Intel® Itanium® Architecture
Software Developer’s Manual

Volume 1: Application Architecture

Revision 2.1

October 2002

Document Number: 245317-004

THIS DOCUMENT IS PROVIDED “AS 1S” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2002, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

ii Volume 1: Intel® Itanium® Architecture Software Developer's Manual

intgl.

Contents

Part I. Application Architecture Guide

1

ADOUL thiS MANUALeeiiiiiiie et e e e e e e e e s 2:1
1.1 Overview of Volume 1: Application ArchiteCtUre..........eceevviiiiiiiiiieir e 2:1
1.1.1 Part 1: Application Architecture GUIAEccooviiiiiiiiriee e 2:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 2:2
1.2 Overview of Volume 2: System ArchiteCturecccceeeieiieiii e 2:2
1.2.1 Part 1: System Architecture GUIEoovvviviiiiiiiiiies e 2:2
1.2.2 Part 2: System Programmer’'s GUIAE...........ucuuveruiiiiiiiiiiiisisseeeeeeeeeeseeseeeseennens 2:3
1.2.3 APPENAICES ..ottt e e e e e araaaaaa s 2:4
1.3 Overview of Volume 3: Instruction Set Reference.........cccovviiiiiiiiiiie e 2:4
1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptionsc.cccoccvvevveeeiieeennnnen. 2:4
1.3.2 Part 2: I1A-32 Instruction Set DeSCPLONS.uvviiiiiiiiieeriiieie e 2:4
1.4 BT (0011 aTe] (o] | P PP PP PPPPPRPPPPPRIN 2:5
15 Related DOCUMENTS ...ttt e e e e e e st e e e e e e e e e es s e st e eeeeaeeeneeanas 2:5
1.6 REVISION HISTOMY ..ottt 2:6
Introduction to the Intel® ltanium® Archit@CtUIeooocvviveiiiiie e 1:9
2.1 Operating ENVIFONMENTS.......ooiiiiii i e 1:9
2.2 Instruction Set Transition Model OVEIVIEW............coovi i 1:10
2.3 Intel® [tanium® INStruction St FEALUIESc.vvvviei it 1:10
24 Instruction Level ParalleliSm............oo oot e e e 1:11
2.5 Compiler to Processor COmMMUNICALIONccuvuiiiiireieeeie e e s s e e e ee e e s e e s seareneeens 1:11
2.6] 01T U1 F= 11 o o PSS 1:12
2.6.1 Control SPECUIALIONcccee e er e e e e e e e e e e e e e ————— 1:12
2.6.2 Data SPECUIALIONccccei e ————— 1:12
2.6.3 PrediCationocooioiiiiiieie e 1:13
2.7 REGISTEN STACKeeeiiii et ettt e e e e e e r e ee e e ee e e e e e 1:14
2.8 2] =T o] o1 oo SRS UPPPRPUPRTN 1:14
2.9 ReQISTEr ROTALION ... et eee e e e e e e e naaans 1:15
2.10 Floating-point ArChItECIUIEooiiiiieiet et e e e e e e e e 1:15
2,11 MURIMEIA SUPPOIT ...eeeiiiiietieie ettt ettt e e sbb b e e e s s bbb e e e e s nnnreaenan 1:15
2.12 Intel® ltanium® System Architecture Featuresccccevvueeriiiiniieii e 1:15
2.12.1 Support for Multiple Address Space Operating SysStemscccoccceeeernnnnn 1:15
2.12.2 Support for Single Address Space Operating SyStems..........ccccovvvvveeernnnnn 1:16
2.12.3 System Performance and Scalability...........cccccevvereeeiiiiiiiiee e 1:16
2.12.4 System Security and Supportability...........cccceeerrieeiiiiiiii e 1:16
200 T I =Y 1 o 1T] (o o PSR 1:17
EXECULION ENVIFONMENT ...oiiiiiiiii ittt et ee e e e e e e s st aeeaeeeeeeas 1:19
3.1 ApPPlication REQISIEr STAEcceeiiiiieiiie e e e 1:19
3.1.1 Reserved and Ignored Registers and Fieldsccccevvviivviieiiivicccienennn, 1:19
3.1.2 General REQISIEISocoiiiiieeiieiieii s s e e e e e e e e e e e e e e e ee et e 1.21
3.1.3 Floating-point REQISIEIScccoviiiiiiieeieiee s e e e e e e e e e e e e e e e e e ae e aannen 1:21

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual ili

intel.

3.1.4 Predicate REQISIEISccoiiiiiii ettt 1:22
3.1.5 Branch REQISEIS.......ooiiiiiiiiiie et 1.22
3.1.6 INSIIUCHION POINTEL .. .ot e e e e e e eeae e e s 1:22
3.1L.7 CUrrent Frame MarKerouieeiii i et er e e e e s e ee e e e e e 1:22
3.1.8 Application REGISIEIS......cccci it eeee e e ee s e e e s es e e er e e e e e e e s ennnes 1:23
3.1.9 Performance Monitor Data Registers (PMD)........cccuvevvieeeeeiiiiiisiiieeiieeee e 1:28
3.1.10 USEr MasK (UM) ...uuieiiiiiieeie i esttie e ee e ee e ee s s st r e ee e e s s e e s s nnnnt e e aeeaeeeeesannnnns 1:28
3.1.11 Processor ldentification REQISErS........coiceiiiiiiiirieieeee e ctieeeir e e e 1:29
3.2 /=70 0o Y PP OPPPPPRRPRPPIIN 1:30
3.2.1 Application Memory Addressing MOAElc.ueuueiiiiiiiiiiiiiiiiiere e, 1:30
3.2.2 Addressable Units and AlIgNMENt ... 1:30
T B =Y (= @ 1o [T o (RO PPRRRR 1:31
3.3 INStruction ENCOAING OVEIVIEWiiiiiiiiiiiiieae ettt e e e e e e e e e enees 1:32
3.4 Instruction Sequencing CoONSIAEratiONS...........vviiiiiiiiiir e 1:33
3.4.1 RAW Dependency Special CaSES.......cccueeiiiiiiiiiiiiiieee et 1:36
3.4.2 WAW Dependency Special CaSES........ccuuuiiiiiiiiiiiiiee e 1:37
3.4.3 WAR Dependency Special CaSES........uvuiiiiiiiiiiiiiiiiee et 1:37
3.4.4 Processor Behavior on Dependency Violationscoccveeiiiiiiieeeiiiieeeeens 1:37
35 (8]0 1= 1T aT=To I =T=T 0 F- T PSRRI 1:38
Application Programming MOGE!uuuueieiiiiiir e e 1:39
4.1 REGISTEN SEACK ... ittt et b e e e 1:39
4.1.1 Register Stack OPErationcocueiiiiiiiiiiiin it 1:39
4.1.2 Register Stack INStrUCHIONS.ccviieii i i e 1:41
4.2 Integer Computation INSITUCHIONSvvuieiiiiieis e e 1:42
4.2.1 ArithmetiC INSIrUCHIONSccoiiiiiiiiie ittt 1:42
4.2.2 LogiCal INSITUCHIONS.iiii i e e e e e e e e e e e e e e e e e e aaeeaeanees 1:43
4.2.3 32-bit Addresses and INTEQErSoovvvvveiiiiiiiis e 1:43
4.2.4 Bit Field and Shift INStIUCLIONS............uuiiiiiiiiiii e 1:44
4.2.5 Large CONSTANTS . .uuuiiiiiiiiii et e et 1:45
4.3 Compare Instructions and PrediCation ... 1:45
o Tt R = To [T i o] o EO PSR RTROPO 1:45
4.3.2 ComMPAre INSIIUCLIONSoiiiieiiee ettt e e 1:46
4.3.3 COMPAIE TYPES . .ciiiiiiiii ittt ee e et e e et ee e e e e e e s st ee e e e e e s s enrnnes 1:46
4.3.4 Predicate Register TranSfers. ... 1:48
4.4 MemOry ACCESS INSLIUCHIONSciiiiiiiiiiie ittt 1:48
ot R o T- To I 1 1S3 1 U T3 1T 1 SO 1:50
A (o] (=N 1) 1 0o 1 1O 1:50
4.4.3 Semaphore INSIIUCHONScccii i ee e 1.51
4.4.4 Control SPECUIALIONuviiiiieeiie e e e e 1:51
4,45 Data SPECUIALION ... e 1.55
4.4.6 Memory Hierarchy Control and ConSiStENCY.......cccevveviiieeeiiiiiieeieieeeeeeeeeieiis 1:60
4.4.7 Memory ACCESS OFderIING.......coceiiiiieiiiiie s e e e e e e ae e e eeeae e e eeaeaanaanes 1:63
4.5 Branch INSIIUCLIONS.uiiiiiiii ottt e e e e e e e e e e aanees 1:65
4.5.1 Modulo-scheduled LOOP SUPPOITccciiiiiiieeiie e 1:66
4.5.2 Branch Prediction HINES..........ooi e 1:68
4.5.3 Branch Predict INSIUCHIONSooi it 1:69

Volume 1: Intel® Itanium® Architecture Software Developer's Manual

4.6 Multimedia INSTIUCTIONSuiiiiiiie e e e e e e e e e e ee e e e e e 1:70
4.6.1 Parallel ArthMELiC ...o.eeiiiee i 1:70

4.6.2 Parallel SNIftSuuiiiiiiiee i 1:71

4.6.3 Data ArTANGEIMENTeiiiieieiii ettt e e e e s ee e e e e e 1:72

4.7 ReQIStEr File TranSIEISuuviiiiiiiiie e e e e e e e er e e ae e e s e e 1:72
4.8 Character Strings and Population COUNt..........cccviiiiieieeeie e 1:74
8 Tt R @ ¢ = 1= Tt (=] 1] o R 1:74

8 B o] o1V =1 1o T @ 1¥ [S 1:74

4.9 Privilege LeVel TranSTer..... .. v ettt e e e 1:74
5 Floating-point Programming MOlcoooiiiiiiiiiiiieee e 1:75
5.1 Data TYPES @nd FOMMIALSuuuuiiiei i i e e e s e e ee et e e e s e e e e e e e e aeaaeeees 1:75
B.A L REAI TYPES o ii i it a e e e e e e e e e e ae e —————— 1:75

5.1.2 Floating-point Register FOrMaL..............couviuiiiiiiiiiiiiniiie e eeeeee e eveeaeaens 1:76

5.1.3 Representation of Values in Floating-point Registerscccccccveiiiiiiiineeen 1:76

5.2 Floating-point Status REGISTENcoii it e e 1:78
5.3 Floating-point INSLIUCHIONSciiiiiiii ittt eeee e e 1:81
5.3.1 Memory ACCESS INSIUCTIONS.ccciiiiiiiiiiie et 1:81

5.3.2 Floating-point Register to/from General Register Transfer Instructions....... 1:87

5.3.3 ArithmetiC INSIUCHIONSeeeiiiiieiie e 1:88

5.3.4 Non-arithmetic INStrUCHIONScoveeiiiiiie e 1:89

5.3.5 Floating-point Status Register (FPSR) Status Field Instructions.................. 1:.91

5.3.6 Integer Multiply and Add INSEFUCIONScvvveiiiiiiiee e 1:.91

5.4 Additional IEEE CONSIAEIAtIONSccoiiuiiieiiiiiie ettt s e e 1:92
5.4.1 Floating-point INtErrUPLIONS........uuveeiieiie e s 1.92

5.4.2 Definition of OVErfIOWcooiiiiiiiiiii e 1:95

5.4.3 Definition of Tininess, Inexact and Underflowcccccceeeiniinniiiiiiiiinene 1:96

5.4.4 Integer Invalid OPEerationsccouviuiiiieiiiiiiii i ee e s e ee e e eeeee e e eaeeaeaaeaen 1:97

5.4.5 Definition of Arithmetic Operations..............ueeeeiiiiiiiiiiiiiiieie e 1:97

5.4.6 Definition and Propagation of NaNSccceiiiiiiiiiiiii e 1:97

5.4.7 IEEE Standard Mandated Operations Deferred to Software........................ 1:97

5.4.8 Additions beyond the IEEE Standardcccccccoiiiiiiiiiiiiiiiiiie e 1:98

6 IA-32 Application Execution Model in an Intel® ltanium® System Environment............ 1:99
6.1 INSEIUCHION SO IMOUESttt e et e e e e ee e e e e 1:99
6.1.1 Instruction Set Execution in the Intel® Itanium® Architecture...................... 1:100

6.1.2 1A-32 INStruction Set EXECULIONccciiiiiiiiiiiiiiiiie et 1:100

6.1.3 Instruction Set TranSitioNSciiiiiiii i e 1:101

6.1.4 1A-32 Operating Mode TranSitioNScccceeeeiiiiiieeniiiiee e 1:102

6.2 IA-32 Application Register State Model..........occviiiiiiiiiiiii e 1:102
6.2.1 1A-32 General PUrpoSe REQISIEISccooiuiiiiiiiiiiiieeiitiie e 1:106

6.2.2 1A-32 INSLrUCION POINTEN ...ttt 1:106

6.2.3 1A-32 Segment REJISIEISccoviiiiiieeieeeee s e e e e e e e e e e e e e e 1:107

6.2.4 1A-32 Application EFLAG REQISIENuuvuuiiiiiiiiiiiie e ee e e e e e ee e eeee e 1:112

6.2.5 .IA-32 Floating-point REQISIEISvvuveieeiiiiieiiirrses i s s es e e s e eeeeeeeeeeeeeeaeeneenens 1:114

6.2.6 1A-32 Intel® MMX™ Technology REJISIErSc.cceevvveeeeeiiiiee et e ee, 1:118

6.2.7 1A-32 Streaming SIMD Extension Registers..........cccceeeeeeiiiiiiieieeeieieiiine 1:119

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual

Part II:

1

vi

intel.

6.3 MEMOIY MOGEI OVEIVIEW.cciiiiiiiiiiiititie ettt ettt ettt b e e e 1:119
6.3.1 MeMOrY ENGIANESS.cciiiiiiiiiiiiiiie et 1:120
6.3.2 1A-32 SEOMENTALION....cciii ittt 1:120
6.3.3 Self MOdIfyiNG COUEeiiiiiiiiiie e e 1:120
6.3.4 Memory Ordering INteraCtionS..........uuvieeieeeeeiiiiiiiiieiie e e e e ee s eae e e 1:121
6.4 IA-32 Usage of Intel® Itanium® REQISIErScoocuvvviiiiieiiee e e eee e 1:122
6.4.1 Register StaCk ENQINE.......ccoviiiiiiiiiiiieieeee e er e e 1:122
B.4.2 AL AT oottt e e 1:122
6.4.3 NaT/NaTVal Response for IA-32 INStrUCLIONSccvvvvveviiiiiiiieie e e 1:122
Optimization Guide for the Intel® [tanium® Architecture
About the OptimizZation GUIAE.........oouuiiiiiiiiie e 1:129
11 Overview of the Optimization GUITE.............ccoiiiiiiiiiiiiiiie e 1:129
Introduction to Programming for the Intel® Itanium® Architecture..............cccceeeeennen. 1:131
21 L@ YT QT PP 1:131
2.2 REGISTEIS ...ttt e e et e e s bbb e e e e ab b e e s b a e e e aan 1:131
2.3 Using Intel® 1tanium® INSTrUCHIONSccuiiiiiie et 1:132
2 700 R o 1 0T Y 1:132
2.3.2 Expressing ParalleliSm...........oocoiiiiiiiiiec e 1:133
2.3.3 Bundles and TemPplates.... ... 1:133
2.4 Memory AcCeSS and SPECUIALIONuuuiiiiiieeeiii it e e e e er e e e e e e e e eeans 1:134
A A U1 o T 1o =111 Y/ PP 1:134
A S S T o 1Yol U] =1 (o o 1:134
2.4.3 CoNntrol SPECUIALIONuutecee i 1:134
2.4.4 Data SPECUIALIONuvveieitcccee e a e 1:135
25 e (=To [Tor= 1 1To] o RO RUPTTPPT 1:135
2.6 Architectural Support for Procedure CallS.............oooeiiiiiiiiiiiiiieee e 1:136
2.6.1 Stacked REQISIEISoiiiiiiiiiiiiiiitiie et 1:136
2.6.2 Register StaCk ENQINE......cc.uiiiiiiiiiiiiii ettt 1:136
2.7 Branches and HiNSooooiiiiiieee et e e s 1:136
2.7.1 Branch INStIUCLIONS.oooiiiiiiiiie ettt ee e e e e e 1:137
2.7.2 Loops and Software Pipelining..........coocouuiiioriiiiiieiiiie e 1:137
2.7.3 ROtatiNg REGISIEIS.....ueiiiiiiiiiiiii ittt e 1:137
2.8 SUIMIMAIY ..ottt et e e e e ettt eeeee e e es s as e n e b e e beeeeeete e e annanenee s 1:138
Y L= 0 oY VA = (=T = o o = 1:139
3.1 L0 YT TS 1:139
3.2 Non-speculative Memory RefErenCeSooccvviiieiiiiee e 1:139
R T R 1 (o] (=138 (o TN =0 o] Y 1:139
T2 o - (o LS 0 0 T 1Y/ 1= oo) Y/ 1:139
3.2.3 Data PrefetCh HiNt........uueii e 1:140
3.3 INStruCtion DEPENAENCIES.........ccieiiei e e e s e e e e e e e e e e e e e e ee e arnaannen 1:140
3.3.1 Control DEPENUENCIES......cccei i e 1:140
3.3.2 Data DEPENUENCIES....ccieiiiiiiii ettt ee e 1:141

Volume 1: Intel® Itanium® Architecture Software Developer's Manual

34 Using Speculation in the Intel® ltanium® Architecture to Overcome Dependencies 1:143
3.4.1 Speculation Model in the Intel® ltanium® Architecture...............ccccovveeeennnee. 1:143

3.4.2 Using Data Speculation in the Intel® [tanium® Architecture 1:144

3.4.3 Using Control Speculation in the Intel® ltanium® Architecture.................... 1:146

3.4.4 Combining Data and Control Speculationccccviiiiiriiee e, 1:148

3.5 Optimization of MemMOry REEIENCEScvviiiii it 1:148
3.5.1 Speculation CoNSIAEratioNS...........coiiiiuririiririee e es s e ee e e s 1:148

3.5.2 Data INtEIfEIENCE. ...t 1:149

3.5.3 Optimizing COAE SiIZEccceeiieeee et e e e e e 1:150

3.5.4 Using Post-increment Loads and StOreS.........cccevviveeiieeeeeeeeiveeeeeeeeeeinee 1:151

TR TSI o To] o I @] o)1 .44 11 T0] o P 1:151

3.5.6 Minimizing CheCK COOE......cccoiiiiiiiiiiiiieie et 1:152

3.6 SUIMIMIATY ettt ettt s s e e e e e oo e e e eeeaeeeeteeeeeeebessannbebnban e s aans 1:153
4 Predication, Control Flow, and INStruction Stream...........coocoiiiiiiiiiieiiien e 1:155
4.1 OVEBIVIBW ..ttt ettt et e e et e e bbbttt et e e e e e e e s eabbbbbbbeeeeeaeeeessaannns 1:155
4.2 (e =To Tor=1 1 o] o R T ORI 1:155
4.2.1 Performance Costs Of BranChescccoiuiiiiiiiiiiiiiii e 1:155

4.2.2 Predication in the Intel® ltanium® Architecture..........c.ccoovviveeeviciiie e, 1:156

4.2.3 Optimizing Program Performance Using Predication.............cccceveevinneenn. 1:157

4.2.4 Predication CONSIAErationsccceiieeiiiiiiiiiiiiireee e e e e e seiieeereaeeeee e aees 1:160

4.2.5 Guidelines for Removing Branches...........ccccccvviiiieiiiiiiiieee e 1:162

4.3 Control FIOW OpPtiMIZAtiONScccuuviiieiiriieeeee e er e e e s es st ereee e e s e s enannnnees 1:163
4.3.1 Reducing Critical Path with Parallel Compares............ccoccccvvvvvieieeeeeeninens 1:163

4.3.2 Reducing Critical Path with Multiway Branchescccccevvvvviiiiiineniennn. 1:165

4.3.3 Selecting Multiple Values for One Variable or Register with Predication ... 1:165

4.3.4 Improving Instruction Stream Fetching..............coovviieiieeeee e, 1:167

4.4 Branch and PrefetCh HINESo e 1:168
4.5 S0 10 0= Y PSPPI 1:168
5 Software Pipelining and LOOP SUPPOIT ..o ittt 1:169
5.1 OVBIVIBW ..ttt ettt et ee e oo e e b bbbttt et e e e e e e e s e bt bbbbbeeeeeaeeeessaannes 1:169
5.2 Loop Terminology and BasiC LOOP SUPPOITcoeiiiiiuiiiiiiieiieee e et eee e 1:169
5.3 OPtiMIzZation Of LOOPS ...cciiiieiiiiittee ettt e e e e e e s eeae e 1:169
5.3.1 LOOP UNFOIING wetiiiiiiiieie ittt 1:170

5.3.2 Software Pipelining........c.ueeiiiiiiiiiea e 1:171

5.4 Loop Support Features in the Intel® Itanium® Architecture..........ccccooceeeiieeenieeene 1:172
5.4.1 RegiSter ROTALION.ceiiiiiiie et 1:172

5.4.2 Note on Initializing Rotating PrediCates...........cccoccviiiiiieiiiiiiee e 1:173

5.4.3 Software-pipelined LOOp Branchescccccociiiiiiiiiie e 1:174

544 Terminology REVIEWcooiiiiiiiiiiiiiii e 1:177

5.5 Optimization of Loops in the Intel® Itanium® Architecture...............ccoeeveeeeiiiieeeeens 1:178
LR 700 A Y o 11 1= 1 Yo o1 1:178

5.5.2 Loops with Predicated INStrUCHIONS..........uiiiiiiiiiii e 1:180

LTI T |V 101 o] (oY=] o Yo 1= 1:181

5.5.4 Software Pipelining ConsiderationsS.............cceeeeeieiiiieeieeeeeeeeeeeeeeeee e 1:183

5.5.5 Software Pipelining and Advanced Loads.............c.ccoeeveviviiiiiieiieeieiviie, 1:183

5.5.6 Loop Unrolling Prior to Software Pipelining............cccoiiiiiiiiniiieeee, 1:185

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual vii

intel.

5.5.7 Implementing REAUCLIONS.........ooiiiiiiiiiiiie e 1:187
5.5.8 Explicit Prolog and EPilOg........cooouuiiiiiiiiiiieeiiiiie e 1:188
5.5.9 Redundant Load Elimination in LOOPS.........ccovuuiiiiiiiiiiieiiiiie e 1:190
5.6 SUIMIMAIY ..ottt et e e e ettt e e en e e as s sh e n e b e e beeeeeete e e annannnee s 1:190
6 Floating-point APPliCAtiONS ... e e e e e e s raeeae s 1:191
6.1 L0 YT T P 1:191
6.2 FP Application Performance LIMItErscooovieiiiiiiiie it 1:191
6.2.1 EXECULION LAENCYuieiiieeiiiiiiie ettt 1:191
6.2.2 Execution BandWidth............cceiiiiiiiiiiiice e 1:192
6.2.3 MEMOIY LAtENCY ..ccuuiiiiiiiiiiiiie et e e ae e 1:192
6.2.4 Memory Bandwidth...........cccociiiiiniii e 1:193
6.3 Floating-point Features in the Intel® [tanium® Architecture.............ccceeeeeeiineeeeennn, 1:193
6.3.1 Large and Wide Floating-point Register Setcccccveiiiiiieiiiniiiniieiieeen 1:193
6.3.2 Multiply-Add INSEIUCLIONoooiiiiiee e 1:196
6.3.3 Software Divide/Square ROOt SEQUENCE...........uevriiieieireeeiiiiiiieeir e e e 1:196
6.3.4 Computational MOEIS..........c.oooiiiiiiii e 1:198
6.3.5 Multiple Status Fieldscooiiiiiiieee e 1:198
6.3.6 Other FRAUIES . ..ot 1:199
6.3.7 Memory ACCESS CONLIOcccoiuuiiiiiiiiiiiie e 1:201
6.4 SUIMIMAIY ..ttt e e e s et e ee e e e e ea e s e s e e e eeeeeeeen s sennnnenne e s 1:203
Figures
Part I: Application Architecture Guide
2-1 Y (=1 I = g A2 (0T 1T 0=] €= PP 1.9
3-1 Application RegiStEr MOUEcooiiiiieeee e e e e eas 1:20
3-2 Frame Marker FOIMALooiuuiiiiie ettt e e st e et ee e e 1:23
3-3 RSC FOMMAL ...ttt et e e e e e e e e s s e bbb r ettt e e e e e e s s et n e e e aeeeee e s 1:25
3-4 BSP REQISIEN FOMMAL ... ttiiieiiiitee ettt ettt e b e e e e e e et ee e e sanbeeee s 1:25
3-5 BSPSTORE REQISEr FOIMMALttt e et e e e e e e er e e aeaaaaae s 1:25
3-6 RNAT REQIStEr FOIMAL.......cco i s e e e e e e e e e et e e e e e e e et e b e eas 1:26
3-7 PES FOIMMAL.......o oo a s 1:27
3-8 Epilog Count REQISTEr FOIMAL........coiiiiiiiiiiiiiiiie e e e e s 1.27
3-9 USEE MASK FOMMIAL.eeeiii ittt ettt b bttt e e bbbt e e e s bt e e e nnbbee e e enireee s 1:28
3-10 CPUID Registers 0 and 1 — Vendor INfOrmMationccueeeeiiiiieiiiniiiieeieiiie e 1:29
3-11 CPUID Register 3 — Version INfOrmMation...............cooioiiiiiiiiiie e 1:29
I W 11 ==Y o = T [o = o PP PPRP TP 1:31
B I S = 1T =Y T [=1 g N o = Lo £ 1:31
3-14 BUNAIE FOIMAL..... ittt e et e e e sttt e e e e st b e e e e e e et b be e e e s ebaee e e s anneeeaenn 1:32
4-1 Register Stack Behavior on Procedure Call and REtUINccueeiiiiiiiiiiiiniiieceeie e 1:41
4-2 Data Speculation ReCOVEry USING [0.C.....coiuuiiiiiiiiiiiiie e 1:56
4-3 Data Speculation Recovery Using ChK.a..........ccuuiiiiiiii e 1:56
4-4 =Yg To] Y 1T=T =V (])Y 1.61
4-5 Allocation Paths Supported in the Memory Hierarchy...........ccccoee i 1.62
5-1 Floating-point ReGIStEr FOIMAL.........coiiiiiiiiiiiiiiii ettt et e e seeee e 1:76
5-2 Floating-point Status RegiSter FOMMALc.c.eeiiiiiiiiiiie e 1:79
5-3 Floating-point Status Field FOrMALcooiiiiiiiiie e 1:79
5-4 Memory to Floating-point Register Data Translation — Single Precisioncccooveeeeieeenn. 1:82
viii Volume 1: Intel® Itanium® Architecture Software Developer's Manual

5-5 Memory to Floating-point Register Data Translation — Double Precision............cccccccccvveeenn 1:83
5-6 Memory to Floating-point Register Data Translation — Double Extended,

Integer, Parallel FP and Filluui s e e e e e 1:84
5-7 Floating-point Register to Memory Data Translation — Single Precisionccccceeeveee 1:85
5-8 Floating-point Register to Memory Data Translation — Double Precision............ccccccccceennen 1:85
5-9 Floating-point Register to Memory Data Translation — Double Extended,

Integer, Parallel FP and SpPill.........c..oi oo 1:86
5-10 Spill/Fill and Double-extended (80-bit) Floating-point Memory Formatsccccccceeeeeeenne 1:87
5-11 Floating-point Exception Fault Prioritizationueeiiiiiiiiiiieceie e 1:94
5-12 Floating-point Exception Trap PrioritiZatioN...........c.uuviieeiiie i iiiiieeie e e e en e ee e e e 1:95
6-1 Instruction Set Transition MOEL............ouuiiiiiiii e 1:100
6-2 Instruction Set Mode TranSItiONSuuuuiiiiiiiee e ee e er e e e e e s eeereeeeee s 1:102
6-3 IA-32 Application Register MOGElooiiiiiiii e 1:103
6-4 IA-32 General Registers (GR8 10 GRLD).....ccoiiiiiiiiiiie ettt e e 1:106
6-5 IA-32 Segment Register Selector FOrMaLoooiiiiiiiiiiiiece e e e eeeee e 1:107
6-6 IA-32 Code/Data Segment Register Descriptor FOrmatcccccvvevereeeeeeeseeiccciiieeeieeee e 1:107
6-7 IA-32 EFLAG REQGISLEr (AR24) ...ttt ettt ettt et e e s eeeeenn 1:112
6-8 IA-32 Floating-point Control RegiSter (FCR)coooiuiiiiiiiiiie e 1:116
6-9 IA-32 Floating-point Status RegiSter (FSR)........ccoiiiiiiiiiiie et 1:116
6-10 Floating-point Data RegiSter (FDR)cuiii ittt ee e e e 1:118
6-11 Floating-point Instruction Register (FIR)uuiiiiiiiiiii et 1:118
6-12 IA-32 Intel® MMX™ Technology Registers (MMO t0 MM7).......cccceiiiiiiiieeiieciiie et 1:118
6-13 Streaming SIMD Extension Registers (XMMO-XMM7)cccoiiiiiiiiiniiineeniiiiieeenniieee e 1:119
6-14 Memory AAAreSSiNg MOUEL.......ooiuiiiiiiiii e 1:119
Part Il: Optimization Guide for the Intel® Itanium® Architecture
3-1 Control Dependency Preventing Code MOLIONccoiviiiiiiiiiiiieie e ee e e e 1:141
3-2 Speculation Model in the Intel® [tanium® ArchiteCtureccceeivvieeii i 1:144
3-3 Minimizing Code Size DUring SPECUIALIONccoiuuiiiiiiiiiiiie it 1:150
3-4 Using a Single Check for Three Advanced LOadS........ccccouiuiiiiiiiiiiiiieeee e 1:153
4-1 Flow Graph lllustrating Opportunities for Off-path Predication.............cccccceeveiiiiiiiinieennn. 1:158
5-1 ctop and cexit EXECULION FIOW..........ccooiiiiiiiiiee s e e e e e e e e e e e e rnnees 1:.175
5-2 wtop and WexXit EXECULION FIOWcuuiiiiiiii e e s 1:177
Tables
Part I: Application Architecture Guide
2-1 Major Operating ENVIFONMENTSc..uuiiiiiiiiiiiie ittt ee s e e senneeees 1:10
3-1 Reserved and Ignored Registers and FieldsSccvoiieiiiiiii e 1:20
3-2 Frame Marker Field DeSCHPLONcccoviiiiee e e s e e e e e e e e e e e eeeee e e eeaeererneeee 1:23
3-3 Py o] o] foz= x0T =T 1] (] PRSP 1:23
3-4 RSC FIeld DESCHPLONeeiiiiiiiie ettt eb bbb et e e e 1:25
3-5 PFES Field DESCHIPHIONceiii ittt ettt et ee s saibn e ee s aenbeees 1:27
3-6 User Mask Field DEeSCHPTIONSccciireiee ettt seb e e st e e e nnees 1:28
3-7 CPUID REQISIEr 3 FIEIASeeiiiiieeiie ettt ettt se e e seees 1:29
3-8 CPUID REQISIEN 4 FIEIAS ..ot sttt s e n e e e e e aeaaee e 1:30
3-9 Relationship between Instruction Type and Execution Unit TYPeccoccovviiiiviireeeeeenniinne 1:32
3-10 Template Field Encoding and Instruction SIot Mappingooocveeeiniiiee e 1:32
4-1 Architectural Visible State Related to the Register Stack............occeveiiiiiiiiiiiiiiie e 1:42
4-2 Register Stack Management INSIUCIONSouuuiiiiiiiiiieiie e 1:42
Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual iX

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17

6-2
6-3
6-4

intel.

Integer Arithmetic INSIIUCHIONSoiii it 1:43
Integer LOGICal INSIIUCLIONSooiiiiiiieiee ettt e e e e e e eea e e s 1:43
32-bit Pointer and 32-bit Integer INStIUCLIONSuvvviiiiiiiiiiiicii e 1:44
Bit Field and Shift INSIIUCIONSoooiiiiiiei e e 1:45
Instructions to Generate Large CONSLANTS..........eeiiiiiiiiiir it 1:45
COMPATE INSIIUCTIONSeeiiiiitiiee ettt et e e et e e e s ab e e e s s e nbeee e e s e ineeeeena 1:46
ComPAre TYPE FUNCHIONciiiiiiie ettt e e e e e eaineee s 1:47
Compare Outcome With NaT SOUICE INPULoooiiiiiiii e 1:47
Instructions and Compare Types ProVidedc.uuuiiiiiiiiiiiiiiieeieeeee e 1:48
MEMOrY ACCESS INSIIUCHIONS ...eviiiiieieeiiii it ie e e et ee e e e e e e s e et r e e eeeeeeeseeennnnnes 1:49
State Relating to MEMONY ACCESSoiiiiiiiiee ettt e et e e s ee e e s nnbeeeeeenes 1:49
State Related to Control SPECUIALIONeeeiiiiiiiiiiiii e 1:54
Instructions Related to Control SPEeCUIAtIoNcoiiiiiiiiiiiiiii e 1:54
State Relating to Data SPeCUIALIONcooi i 1:60
Instructions Relating to Data SPeCUIAtioNcooiiiiiiiiiiiiiii e 1:60
Locality Hints Specified by Each INStruction Class..........c.uuvvveeiiiiiiiiiiiiieciccee e 1:61
Memory Hierarchy Control Instructions and Hint Mechanismsccccccovviiieeeiiniieee e, 1:63
MemOory Ordering RUIESuviiiiiiiee et 1:64
Memory Ordering INSIIUCHIONScooiiiiiiieie e b e e 1:64
2] = TpTed o I 1Y/ 1= S PP ERURU TR 1:65
State Relating to BranChiNg.... ... oo e e e e e s e e e e e e e e e e e ee e e aeaaeanees 1:66
Instructions Relating to BranChing............ciecieiiiiiiiiiiiiiiie et 1:66
Instructions that Modify RRBSccooiiiiiiiiiiie et e 1:67
Whether Prediction Hint 0N BranChes ... 1:68
Sequential Prefetch Hint on BranChes ... 1:69
Predictor DealloCation HiNt..........ooo ettt e e 1:69
Parallel Arithmetic INSIIUCLIONSooiiiiee e 1:70
Parallel Shift INSIIUCTIONSooiiiiiii e e 1.71
Parallel Data Arrangement INSIrUCHIONSoouiiieiiiiie e e 172
Register File Transfer INSTIUCHIONSoiiiiiiiiie e 1:72
SHNG SUPPOIT INSTIUCTIONS ..t 1:74
IEEE REAI-tYPE PIrOPEITIESeeieiiiieiieee ittt ettt e e e e s e e et eeeeeaae e e e e s aaannnees 1:75
Floating-point Register ENCOTINGSuuuuiiiiiiiiiiiiiiee ettt ee e 177
Floating-point Status Register Field DeSCriptioncovvuiiuiiiiiiiiiisii e eeeee e e ee e e eeeeeeeieennes 1.79
Floating-point Status Register’s Status Field DescCriptioncccccvcvieiieee e 1:79
Floating-point Computation Model Control DefinitioNsccoooiiiiiiiiiiiniriie e 1:80
Floating-point Rounding Control DefinitioNSoouiiiiiiiiiiiiiiieee e 1:80
Floating-point Memory ACCESS INSIIUCHIONS........c.oioiieiiiiie e 1:81
Floating-point Register Transfer INStrUCLIONSuuiiiiiiiiii e 1:87
General Register (Integer) to Floating-point Register Data Translation (setf)..........cc.......... 1:88
Floating-point Register to General Register (Integer) Data Translation (getf).........ccccccee. 1:88
Floating-point Instruction Status Field Specifier Definitioncccoovviveeiniiiie e 1:88
Arithmetic Floating-point INSIIUCHONScoiiiiiiiiiiiie e 1:88
Arithmetic Floating-point PSEUdO-0PErationsueieiiiiiiaiiiiiiiiieiiee e ee e 1:89
Non-arithmetic Floating-point INSLIUCLIONSoooiiiiiiiiiiie e 1:90
Non-arithmetic Floating-point PSeudo-0perationsucuueuuuieiriiiiinin e eeeeeeeeeeeeeeeeeaeenens 1:90
FPSR Status Field INStrUCHIONScooiiiiiiiiii i e e e 1:91
Integer Multiply and Add INSIFUCTIONSeeiiiiiiiiie et 1:.91
IA-32 Application RegiSter MapPingueeeiiiiiieeeiiiiie ettt e e 1:103
IA-32 Segment RegiSter FIEIASuu i 1:107
IA-32 Environment Initial REQISIEr STAtecooiiiiiiiiiiiiiiie e 1:109
1A-32 Environment Runtime Integrity CheCKScccoooiiiiiiiii e 1:111

Volume 1: Intel® Itanium® Architecture Software Developer's Manual

intgl.

6-5 IA-32 EFLAGS ReQiSter FIeldS......cc.uuiiiiiiiiiiiee et 1:112
6-6 IA-32 Floating-point Register Mappingscoooiuuiiiiiiiieiie et 1:114
6-7 IA-32 Floating-point Status Register Mapping (FSR)ccoouiiiiiiiiiiiiiiee e 1:116

Part 1l: Optimization Guide for the Intel® Itanium® Architecture

5-1 (o (o] o o To] o I I - To T TP PRSP TOPPUPRPPI 1:176
5-2 (VLT (o] o o To] o I I = Vo = SR PPTRRPSPPIN 1:179

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual xi

Xii Volume 1: Intel® Itanium® Architecture Software Developer's Manual

intgl.

Part I Application Architecture
Guide

intel.

About this Manual 1

1.1

1.11

The Intel® 1tanium® architectureisa unique combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features a revolutionary 64-bit instruction set architecture
(ISA), which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architectureis1A-32 instruction set
compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides acomprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the | A-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

Part 1. Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by applications and the
memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of 1A-32 instructions within the Itanium System Environment from the
perspective of an application programmer.

Volume 1: About this Manual 1.1

1.1.2

1.2

1.2.1

1:2

Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications’ discusses current performance limitations in
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also providesa
useful system programmer's guide for writing high performance system software.

Part 1. System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “ Intel® Itanium® System Environment” introduces the environment designed to support
execution of Itanium-based operating systems running 1A-32 or Itanium-based applications.

Chapter 3, “ System State and Programming Model” describes the Itanium architectural state which
isvisible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating system for
virtual to physical address translation, virtua aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions’ lists all interruption vectors.

Volume 1: About this Manual

1.2.2

Chapter 9, “I A-32 Interruption Vector Descriptions’ lists |A-32 exceptions, interrupts and
intercepts that can occur during | A-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
defines the operation of 1A-32 instructions within the Itanium System Environment from the
perspective of an Itanium-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementati on-dependent features.

Part 2. System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multi-processing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registers that need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes avariety of instruction
emulation handlers that Itanium-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete IEEE-754 compliance.

Chapter 9, “1A-32 Application Support” describes the support an Itanium-based operating system
needs to provide to host 1A-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “1/O Architecture’ describesthe 1/0 architecture with afocus on platform issues and
support for the existing 1A-32 1/0 port space.

Chapter 12, “ Performance Monitoring Support” describes the performance monitor architecture
with afocus on what kind of support is needed from Itanium-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.

Volume 1: About this Manual 1:3

1.2.3

1.3

1.3.1

1.3.2

1.4

Appendices

Appendix A, “Code Examples’ provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

Thisvolume is a comprehensive reference to the Itanium and |A-32 instruction sets, including
instruction format/encoding.

Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of al Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions’ provides atable of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats’ describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics’ summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base |A-32 Instruction Reference” provides a detailed description of all base |1A-32
instructions, organized in aphabetical order by assembly language mnemonic.

Chapter 2, “IA-32 Intel® MMX ™ Technology Instruction Reference” provides a detailed
description of all 1A-32 1 ntel® MMX™ technol ogy instructions designed to increase performance
of multimedia intensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “1A-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of al 1A-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.

Volume 1: About this Manual

1.4

1.5

Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) — Defines application and system level resources. These
resources include instructions and registers.

[tanium Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the | A-32 instruction set.

I A-32 Architecture — The 32-bit and 16-bit Intel® architecture as described in the IA-32
Intel ®Architecture Software Devel oper’'s Manual.

[tanium System Environment — The operating system environment that supports the execution of
both IA-32 and Itanium-based code.

IA-32 System Enwronment — The operating system pnwleged environment and resources as
defined by the 1A-32 Intel ®Architecture Software Devel oper’'s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium-Based Firmware — The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

Processor Abstraction Layer (PAL) — The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) — The firmware layer which abstracts system features that are
implementation dependent.

Related Documents

The following documents can be downloaded at the Intel’s Devel oper Site at http://
devel oper.intel.com:

« Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization — This document describes model-specific architectural features incorporated
into the Intel® Itanium® 2 processor, the second processor based on the I tanium architecture.
(Document Number 251110)

« Intel® Itanium® Processor Reference Manual for Software Devel opment — This document
describes model-specific architectural featuresincorporated into the Intel® Itanium®

processor, the first processor based on the Itanium architecture. (Document Number 245320)

« 1A-32 Intel ®Architecture Software Developer’s Manual — This set of manuals describes the
Intel 32-bit architecture. (Document Numbers 245470, 245471, and 245472)

 |tanium™ Software Conventions and Runtime Architecture Guide — This document defines
general information necessary to compile, link, and execute a program on an I tanium-based
operating system. (Document Number 245358)

« Itanium® Processor Family System Abstraction Layer Specification — This document
specifies requirements to develop platform firmware for Itanium-based systems.
(Document Number 245359)

» Extensible Firmware | nterface Specification — This document defines a new model for the
interface between operating systems and platform firmware.

Volume 1: About this Manual 1.5

1.6

1.6

Revision History

Date of Revision Description
Revision Number P
October 2002 21 Added New f c. i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part |, Vol. 1;

Sections 4.3.3,4.4.1,4.45,4.4.7,5.5.2,and 7.1.2, Part |, Vol. 2; Sections 2.5,
2.5.1,2.5.2,2.5.3,and 4.5.2.1, Part Il, Vol. 2; and Sections 2.2, 3, 4.1, 4.4.6.5,
and 4.4.10.10, Part |, Vol. 3).

Added New Atomic Operations | d16, st 16, cnmp8xchg16 (Sections 3.1.8,
3.1.8.6,4.4.1,4.4.2, and 4.4.3, Part |, Vol. 1; Section 4.5, Part |, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part |, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part |, Vol. 2 and Sections 2.2 and 3, Part |, Vol. 3).

Added New Hint Instruction (Section 2.2, Part I, Vol. 3).

Added Fault Handling Semantics for | f et ch. f aul t Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part I, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part I, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part |, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part |, Vol. 2).
Added New Error Exit States (Section 11.2.2.2, Part |, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified CPUI O] 4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).

Modified PAL_FREQ_RATIOS (Section 11.2.2, Part |, Vol. 2).
Modified PAL_VERSION (Section 11.9, Part I, Vol. 2).

Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part I, Vol. 2).
Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part I, Vol. 2).

Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part I,
Vol. 2).

Clarified Predicate Behavior of al | oc Instruction (Section 4.1.2, Part I, Vol. 1
and Section 2.2, Part |, Vol. 3).

Clarified ITC clocking (Section 3.1.8.10, Part I, Vol. 1; Section 3.3.4.2, Part |,
Vol. 2; and Section 10.5.5, Part Il, Vol. 2).

Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part |, Vol. 2).
Clarified Interruption Control Registers (Section 3.3.5, Part |, Vol. 2).

Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part |, Vol. 2).

Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part |, Vol. 2).
Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).

Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).
Clarified PALE_INIT Exit State (Section 11.4.2, Part |, Vol. 2).

Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).
Clarified Firmware Address Space at Reset (Section 11.1, Part |, Vol. 2).

Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part I, Vol. 2).

Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part |, Vol. 2).
Clarifieditr/itc Instructions (Section 2.2, Part I, Vol. 3).

Volume 1: About this Manual

Date of Revision —
Revision Number Description
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).

IIP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions - added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

Volume 1: About this Manual

1.7

1.8

Date of
Revision

Revision
Number

Description

July 2000

11

Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing I1A-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in 1IM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11.
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:

fmix instruction page figures corrected (Chapter 2).

Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

1A-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

Volume 1: About this Manual

intel.

Introduction to the Intel® Itanium

®

Architecture 2

2.1

The Itanium architecture was designed to overcome the performance limitations of traditiona
architectures and provide maximum headroom for the future. To achieve this, the Itanium
architecture was designed with an array of innovative features to extract greater instruction level
parallelism including speculation, predication, large register files, aregister stack, advanced branch
architecture, and many others. 64-bit memory addressability was added to meet the increasing large
memory footprint requirements of data warehousing, e-business, and other high performance server
applications. The Itanium architecture has an innovative floating-point architecture and other
enhancements that support the high performance requirements of workstation applications such as
digital content creation, design engineering, and scientific analysis.

The Itanium architecture al so provides binary compatibility with the |A-32 instruction set.
Processors based on the Itanium architecture can run | A-32 applications on an Itanium-based
operating system that supports execution of 1A-32 applications. Such processors can run |A-32
application binaries on 1A-32 legacy operating systems assuming the platform and firmware
support existsin the system. The Itanium architecture also provides the capability to support mixed
|A-32 and Itanium-based code execution.

Operating Environments

The Itanium architecture supports two operating system environments:
 |A-32 System Environment: supports |A-32 32-bit operating systems.
¢ [tanium System Environment: supports |tanium-based operating systems.

Figure 2-1. System Environments

IA-32 System Environment Intel® Itanium® System Environment
Application IA-32 Instructions IA-32 Instructions [tanium
Environment Segmentation Segmentation Instructions
Y y
Operating IA-32 Paging & Paging & Interruption
System Interruption Handling in the Intel
Environment Handling Itanium Architecture
0007174

Volume 1: Introduction to the Intel® Itanium® Architecture 1.9

intel.

The architectural model also supports a mixture of 1A-32 and |tanium-based applications within a
single Itanium-based operating system. Table 2-1 defines the major supported operating
environments.

Table 2-1. Major Operating Environments

System Application
Environment Environment Usage
IA-32 System | IA-32 Instruction Set | 1A-32 PM, RM and VM86 application and operating system
Environment environment. Compatible with 1A-32 Intel® Pentium®, Pentium® Pro,
Pentium® 11 and Pentium® 11l processors.
Intel® Itanium® Not supported, Itanium®-based applications cannot execute in the
Instruction Set IA-32 system environment.
Itanium IA-32 Protected Mode | IA-32 Protected Mode applications in the Intel® Itanium® system
System environment.
Environment [a_35 Real Mode IA-32 Real Mode applications in the Intel® Itanium® system
environment.
1A-32 Virtual Mode IA-32 Virtual 86 Mode applications in the Intel® Itanium® system
environment.
Intel® Itanium® Itanium®-based applications on Intel® Itanium®-based operating
Instruction Set systems.
2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either 1A-32 or Itanium
instructions at any time. Three special instructions and interruptions are defined to transition the
processor between the |A-32 and the Itanium instruction set.

* j mpe (I1A-32 instruction) Jump to an Itanium target instruction, and transition to the Itanium
instruction set.

* br.ia (Itaniuminstruction) Branch to an |A-32 target instruction, and change the instruction
set to 1A-32.

e rfi (Itanium instruction) “Return from interruption” is defined to return to an 1A-32 or
Itanium instruction.

* Interrupts transition the processor to the Itanium instruction set for all interrupt conditions.

Thej npe and br. i a instructions provide alow overhead mechanism to transfer control between
the instruction sets. These instructions are typically incorporated into “thunks’ or “stubs’ that
implement the required call linkage and calling conventions to call dynamic or statically linked
libraries. See Section 6.1, “Instruction Set Modes” for additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance and remove
barriersto further performance increases. The Itanium architecture is based on the following
principles:
» Explicit parallelism
« Mechanismsfor synergy between the compiler and the processor
» Massive resources to take advantage of instruction level parallelism

1:10 Volume 1: Introduction to the Intel® Itanium® Architecture

2.4

2.5

« 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch registers
 Support for many execution units and memory ports

* Features that enhance instruction level parallelism
 Speculation (which minimizes memory latency impact).
« Predication (which removes branches).
 Software pipelining of loops with low overhead
 Branch prediction to minimize the cost of branches

* Focused enhancements for improved software performance
» Specia support for software modularity
* High performance floating-point architecture
« Specific multimediainstructions

The following sections highlight these important features of the Itanium architecture.

Instruction Level Parallelism

Instruction Level Paralelism (ILP) isthe ability to execute multiple instructions at the same time.
The Itanium architecture allowsissuing of independent instructions in bundles (three instructions
per bundle) for parallel execution and can issue multiple bundles per clock. Supported by alarge
number of parallel resources such as large register files and multiple execution units, the Itanium
architecture enabl es the compiler to manage work in progress and schedul e simultaneous threads of
computation.

