus Controller	$4 \mathrm{Mb} / \mathrm{s} \quad-$	40-pin DIP, 44-lead PLCC
L53C80	SCSI Bus Controller	$4 \mathrm{Mb} / \mathrm{s} 2 \mathrm{Mb} / \mathrm{s}$	48-pin DIP, 44-lead LCC/PLCC

MEMORY PRODUCTS			
		SPEED (ns)	
PART NO.	PRODUCTDESCRIPTION	COM. MIL.	PACKAGE AVAILABILITY
64K STATIC RAMS			
L7C162	$16 \mathrm{~K} \times 4$, Separate I/O	$12 \quad 15$	28-pin DIP/SOJ/LCC
L7C164	16K x 4, Common I/O	$12 \quad 15$	22-pin DIP, 24-pin SOJ
L7C166	$16 \mathrm{~K} \times 4, \mathrm{Common} \mathrm{I} / \mathrm{O}+\mathrm{OE}$	$12 \quad 15$	24-pin DIP/SOJ, 28-lead LCC
256K STATIC RAMS			
L7C194	$64 \mathrm{~K} \times 4, \mathrm{Common}$ I/O	$15 \quad 20$	24-pin DIP/SOJ, 28-lead LCC
L7C195	$64 \mathrm{~K} \times 4$, Common I/O + OE	$15 \quad 20$	28-pin DIP/SOJ
L7C199	$32 \mathrm{~K} \times 8$, Common I/O +OE	$15 \quad 20$	28-pin DIP/FP/SOJ, 28/32-lead LCC
1M STATIC RAMS			
L7C106	$256 \mathrm{~K} \times 4, \mathrm{Common} \mathrm{I} / \mathrm{O}, 1 \mathrm{CE}+\mathrm{OE}$	17	28-pin DIP/SOJ
L7C108	$128 \mathrm{~K} \times 8$, Common I/O, $1 \mathrm{CE}+\mathrm{OE}$	$17 \quad 20$	32-pin DIP/SOJ, 32-lead LCC
L7C109	$128 \mathrm{~K} \times 8, \mathrm{Common}$ I/O, $2 \mathrm{CE}+\mathrm{OE}$	$17 \quad 20$	32-pin DIP/SOJ, 32-lead LCC
SPECIAL ARCHITECTURE STATIC RAMS			
L7C174	$8 \mathrm{~K} \times 8$, Cache-Tag	$12 \quad 15$	28-pin DIP/SOJ, 32-lead LCC
FIFO PRODUCTS			
L8C201	512×9, Asynchronous	10	28-pin DIP, 32-lead PLCC
L8C202	1K x 9, Asynchronous	10	28-pin DIP, 32-lead PLCC
L8C203	2K x 9, Asynchronous	10	28-pin DIP, 32-lead PLCC
L8C204	4K x 9, Asynchronous	10	28-pin DIP, 32-lead PLCC
L8C211	512×9, Synchronous	15	32-lead PLCC
L8C221	$1 \mathrm{~K} \times 9$, Synchronous	15	32-lead PLCC
L8C231	$2 \mathrm{~K} \times 9$, Synchronous	15	32-lead PLCC
L8C241	$4 \mathrm{~K} \times 9$, Synchronous	15 -	32-lead PLCC

