1992

GAL Data Book

Lattice

GAL PRODUCT INDEX

Commercial Grade Devices

DEVICE	PINS	t_{pd} (ns)	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$	DESCRIPTION	PAGE
GAL16V8A/B	20	7.5, 10, 15, 25	55, 90, 115	$\mathrm{E}^{2} \mathrm{CMOS}$ 20-Pin PAL Superset	2-1
GAL20V8A/B	24	7.5, 10, 15, 25	55, 90, 115	$\mathrm{E}^{2} \mathrm{CMOS}$ 24-Pin PAL Superset	2-25
GAL18V10	20	15, 20	115	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	2-49
GAL22V10/B	24	7.5, 10, 15, 25	90, 130, 140	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	2-63
GAL26CV12/B	28	10, 15, 20	130	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	2-81
GAL20XV10B	24	10, 15, 20	90	$\mathrm{E}^{2} \mathrm{CMOS}$ Exclusive-OR PLD	2-101
GAL20RA10	24	12, 15, 20, 30	100	$\mathrm{E}^{2} \mathrm{CMOS}$ Asynchronous PLD	2-117
GAL6002B	24	15, 20	135	$\mathrm{E}^{2} \mathrm{CMOS}$ FPLA	2-131
GAL6001	24	30, 35	150	$\mathrm{E}^{2} \mathrm{CMOS} \mathrm{FPLA}$	2-147

Industrial Grade Devices

DEVICE	PINS	$\mathbf{t}_{\mathrm{PD}}(\mathbf{n s})$	$\mathbf{I}_{\mathrm{cC}}(\mathbf{m A})$	DESCRIPTION	PAGE
GAL16V8A/B	20	$10,15,20,25$	65,130	$\mathrm{E}^{2} \mathrm{CMOS} 20-$ Pin PAL Superset	$2-1$
GAL20V8A/B	24	$10,15,20,25$	65,130	$\mathrm{E}^{2} \mathrm{CMOS} 24-$ Pin PAL Superset	$2-25$
GAL18V10	20	20	125	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	$2-49$
GAL22V10B	24	$15,20,25$	150	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	$2-63$
GAL26CV12/B	28	15,20	150	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	$2-81$
GAL20XV10B	24	15,20	110	$\mathrm{E}^{2} C M O S$ Exclusive-OR PLD	$2-101$
GAL20RA10	24	20	120	$\mathrm{E}^{2} C M O S$ Asynchronous PLD	$2-117$

MIL-STD-883 Grade Devices

DEVICE	PINS	$\mathbf{t}_{\mathrm{PD}}(\mathbf{n s})$	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$	DESCRIPTION	PAGE
GAL16V8A/B	20	$10,15,20,25,30$	65,130	$\mathrm{E}^{2} \mathrm{CMOS} 20-P i n$ PAL Superset	$3-5$
GAL20V8A	24	$15,20,25,30$	65,130	$\mathrm{E}^{2} \mathrm{CMOS} 24-$ Pin PAL Superset	$3-13$
GAL22V10/B	24	$15,20,25,30$	150	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	$3-19$
GAL26CV12	28	20,25	160	$\mathrm{E}^{2} \mathrm{CMOS}$ Universal PLD	$3-27$
GAL20RA10	24	20,25	120	$\mathrm{E}^{2} \mathrm{CMOS}$ Asynchronous PLD	$3-33$

Lattice appreciates your interest in our industry leading GAL ${ }^{\infty}$ product line.
Our 1992 GAL Data Book contains the world's highest performance CMOS programmable logic solutions, as well as innovative new device architectures. The GAL product line, offered in low power reprogrammable $\mathrm{E}^{2} \mathrm{CMOS}$ technology, obsoletes virtually all PAL^{\otimes} parts.

In addition, Lattice offers the new pLSI and ispLSI product families, the world's highest performance and most flexible high-density PLD solution. Please contact a Lattice representative to obtain our pLSI and ispLSI Data Book.

We look forward to satisfying all of your programmable logic requirements.

GAL Data Book

1992

Copyright © 1992 Lattice Semiconductor Corporation
GAL, E^{2} CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corporation.
pLSI, ispLSI, pDS, Generic Array Logic and Latch-Lock are trademarks of Lattice Semiconductor Corporation.
All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.
Products discussed in this literature are covered by U.S. Patents No. 4,761,768, 4,766,569, 4,833,646, 4,852,044, $4,855,954,4,879,688,4,887,239$ and $4,896,296$ issued to Lattice Semiconductor Corporation, and by U.S. and foreign patents pending.

LATTICE SEMICONDUCTOR CORP.
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
TELEX 277338 LSC UR
Section 1: Introduction to Generic Array Logic Introduction to Generic Array Logic 1-1
Section 2: GAL Datasheets
GAL16V8A/B 2-1
GAL20V8A/B 2-25
GAL18V10. 2-49
GAL22V10/B 2-63
GAL26CV12/B 2-81
GAL20XV10B 2-101
GAL20RA10 2-117
GAL6002B 2-131
GAL6001 2-147
Section 3: GAL Military Products
Military Program Overview 3-1
Military Ordering Information 3-3
GAL16V8A/B Military Datasheet 3-5
GAL20V8A Military Datasheet 3-13
GAL22V10/B Military Datasheet 3-19
GAL26CV12 Military Datasheet 3-27
GAL20RA10 Military Datasheet 3-33
Section 4: pLSI and ispLSI Products
Introduction to pLSI and ispLSI 4-1
Section 5: GAL Quality and Reliability
Quality Assurance Program 5-1
Qualification Program 5-3
E^{2} CMOS Testability Improves Quality 5-5
Section 6: GAL Technical Notes
GAL Metastability Report 6-1
Latch-up Protection 6-17
Hidden Costs in PLD Usage 6-21
Section 7: GAL Application Briefs GAL20RA10 Design Example 7-1
GAL26CV12 Design Example 7-3
The GAL18V10 Advantage 7-5
Driving CMOS Inputs with GAL Devices 7-8
GAL20XV10B Design Example 7-9
GAL6002B Design Example 7-13
Section 8: Article Reprints
Avoid the Pitfalls of High-Speed Logic Design 8-1
Lattice Fields FPGA 8-7
Leam the Fundamentals of Digital Filter Design 8-9
Multiclock GAL Doubles Clock Rate 8-16
Section 9: General Information
Development Tools 9-1
Copying PAL, EPLD \& PEEL Patterns into GAL Devices 9-3
GAL Product Line Cross Reference 9-5
Package Thermal Resistance 9-8
Package Diagrams 9-9
Tape-and-Reel Specifications 9-16
Sales Offices 9-17
Section 1: Introduction to Generic Array Logic Introduction to Generic Array Logic 1-1
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 3: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

INTRODUCTION

Lattice Semiconductor, located in Hillsboro, Oregon, was founded in 1983 to design, develop and manufacture high-performance semiconductor components. At Lattice, we believe that technological evolution can be accelerated through the continued development of higher-speed and architecturally superior products.

GAL devices are ideal for four important reasons:

1. GAL devices have inherently superior quality and reliability.
2. GAL devices can directly replace PAL devices in nearly every application.
3. GAL devices have the low power consumption of CMOS, one-fourth to one-half that of bipolar devices.
4. GAL devices utilize Output Logic Macrocells (OLMCs), which allow the user to configure outputs as needed.

THE GAL CONCEPT

E²CMOS - THE IDEAL TECHNOLOGY

Of the three major technologies available for producing PLDs, the technology of choice is clearly $E^{2} C M O S$. $E^{2} \mathrm{CMOS}$ offers 100% testability, high quality, high speed, low power, and instant erasure.

TESTABILITY

The biggest advantage of $\mathrm{E}^{2} \mathrm{CMOS}$ over competing technologies is its inherent testability. Capitalizing on very fast (100 ms) erase times, Lattice repeatedly patterns and erases all devices during the manufacturing process. Lattice tests each GAL device for AC, DC, and functional characteristics. The result is guaranteed 100% programming and functional yields.

LOW POWER

Another advantage of $E^{2} \mathrm{CMOS}$ technology is the low power consumption of CMOS. CMOS provides users the immediate benefit of decreased system power requirements allowing for higher reliability and cooler running systems. Low power CMOS technology also permits circuit designs of much higher functional density, because of lower junction temperatures and power requirements on chip. The user benefits because higher functional density means further reduction of chip count and smaller boards in the system.

HIGH SPEED

Also advantageous is the very high speed attainable with Lattice's state-of-the-art $\mathrm{E}^{2} \mathrm{CMOS}$ process. Lattice GAL devices are as fast or faster than bipolar and UVCMOS PLDs.

PROTOTYPING AND ERROR RECOVERY

Finally, $E^{2} C M O S$ gives the user instant erasability with no additional handling or special packages necessary. This provides ideal products for prototyping because designs can be revised instantly, with no waste and no waiting. On the manufacturing floor instant erasability can also be a big advantage for dealing with pattern changes or error recovery. If a GAL device is accidentally programmed to the wrong pattern, simply reprogram the device. No other technology offers this advantage.

Introduction to Generic Array Logic

A LOOK AT OTHER TECHNOLOGIES

Here, the technologies that compete with E^{2} CMOS bipolar and UVCMOS - are compared with the $\mathrm{E}^{2} \mathrm{CMOS}$ approach.

BIPOLAR

Bipolar fuse-link technology was the first available for programmable logic devices. Although it offers high speed, it is saddled with high power dissipation. High power dissipation increases your system power supply and cooling requirements, and limits the functional density of bipolar devices.

Another weakness of this technology is the one-timeprogrammable fuses. Complete testing of bipolar PLDs is impossible because the fuse array cannot be tested before programming. Bipolar PLD manufacturers must rely on complex schemes using test rows and columns to simulate and correlate their device's performance. The result is programming failures at the customer location. Any misprogrammed devices due to mistakes during prototyping or errors on the production floor must be discarded because bipolar PLDs cannotbe reprogrammed.

UVCMOS

UVCMOS addresses many weaknesses of the bipolar approach but introduces many shortcomings of its own. This technology requires less power and is reprogrammable, but reprogrammability comes at the expense of slower speeds.

Testability is increased over bipolar since the "fuse" array can be programmed and tested by the manufacturer. The problem here is the long (20 minutes) erase times coupled with the requirement of exposing the devices to ultraviolet light for erasing. This becomes a very expensive step in the manufacturing process. Because of the time involved, patterning and erasing is performed only once - a compromised rather than complete functional test.

Additionally, the devices must be housed in expensive windowed packages to allow users to erase them. Again, programming these devices is time-consuming and cumbersome due to the 20-minute UV exposure required to erase them. As a cost-cutting measure, UVCMOS PLD manufacturers offertheir devices in windowless packages. Although windowless packages are less expensive, they prevent the devices from being completely tested or reprogrammed. These factors significantly detract from the desirability of this technology.

THE GAL ADVANTAGE

GAL devices are ideal programmable logic devices because, as the name implies, they are architecturally generic. Lattice has employed the macrocell approach, which allows users to define the architecture and functionality of each output. The key benefit to the user is the freedom from being restricted to any specific architecture. This is advantageous at both the manufacturing level and the design level.

DESIGN ADVANTAGES

Early programmable logic devices gave the user the ability to specify a function, but limited them to specific, predetermined output architectures. Comparing the GAL device with fixed-architecture programmable logic devices is much like comparing these same fixed PLDs with SSI/ MSI devices. The GAL family is the next generation in simplified system design. The user does not have to search for the architecture that best suits a particular design. Instead, the GAL family's generic architecture lets him configure as he goes.

MANUFACTURING ADVANTAGES

The one-device-does-all approach greatly simplifies the manufacturing flow. Carrying one generic architecture GAL device type in inventory versus having to monitor and maintain many different device types, saves money and minimizes paperwork. The manufacturing flow is much smoother because the handling process is greatly simplified. A generic architecture GAL device also reduces the risk of running out of inventory and halting production, which can be very expensive. Reduced chance of obsolete inventory and easier QA tracking are additional benefits of the generic architecture.

THE IDEAL PACKAGE

Programmable logic devices are ideal for designing today's systems. Lattice Semiconductor believes that the ideal design approach should be supported with the ideal products. It was on this premise that GAL devices were invented. The ideal device-with a generic architecturefabricated with the ideal process technology, $\mathrm{E}^{2} \mathrm{CMOS}$.
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
GAL16V8A/B 2-1
GAL20V8AB 2-25
GAL18V10 2-49
GAL22V10/B 2-63
GAL26CV12/B 2-81
GAL20XV10B 2-101
GAL20RA10 2-117
GAL6002B 2-131
GAL6001 2-147
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

features

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
- $\mathrm{Fmax}^{=}=100 \mathrm{MHz}$
- 5 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS ${ }^{\text {® }}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ Icc on Low Power Device
- 45mA Typ Icc on Quarter Power Device
- ACTIVE PULL-UPS ON ALL PINS (GAL16V8B)
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 20-pin PAL* Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS - 100\% Functional Testability
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL16V8B, at 7.5 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times ($<100 \mathrm{~ms}$) allow the devices to be reprogrammed quickly and efficiently.
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL16V8A/B are the PAL architectures listed in the table of the macrocell description section. GAL16V8AB devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL ${ }^{*}$ products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

[^0] notice.

GAL16V8A/B ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
7.5	7	5	115	GAL16V8B-7LP	20-Pin Plastic DIP
			115	GAL16V8B-7LJ	20-Lead PLCC
10	10	7	115	GAL16V8B-10LP	20-Pin Plastic DIP
			115	GAL16V8B-10LJ	20-Lead PLCC
15	12	10	55	GAL16V8A-15QP	20-Pin Plastic DIP
			55	GAL16V8A-15QJ	20-Lead PLCC
			115	GAL16V8A-15LP	20-Pin Plastic DIP
			115	GAL16V8A-15LJ	20-Lead PLCC
25	15	12	55	GAL16V8A-25QP	20-Pin Plastic DIP
			55	GAL16V8A-25QJ	20-Lead PLCC
			90	GAL16V8A-25LP	20-Pin Plastic DIP
			90	GAL16V8A-25LJ	20-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
10	10	7	130	GALL16V8B-10LPI	20-Pin Plastic DIP
			130	GAL16V8B-10LJ	20-Lead PLCC
15	12	10	130	GAL16V8B-15LPI	20-Pin Plastic DIP
			130	GAL16V8B-15LI	20-Lead PLCC
20	13	11	65	GAL16V8A-20QPI	20-Pin Plastic DIP
			65	GAL16V8A-20QJI	20-Lead PLCC
25	15	12	65	GAL16V8A-25QPI	20-Pin Plastic DIP
			65	GAL16V8A-25QJI	20-Lead PLCC
			130	GAL16V8A-25LPI	20-Pin Plastic DIP
			130	GAL16V8A-25LJI	20-Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user.

There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes are illustrated in the following pages. Two global bits, SYN and ACO, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while the AC1 bit of each of the macrocells controls the input/output configuration. These two global and 16 individual architecture bits define all possible configurations in a GAL16V8A/B. The information given on these architecture bits is only to give a better understanding of the device. Compiler software will transparently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits.

The following is a list of the PAL architectures that the GAL16V8A and GAL16V8B can emulate. It also shows the OLMC mode under which the GAL16V8A/B emulates the PAL architecture.

PAL Architectures Emulated by GAL16V8A/B	GAL16V8A/B Global OLMC Mode
16R8 16R6 $16 R 4$ 16RP8 $16 R P 6$ $16 R P 4$ $16 L 8$ $16 H 8$ $16 P 8$ $10 L 8$ $12 L 6$ $14 L 4$ $16 L 2$ $10 H 8$ $12 H 6$ $14 H 4$ $16 H 2$ $10 P 8$ $12 P 6$ $14 P 4$ $16 P 2$	Registered Registered Registered Registered Registered Registered Complex Complex Complex Simple

COMPILER SUPPORT FOR OLMC

Software compilers support the three different global OLMC modes as different device types. These device types are listed in the table below. Most compilers have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the software to choose the registered mode. All combinatorial outputs with OE controlled by the product term will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. The different device types listed in the table can be used to override the automatic device selection by the software. For further details, refer to the compiler software manuals.

When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode.

In registered mode pin 1 and pin 11 are permanently configured as clock and output enable, respectively. These pins cannot be configured as dedicated inputs in the registered mode.

In complex mode pin 1 and pin 11 become dedicated inputs and use the feedback paths of pin 19 and pin 12 respectively. Because of this feedback path usage, pin 19 and pin 12 do not have the feedback option in this mode.

In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins (pins 15 and 16) will not have the feedback option as these pins are always configured as dedicated combinatorial output.

	Registered	Complex	Simple	Auto Mode Select
ABEL	P16V8R	P16V8C	P16V8AS	P16V8
CUPL	G16V8MS	G16V8MA	G16V8AS	G16V8
LOG/1C	GAL16V8_R	GAL16V8_C7	GAL16V8_C8	GAL16V8
OrCAD-PLD	"Registered"	"Complex"1	"Simple"	GAL16V8A
PLDesigner	P16V8R"	P16V8C ${ }^{2}$	P16V8C 2	P16V8A
TANGO-PLD	G16V8R	G16V8C	G16V8AS 3	G16V8

1) Used with Configuration keyword.
2) Prior to Version 2.0 support.
3) Supported on Version 1.20 or later.
cosen

Specifications GAL16V8B GAL16V8A

REGISTERED MODE

In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions.

Architecture configurations available in this mode are similar to the common 16R8 and 16RP4 devices with various permutations of polarity, I/O and register placement.

All registered macrocells share common clock and output enable control pins. Any macrocell can be configured as registered or I/O. Up to eight registers or up to eight I/O's are possible in this
mode. Dedicated input or output functions can be implemented as subsets of the IVO function.

Registered outputs have eight product terms per output. I/O's have seven product terms per output.

The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

REGISTERED MODE LOGIC DIAGRAM

Specifications GAL16V8B
 GAL16V8A

COMPLEX MODE

In the Complex mode, macrocells are configured as output only or I/O functions.

Architecture configurations available in this mode are similar to the common 16L8 and 16P8 devices with programmable polarity in each macrocell.

Up to six I/O's are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the VO function. The two outer most macrocells (pins 12 \& 19) do not have input ca-
pability. Designs requiring eight I/O's can be implemented in the Registered mode.

All macrocells have seven product terms per output. One product term is used for programmable output enable control. Pins 1 and 11 are always available as data inputs into the AND array.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

COMPLEX MODE LOGIC DIAGRAM

DIP \& PLCC Package Pinouts

In the Simple mode, macrocells are configured as dedicated inputs
or as dedicated, always active, combinatorial outputs.

Architecture configurations available in this mode are similar to
the common 10L8 and 12P6 devices with many permutations of
Architecture configurations available in this mode are similar to
the common 10L8 and 12P6 devices with many permutations of generic output polarity or input choices.

All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has programmable polarity.

Specifications GAL16V8B GAL16V8A

SIMPLE MODE

Pins 1 and 11 are always available as data inputs into the AND array. The center two macrocells (pins $15 \& 16$) cannot be used as input or I/O pins, and are only available as dedicated outputs.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

SIMPLE MODE LOGIC DIAGRAM

64-USER ELECTRONIC SICNATURE FUSES

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V
Input voltage applied \qquad -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature $\left(T_{A}\right)$.............................. 0 to $75^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vccat	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
liH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage	lol $=$ MAX. \quad Vin $=\mathrm{V}_{\text {LI }}$ or $\mathrm{V}_{\text {H }}$	-	-	0.5	V
Vor	Output High Voltage		2.4	-	-	\checkmark
IOL	Low Level Output Current		-	-	24	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	Vcce $=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
Icc	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{LL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \text { fliggle }=25 \mathrm{MHz} \\ & \text { Outputs Open (no load) } \end{aligned}$	-	75	115	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^1]Specifications GAL16V8B
Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	TEST COND'.	DESCRIPTION		-7		-10		UNITS
				MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	8 outputs switching	3	7.5	3	10	ns
			1 output switching	-	7	-	-	ns
tco	1	Clock to Output Delay		2	5	2	7	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay		-	3	-	6	ns
tsu	-	Setup Time, Input or Feedback before Clock		7	-	10	-	ns
th	-	Hold Time, Input or Feedback after Clock		0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$		83.3	-	58.8	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)		100	-	62.5	-	MHz
	1	Maximum Clock Frequency with No Feedback		100	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High		5	-	8	-	ns
twl	-	Clock Pulse Duration, Low		5	-	8	-	ns
ten	2	Input or I/O to Output Enabled		3	9	3	10	ns
	2	$\overline{O E}$ to Output Enabled		2	6	2	10	ns
tdis	3	Input or I/O to Output Disabled		2	9	2	10	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled		1.5	6	1.5	10	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns $10 \%-90 \%$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

FROM OUTPUT (O/Q) UNDER TEST

C LINCLUDES JIG AND PROBE TOTAL CAPACITANCE

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}^{\prime}$
1		200Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $75^{\circ} \mathrm{C}$Supply voltage (V_{cc})with Respect to Ground+4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION			MIN.	TYP. ${ }^{2}$	MAX.	UNITS
VIL	Input Low Voltage					Vss - 0.5	-	0.8	V
VIH	Input High Voltage					2.0	-	$\mathrm{Vcc}+1$	V
IIL	Input or I/O Low Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$ (MAX.)			-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current		$\mathrm{V}_{\mathrm{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$			-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		loL $=$ MAX. $V_{\text {in }}=V_{\text {IL }}$ or $V_{\text {IH }}$			-	-	0.5	V
VOH	Output High Voltage		$\mathrm{l}_{\text {OH }}=\mathbf{M A X} . \quad \mathbf{V i n}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathbf{H}}$			2.4	-	-	V
IOL	Low Level Output Current					-	-	24	mA
IOH	High Level Output Current					-	-	-3.2	mA
IOS'	Output Short Circuit Current		$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$		$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
ICC	Operating Power Supply Current	$\begin{aligned} & V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V} \\ & \text { Outputs Open (no load) } \end{aligned}$		$\mathrm{ffoggle}^{\text {a }} \mathbf{2 5 M H z}$	L-15	-	75	115	mA
				froggle $=15 \mathrm{MHz}$	L-25	-	75	90	mA
				$\mathrm{ffoggle}^{\text {= }} 15 \mathrm{MHz}$	Q-15/-25	-	45	55	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
2) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{\omega \mathrm{o}}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v 0}=2.0 \mathrm{~V}$

[^2]AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	TEST COND'.	DESCRIPTION	-15		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	15	3	25	ns
tco	1	Clock to Output Delay	2	10	2	12	ns
tct ${ }^{\text {a }}$	-	Clock to Feedback Delay	-	8	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	45.5	-	37	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	50	-	40	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	41.6	-	MHz
twh	-	Clock Pulse Duration, High	8	-	12	-	ns
twl	-	Clock Pulse Duration, Low	8	-	12	-	ns
ten	2	Input or I/O to Output Enabled	-	15	-	25	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled	-	15	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	25	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	-	15	-	20	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% -90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3 -state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	\mathbf{R}_{2}	C_{L}
1	200Ω	390Ω	50 pF	
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C LINCLUDES JIG AND PROBE TOTAL CAPACTTANCE

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A})...........................-40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {s }}$	max.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {IL }}$ (MAX. $)$	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage	lol $=$ MAX. \quad Vin $=\mathbf{V I L}_{\text {L }}$ or $\mathrm{V}_{\text {H }}$	-	-	0.5	V
Voh	Output High Voltage	loh = MAX. Vin = Vil or $\mathbf{V}_{\text {IH }}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	24	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
Icc	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \mathrm{floggle}=25 \mathrm{MHz}$ Outputs Open (no load)	-	75	130	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^3] Specifications GAL16V8B Industrial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { COND' } . \end{gathered}$	DESCRIPTION	-10		-15		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	10	3	15	ns
tco	1	Clock to Output Delay	2	7	2	10	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	6	-	8	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	58.8	-	45.5	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	62.5	-	50	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	8	-	ns
ten	2	Input or I/O to Output Enabled	3	10	-	15	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled	2	10	-	15	ns
tdis	3	Input or I/O to Output Disabled	2	10	-	15	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	1.5	10	-	15	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Puise Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	CL
1	200Ω	390Ω	50 pF	
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

Clincludes hig and probe total capacitance

Specifications GAL16V8A Industrial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad . -0.5 to +7 V
Input voltage applied........................... -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad .-55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature $\left(T_{A}\right)$............................. -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
2) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^4] Specifications GAL16V8A Industrial

AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { COND'. } \end{gathered}$	DESCRIPTION	-20		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	20	3	25	ns
tco	1	Clock to Output Delay	2	11	2	12	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	9	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	13	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	41.6	-	37	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	45.4	-	40	-	MHz
	1	Maximum Clock Frequency with No Feedback	50	-	41.6	-	MHz
twh	-	Clock Pulse Duration, High	10	-	12	-	ns
twl	-	Clock Pulse Duration, Low	10	-	12	-	ns
ten	2	Input or I/O to Output	-	20	-	25	ns
	2	$\overline{\mathrm{OE}}$ to Output	-	18	-	20	ns
tdis	3	Input or I/O to Output	-	20	-	25	ns
	3	$\overline{\mathrm{OE}}$ to Output	-	18	-	20	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1		200Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

utput

FROM OUTPUT (O/Q)
UNDER TEST R2

C L mCLUDES Hig and PRobe total capactinnce

Specifications GAL16V8B GAL16V8A

SWITCHING WAVEFORMS

INPUT or VO FEEDBACK

COMBINATORIAL OUTPUT

Combinatorial Output

INPUT or VO FEEDBACK

OUTPUT

Input or VO to Output Enable/Disable

CLK

Clock Width

INPUT or I/O FEEDBACK

CLK

REGISTERED OUTPUT

Registered Output

$\overline{O E}$ to Output Enable/Disable

CLK

REGISTERED
FEEDBACK

fmax with Feedback

fmax DESCRIPTIONS

fmax with External Feedback $\mathbf{1 / (t s u + t c o)}$

Note：fmax with external feedback is calculated from measured tsu and tco．

fmax With No Feedback
Note：fmax with no feedback may be less than $1 /(t w h+t w l)$ ．This is to allow for a clock duty cycle of other than 50% ．

fmax with Internal Feedback 1／（tsu＋tcf）
Note：tcf is a calculated value，derived by subtracting tsu from the period of fmax w／internal feedback（tcf＝ $1 / \mathrm{fmax}-\mathrm{tsu}$ ）．The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output（through registered feedback），as shown above．For example，the timing from clock to a combinatorial output is equal to tcf +tpd ．

Specifications GAL16V8B GAL16V8A

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL16V8ABB device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter checksum.

SECURITY CELL

A security cell is provided in the GAL16V8A/B devices to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL16V8A/B devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pull-ups instead of the traditional p-channel pull-ups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers (see the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

GAL16V8A/B devices include circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically.

INPUT BUFFERS

GAL16V8AB devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

The GAL16V8B input and I/O pins have built-in active pull-ups. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). In contrast, the GAL16V8A does not have active pull ups within their input structures. Lattice recommends that all unused inputs and tri-stated I/O pins for both devices be connected to another active input, V_{cc}, or Ground. Doing this will tend to improve noise immunity and reduce $I_{c c}$ for the device.

Typical Input Pull-up Characteristic

POWER-UP RESET

Circuitry within the GAL16V8A/B provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Specifications GAL16V8B Typical Characteristics

Specifications GAL16V8B Typical Characteristics

Normalized Icc vs Temp

Delta lec vs Vin (1 input)

Input Clamp (Vik)

Voh vs loh

Normalized lec vs Freq.

Specifications GAL16V8A Typical Characteristics

Delta Tpd vs. Output Loading

IOH Vs. VOH

Nommalized Tco vs. Vcc

Normalized Tco vs. Temperature

Normalized lec vs. Vcc

Normalized Icc vs. Temperature

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
- Fmax $=100 \mathrm{MHz}$
- 5 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS* Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ icc on Low Power Device
- 45mA Typ Icc on Quarter Power Device
- ACTIVE PULL-UPS ON ALL PINS (GAL20V8B)
- E² CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
— High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention

- EIGHT OUTPUT LOGIC MACROCELLS

- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 24-pin PAL* Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS - 100\% Functional Testability
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20V8B, at 7.5 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times ($<100 \mathrm{~ms}$) allow the devices to be reprogrammed quickly and efficiently.
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL20V8A/B are the PAL architectures listed in the table of the macrocell description section. GAL20V8A/B devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

[^5] Specifications GAL20V8B GAL20V8A

GAL20V8A/B ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
7.5	7	5	115	GAL20V8B-7LP	24-Pin Plastic DIP
			115	GAL20V8B-7LJ	28-Lead PLCC
10	10	7	115	GAL20V8B-10LP	24-Pin Plastic DIP
			115	GAL20V8B-10LJ	28-Lead PLCC
			115	GAL20V8A-10LP	24-Pin Plastic DIP
			115	GAL20V8A-10LJ	28-Lead PLCC
15	12	10	55	GAL20V8A-15QP	24-Pin Plastic DIP
			55	GAL20V8A-15QJ	28-Lead PLCC
			115	GAL20V8A-15LP	24-Pin Plastic DIP
			115	GAL20V8A-15LJ	28-Lead PLCC
25	15	12	55	GAL20V8A-25QP	24-Pin Plastic DIP
			55	GAL20V8A-25QJ	28-Lead PLCC
			90	GAL20V8A-25LP	24-Pin Plastic DIP
			90	GAL20V8A-25LJ	28-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering *	Package
10	10	7	130	GAL20V8B-10LPI	24-Pin Plastic DIP
			130	GAL20V8B-10LJ	28-Lead PLCC
15	12	10	130	GAL20V8B-15LPI	24-Pin Plastic DIP
			130	GAL20V8B-15LI	28-Lead PLCC
20	13	11	65	GAL20V8A-20QPI	24-Pin Plastic DIP
			65	GAL20V8A-20QJI	28-Lead PLCC
25	15	12	65	GAL20V8A-25QPI	24-Pin Plastic DIP
			65	GAL20V8A-25QJI	28-Lead PLCC
			130	GAL20V8A-25LPI	24-Pin Plastic DIP
			130	GAL20V8A-25LI	28-Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user.

There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes are illustrated in the following pages. Two global bits, SYN and ACO, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while the AC1 bit of each of the macrocells controls the input/output configuration. These two global and 16 individual architecture bits define all possible configurations in a GAL20V8A/B. The information given on these architecture bits is only to give a better understanding of the device. Compiler software will transparently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits.

The following is a list of the PAL architectures that the GAL20V8A and GAL20V8B can emulate. It also shows the OLMC mode under which the devices emulate the PAL architecture.

COMPILER SUPPORT FOR OLMC

Software compilers support the three different global OLMC modes as different device types. These device types are listed in the table below. Most compilers have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the software to choose the registered mode. All combinatorial outputs with OE controlled by the product term will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. The different device types listed in the table can be used to override the automatic device selection by the software. For further details, refer to the compiler software manuals.

When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode.

In registered mode pin 1 and pin 13 are permanently configured as clock and output enable, respectively. These pins cannot be configured as dedicated inputs in the registered mode.

In complex mode pin 1 and pin 13 become dedicated inputs and use the feedback paths of pin 22 and pin 15 respectively. Because of this feedback path usage, pin 22 and pin 15 do not have the feedback option in this mode.

In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins (pins 18 and 19) will not have the feedback option as these pins are always configured as dedicated combinatorial output.

	Registered	Complex	Simple	Auto Mode Select
ABEL	P20V8R	P20V8C	P20V8AS	P20V8
CUPL	G20V8MS	G20V8MA	G20V8AS	G20V8
LOG/IC	GAL20V8_R	GAL20V8_C7	GAL20V8_C8	GAL20V8
OrCAD-PLD	"Registered"1	"Complex"1	"Simple"1	GAL20V8A
PLDesigner	P20V8R	P20V8C	P20V8A	
TANGO-PLD	G20V8C	PR	G20V8C	G20V8AS 3

1) Used with Configuration keyword.
2) Prior to Version 2.0 support.
3) Supported on Version 1.20 or later.

Specifications GAL20V8B GAL20V8A

REGISTERED MODE

In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions.

Architecture configurations available in this mode are similar to the common 20R8 and 20RP4 devices with various permutations of polarity, I / O and register placement.

All registered macrocells share common clock and output enable control pins. Any macrocell can be configured as registered or I/O. Up to eight registers or up to eight I/O's are possible in this
mode. Dedicated input or output functions can be implemented as subsets of the I/O function.

Registered outputs have eight product terms per output. I/O's have seven product terms per output.

The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

Specifications GAL20V8B GAL20V8A

REGISTERED MODE LOGIC DIAGRAM

DIP (PLCC) Package Pinouts

64USER ELECTRONIC SIGMTURE FUSES

SYN-2704
ACO-2705

Specifications GAL20V8B GAL20V8A

COMPLEX MODE

In the Complex mode, macrocells are configured as output only or I/O functions.

Architecture configurations available in this mode are similar to the common 20L8 and 20P8 devices with programmable polarity in each macrocell.

Up to six I/O's are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the I/O function. The two outer most macrocells (pins 15 \& 22) do not have input ca-
pability. Designs requiring eight I/O's can be implemented in the Registered mode.

All macrocells have seven product terms per output. One product term is used for programmable output enable control. Pins 1 and 13 are always available as data inputs into the AND array.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

Specifications GAL20V8B GAL20V8A

COMPLEX MODE LOGIC DIAGRAM

DIP (PLCC) Package Pinouts

Specifications GAL20V8B GAL20V8A

SIMPLE MODE

In the Simple mode, pins are configured as dedicated inputs or as dedicated, always active, combinatorial outputs.

Architecture configurations available in this mode are similar to the common 14L8 and 16P6 devices with many permutations of generic output polarity or input choices.

All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has programmable polarity.

Pins 1 and 13 are always available as data inputs into the AND array. The "center" two macrocells (pins 18 \& 19) cannot be used in the input configuration.

The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page.

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

SIMPLE MODE LOGIC DIAGRAM

DIP (PLCC) Package Pinouts

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc}..................................... -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature 65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad .-55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A})............................... 0 to $75^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground +4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS
Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin}^{\text {}} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	IOL = MAX. Vin = VIL or V_{IH}	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	24	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
IcC	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \text { floggle }=25 \mathrm{MHz}$ Outputs Open (no load)	-	75	115	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100\% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I / O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^6]
Specifications GAL20V8B Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND' } \end{aligned}$	DESCRIPTION		-7		-10		UNITS
				MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	8 outputs switching	3	7.5	3	10	ns
			1 output switching	-	7	-	-	ns
tco	1	Clock to Output Delay		2	5	2	7	ns
tcfe	-	Clock to Feedback Delay		-	3	-	6	ns
tsu	-	Setup Time, Input or Feedback before Clock		7	-	10	-	ns
th	-	Hold Time, Input or Feedback after Clock		0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$		83.3	-	58.8	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)		100	-	62.5	-	MHz
	1	Maximum Clock Frequency with No Feedback		100	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High		5	-	8	-	ns
twl	-	Clock Pulse Duration, Low		5	-	8	-	ns
ten	2	Input or I/O to Output Enabled		3	9	3	10	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled		2	6	2	10	ns
tdis	3	Input or I/O to Output Disabled		2	9	2	10	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled		1.5	6	1.5	10	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% -90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}_{\mathbf{L}}$
1		200Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C L IMCLUDES JIG NNO PROBE TOTA CNPACTINCE

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION			MIN.	TYP. ${ }^{2}$	MAX.	UNITS
VIL	Input Low Voltage					Vss - 0.5	-	0.8	V
VIH	Input High Voltage					2.0	-	Vcc+1	V
IIL	Input or I/O Low Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}$ (MAX.)			-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current		$\mathrm{V}_{\mathbf{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$			-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		loL = MAX. Vin = VIL or $\mathrm{V}_{\text {IH }}$			-	-	0.5	V
VOH	Output High Voltage					2.4	-	-	V
IOL	Low Level Output Current					-	-	24	mA
IOH	High Level Output Current					-	-	-3.2	mA
los ${ }^{1}$	Output Short Circuit Current		$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
ICC	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad V_{\mathrm{IH}}=3.0 \mathrm{~V}$ Outputs Open (no load)		$\mathrm{ftoggle}^{\text {a }} \mathbf{2 5 M H z}$	L-10/-15	-	75	115	mA
				$\mathrm{froggle}=15 \mathrm{MHz}$	L-25	-	75	90	mA
				$\mathrm{ftoggle}=15 \mathrm{MHz}$	Q-15/-25	-	45	55	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
2) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^7]AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	TESTCOND'.	DESCRIPTION	-10		-15		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output		1210	3	15	3	25	ns
tco	1	Clock to Output Delay	2	7	2	10	2	12	ns
tct ${ }^{2}$	-	Clock to Feedback Delay		16	-	8	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	10		12	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$		1-	45.5	-	37	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)		-	50	-	40	-	MHz
	1	Maximum Clock Frequency with No Feedback		-	62.5	-	41.7	-	MHz
twh	-	Clock Pulse Duration, High	8	-	8	-	12	-	ns
twl	-	Clock Pulse Duration, Low	8	-	8	-	12	-	ns
ten	2	Input or I/O to Output Enabled		10	-	15	-	25	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled		10	-	15	-	20	ns
tdis	3	Input or I/O to Output Disabled		110	-	15	-	25	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled		$\$ 10$	-	15	-	20	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns $10 \%-90 \%$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1	200Ω	390Ω	50 pF	
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$
Input voltage applied \qquad -0.5 to +7 V

Off-state output voltage applied
Storage Temperature \qquad 2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$

Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A})............................ -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {a }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN}^{\text {S }}$ Vcc	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	loL = MAX. \quad Vin $=\mathrm{V}_{\mathrm{LL}}$ or $\mathrm{V}_{\mathbf{H}}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	24	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	$V \mathrm{cc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
ICC	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad V_{\mathrm{IH}}=3.0 \mathrm{~V} \text { foggle }=15 \mathrm{MHz}$ Outputs Open (no load)	-	75	130	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^8]Specifications GAL20V8B Industrial

AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { COND' } \end{array}$	DESCRIPTION	-10		-15		UNITS
			MIN.	MAX.	MIN.	MAX.	
- tpd	1	Input or I/O to Combinational Output	3	10	3	15	ns
tco	1	Clock to Output Delay	2	7	2	10	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	6	-	8	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
$f_{\text {max }}{ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	58.8	-	45.5	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	62.5	-	50	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	8	-	ns
ten	2	Input or I/O to Output Enabled	3	10	-	15	ns
	2	$\overline{\text { OE }}$ to Output Enabled	2	10	-	15	ns
tdis	3	Input or I/O to Output Disabled	2	10	-	15	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	1.5	10	-	15	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1	200Ω	390Ω	50 pF	
	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C L INCLUDES JIG AND PROBE TOTAL CAPACTIANCE

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage \mathbf{V}_{cc} \qquad -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A})............................ -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground \qquad

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER			DITION		MIN.	TYP. ${ }^{2}$	MAX.	UNITS
VIL	Input Low Voltage					Vss - 0.5	-	0.8	V
VIH	Input High Voltage					2.0	-	$\mathrm{Vcc}+1$	V
IIL	Input or I/O Low Leakage Current		$\mathrm{OV} \leq \mathrm{V}$	$\mathrm{N} \leq \mathrm{VIL}^{\text {(MAX. }}$)		-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current		$V_{H} \leq V^{\prime}$	$\mathrm{in} \leq \mathrm{Vcc}$		-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		$\mathbf{l o L}=\mathbf{N}$	AX. $\quad \mathbf{V i n}=\mathrm{V}_{\text {LL }}$ or		-	-	0.5	V
VOH	Output High Voltage		$\mathrm{lOH}=\mathbf{M}$	AX. $\mathbf{V i n}=\mathrm{VIL}_{\text {or }}$ or		2.4	-	-	V
IOL	Low Level Output Current					-	-	24	mA
IOH	High Level Output Current					-	-	-3.2	mA
los ${ }^{1}$	Output Short Circuit Current		$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V} \\ & \text { Outputs Open (no load) } \end{aligned}$		$\mathrm{froggle}=25 \mathrm{MHz}$	L-25	-	75	130	mA
Icc				froggle $=15 \mathrm{MHz}$	Q -20/-25	-	45	65	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100\% tested.
2) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^9]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|l} \text { TEST } \\ \text { COND'. } \end{array}$	DESCRIPTION	-20		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	20	3	25	ns
tco	1	Clock to Output Delay	2	11	2	12	ns
tcf ${ }^{2}$		Clock to Feedback Delay	-	9	-	10	ns
tsu		Setup Time, Input or Feedback before Clock	13	-	15	-	ns
th		Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /$ (tsu + tco)	41.6	-	37	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	45.4	-	40	-	MHz
	1	Maximum Clock Frequency with External Feedback	50	-	41.6	-	MHz
twh		Clock Pulse Duration, High	10	-	12	-	ns
twl		Clock Pulse Duration, Low	10	-	12	-	ns
ten	2	Input or I/O to Output Enabled	-	20	-	25	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled	-	18	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	20	-	25	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	-	18	-	20	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns $10 \%-90 \%$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	\mathbf{R}_{2}	$\mathbf{C L}$
1		200Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	200Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	200Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

Specifications GAL20V8B GAL20V8A

SWITCHING WAVEFORMS

Combinatorial Output

INPUT or VO FEEDBACK

OUTPUT

Input or VO to Output Enable/Disable

CLK

Clock Width

Registered Output

OE to Output Enable/Disable

fmax with Feedback

Specifications GAL20V8B GAL20V8A

fmax DESCRIPTIONS

fmax with External Feedback $1 /($ tsu+tco)

Note: fmax with external feedback is calculated from measured tsu and tco.

fmax Without Feedback

Note: fmax with no feedback may be less than $1 /(t w h+t w)$. This is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = $1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

Specifications GAL20V8B
 GAL20V8A

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL20V8ABB device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter checksum.

SECURITY CELL

The security cell is provided on all GAL20V8AB devices to prevent unauthorized copying of the array patterns. Once programmed, the circuitry enabling array is disabled, preventing further programming or verification of the array. The cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. Signature data is always available to the user.

LATCH-UP PROTECTION

GAL20V8ANB devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pull-ups instead of the traditional p-channel pull-ups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers. Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

GAL20V8A/B devices include circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically.

INPUT BUFFERS

GAL20V8A/B devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

The GAL20V8B input and I/O pins have built-in active pull-ups. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). In contrast, the GAL20V8A does not have active pullups within their input structures. Lattice recommends that all unused inputs and tri-stated I/O pins for both devices be connected to another active input, V_{c}, or Ground. Doing this will tend to improve noise immunity and reduce $I_{c c}$ for the device.

Typical Input Pull-up Characteristic

POWER-UP RESET

Circuitry within the GAL20V8AB provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Specifications GAL20V8B Typical Characteristics

Normalized Tpd vs Vcc

Normalized Tpd vs Temp

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Delta Tpd vs \# of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs
Switching

Delta Tco vs Output Loading
 부부붑

Specifications GAL20V8B Typical Characteristics

Normalized lec vs Vce

Voh vs loh

Normalized Icc vs Temp

Input Clamp (Vik)

Voh vs loh

Normalized lce vs Freq.

Specifications GAL20V8A Typical Characteristics

FEATURES

- HIGH PERFORMANCE E2CMOS* TECHNOLOGY

- 15 ns Maximum Propagation Delay
- Fmax $=62.5 \mathrm{MHz}$
- 10ns Maximum from Clock Input to Data Output
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\star}$ Advanced CMOS Technology
- LOW POWER CMOS
- 75 mA Typical Icc
- ACTIVE PULL-UPS ON ALL PINS
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- Uses Standard 22V10 Macrocells
- Maximum Flexibility for Complex Logic Designs
- PRELOAD AND POWER-ON RESET OF REGISTERS - 100\% Functional Testability

- APPLICATIONS INCLUDE:

- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL18V10, at 15 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide a very flexible 20 -pin PLD. CMOS circuitry allows the GAL18V10 to consume much less power when compared to its bipolar counterparts. The E^{2} technology offers high speed (50 ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.
By building on the popular 22V10 architecture, the GAL18V10 eliminates the learning curve usually associated with a new device architecture. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL18V10 OLMC is fully compatible with the OLMC in standard bipolar and CMOS 22V10 devices.
Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL ${ }^{\bullet}$ products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

PACKAGE DIAGRAMS

DIP

[^10]
Specifications GAL18V10

GAL18V10 ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
15	10	10	115	GAL18V10-15LP	20-Pin Plastic DIP
			115	GAL18V10-15LJ	20-Lead PLCC
20	12	12	115	GAL18V10-20LP	20-Pin Plastic DIP
			115	GAL18V10-20LJ	20-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
20	12	12	125	GAL18V10-20LPI	20-Pin Plastic DIP
			125	GAL18V10-20LJI	20 -Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The GAL18V10 has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to ten product terms (pins 14 and 15), and the other eight OLMCs have eight product terms each. In addition to the product terms available for logic, each OLMC has an additional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configgured as either active high or active low.

The GAL18V10 has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two product terms are common to all registered OLMCs. The Asynchronous Reset sets all registered outputs to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted.

NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.

GAL18V10 OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL18V10 has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the the following page.

REGISTERED

In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC's D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop's /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as registered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins.

COMBINATORIAL VO

In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either "on" (dedicated output), "off" (dedicated input), or "productterm driven" (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.

REGISTERED MODE

Specifications GAL18V10

ACtive Low
$S_{0}=0$
$S_{1}=0$

\square
ACTIVE HIGH
$S_{0}=1$
$S_{1}=0$

COMBINATORIAL MODE

Specifications GAL18V10

GAL18V10 LOGIC DIAGRAM / JEDEC FUSE MAP

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $+75^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground \qquad +4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)	-	-	-100	$\mu \mathrm{A}$
l H	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		-	-	0.5	V
VOH	Output High Voltage	$\mathrm{IOH}_{\text {= }}$ MAX. \quad Vin $=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{TA}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{LL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	75	115	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $V c c=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^11]
Specifications GAL18V10 Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	15	-	20	ns
tco	1	Clock to Output Delay	-	10	-	12	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	7	-	10	ns
tsu	一	Setup Time, Input or Feedback before Clock	10	-	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
$f_{\text {max }}{ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	50	-	41.6	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu' + tcf)	58.8	-	45.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	8	-	ns
ten	2	Input or I/O to Output Enabled	-	15	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	20	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	20	-	20	ns
tarw	-	Asynchronous Reset Pulse Duration	10	-	15	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	10	-	12	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} cc \cdot -0.5 to +7 V
Input voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature $\left(T_{A}\right)$............................ -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {s }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V} \mathrm{TA}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
Icc	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$ ftoggle $=15 \mathrm{Mhz}$ Outputs Open	-	90	125	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guarranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM ${ }^{*}$	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v 0}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-20		UNITS
			MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	20	ns
tco	1	Clock to Output Delay	-	12	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
fmax ${ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	41.6	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	45.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	ns
ten	2	Input or I/O to Output Enabled	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	20	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	25	ns
tarw	-	Asynchronous Reset Pulse Duration	15	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	12	-	ns

[^12]
Specifications GAL18V10

SWITCHING WAVEFORMS

INPUT or VO FEEDBACK

CLK

REGISTERED OUTPUT

REGISTERED FEEDBACK

Clock Width
Clock Width

INPUT or
VO FEEDBACK
DRIVING AR
REGISTERED
OUTPUT

INPUT or
VOU FEEDBACK
DRIVING SP

Registered Output

Synchronous Preset

Asynchronous Reset
fmax DESCRIPTIONS

fmax with External Feedback $\mathbf{1 / (t s u + t c o}$)
Note: fmax with external feedback is calculated from measured tsu and tco.

fmax With No Feedback
Note: fmax with no feedback may be less than $1 /(\mathrm{twh}+\mathrm{twl})$. This is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback $1 /($ tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback ($\mathbf{t c f}=1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns $10 \%-90 \%$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R 2}_{2}$	$\mathbf{C L}$
1		300Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	300Ω	390Ω	5 pF

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL18V10 device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

SECURITY CELL

A security cell is provided in every GAL18V10 device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL18V10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

The GAL18V10 device includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically.

INPUT BUFFERS

GAL18V10 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

The input and I/O pins also have built-in active pull-ups. As a result, floating inputs will float to a TTL. high (logic 1). However, Lattice recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce lcc for the device.

