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Founded in 1968 to pursue the integration of large numbers of
transistors onto tiny silicon chips, Intel's history has been marked by a
remarkable number of scientific breakthroughs and innovations. In 1971,
Intel introduced the 4004, the first microprocessor. Containing 2300
transistors, this first commercially available computer-on-a-chip is
primitive compared with today's million-plus transistor products.

Innovations such as the microprocessor, the erasable programmable
read-only memory (EPROM) and the dynamic random access memory
(DRAM) revolutionized electronics by making integrated circuits the
mainstay of both consumer and business computing products.

Over the last two-and-a-half decades, Intel's business has evolved
and today the company's focus is on delivering an extensive line of
component, module and system-level building block products to the
computer industry. The company's product line covers a broad spectrum,
and includes microprocessors, flash memory, microcontrollers, a broad
line of PC enhancement and local area network products, multimedia
technology products, and massively parallel supercomputers. Intel's 32-bit
X86 architecture, represented by the Intel386™ and Intel486™
microprocessor families, is the de facto standard of modern business
computing in millions of PCs worldwide.

Intel has over 26,000 employees located in offices and
manufacturing facilities around the world. Today, Intel is the largest
semiconductor company in the world.
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CHAPTER 1
GETTING STARTED

1.1. HOW TO USE THIS MANUAL

Chapter 1 provides an overview of this manual and the related Pentium™ processor
documentation. Also included are some notational conventions regarding reserved bits,
instruction operands, number formats, addressing and exceptions found throughout the
manual.

Chapter 2 provides an introduction to Intel's Pentium processor family. The remainder of this
book presents the architecture of the Pentium processor in five parts:

Part I—Application and Numeric Programming

Part II—System Programming

Part III—Compatibility

Part IV—Optimization

Part V—Instruction Set

Appendices

The first three parts are explanatory, showing the purpose of architectural features, developing
terminology and concepts, and describing instructions as they relate to specific purposes or to
specific architectural features. The remaining parts are reference material for programmers
developing software for the Pentium processor.

The first two parts cover the operating modes and protection mechanism of the Pentium
processor. The distinction between application programming and system programming is
related to the protection mechanism of the Pentium processor. One purpose of protection is to
prevent applications from interfering with the operating system. For this reason, certain
registers and instructions are inaccessible to application programs. The features discussed in
Part I are those which are accessible to applications; the features in Part II are available only to
programs running with special privileges or programs running on systems where the protection
mechanism is not used.

The features available to application programs in protected mode and to programs in real-
address and virtual-8086 mode are the same. These features are described in Part I of this
book. The additional features available to system programs in protected mode are described in
Part II. Part III describes virtual-8086 mode, how to mix 16-bit and 32-bit code, and
compatibility considerations.

Part IV provides general optimization techniques for programming on Intel x86 architectures.
For information on obtaining optimization techniques for the Pentium processor, see
Appendix H.

I 1-1
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1.1.1. Part I—Application and Numeric Programming

This section presents the features used by most application programmers. It includes features
used in numeric applications which are object-code compatible with features provided by the
Intel486™ DX processor, and the Intel487™ SX, the Intel387™ DX, and the Intel387 SX math
coprocessors used with the Intel486 SX, Intel386™ DX and Intel386 SX processors,
respectively.

Chapter 3—Basic Programming Model: This chapter introduces the models of memory
organization, defines the data types, presents the register set used by applications, introduces
the stack, explains string operations, defines the parts of an instruction, explains address
calculations, and introduces interrupts and exceptions as they apply to application
programming.

Chapter 4—Application Programming: Chapter 4 surveys the integer instructions
commonly used for application programming. Instructions are considered in functionally
related groups; for example, string instructions are considered in one section, while control-
transfer instructions are considered in another. The concepts behind the instructions are
explained. Details of individual instructions are deferred until Part V, the instruction-set
reference.

Chapter 5—Feature Determination: This chapter discusses how to determine the CPU type
and the presence of a math coprocessor in order to determine what features are available to an
application. A program example is provided.

Chapter 6—Numeric Applications: This chapter gives an overview of the floating-point unit
and reviews the concepts of numerical computation. The "Architecture of the Floating-Point
Unit" section presents the floating-point registers and data types available to both applications
and systems programmers. The "Floating-Point Instructions” section of this chapter surveys the
instructions commonly used for numeric processing. Details of individual instructions are
deferred until Part V, the instruction-set reference. The "Numerics Applications" section
describes the Pentium processor's floating-point arithmetic facilities and gives short
programming examples in both assembly language and high-level languages.

Chapter 7—Special Computational Situations: This chapter discusses the speciai values that
can be represented in the real formats of the Pentium processor—denormal numbers, zeros,
infinities, NaNs (Not a Number)—as well as the numerical exceptions.

Chapter 8—Numeric Programming Examples: Chapter 8 provides detailed examples of
assembly-language numeric programming with the Pentium processor, including conditional
branching, conversion between floating-point values and their ASCII representations, and use
of trigonometric functions.

1.1.2. Part lI-System Programming

This section presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs.

Chapter 9—Real-Address Mode System Architecture: This chapter explains the real-
address mode of the Pentium processor as it relates to the system programmer. In this mode,

1-2 I
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the Pentium processor appears as a fast real-mode Intel 286 or Intel386 processor or a fast
8086 processor enhanced with additional instructions.

Chapter 10—Protected-Mode System Architecture Overview: Chapter 10 describes the
features of the Pentium processor used by system programmers. System-oriented registers and
data structures of the Pentium processor which are mentioned briefly in Part I are discussed in
detail. The system-oriented instructions are introduced in the context of the registers and data
structures they support. References to the chapters in which each register, data structure, and
instruction is discussed in more detail.

Chapter 11—Protected Mode Memory Management: This chapter presents details of the
data structures, registers, and instructions which support segmentation and paging and explains
how system designers can choose between an unsegmented (“flat”) model of memory
organization and a model with segmentation.

Chapter 12—Protection: This chapter discusses protection as it applies to segments and
pages. It explains the implementation of privilege rules, stack switching, pointer validation,
user and supervisor modes. The protection aspects of multitasking are deferred until the
following chapter.

Chapter 13—Protected-Mode Multitasking: Chapter 13 explains how the hardware of the
Pentium processor supports multitasking with context-switching operations and intertask
protection.

Chapter 14—Protected-Mode Exceptions and Interrupts: This chapter explains the basic
interrupt mechanisms of the Pentium processor, shows how interrupts and exceptions relate to
protection, discusses all possible exceptions including floating-point exceptions, listing causes
and including information needed to handle and recover from each exception.

Chapter 15—Input/Output: Chapter 15 describes the I/O features of the Pentium processor,
including I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 16—Initialization and Mode Switching: Chapter 16 defines the condition of the
processor and floating-point unit after reset initialization. It explains how to set up registers,
flags, and data structures. The steps necessary for switching between real-address and
protected modes are also identified.

Chapter 17—Debugging: Chapter 17 discusses how to use the debugging registers and other
debug features of the Pentium processor.

Chapter 18—Caching, Pipelining and Buffering: Chapter 18 explains the general concept of
caching and the specific mechanisms used by the internal cache on the Pentium processor. It
explains how the superscalar pipeline architecture of the Pentium processor and the Translation
Lookaside Buffer (TLB) relate to the system programmer.

