Intel® Itanium® Architecture
Software Developer’s Manual

Volume 3: Instruction Set Reference

Revision 2.1

October 2002

Document Number: 245319-004

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2002, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

i Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

intel.

Contents

Part I: Intel® Itanium® Instruction Set Descriptions

1 About this ManuUal ... e 3:1
1.1 Overview of Volume 1: Application Architecture...........ccccceeeiiiiiiiiii, 3:1

1.1.1 Part 1: Application Architecture Guidecccoeiiiiiiii e, 3:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 3:2

1.2 Overview of Volume 2: System Architectureccccooiiiii i 3:2

1.2.1 Part 1: System Architecture GUIdeccueiiiiiiiiii e 3:2

1.2.2 Part 2: System Programmer's GUide..............oueiiiiiiiieiiiiieeeeeeeeee e 3:3

L2 T Y o] o 1= o Lo oY SRR 34

1.3 Overview of Volume 3: Instruction Set Reference............ccccoviiiiiiiiiie e 3:4

1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptionsccooovviviiiiiiiiii, 34

1.3.2 Part 2: IA-32 Instruction Set DeSCriptions...........coeeiiiiiiiiiiiieeeeee e 34

14 JLIC=1 4 21T Te] [T | 2SRRI 3:5

1.5 Related DOCUMENTES ...ttt e e e e e e e e e et eeeeeeaaaeeean 3:5

1.6 REVISION HISTOTY ... 3:6

2 INStruction REfEreNCe e 3:9
21 Instruction Page Conventions ... 3:9

2.2 INStruCtion DESCIIPHONSeeiiiiieee e e e e e e e 3:10

3 Pseudo-Code FUNCHIONScooiiiicrr s s nr e e e e s s nmn s e e e s e s s s mmmmnnnes 3:245
4 Instruction FOrmats....... .. e 3:255
4.1 FOrmMat SUMMAIY ... e e e e e e e e e 3:256

4.2 A-Unit InStruction ENCOAINGSo.eeiiiiiiiieie s 3:262

4.2.1 INtegEr ALU .. 3:262

4.2.2 INteger COMPAIEcooeiieiiiiiiieeee et e e e e e aeeaaaaaeeas 3:264

R B Y/ 1111 (10 =Y L= PSSR 3:268

4.3 I-Unit Instruction ENCOAINGSvvueiiiiiii i e e e e e e e 3:272

4.3.1 Multimedia and Variable ShiftS.............ccciiii e, 3:272

4.3.2 Integer ShiftS ... s 3:277

e T =) 0 = 1| SO PSSP 3:279

4.3.4 Miscellaneous I-Unit InStructions...........ccccumiiiiiiiiii e 3:280

4.3.5 GR/BR IMOVES ...ttt ettt s 3:282

4.3.6 GR/Predicate/IP MOVES..........uuiiiiiiiieie ittt 3:283

4.3.7 GR/AR MOVES (1-UNIt).cc e 3:284

4.3.8 Sign/Zero Extend/Compute Zero INdeXuueeiiiiiiiiiiiiiiiiiiieieeeeeeeee e, 3:285

4.4 M-Unit InStruction ENCOAINGSoouviiiiiiiiiiiiee e 3:285

441 L0oads @nd SEOIES ..ccccoeeiieciiiiiiieiit et e e e e raaa e e e e 3:285

4.4.2 LiN€ PrefetCh ... e 3:300

4.4.3 SeMAPNOIES ...ooiiiiiiiiie e 3:302

444 SeUGELFR ..o e e 3:303

445 Speculation and Advanced Load ChecKsS.........ccooeiiiiiiiiiiiiiiiiiiiieeeeeeeeeee, 3:303

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual ii

Part Il:

intel.

4.4.6 Cache/Synchronization/RSE/ALAT ...t 3:304
447 GR/IAR MOVES (M-UNIt) ..ot 3:306
448 GRICR MOVES ...oooiiiieeiie ittt ettt e e e e e e s e eeeeeeeee e e e e s 3:307
4.4.9 Miscellaneous M-Unit InStructions............ccccoiiiiiiiiiiiiiiii s 3:307
4.410 System/Memory Managementcoooiiiiiiiiiiiiieee e 3:308
4411 NOP/HINE (M-UNIE) ©oeiiiiiiiiiie e e e snaee e e 3:313
4.5 B-Unit InStruction ENCOAINGSuveiiiiiiiiiicii e 3:313
N T B = = 1 o 1= SRR 3:314
4.5.2 Branch Predict/NOP/HINT.........ooooiii e 3:317
453 Miscellaneous B-Unit INStructionscccccvviviiiiiiiiiicicee e, 3:319
4.6 F-Unit Instruction ENCOAINGScooviiiiiiiiiiiee e 3:320
4.6.1 AMNMELIC ..o 3:322
4.6.2 Parallel Floating-point Select..........c.ueiiiiiiiiiiii e 3:323
4.6.3 Compare and Classify.........uuiiiiiiiiiiiiieeeee e 3:323
S GRS Y o] o] 0 {11 =1 1T o PR 3:325
4.6.5 Minimum/Maximum and Parallel Comparec..ccooccuueieiiiiieeee e 3:326
4.6.6 Merge and LOGICal..........uuuiiiiiiiiiiiii e 3:327
4.6.7 CONVEISION ...eeiiiiieeee ettt e et e e e e e e e e et e eeeaeaeeesesaaaanneananeeeaaaaaeeeeaaaannnns 3:327
4.6.8 Status Field Manipulation...............ooouiiiiiiiiic e 3:328
4.6.9 Miscellaneous F-Unit INStruCtioONSeoiiiiiiiiiiiiiiiieeee e 3:329
4.7 X-Unit INStruction ENCOAINGScevvviiiiiiiiiie e 3:329
4.7.1 Miscellaneous X-Unit INStructionscccccooiiiiiiiiiiiiee s 3:329
472 Movelonglmmediategq 3:330
4.7.3 LONG BranChescccooiiiiiiiiiiceeeeee ettt 3:331
4.7.4 NOp/HINt (X-UNIt) .ot e e e e 3:332
4.8 Immediate FOrmation ... 3:332
Resource and Dependency SemantiCsccccucvvmriiniiisnniisss s 3:335
5.1 Reading and Writing RESOUICES.........ccuviiiiiiiiiie e 3:335
5.2 Dependencies and Serialization......... ... 3:335
5.3 Resource and Dependency Table Format Notes............cccooiiiiiiieiciccccee e 3:336
5.3.1 Special Case Instruction RUIES ... 3:338
5.3.2 RAW Dependency Table.........ccc.uviiiiiiiiiiiiiie e 3:338
5.3.3 WAW Dependency Tableccoiieiiiiiiiiiieececeeeeeeeesee e e e eeeeeeeans 3:346
5.3.4 WAR Dependency Table........ccuuiiiiiiiiiii e 3:350
5.3.5 Listing of Rules Referenced in Dependency Tablesccccvvvvvivveeenen. 3:350
54 SUPPOIE TADIESot e e 3:352

IA-32 Instruction Set Descriptions

Base IA-32 InStruction ReferenCe........ccceveiieccccccieccrirrree e ssssssse e s s smmmn e e 3:361
1.1 Additional Intel® tanium® FaUIScooveveeveereeeecece e 3:361
1.2 Interpreting the 1A-32 Instruction Reference Pages...........cccoociieiiiiiiieeiiiiiiees 3:362
1.2.1 1A-32 Instruction FOrmMat...........ooooiiiiiii e 3:362
T1.2.2 OPEIAtION. ..t ————— 3:365
1.2.3 Flags AfFECIEAcoooiiieeeeeee e 3:368
1.2.4 FPU Flags Affected ... 3:368
1.2.5 Protected Mode EXCEPLIONSoooviiiiiiiiiieee e 3:368

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

1.2.6 Real-address Mode EXCEPLIONSuuiiiiviiiiiiiiiieieeeeeeeeeeeeeeeeeen 3:369
1.2.7 Virtual-8086 Mode EXCEPLIONScccoiiiiiiiieeee e 3:369
1.2.8 Floating-point EXCEPLIONScccuiiiiiiiiiiiiiieeeee e 3:369
1.3 IA-32 Base Instruction REfErenCecciiiiiiiiii e 3:370
2 IA-32 Intel® MMX™ Technology Instruction Reference.......ccccccceeiieccccccinereneeneeesessccnnns 3:747
3 IA-32 Streaming SIMD Extension Instruction Reference..........cccococeevveceerrininnissccccnnnes 3:811
3.1 IA-32 Streaming SIMD Extension INStructionscccooiiiiie e 3:811
3.2 About the Intel® Architecture Streaming SIMD EXxtensions...........ccccccvvveeeeeeeeeeennnn. 3:811
3.3 Single Instruction Multiple Data...........oooiiiiiiiiii e 3:812
3.4 NEW Dat@ TYPES ...t e e 3:812
3.5 Streaming SIMD Extension Registerscccccvviiiiiiiiii e 3:813
3.6 Extended INStruction Setooo oo 3:813
3.6.1 Instruction Group REVIEWcooiiiiiiiiiiiiiieeeee e 3:814
3.7 IEEE COMPLI@NCE ...ttt e e e e e e e e e e e 3:821
3.7.1 Real NUmMbEr System ..o 3:822
3.7.2 Operating on NaNS..........oooiiiii e 3:827
3.8 2= = T4 = £ SR 3:828
3.8.1 Memory Data FOrmats..........coeeiiiiiiiiiiie e 3:828
3.8.2 Streaming SIMD Extension Register Data Formats.............cccoevvvviviinnnnnnn. 3:828
3.9 INSErUCION FOrMAtS e e e e 3:830
3.10 INSUCHON PrefiXeSvviiiiiiiiiiiie et 3:830
3.11 Reserved Behavior and Software Compatibility ... 3:831
R Tt 2 [0 -1 oo - SRR 3:831
3.13 SIMD Integer Instruction Set EXtENSIONS...........ccccuiiiiiiiiiiieieiee e, 3:908
3.14 Cacheability Control INStruCtionsoiiiiiiiiii e 3:922
Figures
Part I: Intel® Itanium® Instruction Set Descriptions
21 e [o [o] | (=] PP PP PPPPPUPPPPPPPP 3:12
2-2 = o1 Q=T 1SRRI 3:13
2-3 Operation of br.ctop and br.CeXit.........oooiiieiiie e 3:20
2-4 Operation of br.wtop and broweXit ... 3:20
2-5 Deposit Example (Merge_form) ... e 3:45
2-6 Deposit Example (ZEro_form)... ... 3:45
2-7 = o i == 0 1]) RS 3:48
2-8 Floating-point Merge Negative Sign Operation ... 3:72
2-9 Floating-point Merge Sign Operationccoioiiiiiiiiiiiii e 3:72
2-10 Floating-point Merge Sign and Exponent Operationccccceeeiiiiieeiii i 3:72
2-11 Floating-point MiX LEft.........ueieie et et 3:75
2-12 Floating-point MiX RIGht.........oooi e e 3:75
2-13 Floating-point MixX LEft-RIGNTuuuiiiiiiiiiiiii e 3:75
2-14 Floating-POiNt PACK......ccii ittt ettt e e e e et e e e e re e e e e e 3:86
2-15 Floating-point Parallel Merge Negative Sign Operationccccooviiiie i 3:96
2-16 Floating-point Parallel Merge Sign Operationccccceiviiiiiiiciiiiieieeeee e 3:96
2-17 Floating-point Parallel Merge Sign and Exponent Operationccccceeviiiiiee e 3:96
2-18 Floating-pOiNt SWaD....ceeiiiiiieeiii et e e e e e e e e e e e e e e e eeas 3:118

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45

Part Il:

1-1
1-2

21
2-2

2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18

vi

intel.

Floating-point Swap Negate Left..........ooo e 3:118
Floating-point Swap Negate Right ..o 3:118
Floating-point Sign EXtend Left ..o 3:120
Floating-point Sign Extend Right..........ooorrri s 3:120
FUNCHON Of GO EXP it e 3:123
FUNCHON Of Qe8I .. eeiiiiiiiieie e 3:123
LD == 14 4] o] L= 3:147
Mux1 Operation (8-bit €lemMeENtS)..........oiiiiiiiii e 3:164
Mux2 Examples (16-bit €lemMents)..........oooiiiiiiiii e 3:165
= Tod Q@ 0= = 4] o I 3:169
Parallel Add EXAmMPIEScoooii ettt e e e e e e e eee s 3:171
Parallel Average EXamPIEoo.uiiiiiiiii e 3:174
Parallel Average with Round Away from Zero Example...........cccoooiiiiiiiiiiiicicciceie e 3:175
Parallel Average Subtract EXample ..o 3:177
Parallel Compare EXamplet 3:179
Parallel Maximum EXamPIe...........ooooiiiiiie e 3:181
Parallel Minimum EXamPIE.... ... e ee e e e e e e e e e e eees 3:182
Parallel Multiply Operation oot e e e e 3:183
Parallel Multiply and Shift Right Operation..............ccociiiiiiiiiii e, 3:184
Parallel Sum of Absolute Difference EXample..........cooiiiiiiiiiiiiiiiie e 3:189
Parallel Shift Left EXamMPIEt e e e 3:190
Parallel SUBIract EXamPIEc..uuiiiiiiiiiiiie et e 3:195
U aTer o] g To) =TT = o J OSSR 3:210
FUNCHON OF SEHF.SIG ..viiiiiiiiiiee e 3:210
Shift Left and Add POINETcooiiiii e re e e e e e e e e e saneees 3:214
T T e L = 1 SRR 3:216
L8 T o= Tod 1 @7 o 1T = 4[] o USSR 3:236
BUNAIE FOMMAL.... o e e e e e e e e e e e e e e e aee e e e e e e es 3:255

IA-32 Instruction Set Descriptions

Bit OffSet fOr BITIEAX,21] .eeiiiiiiieiiee ettt ettt e e s ee e e e aee e e e ee e e e nees 3:367
Y =Y g g To] o VA = 11 A [T =T T 3:368
Version Information in Registers EAX ... 3:429
Operation of the MOVD INSTrUCLIONuvieiiiiie e e e e e e eeeeeeaens 3:749
Operation of the MOVQ INSTrUCHIONcoiiiiiiiiiii e 3:751
Operation of the PACKSSDW INStrUCHIONouvuiiiiiiiiii e 3:753
Operation of the PACKUSWB INStrUCHIONiiiiiiiii s 3:756
Operation of the PADDW INSTrUCIONcooiiiiiiiiiiiee et 3:758
Operation of the PADDSW INSTrUCHONcccooiiiiiiiii e 3:761
Operation of the PADDUSB INStrUCHIONuuveiiiiiiiiiii e e e e eee e 3.764
Operation of the PAND INSTrUCHONoiiiiiiiiiiiccicee e 3:767
Operation of the PANDN INStrUCHIONvuveiiiiiii e 3:769
Operation of the PCMPEQW INStrUCLIONcooiiiiieeee e 3:771
Operation of the PCMPGTW INStructioncoooiiiiiieee e 3:774
Operation of the PMADDWD INStrUCHONvuiiiiiiiiii e 3:.777
Operation of the PMULHW INStrUCLONcooiiiiiiiie e 3:779
Operation of the PMULLW INStrUCLIONccooiiiiiiiiieee et 3:781
Operation of the POR INSTrUCLION.oooimiiiiicee e 3:783
Operation of the PSLLW INStrUCHONcooiiiiieeeeeeee e 3:785
Operation of the PSRAW INSIIUCHIONcccvviiiiiiiecccieee e 3:788
Operation of the PSRLW INSIrUCLIONvvvuiiiiii s 3:791

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

intel.

2-19
2-20
2-21
2-22
2-23
2-24
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11

Operation of the PSUBW INStrUCtioNooviiiiiiiiiccece e 3:794
Operation of the PSUBSW INStrUCLIONuviiiiiiiiiee e 3:797
Operation of the PSUBUSB INStruCtIONuiiiiiiiiiee e 3:800
High-order Unpacking and Interleaving of Bytes with the PUNPCKHBW Instruction 3:803
Low-order Unpacking and Interleaving of Bytes with the PUNPCKLBW Instruction............ 3:806
Operation of the PXOR INStrUCtioN ..o e 3:809
Packed SiNgle-FP Data TYPEuuuiiciiie it e e e e e e e e e e e e e e e eeeeeeaaaaes 3:812
Streaming SIMD Extension Register Set ... 3:813
L= Ted (o [@ o =T =1 1 [o o PR 3:814
Yoz = TR @0 1=T =1 o o PSP 3:814
Packed Shuffle Operationooo ot r e e e e e e e e e eennenes 3:816
Unpack High Operationooooiieeee et e e e e e e e 3:817
UNpPack LOW OPErationcoooiuiiiiiiiiiiiieiiie ettt e e s e e e e e e e e e e e aaeaeeeeeeeeeenens 3:817
Binary Real NUMDbDEr SYSTEMooiiiiiiiii e 3:822
Binary Floating-point FOrMatoooiiiiii s 3:823
Real Numbers and NaNS ... 3:825
Four Packed FP Data in Memory (at address 1000H)cooiiiiiiiiiiiiiiiiieee e 3:828

Tables

Part I: Intel® Itanium® Instruction Set Descriptions

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30

Instruction Page DeSCrIPION.coi e 3:9
Instruction Page FONt CONVENLIONSuiiiiiiiiii e 3:9
Register File NOtation ... e 3:10
C SYNtaX DIffEr@NCESo e e 3:10
Pervasive Conditions Not Included in Instruction Description Code..........cccccevvveeiveeeeiinnnnn, 3:10
BranCh TYPES ..t 3:17
Branch Whether Hint ... 3:21
Sequential Prefetch Hint.........c...ee e 3:21
Branch Cache Deallocation Hint..........oooo e 3:21
LONG BranCh TYPES ...ttt ettt e et e e e e e e e e e e s aanb e b be e e eeaaeaaaeann 3:26
IP-relative Branch Predict Whether Hint............ooooii e 3:28
Indirect Branch Predict Whether Hint ... 3:28
Tgg] oTel g = TaTot= YN o 110) SO PP 3:28
ALAT Clear COMPIELETveeiiiiiieiee et ee ennanns 3:31
LO70] 4o o= 15T] 0 I I8 o1 USSP 3:34
64-bit Comparison Relations for Normal and unc Compares...........cccocovevvvviiiiiccieiiieee e, 3:35
64-bit Comparison Relations for Parallel Comparescccccevveeiiiiiiiiiciicciiiiiiie e 3:35
Immediate Range for 32-bit COMPAresccuuiiiiiiiiiie e 3:37
Memory Compare and EXChange Size............ooooiiiiiiiiccecce e 3:40
Compare and Exchange Semaphore TYPESuiiiiiiie e it a e 3:40
RESUIt RANGES TOF CZX ...vtiiiiiiiiieiii et 3:43
Specified PC MNEMONIC VAIUESoooiiiieieeeee e 3:50
STMNEMONIC VAIUES ...ttt e ettt e e ettt e e e e entbeeeeeeestaeeeeaeanns 3:50
Floating-point Class RelationNS............ooiiiiiiiii e 3:57
Floating-point ClasSSESuuiiiiiiiieeie ettt e e eeea e e e e e e e 3:57
Floating-point CompariSON TYPES........ccoiiuiiiiiiiieii et a e e e e e e e eeeaaaaaes 3:60
Floating-point Comparison Relationso 3:60
Fetch and Add SemMaphore TYPES......ccoooiiii it 3.67
Floating-point Parallel Comparison RESUILSccooiiiiiiiiiiiiiieceeeee e 3:89
Floating-point Parallel Comparison Relations ... 3:89

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual vii

2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
3-1

4-2
4-3
4-4
4-5
4-6

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25

viii

intel.