Specifications GAL18V10

POWER-UP RESET

Circuitry within the GAL18V10 provides a reset signal to all registers during power-up. All internal registers will have their \mathbf{Q} outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Specifications GAL18V10 Typical Characteristics

Delta Tpd vs. \# of Outputs Switching

IOL VS. VOL

Delta Tpd vs. Output Loading

High Performance E2CMOS PLD

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
- $\mathrm{Fmax}^{=}=111 \mathrm{MHz}$
- 5 ns Maximum from Clock Input to Data Output
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\circledR}$ Advanced CMOS Technology
- ACTIVE PULL-UPS ON ALL PINS
- COMPATIBLE WITH STANDARD 22V10 DEVICES
- Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices
- 50\% REDUCTION IN POWER VERSUS BIPOLAR
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- PRELOAD AND POWER-ON RESET OF REGISTERS
- 100\% Functional Testability

- APPLICATIONS INCLUDE:

- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL22V10B, at 7.5 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest performance available of any 22V10 device on the market. CMOS circuitry allows the GAL22V10/B to consume much less power when compared to bipolar 22V10 devices. E^{2} technology offers high speed ($<100 \mathrm{~ms}$) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10/B is fully function//use map/parametric compatible with standard bipolar and CMOS 22V10 devices.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

PACKAGE DIAGRAMS

[^13]
GAL22V10/B ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
7.5	6.5	5	140	GAL22V10B-7LP	24-Pin Plastic DIP
			140	GAL22V10B-7LJ	28-Lead PLCC
10	7	7	130	GAL22V10B-10LP	24-Pin Plastic DIP
			130	GAL22V10B-10LJ	28-Lead PLCC
15	10	8	130	GAL22V10B-15LP	24-Pin Plastic DIP
			130	GAL22V10B-15LJ	28-Lead PLCC
25	15	15	90	GAL22V10B-25LP	24-Pin Plastic DIP
			90	GAL22V10B-25LJ	28-Lead PLCC
			130	GAL22V10-25LP	24-Pin Plastic DIP
			130	GAL22V10-25LJ	28-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
15	10	8	150	GAL22V10B-15LPI	24-Pin Plastic DIP
			150	GAL22V10B-15LJI	28-Lead PLCC
20	14	10	150	GAL22V10B-20LPI	24-Pin Plastic DIP
			150	GAL22V10B-20LJI	28-Lead PLCC
25	15	15	150	GAL22V10B-25LPI	24-Pin Plastic DIP
			150	GAL22V10B-25LJI	28-Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The GAL22V10/B has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to eight product terms (pins 14 and 23), two have ten product terms (pins 15 and 22), two have twelve product terms (pins 16 and 21), two have fourteen product terms (pins 17 and 20), and two OLMCs have sixteen product terms (pins 18 and 19). In addition to the product terms available for logic, each OLMC has an additional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configured as either active high or active low.

The GAL22V10/B has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two product terms are common to all registered OLMCs. The Asynchronous Reset sets all registers to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted.

NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.

GAL22V10/B OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL22V10/B has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the following page.

REGISTERED

In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC's D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop's /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as registered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins.

COMBINATORIAL VO

In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either "on" (dedicated output), "off" (dedicated input), or "productterm driven" (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.

active Low
$\mathbf{S}_{\mathbf{0}}=0$
$\mathbf{S}_{\mathbf{1}}=0$

COMBINATORIAL MODE

GAL22V10/B LOGIC DIAGRAM / JEDEC FUSE MAP

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} -0.5 to +7 V

Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) \qquad 0 to $+75^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground \qquad +4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Uniess Otherwise Specified)

SYMBOL	PARAMETER		CONDITION			MIN.	TYP: ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage					Vss - 0.5	-	0.8	V
VIH	Input High Voltage					2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current		$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)			-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current		$3.5 \mathrm{~V} \leq \mathrm{ViN} \leq \mathrm{Vcc}$			-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		$\mathbf{l o L}=$ MAX. \quad Vin $=\mathrm{V}_{\mathbf{L}}$ or $\mathrm{V}_{\mathbf{H}}$			-	-	0.5	V
VOH	Output High Voltage					2.4	-	-	V
IOL	Low Level Output Current					-	-	16	mA
IOH	High Level Output Current					-	-	-3.2	mA
$10{ }^{2}$	Output Short Circuit Current		Vcc= $5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	-	-130	mA
ICC	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V}$ Outputs Open		fiogole $=25 \mathrm{MHz}$	-7	-	90	140	mA
				floggle $=25 \mathrm{MHz}$	-10/-15	一	90	130	mA
				$\mathrm{ffogglo}^{\text {a }}$ 15MHz	-25	-	75	90	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^14]Specifications GAL22V10B Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\left\lvert\, \begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}\right.$	DESCRIPTION	-7		-10		-15		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	7.5	3	10	3	15	3	25	ns
tco	1	Clock to Output Delay	2	5	2	7	2	8	2	15	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	2.5	-	2.5	-	2.5	-	13	ns
tsu,	-	Setup Time, Input or Feedback before Clock	6.5	-	7	-	10	-	15	-	ns
tsu	-	Setup Time, SP before Clock	10	-	10	-	10	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /$ (tsu + tco)	87	-	71.4	-	55.5	-	33.3	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	111	-	105	-	80	-	35.7	-	MHz
	1	Maximum Clock Frequency with No Feedback	111	-	105	-	83.3	-	38.5	-	MHz
twh	-	Clock Pulse Duration, High	4	-	4	-	6	-	13	-	ns
twl	-	Clock Pulse Duration, Low	4	-	4	-	6	-	13	-	ns
ten	2	Input or I/O to Output Enabled	3	8	3	10	3	15	3	25	ns
tdis	3	Input or I/O to Output Disabled	3	8	3	9	3	15	3	25	ns
tar	1	Input or I/O to Asynchronous Reset of Register	3	13	3	13	3	20	3	25	ns
tarw	-	Asynchronous Reset Pulse Duration	8	-	8	-	15	-	25	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	8	-	8	-	10	-	25	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	10	-	10	-	10	-	15	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL22V10 Commercial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

put voltage applied..........................-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ff-state output voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$orage Temperature 65 to $150^{\circ} \mathrm{C}$mbient Temperature withPower Applied 55 to $125^{\circ} \mathrm{C}$Stresses above those listed under the "Absolute MaximumRatings" may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated in

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $+75^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {s }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$ (MAX.)	-	-	-150	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o L}=$ MAX. $V_{\text {in }}=\mathrm{V}_{\text {IL }}$ or V_{IH}	-	-	0.5	V
VoH	Output High Voltage	$\mathrm{IOH}_{\text {I }}=\mathbf{M A X} . \quad \mathrm{Vin}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathbf{I H}}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\mathrm{VIL}=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V}$ ftoggle $=15 \mathrm{Mhz}$ Outputs Open	-	90	130	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v O}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v O}=2.0 \mathrm{~V}$

[^15]
Specifications GAL22V10
 Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { COND.' } \end{array}$	DESCRIPTION	-25		UNITS
			MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	25	ns
tco	1	Clock to Output Delay	2	15	ns
tcp ${ }^{2}$	-	Clock to Feedback Delay	-	13	ns
tsu	-	Setup Time, Input or Feedback before Clock	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	33.3	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	35.7	-	MHz
	1	Maximum Clock Frequency with No Feedback	38.5	-	MHz
twh	-	Clock Pulse Duration, High	13	-	ns
twl	-	Clock Pulse Duration, Low	13	-	ns
ten	2	Input or I/O to Output Enabled	3	25	ns
tdis	3	Input or I/O to Output Disabled	3	25	ns
tar	1	Input or I/O to Asynchronous Reset of Register	3	25	ns
tarw	-	Asynchronous Reset Pulse Duration	25	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	25	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	15	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL22V10B
Industrial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc}

\qquad -0.5 to +7 V
Input voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature .-65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied

\qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A}) 40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION			MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage					Vss -0.5	-	0.8	V
VIH	Input High Voltage					2.0	-	Vcc+1	V
IIL. ${ }^{\text {a }}$	Input or I/O Low Leakage Current		$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)			-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current		$3.5 \mathrm{~V} \leq \mathrm{ViN}_{\text {I }} \leq \mathrm{Vcc}$			-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		lol = MAX. Vin = VIL or V_{IH}			-	-	0.5	V
VoH	Output High Voltage					2.4	-	-	V
IOL	Low Level Output Current					-	-	16	mA
IOH	High Level Output Current					-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current		$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	-	-130	mA
ICC	Operating Power Supply Current	$V_{I L}=0.5 \mathrm{~V} \quad V_{I H}=3.0 \mathrm{~V}$ Outputs Open		$\begin{aligned} & \text { foggle }=25 \mathrm{MHz} \\ & \text { foggle }=15 \mathrm{MHz} \end{aligned}$	-15 $-20 /-25$	-	90	150	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}=25^{\circ} \mathrm{C}$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^16]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-15		-20		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	15	3	20	3	25	ns
tco	1	Clock to Output Delay	2	8	2	10	2	25	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	5	-	8	-	13	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	14	-	15	-	ns
tsu	-	Setup Time, SP before Clock	12	-	14	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	55.5	-	41.6	-	33	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	66.6	-	45.4	-	35.7	-	MHz
	1	Maximum Clock Frequency with No Feedback	66.6	-	50	-	38.5	-	MHz
twh	-	Clock Pulse Duration, High	6	-	10	-	13	-	ns
twl	-	Clock Pulse Duration, Low	6	-	10	-	13	-	ns
ten	2	Input or I/O to Output Enabled	3	15	3	20	3	25	ns
tdis	3	Input or I/O to Output Disabled	3	15	3	20	3	25	ns
tar	1	Input or I/O to Asynchronous Reset of Register	3	20	3	25	3	25	ns
tarw	-	Asynchronous Reset Pulse Duration	15	-	20	-	25	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	10	-	20	-	25	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	12	-	14	-	15	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

SWITCHING WAVEFORMS

Combinatorial Output

Input or VO to Output Enable/Disable
CLK

Clock Width
nput or 1o Output Enablerisable

Specifications GAL22V10B

INPUT or 10 FEEDBACK DRIVING AR

REGISTERED OUTPUT

CLK

INPUT or VO FEEDBACK DRIVING SP

CLK

REGISTERED OUTPUT

Synchronous Preset

Registered Output

REGISTERED FEEDBACK

fmax with Foedback

Asynchronous Reset

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is calculated from measured tsu and tco.

fmax With No Feedback

Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/ internal feedback (tcf $=1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	$2-3 \mathrm{~ns} \mathrm{10} \mathrm{\%-90} \mathrm{\%}$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R 2}_{\mathbf{2}}$	CL
1	300Ω	390Ω	50 pF	
2	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	300Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL22V10/B device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

The electronic signature is an additional feature not present in other manufacturers' 22V10 devices. To use the extra feature of the user-programmable electronic signature it is necessary to choose a Lattice 22V10 device type when compiling a set of logic equations. In addition, many device programmers have two separate selections for the device, typically a GAL22V10 and a GAL22V10-UES (UES = User Electronic Signature) or GAL22V10-ES. This allows users to maintain compatibility with existing 22V10 designs, while still having the option to use the GAL device's extra feature.

The JEDEC map for the GAL22V10/B contains the 64 extra fuses for the electronic signature, for a total of 5892 fuses. However, the GAL22V10/B device can still be programmed with a standard 22V10 JEDEC map (5828 fuses) with any qualified device programmer.

SECURITY CELL

A security cell is provided in every GAL22V10/B device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL22V10/B devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a fow seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

The GAL22V10/B device includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically.

INPUT BUFFERS

GAL22V10/B devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

The input and I/O pins also have built-in active pull-ups. As a result, floating inputs will float to a TTL high (logic 1). However, Lattice recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce lcc for the device. (See equivalent input and VO schematics on the following page.)

Specifications GAL22V10B
GAL22V10

POWER-UP RESET

Circuitry within the GAL22V10/B provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Input

Output

Specifications GAL22V10B Typical Characteristics

Normalized Tpd vs Vcc

Normalized Tpd vs Temp

Temperature (deg. C)

Normalized Tco vs Vce

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Normalized Tsu vs Temp

Delta Tpd vs \# of Outputs Switching

Number of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Number of Outputs Switching

Delta Tco vs Output Loading

Voh vs loh

Normalized lce vs Freq.

Specifications GAL22V10B Typical Characteristics

Normalized lec vs Vec

Normalized lec vs Temp

Delta lce vs Vin (1 input)

Vol vs lol

Input Clamp (Vik)

Voh vs loh

Specifications GAL22V10 Typical Characteristics

Delta Tpd vs. \# of Outputs Switching

IOL vs. VOL

 GAL26CV12B
GAL26CV12
High Performance E ${ }^{2}$ CMOS PLD

FEATURES

- HIGH PERFORMANCE E ${ }^{2}$ CMOS ${ }^{\circledR}$ TECHNOLOGY
- 10 ns Maximum Propagation Delay
- $\operatorname{Fmax}=105 \mathrm{MHz}$
- 7ns Maximum from Clock Input to Data Output
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\circledR}$ Advanced CMOS Technology
- ACTIVE PULL-UPS ON ALL PINS
- LOW POWER CMOS
- 90 mA Typical Icc
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TWELVE OUTPUT LOGIC MACROCELLS
- Uses Standard 22V10 Macrocells
- Maximum Flexibility for Complex Logic Designs
- PRELOAD AND POWER-ON RESET OF REGISTERS
- 100\% Functional Testability
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL26CV12B, at 10 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest performance 28 pin PLD available on the market. E^{2} technology offers high speed ($<100 \mathrm{~ms}$) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.
Expanding upon the industry standard 22 V 10 architecture, the GAL26CV12/B eliminates the learning curve typically associated with a new device architecture. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL26CV12/B OLMC is fully compatible with the OLMC in standard bipolar and CMOS 22V10 devices.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

PACKAGE DIAGRAMS
DIP

[^17]
GAL26CV12／B ORDERING INFORMATION

Commercial Grade Specifications

Tpd（ns）	Tsu（ns）	Tco（ns）	Icc（mA）	Ordering \＃	Package
10	7	7	130	GAL26CV12B－10LP	28－Pin Plastic DIP
			130	GAL26CV12B－10LJ	28－Lead PLCC
15	10	10	130	GAL26CV12－15LP	28－Pin Plastic DIP
			130	GAL26CV12－15LJ	28－Lead PLCC
20	20	12	130	GAL26CV12－20LP	28－Pin Plastic DIP
			130	GAL26CV12－20LJ	28－Lead PLCC

Industrial Grade Specifications

Tpd（ns）	Tsu（ns）	Tco（ns）	Icc（mA）	Ordering＊	Package
15	10	10	150	GAL26CV12B－15LPI	28－Pin Plastic DIP
			150	GAL26CV12B－15LJI	28－Lead PLCC
20	12	12	150	GAL26CV12－20LPI	28－Pin Plastic DIP
			150	GAL26CV12－20LII	28－Lead PLCC

PART NUMBER DESCRIPTION

Specifications GAL26CV12B GAL26CV12

OUTPUT LOGIC MACROCELL (OLMC)

The GAL26CV12/B has a variable number of product terms per OLMC. Of the twelve available OLMCs, two OLMCs have access to twelve product terms (pins 20 and 22), two have access to ten product terms (pins 19 and 23), and the other six OLMCs have eight product terms each. In addition to the product terms available for logic, each OLMC has an additional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configgured as either active high or active low.

The GAL26CV12/B has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two product terms are common to all registered OLMCs. The Asynchronous Reset sets all registered outputs to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted.

NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.

GAL26CV12/B OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL26CV12/B has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the the following page.

REGISTERED

In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC's D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop's /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as registered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins.

COMBINATORIAL VO

In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either "on" (dedicated output), "off" (dedicated input), or "productterm driven" (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.

REGISTERED MODE

COMBINATORIAL MODE
 Specifications GAL26CV12B GAL26CV12

GAL26CV12/B LOGIC DIAGRAM / JEDEC FUSE MAP

Specifications GAL26CV12B Commercial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{c c}+1.0 \mathrm{~V}$
Storage Temperature-65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) \qquad
Supply voltage (V_{cc})
with Respect to Ground \qquad +4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {S }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or VO Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$.	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VoL	Output Low Voltage	loL = MAX. Vin $=$ VIL or $\mathrm{V}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
lOS ${ }^{2}$	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \text { VIH }=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	90	130	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	//O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^18]

Specifications GAL26CV12B Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	TEST COND.	DESCRIPTION	-10		UNITS
			MIN.	MAX.	
tpd	1	Input or l/O to Combinatorial Output	3	10	ns
tco	1	Clock to Output Delay	2	7	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	2.5	ns
tsu	-	Setup Time, Input or Feedback before Clock	7	-	ns
tsu_{2}	-	Setup Time, SP before Clock	10	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	71.4	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	105	-	MHz
	1	Maximum Clock Frequency with No Feedback	105	-	MHz
twh	-	Clock Pulse Duration, High	4	-	ns
twl	-	Clock Pulse Duration, Low	4	-	ns
ten	2	Input or I/O to Output Enabled	3	10	ns
tdis	3	Input or VO to Output Disabled	3	10	ns
tar	1	Input or VO to Asynchronous Reset of Register	3	13	ns
tarw	-	Asynchronous Reset Pulse Duration	8	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	8	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	10	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Specification section.
3) Refer to fmax Specification section.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$ \qquad -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:
Ambient Temperature ($\mathrm{T}_{\boldsymbol{A}}$) 0 to $+75^{\circ} \mathrm{C}$
Supply voltage ($V_{c c}$)
with Respect to Ground \qquad +4.75 to $\mathbf{+ 5 . 2 5 V}$

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {S }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN}^{\text {S }} \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o l}=$ MAX. \quad Vin $=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathbf{I H}}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \mathrm{VIL}=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	90	130	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

CAPACITANCE ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{10}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{10}=2.0 \mathrm{~V}$

[^19]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { COND. }{ }^{1} \end{array}$	DESCRIPTION	-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or V/O to Combinatorial Output	-	15	-	20	ns
tco	1	Clock to Output Delay	-	10	-	12	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	7	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	50	-	41.6	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	58.8	-	45.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	8	-	ns
ten	2	Input or V/O to Output Enabled	-	15	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	20	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	20	-	20	ns
tarw	-	Asynchronous Reset Pulse Duration	10	-	15	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	10	-	12	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL26CV12B Industrial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:
Ambient Temperature (T_{A})........................... $\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground+4.5 to +5.5V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {3 }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{VIL}^{\text {(MAX. }}$)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN}^{\text {S }}$ Vcc	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o L}=$ MAX. \quad Vin $=V_{\text {IL }}$ or $V_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage	$\mathbf{O H}=$ MAX. $\quad \mathbf{V i n}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathbf{H}}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
IOS ${ }^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V}$ TA $=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \text { Outputs Open } \end{aligned}$	-	90	150	mA

1) The leakage current is due to the internal pull-up on all pins. See Input buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Guaranteed but not 100\% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-15		UNITS
			MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	15	ns
tco	1	Clock to Output Delay	2	10	ns
tct ${ }^{2}$	-	Clock to Feedback Delay	-	7	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
$f_{\text {max }}{ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	50	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	58.8	-	MHz
	1	Maximum Clock Frequency with No Feedback, $1 /(\mathrm{twh}+\mathrm{twl})$	62.6	-	MHz
twh	-	Clock Pulse Duration, High	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	ns
ten	2	Input or I/O to Output Enabled	3	15	ns
tdis	3	Input or I/O to Output Disabled	3	15	ns
tar	1	Input or I/O to Asynchronous Reset of Register	3	20	ns
tarw	-	Asynchronous Reset Pulse Duration	10	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	10	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Specification section.
3) Refer to fmax Specification section.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc} \qquad -0.5 to +7 V
Input voltage applied...........................-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
-55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A}) -40 to $85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP: ${ }^{\text {a }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or V/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	Iol = MAX. Vin $=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage	$\mathrm{IOH}_{\text {¢ }}=\mathbf{M A X} . \quad \mathrm{Vin}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\mathrm{VIL}=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V}$ ftoggle $=15 \mathrm{Mhz}$ Outputs Open	-	90	150	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

CAPACITANCE ($T_{A}=25 \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{w}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{10}=2.0 \mathrm{~V}$

[^20]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-20		UNITS
			MIN.	MAX.	
tpd	1	Input or V/O to Combinatorial Output	-	20	ns
tco	1	Clock to Output Delay	-	12	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	10	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
$f_{\text {max }}{ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	41.6	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /(t s u+t c f)$	45.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	ns
ten	2	Input or VO to Output Enabled	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	20	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	25	ns
tarw	-	Asynchronous Reset Pulse Duration	15	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	12	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL26CV12B GAL26CV12

SWITCHING WAVEFORMS

INPUT or VO FEEDBACK

CLK

REGISTERED OUTPUT

fmax with Feedback
INPUT or
VO FEEDBACK

OUTPUT

Input or VO to Output Enable/Disable

CLK

Clock Width

Asynchronous Reset
Registered Output

fmax SPECIFICATIONS

fmax with External Feedback $\mathbf{1 / (t s u + t c o)}$
Note: fmax with extemal feedback is calculated from measured tsu and tco.

fmax With No Feedback
Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = $1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf $+\mathbf{t p d}$.

SWITCHING TEST CONDITIONS

Input Puise Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.

GAL26CV12 Output Load Conditions (see figure)

Test Condition		R_{1}	$\mathbf{R 2}_{2}$	CL
1	470Ω	390Ω	50 pF	
	Active High	∞	390Ω	50 pF
	Active Low	470Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	470Ω	390Ω	5 pF

Cl INCLUDES JIG AND PROBE TOTAL CAPACITANCE
GAL26CV12B Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	\mathbf{R}_{2}	$\mathbf{C L}$
1	300Ω	390Ω	50 pF	
	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	300Ω	390Ω	5 pF

Specifications GAL26CV12B
GAL26CV12

ELECTRONIC SIGNATURE

An electronic signature is provided in every GAL26CV12/B device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

SECURITY CELL

A security cell is provided in every GAL26CV12/B device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

LATCH-UP PROTECTION

GAL26CV12/B devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

OUTPUT REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions.

The GAL26CV12/B device includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically.

INPUT BUFFERS

GAL26CV12/B devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL logic.

The input and I/O pins also have built-in active pull-ups. As a result, floating inputs will float to a TTL high (logic 1). However, Lattice recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce lec for the device.

Typical Input Current

POWER-UP RESET

Circuitry within the GAL26CV12/B provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some
conditions must be met to guarantee a valid power-up reset of the device. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Input

Output

Normalized Tco vs Vce

Normalized Tco vs Temp

Temperature (deg. C)

Normalized Tsu vs Temp

Normalized Tsu vs Vcc

Specifications GAL26CV12B Typical Characteristics

Temperature (deg. C)

Normalized Tpd vs Temp

Delta Tpd vs \# of Outputs Switching

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Delta Tco vs Output Loading

Specifications GAL26CV12B Typical Characteristics

Vol vs iol

Normalized lec vs Vce

Delta lcc vs Vin (1 input)

Voh vs loh

Normalized lec vs Temp

Input Clamp (Vik)

Voh vs loh

Normalized lcc vs Freq.

Delta Tpd vs. \# of Outputs Switching

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY - $\mathbf{1 0}$ ns Maximum Propagation Delay
- Fmax $=100 \mathrm{MHz}$
- 7 ns Maximum from Clock Input to Data Output
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\text {® }}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR - 90mA Max Icc
- 75mA Typ Icc

- ACTIVE PULL-UPS ON ALL PINS

- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- XOR Gate Capability on all Outputs
- Full Function and Parametric Compatibility with PAL12L10, 20L10, 20X10, 20X8, 20X4
- Registered or Combinatorial with Polarity
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
- APPLICATIONS INCLUDE:
- High Speed Counters
- Graphics Processing
- Comparators

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20XV10B combines a high performance CMOS process with electrically erasable (E^{2}) floating gate technology to provide the highest speed Exclusive-OR PLD available in the market. At 90 mA maximum Icc (75 mA typical Icc), the GAL20XV10B provides a substantial savings in power when compared to bipolar counterparts. $\mathrm{E}^{2} \mathrm{CMOS}$ technology offers high speed ($<100 \mathrm{~ms}$) erase times providing the ability to reprogram, reconfigure or test the devices quickly and efficiently.
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL20XV10B are the PAL architectures listed in the macrocell description section of this document. The GAL20XV10B is capable of emulating these PAL architectures with full function and parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacturing. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL ${ }^{\oplus}$ products. LATTICE also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

PACKAGE DIAGRAMS

[^21]
Specifications GAL20XV10B

GAL20XV10B ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \#	Package
10	6	7	90	GAL20XV10B-10LP	24-Pin Plastic DIP
				GAL20XV10B-10LJ	28-Lead PLCC
15	8	8	90	GAL20XV10B-15LP	24-Pin Plastic DIP
				GAL20XV10B-15LJ	28-Lead PLCC
20	10	10	90	GAL20XV10B-20LP	24-Pin Plastic DIP
				GAL20XV10B-20LJ	28-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering *	Package
15	8	8	110	GAL20XV10B-15LPI	24-Pin Plastic DIP
				GALL20XV10B-15LJI	28-Lead PLCC
20	10	10	110	GAL20XV10B-20LPI	24-Pin Plastic DIP
				GAL20XV10B-20LJI	28-Lead PLCC

PART NUMBER DESCRIPTION

Specifications GAL20XV10B

OUTPUT LOGIC MACROCELL (OLMC)
The following discussion pertains to configuring the Output Logic Macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user.

The GAL20XV10B has two global architecture configurations that allow it to emulate PAL architectures. The Input mode emulates combinatorial PAL devices, with the I/CLK and I/DE pins used as inputs. The Feedback mode emulates registered PAL devices with the I/CLK pin used as the register clock and the $\mathrm{I} / \overline{\mathrm{OE}}$ pin as an output enable for all registers. The following is a list of PAL architectures that the GAL20XV10B can emulate. It also shows the global architecture mode used to emulate the PAL architecture.

PAL Architectures Emulated by GAL20XV10B	GAL20XV10B Global OLMC Mode
PAL12L10	Input Mode
PAL20L10	Input Mode
PAL20X10	Feedback Mode
PAL20X8	Feedback Mode
PAL20X4	Feedback Mode

INPUT MODE

The Input mode architecture is defined when the global architecture bit SYN = 1 . In this mode, the I/CLK pin becomes an input to the AND array and also provides the clock source for all registers. The I/OE pin becomes an input into the AND array and provides the output enable control for any macrocell configured as an Exclusive-OR function. Feedback into the AND array is provided from macrocells 2 through 9 only. In this mode, macrocells 1 and 10 have no feedback into the AND array.

FEEDBACK MODE

The Feedback mode architecture is defined when the global architecture bit SYN $=0$. In this mode the I/CLK pin becomes a dedicated clock source for all registers. The $/ / \overline{\mathrm{OE}}$ pin is a dedicated output enable control for any macrocell configured as an Exclusive-OR function. The I/CLK and I/ $\overline{O E}$ pins are not available to the AND array in this mode. Feedback into the AND array is provided on all macrocells 1 through 10.

FEATURES

Each Output Logic Macrocell has four possible logic function configurations controlled by architecture control bits ACO and AC1. Four product terms are fed into each macrocell.

XOR REGISTERED CONFIGURATION

The Macrocell is set to the Exclusive-OR Registered configuration when $A C 0=0$ and $A C 1=0$. The four product terms are segmented into two OR-sums of two product terms each, which are then combined by an Exclusive-OR gate and fed into a D-type register. The register is clocked by the low-to-high transition of the I/CLK pin. The inverting output buffer is enabled by the I/
$\overline{\mathrm{OE}}$ pin, which is an active low output enable common to all Exclusive-OR macrocells. In Feedback mode, the state of the register is available to the AND array via an internal feedback path on all macrocells. In Input mode, the state of the register is available to the AND array via an intemal feedback path on macrocells 2 through 9 only, macrocells 1 and 10 have no feedback into the AND array.

REGISTERED CONFIGURATION

The Macrocell is set to Registered configuration when $A C 0=1$ and $\mathrm{AC1}=0$. Three of the four product terms are used as sum-of-product terms for the D input of the register. The inverting output buffer is enabled by the fourth product term. The output is enabled while this product term is true. The XOR bit controls the polarity of the output. The register is clocked by the low-to-high transition of the I/CLK. In Feedback mode, the state of the register is available to the AND array via an internal feedback path on all macrocells. In Input mode, the state of the register is available to the AND array via an internal feedback path on macrocells 2 through 9 only, macrocells 1 and 10 have no feedback into the AND array.

XOR COMBINATORIAL CONFIGURATION

The Macrocell is set to the Exclusive-OR Combinatorial configuration when $A C O=0$ and $A C 1=1$. The four product terms are segmented into two OR-sums of two product terms each, which are then combined by an Exclusive-OR gate and fed to an output buffer. The inverting output buffer is enabled by the I/OE pin, which is an active low output enable that is common to all XOR macrocells. In Feedback mode, the state of the I/O pin is available to the AND array via an intemal feedback path on all macrocells. In Input mode, the state of the I/O pin is available to the AND array via an input buffer path on macrocells 2 through 9 only, macrocells 1 and 10 have no input into the AND array.

COMBINATORIAL CONFIGURATION

The Macrocell is set to Combinatorial mode when $A C O=1$ and $A C 1=1$. Three of the four product terms are used as sum-of-product terms for the combinatorial output. The XOR bit controls the polarity of the output. The inverting output buffer is enabled by the fourth product term. The output is enabled while this product term is true. In Feedback mode, the state of the I/O pin is available to the AND array via an internal feedback path on all macrocells. In Input mode, the state of the I/O pin is available to the AND array via an input buffer path on macrocells 2 through 9 only, macrocells 1 and 10 have no input into the AND array.

INPUT MODE

INPUT MODE LOGIC DIAGRAM

DIP (PLCC) Package Pinout

40-USER ELECTRONIC SIGNATURE FUSES

| 1631, 1632, | | |
| :--- | :--- | :--- | Specifications GAL20XV10B

FEEDBACK MODE

XOR Registered Configuration

- SYN $=0$.
$-\mathrm{ACO}=0$.
$-A C 1=0$.
- Dedicated CLK input on Pin 1(2).
- Dedicated /OE input on Pin 13(16).

Registered Configuration

- SYN = 0 .
$-\mathrm{ACO}=1$.
$-\mathrm{AC} 1=0$.
- XOR = 1 defines Active Low Output.
- XOR $=0$ defines Active High Output.
- Dedicated CLK input on Pin 1(2).
- OE controlled by product term.
- Pin 13(16) is not connected to this configura tion.

XOR Combinatorial Configuration

$-\mathrm{SYN}=0$.
$-\mathrm{ACO}=0$.
$-A C 1=1$.

- Dedicated /OE input on Pin 13(16).
- Pin $1(2)$ is not connected to this configuration.

Combinatorial Configuration

$-\mathrm{SYN}=0$.
$-\mathrm{ACO}=1$.
$-A C 1=1$.

- XOR = 1 defines Active Low Output.
- XOR = 0 defines Active High Output.
- OE controlled by product term.
- Both pin1(2) and pin 13(16) are not connected to this configuration.

Specifications GAL20XV10B

FEEDBACK MODE LOGIC DIAGRAM
DIP (PLCC) Package Pinout

Specifications GAL20XV10B Commercial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage Vcc \qquad
Input voltage applied -2.5 to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Off-state output voltage applied-2.5 to $\mathrm{Vcc}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad .-65 to $150^{\circ} \mathrm{C}$

55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $+75^{\circ} \mathrm{C}$
Supply voltage (Vcc)
with Respect to Ground +4.75 to $\mathbf{+ 5 . 2 5 V}$

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {a }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss-0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
ILL	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{VIN}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or VO High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage		-	-	0.5	V
VoH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	$V_{\text {cc }}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-150	mA
Icc	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IL}}=3.0 \mathrm{~V} \\ & \text { foggle }=25 \mathrm{Mhz} \text { Outputs Open } \end{aligned}$	-	75	90	mA

1) The leakage current is due to the internal pull-up on all input and I/O pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE (TA = $25 \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
Cl_{1}	Input Capacitance	8	pF	$\mathrm{Vcc}^{*}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v o}=2.0 \mathrm{~V}$

[^22]
Specifications GAL20XV10B Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { COND. } \end{array}$	DESCRIPTION	-10		-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	10	3	15	3	20	ns
tco	1	Clock to Output Delay	2	7	2	8	2	10	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	4	-	4	-	4	ns
tsu		Setup Time, Input or Feedback before Clock	6	-	8	-	10	-	ns
th		Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	ns
$f^{\text {max }}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	76.9	-	62.5	-	50	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	100	-	83.3	-	71.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	100	-	83.3	-	71.4	-	MHz
twh		Clock Pulse Duration, High	4	-	6	-	7	-	ns
twl		Clock Pulse Duration, Low	4	-	6	-	7	-	ns
ten	2	Input or I/O to Output Enabled	3	10	3	15	3	20	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled	2	9	2	10	2	15	ns
tdis	3	Input or I/O to Output Disabled	3	9	3	15	3	20	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	2	9	2	10	2	15	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1	Active High	$\infty 00 \Omega$	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	5 pF

C LINCLUDES Jig and PROBE TOTAL CAPACitance

Specifications GAL20XV10B Industrial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage Vcc \qquad
Input voltage applied -2.5 to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Storage Temperature \qquad .65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad .-55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (TA) -40 to $+85^{\circ} \mathrm{C}$
Supply voltage (Vcc)
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.3	MAX.	UNITS
VIL	Input Low Voltage		Vss-0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or VO High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage	lol $=$ MAX. \quad Vin $=\mathbf{V}_{\text {LIL }}$ or $\mathbf{V}_{\text {H }}$	-	-	0.5	V
Voh	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
los^{2}	Output Short Circuit Current	$\mathrm{V}_{\text {cc }}=5 \mathrm{~V} \quad \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-150	mA
IcC	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IL}}=3.0 \mathrm{~V} \\ & \text { ftoggle }=25 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	75	110	mA

1) The leakage current is due to the internal pull-up on all input and I/O pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE (TA = $25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM *	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	${\text { Vcc }=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}}^{C_{\text {co }}}$

[^23] Specifications GAL20XV10B Industrial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	TEST COND. ${ }^{1}$	DESCRIPTION	-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	3	15	3	20	ns
tco	1	Clock to Output Delay	2	8	2	10	ns
tct ${ }^{2}$	-	Clock to Feedback Delay	-	4	-	4	ns
tsu		Setup Time, Input or Feedback before Clock	8	-	10	-	ns
th		Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	62.5	-	50	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	83.3	-	71.4	-	MHz
	1	Maximum Clock Frequency with No Feedback	83.3	-	71.4	-	MHz
twh		Clock Pulse Duration, High	6	-	7	-	ns
twl		Clock Pulse Duration, Low	6	-	7	-	ns
ten	2	Input or I/O to Output Enabled	3	15	3	20	ns
	2	$\overline{O E}$ to Output Enabled	2	10	2	15	ns
tdis	3	Input or I/O to Output Disabled	3	15	3	20	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	2	10	2	15	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}_{\mathbf{L}}$
1	Active High	300Ω	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C lincluoes jig and phobe total capacitance

Specifications GAL20XV10B

SWITCHING WAVEFORMS

INPUT or VO FEEDBACK	
COMBINATORIAL OUTPUT	

INPUT or VO FEEDBACK

OUTPUT

Input or I/O Feedback to Enable/Disable

CLK

Clock Width

$\overline{\mathrm{OE}}$ to Output Enable/Disable

CLK

REGISTERED
FEEDBACK

fmax with Feedback

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is calculated from measured tsu and tco.

fmax Without Feedback
Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = $1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Input

Output

ELECTRONIC SIGNATURE

An electronic signature word is provided in every GAL20XV10B device. It contains 40 bits of reprogrammable memory that contains user defined data. Some uses include user ID codes, revision numbers, pattern identification or inventory control codes. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature bits, if programmed to any value other then zero(0) will alter the checksum of the device.

SECURITY CELL

A security cell is provided in every GAL20XV10B device as a deterrent to unauthorized copying of the device pattern. Once programmed, this cell prevents further read access of the device pattern information. This cell can be only be reset by reprogramming the device. The original pattern can never be examined once this cell is programmed. The Electronic Signature is always available regardless of the security cell state.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers. Complete programming of the device takes less than a second. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

LATCH-UP PROTECTION

GAL20XV10B devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.

Specifications GAL20XV10B

INPUT BUFFERS

GAL20XV10B devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.
GAL20XV10B input buffers have active pull-ups within their input structure. This pull-up will cause any un-terminated input or I/O to float to a TTL high (logical 1). Lattice recommends that all unused inputs and tri-stated VO pins be connected to another active input, Vcc, or GND. Doing this will tend to improve noise immunity and reduce lcc for the device.

Typical Input Pull-up Characteristic

POWER-UP RESET

Circuitry within the GAL20XV10B provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asynchronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL20XV10B. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.
 Specifications GAL20XV10B
Typical Characteristics

Normalized Tpd vs Vce

Normalized Tpd vs Temp

Normalized Tco vs Vcc

Normalized Tco vs Temp

Normalized Tsu vs Vce

Delta Tpd vs \# of Outputs
Switching

Delta Tco vs \# of Outputs
Switching

Delta Tco vs Output Loading

Normalized Icc vs Vcc

Normalized Icc vs Temp

Specifications GAL20XV10B Typical Characteristics

Normalized Icc vs Freq.

Voh vs loh

Delta lec vs Vin (1 input)

FEATURES

- HIGH PERFORMANCE E2CMOS* TECHNOLOGY
- 12 ns Maximum Propagation Delay
- Fmax $=71.4 \mathrm{MHz}$
- 12 ns Maximum from Clock Input to Data Output
- TTL Compatible 8 mA Outputs
- UltraMOS ${ }^{\text {® }}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ I_{cc}
- ACTIVE PULL-UPS ON ALL PINS
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention

- TEN OUTPUT LOGIC MACROCELLS

- Independent Programmable Clocks
- Independent Asynchronous Reset and Preset
- Registered or Combinatorial with Polarity
- Full Function and Parametric Compatibility with PAL20RA10
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
- 100\% Functional Testability
- APPLICATIONS INCLUDE:
- State Machine Control
- Standard Logic Consolidation
- Multiple Clock Logic Designs
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20RA10 combines a high performance CMOS process with electrically erasable (E^{2}) floating gate technology to provide the highest speed performance available in the PLD market. Lattice's E^{2} CMOS circuitry achieves power levels as low as 75 mA typical ${ }_{c c}$ which represents a substantial savings in power when compared to bipolar counterparts. E technology offers high speed ($<100 \mathrm{~ms}$) erase times providing the ability to reprogram, reconfigure or test the devices quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL20RA10 is a direct parametric compatible CMOS replacement for the PAL20RA10 device.
Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacturing. Therefore, LATTICE guarantees 100% field programmability and functionality of all GAL products. LATTICE also guarantees 100 erase/rewrite cycles and that data retention exceeds 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

[^24]
GAL20RA10 ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering *	Package
12	4	12	100	GAL20RA10-12LP	24-Pin Plastic DIP
			100	GAL20RA10-12LJ	28-Lead PLCC
15	7	15	100	GAL20RA10-15LP	24-Pin Plastic DIP
			100	GAL20RA10-15LJ	28-Lead PLCC
20	10	20	100	GAL20RA10-20LP	24-Pin Plastic DIP
			100	GAL20RA10-20LJ	28-Lead PLCC
30	20	30	100	GAL20RA10-30LP	24-Pin Plastic DIP
			100	GAL20RA10-30LJ	28-Lead PLCC

Industrial Grade Specifications

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Ordering \%	Package
20	10	20	120	GAL20RA10-20LPI	24-Pin Plastic DIP
			120	GAL20RA10-20LI	28-Lead PLCC

PART NUMBER DESCRIPTION

OUTPUT LOGIC MACROCELL (OLMC)

The GAL20RA10 consists of 10 D flip-flops with individual asynchronous programmable reset, preset and clock product terms. The sum of four product terms and an Exclusive-OR provide a programmable polarity D-input to each flip-flop. An output enable term combined with the dedicated output enable pin provides tri-state control of each output. Each OLMC has a flip-flop bypass, allowing any combination of registered or combinatorial outputs.

The GAL20RA10 has 10 dedicated input pins and 10 programmable I/O pins, which can be either inputs, outputs, or dynamic VO. Each pin has a unique path to the logic array. All macrocells have the same type and number of data and control product terms, allowing the user to exchange VO pin assignments without restriction.

INDEPENDENT PROGRAMMABLE CLOCKS

An independent clock control product term is provided for each GAL20RA10 macrocell. Data is clocked into the flip-flop on the active edge of the clock product term. The use of individual clock control product terms allow up to ten separate clocks. These clocks can be derived from any pin or combination of pins and/ or feedback from other flip-flops. Multiple clock sources allow a number of asynchronous register functions to be combined into a single GAL20RA10. This allows the designer to combine discrete logic functions into a single device.

PROGRAMMABLE POLARITY

The polarity of the D-input to each macrocell flip-flop is individually programmable to be active high or low. This is accomplished with a programmable Exclusive-OR gate on the D-input of each flipflop. While any one of the four logic function product terms are active the D-input to the flip-flop will be low if the Exclusive-OR bit is set to zero(0) and high if the Exclusive-OR bit is set to one(1). It should be noted that the programmable polarity only affects the data latched into the flip-flop on the active edge of the clock product term. The reset, preset and preload will alter the state of the flipflop independent of the state of programmable polarity bit. The ability to program the active polarity of the D-inputs can be used to reduce the total number of product terms used, by allowing the DeMorganization of the logic functions. This logic reduction is accomplished by the logic compiler, and does not require the designer to define the polarity.

OUTPUT ENABLE

The output of each GAL20RA10 macrocell is controlled by the "AND'ing" of an independent output enable product term and a common active low output enable pin(13). The output is enabled while the output enable product term is active and the output enable pin(13) is low. This output control structure allows several output enable altematives.

ASYNCHRONOUS RESET AND PRESET

Each GAL20RA10 macrocell has an independent asynchronous reset and preset control product term. The reset and preset product terms are level sensitive, and will hold the flip-flop in the reset or preset state while the product term is active independent of the clock or D-inputs. It should be noted that the reset and preset term alter the state of the flip-flop whose output is inverted by the output buffier. A reset of the flip-flop will result in the output pin becoming a logic high and a preset will result in a logic low.

RESET	PRESET	FUNCTION
0	0	Registered function of data product term
1	0	Reset register to "0" (device pin $="^{\prime \prime}$ ")
0	1	Preset register to "1" (device pin = "0")
1	1	Register-bypass (combinatorial output)

COMBINATORIAL CONTROL
The register in each GAL20RA10 macrocell may be bypassed by asserting both the reset and preset product terms. While both product terms are active the flip-flop is bypassed and the D-input is presented directly to the inverting output buffer. This provides the designer the ability to dynamically configure any macrocell as a combinatorial output, or to fix the macrocell as combinatorial only by forcing both reset and preset product terms active. Some logic compilers will configure macrocells as registered or combinatorial based on the logic equations, others require the designer to force the reset and preset product terms active for combinatorial macrocells.

PARALLEL FLIP-FLOP PRELOAD

The flip-flops of a GAL20RA10 can be reset or preset from the VO pins by applying a logic low to the preload pin (1) and applying the desired logic level to each VO pin. The VO pins must remain valid for the preload setup and hold time. All 10 flip-fiops are reset or preset during preload, independent of all other OLMC inputs.

A logic low on an I/O pin during preload will preset the flip-flop, a logic high will reset the flip-flop. The output of any flip-flop to be preloaded must be disabled. Enabling the output during preload will maintain the current logic state. It should be noted that the preload alters the state of the filp-flop whose output is inverted by the output buffer. A reset of the flip-flop will result in the output pin becoming a logic high and a preset will result in a logic low. Note that the common output enable pin (13) will disable all 10 outputs of the GAL20RA10 when held high.

Specifications GAL20RA10

OUTPUT LOGIC MACROCELL DIAGRAM

OUTPUT LOGIC MACROCELL CONFIGURATION (REGISTERED with POLARITY)

OUTPUT LOGIC MACROCELL CONFIGURATION (COMBINATORIAL with POLARITY)

Specifications GAL20RA10

GAL20RA10 LOGIC DIAGRAM

Specifications GAL20RA10 Commercial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$: \qquad -0.5 to +7 V Input voltage applied -2.5 to $\mathrm{V}_{c c}+1.0 \mathrm{~V}$ Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $+75^{\circ} \mathrm{C}$
Supply voltage ($V_{c c}$)
with Respect to Ground
+4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {P }}$	MaX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{LL}}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IH	Input or VO High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
Vol	Output Low Voltage		-	-	0.5	V
VoH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-3.2	mA
los ${ }^{2}$	Output Short Circuit Current	$V_{\text {cc }}=5 \mathrm{~V} \quad \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	75	100	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathbf{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM ${ }^{*}$	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{10}	VO Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{10}=2.0 \mathrm{~V}$

[^25] Specifications GAL20RA10 Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { COND. } \end{gathered}$	DESCRIPTION	-12		-15		-20		-30		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	12	-	15	-	20	-	30	ns
tco	1	Clock to Output Delay	-	12	-	15	-	20	-	30	ns
tsu	-	Setup Time, Input or Feedback before Clock	4	-	7	-	10	-	20	-	ns
th	-	Hold Time, Input or Feedback after Clock	3	-	3	-	3	-	10	-	ns
fmax^{2}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	62.5	-	45.0	-	33.3	-	20.0	-	MHz
	1	Maximum Clock Frequency without Feedback	71.4	-	50.0	-	41.7	-	25.0	-	MHz
twh	-	Clock Pulse Duration, High	7	-	10	-	12	-	20	-	ns
twl	-	Clock Pulse Duration, Low	7	-	10	-	12	-	20	-	ns
ten / tdis	2,3	Input or I/O to Output Enabled / Disabled	-	12	-	15	-	20	-	30	ns
ten/tdis	2,3	$\overline{\mathrm{OE}}$ to Output Enabled / Disabled	-	9	-	12	-	15	-	20	ns
tar/tap	1	Input or V/O to Asynchronous Reset / Preset	-	12	-	15	-	20	-	30	ns
tarw / tapw	-	Asynchronous Reset / Preset Pulse Duration	12	-	15	-	20	-	20	-	ns
tarr / tapr	-	Asynchronous Reset / Preset Recovery Time	7	-	10	-	12	-	20	-	ns
twp	-	Preload Pulse Duration	12	-	15	-	20	-	30	-	ns
tsp	-	Preload Setup Time	7	-	10	-	15	-	25	-	ns
thp	-	Preload Hold Time	7	-	10	-	15	-	25	-	ns

1) Refer to Switching Test Conditions section.
2) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}_{\mathbf{L}}$
1	470Ω	390Ω	50 pF	
2	Active High	∞	390Ω	50 pF
	Active Low	470Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	470Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

Specifications GAL20RA10 Industrial

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{c} \qquad -0.5 to +7 V
Input voltage applied \qquad -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Industrial Devices:

Ambient Temperature (T_{A}) \qquad -40 to $+85^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {a }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin}^{\text {S }} \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$l \mathrm{loL}=$ MAX. $\quad V_{\text {in }}=V_{\text {IL }}$ or $V_{\text {IH }}$	-	-	0.5	V
VoH	Output High Voltage	$\mathrm{IOH}_{\text {= }} \mathbf{M A X} . \quad \mathrm{Vin}=\mathrm{VIL}_{\text {IL }}$ or VIH	2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \mathrm{VIL}=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	75	120	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{wo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v o}=2.0 \mathrm{~V}$

[^26]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { COND. } \end{gathered}$	DESCRIPTION	-20		UNITS
			MIN.	MAX.	
tpd	1	Input or V/O to Combinatorial Output	-	20	ns
tco	1	Clock to Output Delay	-	20	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	ns
th	-	Hold Time, Input or Feedback after Clock	3	-	ns
fmax^{2}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	33.3	-	MHz
	1	Maximum Clock Frequency without Feedback	41.7	-	MHz
twh	-	Clock Pulse Duration, High	12	-	ns
twl	-	Clock Pulse Duration, Low	12	-	ns
ten/tdis	2,3	Input or I/O to Output Enabled / Disabled	-	20	ns
ten / tdis	2,3	$\overline{\mathrm{OE}}$ to Output Enabled / Disabled	-	15	ns
tar/tap	1	Input or I/O to Asynchronous Reset / Preset	-	20	ns
tarw / tapw	-	Asynchronous Reset / Preset Pulse Duration	20	-	ns
tarr / tapr	-	Asynchronous Reset / Preset Recovery Time	12	-	ns
twp	-	Preload Pulse Duration	20	-	ns
tsp	-	Preload Setup Time	15	-	ns
thp	-	Preload Hold Time	15	-	ns

1) Refer to Switching Test Conditions section.
2) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		$\mathbf{R 1}_{1}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1		470Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	470Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	470Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C L INCLUDES JIG AND PROBE TOTNL CAPACTTANCE

Specifications GAL20RA10

SWITCHING WAVEFORMS

Input or I/O Feedback Asserting Preset

Registered Output

Clock

Asynchronous Preset

Input or I/O Feedback

Device Output

Input or I/O Feedback to Enable / Disable

Clock

> Asynchronous Reset
Device Output

OE to Enable / Disable
$\overline{O E}$
OE to Enablo I Disable
$\overline{P L}$

All I/O Pins

Specifications GAL20RA10

fmax DESCRIPTIONS

fmax with External Feedback $1 /($ tsu + tco $)$
Note: fmax with extemal feedback is calculated from measured tsu and tco.

fmax With No Feedback
Note: fmax with no feedback may be less than $1 /(\mathrm{twh}+\mathrm{twl})$. This is to allow for a clock duty cycle of other than 50%.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Specifications GAL20RA10

ELECTRONIC SIGNATURE

An electronic signature word is provided in every GAL20RA10 device. It contains 64 bits of reprogrammable memory that contains user defined data. Some uses include user ID codes, revision numbers, pattern identification or inventory control codes. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature bits if programmed to any value other then zero(0) will alter the checksum of the device.