DEVICES INCORPORATED

DECC SMD PRODUCTS (LISTED BY LOGIC DEVICES PART NUMBER)			
PART NO.	DECC SMD NUMBER	AVAILABILITY	PRODUCT DESCRIPTION
DSP PRODUCTS			
L10C23	5962-89711	Released	64×1 Digital Correlator
L2330	5962-92331	Consult Factory	16×16-bit Coordinate Transformer
L29C520	5962-91762	Released	4×8-bit Multilevel Pipeline Register
L29C521	5962-91762	Released	4×8-bit Multilevel Pipeline Register
L29C525	5962-91696	Released	16×8-bit Dual 8-Deep Pipeline Register
L29C818	5962-90515	Released	8 -bit Serial Scan Shadow Register
L4C381	5962-89959	Released	16-bit Cascadable ALU
L64230	5962-90504	Released	Template Matcher
LF2250	5962-93260	Released	12×10-bit Matrix Multiplier
LF2301	5962-89715	Consult Factory	Image Resampling Sequencer
LF43168	5962-97504	Released	Dual 8-Tap FIR Filter
LF43891	5962-92097	Released	9×9-bit Digital Filter
LF48410	5962-94573	Released	1024×24-bit Video Histogrammer
LF48908	5962-93007	Released	Two Dimensional Convolver
LMA1008	5962-90708	Released	8×8-bit Multiplier-Accumlator
LMA1009	5962-90996	Released	12×12-bit Multiplier-Accumlator
LMA2009	5962-90996	Released	12×12-bit Multiplier-Accumlator
LMA1010	5962-88733	Released	16×16-bit Multiplier-Accumlator
LMA2010	5962-88733	Released	16×16-bit Multiplier-Accumlator
LMS12	5962-94608	Released	$12 \times 12+26$-bit Multiplier-Summer, FIR
LMU08	5962-88739	Released	8×8-bit Parallel Multiplier
LMU8U	5962-88739	Released	8×8-bit Parallel Multiplier
LMU16	5962-86873	Released	16×16-bit Parallel Multiplier
LMU216	5962-86873	Released	16×16-bit Parallel Multiplier
LMU217	5962-87686	Released	16×16-bit Parallel Multiplier
LMU18	5962-94523	Released	16×16-bit Parallel Multiplier w/ 32 outputs
LPR520	5962-89716	Released	4×16-bit Multilevel Pipeline Register
LSH32	5962-89717	Released	32-bit Barrel Shifter
PERIPHERAL PRODUCTS			
L53C80	5962-90548	Released	SCSI Bus Controller
MEMORY PRODUCTS			
L7C108	5962-89598	Released	$128 \mathrm{~K} \times 8$ Static RAM
L7C109	5962-89598	Released	$128 \mathrm{~K} \times 8$ Static RAM
L7C162	5962-89712	Released	$16 \mathrm{~K} \times 4$ Static RAM
L7C194	5962-88681	Released	$64 \mathrm{~K} \times 4$ Static RAM
L7C195	5962-89524	Released	$64 \mathrm{~K} \times 4$ Static RAM
L7C199	5962-88662	Released	$32 \mathrm{~K} \times 8$ Static RAM
L8C202	5962-89536	Released	1024×9-bit Asynchronous FIFO