The Itanium architecture i ncorporates mechanisms to take advantage of ILP. Compilers for
traditional architectures are often limited in their ability to utilize specul ative information because it
cannot always be guaranteed to be correct. The Itanium architecture enables the compiler to exploit
specul ative information without sacrificing the correct execution of an application (See
“Speculation” on page 1:12.). In traditional architectures, procedure calls limit performance since
registers need to be spilled and filled. The Itanium architecture enables procedures to communicate
register usage to the processor. This allows the processor to schedule procedure register operations
even when thereisalow degree of ILP. See “Register Stack” on page 1:14.

Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch hints, and
cache hints to enable the compiler to communicate compile-time information to the processor. In
addition, it allows compiled code to manage the processor hardware using run-time information.
These communication mechanisms are vital in minimizing the performance penalties associated
with branches and cache misses.

The cost of branchesis minimized by permitting code to communicate branch information to the
hardware in advance of the actual branch.

Volume 1: Introduction to the Intel® Itanium® Architecture 1:11

2.6

2.6.1

2.6.2

1:12

intel.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in which the
compiler encodes its prediction of the spatial and/or temporal locality of the memory area being
accessed. A processor based on the Itanium architecture can use thisinformation to determine the
placement of cache linesin the cache hierarchy to improve utilization. Thisis particularly
important as the cost of cache misses is expected to increase.

Speculation

There are two types of speculation: control and data. In both control and data speculation, the
compiler exposes ILP by issuing an operation early and removing the latency of this operation from
critical path. The compiler will issue an operation speculatively if it is reasonably sure that the
speculation will be beneficial. To be beneficial two conditions should hold: (1) it must be
statistically frequent enough that the probability it will require recovery issmall, and (2) issuing the
operation early should expose further |L P-enhancing optimization. Speculation is one of the
primary mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore
tolerating, the latencies of operations.

Control Speculation

Control speculation isthe execution of an operation before the branch which guardsit. Consider the
code sequence below:

if (a>b) |oad(ld_addri,targetl)
el se | oad(ld_addr2, target?2)

If the operation | oad(| d_addr 1, t ar get 1) were to be performed prior to the determination of
(a>b) , then the operation would be control speculative with respect to the controlling condition
(a>b) . Under normal execution, the operation | oad(| d_addr 1, t ar get 1) may or may not
execute. If the new control speculative load causes an exception, then the exception should only be
serviced if (a>b) istrue. When the compiler uses control speculation, it leaves a check operation at
the original location. The check verifies whether an exception has occurred and if so it branchesto
recovery code. The code sequence above now translates into:

/* off critical path */
sl oad(ld_addr 1, targetl)
sl oad(| d_addr 2, t ar get 2)

/* other operations including uses of targetl/target2 */
if (a>b) scheck(targetl,recovery_addrl)
el se scheck(target2, recovery_addr?2)

Data Speculation

Data speculation is the execution of amemory load prior to a store that preceded it and that may
potentially alias with it. Data speculative loads are also referred to as “ advanced loads’. Consider
the code sequence below:

store(st_addr, data)
| oad(! d_addr, target)
use(target)

Volume 1: Introduction to the Intel® Itanium® Architecture

2.6.3

The process of determining at compile time the relationship between memory addresses is called
disambiguation. In the example above, if | d_addr and st _addr cannot be disambiguated, and if
the load were to be performed prior to the store, then the load would be data specul ative with
respect to the store. If memory addresses overlap during execution, a data-speculative load issued
before the store might return a different value than aregular load issued after the store. Therefore
anal ogous to control speculation, when the compiler data speculates aload, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap has occurred
and if so it branchesto recovery code. The code sequence above now translates into:

/* off critical path */
al oad(l d_addr, target)

/* other operations including uses of target */
st ore(st_addr, data)

acheck(target, recovery_addr)

use(target)

Predication

Predication is the conditional execution of instructions. Conditional execution is implemented
through branches in traditiona architectures. The Itanium architecture implements this function
through the use of predicated instructions. Predication removes branches used for conditional
execution resulting in larger basic blocks and the elimination of associated mispredict penalties.

Toillustrate, an unpredicated instruction
rli=r2+r3

when predicated, would be of the form
if (p5) r1 =r2+r3

In this example p5 is the controlling predicate that decides whether or not the instruction executes
and updates state. If the predicate value is true, then the instruction updates state. Otherwise it
generally behaves like anop. Predicates are assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a
control dependency to a data dependency. Consider the original code:

if (a>b)

1
else d f

c=c+
d* e+
The branch at (a>b) can be avoided by converting the code above to the predicated code:
pT, pF = conpare(a>b)

if (pT) c c +1
if (pF) d=d * e +f

The predicate pT is set to 1 if the condition evaluatesto true, and to O if the condition evaluates to
false. The predicate pF isthe complement of pT. The control dependency of theinstructionsc = ¢
+ landd = d * e + f onthebranch with the condition (a>b) isnow converted into adata
dependency on conpar e(a>b) through predicates pT and pF (the branch is eliminated). An added

Volume 1: Introduction to the Intel® Itanium® Architecture 1:13

2.7

2.8

1:14

intel.

benefit isthat the compiler can schedule theinstructions under pT and pF to executein parallel. Itis
also worth noting that there are several different types of compare instructions that write predicates
in different mannersincluding unconditional compares and parallel compares.

Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at procedure call
and return interfaces through compiler-controlled renaming. At acall site, anew frame of registers
isavailableto the called procedure without the need for register spill and fill (either by the caller or
by the callee). Register access occurs by renaming the virtual register identifiersin the instructions
through a base register into the physical registers. The callee can fredy use available registers
without having to spill and eventually restore the caller’sregisters. The callee executesan al | oc
instruction specifying the number of registersit expectsto use in order to ensure that enough
registers are available. If sufficient registers are not available (stack overflow), theal | oc stallsthe
processor and spillsthe caller’s registers until the requested number of registers are available.

At the return site, the base register isrestored to the value that the caller was using to access
registers prior to the call. Some of the caller’s registers may have been spilled by the hardware and
not yet restored. In this case (stack underflow), the return stalls the processor until the processor has
restored an appropriate number of the caller’sregisters. The hardware can exploit the explicit
register stack frame information to spill and fill registers from the register stack to memory at the
best opportunity (independent of the calling and called procedures).

Branching

In addition to removing branches through the use of predication, several mechanisms are provided
to decrease the branch misprediction rate and the cost of the remaining mispredicted branches.
These mechanisms provide ways for the compiler to communicate information about branch
conditions to the processor.

Branch predict instructions are provided which can be used to communicate an early indication of
the target address and the location of the branch. The compiler will try to indicate whether a branch
should be predicted dynamically or statically. The processor can use this information to initialize
branch prediction structures, enabling good prediction even the first time a branch is encountered.
Thisis beneficial for unconditional branches or in situations where the compiler has information
about likely branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch predict
instructions provide an indication of which register will be used in situations when the target
address can be computed early. A branch predict instruction can also signal that an indirect branch
is aprocedure return, enabling the efficient use of call/return stack prediction structures.

Special loop-closing branches are provided to accel erate counted loops and modul o-scheduled
loops. These branches and their associated branch predict instructions provide information that
allows for perfect prediction of loop termination, thereby eliminating costly mispredict penalties
and areduction of the loop overhead.

Volume 1: Introduction to the Intel® Itanium® Architecture

2.9

2.10

2.11

2.12

2.12.1

Register Rotation

Modulo scheduling of aloop is analogous to hardware pipelining of afunctional unit since the next
iteration of the loop starts before the previous iteration has finished. Theiteration is split into stages
similar to the stages of an execution pipeline. Modulo scheduling allows the compiler to execute
loop iterationsin parallel rather than sequentially. The concurrent execution of multiple iterations
traditionally requires unrolling of the loop and software renaming of registers. The Itanium
architecture allows the renaming of registers which provide every iteration with its own set of
registers, avoiding the need for unrolling. This kind of register renaming is called register rotation.
Theresult isthat software pipelining can be applied to amuch wider variety of loops - both small as
well aslarge with significantly reduced overhead.

Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full |EEE support for the single,
double, and double-extended (80-hit) data types. Some extensions, such as afused multiply and add
operation, minimum and maximum functions, and aregister file format with alarger range than the
double-extended memory format, are also included. 128 floating-point registers are defined. Of
these, 96 registers are rotating (not stacked) and can be used to modulo schedule loops compactly.
Multiple floating-point status registers are provided for specul ation.

The Itanium architecture has parallel FP instructions which operate on two 32-bit single precision
numbers, resident in a single floating-point register, in parallel and independently. These
instructions significantly increase the single precision floating-point computation throughput and
enhance the performance of 3D intensive applications and games.

Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers as
concatenations of eight 8-bit, four 16-bit, or two 32-bit elements. These instructions operate on
each element in parallel, independent of the others. They are useful for creating high performance
compression/decompression algorithms that are used by applications which have sound and video.
Itanium multimedia instructions are semantically compatible with HP’'s MAX-2 multimedia
technology and Intel’s MM X technology instructions and Streaming SIMD Extensions instruction
technol ogy.

Intel® Itanium® System Architecture Features

Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space (MAS) model
with the following characteristics:

Volume 1: Introduction to the Intel® Itanium® Architecture 1:15

2.12.2

2.12.3

2.12.4

1:16

intel.

Protection is enforced among processes by placing each process within a unique address space.
Trandation L ookaside Buffers (TLBs), which hold virtual to physical mappings, often need to be
flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared libraries. Most
operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively use virtua
aliases to map physical memory locations into the address spaces of multiple processes. Virtua
aliases create multiple TLB entries for the same physical dataleading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into severa regions. Region
identifiers associated with each region are used to tag translations to a given address space. On a
process switch, region identifiers uniquely identify the set of translations belonging to a process,
thereby avoiding TLB flushes. Region identifiers also provide aunique intermediate virtual address
that help avoid thrashing problemsin virtual-indexed caches and TL Bs. Regions provide efficient
global/shared areas between processes, while reducing the occurrences of virtual aliasing.

Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much of the
current design work on future 64-bit operating systems. As operating systems (and other large,
complex programs like databases) migrate from monolithic programs into cooperating subsystems,
an SA S architecture becomes an important performance differentiation in future systems. The SAS
or hybrid environments enable a more efficient use of hardware resources.

Common mechanisms are used in both SAS and MAS models such as page level accessrightsto
enforce protection, although the reliance on the feature set will differ under each model. While
most of the architected features are utilized in each model, protection keys exist to enable asingle
global address space operating environment.

System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory attributes, locking
primitives, cache coherency, and memory ordering model work together to allow the efficient
sharing of data in a multiprocessor environment. In addition, the Itanium architecture enableslow
latency fault, trap, and interrupt handlers along with light-weight domain crossings. Performance
analysisis aided by theinclusion of several performance monitors, and mechanisms to support
software profiling.

System Security and Supportability

Security and supportability result from a number of primitives which provide avery powerful
run-time and debug environment. The protection model includes four protection rings and enables
increased system integrity by offering a more sophisticated protection scheme than has generaly
been avail able. The machine check model allows detail ed information to be provided describing the
type of error involved and supports recovery for many types of errors. Several mechanisms are
provided for debugging both system and application software.

Volume 1: Introduction to the Intel® Itanium® Architecture

intel.

2.13 Terminology

This following terms are used in the remainder of this document:

 [tanium Instruction Set — The Itanium architecture defines the 64-bit instruction set
extensions to the | A-32 architecture.

« 1A-32 Architecture — The 32-bit and 16-bit Intel architecture as described in the Pentium®
Processor Programmer’s Reference Manual and the Pentium® Pro Processor Programmer’s
Reference Manual.

* Itanium System Environment — System environment that supports the execution of both
IA-32 and Itanium-based code.

* |A-32 System Environment — Operating system privileged environment as defined by the
Pentium® Processor Programmer’s Reference Manual and the Pentium® Pro Processor
Programmer’s Reference Manual. Resources include virtual paging, control registers,
debugging, performance monitoring, machine checks, and the set of privileged instructions.

* Platform — Application and operating system resources external to the processor such as:
memory maps, external devices (e.g. DMA), keyboard controllers, buses (e.g. PCl), option
cards, interrupt controllers, bridges, etc.

* Itanium-based Firmware — The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

» Processor Abstraction Layer (PAL) — Thefirmware layer which abstracts processor features
that are implementation dependent.

» System Abstraction Layer (SAL) —Thefirmware layer which abstracts platform features that
are implementation dependent.

Volume 1: Introduction to the Intel® Itanium® Architecture 1:17

1:18

Volume 1: Introduction to the Intel® Itanium® Architecture

intel.

Execution Environment 3

3.1

3.1.1

The architectural state consists of registers and memory. The results of instruction execution
become architecturally visible according to a set of execution sequencing rules. This chapter
describes the application architectural state and the rules for execution sequencing. See Chapter 6
for details on 1A-32 instruction set execution.

Application Register State

Thefollowing isalist of the registers available to application programs (see Figure 3-1):

General Registers (GRs) — General purpose 64-bit register file, GRO — GR127. |A-32 integer
and segment registers are contained in GR8 - GR31 when executing | A-32 instructions.
Floating-point Registers (FRs) — Floating-point register file, FRO — FR127. 1A-32
floating-point and multi-media registers are contained in FR8 - FR31 when executing |A-32
instructions.

Predicate Registers (PRs) — Single-bit registers, used in predication and branching, PRO —
PR63.

Branch Registers (BRs) — Registers used in branching, BRO — BRY7.

Instruction Paointer (I P) — Register which holds the bundle address of the currently executing
instruction, or byte address of the currently executing 1A-32 instruction.

Current Frame Marker (CFM) — State that describes the current general register stack
frame, and FR/PR rotation.

Application Registers (ARs) — A collection of special-purpose registers.

Performance Monitor Data Registers (PM D) — Data registers for performance monitor
hardware.

User Mask (UM) —A set of single-bit values used for alignment traps, performance monitors,
and to monitor floating-point register usage.

Processor Identifiers (CPUID) — Registers that describe processor

implementati on-dependent features.

IA-32 application register state is entirely contained within the larger Itanium application register
set and is accessible by Itanium instructions. 1A-32 instructions cannot access the Itanium register
set. See “1A-32 Application Register State Model” on page 1:102 for details on 1A-32 register
assignments.

Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An accessto areserved register
raises an lllega Operation fault. A read of anignored register returns zero. Software may write
any valueto an ignored register and the hardware will ignore the value written. In variable-sized
register sets, registers which are unimplemented in a particular processor are also reserved
registers. An access to one of these unimplemented registers causes a Reserved Register/Field fault.

Volume 1: Execution Environment 1:19

Figure 3-1. Application Register Model

APPLICATION REGISTER SET
General Registers Floating-point Registers Predicates Branch Registers Application Registers
63 ohats 81 0 63 0 63 0
aro 0 fro +0.0 Pro[d brg arg KRO
ary fry +1.0 pry bry]
ar, fry pry br, ar; KR7
grse ‘ ar %
3 Prus[b] s pes
gra1 M frag Prie 17
oy } frog ar;g | BSPSTORE
Instruction Pointer 2719 RNAT
63 0
P ary; FCR
Pres[] arg, EFLAG
arys CsD
Current Frame Marker
37 § alyg SSD
. __CFM aryy CFLG
. 107 aryg FSR
grip7 [] arog FIR
Usesr Mglsk argo| FDR
- ars
arzg UNAT
Advanced Load - Performance Monitor ary EPSR
Address Table Processor Identifiers Data Registers
., 63 0 63 0 aryy ITC
] Sl ma—
: cpuidy ‘ pmd, argy PES
: args LC
1 epuidg [) pmdp[] el EC
[]

Table 3-1.

1:20

Within defined registers, fields which are not defined are either reserved or ignored. For reserved
fidds, hardware will always return a zero on aread. Software must always write zeros to these
fields. Any attempt to write a non-zero value into areserved field will raise a Reserved Register/
Field fault. Reserved fields may have a possible future use.

For ignored fields, hardware will return a0 on aread, unless noted otherwise. Software may write
any value to these fields since the hardware will ignore any value written. Except where noted
otherwise some |A-32 ignored fields may have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

Reserved and Ignored Registers and Fields

Type Read Write
Reserved register lllegal Operation fault lllegal Operation fault
Ignored register 0 Value written is discarded
Reserved field 0 Write of non-zero causes Reserved Reg/Field fault
Ignored field 0 (unless noted otherwise) Value written is discarded

Volume 1: Execution Environment

3.1.2

3.1.3

For defined fields in registers, values which are not defined are reserved. Software must always
write defined values to these fields. Any attempt to write areserved value will raise a Reserved
Register/Field fault. Certain registers are read-only registers. A write to aread-only register raises
an lllegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future processors that
software treat these fields as having afuture, though unknown effect. Software should follow these
guidelines when dealing with reserved fields:

« Do not depend on the state of any reserved fields. Mask all reserved fields before testing.
« Do not depend on the state of any reserved fields when storing to memory or aregister.
« Do not depend on the ability to retain information written into reserved or ignored fields.

» Where possible reload reserved or ignored fields with values previously returned from the
same register, otherwise load zeros.

General Registers

A set of 128 (64-bit) general registers provide the centra resource for al integer and integer
multimedia computation. They are numbered GRO through GR127, and are available to all
programs at al privilege levels. Each general register has 64 bits of normal data storage plus an
additional bit, the NaT bit (Not a Thing), which is used to track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the
static general registers. Of these, GRO is special inthat it always reads as zero when sourced as an
operand, and attempting to write to GR 0 causes an Illegal Operation fault. General registers 32
through 127 are termed the stacked general registers. The stacked registers are made available to
aprogram by allocating a register stack frame consisting of a programmable number of local and
output registers. See “Register Stack” on page 1:39 for adescription. A portion of the stacked
registers can be programmatically renamed to accelerate loops. See M odul o-scheduled Loop
Support” on page 1:66.

General registers 8 through 31 contain the 1A-32 integer, segment selector and segment descriptor
registers. See “1A-32 General Purpose Registers’” on page 1:106 for details on 1A-32 register
assignments.

Floating-point Registers

A set of 128 (82-hit) floating-point registersare used for al floating-point computation. They are
numbered FRO through FR127, and are availableto all programs at all privilege levels. The
floating-point registers are partitioned into two subsets. Floating-point registers 0 through 31 are
termed the static floating-point registers. Of these, FRO and FR1 are special. FRO dways reads as
+0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of theseisused asa
destination, afault is raised. Deferred speculative exceptions are recorded with a special register
value called NaT Val (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled Loop
Support” on page 1:66.

Volume 1: Execution Environment 1:21

3.1.4

3.1.5

3.1.6

3.1.7

1:22

intel.

Floating-point registers 8 through 31 contain the | A-32 floating-point and multi-media registers
when executing | A-32 instructions. For details, See “.IA-32 Floating-point Registers” on
page 1:114.

Predicate Registers

A set of 64 (1-bit) predicate registersare used to hold the results of compare instructions. These
registers are numbered PRO through PR63, and are available to all programs at all privilege levels.
These registers are used for conditional execution of instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are termed
the static predicate registers. Of these, PRO alwaysreadsas ‘1’ when sourced as an operand, and
when used as a destination, the result is discarded. The static predicate registers are also used in
conditional branching. See “Predication” on page 1:45.

Predicate registers 16 through 63 are termed the rotating predicate registers. These registers can
be programmatically renamed to accelerate loops. See “ M odul o-scheduled Loop Support” on
page 1:66.

Branch Registers

A set of 8 (64-hit) branch registers are used to hold branching information. They are numbered
BR Othrough BR 7, and are availableto all programsat all privilege levels. The branch registersare
used to specify the branch target addresses for indirect branches. For more information see “Branch
Instructions’ on page 1:65.

Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing
instruction. The I P can be read directly with amov ip instruction. The |P cannot be directly written,
but is incremented as instructions are executed, and can be set to a new value with a branch.
Because instruction bundles are 16 bytes, and are 16-byte aligned, the least significant 4 bits of IP
are always zero. See “ Instruction Encoding Overview” on page 1:32. For | A-32 instruction set
execution, | P holds the zero extended 32-bit virtual linear address of the currently executing 1A-32
instruction. 1A-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are
preserved for 1A-32 instruction set execution. See “1A-32 Instruction Pointer” on page 1:107 for

| A-32 instruction set execution details.

Current Frame Marker

Each general register stack frame is associated with aframe marker. The frame marker describes
the state of the general register stack. The Current Frame Marker (CFM) holds the state of the
current stack frame. The CFM cannot be directly read or written (see “ Register Stack” on

page 1:39).

Volume 1: Execution Environment

3.1.8

The frame markers contain the sizes of the various portions of the stack frame, plus three Register
Rename Base values (used in register rotation). The layout of the frame markersis shownin
Figure 3-2 and the fields are described in Table 3-2.

On acall, the CFM is copied to the Previous Frame Marker field in the Previous Function State
register (see Section 3.1.8.11). A new value iswritten to the CFM, creating a new stack frame with
no locals or rotating registers, but with a set of output registers which are the caller’s output
registers. Additionally, all Register Rename Base registers (RRBS) are set to 0. See
“Modulo-scheduled Loop Support” on page 1:66.

Figure 3-2. Frame Marker Format

37 3231 25 24 18 17 14 13 0
rrb.pr rrb.fr rrb.gr ‘ sor ‘ sol sof
6 7 7 4 7 7
Table 3-2. Frame Marker Field Description

Field Bit Range Description
sof 6:0 Size of stack frame
sol 13:7 Size of locals portion of stack frame
sor 17:14 Size of rotating portion of stack frame

(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers
rrb.fr 31:25 Register Rename Base for floating-point registers
rrb.pr 37:32 Register Rename Base for predicate registers

Application Registers

The application register file includes special-purpose data registers and control registers for
application-visible processor functions for both the 1A-32 and Itanium instruction set architectures.
These registers can be accessed by Itanium-based applications (except where noted). Table 3-3
contains a list of the application registers.

Table 3-3. Application Registers

Execution Unit

AR 21 FCR

IA-32 Floating-point Control Register

AR 24 EFLAGP IA-32 EFLAG register

AR 25 CsD IA-32 Code Segment Descriptor / Compare and
Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLG? IA-32 Combined CRO and CR4 register

Register Name Description Type
AR 0-7 KR 0-72 Kernel Registers 0-7 M
prets] meased |
AR 16 RSC Register Stack Configuration Register
AR 17 BSP Backing Store Pointer (read-only)
AR 18 BSPSTORE Backing Store Pointer for Memory Stores
AR 19 RNAT RSE NaT Collection Register

Volume 1: Execution Environment

1:23

Table 3-3.

3.1.8.1

3.1.8.2

1:24

intel.

Application Registers (Continued)

Register Name Description Execution Unit

Type

AR 28 FSR IA-32 Floating-point Status Register M (cont'd)

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 32 CCVv Compare and Exchange Compare Value Register

AR 36 UNAT User NaT Collection Register

AR 40 FPSR Floating-point Status Register

AR 44 ITC Interval Time Counter

AR 48 — AR 63 Ignored Morl

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 112 — AR 127 Ignored Mor |

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are
always allowed.

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32
System EFLAG Register” on page 2:217 for details.

Application registers can only be accessed by either aM or | execution unit. Thisis specified in the
last column of the table. The ignored registers are for future backward-compatible extensions.

See Section 10.2, “ System Register Model” on page 2:213 for the field definition of each |A-32
application register.

Kernel Registers (KR 0-7 — AR 0-7)

Eight user-visible 64-hit data kernel registers are provided to convey information from the
operating system to the application. These registers can be read at any privilege level but are
writable only at the most privileged level. KRO - KR2 are also used to hold additional 1A-32
register state when the 1A-32 instruction set is executing. See Section 10.1, “Instruction Set
Transitions” on page 2:213 for register details when calling |A-32 code.

Register Stack Configuration Register (RSC — AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation
of the Register Stack Engine (RSE). Refer to Chapter 6, “ Register Stack Enging” in Volume 2 for
details. The RSC format is shown in Figure 3-3 and the field description is contained in Table 3-4.
Instructions that modify the RSC can never set the privilege level field to a more privileged level
than the currently executing process.

Volume 1: Execution Environment

intel.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0
L T ool o [moce]
34 14 11 1 2 2
Table 3-4. RSC Field Description
Field Bit Range Description
mode 1:0 RSE mode — controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as lazy.
Bit Pattern RSE Mode Bit 1: Bit O:
eager loads eager stores
00 enforced lazy disabled disabled
10 load intensive enabled disabled
01 store intensive disabled enabled
11 eager enabled enabled
pl 3:2 RSE privilege level — loads and stores issued by the RSE are at this privilege
level
be 4 RSE endian mode — loads and stores issued by the RSE use this byte ordering
(O: little endian; 1: big endian)
loadrs 29:16 RSE load distance to tear point — value used in the | oadr s instruction for
synchronizing the RSE to a tear point

3.1.8.3 RSE Backing Store Pointer (BSP —AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of
the location in memory which is the save location for GR 32 in the current stack frame. See
Section 6.1, “RSE and Backing Store Overview” on page 2:115.

Figure 3-4. BSP Register Format
63 3 2 1 0
‘ pointer
61 3

3.1.84 RSE Backing Store Pointer for Memory Stores (BSPSTORE —AR 18)

The RSE Backing Store Pointer for memory storesis a 64-hit register (Figure 3-5). It holds the
address of the location in memory to which the RSE will spill the next value. See Section 6.1, “RSE
and Backing Store Overview” on page 2:115.

Figure 3-5. BSPSTORE Register Format

63 3 2 1 0
pointer ‘ ig ‘
61 3

Volume 1: Execution Environment 1:25

3.1.8.5

intel.

RSE NaT Collection Register (RNAT — AR 19)

The RSE NaT Coallection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily
hold NaT bitswhen it is spilling general registers. Bit 63 always reads as zero and ignores all
writes. See Section 6.1, “RSE and Backing Store Overview” on page 2:115.

Figure 3-6. RNAT Register Format

3.1.8.6

3.1.8.7

3.1.8.8

3.1.8.9

3.1.8.10

1:26

63 0
‘ ig ‘ RSE NaT Collection
1 63

Compare and Store Data register (CSD - AR 25)

The Compare and Store Data register is a 64-bit register that provides datato be stored by the
Itanium st 16 and cnp8xchgl6 instructions, and receives dataloaded by the Itanium | d16
instruction. For 1A-32 execution, this register is the | A-32 Code Segment Descriptor. See Section
6.2.3, “IA-32 Segment Registers.”

Compare and Exchange Value Register (CCV —AR 32)

The Compare and Exchange Value Register is a64-bit register that contains the compare value used
as the third source operand in the Itanium cnpxchg instruction.

User NaT Collection Register (UNAT — AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when
saving and restoring general registerswiththel d8. fill and st 8. spil | instructions.

Floating-point Status Register (FPSR —AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags,
and other control bits for Itanium floating-point instructions. FPSR does not control or reflect the
status of 1A-32 floating-point instructions. For more details on the FPSR, see “ Floating-point Status
Register” on page 1:78.

Interval Time Counter (ITC —AR 44)

The Interval Time Counter (ITC) isa 64-hit register which counts up at a fixed relationship to the
input clock to the processor. Multiple reads of the ITC are not guaranteed to return different values
dueto the fact that the ITC may be clocked at a somewhat lower frequency then the instruction
execution frequency. This clocking relationship is described in the PAL procedure

PAL_FREQ RATIOS on page 2:328. Applications can directly sample the ITC for time-based
calculations. System software can secure the interval time counter from non-privileged access.
When secured, aread of the ITC at any privilege level other than the most privileged causes a
Privileged Register fault. The ITC can be written only at the most privileged level. The IA-32 Time
Stamp Counter (TSC) issimilar to ITC counter. ITC can directly beread by the IA-32r dt sc (read

Volume 1: Execution Environment

time stamp counter) instruction. System software can secure the ITC from non-privileged |A-32
access. When secured, an 1A-32 read of the ITC at any privilege level other than the most
privileged raises an | A-32_Exception(GPfault).

3.1.8.11 Previous Function State (PFS — AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame Marker (pfm),
Previous Epilog Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the PFS
format and Table 3-5 describesthe PFSfields. These values are copied automatically on acall from
the CFM register, Epilog Count Register (EC) and PSR.cpl (Current Privilege Level in the
Processor Status Register) to accelerate procedure calling.

Whenabr.call orbrl.call isexecuted, the CFM, EC, and PSR.cpl are copied to the PFS and
the old contents of the PFS are discarded. When abr . r et is executed, the PFSis copied to the
CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would increase the privilege level.
For more details on the PSR see Chapter 3, “ System State and Programming Model” in Volume 2.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same
layout as the EC (see Section 3.1.8.13).

Figure 3-7. PFS Format

63 62 61 58 57 52 51 38 37 0
oo] vec [

2 4 6 14 38

Table 3-5. PFS Field Description
Field Bit Range Description

pfm 37:0 Previous Frame Marker
pec 57:52 Previous Epilog Count
ppl 63:62 Previous Privilege Level

3.1.8.12 Loop Count Register (LC — AR 65)

The Loop Count register (LC) isa 64-bit register used in counted loops. LC is decremented by
counted-loop-type branches.

3.1.8.13 Epilog Count Register (EC —AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) stagesin
modul o-scheduled loops. See “Modulo-scheduled Loop Support” on page 1:66. A diagram of the
EC register is shown in Figure 3-8.

Figure 3-8. Epilog Count Register Format

63 6 5 0
ig epilog count
58 6

Volume 1: Execution Environment 1:27

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be
accessible at all privilege levels. Performance monitor data can be directly sampled from within the
application. The operating system is allowed to secure user-configured performance monitors.
Secured performance counters return zeros when read, regardless of the current privilege level. The
performance monitors can only be written at the most privileged level. Refer to Chapter 7,
“Debugging and Performance Monitoring” in Volume 2 for details. Performance monitors can be
used to gather performance information for the execution of both | A-32 and Itanium instruction
Sets.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to application
programs. The user mask controls memory access alignment, byte-ordering and user-configured
performance monitors. It aso records the modification state of floating-point registers. Figure 3-9
show the user mask format and Table 3-6 describes the user mask fields. For more details on the
PSR refer to “Processor Status Register (PSR)” on page 2:18.

Figure 3-9. User Mask Format
5 4 3 2 1 0

‘mfh‘mfl‘ ac ‘ up ‘ be !
1

1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Range Description

be 1 Big-endian memory access enable

(controls loads and stores but not RSE memory accesses)

0: accesses are done little-endian

1: accesses are done big-endian

This bit is ignored for IA-32 data memory accesses. |A-32 data references are always
performed little-endian.

up 2 User performance monitor enable (including 1A-32)
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including 1A-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2.. £31) floating-point registers written — This bit is set to one when an Intel®
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2 for
conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written — This bit is set to one when an Intel®
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2 for
conditions when IA-32 instructions set this bit.

1:28 Volume 1: Execution Environment

intel.

3.1.11 Processor Identification Registers

Application level processor identification information isavailablein aregister file termed: CPUID.
Thisregister fileis divided into afixed region, registers 0 to 4, and a variable region, register 5 and
above. The CPUID[3].number field indicates the maximum number of 8-byte registers containing
processor specific information.

The CPUID registers are unprivileged and accessed using the indirect nov (from) instruction. All
registers beyond register CPUID[3].number are reserved and raise a Reserved Register/Field fault
if they are accessed. Writes are not permitted and no instruction exists for such an operation.

Vendor information islocated in CPUID registers 0 and 1 and specify avendor name, in ASCI|I, for
the processor implementation (Figure 3-10). All bytes after the end of the string up to the 16th byte
are zero. Earlier ASCI| characters are placed in lower number register and lower numbered byte
positions.
Figure 3-10. CPUID Registers 0 and 1 —Vendor Information
63 0
CPUID[] | | | | | | | | byteo |

CPUID[l]‘ byte 15 \ \ \ \ ‘ ‘ ‘ ‘
64

CPUID register 2 isan ignored register (reads from this register return zero).

CPUID register 3 contains severa fields indicating version information related to the processor
implementation. Figure 3-11 and Table 3-7 specify the definitions of each field.

Figure 3-11. CPUID Register 3 —Version Information
63 40 39 32 31 24 23 16 15 8 7 0

24 8 8 8 8 8

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision

number that the processor implements.

CPUID register 4 provides general application-level information about processor features. As
shown in Figure 3-12, it isa set of flag bits used to indicate if a given feature is supported in the
processor model. When a bit is one the feature is supported; when 0 the feature is not supported.
The defined feature bits in the current architecture are listed in Table 3-8. As new features are
added (or removed) from future processor models the presence (or removal) of new features will be
indicated by new feature bits.

Volume 1: Execution Environment 1:29

intel

@

Thisregister does not contain 1A-32 instruction set features. |A-32 instruction set features can be
acquired by the |A-32 cpuid instruction.

Figure 3-12. CPUID Register 4 —General Features/Capability Bits
63 2 1 0

Table 3-8. CPUID Register 4 Fields

Field Bits Description
b 0 Processor implements the long branch (brl) instructions.
sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:88).

3.2 Memory

This section describes an Itanium-based application program’s view of memory. Thisincludes a
description of how memory is accessed, for both 32-bit and 64-bit applications. The size and
alignment of addressable unitsin memory is also given, along with a description of how byte
ordering is handled.

The system view of memory and of virtual memory management is given in Chapter 4,
“Addressing and Protection” in Volume 2. The 1A-32 instruction set view of memory and virtual
memory management is defined in Section 10.6, “ System Memory Model” on page 2:231.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a
hardware mode is supported architecturally. Pointers which are 32 bitsin memory are loaded and
manipulated in 64-bit registers. Software must explicitly convert 32-bit pointersinto 64-bit pointers
before use. For details on 32-bit addressing, refer to “32-bit Virtual Addressing” on page 2:60.

3.2.2 Addressable Units and Alignment

1:30

Memory can be addressed in unitsof 1, 2, 4, 8, 10 and 16 bytes.

It isrecommended that all addressable units be stored on their naturally aligned boundaries.
Hardware and/or operating system software may have support for unaligned accesses, possibly
with some performance cost. 10-byte floating-point values should be stored on 16-byte aligned
boundaries.

Bitswithin larger units are always numbered from 0 starting with the least-significant bit.
Quantities loaded from memory to general registers are always placed in the least-significant
portion of the register (loaded values are placed right justified in the target generd register).

Instruction bundles (3 instructions per bundl€) are 16-byte units that are always aligned on 16-byte
boundaries.

Volume 1: Execution Environment

3.2.3

Byte Ordering

The UM .be bit in the User Mask controls whether loads and stores use little-endian or big-endian
byte ordering for Itanium-based code. When the UM .be bit is 0, larger-than-byte loads and stores
arelittle endian (lower-addressed bytes in memory correspond to the lower-order bytesin the
register). When the UM .be bit is 1, larger-than-byte |oads and stores are big endian
(lower-addressed bytes in memory correspond to the higher-order bytes in the register). Load byte
and store byte are not affected by the UM.be bit. The UM.be bit does not affect instruction fetch,
IA-32 references, or the RSE. Instructions are always accessed by the processor as little-endian
units. When instructions are referenced as big-endian data, the instruction will appear reversed in a
register.

Figure 3-13 shows various loads in little-endian format. Figure 3-14 shows various loads in big
endian format. Stores are not shown but behave similarly.

Figure 3-13. Little-endian Loads

Figure 3-14. Big-endian Loads

Memory 63 Registers 0
Add(geSS?aO oipy=>|o]ofl ofofo]o|o]b]
1 b 6
2 ¢ to2f2)=>| oo ofofo]o] d]c|
3 d
4 e 63 0
5 - oa=> ool ofo|n]g| f]e]
6 9 63
7 h tog]=> | h|[g| t]ef[d|c| b|a]

000718

Memory 63 Registers

Add(gess7ao toif=>| oo ofofo]o] o]b]|
1 b

63 0
2 c to22j=> ool ofofo]o| c]|ad]
3 d
4 e 63
. : toaf4l=>| ool ofofe|f]| g]|h]
6 9 63 0
4 h ogoj=>|a|b|cld|le]f]g]n]

000720

Volume 1: Execution Environment 1:31

3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be executed on one
or more execution unit types. Table 3-9 lists the instruction types and the execution unit type on
which they are executed:

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type
A Integer ALU l-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended I-unit/B-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a
bundleisdepicted in Figure 3-15.

Figure 3-15. Bundle Format

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘ template ‘
41 41 41 5

During execution, architectural stopsin the program indicate to the hardware that one or more
instructions before the stop may have certain kinds of resource dependencies with one or more
instructions after the stop. A stop is present after each slot having adouble line to theright of it in
Table 3-10. For example, template 00 has no stops, while template 03 has a stop after slot 1 and
another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to
execution unit types. Not al possible mappings of instructions to units are available. Table 3-10
indi cates the defined combinations. The three rightmost columns correspond to the three instruction
slotsinabundle. Listed within each column is the execution unit type controlled by that instruction
slot.

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit l-unit l-unit
01 M-unit l-unit l-unit ||
02 M-unit l-unit l-unit ‘
03 M-unit l-unit l-unit ||
04 M-unit L-unit X-unit? ‘
05 M-unit L-unit X-unit?
06
07
08 M-unit M-unit l-unit
09 M-unit M-unit l-unit ||
0A M-unit || M-unit l-unit ‘

1:32 Volume 1: Execution Environment

intel.

Table 3-10. Template Field Encoding and Instruction Slot Mapping (Continued)

3.4

Template Slot 0 ‘ Slot 1 Slot 2 ‘
[0]] M-unit || M-unit l-unit ||
oC M-unit F-unit l-unit |
oD M-unit F-unit l-unit |
OE M-unit M-unit F-unit |
OF M-unit M-unit F-unit
10 M-unit l-unit
11 M-unit l-unit
12 M-unit
13 M-unit
14
15
16
17
18
19
1A
1B
1Cc
1D
1E
1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may
encode break.i and nop.i in addition to any X-unit instruction.

Extended instructions, used for long immediate integer and long branch instructions, occupy two
instruction slots. Depending on the major opcode, extended instructions execute on a B-unit (long
branch/call) or an I-unit (all other L+X instructions).

Instruction Sequencing Considerations

Itanium-based code consists of a sequence of instructions and stops packed in bundles. Instruction
execution is ordered as follows:

» Bundles are ordered from lowest to highest memory address. Instructions in bundles with
lower memory addresses are considered to precede instructionsin bundles with higher memory
addresses. The byte order of each bundle in memory islittle-endian (the template field is
contained in byte O of abundl€).

« Within abundle, instructions are ordered from instruction slot O to instruction slot 2 as
specified in Figure 3-15 on page 1:32.

Instruction execution consists of four phases:
Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)
3. Perform the specified operation (execute)
4. Update architectural state, if necessary (update)

Volume 1: Execution Environment 1:33

1:34

intel.

Aninstruction group is a sequence of instructions starting at a given bundle address and slot
number and including al instructions at sequentialy increasing slot numbers and bundle addresses
up to the first stop, taken branch, Break Instruction fault due to abr eak. b, or Illegal Operation
fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type opcode space. For the
instructions in an instruction group to have well-defined behavior, they must meet the ordering and
dependency requirements described bel ow.

For the purpose of clarification, the following do not end instruction groups:
* break instructions other than br eak. b (br eak. f, br eak. i , br eak. m br eak. x)
 check instructions (chk. s, chk. a, f chkf)
 rfi instructions not followed by a stop
* brl instructions not followed by a stop

« interruptions other than a Break Instruction fault dueto abr eak. b or an Illegal Operation fault
due to a Reserved or Reserved if PR[gp] is 1 encoding in the B-type opcode space

Thus, even if one of the above causes a change in control flow, the instructions at sequentially
increasing addresses beyond the location of the change in control flow up to the next true end of the
instruction group had the change of control flow not occurred, can still cause undefined valuesto be
seen at the target of the change of control flow, if they cause a dependency violation. There are
never, however, any dependencies between the instructions at the target of the change in control
flow and those preceding the change in control flow, even for the above cases.

If the instructions in instruction groups meet the resource-dependency requirements, then the
behavior of aprogram will be as though each individual instruction is sequenced through these
phasesin the order listed above. The order of a phase of a given instruction relative to any phase of
aprevious instruction is prescribed by the instruction sequencing rules below.

» Thereisno apriori relationship between the fetch of an instruction and the read, execute, or
update of any dynamically previousinstruction. Thesync.i andsrl z.i instructionscan be
used to enforce a sequential relationship between the fetch of all dynamically succeeding
instructions and the update of all dynamically previous instructions.

» Between instruction groups, every instruction in a given instruction group will behave as
though its read occurred after the update of all the instructions from the previous instruction
group. All instructions are assumed to have unit latency. Instructions on opposing sides of a
stop are architecturally considered to be separated by at |east one unit of latency.

Some system state updates require more stringent requirements than those described here. See
Section 3.2, “Serialization” on page 2:13 for details.

 Within an instruction group, every instruction will behave as though its read of the memory
and ALAT state occurred after the update of the memory and ALAT state of all prior
instructions in that instruction group.

« Within an instruction group, every instruction will behave as though its read of the register
state occurred before the update of the register state by any instruction (prior or later) in that
instruction group, except as noted in the Register dependencies and Memory dependencies
described below.

The ordering rules above form the context for register dependency restrictions, memory
dependency restrictions and the order of exception reporting. These dependency restrictions apply
only between instructions whose resource reads and writes are not dynamically disabled by
predication.

Volume 1: Execution Environment

* Register dependencies: Within an instruction group, read-after-write (RAW) and
write-after-write (WAW) register dependencies are not allowed (except as noted in “RAW
Dependency Special Cases” on page 1:36 and “WAW Dependency Special Cases’ on
page 1:37). Write-after-read (WAR) register dependencies are allowed (except asnoted in
“WAR Dependency Special Cases’ on page 1:37).

These dependency restrictions apply to both explicit register accesses (from the instruction’s
operands) and implicit register accesses (such as application and control registersimplicitly
accessed by certain instructions). Predicate register PRO is excluded from these register
dependency restrictions, since writes to PRO are ignored and reads always return 1 (one).

Some system state updates require more stringent regquirements than those described here. See
Section 3.2, “ Serialization” on page 2:13 for details.

* Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory
dependenciesand ALAT dependencies are allowed. A load will observe the results of the most
recent store to the same memory address. In the event that multiple stores to the same address
are present in the same instruction group, memory will contain the result of the latest store
after execution of the instruction group. A store following aload to the same address will not
affect the dataloaded by the load. Advanced loads, check |oads, advanced load checks, stores,
and memory semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR
ALAT dependencies are allowed within an instruction group and behave as described for
memory dependencies.

The net effect of the dependency restrictions stated above is that a processor may execute all (or
any subset) of the instructions within alegal instruction group concurrently or serialy with the end
result being identicd. If these dependency restrictions are not met, the behavior of the program is
undefined (see “Undefined Behavior” on page 1:38).

Exceptions are reported in instruction order. The dependency restrictions apply independent of the
presence or absence of exceptions — that is, restrictions must be satisfied whether or not an
exception occurs within an instruction group. At the point of exception delivery for a correctly
formed instruction group, al prior instructions will have completed their update of architectural
state. All subsequent instructions will not have updated architectural state. If an instruction group
violates a dependency requirement, then the update of architectural state before and after an
exception is not guaranteed (the fault handler sees an undefined value on the registersinvolved in a
dependency violation even if the exception occurs between the first and second instructions in the
violation). In the event multiple exceptions occur while executing instructions from the same
instruction group, the exception occurring on the earliest instruction will be reported.

The instruction sequencing resulting from the rules stated above istermed sequential execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order
instructions, execute instructions with non-unit latency, or even concurrently execute instructions
on opposing sides of a stop or taken branch, provided that correct sequencing is enforced and the
appearance of sequential execution is presented to the programmer.

IPisaspecia resourcein that reads and writes of 1P behave as though the instruction stream was
being executed serially, rather than in parallel. RAW dependencies on IP are allowed, and the
reader getsthe IP of the bundle in which it is contained. So, each bundle being executed in parallel
logically reads IP, incrementsit and writes it back. WAW is aso allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW dependencies
to ignored ARs are not allowed.

For more detail s on resource dependencies, see Chapter 5, “ Resource and Dependency Semantics’
in Volume 3.

Volume 1: Execution Environment 1:35

34.1

1:36

RAW Dependency Special Cases

There are four special casesin which RAW register dependencies within an instruction group are
permitted. These special casesaretheal | oc instruction, check load instructions, instructions that
affect branching, and thel d8. fil | and st 8. spi | | instructions.

Theal | oc ingtruction implicitly writes the Current Frame Marker (CFM) which isimplicitly read
by all instructions accessing the stacked subset of the general register file. Instructions that access
the stacked subset of the general register file may appear in the same instruction group as alloc and
will see the stack frame specified by theal | oc.

Note: Some instructions have RAW or WAW dependencies on resources other than CFM
affected by al | oc and are thus not allowed in the same instruction group after an al | oc:
flushrs, | oadrs, move from AR[BSPSTORE], move from AR[RNAT], br. cexi t,
br.ctop,br.wexit,br.wtop,br.call,brl.call,br.ia,br.ret,clrrrb, cover,
andrfi.See Chapter 5, “Resource and Dependency Semantics’ in Volume 3 for details.
Also note that al | oc isrequired to be the first instruction in an instruction group.

A check load instruction may or may not perform aload since it is dependent upon its
corresponding advanced load. If the check load missesthe ALAT it will execute aload from
memory. A check load and a subsequent instruction that reads the target of the check load may exist
in the same instruction group. The dependent instruction will get the new valueloaded by the check
load.

A branch may read branch registers and may implicitly read predicate registers, the LC, EC, and
PFS application registers, aswell as CFM. Except for LC, EC and predicate registers, writes to any
of these registers by a non-branch instruction will be visible to a subsequent branch in the same
instruction group. Writes to predicate registers by any non-floating-point instruction will be visible
to a subsequent branch in the sameinstruction group. RAW register dependencies within the same
instruction group are not allowed for LC and EC. Dynamic RAW dependencies where the predicate
writer is a floating-point instruction and the reader is a branch are aso not allowed within the same
instruction group. Branchesbr. cond, br. cal |, brl . cond,brl.call,br.ret andbr.ia work
like other instructions for the purposes of register dependency; i.e., if their qualifying predicateisO,
they are not considered readers or writers of other resources. Branches br . cl oop, br. cexit,
br.ctop, br. wexit,andbr. w op are exceptional in that they are aways readers or writers of
their resources, regardless of the value of their qualifying predicate. Anindirect br p isconsidered a
reader of the specified BR.

Thel ds.fill andst8. spill instructionsimplicitly access the User NaT Collection application
register (UNAT). For these instructions the restriction on dynamic RAW register dependencies with
respect to UNAT applies at the bit level. These instructions may appear in the same instruction
group provided they do not access the same bit of UNAT. RAW UNAT dependencies between

I d8.fill orst8.spill instructionsand mov ar= or mov =ar instructions accessing UNAT must
not occur within the same instruction group.

For the purposes of resource dependencies, CFM is treated as a single resource.

Volume 1: Execution Environment

3.4.2

3.4.3

3.44

WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction group are
permitted. The special cases are compare-type instructions, floating-point instructions, and the
st 8. spi | | instruction.

The set of compare-typeinstructionsincludes: cnp, cnp4,tbit,tnat,fcnp,frsqgrta,frcpa,and
f cl ass. Compare-type instructionsin the same instruction group may target the same predicate
register provided:
» The compare-type instructions are either all AND-type compares or al OR-type compares
(AND-type compares correspond to “.and” and “.andecm” completers; OR-type compares
correspond to “.or” and “.orcm” completers), or

» The compare-typeinstructions all target PRO. All WAW dependenciesfor PRO are allowed; the
compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW register
dependencies with move to PR instructions that access the same predicate registers as another
writer.

Note: The moveto PR instructions only writes those PRs indicated by its mask, but the move
from PR instructions always reads all the predicate registers.

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and the
Processor Status Register (PSR). Multiple floating-point instructions may appear in the same
instruction group since the restriction on WAW register dependencies with respect to the FPSR and
PSR do not apply. The state of FPSR and PSR after executing the instruction group will be the
logical OR of all writes.

Thest 8. spi | | instruction implicitly writesthe UNAT register. For this instruction the restriction
on WAW register dependencies with respect to UNAT applies at the bit level. Multiplest 8. spi | |
instructions may appear in the same instruction group provided they do not write the same bit of
UNAT. WAW register dependencies between st 8. spi | | instructionsand nov ar = instructions
targeting UNAT must not occur within the same instruction group.

WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type instruction and
the subsequent writing of predicate register 63 by a modulo-scheduled loop type branch (br . ct op,
br.cexit, br.wt op, or br.wexit) without an intervening stop is not allowed. Otherwise, WAR
dependencies within an instruction group are allowed.