Chapter 19—Multiprocessing: Chapter 19 explains the instructions and flags which support
multiple processors with shared memory.

Chapter 20—System Management Mode: This chapter explains the operation of SMM used
to implement power management functions. Some possible customer differentiation features
are mentioned.
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1.1.3. Part lll—Compatibility

This section explains the features of the architecture which support programs written for earlier
Intel processors. Three execution modes have support for 16-bit programming: 16-bit
operations can be performed in protected mode with or without using the operand-size prefix,
programs written for the 8086 processor or the real mode of the Intel 286 processor can run in
real mode on one of the 32-bit microprocessors, and a virtual machine monitor can be used to
emulate real mode using virtual-8086 mode, even while multitasking with 32-bit programs.

Chapter 21—Mixing 16-Bit and 32-Bit Code: This chapter explains how to mix 16-bit and
32-bit modules within the same program or task. Any particular module can use both 16-bit
and 32-bit operands and addresses.

Chapter 22—Virtual-8086 Mode: Chapter 22 describes how to execute one or more 8086,
8088, 80186 or 80188 programs in a Pentium processor protected-mode environment.

Chapter 23—Compatibility: This chapter explains the programming differences between the
Intel 286, Intel386, and Intel486 processors. This chapter compares the floating-point unit of
the Intel486 and Pentium processors with the arithmetic of the numerics coprocessors used
with earlier Intel processors.

1.1.4. Part IV—Optimization

Chapter 24 discusses general optimization techniques for programming in the Intel x86
architecture environment. For obtaining information on Pentium processor-specific
optimization techniques, see Appendix H.

1.1.5. Part V—Instruction Set

Parts I, II and III present the general features of the instruction set as they relate to specific
aspects of the architecture. Part V, Chapter 25, presents the instructions in alphabetical order,
with detail needed by assembly language programmers and programmers of debuggers,
compilers, operating systems, etc. Instruction descriptions include an algorithmic description
of operations, effect on flag settings, effect of operand- and address-size attributes, and
exceptions which may be generated.

1.1.6. Appendices

The appendices present tables of encodings and other details in a format designed for quick
reference by programmers.

1.2. RELATED LITERATURE

The following books contain additional material related to Intel processors:

14 I
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®  Pentium™ Processor Data Book, Order No. 241428

82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium™
Processor, Order No. 241429

Intel486™ Microprocessor Data Book, Order Number 240440

Intel486™ Processor Hardware Reference Manual, Order Number 240552

Intel4d86™ DX Processor Programmer’s Reference Manual, Order Number 240486
Inteld86™ SX CPU/Intel487™ SX Math CoProcessor Data Book, Order Number 240950
Intel486™ DX2 Microprocessor Data Book, Order Number 241245

Intel486™ Microprocessor Product Brief Book, Order Number 240459

Intel386™ Processor Hardware Reference Manual, Order Number 231732

Intel386™ DX Processor Programmer’s Reference Manual, Order Number 230985
Intel386™ SX Processor Programmer’s Reference Manual, Order Number 240331
Intel386™ Processor System Software Writer's Guide, Order Number 231499

Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630

376™ Embedded Processor Programmer’s Reference Manual, Order Number 240314
80387 DX User’s Manual Programmer’s Reference, Order Number 231917

376™ High-Performance 32-Bit Embedded Processor, Order Number 240182
Intel386™ SX Microprocessor, Order Number 240187

Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. The Pentium
processor is a “little endian” machine; this means the bytes of a word are numbered starting
from the least significant byte. Figure 1-1 illustrates these conventions.
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DATA STRUCTURE
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Figure 1-1. Bit and Byte Order

1.3.2. Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as undefined or reserved, it is essential for compatibility with future processors
that software treat these bits as having a future, though unknown, effect. The behavior of
reserved bits should be regarded as not only undefined, but unpredictable. Software should
follow these guidelines in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.
Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Depending upon the values of reserved register bits will make software
dependent upon the unspecified manner in which the processor handles these
bits. Depending upon reserved values risks incompatibility with future
processors. AVOID ANY SOFTWARE DEPENDENCE UPON THE
STATE OF RESERVED Pentium PROCESSOR REGISTER BITS.

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
Pentium processor is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

1-6 I
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where:

® A abel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the character
H. A hexadecimal digit is a character from the set (0, 1,2, 3,4,5,6,7,8,9,A,B,C,D, E, F).
A leading zero is added if the number would otherwise begin with one of the digits A-F. For
example, OFH is equivalent to the decimal number 15.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal (base 16)
numbers are used, they are indicated by an ‘H’ suffix. For example 16 = 10H.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte number is used to
address memory. The memory which can be addressed with this number is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. An example
of the notation used to show segmented addresses is shown below.

CSEIP

This example refers to a byte within the code segment. The byte number is held in the EIP
register. CS identifies the code segment.

I 1-7
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1.3.6. Exceptions

An exception is an event which typically occurs when an instruction causes an error For
example, an attempt to divide by zero generates an exception. However, some exceptions, such
as breakpoints, occur under other conditions. Some types of exceptions may provide error
codes. An error code reports additional information about the error. Error codes are produced
only for some exceptions. An example of the notation used to show an exception and error
code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may
not be able to report an accurate code. In this case, the error code is zero, as shown below.

#GP(0)

See Chapter 14, Protected-Mode Exceptions and Interrupts, for a list of exception mnemonics
and their description.
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CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM
PROCESSOR FAMILY

In 1985, Intel introduced the first in a line of 32-bit microprocessors compatible with the
already broad base of existing x86 software. That was the Intel386 microprocessor. The Intel
32-bit architecture has since grown to become the standard for cost-effective, high
performance computing with an installed base of over 40 million units. Intel has continued to
evolve and improve the basic implementation by incorporating the most advanced computer
design and silicon technology. The Intel Pentium family is the most recent product of that
effort.

The Intel Pentium processor, like its predecesor the Intel486 microprocessor, is 100% binary
software compatible with the installed base of over 100 million compatible Intel x86 systems.
In addition, the Intel Pentium processor provides new levels of performance to new and
existing software through a reimplementation of the Intel 32-bit instruction set architecture
using the latest, most advanced, design techniques. Optimized, dual execution units provide
one-clock execution for "core" instructions, while advanced technology, such as superscalar
architecture, branch prediction, and execution pipelining, enables multiple instructions to
execute in parallel with high efficiency. Separate code and data caches combined with wide
128-bit and 256-bit internal data paths and a 64-bit, burstable, external bus allow these
performance levels to be sustained in cost-effective systems. The application of this advanced
technology in the Intel Pentium processor brings "state of the art" performance and capability
to existing Intel x86 software as well as new and advanced applications.

The Pentium processor has two primary operating modes and a "system management mode".
The operating mode determines which instructions and architectural features are accessible.
These modes are:

e Protected Mode

This is the native state of the microprocessor. In this mode all instructions and
architectural features are available, providing the highest performance and capability. This
is the recommended mode that all new applications and operating systems should target.