DEVICES INCORPORATED

DECC SMD PRODUCTS (LISTED BY SMD NUMBER)			
DECC SMD NO.	LOGIC PART NO.	AVAILABILITY	PRODUCT DESCRIPTION
DSP PRODUCTS			
5962-86873	LMU16/LMU216	Released	16×16-bit Parallel Multiplier
5962-87686	LMU217	Released	16×16-bit Parallel Multiplier
5962-88733	LMA1010/LMA2010	Released	16×16-bit Multiplier-Accumlator
5962-88739	LMU08/LMU8U	Released	8×8-bit Parallel Multiplier
5962-89711	L10C23	Released	64×1 Digital Correlator
5962-89716	LPR520	Released	4×16-bit Multilevel Pipeline Register
5962-89717	LSH32	Released	32-bit Barrel Shifter
5962-89959	L4C381	Released	16-bit Cascadable ALU
5962-90504	L64230	Released	Template Matcher
5962-90515	L29C818	Released	8-bit Serial Scan Shadow Register
5962-90708	LMA1008	Released	8×8-bit Multiplier-Accumulator
5962-90996	LMA1009/LMA2009	Released	12×12-bit Multiplier-Accumlator
5962-91696	L29C525	Released	16×8-bit Dual 8-Deep Pipeline Register
5962-91762	L29C520/L29C521	Released	4×8-bit Multilevel Pipeline Register
5962-92097	LF43891	Released	9×9-bit Digital Filter
5962-93007	LF48908	Released	Two Dimensional Convolver
5962-93260	LF2250	Released	12×10-bit Matrix Multiplier
5962-94523	LMU18	Released	16×16-bit Parallel Multiplier w/ 32 outputs
5962-94573	LF48410	Released	1024×24-bit Video Histogrammer
5962-94608	LMS12	Released	$12 \times 12+26$-bit Multiplier-Summer, FIR
5962-90504	L64230	Released	Template Matcher
5962-96793	L10C11/L21C11	Released	4/8-bit Variable Length Shift Register
5962-97504	LF43168	Released	Dual 8-Tap FIR Filter
PERIPHERAL PRODUCTS			
5962-90548	L53C80	Released	SCSI Bus Controller
MEMORY PRODUCTS			
5962-88662	L7C199	Released	$32 \mathrm{~K} \times 8$ Static RAM
5962-88681	L7C194	Released	$64 \mathrm{~K} \times 4$ Static RAM
5962-89524	L7C195	Released	$64 \mathrm{~K} \times 4$ Static RAM
5962-89536	L8C202	Released	1024×9-bit Asynchronous FIFO
5962-89598	L7C108/L7C109	Released	$128 \mathrm{~K} \times 8$ Static RAM
5962-89712	L7C162	Released	16K $\times 4$ Static RAM

亳金垂竟
DEVICES INCORPORATED

DEVICES INCORPORATED

Sales Offices

DEVICES INCORPORATED

DEVICES INCORPORATED

CORPORATE HEADQUARTERS		
1320 Orleans Drive		
Sunnyvale, CA 94089	Applications Hotline:	(408) $542-5446$
TEL: (408) $542-5400$	Customer Service Hotline:	(408) $542-5433$
FAX: (408) $542-0080$	E-Mail Address:	info@logicdevices.com
(800) $851-0767$ (Toll free - Outside California)	Internet:	www.logicdevices.com
(800) $233-2518$ (Toll free - Inside California)	Cage Number:	65896

NORTH AMERICAN REGIONAL SALES OFFICES

SOUTH-EASTERN OFFICE

9700 Koger Blvd., Suite 204
St. Petersburg, FL 33702
TEL: (813) 579-9992
FAX: (813) 576-5643

NORTH-EASTERN OFFICE
160 Meister Ave.,Suite 12
Somerville, NJ 08876
TEL: (908) 707-0033
FAX: (908) 707-8574