HINE IMMEAIALES ...ttt ee e e e e e e e e e eeeees 3:125
LS 74 ©70] 1 01112 (= = SRR 3:131
[0 = o B Y/ o= S TP PSPPI 3:131
(0= To [o 11 3PP PPUREPPRPPRIN 3:132
2574 ©70]2 0] 1= (= = SO 3:135
L e o= Lo [1Y/ o 1= T PP P PP PPR P 3:135
Iftype MNEMONIC VAIUES ... e e e e e e e e e e e e e e e ae e aaaaas 3:141
IfhiNt MNEMONIC VAIUES ...ttt e e e e e e e e e e e e e e eeaeaeeens 3:142
Move to BR Whether HINtS ... 3:151
Indirect Register File MNEMONICSuvuuiiiiie it e e, 3:156
Mux Permutations for 8-bit EIEmMENtScooiriiiiiiiiiii e 3:164
Pack Saturation LImits.ot e e e e e e 3:169
Parallel Add Saturation COMPIELErsScccoeiiiiiiiiiie e 3:171
Parallel Add Saturation LIMits ..o e 3:171
Pemp REIAtIONS ...ttt e e e e e e e e e e e e e e e e nnnas 3:179
PMPYSHR Shift OptiONSeeiiiiiiiiiiiie sttt ee e e e e e e e eae e e e nnees 3:184
Parallel Subtract Saturation Completers ... 3:195
Parallel Subtract Saturation Limitsooiiiiiii e 3:195
(o LI 1N 1= S PSSP 3:219
S (o N o 11 | PSR 3:220
XSZ MNEMONIC VAIUES ...ttt et e e e e e e e e et eeeaaaae e e e e e ennnnnes 3:225
Test Bit Relations for Normal and unc thits...........c.cccvviiiiiiii e, 3:228
Test Bit Relations for Parallel thitsoooiiiiiii e 3:228
Test NaT Relations for Normal and unc tnats ... 3:231
Test NaT Relations for Parallel tNatS..........c.ceoeiiiiiiiiiiieeeeee e 3:231
Memory EXChange SiZeoooiiiiiiiii e 3:237
Pseudo-Code FUNCLIONSooi e a e e e e e e e e e ennnes 3:245
Relationship between Instruction Type and Execution Unit Typecccccceiiiiiiiiiiiiinnns 3:255
Template Field Encoding and Instruction Slot Mappingccccouviiiiiiiireeeee e 3:256
Major Opcode ASSIGNMENTESoiiiiiiiii i 3:257
Instruction FOrmat SUMMAYeiiiiiie e e 3:258
INStruction Field COolOr KEY ..ot 3:260
INstruction Field NamMES.......ooo it e e e 3:260
Special INStruction NOLAtIONSooiiiiiii e 3:261
Integer ALU 2-bit+1-bit Opcode EXIENSIONScooiiiiiiiiiiiiiii e 3:262
Integer ALU 4-bit+2-bit Opcode EXIENSIONScoiiiiiiiiiiiiiiie e 3:263
Integer Compare Opcode EXIENSIONScoouiiiiiiiiiiiiiii e 3:265
Integer Compare Immediate Opcode EXtENSIONSoeeviiiiiiiiiiiiiiieeeeee e 3:265
Multimedia ALU 2-bit+1-bit Opcode EXtENSIONS............coooiiiiiiiiiiiccccceeee e, 3:268
Multimedia ALU Size 1 4-bit+2-bit Opcode EXtensions..........ccccoccuvieieeiiiiiinieniieeee e 3:269
Multimedia ALU Size 2 4-bit+2-bit Opcode EXteNsioNS..........cooeiiiiiiiiiiiiiieee e, 3:269
Multimedia ALU Size 4 4-bit+2-bit Opcode EXtensions..............ooouviiiiiiiiiiieiiieieeeeeieieeeeeea, 3:270
Multimedia and Variable Shift 1-bit Opcode EXtensionscccccccceviiiiiiieiiniciieeeee 3:272
Multimedia Opcode 7 Size 1 2-bit Opcode EXteNSIONSooovveiiiiiiiiieeeee e, 3:272
Multimedia Opcode 7 Size 2 2-bit Opcode Extensionsceeviiiiiiiiiiiiiiiiiiiiiiiiieeeee, 3:273
Multimedia Opcode 7 Size 4 2-bit Opcode EXtensSioNnsccooiiiiiiiiiiiiiiieieeeeeee 3:273
Variable Shift Opcode 7 2-bit Opcode EXtENSIONSeeiiiiiiiiieiiiieee e 3:274
Integer Shift/Test Bit/Test NaT 2-bit Opcode EXtENSIONS........c.coccuviieiiiiiiiiiiieiiieeeeee, 3:277
Deposit OPCOAE EXIENSIONSveiiieiiiiiiiie ittt ettt e e e s sae e e e s saeeeeaesannneeeaeas 3:277
Test Bit Opcode EXIENSIONSuiiiiiiiiiii e e e 3:279
Misc I-Unit 3-bit Opcode EXIENSIONSccooiiiiiiiieeecee e 3:280
Misc 1-Unit 6-bit Opcode EXIENSIONSceiiiiiiiiiie e 3:281

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

intel.

4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
5-1

5-2

5-3

Misc [-Unit 1-bit Opcode EXIENSIONSccoiiiiiiieieec e 3:281
Move to BR Whether Hint ComPIeter.............oeiiiiiiiiiieeeee e 3:282
Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensionsccccccceiiiiiiiinnne. 3:285
Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensionsccccccceeeeeennn. 3:285
Integer Load/Store Opcode EXIENSIONS........ooouiiiiiiiiii e 3:286
Integer Load +Reg Opcode EXIENSIONScooiviiiiiiiiiiiie et 3:287
Integer Load/Store +Imm Opcode EXIENSIONScuuiiiiiiiiiiiiiiiiee e 3:287
Semaphore/Get FR/16-Byte Opcode EXtENSIONS.......oooviiiiiiiiiiiieeee e 3:288
Floating-point Load/Store/Lfetch Opcode EXtensionscoveiiiieiiiiiiiiiiiiiieeee e 3:288
Floating-point Load/Lfetch +Reg Opcode EXteNSIONSueeeiiiiiiiiiiiiiiiiiiieeeee e 3:289
Floating-point Load/Store/Lfetch +Imm Opcode Extensionsoooooiiciiiiiiiiiiennneeeenn. 3:289
Floating-point Load Pair/Set FR Opcode EXtensions.............ccoeiiiiiiiiiiiiiiiiiceeeeeeeeeee, 3:290
Floating-point Load Pair +Imm Opcode EXtensions..............ccccovvceeiiiiiiiiiiciiieeeee, 3:290
(0= To I 11 a0 o] o] =1 (Y R 3:291
Store Hint ComMPIEEr......oooi e e e e e 3:291
Line Prefetch Hint Completer 3:300
Opcode 0 System/Memory Management 3-bit Opcode Extensions.............cccccovieenenns 3:309
Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions............cccccee. 3:309
Opcode 1 System/Memory Management 3-bit Opcode Extensions...............cccccciieeeeeee. 3:309
Opcode 1 System/Memory Management 6-bit Opcode Extensions...............cccccoceeeeeen. 3:310
Misc M-Unit 1-bit Opcode EXtENSIONSuiiiiiiiieii e 3:313
IP-Relative BrancCh TYPES.......ooii ittt e e 3:314
Indirect/Miscellaneous Branch Opcode EXteNSIONScccovviiiiiiiiiiiiiiiiiieeeeee e 3:314
INAIreCt BranCh TYPES.ooo i 3:315
Indirect Return BranCh TYPES.....coooiiiiiiieeeee et 3:315
Sequential Prefetch Hint Completer ... 3:315
Branch Whether Hint Completer.............oooooi e 3:315
Indirect Call Whether Hint Completer ... 3:316
Branch Cache Deallocation Hint Completer............oooo i 3:316
Indirect Predict/Nop/Hint Opcode EXtENSIONS ... 3:318
Branch Importance Hint ComMPIeter....... ... 3:318
IP-Relative Predict Whether Hint Completer ... 3:318
Indirect Predict Whether Hint Completer....... ... 3:319
Miscellaneous Floating-point 1-bit Opcode EXteNSIONS.........cceeveeiiiiiiiiieiiiieee e 3:320
Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensionsccccciiiineneee. 3:321
Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensionscccoiiiiieneee. 3:321
Reciprocal Approximation 1-bit Opcode EXtensionsccccceviiiiiee i 3:322
Floating-point Status Field CoOmMPIEter......... ..o e 3:322
Floating-point Arithmetic 1-bit Opcode EXtensions. ..o 3:322
Fixed-point Multiply Add and Select Opcode EXteNSIiONS...........coovcuieeeeiiiiiiiee e 3:322
Floating-point Compare Opcode EXtENSIONS.........oooiiiiiiiiiieeeeeee e 3:324
Floating-point Class 1-bit Opcode EXteNnSiONS.oooiiiiiiiii e, 3:324
Misc F-Unit 1-bit Opcode EXIENSIONScooiiiiiiiiiiiiii e 3:329
Misc X-Unit 3-bit Opcode EXIENSIONSuuiiiiiiiiiieie e 3:330
Misc X-Unit 6-bit Opcode EXtENSIONSoooiiiiiiiiiccecccee e, 3:330
Move Long 1-bit Opcode EXtENSIONS..........cooiiiiiiiiiii e 3:331
LONG BranCh TYPESueiiii it 3:331
Misc X-Unit 1-bit Opcode EXIENSIONSccooiiiiiiicccc e 3:332
IMmmediate FOrmMatioN..........eiii e e e e e e e e e e e e ee e e eeeee e enennnnns 3:332
Semantics of Dependency COAESoooiiiiiiiiiiiiiiie e 3:337
RAW Dependencies Organized by RESOUICEoooiiiiiiiiiiiiiiiieeee e 3:339
WAW Dependencies Organized by ReSOUICe...........ccooiiiiiiiiiiiiiiiiiciiece e 3:346

Volume 3: Intel® Itanium® Architecture Software Developer’s Manual ix

intel.

5-4 WAR Dependencies Organized by RESOUICEuuuuiiiiiieieiieeieeeeeeeeeeee e 3:350
5-5 T 1S3 (8 o (o] g T O =TT PRI 3:352

Part Il: IA-32 Instruction Set Descriptions

1-1 Register Encodings Associated with the +rb, +rw, and +rd Nomenclature 3:363
1-2 Exception Mnemonics, Names, and Vector Numbers...............ooooviiiiiiini e 3:369
1-3 Floating-point Exception Mnemonics and Namesooooviiviiiiieiiiiicee e, 3:370
1-4 Information Returned by CPUID INStructionuvviiiiiiiiiiici e 3:428
1-5 Feature Flags Returned in EDX REGISter..........ooiiiiiiiiiiiiii e 3:429
1-6 FPATAN Zeros and NaNS ...ttt e e e e e e e e e 3:497
1-7 FPREM Zeros and NANS.........ooi ittt e e e e e e e e e eanee 3:499
1-8 FPREM1 Zeros and NANS........cooiiiiiiiie ettt e e e e e e e s s naeaaaaeeeenannnns 3:502
1-9 FSUB Zeros and NANS.........coii ittt e e e st eeeee e e e e e e e e e sannaeees 3:531
1-10 FSUBR Zeros and NaNSooiiiiiiiiee ettt a e e e e 3:534
1-11 FYL2X ZEros @and NANScoiiiiiiiiiiiiiee et e e st eeee e e e e e s s s s stnnaeeaeeanaaaeeeeeeennnnnnes 3:547
1-12 FYL2XP1 Zeros and NANS ..ot e e e e e e e e 3:549
1-13 1] AV @] o =] =T o Lo [U PPUPRPRRSPPIN 3:552
1-14 N I O7= 1] SRR 3:566
1-15 LAR DescCriptor Validityoouuuieeiiiie e e e e e e e e e e e e e e e e aa e raaes 3:601
1-16 LEA Address and Operand SiZES..........uuuuuiiiiieieeeiiieiciieeeeee e ee e e e e e e s e st raaaraaaaaaaeeeseaanns 3:606
1-17 Repeat CoNItiONSoooiii e e e e e e e e e e e e e 3:686
3-1 Real NUMbBEr NOtatioNoi e 3:823
3-2 Denormalization PrOCESScooiiiiiiiiiiiiite ettt e e e e e e e e eananeees 3:826
3-3 Results of Operations with NAN Operandscccooooeiiiiiiiiiiiiiiieecccieeee e, 3:828
3-4 Precision and Range of Streaming SIMD Extension Datatypecccoceeeeiiiiiiiiiiiiennnnnn, 3:829
3-5 Real Number and NaN ENCOAINGScovvviiiiiiiiiieieie it e e e e e e e e e e e e eeeaeeeeenes 3:829
3-6 Streaming SIMD Extension Instruction Behavior with Prefixes ..., 3:830
3-7 SIMD Integer Instructions — Behavior with PrefiXxesccocceeiiiiiiiiiii, 3:830
3-8 Cacheability Control Instruction Behavior with Prefixescccccveeeeiiiiiiiiiiiiiiieceeeeeeee, 3:831
3-9 Key to Streaming SIMD Extension Naming Conventionccoooiiiiiiiiiiiiiiieeeeeees 3:832

X Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

intgl.

Part I: Intel® Itanium® Instruction
Set Descriptions

intel.

About this Manual 1

1.1

1.1.1

The Intel® Itanium® architecture is a unique combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features a revolutionary 64-bit instruction set architecture
(ISA), which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architecture is IA-32 instruction set
compatibility.

The Intel® Itanium®™ Architecture Software Developer’s Manual provides a comprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the IA-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Ttanium®

Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by applications and the
memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the [tanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an application programmer.

Volume 3: About this Manual 3:1

1.1.2

1.2

1.2.1

3:2

Part 2: Optimization Guide for the Intel® Itanium®

Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also provides a
useful system programmer's guide for writing high performance system software.

Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®

Architecture Sofiware Developers Manual.
Chapter 2, “Intel® Itanium® System Environment” introduces the environment designed to
support execution of Itanium-based operating systems running [A-32 or Itanium-based

applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural state which
is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating system for
virtual to physical address translation, virtual aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions™ lists all interruption vectors.

Volume 3: About this Manual

1.2.2

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and
intercepts that can occur during IA-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
defines the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an Itanium-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementation-dependent features.

Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multi-processing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registers that need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that Itanium-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium-based operating system
needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “I/O Architecture” describes the 1/O architecture with a focus on platform issues and
support for the existing IA-32 I/O port space.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with a focus on what kind of support is needed from Itanium-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.

Volume 3: About this Manual 3:3

1.2.3

1.3

1.3.1

1.3.2

34

Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the Itanium and IA-32 instruction sets, including
instruction format/encoding.

Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®

Architecture Software Developer s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 2, “IA-32 Inte]® MMX™ Technology Instruction Reference” provides a detailed
description of all [A-32 Inte]® MMX™ technology instructions designed to increase performance
of multimedia intensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all IA-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.

Volume 3: About this Manual

1.4

1.5

Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) — Defines application and system level resources. These
resources include instructions and registers.

Itanium Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture — The 32-bit and 16-bit Intel® architecture as described in the I4-32
Intel®Architecture Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports the execution of
both TA-32 and Itanium-based code.

TA-32 System Env1ronment The operating system privileged environment and resources as
defined by the 14-32 Intel®Architecture Software Developer’s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium-Based Firmware — The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

Processor Abstraction Layer (PAL) — The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) — The firmware layer which abstracts system features that are
implementation dependent.

Related Documents

The following documents can be downloaded at the Intel’s Developer Site at http://
developer.intel.com:

o Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization — This document describes model-specific architectural features incorporated
into the Intel® Itanium® 2 processor, the second processor based on the Itanium architecture.
(Document Number 251110)

o Intel® Itanium® Processor Reference Manual for Software Development — This document
describes model-specific architectural features incorporated into the Intel® Itanium®
processor, the first processor based on the Itanium architecture. (Document Number 245320)

o 1A4-32 Intel ®Architecture Software Developer’s Manual — This set of manuals describes the
Intel 32-bit architecture. (Document Numbers 245470, 245471, and 245472)

 Itanium™ Software Conventions and Runtime Architecture Guide — This document defines
general information necessary to compile, link, and execute a program on an Itanium-based
operating system. (Document Number 245358)

« Itanium® Processor F amily System Abstraction Layer Specification — This document
specifies requirements to develop platform firmware for Itanium-based systems.
(Document Number 245359)

» Extensible Firmware Interface Specification — This document defines a new model for the
interface between operating systems and platform firmware.

Volume 3: About this Manual 35

1.6

3:6

Revision History

Date of Revision Description
Revision Number escriptio
October 2002 21 Added New f c. i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part |, Vol. 1;

Sections 4.3.3,4.4.1,4.45,4.4.7,5.5.2, and 7.1.2, Part |, Vol. 2; Sections 2.5,
25.1,25.2,2.5.3,and 4.5.2.1, Part I, Vol. 2; and Sections 2.2, 3, 4.1,4.4.6.5,
and 4.4.10.10, Part |, Vol. 3).

Added New Atomic Operations | d16, st 16, cnp8xchgl6 (Sections 3.1.8,
3.1.8.6,4.4.1,4.4.2, and 4.4.3, Part |, Vol. 1; Section 4.5, Part |, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part |, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part |, Vol. 2 and Sections 2.2 and 3, Part |, Vol. 3).

Added New Hint Instruction (Section 2.2, Part |, Vol. 3).

Added Fault Handling Semantics for | f et ch. f aul t Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part |, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part [, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part I, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part |, Vol. 2).
Added New Error Exit States (Section 11.2.2.2, Part |, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified CPUI D[4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).

Modified PAL_FREQ_RATIOS (Section 11.2.2, Part |, Vol. 2).
Modified PAL_VERSION (Section 11.9, Part |, Vol. 2).

Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part |, Vol. 2).
Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part |, Vol. 2).

Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part |,
Vol. 2).

Clarified Predicate Behavior of al | oc Instruction (Section 4.1.2, Part |, Vol. 1
and Section 2.2, Part |, Vol. 3).

Clarified ITC clocking (Section 3.1.8.10, Part |, Vol. 1; Section 3.3.4.2, Part I,
Vol. 2; and Section 10.5.5, Part Il, Vol. 2).

Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part |, Vol. 2).
Clarified Interruption Control Registers (Section 3.3.5, Part |, Vol. 2).

Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2,7.2.4.1,and 7.2.4.2, Part |, Vol. 2).

Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part |, Vol. 2).
Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).

Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).
Clarified PALE_INIT Exit State (Section 11.4.2, Part |, Vol. 2).

Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).
Clarified Firmware Address Space at Reset (Section 11.1, Part |, Vol. 2).

Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part [, Vol. 2).

Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part |, Vol. 2).
Clarifieditr/itc Instructions (Section 2.2, Part I, Vol. 3).

Volume 3: About this Manual

Date of Revision Description
Revision Number P
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).

1IP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions - added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

1A-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

Volume 3: About this Manual

3.7

3:8

Date of
Revision

Revision
Number

Description

July 2000

1.1

Volume 1:

Processor Serial Number feature removed (Chapter 3).

Clarification on exceptions to instruction dependency (Section 3.4.3).
Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in [IM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11.
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

Volume 3: About this Manual

intel.

Instruction Reference 2

2.1

This chapter describes the function of each Itanium instruction. The pages of this chapter are sorted
alphabetically by assembly language mnemonic.

Instruction Page Conventions

The instruction pages are divided into multiple sections as listed in Table 2-1. The first three
sections are present on all instruction pages. The last three sections are present only when
necessary. Table 2-2 lists the font conventions which are used by the instruction pages.

Table 2-1. Instruction Page Description
Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions IEEE floating-point traps
Interruptions Prioritized list of interruptions that may be caused by the instruction
Serialization Serializing behavior or serialization requirements
Table 2-2. Instruction Page Font Conventions
Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code_italic (Operation section) Assembly language field name corresponding to a italic field listed
in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names
given in the third column of Table 2-3. For instructions that are predicated, the Description section
assumes that the qualifying predicate is true (except for instructions that modify architectural state
when their qualifying predicate is false). The test of the qualifying predicate is included in the
Operation section (when applicable).