Processor Behavior on Dependency Violations

If aprogram violates read-after-write, write-after-write or write-after-read resource dependency
rules within an instruction group, then processor behavior is undefined. Constraints on undefined
behavior are described in “Undefined Behavior” on page 1:38.

To help debug code that violates the architectural resource dependency rules, some processor
implementations may provide dependency violation detection hardware that may cause an
instruction group that contains an illegal dependency to take an Illegal Dependency fault (defined

Volume 1: Execution Environment 1:37

3.5

1:38

intel.

in Chapter 5, “Interruptions” in Volume 2). However, even in implementations that provide such
checking, software can not assume the processor will catch all dependency violations or even catch
the same violation every timeit occurs.

However, all processor models that provide dependency violation detection hardware are required
to satisfy the following dependency violation reporting constraints:

« All detected dependency violations must be reported as Illegal Dependency Faults (defined in
Chapter 5, “Interruptions” in Volume 2). When an lllegal Dependency fault istaken, the value
of the resource subject to the dependency violation is undefined. Undetected dependency
violations cause undefined program behavior as described in “Undefined Behavior” on
page 1:38.

« All detected read-after-write and write-after-write dependency violations must be delivered as
Illegal Dependency Faults on the second operation, i.e. on the reader in the RAW case, and on
second resource writer in the WAW case.

« All detected write-after-read dependency violations (on predicate register 63) must be
delivered as Illegal Dependency faults on the second operation, the predicate writer.

* lllegal Dependency faults are delivered strictly in program order. If an interruption, branch or
speculation check are taken between the first and the second operation of a dependency
violation, then the lllegal Dependency fault is not taken.

Note: Since an instruction group starts at a given entry point (stop or target of a control flow
transfer), instructions that precede the entry point are not considered part of the instruction
group and must not take part in any dependency violation checking. For example, if an
rfi isdoneto slot 1 of abundle, the instruction in slot 0 and instructions in bundles with
lower memory addresses are not part of the new instruction group, and must not take part
in any dependency violation checking.

Undefined Behavior

Architecturally undefined behavior that appliesto one or more instructions is listed below:

* RAW and WAW register dependencies within the same instruction group are disallowed except
as noted in Section 3.4. Their behavior within an instruction group is undefined. Undefined
behavior includes the possibility of an I1legal Operation fault.

» Reading aregister outside of the defined general register stack frame boundaries (as
determined by the most recent al | oc, return, or call) will return an undefined result. All
processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined in the
architecture. For the behavior of Itanium instructions, refer to Chapter 2, “ Instruction Reference” in
Volume 3. For the behavior of IA32 instructions, refer to Part |1: 1A-32 Instruction Set Descriptions
in Volume 3: Instruction Set Reference. Therefore, the result of an undefined scenario is strictly
implementation dependent. User should not rely on these undefined behaviors for correct program
behavior and compatibility across future implementations.

Volume 1: Execution Environment

intel.

Application Programming Model 4

This section describes the architectural functionality from the perspective of the application
programmer. ltanium instructions are grouped into related functions and an overview of their
behavior is given. Unless otherwise noted, all immediates are sign extended to 64 bits before use.
The floating-point programming model is described separately in Chapter 5, “ Floating-point
Programming Model” in Volume 1. Refer to Volume 3: Instruction Set Reference for detailed
information on Itanium instructions.

The main features of the programming model covered here are:
» General Register Stack
* Integer Computation Instructions
¢ Compare Instructions and Predication
* Memory Access Instructions and Speculation
* Branch Instructions and Branch Prediction
* Multimedia Instructions
» Register File Transfer Instructions
 Character Strings and Population Count
 Privilege Level Transfer

4.1 Register Stack

Asdescribed in “General Registers’ on page 1:21, the general register fileisdivided into static and
stacked subsets. The static subset is visible to al procedures and consists of the 32 registers from
GR 0through GR 31. The stacked subset islocal to each procedure and may vary in size from zero
to 96 registers beginning at GR 32. The register stack mechanism isimplemented by renaming
register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled
during 1A-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to software
convention. The stacked subset is automatically saved and restored by the Register Stack Engine
(RSE) without explicit software intervention (for details on the RSE see Chapter 6, “ Register Stack
Enging’ in Volume 2). All other register files are visible to all procedures and must be saved/
restored by software according to software convention.

4.1.1 Register Stack Operation

Theregistersin the stacked subset visible to agiven procedure are called aregister stack frame. The
frame isfurther partitioned into two variable-size areas: the local area and the output area.

Immediately after acall, the size of the local area of the newly activated frame is zero and the size
of the output areais equal to the size of the caller’s output area and overlaysthe caller’s output area.

Volume 1: Application Programming Model 1:39

intel.

The local and output areas of aframe can bere-sized using the al | oc instruction which specifies
immediates that determine the size of frame (sof) and size of locals (sol).

Note: Intheassembly language, al | oc uses three immediate operands to determine the values
of sol and sof: the size of inputs; the size of locals; and the size of outputs. The value of sol
is determined by adding the size of inputs immediate and the size of locals immediate; the
value of sof is determined by adding all three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifiesthe size of the local area. The size of the output areais determined by the
difference between sof and sol. The values of these parameters for the currently active procedure
are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a
stacked register outside the current frame will cause an Illegal Operation fault.

Whenabr.call orbrl.call isexecuted, the CFM is copied to the Previous Frame Marker
(PFM) field in the Previous Function State application register (PFS), and the callee's frameis
created asfollows:

» Thestacked registers are renamed such that thefirst register in the caller’s output areabecomes
GR 32 for the callee

* Thesize of thelocal areais set to zero
* Thesize of the callee’s frame (sofy;) is set to the size of the caller’s output area (sof ; — sol)

Valuesin the output area of the caller’s register stack frame are visible to the callee. This overlap
permits parameter and return val ue passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an al | oc instruction. Anal | oc
instruction causes no renaming, but only changes the size of the register stack frame and the
partitioning between local and output areas. Typicaly, when a procedure is called, it will allocate
some number of local registersfor its use (which will include the parameters passed to it in the
caller’s output registers), plus an output area (for passing parametersto proceduresit will call).
Newly alocated registers (including their NaT bits) have undefined values.

When abr . ret isexecuted, CFM isrestored from PFM and the register renaming isrestored to the
caller’s configuration. The PFM is procedureloca state and must be saved and restored by non-leaf
procedures. The CFM is not directly accessible in application programs and is updated only
through the execution of calls, returns, al | oc, cover,andcl rrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA (caller) to
procB (callee). The state of the register stack is shown at four points: prior to the call, immediately
following the call, after procB has executed an al | oc, and after procB returns to procA.

The majority of application programs need only issue al | oc instructions and save/restore PFM in
order to effectively utilize the register stack. A detailed knowledge of the RSE (Register Stack
Engine) is required only by certain specialized application software such as user-level thread
packages, debuggers, etc. (See Chapter 6, “Register Stack Engine” in Volume 2.)

1:40 Volume 1: Application Programming Model

intel.

Figure 4-1. Register Stack Behavior on Procedure Call and Return

4.1.2

Instruction Execution Stacked GRs Frame Markers
CFM PFM
32 46 52 o) 0
Caller's Frame (procA) Local A Output A
< | o
< | >
B sof,=21
call sol,=14 !
|
\ |
Call F ' (B) 8
allee’s Frame (proc
After call Output By 0o 7
————>
| Sofbl:7
alloc :
I
I
I Y () 132 48 5
Callee’s Frame (procB; ‘ ‘ | |
After alloc | LocalB Output B, 16 19| |14 21
H—»
I s0fp,=19
return : s0ly,=16
I
A '
I ' () 32 46 52
Caller's Frame (procA | | - -
After return Local A Output A 14 21| |14 21
000721

Register Stack Instructions

Theal | oc instruction is used to change the size of the current register stack frame. Anal | oc
instruction must be the first instruction in an instruction group otherwise the results are undefined.
An al | oc instruction affects the register stack frame seen by all instructionsin an instruction
group, including the al | oc itself. If the qualifying predicate for al | oc isnot PRO, an Illegal
Operation faultisraised. An al | oc does not affect the values or NaT bits of the allocated registers.
When aregister stack frame is expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register
stack. These instructions are used in thread and context switching which necessitate a
corresponding switch of the backing store for the register stack. See Chapter 6, “Register Stack
Enging’ in Volume 2 for details on explicit management of the RSE.

Thefl ushrs instruction is used to force all previous stack frames out to backing store memory. It
stallsinstruction execution until all active framesin the physical register stack up to, but not
including the current frame are spilled to the backing store by the RSE. A f | ushr s instruction
must be the first instruction in an instruction group; otherwise, the results are undefined. A

f 1 ushr s cannot be predicated.

Thecover instruction creates a new frame of zero size (sof = sol = 0). The new frame is created
above (not overlapping) the present frame. Both the local and output areas of the previous stack
frame are automatically saved. A cover instruction must be the last instruction in an instruction
group otherwise an lllegal Operation fault istaken. A cover cannot be predicated.

Volume 1: Application Programming Model 1:41

intel.

Thel oadr s instruction ensures that the specified portion of the register stack is present in the
physical registers. It stallsinstruction execution until the number of bytes specified in the loadrs
field of the RSC application register have been filled from the backing store by the RSE (starting
from the current BSP). By specifying a zero value for RSC.loadrs, | oadr s can be used to indicate
that all stacked registers outside the current frame must be loaded from the backing store before
being used. In addition, stacked registers outside the current frame (that have not been spilled by
the RSE) will not be stored to the backing store. A | oadr s instruction must be the first instruction
in an instruction group otherwise the results are undefined. A | oadr s cannot be predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizes the
register stack management instructions. Call- and return-type branches, which affect the stack, are

described in “Branch Instructions’ on page 1:65.

Table 4-1. Architectural Visible State Related to the Register Stack
Register Description
AR[PFS].pfm Previous Frame Marker field
AR[RSC] Register Stack Configuration application register
AR[BSP] Backing store pointer application register
AR[BSPSTORE] Backing store pointer application register for memory stores
AR[RNAT] RSE NaT collection application register
Table 4-2. Register Stack Management Instructions
Mnemonic Operation

all oc Allocate register stack frame
flushrs Flush register stack to backing store
| oadr s Load register stack from backing store
cover Cover current stack frame

4.2 Integer Computation Instructions
Theinteger execution units provide a set of arithmetic, logical, shift and bit-field-manipulation
instructions. Additionally, they provide a set of instructions to accelerate operations on 32-bit data
and pointers.
Arithmetic, logical and 32-bit accel eration instructions can be executed on both |- and M-units

4.2.1 Arithmetic Instructions
Addition and subtraction (add, sub) are supported with regular two input forms and specia three
input forms. The three input addition form adds one to the sum of two input registers. The three
input subtraction form subtracts one from the difference of two input registers. The three input
forms share the same mnemonics as the two input forms and are specified by appendinga“1” asa
third source operand.

1:42 Volume 1: Application Programming Model

The immediate form of addition uses aregister and a 14-bit immediate; the immediate form of
subtraction uses a register and an 8-bit immediate. In both cases, the immediate is sign-extended
before being added or subtracted. The immediate form is obtained simply by specifying an
immediate rather than a register as the first operand. Also, addition can be performed between a
register and a 22-bit immediate; however, the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shl add) shifts one register operand to the left by 1 to 4 bits and
adds the result to a second register operand. Table 4-3 summarizes the integer arithmetic

instructions.

Table 4-3. Integer Arithmetic Instructions

4.2.2

Mnemonic Operation
add Addition
add. .., 1 Three input addition
sub Subtraction
sub...,1 Three input subtraction
shl add Shift left and add

Note that an integer multiply instruction is defined which uses the floating-point registers. See
“Integer Multiply and Add Instructions” on page 1:91 for details. Integer divideis performed in
software similarly to floating-point divide.

Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between two
registers or between aregister and an immediate are defined. The andcm instruction performs a
logical AND of aregister or an immediate with the complement of another register. Table 4-4

summarizes the integer logical instructions.

Table 4-4. Integer Logical Instructions

4.2.3

Volume 1: Application Programming Model

Mnemonic Operation
and Logical and
or Logical or
andcm Logical and complement
xor Logical exclusive or

32-bit Addresses and Integers

Support for 32-hit addressesis provided in the form of add instructions that perform region bit

copying. This supports the virtual address translation model (see “32-bit Virtual Addressing” on
page 2:60 for details). The add 32-bit pointer instruction (addp) addstwo registers or aregister and
an immediate, zeroes the most significant 32-bits of the result, and copies bits 31:30 of the second
source to bits 62:61 of the result. The shl addp instruction operates similarly but shifts the first
source to the left by 1 to 4 bits before performing the add, and is provided only in the two-register

form.

1:43

Table 4-5.

intel.

In addition, support for 32-bit integersis provided through 32-bit compare instructions and
instructions to perform sign and zero extension. Compare instructions are described in “ Compare
Instructions and Predication” on page 1:45. The sign and zero extend (sxt , zxt) instructions teke
an 8-bit, 16-hit, or 32-bit value in aregister, and produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation
addp 32-bit pointer addition
shl addp Shift left and add 32-bit pointer
sxt Sign extend
zXt Zero extend

4.2.4

1:44

Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general
register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special
compare operations to test an individual bit within a general register. The compare instructions for
testing asingle bit (t bi t), or for testing the NaT bit (t nat) are described in “Compare I nstructions
and Predication” on page 1:45.

The variable shift instructions shift the contents of a general register by an amount specified by
another general register. The shift right signed (shr) and shift right unsigned (shr . u) instructions
shift the contents of aregister to the right with the vacated bit positions filled with the sign bit or
zeroes respectively. The shift left (shl) instruction shifts the contents of aregister to the left.

The fixed shift-and-mask instructions (ext r, dep) are generalized forms of fixed shifts. The extract
instruction (ext r) copies an arbitrary bit field from ageneral register to the least-significant bits of
the target register. The remaining bits of the target are written with either the sign of the bit field
(ext r) or with zero (ext r. u). Thelength and starting position of the field are specified by two
immediates. Thisis essentialy a shift-right-and-mask operation. A simple right shift by afixed
amount can be specified by using shr with an immediate value for the shift amount. Thisisjust an
assembly pseudo-op for an extract instruction where the field to be extracted extends al the way to
the left-most register bit.

The deposit instruction (dep) takes afield from either the least-significant bits of ageneral register,
or from an immediate value of al zeroes or all ones, placesit at an arbitrary position, and fills the
result to the left and right of the field with either bits from a second general register (dep) or with
zeroes (dep. z). The length and starting position of the field are specified by two immediates. This
is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount can be
specified by using shl with an immediate value for the shift amount. Thisis just an assembly
pseudo-op for dep. z where the deposited field extends all the way to the left-most register bit.

The shift right pair (shr p) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary
64-bit field from a 128-hit field formed by concatenating two source general registers. The starting
position is specified by an immediate. This can be used to accel erate the adjustment of unaligned
data. A bit rotate operation can be performed by using shr p and specifying the same register for
both operands.

Table 4-6 summarizes the bit field and shift instructions.

Volume 1: Application Programming Model

intel.

Table 4-6. Bit Field and Shift Instructions

4.2.5

Mnemonic Operation
shr Shift right signed
shr.u Shift right unsigned
shl Shift left
extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep. z Deposit in zeroes (shift left and mask)
shrp Shift right pair

Large Constants

A specia instruction is defined for generating large constants (see Table 4-7). For constants up to
22 hitsin size, the add instruction can be used, or the nov pseudo-op (pseudo-op of add with GRO,
which alwaysreads 0). For larger constants, the move long immediate instruction (novl) is defined
to write a 64-bit immediate into a general register. This instruction occupies two instruction slots
within the same bundle, and is the only such instruction.

Table 4-7. Instructions to Generate Large Constants

4.3

4.3.1

Mnemonic Operation

nmov Move 22-bit immediate

novl Move 64-bit immediate

Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the
dynamic execution of instructions. A compare instruction tests for a single specified condition and
generates a boolean result. These results are written to predicate registers. The predicate registers
can then be used to affect dynamic execution in two ways: as conditions for conditional branches,
or as qualifying predicates for predication.

Predication

Predication isthe conditional execution of instructions. The execution of most instructionsis gated
by aqualifying predicate. If the predicate is true, the instruction executes normally; if the predicate
isfalse, the instruction does not modify architectural state (except for the unconditional type of
compare instructions, floating-point approximation instructions and while-loop branches).
Predicates are one-bit values and are stored in the predicate register file. A zero predicateis
interpreted asfalse and a one predicate is interpreted as true (predicate register PRO ishardwired to
one).

Volume 1: Application Programming Model 1:45

4.3.2

intel.

A few instructions cannot be predicated. These instructions are: all ocate stack frame (al | oc),
branch predict (br p), bank switch (bsw), clear rrb (c! r rr b), cover stack frame (cover), enter
privileged code (epc), flush register stack (f | ushr s), load register stack (I oadr s), counted
branches (br . ¢l oop, br . ct op, br. cexi t), and return from interruption (r fi).

Compare Instructions

Predicate registers are written by the following instructions: general register compare (cnp, cnp4),
floating-point register compare (f cnp), test bit and test NaT (t bi t, t nat), floating-point class

(f cl ass), and floating-point reciprocal approximation and reciprocal square root approximation
(frcpa, fprcpa, frsqgrta, f prsqgrta). Most of these compare instructions (all but f r cpa,
fprcpa,frsqrtaandf prsqgrta) set two predicate registers based on the outcome of the
comparison. The setting of the two target registers is described below in “Compare Types’ on
page 1:46. Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

4.3.3

1:46

Mnemonic Operation
cnp, cnp4 GR compare
tbit Test bitin a GR
t nat Test GR NaT bit
fcnp FR compare
fclass FR class
frcpa, fprcpa Floating-point reciprocal approximation
frsgrta,fprsqrta Floating-point reciprocal square root approximation

The 64-bit (cnp) and 32-bit (cnp4) compare instructions compare two registers, or aregister and an
immediate, for one of ten relations (e.g., >, <=). The compare instructions set two predicate targets
according to the result. The cnp4 instruction compares the least-significant 32-bits of both sources
(the most significant 32-bits are ignored).

Thetest bit (t bi t) instruction sets two predicate registers according to the state of asingle bitina
general register (the position of the bit is specified by an immediate). The test NaT (t nat)
instruction sets two predicate registers according to the state of the NaT bit corresponding to a
general register.

Thef cnp instruction compares two floating-point registers and setstwo predicate targets according
to one of eight relations. Thef cl ass instruction sets two predicate targets according to the
classification of the number contained in the floating-point register source.

Thefrcpa, fprcpa,frsqrtaandfprsqgrta instructions set a single predicate target if their
floating-point register sources are such that a valid approximation can be produced, otherwise the
predicate target is cleared.

Compare Types

Compare instructions can have as many as five compare types. Normal, Unconditional, AND, OR,
or DeMorgan. The type defines how the instruction writesitstarget predicate registers based on the
outcome of the comparison and on the qualifying predicate. The description of these typesis

Volume 1: Application Programming Model

contained in Table 4-9. In the table, “gp” refersto the value of the qualifying predicate of the
compare and “result” refersto the outcome of the compare relation (one if the comparerelation is

true and zero if the compare relation isfalse).

Table 4-9. Compare Type Function

Operation
Compare Type Completer
First Predicate Target Second Predicate Target
Normal none if (qp) {target = result} if (gp) {target =Iresult}
. if (gp) {target = result} if (gp) {target =!result}
Unconditional unc else {target = 0} else {target = 0}
AND and if (gp &&!result) {target = 0} if (gp &&!result) {target = 0}
andcm if (gp && result) {target = 0} if (gp && result) {target = 0}
OR or if (gp && result) {target = 1} if (gp && result) {target = 1}
orcm if (gp &&!result) {target = 1} if (gp &&!result) {target = 1}
or.andcm if (gp && result) {target = 1} if (qp && result) {target = 0}
DeMorgan - -
and.orcm if (qp &&!result) {target = O} if (gp &&!result) {target = 1}

The Normal compare type simply writes the compare result to the first predicate target and the
complement of the result to the second predicate target.

The Unconditional compare type behaves the same as the Normal type, except that if the qualifying
predicateis 0, both predicate targets are written with 0. This can be thought of as an initialization of
the predicate targets, combined with a Normal compare. Note that compare instructions with the
Unconditional type modify architectural state when their qualifying predicateisfalse.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow
multiple simultaneous compares (of the same type) to target a single predicate register. This
provides the ability to compute alogical equation suchasp5 = (r4 == 0) || (r5 ==r6) ina
single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMorgan compare typeis
just a combination of an OR type to one predicate target and an AND type to the other predicate
target. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the
same predicate target in the same instruction group. Multiple AND-type compares (including the
AND part of the DeMorgan type) may also specify the same predicate target in the same instruction
group.

For al compareinstructions (except for t nat and f cl ass), if one or both of the source registers
contains adeferred exception token (NaT or NaTVal —see“ Control Speculation” on page 1:51), the
result of the compare is different. Both predicate targets are treated the same, and are either written
to 0 or left unchanged. In combination with specul ation, this allows predicated code to be turned off
in the presence of a deferred exception. (f cl ass behavesthisway aswell if NaTVal is not one of
the classes being tested for.) Table 4-10 describes the behavior.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (qp) {target = 0}
Unconditional target =0
AND if (qp) {target = 0}
OR (not written)
DeMorgan (not written)

Volume 1: Application Programming Model 1:47

intel.

Only a subset of the compare types are provided for some of the compare instructions. Table 4-11
lists the compare types which are available for each of the instructions.

Table 4-11. Instructions and Compare Types Provided

4.3.4

4.4

1:48

Instruction Relation Types Provided
cnp, cnp4 a==Db, al=Db, Normal, Unconditional,
a>0,a>=0,a<0,a<=0, AND, OR, DeMorgan

0>4a,0>=4a,0<a,0<=a

All other relations Normal, Unconditional
tbit,tnat All Normal, Unconditional,
AND, OR, DeMorgan
fcnp, fcl ass All Normal, Unconditional
frcpa,frsarta, Not Applicable Unconditional

fprcpa, fprsgrta

Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and agenera register. These
instructions operatein a*“broadside’ manner whereby multiple predicate registers are transferred in
parallel, such that predicate register N is transferred to/from bit N of a general register.

The move to predicates instruction (nov pr =) loads multiple predicate registers from a general
register according to amask specified by an immediate. The mask contains one bit for each of PR 1
through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 through PR63 (the rotating
predicates). A predicate register iswritten from the corresponding bit in a general register if the
corresponding mask bit is 1; if the mask bit is O the predicate register is not modified.

The move to rotating predicatesinstruction (mov pr . r ot =) copies 48 bitsfrom an immediate value
into the 48 rotating predicates (PR 16 through PR 63). Theimmediate value includes 28 bits, and is
sign-extended. Thus PR 16 through PR 42 can be independently set to new values, and PR 43
through PR 63 are all set to either O or 1.

The move from predicatesinstruction (nov =pr) transfers the entire predicate register fileinto a
general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the
register rename base (CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr
before initializing rotating predicates.

Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer datato and
from general registers or floating-point registers. The memory addressis specified by the contents
of ageneral register.

Most load and store instructions can also specify base-address-register update. Base update adds
either animmediate value or the contents of ageneral register to the address register, and placesthe
result back in the address register. The update is done after the load or store operation, i.e., itis
performed as an address post-increment.

Volume 1: Application Programming Model

For highest performance, data should be aligned on natural boundaries. Within a 4K -byte boundary,
accesses misaligned with respect to their natural boundaries will dways fault if UM.ac (alignment
check bit in the User Mask register) is 1. If UM.ac is 0, then an unaligned access will succeed if itis
supported by the implementation; otherwiseit will cause an Unaligned Data Reference fault. Please
see the processor specific documentation for further information. All memory accesses that cross a
4K -byte boundary will cause an Unaligned Data Reference fault independent of UM.ac.
Additionally, all semaphore instructionswill cause an Unaligned Data Reference fault if the access
is not aligned to its natura boundary, independent of UM .ac.

Accesses to memory quantities larger than a byte may be done in abig-endian or little-endian

fashion. The byte ordering for all memory accessinstructionsis determined by UM .bein the User
Mask register. All 1A-32 memory references are performed little-endian.

Load, store and semaphore instructions are summarized in Table 4-12 and the state related to

memory reference instructionsis summarized in Table 4-13.

Table 4-12. Memory Access Instructions

Mnemonic
Floating-point Operation
General
Normal Load Pair
Id | df I df p Load
ld.s ldf.s Idfp.s Speculative load
Id. a ldf.a ldfp.a Advanced load
| d.sa | df . sa | df p. sa Speculative advanced load
ld.c.nc, Id.c.clr | df . c. nc, | df p. c. nc, Check load
Idf.c.clr Idfp.c.clr
Id.c.clr.acq Ordered check load
I d. acq Ordered load
I d. bi as Biased load
Id. fill [df . fill Register Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Register Spill
cnpxchg Compare and exchange
xchg Exchange memory and GR
f et chadd Fetch and add
Table 4-13. State Relating to Memory Access
Register Function
UM.be User mask byte ordering
UM.ac User mask Unaligned Data Reference fault enable
UNAT GR NaT collection
Cccv Compare and Exchange Compare Value application register
CSD Compare and Store Data application register

Volume 1: Application Programming Model

1:49

4.4.1

4.4.2

1:50

Load Instructions

Load instructions transfer data from memory to a generd register, agenerd register and the
Compare and Store Data register (CSD), a floating-point register or apair of floating-point
registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes|ess than
eight bytes, the loaded value is zero extended to 64-bits. The 16-byte general -register load
instructions load two adjacent 8-byte quantities into a general register and the Compare and Store
Dataregister (CSD). The 16-byte general-register load instructions cannot specify base register
update.

For floating-point loads, the following access sizes are defined: single precision (4 bytes), double
precision (8 bytes), double-extended precision (10 bytes), and integer/parallel FP (8 bytes). The
value(s) loaded from memory are converted into floating-point register format (see “Memory
Access Instructions’ on page 1:81 for details).

The floating-point load pair instructions load two adjacent single precision (4 bytes each), double
precision (8 bytes each), or integer/parallel FP (8 bytes each) numbersinto two independent
floating-point registers (see the | df p instruction description for restrictions on target register
specifiers). Floating-point load pair instructions can specify base register update, but only by an
immediate value equal to double the data size.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits and the
ALAT. See “Control Speculation” on page 1:51 and “Data Speculation” on page 1:55.

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be
used to force ordering in memory accesses. See“Memory Access Ordering” on page 1:63. A biased
load provides a hint to acquire exclusive ownership of the accessed line. See “Memory Hierarchy
Control and Consistency” on page 1:60.

Special-purpose loads are defined for restoring register values that were spilled to memory. The

I d8.fill instruction loadsageneral register and the corresponding NaT bit (defined for an 8-byte
accessonly). Thel df . fil | instruction loads avaluein floating-point register format from
memory without conversion (defined for 16-byte access only). See “Register Spill and Fill” on
page 1:53.

Store Instructions

Store instructions transfer data from a general register, a general register and the Compare and
Store Dataregister (CSD), or floating-point register to memory. Store instructions are always
non-speculative. Store instructions can specify base-address-register update, but only by an
immediate value. A variant is also provided for controlling the memory/cache subsystem. An
ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes as their load
counterparts. The only exception is that there are no floating-point store pair instructions. The
16-byte general-register store instructions store two adjacent 8-byte quantities from a general
register and the Compare and Store Data register (CSD).

Volume 1: Application Programming Model

4.4.3

4.4.4

4441

Specia purpose stores are defined for spilling register values to memory. The st 8. spi | |
instruction stores ageneral register and the corresponding NaT bit (defined for 8-byte access only).
This allows the result of a speculative caculation to be spilled to memory and restored. The
stf.spill instruction stores afloating-point register in memory in the floating-point register
format without conversion. This allows register spill and restore code to be written to be compatible
with possible future extensions to the floating-point register format. The st f . spi | | instruction
also does not fault if the register contains a NaT Val, and is defined for 16-byte access only. See
“Register Spill and Fill” on page 1:53.

Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and
then store aresult to the same memory location. Semaphore instructions are aways
non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exchange (xchg); compare and exchange
(cnpxchg); and fetch and add (f et chadd).

Thexchg target isloaded with the zero-extended contents of the memory location addressed by the
first source and then the second source is stored into the same memory location.

Thecnpxchg target isloaded with the zero-extended contents of the memory location addressed by
thefirst source; if the zero-extended value is equd to the contents of the Compare and Exchange
Compare Vaue application register (CCV), then the second source is stored into the same memory
location. The cnp8xchg16 instruction loads the target with 8 bytes from the memory location
addressed by the first source; if this valueis equal to the contents of the CCV register, then the
second source and the Compare and Store Data register (CSD) are both stored into memory at the
16-byte-aligned address which contains the memory location loaded.

Thef et chadd instruction specifies one general register source, one general register target, and an
immediate. Thef et chadd target isloaded with the zero-extended contents of the memory location
addressed by the source and then the immediate is added to the loaded value and the result is stored
into the same memory location.

Control Speculation

Special mechanismsare provided to allow for compiler-directed speculation. This specul ation takes
two forms, control speculation and data speculation, with a separate mechanism to support each.
See also “ Data Speculation” on page 1:55.

Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of
instructions is executed before it is known that the dynamic control flow of the program will
actually reach the point in the program where the sequence of instructions is needed. Thisis done
with instruction sequences that have long execution latencies. Starting the execution early alows
the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determinesthat it is very

Volume 1: Application Programming Model 1:51

4.4.4.2

1:52

intel.

likely that the dynamic control flow of the program will eventually requirethis calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results are simply
discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions
encountered that would be visible to the program can be signalled until it is determined that the
program’s control flow does require the execution of thisinstruction sequence. For this reason, a
mechanism is provided for recording the occurrence of an exception so that it can be signalled later
if and when it is necessary. In such a situation, the exception is said to be deferred. When an
exception is deferred by an instruction, a special token iswritten into the target register to indicate
the existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register
files. In general registers, an additional bit is defined for each register called the NaT bit (Not a
Thing). Thus generd registers are 65 bitswide. A NaT bit equal to 1 indicates that the register
contains a deferred exception token, and that its 64-bit data portion contains an implementation
specific value that software cannot rely upon. In floating-point registers, a deferred exception is
indicated by a specific pseudo-zero encoding called the NaT Val (see “ Representation of Valuesin
Floating-point Registers’ on page 1:76 for details).

Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used
speculatively) and non-specul ative (instructions which cannot). Non-speculative instructions will
raise exceptions if they occur and are therefore unsafe to schedul e before they are known to be
executed. Speculative instructions defer exceptions (they do not raise them) and are therefore safe
to schedule before they are know to be executed.

L oads to general and floating-point registers have both non-speculative (I d, | df , | df p) and
speculative (1 d. s, | df . s, | df p. s) variants. Generally, all computation instructions which write
their resultsto general or floating-point registers are speculative. Any instruction that modifies state
other than a general or floating-point register is non-speculative, since there would be no way to
represent the deferred exception (there are afew exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculative
instruction that reads a register containing a deferred exception token will propagate a deferred
exception token into its target. Thus achain of instructions can be executed speculatively, and only
the result register need be checked for a deferred exception token to determine whether any
exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a
speculation check (chk. s) instruction is used. Thisinstruction tests for a deferred exception token.
If none isfound, then the speculative cal culation was successful, and execution continues normally.
If adeferred exception token is found, then the speculative cal culation was unsuccessful and must
be re-done. In this case, the chk. s instruction branches to a new address (specified by an
immediate offset in the chk. s instruction). Software can use this mechanism to invoke code that
contains a copy of the speculative calculation (but with non-speculative loads). Since it is now
known that the calculation is required, any exceptions which now occur can be signalled and
handled normally.

Volume 1: Application Programming Model

4.4.4.3

4.4.4.4

4.4.4.5

4.4.4.6

Since computational instructions do not generally cause exceptions, the only instructions which
generate deferred exception tokens are specul ative loads. (IEEE floating-point exceptions are
handled specially through a set of alternate status fields. See “Floating-point Status Register” on
page 1:78.) Other speculative instructions propagate deferred exception tokens, but do not generate
them.

Control Speculation and Compares

As stated earlier, most instructions that write aregister file other than the general registers or the
floating-point registers are non-speculative. The compare (cnp, crnp4, f cnp), test bit (t bi t),
floating-point class (f ¢l ass), and floating-point approximation (f r cpa, f r sqr t a) instructions are
special cases. These instructions read generd or floating-point registers and write one or two
predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate targets are
either cleared or left unchanged, depending on the compare type (see Table 4-10 on page 1:47).
Software can use this behavior to ensure that any dependent conditional branches are not taken and
any dependent predicated instructions are nullified. See “ Predication” on page 1:45.

Deferred exception tokens can also be tested for with certain compare instructions. The test NaT

(t nat) instruction tests the NaT bit corresponding to the specified general register and writes two
predicate results. The floating-point class (f cl ass) instruction can be used to test for aNaTVal in a
floating-point register and write the result to two predicate registers. (f cl ass does not clear both
predicate targets in the presence of aNaTVal input if NaTVal isone of the classes being tested for.)

Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will raise a
Register NaT Consumption fault. Such instructions can be thought of as performing a
non-recoverabl e speculation check operation. In some compilation environments, it may be true
that the only exceptions that are deferred are fatal errors. In such a program, if the result of a
speculative calculation is checked and a deferred exception token is found, execution of the
program is terminated. For such a program, the results of speculative calculations can be checked
simply by using non-speculative instructions.

Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the exception
behavior of speculative loads. The operating system has the option to select which exceptions are
deferred automatically in hardware and which exceptions will be handled (and possibly deferred)
by software. See Section 5.5.5, “Deferral of Speculative Load Faults” on page 2:90.

Register Spill and Fill

Specia store and load instructions are provided for spilling a register to memory and preserving
any deferred exception token, and for restoring a spilled register.

Thespill and fill general register instructions (st 8. spi I | ,1d8. fill) aredefined to savelrestorea
general register along with the corresponding NaT bhit.

Volume 1: Application Programming Model 1:53

intel.

Thest 8. spi | | instruction writes a general register’'s NaT bit into the User NaT Collection
application register (UNAT), and, if the NaT bit was 0, writes the register’s 64-bit data portion to
memory. If the register’'s NaT bit was 1, the UNAT is updated, but the memory update is
implementation specific, and must consistently follow one of three spill behaviors:

e Thest 8. spi | | may not update memory with the register’s 64-bit data portion, or
» Thest 8. spi | | may write a zero to the specified memory location, or

e Thest 8. spi | | may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed specul ative loads, and that
implementation also guaranteesthat all NaT propagating instructions perform all computations
as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

Thel d8.fill instruction loads ageneral register from memory taking the corresponding NaT bit
from the bit in the UNAT register addressed by bits 8:3 of the memory address. The UNAT register
must be saved and restored by software. It isthe responsibility of software to ensure that the

contents of the UNAT register are correct while executing st 8. spi I | and1d8.fill instructions.

The floating-point spill and fill instructions (stf . spi | |, 1 df.fill) aredefined to save/restore a
floating-point register (saved as 16 bytes) without surfacing an exception if the FR contains a
NaTVal (these instructions do not affect the UNAT register).

The general and floating-point spill/fill instructions allow spilling/filling of registersthat are targets
of a speculative instruction and may therefore contain a deferred exception token. Note also that
transfers between the general and floating-point register files cause a conversion between the two
deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the instructions
related to control speculation.

Table 4-14. State Related to Control Speculation

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception
NaTVal Pseudo-Zero encoding for FR indicating a deferred exception
UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation
Id.s, Idf.s, Idfp.s GR and FR speculative loads
[d8.fill, Idf.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill Spill GR with NaT collection, spill FR
chk.s Test GR or FR for deferred exception token
t nat Test GR NaT bit and set predicate

Volume 1: Application Programming Model

4.4.5

4451

4.4.5.2

Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions across
control dependencies, data specul ative loads and checks allow the compiler to schedule instructions
across some types of ambiguous data dependencies. This section detail s the usage model and
semantics of data speculation and related instructions.

Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation that may
update memory state) and aload when it cannot be statically determined whether the load and store
might access overlapping regions of memory. For convenience, a store that cannot be statically
disambiguated relative to a particular load is said to be ambiguous relative to that 1oad. In such
cases, the compiler cannot change the order in which the load and store instructions were originally
specified in the program. To overcome this scheduling limitation, a specia kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores that are
ambiguous relative to that load.

Aswith control speculation, the compiler can also specul ate operations that are dependent upon the
advanced load and later insert a check instruction that will determine whether the speculation was
successful or not. For data speculation, the check can be placed anywhere the original non-data
speculative load could have been scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or more
instructions dependent on the value of that load, and a check instruction. This means that any
sequence of stores followed by aload can be transformed into an advanced load followed by a
sequence of stores followed by a check. The decision to perform such atransformation is highly
dependent upon the likelihood and cost of recovering from an unsuccessful data speculation.

Data Speculation and Instructions

Advanced loads are available in integer (I d. a), floating-point (I df . a), and floating-point pair

(I df p. a) forms. When an advanced load is executed, it allocates an entry in a structure called the
Advanced Load Address Table (ALAT). Later, when a corresponding check instruction is executed,
the presence of an entry indicates that the data speculation succeeded; otherwise, the speculation
failed and one of two kinds of compiler-generated recovery is performed:

1. Thecheck load ingtruction (1 d. c, | df . c, or | df p. c¢) isused for recovery when the only
instruction schedul ed before a store that is ambiguous relative to the advanced load is the
advanced load itself. The check load searchesthe ALAT for a matching entry. If found, the
speculation was successful; if a matching entry was not found, the speculation was
unsuccessful and the check load reloads the correct value from memory. Figure 4-2 shows
this transformation.

Volume 1: Application Programming Model 1:55

Figure 4-2. Data Speculation Recovery Using Id.c

Before Data Speculation After Data Speculation
/] other instructions | d8. a ré =[r8];; // advanced | oad
st8 [r4] =r12 /1 other instructions
| d8 ré =1[r8];; st8 [r4] =r12
add r5 =r6, r7;; 1d8.c.clr ré = [r8 // check Ioad
st8 [r18] =75 add r5 =r6, r7;;
st8 [r18] =75

2. The advanced load check (chk. a) isused when an advanced load and several instructions
that depend on the loaded value are scheduled before a store that is ambiguous relative to the
advanced load. The advanced load check workslike the speculation check (chk. s) in that, if
the speculation was successful, execution continuesinline and no recovery is necessary; if
speculation was unsuccessful, the chk. a branches to compiler-generated recovery code. The
recovery code contains instructions that will re-execute all the work that was dependent on
the failed data speculative load up to the point of the check instruction. Aswith the check
load, the success of a data speculation using an advanced load check is determined by
searching the ALAT for amatching entry. This transformation is shown in Figure 4-3.

Figure 4-3. Data Speculation Recovery Using chk.a

4453

1:56

Before Data Speculation After Data Speculation
// other instructions | d8. a ré =[r8;;
st8 [r4] =r12 /1 other instructions
| d8 ré =[r8];; add r5 =r6, r7;;
add r5 =r6, r7;; // other instructions
st8 [r18] =5 st8 [rd4] =r12
chk.a.clr r6, recover
back:
st8 [r18] =75
/1l sonmewhere el se in program
recover:
| d8 ré =[r8];;
add r5 =r6, r7
br back

Recovery code may use either anormal or advanced load to obtain the correct value for the failed
advanced load. An advanced load is used only when it is advantageous to have an ALAT entry
reallocated after afailed speculation. The last instruction in the recovery code should branch to the
instruction following the chk. a.

Detailed Functionality of the ALAT and Related Instructions

The ALAT isthe structure that holds the state necessary for advanced loads and checks to operate
correctly. The ALAT is searched in two different ways: by physical addresses and by ALAT register
tags. An ALAT register tag is aunique number derived from the physical target register number and
type in conjunction with other implementati on-specific state. |mplementation-specific state might
include register stack wraparound information to distinguish one instance of aphysical register that
may have been spilled by the RSE from the current instance of that register, thus avoiding the need
to purge the ALAT on all register stack wraparounds.

Volume 1: Application Programming Model

|A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT values being preserved across an instruction set transition. On entry to |A-32 instruction
Set, existing entriesin the ALAT areignored.

4.45.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. TheALAT register tag for the advanced load is computed. (For | df p. a, atag is computed
only for thefirst target register.)

If an entry with a matching ALAT register tag exists, it is removed.

A new entry isallocated in the ALAT which contains the new ALAT register tag, the load
access size, and atag derived from the physical memory address.

4. Thevalue at the address specified in the advanced load is |oaded into the target register and,
if specified, the base register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding a matching register tag in the ALAT, both the
chk. a and the target register of al d. ¢ must specify the same register as their corresponding
advanced load. Additionally, the check load must use the same address and operand size as the
corresponding advanced load; otherwise, the value written into the target register by the check load
is undefined.

An advanced load check performs the following actions:
1. Itlooksfor amatching ALAT entry and if found, falls through to the next instruction.
2. If no matching entry isfound, the chk. a branches to the specified address.

An implementation may choose to implement afailing advanced load check directly as abranch or
as afault where the fault-handler emulates the branch. Although the expected mode of operation is
for an implementation to detect matching entriesin the ALAT during checks, an implementation
may fail acheck instruction even when an entry with amatching ALAT register tag exists. Thiswill
be arare occurrence but software must not assume that the ALAT does not contain the entry.

A check load checks for amatching entry in the ALAT. If no matching entry isfound, it reloads the
value from memory and any faults that occur during the memory reference are raised. When a
matching entry isfound, thereis flexibility in the actions that a processor can perform:

1. Theimplementation may chooseto either |eave the target register unchanged or to reload the
value from memory.

2. If the implementation chooses to leave the target register unchanged and one or more
exception conditions related to the data access or trandation of the check load occurs, the
implementation may choose to either raise the highest-priority of these faults or ignore them
all and continue execution. The faults that can beignored are those rel ated to data access and
tranglation (Data Nested TLB fault, Alternate Data TLB fault, VHPT Datafault, Data TLB
fault, Data Page Not Present fault, Data NaT Page Consumption fault, Data Key Miss fault,
Data Key Permission fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit
fault, Data Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault).
See Table 5-6 “Interruption Priorities’” on page 2:94.

3. If the implementation chooses to perform areload, then any faults that occur because of the
reload can not be ignored.

4, If thesize, type, or addressfieldsin the matching ALAT entry do not match that provided by
acheck load, the value returned by the check load is undefined. In such cases the

Volume 1: Application Programming Model 1:57

1:58

intel.

implementation may choose to raise afault or when the “no clear” variant of the check load
isissued, an implementation may choose to update the address, size, or type fields of the
matching ALAT entry or to leave the entry unchanged.

If the check load was an ordered check load (I d. c. cl r. acq), then it is performed with the
semantics of an ordered load (I d. acq). ALAT register tag lookups by advanced load checks and
check loads are subject to memory ordering constraints as outlined in “Memory Access Ordering”
on page 1:63.

In addition to the flexibility described above, the size, organization, matching algorithm, and
replacement a gorithm of the ALAT are implementation dependent. Thus, the success or failure of
specific advanced loads and checks in a program may change: when the program is run on different
processor implementations, within the execution of a single program on the same implementation,
or between different runs on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entriesremoved by advanced |oads, ALAT entry invalidations can occur implicitly by
events that alter memory state or explicitly by any of the following instructions: I d. c. cl r,
Id.c.clr.acq,chk.a.clr,inval a,inval a. e. Eventsthat may implicitly invalidate ALAT
entries include those that change memory state or memory translation state such as:

1. The execution of stores, semaphores, or pt c. ga on other processorsin the coherence
domain.

2. The execution of store or semaphore instructionsissued on the local processor.
3. Patform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented by an entry in
the ALAT to seeif it overlaps with the locations affected by the invalidation event. ALAT entries
whose memory regions overlap with the invalidation event locations are removed. Note that some
invalidation events may require that multiple entries be removed from the ALAT. For example, the
pt c. ga instruction is page aligned, thus apt c. ga from another processor would require that
hardware invalidate all ALAT entriesrelated to that page. Stores due to RSE spills are not checked
for ALAT invalidation and do not cause ALAT entries to be removed. See Section 6.9, “RSE and
ALAT Interaction” on page 2:131. When an external agent can observe that the processor has
removed a physical address range from its caches, then that address range is guaranteed to be
invalidated from that processor’'s ALAT as well.

An implementation may invalidate entries over areas larger than explicitly required by a specific
invalidation event, and more generally, to invalidate any ALAT entry at any time. For example, a
st 1 only accesses one byte, but an implementation could choose to invalidate all ALAT entries
whose memory region isin the same cache line. An implementation may also provide an ALAT
with zero entries (i.e,, all | d. c/chk. a instructions would act asif an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Softwareexplicitly changesthe virtual to physical register mapping on rotating registers that
have been the target of advanced loads (cl r r r b).

Software changes the virtual to physical memory mapping.

3. Software accesses the RSE backing store with advanced |oads. See Section 6.9, “RSE and
ALAT Interaction” on page 2:131 (since RSE stores do not invalidate ALAT entries).

Volume 1: Application Programming Model

4454

4.4.5.5

4. Software explicitly changes the virtual to physical register mapping on stacked registers by
switching the RSE backing stores. See Section 6.11.3, “ Synchronous Backing Store Switch”
on page 2:133.

Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both
control and data speculative. Both control speculative (1 d. sa, | df . sa, | df p. sa) and non-control
speculative (I d. a, | df . a, | df p. a) variants of advanced |oads are defined for general and
floating-point registers. If a speculative advanced load generates a deferred exception token then:

Any existing ALAT entry with the same ALAT register tag isinvalidated.
No new ALAT entry is allocated.
If the target of the load was a general-purpose register, its NaT bit is set.

A w0 P

If the target of the load was a floating-point register, then NaTVal iswritten to the target
register.

If a speculative advanced load does not generate adeferred exception, then its behavior is the same
as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced load
check or check load is sufficient to check both for data speculation failures and to detect deferred
exceptions.

Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of
advanced load checks and check loads are provided: variantswith clear (chk.a.clr,ld.c.clr,
Id.c.clr.acq, ! df.c.clr,|dfp.c.clr)andvariantswith no clear (chk. a. nc, I d. c. nc,

I df . c. nc, | df p. c. nc).

The clear variants are used when the compiler knows that the ALAT entry will not be used again
and wants the entry explicitly removed. This allows software to indicate when entries are
unneeded, making it lesslikely that a useful entry will be unnecessarily forced out because all
entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and the
corresponding advanced load match. For chk. a. cl r, the entry is guaranteed to be invalidated only
when the instruction falls through (the recovery codeis not executed). Thus, afailing chk. a. cl r
may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly
invalidate the entry in question if program correctness depends on the entry being absent after a
failedchk. a. clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an
existing entry should be maintained in the ALAT or that a new entry should be allocated when a
matching ALAT entry doesn't exist. Such variants can be used within loops to check advanced
loads which were presumed loop-invariant and moved out of the loop by the compiler. This
behavior ensures that if the check load fails on one iteration, then the check load will not
necessarily fail on all subsequent iterations. Whenever a new entry is inserted into the ALAT or

Volume 1: Application Programming Model 1:59

intel.

when the contents of an entry are updated, the information written into the ALAT only uses
information from the check load and does not use any residual information from a prior entry. The
non-clear variant of chk. a, chk. a. nc, does not alocate entries and the ‘nc’ completer actsasa
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data speculation.

Table 4-16. State Relating to Data Speculation

Table 4-17. Instructions Relating to Data Speculation

4.4.6

446.1

1:60

Structure

Function

ALAT Advanced load address table

Mnemonic

Operation

Id.aldf.aldfp. a

GR and FR advanced load

st,st.rel,st.spill,stf,stf.spill

GR and FR store

cnpxchg, f et chadd, xchg

GR semaphore

ld.c.clr,ld.c.clr.acq,ldf.c.clr,
ldfp.c.clr

GR and FR check load, clear on ALAT hit

ld.c.nc,Idf.c.nc,ldf p.c.nc

GR and FR check load, re-allocate on ALAT miss

I d.sa,ldf.sa,ldfp.sa

GR and FR speculative advanced load

chk. a.clr,chk. a.nc

GR and FR advanced load check

i nval a

Invalidate all ALAT entries

inval a. e

Invalidate individual ALAT entry for GR or FR

Memory Hierarchy Control and Consistency

Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed possesses
temporal locality. In addition, memory access instructions can specify which levels of the memory
hierarchy are affected by the access. Thisleads to an architectural view of the memory hierarchy
depicted in Figure 4-4 composed of zero or more levels of cache between the register files and
memory where each level may consist of two parallel structures. atemporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.

The temporal structures cache memory accessed with temporal locality; the non-temporal
structures cache memory accessed without temporal locality. Both structures assume that memory
accesses possess spatial locality. The existence of separate temporal and non-temporal structures,
as well asthe number of levels of cache, isimplementation dependent. Please see the processor

specific documentation for further information.