WESTERN OFFICE

1320 Orleans Drive
Sunnyvale, CA 94089
TEL: (408) 542-5400
FAX: (408) 542-0080

NORTH AMERICAN SALES REPRESENTATIVES

ALABAMA
REP ONE ASSOCIATES
Huntsville, AL
(205) 539-7371

ARIZONA
LUSCOMBE ENGINEERING
Scottsdale, AZ
(602) 949-9333

ARKANSAS
COMPONENT TECHNOLOGY
Richardson, TX
(972) 783-8831

CALIFORNIA (NORTHERN)
LOGIC DEVICES INC.
Sunnyvale, CA
(408) 542-5400

CALIFORNIA (SAN DIEGO)
EARLE ASSOCIATES
San Diego, CA
(619) 278-5441

CALIFORNIA (SOUTHERN)
UNITEC SALES INC.
Irvine, CA
(714) 789-7550

CANADA
JRL ASSOCIATES
Newmarket, Ontario
(905) 853-6891

COLORADO
AKI
Denver, CO
(303) 756-0700

CONNECTICUT
NRG - LINDCO
Fairfield, CT
(203) 384-1112

DELAWARE
TAI CORPORATION
Moorestown, NJ
(609) 778-5353

FLORIDA
DYNE-A-MARK
Ft. Lauderdale, FL
(954) 485-3500

DYNE-A-MARK
Largo, FL
(813) 586-3778

DYNE-A-MARK
Maitland, FL
(407) 660-1661

DYNE-A-MARK
Palm Bay, FL
(407) 725-7470

GEORGIA
REP ONE ASSOCIATES
Norcross, GA
(770) 209-9242

IDAHO (NORTHERN)
WESTERN TECHNICAL SALES
Spokane, WA
(509) 922-7600

IDAHO (SOUTHERN)
FIRST SOURCE
Boise, ID
(208) 378-4680

ILLINOIS (NORTHERN)
ALPHA TECHNOLOGIES INT'L, LTD.
Hinsdale, IL
(630) 654-4998

ILLINOIS (SOUTHERN)
MIDTEC ASSOCIATES
St. Louis, MO
(314) 275-8666

INDIANA
APPLIED DATA MANAGEMENT
Cincinnati, OH
(513) 579-8108

IOWA
MIDTEC ASSOCIATES
Lenexa, KS
(913) 541-0505

KANSAS
MIDTEC ASSOCIATES
Lenexa, KS
(913) 541-0505

KENTUCKY
APPLIED DATA MANAGEMENT
Cincinnati, OH
(513) 579-8108

LOUISIANA
COMPONENT TECHNOLOGY
Richardson, TX
(972) 783-8831

MAINE
A/D SALES
Tewksbury, MA
(508) 851-5400

DEVICES INCORPORATED

NORTH AMERICAN SALES REPRESENTATIVES

MARYLAND
DGR
Timonium, MD
(410) 453-0969

MASSACHUSETTS
A/D SALES
Tewksbury, MA
(508) 851-5400

MICHIGAN
APPLIED DATA MANAGEMENT
Woodhaven, MI
(313) 675-6327

MICHIGAN
APPLIED DATA MANAGEMENT
Chelsea, MI
(313) 475-0523

MINNESOTA
COMPREHENSIVE TECHNICAL SALES
Navarre, MN
(612) 471-7181

MISSISSIPPI
REP ONE ASSOCIATES
Huntsville, AL
(205) 539-7371

MISSOURI (EASTERN)
MIDTEC ASSOCIATES
St. Louis, MO
(314) 275-8666

MISSOURI (WESTERN)
MIDTEC ASSOCIATES
Lenexa, KS
(913) 541-0505

NEBRASKA
MIDTEC ASSOCIATES
Lenexa, KS
(913) 541-0505

NEVADA (LAS VEGAS AREA)
LUSCOMBE ENGINEERING
Scottsdale, AZ
(602) 949-9333

NEVADA (NORTHERN)
LOGIC DEVICES INC.
Sunnyvale, CA
(408) 542-5400

NEW HAMPSHIRE
A/D SALES
Tewksbury, MA
(508) 851-5400

NEW JERSEY (NORTHERN)
NORTHEAST COMPONENTS CO.
Ramsey, NJ
(201) 825-0233

NEW JERSEY (SOUTHERN)
TAI CORPORATION
Moorestown, NJ
(609) 778-5353

NEW MEXICO
LUSCOMBE ENGINEERING
Scottsdale, AZ
(602) 949-9333

NEW YORK (METRO)
NORTHEAST COMPONENTS CO.
Ramsey, NJ
(201) 825-0233

NEW YORK (UPSTATE - BINGHAMTON) FOSTER \& WAGER, INC.
Vestal, NY