In the Operation section, registers are addressed using the notation r eg[addr] . fi el d. The
register file being accessed is specified by r eg, and has a value chosen from the second column of
Table 2-3. The addr field specifies a register address as an assembly language field name or a
register mnemonic. For the general, floating-point, and predicate register files which undergo
register renaming, addr is the register address prior to renaming and the renaming is not shown.
The fi el d option specifies a named bit field within the register. If f i el d is absent, then all fields
of the register are accessed. The only exception is when referencing the data field of the general
registers (64-bits not including the NaT bit) where the notation GR addr] is used. The syntactical
differences between the code found in the Operation section and ANSI C is listed in Table 2-4.

Volume 3: Instruction Reference 3:9

intel.

Table 2-3. Register File Notation
Register File C Notation a:z;n;ﬁlif: I::;Lescst

Application registers AR ar

Branch registers BR b

Control registers CR cr

CPU identification registers CPUID cpuid Y

Data breakpoint registers DBR dbr Y

Instruction breakpoint registers IBR ibr Y

Data TLB translation cache DTC n/a

Data TLB translation registers DTR dtr Y

Floating-point registers FR f

General registers GR r

Instruction TLB translation cache ITC n/a

Instruction TLB translation registers ITR itr Y

Protection key registers PKR pkr Y

Performance monitor configuration registers PMC pmc Y

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Region registers RR rr Y

Table 2-4. C Syntax Differences
Syntax Function

{msb:Isb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the
most significant bit specified by “msb” to the least significant bit specified by “Isb”
including bits “msb” and “Isb”. If “msb” and “Isb” are equal then a single bit is
accessed. The second form denotes a single bit.

u>, u>=, U<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as
unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.

Table 2-5.

2.2

3:10

The Operation section contains code that specifies only the execution semantics of each instruction
and does not include any behavior relating to instruction fetch (e.g., interrupts and faults caused
during fetch). The Interruptions section does not list any faults that may be caused by instruction
fetch or by mandatory RSE loads. The code to raise certain pervasive faults and actions is not
included in the code in the Operation section. These faults and actions are listed in Table 2-5. The
Single step trap applies to all instructions and is not listed in the Interruptions section.

Pervasive Conditions Not Included in Instruction Description Code

Condition

Action

Read of a register outside the current frame.

An undefined value is returned (no fault).

Access to a banked general register (GR 16 through GR 31).

The GR bank specified by PSR.bn is accessed.

PSR.ss is set.

A Single Step trap is raised.

Instruction Descriptions

The remainder of this chapter provides a description of each of the Itanium instructions.

Volume 3: Instruction Reference

intel.

add — Add

Format:

Description:

Operation:

(qp) add r;=ry, 13
(qp) add r;=rj 13,1
(qp) add r;=imm,r;
(gp) adds r;=imm 4, r;3
(gp) addl r;=immjy,, r;3

add

register_form Al

plusl_form, register_form Al
pseudo-op

imml4_form A4

imm22_form A5

The two source operands (and an optional constant 1) are added and the result placed in GR ;. In
the register form the first operand is GR 7,; in the imm_14 form the first operand is taken from the
sign-extended imm 4, encoding field; in the imm22_form the first operand is taken from the
sign-extended imm, encoding field. In the imm22_form, GR r; can specify only GRs 0, 1, 2 and 3.

The plus1_form is available only in the register_form (although the equivalent effect in the

immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based upon the size of
the immediate operand and the value of ;.

if (PRap]) {

}

check_target _register(rq);

if (register_form
tnp_src = R[ry];
else if (immd_form

tmp_src = sign_ext(immy, 14);
el se

tnp_src = sign_ext(imm,, 22);
tmp_nat = (register_form? GRr,].nat
if (plusl_form

@Rrq] =tnp_src + GRrg] + 1;
el se

&Rrq] =tnp_src + Rrg];
CR(rq].nat = tnp_nat || GRr3].nat;

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

0);

[/ register form

/1 14-bit

[l 22-bit

imediate form

imrediate form

3:11

addp4

intel.

addp4 — Add Pointer

Format:

Description:

(qp) addp4 r;=ry, 13 register_form Al
(qp) addp4 r;=imm 4, r3 imm14_form A4

The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GR r; are copied to bits {62:61} of the result. This result is placed in GR 7;. In the
register_form the first operand is GR r,; in the imm14_form the first operand is taken from the
sign-extended imm , encoding field.

Figure 2-1. Add Pointer

Operation:

Interruptions:

3:12

32 0 32 30 0

63 61 32 0

if (PRgp]) {

check_target _register(rq);

tnp_src = (register_form? GRry] : sign_ext(immy, 14));
tnp_nat = (register_form? GRry].nat : 0);

tnp_res = tnp_src + GR[r3];

tnmp_res = zero_ext(tnp_res{31:0}, 32);

tnp_res{62: 61} = GR{r3]{31:30};

CGRrq] = tnp_res;

GR[rq].nat =tnp_nat || CRr3].nat;
}

Illegal Operation fault

Volume 3: Instruction Reference

intel.

alloc

alloc — Allocate Stack Frame

Format:

Description:

(gp) alloc r;=arpfs,i, 1, 0,7 M34

A new stack frame is allocated on the general register stack, and the Previous Function State
register (PFS) is copied to GR r;. The change of frame size is immediate. The write of GR 7; and
subsequent instructions in the same instruction group use the new frame.

The four parameters, i (size of inputs), / (size of locals), o (size of outputs), and 7 (size of rotating)
specify the sizes of the regions of the stack frame.

Figure 2-2. Stack Frame

GR32
Local Output
:—> sof "
sol
-
sor

The size of the frame (sof) is determined by i + / + 0. Note that this instruction may grow or shrink
the size of the current register stack frame. The size of the local region (sol) is given by i + . There
is no real distinction between inputs and locals. They are given as separate operands in the
instruction only as a hint to the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. If this
instruction attempts to change the size of CFM.sor, and the register rename base registers
(CFM.1rb.gr, CFM.1rb.fr, CFM.1rb.pr) are not all zero, then the instruction will cause a Reserved
Register/Field fault.

Although the assembler does not allow illegal combinations of operands for alloc, illegal
combinations can be encoded in the instruction. Attempting to allocate a stack frame larger than 96
registers, or with the rotating region larger than the stack frame, or with the size of locals larger
than the stack frame, or specifying a qualifying predicate other than PR 0, will cause an Illegal
Operation fault.

This instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0; otherwise, the
results are undefined.

If insufficient registers are available to allocate the desired frame al | oc will stall the processor
until enough dirty registers are written to the backing store. Such mandatory RSE stores may cause
the data related faults listed below.

Volume 3: Instruction Reference 3:13

alloc i ntGI R

Operation: I/ tnp_sof, tnp_sol, tnp_sor are the fields encoded in the instruction
tmp_sof =i + 1 + o;
tmp_sol =i +1;

tnp_sor =r u>> 3;
check_target _register_sof(rq, tnp_sof);
if (trp_sof u> 96 || r u> tnp_sof || tnmp_sol u> tnp_sof || gp != 0)
illegal _operation_fault();
if (tnp_sor != CFM sor &&
(CFMrrb.gr '=0 || CFMrrb.fr =0 || CFMrrb.pr !'= 0))
reserved_register_field fault();

al at _frane_update(0, tnp_sof - CFM sof);
rse_new franme(CFM sof, tnp_sof);// Mike roomfor new registers; Mandatory
/!l RSE stores can raise faults |isted bel ow

CFM sof = tnp_sof;
CFM sol = tnp_sol;
CFM sor = tnp_sor;
Rry] = AR PFS];
&R[rq].nat = 0;

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
VHPT Data fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Data TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault

Data Page Not Present fault

3:14 Volume 3: Instruction Reference

i ntGI ® and

and — Logical And

Format: (gp) and r;=ry, r;3 register_form Al
(qp) and r;=immg, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r;. In the register_form

the first operand is GR r,; in the imm8_form the first operand is taken from the immg encoding
field.

Operation: if (PR qp]) {
check_target _register(rq);

tnmp_src = (register_form? GRr,] : sign_ext(imm, 8));
tnp_nat = (register_form? GRr,].nat : 0);

CGRrq] =tnp_src & GRr3];
CRrq].nat = tnp_nat || GRr3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:15

andcm i ntGI R

andcm — And Complement

Format: (qp) andem r; =7y, 13 register_form Al
(gp) andem r; =immyg, r3 imm8_form A3

Description: The first source operand is logically ANDed with the 1°s complement of the second source operand
and the result placed in GR ;. In the register_form the first operand is GR r,; in the imm8_form the
first operand is taken from the immg encoding field.

Operation: if (PRLagp]) {
check_target _register(rq);

tnp_src
t mp_nat

(register_form? GRry] : sign_ext(img, 8));
(register_form? GRry].nat : 0);

@Rry] =tnp_src & ~GRr3];
GR[rq].nat =tnp_nat || CRr3].nat;
}

Interruptions: Illegal Operation fault

3:16 Volume 3: Instruction Reference

intel.

br — Branch

Format:

Description:

br

(gp) br.btype.bwh.ph.dh target,s ip_relative_form B1

(qp) br.btype.bwh.ph.dh b; = target,s call_form, ip_relative_form B3

br.btype.bwh.ph.dh target,s counted_form, ip_relative_form B2
brph.dh target,s pseudo-op

(gp) br.btype.bwh.ph.dh b, indirect_form B4

(gp) br.btype.bwh.ph.dh b;=b, call_form, indirect_form BS5
brph.dh b, pseudo-op

A branch condition is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of a branch logically follows the execution of all previous

non-branch instructions in the same instruction group. On a taken branch, execution begins at slot
0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target,5 operand, in
assembly, specifies a label to branch to. This is encoded in the branch instruction as a signed
immediate displacement (imm,) between the target bundle and the bundle containing this
instruction (imm,; = target,5 — IP >> 4). For indirect branches, the target address is taken from
BR b,.

Table 2-6. Branch Types

Volume 3: Instruction Reference

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect
ia Invoke 1A-32 instruction set Unconditional Indirect
cloop Counted loop branch Loop count IP-rel
ctop, cexit Mod-scheduled counted loop Loop count and epilog IP-rel
count
wtop, wexit Mod-scheduled while loop Qualifying predicate and | IP-rel
epilog count

There are two pseudo-ops for unconditional branches. These are encoded like a conditional branch
(btype = cond), with the gp field specifying PR 0, and with the dbwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has
other effects (such as writing a link register). For the basic branch types, the branch condition is
simply the value of the specified predicate register. These basic branch types are:

» cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:

» The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.

» The caller’s stack frame is effectively saved and the callee is provided with a frame
containing only the caller’s output region.

* The rotation rename base registers in the CFM are reset to 0.
* A return link value is placed in BR 5;.

3:17

br

3:18

intel.

+ return: If the qualifying predicate is 1, the branch is taken and the following occurs:

* CFM, EC, and the current privilege level are restored from PFS. (The privilege level is
restored only if this does not increase privilege.)

e The caller’s stack frame is restored.

+ If the return lowers the privilege, and PSR.Ip is 1, then a Lower-Privilege Transfer trap is
taken.

+ ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect of the

branch is to invoke the TA-32 instruction set (by setting PSR.is to 1) and begin processing
IA-32 instructions at the virtual linear target address contained in BR 5,{31:0}. If the
qualifying predicate is not PR 0, an Illegal Operation fault is raised. If instruction set
transitions are disabled (PSR.di is 1), then a Disabled Instruction Set Transition fault is raised.

The TA-32 target effective address is calculated relative to the current code segment, i.e.
EIP{31:0} =BR 5,{31:0} — CSD.base. The IA-32 instruction set can be entered at any
privilege level, provided PSR.di is 0. If PSR.dfh is 1, a Disabled FP Register fault is raised on
the target IA-32 instruction. No register bank switch nor change in privilege level occurs
during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before
issuing the branch. If the target EIP value exceeds the code segment limit or has a code
segment privilege violation, an [A-32_Exception(GPFault) is raised on the target [A-32
instruction. For entry into 16-bit IA-32 code, if BR b, is not within 64K-bytes of CSD.base a
GPFault is raised on the target instruction. EFLAG.rf is unmodified until the successful
completion of the first A-32 instruction. PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are
cleared to zero after br. i a completes execution and before the first IA-32 instruction begins
execution. EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must issue a nf instruction before the branch if memory ordering is required between
IA-32 processor consistent and Itanium unordered memory references. The processor does not
ensure [tanium-instruction-set-generated writes into the instruction stream are seen by
subsequent IA-32 instruction fetches. br . i a does not perform an instruction serialization
operation. The processor does ensure that prior writes (even in the same instruction group) to
GRs and FRs are observed by the first IA-32 instruction. Writes to ARs within the same
instruction group as br . i a are not allowed, since br . i a may implicitly reads all ARs. If an
illegal RAW dependency is present between an AR write and br . i a, the first IA-32 instruction
fetch and execution may or may not see the updated AR value.

TA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not
rely on ALAT values being preserved across an instruction set transition. All registers left in
the current register stack frame are undefined across an instruction set transition. On entry to
IA-32 code, existing entries in the ALAT are ignored. If the register stack contains any dirty
registers, an Illegal Operation fault is raised on the br. i a instruction. The current register
stack frame is forced to zero. To flush the register file of dirty registers, the f | ushrs
instruction must be issued in an instruction group preceding the br. i a instruction. To enhance
the performance of the instruction set transition, software can start the register stack flush in
parallel with starting the IA-32 instruction set by 1) ensuring f | ushr s is exactly one
instruction group before the br . i a, and 2) br. i a is in the first B-slot. br . i a should always be
executed in the first B-slot with a hint of “static-taken” (default), otherwise processor
performance will be degraded.

If a br. i a causes any Itanium traps (e.g., Single Step trap, Taken Branch trap, or
Unimplemented Instruction Address trap), I[IP will contain the original 64-bit target IP. (The
value will not have been zero extended from 32 bits.)

Volume 3: Instruction Reference

int9|® br

Another branch type is provided for simple counted loops. This branch type uses the Loop Count
application register (LC) to determine the branch condition, and does not use a qualifying
predicate:

* cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating
modulo-scheduled loops (see also Section 4.5.1, “Modulo-scheduled Loop Support” on page 1:66).
Two of these are for counted loops (which use the LC register), and two for while loops (which use
the qualifying predicate). These loop types use register rotation to provide register renaming, and
they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while
loops, a portion of the prolog stages. In the epilog phase, EC is decremented each time around and,
for most loops, when EC is one, the pipeline has been drained, and the loop is exited. For certain
types of optimized, unrolled software-pipelined loops, the target of a br. cexi t or br. wexi t is set
to the next sequential bundle. In this case, the pipeline may not be fully drained when EC is one,
and continues to drain while EC is zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken or not
depends on the kernel branch condition (LC for counted types, and the qualifying predicate for
while types) and on the epilog condition (whether EC is greater than one or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) are used when
the loop decision is located at the bottom of the loop body and therefore a taken branch will
continue the loop while a fall through branch will exit the loop. The exit types (cexit and wexit) are
used when the loop decision is located somewhere other than the bottom of the loop and therefore a
fall though branch will continue the loop and a taken branch will exit the loop. The exit types are
also used at intermediate points in an unrolled pipelined loop. (For more details, see Section 4.5.1,
“Modulo-scheduled Loop Support” on page 1:66).

The modulo-scheduled loop types are:

* ctop and cexit: These branch types behave identically, except in the determination of whether
to branch or not. For br. ct op, the branch is taken if either LC is non-zero or EC is greater
than one. For br . cexi t, the opposite is true. It is not taken if either LC is non-zero or EC is
greater than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization.
During the prolog and kernel phase, when LC is non-zero, LC counts down. When br . ct op or
br. cexi t is executed with LC equal to zero, the epilog phase is entered, and EC counts down.
When br. ctop or br. cexi t is executed with LC equal to zero and EC equal to one, a final
decrement of EC and a final register rotation are done. If LC and EC are equal to zero, register
rotation stops. These other effects are the same for the two branch types, and are described in
Figure 2-3.

wtop and wexit: These branch types behave identically, except in the determination of whether
to branch or not. For br . wt op, the branch is taken if either the qualifying predicate is one or
EC is greater than one. For br. wexi t, the opposite is true. It is not taken if either the
qualifying predicate is one or EC is greater than one, and is taken otherwise.

Volume 3: Instruction Reference 3:19

br int9|®

Figure 2-3. Operation of br.ctop and br.cexit

ctop, cexit
== 0 (epilog) (special
unrolled
>1 loops)
(prolog/ | =0
kernel)
/ Y
[e~] [e=wc | [Lc=Lc | [Lc=LC]
y L] y L]
[Ec=ec | | Ec- | [_EC-~ | [EC=EC |
L] L] v
[PRI63]=1 | | PRI63]=0 | | PR[63]=0 | [PR[63]=0 |
L] L]
[RRB- | | RRB- | | RRB- | [RRB=RRB |
ctop: branch Y ctop: fall-thru v
cexit: fall-thru cexit: branch

These branch types also use the qualifying predicate and EC to control register rotation and
predicate initialization. During the prolog phase, the qualifying predicate is either zero or one,
depending upon the scheme used to program the loop. During the kernel phase, the qualifying
predicate is one. During the epilog phase, the qualifying predicate is zero, and EC counts
down. When br . wt op or br . wexi t is executed with the qualifying predicate equal to zero and
EC equal to one, a final decrement of EC and a final register rotation are done. If the qualifying
predicate and EC are zero, register rotation stops. These other effects are the same for the two
branch types, and are described in Figure 2-4.

Figure 2-4. Operation of br.wtop and br.wexit

wtop, wexit

==0 (prolog / epilog) (special
unrolled
loops)

PR[qp]?

== > 1

(prolog /
kernel) (pro/og /
epilog) (epilog)
v Y
EC =EC | Ec- | | Ec- | | EC=EC |
y v v L]
[PR63]=0 | [PRI63]1=0 | [PRI63]=0 | | PR[63]=0 |
y v L] v
RRB-- | RRB- | | RRB- | |[RRB=RRB]
- | | |
wtop: branch ¢ wtop: fall-thru
wexit: fall-thru wexit: branch

The loop-type branches (br . cl oop, br. ct op, br. cexi t, br. wt op, and br. wexi t) are only
allowed in instruction slot 2 within a bundle. Executing such an instruction in either slot 0 or 1 will
cause an Illegal Operation fault, whether the branch would have been taken or not.

3:20 Volume 3: Instruction Reference

Table 2-7.

br

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly
different for branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are
visible to a subsequent branch instruction in the same instruction group (i.e., a limited RAW is
allowed for these resources). This allows for a low-latency compare-branch sequence, for example.
The normal RAW requirements apply to the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the reading and
writing instructions are branches. For example, a br . wt op or br . wexi t may not use PR[63] as its
qualifying predicate and PR[63] cannot be the qualifying predicate for any branch preceding a

br. wt op or br. wexi t in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated
resources, whether they are taken or not. The cloop type effectively always writes LC. When LC is
0, a cloop branch leaves it unchanged, but hardware may implement this as a re-write of LC with
the same value. Similarly, br. ct op and br . cexi t effectively always write LC, EC, the RRBs, and
PR[63]. br. wt op and br . wexi t effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction
Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in Table 2-8. Branch
Cache Deallocation hints are shown in Table 2-9. See Section 4.5.2, “Branch Prediction Hints” on
page 1:68.

Table 2-8.

Table 2-9.