Among the capabilities of protected mode is the ability to directly execute "real-address
mode" 8086 software in a protected, multi-tasking environment. This feature is known as
Virtual-8086 "mode" (or “V86 mode”). Virtual-8086 "mode" however, is not actually a
processor "mode", it is in fact an attribute which can be enabled for any task (with
appropriate software) while in protected mode.

o Real-Address Mode (also called “real mode’)

This mode provides the programming environment of the Intel 8086 processor, with a few
extensions (such as the ability to break out of this mode). Reset initialization places the
processor in real mode where, with a single instruction, it can switch to protected mode.

I 2-1
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2-2

System Management Mode

The Pentium microprocessor also provides support for System Management Mode
(SMM). SMM is a standard architectural feature unique to all new Intel microprocessors,
beginning with the Intel386 SL processor, which provides an operating-system and
application independent and transparent mechanism to implement system power
management and OEM differentiation features. SMM is entered through activation of an
external interrupt pin (SMI#), which switches the CPU to a separate address space while
saving the entire context of the CPU. SMM-specific code may then be executed
transparently. The operation is reversed upon returning.
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CHAPTER 3
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the floating-point
features) as seen by assembly-language programmers. The chapter introduces the architectural
features which directly affect the design and implementation of application programs.
Floating-point applications are described separately in Chapter 6.

The basic programming model consists of these parts:

Memory organization
Data types

Registers

Instruction format

Operand selection
® Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers can choose to make I/O instructions available to applications or can choose to
reserve these functions for the operating system. For this reason, the I/O features are discussed
in Chapter 9 and Chapter 15.

This chapter contains a section for each feature of the architecture normally visible to
applications.

3.1. MEMORY ORGANIZATION

The memory on the bus of a Pentium processor is called physical memory. It is organized as a
sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address,
which ranges from zero to a maximum of 2°>~1 (4 gigabytes).

Memory management is a hardware mechanism for making reliable and efficient use of
memory. When memory management is used, programs do not directly address physical
memory. Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentation is a mechanism for
providing multiple, independent address spaces. Paging is a mechanism to support a model of a
large address space in RAM using a small amount of RAM and some disk storage. Either or
both of these mechanisms can be used. An address issued by a program is a logical address.
Segmentation hardware translates a logical address into an address for a continuous,
unsegmented address space, called a linear address. Paging hardware translates a linear
address into a physical address.

Memory can appear as a single, "flat" address space like physical memory. Or, it can appear as
one or more independent memory spaces, called segments. Segments can be assigned
specifically for holding a program's code (instructions), data, or stack. In fact, a single program

l 3-1
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can have up to 16,383 segments of different sizes and kinds. Segments can be used to increase
the reliability of programs and systems. For example, a program's stack can be put into a
different segment than its code to prevent the stack from growing into the code space and
overwriting instructions with data. Each segment defines a module.

Both the flat and segmented models can provide memory protection. Models intermediate
between these extremes also can be chosen. The reasons for choosing a particular memory
model and the manner in which system programmers implement a model are discussed in
Chapter 11.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a segment
descriptor, which holds its base address and size limit. If the offset does not exceed the limit,
and no other condition exists which would prevent reading the segment, the offset and base
address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if bit 31
of the CRO register is clear (the CRO register is discussed in Chapter 10). This register bit
controls whether paging is used or not used. If the bit is set, the paging hardware is used to
translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks called pages. The logical address space is mapped into the
linear address space, which is mapped into some number of pages. A page can be in memory
or on disk. When a logical address is issued, it is translated into an address for a page in
memory, or an exception is issued. An exception gives the operating system a chance to read
the page from disk and update the page mapping. The program which generated the exception
then can be restarted without generating an exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. Paging, however, is invisible to the application programmer and is
not discussed in this chapter. See Chapter 11 for details on this subject.

3.1.1. Unsegmented or “Flat” Model

The simplest memory model is the flat model. Although there isn't a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory operations to
refer to the same memory space.

In a flat model, segments can cover the entire range of physical addresses, or they can cover
only those addresses which are mapped to physical memory. The advantage of the smaller
address space is it provides a minimum level of hardware protection against software bugs; an
exception will occur if any logical address refers to an address for which no memory exists.

3.1.2. Segmented Model

In a segmented model of memory organization, the logical address space consists of as many
as 16,383 segments of up to 4 gigabytes each, or a total as large as 26 bytes (64 terabytes).
The processor maps this 64 terabyte logical address space onto the physical address space by
the address translation mechanism described in Chapter 11. Application programmers can
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ignore the details of this mapping. The advantage of the segmented model is that offsets within
each address space are separately checked and access to each segment can be individually
controlled.

A pointer into a segmented address space consists of two parts (see Figure 3-1).

1. A segment selector, which is a 16-bit field which identifies a segment.
2. An offset, which is a 32-bit byte address within a segment.

N OPERAND
i J
15 0
- SEGMENT SELECTOR |
31 0
- OFFSET WITHIN SEGMENT l

APM4g

Figure 3-1. Segmented Addressing

The processor uses the segment selector to find the linear address of the beginning of the
segment, called the base address. Programs access memory using fixed offsets from this base
address, so an object-code module can be loaded into memory and run without changing the
addresses it uses (dynamic linking). The size of a segment is defined by the programmer, so a
segment can be exactly the size of the module it contains.

3.2. DATATYPES

Bytes, words, doublewords, and quadwords are the principal data types (see Figure 3-2). A
byte is eight bits. The bits are numbered O through 7, bit 0 being the least significant bit (LSB).

I 3-3
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Figure 3-2. Fundamental Data Types

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. The
bits of a word are numbered from O through 15, bit 0 again being the least significant bit. The
byte containing bits 0-7 of the word is called the low byfe; the byte containing bits 8-15 is
called the high byte. The low byte is stored in the byte with the lower address. The address of
the low byte also is the address of the word. The address of the high byte is used only when the
upper half of the word is being accessed separately from the lower half.

A doubleword is four bytes occupying any four consecutive addresses. A doubleword contains
32 bits. The bits of a doubleword are numbered from O through 31, bit 0 again being the least
significant bit. The word containing bits 0-15 of the doubleword is called the low word; the
word containing bits 16-31 is called the high word. The low word is stored in the two bytes
with the lower addresses. The address of the lowest byte is the address of the doubleword. The
higher addresses are used only when the upper word is being accessed separately from the
lower word, or when individual bytes are being accessed.

A quadword is eight bytes occupying any eight consecutive addresses. A quadword contains
64 bits. The bits of a quadword are numbered from O to 64 with bit 0 being the least significant
bit. The doubleword containing bits 0-31 is called the low doubleword and the doubleword
containing bits 32-63 is called the high doubleword. The low doubleword is stored in the four
bytes with the lower addresses. The higher addresses are used only when the upper
doubleword is being accessed separately from the lower doubleword, or when individual bytes
are being accessed. Figure 3-3 illustrates the arrangement of bytes within words, doublewords
and quadwords.