(607) 748-5963

NEW YORK (UPSTATE - BUFFALO)
FOSTER \& WAGER, INC.
Rochester, NY
(716) 385-7744

NEW YORK (UPSTATE - SYRACUSE)
FOSTER \& WAGER, INC.
Liverpool, NY
(315) 457-7954

NORTH CAROLINA
BENCHMARK TECHNICAL SALES
Fuquay-Varina, NC
(919) 557-1985

OHIO (NORTHERN)
APPLIED DATA MANAGEMENT
Eastlake, OH
(216) 946-6812

OHIO (SOUTHERN)
APPLIED DATA MANAGEMENT
Cincinnati, OH
(513) 579-8108

OKLAHOMA
COMPONENT TECHNOLOGY
Richardson, TX
(972) 783-8831

OREGON
WESTERN TECHNICAL SALES
Beaverton, OR
(503) 644-8860

PENNSYLVANIA (EASTERN)
TAI CORPORATION
Moorestown, NJ
(609) 778-5353

PENNSYLVANIA (WESTERN)
APPLIED DATA MANAGEMENT
Cincinnati, OH
(513) 579-8108

RHODE ISLAND
A/D SALES
Tewksbury, MA
(508) 851-5400

SOUTH CAROLINA
BENCHMARK TECHNICAL SALES
Raleigh, NC
(919) 557-1985

TENNESSEE (EASTERN)
REP ONE ASSOCIATES
Norcross, GA
(770) 209-9242

TENNESSEE (WESTERN)
REP ONE ASSOCIATES
Huntsville, AL
(205) 539-7371

TEXAS
COMPONENT TECHNOLOGY
Austin, TX
(512) 258-8167

COMPONENT TECHNOLOGY
Houston, TX
(713) 550-5266

COMPONENT TECHNOLOGY
Richardson, TX
(972) 783-8831

UTAH
FIRST SOURCE
Sandy, UT
(801) 561-1999

VERMONT
A/D SALES
Tewksbury, MA
(508) 851-5400

VIRGINIA
DGR
Timonium, MD
(410) 453-0969

WASHINGTON (EASTERN)
WESTERN TECHNICAL SALES
Spokane, WA
(509) 922-7600

WASHINGTON (WESTERN)
WESTERN TECHNICAL SALES
Bellevue, WA
(206) 641-3900

WISCONSIN
ALPHA TECHNOLOGIES INT'L, LTD.
Hinsdale, IL
(630) 654-4998

DEVICES INCORPORATED

NORTH AMERICAN DISTRIBUTORS

ALABAMA

ALL AMERICAN
Huntsville, AL
(205) 837-1555

MILGRAY ELECTRONICS
Madison, AL
(205) 464-8646

ARIZONA
ALL AMERICAN
Phoenix, AZ
(602) $966-0006$

JAN DEVICES
Phoenix, AZ
(602) $870-1190$

MILGRAY
Phoenix, AZ
(602) 914-4240

CALIFORNIA (NORTHERN)
ALL AMERICAN
Fremont, CA
(510) 623-3660

ALL AMERICAN
San Jose, CA
(408) 441-1300

ALL AMERICAN
Visalia, CA
(209) 734-8861

BELL MICROPRODUCTS (CORPORATE)
San Jose, CA
(408) 451-9400

JAN DEVICES
Mountain View, CA
(408) 943-5700

MILGRAY ELECTRONICS
San Jose, CA
(408) $456-0900$

CALIFORNIA (SOUTHERN)
ALL AMERICAN
Calabasas, CA
(818) 878-0555

ALL AMERICAN
Cypress, CA
(714) 229-8600

ALL AMERICAN
San Diego, CA
(619) 658-0200

ALL AMERICAN
Tustin, CA
(714) 573-5013

BELL MICROPRODUCTS
Irvine, CA
(714) 470-2900

BELL MICROPRODUCTS
Westlake Village, CA
(805) 496-2606

BELL MICROPRODUCTS
San Diego, CA
(619) 597-3010

JAN DEVICES (CORPORATE)
Reseda, CA
(818) 757-2000

MILGRAY ELECTRONICS
San Diego, CA
(619) $457-7545$

MILGRAY ELECTRONICS
Thousand Oaks, CA
(805) 371-9399

MILGRAY ELECTRONICS
Irvine, CA
(714) 753-1282

CANADA
ALL AMERICAN
Mississauga, Ontario
(905) 670-5946

MILGRAY ELECTRONICS
Mississauga, Ontario
(905) 678-0958

MILGRAY ELECTRONICS