Operation:

Branch Whether Hint

bwh Completer Branch Whether Hint
spnt Static Not-Taken
sptk Static Taken
dpnt Dynamic Not-Taken
dptk Dynamic Taken
Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint
few or none Few lines
many Many lines
Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint

none Don’t deallocate
clr Deallocate branch information
if (ip_relative_form /1 determ ne branch target

tnp_I P = I P + sign_ext((immyp; << 4), 25);
else // indirect form
tmp_I P = BRI by];

if (btype !="‘ia") /1 for Itani um branches,
tnp_IP = tnp_IP & ~Oxf; // ignore bottom4 bits of target

lower_priv_transition = 0;

switch (btype) {
case ‘cond’: /1 sinple conditional branch

tnp_taken = PR gp];
br eak;

Volume 3: Instruction Reference 3:21

br

3:22

case ‘call’: /1 call saves a return |ink
tnp_taken = PR qgp];
if (tnp_taken) {

}

BRIby] = IP + 16;

AR PFS] . pf m = CFM /1 ... and saves the stack franme
AR PFS] . pec = AR EC];
AR[PFS] . ppl = PSR cpl;

al at _frane_update(CFM sol , 0);

rse_preserve_frane(CFM sol) ;

CFM sof -= CFM sol ; Il new franme size is size of outs
CFM sol = 0;

CFM sor = 0;

CFMrrb. gr
CFMrrb. fr
CFMrrb. pr

noon-
eee

br eak;

case ‘ret’: /] return restores stack frane
tmp_taken = PR gp];
if (tnp_taken) {

[/ tnp_growth indicates the amount to nove | ogical TOP *up*:
[/ tnp_growth = sizeof (previous out) - sizeof(current framne)
// a negative anount indicates a shrinking stack

tmp_growth = (AR PFS]. pfmsof - AR[PFS].pfmsol) - CFM sof;
al at _frane_update(- AR PFS]. pfmsol, 0);

rse_fatal = rse_restore_frane(AR PFS].pfmsol, tnp_grow h,

CFM sof) ;
if (rse_fatal) { // See Section 6.4, “RSE Operation” on
page 2:119
CFM sof = 0;
CFM sol = 0;
CFM sor = 0;
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb.pr = 0;
} else // normal branch return
CFM = AR[PFS] . pf m
rse_enable_current _frame_| oad();
AR EC] = AR PFS]. pec;
if (PSRcpl u< ARRPFS].ppl) { [// ... and restores privilege
PSR cpl = AR PFS]. ppl;
lower_priv_transition = 1;
}
}
br eak;
case ‘ia': Il switch to | A node
tnp_taken = 1;
if (gp!=0)

illegal _operation_fault();

if (AR BSPSTORE] != AR[BSP])

illegal _operation_fault();

if (PSR di)
di sabl ed_i nstruction_set _transition_fault();
PSR is = 1; // set A-32 Instruction Set Mde
CFM sof = 0; //force current stack frane
CFM sol = 0; //to zero

Volume 3: Instruction Reference

CFM sor = 0;

CFMrrb.gr = O;
CFMrrb.fr = 0;
CFMrrb.pr = 0;

rse_invalidate_non_current_regs();
//conpute effective instruction pointer
El P{31:0} = tnp_I P{31:0} - AR CSD) . Base;

/Il Note the register stack is disabled during | A~32 instruction
/1 set execution
br eak;

case ‘cloop’: /1 sinple counted | oop
if (slot I=2)
illegal _operation_fault();
tnp_taken = (AR LC !'= 0);
if (ARLQ !'=0)
AR[LC] - -;

br eak;

case ‘ctop’:
case ‘cexit’: /1 SWpipelined counted | oop
if (slot I=2)
illegal _operation_fault();

if (btype == ‘ctop’) tnp_taken = ((ARLQ '=0) || (ARRECQ u> 1));
if (btype == ‘cexit’)tnp_taken = ! ((ARLC] '=0) || (AREC u> 1));
if (AL '=0) {

AR LC]--;

AR[EC] = AR EC];

PR 63] = 1;

rotate_regs();

} elseif (AREQ !=0) {

ARLC = ARLC;
AR EC] - -;
PR 63] = 0;
rotate regs();
} else {
ARLC = ARLC;
ARLEC = AREC;
PR 63] = O;
CFMrrb.gr = CFMrrb.gr;
CFMrrb.fr = CFMrrb. fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;

case ‘wop’:

case ‘wexit’': /1 SWpipelined while |oop

if (slot 1=2)

illegal _operation_fault();
if (btype == “wtop’) tnp_taken = (PRgp] || (ARREC] u> 1));
if (btype == ‘wexit’)tnp_taken = ! (PRgp] || (ARREC] u> 1));
if (PRagp]) {

AR EC = AREC;

PR 63] = O;

rotate regs();

} elseif (AREQ !=0) {

AR[EC] - -;

PR 63] = O;

rotate regs();
} else {

ARLEC = AREC;

Volume 3: Instruction Reference 3:23

br

Interruptions: Illegal Operation fault

3:24

PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;

}
if (tnp_taken) {

}

taken_branch = 1;
IP=tnmp_IP /!l set the new value for IP
if ((PSRit && uninplenmented_virtual _address(tnp_IP))
|| (!PSR it &% uninplenented_physical _address(tnmp_I P)))
uni npl enrent ed_i nstruction_address_trap(l ower_priv_transition,
tnp_I P);

if (lower_priv_transition & PSR | p)

| ower _privilege_transfer_trap();
if (PSR th)

taken_branch_trap();

Lower-Privilege Transfer trap

Disabled Instruction Set Transition fault Taken Branch trap
Unimplemented Instruction Address trap

Additional Faults on TA-32 target instructions:
[A-32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

Volume 3: Instruction Reference

intel.

break — Break

Format:

Description:

Operation:

Interruptions:

(gp) break imm,; pseudo-op
(gp) break.i imm,,; i_unit_form
(gp) break.b imm;,; b_unit_form
(gp) break.m imm,; m_unit_form
(gp) break.f imm;,; f_unit_form
(gp) break.x immyg, X_unit_form

break

119
B9
M37
F15
X1

A Break Instruction fault is taken. For the i_unit_form, f_unit_form and m_unit_form, the value
specified by imm; is zero-extended and placed in the Interruption Immediate control register

IIM).

For the b_unit_form, imm,; is ignored and the value zero is placed in the Interruption Immediate

control register (IIM).

For the x_unit_form, the lower 21 bits of the value specified by immy;, is zero-extended and placed
in the Interruption Immediate control register (IIM). The L slot of the bundle contains the upper 41

bits of imm62.

A break. i instruction may be encoded in an MLI-template bundle, in which case the L slot of the

bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular execution unit

type. The pseudo-op can be used if the unit type to execute on is unimportant.

if (PRagp]) {
if (b_unit_form
inmmedi ate = O;
else if (x_unit_form
i mredi ate = zero_ext (i mmy,, 21);
else // i_unit_form|| munit_form|| f_unit_form
i medi ate = zero_ext (i mm,;, 21);

break_i nstruction_fault(i mediate);

}

Break Instruction fault

Volume 3: Instruction Reference

3:25

brl i ntGI ®

brl — Branch Long

Format: (qp) brl.btype.bwh.ph.dh targets, X3
(qp) brl.btype.bwh.ph.dh b; = targets, call_form X4
brl.ph.dh targets, pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of a branch logically follows the execution of all previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at slot
0.

Long branches are always IP-relative. The farget4, operand, in assembly, specifies a label to branch
to. This is encoded in the long branch instruction as an immediate displacement (immg,) between
the target bundle and the bundle containing this instruction (imm, = targets,—IP >>4). The L slot
of the bundle contains 39 bits of imm.

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-relative
call Conditional procedure call Qualifying predicate IP-relative

There is a pseudo-op for long unconditional branches, encoded like a conditional branch (btype =
cond), with the gp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has
other effects (such as writing a link register). For all long branch types, the branch condition is
simply the value of the specified predicate register:

+ cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
+ call: If the qualifying predicate is 1, the branch is taken and several other actions occur:
* The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.
+ The caller’s stack frame is effectively saved and the callee is provided with a frame
containing only the caller’s output region.
» The rotation rename base registers in the CFM are reset to 0.
* A return link value is placed in BR ;.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long branch
instructions are slightly different than for other instructions but are the same as for branch
instructions. See page 3:21 for details.

This instruction must be immediately followed by a stop; otherwise its behavior is undefined.

Values for various branch hint completers are the same as for branch instructions. Whether
Prediction Strategy hints are shown in Table 2-7 on page 3:21, Sequential Prefetch hints are shown
in Table 2-8 on page 3:21, and Branch Cache Deallocation hints are shown in Table 2-9 on

page 3:21. See Section 4.5.2, “Branch Prediction Hints” on page 1:68.

This instruction is not implemented on the Itanium processor, which takes an Illegal Operation fault
whenever a long branch instruction is encountered, regardless of whether the branch is taken or not.
To support the Itanium processor, the operating system is required to provide an Illegal Operation
fault handler which emulates taken and not-taken long branches. Presence of this instruction is
indicated by a 1 in the 1b bit of CPUID register 4. See Section 3.1.11, “Processor Identification
Registers” on page 1:29.

3:26 Volume 3: Instruction Reference

intel.

Operation: tmp_IP = IP + (immyg << 4);
if (!followed_by_stop())
undef i ned_behavi or () ;
if (!'long_branch_inpl ermented())
illegal _operation_fault();

switch (btype) {
case ‘cond’:

tnp_t aken = PR gp];
br eak;

case ‘call’:
tnp_taken = PR qp];
if (tnp_taken) {
BR byl = IP + 16;

AR[PFS] . pf m = CFM
AR PFS] . pec = AR EC];
AR[PFS] . ppl = PSR cpl;

al at _frane_updat e(CFM sol ,
rse_preserve_frane(CFM sol) ;

CFM sof -= M sol ;
CFM sol 0;

CFM sor
CFM rrb. gr
CFMrrb. fr
CFMrrb. pr

noon-
eee

}

br eak;

}

if (tnp_taken) {
taken_branch = 1;
IP =tmp_IP

brl

/1 determ ne branch target

/1 sinple conditional branch

/] call saves a return |ink

/1 ... and saves the stack frane

/!l new franme size is size of outs

/! set the new value for IP

if ((PSRit &&% uninplenmented_virtual _address(tnp_IP))
|] (!PSRit &% uninpl ement ed_physi cal _address(tnp_I P)))
uni npl emrent ed_i nstruction_address_trap(0,tnp_I P);

if (PSR tbh)
taken_branch_trap();

}

Interruptions: Illegal Operation fault
Unimplemented Instruction Address trap

Volume 3: Instruction Reference

Taken Branch trap

3:27

brp

intel.

brp — Branch Predict

Format:

Description:

brp.ipwh.ih target,s, tag;s ip_relative_form B6
brp.indwh.ih by, tag;; indirect_form B7
brp.ret.indwh.ih by, tag;; return_form, indirect_form B7

This instruction can be used to provide to hardware early information about a future branch. It has
no effect on architectural machine state, and operates as a nop instruction except for its
performance effects.

The fag;; operand, in assembly, specifies the address of the branch instruction to which this
prediction information applies. This is encoded in the branch predict instruction as a signed
immediate displacement (¢immg) between the bundle containing the presaged branch and the bundle
containing this instruction (timmg = tag ;3 — IP >> 4).

The target,5 operand, in assembly, specifies the label that the presaged branch will have as its
target. This is encoded in the branch predict instruction exactly as in branch instructions, with a
signed immediate displacement (imm ;) between the target bundle and the bundle containing this
instruction (imm,; = target,5 — IP >>4). The indirect_form can be used to presage an indirect
branch. In the indirect_form, the target of the presaged branch is given by BR b,.

The return_form is used to indicate that the presaged branch will be a return.

Other hints can be given about the presaged branch. Values for various hint completers are shown in
the following tables. For more details, refer to Section 4.5.2, “Branch Prediction Hints” on
page 1:68.

The ipwh and indwh completers provide information about how best the branch condition should be
predicted, when the branch is reached.

Table 2-11. IP-relative Branch Predict Whether Hint

ipwh Completer IP-relative Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
loop Presaged branch will be br . cl oop, br. ct op, or br . wt op
exit Presaged branch will be br. cexi t or br. wexi t
dptk Presaged branch should be predicted Dynamically

Table 2-12. Indirect Branch Predict Whether Hint

indwh Completer Indirect Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
dptk Presaged branch should be predicted Dynamically

The ih completer can be used to mark a small number of very important branches (e.g., an inner
loop branch). This can signal to hardware to use faster, smaller prediction structures for this
information.

Table 2-13. Importance Hint

3:28

ih Completer Branch Predict Importance Hint

none Less important

imp More important

Volume 3: Instruction Reference

i ntGI ® brp

Operation: tmp_tag = IP + sign_ext((timmy << 4), 13);
if (ip_relative_form {
tnp_target = IP + sign_ext((imyp, << 4), 25);
tnp_wh = i pwh;
} else { // indirect_form
tnp_target = BR{ b,];
tp_wh = i ndwh;

branch_predict(tnp_wh, ih, return_form tnp_target, tnp_tag);

Interruptions: None

Volume 3: Instruction Reference 3:29

bsw i ntGI ®

bsw — Bank Switch

Format: bsw.0 zero_form B8
bsw.1 one_form B8

Description: This instruction switches to the specified register bank. The zero_form specifies Bank 0 for GR16
to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank switch the previous
register bank is no longer accessible but does retain its current state. If the new and old register
banks are the same, bswis effectively a nop, although there may be a performance degradation.

A bswinstruction must be the last instruction in an instruction group. Otherwise, an Illegal
Operation fault is taken. Instructions in the same instruction group that access GR16 to GR31
reference the previous register bank. Subsequent instruction groups reference the new register bank.

This instruction can only be executed at the most privileged level.

This instruction cannot be predicated.

Operation: if ('followed_by_stop())
illegal _operation_fault();

if (PSR cpl !'=0)
privil eged_operation_fault(0);

if (zero_form
PSR bn = 0;
else // one_form
PSR bn = 1,
Interruptions: Illegal Operation fault Privileged Operation fault

Serialization: This instruction does not require any additional instruction or data serialization operation. The bank
switch occurs synchronously with its execution.

3:30 Volume 3: Instruction Reference

|nte| chk

®

chk — Speculation Check

Format: (qp) chk.s ry, targetys pseudo-op
(qp) chks.i ry, targetys control_form, i_unit_form, gr_form 120
(qp) chk.s.m r,, target,s control_form, m_unit_form, gr_form M20
(gp) chk.s f5, targetys control_form, fr_form M21
(gp) chk.a.aclr ry, target,s data_form, gr_form M22
(gp) chk.a.aclr f;, targets data_form, fr_form M23

Description: The result of a control- or data-speculative calculation is checked for success or failure. If the check

fails, a branch to farget,s is taken.

In the control_form, success is determined by a NaT indication for the source register. If the NaT
bit corresponding to GR 7, is 1 (in the gr_form), or FR f, contains a NaT Val (in the fr_form), the
check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the general
register specifier 7; (in the gr_form), or the floating-point register specifier f; (in the fr_form). If no
ALAT entry matches, the check fails. An implementation may optionally cause the check to fail
independent of whether an ALAT entry matches. A chk. a with general register specifier r0 or
floating-point register specifiers fO or f1 always fails.

The target,s operand, in assembly, specifies a label to branch to. This is encoded in the instruction
as a signed immediate displacement (imm ;) between the target bundle and the bundle containing
this instruction (imm,; = target,s — 1P >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative Operation
fault is taken and the value specified by imm,; is zero-extended and placed in the Interruption
Immediate control register (IIM). The fault handler emulates the branch by sign-extending the [IM
value, adding it to IIP and returning.

The control_form of this instruction for checking general registers can be encoded on either an
I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally
invalidated, based on the value of the ac/r completer (See Table 2-14).

Table 2-14. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don’t invalidate

Note that if the c/r value of the aclr completer is used and the check succeeds, the matching ALAT
entry is invalidated. However, if the check fails (which may happen even if there is a matching
ALAT entry), any matching ALAT entry may optionally be invalidated, but this is not required.
Recovery code for data speculation, therefore, cannot rely on the absence of a matching ALAT
entry.

Volume 3: Instruction Reference 3:31

chk i ntGI ®

Operation: if (PRgp]) {
if (control_forn {
if (fr_form&& (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0)))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
check_type = gr_form ? CHKS_GENERAL : CHKS_FLOQOAT;

fail = (gr_form&& GRro].nat) || (fr_form& FRIf,] == NATVAL);
} else { // data_form
if (gr_form {
reg_type = CGENERAL;
check_type = CHKA GENERAL;
al at _index = ryq;
al ways_fail = (alat_index == 0);
} else { [l fr_form
reg_type = FLQAT;
check_type = CHKA FLQAT;
al at _index = fq;
always_fail = ((alat_index == 0) || (alat_index == 1));
}
fail = (always_fail || ('alat_cnp(reg_type, alat_index)));
}
if (fail) {

i f (check_branch_i npl ement ed(check_type)) {
taken_branch = 1;
IP=1P + sign_ext((imm,; << 4), 25);
if ((PSRit && uninplenented_virtual _address(IP))
[| (PSR it && uninplemnmented_physical _address(IP)))
uni npl emrent ed_i nstruction_address_trap(0, IP);

if (PSR tbh)
taken_branch_trap();
} else
specul ation_faul t (check_type, zero_ext(immp;, 21));
} elseif (data_form&& (aclr == ‘clr’))
al at_inval _single_entry(reg_type, alat_index);
}
Interruptions: Disabled Floating-point Register fault Unimplemented Instruction Address trap
Speculative Operation fault Taken Branch trap

3:32 Volume 3: Instruction Reference

intel.

clrrrb — Clear RRB

Format:

Description:

Operation:

Interruptions:

clrrrb
clrrrb.pr

clrrrb

B8
B8

In the all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are
cleared. In the pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is

cleared.

This instruction must be the last instruction in an instruction group, or an Illegal Operation fault is

taken.

This instruction cannot be predicated.

if (!'followed_by_stop())
illegal _operation_fault();

if (all_form {
CFMrrb. gr
CFMrrb. fr
CFMrrb. pr
} else { /] pr
CFMrrb. pr
}

Illegal Operation fault

D
o

0
0
0

f
0

Volume 3: Instruction Reference

orm

3:33

cmp

cmp — Compare

Format:

Description:

(qp) cmp.crel.ctype pj, py =7y, 13 register_form A6
(qp) cmp.crel.ctype p;, pp, =immyg, r3 imm8_form A8
(gp) cmp.crel.ctype p;, p, =10, r;3 parallel_inequality_form A7
(gp) cmp.crel.ctype p;, pr=r3,10 pseudo-op

The two source operands are compared for one of ten relations specified by crel. This produces a
boolean result which is 1 if the comparison condition is true, and 0 otherwise. This result is written
to the two predicate register destinations, p; and p,. The way the result is written to the destinations
is determined by the compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the
comparison. The normal type simply writes the compare result to one target, and the complement to
the other. The parallel types update the targets only for a particular comparison result. This allows
multiple simultaneous OR-type or multiple simultaneous AND-type compares to target the same
predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent of the
qualifying predicate. It then operates the same as the normal type. The behavior of the compare
types is described in Table 2-15. A blank entry indicates the predicate target is left unchanged.

Table 2-15. Comparison Types

3:34

PR[gp]==
ctype pseudo- PRIgpl== result==0, result==1, One or More
op of No Source NaTs | No Source NaTs Source NaTs
PR[p;1 | PRIp2] | PRIp/]1 | PR[p;] | PRIp;]1 | PR[p;] | PRIp;] | PRIp)]

none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm or.andcm 0 1

In the register_form the first operand is GR r,; in the imm8_form the first operand is taken from the
sign-extended immg encoding field; and in the parallel_inequality_form the first operand must be
GR 0. The parallel_inequality_form is only used when the compare type is one of the parallel types,
and the relation is an inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicate is 1, or if the
compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches the
predicate target specifiers and uses an implemented relation. For some of the pseudo-op compares
in the imm§8_form, the assembler subtracts 1 from the immediate value, making the allowed
immediate range slightly different. Of the six parallel compare types, three of the types are actually
pseudo-ops. The assembler simply uses the negative relation with an implemented type. The
implemented relations and how the pseudo-ops map onto them are shown in Table 2-16 (for normal
and unc type compares), and Table 2-17 (for parallel type compares).