Volume 1: Application Programming Model

intel.

Figure 4-4. Memory Hierarchy

Register

Level 1 Level 2 Level N
r————>—"">">"7"77 r-————"7"7"7- r-———>""7>""7>"77 |
I I
I I
I I
: Temporal Temporal Temporal :
I Structure Structure Structure |
I I
I I
I I

- > <—» Memory

Files I I
I I
I I

I
| | Non-temporal Non-temporal Non-temporal :
: Structure Structure Structure I
I
I I
I I
| _ | 1 | _ 1

Cache

000722

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit
prefetch. Locality hints are specified by load, store, and explicit prefetch (I f et ch) instructions. A
locality hint specifies ahierarchy level (e.g., 1, 2, al). An accessthat istemporal with respect to a
given hierarchy level istreated as temporal with respect to all lower (higher numbered) levels. An
access that is non-temporal with respect to agiven hierarchy level istreated as temporal with
respect to all lower levels. Finding a cache line closer in the hierarchy than specified in the hint
does not demote the line. This enables the precise management of linesusing | f et ch and then
subsequent uses by. nt a loads and stores to retain that level in the hierarchy. For example,
specifying the. nt 2 hint by a prefetch indicates that the data should be cached at level 3.
Subsequent loads and stores can specify. nt a and have the dataremain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the
implementation. The locality hints available to loads, stores, and explicit prefetch instructions are
given in Table 4-18. I nstruction accesses are considered to possess both temporal and spatial
locality with respect to level 1.

Table 4-18. Locality Hints Specified by Each Instruction Class

Volume 1: Application Programming Model

Instruction Type
Mnemonic Locality Hint Load Store Ifeltf;t](.:fghlt
none Temporal, level 1 X X X
ntl Non-temporal, level 1 X X
nt 2 Non-temporal, level 2 X
nta Non-temporal, all levels X X X

Each locality hint implies a particular allocation path in the memory hierarchy. The allocation paths
corresponding to the locality hints are depicted in Figure 4-5. The allocation path specifies the
structures in which the line containing the data being referenced would best be alocated. If theline
is already at the same or higher level in the hierarchy no movement occurs. Hinting that a datum
should be cached in atemporal structure indicatesthat it islikely to be read in the near future.

1:61

1:62

Figure 4-5. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2 Level 3
r—-———7"7>"7>""7 I r--——"7>""7>""7 r—-———"7""7>""7">"7
: : : Temporal, Level 1
Temporal : : Temporal : Temporal Non-temporal, Level 1
Structure i I Structure i Structure Non-temporal, Level 2
I
I
I

Memory

<

Non-temporal

Non-temporal Non-temporal

Structure Structure

Non-temporal, All Levels

|
|
]
Structure :
|
|

000723

Explicit prefetch is defined in the form of the line prefetch instruction (1 f et ch, | f et ch. faul t).
The Ifetch instructions moves the line containing the addressed byte to a location in the memory
hierarchy specified by the locality hint. If thelineis already at the same or higher level in the
hierarchy, no movement occurs. Both immediate and register post-increment are defined for
Ifetchandl fetch. fault. Thel fetch instruction does not cause any exceptions, does not
affect program behavior, and may be ignored by the implementation. Thel f et ch. f aul t
instruction affects the memory hierarchy in exactly the sasmeway as| f et ch but takes exceptions
asif it were a 1-byte load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, | f et ch and

| fetch. faul t. Theline containing the post-incremented address is moved in the memory
hierarchy based on the locality hint of the originating load, store, | f et ch or | fet ch. f aul t. If the
lineis already at the same or higher level in the hierarchy then no movement occurs. Implicit
prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by
the implementation.

Another form of hint that can be provided on loadsisthel d. bi as load type. Thisis ahint to the
implementation to acquire exclusive ownership of the line containing the addressed data. The bias
hint does not affect program functionality and may be ignored by the implementation.

The following instructions are defined for flush control: flush cache (f ¢, f c. i) and flush write
buffers (f wo). Thef ¢ instruction invalidates the cache linein dl levels of the memory hierarchy
above memory. If the cache line is not consistent with memory, then it is copied into memory
before invdidation. Thefc. i instruction ensures the data cache line associated with an addressis
coherent with the instruction caches. Thef c. i instruction is not required to invalidate the targeted
cache line nor write the targeted cache line back to memory if it isinconsistent with memory, but
may do so if thisisrequired to make the targeted cache line coherent with the instruction caches.
Thef wb instruction provides ahint to flush al pending buffered writesto memory (no indication of
completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.

Volume 1: Application Programming Model

intel.

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

4.4.6.2

4.4.7

Mnemonic Operation
. nt 1 and.nt a completer on loads Load usage hints
. nt a completer on stores Store usage hints
prefetch line at post-increment address on loads and stores Prefetch hint
| fetch, | fetch.fault with. nt 1,.nt 2, and. nt a hints Prefetch line
fc, fc.i Flush cache
fwb Flush write buffers

Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent with respect
to instruction and/or data accesses made by any other processor, nor are instruction accesses made
by a processor coherent with respect to data accesses made by that same processor. Therefore,
hardware is not required to keep a processor’s instruction caches consistent with respect to any
processor’s data caches, including that processor’s own data caches; nor is hardware required to
keep a processor’sinstruction caches consistent with respect to any other processor’s instruction
caches. Data accesses from different processors in the same coherence domain are coherent with
respect to each other; this consistency is provided by the hardware. Data accesses from the same
processor are subject to data dependency rules; see “Memory Access Ordering” below.

The mechanism(s) by which coherence is maintained is implementation dependent. Separate or
unified structures for caching data and instructions are not architecturally visible. Within this
context there are two categories of datamemory hierarchy control: allocation and flush. Allocation
refers to movement towards the processor in the hierarchy (lower numbered levels) and flush refers
to movement away from the processor in the hierarchy (higher numbered levels). Allocation and
flush occur in line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on
a 32-byte boundary). The line size in an implementation may be smaller in which case the
implementation will need to move multiplelinesfor each allocation and flush event. An
implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that awrite from a given processor becomes visible to the instruction stream
of that same, and other, processors, the affected line(s) must be made coherent with instruction
caches. Software may usethef c. i instruction for this purpose. Memory updates by DMA devices
are coherent with respect to instruction and data accesses of processors. The consistency between
instruction and data caches of processors with respect to memory updates by DMA devicesis
provided by the hardware. In case a program modifiesits own instructions, thesync. i andsrl z. i
instructions are used to ensure that prior coherency actions are observed by a given point in the
program. Refer to the description sync. i on page 3:229 in Volume 3: Instruction Set Reference for
an example of self-modifying code.

Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and
write-after-read (WAR) data dependencies to the same memory location. In addition, memory
writes and flushes must observe control dependencies. Except for these restrictions, reads, writes,
and flushes may occur in an order different from the specified program order. Note that no ordering
exists between instruction accesses and data accesses or between any two instruction accesses. The
mechanisms described below are defined to enforce a particular memory access order. In the

Volume 1: Application Programming Model 1:63

intel.

following discussion, the terms “previous’ and “subsequent” are used to refer to the program
specified order. Theterm “visible” isused to refer to all architecturally visible effects of performing
amemory access (a a minimum thisinvolves reading or writing memory).

Memory accesses follow one of four memory ordering semantics. unordered, release, acquire or
fence. Unordered data accesses may become visible in any order. Release data accesses guarantee
that all previous data accesses are made visible prior to being made visible themselves. Acquire
data accesses guarantee that they are made visible prior to all subsequent data accesses. Fence
operations combine the release and acquire semantics into a bi-directional fence, i.e., they
guarantee that al previous data accesses are made visible prior to any subsequent data accesses
being made visible.

Explicit memory ordering takes the form of a set of instructions: ordered load and ordered check
load (I d. acq, | d. c. clr. acq), ordered store(st . r el), semaphores (cnpxchg, xchg, f et chadd),
and memory fence (nf). Thel d. acq and | d. c. cl r. acq instructions follow acquire semantics.
Thest . rel followsrelease semantics. The nf instruction is afence operation. The xchg,

f et chadd. acq, and cnpxchg. acq instructions have acquire semantics. The cnpxchg. rel , and

f et chadd. r el instructions have release semantics. The semaphore instructions also have implicit
ordering. If thereisawrite, it will alwaysfollow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering
semantics. “O” indicates that the first and second reference are performed in order with respect to
each other. A “-" indicates that no ordering isimplied other than data dependencies (and control
dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

Second Reference
First Reference -
Fence Acquire Release Unordered
fence (0] (@) (0] (@)
acquire (@] (@) (0] (@)
release (@] - (0] -
unordered (@) - (0] -

Table 4-21 summarizes memory ordering instructions related to cacheable memory. For definitions
of the ordering rules related to non-cacheable memory, cache synchronization, and privileged
instructions, refer to Section 4.4.7, “ Sequentiality Attribute and Ordering” on page 2:69.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation
I d.acq, Id.c.clr.acq Ordered load and ordered check load
st.rel Ordered store
XChg Exchange memory and general register
cnpxchg. acq, cnpxchg. rel Conditional exchange of memory and general register
f et chadd. acq, f et chadd. rel |Addimmediate to memory
nf Memory ordering fence

1:64 Volume 1: Application Programming Model

4.5

Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets are
bundle-aligned, which means control is always passed to the first instruction slot of the target
bundle (slot 0). Branch instructions are not required to be the last instruction in an instruction
group. Infact, an instruction group can contain arbitrarily many branches (provided that the normal
RAW and WAW dependency requirements are met). If abranch istaken, only instructions up to the
taken branch will be executed. After ataken branch, the next instruction executed will be at the
target of the branch.

There are three categories of branches: |P-relative branches, long branches, and indirect branches.
IP-relative branches specify their target with a signed 21-bit displacement, which isadded to the IP
of the bundle containing the branch to give the address of the target bundle. The displacement
allows a branch reach of +16MBytes. Long branches are | P-relative with a 60-bit displacement,
allowing the target to be anywhere in the 64-bit address space. Because of the long immediate, long
branches occupy two instruction dots. Indirect branches use the branch registers to specify the
target address.

There are several branch types, as shown in Table 4-22. The conditional branch br . cond or br isa
branch which istaken if the specified predicateis 1, and not-taken otherwise. The conditional call
branch br . cal I doesthe same thing, and in addition, writes alink address to a specified branch
register and adjusts the genera register stack (see “Register Stack” on page 1:39). The conditional
return br . r et does the same thing as an indirect conditional branch, plusit adjusts the general
register stack. Unconditional branches, calls and returns are executed by specifying PR 0 (which is
always 1) as the predicate for the branch instruction. The long branches, br1 . cond or br1 , and
brl.call areidentical tobr. cond or br,andbr. cal | , respectively, except for their longer
displacement.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect
br.call Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set | Unconditional Indirect
br.cl oop Counted loop branch Loop count IP-rel
br.ctop, br.cexit |Modulo-scheduled countedloop |Loop countand Epilog |IP-rel

count
br.wtop, br.wexit |Modulo-scheduled while loop Qualifying predicate IP-rel
and Epilog count
brl.cond or brl Long conditional branch Qualifying predicate IP-rel
brl.call Long conditional procedure call | Qualifying predicate IP-rel

The counted loop type (br . ¢l oop) usesthe Loop Count (LC) application register. If LCis
non-zero then it is decremented and the branch istaken. If LC is zero, the branch fallsthrough. The
modul o-scheduled |oop type branches (br . ct op, br. cexi t, br. wt op, br. wexi t) aredescribed in
“Modul o-scheduled Loop Support” on page 1:66. The loop type branches (br . cl oop, br. ct op,
br.cexit,br.wop, br.wexit) arealowed only in slot 2 of abundle. A loop type branch
executed in slot 0 or 1 will cause an lllegal Operation fault.

Volume 1: Application Programming Model 1:65

intel.

Instructions are provided to move data between branch registers and generd registers (mov =br,
mov br =). Table 4-23 and Table 4-24 summarize state and instructions relating to branching.

Table 4-23. State Relating to Branching

4.5.1

1:66

Register Function
BRs Branch registers
PRs Predicate registers
CFM Current Frame Marker
PFS Previous Function State application register
LC Loop Count application register
EC Epilog Count application register
Table 4-24. Instructions Relating to Branching

Mnemonic Operation
br Branch
brl Long branch
brp Provide early hint information about a future branch
mov =br Move from BR to GR
nmov br= Move from GR to BR

Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types.
Software pipelining of aloop is analogous to hardware pipelining of afunctional unit. The loop
body is partitioned into multiple “ stages’ with zero or more instructions in each stage.

M odul o-scheduled loops have 3 phases: prolog, kernel, and epilog. During the prolog phase, new
loop iterations are started each time around (filling the software pipeling). During the kernel phase,
the pipdineisfull. A new loop iteration is started, and another is finished each time around. During
the epilog phase, no new iterations are started, but previous iterations are completed (draining the
software pipeline).

A predicate is assigned to each stage to control the activation of the instructionsin that stage (this
predicateis called the “ stage predicate”). To support the pipelining effect of stage predicates and
registersin a software-pipelined loop, afixed sized area of the predicate and floating-point register
files (PR16-PR63 and FR32-FR127), and a programmabl e sized area of the general register file, are
defined to “rotate.” The size of the rotating area in the general register file is determined by an
immediate in the al | oc instruction. Thisimmediate must be either zero or amultiple of 8. The
general register rotating areais defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area of the
predicate register file. For counted loops, PR16 is architecturally defined to be the first stage
predicate with subsequent stage predicates extending to higher predicate register numbers. For
whileloops, the first stage predicate may be any rotating predicate with subsequent stage predicates
extending to higher predicate register numbers. Softwareis required to initialize the stage (rotating)
predicates prior to entering the loop. An alloc instruction may not change the size of the rotating
portion of the register stack frame unless all rotating register bases (rrb’s) in the CFM are zero. Al
rrb’s can be set to zero with thecl rrr b instruction. Thecl rrrb. pr form can be used to clear just
the rrb for the predicate registers. Thecl r rr b instruction must be the last instruction in an
instruction group.

Volume 1: Application Programming Model

Rotation by one register position occurs when a software-pipelined loop type branch is executed.
Registers are rotated towards larger register numbersin awraparound fashion. For example, the
valuein register X will belocated in register X+1 after one rotation. If X isthe highest addressed
rotating register its value will wrap to the lowest addressed rotating register. Rotation is
implemented by renaming register numbers based upon the value of arotating register base (rrb)
contained in CFM. An independent rrb is defined for each of the three rotating register files:
CFM.rrb.gr for the general registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for
the predicate registers. Genera registers only rotate when the size of the rotating region is not equal
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two or al three
rrb’s are decremented in unison. Each rrb is decremented modul o the size of their respective
rotating regions (e.g., 96 for rrb.fr). The operation of the rotating register rename mechanism is not
otherwise visible to software. The instructions that modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb’s
clrrrb. pr Clears rrb.pr
br.call, brl.call Clears all rrb’s
cover Clears all rrb’s
br.ret Restores CFM.rrb's from PFM.rrb’s
rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1
br.ctop, br.cexit, Decrements all rrb’s
br.wtop, and br.wexit

There are two categories of software-pipelined loop branch types: counted and while. Both
categories have two forms: top and exit. The “top” variant is used when the loop decision islocated
at the bottom of the loop body. A taken branch will continue the loop while a not-taken branch will
exit theloop. The “exit” variant is used when the loop decision islocated somewhere other than the
bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the [oop.
The“exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop type
(ctop or cexit), the value of the loop count application register (LC), and the value of the epilog
count application register (EC). Note that the counted loop branches do not use a qualifying
predicate. LC isinitialized to one less than the number of iterations for the counted loop and EC is
initialized to the number of stages into which the loop body has been partitioned. While LC is
greater than zero, the branch direction will continue the loop, LC will be decremented, registers
will be rotated (rrb’s are decremented), and PR 16 will be set to 1 after rotation. (For each of the
loop-type branches, PR 63 iswritten by the branch, and after rotation this value will bein PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. Whilein
the epilog and while EC is greater than one, the branch direction will continue the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to O after rotation. Execution of a
counted loop branch with LC equal to zero and EC equa to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to 0 after rotation. A counted loop type branch executed with both LC and EC equal to
zero will have abranch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no
rotation) and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of optimized,
unrolled software-pipelined loopsif the target of a cexit branch is set to the next sequential bundle
and the loop trip count is not evenly divisible by the unroll amount.

Volume 1: Application Programming Model 1:67

intel.

The direction of awhile loop branch is determined by the specific while loop type (wtop or wexit),
the value of the qualifying predicate, and the value of EC. The while loop branches do not use LC.
While the qualifying predicate is one, the branch direction will continue the loop, registers will be
rotated, and PR 16 will be set to 0 after rotation. While the qualifying predicate is zero and EC is
greater than one, the branch direction will continue the loop, EC will be decremented, registerswill
be rotated, and PR 16 will be set to 0 after rotation. The qualifying predicate is one during the
kernel and zero during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of awhile loop
branch with qualifying predicate equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to O after rotation. A while loop branch executed with a zero qualifying predicate and
with EC equal to zero has a branch direction to exit the loop. EC and the rrb’s will not be modified
(no rotation) and PR 63 will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the pipelined
while loop. Often, thefirst valid condition for the while loop branch is not computed until several
stagesinto the prolog. Therefore, software pipelines for while loops often have several speculative
prolog stages. During these stages, the qualifying predicate can be set to zero or one depending
upon the scheme used to program the loop. If the qualifying predicate is one throughout the prolog,
EC will be decremented only during the epilog phase and isinitialized to one more than the number
of epilog stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC
will be decremented during this part of the prolog, and the initialization value for EC isincreased
accordingly.

45.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
Thisinformation can be encoded in two ways: with branch hints as part of a branch instruction
(referred to as hints), and with separate Branch Predict instructions (br p) where the entire
instruction is hint information. Hints and br p instructions do not affect the functional behavior of
the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

* Whether prediction strategy: This describes (for COND, CALL and RET type branches)
how the processor should predict the branch condition. (For the loop type branches, prediction
isbased on LC and EC.) The suggested strategies that can be hinted are shown in Table 4-26.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this
branch.

spt k Static Taken Always predict taken, do not allocate prediction resources for
this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict not-taken.

dpt k Dynamic Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict taken.

1:68 Volume 1: Application Programming Model

» Sequential prefetch: Thisindicates how much code the processor should prefetch at the
branch target (shown in Table 4-27). Please see the processor specific documentation for
further information.

Table 4-27. Sequential Prefetch Hint on Branches

Completer Sequentlgl Prefetch Operation
Hint
few Prefetch few lines When prefetching code at the branch target, stop prefetching
after a few (implementation-dependent number of) lines.
many Prefetch many lines When prefetching code at the branch target, prefetch more
lines (also an implementation-dependent number).

* Predictor deallocation: This providesre-use information to allow the hardware to better
manage branch prediction resources. Normally, prediction resources keep track of the
most-recently executed branches. However, sometimes the most-recently executed branch is
not useful to remember, either because it will not be re-visited any time soon or because a hint
instruction will re-supply the information prior to re-visiting the branch. In such cases, this hint
can be used to free up the prediction resources.

Table 4-28. Predictor Deallocation Hint

Completer Operation
none Don't deallocate
clr Deallocate branch information
4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide early
information about future branches. Branch predict instructions provide the following pieces of
information:

« Location of thebranch: A displacement in the br p instruction added to the IP of the bundle
containing the br p instruction gives the IP of the bundle containing the future branch.

« Target of the branch: IP-relative br p instructions specify the target of the future branch with
a 21-hit displacement (just like in branches). The displacement plusthe IP of the bundle
containing the br p instruction gives the target address. Indirect br p instructions specify the
branch register which will be used by the future branch.

e Branch importance: This hint indicates to hardware that it should employ avery fast (but
small) prediction structure for this branch (useful on tight loops).

» Whether prediction strategy: Same asthe strategy hint on branches, except that the available
hints are dightly different. Static not-taken is not provided (it’s not useful to provide early
indication of such branches), and only one form of Dynamic prediction is provided. Instead,
two strategies are included to indicate that the branch will be a“positive” (CLOOPR, CTOP,
WTOP) or “negative” (CEXIT, WEXIT) loop-type.

The move to branch register instruction can aso provide this same hint information, simplifying the
setup for a hinted indirect branch.

Volume 1: Application Programming Model 1:69

4.6

Multimedia Instructions

Multimediainstructions (see Table 4-29) treat the genera registers as concatenations of eight 8-bit,
four 16-hit, or two 32-bit elements. They operate on each element independently and in parallel.
The elements are always aligned on their natural boundaries within ageneral register. Most
multimediainstructions are defined to operate on multiple element sizes. Three classes of
multimedia instructions are defined: arithmetic, shift and data arrangement.

Table 4-29. Parallel Arithmetic Instructions

4.6.1

1:70

Mnemonic Operation 1-byte 2-byte 4-byte
padd Parallel modulo addition X X X
padd. sss | Parallel addition with signed saturation X X
padd. uuu, |Parallel addition with unsigned saturation X X
padd. uus
psu b Parallel modulo subtraction X X X
psu b. sss |Parallel subtraction with signed saturation X X
psub. uuu, | Parallel subtraction with unsigned saturation X X
psub. uus
pavg Parallel arithmetic average X X
pavg. raz |Parallel arithmetic average with round away from zero X X
pavgsu b Parallel average of a difference X X
pshl add Parallel shift left and add with signed saturation X
pshradd Parallel shift right and add with signed saturation X
pcnp Parallel compare X X X
prmpy. | Parallel signed multiply of odd elements X
pmpy. r Parallel signed multiply of even elements X
prpyshr Parallel signed multiply and shift right X
prpyshr . u | Parallel unsigned multiply and shift right X
psad Parallel sum of absolute difference X
pm' n Parallel minimum X %
pmax Parallel maximum X X

Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation
(padd. sss, psub. sss), and unsigned saturation (padd. uuu, padd. uus, psub. uuu, psub. uus).
The modulo forms have the result wraparound the largest or smallest representable value in the
range of the result element. In the saturating forms, results larger than the largest representable
value of the range of the result element, or smaller than the smallest representable value of the
range, are clamped to the largest or smallest value in the range of the result element respectively.
The signed saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps the result to
the limits of an unsigned range. Two variants are defined that treat the second source as either
signed (. uus) or unsigned (. uuu).

Volume 1: Application Programming Model

4.6.2

The parallel average instruction (pavg, pavg. r az) adds corresponding elements from each source
and right shifts each result by one bit. In the simple form of the instruction, the carry out of the
most-significant bit of each sum iswritten into the most significant bit of the result element. In the
round-away-from-zero form, a1l isadded to each sum before shifting. The parallel average subtract
instruction (pavgsub) performs a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshl add) performs aleft shift on the elements of thefirst
source and then adds them to the corresponding elements from the second source. Signed saturation
is performed on both the shift and the add operations. The parallel shift right and add instruction
(pshr add) issimilar to pshl add. Both of these instructions are defined for 2-byte elements only.

The paralel compare instruction (pcnp) compares the corresponding elements of both sources and
writes dl ones (if true) or all zeroes (if false) into the corresponding el ements of the target
according to one of two relations (== or >).

The paralel multiply right instruction (pnpy. r) multiplies the corresponding two even-numbered
signed 2-byte elements of both sources and writesthe resultsinto two 4-byte elementsin the target.
Thepnpy. | instruction performs asimilar operation on odd-numbered 2-byte elements. The
parallel multiply and shift right instruction (pnpyshr, pnpyshr . u) multiplies the corresponding
2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by O, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte
shifted results are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absol ute difference of
corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pni n. u, pni n) and the parallel maximum (pmax. u, pnax) instructions
deliver the minimum or maximum, respectively, of the corresponding 1-byte or 2-byte elementsin
the target. The 1-byte elements are treated as unsigned values and the 2-byte el ements are treated as
signed values.

Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first source by a
count contained in either a general register or an immediate. The parallel shift right instruction
(pshr) performs an individual arithmetic right shift of each element of one source by a count
contained in either agenera register or an immediate. The pshr. u instruction performs an
unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte
pshl Parallel shift left X X
pshr Parallel signed shift right X X
pshr.u Parallel unsigned shift right X X

Volume 1: Application Programming Model 1:71

4.6.3

Data Arrangement

The mix right instruction (i x. r) interleaves the even-numbered elements from both sourcesinto
the target. The mix left instruction (i x. |') interleaves the odd-numbered elements. The unpack
low instruction (unpack. |) interleaves the elementsin the least-significant 4 bytes of each source
into the target register. The unpack high instruction (unpack. h) interleaves elements from the most
significant 4 bytes. The pack instructions (pack. sss, pack. uss) convert from 32-bit or 16-hbit
elements to 16-bit or 8-bit elements respectively. The least-significant half of larger elementsin
both sources are extracted and written into smaller elementsin the target register. The pack. sss
instruction treats the extracted elements as signed values and performs signed saturation on them.
The pack. uss instruction performs unsigned saturation. The mux instruction (mux) copies
individual 2-byte or 1-byte elementsin the source to arbitrary positions in the target according to a
specified function. For 2-byte dements, an 8-bit immediate allows all possible permutationsto be
specified. For 1-byte elements the copy function is selected from one of five possibilities (reverse,
mix, shuffle, alternate, broadcast). Table 4-31 describes the various types of pardlel data
arrangement instructions.

Table 4-31. Parallel Data Arrangement Instructions

4.7

Mnemonic Operation 1-byte 2-byte | 4-byte
m x. | Interleave odd elements from both sources X X X
mx.r Interleave even elements from both sources X X X
mux Arbitrary copy of individual source elements X X
pac k. sss |Convert from larger to smaller elements with signed saturation X X
pac k. uss |Convert from larger to smaller elements with unsigned X

saturation
unpac k.| |Interleave least-significant elements from both sources X X X
unpac k. h |Interleave most significant elements from both sources X X X

Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register file and the
floating-point, branch, predicate, performance monitor, processor identification, and application
register files. Several of the transfer instructions share the same mnemonic (nov). The value of the
operand identifies which register file is accessed.

Table 4-32. Register File Transfer Instructions

1:72

Mnemonic Operation
getf.exp, getf.sig Move FR exponent or significand to GR
getf.s, getf.d Move single/double precision memory format from FR to GR
setf.s, setf.d Move single/double precision memory format from GR to FR
setf.exp, setf.sig Move from GR to FR exponent or significand
nmov =br Move from BR to GR
nmov br= Move from GR to BR
nov =pr Move from predicates to GR
MoV pr=, nov pr.rot= Move from GR to predicates

Volume 1: Application Programming Model

intel.

Table 4-32. Register File Transfer Instructions (Continued)

Mnemonic Operation
nov ar = Move from GR to AR
nov =ar Move from AR to GR
MoV =pSr.um Move from user mask to GR
mov pPSr. unrF Move from GR to user mask
sum rum Set and reset user mask
nov :pmj[C.] Move from performance monitor data register to GR
nov =cpuid[...] Move from processor identification register to GR
nmov =i p Move from Instruction Pointer

Memory access instructions only target or source the general and floating-point register files. Itis
necessary to use the general register file as an intermediary for transfers between memory and all
other register files except the floating-point register file.

Two classes of move are defined between the generd registers and the floating-point registers. The
first type moves the significand or the sign/exponent (get f . si g, set f . si g, get f. exp,

set f . exp). The second type moves entire single or double precision numbers (get f. s, setf. s,
getf.d, setf.d). Theseinstructions also perform a conversion between the deferred exception
token formats.

Instructions are provided to transfer between the branch registers and the genera registers. The
move to branch register instruction can also optionally include branch hints. See “Branch
Prediction Hints” on page 1:68.

Instructions are defined to transfer between the predicate register file and a general register. These
instructions operatein a*“broadside” manner whereby multiple predicate registers are transferred in
parallel (predicate register N istransferred to and from bit N of ageneral register). The moveto
predicateinstruction (nov pr =) transfers ageneral register to multiple predicate registers according
to a mask specified by an immediate. The mask contains one hit for each of the static predicate
registers (PR 1 through PR 15— PR O ishardwired to 1) and one bit for all of the rotating predicates
(PR 16 through PR63). A predicate register is written from the corresponding bit in a general
register if the corresponding mask bit is set. If the mask hit is clear then the predicate register is not
modified. The rotating predicates are transferred as if CFM..rrb.pr were zero. The actual valuein
CFM..rrb.pr isignored and remains unchanged. The move from predicate instruction (mov =pr)
transfers the entire predicate register fileinto a genera register target.

In addition, instructions are defined to move values between the general register file and the user
mask (mov psr. um= and nov =psr . unm). The sumand r uminstructions set and reset the user mask.
The user mask is the non-privileged subset of the Process Status Register (PSR).

Thenov =pnd[] instruction is defined to move from a performance monitor data (PM D) register
to ageneral register. If the operating system has not enabled reading of performance monitor data
registersin user level then all zeroes are returned. Themov =cpui d[] instruction is defined to
move from a processor identification register to ageneral register.

Thenov =i p instruction is provided for copying the current value of the instruction pointer (1P)
into ageneral register.

Volume 1: Application Programming Model 1:73

4.8

4.8.1

Character Strings and Population Count

A small set of special instructions accel erate operations on character and bit-field data.

Character Strings

The compute zero index instructions (czx. | , czx. r) treat the general register source as either eight
1-byte or four 2-byte elements and write the general register target with the index of the first zero
element found. If there are no zero elementsin the source, the target is written with a constant one
higher than the largest possible index (8 for the 1-byte form, 4 for the 2-byte form). The czx. |
instruction scans the source from left to right with the left-most element having an index of zero.
Theczx. r instruction scans from right to | eft with the right-most element having an index of zero.
Table 4-33 summarizes the compute zero index instructions.

Table 4-33. String Support Instructions

4.8.2

4.9

1:74

Mnemonic Operation 1-byte 2-byte
czx. | Locate first zero element, left to right X X
CZX.r Locate first zero element, right to left X X

Population Count

The population count instruction (popcnt) writes the number of bitswhich have avalue of 1inthe
source register into the target register.

Privilege Level Transfer

Three instructions may cause a privilege level change: break (br eak), enter privileged code (epc)
and branch return (br . r et). The br eak instruction is defined to cause a Break Instruction fault
which can be used to transfer privilege levels. The br eak instruction contains an immediate which
is made available to a dedicated fault handler. The epc instruction increases the privilege level
without causing an interruption or a control flow transfer. The new privilege level is specified by
the TLB entry for the page containing the epc, if virtual address trandation for instruction fetches
is enabled. If the privilege level specified by PFS.ppl (in the Previous Function State application
register) islower than the current privilege level (as specified by PSR.cpl in the Processor Status
Register) epc raises an Illegal Operation fault. The br . r et instruction is defined to demote the
privilege level if PFS.ppl islower than PSR.cpl. A br. ret will never increase privilege level.

Volume 1: Application Programming Model

intel.

Floating-point Programming Model

5

The floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary
Floating-Point Arithmetic (Std. 754-1985). Thereis full IEEE support for single, double, and
double-extended real formats. The two | EEE methods for controlling rounding precision are
supported. The first method converts results to the double-extended exponent range. The second
method converts results to the destination precision. Some |EEE extensions such as fused multiply
and add, minimum and maximum operations, and aregister format with alarger range than the

minimum double-extended format are also included.

5.1 Data Types and Formats

Six datatypes are supported directly: single, double, double-extended real (IEEE real types); 64-bit
signed integer, 64-bit unsigned integer, and the 82-bit floating-point register format. A “Parallel
FP” format where a pair of |EEE single precision values occupy a floating-point register’s
significand is also supported. A seventh datatype, |EEE-style quad-precision, is supported by
software routines. A future architecture extension may include additional support for the

quad-precision real type.

5.1.1 Real Types

The parameters for the supported | EEE real types are summarized in Table 5-1.
Table 5-1. IEEE Real-type Properties

‘ Single ‘ Double ‘ Double-Extended Quad-Precision
IEEE Real-Type Parameters
Sign +or - +or - +or - +or -
Emax +127 +1023 +16383 +16383
Emin -126 -1022 -16382 -16382
Exponent bias +127 +1023 +16383 +16383
Precision (bits) 24 53 64 113
IEEE Memory Formats

Total memory format width (bits) 32 64 80 128
Sign field width (bits) 1 1 1 1
Exponent field width (bits) 8 11 15 15
Significand field width (bits) 23 52 64 112

Volume 1: Floating-point Programming Model

1:75

51.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or red type. The format of data
in the floating-point registersis designed to accommodate both of these types with no | oss of
information.

Real numbers reside in 82-bit floating-point registersin athree-field binary format (see
Figure 5-1). Thethreefields are:

* The 64-bit significand field, bgz. bgobg; . bibg contains the number's significant digits. This
field is composed of an explicit integer bit (significand{63}), and 63 bits of fraction
(significand{ 62:0}).

» The 17-hit exponent field locates the binary point within or beyond the significant digits (i.e.,
it determines the number's magnitude). The exponent field is biased by 65535 (OxFFFF). An
exponent field of all onesis used to encode the special values for |EEE signed infinity and
NaNs. An exponent field of all zeros and asignificand field of all zerosis used to encode the
special valuesfor |IEEE signed zeros. An exponent field of all zeros and a non-zero significand
field encodes the double-extended real denormals and double-extended real
pseudo-denormals.

» The 1-bit sign field indicates whether the number is positive (sign=0) or negative (sign=1).

Figure 5-1. Floating-point Register Format

81 80 64 63 0
‘sign ‘ exponent significand (with explicit integer bit)
1 17 64

The value of afinite floating-point number, encoded with non-zero exponent field, can be
calculated using the expression:

(-1)(sim) « p(exponent - 65535) « (gjgnificand{63}.significand{62:0},)

The value of afinite floating-point number, encoded with zero exponent field, can be cal culated
using the expression:

(-1)i9M + 2(-16382) « (significand{63}.significand{62:0},)
Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In
their canonical form, the exponent field is set to Ox1003E (biased 63) and the sign field isset to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed below in
Table 5-2 (shaded encodings are unsupported). The last two table entries contain the values of the
constant floating-point registers, FR 0 and FR 1. The constant value in FR 1 does not change for the
parallel single precision instructions or for the integer multiply accumulate instruction.

1:76 Volume 1: Floating-point Programming Model

intel.

Table 5-2.

Floating-point Register Encodings
Sian Biased Significand
Class or Subclass a git) Exponent i.bb...bb
(17-bits) | (Explicit Integer Bit is Shown) (64-bits)
NaNs 0/1 Ox1FFFF 1.000...01 through 1.111...11
Quiet NaNs 0/1 Ox1FFFF 1.100...00 through 1.111...11
Quiet NaN Indefinite® 1 Ox1FFFF 1.100...00
Signaling NaNs 0/1 Ox1FFFF 1.000...01 through 1.011...11
Infinity 0/1 OX1FFFF 1.000...00
Pseudo-NaNs 0/1 Ox1FFFF 0.000...01 through 0.111...11
Pseudo-Infinity 0/1 Ox1FFFF 0.000...00
Normalized Numbers 0/1 0x00001 1.000...00 through 1.111...11
(Floating-point Register Format Normals) through
Ox1FFFE
Integers or Parallel FP 0 0x1003E 1.000...00 through 1.111...11
(large unsigned or negative signed integers)
Integer Indefinite® 0 0x1003E 1.000...00
IEEE Single Real Normals 0/1 OxOFF81 1.000...00...(40)0s
through through
0x1007E 1.111...11...(40)0s
IEEE Double Real Normals 0/1 0x0FC01 1.000...00...(11)0s
through through
0x103FE 1.111...11...(11)0s
IEEE Double-Extended Real Normals 0/1 0x0C001 1.000...00 through 1.111...11
through
0x13FFE
Normal numbers with the same value as | 0/1 0x0C001 1.000...00 through 1.111...11
Double-Extended Real
Pseudo-Denormals
IA-32 Stack Single Real Normals 0/1 0x0C001 1.000...00...(40)0s
(produced when the computation model through through
is 1A-32 Stack Single) 0x13FFE 1.111...11...(40)0s
IA-32 Stack Double Real Normals 0/1 0x0C001 1.000...00...(11)0s
(produced when the computation model through through
is 1A-32 Stack Double) 0x13FFE 1.111...11...(11)0s
Unnormalized Numbers 0/1 0x00000 0.000...01 through 1.111...11
(Floating-point Register Format unnormalized 0x00001 0.000...01 through 0.111...11
numbers) through
Ox1FFFE
0x00001 0.000...00
through
0x1FFFD
Ox1FFFE 0.000...00
Integers or Parallel FP 0 0x1003E 0.000...00 through 0.111...11
(positive signed/unsigned integers)
IEEE Single Real Denormals 0/1 OxOFF81 0.000...01...(40)0s
through
0.111...11...(40)0s
IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through
0.111...11...(11)0s
Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Volume 1: Floating-point Programming Model

1:77

Table 5-2. Floating-point Register Encodings (Continued)

5.2

1:78

Biased Significand
Exponent i.bb...bb
(17-bits) | (Explicit Integer Bit is Shown) (64-bits)

Sign

Class or Subclass (1 bit)

Unnormal numbers with the same value as | 0/1 0x0C001 0.000...01 through 0.111...11
IEEE Double-Extended Real Denormals

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11
IA-32 Stack Single Real Denormals 0/1 0x00000 0.000...01....(40)0s
(produced when computation model is through
IA-32 Stack Single) 0.111...11...(40)0s
IA-32 Stack Double Real Denormals 0/1 0x00000 0.000...01...(11)0s
(produced when computation model is through
IA-32 Stack Double) 0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals | 0/1 0x00000 1.000...00 through 1.111...11
(IA-32 stack and memory format)

Pseudo-Zeros 0/1 0x00001 0.000...00
through

Ox1FFFD
1 Ox1FFFE 0.000...00
NaTVal® 0 Ox1FFFE 0.000...00
Zero 0/1 0x00000 0.000...00
FR O (positive zero) 0 0x00000 0.000...00
FR 1 (positive one) 0 OXOFFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

All register encodings are allowed as inputs to arithmetic operations. The result of an arithmetic
operation is always the most normalized register format representation of the computed value, with
the exponent range limited from Emin to Emax of the destination type, and the significand
precision limited to the number of precision bits of the destination type. Computed values, such as
zeros, infinities, and NaNs that are outside these bounds are represented by the corresponding
unique register format encoding. Double-extended real denormal results are mapped to the register
format exponent of 0x00000 (instead of 0x0CO001). Unsupported encodings (Pseudo-NaNs and
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are never produced
as aresult of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception.
Pseudo-zero multiplied by infinity returns the correctly signed infinity instead of an Invalid
Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros are classified as
unnormalized numbers, not zeros.

Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status information for
floating-point operations. Thereis one main set of control and status information (FPSR.sf0), and

three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The FPSR layout is shown in Figure 5-2 and

itsfields are defined in Table 5-3. Table 5-4 gives the FPSR's status field description and

Figure 5-3 shows their layout.

Volume 1: Floating-point Programming Model

intel.

Figure 5-2. Floating-point Status Register Format

63 58 57

45 44 32 31 19 18 6 5 0

v

sf3

sf2 sfl sfo ‘ traps ‘

6

13

13 13 13 6

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this
bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this
bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is
set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sfl 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

Figure 5-3. Floating-point Status Field Format
12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags

controls

i‘u‘o‘z‘d‘v

td‘ rc ‘ pc ‘wre‘ftz

6

7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description
ftz 0 Flush-to-Zero mode
wre 1 Widest range exponent (see Table 5-5)
pc 3:2 Precision control (see Table 5-5)
rc 5:4 Rounding control (see Table 5-6)
td 6 Traps disabled?®
\Y 7 Invalid Operation (IEEE Flag)
d 8 Denormal/Unnormal Operand
z 9 Zero Divide (IEEE Flag)
(o] 10 Overflow (IEEE Flag)
u 11 Underflow (IEEE Flag)
i 12 Inexact (IEEE Flag)

a. td is a reserved bit in the main status field, FPSR.sf0

The Denormal/Unnormal Operand status flag is an | EEE-style sticky flag that is set if the valueis
used in an arithmetic instruction and in an arithmetic calculation; e.g. unorm*NaN doesn’t set this
flag. Asdepicted in Table 5-2 on page 1:77, canonical single/double/doubl e-extended denormal,
double-extended pseudo-denormal and register format denormal encodings are a subset of the
floating-point register format unnormalized numbers.

Volume 1: Floating-point Programming Model

1:79

intel.

Note: The Floating-Point Exception fault/trap occursonly if an enabled floating-point exception
occurs during the processing of the instruction. Hence, setting a flag bit of astatusfield to
1in software will not cause an interruption. The status fields flags are merely indications
of the occurrence of floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess’ (see “ Definition of Tininess,
Inexact and Underflow” on page 1:96) to be truncated to the correctly signed zero. Flush-to-Zero
mode can be enabled only if Underflow is disabled. If Underflow is enabled then it takes priority
and Flush-to-Zero mode is ignored. Note that the software exception handler could examine the
Flush-to-Zero mode bit and choose to emul ate the Flush-to-Zero operation when an enabled
Underflow exception arises. The FPSR.sfx.u and FPSR.sfx.i bitswill be set to 1 when aresult is
flushed to the correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status field’'s wre,
pc, and rc control fields. The result’s significand precision and exponent range are determined as
described in Table 5-5, “ Floating-point Computation Model Control Definitions.” If theresult isn’t
exact, FPSR.sfx.rc specifies the rounding direction (see Table 5-6).

Table 5-5. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected
. FPSR.sfx’s FPSR.sfx’s P
Instruction’s.pc . : Significand Exponent .
Completer Dyna_mlc pc Dynar_mc wre Precision Range Computational Style
Field Field
ignored 0 24 bits 8 bits IEEE real single
ignored 0 53 bits 11 bits IEEE real double
.S ignored 1 24 bits 17 bits Register format range,
single precision
d ignored 1 53 bits 17 bits Register format range,
double precision
none 00 0 24 bits 15 bits 1A-32 stack single
none 01 0 N.A. N.A. Reserved
none 10 0 53 bits 15 bits IA-32 stack double
none 11 0 64 bits 15 bits IA-32 double-extended
none 00 1 24 bits 17 bits Register format range,
single precision
none 01 1 N.A. N.A. Reserved
none 10 1 53 bits 17 bits Register format range,
double precision
none 11 1 64 bits 17 bits Register format range,
double-extended precision
not applicable?® ignored ignored 24 bits 8 bits A pair of IEEE real singles
not applicableb ignored ignored 64 bits 17 bits Register format range,
double-extended precision

a. For parallel FP instructions which have no.pc completer (e.g., fpma).
b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).

Table 5-6. Floating-point Rounding Control Definitions

Nearest — Infinity + Infinity Zero
(or even) (down) (up) (truncate/chop)
FPSR.sfx.rc 00 01 10 11

1:80 Volume 1: Floating-point Programming Model

5.3

5.3.1

The trap disable (sfx.td) control bit allows one to easily set up alocal |EEE exception trap default
environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is set,
the FPSR.traps bits are treated as if they are all set (disabled). Note that FPSR.sf0.td is a reserved
field which returns 0 when read.

Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Instruction Set Reference
for a detailed description.

Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended
floating-point real datatypes, and the Parallel FP or signed/unsigned integer datatype. The
addressing modes for floating-point load and store instructions are the same as for integer load and
storeinstructions, except for floating-point load pair instructions which can have an implicit
base-register post increment. The memory hint optionsfor floating-point load and store instructions
are the same as those for integer load and store instructions. (See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1.60.) Table 5-7 lists the types of floating-point |oad
and store instructions. The floating-point load pair instructions require the two target registersto be
odd/even or even/odd. See “Idfp — Floating-point Load Pair” on page 3:141. The floating-point
storeinstructions (st f s, st f d, st f e) require the value in the floating-point register to have the
same type as the store for the format conversion to be correct.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR
Single | df s | df ps stfs
Integer/Parallel FP | df 8 | df p8 stf8
Double | df d | df pd stfd
Double-extended | df e stfe
Spillfill [df.fill stf.spill

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see
Section 4.4.4). Storing aNaTVal to memory will cause a Register NaT Consumption fault, except
for the spill instruction (st f . spi | I).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions
(stf.spill,ldf.fill)usingal6-byte memory container. These are the only instructions that
can be used for saving and restoring the actual register contents since they do not fault on NaTVal.
They save and restore all types (single, double, double-extended, register format and integer or
Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7 and Figure 5-9 describe how single precision, double
precision, double-extended precision, integer/parallel FP, and spill/fill datais trandated during
transfers between floating-point registers and memory.

Volume 1: Floating-point Programming Model 1:81

Figure 5-4. Memory to Floating-point Register Data Translation — Single Precision

. integer .
sign exponent bit significand
FR: K 1 0
Memory/GR:
Single-precision Load/setf.s — normal numbers
. integer S
sign exponent bit significand
FR: QFFF 1 0
Memory/GR: 11
Single-precision Load/setf.s — infinities and NaNs
integer
sign exponent bitg significand
FR: !!)‘ 0 0
Memory/GR: acaaooaq (o 0 0 0
Single-precision Load/setf.s — zeros
integer
sign exponent bitg significand
FR: u‘FFm 0 0
Memory/GR: 000000q (o

Single-precision Load/setf.s — denormal numbers

1:82

Volume 1: Floating-point Programming Model

intel.

Figure 5-5. Memory to Floating-point Register Data Translation —Double Precision

significand
FR: 0 ‘
Memoy/GR: N | O | Y
Double-precision Load/setf.d — normal numbers
integer
sign exponent bitg significand
FR: ’ OX1FFFF Hi 0 ‘
vemoyor: [wipn || [[| [[
Double-precision Load/setf.d — infinities and NaNs
) integer L
sign exponent bit significand
R] 0 b 0 |
MemorylGR: | 0000ad 000D o JL o JlL o J[o J[o]
Double-precision Load/setf.d — zeros
integer
sign exponent bitg significand
FR: ’ 0OxOFCO01 ‘)0 0 ‘
vemoyor: [oocooadpood || [[| J[J[|
Double-precision Load/setf.d — denormal numbers

Volume 1: Floating-point Programming Model

1:83

intel.

Figure 5-6. Memory to Floating-point Register Data Translation —Double Extended, Integer,

Parallel FP and Fill

integer
bitg significand

FR:

Memory:

Double-extended-precision Load — normal/unnormal numbers
integer

sign exponent bi significand
FR: M’FFF ‘ ‘ ‘
e 00 (0 () J[J [J[[J[[

Double-extended-precision Load — infinities and NaNs

int
sign exponent |nb¢iatger significand
FR: !!)‘ ‘ ‘ ‘
Mermory: |ooodood poodoced || || || []| [J[[|

Double-extended-precision Load — denormal/pseudo-denormals and zeros

. integer

sign exponent bit significand
FR: H‘ 0x1003E ‘ ‘ ‘
CLVC e I | | e

Integer/Parallel FP Load/setf.sig

. integer N
sign exponent bit significand

=] | L |

\ T

wemary: ||| J[[L L LI

Register Fill

1:84

Volume 1: Floating-point Programming Model

intel.

Figure 5-7. Floating-point Register to Memory Data Translation — Single Precision

sign exponent in;:tger significand
FR:
¥
Memory/GR: O =AND
Single-precision Store/getf.s

Figure 5-8. Floating-point Register to Memory Data Translation —Double Precision

integer
sign exponent bit significand
FR:
Memory/GR:
Double-precision Store/getf.d U =AND

Volume 1: Floating-point Programming Model

1:85

intel.

Figure 5-9. Floating-point Register to Memory Data Translation —Double Extended, Integer,
Parallel FP and Spill

integer

sign exponent bit significand
= [| \
vemorwere | L 0 L L

Integer/Parallel FP Store/getf.sig
integer

sign exponent bit significand
\E i T1 T1 T L
veror IR RN NN Y N O N A
Double Extended-precision Store
) integer
sign exponent bit significand

=] | L |

=

werery: [0][o][o][o][o] [o[TJ[JL JILIL LT JL L]

Register Spill

Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For
both single and double memory formats, the byte ordering isidentical to the 32-bit and 64-bit
integer data types (see Section 3.2.3). The byte-ordering for the spill/fill memory and
double-extended formats is shown in Figure 5-10.

1:86 Volume 1: Floating-point Programming Model

intel.