Vancouver, B.C.
(604) 454-0900

MILGRAY ELECTRONICS
Pointe Claire, Quebec
(514) 426-5900

COLORADO
ALL AMERICAN
Wheat Ridge, CO
(303) 422-1701

MILGRAY ELECTRONICS
Westminster, CO
(303) 657-2750

CONNECTICUT
ALL AMERICAN
Danbury, CT
(203) 791-3818

MILGRAY ELECTRONICS
Milford, CT
(203) 878-5538

DELAWARE
MILGRAY ELECTRONICS
Mt. Laurel, NJ
(609) 778-1300

FLORIDA
ALL AMERICAN
Clearwater, FL
(813) 532-9800

ALL AMERICAN
Deerfield Beach, FL
(954) 429-2800

ALL AMERICAN (CORPORATE)
Miami, FL
(305) 621-8282

BELL MICROPRODUCTS
Altamonte Springs, FL (407) 682-1199

BELL MICROPRODUCTS
Deerfield Beach, FL (305) 429-1001

BELL MICROPRODUCTS
Miami, FL
(305) 448-5856

JAN DEVICES
Apopka, FL
(407) 889-2022

MILGRAY ELECTRONICS
Lake Mary, FL
(407) 321-2555

GEORGIA
ALL AMERICAN
Norcross, GA
(770) 441-7500

BELL MICROPRODUCTS
Marietta, GA
(770) 980-4922

MILGRAY ELECTRONICS
Norcross, GA
(404) 446-9777

ILLINOIS
ALL AMERICAN
Lisle, IL
(708) 852-7708

ALL AMERICAN
Schaumburg, IL
(847) 303-1995

BELL MICROPRODUCTS
Schaumburg, IL
(708) 413-8530

MILGRAY ELECTRONICS
Palatine, IL
(708) 202-1900

INDIANA
MILGRAY ELECTRONICS
Indianapolis, IN
(317) 781-9997

NORTH AMERICAN DISTRIBUTORS

KANSAS
BELL MICROPRODUCTS
Overland Park, KS
(913) 491-4340

MILGRAY ELECTRONICS
Overland Park, KS
(913) 236-8800

MARYLAND
ALL AMERICAN
Columbia, MD
(410) 309-6262

BELL MICROPRODUCTS
Columbia, MD
(410) 720-5100

BELL MICROPRODUCTS
Ijamsville, MD
(301) 865-5933

JAN DEVICES
Berlin, MD
(410) 208-0500

MILGRAY ELECTRONICS
Columbia, MD
(410) 730-6119

MASSACHUSETTES
ALL AMERICAN
Bedford, MA
(617) 275-8888

BELL MICROPRODUCTS
North Billerica, MA
(508) 667-2400

JAN DEVICES
Melrose, MA
(617) 662-3901

MILGRAY ELECTRONICS
Wilmington, MA
(508) 657-5900

MICHIGAN
ALL AMERICAN
Livonia, MI
(313) 464-2202

MINNESOTA
ALL AMERICAN
Eden Prairie, MN
(612) 944-2151

BELL MICROPRODUCTS
Eden Prarie, MN
(612) 943-1122

NEW JERSEY
ALL AMERICAN
Marlton, NJ
(609) 596-6666

BELL MICROPRODUCTS
Clifton, NJ
(201) 777-4100

MILGRAY ELECTRONICS
Parsippany, NJ
(201) 335-1766

NEW YORK
ALL AMERICAN
Rochester, NY
(716) 292-6700

BELL MICROPRODUCTS
Smithtown, NY
(516) 543-2000

NEW YORK (METRO)
ALL AMERICAN
Hauppauge, NY
(516) 434-9000

MAST DISTRIBUTORS
Ronkonkoma, NY
(516) 471-4422

MILGRAY ELECTRONICS (CORPORATE)
Farmingdale, NY
(516) 420-9800

NEW YORK (UPSTATE)
MILGRAY ELECTRONICS
Pittsford, NY
(716) 381-9700

NORTH CAROLINA
ALL AMERICAN
Morrisville, NC
(919) 462-8950

MILGRAY ELECTRONICS
Raleigh, NC
(919) 790-8094

OHIO
ALL AMERICAN
Warrensville Heights, OH
(216) 514-0625

MILGRAY ELECTRONICS
Cleveland, OH
(216) 447-1520

OREGON
ALL AMERICAN
Beaverton, OR
(503) 531-3333

MILGRAY ELECTRONICS
Beaverton, OR
(503) $626-4040$