Volume 3: Instruction Reference

intel.

Table 2-16. 64-bit Comparison Relations for Normal and unc Compares

cmp

crel Compare Relation Register Form is a Immediate Form is a Immediate Range
(arel b) Pseudo-op of Pseudo-op of 9
eq a== -128 .. 127
ne al=b eq PI = P2 eq pr - py |-128..127
It a<b signed -128 .. 127
le a<=b It ao P « D2 It a-1 -127 .. 128
gt a>b It ao It a1l p;op; -127 .. 128
ge a>=b It p1 < P2 It P - P2 -128 .. 127
Itu a<b unsigned 0. 127,
264,128 .. 264.1
leu a<=bh tu aob p;op; Itu a1 1..128,
284127 . 284
gtu a>b Itu aob Itu a1 p;-p; 1..128,
284127 . 284
geu |a>=bh Itu D1« P2 Itu Py - D2 0..127,
264128 .. 264.1

The parallel compare types can be used only with a restricted set of relations and operands. They
can be used with equal and not-equal comparisons between two registers or between a register and

an immediate, or they can be used with inequality comparisons between a register and GR 0.

Unsigned relations are not provided, since they are not of much use when one of the operands is
zero. For the parallel inequality comparisons, hardware only directly implements the ones where
the first operand (GR 7,) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops
for which the assembler switches the register specifiers and uses the opposite relation.

Table 2-17. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) pseudo-op of
eq a==b -128 .. 127
ne al=b -128 .. 127
It 0<b signed no immediate forms
It a<0 gt aob
le 0<=b
le a<=0 ge ao~b
gt 0>b
gt a>0 It aob
ge 0>=p
ge a>=0 le aob

Volume 3: Instruction Reference

3:35

cmp
Operation: if (PRgp]) {
if (pl == p2)
illegal _operation_fault();
tnp_nat = (register_form? GRr,].

if (register_form

tnp_src = GR{r,];
else if (imB_form

tnmp_src = sign_ext(img, 8);
else // parallel

inequality form

tnmp_src = 0;
if (crel =="'eq') tnp_rel =
else if (crel =="‘ne’) tnp_rel =
else if (crel =="'It") tnmp_rel =
elseif (crel =="'le") tmp_rel =
else if (crel =="'gt’) tnmp_rel =
else if (crel == "'ge’) tnmp_rel =
else if (crel =="'ltu) tnmp_rel =
else if (crel == "'leu) tnmp_rel =
else if (crel == "'gtu’) tnp_rel =
el se tmp_rel =
switch (ctype) {
case ‘and’:
if (tnp_nat || !tnp_rel) {
PRI p1] = 0;
PR py] = 0;
break;
case ‘or’
i f ('trrp nat & tnp_rel) {
PRIpy] = 1,
PRI po] = 1;
break;
case ‘or.andcm :
if ('tnp_l nat & tnp_rel) {
PRI p1] = 1,
PR py] = 0;
br eak;
case ‘unc’
defaul t:
if (trmp_nat) {
PR p;] = 0;
PR po] = 0;
} else {
PRIp;] = tnp_rel;
PR po] = 'tnp_rel;
br eak;
} else {
if (ctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();
PR p;] = 0;
PR po] = 0;

}

Interruptions: Illegal Operation fault

3:36

nat 0) || GRrj].nat;

tmp_src == GRr3];

tnp_src !'= GRr3];

| esser_si gned(tnp src, GRr3]);

| esser_equal _si gned(trrp_src, XRri3]);
greater_signed(tnp_src, GRr3]);
greater _equal _signed(tnmp_src, CRr3]);
I esser(tnmp_src, GRr3]);

| esser_equal (tnp_src, GR[r3]);

greater(tnp_src,
greater_equal (tnp_src,

Rral);
GRr3]);/ /" geuw

/1 and-type conpare

/] or-type conpare

11

or.andcmtype conpare

unc-type conpare
normal conpare

~—
~~

Volume 3: Instruction Reference

intel.

Format:

cmp4
cmp4 — Compare 4 Bytes
(qp) cmpé.crel.ctype p;, pr =7y, 13 register_form A6
(qp) cmpé.crel.ctype p;, p, = immg, r3 imm8_form A8
(qp) cmp4.crel.ctype p;, py =10, r;3 parallel_inequality_form A7

Description:

gp) cmpd.crel.ctype p;, py =731 pseudo-op
(qp) 4.crel 1,P2=73,10 d

The least significant 32 bits from each of two source operands are compared for one of ten relations
specified by crel. This produces a boolean result which is 1 if the comparison condition is true, and
0 otherwise. This result is written to the two predicate register destinations, p; and p,. The way the
result is written to the destinations is determined by the compare type specified by ctype. See the
Compare instruction and Table 2-15 on page 3:34.

In the register_form the first operand is GR 7,; in the imm8_form the first operand is taken from the
sign-extended immg encoding field; and in the parallel_inequality_form the first operand must be
GR 0. The parallel_inequality_form is only used when the compare type is one of the parallel types,
and the relation is an inequality (>, >=, <, <=). See the Compare instruction and Table 2-17 on
page 3:35.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicate is 1, or if the
compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
See the Compare instruction and Table 2-16 and Table 2-17 on page 3:35. The range for
immediates is given below.

Table 2-18. Inmediate Range for 32-bit Compares

crel Com[;calrferg)lation Immediate Range

eq a==b -128 .. 127

ne al=b -128 .. 127

It a<b signed -128 .. 127

le a<=b -127 .. 128

gt a>b -127 .. 128

ge a>=b -128 .. 127

Itu a<b unsigned 0..127, 22128 .. 2521
leu a<=b 1..128, 282,127 .. 2%2
gtu a>b 1..128, 232,127 .. 2%2
geu a>=b 0..127, 232128 .. 2321

Volume 3: Instruction Reference 3:37

cmp4

Operation: if (PRLgp]) {
if (pl p2)

illegal _operation_fault();

tnp_nat = (register_form? GRr,].nat 0) ||
if (register_form
tnmp_src = GRry];
else if (imB_form
tnp_src = sign_ext(img, 8);
else // parallel _inequality_form

GRr3]. nat;

tnp_src = 0;
i f (crel =="eq) tnp_rel = tnp_src{31:0} == CRr3]{31:0};
else if (crel =='ne’) tnmp_rel = tnp_src{31:0} = GRr3]{31:0};
elseif (crel =="It")

tmp_rel =

else if (crel
tmp_rel =

else if (crel
tmp_rel =

else if (crel
tmp_rel =

else if (crel

| esser_si gned(sign_ext(tnmp_src, 32),
sign_ext (GRrj], 32));
== ‘'le")

| esser_equal _si gned(sign_ext(tnp_src, 32),

sign_ext(GRrz], 32));
== ‘gt’)
great er_signed(sign_ext(tnp_src, 32),
sign_ext(CRrg], 32));

== ‘ge’)

great er _equal _si gned(si gn_ext (tnp_src, 32),
sign_ext (GRr3], 32));

= ‘'ltu)

tmp_rel = |lesser(zero_ext(tnmp_src, 32),
zero_ext(CR{r3], 32))
else if (crel == "‘leu)
tnmp_rel = lesser_equal (zero_ext(tnmp_src, 32),
zero_ext(CR{r3], 32))
else if (crel == "'gtu’)
tnmp_rel = greater(zero_ext(tnp_src, 32),
zero_ext (GRr3], 32))
el se /1l *geu
tnmp_rel = greater_equal (zero_ext(tnp_src, 32)
zero_ext(CGR{r3], 32))
switch (ctype) {
case ‘and’:
if (tnp_nat || 'tnp_rel) {
PR p;] = O;
PR po] = 0;
br eak;
case ‘or’':
if ('tnp_nat && tnp_rel) {
PR p;] = 1;
PRI p2] = 1;
br eak;
case ‘or.andcm :
if (!tnp_nat && tnp_rel) {
PRI p;] = 1;
PR py] = 0;
br eak;
case ‘unc’:
defaul t:
if (tnp_nat) {

3:38

)

11

11

11

11

and-type conpare

or-type conpare

or.andcmtype conpare

unc-type conpare
normal conpare

Volume 3: Instruction Reference

PR p1] = 0;
PR py] = 0;
} else {
PRI py] = tp_rel
PRI py] = !tnp_rel;
}
br eak;
} else {
if (ctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();
PR p;] = 0;
PR py] = 0;
}
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

cmp4

3:39

cmpxchg

intel.

cmpxchg — Compare and Exchange

Format:

Description:

(qp) cmpxchgsz.sem.ldhint r; = [r3], r,, ar.ccv M16
(qp) cmp8xchgl6.sem.ldhint r; = [r;3], r,, ar.csd, ar.ccv sixteen_byte_form M16

A value consisting of sz bytes (8 bytes for cnp8xchg16) is read from memory starting at the
address specified by the value in GR r;. The value is zero extended and compared with the contents
of the cnpxchg Compare Value application register (AR[CCV]). If the two are equal, then the least
significant sz bytes of the value in GR r, are written to memory starting at the address specified by
the value in GR r3. For cnp8xchg16, if the two are equal, then 8-bytes from GR r, are stored at the
specified address ignoring bit 3 (GR r; & ~0x4), and 8 bytes from the Compare and Store Data
application register (AR[CSD]) are stored at that address + 8 ((GR r; & ~0x4) + 8). The
zero-extended value read from memory is placed in GR r; and the NaT bit corresponding to GR 7;
is cleared.

The values of the sz completer are given in Table 2-19. The sem completer specifies the type of
semaphore operation. These operations are described in Table 2-20. See Section 4.4.7,
“Sequentiality Attribute and Ordering” on page 2:69 for details on memory ordering.

Table 2-19. Memory Compare and Exchange Size

Table 2-20. Compare and Exchange Semaphore Types

3:40

sz Completer Bytes Accessed
1 1
2 2
4 4
8 8

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

If the address specified by the value in GR ;3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register). For the
cnmp8xchgl6 instruction, the address specified must be 8-byte aligned.

The memory read and write are guaranteed to be atomic. For the cnp8xchgl6 instruction, the
8-byte memory read and the 16-byte memory write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory write is performed.

This instruction is only supported to cacheable pages with write-back write policy. Accesses to
NaTPages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference fault.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-34 on page 3:132. Locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:60 for details.

Volume 3: Instruction Reference

i ntGI R cmpxchg

Operation: if (PRLgp]) {
check_target _register(rq);

if (GRrg].nat || GRr,].nat)
regi ster_nat _consunpti on_f aul t (SEMAPHCRE) ;

if (sixteen_byte form
sz = 8;

paddr = tlb_translate(GRr3], sz, SEMAPHORE, PSR cpl, &mttr,
& np_unused) ;

if (!ma_supports_senmaphores(nattr))
unsuppor ted_dat a_r ef erence_f aul t (SEVMAPHORE, CR{r3]);

if (sixteen_byte form {
if (sem=="acq’)
val = memxchgl6_cond(AR CCV], GRr,], AR CSD], paddr, WM be,
mattr, ACQU RE, |dhint);
else // ‘rel’
val = memxchgl6_cond(AR CCV], GRr,], AR CSD], paddr, WM be,
mattr, RELEASE, |dhint);
} else {
if (sem=="acq’)
val = memxchg_cond(ARfCCV], GRr,], paddr, sz, UMbe, mattr,
ACQU RE, |dhint);
else // ‘rel’
val = memxchg_cond(AR[CCV], GRr,], paddr, sz, UMbe, nmattr,
RELEASE, | dhint);
val = zero_ext(val, sz * 8);

}
if (ARCOV] == val)

al at _inval _multiple_entries(paddr, sz);

CGRrq = val;
CRrq].nat = 0;
}
Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:41

cover i ntGI R

cover — Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is allocated which does not include any registers from the previous
frame (as though all output registers in the previous frame had been locals). The register rename
base registers are reset. If interruption collection is disabled (PSR.ic is zero), then the old value of
the Current Frame Marker (CFM) is copied to the Interruption Function State register (IFS), and
IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group. Otherwise, an Illegal
Operation fault is taken.

This instruction cannot be predicated.

Operation: if ('followed_by stop())
illegal _operation_fault();

al at _frane_updat e(CFM sof , 0);

rse_preserve_frane(CFM sof) ;

if (PSRic ==0) {
CRIIFS].ifm= CFM
CRIFS.v = 1;

}

CFM sof
CFM sol
CFM sor
CFMrrb. gr
CFMrrb. fr
CFM rrhb. pr

0.
o.
0

eee

Interruptions: Illegal Operation fault

3:42 Volume 3: Instruction Reference

| ntGI czx
®

czx — Compute Zero Index

Format: (qp) czx1l r;=r; one_byte_form, left_form 129
(qp) czxlr r;=r; one_byte_form, right_form 129
(qp) czx21 r;=r; two_byte_form, left_form 129
(gqp) czx2xr r;=rj two_byte_form, right_form 129

Description: GR r; is scanned for a zero element. The element is either an 8-bit aligned byte (one_byte_form) or

a 16-bit aligned pair of bytes (two_byte_form). The index of the first zero element is placed in GR
r;. If there are no zero elements in GR 73, a default value is placed in GR r;. Table 2-21 gives the
possible result values. In the left_form, the source is scanned from most significant element to least
significant element, and in the right_form it is scanned from least significant element to most
significant element.

Table 2-21. Result Ranges for czx

Operation:

Size Element Width Range of Result if Zero Element | Default Result if No Zero Element
Found Found
1 8 bit 0-7 8
2 16 bit 0-3 4
if (PRap]) {

check_target_register(rq);

if (one_byte_fornm {

if (left_form { /1 scan from nost significant down
if ((&Rrz] & 0xff00000000000000) == 0) GR[rq] = 0;
else if ((GRrs & 0x00ff000000000000) == 0) GR{r;] = 1;
else if ((GRr3] & 0x0000ff0000000000) == 0) GR(rq] = 2;
else if ((GRr3] & 0x000000ff00000000) == 0) CR{rq] = 3;
else if ((GRrz & 0x00000000ff000000) == 0) GR(r,] = 4;
else if ((GRrg & 0x0000000000ff0000) == 0) GR[r;] = 5;
elseif ((Grz & 0x000000000000ff00) == 0) GRr4] = 6;
else if ((Grs] & 0x00000000000000ff) == 0) CGRrq = 7;
else &Rrq] = 8;

} else { // right_form scan from |l east significant up
i f ((Rrz] & 0x00000000000000ff) == 0) GRr4] = 0;
else if ((GRr3] & 0x000000000000ff00) == 0) GRrq] = 1;
else if ((GRr3] & 0x0000000000ff0000) == 0) CRrq] = 2;
else if ((GRrz & 0x00000000ff000000) == 0) GR(r;] = 3;
else if ((GRrg & 0x000000ff00000000) == 0) GR[r;] = 4;
else if ((Grs & 0x0000ff0000000000) == 0) GR[rq] = 5;
else if ((Grs] & 0x00ff000000000000) == 0) GR[rq] = 6;
else if ((Grs] & Oxff00000000000000) == 0) CR(rq{ = 7;
else GRrq] = 8;

} else { // two_byte form

if (left_form { // scan from nost significant down
i f ((&Rrg] & Oxffff000000000000) == 0) GRr4] = 0;
else if ((GRrz] & O0x0000ffff00000000) == 0) CGRrq] = 1;
else if ((GRr3] & 0x00000000ffff0000) == 0) CRrq] = 2;
else if ((GRr3] & 0x000000000000ffff) == 0) CRrq] = 3;
else GRrq] = 4

} else { // right_form scan from |l east significant up
if ((Rrz] & 0x000000000000ffff) == 0) GRr4] = 0;
else if ((GRr3] & 0x00000000ffff0000) == 0) GRrq] = 1;
else if ((GR[r3] & 0x0000ffff00000000) == 0) GR{rq] = 2;
else if ((GRr3] & Oxffff000000000000) == 0) CR{rq] = 3;
else GRrq = 4

Volume 3: Instruction Reference 3:43

czx

}

}
GR[rq].nat = GR[rj].nat;
}

Interruptions: Illegal Operation fault

3:44

Volume 3: Instruction Reference

intel.

dep — Deposit

Format:

Description:

dep
(qp) dep r;=r,, 13, posg, leny merge_form, register_form 115
(qp) dep r;=immy, r3 posg, leng merge_form, imm_form 114
(qp) dep.z r;=r, posg, leng zero_form, register_form 112
(gp) dep.z r;=immg, posg, leng zero_form, imm_form 113

In the merge_form, a right justified bit field taken from the first source operand is deposited into the
value in GR r; at an arbitrary bit position and the result is placed in GR r;. In the register_form the
first source operand is GR r,; and in the imm_form it is the sign-extended value specified by imm;
(either all ones or all zeroes). The deposited bit field begins at the bit position specified by the pos
immediate and extends to the left (towards the most significant bit) a number of bits specified by
the len immediate. Note that /en has a range of 1-16 in the register_form and 1-64 in the imm_form.
The poss immediate has a range of 0 to 63.

In the zero_form, a right justified bit field taken from either the value in GR r; (in the
register_form) or the sign-extended value in immg (in the imm_form) is deposited into GR r; and
all other bits in GR r; are cleared to zero. The deposited bit field begins at the bit position specified
by the poss immediate and extends to the left (towards the most significant bit) a number of bits
specified by the len immediate. The /en immediate has a range of 1-64 and the pos, immediate has
arange of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + pos, > 64, the
most significant len + posg — 64 bits of the deposited bit field are truncated. The len immediate is
encoded as /en minus 1 in the instruction.

The operation of dep rq; = r,, ra, 36, 16 isillustrated in Figure 2-5.

Figure 2-5. Deposit Example (merge_form)

52 36 0 16 15 0
GRr3: GRry:

GR rq:

52 36 0

The operation of dep. z ry = r,, 36, 16 isillustrated in Figure 2-6.

Figure 2-6. Deposit Example (zero_form)

1615 0

GR !

GR rq: 0 0
52 36 0

Volume 3: Instruction Reference 3:45

dep i ntGI ®

Operation: if (PREgp]) {
check_target _register(ry);

if (immform {

tnp_src = (nmerge_form? sign_ext(imm,1) : sign_ext(img, 8));
tmp_nat = nerge_form? CR{rz].nat : O;
tnp_len = leng ;

} else { Il register_form
tnp_src = GR{r,];
tnp_nat = (nmerge_form? GRrgl.nat : 0) || GRry].nat;
tnp_len = merge_form? leny : leng ;

if (posg + tnp_l en u> 64)
tnp_len = 64 - posg;

if (merge_form

Rrql = Rral;
else // zero_form
Rrq] =0;

CGRrq]{(posg + tnp_len - 1):posg} = tnp_src{(tnp_len - 1):0};
GR[rq].nat = tnp_nat;
}

Interruptions: Illegal Operation fault

3:46 Volume 3: Instruction Reference

intel.

epc

epc — Enter Privileged Code

Format:

Description:

Operation:

B8

This instruction increases the privilege level. The new privilege level is given by the TLB entry for
the page containing this instruction. This instruction can be used to implement calls to
higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, a check is performed. The PFS.ppl (previous privilege level)
is checked to ensure that it is not more privileged than the current privilege level. If this check fails,
the instruction takes an Illegal Operation fault.

If the check succeeds, then the privilege is increased as follows:

« If instruction address translation is enabled and the page containing the epc instruction has

execute-only page access rights and the privilege level assigned to the page is higher than
(numerically less than) the current privilege level, then the current privilege level is set to the
privilege level field in the translation for the page containing the epc instruction. This
instruction can promote but cannot demote, and the new privilege comes from the TLB entry.
If instruction address translation is disabled, then the current privilege level is set to 0 (most
privileged).

Instructions after the epc in the same instruction group may be executed at the old privilege
level or the new, higher privilege level. Instructions in subsequent instruction groups will be
executed at the new, higher privilege level.