SECURITY CELL

A security cell is provided in every GAL20RA10 devices as a deterrent to unauthorized copying of the device pattern. Once programmed, this cell prevents further read access of the device pattern information. This cell can be only be reset by reprogramming the device. The original pattern can never be examined once this cell is programmed. The Electronic Signature is always available regardless of the security cell state.

LATCH-UP PROTECTION

GAL20RA10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

INPUT BUFFERS

GAL20RA10 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance and present a much lighter load to the driving logic than traditional bipolar devices.

GAL20RA10 input buffers have active pull-ups within their input structure. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). Lattice recommends that all unused inputs and tri-stated I/O pins be connected to another active input, Vcc, or GND. Doing this will tend to improve noise immunity and reduce loc for the device.

POWER-UP RESET

Circuitry within the GAL20RA10 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will be high on power-up, because of the inverting buffer on the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown to the right. Because of the asynchronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL20RA10. First, the Vcc rise must be monotonic. Second, the clock input must be at a static TTL level as shown in the diagram during power up. The registers will reset within a maximum of $1 \mu \mathrm{~s}$. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

Normalized Tpd vs Vcc

Normalized Tpd vs Temp

Normalized Tco vs Vcc

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Normalized Tsu vs Temp

Delta Tpd vs \# of Outputs
Switching

Delta Tco vs \# of Outputs
Switching

Delta Tpd vs Output Loading

Delta Tco vs Output Loading

Voh vs loh

Normalized lec vs Freq.

Frequency ($\mathbf{M H z)}$

Specifications GAL20RA10 Typical Characteristics

Normalized lec vs Vce

Delta lcc vs Vin (1 input)

Normalized lec vs Temp

Voh vs loh

Input Clamp (Vik)

GAL6002B

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 15ns Maximum Propagation Delay
- 75MHz Maximum Frequency
- 6.5ns Max. Clock to Output Delay
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\circledR}$ Advanced CMOS Technology

- ACTIVE PULL-UPS ON ALL PINS

- LOW POWER CMOS
- 90mA Typical Icc
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- UNPRECEDENTED FUNCTIONAL DENSITY
- $78 \times 64 \times 36$ FPLA Architecture
- 10 Output Logic Macrocells
- 8 Buried Logic Macrocells
- 20 Input and VO Logic Macrocells
- HIGH-LEVEL DESIGN FLEXIBILITY
- Asynchronous or Synchronous Clocking
- Separate State Register and Input Clock Pins
- Functional Superset of Existing 24-pin PAL* and FPLA Devices
- APPLICATIONS INCLUDE:
- Sequencers
- State Machine Control
- Multiple PLD Device Integration

DESCRIPTION

Having an FPLA architecture, the GAL6002B provides superior flexibility in state-machine design. The GAL6002B offers the highest degree of functional integration, flexibility, and speed currently available in a 24 -pin, 300 -mil package. E ${ }^{2}$ CMOS technology offers high speed ($<100 \mathrm{~ms}$) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.

The GAL6002B has 10 programmable Output Logic Macrocells (OLMC) and 8 programmable Buried Logic Macrocells (BLMC). In addition, there are 10 Input Logic Macrocells (ILMC) and 10 I/O Logic Macrocells (IOLMC). Two clock inputs are provided for independent control of the input and output macrocells.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacturing. As a result, Lattice is able to guarantee 100% field programmability and functionality of all GAL products. Lattice also guarantees 100 erase/rewrite cycles and data retention in excess of 20 years.

FUNCTIONAL BLOCK DIAGRAM

MACROCELL NAMES

ILMC	INPUT LOGIC MACROCELL
IOLMC	I/O LOGIC MACROCELL
BLMC	BURIED LOGIC MACROCELL
OLMC	OUTPUT LOGIC MACROCELL

PIN NAMES

$I_{0}-I_{10}$	INPUT	I/O/Q	BIDIRECTIONAL
ICLK	INPUT CLOCK	$V_{c c}$	POWER (+5V)
OCLK	OUTPUT CLOCK	GND	GROUND

PIN CONFIGURATION

[^27]
Specifications GAL6002B

GAL6002B COMMERCIAL DEVICE ORDERING INFORMATION

Tpd (ns)	Fclk (MHz)	Icc (mA)	Ordering *	Package
15	75	135	GAL6002B-15LP	24-Pin Plastic DIP
		135	GAL6002B-15LJ	28-Lead PLCC
20	60	135	GAL6002B-20LP	24-Pin Plastic DIP
		135	GAL6002B-20LJ	28-Lead PLCC

PART NUMBER DESCRIPTION

Specifications GAL6002B

INPUT LOGIC MACROCELL (ILMC) AND I/O LOGIC MACROCELL (IOLMC)

The GAL6002B features two configurable input sections. The ILMC section corresponds to the dedicated input pins (2-11) and the IOLMC to the I/O pins (14-23). Each input section is individually configurable as asynchronous, latched, or registered inputs. Pin 1 (ICLK) is used as an enable input for latched macrocells or as a clock input for registered macrocells. Individually configurable inputs provide system designers with unparalleled design flexibility. With the GAL6002B, extemal input registers and latches are not necessary.

Both the ILMC and the IOLMC are individually configurable and the ILMC can be configured independently of the IOLMC. The three valid macrocell configurations and its associated fuse numbers are shown in the diagrams on the following pages. Note that these programmable cells are configured by the logic compiler software. The user does not need to manually manipulate these architecture bits.

OUTPUT LOGIC MACROCELL (OLMC) AND BURIED LOGIC MACROCELL (BLMC)

The outputs of the OR array feed two groups of macrocells. One group of eight macrocells is buried; its outputs feed back directly into the AND array rather than to device pins. These cells are called the Buried Logic Macrocells (BLMC), and are useful for building state machines. The second group of macrocells consists of 10 cells whose outputs, in addition to feeding back into the AND array, are available at the device pins. Cells in this group are known as Output Logic Macrocells (OLMC).

The Output and Buried Logic Macrocells are configurable on a macrocell by macrocell basis. Buried and Output Logic Macrocells may be set to one of three configurations: combinational, D-type register with sum term (asynchronous) clock, or D/E-type register. Output macrocells always have I/O capability, with directional control provided by the 10 output enable (OE) product terms. Additionally, the polarity of each OLMC output is selected through the programmable polarity control cell called XORD. Polarity selection for BLMCs is selected through the true and complement forms of their feedbacks to the AND array. Polarity of all E (Enable) sum terms is selected through the XORE programmable cells.

When the output or buried logic macrocell is configured as a D/E type register, the register is clocked from the common OCLK and the register clock enable input is controlled by the associated "E" sum term. This configuration is useful for building counters and state-machines with count hold and state hold functions.

When the macrocell is configured as a D type register with a sum term clock, the register is always enabled and the associated " E "
sum term is routed directly to the clock input. This permits asynchronous programmable clocking, selected on a register-byregister basis.

Registers in both the Output and Buried Logic Macrocells feature a common RESET product term. This active high product term allows the registers to be asynchronously reset. All registers reset to logic zero. With the inverting output buffers, the output pins will reset to logic one.

There are two possible feedback paths from each OLMC. The first path is directly from the OLMC (this feedback is before the output buffer). When the OLMC is used as an output, the second feedback path is through the IOLMC. With this dual feedback arrangement, the OLMC can be permanently buried without losing the use of the associated OLMC pin as an input, or dynamically buried with the use of the output enable product term.

The D/E registers used in this device offer the designer the ultimate in flexibility and utility. The D/E register architecture can emulate RS, JK, and T registers with the same efficiency as a dedicated RS, JK, or T registers.

The three macrocell configurations are shown in the diagrams on the following pages. These programmable cells are also configured by the logic compiler software. The user does not need to manually manipulate these architecture bits.

ILMC AND IOLMC CONFIGURATIONS

ILMC/IOLMC

Generic Logic Block Diagram

Input Macrocell JEDEC Fuse Numbers

INSYNC	INLATCH	ILMC
8218	8219	0
8220	8221	1
8222	8223	2
8224	8225	3
8226	8227	4
8228	8229	5
8230	8231	6
8232	8233	7
8234	8235	8
8236	8237	9

I/O Macrocell JEDEC Fuse Numbers

IOSYNC	IOLATCH	IOLMC
8238	8239	9
8240	8241	8
8242	8243	7
8244	8245	6
8246	8247	5
8248	8249	4
8250	8251	3
8252	8253	2
8254	8255	1
8256	8257	0

Specifications GAL6002B

OLMC AND BLMC CONFIGURATIONS

OLMC/BLMC

Generic Logic Block Diagram

OLMC JEDEC Fuse Numbers

OLMC	CKS	OUTSYNC	XORD	XORE
0	8178	8179	8180	8181
1	8182	8183	8184	8185
2	8186	8187	8188	8189
3	8190	8191	8192	8193
4	8194	8195	8196	8197
5	8198	8199	8200	8201
6	8202	8203	8204	8205
7	8206	8207	8208	8209
8	8210	8211	8212	8213
9	8214	8215	8216	8217

BLMC JEDEC Fuse Numbers

BLMC	CKS	OUTSYNC	XORE
7	8175	8176	8177
6	8172	8173	8174
5	8169	8170	8171
4	8166	8167	8168
3	8163	8164	8165
2	8160	8161	8162
1	8157	8158	8159
0	8154	8155	8156

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $\mathrm{V}_{\text {cc }}$....................................... -0.5 to +7 V
Input voltage applied............................ 2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature-65 to $150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A}) 0 to $75^{\circ} \mathrm{C}$ Supply voltage (V_{cc}) with Respect to Ground \qquad .+4.75 to +5.25 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL.	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}(\mathrm{MAX}$.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin}^{5} \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		-	-	0.5	V
VoH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
$10{ }^{2}$	Output Short Circuit Current	Vcce $=5 \mathrm{~V}$ Vout $=0.5 \mathrm{~V} \mathrm{TA}=25^{\circ} \mathrm{C}$	-30	-	-130	mA
ICC	Operating Power Supply Current	$\mathrm{VIL}_{\mathrm{IL}}=0.5 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$ ftoggle $=15 \mathrm{MHz}$ Outputs Open (no load)	-	90	135	mA

1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{w}	I/O Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

[^28]
Specifications GAL6002B Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND'. } \end{aligned}$	DESCRIPTION	-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd1	1	Combinatorial Input to Combinatorial Output	-	15	-	20	ns
tpd2	1	Feedback or I/O to Combinational Output	-	15	-	20	ns
tpd3	1	Transparent Latch Input to Combinatorial Output	-	18	-	23	ns
tcol	1	Input Latch ICLK to Combinatorial Output Delay	-	20	-	25	ns
tco2	1	Input Reg. ICLK to Combinatorial Output Delay	-	20	-	25	ns
tco3	1	Output D/E Reg. OCLK to Output Delay	-	6.5	-	8	ns
tco4	1	Output D Reg. Sum Term CLK to Output Delay	-	18	-	20	ns
tcf1 ${ }^{2}$	-	Output D/E Reg. OCLK to Buried Feedback Delay	-	3.6	-	7	ns
tct2 ${ }^{2}$	-	Output D Reg. STCLK to Buried Feedback Delay	-	10.1	-	13	ns
tsu1	-	Setup Time, Input before Input Latch ICLK	1.5	-	2	-	ns
tsu2	-	Setup Time, Input before Input Reg. ICLK	1.5	-	2	-	ns
tsu3	-	Setup Time, Input or Feedback before D/E Reg. OCLK	11.5	-	13	-	ns
tsu4	-	Setup Time, Input or Feedback before D Reg. Sum Term CLK	5	-	7	-	ns
tsu5	-	Setup Time, Input Reg. ICLK before D/E Reg. OCLK	15	-	20	-	ns
tsu6	-	Setup Time, Input Reg. ICLK before D Reg. Sum Term CLK	7	-	9	-	ns
th1	-	Hold Time, Input after Input Latch ICLK	3	-	4	-	ns
th2	-	Hold Time, Input after Input Reg. ICLK	3	-	4	-	ns
th3	-	Hold Time, Input or Feedback after D/E Reg. OCLK	0	-	0	-	ns
th4	-	Hold Time, Input or Feedback after D Reg. Sum Term CLK	4	-	6	-	ns
fmax^{13}	-	Max. Clock Frequency w/External Feedback, 1/(tsu3+tco3)	55.5	-	47.6	-	MHz
$\mathrm{fmax}^{\text {3 }}$	-	Max. Clock Frequency w/External Feedback, 1/(tsu4+tco4)	43.4	-	37	-	MHz
$f_{\text {max }}{ }^{3}$	-	Max. Clock Frequency w/Internal Feedback, 1/(tsu3+tcf1)	66	-	50	-	MHz
f max ${ }^{3}$	-	Max. Clock Frequency w/Internal Feedback, 1/(tsu4+tct2)	66	-	50	-	MHz
fmax^{3}	-	Max. Clock Frequency w/No Feedback, OCLK	75	-	60	-	MHz
$f_{\text {max }}{ }^{3}$	-	Max. Clock Frequency w/No Feedback, STCLK	70	-	60	-	MHz
twh1	-	ICLK Puise Duration, High	6	-	7	-	ns
twh2	-	OCLK Pulse Duration, High	6	-	7	-	ns
twh3	-	STCLK Pulse Duration, High	7	-	8	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Desciption section.
3) Refer to fmax Desciption section.

Specifications GAL6002B
Commercial

AC SWITCHING CHARACTERISTICS (CONT.)

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND'. } \end{aligned}$	DESCRIPTION	-15		-20		UNITS
			MIN.	MAX.	MIN.	MAX.	
twl1	-	ICLK Pulse Duration, Low	6	-	7	-	ns
twl2	-	OCLK Pulse Duration, Low	6	-	7	-	ns
twl3	-	STCLK Pulse Duration, Low	7	-	8	-	ns
tarw	-	Reset Pulse Duration	12	-	15	-	ns
ten	2	Input or I/O to Output Enabled	-	15	-	20	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	20	ns
tar	1	Input or I/O to Asynchronous Reg. Reset	-	16	-	20	ns
tarr1	-	Asynchronous Reset to OCLK Recovery Time	11	-	14	-	ns
tarr2	-	Asynchronous Reset to Sum Term CLK Recovery Time	4	-	6	-	ns

1) Refer to Switching Test Conditions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5V
Output Load	See Figure

3-state levels are ineasured 0.5V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	CL
1		300Ω	390Ω	50 pF
	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	300Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

Specifications GAL6002B

SWITCHING WAVEFORMS

Combinatorial Output

Registered Output (Sum Term CLK)

INPUT or I/O FEEDBACK

OUTPUT

Input or VO to Output Enable/Disable

Clock Width

Registered Input

INPUT or I/O FEEDBACK

OCLK

REGISTERED OUTPUT

Registered Output (OCLK)

Asynchronous Reset

fmax DESCRIPTIONS

Note: fmax with external feedback is calculated from measured
tsu and tco.

Note: fmax with no feedback may be less than $1 /(\mathrm{wh}+\mathrm{twl})$. This is to allow for a clock duty cycle of other than 50%.

fmax with External Feedback 1/(tsu+tco)

fmax With No Feedback

Specifications GAL6002B

fmax with Internal Feedback 1 (tsu+tcf)

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax $w /$ internal feedback ($\mathbf{t c f}=1 / / \mathrm{max}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

ARRAY DESCRIPTION

The GAL6002B contains two E^{2} reprogrammable arrays. The first is an AND array and the second is an OR array. These arrays are described in detail below.

AND ARRAY

The AND array is organized as 78 inputs by 75 product term outputs. The 10 ILMCs, 10 IOLMCs, 8 BLMC feedbacks, 10 OLMC feedbacks, and ICLK comprise the 39 inputs to this array (each available in true and complement forms). 64 product terms serve as inputs to the OR array. The RESET product term generates the RESET signal described in the Output and Buried Logic Macrocells section. There are 10 output enable product terms which allow device I/O pins to be bi-directional or tri-state.

OR ARRAY

The OR array is organized as 64 inputs by 36 sum term outputs. 64 product terms from the AND array serve as the inputs to the OR array. Of the 36 sum term outputs, 18 are data (" D ") terms and 18 are enable/clock (" E ") terms. These terms feed into the 10 OLMCs and 8 BLMCs, one "D" term and one "E" term to each.

The programmable OR array offers unparalleled versatility in product term usage. This programmability allows from 1 to 64 product terms to be connected to a single sum term. A programmable OR array is more flexible than a fixed, shared, or variable product term architecture.

ELECTRONIC SIGNATURE

An electronic signature is provided with every GAL6002B device. It contains 72 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter the checksum.

SECURITY CELL

A security cell is provided with every GAL6002B device as a deterrent to unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the AND array. This cell can be erased only during a bulk erase cycle, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

DEVICE PROGRAMMING

GAL devices are programmed using a Lattice-approved Logic Programmer, available from a number of manufacturers. Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle.

REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified, not just those required during normal operations. This is because certain events may occur during system operation that cause the logic to be in an illegal state (power-up, line voltage glitches, brown-out, etc.). To test a design for proper treatment of these conditions, a method must be provided to break the feedback paths and force any desired state (i.e., illegal) into the registers. Then the machine can be sequenced and the outputs tested for correct next state generation.

All of the registers in the GAL6002B can be preloaded, including the ILMC, IOLMC, OLMC, and BLMC registers. In addition, the contents of the state and output registers can be examined in a special diagnostics mode. Programming hardware takes care of all preload timing and voltage requirements.

LATCH-UP PROTECTION

GAL6002B devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pull-ups instead of the traditional p-channel pull-ups to eliminate any possibility of SCR induced latching.

INPUT BUFFERS

GAL6002B devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices.

GAL6002B input buffers have active pull-ups within their input structure. This pull-up will cause any un-terminated input or I/O to float to a TTL high (logical 1). Lattice recommends that all unused inputs and tri-stated I/O pins be connected to another active input, Vcc, or GND. Doing this will tend to improve noise immunity and reduce Icc for the device.

Typical Input Pull-up Characteristic

POWER-UP RESET

Circuitry within the GAL6002B provides a reset signal to all registers during power-up. All intemal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the
asynchronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL6002B. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

DIFFERENTIAL PRODUCT TERM SWITCHING (DPTS) APPLICATIONS

The number of Differential Product Term Switching (DPTS) for a given design is calculated by subtracting the total number of product terms that are switching from a Logical HI to a Logical LO from those switching from a Logical LO to a Logical HI within a 5 ns period. After subtracting take the absolute value.

$$
\text { DPTS }=\mid(\text { P-Terms })_{L H}-(P-\text { Terms })_{H L} \mid
$$

DPTS restricts the number of product terms that can be switched simultaneously - there is no limit on the number of product terms that can be used.

The majority of designs fall below 15 DPTS, with the upper limit being approximately 25 DPTS. Lattice guarantees and tests the GAL6002B for functionality at DPTS ≤ 30.

A software utility is available from Lattice Applications Engineering that will perform this calculation on any GAL6002B JEDEC file. This program, DPTS, and additional information may be obtained from your local Lattice representative or by contacting Lattice Applications Engineering Dept. (Tel: 503-681-0118 or 1-800FASTGAL; FAX: 681-3037).

Normalized Tpd vs Vcc

Normalized Tpd vs Temp

Normalized Tco vs Vcc

Normalized Tco vs Temp

Normalized Tsu vs Vcc

Delta Tpd vs Output Loading

Delta Tco vs \# of Outputs Switching

Delta Tco vs Output Loading

Specifications GAL6002B Typical Characteristics

Vol vs lol

Normalized lce vs Vcc

Delta lec vs Vin (1 input)

Voh vs loh

Normalized lcc vs Temp

Input Clamp (Vik)

Voh vs loh

Normalized Icc vs Freq.
 GAL6001

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 30ns Maximum Propagation Delay
- 27 MHz Maximum Frequency
- 12ns Max. Clock to Output Delay
- TTL Compatible 16 mA Outputs
- UltraMOS ${ }^{\star}$ Advanced CMOS Technology
- LOW POWER CMOS
- 90mA Typical Icc
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- UNPRECEDENTED FUNCTIONAL DENSITY
- $78 \times 64 \times 36$ FPLA Architecture
- 10 Output Logic Macrocells
- 8 Buried Logic Macrocells
- 20 Input and VO Logic Macrocells
- HIGH-LEVEL DESIGN FLEXIBILITY
- Asynchronous or Synchronous Clocking
- Separate State Register and Input Clock Pins
- Functional Superset of Existing 24-pin PAL* and FPLA Devices
- APPLICATIONS INCLUDE:
- Sequencers
- State Machine Control
- Multiple PLD Device Integration

DESCRIPTION

Using a high performance $\mathrm{E}^{2} \mathrm{CMOS}$ technology, Lattice Semiconductor has produced a next-generation programmable logic device, the GAL6001. Having an FPLA architecture, known for its superior flexibility in state-machine design, the GAL6001 offers a high degree of functional integration and flexibility in a $24-$ pin, 300-mil package.
The GAL6001 has 10 programmable Output Logic Macrocells (OLMC) and 8 programmable Buried Logic Macrocells (BLMC). In addition, there are 10 Input Logic Macrocells (ILMC) and 10 I/O Logic Macrocells (IOLMC). Two clock inputs are provided for independent control of the input and output macrocells.
Advanced features that simplify programming and reduce test time, coupled with E^{2} CMOS reprogrammable cells, enable 100\% AC, DC, programmability, and functionality testing of each GAL6001 during manufacture. This allows Lattice to guarantee 100% performance to specifications. In addition, data retention of 20 years and a minimum of 100 erase/write cycles are guaranteed.

FUNCTIONAL BLOCK DIAGRAM

MACROCELL NAMES

ILMC	INPUT LOGIC MACROCELL
IOLMC	I/O LOGIC MACROCELL
BLMC	BURIED LOGIC MACROCELL
OLMC	OUTPUT LOGIC MACROCELL

PIN NAMES

$I_{0}-I_{10}$	INPUT	I/O/Q	BIDIRECTIONAL
ICLK	INPUT CLOCK	$V_{\text {cc }}$	POWER (+5)
OCLK	OUTPUT CLOCK	GND	GROUND

PIN CONFIGURATION

DIP

[^29]
Specifications GAL6001

GAL6001 ORDERING INFORMATION

Commercial Grade Specifications

Tpd (ns)	Fclk (MHz)	Icc (mA)	Orcering *	Package
30	27	150	GAL6001-30P	24-Pin Plastic DIP
		150	GAL6001-30J	28-Lead PLCC
35	22.9	150	GAL6001-35P	24-Pin Plastic DIP
		150	GAL6001-35J	28-Lead PLCC

PART NUMBER DESCRIPTION

Specifications GAL6001

INPUT LOGIC MACROCELL (ILMC) AND I/O LOGIC MACROCELL (IOLMC)

The GAL6001 features two configurable input sections. The ILMC section corresponds to the dedicated input pins (2-11) and the IOLMC to the I/O pins (14-23). Each input section is configurable as a block for asynchronous, latched, or registered inputs. Pin 1 (ICLK) is used as an enable input for latched macrocells or as a clock input for registered macrocells. Configurable input blocks provide system desigriers with unparalleled design flexibility. With
the GAL6001, extemal registers and latches are not necessary.
Both the ILMC and the IOLMC are block configurable. However, the ILMC can be configured independently of the IOLMC. The three valid macrocell configurations are shown in the macrocell equivalent diagrams on the following pages.

OUTPUT LOGIC MACROCELL (OLMC) AND BURIED LOGIC MACROCELL (BLMC)

The outputs of the OR array feed two groups of macrocells. One group of eight macrocells is buried; its outputs feed back directly into the AND array rather than to device pins. These cells are called the Buried Logic Macrocells (BLMC), and are useful for building state machines. The second group of macrocells consists of 10 cells whose outputs, in addition to feeding back into the AND array, are available at the device pins. Cells in this group are known as Output Logic Macrocells (OLMC).

The Output and Buried Logic Macrocells are configurable on a macrocell by macrocell basis. Buried and Output Logic Macrocells may be set to one of three configurations: combinational, "D-type register with sum term (asynchronous) clock", or "D/E-type register." Output macrocells always have I/O capability, with directional control provided by the 10 output enable (OE) product terms. Additionally, the polarity of each OLMC output is selected through the "D" XOR. Polarity selection is available for BLMCs, since both the true and complemented forms of their outputs are available in the AND array. Polarity of all "E" sum terms is selected through the " E " XOR.

When the macrocell is configured as a " D / E type registered", the register is clocked from the common OCLK and the register clock enable input is controlled by the associated " E " sum term. This configuration is useful for building counters and state-machines with state hold functions.

When the macrocell is configured as a " D type register with a sum term clock", the register is always enabled and its " E " sum term is routed directly to the clock input. This permits asynchronous programmable clocking, selected on a register-by-register basis.

Registers in both the Output and Buried Logic Macrocells feature a common RESET product term. This active high product term allows the registers to be asynchronously reset. Registers are reset to a logic zero. If connected to an output pin, a logic one will occur because of the inverting output buffer.

There are two possible feedback paths from each OLMC. The first path is directly from the OLMC (this feedback is before the output buffer and always present). When the OLMC is used as an output, the second feedback path is through the IOLMC. With this dual feedback arrangement, the OLMC can be permanently buried (the associated OLMC pin is an input), or dynamically buried with the use of the output enable product term.

The D/E registers used in this device offer the designer the ultimate in flexibility and utility. The D/E register architecture can emulate RS-, JK-, and T-type registers with the same efficiency as a dedicated RS-, JK-, or T-register.

The three macrocell configurations are shown in the macrocell equivalent diagrams on the following pages.

Specifications GAL6001

ILMC AND IOLMC CONFIGURATIONS

ILMC/IOLMC
Generic Logic Block Diagram

ILMC (Input Logic Macrocell) JEDEC Fuse Numbers

ISYN	LATCH
8218	8219

IOLMC (VO Logic Macrocell) JEDEC Fuse Numbers

ISYN	LATCH
8220	8221

Specifications GAL6001

ILMC AND IOLMC CONFIGURATIONS

Asynchronous Input
Latched Input

ISYN	LATCH
1	1

ISYN	LATCH
0	0

Registered Input

ISYN	LATCH
0	1

Specifications GAL6001

OLMC AND BLMC CONFIGURATIONS

OLMC/BLMC

Generic Logic Block Diagram

OLMC (Output Logic Macrocell)
JEDEC Fuse Numbers

OLMC	OCLK	OSYN	XORD	XORE
0	8178	8179	8180	8181
1	8182	8183	8184	8185
2	8186	8187	8188	8189
3	8190	8191	8192	8193
4	8194	8195	8196	8197
5	8198	8199	8200	8201
6	8202	8203	8204	8205
7	8206	8207	8208	8209
8	8210	8211	8212	8213
9	8214	8215	8216	8217

BLMC (Buried Logic Macrocell) JEDEC Fuse Numbers

BLMC	OCLK	OSYN	XORE
7	8175	8176	8177
6	8172	8173	8174
5	8169	8170	8171
4	8166	8167	8168
3	8163	8164	8165
2	8160	8161	8162
1	8157	8158	8159
0	8154	8155	8156

Specifications GAL6001

OLMC AND BLMC CONFIGURATIONS

D/E Type Registered

Combinatorial

OSYN(i)	OCKS(i)
1	0

D Type Register with Sum Term
Asynchronous Clock

OSYN(i)	OCKS (i)
0	0

Specifications GAL6001

GAL6001 LOGIC DIAGRAM

GAL6001 LOGIC DIAGRAM (Cont.)

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$ \qquad -0.5 to +7 V Input voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied \qquad . -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Commercial Devices:

Ambient Temperature (T_{A})
Supply voltage (V_{cc})
with Respect to Ground \qquad

DC ELECTRICAL CHARACTERISTICS
Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{2}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$ (MAX.)	-	-	-10	$\mu \mathrm{A}$
l H	Input or I/O High Leakage Current	$\mathrm{V}_{\mathrm{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o L}=$ MAX. $V_{\text {in }}=V_{\text {IL }}$ or $V_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	16	mA
IOH	High Level Output Current		-	-	-3.2	mA
lOS'	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$	-30	-	-130	mA
Icc	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \text { ftoggle }=15 \mathrm{MHz}$ Outputs Open (no load)	-	90	150	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100\% tested.
2) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathbf{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v 0}=2.0 \mathrm{~V}$

[^30] Specifications GAL6001 Commercial

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND'. } \end{aligned}$	DESCRIPTION	-30		-35		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd1	1	Combinatorial Input to Combinatorial Output	-	30	-	35	ns
tpd2	1	Feedback or I/O to Combinatorial Output	-	30	-	35	ns
tpd3	1	Transparent Latch Input to Combinatorial Output	-	35	-	40	ns
tcol	1	Input Latch ICLK to Combinatorial Output Delay	-	35	-	40	ns
tco2	1	Input Reg. ICLK to Combinatorial Output Delay	-	35	-	40	ns
tco3	1	Output D/E Reg. OCLK to Output Delay	-	12	-	13.5	ns
tco4	1	Output D Reg. Sum Term CLK to Output Delay	-	35	-	40	ns
tsu1	-	Setup Time, Input before Input Latch ICLK	2.5	-	3.5	-	ns
tsu2	-	Setup Time, Input before Input Reg. ICLK	2.5	-	3.5	-	ns
tsu3	-	Setup Time, Input or Feedback before D/E Reg. OCLK	25	-	30	-	ns
tsu4	-	Setup Time, Input or Feedback before D Reg. Sum Term CLK	7.5	-	10	-	ns
tsu5	-	Setup Time, Input Reg. ICLK before D/E Reg. OCLK	30	-	35	-	ns
tsu6	-	Setup Time, Input Reg. ICLK before D Reg. Sum Term CLK	15	-	17	-	ns
th1	-	Hold Time, Input after Input Latch ICLK	5	-	5	-	ns
th2	-	Hold Time, Input after Input Reg. ICLK	5	-	5	-	ns
th3	-	Hold Time, Input or Feedback after D/E Reg. OCLK	-5	-	-5	-	ns
th4	-	Hold Time, Input or Feedback after D Reg. Sum Term CLK	10	-	12.5	-	ns
$f_{\text {max }}$	-	Maximum Clock Frequency, OCLK	27	-	22.9	-	MHz
twh1	-	ICLK or OCLK Pulse Duration, High	10	-	10	-	ns
twh2	-	Sum Term CLK Pulse Duration, High	15	-	15	-	ns
twl1	-	ICLK or OCLK Pulse Duration, Low	10	-	10	-	ns
twl2	-	Sum Term CLK P Pulse Duration, Low	15	-	15	-	ns
tanw	-	Reset Pulse Duration	15	-	15	-	ns
ten	2	Input or I/O to Output Enabled	-	25	-	30	ns
tdis	3	Input or I/O to Output Disabled	-	25	-	30	ns
tar	1	Input or I/O to Asynchronous Reg. Reset	-	35	-	35	ns
tarr1	-	Asynchronous Reset to OCLK Recovery Time	20	-	20	-	ns
tarr2	-	Asynchronous Reset to Sum Term CLK Recovery Time	10	-	10	-	ns

[^31]
Specifications GAL6001

SWITCHING WAVEFORMS

Registered Output（Sum Term CLK）

Input or VO to Output Enable／Disable

ICLK or

 OCLKSum Term CLK

Clock Width
Registered Output（OCLK）

Asynchronous Reset

Specifications GAL6001

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R 2}_{\mathbf{2}}$	$\mathbf{C L}^{\prime}$
1		300Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	300Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	300Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

Specifications GAL6001

The GAL6001 contains two E^{2} reprogrammable arrays. The first is an AND array and the second is an OR array. These arrays are described in detail below.

AND ARRAY

The AND array is organized as 78 inputs by 75 product term outputs. The 10 ILMCs, 10 IOLMCs, 8 BLMC feedbacks, 10 OLMC feedbacks, and ICLK comprise the 39 inputs to this array (each available in true and complement forms). 64 product terms serve as inputs to the OR array. The RESET product term serve as inputs to the OR array. The RESET product term
generates the RESET signal described in the Output and Buried Logic Macrocells section. There are 10 output enable product
terms which allow device pins $14-23$ to be bi-directional or tri-state. Logic Macrocells section. There are 10 output enable product
terms which allow device pins $14-23$ to be bi-directional or tri-state.

OR ARRAY

The OR array is organized as 64 inputs by 36 sum term outputs. 64 product terms from the AND array serve as the inputs to the OR array. Of the 36 sum term outputs, 18 are data ("D") terms and 18 are enable/clock (" E ") terms. These terms feed into the 10 OLMCs and 8 BLMCs, one " D " term and one " E " term to each.

The programmable OR array offers unparalleled versatility in product term usage. This programmability allows from 1 to 64 product terms to be connected to a single sum term. A programmable OR array is more flexible than a fixed, shared, or variable product term architecture.

ELECTRONIC SIGNATURE WORD

An electronic signature (ES) is provided with every GAL6001 device. It contains 72 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell.

NOTE: The ES is included in checksum calculations. Changing the ES will alter the checksum.

SECURITY CELL

A security cell is provided with every GAL6001 device as a deterrent to unauthorized copying of the array patterns. Once terrent to unauthorized copying of the array patterns. Once
programmed, this cell prevents further read access to the AND and OR arrays. This cell can be erased only during a bulk erase and OR arrays. This cell can be erased only during a bulk erase
cycle, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell.

ARRAY DESCRIPTION

reme

BULK ERASE

Before writing a new pattem into a previously programmed part, the old pattern must first be erased. This erasure is done automatically by the programming hardware as part of the programming cycle and takes only 50 milliseconds.

REGISTER PRELOAD

When testing state machine designs, all possible states and state transitions must be verified, not just those required during normal operations. This is because in system operation, certain events may occur that cause the logic to assume an illegal state: powerup, brown out, line voltage glitches, etc. To test a design for proper treatment of these conditions, a method must be provided to break the feedback paths and force any desired state (i.e., ilegal) into the registers. Then the machine can be sequenced and the outputs tested for correct next state generation.

All of the registers in the GAL6001 can be preloaded, including the ILMC, IOLMC, OLMC, and BLMC registers. In addition, the contents of the state and output registers can be examined in a special diagnostics mode. Programming hardware takes care of all preload timing and voltage requirements.

LATCH-UP PROTECTION

GAL6001 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pull-ups to eliminate any possibility of SCR induced latching.

INPUT BUFFERS

GAL devices are designed with TTL level compatible input buffers. These buffers, with their characteristically high impedance, load driving logic much less than traditional bipolar devices. This allows for a greater fan out from the driving logic.

GAL6001 devices do not possess active pull-ups within their input structures. As a result, Lattice recommends that all unused inputs and tri-stated I/O pins be connected to another active input, V_{cc}, or GND. Doing this will tend to improve noise immunity and reduce $I_{c c}$ for the device.

Specifications GAL6001

POWER-UP RESET

Circuitry within the GAL6001 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, $1 \mu \mathrm{~s}$ MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asynchronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL6001. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.

DIFFERENTIAL PRODUCT TERM SWITCHING (DPTS) APPLICATIONS

The number of Differential Product Term Switching (DPTS) for a given design is calculated by subtracting the total number of product terms that are switching from a Logical HI to a Logical LO from those switching from a Logical LO to a Logical HI within a 5 ns period. After subtracting take the absolute value.

$$
\text { DPTS }=\mid(P-\text { Terms })_{\mathrm{LH}}-(P-\text { Terms })_{\mathrm{HL}} \mid
$$

DPTS restricts the number of product terms that can be switched
simultaneously - there is no limit on the number of product terms that can be used.

A software utility is available from Lattice Applications Engineering that will perform this calculation on any GAL6001 JEDEC file. This program, DPTS, and additional information may be obtained from your local Lattice representative or by contacting Lattice Applications Engineering Dept. (Tel: 503-681-0118 or 800FASTGAL; FAX: 681-3037).
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Military Program Overview 3-1
Military Ordering Information 3-3
GAL16V8A/B Military Datasheet 3-5
GAL20V8A Military Datasheet 3-13
GAL22V10/B Military Datasheet 3-19
GAL26CV12 Military Datasheet 3-27
GAL20RA10 Military Datasheet 3-33
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

Military Program Overview

CORPORATE PHILOSOPHY

Lattice Semiconductor is committed to leadership in performance and quality. Our family of military GAL devices is consistent with this philosophy. Lattice manufactures all devices under strict Quality Assurance guidelines. All grades, Commercial through Military 883, are monitored under a quality program conformant to MIL-M-38510 Appendix A with inspections conformant to MIL-I-45208.

Complete reviews of Lattice's procedures, documentation and technical data are welcomed and can be arranged at the Company's facility near Portland, Oregon.

QUALITY AND TESTABILITY

Lattice Semiconductor processes its GAL devices to strict conformance with MIL-STD-883 Class B. In conjunction with the military flow, the inherent testability of $\mathrm{E}^{2} \mathrm{CMOS}$ technology allows Lattice to achieve a quality level superior to other PLD technologies.

All GAL devices are patterned and tested dozens of times throughout the manufacturing flow. Every GAL device is tested under worst case configurations to assure customers achieve 100% yields. Tests are performed using the same E^{2} cell array that will be used for the final patterning of the devices. This 100\% "actual test" philosophy does away with the correlated and simulated testing that is necessary with bipolar and UV (EPROM) based PLD devices.

RELIABILITY

Lattice Semiconductor performs extensive reliability testing prior to product release. This testing continues in the form of Reliability Monitors that are run on an ongoing basis to assure continued process integrity. A formal, written report of these test results is updated regularly and can be obtained from your local Lattice Sales Representative.

The reliability testing performed includes extensive analysis of fundamental design and process integrity. The reprogrammable nature of GAL devices allows for an inherently more thorough reliability evaluation than other programmable alternatives.

MIL-STD-883 COMPLIANCE

MIL-STD-883 provides a uniform and precise method for environmental, mechanical and electrical testing which ensures the suitability of microelectronic devices for use in military and aerospace systems. Table I summarizes the MIL-STD-883, Class B flow. Table Il summarizes the conformance testing required by MIL-STD-883, Method 5005, for quality conformance testing of Lattice military microcircuits.

MIL-M-38510

MIL-M-38510, when used in conjunction with MIL-STD883, defines design, packaging, material, marking, sampling, qualification and quality system requirements for military devices.

GROUP DATA

Group A and B data is taken on every inspection lot per MIL-STD-883, Class B requirements. This data, along with Generic Group C and D data can be supplied, upon written request, with your device shipment. Your Lattice sales representative can advise you of charges and leadtime necessary for providing this data.

STANDARD MILITARY DRAWINGS

Lattice actively supports the DESC Standard Military Drawing (SMD) Program. The SMD Program offers a cost effective alternative to source control drawings and provides standardized MIL-STD-883 product specifications to simplify military procurement.

Lattice recognizes the growing demand for SMD qualified devices, and in response, all new 883 product released by Lattice will be submitted to DESC for SMD qualification. Customers may facilitate this process by submitting a "Nonstandard Part Approval Request", DD Form 2052, to DESC. This form allows you to recommend to DESC the qualification of Lattice devices to SMD status.

A list of currently available SMD qualified devices is provided (see Military Ordering Information). Contact your local Lattice sales representative for the latest status of SMD qualifications in process with DESC.

Military Program Overview

MILITARY SCREENING FLOW

(TABLE I)

Screen	Method	Requirement
Internal Visual	2010 Cond. B	100\%
Temp. Cycling	1010 Cond. C	100\%
Constant Acceleration	2001 Cond. E	100\%
Hermeticity Fine Gross	1014 Cond. A or B Cond. C	100\%
Endurance Test	1033	100\%
Retention Test	$\begin{aligned} & \text { Unbiased Bake } \\ & 24 \text { HRS. } \\ & \text { TA }=180^{\circ} \mathrm{C} \end{aligned}$	100\%
Pre Burn-In Electrical	$\begin{aligned} & \hline \text { Applicable Device } \\ & \text { Specification } \\ & \text { Tc }=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	100\%
Dynamic Burn-In	1015 Cond. D	100\%
Post Burn-In Electrical	Applicable Device Specification $\mathrm{Tc}=25^{\circ} \mathrm{C}$ PDA $=5 \%$	100\%
Final Electrical Test	Applicable Device Specification $\mathrm{Tc}=125^{\circ} \mathrm{C}$	100\%
Final Electrical Test	Applicable Device Specification $\mathrm{Tc}=-55^{\circ} \mathrm{C}$	100\%
Final Electrical Test	Applicable Device Specification $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$	100\%
External Visual	2009	100\%
QCI Sample Selection	MIL-M-38510 Sec. 4.5 and MIL-STD-883 Sec. 1.2	Sample

MILITARY QUALITY CONFORMANCE INSPECTIONS (TABLE II)

Subgroup	Method	Sample
GROUP A: Electrical Tests		
Subgroups 1, 7, 9 Electrical Test Subgroups 2, 8A, 10 Electrical Test Subgroups 3, 8B, 11 Electrical Test	Applicable Device Spec. $25^{\circ} \mathrm{C}$ Applicable Device Spec. Max. Operating Temp. Applicable Device Spec. Min. Operating Temp.	$\begin{aligned} & \text { LTPD }=2 \\ & \text { LTPD }=2 \\ & \text { LTPD }=2 \end{aligned}$
GROUP B: Mechanical Tests		
Subgroup 2 Solvent Resistance Subgroup 3 Solderability Subgroup 5 Bond Strength	2015 2003 2011	$\begin{gathered} 4(0) \\ \text { LTPD }=10 \\ \text { LTPD }=15 \end{gathered}$
GROUP C: Chip Integrity Tests		
Subgroup 1 Dynamic Life Test End Point Electrical Subgroup 2 Unbiased Retention End Point Electrical	1005, 1,000 HRS. $125^{\circ} \mathrm{C}$ Applicable Device Spec. 1,000 HRS. $150^{\circ} \mathrm{C}$ Applicable Device Spec.	LTPD $=5$ LTPD $=5$
GROUP D: Environmental Integrity		
$\begin{aligned} & \text { Subgroup } 1 \\ & \text { Physical Dimensions } \end{aligned}$	2016	LTPD $=15$
Subgroup 2 Lead Integrity Hermeticity	$\begin{aligned} & \text { 2004, Cond. B } \\ & 1014 \end{aligned}$	LTPD $=5$
Subgroup 3		LTPD $=15$
Thermal Shock	1011, Cond. B, 15 Cycles	
Temp. Cycle	1010, Cond. C, 100 Cycles	
Moisture Resistance	1004	
Hermeticity	1014	
Visual Examination	1004, 1010	
Endpoint Electrical	Applicable Device Spec.	
Subgroup 4		LTPD $=15$
Mechanical Shock	2002, Cond. B	
Vibration	2007, Cond. A	
Constant Acceleration	2001, Cond. E	
Hermeticity	1014	
Visual Examination	1010, 1011	
Endpoint Electrical	Applicable Device Spec.	
Subgroup 5		LTPD $=15$
Salt Atmosphere	1009, Cond. A	
Hermeticity	1014	
Visual Examination	1009	
Subgroup 6		3(0)
Internal Water Vapor	1018 < 5,000 PPM, $100^{\circ} \mathrm{C}$	
Subgroup 7		LTPD $=15$
Lead Finish Adhesion	2025	
Subgroup 8		5(0)
Lid Torque	2024	

Military Ordering Information

Lattice offers the most comprehensive line of military E 2 CMOS Programmable Logic Devices. Lattice recognizes the trend in military device procurementtowards usingSMD compliant devices and encourages customers
to use the SMD number where it exists, when ordering parts. Listed below are Lattice's military qualified devices and their corresponding SMD numbers. Please contact your local Lattice representative for the latest product listing.