PENNSYLVANIA
BELL MICROPRODUCTS
Doylestown, PA
(215) 230-9833

TEXAS
ALL AMERICAN
Austin, TX
(512) 335-2280

ALL AMERICAN
Houston, TX
(713) 955-1993

ALL AMERICAN
Richardson, TX
(972) 231-5300

BELL MICROPRODUCTS
Austin, TX
(512) 258-0725

BELL MICROPRODUCTS
Richardson, TX
(214) 783-4191

MILGRAY ELECTRONICS
Austin, TX
(512) 331-9961

MILGRAY ELECTRONICS
Dallas, TX
(214) 248-1603

MILGRAY ELECTRONICS
Stafford, TX
(713) 870-8101

UTAH
ALL AMERICAN
Midvale, UT
(801) 565-8300

BELL MICROPRODUCTS
Centerville, UT
(801) 295-3900

MILGRAY ELECTRONICS
Murray, UT
(801) 261-2999

VIRGINIA
BELL MICROPRODUCTS
Herndon, VA
(703) 834-3696

WASHINGTON
ALL AMERICAN
Bothell, W Λ
(206) 806-4800

BELL MICROPRODUCTS
Redmond, WA
(206) 861-5710

WISCONSIN
ALL AMERICAN
Brookfield, WI
(414) 792-0438

EOTE

DEVICES INCORPORATED

1320 Orleans Drive
Sunnyvale, California 94089
TEL (408) 542-5400
FAX (408) 542-0080
http://www.logicdevices.com

[^0]: *Some devices are available in packages of two widths. For devices available in a single width, C, D, K, and P are used.

[^1]: *Assumes ADEL-DDEL $=0000$

[^2]: W1: Configuration Register loaded with new data on this rising clock edge.
 W2: Select Register loaded with new data on this rising clock edge.
 W3: Round Register loaded with new data on this rising clock edge.
 W4: Limit Register loaded with new data on this rising clock edge.

[^3]: $\mathrm{R}=$ Reserved. Must be set to " 0 ".

 * This bit represents the MSB of the Lower Limit.
 ** This bit represents the MSB of the Upper Limit.

[^4]: $R=$ Reserved. Must be set to " 0 ".

 * This bit represents the MSB of the Lower Limit Register.
 ** This bit represents the MSB of Upper Limit Register.

[^5]: ${ }^{*}$ includes INA9-0, INB9-0, CSEL4-0, ACCEN, MUX1-0, $\overline{\text { SHFTEN }}, \overline{\text { FWRD }}, \overline{\text { RVRS }}$, and $\overline{T X F R}$.

[^6]: $* \pm 2^{0}$ denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π and phase accumulator is modulo 2^{32}, this bit may be regarded as $\pm \pi$.
 NS denotes negative sign. (i.e. '1' negates the number)

[^7]: $* \pm 22^{0}$ denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π and phase accumulator is modulo 2^{32}, this bit may be regarded as $\pm \pi$. NS denotes negative sign. (i.e. '1' negates the number)

[^8]: NS denotes negative sign. (i.e. '1' negates the number)

[^9]: *Advanced Information

[^10]: *includes $\overline{O E X}, \overline{O E M}, \overline{O E L}$

[^11]: *Not tested at low temperature extreme.

[^12]: *The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109WI17L)

[^13]: *after reset, $Q 8-0$ will be LOW if $\overline{O E}=0$ and in HIGH IMPEDANCE if $\overline{O E}=1$.