If the page containing the epc instruction has any other access rights besides execute-only, or if
the privilege level assigned to the page is lower or equal to (numerically greater than or equal
to) the current privilege level, then no action is taken (the current privilege level is unchanged).

Note that the ITLB is actually only read once, at instruction fetch. Information from the access
rights and privilege level fields from the translation is then used in executing this instruction.

This instruction cannot be predicated.

if (ARPFS].ppl u< PSR cpl)

illegal _operation_fault();

el se

if (PSRit)
PSR cpl = tlb_enter_privileged_code();
PSR cpl = 0;

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:47

extr

intel.

extr — Extract

Format:

Description:

(qp) extr r;=r3, posg, leng signed_form I11
(qp) extru r;=r;3, posg, leng unsigned_form I

A field is extracted from GR 3, either zero extended or sign extended, and placed right-justified in
GR ;. The field begins at the bit position given by the second operand and extends len bits to the
left. The bit position where the field begins is specified by the poss immediate. The extracted field
is sign extended in the signed_form or zero extended in the unsigned_form. The sign is taken from
the most significant bit of the extracted field. If the specified field extends beyond the most
significant bit of GR 73, the sign is taken from the most significant bit of GR ;. The immediate
value len, can be any number in the range 1 to 64, and is encoded as /eng-1 in the instruction. The
immediate value pos4 can be any value in the range 0 to 63.

The operation of extr rq = rg3, 7, 50 is illustrated in Figure 2-7.

Figure 2-7. Extract Example

Operation:

Interruptions:

3:48

63 56 7 0
GR ra:
GRry: sign
63 49 0
if (PREgp]) {

check_target _register(ry);
tnp_l en = | eng;

if (posg + tnp_l en u> 64)

tnp_len = 64 - posg;
if (unsigned_form

GR[rq] = zero_ext(shift_right_unsigned(GRr3], pos6), tnp_len);
else // signed_form

GR[rq] = sign_ext(shift_right_unsigned(GRr3], pos6), tnp_len);

CRrq.nat = GRr3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

i ntGI ® fabs

fabs — Floating-point Absolute Value

Format: (qp) fabs f1=/3 pseudo-op of: (gp) fmerge.s f; =10, f3

Description: The absolute value of the value in FR f3 is computed and placed in FR f;.

If FR f;is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: See “fnerge —Fl oating-point Merge” on page 3:72.

Volume 3: Instruction Reference 3:49

fadd | n‘tel R

fadd — Floating-point Add

Format: (qp) fadd.pc.sf f1=1305 pseudo-op of: (gp) fma.pc.sf f; =13, fl, /5

Description: FR f;and FR f are added (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.-wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f;. If either FR f; or FR /5 is a NaT Val, FR f; is set to NaT Val instead of the computed
result.

The mnemonic values for the opcode’s pc are given in Table 2-22. The mnemonic values for sf are
given in Table 2-23. For the encodings and interpretation of the status field’s pc, wre, and rc, refer
to Table 5-6 and Table 5-5 on page 1:80.

Table 2-22. Specified pc Mnemonic Values

pc Mnemonic Precision Specified
.S single
d double
none dynamic

(i.e. use pc value in status field)

Table 2-23. sf Mnemonic Values

sf Mnemonic Status Field Accessed
.s0 or none sf0
.s1 sf1
.s2 sf2
.s3 sf3

Operation: See “fma —Fl oating-point Miultiply Add” on page 3:70.

3:50 Volume 3: Instruction Reference

i ntGI R famax

famax — Floating-point Absolute Maximum

Format: (gp) famax.sf f7 =1, /3 s

Description: The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f3.

If either FR f5 or FR f3 is a NaN, FR f; gets FR /5.
If either FR f5 or FR f3 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the f cnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRqp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fo, f3, 0))
disabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FRIf1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

trmp_right = fp_reg_read(FR f5]);

tmp_left = fp_reg_read(FR f3]);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
FRIf,] = tnp_bool _res ? FRIf,] : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_updat e_psr(f);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:51

famin i ntGI R

famin — Floating-point Absolute Minimum

Format: (qp) famin.sf' f7=15, f3 F8

Description: The operand with the smaller absolute value is placed in FR f;. If the magnitude of FR f) equals the
magnitude of FR f3, FR f; gets FR f3.

If either FR /5 or FR f; is a NaN, FR f; gets FR /3.
If either FR f; or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the f cnp. | t operation.

The mnemonic values for sf are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR f1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3, sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_left = fp_reg_read(FRf5]);

tnp_right = fp_reg_read(FRf3]);

tmp_left.sign = FP_SIGN_PCSI Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_than(tnmp_left, tnp_right);
FRIf,] = tnp_bool _res ? FRIf,] : FRf3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_updat e_psr(f);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:52 Volume 3: Instruction Reference

i ntGI ® fand

fand — Floating-point Logical And
Format: (gp) fand f; =15, /3 F9

Description: The bit-wise logical AND of the significand fields of FR f5 and FR f; is computed. The resulting
value is stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0 (0x1003E) and the sign field of FR f; is set to positive (0).

If either FR 5 or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: if (PRqp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fo, f3, 0))
disabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FR[f3])) {
FR 1] = NATVAL;
} else {

FRIf.].significand = FR[f,].significand & FR f3]. significand,
FR f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI GN _POSI Tl VE;

}
fp_update_psr(fq);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:53

fandcm i ntGI R

fandecm — Floating-point And Complement
Format: (qp) fandem f; =15, f3 F9

Description: The bit-wise logical AND of the significand field of FR f, with the bit-wise complemented
significand field of FR f3 is computed. The resulting value is stored in the significand field of FR f;.
The exponent field of FR f; is set to the biased exponent for 2.09 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f; or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: if (PRgp]) {

fp_check_target_register(fq);

if (tnp_isrcode = fp_reg_disabled(f;, f,, fg3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR f1] = NATVAL;

} else {
FR[f4].significand = FR[f,].significand & ~FR f3].significand;
FR{ f 1] . exponent = FP_| NTEGER EXP;
FR{f1].sign = FP_SI GN_PCSI Tl VE;

}
fp_updat e_psr(f);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:54 Volume 3: Instruction Reference

intel.

fc — Flush Cache

Format:

Description:

Operation:

Interruptions:

fc
(gp) fc r3 invalidate_line_form M28
(qp) fci rs instruction_cache_coherent_form M28

In the invalidate_line form, the cache line associated with the address specified by the value of GR
r3 is invalidated from all levels of the processor cache hierarchy. The invalidation is broadcast
throughout the coherence domain. If, at any level of the cache hierarchy, the line is inconsistent
with memory it is written to memory before invalidation. The line size affected is at least 32-bytes
(aligned on a 32-byte boundary). An implementation may flush a larger region.

In the instruction_cache_coherent form, the cache line specified by GR r; is flushed in an
implementation-specific manner that ensures that the instruction caches are coherent with the data
caches. The f c. i instruction is not required to invalidate the targeted cache line nor write the
targeted cache line back to memory if it is inconsistent with memory, but may do so if this is
required to make the instruction caches coherent with the data caches. The f c. i instruction is
broadcast throughout the coherence domain if necessary to make all instruction caches coherent.
The line size affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may
flush a larger region.

When executed at privilege level 0, f c and f c. i perform no access rights or protection key checks.
At other privilege levels, f c and f c. i perform access rights checks as if they were 1-byte reads, but
do not perform any protection key checks (regardless of PSR.pk).

The memory attribute of the page containing the affected line has no effect on the behavior of these
instructions. The f ¢ instruction can be used to remove a range of addresses from the cache by first
changing the memory attribute to non-cacheable and then flushing the range.

These instructions follow data dependency rules; they are ordered with respect to preceding and
following memory references to the same line. f ¢ and f c. i have data dependencies in the sense
that any prior stores by this processor will be included in the flush operation. f c and f c. i are
unordered operations, and are not affected by a memory fence (nf) instruction. These instructions
are ordered with respect to the sync. i instruction.

if (PRap]) {
i type = NON_ACCESS| FC READ,
if (GRrg].nat)
regi ster_nat _consunption_fault(itype);
tnp_paddr = tlb_transl ate_nonaccess(GRr3], itype);

if (invalidate_line_form
mem f | ush(t np_paddr);

else // instruction_cache_coherent _form
make_i cache_coher ent (t np_paddr);

}

Register NaT Consumption fault Data TLB fault

Unimplemented Data Address fault Data Page Not Present fault

Data Nested TLB fault Data NaT Page Consumption fault
Alternate Data TLB fault Data Access Rights fault

VHPT Data fault

Volume 3: Instruction Reference 3:55

fchkf in‘te|®

fchkf — Floating-point Check Flags
Format: (qp) fchkf.sf target,s F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf-flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are
not set in FPSR.s0.flags, then a branch to farget,s is taken.

The farget,s operand, specifies a label to branch to. This is encoded in the instruction as a signed
immediate displacement (imm,;) between the target bundle and the bundle containing this
instruction (imm,; = target,5 — IP >>4).

The branching behavior of this instruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative Operation
fault is taken and the value specified by imm; is zero-extended and placed in the Interruption
Immediate control register (IIM). The fault handler emulates the branch by sign-extending the [IM
value, adding it to IIP and returning.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {

switch (sf) {

case ‘s0’:
tnmp_flags = ARfFPSR] . sf 0. fl ags;

br eak;

case ‘sl’:
tnmp_flags = AR FPSR] . sf1.fl ags;

br eak;

case ‘s2’':
tnmp_flags = ARf FPSR] . sf2.fl ags;

br eak;

case ‘s3’:
tmp_flags = ARfFPSR] . sf 3. fl ags;

br eak;

}
if ((tnp_flags & ~AR[FPSR] .traps) || (tnp_flags & ~AR[FPSR] . sf0.fl ags)) {
i f (check_branch_i npl ement ed(FCHKF)) {
taken_branch = 1;
IP=1P + sign_ext((im; << 4), 25);
if ((PSRit &&% uninplenmented_virtual _address(IP))
[| ("PSR it && uninplemented_physical _address(IP)))
uni npl enent ed_i nstruction_address_trap(0, IP);
if (PSR th)
taken_branch_trap();
} else
specul ation_faul t (FCHKF, zero_ext (immy,, 21));

}

FP Exceptions: None

Interruptions: Speculative Operation fault Taken Branch trap
Unimplemented Instruction Address trap

3:56 Volume 3: Instruction Reference

i ntGI R fclass

fclass — Floating-point Class

Format: (qp) fclass. ferel.fctype py, pr =15, fclassg F5

Description: The contents of FR f; are classified according to the fclassg completer as shown in Table 2-25. This
produces a boolean result based on whether the contents of FR f5 agrees with the floating-point
number format specified by fclassy, as specified by the fcrel completer. This result is written to the
two predicate register destinations, p; and p,. The result written to the destinations is determined by
the compare type specified by fctype.

The allowed types are Normal (or none) and unc. See Table 2-26 on page 3:60. The assembly
syntax allows the specification of membership or non-membership and the assembler swaps the
target predicates to achieve the desired effect.

Table 2-24. Floating-point Class Relations

ferel Test Relation
m FR 1> agrees with the pattern specified by fclass, (is a member)
nm FR 1> does not agree with the pattern specified by fclassy (is not a member)

A number agrees with the pattern specified by fclassy if:

* the number is NaTVal and fclassg {8} is 1, or
* the number is a quiet NaN and fclassg {7} is 1, or
* the number is a signaling NaN and fclassg {6} is 1, or

* the sign of the number agrees with the sign specified by one of the two low-order bits of
fclass g, and the type of the number (disregarding the sign) agrees with the number-type
specified by the next 4 bits of fclassg, as shown in Table 2-25.

Note: An fclassy of 0x1FF is equivalent to testing for any supported operand.
The class names used in Table 2-25 are defined in Table 5-2, “Floating-point Register Encodings”

on page 1:77.
Table 2-25. Floating-point Classes

felassg Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @gnan
0x040 Signaling NaN @snan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following four cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf

Volume 3: Instruction Reference 3:57

fclass i ntGI R

Operation: if (PRgp]) {
if (py == po) _
illegal operation_fault();

if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

tnp_rel = ((fclassg{0} & FR[f,].sign || fclassg{1l} && FR{f,].sign)
&% ((fclassg{2} &% fp_is_zero(FRf,]))||
(fclassg{3} && fp_is_unorm(FR(f5])) ||
(fclassg{4} && fp_is_normal (FR{f5])) |
(fclassg{5} && fp_is_inf(FRf5]))
)

)
|| (fclassg{6} && fp_is_snan(FRf5,]))
[| (fclassg{7} && fp_is_gnan(FRf5]))
|| (fclassg{8} && fp_is_natval (FRf5]));

tnp_nat = fp_is_natval (FRIf5]) && (!fclassg{8});

if (tnp_nat) {
PR p;] = 0;
PR py] = 0;

} else {
PR p;] = tnp_rel;
PR po] = 'tnp_rel;

} else {

if (fctype == ‘unc’) {

if (pl == p2)
illegal _operation_fault();

PR p;] = 0;
PR pp] = O;

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:58 Volume 3: Instruction Reference

i ntGI R fclrf

fclrf — Floating-point Clear Flags
Format: (gp) felrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {
fp_set_sf_flags(sf, 0);
}

FP Exceptions: None

Interruptions: None

Volume 3: Instruction Reference 3:59

femp

intel.

fcmp — Floating-point Compare

Format:

Description:

(qp) femp frel.fetypesf py, po =f2./5 F4

The two source operands are compared for one of twelve relations specified by frel. This produces
a boolean result which is 1 if the comparison condition is true, and 0 otherwise. This result is
written to the two predicate register destinations, p; and p,. The way the result is written to the
destinations is determined by the compare type specified by fctype. The allowed types are Normal
(or none) and unc.

Table 2-26. Floating-point Comparison Types

PR[gp]==
fetype PR[gp]== result==0, result==1, One or More
No Source NaTVals No Source NaTVals Source NaTVals
PR[p;1 | PRIp)] PR[p;1 | PR[p;] | PRI[p/] PR[p;] | PRIp/] PR[p;]
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 2-23 on page 3:50.

The relations are defined for each of the comparison types in Table 2-27. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation.

Table 2-27. Floating-point Comparison Relations

3:60

frel Completer . Quiet NaN
frel Unabbreviated Relation Pseudo-op of .as Operand.
Signals Invalid
eq equal H==1; No
It less than H<f3 Yes
le less than or equal <=1 Yes
gt greater than >0 It fHrefs Yes
ge greater than or equal fH>=1; le e fs Yes
unord | unordered H?/; No
neq not equal (5 ==13) eq Pl e P2 No
nit not less than (5 <f3) It Pr - D2 Yes
nle not less than or equal (> <=13) le p; e P2 Yes
ngt not greater than (5> 13) It e fs p; - P2 Yes
nge not greater than or equal (5 >=13) le frefz P o P2 Yes
ord ordered 15?13 unord Pl e P2 No

Volume 3: Instruction Reference

i ntGI ® fcmp

Operation: if (PRap]) {
if (py == pp) _
illegal operation_fault();

if (tnp_isrcode = fp_reg_disabled(f,, f3 0, 0))
di sabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR(f5]) || fp_is_natval (FR[f3])) {
PRI pq] = 8

v)
A
el
N,

Il

fcnp_exception_faul t _check(f,, fg, frel, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

fp_reg_read(FR f,]);
fp_reg_read(FR f3]);

tnp_fr2
tnp_fr3

if (frel =="'eq) tnp_rel = fp_equal (tnp_fr2,
tnp_fr3);

elseif (frel =="'1t’) tnp_rel = fp_less_than(tnp_fr2,
tnp_fr3);

else if (frel =="‘le’) tnp_rel = fp_lesser_or_equal (tnp_fr2,
tnp_fr3);

else if (frel =="'gt’) tnp_rel = fp_less_than(tnp_fr3,
tnp_fr2);

else if (frel ==*ge’) tnp_rel = fp_lesser_or_equal (tnp_fr3,
tp_fr2);

else if (frel == ‘unord)tnp_rel = fp_unordered(tnp_fr2,
tnp_fr3);

else if (frel == ‘neq) tnp_rel = !fp_equal (tnp_fr2,
tnp_fr3);

else if (frel =="'nlt") tnp_rel = !fp_less_than(tnp_fr2,
tnp_fr3);

else if (frel =="‘nle’) tnp_rel = !fp_lesser_or_equal (tnmp_fr2,
tnp_fr3);

else if (frel =="'ngt’) tnp_rel = !fp_less_than(tnp_fr3,
tnp_fr2);

else if (frel == ‘'nge’) tnp_rel = !fp_lesser_or_equal (tnp_fr3,
tnp_fr2);

el se tnp_rel = !fp_unordered(tnp_fr2,
tnp_fr3); //'ord

PRI py] = tnp_rel;

PRIpy] = !tnp_rel;

fp_update fpsr(sf, tnp_fp_env);

} else {
if (fctype == ‘“unc’) {
if (pl == p2)
illegal _operation_fault();
PRI p;] = 0;
PRIp2] = 0;
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference 3:61

femp

Interruptions: Illegal Operation fault
Disabled Floating-point Register fault

3:62

Floating-point Exception fault

Volume 3: Instruction Reference

i ntGI R fevt.fx

fcvt.fx — Convert Floating-point to Integer

Format: (qp) fevtix.sf f1=1> signed_form F10
(qp) fevtix.truncsf f; =15 signed_form, trunc_form F10
(qp) fevtixusf f;=1> unsigned_form F10
(gp) fevtifxu.trunc.sf f; =15 unsigned_form, trunc_form F10

Description: FR f is treated as a register format floating-point value and converted to a signed (signed_form) or
unsigned integer (unsigned_form) using either the rounding mode specified in the FPSR.sf.rc, or
using Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit
significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.09
(0x1003E) and the sign field of FR f; is set to positive (0). If the result of the conversion cannot be
represented as a 64-bit integer, the 64-bit integer indefinite value 0x8000000000000000 is used as
the result, if the IEEE Invalid Operation Floating-point Exception fault is disabled.

If FR /5 is a NaTVal, FR /] is set to NaT Val instead of the computed result.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PR gp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5])) {
FRI 1] = NATVAL;
fp_update_psr(fq);
} else {
tnp_defaul t_result = fcvt_exception_fault_check(f,, signed_form
trunc_form sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {
FR f1].significand = | NTEGER_| NDEFI NI TE;
FR[f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI GN _POSI Tl VE;
} else {
tnp_res = fp_ieee_rnd_to_int(fp_reg_read(FRf,]), & np_fp_env);
if (tnp_res. exponent)
tnp_res.significand = fp_Us4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form & tnp_res.sign)
tnp_res.significand = (~tnp_res.significand) + 1,

FR f4].significand = tnp_res.significand;
FR{ f 1] . exponent = FP_|I NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;

}

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnmp_fp_env));

Volume 3: Instruction Reference 3:63

fevt.fx i ntGI R

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:64 Volume 3: Instruction Reference

i ntGI R fevt.xf

fcvt.xf — Convert Signed Integer to Floating-point
Format: (qp) fevtxt f1=1, F11

Description: ~ The 64-bit significand of FR f; is treated as a signed integer and its register file precision
floating-point representation is placed in FR f;.

If FR /5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq,, fo, 0, 0))
disabled fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5])) {
FRf1] = NATVAL;
} else {
tmp_res = FR{f,];
if (tnp_res.significand{63}) {
tnp_res.significand = (~tnp_res.significand) + 1,
tnp_res.sign = 1;
} else
tnp_res.sign = 0;

tnp_res. exponent = FP_I NTEGER_EXP;
tnp_res = fp_normal i ze(tnp_res);

FR(fq].significand = tnp_res.significand;
FR{ f] . exponent = tnp_res.exponent;
FR(fq].sign = tnp_res.sign;

}
fp_update_psr(fq);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:65

fevt.xuf

fevt.xuf — Convert Unsigned Integer to Floating-point

Format:

Description:

Operation:

3:66

(qp) fevtxufpesf f1=13 pseudo-op of: (gp) fma.pc.sf f; =13, f1, 0

FR f3 is multiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc
and FPSR.sf.-wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

Note: Multiplying FR f; with FR 1 (a 1.0) normalizes the canonical representation of an integer
in the floating-point register file producing a normal floating-point value.
If FR f; is a NaTVal, FR f; is set to NaT Val instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sfare given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

See “fma —Fl oating-point Multiply Add” on page 3:70.