Military Products Selector Guide

DEVICE TYPE	Tpd (ns)	$\begin{aligned} & \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	PACKAGE	LATTICE PART \#	SMD \#
GAL16V8	10	130	20-Pin CERDIP	GAL16V8B-10LD/883	5962-8983904RA
		130	20-Pin LCC	GAL16V8B-10LR/883	5962-89839042A
	15	130	20-Pin CERDIP	GAL16V8A-15LD/883	5962-8983903RA
		130	20-Pin LCC	GAL16V8A-15LR/883	5962-89839032A
	20	65	20-Pin CERDIP	GAL16V8A-200D/883	5962-8983906RA
		65	20-Pin LCC	GAL16V8A-20QR/883	5962-89839062A
		130	20-Pin CERDIP	GAL16V8A-20LD/883	5962-8983902RA
		130	20-Pin LCC	GAL16V8A-20LR/883	5962-89839022A
	25	65	20-Pin CERDIP	GAL16V8A-25QD/883	5962-8983905RA
		65	20-Pin LCC	GAL16V8A-25QR/883	5962-89839052A
	30	130	20-Pin CERDIP	GAL16V8A-30LD/883	5962-8983901RA
		130	20-Pin LCC	GAL16V8A-30LR/883	5962-89839012A
GAL20V8	15	130	24-Pin CERDIP	GAL20V8A-15LD/883	5962-8984003LA
		130	28-Pin LCC	GAL20V8A-15LR/883	5962-89840033A
	20	65	24-Pin CERDIP	GAL20V8A-20QD/883	Contact Factory
		65	28-Pin LCC	GAL20V8A-20QR/883	Contact Factory
		130	24-Pin CERDIP	GAL20V8A-20LD/883	5962-8984002LA
		130	28-Pin LCC	GAL20V8A-20LR/883	5962-89840023A
	25	65	24-Pin CERDIP	GAL20V8A-25QD/883	Contact Factory
		65	28-Pin LCC	GAL20V8A-25QR/883	Contact Factory
	30	130	24-Pin CERDIP	GAL20V8A-30LD/883	5962-8984001LA
		130	28-Pin LCC	GAL20V8A-30LR/883	5962-89840013A
GAL22V10	15	150	24-Pin CERDIP	GAL22V10B-15LD/883	5962-8984103LA
		150	28-Pin LCC	GAL22V10B-15LP/883	5962-89841033A
	20	150	24-Pin CERDIP	GAL22V10-20LD/883	5962-8984102LA
		150	28-Pin LCC	GAL22V10-20LR/883	5962-89841023A
	25	150	24-Pin CERDIP	GAL22V10-25LD/883	5962-8984104LA
		150	28-Pin LCC	GAL22V10-25LP/883	5962-89841043A
	30	150	24-Pin CERDIP	GAL22V10-30LD/883	5962-8984101LA
		150	28-Pin LCC	GAL22V10-30LR/883	5962-89841013A
GAL26CV12	20	160	28-Pin CERDIP	GAL26CV12-20LD/883	Contact Factory
		160	28-Pin LCC	GAL26CV12-20LP/883	Contact Factory
	25	160	28-Pin CERDIP	GAL26CV12-25LD/883	Contact Factory
		160	28-Pin LCC	GAL26CV12-25LP/883	Contact Factory
GAL20RA10	20	120	24-Pin CERDIP	GAL20RA10-20LD/883	Contact Factory
		120	28-Pin LCC	GAL20RA10-20LP/883	Contact Factory
	25	120	24-Pin CERDIP	GAL20RA10-25LD/883	Contact Factory
		120	28-Pin LCC	GAL20RA10-25LP/883	Contact Factory

Military Ordering Information

DESC Standard Military Drawing Listing

SMD $\#$	LATTICE PART $\#$
$5962-89839012 A$	GAL16V8A-30LR/883
$5962-8983901 R A$	GAL16V8A-30LD/883
$5962-89839022 A$	GAL16V8A-20LR/883
$5962-8983902 R A$	GAL16V8A-20LD/883
$5962-89839032 A$	GAL16V8A-15LR/883
$5962-8983903 R A$	GAL16V8A-15LD/883
$5962-89839042 A$	GAL16V8B-10LR/883
$5962-8983904 R A$	GAL16V8B-10LD/883
$5962-89839052 A$	GAL16V8A-25QD/883
$5962-8983905 R A$	GAL16V8A-20QR/883
$5962-89839062 A$	GAL16V8A-20QD/883
$5962-8983906 R A$	GAL20V8A-30LR/883
$5962-89840013 A$	

SMD \#	LATTICE PART \#
$5962-8984001 L A$	GAL20V8A-30LD/883
$5962-89840023 A$	GAL20V8A-20LR/883
$5962-8984002 L A$	GAL20V8A-20LD/883
$5962-89840033 A$	GAL20V8A-15LR/883
$5962-8984003 L A$	GAL20V8A-15LD/883
$5962-89841013 A$	GAL22V10-30LR/883
$5962-8984101 L A$	GAL22V10-20LR/883
$5962-89841023 A$	GAL22V10-20LD/883
$5962-8984102 L A$	GAL22V10B-15LD/883
$5962-89841033 A$	GAL22V10-25LR/883
$5962-8984103 L A$	GAL22V10-25LD/883
$5962-89841043 A$	
$5962-8984104 L A$	

Standard Military Drawing Number Description

GAL16V8B/883 GAL16V8A/883
High Performance E ${ }^{2}$ CMOS PLD

FEATURES

- HIGH PERFORMANCE ECMOS* TECHNOLOGY
- 10 ns Maximum Propagation Delay
- $\operatorname{Fmax}=62.5 \mathrm{MHz}$
- 7 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS ${ }^{\circledR}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ Icc on Low Power Device
- 45mA Typ Icc on Quarter Power Device
- ACTIVE PULL-UPS ON ALL PINS (GAL16V8B)
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 20-pin PAL* Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
- 100\% Functional Testability
- APPLICATIONS INCLUDE:

- DMA Control

- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL16V8B/883 and GAL16V8A883 are high performance $\mathrm{E}^{2} \mathrm{CMOS}$ programmable logic devices processed in full compliance to MIL-STD-883. These military grade devices combine a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest speed/power performance available in the 883 qualified PLD market. The GAL16V8B/883, at 10 ns maximum propagation delay time, is the world's fastest military qualified CMOS PLD. CMOS circuitry allows the GAL16V8A quarter power devices to consume just 45 mA typical Icc, which represents a 75% savings in power when compared to bipolar counterparts.
Generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL16V8A/883 and GAL16V8B/883 are capable of emulating all standard 20-pin PAL ${ }^{\star}$ devices with full function/ fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacture. Therefore, Lattice guarantees 100% field programmability and functionality of all GAL products. Lattice also guarantees 100 erase/rewrite cycles and that data retention exceeds 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

[^32]LATTICE SEMICONDUCTOR CORP., 5555 N.E. Moore Ct., Hillsboro, Oregon 97124, U.S.A.
May 1992
Tel. (503) 681-0118; 1-800-FASTGAL; FAX (503) 681-3037

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc}...................................... -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature-65 to $150^{\circ} \mathrm{C}$
Case Temperature with
Power Applied \qquad .-55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Specifications GAL16V8B/883

RECOMMENDED OPERATING COND.

Case Temperature (T_{c}) .-55 to $125^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground \qquad +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {a }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{Vin}_{\text {I }} \leq \mathrm{V}_{\text {IL }}(\mathrm{MAX}$.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage		-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	12	mA
IOH	High Level Output Current		-	-	-2	mA
los ${ }^{2}$	Output Short Circuit Current	Vcc = 5V Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
IcC	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=3.0 \mathrm{~V} \mathrm{frog} / \mathrm{e}=25 \mathrm{MHZ}$ Outputs Open (no load)	-	75	130	mA

1) The leakage current is due to the intemal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100\% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v o}=2.0 \mathrm{~V}$

[^33]
AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	TEST COND'	DESCRIPTION	-10		UNITS
			MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	2	10	ns
tco	1	Clock to Output Delay	1	7	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	7	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /(\mathrm{tsu}+\mathrm{tco})$	58.8	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	58.8	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	MHz
twh	-	Clock Puise Duration, High	8	-	ns
twl	-	Clock Pulse Duration, Low	8	-	ns
ten	2	Input or I/O to Output Enabled	-	10	ns
	2	$\overline{\mathrm{OE}}$ to Output Enabled	-	10	ns
tdis	3	Input or I/O to Output Disabled	-	10	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	-	10	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\%-90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	CL
1	390Ω	750Ω	50 pF	
2	Active High	∞	750Ω	50 pF
	Active Low	390Ω	750Ω	50 pF
3	Active High	∞	750Ω	5 pF
	Active Low	390Ω	750Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

CLINCLUDES JIG AND PROBE TOTAL CAPACTIANCE

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage V_{cc}.......................................-0.5 to +7V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Case Temperature with
Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

CaseTemperature (T_{c}) -55 to $125^{\circ} \mathrm{C}$ Supply voltage (V_{cc}) with Respect to Ground +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION		MIN.	TYP. ${ }^{2}$	MAX.	UNITS
VIL	Input Low Voltage			Vss - 0.5	-	0.8	V
VIH	Input High Voltage			2.0	-	Vcc+1	V
IIL	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)		-	-	-10	$\mu \mathrm{A}$
l H	Input or I/O High Leakage Current	$\mathrm{V}_{\mathrm{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$		-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	loL = MAX. $\mathrm{Vin}^{\text {a }}$ V $\mathrm{IL}_{\text {L }}$ or $\mathrm{V}_{\text {IH }}$		-	-	0.5	V
VOH	Output High Voltage			2.4	-	-	V
IOL	Low Level Output Current			-	-	12	mA
IOH	High Level Output Current			-	-	-2.0	mA
IOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
IcC	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\text {HH }}=3.0 \mathrm{~V}$	L-15/-20/-30	-	75	130	mA
		Outputs Open (no load) $f_{\text {foggle }}=25 \mathrm{MHz}$	Q -20/-25	-	45	65	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Guaranteed but not 100\% tested.
2) Typical values are at $V c c=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM ${ }^{*}$	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

Specifications GAL16V8A/883

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND } \end{aligned}$	DESCRIPTION	-15		-20		-25		-30		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	15	3	20	3	25	3	30	ns
tco	1	Clock to Output Delay	2	12	2	15	2	15	2	20	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	12	-	15	-	15	-	20	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	15	-	20	-	25	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	0	-	ns
$\mathrm{fmax}^{\mathbf{3}}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	41.6	-	33.3	-	28.5	-	22.2	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	41.6	-	33.3	-	28.5	-	22.2	-	MHz
	1	Maximum Clock Frequency with No Feedback	50	-	41.6	-	33.3	-	33.3	-	MHz
twh	-	Clock Pulse Duration, High	10	-	12	-	15	-	15	-	ns
twl	-	Clock Pulse Duration, Low	10	-	12	-	15	-	15	-	ns
ten	2	Input or I/O to Output Enabled	-	15	-	20	-	25	-	30	ns
	2	$\overline{O E}$ to Output Enabled	-	15	-	18	-	20	-	25	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	20	-	25	-	30	ns
	3	$\overline{\mathrm{OE}}$ to Output Disabled	-	15	-	18	-	20	-	25	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Puise Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% -90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
	390Ω	750Ω	50 pF	
	Active High	∞	750Ω	50 pF
	Active Low	390Ω	750Ω	50 pF
3	Active High	∞	750Ω	5 pF
	Active Low	390Ω	750Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C l ancludes jig and probe total capacitance

Specifications GAL16V8B/883 GAL16V8A/883

SWITCHING WAVEFORMS

Combinatorial Output

INPUT or VO FEEDBACK

OUTPUT

Input or VO to Output Enable/Disable

CLK

Clock Width

Registered Output

OE to Output Enable/Disable

fmax with Feedback

Specifications GAL16V8B/883 GAL16V8A/883

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)

Note: fmax with extemal feedback is calculated from measured tsu and tco.

fmax Without Feedback
Note: fmax with no feedback may be less than $1 /(\mathrm{twh}+\mathrm{tw})$ this is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/ internal feedback (tcf = $1 / \mathrm{fmax}$ - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

Specifications GAL16V8B/883
 GAL16V8A/883

GAL16V8A/B ORDERING INFORMATION (MIL-STD-883 and SMD)

Note: Lattice recognizes the trend in military device procurement towards using SMD compliant devices, as such, ordering by this number where it exists is recommended.

PART NUMBER DESCRIPTION

GAL20V8A/883
High Performance E ${ }^{2}$ CMOS PLD
Generic Array Logic ${ }^{T M}$

FEATURES

- HIGH PERFORMANCE E ${ }^{2}$ CMOS* TECHNOLOGY
- 15 ns Maximum Propagation Delay
- Fmax $=50 \mathrm{MHz}$
- 12 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS ${ }^{\star}$ Advanced CMOS Technology
- 50\% to 75\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ I_{cc} on Low Power Device
- 45mA Typ $\mathrm{I}_{\mathrm{cc}}^{\mathrm{c}}$ on Quarter Power Device
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
— High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 24-pin PAL* Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS - 100\% Functional Testability

- APPLICATIONS INCLUDE:

- DMA Control

- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20V8A/883 is a high performance E^{2} CMOS programmable logic device processed in full compliance to MIL-STD883. The GAL20V8A/883, at 15 ns maximum propagation delay time, is the world's fastest military qualified 24-pin CMOS PLD. CMOS circuitry allows the GAL20V8A quarter power device to consume just 45mA typical lcc, which represents a 75% savings in power when compared to bipolar counterparts.

Generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL20V8A/883 is capable of emulating all standard 24-pin PAL ${ }^{\text {® }}$ devices with full function/fuse map/parametric compatibility.
Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacture. Therefore, Lattice guarantees 100% field programmability and functionality of all GAL products. Lattice also guarantees 100 erase/rewrite cycles and that data retention exceeds 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

CERDIP

[^34]
ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$ \qquad . -0.5 to +7 V
Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature
\qquad
Case Temperature with
Power Applied \qquad .55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Specifications GAL20V8A/883

RECOMMENDED OPERATING COND.

CaseTemperature (T_{C}) 55 to $125^{\circ} \mathrm{C}$
Supply voltage (V_{cc}) with Respect to Ground +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION		MIN.	TYP. ${ }^{\mathbf{2}}$	MAX.	UNITS
VIL	Input Low Voltage			Vss - 0.5	-	0.8	V
VIH	Input High Voltage			2.0	-	Vcc+1	V
IIL	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{V}_{\text {IL }}$ (MAX.)		-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$\mathrm{V}_{\mathbf{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{Vcc}$		-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o L}=$ MAX. $\quad V_{\text {in }}=V_{\text {IL }}$ or $V_{\text {IH }}$		-	-	0.5	V
VOH	Output High Voltage			2.4	-	-	V
IOL	Low Level Output Current			-	-	12	mA
IOH	High Level Output Current			-	-	-2.0	mA
lOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-	-150	mA
Icc	Operating Power Supply Current	$V_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=3.0 \mathrm{~V}$ Outputs Open (no load) $\text { floggle }=25 \mathrm{MHz}$	L-15/-20/-30	-	75	130	mA
			Q -20/-25	-	45	65	mA

1) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
2) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{vo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested. Specifications GAL20V8A/883

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { COND' } \end{array}$	DESCRIPTION	-15		-20		-25		-30		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinational Output	3	15	3	20	3	25	3	30	ns
tco	1	Clock to Output Delay	2	12	2	15	2	15	2	20	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	12	-	15	-	15	-	20	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	15	-	20	-	25	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	41.6	-	33.3	-	28.5	-	22.2	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	41.6	-	33.3	-	28.5	-	22.2	-	MHz
	1	Maximum Clock Frequency with No Feedback	50	-	41.6	-	33.3	-	33.3	-	MHz
twh	-	Clock Pulse Duration, High	10	-	12	-	15	-	15	-	ns
twl	-	Clock Pulse Duration, Low	10	-	12	-	15	-	15	-	ns
ten	2	Input or I/O to Output Enabled	-	15	-	20	-	25	-	30	ns
	2	$\overline{\text { OE }}$ to Output Enabled	-	15	-	18	-	20	-	25	ns
tdis	3	Input or I/O to Output Disabled	-	15	-	20	-	25	-	30	ns
	3	$\overline{\text { OE }}$ to Output Disabled	-	15	-	18	-	20	-	25	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.
3) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C L}$
1	390Ω	750Ω	50 pF	
	Active High	∞	750Ω	50 pF
	Active Low	390Ω	750Ω	50 pF
3	Active High	∞	750Ω	5 pF
	Active Low	390Ω	750Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C LINCLUDES IIG AND PROBE TOTAL CAPACTIANCE

SWITCHING WAVEFORMS

Combinatorial Output

INPUT or
VO FEEDBACK

OUTPUT

Input or IVO to Output Enable/Disable

CLK

Clock Width

INPUT or VO FEEDBACK

CLK

REGISTERED OUTPUT

CLK

REGISTERED FEEDBACK

OE to Output Enable/Disable

Registered Output

fmax with Feedback

Specifications GAL20V8A/883

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)

Note: fmax with external feedback is calculated from measured tsu and tco.

fmax Without Feedback

Note: fmax with no feedback may be less than $1 /\left({ }^{(t w h}+\mathrm{twl}\right)$. This is to allow for a clock duty cycle of other than 50%.

3
fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = $1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

Specifications GAL20V8A/883

GAL20V8A ORDERING INFORMATION (MIL-STD-883 and SMD)

Tpd (ns)	Tsu (ns)	Tco (ns)	Icc (mA)	Package	MIL-STD-883	

Note: Lattice recognizes the trend in military device procurement towards using SMD compliant devices, as such, ordering by this number where it exists is recommended.

PART NUMBER DESCRIPTION

 GAL22V10B/883
GAL22V10/883

High Performance E ${ }^{2}$ CMOS PLD

FEATURES

- HIGH PERFORMANCE E²CMOS® TECHNOLOGY
- 15 ns Maximum Propagation Delay
- Fmax $=62.5 \mathrm{MHz}$
- 8ns Maximum from Clock Input to Data Output
- TTL Compatible 12 mA Outputs
- UltraMOS* Advanced CMOS Technology
- ACTIVE PULL-UPS ON ALL PINS
- COMPATIBLE WITH STANDARD 22V10 DEVICES
- Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices
- 50\% REDUCTION IN POWER VERSUS BIPOLAR
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- PRELOAD AND POWER-ON RESET OF REGISTERS
- 100\% Functional Testability

- APPLICATIONS INCLUDE:

- DMA Control

- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL22V10B/883 and GAL22V10/883 are high performance $\mathrm{E}^{2} \mathrm{CMOS}$ programmable logic devices processed in full compliance to MIL-STD-883. These military grade devices combine a high performance CMOS process with Electrically Erasable (E^{2}) floating gate technology to provide the highest speed performance available of any military qualified 22V10 device. CMOS circuitry allows the GAL22V10/B to consume much less power when compared to bipolar 22V10 devices. E^{2} technology offers high speed ($<100 \mathrm{~ms}$) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10B and GAL22V10 are fully function/fuse map/parametric compatible with standard bipolar and CMOS 22V10 devices.

Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL* products.

FUNCTIONAL BLOCK DIAGRAM

PACKAGE DIAGRAMS

[^35]
ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Input voltage applied........................... -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature-65 to $150^{\circ} \mathrm{C}$
Case Temperature with
Power Applied
those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device the operational sections of this specification is not implied (while programming, follow the programming specifications).

Specifications GAL22V10B/883

RECOMMENDED OPERATING COND.

```
Case Temperature ( \(\mathrm{T}_{\mathrm{c}}\) ) -55 to \(125^{\circ} \mathrm{C}\) Supply Voltage ( \(\mathrm{V}_{\mathrm{cc}}\) ) with Respect to Ground +4.50 to +5.50 V
```


DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {3 }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{ViN}^{\text {S }}$ Vcc	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	loL = MAX. Vin $=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathbf{H}}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	12	mA
IOH	High Level Output Current		-	-	-2.0	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\mathrm{VIL}=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V}$ ftoggle $=15 \mathrm{Mhz}$ Outputs Open	-	90	150	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{array}{\|l} \text { TEST } \\ \text { COND.' } \end{array}$	DESCRIPTION	-15		UNITS
			MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	15	ns
tco	1	Clock to Output Delay	-	8	ns
tcfe	-	Clock to Feedback Delay	-	8	ns
tsu	-	Setup Time, Input or Feedback before Clock	12	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	ns
$f_{\text {max }}{ }^{3}$	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco $)$	50	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /$ (tsu + tcf)	50	-	MHz
	1	Maximum Clock Frequency with No Feedback	62.5	-	MHz
twh	-	Clock Pulse Duration, High	8	-	ns
twl	-	Clock Puise Duration, Low	8	-	ns
ten	2	Input or I/O to Output Enabled	-	15	ns
tdis	3	Input or I/O to Output Disabled	-	15	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	20	ns
tarw	-	Asynchronous Reset Pulse Duration	15	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	15	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	12	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$ \qquad -0.5 to +7 V Input voltage applied-2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Case Temperature with

Power Applied \qquad .55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Specifications GAL22V10/883

RECOMMENDED OPERATING COND.

```
Case Temperature ( \(\mathrm{T}_{\mathrm{c}}\) ) Supply Voltage ( \(\mathrm{V}_{\mathrm{cc}}\) ) with Respect to Ground +4.50 to +5.50 V
```


DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {3 }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss -0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	Vcc+1	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VIL}^{\text {(MAX. }}$)	-	-	-150	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin}^{5} \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathbf{l o L}=$ MAX. $V_{\text {in }}=\mathrm{VIL}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	\checkmark
IOL	Low Level Output Current		-	-	12	mA
IOH	High Level Output Current	.	-	-	-2.0	mA
los ${ }^{2}$	Output Short Circuit Current	$\mathrm{Vcc}=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \quad \text { Outputs Open } \end{aligned}$	-	90	150	mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM ${ }^{*}$	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	8	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
C_{wo}	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{vo}}=2.0 \mathrm{~V}$

*Guaranteed but not 100\% tested.

Specifications GAL22V10/883

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-20		-25		-30		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	20	-	25	-	30	ns
tco	1	Clock to Output Delay	-	15	-	20	-	20	ns
tcfe	-	Clock to Feedback Delay	-	15	-	20	-	20	ns
tsu	-	Setup Time, Input or Feedback before Clock	17	-	20	-	25	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	31.2	-	25	-	22	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	31.2	-	25	-	22	-	MHz
	1	Maximum Clock Frequency with No Feedback	33	-	33	-	25	-	MHz
twh	-	Clock Pulse Duration, High	15	-	15	-	20	-	ns
twl	-	Clock Pulse Duration, Low	15	-	15	-	20	-	ns
ten	2	Input or I/O to Output Enabled	-	20	-	25	-	25	ns
tdis	3	Input or I/O to Output Disabled	-	20	-	25	-	25	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	25	-	30	-	30	ns
tarw	-	Asynchronous Reset Pulse Duration	20	-	25	-	30	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	20	-	25	-	30	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	17	-	20	-	25	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL22V10B/883 GAL22V10/883

SWITCHING WAVEFORMS

Combinatorial Output

Synchronous Preset
Asynchronous Reset

INPUT or VO FEEDBACK DRIVING AR

REGISTERED OUTPUT

CLK

Input or VO to Output Enable/Disable

Clock Width
INPUT O VO FEEDBACK

OUTPUT

CLK

INPUT or VO FEEDBACK

CLK

REGISTERED OUTPUT

fmax with Feedback

INPUT or VO FEEDBACK DRIVING SP

CLK

REGISTERED
OUTPUT

Registered Output

Specifications GAL22V10B/883
 GAL22V10/883

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is calculated from measured tsu and tco.

fmax With No Feedback
Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback $\mathbf{1 / (t s u + t c f)}$

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/ internal feedback (tcf = $1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns $10 \%-90 \%$
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5 V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R 2}_{2}$	$\mathbf{C L}^{\prime}$
1	390Ω	750Ω	50 pF	
	Active High	∞	750Ω	50 pF
	Active Low	390Ω	750Ω	50 pF
3	Active High	∞	750Ω	5 pF
	Active Low	390Ω	750Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C I INCLUDES JIG AND PROBE TOTAL CAPACITANCE

Specifications GAL22V10B/883
 GAL22V10/883

GAL22V10/B ORDERING INFORMATION (MIL-STD-883 and SMD)

					Ordering \#	
Tpd (ns)	$\begin{aligned} & \hline \text { Tsu } \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \hline \text { Tco } \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	Package	MIL-STD-883	SMD *
15	12	8	150	24-Pin CERDIP	GAL22V10B-15LD/883	5962-8984103LA
			150	28-Pin LCC	GAL22V10B-15LR/883	5962-89841033A
20	17	15	150	24-Pin CERDIP	GAL22V10-20LD/883	5962-8984102LA
			150	28-Pin LCC	GAL22V10-20LR/883	5962-89841023A
25	20	20	150	24-Pin CERDIP	GAL22V10-25LD/883	5962-8984104LA
			150	28-Pin LCC	GAL22V10-25LR/883	5962-89841043A
30	25	20	150	24-Pin CERDIP	GAL22V10-30LD/883	5962-8984101LA
			150	28-Pin LCC	GAL22V10-30LR/883	5962-89841013A

Note: Lattice recognizes the trend in military device procurement towards using SMD compliant devices, as such, ordering by this number where it exists is recommended.

PART NUMBER DESCRIPTION

GAL26CV12/883

FEATURES

- HIGH PERFORMANCE E²CMOS® TECHNOLOGY
- 20 ns Maximum Propagation Delay
- Fmax $=33 \mathrm{MHz}$
- 15 ns Maximum from Clock Input to Data Output
- TTL Compatible 8 mA Outputs
- UltraMOS* Advanced CMOS Technology
- ACTIVE PULL-UPS ON ALL INPUTS AND VOs
- LOW POWER CMOS
- 90 mA Typical Icc
- E2 CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TWELVE OUTPUT LOGIC MACROCELLS
- Uses Standard 22V10 Macrocells
- Maximum Flexibility for Complex Logic Designs
- PRELOAD AND POWER-ON RESET OF REGISTERS
- 100\% Functional Testability
- APPLICATIONS INCLUDE:

- DMA Control

- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL26CV12/883 is a high performance $\mathrm{E}^{2} \mathrm{CMOS}$ programmable logic device processed in full compliance to MIL-STD-883. The GAL26CV12-20/883 combines a high performance CMOS process with Electrically Erasable $\left(E^{2}\right)$ floating gate technology to provide the fastest 28 -pin military PLD on the market. CMOS circuitry allows the GAL26CV12 to consume less power than comparable bipolar devices. E^{2} technology offers high speed ($<100 \mathrm{~ms}$) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.

By building on the popular 22V10 architecture, the military version of the GAL26CV12 allows designers to be immediately productive, eliminating the learning curve. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL26CV12 OLMC is fully compatible with the OLMC in standard bipolar and CMOS 22V10 devices.

Unique test circuitry and reprogrammable cells allow complete $A C, D C$, and functional testing during manufacture. As a result, LATTICE is able to guarantee 100% field programmability and functionality of all GAL® products.

[^36] tor Corp. The specifications herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Input voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$ Storage Temperature-65 to $150^{\circ} \mathrm{C}$

Case Temperature with

Power Applied

\qquad .55 to $125^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device are stress only ratings and functional operation of the device the operational sections of this specification is not implied (while programming, follow the programming specifications).

\qquad
. 0.5 to +7 V
Supply voltage V_{cc}
\qquad

Specifications GAL26CV12/883

RECOMMENDED OPERATING COND.

Case Temperature (T_{c}) -55 to $+125^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground
+4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{\text {3 }}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
lIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq \mathrm{Vcc}$	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$l \mathrm{loL}=$ MAX. $\mathrm{Vin}^{\text {a }}$ VIL or $\mathrm{V}_{\text {IH }}$	-	-	0.5	V
VOH	Output High Voltage	$\boldsymbol{I O H}=$ MAX. \quad Vin $=$ VIL or $\mathrm{V}_{\mathbf{H}}$	2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-2.0	mA
lOS ${ }^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \text { VIH }=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \text { Outputs Open } \end{aligned}$	-	90	160	mA

1) The leakage current is due to the internal pull-up on all input and I/O pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$

CAPACITANCE ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v o}=2.0 \mathrm{~V}$

[^37]Specifications GAL26CV12/883

AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. }{ }^{1} \end{aligned}$	DESCRIPTION	-20		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	20	-	25	ns
tco	1	Clock to Output Delay	-	15	-	20	ns
tcf ${ }^{2}$	-	Clock to Feedback Delay	-	15	-	20	ns
tsu	-	Setup Time, Input or Feedback before Clock	17	-	20	-	ns
th	-	Hold Time, Input or Feedback after Clock	0	-	0	-	ns
fmax^{3}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	31.2	-	25	-	MHz
	1	Maximum Clock Frequency with Internal Feedback, $1 /($ tsu + tcf)	31.2	-	25	-	MHz
	1	Maximum Clock Frequency with No Feedback	33.3	-	30	-	MHz
twh	-	Clock Pulse Duration, High	15	-	15	-	ns
twl	-	Clock Pulse Duration, Low	15	-	15	-	ns
ten	2	Input or I/O to Output Enabled	-	20	-	25	ns
tdis	3	Input or I/O to Output Disabled	-	20	-	25	ns
tar	1	Input or I/O to Asynchronous Reset of Register	-	25	-	30	ns
tarw	-	Asynchronous Reset Pulse Duration	20	-	25	-	ns
tarr	-	Asynchronous Reset to Clock Recovery Time	20	-	25	-	ns
tspr	-	Synchronous Preset to Clock Recovery Time	17	-	20	-	ns

1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.

Specifications GAL26CV12/883

SWITCHING WAVEFORMS

Combinatorial Output
INPUT or VO FEEDBACK

CLK

REGISTERED OUTPUT

CLK

REGISTERED feedback

Clock Width
fmax with Feedback

Registered Output

[^38]INPUT or I/O FEEDBACK DRIVING SP

CLK

Registered OUTPUT

Asynchronous Reset

Specifications GAL26CV12/883
fmax SPECIFICATIONS

fmax with External Feedback 1/(tsu+tco)
Note: fmax with extemal feedback is calculated from measured tsu and tco.

fmax With No Feedback
Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

fmax with Internal Feedback $\mathbf{1 / (t s u + t c f)}$
Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback ($\mathbf{t c f}=1 / \mathrm{fmax}-\mathrm{tsu}$). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf $+\mathbf{t p d}$.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90\%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	\mathbf{R}_{2}	CL
1	470Ω	390Ω	50 pF	
	Active High	∞	390Ω	50 pF
	Active Low	470Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	470Ω	390Ω	5 pF

CL INCLUDES JIG AND PROBE TOTAL CAPACITANCE

Specifications GAL26CV12/883

GAL26CV12 ORDERING INFORMATION (MIL-STD-883 and SMD)

PART NUMBER DESCRIPTION

GAL20RA10/883
High-Speed Asynchronous E ${ }^{2}$ CMOS PLD Generic Array Logic ${ }^{\text {TM }}$

FEATURES

- HIGH PERFORMANCE E²CMOS* TECHNOLOGY
- 20 ns Maximum Propagation Delay
- Fmax $=41.7 \mathrm{MHz}$
- 20 ns Maximum from Clock Input to Data Output
- TTL Compatible 8 mA Outputs
- UltraMOS ${ }^{\star}$ Advanced CMOS Technology
- 50\% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ Icc
- ACTIVE PULL-UPS ON ALL PINS
- E ${ }^{2}$ CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100\% Tested/Guaranteed 100\% Yields
- High Speed Electrical Erasure ($<100 \mathrm{~ms}$)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- Independent Programmable Clocks
- Independent Asynchronous Reset and Preset
- Registered or Combinatorial with Polarity
- Full Function and Parametric Compatibility with PAL20RA10
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
- 100\% Functional Testability
- APPLICATIONS INCLUDE:
- State Machine Control
- Standard Logic Consolidation
- Multiple Clock Logic Designs

- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL2ORA10/883 is a high performance $E^{2} C M O S$ programmable logic device processed in full compliance to MIL-STD-883. With a 20 ns maximum propagation delay time, it is the fastest military grade 20RA10 device on the market. In addition to speed performance, Lattice's Electrically Erasable (E^{2}) floating gate technology provides low power performance. The GAL20RA10's typical Icc of 75 mA , represents a 50% savings in power when compared to bipolar counterparts. E^{2} technology also offers high speed ($<1.00 \mathrm{~ms}$) erase times providing the ability to reprogram or test the devices quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL20RA10 is a direct parametric compatible CMOS replacement for the PAL20RA10 device.

Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacturing. Therefore, LATTICE guarantees 100% field programmability and functionality of all GAL products. LATTICE guarantees data retention exceeds 20 years.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

CERDIP

[^39]
Specifications GAL20RA10/883

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply voltage $V_{c c}$ \qquad -0.5 to +7 V
Input voltage applied \qquad -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Off-state output voltage applied -2.5 to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Storage Temperature \qquad Case Temperature with

Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$
1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

Military Devices:

Case Temperature (T_{c})
-55 to $+125^{\circ} \mathrm{C}$
Supply voltage (V_{cc})
with Respect to Ground +4.50 to +5.50 V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VIL	Input Low Voltage		Vss - 0.5	-	0.8	V
VIH	Input High Voltage		2.0	-	$\mathrm{Vcc}+1$	V
IIL'	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)	-	-	-100	$\mu \mathrm{A}$
lıH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{Vin}^{5} \mathrm{~V}$ cc	-	-	10	$\mu \mathrm{A}$
VOL	Output Low Voltage	$1 \mathrm{LL}=$ MAX. $\mathrm{Vin}^{\text {a }}$ VIL or V_{IH}	-	-	0.5	V
VOH	Output High Voltage		2.4	-	-	V
IOL	Low Level Output Current		-	-	8	mA
IOH	High Level Output Current		-	-	-3.2	mA
$1 \mathrm{OS}^{2}$	Output Short Circuit Current	Vcc $=5 \mathrm{~V} \quad$ Vout $=0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-50	-	-135	mA
ICC	Operating Power Supply Current	$\begin{aligned} & \text { VIL }=0.5 \mathrm{~V} \quad \mathrm{VIH}=3.0 \mathrm{~V} \\ & \text { ftoggle }=15 \mathrm{Mhz} \text { Outputs Open } \end{aligned}$	-	75	120	mA

1) The leakage current is due to the internal pull-up on all pins. See the Input Buffer section in the commercial datasheet for more information.
2) One output at a time for a maximum duration of one second. Vout $=0.5 \mathrm{~V}$ was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.
3) Typical values are at Vcc $=5 \mathrm{~V}$ and $\mathrm{TA}=25^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C_{1}	Input Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$
$\mathrm{C}_{v o}$	I/O Capacitance	10	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{v o}=2.0 \mathrm{~V}$

[^40]
Specifications GAL20RA10/883

AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { COND. } \end{aligned}$	DESCRIPTION	-20		-25		UNITS
			MIN.	MAX.	MIN.	MAX.	
tpd	1	Input or I/O to Combinatorial Output	-	20	-	25	ns
tco	1	Clock to Output Delay	-	20	-	25	ns
tsu	-	Setup Time, Input or Feedback before Clock	10	-	15	-	ns
th	-	Hold Time, Input or Feedback after Clock	3	-	5	-	ns
fmax^{2}	1	Maximum Clock Frequency with External Feedback, $1 /($ tsu + tco)	33.3	-	25.0	-	MHz
	1	Maximum Clock Frequency with No Feedback	41.7	-	33.3	-	MHz
twh	-	Clock Pulse Duration, High	12	-	15	-	ns
twl	-	Clock Pulse Duration, Low	12	-	15	-	ns
ten / tdis	2,3	Input or I/O to Output Enabled / Disabled	-	20	-	25	ns
ten / tdis	2,3	$\overline{\mathrm{OE}}$ to Output Enabled / Disabled	-	15	-	15	ns
tar / tap	1	Input or I/O to Asynchronous Reset / Preset	-	20	-	25	ns
tarw / tapw	-	Asynchronous Reset / Preset Pulse Duration	20	-	25	-	ns
tarr / tapr	-	Asynchronous Reset / Preset Recovery Time	12	-	20	-	ns
twp	-	Preload Pulse Duration	20	-	25	-	ns
tsp	-	Preload Setup Time	15	-	20	-	ns
thp	-	Preload Hold Time	15	-	20	-	ns

1) Refer to Switching Test Conditions section.
2) Refer to fmax Descriptions section.

SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10\% - 90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (see figure)

Test Condition		\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	CL
1		470Ω	390Ω	50 pF
2	Active High	∞	390Ω	50 pF
	Active Low	470Ω	390Ω	50 pF
3	Active High	∞	390Ω	5 pF
	Active Low	470Ω	390Ω	5 pF

FROM OUTPUT (O/Q) UNDER TEST

C LINCLUDES NG AND PROBE TOTAL CAPACITANCE

Specifications GAL20RA10/883

SWITCHING WAVEFORMS

Input or I/O Feedback Asserting Preset

Registered Output

Clock

> Asynchronous Preset

Input or
I/O Feedback

Device Output

Clock

Input or I/O Feedback to Enable I Disable

Clock Width

Combinatorial Output

Asynchronous Reset
Device Output
$\overline{O E}$
 OE to Enable / Disable

All I/O Pins
.

fmax DESCRIPTIONS

fmax with External Feedback 1/(tsu+tco)

Note: fmax with extemal feedback is calculated from measured tsu and tco.

fmax With No Feedback

Note: fmax with no feedback may be less than $1 /(t w h+t w l)$. This is to allow for a clock duty cycle of other than 50%.

Specifications GAL20RA10/883

GAL20RA10/883 ORDERING INFORMATION (MIL-STD-883 and SMD)

PART NUMBER DESCRIPTION

Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products Introduction to pLSI and ispLSI 4-1
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

Introduction to pLSI ${ }^{T M}$ and ispLSIT ${ }^{T M}$

Introduction to pLSI and ispLSI

Lattice Semiconductor's pLSI (programmable Large Scale Integration) and ispLSI (in-system programmable Large Scale integration) are two families of high density and high performance $\mathrm{E}^{2} \mathrm{CMOS}^{\oplus}$ programmable logic devices (see figure 1). They provide design engineers with a superior system solution for integrating high speed logic features on a single chip.

The Lattice pLSI and ispLSI families are the first programmable logic devices to combine the performance and ease of use of PLDs with the density and flexibility of FPGAs.

The ispLSI family also pioneers non-volatile, in-system programmability, a technology that allows real-time programming, less expensive manufacturing and enduser reconfiguration.

Lattice's $\mathrm{E}^{2} \mathrm{CMOS}$ technology features reprogrammability, the ability to program the device again and again to easily incorporate any design modifications. This same capability allows full parametric testability during manufacturing, which guarantees 100 percent programming and functional yield.

All the necessary development tools are available from Lattice and leading third-party companies. Utilizing a Windows-based graphical user interface, it is possible to complete a circuit design in hours, as opposed to days or weeks.

pLSI and ispLSI Product Families

- 80 MHz System Performance
- 15 ns tpd Pin-to-Pin
- Deterministic Performance
- High Density (2,000-8,000 PLD Gates)
- Flexible Architecture
- Easy to Use
- in-system programmable (ispLSI)
- Low Power Consumption
pLSI and ispLSI Technology
- E ${ }^{2}$ CMOS - the PLD Technology of Choice
- Proven UlitraMOS Technology
- Electrically Erasable/Programmable/Reprogrammable
- 100% Tested During Manufacture
- 100% Programming Yield
- High-Speed Programming
pLSI and ispLSI Development Tools
- Easy-to-Use Graphical Interface (Windows 3.0)
- Boolean Equations and Macro Input
- VHDL and Schematic Capture Entry
- Industry-Standard Third-Party Design Environment and Platforms
- Timing and Functional Simulation

Figure 1. pLSI and ispLSI Device Families

84-Pin PLCC

120-Pin PQFP

Introduction to pLSI and ispLSI

Family Overview

The pLSI and ispLSI families of high-density devices address high-performance system logic needs, ranging from registers, to counters, to multiplexers, to complex state machines.

With PLD gate densities ranging from 2,000 to 8,000 , the pLSI and ispLSI families provide a full range of programmable logic solutions to meet design requirements for today's and tomorrow's needs.

Each device contains multiple Generic Logic Blocks (GLBs), architected to maximize system flexibility and performance. A balanced ratio of registers and I/O cells provides the optimum combination of internal logic and external connections. A global interconnect scheme ties everything together, enabling utilization of more than 80% of available logic. Table 1 describes the family attributes.

The pLSI and ispLSI Architecture

The PLSI and ispLSI architecture was constructed with actual system design requirements in mind. This architecture provides the designer with the following advantages. Figure 2 shows the pLSI 1032 architecture.

- High Speed
- Predictable Performance
- Integration of Multiple Logic Functions
- Asynchronous Designs
- Flexible Logic Paths
- Advanced Global Clock Network

The Global Routing Pool (GRP)

Central to the pLSI and ispLSI architecture is the Global Routing Pool, which connects all of the internal logic and makes it available to the designer. The GRP provides complete interconnectivity with fixed and predictable delays. This unique connection scheme consistently provides high performance and allows effortless implementation of complex designs.

The Output Routing Pool (ORP)

Pin assignment flexibility is maximized via the Output Routing Pool (ORP), which provides the connections between the GLB outputs and the output pins.

Figure 2. pLSI 1032 Architecture

Table 1. pLSI and ispLSI Family Attributes

Family Member	1016	1024	1032	1048
Density (PLD Gates)	2,000	4,000	6,000	8,000
Speed: fmax (MHz)	80	80	80	70
Speed: tpd (ns)	15	15	15	20
GLBs	16	24	32	48
Registers	96	144	192	288
Inputs + //O	36	54	72	106
Pin/Package	44 -pin PLCC	68 -pin PLCC	84 -pin PLCC	120 -pin PQFP

Introduction to pLSI and ispLSI

Generic Logic Block (GLB)

The basic logic element in the pLSI and ispLSI architecture is the Generic Logic Block. This powerful logic element provides an input-to-output ratio greater than 4:1. With 18 inputs driving an array of 20 product terms (PTs) - which in turn feed four outputs - the GLB efficiently handles both wide and narrow gating functions. Figure 3 describes the GLB functionality.

One element of architectural flexibility is the Product Term Sharing Array (PTSA). The PTSA allows the 20 Product Terms (PTs) from the AND array to be shared with any and all of the four GLB outputs as needed to implement logic designs. This ability to share PTs between all of the GLB outputs provides a highly efficient implementation of complex state machines by eliminating duplicate product term groups.

The architecture flexibility of the GLB, combined with its optimuminput-to-output ratio, allows the GLB to implement virtually all 4-bit MSI functions.

Each of the four outputs from the PTSA feeds into a flexible Output Logic Macrocell (OLMC), consisting of a D-type flip-flop with an Exclusive-OR gate on the input. The OLMC allows each GLB output to be configured either combinatorial or registered. Combinatorial mode is available as AND-OR or Exclusive-OR; registered mode is available as D, T or J-K.

The GLB canbe clocked synchronously orasynchronously. Global clocks from external pins or internally generated, provide all GLBs and I/O Cells with synchronous clock signals with selectable polarity. This provides multiple synchronous clock phases to all GLBs and I/Os.

Figure 3. Simplified Generic Logic Block Functionality

Introduction to pLSI and ispLSI

The GLB has several configuration options for each Output Logic Macrocell (OLMC). These can be mixed with each GLB. The configurations are described as standard, high-speed bypass, XOR and multi-mode configuration. Figure 4 demonstrates the multi-mode configuration.

Standard Configuration

- GLB Outputs Comprise of $4,4,5$ or 7 Product Terms
- The PTSA Can Combine up to 20 PTs per GLB Output to Meet the Needs of Both Wide and Narrow Logic Functions.

High-Speed Bypass Configuration

- For Speed-Critical Timing Paths
- Enables Design of Fast Address Decoders
- Bypasses the PTSA and the Internal ExclusiveOR Gate of the OLMC
- Provides Four Product Terms Per Output

XOR Configuration

- Utilizes Powerful Exclusive-OR Architecture
- Powerful for Counters, Comparators and ALU Functions

Multi-Mode Configuration

- Individual Outputs are Independently Configurable
- PTSA Allows Flexibility on the Number and Selection of Product Terms Per Output

Figure 4. GLB: Multi-Mode Configuration

Introduction to pLSI and ispLSI

In-System Programmability

The in-system programmable Large Scale Integration (ispLSI) family is the industry's only high-density programmable logic family offering non-volatile in- system reconfigurability.

The ispLSI family is 100 percent functionally and parametrically compatible with the pLSI family, with the added ability of 5 -volt in-system programmability and reprogrammability.

Complex logic functions can be implemented in multiple ispLSI devices, with complete on-board configurability. In-system programming of multiple ispLSI chip solutions is easily achieved through a proprietary in-system erase/ program/verify technique.

In-system programmability can revolutionize the way boards are designed, manufactured and serviced (see figure 5).

Prototype board designs- in-system programming allows the programming and modification of logic designs "insystem" without removing the device(s) from the board.

This accelerates the system and board-level debug process and enables definition of board layout earlier in the design process.

Reconfigurable systems- The options for accommodating changes are greatly increased when you have the ability to change the functionality of devices already soldered on a board. Multiple hardware configurations can be implemented with the same circuit board design. Multiple protocols or multiple system interfaces can be defined on a generic board as the last stepin the manufacturing flow.

Diagnostic Capability - Using the ispLSI device, the diagnostic capability of the system can be enhanced. A test pattern can be programmed into the ispLSI device at board-test, enabling the logic to control and observe specific nodes of the entire board. After the diagnostic testing is complete, the functional pattern can be programmed into the device for normal system operation.

Easier field updates - With software reconfigurable systems, field updates are as easy as loading a new device configuration from a floppy, or downloading it through a modem.

Figure 5. in-system programmable "Generic" Board

Multiple ispLSI devices can be reconfigured through multiplexed signals interfaced via an edge connector, 5-post connector, microcontroller, or microprocessor.

Introduction to pLSI and ispLSI

A powerful benefit of the ispLSI family is its potential to streamline the manufacturing process by eliminating the separate programming and labeling steps usually associated with PLDs. Quality is enhanced when product handling steps are reduced, in this case, those associated with programming, labeling and re-inventorying multiple device types. Eliminating socketing further improves quality and reduces board cost. Figure 6 shows the enhanced manufacturing with the ispLSI device.

Figure 6. Manufacturing Flow Comparison

Enhanced Flow Using ispLSI Devices

All necessary programming is achieved via five TTL-level logic interface signals (see figure 7). These five signals control the on-chip programming circuitry, which is securely protected against inadvertent reprogramming via on-chip state machines. The ispLSI family can also be programmed using popular third-party logic programmers.

Figure 7. in-system programming Interface (MultiChip Solution)

Introduction to pLSI and ispLSI

pLSI/ispLSI Development System (pDS ${ }^{(1)}$)

The Lattice pLSI/ispLSI Development System (pDS) software is used to implement designs in pLSI and ispLSI devices. Quick and straightforward design alternatives can be implemented using the low cost Entry Level System or the Advanced Level System which features support from industry standard third party vendors. This section describes both the Entry Level and Advanced Level Development Systems. Programmer support is also discussed.

pDS-PC Entry Level

Features

- High Performance, Low Cost Development Environment
- Supports pLSI and ispLSI Device Families
- Boolean Logic and Text File Design Entry
- Over 225 Macros Available
- Automatic Place and Route
- Logic Simulation with Viewlogic Viewsim
- JEDEC File Download Direct to Programmer or ispLSI Device

General Description

Both the pLSI and ispLSI families are supported by Lattice's low-costpLSI/ispLSI DevelopmentSystem (pDS). It runs on IBM-compatible (386/486) PCs with Microsoft® Windows.

The easy-to-use graphical user interface with the familiar mouse driven pull-down menus, combined with Boolean logic data entry using ABEL-like syntax, makes design entry with the pLSI and ispLSI quick and straightforward (see figure 8).

Figure 8. pDS Design Flow

The pDS-PC Entry Level Software supports over 200 macros to help the design process. These macros cover most TTL functions, from gate primitives to 16 -bit counters. pDS The software also supports user-definable macros which can be modifications of existing macros or custom creations.

The pDS-PCEntry Level Software automatically verifies the design, performs logic minimization and checks for signal availability.

Additionally, the Lattice Place and Route assigns pins and critical speed paths and ensures optimized 100% routability at 80% utilization.

Quick compilation speeds the design, debug and rework process dramatically. Incremental design techniques are also supported.

Timing and functional simulation are available from Lattice, using Viewsim simulation software.

The windows graphical userinterface makes programming easy, using pull-down menus, intuitive point-and-click commands and self explanatory instructions. Without any up-front training, designs can be completed within hours instead of days or weeks.

Introduction to pLSI and ispLSI

pDS Advanced Level

Features

- Supports pLSI and ispLSI Device families
- Schematic capture, State Machine and VHDL Design Entry
- Expanded Macro Library
- Automatic Logic Minimization and Partitioning
- Automatic Place and Route
- Logic and Timing Simulation
- EDIF Compatible
- JEDEC File Download Direct to Programmer or ispLSI Device

General Description

For higher level design-entry environments, Lattice offers pLSI/ispLSI Advanced Development System software tools, which expand on the core capabilities of the pDSPCEntry Level software. Schematic capture, state machine and VHDL entry are supported, along with an expanded macro library.

The Advanced Level software utilizes industry standard third-party design environments such as Viewlogic's Viewdraw and Data I/O's ABELTM.

Running on IBM compatible (386/486) PCs or workstation platforms, the Advanced Level Software supports automatic logic minimization and partitioning, as well as place and route, resulting in 100\% routability at greater than 80% utilization.

For logic and timing simulation, support is available from Lattice through Viewlogic Viewsim simulation tools.

Third Party Programming Support

The pLSI and ispLSI families are supported by popular third-party logic programmers including Data I/O, Logical Devices, Stag, System General, SMS Microcomputer and Advin. Table 2 describes each vendor's specific programmer model that support the pLSI and ispLSI devices. No proprietary, expensive, high pin-count programmers are required. Additionally, the ispLSI family can be programmed on the board (in-system), which eliminates the need for a stand-alone programmer.

Table 2. Programming Support

Programmer Vendor	Model
Advin Systems	Pilot GL/U40
	Pilot U84
BP Micro	PLD1128
Data I/O	2900
	3900
	Unisite 40/48
Logical Devices	Allpro 32/40
	Allpro 88
SMS Microsystems	Sprint Expert
System General	Turpro 1

isp Engineering Kit

The ispLSI family may also be programmed with Lattice's isp Engineering Kit. This kit is designed for engineering purposes only and is not intended for production use. By connecting an 8 wire cable to the parallel printer port of a PC, JEDEC files can easily be downloaded into the ispLSI device. Additionally, this cable can be connected directly to the circuit board facilitating on board in-system programming.

Additional information on the pLSI and ispLSI Families may be obtained from a Lattice representative or by simply completing the reply card at the end of this data book.
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Quality Assurance Program 5-1
Qualification Program 5-3
E^{2} CMOS Testability Improves Quality 5-5
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

Quality Assurance Program

INTRODUCTION

Lattice views quality assurance as a corporate responsibility and an integral part of all planning activities. Lattice's Quality Assurance organization is independent from Manufacturing and has direct access to top management, assuring sufficient authority is afforded to quality issues.

Lattice's quality program is in full compliance to the quality assurance requirements of MIL-M-38510 Appendix A and all inspection system requirements of MIL-I-45208.