Figure 5-10. Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Memory Formats Floating-point Register Format (82-bit)

Spill/Fill (128-bit) Double-Extended (80-bit) 63 0
7LE0 7BEO 7LEO 7BEO }s‘ exp. } significand }
0]sO 00 0|sO 0 |sel’ ‘

11s1 110 11s1 1le0 se2/el | e0|s7|s6|s5|s4|s3|s2|sl|sO
2|82 2,10 2|82 2|87 \ ¢

3|s3 3,0 3|s3 3| s6

4sa 410 4sa 41s5 selle0’ | s7 |s6|s5|s4|s3|s2|sl|s0O
5|5 5 |se2 55| 5|4 Double-Extended (80-bit) Interpretation
6 | s6 6 el 6 | s6 6|s3

7|s7 7| e0 7 |s7 7|82

8| e0 8 |s7 8|e0’| 8|sl

9 el 9 | s6 9isell 9]|s0

10 |se2| 10 |s5

11| 0 11 | s4

12| 0| 12 s3

13| 0| 13 |s2

14| 0 14 | s1

15|/ 0 15 | sO

5.3.2 Floating-point Register to/from General Register Transfer

Instructions

Thesetf and get f instructions (see Table 5-8) transfer data between floating-point registers (FR)
and general registers (GR). These instructions will translate a general register NaT to/from a
floating-point register NaTVal. For all other operands, the.s and.d variants of the set f and get f
instructions trandate to/from FR as per Figure 5-4, Figure 5-5 and Figure 5-7. The memory
representation is read from or written to the GR. The.exp and.si g variants of theset f and get f
instructions operate on the sign/exponent and significand portions of a floating-point register,
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Table 5-8. Floating-point Register Transfer Instructions

Operations GRto FR FR to GR
Single setf.s getf.s
Double setf.d getf.d
Sign and Exponent setf.exp getf.exp
Significand/Integer setf.sig getf.sig

Volume 1: Floating-point Programming Model 1:87

intel.

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register Floating-Point Register (.sig) Floating-Point Register (.exp)
Class NaT | Integer | Sign ‘ Exponent ‘ Significand Sign Exponent ‘ Significand
NaT 1 ignore NaTVal NaTVal
integers 0 000...00 0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000
through
111..11

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)
Class Sign Exponent | Significand | NaT Integer NaT Integer
NaTVal 0 Ox1FFFE 0.000...00 1 0x0000000000000000 1 Ox1FFFE
integers or 0 0x1003E 0.000...00 0 significand 0 0x1003E
parallel FP through
1.111...11
other any any any 0 significand 0 ((sign<<17) | exponent)
5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except f cvt . xf (which is always exact), have a.f
specifier. Thisindicates which of the four FPSR's status fields will both control and record the
status of the execution of the instruction (see Table 5-11). The status field specifies. enabled
exceptions, rounding mode, exponent width, precision control, and which status field's flags to
update. See “Foating-point Status Register” on page 1:78..

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier

.s0 sl

.s2 .s3

Status field

FPSR.sf0

FPSR.sfl

FPSR.sf2 FPSR.sf3

Most arithmetic floating-point instructions can specify the precision and range of the result. The
precision is determined either statically using apc completer or dynamically using the.pc field of
the FPSR status field. The range is determined similarly except thewre field of the FPSR status
field isalso used. Normal (non Parallel FP) arithmetic instructions that do not have a.pc completer
use the floating-point register format precision and range. See Table 5-5 for details.

Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the arithmetic

pseudo-operation definitions.

Table 5-12. Arithmetic Floating-point Instructions

Operation Normal FP Mnemonic(s) Mia;r?ql(l)er:i?(:s)
Floating-point multiply and add fma. pc. sf f pma. sf
Floating-point multiply and subtract fms. pc. sf f pns. sf
Floating-point negate multiply and add fnma. pc. sf f pnna. sf
Floating-point reciprocal approximation frcpa. sf f prcpa. sf
Floating-point reciprocal square root approximation frsqrta. sf fprsqrta. sf
Floating-point compare fcp. frel. fctype. sf fpcnp. frel . sf

1:88

Volume 1: Floating-point Programming Model

intel.

Table 5-12. Arithmetic Floating-point Instructions (Continued)

Parallel FP

Operation Normal FP Mnemonic(s) Mnemonic(s)
Floating-point minimum fmn. sf f pm n. sf
Floating-point maximum f max. sf f pmax. sf
Floating-point absolute minimum fam n. sf f pani n. sf
Floating-point absolute maximum f amax. sf f pamax. sf
Convert floating-point to signed integer fecvt. fx. sf fpcvt. fx. sf
fecvt.fx.trunc. sf fpcvt. fx. trunc. sf
Convert floating-point to unsigned integer fevt. fxu. sf fpcvt. f xu. sf
fcvt. fxu.trunc. sf fpcvt. fxu.trunc. sf
Convert signed integer to floating-point fcovt. xf N. A

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used
Floating-point multiplication (IEEE) f npy. pc. sf f ma, using FR 0 for addend
Parallel FP multiplication f pnpy. sf f pma, using FR 0 for addend
Floating-point negate multiplication (IEEE) |f nnpy. pc. sf f nma, using FR 0 for addend
Parallel FP negate multiplication f pnnpy. sf f pnma, using FR 0 for addend
Floating-point addition (IEEE) fadd. pc. sf f ma, using FR 1 for multiplicand
Floating-point subtraction (IEEE) fsub. pc. sf f s, using FR 1 for multiplicand
Floating-point normalization f norm pc. sf f ma, using FR 1 for multiplicand and FR 0 for addend
Convert unsigned integer to floating-point | f cvt . xuf . pc. sf f ma, using FR 1 for multiplicand and FR 0 for addend

5.3.4

There are no pseudo-operations for Paralldl FP addition, subtraction, negation or normalization
since FR 1 does not contain a packed pair of single precision 1.0 values. A parallel FP addition can
be performed by first forming apair of 1.0 valuesin aregister (using the f pack instruction) and
then using the f pra instruction. Similarly, an integer add operation can be generated by first
forming an integer 1 in afloating-point register (using thef cvt . f x instruction) and then using the
xma instruction.

Thef npy pseudo-operation delivers the IEEE compliant result by rounding the product and
without performing the addition inherent in thef ma. An f ma with the addend specified asaregister
other than FR 0, and containing the value +0.0, will not deliver the IEEE compliant multiply result
in some cases.

Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register (82-hit)
precision since they do not have a.pc completer nor a.sf specifier.

Thef cl ass instruction is used to classify the contents of a floating-point register. The f mer ge
instruction is used to merge data from two floating-point registers into one floating-point register.
Thefni x, f sxt, f pack, and f swap instructions are used to manipulate the Parallel FP datain the
floating-point significand. Thef and, f andcm f or, and f xor instructions are used to perform
logical operations on the floating-point significand. Thef sel ect instruction is used for
conditional selects.

Volume 1: Floating-point Programming Model 1:89

1:90

intel.

Thef neg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand and is
therefore not equivalent to the | EEE negation operation. For the | EEE negation operation, an f nna
using FR 1 asthe multiplicand and FR 0 as the addend must be used.

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the
non-arithmetic pseudo-operation definitions.

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)
Floating-point classify fclass.fcrel.fctype
Floating-point merge sign frerge. s
Parallel FP merge sign f pmerge. s
Floating-point merge negative sign f mer ge. ns
Parallel FP merge negative sign f per ge. ns
Floating-point merge sign and exponent f mer ge. se
Parallel FP merge sign and exponent f prer ge. se
Floating-point mix left fmx. |
Floating-point mix right fmx.r
Floating-point mix left-right fmx.Ir
Floating-point sign-extend left fsxt.|
Floating-point sign-extend right fsxt.r
Floating-point pack f pack
Floating-point swap f swap
Floating-point swap and negate left f swap. nl
Floating-point swap and negate right f swap. nr
Floating-point And f and
Floating-point And Complement f andcm
Floating-point Or for
Floating-point Xor f xor
Floating-point Select fsel ect

Table 5-15. Non-arithmetic Floating-point Pseudo-operations
Operation Mnemonic Operation Used

Floating-point absolute value f abs f mer ge. s, with sign from FR 0
Parallel FP absolute value f pabs f pner ge. s, with sign from FR 0
Floating-point negate f neg f merge. ns
Parallel FP negate f pneg f prer ge. ns
Floating-point negate absolute value f negabs f mer ge. ns, with sign from FR 0
Parallel FP negate absolute value f pnegabs f prer ge. ns, with sign from FR 0

Volume 1: Floating-point Programming Model

5.3.5

Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one
of the alternate status fields (not FPSR.sf0). After a speculative execution chain has been
committed, af chkf instruction can be used to update the main status field flags (FPSR.sf0.flags).
This operation will preserve the correctness of the IEEE flags. The f chkf instruction does this by
comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the
aternate status field indicate the occurrence of an event that corresponds to an enabled
floating-point exception in FPSR.traps, or an event that is not already registered in the
FPSR.sf0.flags (i.e., the flag for that event in FPSR.sfO.flags s clear), then the f chkf instruction
branches to recovery code. If neither of these cases arise then the f chkf instruction does nothing.

Thef set ¢ instruction allows bit-wise modification of a statusfield’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit immediate
or-mask to produce the control bitsfor the statusfield. Thef cl rf instruction clearsall of the status
field’ sflagsto zero.

Table 5-16. FPSR Status Field Instructions

5.3.6

Operation Mnemonic(s)
Floating-point check flags f chkf . sf
Floating-point clear flags fclrf. sf
Floating-point set controls f setc. sf

Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand xma
instructions. The operands and result of these instructions are floating-point registers. The xma
instructions ignore the sign and exponent fields of the floating-point register, except for aNaTVal
check. The product of two 64-bit source significands is added to the third 64-bit significand (zero
extended) to produce a 128-hit result. The low and high versions of the instruction select the
appropriate low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as acanonical integer. The signed and unsigned versions of the instructions treat the input
multiplicands as signed and unsigned 64-bit integers respectively.

Table 5-17. Integer Multiply and Add Instructions

Volume 1: Floating-point Programming Model

Integer Multiply and Add Low High
Signed xna. | xma. h

Unsigned xma. | u (pseudo-op) xma. hu

1:91

5.4

5.4.1

54.1.1

5.4.1.2

1:92

Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific details are | eft
open to implementation.

Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on the
instruction which causes the interruption. There are three floating-point interruptions: Disabled
Floating-Point Register fault, Floating-Point Exception fault, and Floating-Point Exception trap
(see Chapter 5, “Interruptions” in Volume 2 for more details).

Exceptions are processed according to a predetermined precedence. Precedence in exception
handling means that higher-priority exceptions are flagged first and results are delivered according
to the requirements of that exception. Lower-priority exceptions are not flagged even if they occur.
For example, dividing an SNaN by zero causes an invalid operation exception (due to the SNaN)
and not a zero-divide exception; the exception disabled result is the QNaN indefinite, not infinity.
However, an |EEE Inexact Floating-Point Exception trap can accompany an |EEE Underflow or
Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point Register
fault has the highest priority.

Disabled Floating-point Register Fault

Two bitsin the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “Processor Status Register (PSR)”
on page 2:18) can be used by an operating system to enable or disable access to two subsets of
floating-point registers: FR 2 to FR 31, and FR 32 to FR 127, respectively. The Disabled
Floating-Point Register fault occurs when an access (read or write) is made to a FR which has been
disabled. Operating systems can use this fault to identify atask as integer or floating-point and
optimize the default set of registerswhich get saved on atask switch. If amainly integer task isable
touseonly FR 2 to FR 32 for executing integer multiply and divide operations, then context switch
time may be reduced by disabling access to the high floating-point registers.

Floating-point Exception Fault

A Floating-Point Exception fault occursif one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via the
Software Assist fault

The IEEE Invalid Operation trap is enabled and this condition occurs
The IEEE Zero Dividetrap is enabled and this condition occurs

The Denormal/Unnormal Operand trap is enabled and an unnormalized operand (denormals
are represented as unnormalized numbersin the register file) is encountered by a
floating-point arithmetic instruction

If aFloating-Point Exception fault occurs, the only indication of which fault occurred isin the
I SR.code. The appropriate status flags are not updated in the FPSR.

Volume 1: Floating-point Programming Model

5.4.1.3

There is no requirement that the Software Assist Floating-Point Exception fault ever be signaled
(except for certain operandsin the f r cpa and the f r sqr t a instructions), nor isthere amode to
forceitsuse. If there is no input NaT Val operand, a processor implementation may signal a
Software Assist Floating-Point Exception fault at any time during the operation. In order to ensure
maximum floating-point performance, most implementations will not use this exception except in
difficult situations such as operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operationsis depicted in
Figure 5-11.

Floating-point Exception Trap

A Floating-point Exception trap occursif one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, viathe
Software Assist trap

2. ThelEEE Overflow trap is enabled and an overflow occurs
3. ThelEEE Underflow trap is enabled and an underflow occurs

4. ThelEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are updated in
the FPSR. If enabled, a Floating-Point Exception trap occurs, and an indication of which enabled
trap occurred is stored in ISR.code and the fpa bit in ISR.code (I1SR{ 14}) is set as described in the
next paragraph.

ISR.fpais set to 1 when the magnitude of the delivered result is greater than the magnitude of the
infinitely precise result. It is set to 0 otherwise. The magnitude of the delivered result may be
greater if:

« the significand is incremented during rounding, or

« alarger pre-determined value (e.g., infinity) is substituted for the computed result (e.g., when
overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be signaled,
nor isthere amode to forceits use. In order to ensure maximum floating-point performance, most
implementations will not use this exception except in difficult situations, such as operations
creating denormal numbers. The occurrence of a Software Assist trap isindicated when atrap bitis
setin ISR.code, but that trap is disabled. The destination register contains the trap enabled response
for that trap.

The precedence among Floating-point Exception traps for arithmetic operationsis depicted in
Figure 5-12.

Volume 1: Floating-point Programming Model 1:93

Figure 5-11. Floating-point Exception Fault Prioritization

NaTVval
Operand?

NaTVal
Response

Unsupported
Operand?

SNaN
Operand?

Invalid
Enabled?

FP Fault
ISR.v=1

FLAGS.v=1

Reg Prioritized
NaN Resp
(f4,F2,F3)

QNaN
Operand?

Other Invalid
Operation?

Zero

Divide? ®

FP Fault
1

UnNormal
Operand?

DeNormal
Enabled?

¢No lNo

Yes COMPUTE

FLAGS.d=1 OPERATION

Terminal
State

FP Fault
ISR.v=1

Invalid
Enabled?

lNo

QNaN Ind
FLAGS.

Invalid
Enabled?

FP Fault
ISR.v=1

No
QNaN Ind
FLAGS.v=1

ZeroDivide
Enabled?

FP Fault
ISR.z=1

|IEEE Resp
FLAGS.z=1

(D =For frcpa
(2 = For fropaffrsorta

0007284

1:94

Volume 1: Floating-point Programming Model

intel.

Figure 5-12. Floating-point Exception Trap Prioritization

FP Trap

FLAGS.0=1
FLAGS.i|=tmp_i
Exp=tmp_exp%2'7
Sig=tmp_sig
ISR.0=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP Trap

ISR.i=1
ISR.fpa=tmp_fpa

Pre-
computed
Results?

Zero

Infinity Result

Inf.Precision Operation
Unbounded Range Rounding
tmp_exp, tmp_sig

tmp_i, tmp_fpa

<Emin

Overflow

Zero Result

Terminal Decision
State Point

tmp_exp=result exponent
tmp_sig=result significand
tmp_i=inexactness indicator
tmp_fpa=significand roundup

FP Trap

FLAGS.u=1
FLAGS.i|=tmp_i
Exp=tmp_exp%z2'7

Sig=tmp_sig
ISR.u=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

Underflow Yes
Enabled?
No
N
FTZ? 0

Yes
I m—

tmp_exp?
Enabled? P_exp
>=Emin
<=Emax
MaxReal/Inf. Res
tmp_fpa Yes
FLAGS.0=1
A
Zero Res.
tmp_i-1
tmp_fpa=0
FLAGS.u=1
A\
FLAGS.i=1

Inexact

Done

y
Inf.Precision Operation
tmp_i? Bound Range Rounding

No

A

Enabled?

tmp_i, tmp_fpa
Zero/Den/MinReal Res

000729

5.4.2

Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in magnitude,

the largest finite number in the destination format.

Thel EEE Overflow Floating-Point Exception trap disabled response for dl normal and Parallel-FP
arithmetic instructionsisto either return an infinity or the correctly signed maximum finite value
for the destination precision. This depends on the rounding mode, the sign of the result, and the

operation. An inexact result exception is signaled.

Volume 1: Floating-point Programming Model

1:95

5.4.3

1:96

intel.

The |EEE Overflow Floating-Point Exception trap enabled response for all normal arithmetic
instructions is to return the true biased exponent value MOD 217 and for all Parallel-FP arithmetic
instructions is to return the true biased exponent value MOD 28, The value's significand is rounded
to the specified precision and written to the destination register. If the rounded value is different
from the infinitely-precise value, then inexactnessis signaed. If the significand was rounded by
adding aone to its least significant bit, then bit f pa in ISR.code is set to 1. Finally, an interruption
due to a Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap enabled
response for normal (non Parallel FP) arithmetic instructionsis not guaranteed to be in the range of
avalid single, double, or double-extended real quantity, because it isin 17-bit exponent format.

Definition of Tininess, Inexact and Underflow

Tininessis detected after rounding, and is said to occur when a non-zero result (computed as
though the exponent range were unbounded) would lie strictly between +2EM" and -2EMN See
Table 5-1 for the values of Emin for each real type. Creation of atiny result may cause an exception
later (such as overflow upon division because it is so small).

I nexactnessis said to occur when the result differs from what would have been computed if both
the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the Underflow
Floating-Point Exception trap is disabled or enabled. If the trap is disabled then the underflow
exception is signaled when the result is both tiny and inexact. If the trap is enabled then the
underflow exception is signaled when the result is tiny, regardless of inexactness. Note that in the
event that the Underflow Floating-Point Exception trap is disabled and tininess but not inexactness
occurs, then neither underflow nor inexactnessis signaled, and the result is a denormal.

The |EEE Underflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructionsisto denormalize the infinitely precise result and then round it to
the destination precision. Theresult may be adenormal, zero, or anormal. The inexact exceptionis
signaled when appropriate.

The IEEE Underflow Floating-Point Exception trap enabled response for al normal arithmetic
instructions is to return the true biased exponent value MOD 21/and for all Parallel-FP arithmetic
instructions is to return the true biased exponent value MOD 28. The significand is rounded to the
specified precision and written to the destination register independent of the possibility of the
exponent cal culation requiring a borrow. If the rounded valueis different from the infinitely-precise
value, then inexactnessis signaled. If the significand was rounded by adding a one to its least
significant bit, then bit f pa in ISR.codeis set to 1. Finally, an interruption due to a Floating-Point
Exception trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap enabled
response for normal (non Parallel FP) arithmetic instructionsis not guaranteed to bein the
range of avalid single, double, or double-extended real quantity, becauseit isin 17-bit
exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny resultsis different. If an instruction
would ddliver atiny result, a correctly signed zero is delivered instead and the appropriate
FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the performance on

Volume 1: Floating-point Programming Model

5.4.4

5.4.5

5.4.6

5.4.7

implementations that do not implement denormal handling in hardware. When the Flush-to-Zero
mode is enabled, floating-point exception software assist traps will not occur when producing tiny
results.

Integer Invalid Operations

Floating-point to integer conversions which areinvalid (in the IEEE sense) signa an Invalid
Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is disabled, then the
largest magnitude negative integer is the result, even for unsigned integer operations.

Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each operand’s encoding
as avalue, whereas non-arithmetic operations perform bit manipulations on the input operands
without regard to the value represented by the encoding (except for NaTVa detection).
Non-arithmetic instructions do not cause Floating-point Exception faults or traps, but can cause the
Disabled Floating-point Register fault.

Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs
have a onein the most significant fractional bit of the significand. This definition of signaling and
quiet NaNs easily preserves “NaNness” when converting between different precisions. When
propagating NaNsin operations that have more than one NaN operand, the result NaN is chosen
from one of the operand NaNsin the following priority based on register encoding fields: first f 4,
then f 2, and lastly f 3.

IEEE Standard Mandated Operations Deferred to Software

The following |EEE mandated operations will be implemented in software:
* String to floating-point conversion
» Hoating-point to string conversion
« Divide (with help from f r cpa or f pr cpa instruction)
» Squareroot (with help from f r sqrt a or f prsqgrt a instruction)
» Remainder (with help from f r cpa or f pr cpa instruction)
 Floating-point to integer valued floating-point conversion

« Correctly wrapping the exponent for single, double, and double-extended overflow and
underflow values, as recommended by the IEEE standard

Volume 1: Floating-point Programming Model 1:97

5.4.8 Additions beyond the IEEE Standard

* Thefused multiply and add (f ma, f s, f nna, f pma, f prs, f pnna) operations enable efficient
software divide, square root, and remainder algorithms.

» The extended range of the 17-bit exponent in the register format allows simplified
implementation of many basic numeric algorithms by the careful numeric programmer.

» TheNaTVa isanatural extension of the |EEE concept of NaNs. It is used to support
speculative execution.

* Flush-to-Zero mode is an industry standard addition.

» The minimum and maximum instructions allow the efficient execution of the common Fortran
Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as
a<b?ab.

 All mixed precision operations are allowed. The | EEE standard suggests that implementations
allow lower precision operands to produce higher precision results; thisis supported. The
|EEE standard a so suggests that implementations not allow higher precision operandsto
produce lower precision results; this suggestion is not followed. When computations with
higher precision operands produce values beyond the destination precision range, the
information provided in the ISR.code allows the true result to be unambiguously determined
by software. The correct wrapping count and the appropriate bias amount can also be
computed.

» An |EEE style quad-precision real type that is supported in software.

1:98 Volume 1: Floating-point Programming Model

intel.

IA-32 Application Execution Model in an
Intel® Itanium® System Environment 6

This chapter describes the 1 A-32 execution model from the perspective of an application
programmer using the Itanium architecture, interfacing with |A-32 code, while operating in the
Itanium System Environment. The main features covered are:

 |A-32 integer, segment, floating-point, MM X technology, and Streaming SIMD Extension
register state mappings

* Instruction set transitions
¢ 1A-32 memory and addressing model overview

This chapter does not cover the details of 1A-32 application programming model, 1A-32
instructions and registers. Refer to the 1A-32 Intel ®Architecture Software Devel oper’s Manual for
details regarding 1A-32 application programming model.

The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit Protected
Mode |A-32 applications in the context of an Itanium-based operating system. Whether an 1A-32
application is actually supported on specific operating systems is determined by the infrastructure
provided by that specific operating system.

6.1 Instruction Set Modes

The processor can be executing either |A-32 or Itanium instructions at any point in time. PSR.is
(defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:18) specifies the currently
executing instruction set, where 1 indicates | A-32 instructions are executing, and O indicates
Itanium instructions are executing. Three special instructions and interruptions are defined to
transition the processor between the 1A-32 and the Itanium instruction sets as shown in Figure 6-1.
* jnpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the Itanium
instruction set.
* br.ia (Itanium instruction) Branch to an | A-32 target instruction, and change the instruction
set to 1A-32.

e rfi (Itanium instruction) “Return from interruption” is defined to return to either an 1A-32 or
Itanium instruction when resuming from an interruption.

* Interruptions transition the processor to the Itanium instruction set for al interruption
conditions.

Thej npe and br . i a instructions provide alow overhead mechanism to transfer control between
the instruction sets. These primitives typically are incorporated into “thunks’ or “stubs’ that
implement the required call linkage and calling conventionsto call dynamic or statically linked
libraries.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:99

Figure 6-1.

6.1.1

6.1.2

1:100

Instruction Set Transition Model

j npe .
br.ia

IA-32 Instruction Set rfi Intel® Itanium®
< Instruction Set

Intercepts, Exceptions,
Software Interrupts ‘\

Interruptions

Intel® Itanium® System Environment
000730

Instruction Set Execution in the Intel® Itanium® Architecture

While the processor executes from the Itanium instruction set (PSR.isis 0):

Itanium instructions are fetched, decoded and executed by the processor.

Itanium instructions can access the entire Itanium and | A-32 application register state. This
includes 1A-32 segment descriptors, selectors, general registers, physical floating-point
registers, MMX technology registers, and Streaming SIMD Extension registers. See
Section 6.2 for adescription of the register state mapping.

Segmentation is disabled. No segmentation protection checks are applied nor are segment
bases added to compute virtual addresses. All computed addresses are virtual addresses.

2% virtual addresses can be generated and memory management is used for all memory and
1/O references.

IA-32 Instruction Set Execution

While the processor is executing the |A-32 instruction set (PSR.isis 1) within the Itanium system
environment, the | A-32 application architecture as defined by the Pentium 111 processor is used,
namely:

| A-32 16/32-hit application level, MM X technology, and Streaming SIMD Extension
Technology instructions are fetched, decoded, and executed by the processor. Instructions are
confined to 32/16-bit operations.

Only 1A-32 application leve register stateisvisible (i.e. |1A-32 general registers, MM X
technology, and Streaming SIMD Extension registers, selectors, EFLAGS, FP registersand FP
control registers). Itanium application and control register state isnot visible, e.g. branch,
predicate, application, control, debug, test, and performance monitor registers.

IA-32, Real Mode, VM 86 and Protected Mode segmentation isin effect. Segment protection
checks are applied and virtual addresses generated according to 1 A-32 segmentation rules.
GDT and LDT segments are defined to support 1A-32 segmented applications. Segmented 16-
and 32-bit code is fully supported.

Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium architecture
memory management is used to trandlate virtual to physical addresses for all 1A-32 instruction
set memory and 1/O Port references.

Instruction and Data memory references are forced to be little-endian. Memory ordering uses
the Pentium Il processor memory ordering model.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.1.3

6.1.3.1

6.1.3.2

 |A-32 operating system resources; |A-32 paging, MTRRs, IDT, control registers, debug
registers and privileged instructions are superseded by resources defined in the Itanium
architecture. All accesses to these resources result in an interception fault.

Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed instruction
description on j npe (IA-32 instruction) and br . i a (Itanium instruction) should be consulted for
details.

Operating systems can disable instruction set transitions (j npe and br . i a) by setting PSR.di to
one. If PSR.di isone, execution of j npe or br. i a resultsin aDisabled Instruction Set Transition
Fault. System level instruction set transitionsdueto either r fi or an interruption ignore the state of
PSR.di (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:18).

JMPE Instruction

j npe regl6/ 32; j npe di spl6/ 32 is used to jump and transfer control to the Itanium instruction
set. There are two forms; register indirect and absol ute. The absolute form computes the Itanium
target virtual address as follows:

I P{31: 0} =displ6/32 + CSD. base
IP{63:32} =0

Theindirect form reads a 16/32-bit register location and then computes the Itanium target address
asfollows:

IP{31:0} = [regl6/32] + CSD.base
IP{63:32} =0

j npe targets are forced to be 16-byte aligned, and are constrained to the lower 4G-bytes of the
64-bit virtual address space due to limited | A-32 addressability. If there are any pending | A-32
numeric exceptions, j npe isnullified, and an 1A-32 floating-point exception fault is generated.

Transitionsinto the Itanium instruction set do not change the privilege level of the processor.

Branch to IA Instruction

Thebr.ia instruction isused to unconditionally branch to the IA-32 instruction set. I1A-32 targets
are specified by a 32-bit virtual address target (not an effective address). The 1A-32 virtual address
is truncated to 32-bits. Thebr . i a branch hints should always be set to predicted static taken. The
processor transitions to the IA-32 instruction set as follows:

| P{31: 0} = BR[b]{31: 0}
| P{63:32} =0
El P{ 31: 0}

| P{31:0} - CSD.base

Transitionsinto the |A-32 instruction set do not change the privilege level of the processor.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:101

6.1.4

intel.

Software should ensure the code segment descriptor and selector are properly loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an | A-32 GPFault(0) exception is reported on the target |A-32 instruction.

The processor does not ensure Itanium instruction set generated writes into the | A-32 instruction
stream are observed by the processor. For details, see “ Self Modifying Code” on page 1:120.
Before entering the | A-32 instruction set, Itanium-based software must ensure all prior register
stack frames have been flushed to memory. All registersleft in the current and prior register stack
frames are left in an undefined state after | A-32 instruction set execution. Software can not rely on
the value of these registers across an instruction set transition. For details, see “ Register Stack
Engine” on page 1:122.

IA-32 Operating Mode Transitions

Asdescribed in “1A-32 Instruction Set Execution” on page 1:100, j npe, br.ia,andrfi
instructions and interruptions can transition the processor between the two instruction set modes.
Transitions are allowed between the Itanium architecture and all major 1A-32 modes. As shownin
Figure6-2, br.i aandrfi will transition the processor from the Itanium instruction set into 1 A-32
VM86, Real Mode or Protected Mode. While j npe and interruptions will transition the processor
from either IA-32 VM86, Real Mode or Protected Mode into the Itanium instruction set. Mode
transitions between 1A-32 Real Mode, Protected Mode and VM 86 definitions are the same as those
defined in the 1A-32 Intel ®Architecture Software Devel oper’s Manual.

Figure 6-2. Instruction Set Mode Transitions

6.2

1:102

PSR.is &
ICRO.pe

PSR.is &
CRO.pe & EFLAG.vm

1A-32
Protected Mode

PSR.is &
CRO.pe &
IEFLAG.vm

PSR.is & 1A-32

CRO.pe &
IEFLAG.vm VM86

IPSR.is v
PSR.is &

CRO.pe & EFLAG.vm

IA-32
Real Mode

IPSR.is

IPSR.is

PSR.is &
ICRO.pe

®

Itanium
Instruction Set

I tanium-based interface code is responsible for setting up and loading a consistent Protected Mode,
Real Mode, or VM86 environment (e.g. loading segment selectors and descriptors, etc.) as defined
in “Segment Descriptor and Environment Integrity” on page 1:108. The processor applies
additional segment descriptor checksto ensure operations are performed in a consistent manner.

IA-32 Application Register State Model

Asshownin Figure 6-3 and Table 6-1, |A-32 general purpose registers, segment selectors, and
segment descriptors, are mapped into the lower 32-bits of Itanium general purpose registers GR8 to

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

Figure 6-3. IA-32 Application Register Model

GR3L1. The floating-point register stack, MM X technology, and Streaming SIMD Extension
registers are mapped on Itanium floating-point registers FR8 to FR31.

To promote strai ght-forward parameter passing, integer and | EEE floating-point register and
memory data types are binary compatible between both |A-32 and Itanium instruction sets.

dro
gri-3
ary

gry
drg

graa
aras

63
0

General Registers

ohats

:

—

s

9re7 T [

Floating-point Registers Predicates

APPLICATION REGISTER SET

D Used by IA-32 execution

Branch Registers Application Registers

81 0 63 0 63 0
frg 0.0 Pro L brg arg KRO
fry 1.0 pry bry f
frog pry bry ar; KR7
fre pr arie RSC
o prof b7 I an,| esp
arig| BSPSTORE
Instruction Pointer ar;q RNAT
fr31‘ 63 - 0
fl’32 | IP ! aryq FCR
Pre3 (] arp4| EFLAG
Curreg;[Frame Moarker arps CSD
~ CFM arys SSD
aryy CFLG
fria7| User Mask arzs FSR
5 0 arog FIR
] argo [FDR
3 Performance Monitor arsp Cccv
. Pr6%cessor Iden(t)|f|ers 6Dgata Reglstegs arss| UNAT |
cpuidg pmdg aryg FPSR
cpuidy pmdy
; argy ITC
cpuidy] pmdy [Yed| PES
args LC
algg EC
aryp7

D Not used by IA-32 execution

Some Itanium registers are modified to an undefined state by hardware as a side-effect during
IA-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally, Itanium system
state is not affected by |A-32 instruction set execution. Itanium-based code can reference all
registers (including 1 A-32), while | A-32 instruction set references are confined to the 1A-32 visible
application register state.

Table 6-1. IA-32 Application Register Mapping

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

Intel® Itanium® Reg

IA-32 Reg

Convention ‘ Size ‘

Description

General Purpose Integer Registers

GRO constant 0
GR1-3 undefined® scratch for IA-32 execution
GR4-7 unmodified Intel® Itanium® preserved registers

1:103

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg I1A-32 Reg Convention Size Description
GR8 EAX
GR9 ECX
GR10 EDX
GR11 EBX .
322 IA-32 general purpose registers
GR12 ESP
GR13 EBP
GR14 ESI
GR15 EDI
IA-32 state
GR16{15:0} DS
GR16{31:16} ES
GR16{47:32} FS
GR16{63:48} GS
64 1A-32 selectors
GR17{15:0} Cs
GR17{31:16} SS
GR17{47:32} LDT
GR17{63:48} TSS
GR18-23 undefined' scratch for I1A-32 execution
GR24 ESD IA-32 state 64 IA-32 segment descriptors (register
format)®
GR25-26 undefined scratch for IA-32 execution
GR27 DSD
GR28 FSD))
GR29 GSD IA-32 state 64 1A-32 sggment descriptors (register
format)
GR30 LDTD®
GR31 GDTD
GR32-127 undefined? IA-32 code execution space

Process Environment

IP P shared 64 shared 1A-32 and Intel® Itanium® virtual
Instruction Pointer

Floating-point Registers

FRO constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers
FR6-7 undefined IA-32 code execution space

FR8 MMO/FPO

FR9 MM1/ FP1

FR10 MM2/FP2 IA-32 Intel® MMX™ technology registers
FR11 MM3/FP3 (aliased on 64-bit FP mantissa)
FR12 MM4/FP4 IA-32 state 64/80 IA-32 FP registers (physical registers
FR13 MMS5/FP5 mapping)®

FR14 MM6/FP6

FR15 MM7/FP7

1:104 Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

intel.

Table 6-1.

IA-32 Application Register Mapping (Continued)
Intel® Itanium® Reg IA-32 Reg Convention Size Description

FR16-17 XMMO

FR18-19 XMM1

FR20-21 XMM2 1A-32 Streaming SIMD Extension registers

FR22-23 XMM3 low order 64-bits of XMMO are mapped to

FR24.25 MM IA-32 state 64 FR16{63:0}

i high order 64-bits of XMMO are mapped to

FR26-27 XMM5 FR17{63:0}

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefined® IA-32 code execution space

Predicate Registers

PRO constant 1

PR1-63 undefined® 1A-32 code execution space

Branch Registers

BRO-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

BSP = not used for 1A-32 execution

unmodified ® @)

BSPSTORE Intel™ Itanium™ preserved registers

RNAT

Cccv undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel®
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW, 64 1A-32 numeric status and tag word and

MXCSR Streaming SIMD Extension status
FCR FCW, MXCSR 64 IA-32 numeric and Streaming SIMD
IA-32 state Extension control

FIR FOP, FIP, FCS 64 IA-32 x87 numeric environment opcode,
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data
selector and offset

ITC TSC shared 64 shared 1A-32 time stamp counter (TSC)
and Intel® Itanium® Interval Timer

PFS not used for IA-32 code execution, Prior

LC unmodified EC is preserved in PFM

EC Intel® Itanium® preserved registers

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

1:105

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg I1A-32 Reg Convention | Size Description
EFLAG EFLAG 32 1A-32 System/Arithmetic flags,
writes of some bits condition by CPL and
EFLAG.iopl.
CsD CsD 64 IA-32 code segment (register format)b
IA-32 state : b
SSD SSD IA-32 stack segment (register format)
CFLG CRO/CR4 64 1A-32 control flags
CRO=CFLG{31:0}, CR4=CFLG{63:32},
writable at CPL=0 only.

a. On transitions into the 1A-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on
page 1:107 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium-based user level code

d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution.
Software must preserve these values before entering the 1A-32 instruction set.

e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.

f. These registers are used by the processor and may be left an undefined state following IA-32 instruction set
execution. Software should preserve required values before entering 1A-32 code.

Registers are assigned the following conventions during transitions between 1A-32 and Itanium
instruction sets.

* |A-32 state: The register contains an | A-32 register during | A-32 instruction set execution.
Expected 1A-32 vaues should be loaded before switching to the |A-32 instruction set. After
completion of 1A-32 instructions, these registers contain the results of the execution of 1A-32
instructions. These registers may contain any value during Itanium instruction execution
according to Itanium software conventions. Software should follow 1A-32 and Itanium calling
conventions for these registers.

« Undefined: Registers marked as undefined may be used as scratch areas for execution of
I A-32 instructions by the processor and are not ensured to be preserved across instruction set
transitions.

» Shared: Shared registers contain values that have similar functionality in either instruction set.
For example, the stack pointer (ESP) and instruction pointer (IP) are shared.

» Unmodified: These registers are not altered by | A-32 execution. Itanium-based code can rely
on these values not being modified during 1A-32 instruction set execution. The register will
have the same contents when entering the 1A-32 instruction set and when exiting the |A-32
instruction set.

6.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to GR15.
Valuesin the upper 32-bits of GR8 to GR15 are ignored on entry to 1A-32 execution. After the

| A-32 instruction set completes execution, the upper 32-bits of GR8 - GR15 are sign-extended from
bit 31.

Based on 1A-32 and Itanium calling conventions, the required | A-32 state must be loaded in
memory or registers by Itanium-based code before entering the | A-32 instruction set.

1:106 Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

intel.

Figure 6-4. 1A-32 General Registers (GR8 to GR15)

63

32 31

‘ sign extended

EAX.. EDK31:0}

6.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for | A-32 instruction set references, EIP (32-bit
effective address) and I P (a 64-bit virtual address equivalent to the Itanium instruction set IP). IPis
generated by adding the code segment base to EIP and zero extending to 64-bits. IP should not be
confused with the 16-bit effective address instruction pointer of the 8086. EIP is an offset within
the current code segment, while IP isa64-bit virtual pointer shared with the Itanium instruction set.
The following relationship is defined between EIP and | P while executing | A-32 instructions.

| P{63:32} = 0;

| P{31: 0} = EIP{31:0} + CSD.Base;

EIP is added to the code segment base and zero extended into a 64-bit virtual address on every
IA-32 instruction fetch. If during an |A-32 instruction fetch, EIP exceeds the code segment limit, a
GPFault is generated on the referencing instruction. Effective instruction addresses (sequential
values or jump targets) above 4G-bytes are truncated to 32 bits, resulting in a4-G byte wraparound

condition.

6.2.3 IA-32 Segment Registers

| A-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-6. Thisformat differs from
the 1A-32 scrambled memory descriptor format. The unscrambled register format is designed to
support fast conversion of 1A-32 segmented 16/32-hit pointers into virtual addresses by
Itanium-based code. |A-32 segment register load instructions unscramble the GDT/LDT memory
format into the descriptor register format on a segment register load. Itanium-based software can
also directly load descriptor registers provided they are properly unscrambled by software. When
Itanium-based software loads these registers, no data integrity checks are performed at that time if
illegal values areloaded in any fields. For acomplete definition of all bit fields and field semantics
refer to the 1A-32 Inte ®Architecture Software Developer’s Manual.

Figure 6-5. I1A-32 Segment Register Selector Format

63 48 47 32 31 16 15 0
GS FS ES DS GR16
TSS LDT SS CSs GR17
Figure 6-6. I1A-32 Code/Data Segment Register Descriptor Format
63 62 61 60 59 58 57 56 55 52 51 32 31 0
‘ g ‘d/b‘ ig ‘av‘ p ‘ dpl ‘ S ‘ type lim{19:0} base{31:0}
Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:107

Table 6-2. IA-32 Segment Register Fields

Field Bits Description
selector 15:0 Segment Selector value, see the IA-32 Intel®Architecture Software Developer’'s Manual
for bit definition.
base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the

segment in the 64-bit virtual address space for 1A-32 instruction set memory references.

lim 51:32 | Segment Limit. Contains the maximum effective address value within the segment for
expand up segments for I1A-32 instruction set memory references. For expand down
segments, limit defines the minimum effective address within the segment. See the
IA-32 Intel®Architecture Software Developer’s Manual for details and segment limit fault
conditions. The segment limit is scaled by (lim << 12) | OxFFF if the segment’s g-bit is 1.

type 55:52 | Type identifier for data/code segments, including the Access bit (bit 52). See the IA-32
Intel®Architecture Software Developer’s Manual for encodings and definition.

5 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for |1A-32
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA-32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and an
IA-32_Exception(StackFault) for SS.

av 60 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by Itanium-based
code. Reads of this field return zero if written by |1A-32 descriptor loads. This field is
ignored by the processor during I1A-32 instruction set execution. Available for software
use, there will be no future use for this field.

ig 61 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by Itanium-based
code. Reads of this field return zero if written by IA-32 descriptor loads. This field is
ignored by the processor during 1A-32 instruction set execution. This field may have a
future use and should be set to zero by software.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s d/
b-bit also controls the default operand size for IA-32 instructions. If 1, the default
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for
IA-32 instruction set memory references. This field is ignored for Intel® Itanium®
instruction set memory references.

6.2.3.1 Data and Code Segments

On thetransition into |A-32 code, the 1 A-32 segment descriptor and selector registers (GDT, LDT,
DS, ES, CS, SS, FSand GS) must beinitialized by Itanium-based code to the required va ues based
on 1A-32 and Itanium calling conventions and the segmentation model used.

I tanium-based code may manually load a descriptor with an 8-byte fetch from the LDT/GDT,
unscrambl e the descriptor and write the segment base, limit and attribute. Alternately,

I tanium-based software can switch to the IA-32 instruction set and perform the required segment
load with an 1A-32 Mov Sreg instruction. If Itanium-based code explicitly loads the segment
descriptors, it isresponsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the descriptor

registers, nor does the processor set segment access bitsin the LDT/GDT if segment registers are
loaded by Itanium instructions.

1:108 Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.3.2

Segment Descriptor and Environment Integrity

For |A-32 instruction set execution, most segment protection checks are applied by the processor
when the segment descriptor isloaded by 1A-32 instructions into a segment register. However,
segment descriptor loads from the Itanium instruction set into the general purpose register file
perform no such protection checks, nor are segment Access-bits updated by the processor.

If Itanium-based software directly loads a descriptor, it is responsible for the validity of the
descriptor, and ensuring integrity of the | A-32 Protected Mode, Real Mode or VM 86 environments.
Table 6-3 defines software guidelines for establishing the initial |A-32 environment. The processor
checksthe integrity of the | A-32 environment as defined in “ | A-32 Environment Runtime Integrity
Checks’” on page 1:111. On the transitions between 1A-32 and Itanium-based code, the processor
does NOT dlter the base, limit or attribute values of any segment descriptor, nor isthere achangein
privilege levd.

Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode
PSR cpl 0 Privilege Level 3
EFLAG vm 0 0
CRO pe 0 1 1
selector base >> 42 selector base >> 4
base selector << 4° base selector << 4
dpl PSR.cpl (0) PSR.cpl® PSR.cpl (3)
d-bit 16-bitd 16/32-bit 16-bit
CS type data rd/wr, expand up execute data rd/wr, expand up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4° base selector << 4
dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)
d-bit 16-bitd 16/32-bit size 16-bit
SS type data rd/wr, expand up data types data rd/wr, expand up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OxXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4° base selector << 4
dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)
d-bit 16-bitd 16/32-bit 0
,D:Z ESS type data rd/wr, expand up data types data rd/wr, expand up
s-bit 1 1 1
a-bit 1 1 1
p-bit 1 1/0" 1
g-bit/limit OXFFFF® limit OXFFFF

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:109

intel.

Table 6-3. IA-32 Environment Initial Register State (Continued)

1:110

Register Field Real Mode Protected Mode VM86 Mode
PSR cpl 0 Privilege Level
EFLAG vm 0 0
CRO pe 0 1
selector selector
base base
dpl dpl >= PSR.cpl
d-bit 0
LDI'SGSDT’ typ.e na Idt/gdt/tss types
s-bit 0
p-bit 1
a-bit 1
g-bit/limit limit

a. Selectors should be set to 16*base for normal RM 64KB operation.

b. Segment base should be set to selector/16 for normal RM 64KB operation.

c. Unless a conforming code segment is specified

d. Segment size should be set to 16-bits for normal RM 64KB operation.

e. Segment limit should be set to OxFFFF for normal RM 64KB operation.

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

6.2.3.2.1 Protected Mode

I tanium-based software should follow these rules for setting up the segment descriptors for
Protected M ode environment before entering the 1A-32 instruction set:

Itanium-based software should ensure the stack segment descriptor register’'s DPL==PSR.cpl.

For DSD, ESD, FSD and GSD segment descriptor registers, Itanium-based software should
ensure DPL>=PSR.cpl.

For CSD segment descriptor register, Itanium-based software should ensure DPL==PSR.cpl
(except for conforming code segments).

Software should ensure that all code, stack and data segment descriptor registersdo not contain
encodings for any system segments.

Software should ensure the a-bit of all segment descriptor registers are set to 1.

Software should ensure the p-bit is set to 1 for all valid data segments and to O for all NULL
data segments.

6.2.3.2.2 VM86

I tanium-based software should follow these rules when setting up segment descriptors for the
VM86 environment before entering the |A-32 instruction set:

PSR.cpl must be 3 (or IPSR.cpl must be3forrfi).

Itanium-based software should ensure the stack segment descriptor register's
DPL==PSR.cpl==3 and set to 16-hit, data read/write, expand up.

For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium-based software
should ensure DPL==3, the segment is set to 16-bit, data read/write, expand up.

Software should ensure that all code, stack and data segment descriptor registers do not contain
encodings for any system segments.

Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.3.3

« Software should ensure that the relationship Base = Selector* 16, is maintained for all DSD,
CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise processor operationis
unpredictable.

» Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
register’slimit value is set to OXFFFF, otherwise spurious segment limit faults (GPFault or
Stack Faults) may be generated.

« Itanium-based software should ensure al segment descriptor registers are data read/write,
including the code segment. The processor will ignore execute permission faults.

6.2.3.2.3 Real Mode

Itanium-based software should follow these rules when setting up segment descriptors for the Real
M ode environments before entering the | A-32 instruction set, otherwise software operation is
unpredictable.

* Itanium-based software should ensure PSR.cpl is 0.

« Itanium-based software should ensure the stack segment descriptor register’'s DPL isO.

« Software should ensure that all code, stack and data segment descriptor registers do not contain
encodings for any system segments.

 Software should ensure the P-hit and A-bit of all segment descriptor registersis one.

 For normal real mode 64K operations, software should ensure that the relationship Base =
Selector* 16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
registers.

« For normal real mode 64K operations, software should ensure that the DSD, CSD, ESD, SSD,
FSD, and GSD segment descriptor register’s limit value is set to OxFFFF and the segment size
is set to 16-bit (64K).

« Itanium-based software should ensure al segment descriptor registers indicate readable,
writable, including the code segment for normal Real M ode operation.

IA-32 Environment Run-time Integrity Checks

Processors in the Itanium processor family perform additional run-time checks to verify the
integrity of the |A-32 environments. These checks are in addition to the run-time checks defined on
|A-32 processors and are highlighted in Table 6-4. Existing |A-32 run-time checks are listed but
not highlighted. Descriptor fields not listed in the table are not checked. As defined in the table,
run-time checks are performed either on | A-32 instruction code fetches or on an |A-32 data
memory reference to one of the specified segment registers. These run-time checks are not
performed during transitions from the Itanium instruction set to the |A-32 instruction set.

Table 6-4. 1A-32 Environment Run Time Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault
PSR.cpl is not 0 ignored is not 3
EFLAG.vmC EFLAG.vm is 1 and CFLG.pe is 0
FLG.pe
all code fetches i Code FTtCh I;ault
EFLAG.vif EFLAG.vip & EFLAG.vif & CFLG.pe & (GPFault(0))
EFLAG.vip PSR.cpl==3 &
(CFLG.pvi | (EFLAG.vm & CFLG.vme))

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:111

Table 6-4. IA-32 Environment Run Time Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault
dpl ignored dpl is not 3
d-bit is not 16-bit
all code fetches type ignored (can be exec or data) Code Fetch Fault
CS GPFault if data expand down (GPFault(0))
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl dpl!'=PSR.cpl
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to SS read and not readable, write and not writeable Stack Fault
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to - - GPFault(0)
DS, ES, FS and GS read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to rd/wr checks are rd and not readable, rd/wr checks are | GPFault(0)
CS ignored wr and not writeable ignored
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
memory type ignored
references to s-bit is not 0 GPFault
LDT,GDT, a, d-bits ignored (Selector/0)P
TSS p-bit is not 1
g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

6.2.4

IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags (CF, PF,
AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None
of the arithmetic or system flags affect Itanium instruction execution. When Itanium-based
software loads this application register (AR24), a Reserved Register/Field fault will beraised if a
non-zero value iswritten into bits listed as reserved. See Section 10.3.2, “1A-32 System EFLAG
Register” on page 2:221.

1:112

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

intel.

Figure 6-7. IA-32 EFLAG Register (AR24)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4
id ‘wp‘wf‘ac‘vm‘rf‘ 0 ‘nt‘ iopl ‘of‘df‘ if \ tf‘sf‘zf‘ 0 ‘af‘ 0 ‘pf‘ 1 ‘cf‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

The arithmetic flags are used by the | A-32 instruction set to reflect the status of 1A-32 operations,
control 1A-32 string operations, and control branch conditions for 1A-32 instructions. These flags
areignored by Itanium instructions. Flags ID, OF, DF, SF, ZF, AF, PF and CF are defined in the
|A-32 Intel ®Architecture Software Developer’s Manual.