34 I
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DOUBLEWORD AT ADDRESS 0AH OEH
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CONTAINS CB31H 31 1H
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APM43

Figure 3-3. Bytes, Words, Doublewords and Quadwords in Memory

Note that words do not need to be aligned at even-numbered addresses, doublewords do not
need to be aligned at addresses evenly divisible by four, and quadwords do not need to be
aligned at addresses evenly divisible by eight. This allows maximum flexibility in data
structures (e.g., records containing mixed byte, word, and doubleword items) and efficiency in
memory utilization. Because the Pentium processor has a 64-bit data bus, communication
between processor and memory takes place as byte, word, doubleword and quadword transfers.
Data can be accessed at any byte boundary, but multiple cycles can be required for unaligned
transfers. The Pentium processor considers a 2-byte or 4-byte operand that crosses a 4-byte
boundary and an 8-byte operand that crosses an 8-byte boundary to be misaligned. For
maximum performance, data structures (especially stacks) should be designed so, whenever
possible, word operands are aligned to even addresses, doubleword operands are aligned to
addresses evenly divisible by four, and quadwords are aligned to addresses evenly divisible by
eight.

Although bytes, words, and doublewords are the fundamental types of operands, the processor
also supports additional interpretations of these operands. Specialized instructions recognize
the following data types (shown in Figure 3-4):

® [nteger: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit byte.
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3-6

All operations assume a two's complement representation. The sign bit is located in bit 7
in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set for negative
integers, clear for positive integers and zero. The value of an 8-bit integer is from —128 to
+127; a 16-bit integer from —32,768 to +32,767; a 32-bit integer from —23! to +23! —1.

Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word, or 8-
bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from O to 65,535; a
32-bit ordinal from 0 to 232 — 1, This is sometimes referred to as an unsigned integer.

BCD Integer: A representation of a binary-coded decimal (BCD) digit in the range 0
through 9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is
stored in each byte. The magnitude of the number is the binary value of the low-order
half-byte; values O to 9 are valid and are interpreted as the value of a digit. The high-order
half-byte must be zero during multiplication and division; it can contain any value during
addition and subtraction.

" Packed BCD Integer : A representation of binary-coded decimal digits, each in the range 0

to 9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7 is
more significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit.

Near Pointer: A 32-bit effective address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references within a
segment in a segmented model.

Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a 32-bit
offset. Far pointers are used in a segmented memory model to access other segments.

Bit field: A contiguous sequence of bits. A bit field can begin at any bit position of any
byte and can contain up to 32 bits.

Bit string: A contiguous sequence of bits. A bit string can begin at any bit position of any
byte and can contain up to 23— 1 bits.

Byte String: A contiguous sequence of bytes, words, or doublewords. A string can contain
from zero to 2°% — 1 bytes (4 gigabytes).

Floating-Point Types: For a discussion of the data types used by floating-point
instructions, see Chapter 6.
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Figure 3-4. Data Types
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3.3. REGISTERS

The processor contains sixteen registers which can be used by an application programmer. As
Figure 3-5 shows, these registers can be grouped as:

General registers. These eight 32-bit registers are free for use by the programmer.

2. Segment registers. These registers hold segment selectors associated with different forms
of memory access. For example, there are separate segment registers for access to code
and stack space. These six registers determine, at any given time, which segments of
memory are currently available.

3. Status and control registers. These registers report and allow modification of the state of
the processor.

3.3.1. General Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDIL
These registers hold operands for logical and arithmetic operations. They also can hold
operands for address calculations (except the ESP register cannot be used as an index
operand). The names of these registers are derived from the names of the general registers on
the 8086 processor, the AX, BX, CX, DX, BP, SP, SI, and DI registers. As Table 3-1 shows,
the low 16 bits of the general registers can be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also has another name. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

All of the general-purpose registers are available for address calculations and for the results of
most arithmetic and logical operations; however, a few instructions assign specific registers to
hold operands. For example, string instructions use the contents of the ECX, ESI, and EDI
registers as operands. By assigning specific registers for these functions, the instruction set can
be encoded more compactly. The instructions that use specific registers include: double-
precision multiply and divide, I/O, strings, translate, loop, variable shift and rotate, and stack
operations.
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GENERAL REGISTERS
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Figure 3-5. Application Register Set
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Table 3-1. Register Names

8-Bit 16-Bit 32-Bit
AL AX EAX
AH
BL BX EBX
BH
CL CX ECX
CH
DL DX EDX
DH
Sl ESI
DI EDI
BP EBP
SP ESP

3.3.2. Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Chapter 11.

The segment registers contain 16-bit segment selectors, which index into tables in memory.
The tables hold the base address for each segment, as well as other information regarding
memory access. An unsegmented model is created by mapping each segment to the same place
in physical memory, as shown in Figure 3-6.

At any instant, up to six segments of memory are immediately available. The segment registers
CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments. Each register is
associated with a particular kind of memory access (code, data, or stack). Each register
specifies a segment, from among the segments used by the program (see Figure 3-7). Other
segments can be used by loading their segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its segment
selector is held in the CS register. The processor fetches instructions from the code segment,
using the contents of the EIP register as an offset into the segment. The CS register is loaded as
the result of interrupts, exceptions, and instructions which transfer control between segments
(e.g., the CALL, RET and JMP instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The stack
holds the return address, parameters passed by the calling routine, and temporary variables
allocated by the procedure. All stack operations use the SS register to find the stack segment.
Unlike the CS register, the SS register can be loaded explicitly, which permits application
programs to set up stacks.
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Figure 3-6. An Unsegmented Memory
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Figure 3-7. A Segmented Memory
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The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of data
structures. For example, separate data segments can be created for the data structures of the
current module, data exported from a higher-level module, a dynamically-created data
structure, and data shared with another program. If a bug causes a program to run wild, the
segmentation mechanism can limit the damage to only those segments allocated to the
program.

Depending on the structure of data (i.e., the way data is partitioned into segments), a program
can require access to more than four data segments. To access additional segments, the DS, ES,
FS, and GS registers can be loaded by an application program during execution. The only
requirement is to load the appropriate segment register before accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit offset is
added to the segment's base address. Once a segment is selected (by loading the segment
selector into a segment register), an instruction only needs to specify the offset. An operand
within a data segment is addressed by specifying its offset either in an instruction or a general
register. Simple rules define which segment register is used to form an address when only an
offset is specified.

3.3.3. Stack Implementation

Stack operations are supported by three registers:

1. Stack Segment (SS) Register. Stacks reside in memory. The number of stacks in a system
is limited only by the maximum number of segments. A stack can be up to 4 gigabytes
long, the maximum size of a segment. One stack is available at a time—the stack whose
segment selector is held in the SS register. This is the current stack, often referred to
simply as ‘‘the” stack. The SS register is used automatically by the processor for all stack
operations.

2. Stack Pointer (ESP) Register. The ESP register holds an offset to the top-of-stack (TOS)
in the current stack segment. It is used by PUSH and POP operations, subroutine calls and
returns, exceptions, and interrupts. When an item is pushed onto the stack (see Figure 3-8),
the processor decrements the ESP register, then writes the item at the new TOS. When an
item is popped off the stack, the processor copies it from the TOS, then increments the
ESP register. In other words, the stack grows down in memory toward lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register. The EBP register typically is used to access
data structures passed on the stack. For example, on entering a subroutine the stack
contains the return address and some number of data structures passed to the subroutine.
The subroutine adds to the stack whenever it needs to create space for temporary local
variables. As a result, the stack pointer gets incremented and decremented as temporary
variables are pushed and popped. If the stack pointer is copied into the base pointer before
anything is pushed on the stack, the base pointer can be used to reference data structures
with fixed offsets. If this is not done, the offset to access a particular data structure would
change whenever a temporary variable is allocated or de-allocated.