QUALIFICATION

All new products, processes and vendors must pass predefined evaluations before receiving initial qualification release. Majorchanges to products, processes orvendors require additional qualificaton before implementation. To assure continuing conformance to reliability requirements, anongoing monitor program is maintained onall processes.

IN-PROCESS CONTROL

Qualified product must be manufactured under strict quality controls that start with regulated procurement and documented inspection plans for all incoming materials. Sample testing and in-line monitoring as well as statistical process control charts provide constant feedback at each critical step of the manufacturing process.

CALIBRATION

All critical equipment involved in the manufacture, testing, orinspection of Lattice product must meet the requirements of our established calibration system that is in compliance to MIL-STD-45662.

TRAINING

All Lattice manufacturing personnel complete a comprehensive training program and obtain formal certification for each production operation before they are allowed to manufacture products. Operators must be recertified on a periodic basis to assure ongoing compliance to all written procedures and specifications.

SUBCONTRACTOR CONTROL

All subcontracted operations must be performed by sources exhibiting a quality program commensurate to that of Lattice. These vendors are audited at least once every year to monitor their compliance to Lattice's Quality Assurance Program. Any major audit discrepancy requires corrective action and may result in disqualification.

DOCUMENT CONTROL

Lattice's document control system is under the direction of Quality Assurance and has the responsibility of assuring that every product has adequate written documentation released before production begins.

Drawings and specifications related to materials, processes, testing, products and subcontractors are maintained by the Document Control Department. A numbering system identifies each document by revision status, function and category.

Any change to existing documentation must be properly approved and released before implementation of the change. The change is implemented only if approved by the appropriate functional groups.

NONCONFORMING MATERIAL

Nonconforming material is identified, segregated, analyzed and dispositioned according to procedures that also require corrective action be specified to eliminate the cause of the defect.

Lattice has a Material Review Board (MRB) to investigate the cause of nonconformance and disposition the material. Lattice and customer specification requirements are thoroughly reviewed during MRB dispositions. The MRB consists of representatives from Manufacturing, Engineering, and Quality Assurance.

Product returned by customers (RMA) shall be analyzed and dispositioned with respect to Lattice and customer specifications.

FAILURE ANALYSIS

Failure modes discovered during qualification testing, inspections, customer returns or in-process screening are processed through Lattice's Failure Analysis group to determine the cause or relevancy of the failure and initiate corrective actions to eliminate the cause. All failure analysis reports are reviewed by Quality Assurance to convey awareness of any potential problems and assure that proper corrective action is taken.

Quality Assurance Program

	Statistical Process Control Points for Commercial/Industrial Devices
STEP	CHARACTERISTICS
Oxidation	Thickness, CV Plot
Diffusion	Sheet Resistance
Photolithography	Resist Thickness, Pattern Size, Pattern Resolution
Ion Implant	Sheet Resistance
CVD	Thickness, Phosphorous Content
Metal Sputter	Thickness
Glassification	Thickness, Film Stress, Refractive Index
Etch	Etch Rates
Wafer Parametric Test	Test Structure Performance
Die Functional Test	Functional / DC Performance
Wafer Saw	Kerf Width, DI Water Resistivity
Die Attach	Visual, Epoxy Thickness, Die Shear, Cure Temperature
Wire Bond	Visual, Pull Strength, Ball Shear, Heater Block Temperature
Trim and Form	Visual, Coplanarity (PLCC only)
Mold	Visual, Plate Temperatures, Wire Sweep and Voids, Post Mold Cure Temperature
Lead Finish	Visual, Thickness, Lead (Pb) Ratio
Test	Functional / AC / DC Performance
Topside Mark	Visual
Lead Straighten	Splay, Lead Alignment (PDIP only)
Final QA Visual	Visual
Final QA Electrical	Functional / AC / DC Performance

Qualification
 Program

INTRODUCTION

Lattice has an intensive qualification programfor examining and testing new products, processes, and vendors in order to insure the highest levels of quality. Lattice's Reliability Engineering Group is responsible for defining and implementing this qualification program.

The following table outlines the steps which must be performed before a new product, package or process is qualified. The requirements listed below are general guidelines. Detailed information on Lattice's qualification process is available to customers upon request.

Qualification Requirements

Test	\# ofSamples	Duration		
		New Product	Now Wafor Process	New Package
$125^{\circ} \mathrm{C}$ Operating Lifetest $(5.25 \mathrm{~V})$	300	1,000 Hours	2,000 Hours	2,000 Hours ${ }^{1}$
$150^{\circ} \mathrm{C}$ Biased Retention Bake (5.25V)	450	1,000 Hours	2,000 Hours	2,000 Hours ${ }^{\text {' }}$
Endurance Cycling	75	10,000 Cycles	10,000 Cycles	N/A
ESD	48	End of Test	End of Test	N/A
Latch-Up Immunity	27	End of Test	End of Test	N/A
Temperature Cycling (65 to $150^{\circ} \mathrm{C}$)	150	1,000 Cycles	1,000 Cycles	1,000 Cycles
Biased 85/85 (5V)	225	NA	1,000 Hours	1,000 Hours
Autoclave ($121^{\circ} \mathrm{C}, 15 \mathrm{psig}$)	150	N/A	336 Hours	336 Hours
Lead Integrity (DIP only)	9	NA	N/A	End of Test
Solderability	9	N/A	NA	End of Test
Centrifuge	75	N/	NA	End of Test
Bond Strength	12	N/A	N/A	End of Test

1. Required for new assembly technologies only.

Qualification Program

RELIABILITY MONITOR PROGRAM

The Reliability Monitor Program provides for a periodic reliability monitor of Lattice products. Theprogram assures that all Lattice products comply on a continuing basis with established reliability and quality levels.

The Reliability Monitor Program is designed to monitor all fab and assembly facilities as well as each process technology in production. A summary of the program test and sampling plan is shown below.

Reliability Monitor Program

Test	" of Samples	Duration
$125^{\circ} \mathrm{C}$ Operating Lifetest (7.00V)	70	160 Hours
$200^{\circ} \mathrm{C}$ Biased Retention Bake (5.25V)	70	160 Hours
Autoclave ($121^{\circ} \mathrm{C}, 15$ psig)	35	160 Hours

E²CMOS Testability Improves Quality

INTRODUCTION

The inherent testability of Lattice's E^{2} CMOS PLDs significantly improves theirquality and reliability. By using electrically erasable EEPROM technology to produce GAL devices, Lattice is able to perform 100% AC/DC, functional, and parametric testing of every single device. In order to achieve the highest quality levels, Lattice programs and tests each device repeatedly throughout the manufacturing process.

ACTUAL TEST VS. SIMULATED TEST

Why is "actual test" so significant? PLDs, unlike most other semiconductor devices, have a programmable element that determines the final device functionality and AC/DC performance. These programmable elements can be fabricated from metal link fuses, programmable diodes or transistors, volatile static RAM cells, UV EPROM cells or electrically erasable EEPROM cells. Each of these technologies carries a different variability of programming success and a variance in the impact of the programming success on the performance and reliability of the device.

The most common programmable elements are the metal fuse, EPROM cell and EEPROM cell. Of these element types, only the EEPROM cell can be thoroughly tested by the manufacturer prior to shipment to an end user OEM.

EEPROM ALLOWS ACTUAL TEST

Each of the methods identified above can beprogrammed. In this manner they are all the same. The differences become apparent when the erase times are analyzed. Metal link and One-Time Programmable (OTP) devices cannot be erased. UV EPROM devices can be erased, however the time required is $20-30$ minutes (and an expensive windowed package). EEPROM devices, on the other hand, offer instant erasability on the order of 50 ms (thousandth's of a second). The advantage of this instant erase for manufacturing test is significant. Instant erase allows instant re-patterning for additional testing.
EEPROM technology has been used for PLD manufacturing by Lattice for more than half a decade. Lattice refers to their high performance EEPROM technology as $\mathrm{E}^{2} \mathrm{CMOS}$ technology. Extensive reliability studies of the technology have been performed with industry-wide acceptance, including the military.

OTHER METHODS ARE IMPRECISE

All PLD devices must be tested to some degree to validate functionality and performance. Technologies that are not erasable or require lengthy erase times severely constrain the test flexibility. Since the normal "user" programmable elements cannot be programmed during manufacture (all elements must be available for end-user programming) the manufacturers resort to using simulated and correlated performance of test rows, test columns and phantom or dummy-test arrays. At best, this is a statistical measure of the actual device performance. One need only look at the "normal" programming yield fallout of $0.5 \rightarrow 3 \%$ or the "acceptable" post-programming test vector \& board yield fallout of $0.5 \rightarrow 2 \%$ to know that this correlation is weak. The quality systems of today are measuring defects in the parts per million (PPM). A six sigma program requires less than 3.4 PPM, four orders of magnitude less than that achievable with non-testable PLDs.

ACTUAL MATRIX PATTERNING

The unique capability of $\mathrm{E}^{2} \mathrm{CMOS}$ devices to be instantly electrically erased allows these devices to be patterned multiple times during Lattice's manufacturing test. Normal array cells in the programmable matrix are patterned, erased \& tested again and again. The test rows or columns, phantom arrays, etc., that are used with other technologies are not necessary with $\mathrm{E}^{2} \mathrm{CMOS}$ devices. Programmability of every cell is checked dozens of times.

Historically, the checking of a successful programming operation consisted of no more than a pass/fail verification step. This digital, black/white style check is not adequate to assure that the cell is programmed properly with sufficient margin to guarantee long-term reliable performance of the device. Lattice $\mathrm{E}^{2} \mathrm{CMOS}$ devices are processed through a proprietary cell verification step that consists of an analog measure (to millivolt accuracy) of the actual cell threshold. This capability is used for extensive reliability and quality measurements andtesting.

WORST CASE AC/DC TESTING

A PLD does not have a defined function until the engineer patterns the device with his custom pattern. The manufacturer, when considering the testing of a PLD, must consider the hundreds of different architecture and functional variations that can be created by the end user. Each configuration of architecture brings on a different set of worst case pattern and stimulus conditions. Quick

E²CMOS Testability Improves Quality

application of a series of worst case patterns that cover all of the permutations of input combinations, array load \& switching, and output configuration is required.
E^{2} CMOS devices offer instant erasability to address this reconfiguration \& test problem. Testing each additional worst case configuration takes fractions of a second, allowing multiple patterns to be checked to assure performance to rated speeds. The final result is a device with defects reduced from PPH (parts per hundred) to PPM (parts per million).I
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
GAL Metastability Report 6-1
Latch-up Protection 6-17
Hidden Costs in PLD Usage 6-21
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information

GAL Metastability Report

INTRODUCTION

The dictionary definition of metastability is "a situation that is characterized by a slight margin of stability." When applied to bi-stable (digital) logic, the term refers to an undesirable marginally stable output state between VIL max and VIH min.

Metastability can occur in bi-stable storage elements (registers, latches, memories, etc.) when setup and/or hold times are violated. Since setup and hold times vary with temperature and operating voltage, among other factors, the times referred to here are not the $\mathrm{min} / \mathrm{max}$ numbers printed in data sheets, but rather the actual times for the given set of operating conditions. Typical applications where such times are likely to be violated include bus \& memory arbiters, interfaces, synchronizers, and other state machines employing asynchronous inputs or asynchronous clocks.

Metastability manifests itself in a number of different ways. Common responses are (shown as they might be captured on a digital oscilloscope in Figure 1): runt pulse (1a), decreased output slew rate (1b), output oscillation (1c), and increased clock-to-output time (1d). By definition, the phenomenon of metastability is statistical in nature. Not only is entry into the state uncertain, but the time spent there is also variable.

Because PLDs are commonplace in today's designs, a thorough understanding of their metastable behavior is crucial. In some applications, output anomalies shorter than one clock cycle may be acceptable, but in applications where the register output is used as a control signal (clock, bus grant, chip select, etc.) for other circuitry, faults such as runt pulses and oscillation cannot be tolerated.

This report will not study the causes or characteristics of metastability in great detail; excellent material has already been prepared on this subject [1-5]. Rather, this report will introduce a mathematical model for the metastable phenomenon, discuss potential test methodologies, present and compare test results from various bipolar and CMOS PLDs, and discuss how to interpret the data. This report will close with suggestions on how to design metastable tolerant systems.

DERIVATION OF CONSTANTS

The basic premise of all metastability models is that a device's output is more likely to have settled to a valid state in time(t) than in time(t-n). In fact, the failure probability distribution follows an exponential curve. Figure 2 shows a typical failure frequency plot.

It is accepted [1] that metastable failures can be accurately modeled by the equation:

$$
\begin{equation*}
\log \text { Failure }=\log M A X-b(\Delta-\Delta 0) \tag{1}
\end{equation*}
$$

In this equation, MAX represents the maximum failure rate for a particular environment, Δ is the time delayed before sampling the DUT (Device Under Test) output, and $\Delta 0$ is the time at which the number of failures starts to decrease. On a failure frequency plot (such as the one in Figure 2), $\Delta 0$ represents the knee of the curve. The constant b is rate at which the frequency of failures decreases after the knee is reached.

Recall that:

$\log X=a \ln (X)$, where $a=\log (e)$
Substituting this into (1):

$$
\begin{equation*}
a \cdot \ln \text { Failure }=a \cdot \ln M A X-b(\Delta-\Delta 0) \tag{2}
\end{equation*}
$$

MAX is related to the clock frequency (fCLOCK) and data frequency (fDATA). That is,

$$
\begin{equation*}
\text { MAX }=(k 1 \cdot f C L O C K \cdot f D A T A) \tag{3}
\end{equation*}
$$

Substituting (3) into (2) and applying some algebra:

$$
a \cdot \ln \text { Failure }=a \cdot \ln (k 1 \cdot f C L O C K \cdot f D A T A)-b(\Delta-\Delta 0)
$$

In Failure - In $(k 1 \cdot f C L O C K \cdot f D A T A)=-b / a(\Delta-\Delta 0)$
Setting k2 $=\mathbf{b} / \mathrm{a}$ and rearranging the equation yields:

$$
\begin{equation*}
\text { Failure }=(k 1 \bullet f C L O C K \bullet f D A T A) e^{\star 2(\Delta-\Delta 0)} \tag{4}
\end{equation*}
$$

When used with equation (4), the constants $k 1, k 2$, and $\Delta 0$, completely describe a particular device's metastable characteristics; they indicate how quickly a device can resolve the metastable condition. Devices which transition out of the metastable region quickly are characterized by a small $\Delta 0$ and a large k 2 .

The constant k1 is peculiar to the test apparatus (it can be thought of as a "scaling factor"). The maximum metastable failure rate (MAX) is limited by fCLOCK; a failure cannot occur if the device isn't clocked. Likewise, it is true that a metastable failure cannot occur unless data has changed. So, if fDATA < fCLOCK, then MAX = fDATA. This was the case in the test fixture Lattice used (fCLOCK=10MHZ, fDATA $=2.5 \mathrm{MHz}$). Substituting MAX = fDATA back into equation (3) yields: $k 1=1 / f C L O C K$, so $k 1=100 \mathrm{~ns}$ for our tests.

GAL Metastability Report

IFST FIXTURE

The goal of testing a particular device's metastable characteristics is to generate real numbers for the constants k2 and $\Delta 0$. To do this, the device must first be forced into the metastable state. This is done by intentionally violating setup and/or hold times. Once metastable, the output can be observed on an oscilloscope or used to increment an event counter.

Traditional Approach

One approach to characterizing a device's metastable behavior employs a test fixture similar to that shown in Figure 3a. In such a fixture, data to the device includes a "jitter band" so that the device sees changing data as it is clocked. The DUT output is fed to a window comparator to determine when
it is in the metastable region (between VIL max and VIH min) The comparator output can be sampled periodically and used to increment an event counter.

This method of testing, though it directly yields MTBF numbers, has some drawbacks. The first is that it does not distinguish between the different types of metastable behavior (runt pulse, oscillation, slow rise/fall time, delayed transition), and it may have difficulty detecting every type. Also, the registers used in the detector circuit itself may become metastable, which would adversely affect the results.

A New Approach

The test method used to gather data for this report used the circuit shown in Figure 3b. The tester employed an "infinite precision" variable delay circuit to control clock placement

Figure 2. Typical Failure Frequency Plot

GAL Metastability Report

with respect to data. This arrangement allowed exact worst case placement of the clock, so as to induce metastability with nearly every clock pulse.

Using a digital oscilloscope (Tektronix 11403A) in point accumulate mode, metastable failures were recorded over a lengthy period of time. A hardcopy was then made and the constants empirically obtained (details below).

The oscilloscope approach, being visual in nature, enables the designer to make educated decisions regarding maximum clock and data rates, as well as the suitability of using the output to drive other circuitry. The five minute sample period used in our tests contained approximately 750 million failures. Much longer sample periods were evaluated, but they provided no perceptible gain in usable information.

A slight disadvantage of this approach is that extracting k2 and $\Delta 0$ values from the hardcopies is not straightfonward. Because each point on the hardcopy can represent any number of actual samples (between one and 1.5 million), one cannot simply count the points at time(t) for the MTBF at that
time (although, in the case of the scattered points, the probability is low that a single isolated point represents more than one sample).

To generate values for k2 and $\Delta \mathrm{o}$, it was necessary to refer to previous metastability studies [1]. By studying the output plots of devices with known constants, certain relationships were established. For example, it was determined that $\Delta 0$ represents the time from the leading edge of the output until the "dot density" starts to decrease measurably. It should be noted that $\Delta 0$ in previous studies included device propagation delays, whereas in our test it does not.

The time from $\Delta 0$ until the dot density equals zero was defined to be the "time to metastable release" or simply time(r). The relationship between $\mathbf{k 2}$ and time(r) is given below in (5), and shown graphically in Figure 4. Recall that $M A X=2.5 \times 10^{4} 6$ and $a=\log (e)$.

$$
\begin{equation*}
k 2=\log (\text { MAX }) /(\operatorname{time}(r) \cdot a)=14.73 / \operatorname{time}(r) \tag{5}
\end{equation*}
$$

Figure 3a. Traditional Metastability Test Circuit

GAL Metastability Report

INTERPRETING THE RESULTS

In addition to examining $\mathrm{E}^{2} \mathrm{CMOS}$ GAL devices, this study also tested several bipolar PAL devices as well as other CMOS PLDs. To insure that the results of this study would be relevant, all necessary precautions were observed: the devices were of recent vintage and were acquired blindly through distributors; multiple samples of each device were tested and the results combined; all devices had either fixed 16R8 architectures or were configured to emulate the 16R8 architecture; the devices were programmed from the same JEDEC fuse map file (the source equations and the JEDEC fuse map file are presented in Listing 1).

Plots 1 through 6 on the following pages are some of the oscilloscope plots generated for this study. The top waveform in each plot is the clock signal, the middle trace is the metastable data output and the bottom trace is the histogram of the accumulated samples between 1 V and 2 V of the output signal. The horizontal scale is 2 ns per division, so the exact clock to output time of the metastable output condition can be read directly. The vertical scale is 2 V per division for the top trace, and IV per division for the middle trace.

The middle waveform in each plot is the metastable device output which is the only signal captured in point accumulate mode. In every case, the output signal plot shows two stable levels after the transition. This is a direct result of the "indecision" caused by metastability; on some cycles the output settled to a high level, while on others it settled to a low level.

Plot 4 shows the response of a bipolar PAL16R8-7. Notice the very well defined runt pulse (this correlates with previous data
gathered on similar devices by the manufacturer [1]). The absence of a secondary trace along ground indicates that the output always starts to transition to a high level, even when it finally settles to a low level. This characteristic makes the device unsuitable for use in control path applications (when metastability is possible). All of the bipolar parts examined showed similar results.

Plot 1, 2 and 3 are from GAL16V8B-7, GAL22V10B-10 and GAL6001-30, respectively. Aside from the fact that setup time violations may cause $t_{c o}$ to increase by a small (but random) amount, the outputs are very clean and well behaved. The fact that there are no runt pulses or other anomalies is extremely significant, as the GAL6001 not only allows asynchronous clocking, but encourages that activity. Although GAL6001 is a much slower device as compared to GAL16V8 and GAL22V10, the similar metastable characteristics of the GAL6001 to the much faster GAL devices indicate that the inherent metastable characteristics of all the GAL devices have consistently desirable characteristics across all speed grades. Comparing Plot 1, 2 and 3 with Plot 4 and 5 shows that characteristics of the GAL devices are superior to those of bipolar PLDs. Plot 6 illustrates metastable characteristics of the TTL flip-flop (TISN74AS74).

For reference purposes, Plots 7 through 9 are included. Plot 7 shows a normal (ie. non-metastable) GAL16V8B-7 transition, and Plot 8 a normal PAL16R8-7 transition. Plot 9 is the normal transition of the TTL flip-flop (TI SN74AS74). For consistency, only rising edges have been shown. Our tests also covered falling edges which, in general, were interesting but did not provide any additional information.

Figure 4. K2 Constant

For a more quantitative look at the phenomenon of metastability, refer to the table beneath each plot. These tables list the measured values of the constants $\Delta 0$ and $k 2$ for the device whose plot is shown, and for similar devices. Recall that large $k 2$ and small $\Delta 0$ values are desirable. The numbers in the tables correlate closely with the results of earlier tests [1,5], confirming the validity of our test method.

Since all current GAL devices possess very similar register and output buffer circuitry, and all are fabricated using the same basic process, the data shown in Table 1 for the GAL16V8 is considered applicable to all devices and speed grades in the GAL family.

USING THE RESULTS

If a register enters the metastable state in a system, then data was obviously unstable as the register was being clocked. The argument over which data should have been captured (old or new) is academic as the register will randomly pick one or the other. Signals in most asynchronous systems are active for more than one clock cycle, so if they are missed initially, they could be captured on a subsequent clock cycle.

It is the task of the state machine designer to take adequate precautions against metastability causing illegal states to be entered. One way to do this is by using "gray codes" when ordering states. Gray code state equations allow only one state bit to change during a state transition. Thus, the worst metastability could do would be to delay a state transition by one clock cycle. If more than one bit were allowed to change, the outcome would be purely random, and probably illegal. Figure 5 shows examples of both cases.

Other solutions are to externally (or internally) synchronize the asynchronous signals, or to increase cycle times to allow time for metastable outputs to settle. An example of the latter solution is given below.

It is worth noting at this point that state machines (synchronous or asynchronous) can fail for reasons other than metastability. A not insignificant component of a PLD's specified setup time is directly attributable to internal data skewing [2]. Data skewing is the inevitable result of differing signal path lengths, loading conditions, and gate delays. Stated another way, each input to output path has its own set of actual AC specifications. If insufficient setup time has passed, different "versions" of the same data may be present at the inputs of different registers as they are clocked. A good example of this is:

```
Output_Pin19 := Input_Pin2;
Output_Pin15 := !lnput_Pin2;
```

If clocked at precisely the right moment after an input transition, one register will capture old data while the other captures new data, resulting in a system failure. This condi-
tion, though also the result of a setup time violation, should not be confused with metastability (the "incorrect" data that is captured has normal output characteristics); it is, pure and simply, the result of a violation of specifications.

Example

To determine the maximum clock rate (given an acceptable error rate) that a particular device will allow in an asynchronous environment, equation (4) is used. For example, the system shown in Figure 6 utilizes a 9600 baud (bits/sec) asynchronous data stream. The system clock period is tCO + tPD $+\mathrm{tSU}+\Delta$. For one failure per year:

$$
3.2 \times 10-8=[(1 \times 10-7)(1 /(\Delta+22))(9600)] e^{-4(4.44))}
$$

Solving for Δ yields $\Delta=2.22 n s$, or about $2 n s$, for a cycle time of 24 ns . Referring back to Plot 1 , the additional delay of 2 ns intuitively makes sense. Remember, in terms of setup and hold time violations, the oscilloscope plots were made under worst case failure conditions; the scattered dots could represent MTBFs of days, years, or even millenniums in a typical asynchronous environment.

Due to the extremely quick metastable settling times of GAL devices, a relatively small increase in the cycle time will produce a dramatic improvement in reliability.

BIBLIOGRAPHY

1. D.M.Tavana (MMI), "Metastability - A study of the Anomalous Behavior of Synchronizer Circuits," in: Programmable Array Logic Handbook, Monolithic Memories Inc., 1986, pp 11-13-11-16.
2. K.Rubin (Force Computers), "Metastability Testing in PALs," Wescon/87 Conference Record (San Francisco, November 17-19, 1987). Los Angeles: Electronics Conventions Management, Inc, 1987, pp 16/1 1-10.
3. K.Nootbaar (Applied Microcircuits Corp.), "Design, Testing, and Application of a Metastable Hardened Flip-Flop," ibid., pp 16/2 1-9.
4. J.Birkner (MMI), "Understanding Metastability," ibid., pp 16/3 1-3.
5. R.K.Breuninger, K.Frank, "Metastable Characteristics of Texas Instruments Advanced Bipolar Logic Families," application note SDAA004, Texas Instruments, 1985.

GAL Metastability Report

Figure 5.

If metastability occurs while transitioning from 01, every state is a possible next state.

GRAY CODE STATE ORDERING

Figure 6.

```
MODULE metastable
TITLE' 'Metastable Test
Pattern'
uOO Device 'P16R8';
d PIN 2;
q1,q2 PIN 12,19;
    EQUATIONS
q1 := d;
q2 := d;
    End metastable
```

JEDEC file for: P16R8
Metastability Test Pattern*
QP20* QF2048* F0*
L0000 1011111111111111111111111111111*
L1792 101111111111111111111111111111*
C07F4*

```
q1 := d;
q2 := d;
End metastable
```

Listing 1a. Source equations
Listing 1b. JEDEC file

Plot 1. GAL16V8B-7 Metastable Output

Part \#	Manufacturer	$\Delta 0$ (ns)	k2 (1/ns ${ }^{2}$)
GAL16V8B-7	Lattice	.44	5.0

Plot 2. GAL22V10B-10 Metastable Output

Part \#	Manufacturer	$\Delta 0(\mathrm{~ns})$	k2 $\left(1 / \mathrm{ns}^{2}\right)$
GAL22V10B-10	Lattice	.51	5.2

GAL Metastability Report

Plot 3. GAL6001-30 Metastable Output

Part \#	Manufacturer	$\Delta 0(\mathbf{n s})$	k2 (1/ns $\left.{ }^{2}\right)$
GAL6001-30	Lattice	.22	7.3

GAL Metastability Report

Plot 4. PAL16R8-7 Metastable Output

Part \#	Manufacturer	$\Delta 0$ (ns)	k2 (1/ns $\left.{ }^{2}\right)$
PAL16R8-7	AMD	1.2	2.5

2ns/div

Plot 5. TIBPAL16R6-7 Metastable Output

Part \#	Manufacturer	$\Delta 0$ (ns)	k2 (1/ns $\left.{ }^{2}\right)$
TIBPAL16R6-7	TI	1.5	1.5

GAL Metastability Report

Plot 6. SN74AS74 Metastable Output

Part \#	Manufacturer	$\Delta 0(\mathrm{~ns})$	k2 (1/ns $\left.{ }^{2}\right)$
SN74AS74	TI	.91	3.5

Plot 7. Normal GAL16V8B-7 Transition

GAL Metastability Report

Plot 8. Normal PAL16R8-7 Transition

GAL Metastability Report

Plot 9. Normal SN74AS74 Transition

Notes

Latch-up Protection

INTRODUCTION

The Lattice GAL family has been developed using a highperformance $\mathrm{E}^{2} \mathrm{CMOS}$ process. CMOS processing was chosen for the GAL family to provide maximum AC performance with minimal power consumption. A drawback common to all CMOS technologies is the destructive agent, latch-up.

This brief defines the phenomenon of latch-up, how it manifests itself, and what techniques have been used to control it. Also described are three device features employed in the GAL family to eliminate the occurrence of latch-up as well as the results of an intensive investigation conducted to reveal the GAL family's tolerance to latchup.

Latch-up is destructive bipolar device action that can potentially occur in any CMOS processed device. It is characterized by extreme runaway supply current and consequential smoking plastic packages. Latch-up is peculiar to CMOS technology, which integrates both P and N channel transistors on one chip.

In the doping profile of a CMOS inverter, parasitic bipolar (PNPN) silicon-controlled-rectifier (SCR) structures are formed. Figure 1 shows the process cross section of a CMOS inverter, as well as the bipolar components to the parasitic SCR structure. In steady-state conditions, the SCR structure remains off. Destruction results when stray current injects in to the base of either Q_{1} or Q_{2} in Figure 1. The current is amplified with regenerative feedback
(assuming that the beta product of Q_{1} and Q_{2} is greater than unity), driving both Q_{1} and Q_{2} into saturation and effectively turning on the SCR structure between the device supply and ground. With the parasitic SCR on, the CMOS inverter quickly becomes a nonrecoverable short circuit; metal trace lines melt and the device becomes permanently damaged.

CAUSES OF LATCH-UP

It has been explained that parasitic bipolar SCR structures are inherent in CMOS processing. If triggered, the SCR forms a very low-impedance path from the device supply to the substrate, resulting in the destructive event. Two conditions are necessary for the SCR to turn on: The beta product of Q_{1} and Q_{2} must be greater than unity, which, although minimized, is usually the case; and a trigger current must be present. The cause of latch-up is best understood by examining the mechanisms that produce the initial injection current to trigger the SCR network. Figure 2 is a schematic of the parasitic bipolar network present in a CMOS inverter, where node " b " is the inverter output. It can be seen that two events might trigger latchup: 1) the inverter output could overshoot the device supply, thereby turning on Q_{3} and injecting current directly into the base of Q_{2}; and 2) the inverter output could undershoot the device ground, turning on Q_{2} immediately. However, a third condition could also trigger latch-up; if the supply voltage to the $\mathrm{P}+$ diffusion were to rise more quickly than the N-well bias, Q_{1} could turn on. Within the device circuitry, overshoot and undershoot can be controlled by design. A problem area exists at the device

Figure 1. CMOS Inverter Cross-Section

Latch-up Protection

inputs, outputs and I/Os because external conditions are not always perfect. Powering up can also be a potential problem because of unknown bias conditions that may arise.

With CMOS processing the possibility of latch-up is always present. The major causes of latch-up are understood and it is clear that if CMOS is to be used, solutions to latchup will have to be created. As the technology evolves, solutions to latch-up are becoming more creative. Two of the more straightforward solutions are presented here.

One direct way to reduce the threat of latch-up is to inhibit \mathbf{Q}_{2} (Figure 1) fromturningon. This has been accomplished by grounding the substrate and reducing the magnitude of Rsub through the use of wafers with a highly conductive epitaxial layer. While the technique is successful, the wafers are more expensive to manufacture, due to the extra processing required to form the epitaxial layers.

The extensive use of "guard rings" helps to collect stray currents which may inadvertently trigger an SCR structure. A disadvantage to heavy use of guard rings is the constraints placed on circuit design and topological layout, and the resulting increase in die size and cost.

THE LATCH-LOCK APPROACH

The intent of the GAL family was to implement costeffective solutions to each major cause of latch-up. The goal was met through three device features.

The most susceptible areas for latch-up are the device inputs, outputs and I/Os. Extreme externally applied voltages may cause a $\mathrm{P}+\mathrm{N}$ junction to forward-bias, leading to latch-up. The inputs, by design, are safe; but outputs and I/Os present a danger.

Figure 2. Parasitic SCR Schematic

To prevent latch-up by large positive swings on the device outputs or I/O pins, NMOS output drivers were used. This eliminates the possibility of turning on \mathbf{Q}_{3} (Figure 2) with an output bias in excess of the device supply voltage. Figure 3 contains the effective NMOS output driver and its switching characteristics. Note that the output does not fully reach the supply voltage, but still provides adequate V_{OH} margin for TTL compatibility.

To prevent negative swings on device output and I/O pins from forward-biasing the base-emitter junction of Q_{2}, a substrate-bias generator was employed. By producing a $\mathrm{V}_{\text {ato }}$ of approximately -2.5 v , undershoot margin is increased to about -3 V .

To insure that no undesired bias conditions occur with $\mathrm{P}+$ diffusions, Lattice Semiconductor has developed proprietary Latch-Lock power-up circuitry, illustrated in Figure 4. In short, the drain of all \mathbf{P} channel devices normally connected to the device supply is now connected to an alternate supply that powers up after the device N wells have been biased and the substrate has reached its negative clamp value. This prevents any hazardous bias conditions from developing in the power-up sequence. After power-up is complete, the Latch-Lock circuitry becomes dormant until a full power-down has occurred; this eliminates the chance of an unwanted P channel power-down during device operation.

To determine the amount of latch-up immunity achieved with the three device features utilized in the GAL family, an intensive investigation was carried out. Each step was

Figure 3. NMOS Output Driver

Latch-up Protection

conducted at 25° and $100^{\circ} \mathrm{C}$; inputs, outputs, and I/Os were sequentially forced to -8 V and +12 V while the device underwent fast and slow power-ups; devices were repeatedly "hot socket" switched with up to 7.0V.

Even under the extreme conditions specified, no instance of latch-up occurred. In an attempt to provoke latch-up, \pm 50 mA was forced into each output and I/O pin. The device
output drivers were damaged in the battle, and still latchup was not induced.

Based on the data, it is evident that the GAL family is completely immune to latch-up, even when subjected to a wide variety of extreme conditions, including current at inputs, outputs, and I/Os, power-supply rise time, hotsocket power-up and temperature.

Figure 4. Latch-Lock Power-Up Circuitry

Notes

Hidden Costs in PLD Usage

While the purchase price of a programmable logic device is an important consideration in identifying the most costeffective solution for a system design, it is clearly not the only criterion. Hidden costs attributable to product testing, yield fallout, inventory management, and other factors can dramatically impact the final cost of using a PLD.

This brief investigates the overhead associated with PLD usage and the advantages of testable and reprogrammable E^{2} CMOS GAL devices overone-time-programmable PLDs.

The GAL family of programmable logic devices is manufactured on a state-of-the art $\mathrm{E}^{2} \mathrm{CMOS}$ process that not only provides a better speed-power product than the best bipolar devices, but offers an advantage unique among PLD manufacturers: guaranteed programming and post-programming yields of 100%.

The 100%-yield guarantee is the culmination of years of Lattice Semiconductor's circuit-design and manufacturing experience applied to the GAL device. The only way to be able to make this 100% yield statement - and to supply product that actually meets the 100% criterion-is to fully test all functions of the device, prior to shipment.

The electrically erasable (EE) matrix, unlike previous PLD matrix technologies (bipolar fuse-link and UV-erasable PROM), permits full testing of the programmability and reprogrammability of each and every matrix cell. The ability to pattern the actual matrix is extremely significant, since it also allows Lattice to test the functionality of each of the Macrocell logic blocks, under various worst-case configurations. This test approach is referred to at Lattice as 'Actual Test'. Unlike other PLD manufacturers' approaches, which include imprecise correlations, simulations, test rows, and phantom arrays, Actual Test conclusively verifies AC and DC performance of every cell in every GAL device.

ELIMINATES INCOMING QA

A consequence of Actual Test is that GAL devices do not require the typical incoming Quality Assurance testing that traditional fuse-link bipolar PLDs require. As such, the cost savings of using GAL devices begins the moment the parts arrive, since the average cost of an incoming QA operationhardware, software development and maintenance, and handling-is approximately 7% of the raw device cost. Moreover, GAL devices become the optimal choice for implementation of Just-In-Time orDock-To-Stock programs, since they eliminate the expense and time required by the incoming inspection process.

Still, a number of users require that all devices undergo incoming QA. In those cases, the use of GAL devices still simplifies the issue. A single generic test program can be used to test all configurations of the $\mathrm{E}^{2} \mathrm{CMOS}$-based GAL device. The expense of generating and maintaining a test program for every architecture (16L8, 16R4, 10P8, and so on) is eliminated with Generic Array Logic.

Since the QA test for fuse-link PLDs, by its nature, requires the destructive patterning of the fuse array, QA testing of bipolar PAL devices can only be done through a sample plan. At best, a sample plan can provide a crude estimate of fuse-link yield loss; moreover, sampled devices cannot be erased and must be subsequently thrown away. GAL devices, utilizing the $\mathrm{E}^{2} \mathrm{CMOS}$ process can be patterned and erased at will, allowing 100\% QA of all specifications and configurations. And, the devices can, of course, be erased to allow full reuse of the sample units in manufacturing.

Hidden Costs in PLD Usage

SIMPLIFIED INVENTORY MANAGEMENT

The generic architecture and high performance of the GAL devices allow two basic devices-the 20-pin GAL16V8 and 24-pin GAL20V8-to directly replace approximately 70\% of PLD device types currently available, including 100% of the most popular types ('L8,' 'R8,' 'R6,' and 'R4') and a sizable portion of the FPLA and EPLD devices. The obvious benefit of using GAL devices is a substantial reduction in the number of part types that need be stocked (Figure 1).

Inventory management of dozens of speed-power options and device architectures is a painful process. The ideal cost of managing a device inventory adds some 2% of direct overhead; the real cost can be significantly greater, due to the risk that a shortage, 'outage,' or obsolete stock condition will exist. Improper planning could result in a shutdown of the assembly line. The generic architecture allows the GAL device to serve as insurance whenever needed to meet an immediate shortfall. The yields, at 100%, allow full planning confidence that the problem is solved.

Disposition of rejects is another inventory-management issue. The raw cost of the rejects themselves (ata2\% to 5\% fallout rate) is compounded by the associated paperwork of obtaining a replacement or credit for the bad devices. Studies show that every time a buyer or purchasing agent picks up the phone or generates a debit memo, some $\$ 30$ to $\$ 50$ is spent. Follow-up activity - 2 or 3 calls or letterscompounds the expense. Meanwhile, the manufacturing inventory is short of devices. What's more, carrying additional 'safety-stock' as insurance against a temporary shortage results in a higher inventory-carrying cost.

100\% YIELDS REDUCE SYSTEM COST

Perfect yields, as provided through Actual Test, allow the manufacturing environment to run in a fully predictable manner. This allows purchasing and production control to accurately schedule all activities and product for system build. Just-In-Time material-requisition systems assume that the material will arrive on time, in the exact quantity necessary. With GAL devices, the source product inventory can be allocated for programming to various patterns with full confidence that the final patterned devices will be in the quantity and of the quality desired.

A rule of thumb, commonly known as the 'Factor of Ten Rule' (Table 1), details the cost of a failing unit throughout the manufacturing process. The point is that unit cost is not nearly as important as its contribution to subsequent costs (or savings). The Rule basically states that the cost of detecting and replacing a defective device increases by an order of magnitude for each subsequent step of the manufacturing process.

COST* *		MULTIPLIER	OPERATION		
$\$$	5.00	X $10 X$	Raw COst of Device Cost of Detecting and Repairing a Board Failure		
$\$$	50.00	500.00	100 X		Cost of Detecting and Repairing a
:---					
System Failure					
Cost of Repairing a Field Failure					

Each successive operation results in 10 times the cost to detect the failing device. $\$ 5.00$ device cost assumed - use your actual cost and a $10 \times$ multiplier to obtain actual numbers.
Table 1: Factor of Ten Rule
It is extremely important to recognize that the additional difficulty and cost of using traditional PLD s has implications far beyond what the observed programming yield fallout portends. The hidden costs, time and expense aggravation of board failures ($10 x$ device cost to detect and repair), system failures (100x device cost), and the potential for field failures far outweigh the simple 2% to 5% yield losses observed on a programming fixture.

Figure 2 illustrates the differences between traditional PAL device yield loss and the 100% yields of the GAL devices. Notice that even operator errors and engineering pattern revisions are recoverable with GAL devices, which can be instantly erased and reprogrammed to the proper architecture and logic pattern.

TRADTIONAL PLD APPROACH

GAL APPROACH

Diagram 2: Yield Loss Comparison

Hidden Costs in PLD Usage

In a typical manufacturing environment, device programming hardware patterns the array, and assuming the engineer has provided test vectors, the hardware performs a basic (slow) functional test of the device. Yield losses at these two operations average 2\% to 5\% and 1\% to 2%, respectively.

What is not tested adequately at the PAL programming operation is the effect of partially programmed fuses that result in degraded AC performance or marginal reliability of the device. These failures are caught at board test and/or after board burn-in. Typical bipolar functional and AC parametric failure rates range between 0.5% and 2% for all manufacturers of fuse-link PAL devices. Even if one assumes the minimum failure rate of 0.5%, the system failure rates are still greatly magnified.

Two mechanisms are used to detect the failures of PAL devices: board test and system test. Using the 'Factor of Ten Rule' and assuming that board test fully screens bad devices (AC fallout), if a conservative device failure rate of 0.5% were observed, the actual parts cost would be:

$$
\begin{aligned}
\text { Acost } & =P \operatorname{cost}+(P \operatorname{cost} * 10 * 0.5 \%) \\
& =P \operatorname{cost}+P \operatorname{cost} * 0.05 \\
& =1.05 * P \operatorname{cost}
\end{aligned}
$$

Performing the screening at the system level, under the same scenario, makes a dramatic difference in the cost of the device:

$$
\begin{aligned}
\text { Acost } & =P \operatorname{cost}+(P \operatorname{cost} * 100 * 0.5 \%) \\
& =P \cos t+P \operatorname{cost} * 0.5 \\
& =1.5 * P \operatorname{cost}
\end{aligned}
$$

These two different cost factors were determined using the
conservative failure rate of 0.5%. Using the GAL device, with its 0\% failure rate, provides instead a cost factor of 1; i.e., no additional cost burden is generated.

The problem caused by PLD failures obviously grows in proportion to the number of devices in a system, since the probability of a failure among a group of PAL devices is higher than that for a single device. Figure 3 plots the probability of a board or system not working, as a function of the number of devices per system, for a variety of device failure rates.

For example, at a unit failure rate of 1.0\%, a system incorporating 30 PAL devices will exhibit a 25% failure rate. That means that 1 out of every 4 systems will have to be reworked, at tremendous cost. The replacement of an average 0.5% of the units in a system results in an actual 8% adder to the hidden device cost.

The difficulty in replacing board failures is compounded by the removal of soldered units. It is quite easy to destroy a board with the removal and replacement of a defective device.

Systems that fail in the field are not only the most costly in terms of dollars and cents, but in customer relations, as well. They require responding rapidly and performing repairs in a less-than-ideal environment, withoutthe completetools and supplies available at the factory. Field failures will always occur to some degree. However, the use of GAL devices can help reduce field repair costs when they do occur-even if the failing device is a traditional bipolar PLD-since the generic, erasable nature of GAL devices allows a minimum of field inventory to be carried, to debug systemfailure problems caused by other devices. The panel on the next page provides guidelines for calculating PLD usage costs.

Diagram 3: Probability of System Failures Using Bipolar PLDs

Hidden Costs in PLD Usage

PLD Cost Analysis

The cost of using a PLD goes well beyond simply the raw device cost. Programming and vector-testyields are obvious contributors to higher unit cost. The less-obvious and hidden costs tend to be much more difficult to identify and quantify.

The purpose of the costing example is to provide the basis for your own cost analysis, using your own overhead and yield numbers. Estimates for reasonable ranges of the cost contributors are shown as a guide to using your own numbers.

The explanation for each of the contributors to the device cost multiplier follow the figure. These cost multipliers include the overhead for each operation, and as a result, are higher than the observed costs.

The example shown is based on actual data from a 100,000-piece-per-year user of traditional bipolar PLDs. Theenvironmentisatypical, high-volume, quality-controlled one. The GAL device checks in at 1.09 times the normalized cost, while the actual cost of using the bipolar PLD is 1.66 times-almost 40\% higher.

Hidden Costs in PLD Usage

1
 Device Cost is normalized to unity so that the raw purchase price has no bearing on the other cost

 factors.2 Purchasing Multiple Device Types instead of the single GAL device adds to overhead in the purchasing and receiving departments. This contributes approximately 2% as the availability, quality, and quantity issues are resolved with each order. The GAL approach reduces this number to 1.25% with inventory simplification.

3 Prototype Lab Inventory and usage typically adds 5% to maintain experimentation stock of multiple device types for board debug. The GAL device multiplier is 1%, since the device can be reused over and over again.

4 Incoming QA Test and programs cost more than may be immediately apparent, with a 7% adder. The generation and maintenance of the software and hardware for the dozens of bipolar devices is considerably more expensive than the single GAL device software required. No sample-program waste is induced. Only the aspects of handling are required for GAL devices, resulting in a reduction to 1% (or 0%, if you eliminate the incoming QA operation entirely).

5
Inventory Management includes shelf space, safety stock, depreciation, obsolete stock write-off and personnel to maintain adequate control of the units. A typical overhead is 10%. The simplified GAL operation involves no safety or obsolete stock and a minimum of device types, adding a maximum 2% to 3% to overhead.

6
Programming and Test includes all handling and hardware expenses. Inventory issuance, counting and returns, handling during the programitest operation, labels, and paperwork contribute to a 12\% multiplier. The 100% yielding, generic GAL approach reduces the problem to 4%.

7

Programming Yield Fallout is directly observed as bad units. A typical bipolar range is 1% to 4%. GAL devices have 0\% yield fallout-guaranteed.

8
Functional Yield Fallout is detected by the device programmer immediately after programming, through the use of test vectors, and can average 1\% to 3\%. GAL devices guarantee 0% functional fallout. It should be noted that using test vectors does not screen out inadequate for AC performance, which will be manifested as a board failure.

9
Reject Disposition overhead runs 5\% to obtain replacements and credits forfuse-link devices. Zero rejects with GAL devices eliminates costs associated with reject disposition. Notice that the cumulative multiplier for only the program/test/reject of fuse-link devices is 1.10 , compared with GAL devices' 1.00 multiplier.

10Board-Level Failures are typically where AC failures are detected. The 'Factor of Ten Rule' exacerbates the impact of the observed 1% to 4% fallout to an overall cost impact of 7% to 10\%. GAL devices exhibit no board-level fallout (and therefore no cost impact). Board throughput is also a major cost contributor, with typical reworks of 20% to 30% a consequence of PAL quality levels.

11System-Level Failures add 8\% to 15\% to the PLD cost, taking into consideration a 100x 'Factor of Ten Rule' multiple. GAL devices again provide 100\% yields, and therefore exhibit no system-level-failure cost impact

Notes
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
GAL20RA10 Design Example 7-1
GAL26CV12 Design Example 7-3
The GAL18V10 Advantage 7-5
Driving CMOS Inputs with GAL Devices 7-8
GAL20XV10B Design Example 7-9
GAL6002B Design Example 7-13
Section 8: Article Reprints
Section 9: General Information

Lattice

September 10, 1990

GAL20RA10
 Design Example

Programmable Clocks Improve System Performance

Introduction

There is a growing need for innovative design techniques to increase the system throughput using the currently available Programmable Logic Devices (PLDs). One way of improving the system throughput is to make use of Lattice's new GAL20RA10-15. By taking advantage of the unique architecture featuring an individually controlled clock on each of the Output Logic Macro Cell (OLMC) registers, the resolution of the control signals generated by a GAL20RA10-based state machine can be doubled. The design example shown in this Application Brief takes advantage of this feature in a Dynamic RAM (DRAM) control logic design.

Design Example

The most common control signals generated by DRAM control logic are the Row Address Strobe (RAS) and the Column Address Strobe (CAS). The timing requirements of these control signals are strictly governed by the DRAM's timing requirements. Based on the DRAM's timing requirement, Figure 1a shows how the RAS and CAS control signals are generated from a standard PLD device which has only one dedicated active high clock signal driving all the output registers. The basic constraint of the high-to-low transition of RAS signal to the high-to-low transition of CAS signal for the 100 ns DRAM is 15 ns minimum (row address hold time after RAS). As illustrated in Figure 1b, the activation of CAS signal is unnecessarily delayed because of the

Figure 1a.
Standard PLD design with a single active-high clock

* Only 15 ns needed for the row address hold time

Figure 1b.
Control signal generation with a single active-high clock
limitations of the standard PLD's single active-high clock driving all the output registers. This limitation is not a reflection of the DRAM's requirements but rather a limitation of the standard PLD.

Design engineers can improve this design method by using the GAL20RA10's independent OLMC clocks. Figure $2 b$ shows the RAS and CAS signals being driven by both the rising and falling edges of the clock signal. This technique can be implemented in the GAL20RA10 by simply feeding the complement of the clock input from the RAS control register to the CAS control register, as shown in figure 2a.