Volume 3: Instruction Reference

intel.

Format:

fetchadd

fetchadd — Fetch and Add Immediate
(qp) fetchadd4.sem.ldhint r;=[r3], inc3 four_byte_form M17
(qp) fetchadd8.sem.ldhint r;=[r3], inc3 eight_byte_form M17

Description:

A value consisting of four or eight bytes is read from memory starting at the address specified by
the value in GR ;3. The value is zero extended and added to the sign-extended immediate value
specified by inc;. The values that may be specified by inc; are: -16, -8, -4, -1, 1, 4, 8, 16. The least
significant four or eight bytes of the sum are then written to memory starting at the address
specified by the value in GR r;. The zero-extended value read from memory is placed in GR »; and
the NaT bit corresponding to GR 7; is cleared.

The sem completer specifies the type of semaphore operation. These operations are described in
Table 2-28. See Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:69 for details on
memory ordering.

Table 2-28. Fetch and Add Semaphore Types

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic for accesses to pages with cacheable,
writeback memory attribute. For accesses to other memory types, atomicity is platform dependent.
Details on memory attributes are described in Section 4.4, “Memory Attributes” on page 2:63.

If the address specified by the value in GR r; is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory write is performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are permitted.
Accesses to NaTPages result in a Data NaT Page Consumption fault. Accesses to pages with other
memory attributes cause an Unsupported Data Reference fault.

On a processor model that supports exported f et chadd, a f et chadd to a UCE page causes the
fetch-and-add operation to be exported outside of the processor; if the platform does not support
exported f et chadd, the operation is undefined. On a processor model that does not support
exported f et chadd, a f et chadd to a UCE page causes an Unsupported Data Reference fault. See
Section 4.4.9, “Effects of Memory Attributes on Memory Reference Instructions” on page 2:73.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-34 on page 3:132. Locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:60 for details.

Volume 3: Instruction Reference 3:67

fetchadd
Operation: if (PRgp]) {
check_target _register(rq);
if (GRrg].nat)
regi ster_nat _consunpti on_f aul t (SEMAPHORE) ;
size = four_byte form? 4 : 8§;
paddr = tlb_translate(GRr3], size, SEMAPHORE, PSR cpl, &mattr,
&t np_unused) ;
if (!ma_supports_fetchadd(mattr))
unsuppor t ed_dat a_r ef erence_f aul t (SEMAPHORE, GR{r3]);
if (sem=="acq’)
val = nemxchg_add(incs, paddr, size, UMbe, nattr, ACQU RE,
else // ‘rel’
val = mem xchg_add(incs, paddr, size, UMbe, nattr, RELEASE,
alat _inval _multiple_entries(paddr, size);
CGRrq] = zero_ext(val, size * 8);
GRrq].nat = 0;
}
Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

I dhint);

I dhint);

3:68 Volume 3: Instruction Reference

intel.

flushrs

flushrs — Flush Register Stack

Format:

Description:

Operation:

Interruptions:

flushrs M25

All stacked general registers in the dirty partition of the register stack are written to the backing
store before execution continues. The dirty partition contains registers from previous procedure
frames that have not yet been saved to the backing store. For a description of the register stack
partitions, refer to Chapter 6, “Register Stack Engine” in Volume 2. A pending external interrupt
can interrupt the RSE store loop when enabled.

After this instruction completes execution BSPSTORE is equal to BSP.

This instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0; otherwise, the
results are undefined. This instruction cannot be predicated.

while (AR BSPSTCORE] != AR[BSP]) {
rse_st or e(MVANDATORY) ; /1 increments AR BSPSTORE]
del i ver _unmasked_pendi ng_external _i nterrupt();

}

Unimplemented Data Address fault Data Key Miss fault
VHPT Data fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:69

fma

fma — Floating-point Multiply Add

Format: (qp) fmapc.sf f1=13.111> F1
Description: The product of FR f3 and FR f is computed to infinite precision and then FR f is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by
pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc.
The rounded result is placed in FR f;.
If any of FR f3, FR f;, or FR /5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.
If /5 is 10, an IEEE multiply operation is performed instead of a multiply and add. See “fmpy —
Floating-point Multiply” on page 3:77.
The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sfare given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.
Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, f,, fg3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FRIf4])) {
FR{f1] = NATVAL;
fp_updat e_psr(f);
} else {
tnp_defaul t_result = fna_exception_fault_check(f,, fa, fyg,
pc, sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_faul t (fp_decode_fault(tnp_fp_env));
if (fp_is_nan_or_inf(tnp_default_result)) {
FR{f,] = tnp_default_result;
} else {
tnp_res = fp_nul (fp_reg_read(FRf3]), fp_reg_read(FR[f4]));
if (fo !'=0)
tnp_res = fp_add(tnp_res, fp_reg_read(FR(f,]), tnp_fp_env);
FR[f.] = fp_ieee_round(tnp_res, & np_fp_env);
fp_update_fpsr(sf, tnp_fp_env);
fp_update_psr(fq);
if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnmp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)
Software Assist (SWA) trap
Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:70

Volume 3: Instruction Reference

i ntGI R fmax

fmax — Floating-point Maximum

Format: (qp) fmax.sf f; =15 13 F8

Description: The operand with the larger value is placed in FR f;. If FR f; equals FR f3, FR f; gets FR f3.
If either FR /5 or FR f5 is a NaN, FR f; gets FR f3.
If either FR /5 or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the f cnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
disabled fp_ register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR 1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

tnp_bool _res = fp_less_than(fp_reg_read(FR f3]),

fp_reg_read(FR f5]));
FRf1] = (tnp_bool _res ? FRIf,] : FRf3]);
fp_update fpsr(sf, tnp_fp_env);

}
f p_updat e_psr(fq);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:71

fmerge

intel.

fmerge — Floating-point Merge

Format:

Description:

(gp) fmergens f; =/, f3 neg_sign_form F9
(gp) fmerge.s f1=12.f3 sign_form F9
(gp) fmerge.se f; =15 /3 sign_exp_form F9

Sign, exponent and significand fields are extracted from FR f, and FR f3, combined, and the result
is placed in FR f;.

For the neg_sign_form, the sign of FR /5 is negated and concatenated with the exponent and the
significand of FR f3. This form can be used to negate a floating-point number by using the same
register for FR f> and FR /3.

For the sign_form, the sign of FR f; is concatenated with the exponent and the significand of FR f3.

For the sign_exp_form, the sign and exponent of FR f; is concatenated with the significand of FR
f3

For all forms, if either FR f or FR f; is a NaT Val, FR f; is set to NaT Val instead of the computed
result.

Figure 2-8. Floating-point Merge Negative Sign Operation

Figure 2-9. Floating-point Merge Sign Operation

Figure 2-10. Floating-point Merge Sign and Exponent Operation

3:72

8180 6463 0 8180 6463 0
FRf FR;
negated 8180 64 63 P
sign bit FRf; ‘

8180 6463 0 8180 6463 0
FR/, FR/;

\81 80 6463 40/

FR/, |

8180 6463 0 8180 6463 0
FRf, FR/3

180 6463 /

FRf, |

Volume 3: Instruction Reference

i ntGI R fmerge

Operation: if (PRagp]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f,, f,, fg3 0))
disabled _fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FRIf1] = NATVAL;
} else {
FR(f4].significand = FR{f3].significand;
if (neg_sign_form {
FR{f,] . exponent = FRf3].exponent;
FR(fq].sign = FR f,].sign;
} elseif (sign_form {
FR{ f,] . exponent = FRf3].exponent;
FR(fq].sign = FR f,].sign;
} else { /1 sign_exp_form
FR{ f 1] . exponent = FR[f,].exponent;
FRIf4].sign = FRf5]. sign;

}

fp_update_psr(fq);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:73

fmin i ntGI R

fmin — Floating-point Minimum
Format: (gp) fminsf f; =113 F8

Description: The operand with the smaller value is placed in FR f;. If FR f; equals FR f3, FR f; gets FR f;.
If either FR f5 or FR f5 is a NaN, FR f; gets FR f3.
If either FR /5 or FR f5 is a NaT Val, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the f cnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FRf3])) {
FR{f1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tnp_bool _res = fp_less_than(fp_reg_read(FR[f,]),
fp_reg_read(FR f3]));
FR[f1] = tnp_bool _res ? FRf,] : FRfg3];
fp_update fpsr(sf, tnp_fp_env);
}
fp_updat e_psr(f);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:74 Volume 3: Instruction Reference

intal fmix

®

fmix — Floating-point Mix

Format: (gp) fmix.l f; =15, /3 mix_I_form F9
(gp) fmixr f;=1, 13 mix_r_form F9
(gp) fmixlIr f; =15 f3 mix_Ir_form F9

Description: For the mix_l_form (mix_r_form), the left (right) single precision value in FR f; is concatenated

with the left (right) single precision value in FR f3. For the mix_Ir_form, the left single precision
value in FR f; is concatenated with the right single precision value in FR f3.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed
result.

Figure 2-11. Floating-point Mix Left

8180 6463 32 31 0 8180 6463 32 31 0
FR/ FR/3
8180 32 31 0
FRf; [o 1003E
Figure 2-12. Floating-point Mix Right
8180 6463 32 31 0 8180 6463 32 31 0
FR/ FR/;
8180 %\ 32 31
FRf; [o 1003E
Figure 2-13. Floating-point Mix Left-Right
8180 6463 32 31 0 8180 6463 32 31 0
FR/ FR/;

8180 32 31

FRf; |9 1003E

Volume 3: Instruction Reference 3:75

fmix i ntGI R

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fo, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FRIf3])) {
FR{f1] = NATVAL;

} else {
if (mx_l_form {
tnp_res_hi = FRf,].significand{63:32};
tnp_res_lo = FRf3].significand{63:32};
} elseif (mx_r_form {
tnp_res_hi = FR{f,].significand{31:0};
tnp_res_lo = FRf3].significand{31:0};

} else { [/ mix_Ir_form
tmp_res_hi FR{ f 5] . significand{63: 32};
tnp_res_lo = FRf3].significand{31:0};

FR f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{ f,] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI G\ _PCSI Tl VE;

}

fp_updat e_psr(f);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:76 Volume 3: Instruction Reference

intel.

fmpy

fmpy — Floating-point Multiply

Format:

Description:

Operation:

(gp) fmpy.pc.sf f1 =13 14 pseudo-op of: (gp) fma.pc.sf f;=13, /4, O

The product FR f; and FR f; is computed to infinite precision. The resulting value is then rounded
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f; or FR f, is a NaT Val, FR f; is set to NaT Val instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sf'are given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

See “fma —Fl oating-point Multiply Add” on page 3:70.

Volume 3: Instruction Reference 3:77

fms i ntGI ®

fms — Floating-point Multiply Subtract

Format: (qp) fms.pest f1=13160> F1

Description: The product of FR f3 and FR f is computed to infinite precision and then FR f is subtracted from
this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f3, FR f;, or FR f is a NaTVal, a NaTVal is placed in FR f; instead of the computed
result.

If /5 is 10, an IEEE multiply operation is performed instead of a multiply and subtract. See “fmpy —
Floating-point Multiply” on page 3:77.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sf'are given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, f,, f3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR f1] = NATVAL;
fp_update_psr(fq);
} else {
tnp_defaul t _result = fns_fnma_exception_fault_check(f,, f3, fyg,
pc, sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FR{fi] = tnp_default_result;

} else {
tnmp_res = fp_mul (fp_reg_read(FR f3]), fp_reg_read(FR f4]));
tnp_fr2 = fp_reg_read(FR f5]);

tp_fr2.sign = !'tnp_fr2.sign;
if (fo!1=0)
tnp_res = fp_add(tnp_res, tnp_fr2, tnp_fp_env);
FRIf,] = fp_ieee_round(tnp_res, & np_fp_env);
}

fp_update fpsr(sf, tnp_fp_env);

fp_updat e_psr(f);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

3.78 Volume 3: Instruction Reference

i ntGI R fneg

fneg — Floating-point Negate

Format: (gp) fneg f;=/3 pseudo-op of: (gp) fmerge.ns f;=f3, /3
Description: The value in FR f3 is negated and placed in FR f;.
If FR f; is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: See “fnerge —Fl oating-point Merge” on page 3:72.

Volume 3: Instruction Reference 3:79

fnegabs i ntGI R

fnegabs — Floating-point Negate Absolute Value
Format: (gp) fnegabs f; =13 pseudo-op of: (gp) fmerge.ns f; =10, f3

Description: The absolute value of the value in FR f3 is computed, negated, and placed in FR f;.
If FR f3 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: See “fnerge —Fl oating-point Merge” on page 3:72.

3:80 Volume 3: Instruction Reference

i ntGI R fnma

fnma — Floating-point Negative Multiply Add

Format: (gp) foma.pe.sf f; =13 10 F1

Description: The product of FR f; and FR f; is computed to infinite precision, negated, and then FR f; is added to
this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f3, FR 1, or FR 5 is a NaTVal, FR f; is set to NaTVal instead of the computed result.

If /5 is 10, an IEEE multiply operation is performed, followed by negation of the product. See
“fnmpy — Floating-point Negative Multiply”” on page 3:82.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sfare given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

Operation: if (PR gp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, fg3, fy4))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FRIf,])) {
FR 1] = NATVAL;
f p_updat e_psr (fq);
} else {
trp_defaul t _result = fns_fnnma_exception_faul t_check(f,, fgz, fyg4,
pc, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default _result)) {
FRIf4] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4]));
tnp_res.sign = ltnp_res.sign;
if (f, !1=0)
tnp_res = fp_add(tnp_res, fp_reg_read(FRf,]), tnp_fp_env);
FRIf,] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)
Software Assist (SWA) trap
Interruptions: Disabled Floating-point Register fault Floating-point Exception trap

Floating-point Exception fault

Volume 3: Instruction Reference 3:81

fnmpy

fnmpy — Floating-point Negative Multiply

Format:

Description:

Operation:

3:82

(qp) fampy.pc.sf f1 =13 14 pseudo-op of: (gp) fama.pc.sf f; =13, f4,10

The product FR f; and FR f; is computed to infinite precision and then negated. The resulting value
is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf-wre) using
the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f; or FR f; is a NaT Val, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sf'are given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

See “fnma —Fl oating-point Negative Multiply Add” on page 3:81.

Volume 3: Instruction Reference

i ntGI R fnorm

fnorm — Floating-point Normalize

Format: (gp) fnorm.pc.sf f; =13 pseudo-op of: (gp) fma.pc.sf f; =13, f1, O

Description: FR f5 is normalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf-wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

If FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:50. The mnemonic
values for sfare given in Table 2-23 on page 3:50. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-6 and Table 5-5 on page 1:80.

Operation: See “fma —Fl oating-point Miultiply Add” on page 3:70.

Volume 3: Instruction Reference 3:83

for i ntGI ®

for — Floating-point Logical Or

Format: (gp) for f1=1513 F9

Description: The bit-wise logical OR of the significand fields of FR f5 and FR f5 is computed. The resulting
value is stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%% (0x1003E) and the sign field of FR f; 7 1s set to positive (0).

If either FR f; or FR f5 is a NaT Val, FR f; is set to NaT Val instead of the computed result.

Operation: if (PRgp]) {

fp_check_target_register(fq);

if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR f1] = NATVAL;

} else {
FR f,].significand = FR[f,].significand | FRf3].significand,
FR{ f 1] . exponent = FP_| NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;

fp_updat e_psr(f);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:84 Volume 3: Instruction Reference

i ntGI R fpabs

fpabs — Floating-point Parallel Absolute Value
Format: (gp) fpabs f; =13 pseudo-op of: (gp) fpmerge.s f; =10, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f; are
computed and stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%% (0x1003E) and the sign field of FR f, 7 1s set to positive (0).

If FR £ is a NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fpnerge —Floating-point Parallel Merge” on page 3:96.

Volume 3: Instruction Reference 3:85

fpack

intel.

fpack — Floating-point Pack

Format: (gp) fpack f; =12 /3

pack_form F9

Description: The register format numbers in FR f; and FR f; are converted to single precision memory format.
These two single precision numbers are concatenated and stored in the significand field of FR f .
The exponent field of FR f; is set to the biased exponent for 2.09 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR /5 or FR f5 is a NaT Val, FR f; is set to NaT Val instead of the computed result.

Figure 2-14. Floating-point Pack

8180 6463 0 8180 6463 0
FRf, FRf;
82-bit FR to Single Mem Format Conversions
8180 64 32 31
Operation: if (PRgp]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, fg3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {

FRIT,] = NATVAL

} else {

tmp_res_hi
tnmp_res_lo

fp_single(FRf5]);
fp_single(FR f3]);

FRIf,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR[f 1] . exponent = FP_I NTEGER EXP;

FR f4].sign

FP_SI GN_PCSI TI VE;

}
fp_update_psr(fq);

}

FP Exceptions: None

Interruptions: Illegal Operation fault

3:86

Disabled Floating-point Register fault

Volume 3: Instruction Reference

intel.

fpamax

fpamax — Floating-point Parallel Absolute Maximum

Format:

Description:

Operation:

(gp) fpamax.sf f; =15 /3 F8

The paired single precision values in the significands of FR f5 and FR f3 are compared. The
operands with the larger absolute value are returned in the significand field of FR f;.

If the magnitude of high (low) FR f; is less than the magnitude of high (low) FR f5, high (low) FR f;
gets high (low) FR f5. Otherwise high (low) FR f; gets high (low) FR f;.

If high (low) FR f5 or high (low) FR f; is a NaN, and neither FR /5 or FR f; is a NaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.093 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR /5 or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the f pcnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

it (PRgp]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f,, fy, fg3 0))
disabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,5]) || fp_is_natval (FRf3])) {
FRIfq] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f,, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi(fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(f3);

tnp_right.sign = FP_SI G\N_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_ than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_|l o(f,);

tnp_fr3 = tnp_left = fp_reg_read_| o(f3);

tnp_right.sign = FP_SI GN_PCsSI Tl VE;

trnp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_than(tnmp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR[f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[f 1] . exponent = FP_| NTEGER_EXP;

FR f4].sign = FP_SI G\ _PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

}
fp_updat e_psr(f);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:87

fpamin

intel.

fpamin — Floating-point Parallel Absolute Minimum

Format:

Description:

Operation:

(¢p) fpamin.sf f; =15, /3 F8

The paired single precision values in the significands of FR f; or FR f; are compared. The operands
with the smaller absolute value is returned in the significand of FR f;.

If the magnitude of high (low) FR f s less than the magnitude of high (low) FR f3, high (low) FR f;
gets high (low) FR f5. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f; or high (low) FR f; is a NaN, and neither FR f5 or FR f; is a NaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.09% (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR /5 or FR f is NaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the f pcnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

if (PREgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fy, fg3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR{f1] = NATVAL;
} else {
f pmi nmax_exception_faul t_check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

tnp_fr2 = tnp_left = fp_reg_read_hi (f,);

tnp_fr3 = tnp_right = fp_reg_read_hi(fj3);

trp_l eft.sign = FP_SI GN_PCSI Tl VE;

trp_right.sign = FP_SI GN_PGCSI Tl VE;

tnmp_bool _res = fp_less_than(tnp_left, tnp_right);
tnmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tnp_fr2 = tnp_left = fp_reg_read_| o(f,);

tmp_fr3 = tnp_right = fp_reg_read_|l o(fg);

tmp_left.sign = FP_SIGN_PCsI Tl VE;

tnp_right.sign = FP_SI G_PCS| Tl VE;

tmp_bool _res = fp_less_than(tnp_left, tnp_right);
tmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR[f 1] . exponent = FP_| NTEGER_EXP;
FR f4].sign = FP_SI G\ _PCSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_updat e_psr(f);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

3:88

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

| ntGI R focmp

fpcmp — Floating-point Parallel Compare

Format: (qp) fpemp.frel.sf' f1=1> 13 F8

Description: The two pairs of single precision source operands in the significand fields of FR f; and FR f; are
compared for one of twelve relations specified by frel. This produces a boolean result which is a
mask of 32 1’s if the comparison condition is true, and a mask of 32 0’s otherwise. This result is
written to a pair of 32-bit integers in the significand field of FR f;. The exponent field of FR /] is set
to the biased exponent for 2.09 (0x1003E) and the sign field of FR f; is set to positive (0).