When the EBP register is used to address memory, the current stack segment is referenced
(i.e., the SS segment). Because the stack segment does not have to be specified, instruction
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encoding is more compact. The EBP register also can be used to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.

STACK SEGMENT
31 0
T BOTTOM OF STACK
(INITIAL ESP VALUE)
SUBROUTINE
PASSED
VARIABLES

(— EBP

TOP OF STACK (—— ESP

PUSHES PUT THE POPS PUT THE
TOP OF STACK AT TOP OF STACK AT
LOWER ADDRESSES HIGHER ADDRESSES

APMS50

Figure 3-8. Stacks

3.3.4. Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register named
EFLAGS. Figure 3-9 defines the bits within this register.

The flags control certain operations and indicate the status of the Pentium processor. Besides
status and control flag bits, the flag register also contains system flags. See Chapter 10 for a
description of the system and control flags.

3.3.4.1. STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the execution
of arithmetic instructions, such as ADD, SUB, MUL, and DIV. The MOV instruction does not
affect these flags. Conditional jumps and subroutine calls allow a program to sense the state of
the status flags and respond to them. For example, when the counter controlling a loop is
decremented to zero, the state of the ZF flag changes, and this change can be used to suppress
the conditional jump to the start of the loop. The status flags are shown in Table 3-2.

' 3-13




]
BASIC PROGRAMMING MODEL In'tel ®

.97502925272525242.9@2’”7975/77’6'7574 13 12/17/10/9/8/7/6/5/4/3/2/7 /0,

i ,
VIVialv[rlgIN| o folpfi|T|s|z|o|ale|Pls fck:
slElcMIE(®IT| P |F|F|FIF|F|F|°]F|O|F|*|F}

L
\

X ID FLAG (ID) A A A
X VIRTUAL INTERRUPT PENDING (VIP)

X VIRTUAL INTERRUPT FLAG (VIF)
X ALIGNMENT CHECK (AC)
X VIRTUAL 8086 MODE (VM)
X RESUME FLAG (RF)
X NESTED TASK (NT)
X 1/O PRIVILEGE LEVEL (IOPL)
S OVERFLOW FLAG (OF)
C DIRECTION FLAG (DF)
X INTERRUPT ENABLE FLAG (IF)
X TRAP FLAG (TF)
S SIGN FLAG (SF)
S ZERO FLAG (ZF)
S AUXILIARY CARRY FLAG (AF)
S PARITY FLAG (PF)
S CARRY FLAG (CF)

olojojojojojofofofo

—-Z

1
D

S INDICATES A STATUS FLAG
C INDICATES A CONTROL FLAG
X INDICATES A SYSTEM FLAG

D BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.
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Figure 3-9. EFLAGS Register
Table 3-2. Status Flags
Name Purpose Condition Reported
OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero Result is zero
AF auxiliary carry Carry out of bit position 3 (used for BCD)
PF parity Low byte of result has even parity (even number of set bits)
CF carry flag Carry out of most significant bit of result
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3.3.4.2. CONTROL FLAG
The control flag DF of the EFLAGS register controls string instructions.
DF (Direction Flag, bit 10)

Setting the DF flag causes string instructions to auto-decrement, that is, to process strings from
high addresses to low addresses. Clearing the DF flag causes string instructions to auto-
increment, or to process strings from low addresses to high addresses.

3.3.5. Instruction Pointer

The instruction pointer (EIP) register contains the offset in the current code segment for the
next instruction to execute. The instruction pointer is not directly available to the programmer;
it is controlled implicitly by control-transfer instructions (jumps, returns, etc.), interrupts, and
exceptions.

The EIP register is advanced from one instruction boundary to the next. Because of instruction
prefetching, it is only an approximate indication of the bus activity which loads instructions
into the processor. See Chapter 18 for detailed information on prefetching.

3.3.5.1. Instruction Format

3.4. INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these operands. If
an operand is located in memory, the instruction also must select, explicitly or implicitly, the
segment which contains the operand.

An instruction can have various parts and formats. The exact format of instructions is shown in
Appendix A; the parts of an instruction are described below. Of these parts, only the opcode is
always present. The other parts may or may not be present, depending on the operation
involved and the location and type of the operands. The parts of an instruction, in order of
occurrence, are listed below:

® Prefixes: one or more bytes preceding an instruction which modify the operation of the
instruction. The following prefixes can be used by application programs:

1. Segment override—explicitly specifies which segment register an instruction should
use, instead of the default segment register. The segment override prefixes include:
2EH  CS segment override prefix
36H SS segment override prefix
26H ES segment override prefix
65H GS segment override prefix

2. Address size (67H)—switches between 16- and 32-bit addressing. Either size can be
the default; this prefix selects the non-default size.
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3. Operand size (66H)—switches between 16- and 32-bit data size. Either size can be the
default; this prefix selects the non-default size.

4. Repeat—used with a string instruction to cause the instruction to be repeated for each
element of the string. The repeat prefixes include:
F3H REP prefix (used only with string instructions)
F3H  REPE/REPZ prefix (used only with string instructions)
F2h REPNE/REPNZ prefix (used only with string instructions)

5. Lock (OFOH)—used to ensure exclusive use of shared memory in multiprocessor
environments. This prefix can only be used with the following instructions: BTS,
BTR, BTC, XCHG, ADD, OR, ADC, SBB, AND, SUB, XOR, NOT, NEG, INC,
DEC, CMPXCHG, CMPXCHSB, XADD

Zero or one bytes are reserved for each group of prefixes. The prefixes are grouped as
follows:

— Instruction Prefixes: REP, REPE/REPZ, REPNE/REPNZ, LOCK
— Segment Override Prefixes: CS, SS, DS, ES, FS, GS

— Operand Size Override

— Address Size Override

For each instruction, one prefix may be used from each group. The effect of redundant
prefixes (more than one prefix from a group) is undefined and may vary from processor to
processor.

Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

Register specifier: an instruction can specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

Addressing-mode specifier: when present, specifies whether an operand is a register or
memory location; if in memory, specifies whether a displacement, a base register, an index
register, and scaling are to be used.

SIB (scale, index, base) byte: when the addressing-mode specifier indicates the use of an
index register to calculate the address of an operand, an SIB byte is included in the
instruction to encode the base register, the index register, and a scaling factor.

Displacement: when the addressing-mode specifier indicates a displacement will be used
to compute the address of an operand, the displacement is encoded in the instruction. A
displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is used in the common
case when the displacement is sufficiently small. The processor extends an 8-bit
displacement to 16 or 32 bits, taking into account the sign.

Immediate operand: when present, directly provides the value of an operand. Immediate
operands can be bytes, words, or doublewords. In cases where an 8-bit immediate operand
is used with a 16- or 32-bit operand, the processor extends the eight-bit operand to an
integer of the same sign and magnitude in the larger size. In the same way, a 16-bit
operand is extended to 32-bits.
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3.5. OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction is the
NOP instruction (no operation). An operand can be held in any of these places:

® In the instruction itself (an immediate operand).