Summary

The individual clock control on the OLMC is one of several different individual product-term controlled features which are available on the GAL20RA10. Other individual product-term controlled signals of the GAL20RA10 include the Asynchronous Preset (AP) and Asynchronous Reset (AR). These signals can also be used, similar to the clock signal, to enhance system performance. In addition to these features, the GAL20RA10 has an external preload (PL) capability to improve the control over the register contents - especially in state machine design. The full GAL20RA10 macrocell architecture is shown below, in figure 3.

Figure 2a.
Standard PLD design with dual-polarity clocks

* Only 15 ns needed for the row address hold time

Figure 2b.
Control signal generation using a GAL20RA10

Figure 3.
GAL20RA10 Macrocell

Lattice

 June 12, 1991
GAL26CV12 Design Example

Programmable Frequency Divider

Introduction

When designing with standard PLDs such as the GAL20V8 and GAL22V10, system design engineers are sometimes faced with the situation where a few extra product terms or extra macrocells are required to implement the design. These situations usually do not warrant adding a second standard PLD. The ideal solution is to find a way to add these extra product terms and/or ouputs while still keeping the design to one device. The design example given in this application brief illustrates one example of how the extra outputs of the GAL26CV12 can solve the common problem of needing additional outputs. The design will show a programmable frequency divider that uses a 10-bit counter as a base and can therefore divide the incoming frequency by up to 1024.

Design Example

The design requirements for the programmable logic device are 10 macrocells for the internal counter, one macrocell for the programmable output frequency, 4 inputs for the frequency selection and one input clock. Figure 1 below shows the simple block diagram of the programmable frequency divider.

Figure 1. Block Diagram of Programmable Frequency Divider
This frequency divider implementation, using D type registers, requires more than 8 product terms for the two most significant counter bits on the 10-bit counter. The programmable frequency output also requires more than 8 products terms. Therefore, even two GAL2OV8 devices (or other standard PAL devices) would not work for this design since they only have a maximum of 8 product terms per output. Since a total of 11 macrocells is required to
implement the counter and the programmable frequency output, even a 22V10 device would not work.

A single GAL26CV12 device satisfies both the product term requirements and the ouput macrocell requirements for the example design. The equations and the output pin assignments to implement the 10-bit programmable frequency divider are given below. Notice that the outputs that require more than 8 product terms are assigned to the inner-most pins of the device.

QO.D = (100); -PIN 27
$\begin{aligned} \text { Q1.D } & =(\text { Q0 \& IQ1 } \\ \# & \text { \# IQ0 \& Q1 }) ; \end{aligned} \quad \text { "PIN } 26$
$\begin{gathered} \text { Q2.D }=(\text { Q0 \& Q1 \& IQ2 } \\ \text { \# 1Q1 \& Q2 } \\ \text { \# 100 \& Q2); } \end{gathered}$ $\text { "PIN } 25$
Q3.D $=($ Q0 \& Q1 \& Q2 \& ! Q3 \# !Q2 \& Q3 \# !Q1 \& Q3 \# !Q0 \& Q3); \quad "PIN 23
Q4.D $=($ Q0 \& Q1 \& Q2 \& Q3 \& ! Q4 \# !Q3 \& Q4 \# !Q2 \& Q4 \# !Q1 \& Q4 \# IQ0 \& Q4); \quad
Q5.D = (Q0 \& Q1 \& Q2 \& Q3 \& Q4 \& !Q5 \# IQ4 \& Q5 \# IQ3 \& Q5 \# IQ2 \& Q5 \# IQ1 \& Q5 \# IQ0 \& Q5); \quad
```Q6.D = ( Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & !Q6 # IQ5& Q6 # IO4& Q6 # !Q3& Q6 # IQ2 & Q6 # IQ1& Q6 # IQ0& Q6 ); "PIN 17```
```Q7.D =( Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & IQ7 # lQ6& Q7 # IQ5& Q7 # !Q4& Q7 # !Q3&Q7 # !Q2& Q7 # IQ1&Q7 # IQ0 & Q7); "PIN 18```

```
Q8.D = ( Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & Q7 & IQ8
    # 1Q7 & Q8
    # IQ6& Q8
    # 105 & Q8
    # IO4& Q8
    # !03&Q8
    # IQ2 & Q8
    # IQ1 & Q8
    # 100 &Q8 ); "PIN 19
Q9.D =( Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & Q7 & Q8 & !Q9
    # 108&Q9
    # !Q7 & Q9
    # 106 & Q9
    # !Q5 & Q9
    # !Q4 & Q9
    # !Q3 & Q9
    # !Q2 & Q9
    # IQ1 & Q9
    # !Q0 & Q9 ); "PIN 20
FDIV =( SELO & !SEL1 & ISEL2 & SEL3 & Q9
    # ISELO & ISEL1 & !SEL2 & SEL3 & Q8
    # SELO & SEL1 & SEL2 & !SEL3 & Q7
    # ISELO& SEL1 & SEL2 & ISEL3 & Q6
    # SELO & ISEL1 & SEL2 & ISEL3 & Q5
    # !SELO & ISEL1 & SEL2 & !SEL3 & Q4
    # SELO & SEL1 & ISEL2 & ISEL3 & Q3
    # !SELO & SEL1 & !SEL2 & !SEL3 & Q2
    # SELO & !SEL1 & ISEL2 & !SEL3 & Q1
    # !SELO & !SEL1 & !SEL2 & !SEL3 & QO ); "PIN 22
```

 \# IQ2 \& Q6
 \# !Q1 \& Q6
 \# IQ0 \& Q6); "PIN 17
 Q7.D $=($ Q0 \& Q1 \& Q2 \& Q3 \& Q4 \& Q5 \& Q6 \& IQ7
106 \& Q7
\# !Q5 \& Q7
!Q4 \& 7
\# !Q3\& Q7
\# IQ1 \& Q7
\# ! 0 \& Q 7); "PIN 18

Summary

The GAL26CV12 has a total of 12 output logic macrocells and a product term distribution of 8 terms on the outermost pins to 12 on the innermost pins. It comes in a 28 -pin DIP and PLCC package, with center Vcc and Ground pins on the DIP package. When design engineers are frustrated by the limitations on the number of available product terms, output macrocells, or input pins on standard PLD devices, using the GAL26CV12 is a valuable design alternative. Since the GAL26CV12 can often save the cost of adding a second PLD, the design is simplified while also cutting cost and board space requirements.

Lattice

The GAL18V10 Advantage

Introduction

Although the GAL16V8 is able to replace a number of different standard PLDs, such as the common PAL16L8 and PAL16R8, there are times when the designer needs more flexibility than the standard 20 -pin PLDs offer. Moving the PLD design to the next package size means using a 24 -pin DIP or 28 -pin PLCC package. Often the increase in functionality is out of proportion to the increase in package size.
This application brief describes the most common limitations of a standard PLD and how the GAL18V10's unique architecture allows the designer much greater functionality while maintaining the same 20-pin package. In addition, the architecture of the 18 V 10 is exactly the same as the industry-standard 22V10 device, which means that learning a new device architecture is not necessary.

More Inputs

One of the benefits of Lattice's patterning of the GAL18V10 after the 22V10 device is that the macrocell structure allows for greater flexibility than the common 20-pin PAL-type devices. Whereas the GAL16V8, because of its exact emulation of many PAL devices, must limit the I/O pins that can have feedback or be configured as inputs, the 18 V 10 has no such limitations. Every one of the I/O pins on the GAL18V10 can be configured as registered or combinatorial, has feedback capability, and can be configured as a dedicated input or dynamic I/O pin.

> | GAL16V8 emulation mode |
| :--- |
| Complex Mode (16L8) |
| Simple Mode (16H4, etc.) |

No feedback or input
pins 12, 19
pins 15, 16

More Outputs

As the name suggests, the GAL18V10 has a total of 10 possible outputs. In cases where more than eight outputs are needed on the standard PLD, a GAL18V10 makes an ideal replacement. One demonstration of the additional capability of the GAL18V10 is an eight-bit counter with a carry-out signal. A GAL16V8 or PAL16R8 device can be used to build an eight-bit counter. However to provide a carry-out and/or carry-in signal, more outputs are required. The GAL18V10 fits the bill nicely, since it is a functional superset of the already flexible GAL16V8. Adding an few extra lines of equations in the source file and re-compiling produces a JEDEC file for a totally pin-compatible replacement, but with extra functionality. Other uses for the additional output macrocells include implementing nine or ten bit counters and decoded outputs from eight or nine bit counters. All of these functions could be done in a 22V10 as well (at extra cost), but could not be done in any of the common 20-pin PAL devices, or even in newer devices such as the 85C220, 18CV8, or EP320. Below is an example of two implementations of an eight-bit counter with carry-in and carry-out. While this design fits in one GAL18V10, it requires two different 20-pin PAL devices.

Figure 1. 8-bit Counter with Carry-In and Carry-Out

Reset and Preset

Another benefit of the 22 V 10 nature of the GAL18V10 is the inclusion of Asynchronous Reset and Synchronous Preset of the registers. These dedicated product terms can allow any pin or combination of inputs and/or feedbacks to trigger a global reset or preset to occur. In many other devices this can only be accomplished by using valuable product terms and extra design time to build this capability into the logic for each output. Since each output in these devices has only seven or eight product terms, the addition of the reset/preset logic may make it impossible to fit in the desired logic functions. For example, the eighth output of an eight-bit counter will look something like:

```
Q7 :=( Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & !Q7 "Product Term 1
    # !Q6&Q7
    # !Q5 & Q7
    # !Q4 & Q7
    # !Q3&Q7
    # !Q2&Q7
    # !Q1&Q7
    # !Q0 & Q7 );
    # !Synch_Preset
    " NO MORE PRODUCT TERMS AVAILABLE!
```

To add the capability for a synchronous preset would require the use of an additional product term, which may not be available. This same problem may come up in a complex state machine.
The Asynchronous Reset function cannot even be duplicated in the GAL16V8 or standard PAL devices. The GAL18V10 can be asynchronously reset, therefore simplifying the power-up routine by not requiring a clock cycle to put the device into a known state.

Flexible Output Enable

Again because of its exact emulation of the common 20-pin PAL devices, the GAL16V8 has limited options for placement of the Output Enable control pins. A GAL16V8 with any I/O macrocells configured in registered mode always has pin 11 dedicated to the output enable of
the register. Pin 11 is then no longer available as an input to the array. This means that any combinatorial outputs that need output enable control must use an additional pin, since the output enable control of combinatorial outputs is through a product term. A design with a mix of registered and combinatorial outputs using a GAL16V8 (or 20-pin PAL device) must always use two pins to get output enable control on all outputs. The GAL18V10 has no such restrictions. All output enable control is from a product term, regardless of whether the output is configured as registered or combinatorial.

Saving one pin on a 20-pin device can mean the difference between keeping the design in a 20-pin device and having to go to a larger (and more expensive) device. Figure 2 illustrates how the GAL18V10 can use one less pin than a GAL16V8 or 20-pin PAL device when both registered and combinatorial outputs must be tri-stated.

Figure 2. Output Enable Pin Consolidation

Conclusion

It is clear that standard PAL architectures have definite limitations. Lattice first addressed this issue with the GAL16V8 and GAL20V8 devices, which were able to replace all standard 20 and 24-pin PAL devices. For replacing those same PAL devices, and adding some additional flexibility, the GAL16V8 and GAL20V8 devices are a vast improvement and have become an industry standard in their own right.

However, as the previous examples have pointed out, there are many cases where the old standby programmable logic architectures, and even the first-generation GAL replacements, don't have the flexibility required. For20-pin devices, the GAL18V10 provides complete design flexibility by using the familiar 22V10 architecture, while maintaining the ability to provide a pincompatible superset of the GAL16V8.

Driving CMOS Inputs With GAL Devices

November 1991

Applications Brief \#ABR1025

INTRODUCTION

While Lattice GAL devices do not have a true CMOS output structure, in most cases they are able to reliably drive CMOS inputs. GAL devices are designed with TTLlevel input and output specifications. There are two reasons for this. First, because Lattice GAL devices are as fast, or nearly as fast, as the fastest equivalent bipolar devices, they are often used as bipolar replacements. While a design may initially be done with bipolar devices, often the designer has the opportunity to replace the bipolar device with the lower-power and better tested GAL device. In these cases, the GAL device must drop into the same socket with identical functionality. Second, switching noise is greatly reduced by using TTL-level outputs . Switching an output from Vcc to Ground will generate considerably more noise than switching from a TTL high to a TTL low.

NMOS OUTPUTS

GAL devices use a NMOS output structure, which does not allow the output signal to go to the rail but still gives plenty of margin to TTL specs. The NMOS output structure also completely eliminates any possibility of latch-up.

Under typical conditions of room temperature and nominal Vcc, GAL devices will exhibit a VoH of about 4.2 volts. This value will change somewhat with temperature, Vcc, and normal process variations. Process and temperature are the most important factors, in that they affect the amount of voltage drop between Vcc and the output pin. Therefore the most valuable way to specify a VOH value is to specify the difference between Vcc and Vor. In this manner, a designer with greater control over Vcc can know exactly what the true worst-case VoH value will be. The following tables show the Voн values that can be expected under different conditions.

Commercial and Industrial Devices

Specification	Condition	Min. Value
VOH	$\mathrm{IOH}=3.2 \mathrm{~mA}$	2.4 V
	$\mathrm{IOH}=100 \mu \mathrm{~A}$	Vcc -1.0 V

Military Devices

Specification	Condition	Min. Value
VOH	$\mathrm{IOH}=2.0 \mathrm{~mA}$	2.4 V
	$\mathrm{IOH}=100 \mu \mathrm{~A}$	Vcc -1.2 V

One factor that helps to make it all work is that even though the output voltage or the GAL device will drop with Vcc, the input transition point of the CMOS devices being driven will also drop.

Using pull-up resistors on the outputs of the GAL device will also help to assure proper CMOS output levels. A 10 Kohm pull-up resistor will pull a GAL device's output to the rail. Of course the time required to do so depends on the total capacitance on the the output pin, which includes the I/O capacitance of the GAL device output, the input capacitance of the devices being driven, and the parasitic capacitances on the board.

For further assistance, contact Lattice Applications Engineering at Tel: 1-800-FASTGAL (327-8425) or FAX: (503) 681-3037.

Lattice
 ㅍㅌㅌㅁ

GAL20XV10B Design Example

November 1991
Applications Brief \#ABR1027

Data Block Transfer Address Detector

Introduction

The Exclusive-OR (XOR) gate can efficiently implement arithmetic functions such as counters, adders and decoders. The XOR gate implements arithmetic functions using fewer product terms than the standard sum-of-product PLD's programmable AND, fixed OR array. This is demonstrated by the following logic equation example.

$$
\begin{array}{ll}
\text { \$ - XOR function syntax } & \text { \& - AND function syntax } \\
\text { \# - OR function syntax } & !\text { - INVERT function syntax }
\end{array}
$$

XOR Function

To take full advantage of product term usage in a high speed system design, a high speed device with a built-in XOR function is needed. The Lattice GAL20XV10B fills the need for such a device. The GAL20XV10B achieves a 10ns Tpd while consuming only 90 mA Icc (Max.). The closest competitor's device offers only a Tpd of 30ns at 180 mA lcc. In addition, the generic architecture of the GAL20XV10B gives system designers the ability to configure outputs to any combination of registers, combinatorial, XOR and AND/OR structures.

Design Example

An address counter that uses a comparator to keep track of the block data transfer is a typical application which illustrates the advantages of the GAL20XV10B's XOR architecture. If the starting address and ending address are given, the address counter will take the starting address and counts to the transfer address when the transfer begins. The comparator then compares the counter bits with the ending address. When the counter value equals the ending address, the address comparator issues a transfer complete signal. The following CUPL example source file shows how this function can be implemented using CUPL compiler syntax. Notice that the syntax demonstrates the usage of .OE and .OEMUX to control the AND/OR product term configuration and XOR configuration, respectively.

Conclusion

This design example illustrates the efficient usage of XOR function by implementing the address counter with 11 product terms instead of the 14 product terms required with a standard programmable AND, fixed OR configuration. The bit-wise comparator, implemented with the XOR function, also makes the design clear and understandable, as can be seen from the logic equations. Furthermore, the design is implemented with a fast 10 ns Tpd and a clock frequency which can run as fast as 100 MHz .

GAL20XV10B Design Example

CUPL Example File

Name	APPXV10;
Partno	$00 ;$
Date	$3 / 3 / 92 ;$
Revision	$00 ;$
Designer	B. Leigh;
Company	Lattice;
Assembly	None;
Location	None;
Device	g20xv10;

/**/
/* This CUPL example use the GAL20XV10 to build the */
/* 4-bit up counter with load function and a 4-bit */
/* comparator. This counter implementation takes */
/* advantage of the built-in XOR function of the */
/* GAL20XV10. It also shows the XOR and AND/OR */
/* configuration in CUPL syntax */
/***/
/** Input definition **/

PIN 1	= SYSCLK;	
PIN 2	= SAO;	/* STARTING ADDRESS BITS */
PIN 3	= SA1;	
PIN 4	= SA2;	
PIN 5	= SA3;	
PIN 6	= EAO;	/* ENDING ADDRESS BITS */
PIN 7	= EA1;	
PIN 8	= EA2;	
PIN 9	= EA3;	
PIN 10	= STARTLD;	/* STARTING ADDRESS LOAD */
PIN 11	= OE_COMP;	
PIN 13	= OUT_EN;	

/** Output Definition **/
PIN $23=$! ACO; /* ADDRESS COUNTER BITS */
PIN $22=$! AC1;
PIN $21=$! AC2;
PIN $20=$! AC3;
PIN 19 = !CMPO; /* ADDRESS COMPARE BITS */
PIN 18 = !CMP1;
PIN $17=$!CMP2;
PIN $16=$!CMP3;
PIN 15 = EQUAL; /* EQUALITY COMPARE */
/** Equations **/

```
AC0.D = ISTARTLD & AC0 /** ACO TOGGLE WITH CLOCK **/
    $ STARTLD & SA0; /** LOAD SAO **/
AC0.OEMUX = OUT_EN;
```


GAL20XV10B Design Example

```
AC1.D = !STARTLD & AC0 /** AC1 CNT UP CONDITION **/
    $ !STARTLD & AC1
    # STARTLD & SA1;
/** TOGGLE AC1 **/
/** LOAD SA1 **/
AC1.OEMUX = OUT_EN;
AC2.D = !STARTLD & AC0 & AC1
    $ !STARTLD & AC2
        # STARTLDD & SA2;
/** AC2 CNT UP CONDITION **/
/** TOGGLE AC2 **/
/** LOAD SA2 **/
```

```
AC3.D = !STARTLD & ACO & AC1 & AC2
```

AC3.D = !STARTLD \& ACO \& AC1 \& AC2
\$!STARTLD \& AC3
\$!STARTLD \& AC3
\# STARTLD \& SA3;
\# STARTLD \& SA3;
AC3.OEMUX = OUT_EN;
CMPO = AC0 \$ EA0; /** COMPARE ADDR BITO **/
CMPO.OEMUX = OUT_EN;
CMP1 = AC1 \$ EA1; /** COMPARE ADDR BIT1 **/
CMP1.OEMUX = OUT_EN;
CMP2 = AC2 \$ EA2; /** COMPARE ADDR BIT2 **/
CMP2.OEMUX = OUT_EN;
CMP3 = AC3 \$ EA3; /** COMPARE ADDR BIT3 **/
CMP3.OEMUX = OUT_EN;
EQUAL = !CMPO \& !CMP1 \& !CMP2 \& !CMP3; /** MAGNITUDE COMPARE **/
EQUAL.OE = OE_COMP;

```

Notes GAL6002B Design Example 4 to 1 RS-232 Port Multiplexer

\section*{INTRODUCTION}

The GAL6002B is the most versatile 24-pin PLD available today. Its FPLA architecture offers buried macrocells, D/E registers, programmable clocks and dedicated input pins which can be individually configured as latches or registers. These features combine to provide the designer with an ideal platform on which to build complex state machines and other complex logic functions.

This application note will provide an example of how a GAL6002B might be used in a system. Additionally, it will show how software tools are used to exploit some of the device's unique features. The circuit to be described is a 4-to-1 RS-232 serial port multiplexer (Port MUX). The concept for the circuit arose from the need to replace a mechanical switch used to connect four computers to a high speed laser printer.

The PortMUX application uses every input and output pin, as well as all eight State Logic MacroCells. Other than a single GAL6002B, the only ICs needed are RS-232 line driver/receiver chips and a clock source.

\section*{BASIC RS-232 PROTOCOL}

Tounderstand the operation of the portMUX, it is necessary to have a basic knowledge of RS-232 communications protocol.

Though the RS-232 protocol is standardized, its definition is loose enough to allow liberties to be taken in its implementation. When the port MUX was designed, the assumption was made that communication can take place with only four signals: transmit data, receive data, printer ready/busy, and computer ready/busy. In RS-232 parlance these signals are called TxD, RxD, DTR, and DSR, respectively.

An RS-232 link is digital (bistable) in nature, but the voltages used to represent logic ones and zeros are not TTL level. Instead, -12VDC represents a logic one and +12 VDC represents a logic zero. Another consideration is that the idle or deasserted state of an RS-232 signal is a logic one, although data is transmitted in its "rue" form. A typical single byte transfer can be seen below in Figure 1.


Figure 1. TxD during single byte transfer
A typical RS-232 data transfer between a computer and a printer would proceed as follows:

1 ) The printer, being powered-up and ready to accept data, has its DTR line asserted (logic zero), while its TxD line is idle (logic one). The computer, also powered-up but not yet sending data, is in a similar state: TXD is idle and DSR is asserted.
2) When the computer is ready to send a byte of data, it asserts its TxD line for 1 "bit period." This is called the start bit. A "bit period" is dependent on the data transmission speed ( 300 baud (bits/sec), 9600 baud, etc.) . After the start bit will follow 7 or 8 bits of data, optionally followed by a parity bit, and ending with 1 or 2 stop bits (logic one). Data is transmitted least significant bit first.

Note: Asserted \(=0(+12)\) "Idle" \(=1(-12)\)

\section*{GAL6002B Design Example}

The condition of TxD and DSR after sending a byte of data is the same as before sending it. So, from an electrical perspective, there is no indication whether or not the computer is going to send another byte. If it is going to, it simply does so "when it feels like it."
3) Somewhere in the middle of the transfer, the printer runs out of paper, or its print buffer fills up, or for some other reason it must suspend communications. When this happens, the printer deasserts its DTR line, telling the computer to stop sending data. When the printer is again ready to accept data, it will reassert DTR.

As alluded to in \#2 above, there is no absolute way to tell when the computer is finished sending data. In fact, the computer can be said to have "finished" its transmission after sending only the first byte of a multi-byte transmission. Each subsequent byte transfer can be viewed as an entirely new transaction. Extended periods of time may even elapse between byte transfers if the computer has to do disk access or is interrupted for some reason. Remember, RS232 is an asynchronous communications protocol.

\section*{FUNCTIONAL DESCRIPTION}

The Port MUX has five ports, numbered 0 to 4. Port 0 is connected to the printer, while ports 1 through 4 are connected to the computers. The portMUX merely acts as an intelligent switch; data flows through it unhindered and unaltered. At any given time, there will always be one (and only one) computer connected to the printer.

Four signals per port are switched: TxD, RxD, DTR, and DSR. This arrangement is known to work for connecting IBM-PC compatible computers to an HP LaserJet. The RS-232 specification has no lack of ready/busy signals, so others could be substituted for DTR and DSR if necessary (CTS and RTS, for example). See Figure 2 for a block diagram of the port multiplexer.

Since RS-232 signal levels are not compatible with TTL levels, line driver/receiver circuits are needed to translate. For this project, Maxim MAX235 Driver/Receiver chips were used, though others devices will work as well. Each MAX235IC has five drivers and five receivers; two MAX235 ICs are needed to build the Port MUX.

The multiplexer functions by sequentially scanning the four input ports until data appears at one of them.


Figure 2. Block diagram of Port MUX
Scanning a port involves connecting that port to the printer and waiting for data to flow. If no data appears within a predetermined time period, the period of the system clock (-.25s), the process is repeated at the next port. When data does appear at a port, the port MUX "locks onto" that port and goes into the transmit mode. At the end of the transmission, the port MUX returns to the scan mode.

As mentioned in the discussion of RS-232 protocol, detecting the end of a transmission is non-trivial. To peripheral devices such as printers, the "end of transmission" concept is a fiction - to them, life is one big data transmission. The port MUX, on the other hand, must be able to determine when it is permissible to resume scanning. It should not return to the scan mode before the end of a transmission, and at the same time it must not lock onto a port for an inordinately long time. Both requirements are met by timing how long the computer's TXD line is idle, and returning to the scan mode if TXD is idle for longer than a predetermined time period (5-10 seconds is reasonable).

The data routing logic of the port multiplexer is controlled by two loosely coupled state machines and a status register. The state machines and the status register use the State Logic MacroCells (labeled as state bits S0-S7). The status register determines the operating mode (scan or transmit), the first state machine determines the active port, and the second state machine is used as a timer.

The basis for most state machines is the simple binary counter, with added logic to allowing branching, state skipping, etc. The most efficient way to build a binary counter in the GAL6002B is to configure the registers to emulate T-flip flops. This way, only the conditions that should cause the state bits to change state need to be specified. In the case of simple up counters, there is only one condition when all lower order bits are ones. The equations for a 4-bit up counter are as follows:
```

BO.D = /BO.Q;
BO.E = 1;
Bl.D = /B1.Q;
Bl.E = BO;
B2.D = /B2.Q;
B2.E = B1*BO;
B3.D = /B3.Q;
B3.E = B2*B1*BO;

```

As you can see, counters of any size can be built using only two product terms per bit.

In the following discussions POTx and PODT are TxD and DTR respectively.

\section*{STATUS REGISTER}

Recall that the beginning of a data transfer is signaled by POTx becoming active for one bit period. By using the start bit event to asynchronously set a status register, set = transmit, the operating mode of the port MUX is determined. Once set, the status bit will remain set until a time-out occurs.

The status register is implemented using state bit SO , configured to emulate a T-flip flop with a programmable clock. With such an arrangement, meeting the specified state transition conditions doesn't just allow a transition at the next clock, but actually causes the transition.

There are two situations that must cause the status register to toggle: if it is clear, clear = scan, and data is flowing, or if it is set and a timeout has occurred. The equations for the status register are:
```

SO.D = /SO.Q;
SO.CK = /SO.Q*/POTx
+sO.Q*POTx*PODT*57.Q*56.Q*55.Q*54.Q*53.Q;

```

The same function could have been implemented by "building" a latch from combinational equations, but the approach taken here is more efficient in terms of product term usage and is less prone to functional hazards.

\section*{PRIMARY STATE MACHINE}

The primary state machine directly determines the active port. It is simply a 2 -bit counter with a hold function. The conditions necessary for the counter to increment are that the status register be clear and that PODT be active.

The primary state machine uses state bits S1 and S2 in the D/E configuration to emulate T-flip flops. The equations for S1 and S2 are:
```

Sl.D = /Sl.Q;
Sl.E = PODT*/SO.Q;
S2.D = /S2.Q;
S2.E = PODT*/SO.Q*S1.Q;

```

\section*{TIMER}

The second state machine, a 5-bit counter/timer, will only count while the status register is set and POTx is idle and PODT is active. The counter synchronously resets to zero if these conditions are not met. Thus, if PODT is active and POTx is idle on 31 consecutive OCLK edges, the timer will reach its maximum value, causing the status register to be cleared and the primary state machine to continue counting.

The 5-bit timer uses state bits S4-S7 in the D/E configuration, again emulating T-flip flops. The equations for the timer are:
```