Table 6-5. I1A-32 EFLAGS Register Fields

EFLAG? Bits Description
cf 0 1A-32 Carry Flag. See the 1A-32 Intel®Architecture Software Developer’'s Manual for
details.
1 Ignored - Writes are ignored, reads return one for IA-32 and Intel® Itanium® instructions.
3,5, Ignored - Writes are ignored, reads return zero for IA-32 and Intel® Itanium® instructions.
15 Software should set these bits to zero.
pf 2 1A-32 Parity Flag. See the 1A-32 Intel®Architecture Software Developer’s Manual for
details.
af 4 IA-32 Aux Flag. See the IA-32 Intel®Architecture Software Developer’s Manual for
details.
zf 6 1A-32 Zero Flag. See the 1A-32 Intel®Architecture Software Developer’s Manual for
details.
sf 7 IA-32 Sign Flag. See the 1A-32 Intel®Architecture Software Developer’s Manual for
details.
tf 8) .
- See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:221.
i
df 10 1A-32 Direction Flag. See the IA-32 Intel®Architecture Software Developer’s Manual for
details.
of 11 IA-32 Overflow Flag. See the 1A-32 Intel®Architecture Software Developer’s Manual for
details.
iopl 13:12
nt 14
rf 16
vm 17 . .
18 See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:221.
ac
vif 19
vip 20
id 21

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter
the behavior of Itanium® instruction set execution.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:113

6.2.5 IA-32 Floating-point Registers

| A-32 floating-point register stack, numeric controls and environment are mapped into the Itanium
floating-point registers FR8 - FR15 and the application register name space as shown in Table 6-6.

Table 6-6. IA-32 Floating-point Register Mappings

Intel® itanium® IA-32 Reg Size (bits) Description
Reg
FR8 ST(TOS + N)==0]
FR9 ST[(TOS + N)==1] IA-32 numeric register stack
FR10 ST[(TOS + N)==2]
FR1L STI(TOS + N)==3] Accesses to FR8 — FR15 by Intel® Itf_inium®
80 instructions ignore the 1A-32 TOS adjustment
FR12 ST[(TOS + N)==4]
FR13 ST[(TOS + N)==5] IA-32 accesses use the TOS adjustment for a
FR14 ST[(TOS + N)==6] given register N
FR15 ST(TOS + N)==7]
FCR (AR21) FCW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension
control register
FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension
status and tag word
FIR (AR29) FOP, FCS, FIP 64 1A-32 numeric instruction pointer
FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer

6.2.5.1 IA-32 Floating-point Stack

I A-32 floating-point registers are defined as follows:

* |A-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit IEEE
floating-point format.

 For IA-32 instruction set references, floating-point registers are logically mapped into FR8 -
FR15 based on the 1A-32 top-of-stack (TOS) pointer held in FCR.top. FR8 represents a
physical register after the TOS adjustment and is not necessarily the top of the logical
floating-point register stack.

* For Itanium instruction set references, the floating-point register numbers are physical and not
afunction of the numeric TOS pointer, e.g. references to FR8 always return the valuein
physical register FR8 regardless of the TOS value. Itanium-based software cannot necessarily
assume that FR8 contains the |A-32 logical register ST(0). It is highly recommended that
typically 1A-32 calling conventions be used which pass floating-point values through memory.

6.2.5.2 Special Cases

For | A-32 floating-point instructions, loading a single or double denormal results in anormalized
double-extended value placed in the target floating-point register. For Itanium instructions, loading
asingle or double denormal results in an un-normalized denormal value placed in the target
floating-point register. There are two canonical exponent values in the Itanium architecture which
indicate single precision and double precision denormals.

When transferring floating-point values from Itanium to 1A-32 instructions, it is highly
recommended that typical 1A-32 calling conventions be followed which pass floating-point values
through the memory stack. If software does pass floating-point values from 1 A-32 to Itanium-based
code viathe floating-point registers, software must ensure the following:

1:114 Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.5.3

 Single or double precision Itanium denormals must be converted into a normalized double
extended precision value expected by |A-32 instructions. Software can convert Itanium
denormals by multiplying by 1.0 in double extended precision (f ma. sfx fr = fr, 1, fO0).
If anillegal single or double precision denormal is encountered in | A-32 floating-point
operations, an 1A-32 Exception (FPError Invalid Operand) fault is generated.

* Floating-point values must be within the range of the 1A-32 80-bit (15-bit exponent) double
extended precision format. The Itanium architecture uses 82 bits (17-bit widest range
exponent) for intermediate cal cul ations. Software must ensure al floating-point register values
passed to 1A-32 instructions are representable in doubl e extended precision 80-bit format,
otherwise processor operation is model specific and undefined. Undefined behavior can
include but is not limited to: the generation of an |A-32_Exception (FPError Invalid
Operation) fault when used by an | A-32 floating-point instruction, rounding of out-of-range
values to zero/denormal/infinity and possible |A-32_Exception (FPError Overflow/
Underflow) faults, or float-point register(s) containing out of range values silently converted to
QNAN or SNAN (conversion could occur during entry to the I1A-32 instruction set or on use by
an 1A-32 floating-point instruction). Software can ensure al passed floating-point register
values are within range by multiplying by 1.0 in double extended precision format (with widest
range exponent disabled) by using f ma. sfx fr = fr, f1, foO.

» Hoating-point NaTVa values must not be propagated into | A-32 floating-point instructions,
otherwise processor operation is model specific and undefined. Processors may silently
convert floating-point register(s) containing NaTVal to a SNAN (during entry to the 1A-32
instruction set or on a consuming |1A-32 floating-point instruction). Dependent |A-32
floating-point instructions that directly or indirectly consume a propagated NaT Val register
will either propagate the NaTVal indication or generate an |A-32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is model
specific. In no case will the processor allow a NaTVal register to be used without either
propagating the NaTVal or generating an |A-32_Exception (FPError Invalid Operand) fault.

Note: Itisnot possiblefor IA-32 code to read aNaTVal from amemory location with an 1A-32
floating-point load instruction, since aNatVal cannot be expressed by a 80-bit double
extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per typical
IA-32 calling conventions to avoid numeric problems with NatVal and Itanium denormals.

IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not control
| A-32 floating-point instructions or reflect the status of 1A-32 floating-point instructions. 1A-32
floating-point and Streaming SIMD Extension instructions have separate control and status
registers, namely FCR (floating-point control register) and FSR (floating-point status register).

FCR contains the IA-32 FCW bitsand al Streaming SIMD Extension control bits as shown in
Figure 6-8.

FSR contains the 1A-32 floating-point status flags FSW, FTW, and Streaming SIMD Extension
status fields as shown in Figure 6-9. The Tag fields indicate whether the corresponding 1A-32
logical floating-point register is empty. Tag encodings for zero and special conditions such as Nan,
Infinity or Denormal of each I A-32 logical floating-point register are not supported. However,
IA-32 instruction set reads of FTW compute the additional special conditions of each 1A-32
floating-point register. Itanium-based code can issue a floating-point classify operation to
determine the disposition of each |A-32 floating-point register.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:115

intel.

Figure 6-8. 1A-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|c\ RC \ PC \ 0 \ 1 ‘PM‘UM‘OM‘ZM‘DM‘IM
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
eSO 2 RC PMUVOMZVOMWE groed

1A-32 MXCSR (control)

Figure 6-9. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9

7 4 3 1
‘O‘TGY‘ ‘TG6‘ ‘TGS‘ ‘TG4‘ ‘TGS‘ ‘TGZ‘ ‘TGl‘ ‘TGO‘ \03\ TOP ‘CZ‘Cl‘CO‘ES‘SF‘PE‘UE‘OE‘ZE‘DE‘IE‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 32

O woe [eeoociebee

1A-32 MXCSR (status)

IA-32 FSW{15'0}

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)
Intel® Itanium® . Usage in the Intel®

IA-32 State State Bits IA-32 Usage Itanium® Architecture
FSW, FTW, MXCSR state in the FSR Register
FSW.ie FSR.ie 0 Invalid operation Exception
FSW.de FSR.de 1 Denormalized operand

Exception
FSW.ze FSR.ze 2 Zero divide Exception
FSW.oe FSR.oe 3 Overflow Exception None of these bits reflect
FSW.ue FSR.ue 4 Underflow Exception the status of Intel®
FSW.pe FSR.pe 5 Precision Exception Itanium® floating-point
execution.
FSW.sf FSR.sf 6 Stack Fault
FSW.es FSR.es? 7 Error Summary See the 1A-32
FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes Intel®Architecture
FSW.top FSR.top 11:13 Top of IA-32 numeric stack | S°ftware Developer's
Manual for IA-32 numeric
FSW.b FSR.b 15 1A-32 FPU Busy always flag details
equals state of FSW.ES
FTW FSR.tg 16,18,20,22 Numeric Tags 0-NotEmpty,
{7:0 24,26,28,30 | 1-Empty®
zeros 17,19,21,23,25, | Ignored - Writes are ignored,
27,29,31, 39:47 | reads return zero
1:116 Volume 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

intel.

Table 6-7.

6.2.5.4

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

IA-32 Floating-point Status Register Mapping (FSR) (Continued)
Intel® Itanium®) Usage in the Intel®
|A-32 State State Bits IA-32 Usage Itanium® Architecture
MXCSR.ie FSR.ie 32 Streaming SIMD Extension
Invalid operation Exception
MXCSR.de FSR.de 33 Streaming SIMD Extension
Denormalized operand
Exception
MXCSR.ze FSR.ze 34 Streaming SIMD Extension EfcjlifeTgtl:aerzlii‘r:;éhe status
Zero divide Exception floating-point execution.
MXCSR.oe FSR.oe 35 Streaming SIMD Extension
Overflow Exception See IA-32 Intel®
MXCSR.ue FSR.ue 36 Streaming SIMD Extension | Architecture Software
Underflow Exception Developer's Manual for
MXCSR.pe FSR.pe 37 Streaming SIMD Extension details.
Precision Exception
reserved 38, 48:63 Reserved
ignored 39:47 Ignored - Writes are ignored,
reads return zero

QO

. Exception Summary bit, see Section 6.2.5.4 for details

b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are
not supported by reads of FSR by Itanium® instructions. IA-32 instruction set reads of the FTW field do return
zero, Nan, Infinity and Denormal classifications.

c. AllMMX™ technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology

instruction EMMS sets all Numeric Tags to 1 = Empty.

FCR and FSR collectively hold all 1A-32 floating-point control, status and tag information. | A-32
instructions that are updated and controlled by MXSCR, FCW, FSW and FTAG effectively update
FSR and are controlled by FSR. IA-32 reads/writes of MXCSR, FSW, FCW and FTW return the
same information as reads/writes of FSR and FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for |A-32 numeric execution before
entering the | A-32 instruction set. When Itanium-based software |oads these application registers
(AR21 and AR28), a Reserved Register/Field fault will be raised if anon-zero value is written to
bitslisted as reserved. No field encoding values will be verified when these registers are written.

IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain pending
information related to the numeric exception. FDR contains the operand’s effective address and
segment selector. FIR contains the numeric instruction’s effective address, code segment selector,
and opcode bits. FSR summaries the type of numeric exception in the IE, DE, ZE, OE, UE, PE, SF
and ES-bits. The ES-bit summarizes the | A-32 floating-point exception status as follows:

* When FSR.esis read by Itanium-based code, the value returned is a summary of any unmasked
pending exceptions contained in the FSR, |E, DE, ZE, OE, UE, and PE hits.

Note: Reads of the ES-bit do not necessarily return the last value written if the ES-bit is
inconsistent with the other pending exception bitsin FSR.
* When FSR.esis set to 1 by Itanium-based code, delayed |A-32 numeric exceptions are
generated on the next 1A-32 floating-point instruction, regardless of numeric exception
information written into FSR hits; |E, DE, ZE, OE, UE, and PE.

1:117

intel.

» When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE, ZE, OE,
and PE), subsequent numeric exceptions may report inconsistent floating-point status bits.

When Itanium-based software loads these application registers (AR29 and AR30), a Reserved
Register/Field fault will be raised if anon-zero value is written to bitslisted as reserved. No field
encoding values will be verified when these registers are written. FSR, FDR, and FIR must be
preserved across a context switch to generate and accurately report numeric exceptions.

Figure 6-10. Floating-point Data Register (FDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ reserved (set to 0) ‘ operand selector (fds) ‘

Figure 6-11. Floating-point Instruction Register (FIR)

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ code offset (fip) ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
opcode {10:0} (fop)

‘ code selector (fcs) ‘

reserved

6.2.6 IA-32 Intel® MMX™ Technology Registers

The eight IA-32 MM X technology registers are mapped on the eight Itanium floating-point
registers FR8 - FR15 where MMO is mapped to FR8 and MM7 is mapped to FR15. The MM X
technology register mapping for the | A-32 floating-point stack view is dependent on the
floating-point | A-32 Top-of-Stack value.

Figure 6-12. IA-32 Intel® MMX™ Technology Registers (MMO to MM7)

81 80 64 63 0
‘ 1 ‘ ones MMO..MM7{31:0} ‘ FR8-15

* When avaueiswritten to an MM X technology register using an |A-32 MM X technology
instruction:

» The exponent field of the corresponding floating-point register (bits 80-64) and the sign
bit (bit 81) are set to all ones.

e The mantissa (bits 63-0) is set to the MM X technology data value.
» When avalueisread from an MMX technology register by an |A-32 MM X technology
instruction:
« The exponent field of the corresponding floating-point register (bits 80-64) and its sign bit
(bit 81) areignored, including any NaT Val encodings.

Asaresult of this mapping, the mantissa of a floating-point value written by either |A-32 or
Itanium floating-point instructions will also appear in an |1A-32 MM X technology register. An
IA-32 MM X technology register will also appear in one of the eight mapped floating-point
register’s mantissa field.

To avoid performance degradation, software programmers are strongly recommended not to
intermix |A-32 floating and | A-32 MM X technology instructions. See the 1A-32 Intel ®Architecture
Software Developer’s Manual for MM X technology coding guidelines for details.

1:118 Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.7 IA-32 Streaming SIMD Extension Registers

The eight 128-bit 1A-32 Streaming SIMD Extension registers (XMMO0-7) are mapped on sixteen
physical Itanium floating-point register pairs FR16 - FR31. The low order 64-bits of XMMO are
mapped to FR16{63:0}, and the high order 64-bits of XMMO are mapped to FR17{ 63:0} .

Figure 6-13. Streaming SIMD Extension Registers (XMMO-XMM?7)

81 80 64 63 0
‘ 0 ‘ 0Xx1003E ‘ XMMO-7{127:64} ‘FR17-31, odd
8180 6463 0
‘ 0 ‘ 0X1003E ‘ XMMO-7{63:0} ‘FR16—30, even

» When avalueiswritten to an Streaming SIMD Extension register using 1A-32 Streaming
SIMD Extension instructions:

» The exponent field of the corresponding Itanium floating-point register (bits 80-64) is set
to Ox1003E and the sign bit (bit 81) isset to 0.

» The mantissa (bits 63-0) is set to the XMM data value bits{ 63:0} for even registers and
bits{ 127:64} for odd registers.

* When a Streaming SIMD Extension register is read using | A-32 Streaming SIMD Extension
instructions:

» The exponent field of the corresponding Itanium floating-point register (bits 80-64) and
the sign bit (bit 81) areignored, including any NaTVal encodings.

6.3 Memory Model Overview

Virtual addresses within either the Itanium or 1A-32 instruction set are defined to address the same
physical memory location. Itanium instructions directly generate 64-bit virtual addresses. 1A-32
instructions generate 16 or 32-bit effective addresses that are then converted into 32-bit virtual
addresses by 1A-32 segmentation. 32-bit virtual addresses are then converted into 64-bit virtual
addresses by zero extending to 64-hits. Zero extension places all 1A-32 memory references in the
lower 4G-bytes of the 64-bit virtual address space within virtua region 0. Virtual addresses
generated by either instruction set are then translated into physical addresses using memory
management mechanisms defined in Chapter 4, “ Addressing and Protection” in Volume 2.

Figure 6-14. Memory Addressing Model

16/32-bit 32-bit Virtual 64-bit Virtual
Effective Address Address Address
Base ——¢
IA-32 Index Segmentation | Zero |
Extend
Displacement—{
Intel® Itanium® Base >
Architecture

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:119

6.3.1

6.3.2

6.3.3

1:120

Memory Endianess

Memory integer and floating-point (IEEE) datatypes are binary compatible between the | A-32 and
Itanium instruction sets. Itanium-based applications and operating systems that interact with 1A-32
code should use “little-endian” accesses to ensure that memory formats are the same. All 1A-32
instruction data and instruction memory references are forced to “little-endian”.

IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation is
performed on IA-32 instruction set memory references based on the state of EFLAG.vm and
CFLG.pe. Either Real Mode, VM 86, or Protected Mode segmentation rules are followed as defined
in the 1A-32 Intel®Architecture Software Devel oper’s Manual, specificaly:

» |A-32 Data 16/32-bit Effective Addresses: 16 or 32-hit effective addresses are generated,
based on CSD.d, SSD.b and prefix overrides, by the addition of a base register, scaled index
register and 16/32-bit displacement value. Starting effective addresses (first byte of multi-byte
operands) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last byte of
multi-byte operands) 16-bit effective addresses can extend above the 64K byte boundary,
however, ending 32-bit effective addresses are truncated to 32-bits and do not extend abovethe
4G-byte effective address boundary. Refer to the |1A-32 | ntel®Architecture Software
Developer’s Manual for complete details on wrap conditions.

* |A-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is used asthe
effective address. Starting EIP values (first byte of multi-byte instruction) larger than 16 or 32
bits are truncated to 16 or 32-bits. Ending (last byte of multi-byte instruction) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit EIP values are
truncated to 32-bits and do not extend above the 4G-byte effective address boundary.

* 1A-32 32-bit Virtual Address Generation: Theresultant 16 or 32-bit effective addressis
mapped into the 32-hit virtual address space by the addition of a segment base. Full segment
protection and limit checks are verified as specified by the 1A-32 Intel ®Architecture Software
Developer’s Manual and additional checks as specified in this section. Starting 32-bit virtual
addresses are truncated to 32-bits after the addition of the segment base. Ending virtual address
(last byte of amultiple byte operand or instruction) istruncated (wrapped) a the 4G-byte
virtual boundary

* |A-32 64-bit Address Generation: The resultant 32-bit virtual addressis converted into a
64-bit virtual address by zero extending to 64-bits, this places all 1A-32 instruction set memory
references within the first 4G-bytes of the 64-bit virtua address space within virtual region 0.

If IA-32 code is utilizing aflat segmented model (segment bases are set to zero) then 1A-32 and

I tanium-based code can freely exchange pointers after a pointer has been zero extended to 64-bits.
For segmented | A-32 code, effective address pointers must be first transformed into avirtual
address before they are shared with Itanium-based code.

Self Modifying Code

While operating in the |A-32 instruction set, self modifying code and instruction cache coherency
(coherency with respect to the local processor’s data cache) is supported for all |A-32 programs.
Self modifying code detection is directly supported at the same level of compatibility asthe

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

6.3.4

Pentium processor. Software must insert an 1A-32 branch instruction between the store operation
and the instruction modified for the updated instruction bytes to be recognized.

It is undefined whether the processor will detect alA-32 self modifying code event for the
following conditions; 1) PSR.dt or PSR.it is O, or 2) there are virtual aiasesto different physical
addresses between the instruction and data TLBs. To ensure self modifying code works correctly
for 1A-32 applications, the operating system must ensure that there are no virtual aliasesto different
physical addresses between the instruction and data TLBs.

When switching from the Itanium instruction set to the 1A-32 instruction set, and while executing
Itanium instructions, self modifying code and instruction cache coherency are not directly
supported by the processor hardware. Specifically, if amodification is made to | A-32 instructions
by Itanium instructions, Itanium-based code must explicitly synchronize the instruction caches with
the code sequence defined in “Memory Consistency” on page 1:63. Otherwise the modification
may or may not be observed by subseguent | A-32 instructions.

When switching from the | A-32 to the Itanium instruction sets, modification of thelocal instruction
cache contents by |A-32 instructions is detected by the processor hardware. The processor ensures
that the instruction cache is made coherent with respect to the modification and all subsequent
Itanium instruction fetches see the modification.

Memory Ordering Interactions

|A-32 instructions are mapped into the Itanium memory ordering model as follows:
« All IA-32 stores have release semantics
 All 1A-32 loads have acquire semantics

* All A-32 read-modify-write or lock instructions have release and acquire semantics (fully
fenced).

Instruction set transitions do not automatically fence memory data references. To ensure proper
ordering software needs to take into account the following ordering rules.

Transitions from Itanium instruction set to 1A-32 instruction set
« All data dependencies are honored, | A-32 loads see the results of all prior Itanium stores
* |A-32 stores (release) can not pass any prior Itanium load or store

* 1A-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium store to a
different address. Itanium-based software can prevent |1A-32 loads from passing prior Itanium
loads and stores by issuing an acquire operation (or nf) before the instruction set transition.

Transitions from | A-32 instruction set to Itanium instruction set
* All data dependencies are honored, Itanium loads see the results of al prior |A-32 stores
* Itanium stores or loads can not pass prior |A-32 loads (acquire)

* Itanium unordered stores or any Itanium load can pass prior | A-32 stores (release) to a
different address. Itanium-based software can prevent Itanium loads and stores from passing
prior 1A-32 stores by issuing arelease operation (or nf) after the instruction set transition.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:121

6.4

6.4.1

6.4.2

6.4.3

1:122

IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point registers, and
the ALAT when interacting with | A-32 code.

Register Stack Engine

Software must ensure that all dirty registersin the register stack have been flushed to the backing
store using af | ushr s instruction before starting | A-32 execution via either thebr.iaor rfi.
Any dirty registersleft in the current and prior register stack frames are left in an undefined state.
Software can not rely on the value of these registers across an instruction set transition.

Once lA-32 instruction set execution is entered, the RSE is effectively disabled, regardless of any
RSE control register enabling conditions.

After exiting the |A-32 instruction set due to aj npe instruction or interruption, al stacked registers
are marked asinvalid and the number of clean registersis set to zero.

ALAT

| A-32 instruction set execution leaves the contents of the ALAT undefined. Software cannot rely on
ALAT state being preserved across an instruction set transition. On entry to 1A-32 code, existing
entriesin the ALAT areignored. For details on the ALAT, refer to Section 4.4.5.2, “Data
Speculation and Instructions” on page 1:55.

NaT/NaTVal Response for IA-32 Instructions

If Itanium-based code setsa NaT condition in the integer registers or aNaTVal conditionin a
floating-point register, MM X technology, or Streaming SIMD Extension register before switching
to the IA-32 instruction set the following conditions can arise:

* When the |A-32 instruction set is entered, NaT values must not be contained in any register
defined to contain | A-32 state, otherwise processor operation is model specific and undefined.
Processors may generate a NaT Register Consumption Abort on any |A-32 instruction at any
time (including the first | A-32 instruction) for all A-32 integer, MM X technology, Streaming
SIMD Extension, or FP instructions regardless of whether not that instruction directly (or
indirectly) references aregister containing a NaT. NaT Register Consumption aborts
encountered during 1A-32 execution may terminate 1A-32 instructions in the middle of
execution with architectural state already modified.

* Floating-point NaTVal values must not be propagated into 1A-32 floating-point instructions,
otherwise processor operation is model specific and undefined. Processors may convert
floating-point register(s) containing NaT Val to a SNAN (during entry to the | A-32 instruction
set or on aconsuming 1A-32 floating-point instruction). Dependent | A-32 floating-point
instructions that directly or indirectly consume a propagated NaT Val register will either
propagate the NaTVal indication or generate an |1A-32_Exception (FPError Invalid Operand)
fault. Whether a processor generates the fault or propagates the NaTVa is model specific. In
no case will the processor allow a NaTVal register to be used without either propagating the
NaTVal or generating an |A-32_Exception (FPError Invalid Operand) fault.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

Note: Itisnot possiblefor IA-32 code to read a NaT Val from a memory location with an |A-32
floating-point load instruction since a NaTVal cannot be expressed by a 80-bit double
extended precision number. It is highly recommended that floating-point val ues be passed
on the memory stack per typical |A-32 calling conventions to avoid problems with NatVal
and Itanium denormals.

* 1A-32 Streaming SIMD Extension instructions that directly or indirectly consume a register
containing a NaT Val encoding, will ignore the NaTVal encoding and interpret the register’s
mantissafield as alegal datavalue.

* |A-32 MMX technology instructionsthat directly or indirectly consume aregister containing a
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s mantissafield
asalegal datavalue.

Software should not rely on the behavior of NaT or NaTVal during |A-32 instruction execution, or
propagate NaT or NaTVal into |A-32 instructions.

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment 1:123

1:124

Volume 1: 1A-32 Application Execution Model in an Intel® Itanium® System Environment

intgl.

Part II: Optimization Guide for the
Intel® Itanium® Architecture

in

tel.

About the Optimization Guide 1

1.1

The second portion of this document explainsin detail optimization techniques associated with the
Itanium instruction set. It isintended for those interested in furthering their understanding of
application architecture features and optimization techniques that benefit application performance.
Intel and the industry are devel oping compilers to take advantage of these techniques. Application
devel opers are not advised to use this as a guide to assembly language programming for the Itanium
architecture.

Note: To demonstrate techniques, this guide contains code examples that are not targeted
towards a specific processor based on the Itanium architecture, but rather a hypothetical
implementation. For these code examples, ALU operations are assumed to take one cycle
and loads take two cyclesto return from first level cache and that there are two load/store
execution units and four ALUs. Other latencies and execution unit details are described as
needed

Overview of the Optimization Guide
Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture.” Provides an
overview of the application programming environment.

Chapter 3, “Memory Reference.” Discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream.” Describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “ Software Pipelining and Loop Support.” Provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications.” Discusses current performance limitationsin floating-
point applications and features that address these limitations.

Volume 1: About the Optimization Guide 1:129

1:130

Volume 1: About the Optimization Guide

intel.

Introduction to Programming for the
Intel® Itanium® Architecture 2

2.1

2.2

Overview

The Itanium instruction set is designed to allow the compiler to communicate information to the
processor to manage resource characteristics such asinstruction latency, issue width, and functional
unit assignment. Although such resources can be statically schedul ed, the Itanium architecture does
not require that code be written for a specific microarchitecture implementation in order to be
functional.

The Itanium architecture includes a complete instruction set with new features designed to:
* Increaseinstruction-level paraldism (ILP).
* Better manage memory latencies.
 Improve branch handling and management of branch resources.
 Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct support for
multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found in Part
I: Intel® Itanium® Instruction Set Descriptionsin Volume 3: Instruction Set Reference. Though
this chapter provides a high level introduction to application level programming, it assumes prior
experience with assembly language programming as well as some familiarity with the Itanium
application architecture. Optimization is explored in other chapters of this guide.

Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64 predicate
registers, and up to 128 special purpose registers. The large number of architectural registers enable
multiple computations to be performed without having to frequently spill and fill intermediate data
to memory.

There are 128, 64-bit general purpose registers(r 0- r 127) that are used to hold values for
integer and multimedia computations. Each of the 128 registers has one additional NaT (Not a
Thing) bit which is used to indicate whether the value stored in the register is valid. Execution of
Itanium speculative instructions can result in aregister’s NaT bit being set. Register r O is
read-only and contains a value of zero (0). Attempting to writeto r O will cause afault.

There are 128, 82-hit floating-point registers (f 0- f 127) that are used for floating-point
computations. The first two registers, f 0 and f 1, are read-only and read as +0.0 and +1.0,
respectively. Instructions that writeto f 0 or f 1 will fault.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture 1:131

2.3

23.1

1:132

intel.

There are 64, one-hit predicate registers (p0- p63) that control conditional execution of
instructions and conditional branches. Thefirst register, pO0, is read-only and always reads true (1).
Theresults of instructions that write to pO are discarded.

There are 8, 64-bit branch registers (b0- b7) that are used to specify the target addresses of
indirect branches.

Thereis space for up to 128 application registers (ar 0- ar 127) that support various functions.
Many of these register dots are reserved for future use. Some application registers have assembler
aliases. For example, ar 66 isthe Epilogue Counter and iscalled ar . ec.

Theinstruction pointer is a64-bit register that points to the currently executing instruction
bundle.

Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each instruction
occupiesthefirst, second, or third slot of abundle. Instruction format, expression of parallelism,
and bundle specification are described below.

Format

A basic Itanium instruction has the following syntax:
[gp] mnemonic[.comp] dest=srcs

Where:

ap Specifiesaqualifying predicateregister. The value of the qualifying predicate determines
whether the results of the instruction are committed in hardware or discarded. When the
value of the predicate register is true (1), the instruction executes, itsresults are
committed, and any exceptions that occur are handled as usua. When the value is false
(0), theresultsare not committed and no exceptions are raised. Most Itanium instructions
can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Completersindicate optional variationson
a base instruction mnemonic. Completers follow the mnemonic and are separated by
periods.

dest Represents the destination operand(s), which istypically the result value(s) produced by
an instruction.

srcs Represents the source operands. Most Itanium instructions have at |east two input source
operands.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture

2.3.2

2.3.3

Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate groups of
instructions, called instruction groups, that have no register read after write (RAW) or write after
write (WAW) register dependencies. Instruction groups are delimited by stops in the assembly
source code. Since instruction groups have no RAW or WAW register dependencies, they can be
issued without hardware checks for register dependencies between instructions. Both of the
exampl es below show two instruction groups separated by stops (indicated by double semicolons):

1d8 r1=[r5] ;; // First group

add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
1 d8 rl1=[rb5] /'l First group
sub r6=r8,r9 ;;// First group
add r3=rl,r4 /1 Second group
st8 [r6]=r12 /1 Second group

All instructionsin a single instruction group may not necessarily issue in parallel because specific
implementations may not have sufficient resources to issue al instructions in an instruction group.

Bundles and Templates

In assembly code, each 128-hit bundle is enclosed in curly braces and contains atemplate
specification and threeinstructions. Thus, a stop may be specified at the end of any bundle or in the
middle of a bundle by using one of two special template types that implicitly include mid-bundle
stops.

Each instruction in abundle is 41-bits long. Five other bits are used by a template-type
specification. Bundle templates enable processors based on the Itanium architecture to dispatch
instructions with simple instruction decoding, and stops enable explicit specification of parallelism.

There arefiveslot types (M, |, F, B, and L), six instruction types (M, I, A, F, B, L), and 12 basic
template types (MIl, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB, MFB).
Each basic template type has two versions: one with a stop after the third slot and one without.
Instructions must be placed in slots corresponding to their instruction types based on the template
specification, except for A-typeinstructionsthat can go in either | or M slots. For example, a
template specification of. M | means that of the three instructionsin abundle, thefirstisa
memory (M or A-type instruction, and the next two are ALU integer (I) or A-typeinstructions:

{ .mii

ld4 r28=[r8] // Load a 4-byte value

add r9=2,r1 /1 2+r1 and put inr9

add r30=1,r1 // 1+rl and put in r30

}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correation with instruction group boundaries as instruc-
tion groups can extend over an arbitrary number of bundles. Instruction groups begin and
end where stops are set in assembly code, and dynamically whenever a branch is taken or
astop is encountered.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture 1:133

2.4

24.1

24.2

2.4.3

1:134

Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store instructions
and special semaphore instructions. The architecture also provides extensive support for hiding
memory |latency via programmer-controlled speculation.

Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in memory in little
endian byte order, in which the least significant byte appears in the lowest addressed byte of a
memory location. For data, modes for both big and little endian byte order are supported and can be
controlled by abit in the User Mask Register.

Integer loads of one, two, and four bytes are zero-extended, since dl 64 bits of each register are
always written. Integer stores write one, two, four, or eight bytes of registersto memory as
specified.

Speculation

Speculation allows a programmer to break data or control dependencies that would normally limit
code motion. The two kinds of speculation are called control speculation and data speculation. This
section summarizes speculation in the Itanium architecture. See Chapter 3, “Memory Reference’
for more detailed descriptions of speculative instruction behavior and application.

Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above branches.
Support for thisis enabled by special NaT bits that are attached to integer registers and by special
NatVal values for floating-point registers. When a speculative load causes an exception, it is not
immediately raised. Instead, the NaT bit is set on the destination register (or NatVal is written into
the floating-point register). Subsequent speculative instructions that use a register with a set NaT
bit propagate the setting until a non-speculative instruction checks for or raises the deferred
exception.

For example, in the absence of other information, the compiler for atypical RISC architecture
cannot safely move the load above the branch in the sequence below:
(pl) br.cond.dptk L1 // Cycle O
1d8 r3=[r5];; /1 Cycle 1
shr r7=r3,r87 /'l Cycle 3

Supposing that the latency of aload is 2 cycles, the shift right (shr) instruction will stall for 1.
However, by using the speculative loads and checks provided in the Itanium architecture, two
cycles can be saved by rewriting the above code as shown below:

1d8.s r3=[r5] /1 Earlier cycle
/1 Other instructions

(pl) br.cond.dptk L1;; // Cycle O
chk.s r3,recovery // Cycle 1
shr r7=r3,r87 /1l Cycle 1

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture

24.4

2.5

This code assumes r 5 isready when accessed and that there are sufficient instructions to fill the
latency between thel d8. s andthechk. s.

Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory references.
Advanced |oads exclusively refer to data speculative |oads. Review the order of loads and storesin
this assembly sequence:

st8 [r55]=r45 // Cycle O

Id8 r3=[r5] ;; // Cycle O

shr r7=r3,r87 /] Cycle 2

The Itanium architecture allows the programmer to move the load above the store even if it is not
known whether the load and the store reference overlapping memory locations. Thisis
accomplished using special advanced load and check instructions:

I d8.a r3=[r5] // Advanced | oad
/1 Other instructions

st8 [r55]=r45 // Cycle O
1d8.c r3=[r5] // Cycle O - check
shr r7=r3,r87 // Cycle O

Note: Theshr instruction in this schedule could issue in cycle O if there were no conflicts
between the advanced load and intervening stores. If there were a conflict, the check |oad
instruction (I d8. ¢) would detect the conflict and reissue the load.

Predication

Predication is the conditional execution of an instruction based on a qualifying predicate. A
qualifying predicate is a predicate register whose value determines whether the processor commits
the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare (cnp) and
test bit (t bi t). When the value of a qualifying predicate associated with an instruction is true (1),
the processor executes the instruction, and instruction results are committed. When the valueis
false (0), the processor discards any results and raises no exceptions. Consider the following
C code:
if (a) {
b =c + d;
}
if (e) {
h =i +j;
}

This code can be implemented in the Itanium architecture using qualifying predicates so that
branches are removed. The pseudo-code shown below implements the C expressions without
branches:

cnp. ne pl, p2=a,r0 /Il pl <- al=0
cnmp.ne p3,pd4=e,r0 ;; // p3 <- e!=0
(pl)add b=c,d // 1f al= 0 then add
(p3)sub h=i,j /1 1f el= 0 then sub

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture 1:135

2.6

2.6.1

2.6.2

2.7

1:136

intel.

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed discussion of
predication. There are afew special cases where predicated instructions read or write architectural
resources regardless of their qualifying predicate.

Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur significant
overhead during procedure calls and returns. To address this problem, a subset of the Itanium
general registers are organized as alogically infinite set of stack frames that are alocated from a
finite pool of physical registers.

Stacked Registers

Registersr 0 through r 31 are called global or static registers and are not part of the stacked
registers. The stacked registers are numbered r 32 up to a user-configurable maximum of r 127.

A called procedure specifies the size of its new stack frame using the al | oc instruction. The
procedure can use thisinstruction to allocate up to 96 registers per frame shared amongst input,
output, and local values. When acall is made, the output registers of the calling procedure are
overlapped with the input registers of the called procedure, thus allowing parameters to be passed
with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always referenced in a
procedure starting at r 32.

Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the Register Stack
Engine (RSE). The RSE moves the contents of physical registers between the general register file
and memory without explicit program intervention. This provides a programming model that looks
like an unlimited physical register stack to compilers; however, saving and restoring of registers by
the RSE may be costly, so compilers should still attempt to minimize register usage.

Branches and Hints

Since branches have amgjor impact on program performance, the Itanium architecture includes
features to improve their performance by:

» Using predication to reduce the number of branches in the code. Thisimprovesinstruction
fetching because there are fewer control flow changes, decreases the number of branch
mispredicts since there are fewer branches, and it increases the branch prediction hit rates since
there is less competition for prediction resources.

« Providing software hints for branches to improve hardware use of prediction and prefetching
resources.

» Supplying explicit support for software pipelining of loops and exit prediction of counted
loops.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture

2.7.1

2.7.2

2.7.3

Branch Instructions

Branching in the Itanium architectureis largely expressed the same way as on other
microprocessors. The mgjor difference isthat branch triggers are controlled by predicates rather
than conditions encoded in branch instructions. The architecture also provides arich set of hintsto
control branch prediction strategy, prefetching, and specific branch types like loops, exits, and
branches associated with software pipelining. Targets for indirect branches are placed in branch
registers prior to branch instructions.

Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling. However,
unrolling is not effective on all loops for the following reasons:

 Unrolling may not fully exploit the parallelism available.
» Unrolling istailored for a statically defined number of loop iterations.
« Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the Itanium
architecture provides architectural support for software pipelining. Software pipelining enables the
compiler to interleave the execution of several loop iterations without having to unroll aloop.
Software pipelining is performed using:

« Loop-branch instructions.

» LCand EC application registers.

* Rotating registers and loop stage predicates.

* Branch hintsthat can assign a specia prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides particular
support for simple counted loops using the br . ¢l oop instruction. The ¢l oop branch instruction
uses the 64-bit Loop Count (LC) application register rather than aqualifying predicate to determine
the branch exit condition.

For a complete discussion of software pipelining support, see Chapter 5, “ Software Pipelining and
Loop Support.”

Rotating Registers

Rotating registers enable succinct implementation of software pipelining with predication.
Rotating registers are rotated by one register position each time one of the special loop branchesis
executed. Thus, after one rotation, the content of register X will be found in register X+1 and the
value of the highest numbered rotating register will be found inr 32. The size of the rotating region
of general registers can be any multiple of 8 and isselected by afieldintheal | oc instruction. The
predicate and floating-point registers can aso be rotated but the number of rotating registersis not
programmable: predicate registers p16 through p63 are rotated, and floating-point registersf 32
through f 127 are rotated.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture 1:137

2.8

1:138

Summary

The Itanium architecture provides features that reduce the effects of traditional microarchitectural
performance barriers by enabling:

* Improved ILP with alarge number of registers and software scheduling of instruction groups
and bundles.

Better branch handling through predication.

» Reduced overhead for procedure calls through the register stack mechanism.

« Streamlined loop handling through hardware support of software pipelined loops.
Support for hiding memory latency using speculation.

Volume 1: Introduction to Programming for the Intel® Itanium® Architecture

intel.

Memory Reference 3

3.1 Overview

Memory latency isamajor factor in determining the performance of integer applications. In order

to help reduce the effects of memory latency, the Itanium architecture explicitly supports software
pipelining, large register files, and compiler-controlled speculation. This chapter discusses features
and optimizations related to compiler-controlled speculation. See Chapter 5, “ Software Pipelining

and Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium architecture,
and general concepts and terminology related to data dependencies. The concept of speculation is
then introduced, followed by discussions and examples of how speculation is used. The remainder
of this chapter describes several important optimizations related to memory access and instruction
scheduling.

3.2 Non-speculative Memory References

The Itanium architecture supports non-speculative loads and stores, aswell as explicit memory hint
instructions.

3.2.1 Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytesand 4, 8, or 10 bytes for
floating-point stores. For example, ast 4 instruction will write the first four bytes of aregister to
memory.

Although the Itanium architecture uses alittle endian memory byte order by default, software can
change the byte order by setting the big endian (be) bit of the user mask (UM).

3.2.2 Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory depending on the
type of load issued. Loads of 1, 2, or 4 bytes of data are zero-extended to 64-hits prior to being
written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword (8 bytes).
Apart from afew exceptions, al integer operations are on quadword data. This can be particularly
important when dealing with signed integers and 32-bit addresses, or any addresses that are shorter
than 64 bits.

Volume 1: Memory Reference 1:139

3.2.3

3.3

3.3.1

3.3.1.1

1:140

Data Prefetch Hint

Thel f et ch instruction requests that lines be moved between different levels of the memory
hierarchy. Like al hint instructions defined in the Itanium architecture, | f et ch has no effect on
program correctness, and any microarchitecture implementation may choose to ignoreit.

Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction scheduling.
Such dependencies can prevent a compiler from scheduling instructions in an order that would
yield shorter critical paths and better resource usage since they restrict the placement of instructions
relative to other instructions on which they are dependent.

In general, memory references are the major source of control and data dependencies that cannot be
broken due to getting awrong answer (if a data dependency is broken) or raising afault that should
not be raised (if a control dependency is broken). This section describes:

» Background material on memory reference dependencies.
* Descriptions of how dependencies constrain code scheduling on traditional architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture that increase
the number of dependenciesthat can be removed by a compiler.

Control Dependencies

Aninstruction is control dependent on a branch if the direction taken by the branch affects whether
the instruction is executed. In the code below, the load instruction is control dependent on the
branch:

(pl) br.cond sone_lI abel
1d8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on
optimization.

Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 /1l Cycle O
add r13=r25,r27
cnp.eq pl, p2=r12,r23

(pl)br.cond sone_| abel ;;

1d4 r2=[r3];; /1l Cycle 1
sub r4=r2,r11 /1 Cycle 3

A compiler cannot safely move the load instruction before the branch unless it can guarantee that
the moved load will not cause afatal program fault or otherwise corrupt program state. Since the
load cannot be moved upward, the schedule cannot be improved using normal code motion.

Volume 1: Memory Reference

Thus, the branch creates a barrier to instructions whose execution depends upon it. In Figure 3-1,
the load in block B cannot be moved up because of a conditional branch at the end of block A.

Figure 3-1. Control Dependency Preventing Code Motion

block A

block B

3.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory location and
another instruction that alters the same register or location.

3.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

Write-after-write (WAW)
A dependency between two instructions that write to the same register or memory
location.

Write-after-read (WAR)
A dependency between two instructions in which an instruction reads a register or
memory location that a subsequent instruction writes.

Read-after-write (RAW)
A dependency between two instructionsin which an instruction writes to aregister or
memory location that is read by a subsequent instruction.

Ambiguous memory dependencies
Dependencies between aload and a store, or between two stores where it cannot be
determined if the involved instructions access overlapping memory locations.
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

Independent memory references
References by two or more memory instructions that are known not to have conflicting
Memory accesses.

3.3.2.2 Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and WAW register
dependencies to ensure correct code results. For example, in the code below, the add instruction
computesavalueinr 4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1

sub r7=r4,r9 /1 lInstruction group 2

Volume 1: Memory Reference 1:141

3.3.2.3

1:142

intel.

The stop after the add instruction terminates one instruction group so that the sub instruction can
legally read r 4.

On the other hand, implementations based on the Itanium architecture are required to observe
memory-based dependencies within an instruction group. In asingle instruction group, a program
can contain memory-based data dependent instructions and hardware will produce the same results
asif theinstructions were executed sequentially and in program order. The pseudo-code bel ow
demonstrates a memory dependency that will be observed by hardware:

nmov r16=1

mov rl7=2 ;;

st8 [r15]=r16

st8 [r14]=r17;;

If the addressinr 14 isequal to the addressinr 15, uni-processor hardware guarantees that the
memory location will containthevalueinr 17 (2). Thefollowing RAW dependency isalsolegal in
the same instruction group even if softwareis unable to determineif r 1 and r 2 overlap:

st8 [ri1]=x

1d4 y=[r2]

Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient code, the
compiler must take into account the latencies of instructions. For example, the generic
implementation has atwo cycle latency to thefirst level data cache. In the code below, the stop
maintains correct ordering, but a use of r 2 is scheduled only one cycle after itsload:

add r7=r6,1 /1l Cycle O

add r13=r25,r27

cnp.eq pl, p2=r12,r23;;

add r11=r13,r29 /1l Cycle 1
1d4 r2=[r3];;
sub r4=r2,r11 /'l Cycle 3

Since the latency of aload istwo cycles, the sub instruction will stall until cyclethree. To avoid a
stall, the compiler can move the load earlier in the schedule so that the machine can perform useful
work each cycle:

1d4 r2=[r3] /1 Cycle O
add r7=r6, 1

add r13=r 25, r27

cnp.eq pl, p2=r12,r23;;

add r11=r13,r29;; /'l Cycle 1

sub rd=r2,r11 /1 Cycle 2

In this code, there are enough independent instructions to move the load earlier in the schedule to
make better use of the functional units and reduce execution time by one cycle.

Now suppose that the original code sequence contained an ambiguous memory dependency
between a store instruction and the load instruction:

add r7=r6,1 /1l Cycle O

add r13=r25,r27

cnp. ne pl, p2=r12,r23;;

Volume 1: Memory Reference

3.4

3.4.1

st4 [r29]=r13 /Il Cycle 1
ld4 r2=[r3];;
sub r4=r2,r11 /Il Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency. Stores will
cause data dependencies if they cannot be disambiguated from loads or other stores.

In the absence of other architectural support, stores can prevent moving loads and their dependent
instructions: The following C language statements could not be reordered unlessptr 1 and pt r 2
were statically known to point to independent memory locations:

*ptrl = 6;

X = *ptr2;

Using Speculation in the Intel® Itanium®

Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The Itanium
architecture provides support for two basic techniques used to overcome dependencies:

Data speculation
Allows aload and possibly its uses to be moved across ambiguous memory writes.

Control speculation
Allows aload and possibly its uses to be moved across a branch on which theload is
control dependent.

These techniques are used to hide load latencies and reduce execution time.

Speculation Model in the Intel® Itanium® Architecture

Thelimitationsimposed by dependencies on instruction scheduling can be solved by separating the
loading of data from the exception handling or the acknowledgment of data conflicts. The Itanium
architecture supports special speculative versions of instructions to accomplish this:

* Control speculative load instructions defer exceptions.

« Data speculative load instructions save address information.

« Special check instructions check for exceptions or data conflicts.

An Itanium speculative load can be moved above a dependency barrier (shown as a dashed line) as
shown in Figure 3-2.

The check detects a deferred exception or a conflict with an intervening store and provides a
mechanism to recover from failed speculation. With this support, speculative loads and their uses
can be scheduled earlier than non-speculative instructions. As aresult, the memory latencies of
these loads can be hidden more easily than for non-speculative loads.

Volume 1: Memory Reference 1:143

Figure 3-2. Speculation Model in the Intel® Itanium® Architecture

Before Speculation After Speculation

Speculative Load

control or
data dependency

Control or
Data Dependency

Original Load B Check for Exception or
Memory Conflict
Uses of Load Uses of Load
3.4.2 Using Data Speculation in the Intel® Itanium® Architecture

Data speculation in the Itanium architecture uses a special load instruction (I d. a) called an
advanced load instruction and an associated check instruction (chk. a or | d. c) to vaidate
data-specul ated results.

When thel d. a instruction is executed, an entry is allocated in a hardware structure called the
Advanced Load Address Table (ALAT). The ALAT isindexed by physical register number and
records the load address, the type of the load, and the size of the load.

A check instruction must be executed before the result of an advanced load can be used by any
non-speculative instruction. The check instruction must specify the same register number asthe
corresponding advanced |oad.

When a check instruction is executed, the ALAT is searched for an entry with the same target
physical register number and type. If an entry isfound, execution continues normally with the next
instruction.

If no matching entry is found, the speculative results need to be recomputed:

* Useachk. a if aload and some of its uses are speculated. Thechk. a jumpsto
compiler-generated recovery code to re-execute the load and dependent instructions.

* Useal d. ¢ if nousesof theload are speculated. Thel d. c reissues the load.

Entries are removed from the ALAT due to:
* Stores that write to addresses overlapping with ALAT entries.
« Other advanced loads that target the same physical registersas ALAT entries.

 Implementation-defined hardware or operating system conditions needed to maintain
correctness.

 Limitations of the capacity, associativity, and matching algorithm used for agiven
implementation of the ALAT.

1:144 Volume 1: Memory Reference

34.2.1

3.4.2.2

Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions. In the code below, aload
and store may access conflicting memory addresses:

st8 [r4]=ri12 /'l Cycle 0: anbiguous store
| d8 r6=[r8];; /'l Cycle 0: load to advance
add r5=r6,r7;; /'l Cycle 2
st8 [r18]=r5 /'l Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can be rewritten
using an advanced load and check:
| d8.a r6=[r8] /Il Cycle -2 or earlier

/1 Other instructions

st8 [r4]=r12 /'l Cycle 0: anbiguous store
1 d8.c r6=[r8] /1 Cycle 0: check |oad

add r5=r6,r7;; /1l Cycle O

st8 [r18]=r5 /'l Cycle 1

The original load has been turned into a check load, and an advanced load has been scheduled
above the ambiguous store. If the speculation succeeds, the execution time of the remaining
non-speculative code is reduced because the latency of the advanced load is hidden.