® In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, or
EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the case of 8-
bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; or the
EFLAGS register for flag operations). Use of 16-bit register operands requires use of the
16-bit operand size prefix if the current default operand size is 32 bits. (See Chapter 11 for
information on setting the D-bit in the code segment descriptor to control default operand
size.)

® In memory.

® Atan /O port. See Chapter 15 for information on I/O.

Register and immediate operands are available on-chip—the latter because they are prefetched
as part of interpreting the instruction. Memory operands residing in the on-chip cache can be
accessed just as fast for most instructions.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the AX
register.

Explicit operand: XCHG EAX, EBX
The operands to be exchanged are encoded in the instruction with the opcode.
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the stack (the
implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions, such as
MOV, ADD, and XOR, generally overwrite one of the two participating operands with the
result. This is one difference between the source operand (the one unaffected by the operation)
and the destination operand (the one overwritten by the result).

For most instructions, one of the two explicitly specified operands—either the source or the
destination—can be either in a register or in memory. The other operand must be in a register
or it must be an immediate source operand. This puts the explicit two-operand instructions into
the following groups:

® Register to register
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Register to memory
Memory to register

Immediate to register

Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are
specified implicitly. Push and pop stack operations allow transfer between memory operands
and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the CL register or supplied as an immediate. Other
three-operand instructions, such as the string instructions when used with a repeat prefix, take
all their operands from registers.

3.5.1. Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. It can be a byte, word, or
doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the variable
PATTERN.

TEST PATTERN, OFFFFOOFFH

A doubleword of the instruction holds the mask which is used to test the variable PATTERN.
IMUL CX, MEMWORD, 3

A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate value.
When the destination is the EAX or AL register, the instruction encoding is one byte shorter
than with the other general registers.

3.5.2. Register Operands

Operands can be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI,
EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, or
BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or DL). Sixty-
four bit operands are also used in 32-bit register pairs for operations such as DIV and MUL.
Register pairs are represented with a colon separating them. For example, in the register pair
EDX:EAX, EDX contains the high order bits and EAX contains the low order bits of the 64-bit
operand.

The Pentium processor has instructions for referencing the segment registers (CS, DS, ES, SS,
FS, and GS). These instructions are used by application programs only if system designers
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have chosen a segmented memory model.

The Pentium processor also has instructions for changing the state of individual flags in the
EFLAGS register. Instructions have been provided for setting and clearing flags which often
need to be accessed. The other flags, which are not accessed so often, can be changed by
pushing the contents of the EFLAGS register on the stack, making changes to it while it's on
the stack, and popping it back into the register.

3.5.3. Memory Operands

Instructions with explicit operands in memory must reference the segment containing the
operand and the offset from the beginning of the segment to the operand. Segments are
specified using a segment-override prefix, which is a byte placed at the beginning of an
instruction. If no segment is specified, simple rules assign the segment by default. The offset is
specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode and
specifies whether the operand is in a register or in memory. If the operand is in memory,
the address is calculated from a segment register and any of the following values: a base
register, an index register, a scaling factor, and a displacement. When an index register is
used, the modR/M byte also is followed by another byte to specify the index register and
scaling factor. This form of addressing is the most flexible.

2. A few instructions use implied address modes:

A MOV instruction with the AL, AX, or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of the
MOV instruction allows no base register, index register, or scaling factor to be used. This
form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the MOVS,
CMPS, OUTS, and LODS instructions) or using the ES segment and EDI register (the
MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the PUSH,
POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
LEAVE, ENTER, INT, RET, IRET, and IRETD instructions, exceptions, and interrupts).

3.5.3.1. SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a segment-
override prefix, the processor automatically chooses a segment according to the rules of Table
3-3.

I 3-19



-
BASIC PROGRAMMING MODEL I ntel ®

Table 3-3. Default Segment Selection Rules

Segment Used
Type of Reference Register Used Default Selection Rule
Instructions Code Segment Automatic with instruction fetch.
CS register
Stack Stack Segment All stack pushes and pops. Any memory reference which
SS register uses ESP or EBP as a base register.
Local Data Data Segment All data references except when relative to stack or string
DS register destination.
Destination Strings E-Space Segment | Destination of string instructions.
ES register

Different kinds of memory access have different default segments. Data operands usually use
the main data segment (the DS segment). However, the ESP and EBP registers are used for
addressing the stack, so when either register is used, the stack segment (the SS segment) is
selected.

Segment-override prefixes are provided for each of the segment registers. Only the following
special cases have a default segment selection which is not affected by a segment-override
prefix:

® Destination strings in string instructions use the ES segment

® Destination of a push or source of a pop uses the SS segment

® Instruction fetches use the CS segment

3.5.3.2. EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have a
modR/M byte after the opcode are the most common in the instruction set. For memory
operands specified by a modR/M byte, the offset within the selected segment is the sum of four
components:

® A displacement

® A base register

®  An index register

® A scaling factor (the index register can be multiplied by a factor of 2, 4, or 8)

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative value, with the exception of the
scaling factor. Figure 3-10 illustrates the full set of possibilities for modR/M addressing.

The displacement component, because it is encoded in the instruction, is useful for relative
addressing by fixed amounts, such as:

® Location of simple scalar operands.
® Beginning of a statically allocated array.
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® Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general
registers. Both can be used for addressing which changes during program execution, such as:

® ] ocation of procedure parameters and local variables on the stack.

® The beginning of one record among several occurrences of the same record type or in an
array of records.

® The beginning of one dimension of multiple dimension array.
® The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following respects:

® The ESP register cannot be used as an index register.

® When the ESP or EBP register is used as the base, the SS segment is the default selection.
In all other cases, the DS segment is the default selection.

SEGMENT + BASE + (INDEX * SCALE) + DISPLACEMENT

EAX 1
cs ECX iy
gg Eg§ EDX 2 NO DISPLACEMENT
B p* X Een ¥+ 4 EBX B + <{ 8-BIT DISPLACEMENT
= Eop EBP 4 32-BIT DISPLACEMENT
Gs ESI Eg‘l

EDI 8

APM42

Figure 3-10. Effective Address Computation

The scaling factor permits efficient indexing into an array when the array elements are 2, 4, or
8 bytes. The scaling of the index register is done in hardware at the time the address is
evaluated. This eliminates an extra shift or multiply instruction.

The base, index, and displacement components can be used in any combination; any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-
level languages and assembly language. Suggested uses for some combinations of address
components are described below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is used to
access a statically allocated scalar operand. A byte, word, or doubleword displacement can be
used.
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BASE

The offset to the operand is specified indirectly in one of the general registers, as for ‘‘based”
variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the results
of a calculation to determine the offset to a specific element within the array.

2. Access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a subroutine is entered.
In this case, the EBP register is the best choice for the base register, because it automatically
selects the stack segment. This is a compact encoding for this common function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is 2, 4,
or 8 bytes. The displacement addresses the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the elements of
the array are 2, 4, or 8 bytes in size.

3.6. INTERRUPTS AND EXCEPTIONS

The processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend the
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program being run in order to run a program of higher priority. The major distinction between
these two kinds of interrupts is their origin. An exception is always reproducible by re-
executing the program which caused the exception, while an interrupt can have a complex,
timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or interrupts.
The operating system, monitor, or device driver handles them. More information on interrupts
for system programmers can be found in Chapter 12. Certain kinds of exceptions, however, are
relevant to application programming, and many operating systems give application programs
the opportunity to service these exceptions. However, the operating system defines the
interface between the application program and the exception mechanism of the processor.
Table 3-4 lists the interrupts and exceptions.