S3.D = /S3.Q*SO.Q*POTx*PODT;
S3.E = 1;
S4.D = /S4.Q*SO.Q*POTx*PODT;
S4.E = S3.Q
+/SO.Q;
S5.D = /S5.Q*SO.Q*POT**PODT;
S5.E = S3.Q*S4.Q
+/SO.Q;
S6.D = /S6.Q*SO.Q*POTx*PODT;
S6.E = S3.Q*S4.Q*S5.Q
+/SO.Q;
S'7.D = /S7.Q*SO.Q*POTx*PODT;
S7.E = S3.Q*S4.Q*S5.Q*S6.Q
+/So.Q;

```

Time-out during a byte transier, though statistically not impossible, is unlikely. If it should occur, however, it is not harmful. Because a time-out simply clears the status register and scanning does not resume until the next OCLK edge, the driving computer still has one OCLK period to finish the byte transfer (plenty of time!), during which time a logic zero on POTx returns the status register to the transmit mode. Thus, it is virtually impossible for a byte of data to be lost.

\section*{GAL6002B Design Example}

If the port MUX should time-out and resume scanning between byte transfers, but before the end of a transmission, and another computer is waiting to use the printer, then that computer will be serviced before the first computer is again granted use of the printer. This would cause the second computer's data to be inserted into the middle of the first computers transmission. This situation, though undesirable, is unavoidable. The good news is that the probability of it happening is very low.

\section*{CONCLUSION}

The Port MUX provides a "real life" example of how the flexibility of the GAL6002B can simplify a complex design. Equally important, this example shows how various software tools are used to access the device's features. Unfortunately, the Port MUX is not a speed critical application. In fact, the GAL6002B's \(15 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}\) is overkill.

Though this example is complex, it still does not push the GAL6002B to its limits. The state machine and data routing equations use only 33 product terms, leaving over 48\% of the AND array free for expansion. The GAL6002B's FPLA architecture allowed 5 product terms to be merged. If this design were implemented using a standard 24-pin PLD, it would take at least two devices to accomplish the task.
Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and IspLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Avoid the Pitfalls of High-Speed Logic Design ..... 8-1
Lattice Fields FPGA ..... 8-7
Learn the Fundamentals of Digital Filter Design. ..... 8-9
Multiclock GAL Doubles Clock Rate ..... 8-16
Section 9: General Information

\title{
Make Sure That Your Turbo-Charged Logic System Works By Paying As Much Attention To Printed-Circuit Board Layout Techniques As To Logic Design Considerations.
}

\title{
Avoid The Pitfalls 0f High-Speed Logic Design
}

Modern high-speed systems demand modern highspeed logic families. Consequently, semiconductor houses have developed such product lines as ACT, FACT, and AS. But these systems also demand that the lay-out of their boards conform with the results of distributed-element theory, otherwise ringing, crosstalk, and other transmission-line phenomena render those systems inoperative. Meeting this second requirement necessitates something more than a new product introduction-it insists on a change in the way logic boards are engineered. The logic-systems designer and the board-layout designer must work hand-in-hand if a viable high-speed board or system is to be produced.
In the past, logic design and board layout were usually regarded as separate parts of the design process. First the system designer configured the logic, then the board engineer laid it out. That approach worked because slew rates were so low ( 0.3 to \(0.5 \mathrm{~V} / \mathrm{ns}\) ) that crosstalk wasn't much of a problem; rise times were so long ( 4 to 6 ns ) that ringing could settle down before a logic element could change state; and in general, the assumptions of lumped-element circuit theory usually worked out pretty well.
For systems designed with today's high-speed logic circuitry, those underlying assumptions no longer hold true. Today's slew rates are on the order of 2 to \(3 \mathrm{~V} / \mathrm{ns}\), rise times are below 2 ns (frequently, below 1 ns ), and transmission-line phenomena, such as ringing, can be a problem for trace

1. T0 MINIMIZE NOISE, THE ground plane should be fragmented into separate areas for noisy high-current devices and for sensitive logic circuits. For best results, the number of signal lines that cross the gap between the fragments should be minimized.

\section*{JOCK TOMLINSON}

Lattice Semiconductor Corp., P.O. Box 2500, Portland, OR 97208; (503) 681-0118.

\section*{DESIGN APPIICATIONS \\ DESIGNING WITH HIGH-SPEED LOGIC}
lengths as short as 7 in . As a result, logic designers must take certain steps:
- Use ground and power planes.
- Control conductor spacings to eliminate crosstalk.
- Make extensive use of decoupling capacitors.
- Pay attention to ac loading.
- Terminate lines properly to minimize reflections.

\section*{Plane Advice}

For high-speed logic, ground planes aren't simply suggested for reliable board performance-they are absolutely necessary. It's essential that one layer of the board be assigned for a ground plane and that it cover as large an area as possible. A solid ground plane lowers the ground-return-path impedance as well as the device-to-device ground pinimpedance.

But a common ground plane for all of the circuitry in a system can cause problems by coupling noise from high-current switching devices into sensitive logic inputs. Therefore, the ground plane for such high-current


\section*{2. SEPARATE DEDICATED} grounds should be supplied for the logic circuitry, noisy high-current devices, and the chassis. The three should come together at one point, the central system ground, which is usually located near the power supply.
devices as relays, lamps, motors, and hard drives should be separated from the logic ground. This can be accomplished by fragmenting the ground plane into discrete areas (Fig. 1).

But fragmentation causes problems of its own-it creates discontinuities in the characteristic imped-
ance of any transmission line that crosses the separation between fragments. Therefore, for best results, boards should be laid out so that only two fragments are needed. The gap between those fragments should be kept as narrow as possible (an eighth of an inch works well in most applications), and the number of signal lines that cross the gap should be minimized. Designers should also bear in mind that through-holes and vias subtract from the effective area of the plane, increasing its effective impedance.

As with grounding, an entire layer of the board should be designated as a power plane. Even though it is at a different potential, the power plane should be implemented in accordance with the same concepts as the ground plane. Therefore, it should be fragmented when necessary to isolate noisy components from delicate logic circuits.

\section*{A Well-Grounded System}

In addition to properly designed power and ground planes, highspeed logic systems require the establishment of a good, clean (low-

\section*{SIGNEI LINES BEGOWE TRANSWISSIOW IINES}

For the transmission line model illustrated in the diagram, the rise time \(\left(\mathrm{t}_{\mathrm{R}}\right)\) is less than the line propagation delay ( \(\mathrm{T}_{\mathrm{D}}\) ). In other words, a complete TTL level transition will occur before the pulse is received at the receiving end of the line and reflections (ringing) will result. The voltage change at point A on the line is expressed in Eq. 1:
\(\Delta V_{A}=\Delta V_{\text {int }}\left(\mathrm{Z}_{0} /\left(\mathrm{R}_{0}+\mathrm{Z}_{0}\right)\right)\)
Where: \(V_{i n t}=\) internal voltage on the output of the driver;
\(\mathrm{R}_{0}=\) output impedance of the driving gate;
\(\mathrm{R}_{\mathrm{L}}=\) load impedance;
\(\mathrm{Z}_{0}=\) the characteristic line
impedance;
and \(V_{\mathrm{A}}=\) the source voltage at the sending end of the line.

Because \(R_{0}\) is so small when compared to the line impedance, the change in voltage at point A \(\left(\Delta V_{A}\right)\) will approximately equal the change in internal voltage ( \(\Delta \mathrm{V}_{\text {int }}\) ). This voltage transition propagates down the line and is seen at point \(B\) after the line propagation delay, \(\mathrm{T}_{\mathrm{D}}\).

At point \(B\), a portion of the wave will be reflected back towards point \(A\) in accordance with

the formula (Eq. 2):
Eq. 2
\(\rho_{\mathrm{L}}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{0}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{0}\right)\)
where \(\rho_{\mathrm{L}}\), called the voltage reflection coefficient (rho), is the ratio of the reflected voltage to the incident voltage.
After examining Eq. 2, it should be evident that \(-1 \leq \rho \leq+1\). It should also be evident that there will be no reflected wave if \(\mathrm{R}_{\mathrm{L}}=\) \(\mathrm{Z}_{0}\)-if the line is terminated in its characteristic impedance. Note that the reflected wave can, in principle, be as large as the incident voltage and of either positive or negative polarity
This analysis holds true for the sending end of the line, as well as the receiving end. That is,
Eq. 3
\(\rho_{\mathrm{S}}=\left(\mathrm{R}_{0}-\mathrm{Z}_{0}\right) /\left(\mathrm{R}_{0}+\mathrm{Z}_{0}\right)\)

\section*{DESIGN APPLICATIONS \\ DESIGNING WITH HIGH-SPEED LOGIC}
noise) system ground for reliable performance. A clean system ground ensures less noise within the system, and thus ensures good, strong transistor margins. At least \(10 \%\) of the ground connections on the pc card should be connected to the system ground to reduce card-toground impedance.

Like the ground and power planes of the individual boards, the overall grounding scheme should be fragmented with separate conductors provided for the various sections of the system. For example, all relays, lamps, hard drives, and other noisegenerating devices should have their own separate ground path. The system's mechanical package (chassis, panels, and cabinet doors) should have a dedicated ground. And, of course, the logic circuitry should have a ground of its own.

Those three grounds should then come together at the central system ground point, which will usually be located near the power supply (Fig. 2). This common-point grounding technique can also be very effective in reducing radiated interference (EMI and RFI).

\section*{Taming Crosstalk}

Crosstalk-the undesirable coupling of a signal on one conductor to one on a nearby conductor-becomes an increasingly serious problem as slew rates go up. This signal coupling is made worse if the second trace has a high impedance or if the traces run parallel to one another for more than a few inches and are spaced less than 100 to 150 mils apart.

Crosstalk can be catastrophic to a logic board, sabotaging a conceptually flawless piece of logic design. For example, if a clock line and a data line run parallel to each other for more than several inches, and if the
data line cross-couples or superimposes its signal onto the clock line, the device that the clock is driving may detect an illegal level transition.

Methods to reduce crosstalk are straightforward, though not particularly elegant. The coupling can be attenuated by separating the adjacent traces as much as possible. The trouble with this approach is that available board real estate often lim-

3. WAVE PROPAGATION along a transmission line occurs as follows: Prior to time zero, there is a steady-state voltage
of 2.5 V dc on the line (a). At \(t=0\), the voltage at point A drops to occurs as follows: Prior to time zero, there is a steady-state voltage
of 2.5 V dc on the line (a). At \(t=0\), the voltage at point A drops to 0.5 V , sending a negative pulse of -2 V toward point \(\mathrm{B}(\mathrm{b})\). At \(\mathrm{t}=\) 0.5 V , sending a negative pulse of -2 V toward point \(\mathrm{B}(\mathrm{b})\)
\(\mathrm{T}_{\mathrm{D}}\), that negative pulse is reflected from point B . It adds algebraically to the 0.5 V on the line and sends a \(-1.5-\mathrm{V}\) pulse back toward point \(A\) (c). The reflections then continue as in (d) and (e). its the possible separation to an inadequate amount.

Ground striping, or shielding, is an effective way to reduce crosstalk and it makes better use of available board area. With ground striping, a ground trace (the stripe) is run between the two parallel traces to act as a shield. If ground striping is used, through holes to the ground plane should be placed every 1 to 1.5 inches along the ground strip to eliminate the possibility of inadvertently
creating a stub or a high-frequency antenna.

Another step that can be taken to reduce crosstalk is to lower the impedance of those traces into which crosstalk is especially to be avoided. The lower the impedance that a trace presents, the harder it will be to cross-couple a signal into it.
Even with the use of power and ground planes on a pe board, decoupling capacitors must be used on the \(V_{C C}\) pins of every high-speed device. Those devices demand a nearly instantaneous change in current whenever they switch states. Because the power plane can't meet that demand, a high-quality decoupling capacitor is required, otherwise the switching will cause noise on the \(\mathrm{V}_{\text {CC }}\) plane.
A \(0.1-\mu \mathrm{F}\) multilayer ceramic (MLC) or other RF quality (low-inductance) capacitor should be placed on every fast-slew-rate device as close to the \(V_{C C}\) pin as possible. The commercially available DIP sockets with built-in decoupling capacitors also work well in this application.
Most designers, when they think of loading at all, think in terms of de load-ing-traditionally referred to as fan-out and fan-in. But that type of loading rarely presents a problem with today's state-of-the-art logic devices. Much more significant when designing with highspeed logic are input and output ac loading.

\section*{Input Capacitance}

Because the input capacitance of a device impacts the overall performance of the logic circuit, it should be examined before a particular device is selected for a design. To ensure specified performance, the total load capacitance that a device drives-including the distributed ca-

\section*{DESIGN APPIICATIONS \\ DESIGNING WITH HIGH-SPEED LOGIC}

4. IDEALLY, THE VOLTAGE at point B oscillates forever between +2.5 V and 1.5 V (a). In reality, it will be a damped ringing (b).
pacitance of the trace-shouldn't exceed the device's specified capacitive load. Most high-speed logic devices have a maximum loading of 50 pF . As a rule of thumb, the maximum load on any logic element should be no more than four to six devices for best speed/load performance. However, there are some high-slew-rate devices on the market that have higher output drive capabilities.

\section*{Beware Of Autoroutier}

The most common reason for not following the board-layout principles mentioned so far is having an autorouter do the layout. Autorouters do what they were designed to do very well: They place traces so as to make the most efficient use of the pc-board real estate. But most autorouters don't have the capability to determine which devices are highspeed and which are not. This is where the logic designer must step in
and lay out sections, or islands, of high-speed logic by hand in order to avoid the pitfalls of designing with high-speed logic.

\section*{Transmission Lines}

In addition to the common-sense layout considerations discussed so far, designers of high-speed systems must have at least a basic understanding of transmission lines and proper termination techniques (see "Signal Lines Become Transmission Lines, " \(p .76\) ). The reason: As frequencies go up, wavelengths come down to the point where they are of the same order as circuitboard dimensions. Once that happens, any connection between devices should be considered a transmission line. The lumped-element assumption is simply invalid above that point.

The most common consequence of failing to consider the distributed na-
ture of a high-speed logic board is ringing, which is caused by multiple reflections from the ends of unterminated transmission lines. An unterminated line has no load impedance \(\left(\mathrm{R}_{\mathrm{L}}=\infty\right)\) and is therefore an im-pedance-mismatched line. The behavior of this line when connected to a device with a fast slew rate can be understood from the following example: Prior to time zero, there's a steady-state voltage of 2.5 V dc at all points on the line (Fig. 3a). At \(\mathrm{t}=0\), an initial TTL voltage transition from 2.5 V to 0.5 V occurs at point A (Fig. 3b). Time \(\mathrm{T}_{\mathrm{D}}\) later, the signal reaches point B and is reflected by the load reflection coefficient, \(\rho_{\mathrm{L}}\).

The input impedance of the device at point B is very high with respect to \(\mathrm{Z}_{0} ; \mathrm{R}_{\mathrm{L}}\) can be approximated by infinity. By plugging into Eq. 2 from the box ( \(p .76\) ), the reflection coefficient approximately equals +1 . In other words, the voltage reflected by the load is equal to the incident voltage (Fig. 3c). The reflected wave passes back along the signal path toward point A (Fig. 3d).

Repeating the calculations for the sending end of the line (point A), where \(R_{0} \approx 0\), you get a value for the source reflection coefficient, \(\rho_{S}\), of -1 In other words, there are reflections from the source as well as the load, but the source reflects the inversion of the wave that is incident upon it (Fig. 3e).

Looking just at the behavior of the signal at point B, the single-step volt-

\section*{RULES TO REMEMBER}

The following ten rules summarize everything the logic designer needs to know when designing with high-speed CMOS.
1) Keep signal interconnections as short as possible.
2) Use a multilayer PCB.
3) Provide ground and power planes. Discontinuities in the planes should be avoided because reflections can occur from abrupt changes in the characteristic impedance.
4) Fragment the ground and power planes to supply separate sections for high-current switching devices.
5) Use decoupling capacitors on every high-speed logic device ( 0.1 \(\mu \mathrm{F}\) MLC type) located as close to the \(V_{C C}\) pin as possible.
6) Provide the maximum possible spacing among all high-speed parallel signal leads.
7) Terminate high-speed signal lines where \(t_{R}<2 T_{D}\).
8) Beware of ac loading conditions within the design. Exceeding the manufacturer's recommended operating conditions, especially for capacitance, can cause problems.
9) When using parallel termination, put bends in all high-speed signal runs that go to more than one load. Use a termination load at the absolute end of the line.
10) Create islands of high-speed devices on the pc board. This simplifies board layout and ropes-off the high-speed areas.

\section*{DESIGN APPIICATIONS \\ DESIGNING WITH \\ HIGH-SPEED LOGIC}

5. THE BASIC PARALLEL termination scheme works well but requires a separate \(3-\mathrm{V}\) supply (a). The Thevenin equivalent eliminates the need for a separate supply, but dissipates extra power from the regular \(5-\mathrm{V}\) supply (b). The use of a capacitor cuts dc dissipation altogether while supplying ac termination (c).
age transition at \(t=0\) leads to an endlessly oscillating signal with a total voltage swing of 4.0 V -twice the original level transition. The voltage doubling comes about because the voltage at point \(B\) is the sum of the incident and reflected waves at that point (Fig. 4a). Actually, because of the non-ideal nature of a real circuit board (finite input and output impedances, losses in the transmission lines, and so forth), \(\rho_{L}\) will be less than +1 , and \(\rho_{\mathrm{S}}\) will be greater than 1. As a result, the reflections will become successively smaller, causing the familiar damped ringing condition (Fig. 4b).

If the ringing amplitude is large enough, it can cause the receiving device to see an illegal level transition and possibly result in spurious logic states occupying the logic design. In some cases, the amplitude of the ringing can actually be large enough to damage the input of the receiving device.

\section*{Terminate Your Troubles}

The way to eliminate ringing on a transmission line is to terminate the line in its characteristic impedance at either the sending or receiving end. The most common way to terminate a line is with a parallel termination at
the receiving end (Fig. 5).
In the configuration (Fig. 5a), \(\mathrm{R}_{\mathrm{L}}\) \(=\mathrm{Z}_{0}\) and \(\mathrm{R}_{\mathrm{L}}\) is pulled up to 3 V dc. In principle, \(\mathrm{R}_{\mathrm{L}}\) could be tied to ground, but TTL-compatible devices could not then supply the necessary drive.

Solving for \(\rho_{\mathrm{L}}(E q .2)\), it can be seen that \(\rho_{\mathrm{L}}=0\). Terminating a line in its characteristic impedance results in a reflection coefficient of zero, which means that there will be no reflections or distortions on the line. Other than the time delay, \(\mathrm{T}_{\mathrm{D}}\), the line will act as if it were a dc circuit. It's important to note that even though devices or gates may be placed at any location on the line, the terminating resistor should be placed at the end of the line. In no case should the line be split like a Tee to feed several devices in parallel (Fig. 6a). Instead, it should be serpentined to feed them sequentially (Fig. 6b).

The 3-V power source shown (Fig. 5a) appears at first to be a major drawback, but \(\mathrm{R}_{\mathrm{L}}\) and the power supply can be expressed as a Thevenin equivalent running off the system power supply of 5 V dc (Fig. 5b). This variant works well, but the designer should bear in mind that it dissipates additional power.

\section*{Reducing Dissipation}

A solution that dissipates less power than either of the others uses a capacitor to cut the dc dissipation to zero (Fig. 5c). The recommended capacitor is a \(0.1-\mu \mathrm{F}\) MLC type. Several manufacturers produce both ca-pacitor-resistor and pull-up/pulldown termination packs. The pull-up/pull-down packs usually come in a single in-line package (SIP) with pins on \(0.1-\mathrm{in}\). centers, while the ca-pacitor-resistor combination comes in a standard 16 -pin DIP. The most common SIP pull-up/pull-down resistor values are \(220 \Omega / 330 \Omega, 330 \Omega\) / \(470 \Omega\) combinations.

An alternative to a parallel termination at the receiving end is a series termination at the sending end (Fig. 7). The idea behind serial termination is to make \(\rho_{\mathrm{S}}=0\) and \(\rho_{\mathrm{L}}=+1\). To do so, \(R_{L}\) is made equal to infinity (left unterminated) and a series resistor is added at the source to make the overall source impedance equal to the
characteristic impedance of the line-that is, \(R_{S}+R_{0}=Z_{\text {OL }}\).

Making \(R_{S}+R_{0}\) equal to \(Z_{O L}\), of course, creates a voltage divider, which puts half of the signal amplitude across the line and half across the series combination of \(R_{S}\) and \(R_{0}\). Therefore, with the series termination, the amplitude of the transmitted wave is half of what it would be without the termination.
Interestingly enough, the unterminated receiving end of the line precisely compensates for this halving of the amplitude. The reason is as follows: At the receiving end, the halfamplitude wave is received and a half-amplitude wave is reflected. But bear in mind that those are two separate waves whose amplitudes add at the point of reflection. As a result of this addition, the only thing seen at the receiving end of the line is a full-size pulse.

The main disadvantage of a series termination is that the receiving gate or gates must be at the end of the line-no distributed loading is possible. The obvious advantage of a series termination over a parallel one is that a series termination doesn't

6. SERPENTINING IS essential
when terminating a line. Never split the line to feed parallel devices (a). Rather, feed them sequentially with a serpentined line (b).

\section*{dESIGN APPLICATIONS \\ DESIGIIMG WITH \\ HIGH-SPEED LOGIC}
require any connection to a power supply.
Transmission-line effects must be taken into consideration whenever line propagation delays get up to the point where a signal transition can be completed before that signal can travel down a line, be reflected, and travel back to its starting point. In

7. THE SERIES termination needs no pullup supply. Its main disadvantage is that it can't handle distributed loads.
other words. lines must be terminated when,
\(2 \mathrm{~T}_{\mathrm{D}}=\mathrm{T}_{\mathrm{R}}\).
Calculating Delay
Taking 2 ns as a typical rise time for a state-of-the-art high-speed logic device, how long can a board trace get before its propagation delay gets to be 1-ns long? For a pc board with a continuous ground plane and a signal trace on the adjacent layer, the propagation delay depends on only one variable, the dielectric constant of the board material. That delay time is given by:
\(\mathrm{t}_{\mathrm{PD}}=1.017\left(0.475 \mathrm{e}_{\mathrm{R}}+0.67\right)^{1 / 2} \mathrm{~ns} / \mathrm{ft}\)

For a typical board constructed of FR4 material, \(e_{R}\) (the dielectric constant) is 4.7 to 4.9 . If an average \(e_{R}\) of 4.8 is used in the equation, then \(t_{P D}\) turns out to be \(1.75 \mathrm{~ns} / \mathrm{ft}\), which works out to \(6.86 \mathrm{in} . / \mathrm{ns}\). As a rule of thumb, then, any line that is over 7 in . long should be considered a transmission line and approached accordingly.

Jock Tomlinson, senior applications engineer at Lattice, holds a BSEE from Colorado State University.

\title{
Electronic Engineering \\ TIMES
}

\author{
Monday
} June 10, 1991 Issue 645

\author{
A CMP Publication
}

\title{
Uses EPROM PROGRAMMING Lattice fields FPGA \\ By STAN BAKER
}

Hillsboro, Ore. - Lattice Semiconductor Corp. is jumping into high-complexity PLDs with two families of devices that compete with FPGAs. The move significantly broadens the company's thrust in the logic market and puts it in the middle of the fastestgrowing market segment. The new products also make Lattice the first company to move up from PAL devices to FPGAs with its own architecture.

Lattice's new pLSI and ispLSI devices will offer up to 8,000 equivalent gates. Both families will use \(\mathrm{E}^{2}\) PROM programming for the first time in

FPGAs, and the ispLSI family will be in-system programmable.
"I see the '90s as the decade of programmability," said Cyrus Tsui, president and CEO of Lattice. Market-research firms suggest he's right. They indicate the bipolar portion of the PLD business is dropping. Meanwhile, the CMOS portion is growing at a compound annual growth rate of more than 40 percent, and the high-complexity segment of the CMOS market is the most active.
"From a global standpoint, entering the high-density market will double


Lattice's total addressable market from 1 billion to 2 billion dollars in 1994," Tsui said. "In practical terms, these products will enable us to reach a class of customers in telecommunications, industrial control and the military that we currently cannot serve with our low-density GAL product offerings. This is both a unique product and company positioning."

The new architecture features flexible granularity-the circuit blocks provide highly flexible programming of product terms, flexible choice of prod-uct-term sharing and steering, and choices of four outputs from the comrbinatorial and registered ports of the block.

\section*{Four functions}

A single circuit block can implement up to four functions, since it has four outputs and the logic-array flexibility to separate them in the programmed cell routing. It can also implement functions from two to 18 lines wide in a single block, offering significant delay-time advantages over architectures that have to implement wide functions in a series of logic levels (see related story, on reverse side).

Unlike FPGAs, the design of the routing resources and the architecture of the circuit blocks makes the timing characteristics of these devices pre-
dictable-or "deterministic," to use the industry term-along with those of Altera and Plus Logic. Precise timing can be predicted from data sheets. This differs from the timing of the true FPGAs of Xilinx and Actel, for which the data sheet can give only statistical estimates of actual post-route timing.

\section*{Meets requirements}

Lattice is coming to market with up to 8,000 equivalent gates soon after Xilinx forecasted 20,000 gates and Toshiba projected 40,000 gates for next year. But Lattice's complexity meets the current requirements of most customers for FPGAs and even gate arrays. As for the future path for the new architecture, "we plan to expand to include mask versions of these devices for high-volume designs," said Steve Donovan, director of marketing at Lattice. "And current product plans call for densities exceeding 20,000 gates. We will introduce these devices as market conditions warrant."

Lattice specifies its pLSI devices to
work at system clock rates up to at least 70 MHz . That's for a single circuit block operating through an input and output circuit. The delay time for such a function is 15 ns .

Lattice claims the circuit modules, called generic logic blocks, can implement 90 percent of all 4 -bit MSI functions. The proprietary routing network provides global interconnectivity, 100 percent routability and over 80 percent device utilization.

The new Lattice products encompass eight devices, four of which offer in-system programming. The pinout count ranges from 44 to 120 . The number of I/Os range from 32 to 104 .

The ispLSI types are programmed, reprogrammed, and reconfigured for test without having to be removed from the circuit board. Real-time prototyping and debugging, and reconfiguring or upgrading the system in the field, are possible. With the \(\mathrm{E}^{2} \mathrm{PROM}\) programming technology, the devices are guaranteed to deliver 100 percent
programming yields and 100 percent conformation to functional, ac and dc specifications.

\section*{Same process}

The 0.8 -micron process that is used to fabricate these devices is developed and maintained by Lattice engineers. The UltraMOSIV process is the same used in the \(7.5-\mathrm{ns}\) and 10 -ns GAL devices now in production at Lattice.

The first pLSI devices will begin shipping in the third quarter of this year. The in-system programming ispLSI versions will come a quarter later. Software and programming support will accompany the first product shipments.

Beta testing of the new pLSI devices will begin next month. Engineering samples will be generally available by October. The general market release of software and silicon will come in November. The price of the 6,000 -gate device with 192 registers in an 84-pin PLCC will be \(\$ 98.50\) each in lots of 100.

\section*{Lattice aims at best of architectural worlds}

FPGA architectures generally implement gating functions up to four or five lines wide. Wider functions are then implemented using a series of such narrow functions. But every level of logic costs more delay time. Wider functions save time, but they also can cost silicon area and waste circuitry where the width is not needed.

Lattice Semiconductor is trying to offer the best of both worlds with logic blocks that can handle widths up to 18 signals, but do so in logic arrays within the blocks that can be used for several narrowwidth functions when the wide ones are not needed.

However, the company's research shows the most popular widths for gating functions are from eight to 12 lines. The current FPGA and other complex PLD devices offer less width than what is most needed, requiring two or three logic levels and,

consequently, two or three circuit delays. The accompanying figure, developed by Lattice engineers, shows the pLSI devices with a \(10-\mathrm{ns}\) delay per block not changing its delay from two through 18 inputs.

But a competing FPGA with five-input blocks starts at 8 ns , but adds another 8 ns each time the width expands by five inputs. For the most popular widths, from eight to 12 , the competing FPGAs will have block delays of 20 ns to 30 ns. The delays are in 10 -ns increments because of interconnect delays beyond the \(8-\mathrm{ns}\) delay in each block.

For wide gating applications, such as large counters, wide address decoding and multiplexing, the system speed slows considerably in current FPGAs because of the the need to cascade the logic block outputs.
-Stan Baker

\section*{Basic Techniques Let Designers Build A Finite-Impulse-Response Filter In Dedicated Harware Using Programmable Logic.}

\section*{Learn The Fundamentals 0f} digital Filter design

istorically, designers often have taken an analog approach to filtering. Filters were constructed using operational amplifiers, resistors, and capacitors. One op amp could implement a second-order filter, and higher-order filters could be implemented by cascading second-order filters. However, passive components with tolerances of \(1 \%\) or better are necessary for the filter to have reproducible characteristics. And the filter is typically fine-tuned by trial-anderror substitution of available component values. In addition, operational amplifiers with a high gain-bandwidth product may be needed to keep undesirable phase shift to a minimum or keep a closed-loop system stable. These factors are among the many problems in real-world implementations of filters.

With the advances made in digital-signal processing, however, digital filters are becoming a more attractive design alternative to traditional analog techniques. Because digital-system information is in digital form, filtering can be accomplished relatively easily by passing the data through a filter algorithm. In addition, digital filters have the advantages of no filter-characteristic drift over time, temperature, or voltage. And they can easily be designed to filter low-frequency signals. Moreover, the filter response can be made to closely approximate the ideal response, and linear phase characteristics are possible.

There are many well established methods of determining the filtering algorithm. Basically, the designer establishes the desired filter characteristics, thereby yielding a filter transfer function. The continuous-time transfer function is then transformed to the ëquivalent linear discrete-time-difference function. This function in the Z domain has the general form of:
\[
\mathrm{G}(\mathrm{Z})=\left(\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{Z}^{-1}+\mathrm{A}_{2} \mathrm{Z}^{-2}+\ldots \mathrm{A}_{\mathrm{n}} \mathrm{Z}^{-\mathrm{n}}\right) /\left(1+\mathrm{B}_{1} \mathrm{Z}^{-1}+\mathrm{B}_{2} \mathrm{Z}^{-2}+\ldots \mathrm{B}_{\mathrm{m}} \mathrm{Z}^{-\mathrm{m}}\right)=\mathrm{Y}(\mathrm{Z}) / \mathrm{X}(\mathrm{Z})
\]

The equation is referred to as the pulse transfer function. It's actually the \(Z\) transform of the continuous-time filter's unit impulse response. Conversely, the inverse Z transform of the pulse transfer function yields the impulse response of the filter.

The coefficients \(A_{n}\) and \(B_{m}\) determine the response of the digital filter. Changing

\footnotetext{
MIKE TRAPP
Lattice Semiconductor Corp., Carlsbad Pacific Center One, 701 Palomar Airport Rd., Third Floor, Carlsbad, CA 92009; (619) 931-4751.
}

\section*{DESIGN APPICATIOWS DIIITAL FILTERS}
the coefficients changes the response of the filter. The terms \(\mathrm{Z}^{-\mathrm{n}}\) and \(\mathrm{Z}^{-\mathrm{m}}\) represent sampling delays or taps. The \(G(Z)\) equation represents the algorithm of sampling the input, multiplying it by \(\mathrm{A}_{0}\), and adding it to the previous sample that's been multiplied by \(\mathrm{A}_{1}\), then adding that value to the next previous sample which has been multiplied by \(\mathrm{A}_{2}\), and so on. An output value occurs when all N values have been multiplied and accumulated.

In parallel, each output value is stored, multiplied by \(\mathrm{B}_{1}\), then added to the previous output value which has been multiplied \(\mathrm{B}_{2}\), and so on. The equation can be rearranged so that the result of the output multiply accumulate is added to the result of the input multiply accumulate to produce an output. This procedure is referred to as convolution. An output sample is produced for every input sample (Fig. 1).
The key to digital-filter design is to determine the filter coefficients that will produce the desired frequency response. Recursive digital filters, or infinite-impulse-responsive (IIR) filters, are a type of digital filter in which the design methodology closely follows that of an analog filter. One method for determining the coefficients is to define a realizable
continuous-time domain Chebyshev, Butterworth, or equal-ripple filter then use Z transforms to transform the continuous-time-domain transfer function to the equivalent dis-crete-time transfer function that yields the filter coefficients.

A second popular method is the bilinear transform. In this method, engineers first design an analog filter so that after it's transformed to a digital filter, the resulting filter meets a set of desired digital-filter specifications. This analog filter is then transformed to a digital filter via the bilinear transform from the \(S\) variable of the Laplace transform to the \(Z\) variable of the \(Z\) transform.

In a non-recursive digital filter or finite-impulse-response (FIR) filter, the output is computed using the present input \(X_{n}\) and the previous inputs \(X_{n-1}, X_{n-2} \ldots X_{n-N}\). This implies that the coefficients, \(B_{m}\), are all 0 , and there's no feedback from the output. Designing non-recursive digital filters (FIR) involves defining an ideal desired frequency response from which the ideal impulse response is computed. The ideal impulse response is truncated to a finite number of non-zero samples using a windowing function, which is judiciously chosen. A common windowing function is the Kaiser window function. An interesting property of FIR filters is that if an FIR system has linear phase, then its frequency response is constrained to be zero at \(\mathrm{f}=1 / 2 \mathrm{~T}\), where T equals the sampling frequency if:
\(\mathrm{h}[\mathrm{M}-\mathrm{n}]=\mathrm{h}[\mathrm{n}]\) and M is odd. ( \(\mathrm{M}=\) truncation length of the window).
This implies the M should be even when designing high-pass and bandstop filters. Or,
\(\mathrm{h}[\mathrm{M}-\mathrm{n}]=-\mathrm{h}[\mathrm{n}]\) and M is even.

A second method is the ParksMcClellean method. In this approach, the filter order and the edges of the passbands and stopbands are fixed, and the impulse-response coefficients are varied systematically so that an equal-ripple behavior is achieved in each approximation band. With this approach, the filter order can't be specified in advance. Therefore, a cut and try procedure must be used to find the minimum filter order. The cut and try can be reduced by using a formula that predicts the filter order required to meet a given set of specifications.

There are advantages and disadvantages to each type of digital filter (IIR and FIR). An FIR filter is always stable because there's no feedback from the output and the impulse response is finite. In addition, the amplitude and phase can be arbitrarily specified. On the other hand, an FIR filter will generally require more taps, and consequently more math, to compute the output value. The design methodology doesn't resemble the familiar analog design techniques.
An IIR will generally have fewer coefficients, but the required output feedback can make circuitimplementation more complex. A stable IIR filter can become unstable if the coefficients aren't chosen properly to account for digital math errors.
There are four main type of errors that can arise in the design of digital filters. These are referred to as quantization errors. They are:
1. Quantization errors of the input analog-to-digital conversion
2. Quantization errors of the coefficients
3. Quantization errors due to arithmetic computations, including overflow

\section*{4. Limit cycles}

In most cases, a 12 -bit analog-todigital converter (ADC) provides enough dynamic range and sufficiently small quantization noise. If floating-point numbers are used for the filter coefficients, the quantization error is usually small enough. However, floating-point arithmetic is more complex and more expensive


\section*{2. AN FIR FILTER IS IMPLEMENTED in a circuit that uses a single-port 16-bit multiplieraccumulator capable of a 85 -ns clock speed. Because it's based on microcode, the multiplieraccumulator can be controlled with a PLD.}
to implement than integer or fixedpoint arithmetic. If 12 - or 16 -bit coefficient are used, the quantization error is generally negligible.

In the digital domain, math is performed using finite precision binary arithmetic. All digital filters need to multiply a signal sample by a constant coefficient. Of course, multiplying 2 N -bit binary numbers results in a 2 N -bit result, but digital systems are usually confined to a fixed number of bits with which to represent binary numbers. Therefore, it's necessary to round off the 2 N -bit digital number back to N bits. If a 32 -bit multiply accumulator is used and the final output is rounded to 16 bits, the arithmetic quantization errors can be minimized.

If overflow occurs during mathematical operations, the digital filter can behave in a nonlinear fashion and oscillations can occur. Twoscompliment arithmetic can help eliminate overflow. In addition, a satu-
rating adder can be used. If the coefficients are less than one, then the resulting product will also be less than one. Scaling is used to force this condition. The coefficient can be scaled by a multiple of two so that the largest coefficient uses all available bits in the binary representation. The input is then scaled by the same amount.
The detail with which a digital filter can be described can seem endless. Fortunately, a wide variety of computer programs exist that help the engineer with the filter's design. One such product is the DFDP software from Atlanta Signal Processing Inc. (ASPI), Atlanta, Ga.
Before a signal can be digitally filtered it must be digitized by an ADC. If a delta-sigma converter is used, the need for antialiasing filters (which must be analog and can be many orders) is virtually eliminated. Delta-sigma converters may have sample rates as high as 100 kHz . The
filter algorithm can then be implemented in software or hardware.

A single-chip microprocessor can be used to implement a digital filter in software. However, "single chip" may be misleading, because a microprocessor system will generally require system RAM, ROM, I/O, and glue logic. The microprocessor can implement low- to medium-performance digital filters if the only function they're performing is the digital filtering. As the work load of the microprocessor increases, its capability to digitally filter a signal in real time decreases. Once the system is designed, changing the filter's characteristics is as easy as changing variables in software and downloading the code to the system.

For higher performance and moderate flexibility, the filter can be implemented in dedicated hardware using programmable logic for design flexibility. The limiting parameter will be the time to do a multiply-accu-

\section*{DIGITAL FILTERS}
mulate function and the amount of physical space required for the hardware implementation of the taps. Consider a circuit that uses a singleport 16-bit multiplier-accumulator capable of an 85 -ns clock speed (Fig. 2). The device can work in twos-compliment numbers and has output saturation capabilities. As stated before, these two features are desirable when implementing digital filters. In addition, the device can be easily controlled with a programmable logic device (PLD) because it's microcoded based.

First, the system must initially load the first \(\mathrm{N}(\mathrm{N}=64)\) samples into the FIFO before any convolution takes place. Otherwise, the FIFO would never fill up. A counter implemented in a 20RA10 works well. The 6 -bit counter is implemented with the four least-significant bits implemented as an asynchronous counter. SMPL_DN (ADC sample done) acts as the clock. The two most-significant bits are implemented as a ripple counter. This type of counter design makes it possible for a long counter to be implemented with only four product terms per output. The SMPL_DN signal is also generated in the 20RA10, and is triggered off signals from the ADC.

When the counter reaches the value 63, indicating that the FIFO is full minus the one sample that's held in the shift/hold register, GO becomes true and the system begins to execute the filtering algorithm. Because the system is linking two asynchronous subsystems (ADC and the mul-tiplier-accumulator), there must be an asynchronous interface between the two. The 20RA10 is utilized by generating one interface signal SMPL_CONV (sample or convolve mode). The system powers up with this line held in the sample mode (SMPL \(\overline{\mathrm{CONV}}=1\) ). When GO goes true, synchronous with the falling edge of the clock from the ADC, SMPL_CONV goes low asynchronously with MCLK (synchronous with SCLK). Because SMPL_CONV is an input to the state machine, the machine could be subject to a metastable input. The Lattice CMOS PLDs are very high

3. AN 8-STATE state machine implements the operations of loading a sample into the multiplieraccumulator, then loading the coefficients in and issuing the multiplyaccumulate command until all N samples are done.
speed, so the metastable characteristics are excellent. That is, the state flip-flop has a very low probability of going metastable. Therefore, the state machine will have to wait, at most, one extra MCLK cycle before starting the convolution.
Once the convolution is started, the operations of loading a sample into the multiplier-accumulator, then loading the coefficient into the
multiplier-accumulator and issuing the multiply-accumulate command, can be repeated until all N samples have be done. At this time, the filter output is valid and the cycle is restarted. These steps can be implemented with an 8 -state state machine (multiplier-accumulator controller) (Fig. 3).

By coding the states properly, the state variables out of the state machine can be used to directly control the multiplier-accumulator. Two output enable signals, XOE and YOE__MCDN, control the data into the multiplier-accumulator. The signal CONV__DN indicates that all N samples have been convolved. A dummy state variable (ST__BIT) is used so that the state bit (XOE, YOE_MCDN, CONV__DN) can be employed as outputs. If the dummy bit was unused, two states would be forced to have the same state assignments, which isn't allowed. The design takes advantage of the powerup reset of Lattice's programmable logic devices (PLD s). After powerup, the registers will be left in the 0 state, which by careful design is also the start state of the state machine.

Except for the last SMPL_DN during initial load, every time SMPL_DN (sample done by the ADC) takes place, SHFT__IN occurs to load sampled data from the shift/ hold registers into the FIFO. During convolution, XOE occurs every time a coefficient is loaded to the multipli-er-accumulator. The first XOE of a convolution causes the last data sample left in the shift/hold registers during initial load or sample mode to be shifted into the FIFO. Following every XOE is a YOE_MCDN (Youtput enable, multiply-accumulate done). YOE_MCDN causes data from the FIFO's output to be parallel loaded into the shift/hold registers. A single data sample is then shifted out of the FIFO. The system is ready for the next XOE that shifts in the data held in the shift/hold registers and so on. This loop continues until SMPL_ \(\overline{\text { CONV }}\) (sample or convolve mode) goes to sample mode, at which time a new sample is loaded into the shift register, restarting the cycle.

Inputs to the state machine,

4. FIFO CONTROL SIGNALS are generated asynchronously. The system timing diagrams for the convolve (a) and initial load (b) \(_{\text {(b) }}\) ( operations show the appropriate Shift In and Shift Out signals, and clock signals sent to the shift/hold register.

SMPL_CONV, tell the machine when it's time to begin the convolution cycle. This signal comes from the mode-control device. TC (Terminal Count) indicates when the convolution is to end. TC comes from a 6 -bit coefficient counter, and is valid when the count equals 63 , which indicates when all 64 samples have been convolved with the respective coefficients. ORDY comes from the FIFO and tells the state machine that the sample from the FIFO is valid. The state machine will continue to load in the coefficient to the multiplier-accumulator until ORDY goes true, at which time the state machine will advance to the next state. If the cycle time of the multiplier-accumulator never exceeds the access time of the FIFO, ORDY should always be true when it's an input the state machine depends on.
Microcoded instructions to the multiplier-accumulator are generated by decoding the state variables. The first instruction is a NOOP. When SMPL_CONV goes low, then state machine issues a XBUS instruction to the multiplier-accumulator. This causes the multiplier-accumulator to load data from the I/O port into an internal register. The state machine then issues a YBUS;

CLKMR TC. This command tells the multiplier-accumulator to perform a multiply operation in twos-compliment without accumulation because it's the first multiply operation of the convolution.

The machine then enters a loop and issues another XBUS command followed by a YBUS; CLMR; TC; MR+. This command is a multiplyaccumulate function in twos-compliment arithmetic. The machine remains in this loop until TC goes true, at which time the last multiplier-accumulator cycle is completed and the output command MS (SAT) is issued. MS causes the filter's outputs (multi-plier-accumulator outputs) to become valid and latched into a final output register. This command will saturate the multiplier-accumulator output if the final value has an overflow, keeping the digital filter from oscillating. The multiplier-accumulator is statically configured to round off the final output to the most significant 16 bits.

The instructions to the multiplieraccumulator can be changed simply by decoding the state variables to different output values. If \(\mathrm{E}^{2} \mathrm{CMOS}\) devices are used, the programmable device can simply be reprogrammed and put back into the circuit. An \(E^{2} \mathrm{C}\) -

MOS 22V10 from Lattice Semiconductor is one such device that can be used for this application.
Two 64-word-by-8-bit FIFOs can be used to implement the filter taps. The FIFO can be loaded up with the initial N samples. A sample is then shifted out of the FIFO and into the multiplier-accumulator for processing. This sample is also stored in a shift/hold register and is shifted back into the FIFO prior to the next sample being shifted into the multi-plier-accumulator for processing. After all N samples have been processed, the oldest sample is shifted out and a new ADC sample shifted in. The multiplier-accumulator can then output a filter value. Programmable logic can be used to interface the digital filter to the ADC, act as temporary storage register, and implement FIFO control.
These shift/hold registers can be implemented with two 20V8 devices. In the sample mode (SMPL CONV \(=1\) ), the devices act as shift registers. Data is serially loaded into them under control of the ADC. The registers are then placed in a hold mode so that the data sample isn't lost. When the system enters the convolve mode, (SMPL CON \(=0\) ), data is immediately loaded into the

shift/hold registers in parallel.
Filter coefficients are stored in PLDs emulating ROM. A 6001 has a programmable AND and a programmable \(O R\) array so that it easily emulates a 64 -by-8 high-speed PROM. Again, if \(E^{2}\) devices are used, the filter coefficients can be changed simply by reprogramming the devices. An address counter is used to access the coefficients in the correct order. Because there are 64 required coefficients for the 64 taps, only 6 bits of address are required.

The coefficient-address counter is a simple 6-bit counter implemented in a 22 V 10 . The counter is a synchronous type with a count enable. The clock is synchronous with the multi-plier-accumulator clock. The countenable input pin is connected to XOE from the multiplier-accumulator controller. Therefore, the counter is incremented only after the coefficient value has been loaded into the multiplier-accumulator. When the counter reaches \(63, \mathrm{TC}\) goes true to indicate that all 64 coefficients have been convolved. Again, the power-up reset is used to ensure that the counter starts in a known state.

The remaining four output-logic macro cells can be used to generate FIFO control signals. These signals are generated asynchronously. Depending on the state of the systemwhether it be initially loading, sampling, or convolving-the appropriate Shift In, Shift Out, and clock signals for the shift/hold register will be generated (Fig. 4).

When the convolution is done, the state machine sets the CONV_DN signal true synchronous with MCLK. Hence, SMPL \(\overline{\text { CONV }}\) will also be set synchronous with MCLK. This will create glitches on the signal CLKIN, which is the clock to the shift/hold registers. This is a don'tcare condition, as the registers will soon be loaded with a new valid data sample under the control of the ADC.

The system requires 133 MCLK cycles to complete the convolution. With a \(11.7-\mathrm{MHz}\) clock, this takes \(11.4 \mu \mathrm{~s}\). This system used an ADC with a serial interface that requires \(3.3 \mu \mathrm{~s}\) to shift the data into the shift/
hold registers. Thus, the system can sample an input signal at \(11.4+3.3=\) \(14.7 \mu \mathrm{~s}\) or 68 kHz . The Nyquist sampling theorem states that a signal must be sampled at twice the highest frequency component to accurately preserve the information in that signal. Therefore, this system can accurately filter a signal with the frequency component as high as 34 kHz .
Using the DFDP software from ASPI, a bandpass filter was designed using the Parks-McClellean method. The center frequency is at 20 kHz with a passband of 5 kHz . The transition region occurred in 2 kHz (Fig. 5). It's interesting to note that the edges of the filter have a slope of approximately \(35 \mathrm{~dB} / 0.2\) decade, or \(175 \mathrm{~dB} /\) decade. It would take a 9 thorder analog filter to implement the same specifications.
The system presented in this example is a straightforward FIR filter. Because of the extensive use of programmable logic, the system can be easily adapted to implement an IIR filter. The final output value can be fed back into the FIFO prior to a new sample shifting into the FIFO. The coefficients can be staggered in the coefficient ROM so that the \(\mathrm{B}_{\mathrm{m}} \mathrm{s}\) line up with the \(\mathrm{Y}(\mathrm{n}-\mathrm{M})\), and the \(\mathrm{A}_{\mathrm{n}} \mathrm{s}\) line up with the \(\mathrm{X}(\mathrm{n}-\mathrm{N})\).
If enhancement of the system's performance is desired, a larger FIFO memory can be used with a faster multiplier-accumulator. Because 15-ns programmable-logic devices are used, they're not a limiting factor. If a parallel ADC, 64-by-8 FIFO, and a 45 -ns multiplier-accumulator are employed, the system could be made to run at 167 kHz with little modification.