Recovery Code Example

Consider again the non-speculative code from the last section:

st8 [r4]=ri12 /'l Cycle 0: ambiguous store
1d8 r6=[r8];; /1 Cycle 0: load to advance
add r5=r6,r7;; /'l Cycle 2
st8 [r18]=r5 /'l Cycle 3

The compiler could move up not only the load, but also one or more of its uses. Thistransformation
usesachk. a rather than al d. c instruction to validate the advanced load. Using the same
exampl e code sequence but now advancing the add as well asthel d8 resultsin:

ld8.a r6=[r8];; [// Cycle -3

/'l other instructions
add r5=r6,r7 /1 Cycle -1: add that uses r6
/1 Cther instructions
st8 [rd4]=r12 /1l Cycle O
chk.a r6,recover // Cycle 0: check
back: // Return point fromjunp to recover

st8 [r18]=r5 /1l Cycle O

Recovery code must also be generated:

recover:
| d8 ré6=[r8] ;; // Reload r6 from[r8]
add r5=r6,r7 /] Re-execute the add
br back /1 Junmp back to main code

Volume 1: Memory Reference 1:145

3.4.2.3

3.4.3

3.43.1

1:146

intel.

If the speculation fails, the check instruction branches to the label r ecover where the speculated
code is re-executed. |If the speculation succeeds, execution time of the transformed code is three
cyclesless than the original code.

Terminology Review

Termsrelated to speculation, such as advanced loads and check |oads, have well-defined meanings
in the Itanium architecture. The terms below were introduced in the preceding sections:

Data speculative load
A speculative load that is statically scheduled prior to one or more stores upon which it
may be dependent. The data speculative load instructionisl| d. a.

Advanced load
A data speculative load.

Check load
An instruction that checks whether a corresponding advanced load needsto be
re-executed and does so if required. The check load instructionis| d. c.

Advanced load check
An instruction that takes a register number and an offset to a set of compiler-generated
instructions to re-execute speculated instructions when necessary. The advanced |oad
check instructionis chk. a.

Recovery code
Program code that is branched to by a speculation check. Recovery code repeats aload
and chain of dependent instructions to recover from a speculation failure.

Using Control Speculation in the Intel® Itanium®

Architecture

The check to determine if control speculation was successful is similar to that for data speculation.

The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers. A register NaT bit
indicates whether the content of aregister isvalid. If the NaT bit is set to one, the register contains
a deferred exception token due to an earlier speculation fault. In afloating-point register, the
presence of a special vaue called the NaTVal signals a deferred exception.

During a control speculative load, the NaT bit on the destination register of the load may be set if
an exception occurs and it is deferred. The exact set of events and exceptions that cause an
exception to be deferred (thus causing the NaT bit to be set), depends in part upon operating system
policy. When a speculative instruction reads a source register that hasits NaT bit set, NaT bits of
the target registers of that instruction are also set. That is, NaT bits are propagated through
dependent computations.

Volume 1: Memory Reference

3.4.3.2

3.4.3.3

Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative check,

chk. s, aongall paths on which results of the speculative load are consumed. If anon-speculative
instruction (other than achk. s) readsaregister with its NaT bit set, a NaT consumption fault
occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(pl)br.cond sone_| abel// Cycle O

ld8 ri1=[r5];; /1 Cycle 1

add r2=r1,r3 /1l Cycle 3

This code can be rewritten using a control speculative load and check. The check can be placed in
the same basic block as the original 1oad:
ld8.s ri1=[r5];; /1 Cycle -2

/1 Other instructions

(pl)br.cond sone_|l abel// Cycle O
chk.s rl,recovery // Cycle O
add r2=r1,r3 /1 Cycle O

Until a speculation check is reached dynamically, the results of the control speculative chain of
instructions cannot be stored to memory or otherwise accessed non-specul atively without the
possibility of afault. If aspeculation check is executed and the NaT bit on the checked register is
set, the processor will branch to recovery code pointed to by the check instruction.

Itisalso possibleto test for the presence of set NaT bits and NaTVals using the test NaT (t nat)
and floating-point class (f cl ass) instructions.

Although every speculative computation needs to be checked, this does not mean that every
speculativeload requiresitsown chk. s. Speculative checks can be optimized by taking advantage
of the propagation of NaT bits through registers as described in Section 3.5.6.

Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bitsisenabled by st 8. spi | | and
[d8. fill instructionsand the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st 8. spi | |, saves eight bytes of a general
register to memory and writesits NaT bit into the UNAT. Bits 8:3 of the memory address of the
store determine which UNAT bit is written with the register NaT value. The “fill general register”
instruction, | d8. fi I |, reads eight bytes from memory into ageneral register and sets the register
NaT bit according to the value in the UNAT. Softwareis responsible for saving and restoring the
UNAT contents to ensure correct spilling and filling of NaT bits.

The corresponding floating-point instructions, st f . spi | | and1 df . fil |, saveand restore
floating-point registers in floating-point register format without surfacing exceptions due to
NaTVals.

Volume 1: Memory Reference 1:147

3.4.3.4

3.4.4

3.5

3.5.1

1:148

Terminology Review

The terms below are related to control speculation:

Control speculative load
A speculative load that is scheduled prior to an earlier controlling branch. Referencesto
“speculativeloads’ without qualifiersgenerally refer to control speculativeloads and not
data speculative loads. Loads using thel d. s instruction are control speculative loads.

Speculation check
An instruction that checks whether a speculative instruction has deferred an exception.
Speculation check instructions include labels that point to compiler-generated recovery
code. The speculation check instructionischk. s.

Recovery code
Code executed to recover from a speculation failure. Control speculative recovery code
is analogous to data speculative recovery code.

Combining Data and Control Speculation

A load that is both data and control speculativeis called a speculative advanced load. Thel d. sa
instruction performs all the operations of both a speculative load and an advanced load. An ALAT
entry will not be allocated if this type of load generates a deferred exception token, so an advanced
load check instruction (chk. a) is sufficient to check for both interference from subsequent stores
and for deferred exceptions.

Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code motion than
can be performed on traditional architectures. Speculation can increase the application of
traditional loop optimizations such as invariant code motion and common subexpression
elimination. The Itanium architecture a so offers post-increment loads and stores that improve
instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:
« Difference between the execution costs of speculative and non-speculative code.
» Codesize.
« Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to memory
accesses.

Speculation Considerations

The use of data speculation requires more attention than the use of control speculation. In part this
is due to the fact that one control speculative load cannot inadvertently cause another control
speculative load to fail. Such an effect is possible with data speculative loads since the ALAT has
limited capacity and the replacement policy of ALAT entries isimplementation dependent. For

Volume 1: Memory Reference

3.5.2

example, if an advanced load isissued and there are no unused ALAT entries, the hardware may
choose to invalidate an existing entry to make room for a new one.

Moreover, exceptions associated with control speculative cal culations are uncommon in correct
code since they are related to events such as page faults and TLB misses. However, excessive
control speculation can be expensive as associated instructions fill issue sots.

Although the static critical path of a program may be reduced by the use of data speculation, the
following factors contribute to the benefit/dynamic cost of data speculation:

 The probability that an intervening store will interfere with an advanced load.
» The cost of recovering from afailed advanced |oad.

* The specific microarchitectural implementation of the ALAT: its size, associativity, and
matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling can help to
predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether advancing
only aload and using al d. ¢ might be preferable to advancing both aload and its uses, which
would require the use of the potentially more expensive chk. a.

Even when recovery code is not executed, its presence extends the lifetimes of registersused in
data and control speculation, thusincreasing register pressure and possibly the cost of register
movement by the Register Stack Engine (RSE). See Section 3.5.3 for information on
considerations for recovery code placement.

Data Interference

Data references with low interference probabilities and high path probabilities can make the best
use of data speculation. In the pseudo-code bel ow, assume the probabilities that the storesto * p1
and * p2 conflict with var are independent.

pl = / Prob interference = 0.30 */

p2 = / Prob interference = 0.40 */

= var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2, then:
Prob that stores to pl or p2 interfere with var
=1.0 - (Prob p1 will not interfere with var *
Prob p2 will not interfere with var)
1.0 - (0.70 * 0.60)
0. 58

Given the interference probabilities above, thereis a’58% probability at least one of p1 and p2 will
interferewith aload fromvar if it is advanced above both of them. A compiler can use traditional
heuristics concerning data interference and interprocedural memory access information to estimate
these probabilities.

Volume 1: Memory Reference 1:149

3.5.3

intel.

When advancing loads past function calls, the following should be considered:

« If acalled function hasmany storesin it, it is more likely that actual or aliased ALAT conflicts
will occur.

« If other advanced loads are executed during the function call, it is possible that their physical
register numberswill either beidentical or conflict with ALAT entries allocated from callsin
parent functions.

« If it isunknown whether alarge number of advanced loads will be executed by the called
routines, then the possihility that the capacity of that ALAT may be exceeded must be
considered.

Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible increasesin
code size. Such consideration isnot particular to speculation, but to any transformations that
cause code to be duplicated, such asloop unrolling, procedure inlining, or tail duplication.
Techniques to minimize code growth are discussed later in this section.

In general, control speculation increases the dynamic code size of a program since some of the
speculated instructions are executed and their results are never used. Recovery code associated
with control speculation primarily contributes to the static size of the binary sinceit islikely to be
placed out-of-line and not brought into cache until a speculative computation fails (uncommon for
control speculation).

Data speculation has a similar effect on code size except that it isless likely to compute values that
are never used since most hon-control speculative data speculative loads will have their results
checked. Also, since control speculative loads only fail in uncommon situations such as deferred
datarelated faults (depending on operating system configuration), while data speculative loads can
fail dueto ALAT conflicts, actual memory conflicts, or aliasing in the ALAT, the decision asto
where to place recovery code for advanced loads is more difficult than for control speculation and
should be based on the expected conflict rate for each load.

Asageneral rule, efficient compilers will attempt to minimize code growth related to speculation.
Asan example, moving aload above the join of two paths may require duplication of speculative
code on every path. The flow graph depicted in Figure 3-3 and the explanation shows how this
could arise.

Figure 3-3. Minimizing Code Size During Speculation

1:150

block A
[1]

block B block C

st
Id

If the compiler or programmer advanced the load up to block B from its original non-speculative
position, all speculative code would need to be duplicated in both blocks B and C. This duplicated

Volume 1: Memory Reference

3.54

3.5.5

code might be able to occupy NOP dots that already exist. But if space for the code is not already
available, it might be preferable to advance the load to block A since only one copy would be
required in this case.

Using Post-increment Loads and Stores

Post-increment |oads and stores can improve performance by combining two operationsin asingle
instruction. Although the text in this section mentions only post-increment loads, most of the
information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by either an
immediate value or by the contents of a general register. The following pseudo-code that performs
two loads:

| d8 r2=[r1]

add r1=1,r1 ;;

1d8 r3=[r1]

can be rewritten using a post-increment |oad:

ld8 r2=[r1],1 ;;
1 d8 r3=[r1]

Post-increment loads may not offer direct savingsin dependency path height, but they are
important when calcul ating addresses that feed subsequent loads:

A post-increment load avoids code size expansion by combining two instructionsinto one.

 Adds can beissued on either I-unitsor M-units. When aprogram combines an add with aload,
an |-unit or M-unit resource remains available that otherwise would have been consumed.
Thus, throughput of dependent adds and loads can be doubled by using post-increment |oads.

A disadvantage of post-increment loads isthat they create new dependencies between
post-increment loads and the operations that use the post-increment values. In some cases, the
compiler may wish to separate post-increment loads into their component instructions to improve
the overall schedule. Alternatively, the compiler could wait until after instruction scheduling and
then opportunistically find places where post-increment loads could be substituted for separate load
and add instructions.

Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like invariant code
motion. Examine this pseudo-code:
whil e (cond) {
c =a + b; // Probably loop invariant
*ptr++ = c¢;// May point to a or b
}

Thevariablesa and b are probably loop invariant; however, the compiler must assume the storesto
*pt r will overwritethe valuesof a and b unlessanalysis can guarantee that this can never happen.
The use of advanced loads and checks alows code that islikely to be invariant to be removed from
aloop, even when a pointer cannot be disambiguated:

ldd.arl [&a]

ld4.a r2 [&b]

Volume 1: Memory Reference 1:151

3.5.6

1:152

add r3 =rl,r2// Mve conputation out of |oop
while (cond) {
chk.a.nc r1, recoverl
L1: chk.a.nc r2, recover?2
L2: *p++ = r3
}

At the end of the module:

recover1: /'l Recover fromfailed | oad of a
ldd.a rl = [&a]
add r3 =7r1, r2
br.sptk L1 // Unconditional branch

recover 2: /1 Recover fromfailed |oad of b
ldd.a r2 = [&b]
add r3 =r1, r2
br.sptk L2 // Unconditional branch

Using speculation in thisloop hides the latency of the calculation of ¢ whenever the speculated
codeis successful.

Since checks have both aclear (clr) and no clear (nc) form, the programmer must decide which to
use. Thisexample shows that when checks are moved out of 1oops, the no clear version should be
used. Thisis because the clear (clr) version will cause the corresponding ALAT entry to be
removed (which would cause the next check to that register to fail).

Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size. The propagation of
NaT bits and NaT Vals via speculative instructions can permit a single check of a speculative result
to replace multiple intermediate checks. The code below demonstrates this optimization potential :

ld4.s r1=[r10] // Speculatively load to r1l

ld4.s r2=[r20] // Speculatively load to r2

add r3=rl1,r2;;// Add two specul ative val ues

/1 Cther instructions

chk.s r3,imp1 // Check for NaT bit in r3
st4 [r30]=r1 /Il Store r1l
st4 [r40]=r2 /Il Store r2
st4 [r50]=r3 /Il Store r3

Only theresult register, r 3, needsto be checked before storesof any of r 1,r 2, orr 3. If aNaT bit
were set at the time of the control speculative loads of r 1 or r 2, the NaT bit would have been
propagatedtor 3 fromr 1 or r 2 viathe add instruction.

Another way to reduce the amount of check code is to use control flow analysisto avoid issuing
extral d. ¢ orl d. ainstructions. For example, the compiler can schedule a single check where it
is known to be reached by all copies of the advanced load. The portion of aflow graph shown in
Figure 3-4 demonstrates where this technique might be applied.

Volume 1: Memory Reference

intel.

Figure 3-4. Using a Single Check for Three Advanced Loads

Advanced loads from addr
to the same register, R

Single load check of

| lda | | Ida |
| | [da |
Stores [*pl= | [*p2=] [*p3 =]
ld.c register R

A single check in the lowermost block shown for al of the advanced loadsis correct if both of these

conditions are met:

» Thelowermost block post-dominates all of the blocks with advanced loads from location

addr .

» The lowermost block precedes any uses of the advanced loads from addr .

3.6 Summary

The examplesin this chapter show where the Itanium architecture can take advantage of existing
techniques like dynamic profiling and disambiguation. Special architectural support allows
implementation of speculation in common scenarios in which it would normally not be allowed.

Speculation, in turn, increases ILP by making greater

code motion possible, thus enhancing

traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful cost and

benefit analysisis needed to insure best performance.

Volume 1: Memory Reference

1:153

1:154

Volume 1: Memory Reference

intel.

Predication, Control Flow, and
Instruction Stream 4

4.1 Overview

This chapter isdivided into three sections that describe optimizations rel ated to predication, control
flow, and branch hints as follows:

» The predication section describes if-conversion, predicate usage, and code scheduling to
reduce the affects of branching.

» The control flow optimization section describes optimizations that collapse and converge
control flow by using parallel compares, multiway branches, and multiple register writers
under predicate.

» The branch and prefetch hints section describes how hints are used to improve branch and
prefetch performance.

4.2 Predication

Predication alows the compiler to convert control dependenciesinto data dependencies. This

section describes several sources of branch-related performance considerations, followed by a
summary of predication mechanism, followed by a series of descriptions of optimizations and
techniques based on predication.

4.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for prediction at
execution time and by restricting instruction scheduling freedom during compilation.

4211 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and the logic
used to control these resources. The number of branchesthat can accurately be predicted islimited
by the size of the buffers on the processor, and such buffers tend to be small relative to the total
number of branches executed in a program.

This limitation means that branch intensive code may have alarge portion of its execution time
spent due to contention for prediction resources. Furthermore, even though the size of the
predictorsisaprimary factor in determining branch prediction performance, some branches are
best predicted with different types of predictors. For example, some branches are best predicted
statically while others are more suitably predicted dynamically. Of those predicted dynamically,
some are of greater importance than others, such asloop branches.

Volume 1: Predication, Control Flow, and Instruction Stream 1:155

42.1.2

4.2.2

1:156

intel.

Since the cost of amisprediction is generally proportional to pipeline length, good branch
prediction is essential for processors with long instruction pipelines. Thus, optimizing the use of
prediction resources can significantly improve the overall performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the time and
branch mispredictionsincur aten cycle penalty. On average, the mispredicted branch will add
three cycles to each execution of the code sequence (30% * 10 cycles):
if (r1)
r2 =r3 +ré4;
el se
r7 =r6 - rb5;

Equivalent Itanium-based code that has not been optimized is shown below. It requires five
instructions including two branches and executesin two cycles, not including potential
misprediction or taken-branch penalty cycles:

cnp. eq pl, p2=r1,r0 /1l Cycle O
(pl) br.cond else_clause /1l Cycle O

add r2=r3,r4 /Il Cycle 1

br end_if /1 Cycle 1
el se_cl ause:

sub r7=r6,r5 /Il Cycle 1
end_if:

Using the information above, this code will take five cycles to execute on average even thought the
critical path isonly two cycleslong (2 cycles + (30% * 10 cycles) =5). If the branch
misprediction penalty could be eliminated (either by reducing contention for resources or by
removing the branch itself), performance of the code sequence would improve by a factor of two.

Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state or that can
raise exceptions, because instructionsin a program are control dependent on al Iexically enclosing
branches. In addition to the control dependencies, compound conditionals can take several cyclesto
compute and may themselves require intermediate branches in languages like C that require
short-circuit eval uation.

Control speculation is the primary mechanism used to perform global code motion for

I tanium-based compilers. However, when an instruction does not have a speculative form or the
instruction could potentially corrupt memory state, control speculation may be insufficient to allow
code motion. Thus, techniques that allow greater freedom in code motion or eliminate branches can
improve the compiler’s ahility to schedule instructions.

Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section overviews
predication in the Itanium architecture — the primary mechanism used by optimizations described in
this section.

Almost al Itanium instructions can be tagged with aguarding predicate. If the vdue of the
guarding predicate is false at execution time, then the predicated instruction’s architectural updates
are suppressed, and the instruction behaves like a nop. If the predicate is true, then the instruction

Volume 1: Predication, Control Flow, and Instruction Stream

4.2.3

4231

behaves as if it were unpredicated. There are a small number of instructions such as unconditional
compares and floating-point square-root and reciprocal approximate instructions whose qualifying
predicate do not operate as described above. See Part |: Application Architecture Guide for
additional information.

The following sequence shows a set of predicated instructions:
(pl) add rl=r2,r3

(p2) 1d8 r5=[r7]

(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test instructions such as
those as shown bel ow.

cnp.eq pl,p2=r5,r6

tbit p3, p4=r6,5

Additionally, a predicate amost always requires a stop to separate its producing instruction and its
use:

cnp.eq pl,p2=rl,r2;;
(pl)add rl=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets a predicate
that is used as the condition for a subsequent branch instruction:

cnmp.eq pl,p2=rl,r2 // No stop required
(pl)br.cond sone_t ar get

Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic performance analysis
techniques. Following are descriptions of optimizations including if-conversion, misprediction
elimination, off-path predication, upward code motion, and downward code motion.

Applying if-Conversion

One of the most important optimizations enabled by predication is the complete removal of
branches from some program sequences. Without predication, the pseudo-code bel ow would
require a branch instruction to conditionally jump around the if-block code:
if (r4) {
add rl=r2,r3
I d8 ré=[r5]
}

Using predication, the sequence can be written without a branch:
cnp.ne pl,p0=r4,0 ;;// Set predicate reg

(pl)add r1=r2,r3

(pl)1d8 r6=[r5]

The process of predicating instructions in conditional blocks and removing branchesis referred to
asif-conversion. Onceif-conversion has been performed, instructions can be scheduled more freely
because there are fewer branches to limit code motion, and there are fewer branches competing for
issue dots.

Volume 1: Predication, Control Flow, and Instruction Stream 1:157

4.2.3.2

intel.

In addition to removing branches, this transformation will make dynamic instruction fetching more
efficient since there are fewer possibilities for control flow changes. Under more complex
circumstances, several branches can be removed. The following C code sequence:
if (ri1)
r2 =r3 + r4;
el se
r7 =r6 - rb5;

can be rewritten in Itanium-based assembly code without branches as:
cnp.nepl,p2 =r1,0;;

(pl) add r2 =r3,r4

(p2) sub r7 =7r6,r5

Since instructions from opposite sides of the conditional are predicated with complementary
predicates they are guaranteed not to conflict, hence the compiler has more freedom when
scheduling to make the best use of hardware resources. The compiler could also try to schedule
these statements with earlier or later code since severa branches and labels have been removed as
part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there will be no
pipeline bubbles due to taken branches. Such effects are significant in many large applications, and
these transformations can greatly reduce branch-induced stalls or flushesin the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above shows that:
» Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.
* Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

Off-path Predication

If acompiler has dynamic profile information, it is possible to form an instruction schedule based
on the control flow path that is most likely to execute — this path is called the main trace. In some
cases, execution paths not on the main trace are still executed frequently, and thus it may be
beneficial to use predication to minimize their critical paths aswell.

Themain trace of aflow graphishighlighted in Figure 4-1. Although blocks A and B are not on the
main trace, suppose they are executed a significant number of times.

Figure 4-1. Flow Graph lllustrating Opportunities for Off-path Predication

1:158

block B

block A

If some of the instructionsin block A or block B can be included in the main trace without
increasing its critical path, then techniques of upward code motion can be applied to reduce the

Volume 1: Predication, Control Flow, and Instruction Stream

4.2.3.3

4.2.3.4

critical path through blocks A and B when they are taken. An example of how to use predication to
implement upward code motion is given in the next section.

Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate an
instruction and move it up or down in the schedule to reduce dependency height. Thisis possible
because predicating an instruction replaces a control dependency with a data dependency. If the
data dependency isless constraining than the control dependency, such a transformation may
improve the instruction schedule.

Given the Itanium-based assembly sequence below, the store instruction cannot be moved above
the enclosing conditional instruction because it could cause an address fault or other exception,
depending upon the branch direction:

(pl)br.cond sone_|l abel // Cycle O

st4 [r34] =r23 /Il Cycle 1
| d4 r5 = [r56] /1l Cycle 1
| d4 ré = [r57] /Il Cycle 2:no cycle 1 Ms

One reason why it might be desirable to move the store instruction up is to alow loads below it to
move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move. In this case,
moving the store also frees up an M-unit slot. To rewrite the code so that the store comes
before the branch, p2 has been assigned the complement of p1:

(p2)st4 [r34] =r23 I/l Cycle O

(p2)1d4 r5 = [r56] /1 Cycle O
(pl) br.cond sone_lI abel /Il Cycle O
| d4 ré6 = [r57] /Il Cycle 1

Since the storeis now predicated, no faults or exceptions are possible when the branch istaken, and
memory stateis only updated if and when the original home block of the store is entered. Once the
storeismoved, it is also possible to move the load instruction without having to use advanced or
speculative loads (aslong asr 5 is not live on the taken branch path).

Downward Code Motion

Aswith upward code motion, downward code motionisnormally difficult in the presence of stores.
The next example shows how code can be moved downward past alabel, atransformation that is
often unsafe without predication:

| d8 r56 = [r45];; [// Cycle 0: load

st4 [r23] =r56;; [/ Cycle 2: store
| abel _A:

add e /Il Cycle 3

add

add

add ces

In the code above, suppose the latency between the load and the store istwo clocks. Assuming the
load instruction cannot be moved upward due to other dependencies, the only way to schedule the
instructions so that the load latency is covered is to move the store downward past the |abel.

Volume 1: Predication, Control Flow, and Instruction Stream 1:159

4.2.3.5

4.2.4

42.4.1

1:160

intel.

The following code demonstrates the overall idea of using predicates to enable downward code
motion. In actua compiler-generated code, the predicates that are explicitly computed in this
example might already be available in predicate registers and not require extrainstructions.

/1 Point which “domi nates” |abel _A

cnmp.ne pl,p0 = r0,r0 // Initialize pl to false

/1 Cher instructions

cnmp.eq pl,p0 =r0,r0 // Initialize pl to true
1d8 r56=[r45];; /1l Cycle O
| abel _A:
add /1l Cycle 1
add
add
add ces
(pl)st4 [r23] =r56 /'l Cycle 2

Here, downward code motion saves one cycle. There are examples of more sophisticated situations
involving cyclic scheduling, other store-constrained code motion, or pulling code from outside
loops into them, but they are not described here.

Cache Pollution Reduction

L oads and stores with predicates that are false at runtime are generally likely not to cause any cache
lines to be removed, replaced, or brought in. Also, no extrainstructions or recovery code are
required as would be necessary for control or data speculation. Therefore, when the use of
predication yields the same critical path length as data or control speculation, it is amost aways
preferable to use predication.

Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases where the
use of predication should be carefully considered. Such cases are usually associated with execution
paths that have unbalanced total |atencies or over-usage of a particular resource such as those
associated with memory operations.

Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that
non-predicated assembly for this sequence takes two clocks for the if-block and approximately
18 clocksif weassumeaset f takes8 clocks, aget f takes 2 clocks, and an x ma takes 6 clocks:
if (rd4) Il 2 clocks
r3 =r2 +rl;

el se /1 18 cl ocks
r3 =r2 * ri;
f (r3); /1 An integer use of r3

Volume 1: Predication, Control Flow, and Instruction Stream

4.2.4.2

4.2.4.3

4244

If-converted Itanium-based code is shown below. The cycle numbers shown depend upon the
values of p1 and p2 and assume the latencies shown:

/'l Issue cycle if p2 is:TrueFal se
cnp.ne pl,p2=r4,r0;; // O O

(pl)add r3=r2,r1l /1 1
(p2)setf fil=r1 /11
(p2)setf f2=r2;; /1 1
(p2)xma. | £3=f1,f2,f0;; // 9 2
(p2)getf r3=f3;; /Il 15 3
(p2)use of r3 /17 4

This code takes 18 cyclesto complete if p2 istrue and five cyclesif p2 isfalse. When analyzing
such cases, consider execution weights, branch misprediction probabilities, and prediction costs
aong each path.

In the three scenarios presented bel ow, assume a branch misprediction costs ten cycles. No
instruction cache or taken-branch penalties are considered.

Case 1

Suppose the if-clause is executed 50% of the time and the branch is never mispredicted. The
average number of clocks for:

¢ Unpredicated codeis: (2 cycles* 50%) + (18 cycles* 50%) = 10 clocks
* Predicated codeis: (5 cycles* 50%) + (18 cycles* 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code.

Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if the time with
mispredicts costing 10 clocks. The average number of clocksfor:

» Unpredicated codeis:

(2 cycles* 70%) + (18 cycles* 30%) + (10 cycles* 10%) = 7.8 clocks
* Predicated codeis:

(5 cycles* 70%) + (18 cycles* 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

Case 3

Suppose theif-clauseis executed 30% of the time and the branch mispredicts 30% of thetime. The
average number of clocks for:

» Unpredicated codeis:

(2 cycles* 30%) + (18 cycles* 70%) + (10 cycles* 30%) = 16.2 clocks
* Predicated codeis:

(5 cycles* 30%) + (18 cycles* 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, on average.

Volume 1: Predication, Control Flow, and Instruction Stream 1:161

4.2.4.5

4.2.4.6

4.2.5

1:162

intel.

Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution resources consumed
by predicated blocks in addition to considering flow-dependency height. The resource availability
height of a set of instructions is the minimum number of cycles taken considering only the
execution resources required to execute them.

The code below is derived from an if-then-else statement. Given the generic machine model that
has only two load/store (M) units. If acompiler predicates and combines these two blocks, then the
resource availability height through the block will be four clocks since that is the minimum amount
of time necessary to issue eight memory operations:

t hen_cl ause:

Id rl=[r21] /Il Cycle O
Id r2=[r22] /1 Cycle O
st [r32]=r3 /Il Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if

el se_cl ause:
Id r3=[r23] /Il Cycle O
Id rd=[r24] /Il Cycle O
st [r34]=r5 /Il Cycle 1
st [r35]=r6 ;;// Cycle 1

end_i f:

Aswith the examplein the previous section, assuming various misprediction rates and taken branch
pendties changes the decision as to when to predicate and when not to predicate. One caseis
illustrated bel ow.

Case 1l

Suppose the branch condition mispredicts 10% of the time and that the predicated code takes four
clocks to execute. The average number of clocks for:

* Non-predicated codeis: (10 cycles* 10%) + 2 cycles = 3 cycles
* Predicated codeis: 4 cycles

Predicating this code would increase execution time even though the flow dependency heights of
the branch paths are equal.

Guidelines for Removing Branches

Thefollowing if-conversion guidelines apply to cases where only local behavior of the code and its
execution profile are known:

1. Theflow dependency and resource availability heights of both paths must be considered
when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code sequence,
careful analysis using profile or misprediction data must be performed to ensure that
execution time of the converted code is equivalent to or better than unpredicated code.

Volume 1: Predication, Control Flow, and Instruction Stream

4.3

4.3.1

3. If if-conversion removes a branch that is mispredicted a significant percentage of the time,
the transformation frequently pays off even if the blocks are significantly unbalanced since
mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal and there are
sufficient resources to execute both streams simultaneously, if-conversion is often
advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of some
programsislimited by non-local effects such as overall branch behavior, sensitivity to code size,
percentage of time spent servicing branch mispredictions, etc. In these situations, the decision to
use if-convert or perform other speculative transformation becomes more involved.

Control Flow Optimizations

A common occurrence in programsisfor several control flows to converge at one point or for
multiple control flowsto start from one point. In the first case, multiple flows of control are often
computing the value of the same variable or register and the join point represents the point at which
the program needs to select the correct value before proceeding. In the second case, multiple flows
may begin at a point where several independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex compound
conditions normally reguires a tree-like computation to reduce several conditionsinto one. The
Itanium architecture provides special instructions that allow such conditions to be computed in
fewer treelevels.

A third control-flow related optimization uses predication to improve instruction fetching by
if-conversion to generate straight-line sequences that can be efficiently fetched. The use and
optimization of these cases is described in the remainder of this section.

Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several instructions on
processors without special instructions:
if (rA]|] rB]|] rC]||] rD) {
/* 1f-block instructions */

}
/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cnp.ne pl,p0 =rAO0
cnmp.ne p2,p0 =rB,0
(pl)br.cond if_block
(p2)br.cond if_bl ock
cnp.ne p3,p0 =rCO
cnp.ne p4,p0 =rD 0
(p3)br.cond if_bl ock
(p4)br.cond if_bl ock
/1 after if-Dblock

Volume 1: Predication, Control Flow, and Instruction Stream 1:163

1:164

intel.

On many implementations based on the Itanium architecture, this sequence is likely to require at
least two cycles to execute if al the conditions are false, plus the possibility of more cycles due to
one or more branch mispredictions. Another possible sequence computes an or-tree reduction:

or rl =rArB
or r2 =rCrbD;;
or r3 =r1,r2;;
cnp.ne pl,p2 =r3,0
(pl) br i f_bl ock

This solution requires three cycles to compute the branch condition which can then be used to
branch to the if-block.

Note: Itisalso possibleto predicate theif-block using p1 to avoid branch mispredictions.

To reduce the cost of compound conditional s, the Itanium architecture has special parallel compare
instructions to optimize expressions that have and and or operations. These compare instructions
are specia in that multiple and/or compare instructions are allowed to target the same predicate
within asingleinstruction group. This feature allows the possibility that a compound conditional
can beresolved in asingle cycle.

For this usage model to work properly, the architecture requires that the programmer ensure that
during any given execution of the code, that al instructions that target a given predicate register
must either:

» Write the same value (O or 1) or
Do not write the target register at all.

This usage model means that sometimes a parallel compare may not update the value of its target
registers and thus, unlike norma compares, the predicates used in parallel compares must be
initialized prior to the parallel compare. Please see Part |: Application Architecture Guide for full
information on the operation of parallel compares.

Initialization code must be placed in an instruction group prior to the parallel compare. However,
since the initialization code has no dependencies on prior values, it can generally be scheduled
without contributing to the critical path of the code.

Theinstructions bel ow shows how to generate code for the example above using parallel compares:

cnp. ne pl,p0O =r0,r0;; // initialize pl to O
cmp.ne.or pl,p0 =rATr0
cnp.ne.or pl,p0 =rB,r0
cmp.ne.or pl,p0 =rCr0

cnp.ne.or pl,p0 =rDr0
(pl)br.cond if_bloc

Itisalso possibletouse pl to predicate theif-block in-line to avoid a possible misprediction. More
complex conditional expressions can aso be generated with parallel compares:
if ((rA<0) & (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:

cnp. eq pl, p0=r0,r0;; // initialize plto 1
cnp. ne.and pl, pO=rB, -15
cnp. ge.and pl, pO=rAr0
cmp.le.and pl,p0=rCr0

Volume 1: Predication, Control Flow, and Instruction Stream

4.3.2

4.3.3

When used correctly, and or compares write both target predicates with the same value or do not
write the target predicate at all. Another variation on parallel compare usage is where both the if
and else part of acomplex conditional are needed:
if (rA==0]| rB==10)
ri=r2+r3
el se
rda =r5-r6

Parallel compares have an andcmvariant that computes both the predicate and its complement
simultaneously.
cnp. ne pl,p2 =r0,r0;; // initialize pl,p2
cnp. eq. or. andcm p1l, p2 rA r0
cnp. eq. or. andcm pl, p2 = rB, 10;
(pl) add ri=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex conditions.

Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and multiple
targets, the Itanium architecture has implicit support by allowing multiple consecutive B-slot
instructions within an instruction group.

An example uses abasic block with four possible successors. The following Itanium-based
multi-target branch code uses a BBB bundle template and can branch to either block B, block C,
block D, or fall through to block A:
| abel _AA
. I/ Instructions in block AA
{ . bbb
(pl)br.cond | abel _B
(p2)br.cond | abel _C
(p3)br.cond | abel _D

}
/1 Fall through to A

| abel _A:
. /Il Instructions in block A

The ordering of branches isimportant for program correctness unless all branches are mutually
exclusive, in which case the compiler can choose any ordering desired.

Selecting Multiple Values for One Variable or Register with
Predication

A common occurrence in programsis for a set of paths that compute different values for the same
variable to join and then continue. A variant of thisis when separate paths need to compute
separate results but could otherwise use the same registers since the paths are known to be
complementary. The use of predication can optimize these cases.

Volume 1: Predication, Control Flow, and Instruction Stream 1:165

4.3.3.1

4.3.3.2

1:166

intel.

Selecting One of Several Values

When several control paths that each compute a different value of a single variable meet, a
sequence of conditionalsis usually required to select which value will be used to update the
variable. The use of predication can efficiently implement this code without branches:
switch (rwW
case 1:
rA=rB +rC
br eak;
case 2:
rA=rE+ rF
br eak;
case 3:
rA=rH- rl;
br eak;

The entire switch-block above can be executed in asingle cycle using predication if al of the
predicates have been computed earlier. Assume that if r Wequals 1, 2, or 3, then one of p1, p2, or
p3 istrue, respectively:

(pl)add rA=rB,rC

(p2)add rA=rE, rF

(p3)sub rA=rH,rl;;

Without this predication capability, numerous branches or conditional move operations would be
needed to collapse these val ues.

The Itanium architecture allows multiple instructions to target the same register in the same clock
provided that only one of the instructions writing the target register is predicated true in that clock.
Similar capabilities exist for writing predicate registers, as discussed in Section 4.3.1.

Reducing Register Usage

In some instancesit is possible to use the same register for two separate computations in the
presence of predication. This techniqueis similar to the technique for allowing multiple writers to
store avalue into the same register, although it is aregister alocation optimization rather than a
critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be predicated with
complementary predicates. The contrived sequence below shows instructions predicated by p1 and
p2, which are known by the compiler to be complementary:

(pl)add r1=r2,r3

(p2)sub r5=r4,r56

(pl)1d8 r7=[r2]

(p2)1d8 r9=[r6];;

(pl)a use of r1l

(p2)a use of r5

(pl)a use of r7

(p2)a use of r9

Assuming registersr 1,r5,r 7, and r 9 are used for compiler temporaries, each of which islive
only until its next use, the preceding code segment can be rewritten as:

(pl)add r1=r2,r3

(p2)sub rl=r4,r56// Reuse rl

Volume 1: Predication, Control Flow, and Instruction Stream

4.3.4

43.4.1

(p) 1 d8 r7=[r2]
(p2)1d8 r7=[r6];;// Reuse r7
(pl)a use of r1
(p2)a use of r1
(pl)a use of r7
(p2)a use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the architecture, this
may not seem essential, but reducing register use can still reduce program and register stack engine
spills and fills that can be common in codes with high instruction-level parallelism.

Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large blocks with
no taken branches. Whenever the instruction pointer needs to be changed, the hardware may have
to insert bubbles into the pipeline either while the target prediction is taking place or because the
target address is not computed until later in the pipeline.

By using predication to reduce the number of control flow changes, the fetching efficiency will
generally improve. The only case where predication is likely to reduce instruction cache efficiency
iswhen thereisalarge increase in the number of instructions fetched which are subsequently
predicated off. Such a situation usesinstruction cache space for instructions that compute no useful
results.

Instruction Stream Alignment

For many processors, when a program branchesto a new location, instruction fetching is performed
on instruction cache lines. If the target of the branch does not start on a cache line boundary, then
fetching from that target will likely not retrieve an entire cacheline. This problem can be avoided if
aprogrammer aligns instruction groups that cross more than one bundle so that the instruction
groups do not span cache line boundaries. However, padding al labels would cause an
unacceptable increase in code size. A more practical approach aligns only tops of loops and
commonly entered basic blocks when the first instruction group extends across more than one
bundle. That is, if both of the following conditions are true at some label L, then padding previous
instruction groups so that L is aligned on a cache line boundary is recommended:

» The label is commonly branched to from out-of-line. Examples include tops of loops and
commonly executed else clauses.

» Theinstruction group starting at label L extends across more than one bundle.

Toillustrate, assume code at |abel L in the segment below is not cache-aligned and that a cache
boundary occurs between the two bundles. If aprogram were to branch to L, then execution may
split issue after the third add instruction even though there are no resource oversubscriptions or
stops:

L:

{ .mi
add rl=r2,r3
add rd4=r5,r6
add r7=r8,r9

}

{ .nfb
| d8 rl4=[r56] ;;

Volume 1: Predication, Control Flow, and Instruction Stream 1:167

4.4

4.5

1:168

nop. b
}

On the other hand, if L were aligned on an even-numbered bundle, then all four instructions at L
could issuein one cycle.

Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to alow the compiler or hand coder to provide
extrainformation to the hardware. Compared to hardware, the compiler has moretime, looks at a
wider instruction window (including the source), and performs more analysis. Transfer of this
knowledge to the processor can help to reduce penalties associated with |-cache accesses and
branch prediction.

Two types of branch-related hints are defined by the Itanium architecture: branch prediction hints
and instruction prefetch hints. Branch prediction hints et the compiler recommend the resources (if
any) that should be used to dynamically predict specific branches. With prefetch hints, the compiler
can indicate the areas of the code that should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register (abbreviated
mov2br in thistext since the actual mnemonicisnov br =xx). The hints on branch instructions
are the easiest to use since the instruction already exists and the hint completer just hasto be
specified. mov2br instructions are used for indirect branches. The exact interpretation of these hints
isimplementation specific although the general behavior of hintsis expected to be similar between
processor generations.

It isalso possible to re-write the hint fields on branches | ater using a binary rewriting tools. This
can occur statically or at execution time based on profile data without changing the correctness of
the program. This technique allows static hints to be tailored for usage patterns that may not be
fully known at compilation time or when the binaries are first distributed.

Summary

This chapter has presented awide variety of topics related to optimizing control flow including
predication, branch architecture, multiway branches, parallel compares, instruction stream
alignment, and branch hints. Although such topics could have been presented in separate chapters,
the interplay between the features is best understood by their effects on each other.

Predication and its interplay on scheduling region formation is central to the performance of the
Itanium architecture. Unfortunately, discussion of compiler algorithms of this nature are far beyond
the scope of this document.

Volume 1: Predication, Control Flow, and Instruction Stream

intel.

Software Pipelining and Loop
Support 5

5.1

5.2

5.3

Overview

The Itanium architecture provides extensive support for software-pipelined loops, including
register rotation, special loop branches, and application registers. When combined with predication
and support for speculation, these features help to reduce code expansion, path length, and branch
mispredictions for loops that can be software pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and describes the
problems that arise when optimizing loops in the absence of architectural support. Specific loop
support features of the Itanium architecture are then introduced. The remainder of this chapter
describes the programming and optimization of various type of loops.

Loop Terminology and Basic Loop Support

L oops can be categorized into two types: counted and while. In counted loops, the loop condition is
based on the value of aloop counter and the trip count can be computed prior to starting theloop. In
while loops, the loop condition is amore general calculation (not asimple count) and the trip count
is unknown. Both types are directly supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by providing a
special counted loop branch (the br . cl oop instruction) and the Loop Count application register
(LC). Thebr. cl oop instruction does not have a branch predicate. I nstead, the branching
decision is based on the value of the LC register. If the LC register is greater than zero, it is
decremented and the br . ¢l oop branch istaken.

Optimization of Loops

In many loops, there are not enough independent instructions within asingle iteration to hide
execution latency and make full use of the functional units. For example, in the loop body below,
thereisvery little ILP:

L1:1d4 r4d = [r5],4;; I/ Cycle 0 |oad postinc 4

add r7 =r4,r9;; /Il Cycle 2
st4 [r6] =r7,4 I/ Cycle 3 store postinc 4
br.cloop L1;; /1 Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is started.
Assuming that the store from iteration X and the load from iteration X+1 are independent memory
references, utilization of the functional units could be improved by moving independent

Volume 1: Software Pipelining and Loop Support 1:169

5.3.1

1:170

intel.

instructions from iteration X+1 to iteration X, effectively overlapping iteration X with iteration
X+1.

This section describes two general methods for overlapping loop iterations, both of which result in
code expansion on traditional architectures. The code expansion problem is addressed by loop
support features in the Itanium architecture that are explored later in this chapter. The loop above
will be used as arunning example in the next few sections.

Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level parallelism by
making and scheduling multiple copies of the loop body together. The registersin each copy of the
loop body are given different names to avoid unnecessary WAW and WAR data dependencies. The
code below shows the loop from our example on page 1:169 after unrolling twice (total of two
copies of the original loop body) and instruction scheduling, assuming two memory ports and atwo
cyclelatency for loads. For simplicity, assume that the loop trip count isa constant N that isa
multiple of two, so that no exit branch is required after the first copy of the loop body:

L1:1d4 r4 =[r5],4;; /1l Cycle O
| d4 rl4 = [rb5],4;; /Il Cycle 1
add r7 =r4,r9;; /Il Cycle 2
add rl7 =r14,r9 /Il Cycle 3
st4 [r6] =717,4;; /Il Cycle 3
st4 [r6] =r17,4 /Il Cycle 4
br.cloop L1;; /Il Cycle 4

The above code does not expose as much ILP as possible. The two |oads are serialized because they
both use and update r 5. Similarly the two stores both use and update r 6. A variable which is
incremented (or decremented) once each iteration by the same amount is called an induction
variable. The singleinduction variable r 5 (and similarly r 6) can be expanded into two registers as
shown in the code bel ow:

add rl5 = 4,r5

add rlé = 4,r6;;

L1:1d4 r4 =[r5],8 /Il Cycle O
| d4 ri4 = [r15],8;; /1 Cycle O
add r7 =r4,r9 /Il Cycle 2
add rl7 =r14,r9;; /Il Cycle 2
st4 [r6] r7,8 /Il Cycle 3
st4 [r16] = r17,8 /Il Cycle 3
br.cloop L1;; /'l Cycle 3

Compared to the original loop on page 1:169, twice as many functional units are utilized and the
code size istwice as large. However, no instructions are issued in cycle 1 and the functional units
are gtill under utilized in the remaining cycles. The utilization can be increased by unrolling the
loop more times, but at the cost of further code expansion. The loop below is unrolled four times
(assuming the trip count is multiple of four):

add rl5 = 4,r5

add r25 = 8,r5
add r35 = 12,r5
add rl6 = 4,r6
add r26 = 8,r6
add r36 = 12,r6;;
L1:1d4 r4 = [r5], 16 /1l Cycle O
1 d4 ri4 = [r15], 16;; /Il Cycle O

Volume 1: Software Pipelining and Loop Support

5.3.2

| d4 r24 = [r25], 16 /Il Cycle 1
| d4 r34 = [r35], 16;; /1l Cycle 1
add r7 =r4,r9 /Il Cycle 2
add rl7 =r14,r9;,; /'l Cycle 2
st4 [r6] =1r7,16 /'l Cycle 3
st4 [r16] = r17,16 /'l Cycle 3
add r27 =r24,r9 /'l Cycle 3
add r37 =r34,r9;; /Il Cycle 3
st4 [r26] = r27,16 /1 Cycle 4
st4 [r36] = r37,16 /Il Cycle 4
br.cloop L1;; /'l Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are now
executed in five cycles verses the two iterations in four cycles for the previous version of the loop.

Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterationsin a manner that is
analogous to hardware pipelining of afunctional unit. Each iteration is partitioned into stages with
zero or more instructionsin each stage. A conceptual view of asingle pipelined iteration of theloop
from page 1:169 in which each stage is one cycle long is shown below:

stage 1:1d4 r4 = [r5],4

stage 2:--- /] empty stage

stage 3:add r7 =r4,r9

stage 4:st4 [r6] =r7,4

The following is a conceptual view of five pipelined iterations:
1 2 3 4 5 Oycle

st4 add | d4 X+3
st4 add | d4 X+4

st4 add X+5

st4 add X+6

st4 X+7

The number of cycles between the start of successive iterationsis called the initiation interval (I1).
In the above example, the |1 is one. Each stage of apipelined iterationis |l cycleslong. Most of
the examples in this chapter utilize modul o scheduling, which is a particular form of software
pipelining in which the Il isa constant and every iteration of the loop has the same schedule. It is
likely that software pipelining a gorithms other than modulo scheduling could benefit from the loop
support features. Therefore the examplesin this chapter are discussed in terms of software
pipelining rather than modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown below:

1 2 3 4 5 Phase
| d4
| d4 Prol og
add | d4

Volume 1: Software Pipelining and Loop Support 1:171

5.4

5.4.1

1:172

st 4 add 1 d4 Ker nel
st4 add | d4
st4 add
st4 add Epi | og
st4

During the prolog phase, a new loop iteration is started every Il cycles (every cycle for the above
example) tofill the pipeline. During the first cycle of the prolog, stage 1 of the first iteration
executes. During the second cycle, stage 1 of the second iteration and stage 2 of the first iteration
execute, etc. By the start of the kernel phase, the pipelineisfull. Stage 1 of the fourth iteration,
stage 2 of the third iteration, stage 3 of the second iteration, and stage 4 of the first iteration
execute. During the kernel phase, a new loop iteration is started, and another is completed every Il
cycles. During the epilog phase, no new iterations are started, but the iterations already in progress
are compl eted, draining the pipeline. In the above example, iterations 3-5 are compl eted during the
epilog phase.

The software pipelineis coded as aloop that is very different from the original source code loop. To
avoid confusion when discussing loops and loop iterations, we use the term source loop and source
iteration to refer back to the original source code loop, and the term kernel 1oop and kernel
iteration to refer to the loop that implements the software pipeline.

In the above example, the load from the second source iteration isissued before result of the first
load is consumed. Thus, in many cases, loads from successive iterations of the loop must target
different registers to avoid overwriting existing live values. In traditional architectures, this
requires unrolling of the kernel loop and software renaming of the registers, resulting in code
expansion. Furthermore, in traditional architectures, separate blocks of code are generated for the
prolog, kernel, and epilog phases, resulting in additional code expansion.

Loop Support Features in the Intel® Itanium®

Architecture

The code expansion that results from loop optimizations (such as software pipelining and loop
unrolling) on traditional architectures can increase the number of instruction cache misses, thus
reducing overall performance. The loop support features in the Itanium architecture allow some
loops to be software pipelined without code expansion. Register rotation provides a renaming
mechanism that reduces the need for loop unrolling and software renaming of registers. Special
software pipelined loop branches support register rotation and, combined with predication, reduce
the need to generate separate blocks of code for the prolog and epilog phases.