® A divide-error exception results when the DIV or IDIV instruction is executed with a zero
denominator or when the quotient is too large for the destination operand. (See Chapter 3
for more information on the DIV and IDIV instructions.)

® A debug exception can be sent back to an application program if it results from the TF
(trap) flag.

® A breakpoint exception results when an INT3 instruction is executed. This instruction is
used by some debuggers to stop program execution at specific points.

® An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

® A bounds-check exception results when the BOUND instruction is executed with an array
index which falls outside the bounds of the array. See Chapter 3 for a discussion of the
BOUND instruction.

® The device-not-available exception occurs whenever the processor encounters an escape
instruction and either the TS (task switched) or the EM (emulate coprocessor) bit of the
CRO control register is set.

® An alignment-check exception is generated for unaligned memory operations in user mode
(privilege level 3), provided both AM and AC are set. Memory operations at supervisor
mode (privilege levels 0, 1, and 2), or memory operations which default to supervisor
mode, do not generate this exception.

The INT instruction generates an interrupt whenever it is executed; the processor treats this
interrupt as an exception. Its effects (and the effects of all other exceptions) are determined by
exception handler routines in the application program or the operating system. The INT
instruction itself is discussed in Chapter 25. See Chapter 14 for a more complete description of
exceptions.
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Table 3-4. Exceptions and Interrupts

Vector
Number Description
0 Divide Error
1 Debugger Call
2 NMI Interrupt
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 (Intel reserved. Do not use.
Not used by Pentium™ processor.)
10 Invalid Task State Segment
11 Segment Not Present
12 Stack Exception
13 General Protection
14 Page Fault
15 (Intel reserved. Do not use.)
16 Floating-Point Error
17 Alignment Check
18 Machine Check Exception
19-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts
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CHAPTER 4
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to write
application software for the Pentium processor. The instructions are grouped by categories of
related functions. Additional application instructions for operating on floating-point operands
are described in Chapter 6.

The instructions not discussed in this chapter or Chapter 6 normally are used only by
operating-system programmers. System-level instructions are discussed in Part I1.

The instruction set descriptions in Chapter 25 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which may
be generated.

For information on the introduction of new instructions which may not be supported on earlier
versions of x86 microprocessors, see Chapter 23.

4.1. DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes, words, doublewords, or
quadwords between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

4.1.1. General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of these
paths:

® To aregister from memory.
® To memory from a register.
® Between general registers.
® Immediate data to a register.
® Immediate data to memory.

The MOV instruction cannot move from memory to memory or from a segment register to a
segment register. Memory-to-memory moves can be performed, however, by the string move
instruction MOVS. A special form of the MOV instruction is provided for transferring data
between the AL, AX, or EAX registers and a location in memory specified by a 32-bit offset
encoded in the instruction. This form of the instruction does not allow a segment override,
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index register, or scaling factor to be used. The encoding of this form is one byte shorter than
the encoding of the general-purpose MOV instruction. A similar encoding is provided for
moving an 8-, 16-, or 32-bit immediate into any of the general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of
three MOV instructions. It does not require a temporary location to save the contents of one
operand while the other is being loaded. The XCHG instruction is especially useful for
implementing semaphores or similar data structures for process synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two doubleword
operands. The operands for the XCHG instruction may be two register operands, or a register
operand and a memory operand. When used with a memory operand, XCHG automatically
activates the LOCK signal. (See Chapter 16 for more information on bus locking.)

4.1.2. Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source operand to
the top of stack (see Figure 4-1). The PUSH instruction often is used to place parameters on
the stack before calling a procedure. Inside a procedure, it can be used to reserve space on the
stack for temporary variables. The PUSH instruction operates on memory operands, immediate
operands, and register operands (including segment registers). A special form of the PUSH
instruction is available for pushing a 32-bit general register on the stack. This form has an
encoding which is one byte shorter than the general-purpose form.

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

31 0 31 0

<« ESP

DOUBLEWORD «— ESP

APM27

Figure 4-1. PUSH Instruction

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack (see
Figure 4-2). This instruction simplifies procedure calls by reducing the number of instructions
required to save the contents of the general registers. The processor pushes the general
registers on the stack in the following order: EAX, ECX, EDX, EBX, the initial value of ESP
before EAX was pushed, EBP, ESI, and EDI. The effect of the PUSHA instruction is reversed
using the POPA instruction.
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POP (Pop) transfers the word or doubleword at the current top of stack (indicated by the ESP
register) to the destination operand, and then increments the ESP register to point to the new
top of stack. See Figure 4-3. POP moves information from the stack to a general register,
segment register, or to memory. A special form of the POP instruction is available for popping
a doubleword from the stack to a general register. This form has an encoding which is one byte
shorter than the general-purpose form.

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of reading the
stack (popping). See Figure 4-4.

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION
31 0 31 0

<— ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI

EDI <«— ESP

APM28

Figure 4-2. PUSHA Instruction
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BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD
31 0 31 0

<— ESP

DOUBLEWORD <«— ESP

APM25

Figure 4-3. POP Instruction
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Figure 4-4. POPA Instruction
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4.1.3. Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially useful
for converting signed integers, because they automatically fill the extra bits of the larger item
with the value of the sign bit of the smaller item. This results in an integer of the same sign and
magnitude, but a larger format. This kind of conversion, shown in Figure 4-5, is called sign
extension.

There are two kinds of type conversion instructions:
® The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the EAX

register.

® The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

15 0

BEFORE SIGN
S|N(N|N|N|NNN(N|NNIN(N|NIN|N| ExTENSION

31 15 0

AFTER SIGN
EXTENSION

APM38

Figure 4-5. Sign Extension

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of the
word in the AX register into every bit position in the DX register. The CDQ instruction copies
the sign (bit 31) of the doubleword in the EAX register into every bit position in the EDX
register. The CWD instruction can be used to produce a doubleword dividend from a word
before a word division, and the CDQ instruction can be used to produce a quadword dividend
from a doubleword before doubleword division. The CWD and CDQ instructions are different
mnemonics for the same opcode. Which one gets executed is determined by whether it is in a
16- or 32-bit segment and the presence of any operand-size override prefixes. See Chapter 25
for a detailed description of these instructions.

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into every
bit position of the upper byte of the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in the

I 4-5
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AX register into every bit position of the high word of the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or 16-
bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or 16-
bit value to 32-bit value by clearing the empty bit positions.