Table 2-29. Floating-point Parallel Comparison Results

PR[gp]==
PRIgp]== result==false, result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVals
unchanged 0...0 1.1 NaTVal

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

The relations are defined for each of the comparison types in Table 2-29. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate type
specifiers and uses an implemented relation.

If either FR f5 or FR f; is a NaT Val, FR f; is set to NaT Val instead of the computed result.

Table 2-30. Floating-point Parallel Comparison Relations

frel Completer . Quiet NaN
frel . Relation Pseudo-op of as Operand

Unabbreviated Signals Invalid

eq equal f2== 13 No

It less than fr<f; Yes

le less than or equal H<=f; Yes

gt greater than f2>f3 It Sae S5 Yes

ge greater than or equal f£>=f le fre S5 Yes

unord unordered L0 No

neq not equal 5 ==13) No

nit not less than W<f3) Yes

nle not less than or equal I(f5<=13) Yes

ngt not greater than (5> f3) nit VERE Yes

nge not greater than or equal W5 >=13) nle fre S5 Yes

ord ordered 2713 No

Operation: if (PRgp]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
disabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5]) || fp_is_natval (FR[f3])) {
FRI 1] = NATVAL;
} else {1
f pcnp_exception_faul t_check(f,, f3, frel, sf, &np_fp_env);

if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

tnp_fr2 = fp_reg_read_hi (f,);

Volume 3: Instruction Reference 3:89

fpcmp

tnp_fr3 = fp_reg_read_hi (f3);

if (frel =='eq’) tnp_rel = fp_equal (tnp_fr2, tnp_fr3);

elseif (frel =="'1t") tnp_rel =fp_less_than(tnp_fr2, tnp_fr3);

else if (frel ==‘le’) tnmp_rel = fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel == ‘gt’) tnmp_rel = fp_less_than(tnp_fr3, tnp_fr2);

else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal (tnp_fr3,
tnmp_fr2);

else if (frel == ‘unord)tnp_rel = fp_unordered(tnp_ fr2, tp_fr3);

else if (frel == ‘neq’) tnmp_rel = I!fp_equal (tnp_fr2, tnp_fr3);

elseif (frel == 'nlt’) tnp_rel = Ifp_less_than(tnmp_fr2, tnp_fr3);

else if (frel == ‘nle’) tnmp_rel = Ifp_lesser_or_equal (tnp_fr2,
“tnp _fr3);

else if (frel == ‘ngt’) tnmp_rel = Ifp_ Iess_than(tnp_frB, tmp_fr2);

else if (frel == ‘nge’) tnmp_rel = Ifp_|esser or equa)l(trrp_fr3,

fr2

el se tmp_rel = Ifp_ unordered(tnp fr2,
tmp_fr3); /1 ord

tnmp_res_hi = (tnp_rel ? OxFFFFFFFF : 0x00000000);

tnp_fr2 = fp_reg_read_l o(f5,);

tnp_fr3 = fp_reg_read_|l o(f3);

i f (frel =='eq') tnp_rel =fp_equal (tnmp_fr2, tnp_fr3);

else if (frel == "1t’) tnmp_rel = fp_less_than(tnp_fr2, tnp_fr3);

else if (frel =="'l1e) tnp_rel = fp_lesser or _equal (tnp_fr2,
tnmp_fr3);

elseif (frel =="‘gt’) tmp_rel = fp_ Iess_than(tnp_er, tmp_fr2);

else if (frel == ‘ge’) tnmp_rel = fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

else if (frel == ‘unord)tnp_rel = fp_unordered(tnp_ fr2, tnp_fr3);

elseif (frel == ‘neq) tnmp_rel = Ifp_equal (tnp_fr2, tnp_fr3);

else if (frel == ‘nlt’) tnp_rel = !fp_less_than(tnp_fr2, tnpf 3);

else if (frel == "‘nle’) tnmp_rel = Ifp_lesser_or_equal (tnp_fr2
“tnp_fr3);

elseif (frel == ‘ngt’) tnmp_rel = Ifp_ Iess_than(trrp_fr3, tmp_fr2);

else if (frel == ‘nge’) tnmp_rel = Ifp_lesser or _equal (tnmp_fr3,

mp_fr2);
el se tmp_rel = Ifp_ unordered(tnp fr2

tmp_fr3); /1 ord
tmp_res_lo = (tnp_rel ? OxFFFFFFFF : 0x00000000);
FR[f 4] .significand = fp_concatenate(tnp_res_hi, tnp_res_|0);
FR f 4] . exponent = FP_| NTEGER EXP;
FRIfq].sign = FP SI GN_PCsI Tl VE;
fp_update _fpsr(sf, tnp_fp_env);

}
fp_updat e_psr(f);

FP Exceptions: Invalid Operation (V)

Interruptions:

3:90

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

i ntGI R focvt.fx

fpcvt.fx — Convert Parallel Floating-point to Integer

Format: (qp) fpevtix.sf f1 =1 signed_form F10
(qp) fpevtix.trunc.sf f; =15 signed_form, trunc_form F10
(qp) fpevtixusf f;=1> unsigned_form F10
(gp) fpevt.fxu.trunc.sf f; =15 unsigned_form, trunc_form F10

Description: The pair of single precision values in the significand field of FR f; is converted to a pair of 32-bit
signed integers (signed_form) or unsigned integers (unsigned_form) using either the rounding
mode specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is
used. The result is written as a pair of 32-bit integers into the significand field of FR f;. The
exponent field of FR f; is set to the biased exponent for 2.093 (0x1003E) and the sign field of FR f;
is set to positive (0). If the result of the conversion cannot be represented as a 32-bit integer, the
32-bit integer indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation
Floating-point Exception fault is disabled.

If FR f, is a NaTVal, FR f; is set to NaT Val instead of the computed result.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, 0, 0))
di sabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5])) {
FR[f1] = NATVAL;
f p_updat e_psr(fq);
} else {
tnp_defaul t_result_pair = fpcvt_exception_faul t_check(f,,
signed_form trunc_form sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {

tnp_res_hi = INTEGER_| NDEFI NI TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f,), H GH
& nmp_fp_env);

if (tnp_res. exponent)
tnp_res.significand = fp_UB4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form && tnp_res.sign)
tnp_res.significand = (~tnp_res.significand) + 1;

tnp_res_hi = tnp_res.significand{31:0};
}

if (fp_is_nan(tnp_default_result_pair.lo)) {
tmp_res_lo = I NTEGER | NDEFI NI TE_32_BI T;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_|lo(f,), LON
& nmp_fp_env);
if (tnp_res. exponent)
tnp_res.significand = fp_UB4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form&& tnp_res.sign)
tnp_res.significand = (~tnp_res.significand) + 1;

tnp_res_|lo = tnp_res. significand{31:0};

Volume 3: Instruction Reference 3:91

fpcvt.fx | ntGI R
}
FR{f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{ f,] . exponent = FP_| NTEGER EXP;
FR{f4].sign = FP_SI GN_PCSI Tl VE;
fp_update fpsr(sf, tnp_fp_env);
f p_updat e_psr (f);
if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault
Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
3:92 Volume 3: Instruction Reference

intel.

fpma

fpma — Floating-point Parallel Multiply Add

Format:

Description:

Operation:

(gp) fpma.sf f1=13,141> F1

The pair of products of the pairs of single precision values in the significand fields of FR /3 and FR
f4 are computed to infinite precision and then the pair of single precision values in the significand
field of FR f; is added to these products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded
results are stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0 (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR £, or FR 5 is a NaTVal, FR f; is set to NaTVal instead of the computed results.

Note: If /5 is f0 in the fpma instruction, just the IEEE multiply operation is performed. (See
“fpmpy — Floating-point Parallel Multiply” on page 3:99.) FR f1, as an operand, is not a
packed pair of 1.0 values, it is just the register file format’s 1.0 value.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

The encodings and interpretation for the status field’s rc are given in Table 5-5 on page 1:80.

it (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fo, fg3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,5]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR f1] = NATVAL;
fp_updat e_psr(fq);
} else {
tnp_defaul t_result_pair = fpma_exception_fault_check(f,,
fa, fgu sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi)) {
tnp_res_hi = fp_single(tnmp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi(fg3), fp_reg_read_hi(f,));
if (f, !1=0)

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round_sp(tnmp_res, HGH & np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default _result_pair.lo)) {
tnp_res_lo = fp_single(tnmp_default_result_pair.lo);

} else {
tnp_res = fp_nmul (fp_reg_read_lo(fg), fp_reg_read_lo(fy));
if (fy 1= 0)

tnp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);
tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR(f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR{ f 1] . exponent = FP_|I NTEGER EXP;
FR(f4].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

f p_updat e_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

Volume 3: Instruction Reference 3:93

foma

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

Interruptions: Illegal Operation fault
Disabled Floating-point Register fault

3:94

Underflow (U)

Overflow (O)

Inexact (I)

Software Assist (SWA) trap

Floating-point Exception fault
Floating-point Exception trap

Volume 3: Instruction Reference

intel.

fpmax

fpmax — Floating-point Parallel Maximum

Format:

Description:

Operation:

(gp) fpmax.sf f; =12 /3 F8

The paired single precision values in the significands of FR f; or FR f; are compared. The operands
with the larger value is returned in the significand of FR f;.

If the value of high (low) FR f; is less than the value of high (low) FR />, high (low) FR f; gets high
(low) FR f5. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f5 or high (low) FR f; is a NaN, high (low) FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.093 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR 5 or FR f5 is NaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the f pcnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
disabled fp_ register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR 1] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f,, f3 sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi(fy);

tmp_fr3 = tnmp_left = fp_reg_read_hi(f3);

tnp_bool _res = fp_less_than(tnmp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnmp_fr2 : tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_|l o(f,);
tnp_fr3 = tnp_left = fp_reg_read_| o(f3);

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnmp_fr2 : tnp_fr3);

FR(f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR{ f] . exponent = FP_I NTEGER EXP;

FR(f1].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:95

fpmerge

intel.

fpmerge — Floating-point Parallel Merge

Format:

Description:

(gp) fpmerge.ns f; =1, f3 neg_sign_form F9
(gp) fpmerge.s f; =15, /3 sign_form F9
(gp) fpmerge.se f; =15, /3 sign_exp_form F9

For the neg_sign_form, the signs of the pair of single precision values in the significand field of FR
/> are negated and concatenated with the exponents and the significands of the pair of single
precision values in the significand field of FR f; and stored in the significand field of FR f;. This
form can be used to negate a pair of single precision floating-point numbers by using the same
register for /5 and f3.

For the sign_form, the signs of the pair of single precision values in the significand field of FR f,
are concatenated with the exponents and the significands of the pair of single precision values in the
significand field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision values in the
significand field of FR f; are concatenated with the pair of single precision significands in the
significand field of FR f3 and stored in the significand field of FR f;.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR f5 is a NaTVal, FR f; is set to NaT Val instead of the computed
result.

Figure 2-15. Floating-point Parallel Merge Negative Sign Operation

Figure 2-16. Floating-point Parallel Merge Sign Operation

Figure 2-17. Floating-point Parallel Merge Sign and Exponent Operation

3:96

8180 646362 323130 0 8180 646362 323130 0
FR/, FR/
ated sigrbi
8 3

FR; [of 1003E

8180 646362 323130 0 8180 646362 323130 0
FR /> FRf;

8 3
FRf; |9 1003E

81 80 64635554 32312322 0 81 80 64635554 32312322 0
FRf,

Volume 3: Instruction Reference

i ntGI R fomerge

Operation: if (PRagp]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f,, f,, fg3 0))
disabled _fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FRIf1] = NATVAL;
} else {
if (neg_sign_form {
tmp_res_hi = (I FRf,].significand{63} << 31)
| (FRfg3].significand{62:32});
tnp_res_lo = (I FRf,].significand{31} << 31)
| (FRfg].significand{30:0});
} elseif (sign_fornm {
tnp_res_hi = (FRf,].significand{63} << 31)
| (FRfg3].significand{62:32});
tnmp_res_lo = (FRf,].significand{31} << 31)
| (FR{fg3].significand{30:0});
} else { /1l sign_exp_form
tmp_res_hi = (FR{f,].significand{63:55} << 23)
| (FR fg3].significand{54:32});
tmp_res_lo = (FRf,].significand{31:23} << 23)
| (FRfg].significand{22:0});
}
FR(f4].significand = fp_concatenate(tnp_res_hi, tnp_res_lo);
FR f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI GN _POSI Tl VE;
}

fp_update_psr(fq);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:97

fomin

intel.

fpmin — Floating-point Parallel Minimum

Format:

Description:

Operation:

(gp) fpmin.sf f;= 15,13 F8

The paired single precision values in the significands of FR f; or FR f; are compared. The operands
with the smaller value is returned in significand of FR f;.

If the value of high (low) FR f is less than the value of high (low) FR f3, high (low) FR f; gets high
(low) FR f5. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f5 or high (low) FR f; is a NaN, high (low) FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.09 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR /5 or FR f5 is a NaT Val, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the f pcnp. | t operation.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf,]) || fp_is_natval (FRf3])) {
FR{f1] = NATVAL;
} else {
f pmi nmax_exception_faul t_check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tnp_fr2 = tnp_left = fp_reg_read_hi (f5);

tnp_fr3 = tnp_right = fp_reg_read_hi(f3);

tmp_bool res = fp_less_than(tnp_left, tnp_right);
tmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tnp_fr2 = tnp_left = fp_reg_read_| o(f,);

tmp_fr3 = tnp_right = fp_reg_read_|l o(f3);

tnp_bool _res = fp_less_than(tnp_left, tnmp_right);
tnmp_res_|lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR{f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{ f,] . exponent = FP_| NTEGER EXP;

FR{f4].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

}
fp_updat e_psr(f4);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

3:98

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

I ntGI ® fompy

fpmpy — Floating-point Parallel Multiply

Format: (qp) fpmpy.sf f1 =13 14 pseudo-op of: (gp) fpma.sf f;=f3, f, O

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR
[are computed to infinite precision. The resulting values are then rounded to single precision using
the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.09 (0x1003E) and the
sign field of FR f; is set to positive (0).

If either FR f3, or FR f; is a NaTVal, FR f; is set to NaT Val instead of the computed results.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.
The encodings and interpretation for the status field’s rc are given in Table 5-5 on page 1:80.

Operation: See “fpma —Floating-point Parallel Miltiply Add” on page 3:93.

Volume 3: Instruction Reference 3:99

fpms i ntGI ®

fpms — Floating-point Parallel Multiply Subtract

Format: (qp) fpms.sf f1 =13 01> F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR
f4 are computed to infinite precision and then the pair of single precision values in the significand
field of FR f; is subtracted from these products, again in infinite precision. The resulting values are
then rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of
rounded results are stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.093 (0x1003E) and the sign field of FR f; is set to positive (0).

Note: Ifany of FRf3, FR £, or FR /5 is a NaTVal, FR f; is set to NaT Val instead of the computed
results.

Mapping: If /5 is {0 in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.
The encodings and interpretation for the status field’s c are given in Table 5-5 on page 1:80.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fy, fg3, fg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FRIf4])) {
FR f1] = NATVAL;
fp_updat e_psr(f4);
} else {
tnp_defaul t _result_pair = fpns_fpnma_exception_faul t_check(f,, faj,
fq, sf, &nmp_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi)) {
tnmp_res_hi = fp_single(tnp_default_result_pair.hi);
} else {

b = fp_reg_read_hi(f5,);
tmp_sub. sign = !'tnp_sub. sign;
s = fp_add(tnp_res, tnp_sub, tnp_fp_env);

tnmp_res_hi = fp_ieee_round_sp(tnp_res, HGH & np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default _result_pair.lo)) {
tnmp_res_|lo = fp_single(tnp_default_result_pair.lo);

} else {
tnp_res = fp_nul (fp_reg_read_lo(fgz), fp_reg_read_|lo(f,));
if (fo!=0) {

tmp_sub = fp_reg_read_l o(f,);
tmp_sub. sign = !'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}
tmp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR f,].significand

= fp_concatenate(tnp_res_hi, tnp_res_lo0);
FR[f 1] . exponent = FP_|

NTEGER EXP;

3:100 Volume 3: Instruction Reference

FR f4].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference

fpms

3:101

fpneg I ntGI ®

fpneg — Floating-point Parallel Negate
Format: (qp) fpneg f; =13 pseudo-op of: (gp) fpmerge.ns f; =13, /3

Description: The pair of single precision values in the significand field of FR f; are negated and stored in the
significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%
(0x1003E) and the sign field of FR f; is set to positive (0).

If FR f3 is a NaT Val, FR f; is set to NaTVal instead of the computed result.

Operation: See “fpnmerge —Floating-point Parallel Merge” on page 3:96.

3:102 Volume 3: Instruction Reference

i ntGI R fonegabs

fpnegabs — Floating-point Parallel Negate Absolute Value
Format: (gp) fpnegabs f;=f; pseudo-op of: (gp) fpmerge.ns f; =10, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f; are

computed, negated and stored in the significand field of FR f;. The exponent field of FR f; is set to
the biased exponent for 2.09 (0x1003E) and the sign field of FR f; is set to positive (0).

If FR f3 is a NaT'Val, FR f; is set to NaT Val instead of the computed result.

Operation: See “fpnerge —Floating-point Parallel Merge” on page 3:96.

Volume 3: Instruction Reference 3:103

fonma i ntGI R

fpnma — Floating-point Parallel Negative Multiply Add

Format: (gp) fpnma.sf f; =13, 10 /> F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR
f4 are computed to infinite precision, negated, and then the pair of single precision values in the
significand field of FR f, are added to these (negated) products, again in infinite precision. The
resulting values are then rounded to single precision using the rounding mode specified by
FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.09 (0x1003E) and the sign field of FR f; 7 1s set to
positive (0).

If any of FR f3, FR f;, or FR /5 is a NaTVal, FR f; is set to NaT Val instead of the computed result.

Note: If /5 is O in the fpnma instruction, just the IEEE multiply operation (with the product
being negated before rounding) is performed.

The mnemonic values for sf'are given in Table 2-23 on page 3:50.

The encodings and interpretation for the status field’s rc are given in Table 5-5 on page 1:80.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fo, fa3, fy))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR{f,]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR f1] = NATVAL;
fp_update_psr(fq);
} else {
tnp_defaul t _result_pair = fpms_fpnna_exception_faul t_check(f,, fj,
fq4 sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tnp_res = fp_nul (fp_reg_read_hi(fg), fp_reg_read_hi(f,));
tnmp_res.sign = ltnp_res. sign;
if (f, 1=0)

tnp_res

trp_res_hi

fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
fp_ieee_round_sp(tnp_res, HGH &np_fp_env);

}

if (fp_is_nan_or_inf(tnp_default _result_pair.lo)) {
tnmp_res_|lo = fp_single(tnp_default_result_pair.lo);
} else {
tnp_res = fp_nul (fp_reg_read_lo(fgz), fp_reg_read_|lo(f,));
tnp_res.sign = !tnp_res. sign;
if (fo !'=0)
tnp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnmp_fp_env);
tnmp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}
FR{f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{ f 1] . exponent = FP_| NTEGER EXP;
FR{f4].sign = FP_SI GN_PCs