The author would like to thank Atlanta Signal Processing for their help in developing this article.
Mike Trapp, an applications engineer for Lattice Semiconductor, holds a BSEE from the University of Colorado, Boulder.

\section*{Multiclock GAL doubles clock rate}

\section*{Ted Marena}

\author{
Lattice Semiconductor, Burlington, MA
}

Fig 1 shows a block diagram of a \(386 \mathrm{SX} \mu \mathrm{P}\) system. The 386SX runs at 20 MHz . However, the memory circuitry needs to run at 40 MHz . The PLD program in Listing 1 sets up the multiple clocks in the GAL20RA10 to strobe on both the rising and falling edges of the \(\mu\) P's clock, effectively synthesizing a 40 MHz clock for the memory circuitry.

The program also sets up the PLD to develop the DRAM's critical \(\overline{R A S}\) and CAS signals according to the timing diagram in Fig 2. Note that CAS follows \(\overline{\mathrm{RAS}}\) by 25 nsec , meeting the 20 -nsec minimum interval for 70-nsec DRAM. A 2 -bit counter in the PLD satisfies \(\overline{\text { RAS}}\)-precharge timing specs: \(\overline{\text { RAS }}\) must be low for at least 70 nsec, high for at least 50 nsec , and go high only after \(\overline{\mathrm{CAS}}\) goes low. In this design, \(\overline{\mathrm{RAS}}\) goes low for 70 nsec and high for 60 nsec .

Note that because an EPROM's chip-select line does not have to be clocked, the program in the listing develops the EPROM-select signal using combinatorial logic. You can obtain the listing from the EDN BBS's DI Special Interest Group (617-558-4241,300/1200/ \(2400,8, \mathrm{~N}, 1\)-from Main Menu, enter (s)ig, <s/di_sig>, rk1028).

EDN


Fig 2-By generating internal clocks, intras1 and intras2, from both edges of the \(20-\mathrm{MHz}\) clock signal, the PLD effectively doubles the clock rate.


Fig 1-The PLD's internal circuitry can clock on both edges of the \(\mu P\) 's clock, thereby synthesizing a \(40-\mathrm{MHz}\) clock for the memory system.

\section*{Listing 1-Memory-control PLD program}

Section 1: Introduction to Generic Array Logic
Section 2: GAL Datasheets
Section 3: GAL Military Products
Section 4: pLSI and ispLSI Products
Section 5: GAL Quality and Reliability
Section 6: GAL Technical Notes
Section 7: GAL Application Briefs
Section 8: Article Reprints
Section 9: General Information
Development Tools ..... 9-1
Copying PAL, EPLD \& PEEL Patterns into GAL Devices ..... 9-3
GAL Product Line Cross Reference ..... 9-5
Package Thermal Resistance ..... 9-8
Package Diagrams ..... 9-9
Tape-and-Reel Specifications ..... 9-16
Sales Offices ..... 9-17

\section*{GAL Development Tools}

Lattice Semiconductor recommends that customers use only Lattice qualified programming equipment. Lattice guarantees \(100 \%\) programming yield to customers using qualified programming tools. Below is a matrix that provides the third-party programmers which are qualified to program Lattice GAL devices.

Lattice works closely with third-party programming equipment manufacturers to ensure that customers
achieve the highest programming yields and quality levels. Lattice's stringent qualification program includes an evaluation of algorithms, verification of timing and voltage levels, and a complete yield analysis.

For a current listing of Lattice qualified GAL programmers, please call Lattice's Literature Distribution Department (Tel: 503-693-0287; FAX: 503-681-3037).

LATTICE QUALIFED PROGRAMMERS (as of May 1992)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Vendor} & \multirow[b]{2}{*}{Programmer} & \multicolumn{10}{|c|}{Lattice GAL Device Type} \\
\hline & & 16V8A/B & 20V8AB & 18V10 & 22V10/B & 26CV12B & 26CV12 & 20XV10 & 20RA10 & 6002B & 6001 \\
\hline \multirow{5}{*}{Data VO} & Unisite & - & - & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & ■ \\
\hline & 3900 & ■ & \(\square\) \\
\hline & 2900 & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) \\
\hline & 298 & - & - & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline & 60AM & \(\square\) & ■ & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & - \\
\hline \multirow[b]{2}{*}{Logical Devices} & Allpro 88 & \(\square\) & - & \(\square\) & - & \(\square\) & \(\square\) & - & ■ & \(\square\) & - \\
\hline & Allpro 40 & \(\square\) & - & - & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) \\
\hline \multirow{2}{*}{Stag} & System 3000 & \(\square\) \\
\hline & ZL30/A & ■ & E & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & - & \(\square\) \\
\hline \multirow{3}{*}{Syatem General} & TURPRO-1 & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline & SGUP-85A & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) \\
\hline & SGUP-85 & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline \multirow[t]{2}{*}{SMS Microcomputer} & Sprint Expert & \(\square\) & \(\square\) & \(\square\) & ■ & \(\square\) & \(\square\) & \(\underline{\square}\) & ■ & \(\square\) & \(\square\) \\
\hline & Sprint Plus & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) \\
\hline Digelec & Model 860 & \(\square\) & - & 4 & m & 0 & O & \(\square\) & - & \(\square\) & - \\
\hline \multirow[t]{2}{*}{BP-Microsystems} & \[
\begin{array}{|l|}
\hline \text { CP-1128 } \\
\text { PLD-1128 } \\
\hline
\end{array}
\] & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & ■ & \(\square\) & \(\square\) & \(\square\) \\
\hline & PLD-1100 & \(\square\) & \(\square\) & - & \(\square\) & 0 & 0 & \(\square\) & \(\square\) & \(\square\) & - \\
\hline Prog. Logic Tech. & Logic Lab & \(\square\) & \(\square\) & ■ & - & 0 & \(\square\) & \(\square\) & - & \(\square\) & - \\
\hline \multirow{2}{*}{Advin} & Pilot-U84/U40 & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & - \\
\hline & Pilot-GLGCE & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) \\
\hline
\end{tabular}

\footnotetext{
- Programmer is qualified, refer to the GAL Development Tools document for additional information.
\(\square=\) Programmer was not qualified as of \(5 / 92\). Contact Lattice or programmer vendor for latest information.
\(\mathrm{O}=\) Programmer does not support 28-pin devices.
}

\section*{Development Tools}

\section*{LOGIC COMPILER SUPPORT (as of May 1992)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Vendor} & \multirow{2}{*}{Logic Compiler} & \multicolumn{9}{|c|}{Lattice GAL Device Type} \\
\hline & & 16V8AB & 20V8A/B & 18V10 & 22V10/B & 26CV12/B & 20XV10B & 20RA10 & 6002B & 6001 \\
\hline Accel Tech. & Tango PLD & \(\square\) & \(\square\) & ■ & ■ & \(\square\) & 0 & \(\square\) & O & \(\square\) \\
\hline Data VO & ABEL & \(\square\) & \(\square\) & - & \(\square\) & \(\square\) & \(\square\) & \(\square\) & - & \(\square\) \\
\hline ISDATA & LOG/IC & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & O & \(\square\) & 0 & \(\square\) \\
\hline Logical Devices & CUPL & \(\square\) \\
\hline Minc & PLDesigner & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & 0 & \(\square\) & 0 & \(\square\) \\
\hline OrCAD & OTCAD PLD & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & 0 & \(\square\) & 0 & 0 \\
\hline Omation & Schema-PLD & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & 0 & \(\square\) & 0 & ■ \\
\hline
\end{tabular}
- Compiler supports GAL device type. Contact vendor or Lattice for the current revision level.
\(\mathrm{O}=\) Contact vendor for support date.

\section*{PROGRAMMER/COMPILER VENDORS}

\section*{Accel Technologies}

6825 Flanders Dr.
San Diego, CA 92121
Tel: (619) 554-1000
FAX: (619) 554-1019
Advin Systems
1050-L Duane Ave
Sunnyvale, CA 94086
Tel: (408) 243-7000
FAX: (408) 736-2503
BP Microsystems
10681 Haddington
Suite \#190
Houston, TX 77043
Tel: (713) 461-9430
FAX: (713) 461-7431
BBS: (713) 461-4958
Data VO Corp.
10525 Willows Road N.E.
P.O. Box 97046

Redmond, WA 98073-9746
Tel: (206) 881-6444
Tel: 1-800-247-5700
FAX: (206) 882-1043
In Europe contact:
Data I/O Corp.
Tel: +31 (0) 20-6622866 In Japan contact:
Data I/O Corp.
Tel: (03) 432-6991

Digitronics Israel Ltd.
25 Galgaley Haplada St.
Herzliya B 46722
Israel
Tel: 052-559615
FAX: 052-555240
In the U.S. contact
Digelec
20144 Plummer St.
Chatsworth, CA 91311
Tel: (818) 701-9677
FAX: (818) 701-5040
ISDATA GmbH
Haid-und-Neu-Straße 7
7500 Karlsruhe 1
Germany
Tel: 0721-693092
FAX: 0721-174263
In the U.S. contact
ISDATA Inc.
Tel: (408) 373-7359
FAX: (408) 373-3622

\section*{Logical Devices}

1321 N.W. 65th Place.
Fort Lauderdale, FL 33309
Tel: (305) 974-0967
FAX: (305) 974-8531
Minc Incorporated
6755 Earl Dr.
Colorado Springs, CO 80918
Tel: (719) 590-1155
FAX: (719) 590-7330

\section*{Omation}

801 Presidential
Richardson, TX 75081
Tel: (214) 231-5167
FAX: (214) 783-9072
OrCAD Systems Corp.
3175 N.W. Aloclek Dr.
Hillsboro, OR 97124
Tel: (503) 690-9881
FAX: (503) 690-9891

\section*{Programmable Logic Tech}
P.O. Box 1567

Longmont, CO 80501
Tel: (303) 772-9059
FAX: (303) 772-5617

\section*{SMS Micro Systems}

IM Grund 15
D-7988 Wangen
Germany
Tel: (49) 7522-5018
FAX: (49) 7522-8929 In the U.S. contact:
SMS Norht America, Inc.
16522 N.E. 135th PI.
Redmond, WA 98052
Tel: (206) 883-8447
FAX: (206) 883-8601

\section*{Stag Microsystems}

Martinfield
Welwyn Garden City
Herts AL7 1JT
United Kingdom
Tel: 011-44-707-332148
FAX: 011-44-707-371503 In the U.S. contact:
Stag Microsystems 1600 Wyatt Dr.
Santa Clara, CA 95054
Tel: (408) 988-1118
FAX: (408) 988-1232

\section*{System General}

3FI., No. 1, Alley 8, Lane 45
Bao Shing Rd.
Shin Dian
Taipei, Taiwan R.O.C.
Tel: 886-2-9173005
FAX: 886-2-9111283
In the U.S. contact:
System General
510 S. Park Victoria Dr.
Milpitas, CA 95035
Tel: (408) 263-6667
FAX: (408) 262-9220

\title{
Copying PAL, EPLD \& PEEL Patterns Into GAL Devices
}

\section*{INTRODUCTION}

The generic/universal architectures of Lattice GAL devices are able to emulate a wide variety of PAL, EPLD and PEEL devices. GAL devices are direct functional and parametric replacements for most PLD device architectures. To use GAL devices in place of other PLD types, some conversion of the original device pattern may be needed. This conversion is not difficult, and can be accomplished at either the design or manufacturing level. The following sections describe several techniques available to convert PAL, EPLD and PEEL device patterns to Lattice GAL device patterns.

CROSS PROGRAMMING: GAL16V8 AND GAL20V8
The GAL16V8 and GAL20V8 devices replace most standard 20-pin and 24-pin PAL devices. To simplify the conversion process, Lattice has worked with programmer hardware manufacturers to provide the ability to program GAL devices directly from existing PAL JEDEC files, or master PAL devices. Lattice qualified programmers can automatically configure the architecture of a GAL device to emulate the source PAL device.

To provide a conceptual framework for the conversion from PAL devices to GAL devices, a mythical device known as a RAL device was created. A RAL device is simply a GAL device configured to emulate a PAL. There is a one-to-one correspondence between the name of a PAL device and that of a RAL device. For example, a RAL16L8 is simply a GAL16L8 configured as a PAL16L8. Some programmers list the RAL device types as choices for cross-programming, while others specifically state that a cross-programming operation is to be performed using a PAL device type as the architecture type. Other programmers list devices such as a Lattice 16L8. Even though Lattice does not make a 16L8 device, choosing this selection allows the programmer to accept a 16L8 JEDEC file, and will program a GAL16V8 device to emulate a PAL16L8.

To program a GAL16V8 or GAL20V8 device from an existing PAL JEDEC file, simply select the appropriate device code (either RAL type, or PAL type to crossprogram from), then download the PAL JEDEC file to the programmer. Insert the appropriate GAL device that can directly emulate the PAL device (according to the chart in the GAL16V8 or GAL20V8 datasheets). The programmer will automatically configure the GAL device to emulate the PAL device during programming. The resulting GAL device is \(100 \%\) compatible with the original PAL device.

A GAL device may also be programmed from a master PAL device by reading the pattern of the master PAL into the programmer memory, then selecting the appropriate RAL device or PAL type to cross-program from. The GAL device can then be programmed from the programmer memory.

\section*{CROSS PROGRAMMING: GAL22V10/GAL20RA10}

The GAL22V10 and GAL20RA10 are direct replacements for bipolar PAL devices, and are JEDEC fuse map compatible with these industry standard devices. To program a GAL22V10 or GAL20RA10 device from an existing PAL JEDEC file, simply select the appropriate GAL device code, then download the PAL JEDEC file to the programmer. The resulting GAL device is \(100 \%\) compatible with the original PAL.

GAL devices also may be programmed from Master PAL devices by reading the pattern of the Master PAL into the programmer memory, then selecting the appropriate GAL device code. The GAL device can then be programmed from the programmer memory.

The GAL22V10 and GAL20RA10 also can store a User Electronic Signature (see the datasheets on these devices for more information). To use this feature, the JEDEC file must contain this information. To add the signature data to the JEDEC map, use the PALtoGAL conversion utility (see next section) or recompile the source equations for a Lattice GAL device instead of a generic 22V10 type. Many programmers list two device types to differentiate between the two types of JEDEC files, and list both a GAL22V10 and a name such as GAL22V10-UES or GAL22V10-ES. Other programmers allow both types of JEDEC files to be accepted, and simply don't program the Signature fuses if they are not present in the file.

\section*{CROSS PROGRAMMING: GAL20XV10}

The GAL20XV10 canbe configured as a direct replacement for bipolar PAL20X10, 20X8, 20X4, and 20L10 devices. Many programmers provide cross-programming support similar to that provided forthe GAL16V8/GAL20V8 devices. This allows the use of existing PAL device files to program the GAL20XV10 to emulate the PAL devices. The PALtoGAL conversion software (described below) also supports conversion of the PAL JEDEC files to a functionally equivalent GAL device file.

\section*{PALTOGAL CONVERSION UTILITY SOFTWARE}

Lattice has created a software utility that will convert an existing PAL device JEDEC file to the appropriate GAL

\section*{Copying PAL Patterns Into GAL Devices}
device JEDEC format. Called PALtoGAL, this software utility can be used to convert PAL device files to GAL device files, add/or change the User Electronic Signature without changing device functionality, and reformat existing GAL JEDEC files for readability.

Since a few programmable logic devices have features that a GAL device cannot exactly emulate, the PALtoGAL utility will clearly describe the incompatibility but will not create an output file. GAL devices programmed using files converted by PALtoGAL will be \(100 \%\) compatible with the original logic device. PALtoGAL is just another method of cross-programming, and should produce the same results as using a programmer. The advantage is that a full GAL device JEDEC map is created, meaning that the appropriate GAL device may then be selected on the programmer, which may simplify the manufacturing flow. Also, the PALtoGAL conversion software provides conversions that programmers do not.

A copy of the PALtoGAL conversion utility software can be obtained through your local Lattice representative, or by
contacting the GAL Applications Hotline at 1-800FASTGAL (327-8425) or (503) 693-0201. The software also may be downloaded from Lattice's Electronic Bulletin Board at (503) 693-0215; the file name is "PALTOGAL.EXE".

\section*{SOFTWARE COMPILER CONVERSION}

If the equation source file is available for the PAL device, it can be converted by re-compiling using a suitable logic compiler that supports GAL devices. If there are any device incompatibilities (there shouldn't be in most cases), the compiler will describe the errors. The output of the compiler will be a GAL JEDEC file that can be used to program a GAL device directly. The resulting GAL device will be \(100 \%\) functionally compatible with the original device.

Suitable logic compilers are listed in the Development Tools section. If additional questions arise, contact your compiler manufacturer or a Lattice Applications Engineer by calling the GAL Applications Hotline at 1-800-FASTGAL or (503) 693-0201.

\section*{GAL Product Line Cross Reference}
\begin{tabular}{|c|c|c|}
\hline MANUFACTURER & PART \# & LATTICE PART \# \\
\hline ALTERA & \begin{tabular}{l}
EP310 \\
EP320 \\
EP330
\end{tabular} & GAL16V8AB \({ }^{1}\) or... GAL18V10 \\
\hline \multirow[t]{8}{*}{AMD} & \begin{tabular}{l}
PAL10H8 \\
PAL10L8 \\
PAL12H6 \\
PAL12L6 \\
PAL14H4 \\
PAL14L4 \\
PAL16H2 \\
PAL16L2
\end{tabular} & GAL16V8A/B \\
\hline & \begin{tabular}{l}
PAL16L8 \\
PAL16R4 \\
PAL16R6 \\
PAL16R8 \\
PALC16L8 \\
PALC16R4 \\
PALC16R6 \\
PALC16R8 \\
AmPAL16L8 \\
AmPAL16R4 \\
AmPAL16R6 \\
AmPAL16R8 \\
PAL16P8 \\
PAL16RP4 \\
PAL16RP6 \\
PAL16RP8
\end{tabular} & GAL16V8ABB \\
\hline & PALCE16V8 & GAL16V8A/B \\
\hline & AmPAL18P8 PALC18U8 & \[
\begin{aligned}
& \text { GAL16V8A/B' } \\
& \text { or... GAL18V10 }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PAL14L8 \\
PAL16L6 \\
PAL18L4 \\
PAL20L2
\end{tabular} & GAL20V8AB \\
\hline & \begin{tabular}{l}
PAL20L8 \\
PAL20R4 \\
PAL20R6 \\
PAL20R8 \\
AmPAL20RP4 \\
AmPAL20RP6 \\
AmPAL20RP8
\end{tabular} & GAL20V8A/B \\
\hline & PALCE20V8 & GAL20V8A/B \\
\hline & PAL20RA10 & GAL20RA10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline MANUFACTURER & PART \# & LATTICE PART \# \\
\hline \multirow[t]{5}{*}{AMD} & AmPAL20RP10 & GAL22V10/B \\
\hline & \begin{tabular}{l}
PAL20S10 \\
PAL20RS4 \\
PAL20RS8 \\
PAL20RS10
\end{tabular} & GAL22V10/B \\
\hline & \begin{tabular}{l}
PAL12L10 \\
AmPAL20L10 \\
PAL20L10 \\
PAL20X4 \({ }^{2}\) \\
PAL20X8 \({ }^{2}\) \\
PAL20X10 \({ }^{2}\)
\end{tabular} & GAL20XV10B \\
\hline & \begin{tabular}{l}
AmPAL22V10 \\
PAL22V10 \\
PALC22V10 \\
PALCE22V10
\end{tabular} & GAL22V10/B \\
\hline & PALCE24V10 PALCE26V12 & GAL26CV12/B' \\
\hline ATMEL & AT22V10 & GAL22V10/B \\
\hline \multirow[t]{4}{*}{CYPRESS} & \begin{tabular}{l}
PALC16L8 \\
PALC16R4 \\
PALC16R6 \\
PALC16R8
\end{tabular} & GAL16V8AB \\
\hline & PLDC18G8 & GAL16V8A/B' or... GAL18V10 \\
\hline & PALC20CG10 PALC22V10 PAL22V10 & \[
\begin{array}{|l}
\text { GAL20V8ANB' } \\
\text { or... GAL22V10/B }
\end{array}
\] \\
\hline & PLD20RA10 & GAL20RA10 \\
\hline HARRIS & \begin{tabular}{l}
HPL16LC8 \\
HPL16RC4 \\
HPL16RC6 \\
HPL16RC8
\end{tabular} & GAL16V8A/B \\
\hline \multirow[t]{3}{*}{ICT} & PEEL18CV8 & GAL16V8A/B \({ }^{1}\) or... GAL18V10 \\
\hline & PEEL153 PEEL253 & GAL16V8A/B \({ }^{1}\) or... GAL18V10 \({ }^{1}\) \\
\hline & \[
\begin{array}{|l}
\text { PEEL20CG10 } \\
\text { PEEL22CV10A }
\end{array}
\] & GAL20V8A/B' or... GAL22V10/B \\
\hline
\end{tabular}
1) Possible conversion but not \(100 \%\) compatible to this device.
2) DIP package compatible only.

GAL Product Line
Cross Reference
\begin{tabular}{|c|c|c|c|c|c|}
\hline MANUFACTURER & PART * & LATTICE PART \# & MANUFACTURER & PART* & LATTICE PART * \\
\hline \multirow[t]{2}{*}{INTEL} &  & \[
\begin{aligned}
& \text { GAL16V8A/B1 } \\
& \text { or... GAL18V10 }
\end{aligned}
\] & \multirow[t]{3}{*}{RICOH} & \begin{tabular}{l}
EPL10P8 \\
EPL12P6 \\
EPL14P4 \\
EPL16P2
\end{tabular} & GAL16V8AB \\
\hline & 85 C 224 & GAL20V8AB \({ }^{1}\) or... GAL22V10/B & & EPL16P8 & GAL16V8A/B \\
\hline \multirow[t]{16}{*}{NATIONAL} & PAL10H8 & GAL16V8A/B & & EPL16RP6 EPL16RP8 & \\
\hline & \begin{tabular}{l}
PAL10L8 \\
PAL12H6 \\
PAL12L6 \\
PAL14H4 \\
PAL14L4 \\
PAL16H2
\end{tabular} & GAL16V8ABB & \multirow[t]{5}{*}{SAMSUNG} & CPL16L8 CPL16R4 CPL16R6 CPL16R8 & GAL16V8A/B \\
\hline & PAL16L2 & & & CPL20L8 & GAL20V8AB \\
\hline & PAL16L8 PAL16R4 PAL16R6 & GAL16V8A/B & & \[
\begin{array}{|l|l|l}
\text { CPL20R6 } \\
\text { CPL20R8 }
\end{array}
\] & \\
\hline & PAL16R8 & & & CPL20L10 & GAL20XV10B \\
\hline & \begin{tabular}{l}
GAL16V8 \\
GAL16V8A
\end{tabular} & GAL16V8A/B & & CPL22V10 & GAL22V10/B \\
\hline & & & \multirow[t]{3}{*}{SGS-THOMSON} & GAL16V8 & GAL16V8AB \\
\hline & GAL & GAL18 & & GAL20V8 & GAL20V8AB \\
\hline & PAL16L6 PAL18L4 PAL20L2 & GAL20V8 & & GAL39V18 & \[
\begin{gathered}
\text { GAL6001 } \\
\text { or... GAL6002B }
\end{gathered}
\] \\
\hline & \begin{tabular}{l}
PAL20L8 \\
PAL20P8 \\
PAL20R4 \\
PAL20RP4 \\
PAL 20R6
\end{tabular} & GAL20V8A/B & \multirow[t]{4}{*}{SIGNETICS} & PLHS16L8 PLUS16L8 PLUS16R4. PLUS16R6 PLUS16R8 & GAL16V8A/B \\
\hline & PAL20RP6 PALL20R8 PAL20RP8 & & & PLHS18P8 & \[
\begin{aligned}
& \text { GAL16V8AB' } \\
& \text { or... GAL18V10 }
\end{aligned}
\] \\
\hline & PAL20RA10 & GAL20RA10 & & \[
\begin{aligned}
& \text { PLS153 } \\
& \text { PHD16N8 }
\end{aligned}
\] & GAL16V8A/B' or... GAL18V10' \\
\hline & \begin{tabular}{l}
PAL20L10 \\
PAL20X4 \\
PAL20X8 \\
PAL20X10
\end{tabular} & GAL20XV10B & & \begin{tabular}{l}
PLUS20L8 \\
PLUS20R4 \\
PLUS20R6 \\
PLUS20R8
\end{tabular} & GAL20V8ABB \\
\hline & GAL22V10 & GAL22V10/B & \multirow[t]{3}{*}{SPRAGUE} & \multirow[t]{3}{*}{SPL14LC8 SPL16LC8 SPL16RC4 SPL16RC6 SPL16RC8} & \multirow[t]{3}{*}{GAL16V8AB} \\
\hline & GAL26CV12 & GAL26CV12/B & & & \\
\hline & GAL6001 & \[
\begin{gathered}
\text { GAL6001 } \\
\text { or... GAL6002B }
\end{gathered}
\] & & & \\
\hline
\end{tabular}
1) Possible conversion but not \(100 \%\) compatible to this device.
\begin{tabular}{|c|c|c|}
\hline MANUFACTURER & PART * & LATTICE PART \# \\
\hline \multirow[t]{2}{*}{SPRAGUE} & SPL18LC4 SPL20LC2 & GAL20V8A/B \\
\hline & \begin{tabular}{l}
SPL20LC8 \\
SPL20RC4 \\
SPL20RC6 \\
SPL20RC8
\end{tabular} & GAL20V8AB \\
\hline \multirow[t]{6}{*}{TI} & \begin{tabular}{l}
TIBPAL16L8 \\
TIBPAL16R4 \\
TIBPAL16R6 \\
TIBPAL16R8
\end{tabular} & GAL16V8A/B \\
\hline & TICPAL16L8 TICPAL16R4 TICPAL16R6 TICPAL16R8 & GAL16V8A/B GAL16V8ABB \\
\hline & \[
\begin{aligned}
& \text { EP330 } \\
& \text { TIBPAD16N8 }
\end{aligned}
\] & GAL16V8A/B \({ }^{1}\) or... GAL18V10' \\
\hline & TIBPAL20L8 TIBPAL20R4 TIBPAL20R6 TIBPAL20R8 & GAL20V8A/B \\
\hline & TIBPAL20L10 TIBPAL20X4 TIBPAL20X8 TIBPAL20X10 & GAL20XV10B \\
\hline & TIBPAL22V10 TICPAL22V10 & GAL22V10/B \\
\hline
\end{tabular}
1) Possible conversion but not \(100 \%\) compatible to this device.

\section*{Package Thermal Resistance}

The following table provides information on the package thermal resistance of Lattice commercial and industrial grade devices. For information on the package thermal resistance of Lattice military grade devices, please refer to "MIL-M-38510, Appendix C".

Testing was performed per SEMI TEST METHOD G3887: "Still and Forced-Air Junction-to-Ambient Thermal Resistance Measurements of IC Packages" with devices
mounted on a thermal test board conforming to SEMI SPECIFICATION G42-88: "Thermal Test Board Standardization for Measuring Junction-to-Ambient Thermal Resistance of Semiconductor Packages".

\section*{Test Conditions}

Power Dissipation \(=0.5\) watts (IC chip reverse biased)
Ambient Air Velocity = Zero (still air)
Ambient Temperature \(=65^{\circ} \mathrm{C}\)
Measuring Current \(=3 \mathrm{~mA}\)

\section*{PACKAGE THERMAL RESISTANCE}

\section*{Commercial/Industrial Grade Devices}
\begin{tabular}{|c|c|c|c|}
\hline Package Type: & Device Type: & \(\theta_{\text {JA }}\) & \(\theta_{\text {Jc }}\) \\
\hline 20-Pin Plastic DIP & GAL16V8A/B GAL18V10 & \(67^{\circ} \mathrm{CN}\) & \(39^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline 24-Pin Plastic DIP & \begin{tabular}{l}
GAL20V8A/B \\
GAL22V10/B \\
GAL20XV10B \\
GAL20RA10 \\
GAL6001 \\
GAL6002B
\end{tabular} & \(65^{\circ} \mathrm{CN}\) & \(36^{\circ} \mathrm{C}\) W \\
\hline 28-Pin Plastic DIP & GAL26CV12/B & \(52^{\circ} \mathrm{C} / \mathrm{W}\) & \(33^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline 20-Pin Plastic LCC & GAL16V8A/B GAL18V10 & \(67^{\circ} \mathrm{C} / \mathrm{W}\) & \(32^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline 28-Pin Plastic LCC & \begin{tabular}{l}
GAL20V8A/B \\
GAL22V10/B \\
GAL20XV10B \\
GAL20RA10 \\
GAL26CV12/B \\
GAL6001 \\
GAL6002B
\end{tabular} & \(56^{\circ} \mathrm{C} / \mathrm{W}\) & \(29^{\circ} \mathrm{CW}\) \\
\hline
\end{tabular}

\section*{Package Diagrams}

\section*{20-Pin Plastic DIP}

Dimensions in Inches MIN. / MAX.


\section*{24-Pin Plastic DIP}

Dimensions in Inches MIN. / MAX.


\section*{28-Pin Plastic DIP}

Dimensions in Inches MIN. / MAX.


\section*{20-Pin PLCC Package \\ Dimensions in Inches MIN. / MAX.}


28-Pin PLCC Package
Dimensions in Inches MIN. / MAX.


\section*{20-Pin (300 MIL) CERDIP}

Dimensions in Inches MIN. / MAX.


24-Pin ( 300 MIL ) CERDIP
Dimensions in Inches MIN. / MAX.


\section*{28-Pin (300 MIL) CERDIP}

Dimensions in Inches MIN. / MAX.


\section*{Package Diagrams}

\section*{20-Pin LCC}

Dimensions in Inches MIN. / MAX.


\section*{28-Pin LCC}

Dimensions in Inches MIN. / MAX.


\section*{Tape and Reel Specifications}

A tape-and-reel packing container is available for plastic leaded chipcarriers to protect the product from mechanical electrical damage and to provide an efficient method for handling. Lattice's tape-and-reel containers are shipped in full compliance to Electronics Industry Association Standard EIA-RS481.

The tape-and-reel packing system consists of a pocketed carriertapeloaded with one device per pocket. A protective cover tape seals the carrier tape and holds the devices in
the pockets. A full reel holds a maximum quantity of devices depending on the package size. Lattice requires ordering in full reel quantities. Once loaded, the tape is wound onto a plastic reel for labeling and packing.

Devices packaged in tape-and-reel containers must be factory programmed (pre-patterned). Custom marking of devices prior to mounting on tape-and-reel is available upon request. Contact your local Lattice sales office for more details on Lattice's tape-and reel packing system.

TAPE-AND-REEL QUANTITIES AND DIMENSIONS
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Package } & \multirow{2}{*|}{ Pin Count } & \multicolumn{2}{|c|}{ Carrier Tape Dimensions }
\end{tabular} \begin{tabular}{c} 
Quantity Per \\
\cline { 2 - 3 }
\end{tabular}

\section*{Sales Offices}

\section*{LATTICE SALES OFFICES}
\begin{tabular}{l} 
ERANCE \\
Lattice Semiconductor \\
Les Bureaux de Sèvres \\
72-78, Grand Rue \\
92310 Sevres \\
TEL: \\
FAX: \\
FA3) 145341010 \\
\hline
\end{tabular}

GERMANY
Lattice Semiconductor
Hanns-Braun-Str. 50
8056 Neufahrn bei München
TEL: 08165-652-45
FAX: 08165-652-49

\section*{HONG KONG}

Lattice Semiconductor
2802 Admiralty Centre, Tower 1
18 Harcourt Road
Hong Kong
TEL: (852) 529-0356
FAX: (852) 866-2315
\begin{tabular}{l}
\multicolumn{1}{c}{ JAPAN } \\
Lattice Semiconductor \\
Peony Kikuchi 201 \\
1-8-4, Botan \\
Koto-ku, Tokyo 135 \\
TEL: \(33-642-0621\) \\
FAX: \\
\hline
\end{tabular}

UNITED KINGDOM
Lattice Semiconductor
Lords Court
St. Leonard's Road
Windsor
Berkshire SL4 3DB
TEL: 753-830-842
FAX: 753-833-457

\section*{NORTH AMERICA}

CALIFORNIA
Lattice Semiconductor
4000 Burton Drive
Santa Clara, CA 95051
TEL: (408) 980-7878
FAX: (408) 980-0839

Lattice Semiconductor
Carlsbad Pacific Ctr. One
701 Palomar Airport Rd.
3rd Floor
Carlsbad, CA 92009
TEL: (619) 931-4751
FAX: (619) 431-1821

\section*{GEORGIA}

Lattice Semiconductor 3105 Mediock Bridge Rd.
Norcross, GA 30071-1443
TEL: (404) 446-2930
FAX: (404) 416-7404
TEL: FAE - (404) 242-2990
MASSACHUSETTS
Lattice Semiconductor 67 S. Bedford St.
Suite 400 West
Burlington, MA 01803
TEL: (617) 229-5819
FAX: (617) 272-3213

\section*{MINNESOTA}

Lattice Semiconductor 3445 Washington Dr.
Suite 105
Eagan, MN 55122
TEL: (612) 686-8747
FAX: (612) 686-8746

\section*{NEW JERSEY}

Lattice Semiconductor
TEL: (201) 744-5908
FAX: (201) 509-9309

\section*{OREGON}

Lattice Semiconductor 5555 N.E. Moore Ct.
Hillsboro, OR 97124
TEL: (503) 780-6771
FAX: (503) 681-3037

\section*{TEXAS}

Lattice Semiconductor
100 Decker Ct. Ste. 280
Inving, TX 75062
TEL: (214) 650-1236
FAX: (214) 650-1237

\section*{NORTH AMERICAN SALES REPRESENTATIVES}

\section*{ALABAMA}

CSR Electronics, Inc.
303 Williams Avenue
Ste. 931
Huntsville, AL 35801
TEL: (205) 533-2444
FAX: (205) 536-4031

\section*{ARIZONA}

Summit Sales
7802 E. Gray Rd. \#600
Scottsdale, AZ 85260
TEL: (602) 998-4850
FAX: (602) 998-5274

\section*{CALIFORNIA}

Bager Electronics
17220 Newhope St. \#209
Fountain Valley, CA 92708
TEL: (714) 957-3367
FAX: (714) 546-2654
Bager Electronics
6324 Variel Ave. \#314
Woodland Hills, CA 91367
TEL: (818) 712-0011
FAX: (818) 712-0160

\section*{Criterion Sales}

3350 Scott Blvd, Bldg. 44
Santa Clara, CA 95054
TEL: (408) 988-6300
FAX: (408) 986-9039

Earle Associates
7585 Ronson Rd. \#200
San Diego, CA 92111
TEL: (619) 278-5441
FAX: (619) 278-5443

\section*{COLORADO}

Waugaman Associates
4800 Van Gordon
Wheat Ridge, CO 80033
TEL: (303) 423-1020
FAX: (303) 467-3095

\section*{CONNECTICUT}

Comp Rep Associates 60 Connolly Pkwy.
Bldg. 12 Suite 210
Hamden, CT 06514
TEL: (203) 230-8369
FAX: (203) 230-8394

\section*{FLORIDA}

Sales Engineering Concepts 776 S. Military Trail Deerfield Beach, FL 33442
TEL: (305) 426-4601
FAX: (305) 427-7338
Sales Engineering Concepts 600 S. Norttlake Blvd. \#230 Altamonte Spgs, FL 32701
TEL: (407) 830-8444
FAX: (407) 830-8684

\section*{MABYLAND}

Deltatronics
24048 Sugar Cane Ln.
Gaithersburg, MD 20882
TEL: (301) 253-0615
FAX: (301) 253-9108

\section*{MASSACHUSETTS}

Comp Rep Associates
100 Everett Street
Westwood, MA 02090
TEL: (617) 329-3454
FAX: (617) 329-6395

\section*{MICHIGAN}

Greiner \& Associates
15324 E. Jefferson Ave.
Grosse Pointe Park, MI 48230
TEL: (313) 499-0188
FAX: (313) 499-0665

\section*{MINNESOTA}

Stan Clothier Company
9600 W. 76th St., Ste. \#A
Eden Prairie, MN 55344
TEL: (612) 944-3456
FAX: (612) 944-6904

\section*{Sales Offices}
\begin{tabular}{l}
\hline MISSOURI \\
Stan Clothier Company \\
3910 Old Highway 94 South \\
Suite 116 \\
St. Charles, MO 63304 \\
TEL: (314) 928-8078 \\
FAX: (314) 447-5214
\end{tabular}

\section*{NEW JERSEY}

Technical Marketing Group
175-3C Fairfield Ave. West Caldwell, NJ 07006
TEL: (201) 226-3300
FAX: (201) 226-9518

\section*{NEW YORK}

Technical Marketing Group 20 Broad Hollow Rd.
Melville, NY 11747
TEL: (516) 351-8833
FAX: (516) 351-8667
Tri-Tech Electronics 300 Main St.
E. Rochester, NY 14445

TEL: (716) 385-6500
FAX: (716) 385-7655
Tri-Tech Electronics 14 Westview Dr.
Fishkill, NY 12524
TEL: (914) 897-5611
FAX: (914) 897-5611
Tri-Tech Electronics 6836 E. Genesee St. Fayetteville, NY 13066
TEL: (315) 446-2881
FAX: (315) 446-3047

\section*{NORTH CAROLINA}

CSR Electronics, Inc.
5848 Faringdon Place, Ste. 2
Raleigh, NC 27609
TEL: (919) 878-9200
FAX: (919) 878-9117
CSR Electronics, Inc.
6425 Creft Cr.
Indian Trail, NC 28079
TEL: (704) 882-3992
FAX: (704) 882-3999

\section*{OH O}

Makin \& Associates 3165 Lynwood Rd. Cincinnati, OH 45208
TEL: (513) 871-2424
FAX: (513) 871-2524

Makin \& Associates
6400 Riverside Dr. Bldg. A
Dublin, OH 43017
TEL: (614) 793-9545
FAX: (614) 793-0256
Makin \& Associates
32915 Aurora Ave. \#270
Solon, OH 44139
TEL: (216) 248-7370
FAX: (216) 248-7372
OKLAHOMA
West Associates
9717 E. 42nd St. \#125
Tulsa, OK 74146
TEL: (918) 665-3465
FAX: (918) 663-1762
OREGON
Northwest Marketing
6975 SW Sandburg Rd. \#330
Portland, OR 97223
TEL: (503) 620-0441
FAX: (503) 684-2541
PENNSYLVANIA
Deltatronics
921 Penllyn Pike
Blue Bell, PA 19422
TEL: (215) 641-9930
FAX: (215) 641-9934

\section*{TENNESSEE}

CSR Electronics, Inc. Andrew Johnson Office PI.
912 S. Gay Street, Ste. 1218
Knoxville, TN 37902
TEL: (615) 637-0293
FAX: (615) 637-0466

\section*{TEXAS}

West Associates
4615 Southwest Fwy \#720
Houston, TX 77027
TEL: (713) 621-5983
FAX: (713) 621-5895
West Associates
9171 Capital of Texas Hwy.
North Houston Bldg. \#120
Austin, TX 78759
TEL: (512) 343-1199
FAX: (512) 343-1922

\section*{West Associates}

801 E. Campbell Rd. \#350
Richardson, TX 75081
TEL: (214) 680-2800
FAX: (214) 699-0330

UTAH
Waugaman Associates
876 East Vine St.
Murray, UT 84107
TEL: (801) 261-0802
FAX: (801) 261-0830

\section*{VIRGINIA}

Deltatronics
6040 Knights Ridgeway
Alexandria, VA 22310
TEL: (703) 971-1733
FAX: (703) 971-1343
WASHINGTON
Northwest Marketing
12835 Bel-Red Rd. \#330N
Bellevue, WA 98005
TEL: (206) 455-5846
FAX: (206) 451-1130

\section*{WISCONSIN}

Heartland Technical Mktg.
350 Bishops Way
Brookfield, W1 53005
TEL: (414) 789-6860
FAX: (414) 789-6864

\section*{PUERTO RICO}

Sales Engineering Concepts
Condo. Buena Vista
Urb. Mercedita
Local Commercial C-1
Ponce, P.R. 00731
TEL: (809) 841-4220
FEX: (809) 259-7223

\section*{CANADA}

\section*{ALBERTA}

Dynasty Components
Calgary, Alberta
TEL: (403) 560-1212
FAX: (403) 723-8820
BRITISH COLUMBIA
Dynasty Components Vancouver, British Columbia
TEL: (604) 597-0068
FAX: (604) 723-8820

\section*{ONTARIQ}

Dynasty Components
174 Colonade Rd. S.
Unit 21
Nepean, Ontario
Canada, K2E 7J5
TEL: (613) 723-0671
FAX: (613) 723-8820
Dynasty Components
Toronto, Ontario
TEL: (416) 672-5977
FAX: (416) 723-8820

\section*{QUEBEC}

Dynasty Components Montreal, Quebec
TEL: (514) 843-1879
FAX: (514) 694-6826

\section*{INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS}

AUSTRALIA
RAE Industrial Elect. Pty. 62 Moore St
Austimer, NSW 215
\(\begin{array}{ll}\text { TEL: } & \text { (61) 42-673722 } \\ \text { FAX. } & \text { (61) } 42-681075\end{array}\)
FAX: (61) 42-681075
ZATEK Components, Ltd. 1059 Victoria Road P. O Box 397, Suite 8 West Ryde, NSW 2114 Sidney, 3153
TEL: (61) 2 874-0122
FAX: (61) \(\mathbf{2} \mathbf{8 7 4 - 6 1 7 1}\)
ZATEK Components, Ltd.
Level 2, 96 Phillip Street
Parramatta 2150
P.O Box 1077

Parramatta 2150
TEL: (61) 2 895-5534
FAX: (61) 2 895-5535

\section*{AUSTRIA}

Ing. E. Steiner GmbH. Hummelgasse 14
A-1130 Wien
TEL: (43) 222-827-4740
FAX: (43) 222-828-5617

\section*{BELGIUM}

Alcom Electronics B.V.B.A. Singel 3
2550 Kontich
TEL: (32) 3 458-3033
FAX: (32) 34583126

\section*{DENMARK}

Ditz Schweitzer
Vallensbaekvej 41
Postboks 5,
DK-2605 Brendby
TEL: (45) 42453044
FAX: (45) 42459206
TLX: 85533257

\section*{FINLAND}

Telercas OY
Luomannotko 6, PL73
02201 Espoo
TEL: (358) 804521622
FAX: (358) 804523337
TLX: 857123212

\section*{ERANCE}

Almex
48 Rue de l'Aubepiné BP 102
92164 Antony Cedex
TEL: (33) 140965400
FAX: (33) 146666028

Franelec
50 Rue de L'Aubepine
B.P. 158

92185 Antony Cedex
TEL: (33) 140960909
FAX: (33) 140960250
TLX: 842250067
DataDis
3 Bis Rue Rene Cassin
B.P 84

91303 Massey Cedex
TEL: (33) 69-20 4141
FAX: (33) 69-20 4900

\section*{GERMANY}

Alfatron GmbH.
Stahlgruberring 12
8000 München 82
TEL: (49) 894204910
FAX: (49) 8942049159
TLX: (49) 5216935

\section*{HONG KONG}

RTI Industries Co. Ltd.
B23, 3rd Floor
Proficient Ind. Centre
6, Wang Kwan Rd.
Kowloon
TEL: (852) 7957421
FAX: (852) 7957839
INDIA
Hindetron
33/44A, 8th Main Road
Rajmahal Vilas Ext.
Bangaore 560-080
TEL: (91) 812348266
FAX: (91) 812345022
TLX: (91) 08452741HSPL IN

\section*{IRELAND}

Silicon Concepts
3 Mills View Close
Dukesmeadow, Kilkenny
Kilkenny County
TEL: (353) 5664002

\section*{ISRAEL}

Unitec
Rechov Maskit 1
Herzlia B, PO Box 2123 46120
TEL: (972) 52576006
FAX: (972) 52576790
TLX: 922341990

\section*{ITALY}

Comprel S.R.L.
Viale F. Testi, 115
20092 Cinosello B.
Milano
TEL: (39) 2-61206415
FAX: (39) 2-6128158

Comprel S.P.A.
Viale F. Testi, 115
20092 Cinosello B.
Milano
TEL.: (39) 2-6120641
FAX: (39) 2-61280526
JAPAN
Ado Electronic Indust. Co. 7th Floor, Sasage Building No. 4-6 Sotokanda
2-Chome, Chiyoda-ku
Tokyo 101
TEL: (81) 3-3257-2600
FAX: (81) 3-3251-6796
TLX: 7812224754
Macnica, Inc.
Hakusan High-Tech Park
1-22-2 Hakusan-cho, Midori-ku
Yokohama, 226
TEL: (81) 45-939-6140
FAX: (81) 45-939-6141
TLX: 78128988
Hakuto Co., Ltd.
2-29, Toranomon, 1 chome
Minato-Ku, Tokyo 105
TEL: (81) 3-3597-8910
FAX: (81) 3-3597-8975
TLX: J22912BRAPAN
Hoei Denki
6-60, 2-Chome, Niitaka
Yodogawa-Ku,
Osaka 532
TEL: (81) 63941113
FAX: (81) 63965647
TLX: 5233694HOEIDK J

\section*{KOREA}

Ellen \& Company
Suite \#302 llbok Bldg.
1602-4 Seocho-Dong
Seocho-ku, Seoul
TEL: (82) 025875724
FAX: (82) 025851519
NETHERLANDS
Alcom Electronics B.V.
P.O. Box 358

2900 AJ Capelle AD lissel
TEL: (31) 104519533
FAX: (31) 104586482
TLX: 26160

\section*{NORWAY}

Henaco AVS
Trondheimsveien 436
PO Box 126
Kaldbakken, Osto 9
TEL: (47) 2162110
FAX: (47) 2257780
TLX: 76716

SINGAPORE
Technology Distribution
14 Sungei Kadut Ave. \#03-00
Singapore 2572
TEL: (65) 3686065
FAX: (65) 3680182

\section*{SOUTH AFRICA}

Multikomponent
Cnr. Vanacht \& Gewel St.
Isando 1600, P.O Box 695
TEL: (27) 119741525
FAX: (27) 113922463
TLX: 960426905
SPAIN
ATD
Avenida de la Industria
No. 32, 2B
28100 Alcobendas

\section*{Madrid}

TEL: (34) 1661-6551
FAX: (34) 16616300

\section*{SWEDEN}

Pelcon Electronics
Fagerstagatan 6-8
S-163 08 Spanga
TEL: (46) 87959870
FAX: (46) \(\mathbf{8 7 6 0 7 6 8 5}\)
SWITZERLAND
Ascom Primotec AG
Tăfernstrasse 37
CH-5405 Baden-Dăttwil
TEL: (41) 5684-0171
FAX: (41) \(5683-3454\)
TLX: 828221 apri ch

\section*{TAIWAN}

Master Electronics
5F, 9 Lane
Hsin-Chung St.
Taipei
TEL: (886) 2-735-0905
FAX: (886) 2-735-0902
Score Zap Industry
2F, No. 26, Alley 88, Lane 91
Sec. 1 Nei Hu Rd.
Taipei
TEL: (886) 2-627-7045
FAX: (886) 2-659-0089
UNITED KINGDOM
Macro Marketing
Burnham Lane
Slough SL1 6LN
England
TEL: (44) 628604383
FAX: (44) 628666873
TLX: 851847945

Micro Call
17 Thame Park Rd.
Thame, Oxon OX9 3XD
England
TEL: (44) 84 426-1939
FAX: (44) 84 426-1678
Silicon Concepts, Ltd.
PEC Lynchborough Rd. Passfield, Liphook Hampshire GU30 7SB England
TEL: (44) 428751617
FAX: (44) 428751603
Silicon Concepts, Ltd.
Meridale, Welsh Street
Chepston, Gwent, NP6 5LR Wales
TEL: (44) 291-624101
FAX: (44) 291-629878

\section*{NORTH AMERICAN DISTRIBUTORS}

\section*{ALABAMA}

Arrow Electronics 1015 Henderson Rd. Huntsville, AL 35816 (205) 837-6955

Hall-Mark Electronics 4890 University Square Suite 1
Huntsville, AL 35816
(205) 837-8700

Marshall Industries
3313 Memorial Pkwy S.
Huntsville, AL 35801
(205) 881-9235

\section*{ABIZONA}

Arrow Electronics
2415 W. Erie Drive
Tempe, AZ 85282
(602) 431-0030

Hall-Mark Electronics
4637 S. 36th Place
Phoenix, AZ 85040
(602) 437-1200

Insight Electronics
1525 W. University Dr.
Suite \#105
Tempe, AZ 85281
(602) 829-1800

Marshall Industries
9830 S. 51st St. \#B121
Phoenix, AZ 85044
(602) 496-0290

NORTHERN CALIFORNIA
Arrow Electronics
1180 Murphy Ave.
San Jose, CA 95131
(408) 441-9700

Arrow Electronics
90 East Tasman Dr.
San Jose, CA 95134
(408) 428-6400

Hall-Mark Electronics
580 Menio Drive
Suite 2
Rocklin, CA 95677
(916) 624-9781

Hall-Mark Electronics 2105 Lundy Avenue San Jose, CA 95131
(408) 432-4000

Insight Electronics 1295 Oakmead Pkwy. Sunnyvale, CA 94086
(408)720-9222
Marshall Industries
336 Los Coches St.
Milpitas, CA 95035
(408) \(942-4600\)

Marshall Industries
3039 Kilgore Ave. \#140
Rancho Cordova, CA 95670
(916) 635-9700

SOUTHERN CALIFORNIA
Arrow Electronics
Malibu Canyon Bus. Park
26707 W. Agoura Road
Calabasas, CA 91302
(818) 880-9686

Arrow Electronics
6 Cromwell, Suite 100
Irvine, CA 92718
(714) 587-0404

Arrow Electronics
9511 Ridgehaven Ct.
San Diego, CA 92123
(619) 565-4800

Hall-Mark Electronics
3878 B-Ruffin Road
San Diego, CA 92123
(619) 268-1201

Hall-Mark Electronics
1 Mauchly
IVvine, CA 92718
(714) 727-6000

Hall-Mark Electronics 9420 Topanga Canyon
Chatsworth, CA 91311 (818) 773-4500

Insight Electronics
28038 Dorothy Dr. \#2
Aquora Hills, CA 91301
(818) 707-2100

Insight Electronics 6885 Flanders Dr. \#C
San Diego, CA 92121
(619) 587-1100

Insight Electronics
15635 Alton Pkwy. \#120
Invine, CA 92718
(714) 727-3291

Marshall Industries
26637 Agoura Rd.
Calabasas, CA 91302
(818) 878-7000

Marshall Industries
9320 Telstar Ave.
El Monte, CA 91731-3004
(818) 307-6000

Marshall Industries
One Morgan
Invine, CA 92718
(714) 458-5301

Marshall Industries 10105 Carroll Canyon Rd.
San Diego, CA 92131
(619) 578-9600

COLORADO
Arrow Electronics
61 Inverness Drive East
Suite 105
Englewood, CO 80112
(303) 799-0258

Hall-Mark Electronics 12503 E. Euclid Drive Suite 20
Englewood, CO 80111
(303) 790-1662

Marshall Industries
12351 N. Grant
Thomton, CO 80241
(303) 451-8383

CONNECTICUT
Arrow Electronics
12 Beaumont Rd.
Wallingford, CT 06492
(203) 265-7741

Hall-Mark Electronics
125 Commerce Ct.
Unit 6
Chesire, CT 06410
(203) 271-2844

Marshall Industries
20 Sterling Dr.
PO Box 200
Wallingford, CT 06492
(203) 265-3822

FLORIDA
Arrow Electronics 400 Fairway Dr.
Deerfield Beach, FL 33441
(305) 429-8200

Arrow Electronics
37 Skyline Dr.
Bldg. D, Suite 3101
Lake Mary, FL 32746
(407) 333-9300

\section*{Hall-Mark Electronics}

10491 72nd North
Largo, FL 34637
(813) 541-7440

Hall-Mark Electronics 3161 SW 15th Street (McNabb Road)
Pompano Beach, FL 33069 (305) 971-9280

Hall-Mark Electronics 489 E. Semoran Blvd.
Suite 145
Casselberry, FL 32707
(407) 830-5855

Marshall Industries
380 S. Northlake Rd. \#1024
Altamonte Springs, FL 32701
(407) 767-8585

Marshall Industries
2700 Cypress Ck. Rd. \#D114
Ft. Lauderdale, FL 33309
(305) 977-4880

Marshall Industries 2840 Scherer Dr. \#410
St. Petersburg, FL 33716
(813) 573-1399

\section*{GEORGIA}

Arrow Electronics
4205E River Green Pkwy.
Duluth, GA 30136
(404) 497-1300

Hall-Mark Electronics 3425 Corporate Way Suite A
Duluth, GA 30136-2552
(404) 623-4400

Marshall Industries
5300 Oakbrook Pkwy \#140
Norcross, GA 30093
(404) 923-5750

\section*{IOWA}

Arrow Electronics
375 Collins Rd. NE
Cedar Rapids, IA 52402
(319) 395-7230

\section*{ILLINOIS}

Arrow Electronics 1140 W. Thorndale Ave.
Itasca, IL 60143
(312) 250-0500

Hall-Mark Electronics 210 Mittel Drive Wood Dale, IL 60191
(708) 860-3800

Marshall Industries
50 E. Commerce Dr. \# 1
Schaumberg, IL 60173
(708) 490-0155

INDIANA
Arrow Electronics 7108 Lakeview Pkwy. W. Indianapolis, IN 46268
(317) 299-2071

Hall-Mark Electronics 4275 West 96 th Street Indianapolis, IN 46268 (317) 872-8875

Marshall Industries 6990 Corporate Dr. Indianapolis, IN 46278
(317) 297-0483

KANSAS
Arrow Electronics 9108 Legler Road Lenexa, KS 66214
(913) 541-9542

Hall-Mark Electronics 10809 Lakeview Drive Lenexa, KS 66215 (913) 888-4747

Marshall Industries 10413 W. 84th Ter. Pine Ridge Business Park Lenexa, KS 66214
(913) 492-3121

\section*{MARYLAND}

Arrow Electronics 9800J Patuxent Wood Dr. Suite H
Columbia, MD 21046
(410) 596-7800

Hall-Mark Electronics 10240 Old Columbia Rd.
Columbia, MD 21046
(410) 988-9800

Marshall Industries
2221 Broadbirch Dr.
Silver Springs, MD 20904
(410) 622-1118

MASSACHUSETTS
Arrow Electronics
25 Upton Dr.
Wilmington, MA 01887
(508) 658-0900

Hall-Mark Electronics
Pinehurst Park
6 Cook Street
Billerica, MA 01821
(508) 667-0902

Marshall Industries 33 Upton Dr.
Wilmington, MA 01887
(508) 658-0810

\section*{MICHIGAN}

Arrow Electronics
19880 Haggerty Rd. Livonia, MI 48152
(313) 462-2290

Hall-Mark Electronics 44191 Plymouth Oaks Blvd. Suite 1300
Plymouth, MI 48170
(313) 416-5800

Marshall Industries
31067 Schoolcraft
Livonia, MI 48150
(313) 525-5850

MINNESOTA
Arrow Electronics 10100 Viking Drive \# 100 Eden Prairie, MN 55344 (612) 941-5280

Hall-Mark Electronics 9401 James Ave. South \#140
Bloomington, MN 55431
(612) 881-2600

Marshall Industries
3955 Annapolis Lane Plymouth, MN 55447
(612) 559-2211

MISSOURI
Arrow Electronics 2380 Schuetz Rd.
St. Louis, MO 63146
(314) 567-6888

Hall-Mark Electronics 4873 Rider Trail South
Earth City, MO 63045
(314) 291-5350

Marshall Industries 3377 Hollenberg Dr. Bridgeton, MO 63044
(314) 291-4650

NEW JERSEY
Arrow Electronics
4 East Stow Rd. Unit 11
Martion, NJ 08053
(609) 596-8000

Arrow Electronics
43 Route 46 East
Pinebrook, NJ 07058
(201) 227-7880

Hall-Mark Electronics
225 Executive Drive
Suite 5
Moorestown, NJ 08057
(609) 235-1900

Hall-Mark Electronics
200 Landidex Plaza
2nd Floor
Parsippany, NJ 07054
(201) 515-3000

Marshall Industries
101 Fairfield Rd.
Fairfield, NJ 07006
(201) 882-0320

Marshall Industries
158 Gaither Dr.
Mt. Laurel, NJ 08054
(609) 234-9100

\section*{NEW YORK}

Arrow Electronics
25 Hub Drive
Melville, NY 11747
(516) 391-1300

Arrow Electronics
20 Oser Ave.
Hauppauge, NY 11788
(516) 231-1000

Arrow Electronics
3375 Brighton-Henrietta
Townline Rd.
Rochester, NY 14623
(716) 427-0300

Hall-Mark Electronics 6605 Pittsford-Palmyra
Suite E8
Fairport, NY 14450
(716) 425-3300

Hall-Mark Electronics 3075 Veterans Memoriai
Ronkonkoma, NY 11779
(516) 737-0600

Marshall Industries
275 Oser Ave.
Hauppauge, NY 11788
(516) 273-2424

Marshall Industries
1250 Scottsville Rd.
Rochester, NY 14624
(716) 235-7620

Marshall Industries 100 Marshall Drive Endicott, NY 13790
(607) 785-2345

NORTH CAROLINA
Arrow Electronics 5240 Greens Dairy Rd.
Raleigh, NC 27604
(919) 876-3132

Hall-Mark Electronics 5234 Greens Dairy Road
Raleigh, NC 27604
(919) 872-0712

Marshall Industries
5224 Greens Dairy Rd.
Raleigh, NC 27604
(919) 878-9882

OHIO
Arrow Electronics
6573E Cochran Rd.
Solon, OH 44139
(216) 248-3990

Arrow Electronics
8200 Washington Village Dr. \#A
Centerville, OH 45458
(513) 435-5563

Hall-Mark Electronics
777 Dearborne Park Lane
Worthington, OH 43085
(614) 888-3313

Hall-Mark Electronics
5821 Harper Road
Solon, OH 44139
(216) 349-4632

Marshall Industries
3520 Park Center Dr.
Dayton, OH 45414
(513) 898-4480

Marshall Industries 30700 Bainbridge Rd. Unit A
Solon, OH 44139
(216) 248-1788

OKLAHOMA
Arrow Electronics
12111 East 51st St. \#101
Tulsa, OK 74146
(918) 252-7537

Hall-Mark Electronics
5411 S. 125th East Ave.
Tulsa, OK 74146
(918) 254-6110

\section*{OREGON}

Arrow Electronics
1885 N.W. 169th Place
Beaverton, OR 97006
(503) 629-8090

Insight Electronics
8705 SW Nimbus \#200
Tigard, OR 97005
(503) 644-3300

Marshall Industries 9705 SW Gemini Dr.
Beaverton, OR 97005
(503) 644-5050

PENNSYLVANIA
Marshall Industries 401 Parkway View Dr.
Pittsburgh, PA 15205
(412) 788-0441

\section*{TEXAS}

Arrow Electronics 2227 West Braker Lane
Austin, TX 78758
(512) 835-4180

Arrow Electronics 3220 Commiander Dr. Carrollton, TX 75006 (214) 380-6464

Arrow Electronics 10899 Kinghurst Dr. \#100
Houston, TX 77099
(713) 530-4700

Hall-Mark Electronics
11420 Pagemill Road
Dallas, TX 75243
(214) 553-4300

Hall-Mark Electronics Corporate Headquarters
11333 Pagemill Road
Dallas, TX 75243
(214) 343-5000

Hall-Mark Electronics
12211 Technology Blva.
Austin, TX 78727
(512) 258-8848

Hall-Mark Electronics
8000 Westgien
Houston, TX 77063
(713) 781-6100

Insight Electronics
12703-A Research Blvd. \#1
Austin, TX 78759
(512) 467-0800

Insight Electronics
1778 Plano Rd. \#320
Richardson, TX 75081
(214) 783-0800

Insight Electronics
15437 McKaskle
Sugarland, TX 77478
(713) 448-0800

Marshall Industries
8504 Cross Park Dr.
Austin, TX 78754
(512) 837-1991

Marshall Industries
7250 Langtry
Houston, TX 77040
(713) 895-9200

Marshall Industries
2045 Chenault Street
Carrollion, TX 75006
(214) 233-5200

UTAH
Arrow Electronics
1946 West Parkway Blvd.
Salt Lake City, UT 84119
(801) 973-6913

Hall-Mark
545 E4500 South
Sulte 130
Salt Lake City, UT 84107
(801) 972-1008

Marshall Industries
2355 South 1070 West
Salt Lake City, UT 84119
(801) 973-2288

\section*{WASHINGTON}

Arrow Electronics
14360 S.E. Eastgate Way Bellevue, WA 98007 (206) 643-9992

Hall-Mark Electronics 250 NW 39th

\section*{Suite 4}

Seattle, WA 98107
(206) 547-0415

Insight Electronics
12002 115th Avenue, NE
Kirkland, WA 98034
(206) 820-8100

Marshall Industries
11715 N. Creek Pkwy. S.
Suite 112
Bothell, WA 98011
(206) 486-5747

\section*{WISCONSIN}

Arrow Electronics 200 North Patrick Blvd.
Brookfield, WI 53005
(414) 792-0150

Hall-Mark Electronics 2440 South 179th St. New Berlin, WI 53146 (414) 797-7844

Marshall Industries 20900 Swenson Dr. \#150
Waukesha, WI 53186
(414) 797-8400

\section*{CANADA}

\section*{ALBERTA}

Future Electronics
3833-29th Street
Calgary, Alberta
Canada, T1Y 6B5
(403) 250-5550

Future Electronics
4606-97th Street
Edmonton, Alberta
Canada, T6E 5N9
(403) 438-2858

\section*{BRITISH COLUMBIA}

Arrow Electronics
8544 Baxter Place
Bumaby, British Columbia
Canada, V5A 4 T8
(604) 421-2333

Future Electronics 1695 Boundary Road
Vancouver, British Columbia
Canada, V5K 4X7
(604) 294-1166

\section*{manitoba}

Future Electronics
100 King Edward
Winnipeg, Manitoba
Canada, R3H ON8
(204) 786-7711

\section*{ONTARIO}

Arrow Electronics
36 Antares Dr. Unit 100
Nepean, Ontario
Canada, K2E 7W5
(613) 226-6903

Arrow Electronics
1093 Meyerside Dr. Mississauga, Ontario Canada, L5P 1M4
(416) 670-7769

Future Electronics
1050 Baxter Road
Ottawa, Ontario
Canada, K2C 3P2
(613) 820-8313

Future Electronics
5935 Airport Rd., \#200
Mississauga, Ontario
Canada, L4V 1W5
(416) 612-9200

Marshall Industries
4 Paget Rd.
Bldg. 1112, Unit 10
Brampton, Ontario
Canada, L6T 5G3
(416) 458-8046

\section*{QUEBEC}

Arrow Electronics 1100 St. Regis Blvd. Dorval, Quebec Canada, H9P 2T5 (514) 421-7411

Future Electronics
237 Hymus Blvd.
Pointe Claire, Quebec
Canada, H9R 5C7
(514) 694-7710

Future Electronics
1000 St-Jean Babtiste \#100
Quebec City, Quebec
Canada, G2E 5G5
(418) 877-6666

Marshall Industries
148 Brunswick Blvd.
Pointe Claire, Quebec
Canada, H9R 5B9
(514) 694-8142

Notes

\title{
Lattice Introduces High-Density PLD Families
}
- pLSTIT \({ }^{\mathrm{TM}}\) and ispLSITM Devices
\({ }^{-} E^{2}\) CMOS \(^{*}\) Reprogrammability \& Quality
- High Density - 2K to 8K PLD Gates

In-System Programmable
- World's Highest Performance - 15ns Tpd (pin-to-pin), 80MHz System Speed

Please send me information on the new pLST \({ }^{T M}\) and ispLSI \({ }^{\mathrm{TM}}\) families of High-Density \(\mathrm{E}^{2} \mathrm{CMOS}^{\oplus}\) programmable logic.
For immediate response call 1-800-327-8425 and ask for information packet \#1003. I am a:
GAL User: Yes No
PLD User: Yes No
FPGA User: Yes No Vendor: \(\qquad\)
I use the following Development SW-Platform \(\qquad\)
I use the following Programmer(s) \(\qquad\)
Name \(\qquad\)
Title \(\qquad\)
Company \(\qquad\)
Address \(\qquad\)
City \(\qquad\) State \(\qquad\)
Country \(\qquad\) Zip \(\qquad\)
Phone \(\qquad\)

GAL and \(\mathrm{E}^{2}\) CMOS are registered trademarks of Lattice Semiconductor Corp. pLSI and ispLSI are trademarks of Lattice Semiconductor Corp.

Please send me information on the new pLSI \({ }^{\mathrm{TM}}\) and ispLSI \({ }^{\mathrm{TM}}\) families of High-Density \(\mathrm{E}^{2} \mathrm{CMOS}^{\star}\) programmable logic.
For immediate response call 1-800-327-8425 and ask for information packet \#1003.
I am a:
GAL User: \(\quad\) Yes No
PLD User: Yes No
FPGA User: Yes No Vendor:
\(\qquad\)
I use the following Development S/W-Platform \(\qquad\)
I use the following Programmer(s) \(\qquad\)

Name \(\qquad\)
Title \(\qquad\)
Company \(\qquad\)
Address \(\qquad\)
City \(\qquad\) State \(\qquad\)
Country \(\qquad\) Zip \(\qquad\)
Phone \(\qquad\)


\section*{NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES}

\section*{BUSINESS REPLY MAIL \\ FIRST CLASS PERMIT NO. 279 HILLSBORO, OR}

POSTAGE WILL BE PAID BY ADDRESSEE

\section*{Lattice}

붑붑

Technical Literature Distribution Dept.
5555 Northeast Moore Court
Hillsboro, Oregon 97124-9964
U.S.A.

\section*{\(\left\|_{1} l_{1} l_{1,1} l_{1,1} l_{1} l_{1} l_{1} l_{1} l_{1} l_{1} l_{1} l_{1,1}\right\|_{1}, l_{1} l_{1} l_{11} \mid\)}


BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 279 HILLSBORO, OR
POSTAGE WILL BE PAID BY ADDRESSEE

\section*{Lattice \\  \\ }

Technical Literature Distribution Dept.
5555 Northeast Moore Court
Hillsboro, Oregon 97124-9964
U.S.A.

Lattice Semiconductor Corp． 5555 Northeast Moore Ct． Hillsboro，Oregon 97124 USA Telephone：（503）681－0118

FAX：（503）681－3037```


[^0]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E2CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without

[^1]:    *Guaranteed but not 100\% tested.

[^2]:    *Guaranteed but not 100\% tested.

[^3]:    *Guaranteed but not 100\% tested.

[^4]:    *Guaranteed but not 100\% tested.

[^5]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E2CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^6]:    *Guaranteed but not 100\% tested.

[^7]:    *Guaranteed but not 100\% tested.

[^8]:    *Guaranteed but not 100\% tested.

[^9]:    *Guaranteed but not 100\% tested.

[^10]:    Copyright ©1992 Lattice Semiconductor Corp. GAL and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic and E²CMOS are trademarks of Lattice Semiconductor Corp. The specifications herein are subject to change without notice.

[^11]:    *Guaranteed but not 100\% tested.

[^12]:    1) Refer to Switching Test Conditions section.
    2) Calculated from fmax with internal feedback. Refer to fmax Description section.
    3) Refer to fmax Description section.
[^13]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E²MOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. The specifications herein are subject to change without notice.

[^14]:    *Guaranteed but not 100\% tested.

[^15]:    *Guaranteed but not 100\% tested.

[^16]:    *Guaranteed but not 100\% tested.

[^17]:    Copyright O1992 Lattice Semiconductor Corp. GAL and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic and ECMOS are trademarks of Lattice Semiconductor Corp. The specifications herein are subject to change without notice.

[^18]:    *Guaranteed but not 100\% tested.

[^19]:    *Guaranteed but not 100\% tested.

[^20]:    *Guaranteed but not 100\% tested.

[^21]:    Copyright O1992 Lattice Semiconductor Corp. GAL, E2CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^22]:    *Guaranteed but not 100\% tested.

[^23]:    *Guaranteed but not 100\% tested.

[^24]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E²CMOS and UliraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice
    Semiconductor Corp. All brands or product names mentioned are trademarks or registered registered trademarics of their respective hoiders. The specifications and information herein are subject to change whthout notice.

[^25]:    *Guaranteed but not 100\% tested.

[^26]:    ${ }^{*}$ Guaranteed but not 100\% tested.

[^27]:    Copyright ©1982 Lattice Semiconductor Corp. GAL, E2CMOS and UtraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^28]:    *Guaranteed but not 100\% tested.

[^29]:    Copyright O1992 Lattice Semiconductor Corp. GAL, E²CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. PAL is a registered trademark of Advanced Micro Devices, Inc. The specifications and information herein are subject to change without notice.

[^30]:    *Guaranteed but not 100\% tested.

[^31]:    1) Refer to Switching Test Conditions section.
[^32]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E2CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^33]:    *Guaranteed but not 100\% tested.

[^34]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E²MOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^35]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E²MOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. The specifications herein are subject to change without notice.

[^36]:    Copyright ©1992 Lattice Semiconductor Corp. GAL, E²MOS and UliraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconduc-

[^37]:    *Guaranteed but not 100\% tested.

[^38]:    Synchronous Preset

[^39]:    Copyright e1992 Lattice Semiconductor Corp. GAL, E²MOS and UitraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconductor Corp. All brand or product names mentioned are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

[^40]:    *Guaranteed but not 100\% tested.