4.2. BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions operate on numeric data encoded in binary. Operations include the
add, subtract, multiply, and divide as well as increment, decrement, compare, and change sign
(negate). Both signed and unsigned binary integers are supported. The binary arithmetic
instructions may also be used as steps in arithmetic on decimal integers. Source operands can
be immediate values, general registers, or memory. Destination operands can be general
registers or memory (except when the source operand is in memory). The basic arithmetic
instructions have special forms for using an immediate value as the source operand and the
AL, AX, or EAX registers as the destination operand. These forms are one byte shorter than
the general-purpose arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of result
which was produced. The kind of instruction used to test the flags depends on whether the data
is being interpreted as signed or unsigned. The CF flag contains information relevant to
unsigned integers; the SF and OF flags contain information relevant to signed integers. The ZF
flag is relevant to both signed and unsigned integers; the ZF flag is set when all bits of the
result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to reflect the
size of the operation. For example, an 8-bit ADD instruction sets the CF flag if the sum of the
operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic operations to
determine whether the operation required a carry or borrow to be propagated to the next stage
of the operation. The CF flag is set if a carry occurs (addition instructions ADD, ADC, AAA,
and DAA) or borrow occurs (subtraction instructions SUB, SBB, AAS, DAS, CMP, and
NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the reported
state of arithmetic results. To test the arithmetic state of the counter, the ZF flag can be tested
to detect loop termination, or the ADD and SUB instructions can be used to update the value
held by the counter.

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the sign
bit of the result. The most significant bit (MSB) of the magnitude of a signed integer is the bit
next to the sign—bit 6 of a byte, bit 14 of a word, or bit 30 of a doubleword. The OF flag is set
in either of these cases:

® A carry was generated from the MSB into the sign bit but no carry was generated out of
the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other words, the
result was greater than the greatest positive number which could be represented in two's
complement form.
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® A carry was generated from the sign bit into the MSB but no carry was generated into the
sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). In other
words, the result was smaller than the smallest negative number which could be
represented in two's complement form.

These status flags are tested by either kind of conditional instruction: Jec (jump on condition
cc) or SETcc (byte set on condition).

4.2.1. Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the source
and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the ADC
instruction performs the same operation as the ADD instruction. An ADC instruction is used to
propagate carry when adding numbers in stages, for example when using 32-bit ADD
instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the state of
the CF flag. This allows the use of INC instructions to update counters in loops without
disturbing the status flags resulting from an arithmetic operation used for loop control. The ZF
flag can be used to detect when carry would have occurred. Use an ADD instruction with an
immediate value of 1 to perform an increment which updates the CF flag. A one-byte form of
this instruction is available when the operand is a general register. The OF, SF, ZF, AF, and PF
flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is set. The
operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, ZF, AF, PF,
and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is set. If
the CF flag is clear, the SBB instruction performs the same operation as the SUB instruction.
An SBB instruction is used to propagate borrow when subtracting numbers in stages, for
example when using 32-bit SUB instructions to subtract one quadword operand from another.
The OF, SF, ZF, AF, PF, and CF flags are affected.

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction preserves
the state of the CF flag. This allows the use of the DEC instruction to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop control.
Use a SUB instruction with an immediate value of 1 to perform a decrement which updates the
CF flag. A one-byte form of this instruction is available when the operand is a general register.
The OF, SF, ZF, AF, and PF flags are affected.

4.2.2. Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates the
OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination operands. A
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subsequent Jcc or SETcc instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG instruction
is to change the sign of a two's complement operand while keeping its magnitude. The OF, SF,
ZF, AF, PF, and CF flags are affected.

4.2.3. Multiplication Instructions

The processor has separate multiply instructions for unsigned and signed operands. The MUL
instruction operates on unsigned integers, while the IMUL instruction operates on signed
integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multiplies it by
the value held in the AL register and returns the double-length result in the AH and AL
registers. If the source operand is a word, the processor multiplies it by the value held in the
AX register and returns the double-length result in the DX and AX registers. If the source
operand is a doubleword, the processor multiplies it by the value held in the EAX register and
returns the quadword result in the EDX and EAX registers. The MUL instruction sets the CF
and OF flags when the upper half of the result is non-zero; otherwise, the flags are cleared. The
state of the SF, ZF, AF, and PF flags is undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in memory
or in a general register. This instruction uses the EAX and EDX (or AX and DX) registers
as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the other
may be in a general register or memory. The result replaces the general-register operand.

3. A three-operand form; two are source operands and one is the destination. One of the
source operands is an immediate value supplied by the instruction; the second may be in
memory or in a general register. The result is stored in a general register. The immediate
operand is a two's complement signed integer. If the immediate operand is a byte, the
processor automatically sign-extends it to the size of the second operand before
performing the multiplication.

The three forms are similar in most respects:

® The length of the product is calculated to twice the length of the operands.

® The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the upper haif of the result is the sign-
extension of the lower half. The state of the SF, ZF, AF, and PF flags is undefined.

However, forms 2 and 3 differ from 1 because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the OF flag
should be tested to ensure that no significant bits are lost. (For ways to test the OF flag, see the
JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
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operands are signed or unsigned, the lower half of the product is the same. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

4.2.4. Division Instructions

The Pentium processor has separate division instructions for unsigned and signed operands.
The DIV instruction operates on unsigned integers, while the IDIV instruction operates on both
signed and unsigned integers. In either case, a divide-error exception is generated if the divisor
is zero or if the quotient is too large for the AL, AX, or EAX register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the divisor
(the source operand); the quotient and remainder have the same size as the divisor, as shown in
Table 4-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the divisor.
For unsigned byte division, the largest quotient is 255. For unsigned word division, the largest
quotient is 65,535. For unsigned doubleword division the largest quotient is 232-1. The state of
the OF, SF, ZF, AF, PF, and CF flags is undefined.

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source
operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127, and the minimum negative
quotient is —128. For signed word division, the maximum positive quotient is +32,767, and the
minimum negative quotient is —32,768. For signed doubleword division the maximum positive
quotient is 2!-1, the minimum negative quotient is -2°!. Non-integral results are truncated
towards 0. The remainder always has the same sign as the dividend and is less than the divisor
in magnitude. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

Table 4-1. Operands for Division

Operand Size
(Divisor) Dividend Quotient Remainder
Byte AX register AL register AH register
Word DX and AX AX register DX register
Doubleword EDX and EAX EAX register EDX register

4.3. DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions (already
discussed in the prior section) with the decimal arithmetic instructions. The decimal arithmetic
instructions are used in one of the following ways:

® To adjust the results of a previous binary arithmetic operation to produce a valid packed or
unpacked decimal result.

® To adjust the inputs to a subsequent binary arithmetic operation so that the operation will
produce a valid packed or unpacked decimal result.
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These instructions operate only on the AL or AH registers. Most use the AF flag.

4.3.1. Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed decimal
operands in the AL register. A DAA instruction must follow the addition of two pairs of
packed decimal numbers (one digit in each half-byte) to obtain a pair of valid packed decimal
digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, and CF flags are
affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid packed
decimal operands in the AL register. A DAS instruction must always follow the subtraction of
one pair of packed decimal numbers (one digit in each half-byte) from another to obtain a pair
of valid packed decimal digits as results. The CF flag is set if a borrow is needed. The SF, ZF,
AF, PF, and CF flags are affected. The state of the OF flag is undefined.

4.3.2. Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow the
addition of two unpacked decimal operands in the AL register. The CF flag is set and the
contents of the AH register are incremented if a carry occurs. The AF and CF flags are
affected. The state of the OF, SF, ZF, and PF flags is undefined.

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow the
subtraction of one unpacked decimal operand from another in the AL register. The CF flag is
set and the contents of the AH register are decremented if a borrow is needed. The AF and CF
flags are affected. The state of the 