Register Rotation

Register rotation renames registers by adding the register number to the value of aregister rename
base (rrb) register contained in the CFM. The rrb register is decremented when certain special
software pipelined loop branches are executed at the end of each kernel iteration. Decrementing the
rrb register makes the value in register X appear to move to register X+1. If X is the highest
numbered rotating register, its value wraps to the lowest numbered rotating register.

Volume 1: Software Pipelining and Loop Support

5.4.2

A fixed-sized area of the predicate and floating-point register files (p16-p63 and f 32-f 127), and
aprogrammable-sized area of the general register file are defined to rotate. The size of the rotating
areain the general register fileis determined by an immediatein the al | oc instruction and must
be either zero or amultiple of 8, up to a maximum of 96 registers. The lowest numbered rotating
register in the general register fileisr 32. Anrrb register is provided for each of the three rotating
register files: CFM rr b. gr for the general registers; CFM rr b. f r for the floating-point
registers, CFM r r b. pr for the predicate registers. The software pipelined loop branches
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp__br anch pseudo-instruction represents a
software pipelined loop branch:
L1:1d4 r35 = [r4],4 /1 post increment by 4

st4 [r5] =7r37,4 /1 post increnent by 4

swp_branch L1 ;;

The value that the load writesto r 35 isread by the store two kernel iterations (and two rotations)
later asr 37. Inthe meantime, two more instances of the load are executed. Because of register
rotation, those instances write their result to different registers and do not modify the value needed
by the store.

The rotation of predicate registers servestwo purposes. Thefirst isto avoid overwriting a
predicate value that is still needed. The second purpose isto control the filling and draining of the
pipeline. To do this, a programmer assigns a predicate to each stage of the software pipeline to
control the execution of the instructionsin that stage. This predicate is called the stage predicate.
For counted loops, p16 is architecturally defined to be the predicate for thefirst stage, p17 is
defined to be the predicate for the second stage, etc. A conceptual view of a pipelined source
iteration of the example counted loop on page 1:169 is shown below. Each stage isone cycle long
and the stage predicates are shown:

stage 1:(pl6)lddrd4 =[r5],4

stage 2: (pl7)--- /'l enpty stage

stage 3:(pl8)addr7 =r4,r9

stage 4:(pl9)st4[r6] =7r7,4

A register rotation takes place at the end of each stage (when the software-pipelined loop branch is
executed in the kernel loop). Thusa 1 written to p16 enables the first stage and then is rotated to
p17 at the end of the first stage to enable the second stage for the same source iteration. Each 1
written to p16 sequentially enables all the stages for a new source iteration. This behavior is used
to enable or disable the execution of the stages of the pipelined loop during the prolog, kernel, and
epilog phases as described in the next section.

Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr. rot = i nmed isused to initialize rotating predicates.
This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this chapter are written
assuming that CFM.rrb.pr is always zero prior to the initialization of predicate registers using nov
pr.rot = immed.

Volume 1: Software Pipelining and Loop Support 1:173

5.4.3

5431

1:174

Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very compact code for
software-pipelined oops by supporting register rotation and by controlling the filling and draining
of the software pipeline during the prolog and epilog phases. Generally speaking, each time a
software-pipelined loop branch is executed, the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. pl6 issettoavaueto control execution of the stages of the software pipeline (p63 is
written by the branch, and after rotation this value will be in p16).

The registers are rotated (rrb registers are decremented).

The Loop Count (LC) and/or the Epilog Count (EC) application registers are selectively
decremented.

There are two types of software-pipelined loop branches: counted and while.

Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means that a new
source iteration is started. Register rotation must occur so that the new source iteration does not
overwrite registers that are in use by prior source iterations that are till in the pipeline. p16 isset
to 1 to enable the stages of the new source iteration. LC is decremented to update the count of
remaining source iterations. EC is not modified.

During the epilog phase, the decision to continue loop execution means that the software pipeline
has not yet been fully drained and execution of the source iterationsin progress must continue.
Register rotation must continue because the remaining source iterations are still writing results and
the consumers of the results expect rotation to occur. p16 isnow set to 0 because there are no more
new source iterations and the instructions that correspond to non-existent source iterations must be
disabled. EC contains the count of the remaining execution stagesfor the last sourceiteration andis
decremented during the epilog. For most loops, when a software pipelined loop branch is executed
with ECequal to 1, it indicates that the pipeline has been drained and a decision is made to exit the
loop. The special case in which asoftware-pipelined loop branch is executed with EC equal to O can
occur in unrolled software-pipelined loops if the target of the cexi t branchis set to the next
sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br . ct op istaken
when a decision to continue kernel loop execution is made, and is not taken otherwise. It is used
when the loop execution decisionis located at the bottom of the loop. br . cexi t isnot taken
when a decision to continue kernel loop execution is made, and is taken otherwise. It is used when
the loop execution decision is located somewhere other than the bottom of the loop.

Volume 1: Software Pipelining and Loop Support

intel.

Figure 5-1.

ct op and cexit Execution Flow

ctop, cexit

== 0 (epilog)

(special unrolled loops)
=0

] LC-- | | LC=LC | | LC=LC | | LC=LC |
v v v v

’ EC =EC | | EC | EC-- | | EC=EC |
v v v v

‘ PR[63] = 1 | | PR[63] = 0 | | PR[63] = 0 | | PRI63] = 0 |
v v

’ RRB | | RRB - - | | RRB | | RRB = RRB |

ctop: branch
cexit: fall-thru

L

ctop: fall-thru
cexit: branch

000915

5.4.3.2

Counted Loop Example

A conceptua view of apipelined iteration of the example counted |oop on page 1:169 with |1 equal
to oneis shown below:
stage 1:(pl6)ld4rd4 = [r5],4

stage 2: (pl7)---

stage 3:(pl8)addr7 =r4,r9

stage 4:(pl9)st4d [r6]

=r7,4

/] enpty stage

To generate an efficient pipeline, the compiler must take into account the latencies of instructions

and the availablefunctional units. For this example, the load latency istwo and the load and add are
scheduled two cycles apart. The pipeline below is coded assuming there are two memory ports and
the loop count is 200.

Note:

The memory ports are fully utilized. Table 5-1 shows atrace of the execution of thisloop.

Rotating GRs have now been included in the code (the code directly preceding did not).

Also, induction variables that are post incremented must be allocated to the static portion

of the register file:
mov lc = 199
mov ec = 4

mov pr.rot = 1<<16;;// PR16 =
L1:

// LC =loop count - 1
I/ EC =epilog stages + 1
rest =0

(pl16)1d4 r32
(pl8)add r35
(pl9)st4 [r6]
br.ctop L1;;

[r5],4/] Cycle O
r34,r9// Cycle O
r36,4// Cycle 0
/Il Cycle O

Volume 1: Software Pipelining and Loop Support

1:175

Table 5-1. ct op Loop Trace

5.4.3.3

1:176

Port/Instructions State before br.ctop
Cycle

M | M B p16 p17 p18 p19 LC EC

0 1d4 br.ctop 1 0 0 0 199 4
1 1d4 br.ctop 1 1 0 0 198 4
2 1d4 add br.ctop 1 1 1 0 197 4
3 1d4 add st4 br.ctop 1 1 1 1 196 4
100 ld4 add st4 br.ctop 1 1 1 1 99 4
199 1d4 add st4 br.ctop 1 1 1 1 0 4
200 add st4 br.ctop 0 1 1 1 0 3
201 add st4 br.ctop 0 0 1 1 0 2
202 st4 br.ctop 0 0 0 1 0 1
0 0 0 0 0 0

In cycle 3, the kernel phaseis entered and the fourth iteration of the kernel loop executesthel d4,
add, and st 4 from the fourth, second, and first source iterations respectively. By cycle 200, all
200 loads have been executed, and the epilog phase is entered. Whenthe br . ct op isexecuted in
cycle202, ECisequal to 1. ECisdecremented, the registers are rotated one last time, and execution
falls out of the kernel 1oop.

Note: After thisfinal rotation, EC and the stage predicates (p16 —p19) areO.

It isdesirable to allocate variables that are loop variant to the rotating portion of the register file
whenever possible to preserve space in the static portion for loop invariant variables. Induction
variables that are post incremented must be all ocated to the static portion of the register file.

While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

There are afew differences in the operation of the while loop branch compared to the counted loop
branch. The while loop branch does not access LC — abranch predicate determines the behavior of
this branch instead. During the kernel and epilog phases, the branch predicate is one and zero
respectively. During the prolog phase, the branch predicate may be either zero or one depending on
the scheme used to program the while loop. Also, p16 is always set to zero after rotation. The
reasons for these differences are related to the nature of while loops and will be explained in more
depth with an examplein alater section.

Volume 1: Software Pipelining and Loop Support

intel.

Figure 5-2. wt op and wexi t Execution Flow

wtop, wexit

== 0 (prolog / epilog)

PR[qp]?

(prolog /

kernel) (special unrolled loops)
(prolog /
epilog) (‘epilog)
A y
EC =EC		EC-- EC-- ’	EC=EC			
PRI63] = 0		PRI63] = 0		PRI63] = 0		PR[63] = 0
RRB - -		RRB - -		RRB - -		RRB:RRB

wtop: branch

wexit: fall-thru v

wtop: fall-thru
wexit: branch

000916

544 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interva (I1)

The number of cycles between the start of successive sourceiterationsin a software
pipelined loop. Each stage of the pipelineis |l cycleslong.

Prolog
Kernel
Epilog

Source lteration

The first phase of a software-pipelined loop, in which the pipeline isfilled.
The second phase of a software-pipelined loop, in which the pipelineisfull.

The third phase of a software-pipelined loop, in which the pipeline is drained.

Aniteration of the original source code loop.

Kernel lteration

An iteration of the loop that implements the software pipeline.

Register Rotation

A form of register renaming that is visible to software. Registers are renamed with
respect to aregister rename base that is decremented.

Induction Variable

Vauethat isincremented (or decremented) once per sourceiteration by the same amount.

Volume 1: Software Pipelining and Loop Support

1:177

5.5

5.5.1

1:178

Optimization of Loops in the Intel® Itanium®

Architecture

Register rotation, predication, and the software pipelined |oop branches allow the generation of
compact, yet highly parallel code. Speculation can further increase loop performance by removing
dependency barriers that limit the throughput of software pipelined loops. Register rotation
removes the requirement that kernel 1oops be unrolled to alow software renaming of the registers.
However in some cases performance can be increased by unrolling the source loop prior to
software pipelining, or by generating explicit prolog and/or epilog blocks. The remainder of this
chapter discusses loop optimizations.

While Loops

The programming scheme for while loops depends upon the structure of the loop. This section
discusses do-while loops, in which the loop condition is computed at the bottom of the loop.
Optimizing compilers often transform while loops (where the condition is computed at the top of
the loop) into do-while loops by moving the condition computation to the bottom of the loop and
placing a copy of the condition computation prior to the loop to reduce the number of branchesin
the loop. The remainder of this section refers to such loops simply as while loops. Below isa
simple while loop:

L1:1d4 r4 = [r5],4;; /Il Cycle O
st4 [r6] =714,4 /'l Cycle 2
cnmp.ne pl,p0 =r4,r0 /Il Cycle 2

(pl1) br L1;; /Il Cycle 2

A conceptual view of a pipelined iteration of thisloop with |1 equal to oneis shown below:
stage 1: 1d4 r4 = [r5],4
stage 2: --- /] enpty stage
stage 3: st4 [r6]=r4,4
cnp.ne.unc pl,p0 =7r4,r0
(pl) br L1

Thefollowing isaconceptual view of four overlapped source iterations assuming the load and store
are independent memory references. The store, compare, and branch instructionsin stage two are
represented by the pseudo-instruction scb:

1 2 3 4 Cycle

sch X+5

Notice that the load for the second source iteration is executed before the compare and branch of
thefirst sourceiteration. That is, the load (and the update of r 5) is speculative. The loop condition
is not computed until cycle X+2, but in order to maximize the use of resources, it is desirable to
start the second source iteration at cycle X+1. Without the support for control speculation in the
Itanium architecture, the second source iteration could not be started until cycle X+3.

Volume 1: Software Pipelining and Loop Support

The computation of the loop condition for while loops is very different from that of counted loops.
In counted loops, it is possible to compute the loop condition in one cycle using a counted loop
branch. Thisiswhat abr . ct op instruction doeswhen it setsp16. In whileloops, acompare must
compute the loop condition and set the stage predicates. The stages prior to the one containing the
compare are called the speculative stages of the pipeline, becauseit is not possible for the compare
to completely control the execution of these stages. Therefore, the stage predicate set by the
compareis used (after rotation) to control the first non-speculative stage of the pipeline.

The pipelined version of thewhileloop on page 1:178 isshown below. A check for the speculative
load isincluded:

mv ec = 2

nmov pr.rot = 1 << 16;; /'l PR1I6 = 1, rest =0
L1:
ldd.s r32 = [r5],4 /'l Cycle O
(p18) chk.s r34, recovery /1l Cycle O
(p18) cnp.ne pl7,p0 = r34,r0 /Il Cycle O
(pl8) st4 [r6] =134,4 /1l Cycle O
(pl7) br.wop.sptk L1;; /Il Cycle O
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine atrace of the
execution of the loop (assume there are 200 source iterations) shown in Table 5-2.

Table 5-2. wt op Loop Trace

Port/Instructions State before br.wtop
Cycle

M | | M B pl6 pl7 p18 EC

0 ld4.s br.wtop 1 0 0 2
1 ld4.s br.wtop 0 1 0 1
2 ld4.s cmp chk st4 br.wtop 0 1 1 1
3 ld4.s cmp chk st4 br.wtop 0 1 1 1
100 Id4.s cmp chk st4 br.wtop 0 1 1 1
199 ld4.s cmp chk st4 br.wtop 0 1 1 1
200 ld4.s cmp chk st4 br.wtop 0 1 1 1
201 ld4.s cmp chk st4 br.wtop 0 0 1 1
0 0 0 0

Thereis no stage predicate assigned to the load because it is speculative. The compare setspl7.
This s the branch predicate for the current iteration and, after rotation, the stage predicate for the
first non-speculative stage (stage three) of the next source iteration. During the prolog, the compare
cannot produce itsfirst valid result until cycle two. The initialization of the predicates provides a
pipeline that disables the compare until the first sourceiteration reaches stagetwo in cycletwo. At
that point the compare starts generating stage predicates to control the non-specul ative stages of the
pipeline. Notice that the compare is conditional. If it were unconditional, it would always write a
zero to p17 and the pipeline would not get started correctly.

The executions of br . wt op in thefirst two cycles of the prolog do not correspond to any of the
sourceiterations. Their purposeis simply to continue the kernel loop until the first valid loop

Volume 1: Software Pipelining and Loop Support 1:179

5.5.2

1:180

intel.

condition can be produced. In cycle one, the branch predicate p17 is one. For this programming
scheme, the branch predicate of the br . wt op is always a one during the last speculative stage of
the first source iteration. During al the prior stages, the branch predicate is zero. If the branch
predicateis zero, the br . wt op continues the kernel loop only if ECis greater than one. It also
decrements EC. Thus EC must beinitialized to (# epilog stages + # speculative pipeline stages). In
the above example, thisis0+2 =2,

In cycle 201, the compare for the 200" source iteration is executed. Since thisis the final source
iteration, the result of the compareisazero and p17 isunmodified. The zero that was rotated into
p17 frompl6 causesthebr . wt op to fall through to the loop exit. ECis decremented and the
registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate becomes zero, the
kernel loop is exited.

Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage predicates. They
continue to be controlled by compare instructionsin the loop body. For example, the following loop
contains predicated instructions:

L1:1dfs fa
I df s f9
fcp. ge.unc pl,p2 = f4,1f9;;

(pl)stfs [r9] fa4, 4

(p2)stfs [r9] fo9, 4
br.cloop L1 ;;

1
—
-
[ee]
—
N

Below is apossible pipeline with an 1l of 2, assuming afloating-point load latency of 9 cycles:

stage 1:(pl6)ldfs f4 = [r5],4
(pl6) I1dfs f9 =1[r8],4;;
--- /1 enpty cycle
stage 2-4: --- /1 enpty stages
stage 5: --- /1 enpty cycle
(p20) fcnp.ge.unc pl,p2 = f4,f9;;

stage 6: --- /1 enpty cycle
(pl1) stfs [r9] = f4, 4
(p2) stfs [r9] =19, 4

The following is the code to implement the pipeline:

nov lc = 199 // LC = loop count - 1
nov ec = 6 /1l EC = epilog stages + 1
nov pr.rot=1<<16; ; // PR16 =1, rest =0

L1:

(pl6) I dfs f32 = [r5],4

(pl6) I dfs f38 = [r8],4;;

(p32) stfs [r9] = 37, 4

(p20) fcnp. ge.unc p31, p32 = 36,142
(p33) stfs [r9] = f43, 4

L2: br.ctop.sptk L1;;

Volume 1: Software Pipelining and Loop Support

5.5.3

5.5.3.1

Multiple-exit Loops

All of the example loops discussed so far have asingle exit at the bottom of the loop. The loop
below contains multiple exits — an exit at the bottom associated with the loop closing branch, and
an early exit in the middle:
L1: | d4 ra = [r5],4;;

| d4 r9 = [rd4];;

cnp.eq.unc pl,p0 =r9,r7
(pl) br.cond exit /] early exit

add r8 = -1,r8;;

cnp.ge.unc p3,p0 =r8,r0
(p3) br.cond L1;;

Loops with multiple exits require special care to ensure that the pipeline is correctly drained when
the early exit is taken. There are two ways to generate a pipelined version of the above loop:
(1) convert it to asingle exit loop, or (2) pipeline it with the multiple exits explicitly present.

Converting Multiple Exit Loops to Single Exit Loops

Thefirst is to transform the multiple exit loop into a single exit loop. In the source loop, execution
of the add, the second compare and the second branch is guarded by the first branch. The loop can
be transformed into a single exit loop by using predicates to guard the execution of these
instructions and moving the early exit branch out of the loop as shown below:
L1: | d4 ra = [r5],4;;

| d4 r9 = [rd4];;

cnp.eq.unc pl,p2 =r9,r7

add r8 = -1,r8;;
(p2) cnp.ge.unc p3,p0 =r8,r0
(p3) br.cond L1;;
(pl) br.cond exit I/ early exit if plis 1

The computation of p3 determinesif either exit of the sourceloop would have been taken. If p3 is
zero, theloop is exited and p1 is used to determine which exit was actually taken. The add is
executed speculatively (it is not guarded by p2) to keep the dependency from the cnp. eq to the
add from limiting the l1. It is assumed that either r 8 isnot live out at the early exit or that
compensation code is added at the target of the early exit. The pipeline for thisloop is shown below
with the stage predicate assignments but no other rotating register allocation. The compare and the
branch at the end of stage 4 are not assigned stage predicates because they already have qualifying
predicates in the source loop:

stage 1: |d4.s r4 = [r5],4;; 1 =2
/1 enmpty cycle
stage 2: --- /'l enmpty cycle

ldd.s r9 = [r4];;
stage 3: -- /] enmpty stage
stage 4:

(p19) add r8 = -1,r8

(pl9) cnp.eq.unc pl,p2 =r9,r7;;

(p2) cnp.ge.unc p3,p0 =r8,r0

(p3) br.cond L1;;

Volume 1: Software Pipelining and Loop Support 1:181

5.5.3.2

1:182

intel.

The code to implement this pipeline is shown below complete with the chk instruction:

nov ec = 3
nov pr.rot = 1 << 16;; /1 PR16 =1, rest =0
L1: ld4.s r32 =1][r5],4 /Il Cycle O
(pl9) chk.s r36, recovery /'l Cycle O
(pl9) add rg =-1,r8 /1 Cycle O
(p19) cnp.eq.unc p31,p32 =r36,r7;;// Cycle O
ld4.s r34 = [r33] /Il Cycle 1
(p32) cnp.ge p18,p0 =718, r0 /Il Cycle 1
L2:
(p18) br.wtop.sptk L1;; /Il Cycle 1
(p32) br.cond exit /] early exit if p32is 1

Note: When theloop isexited, one final rotation occurs, rotating the valuein p31 to p32. Thus,
p32 isused as the branch predicate for the early exit branch.

Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into abr . ¢l oop
instruction and then pipeline the loop. The pipeline using this approach is shown below:
stage 1:1d4.s r4 = [r5], 4;; /11 =1
stage 4:1d4.s r9 = [r4];;
stage 6:cnp.eq.unc pl,p0 =r9,r7
(pl)br.cond exit
br.cloop L1;;

There are five specul ative stages in this pipeline because a non-specul ative decision to initiate
another loop iteration cannot be made until thebr . cond and br . ¢l oop are executed in stage 6.
The code to implement this pipeline is shown below assuming atrip count of 200:

nov lc = 204
nov ec =1
nov pr.rot =1 << 16;; /1 PR16 =1, rest =0
L1:
ldd.s r32 =[r5],4 /1 Cycle O
(p21) chk.s r38, recovery /Il Cycle O
(p21) cnp.eqg.unc pl,p0 =1r38,r7 /Il Cycle O
ldd.s r36 = [r35] I/l Cycle O
(pl) br.cond exit /Il Cycle O
L2: br.ctop.sptk L1; /1l Cycle O

When the kernel loop is exited at either the br . cond or thebr . ct op, the last sourceiterationis
complete. Thus, ECisinitialized to 1 and there is no explicit epilog block generated for the early
exit. TheLCregister isinitialized to five more than 199 because there are five specul ative stages.
The purpose of thefirst five executions of br . ¢t op issimply to keep the loop going until the first
valid branch predicate is generated for the br.cond. During each of these executions, LCis
decremented, so five must be added to the L Cinitialization amount to compensate.

A smaller Il isachieved with the second approach. This pipelined code will also work if LCis
initialized to 199 and EC isiinitialized to 6. However, if the early exit istaken, LC will have been
decremented too many times and will need to be adjusted if it is used at the target of the early exit.
If there is any epilog when the early exit istaken, that epilog must be explicit.

Volume 1: Software Pipelining and Loop Support

5.5.4

5.5.5

5.5.5.1

Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline aloop. Software pipelining
increases the throughput of iterations, but may increase the time required to complete asingle
iteration. As aresult, loops with very small trip counts may experience decreased performance
when pipelined. For example, consider the following loop:

L1:1d4 r4 =[r5],4 /1l Cycle O
| d4 r7 =1[r8],4;; /Il Cycle O
st4 [r6] =7r4,4 /1 Cycle 2
st4 [r9] =7r7,4 /'l Cycle 2
br.cloop L1;; /1 Cycle 2

Thefollowing is a possible pipeline with an |1 of 2:

stage 1:1d4 r4 = [r5],4 /1 Cycle O
ld4 r7 =1[r8],4;; /1 Cycle O
/'l enmpty cycle
stage 2:--- /1 enmpty cycle
st4 [r6] =r4,4 /'l Cycle 3
st4[r9] =717,4;; /1 Cycle 3

In the source loop, oneiteration is completed every three cycles. In the software pipelined loop, it
takes four cyclesto complete the first iteration. Thereafter, iterations are completed every two
cycles. If the trip count istwo, the execution time of both versions of the loop is the same, six
cycles. If the average trip count of the loop is less than two, the software pipelined version of the
loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a function call.
The number of floating-point registers used by the loop is not known until after theloop is
pipelined. After pipelining, it may be difficult to find empty slotsfor the instructions needed to save
and restore the caller-saved floating-point registers across the function call.

Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, thus
reducing the resource reguirements of the loop. Use of advanced loads also can reduce the critical
path through the iterations, allowing a smaller |1 to be achieved. See Chapter 3, “Memory
Reference” for more information on advanced loads. However, caution must be exercised when
using advanced |oads with register rotation. For this discussion, we assume an ALAT with 32
entries.

Capacity Limitations

An advanced load with a destination that is arotating register targets a different physical register
and allocates anew ALAT entry for each kernel iteration. For example, the simple loop below
replaces 32 ALAT entriesin 32 iterations:
L1: (pl6) ld4.a r32 = [r8]
(p47) ld4d.c r63 = [r8]
br.ctop L1;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be executed
before alater advanced load causes a replacement of the entry being checked. In the simple loop

Volume 1: Software Pipelining and Loop Support 1:183

5.5.5.2

1:184

intel.

above, the unnecessary ALAT misses do not occur because the check load is done within 31
iterations of the advanced load. In the example below, an ALAT missis encountered for every
check load because the advanced |oad replaces an entry just before the corresponding check load is
executed:
L1:(pl6) I1d4.ar32 = [r8]
(p48) ld4.c r64 = [r8]
br.ctop L1;;

Conflicts in the ALAT

Using an advanced load to remove alikely invariant load from aloop while advancing another load
inside the loop resultsin poor performanceif the latter |oad targets a rotating register. The advanced
load that targets the rotating register will eventually invaidate the ALAT entry for the loop
invariant load. Thereafter, every execution of the check load for the loop invariant load will cause
an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers must be
assigned and the register lifetimes controlled so that the check load for a particular advanced load X
is executed before any of the other advanced |oads can invalidate the entry allocated by load X. For
example, the following loop successfully targets rotating registers with two advanced loads without
any AL AT misses because the two advanced load — check load pairs never create more than 32
simultaneously live ALAT entries:

L1:(pl6) ld4.a r32 = [r8]
(p31) ld4.c r47 = [r8]
(pl6) ld4.ar48 = [r9]
(p31) ld4.c r63 = [r9]

br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static registersto
the destinations of the advanced loads and unroll the loop to explicitly rename the destinations of
the advanced loads where necessary. The following example shows how to unroll the loop to
avoid the use of rotating registers. Theloop hasan Il equal to 1 and the check load is executed one
cycle (and one rotation) after the advanced load:
L1:(pl6) |d4.a r33 = [r8]

(pl7) 1d4.c r34 =[r8]

br.ctop L1;;

Static registers can be assigned to the destinations of the loadsif the loop is unrolled twice:
L1:(pl6) ldd4.a r3 = [r8]
(pl7) ldd.c rd = [r8]
br.cexit L2;;
(pl6) ldd.a rd4 = [r8]
(pl7) ldd.c r3 = [r8]
br.ctop L1;;
L2: /1

Rotating registers could still be used for the values that are not generated by advanced loads. The
effect of this unrolling on instruction cache performance must be considered as part of the cost of
advancing aload.

Volume 1: Software Pipelining and Loop Support

5.5.6

Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to software
pipelining. Loopsthat are resource constrained can be improved by unrolling such that the limiting
resource ismore fully utilized. In the following example if we assume the target processor has only
two memory units, the loop performance is bound by the number of memory units:

L1:1d4 r4 = [r5],4 /1l Cycle O
ld4d r9 =1[r8],4;; /Il Cycle O
add r7 =7r4,r9;; /1 Cycle 2
st4 [r6] =r7,4 /1 Cycle 3
br.cloop L1;; /'l Cycle 3

A pipelined version of thisloop must have an Il of at least two because there are three memory
instructions, but only two memory units. If theloop isunrolled twice prior to software pipelining
and assuming the store isindependent of the loads, an |1 of 3 can be achieved for the new loop. This
is an effective Il of 1.5 for the original source loop. Below is a possible pipeline for the unrolled
loop:

stage 1:(pl6) 1d4 rd =[r5],8 /1 odd iteration
(pl6) 1d4 r9 =1[r8],8;; // odd iteration
stage 2:(pl6) |d4 ri4 = [r15],8 /] even iteration
(pl6) 1d4 rl9 = [r18],8;; /] even iteration
I --- enpty cycle
stage 3:(pl8) add r7=r4,r9 /1 odd iteration
(pl7) add rl7 = r14,r19;; // even iteration
stage 4: [/ --- enpty cycle
(pl19) st4 [r6] =7r7,8 // odd iteration
(pl8) st4 [r16] = r17,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to the odd
source iterations and one that corresponds to the even source iterations. The assignment of stage
predicates must take thisinto account. Recall that each 1 written to p16 sequentially enablesall the
stages for a new source iteration. During stage one of the above pipeline, the stage predicate for
the odd iterationisin p16. The stage predicate for the even iteration does not exist yet. During
stage two of the above pipeline, the stage predicate for the odd iterationisin p17 and the new stage
predicate for the even iterationisin p16. Thus within the same pipeline stage, if the stage
predicate for the odd iteration isin predicate register X, the stage predicate for the even iteration is
in predicate register X-1. The pseudo-code to implement this pipeline assuming an unknown trip
count is shown below:

add rl5 =r5,4
add rl8 =r8,4
nov lc =r2 /1 LC = 1loop count - 1
nov ec = 4 /!l EC = epilog stages + 1
nmv pr.rot=1<<16; ; /!l PRI6 = 1, rest =0
L1:
(pl6) 1d4 r33 =[r5],8 /1 Cycle O odd iteration
(pl1l8) add r39 =r35,r38 /'l Cycle O odd iteration
(pl7) add r38 = r34,r37 /1 Cycle O even iteration
(pl6) 1d4 r36 =[r8],8 /1l Cycle O odd iteration
br.cexit.spnt L3;; /1 Cycle O
(pl6) 1d4 r33 = [r15],8 /1 Cycle 1 even iteration
(pl6) 1d4 r36 = [r18],8;; /1l Cycle 1 even iteration

Volume 1: Software Pipelining and Loop Support 1:185

(pl9) st4 [r6] =r40,8 /Il Cycle 2 odd iteration
(pl8) st4 [r16] =r39,8 /1l Cycle 2 even iteration
L2: br.ctop.sptk L1;; /Il Cycle 2

L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and stages 2 and 4
aretwo cycles each. Also, the length of the epilog phase varies with thetrip count. If thetrip count
is odd, the number of epilog stagesisthree, starting after the br.cexit and ending at the br . ct op.
If thetrip count is even, the number of epilog stagesistwo, starting after thebr . ct op and ending
at thebr . ct op. The EC must be set to account for the maximum number of epilog stages. Thus
for this example, ECisinitialized to four. When the trip count is even, one extra epilog stage is
executed and br . exit L3 istaken. All of the stage predicates used during the extra epilog
stages are equal to 0, so nothing is executed.

The extraepilog stage for even trip counts can be eliminated by setting the target of thebr . cexi t
branch to the next sequential bundle and initializing EC to three as shown below:

add rl5 =r5,4
add ri8 =r8,4
nov lc =r2 /1l LC = loop count - 1
nov ec = 3 /Il EC = epilog stages + 1
nov pr.rot=1<<16; ; // PR16 =1, rest =0
L1:
(pl6) 1d4 r33 =[r5],8 // Cycle O odd iteration
(p18) add r39 = r35,r38 /Il Cycle 0 odd iteration
(pl7) add r38 =r34,r37 /1l Cycle O even iteration
(pl6) 1d4 r36 =[r8],8 // Cycle O odd iteration
br.cexit.spnt L4;; /Il Cycle O
L4:
(pl6) 1d4 r33 = [r15],8 /1l Cycle 1 even iteration
(pl6) |1d4 r36 = [rl18],8;; /1l Cycle 1 even iteration
(pl9) st4 [r6] =r40,8 /1l Cycle 2 odd iteration
(p18) st4 [r16] =r39,8 /1l Cycle 2 even iteration
L2: br.ctop.sptk L1;; /Il Cycle 2

L3:

If the loop trip count is even, two epilog stages are executed and the kernel loop is exited at the
br . ct op. If thetrip count is odd, the first two epilog stages are executed and thenthe br . cexi t
branch istaken. Because the target of the br . cexi t branch is the next sequential bundle (L4), a
third epilog stage is executed before the kernel loop is exited at the br . ct op. This optimization
saves one stage at the end of the loop when the trip count is even, and is beneficial for short trip
count loops.

Although unrolling can be beneficial, there are afew considerations before trying to unroll and
software pipeline. Unrolling reducesthetrip count of theloop that is given to the pipeliner, and thus
may make pipelining of the loop undesirable since low trip count loops sometimes run faster
unpipelined. Unrolling also increases the code size, which may adversely affect instruction cache
performance. Unrolling is most beneficial for small 1oops because the potential performance
degradation due to under utilized resources is greater and the effect of unrolling on the instruction
cache performance is smaller compared to large loops.

1:186 Volume 1: Software Pipelining and Loop Support

5.5.7 Implementing Reductions
In the following example, a sum of productsis accumulated in register f7:
nov f7 = 0;; /1 initialize sum
L1:1dfs f4 =1[r5],4
| df s fo9 =1[r8],4;;
fma f7 =14,f9,f7;; /] accumnul ate
br.cloop L1 ;;

The performance is bound by the latency of the f ma instruction which we assume is 5 cyclesfor
these examples. A pipelined version of thisloop must have an Il of at least five because the f ma
latency isfive. By making use of register rotation, the loop can be transformed into the one bel ow.

Note that the loop has not yet been pipelined. The register rotation and special loop branches are

being used to enable an optimization prior to software pipelining.

nov lc = 199 /1l LC = loop count - 1
nov ec =1 /1 Not pipelined, so no epilog
nov f33 =0 /] initialize 5 suns
nov f34 = 0
nov f35 =0
nov f36 = 0
nov f37 = 0;;
L1:Idfs f4 =[r5],4
| df s fo9 =[r8],4;;
fma f32 = 14,19,f37;; [// accunul ate
br.ctop L1 ;;
f add f10 = 33,134 /1 add suns
f add f11 = f35,f36;;
f add f12 = f10,f11;;
f add f7 = 112,137

Thisloop maintains fiveindependent sumsin registersf 33-f 37. Thef ma instruction in iteration
X produces aresult that is used by the f ma instruction in iteration X+5. Iterations X through X+4

areindependent, allowing an Il of oneto be achieved. The code for apipelined version of the loop
assuming two memory ports and a nine cycle latency for afloating-point load is shown below:

nov lc = 199 /1 LC = loop count - 1
nov ec = 10 /Il EC = epilog stages + 1
nov pr.rot=1<<16 /!l PR16 =1, rest =0
nov f33 =0 /1 initialize sums
nov f34 =0
nov f35 =0
nov f36 = 0
nov f37 =0

L1:

(pl6)ldfs f50 = [r5],4 /Il Cycle O

(p16) I dfs 60

[r8],4 /1l Cycle O

(p25)fma f41 = §59,169,746 // Cycle O

br.ctop.sptk L1;; /1l Cycle O
f add f10 = 142,143 /1 add suns
f add fl11 = f44,f45 ;;

f add fi2 = f10,f11 ;;

f add f7 = 112,146

Volume 1: Software Pipelining and Loop Support

1:187

5.5.8

1:188

Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in cases where a
speculative instruction generates avalue that islive across sourceiterations. Consider the following

loop:

1 d4 r3 = [r5]

L1:1d4 ré6 = [r8],4 /1l Cycle O
1 d4 r5 =10r9],4 ;; /1l Cycle O
add r7 =r3,r6 ;; /Il Cycle 2
| d4 r3 = [r5] /Il Cycle 3
and rlo = 3,r7;; /1l Cycle 3
cnp. ne pl,p0O=r10,r1l /Il Cycle 4

(pl)br.cond L1 ;; /Il Cycle 4

Thefollowing is apossible pipeline for the loop:
stage 1: ldd.s r6 =[r8],4 I =2
ldd.s r5 =1[r9],4 ;;
--- I/l enmpty cycle
stage 2: --- I/l enmpty cycle
ldd.s r36 = [r5]
add r7 =r37,r6 ;;
stage 3:(pl1l8) and rio = 3,r7 ;;
(p18) cnp.ne pl,p0 =r10,r11
(pl) br.wtop L1 ;;

Note that, in the code above, thel d4 and the add instructionsin stage 2 have been reordered.

Register rotation has been used to eliminate the WAR register dependency from the add to the

| d4. Thefirst two stages are speculative. The code to implement the pipeline is shown below:
| d4 r36 = [r5]

nmv ec = 2
nmv pr.rot =1 << 16 ;; /1 PR16 =1, rest =0
L1: ldd.s r32 =1[r8],4 /Il Cycle O
ld4.s r34 =1[r9],4 I/l Cycle O
(p18) and r4a0 = 3,r39 ;; /Il Cycle O
ld4.s r36 = [r35] /Il Cycle 1
add r38 = r37,r33 /'l Cycle 1
(p18) chk.s r40, recovery Il Cycle 1
(p18) cnp.ne pl7,p0 = r40,r11 /Il Cycle 1
(pl7) br.wtop L1 ;; /Il Cycle 1

The problem with this pipelined loop is that the value writtento r 36 prior to theloop is
overwritten before it isused by theadd. Thevaueisoverwritten by theload intor 36 in the first
kernel iteration. Thisload isin the second stage of the pipeline, but cannot be controlled during the
first kernel iteration becauseit is speculative and does not have a stage predicate. This problem can
be solved by peeling off one iteration of the kernel and excluding from that copy any instructions
that are not in the first stage of the pipeline as shown bel ow.

Note that the destination register numbers for the instructions in the explicit prolog have been
increased by one. Thisisto account for the fact that there is no rotation at the end of the peeled
kernel iteration.

| d4 r37 = [r5]

nmov ec =1

nov pr.rot = 1<<17;; /1 PR17 =1, rest =0
| d4 r33 =[r8],4

Volume 1: Software Pipelining and Loop Support

| d4 r35 =[r9],4
L1: 1d4.s r32 =[r8],4 /1 Cycle O
1d4.s r34 =1[r9],4 /'l Cycle O
(p18) and rd0 = 3,r39;; /1l Cycle O
1 d4.s r36 = [r35] /1l Cycle 1
add r38 =r37,r33 /1 Cycle 1
(p18) chk. sr40, recovery /Il Cycle 1
(pl8)cnp. ne pl7,p0 = r40,r11 /'l Cycle 1
(pl7)br.wtop L1 ;; -/l Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of code for all or
part of the prolog and/or epilog phase. It isclear from the execution trace of the pipelined counted
loop from page 1:175 that the functional units are under-utilized during the prolog and epilog
phases. Part of the prolog and epilog could be peeled off and merged with the code preceding and
following theloop. Thefollowing isa pipelined version of that counted loop with an explicit
prolog and epilog:

nov lc = 196
nmov ec =1
prol og:
| d4 r35 = [r5],4;; /1l Cycle O
| d4 r34 = [r5],4 ;; /1 Cycle 1
| d4 r33 = [r5],4 /Il Cycle 2
add r36 =r35,r9 ;; /Il Cycle 2
L1:
| d4 r32 = [r5],4
add r35 =r34,r9
st4 [r6] =r36,4
L2: br.ctop L1 ;;
epi | og:
add r35 =7r34,r9 /Il Cycle O
st4 [r6] =r36,4 ;; /1l Cycle O
add r34 =r33,r9 /1 Cycle 1
st4 [r6] =r35,4 ;; /Il Cycle 1
st4 [r6] =r34,4 /Il Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three iterations) have
been peeled off. No attempt has been made to reschedul e the peeled instructions. The stage
predicates have been removed from the instructions since they are not required for controlling the
prolog and epilog phases. Removing them from the prolog makes the prolog instructions
independent of the rotating predicates and eliminates the need for software-pipelined loop branches
between prolog stages. Thusthe entire prolog isindependent of theinitialization of LCand EC that
precede it. The register numbersin the prolog and epilog have been adjusted to account for the lack
of rotation between stages during those phases.

Note: Thiscode assumesthat the trip count of the source loop is at least four. If the minimum
trip count is unknown at compile time, then a runtime check of the trip count must be
added before the prolog. If the trip count is less than four, then control branches to a copy
of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization opportunity.
Theouter loop could be rotated such that the kernel loop is at the top followed by the epilog for the
current outer loop iteration and the prolog for the next outer loop iteration. A copy of the prolog
would also be added prior to the outer loop.

Note: Fromthe earlier trace of the counted loop execution, the functional unit usage of the pro-
log and epilog are complimentary such that they could be very nicely overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.

Volume 1: Software Pipelining and Loop Support 1:189

5.5.9

5.6

1:190

Redundant Load Elimination in Loops

Unrolling of aloop is sometimes necessary to remove copy operations created by loop

optimizations. The following is an example of redundant load elimination. In the code below, each

iteration loads two values, one of which has already been loaded by the previous source iteration:
add rg8 =rb5,4;;

L1:1d4 r4 = [r5],4 Il a[il]
1 d4 r9 =1[r8],4 ;; /1 ali+1]
add r7 =r4,r9 ;;
st4 [r6] =17,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of the first load prior to the loop and
changing the load to a copy (nov):

add r8 =r5,4
| d4 r9 = [r5], 4;; /1 alil
L1: mov r4a =r9 /1 a[i] = previous a[i+1]
| d4 ro9 =[r8],4 ;; /1 a[i+1]
add r7 =r4,r9 ;;
st4 [r6] =r7,4
br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the loop twice.
Oneinstruction is removed from the loop at the cost of two times code expansion. The register
rotation feature in the Itanium architecture can be used to eliminate the nov instruction without
unrolling the loop:

add r8 =r5,4

1 d4 r33 = [r5],4;; Il a[i]
L1:1d4 r32 =[r8],4 ;; /1 ali+1]
add r7 =r33,r32 ;;
st4 [r6] =r7,4
br.ctoplLl ;;
Summary

The examplesin this chapter show how features in the Itanium architecture can be used to optimize
loops without the code expansion required with traditional architectures. Register rotation,
predication, and the software-pipelined loop branches all contribute to this capability. Control
speculation increases the overlap of the iterations of while loops. Data speculation increases the
overlap of iterations of loops that have loads and stores that cannot be disambiguated.

Volume 1: Software Pipelining and Loop Support

intel.

Floating-point Applications 6

6.1

6.2

6.2.1

Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and provides
performance enhancing features such as the fused multiply accumulate instruction, the large
floating-point register file (with static and rotating sections), the extended range register file data
representation, the multiple independent floating-point status fields, and the high bandwidth
memory access instructions that enable the creation of compact, high performance, floating-point
application code.

The beginning of this chapter reviews some specific performance limitations that are common in
floating-point intensive application codes. Later, architectural features that address these
limitations are presented with illustrative code examples. The remainder of this chapter highlights
the optimization of some commonly used kernels using these features.

FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops compute
complex calculations on regularly structured data, others simply copy data from one place to
another, while others perform gather/scatter-type operations that simultaneously compute and
rearrange data. The following sections describe code characteristics that limit performance and how
they affect these different kinds of loops.

Execution Latency

L oops often contain recurrence relationships. Consider the tri-diagonal elimination kernel from the
Livermore Fortran Kernel suite.
DO5i =2, N
SX[i] = Zz[i] * (Y[i] - Xi-1])

The dependency between X[i] and X[i - 1] limitstheiteration time of the loop to be the sum of
the latency of the subtract and the multiply. The available parallelism can beincreased by unrolling
the loop and can be exploited by replicating computation, however the fundamental limitation of
the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration time of the
loop is limited by the execution latency of the hardware that executes the code. A ssimple vector
divide (shown below) isatypical example:
DO11 =1, N
IXi] = Y[il / Z[i]

Since typica modern microprocessors contain anon-pipdined floating-point unit, theiteration time
of the loop is the latency of the divide which can be tens of clocks.

Volume 1: Floating-point Applications 1:191

6.2.2

6.2.3

1:192

Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the availability of
the execution resources — or the execution bandwidth of the machine. Consider the dense matrix
multiply kernel from the BLAS3 library.

DO1i =1, N
DO1j =1, P
DO1k=1 M
1 di,j] =di,j] + Ali,K[*B[k,]|]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be used to
increase the available ILP in the inner loop. When this is done, the inner loop contains an
abundance of independent floating-point computations with arelatively small number of memory
operations. The performance constraint is then largely the floating-point execution bandwidth of
the machine (assuming sufficient registers are available to hold the accumulators—C[i , j] and
the intermediate computations).

Memory Latency

While cycle time disparity between the processor and memory creates a general memory latency
problem for most codes, there are afew special conditionsin floating-point codes that exacerbate
itsimpact.

One such condition is the use of indirect addressing. Gather/scatter codes in general and sparse
matrix vector multiply code (below) in particular are good examples.
DO1 RON= 1, N

RRON = 0.0d0
DO 1 | = ROMEND(ROW 1) +1, ROWEND(ROW
1 RRON = RROW + A[I] * X[CO[I]]

The memory latency of theaccessof COL[|] isexposed, sinceit isused to index into the vector X.
The access of the element of X, the computation of the product, and the summation of the product
on R RON are all dependent on the memory latency of the accessof COL[1] .

Another common condition in floating-point codes where memory latency impact is exacerbated is
the presence of ambiguous memory dependencies. Consider the incomplete Cholesky conjugate
gradient excerpt kernel, again from the Livermore Fortran Kernel suite.

Il n

IPNTP =0
222 | PNT = | PNTP
IPNTP = IPNTP + |1
11 =11/2
| = IPNTP + 1
cdir$ ivdep
DO 2 K = I PNT+2, |PNTP, 2
| = |+1
2 X[1]= X[K - V[K * X[K-1] - V[K-1] * X[K+1]

IF (Il .GT. 1) GO TO 222

The DO-loop involves an update of X at theindex | using X at theindicesK, K+1, K- 1. Sinceitis
difficult for the compiler to establish whether these indices overlap, the loads of X[K] , X[K+1] or

Volume 1: Floating-point Applications

6.2.4

6.3

6.3.1

X[K- 1] for the next iteration cannot be scheduled until the store of X[|] of the current iteration.
This exposes the memory latency of access of these operands.

Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the operands of
the computation. The DAXPY kernel from the BLASL library isatypical example:

DO11 =1, N

1 Y[I] = Y[I] +A* XI]

The computation requires loading two operands (X[1] and Y[|]) and storing oneresult (Y[1])
for each floating-point multiply and add operation. If the data arrays (X and Y) are not in cache,
then the performance of this loop on most modern microprocessors would be limited by the
available memory bandwidth on the machine.

Floating-point Features in the Intel® Itanium®

Architecture

This section highlights architectural features that reduce the impact of the performance limiters
described in Section 6.2 using illustrative examples.

Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units generally
increases. As latency increases, register pressure due to multiple operationsin-flight also increases.
Furthermore as multiple execution units are added, the register pressure increases similarly since
even more instructions can be in-flight at any one time.

The Itanium architecture provides 128 directly addressable floating-point registersto enable data
reuse and to reduce the number of load/store operations required due to an insufficient number of
registers. Thisreduction in the number of loads and stores can increase performance by changing a
computation from being memory operation (MOP) limited to being floating-point operation
(FLOP) limited. Consider the dense matrix multiply code below:

DO1i =1, N
DO1j =1, P
DO1k=1 M
1 dijl =di,jl + Ali,kl*B[k,j]

Intheinner loop (k), 2 loads are required for every multiply and add operation. The MOP:FLOP
ratio is therefore 1:1.

L1:1dfd f5 =[r5], 8 /1 Load Ali,K]
| df d f6 =[r6], 8 /1 Load B[k,j]
frma.d.s0 f7= 5, f6, f7 // *,+to C[i,]j]
br.cloop L1

Volume 1: Floating-point Applications 1:193

1:194

intel.

Here, three registers are required to hold the operands (f 5, f 6) and the accumulator (f 7). By
recognizing thereuse of Al i , k] for different B[k, j] asj isvaried, and thereuse of B[k, j]
for different Al i , k] asi isvaried, the computation can be restructured as:

DO1i =1, N 2
DO1j =1, P, 2
DO1 k=1, M
ai i 1 =di ,j 1
+ AL L KIFBIK,]]
adi+l,j 1 =di+l,j]
+ AP +1, kI *B[k,]]
cai ,j+1] =di ,j+1

+

Ali ,k]*B[k,j+1]
1 qi+l,j+1] = Ci+1,j+1]
+ Ali +1, k] *B[k, j +1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the MOP:FLOP
ratio to 1:2. However, 8 registers are now required: 4 for the accumulators and 4 for the operands.

add ré =r5, 8

add r8 =r7, 8

L1:1dfd f5 = [r5], 16 /1 Load Ali, K]

| df d fé6 = [r6], 16 /1 Load A[i+1, K]
| df d f7 =[r7], 16 /1 Load B[k,]j]

| df d f8 = [r8], 16 /1 Load B[k, j+1]
fma.sO f9 =15, f7, f9 Il *, +on Ci,j]
fma.s0 f10 fe6, f7, f10 Il *,+ on C[i+1,j]
frma.s0 f11 = f5, f8, f11 // *,+ on (i, +1]
fra.s0 f12 = f6, 8, f12 Il *,+ on Cli+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so that 64
multiplies and adds can be performed by loading just 16 operands.

The floating-point register file isdivided into two regions: a static region (f 0-f 31) and arotating
region (f 32-f 127). The register rotation provides the automatic register renaming required to
create compact kernel-only software-pipelined code. Register rotation also enables scheduling
software pipelined code with an initiation interval that isless than the longest latency operation. For
e.g. consider the simple vector add loop shown below:

DO1i =1, N

IAi] = B[i] + Ci]

Thebasic inner loopis:

L1: 1 df f5 =1[r5], 8 /1 Load B[i]
| df fé6 =1[r6], 8 /1 Load C[i]
fadd f7 =15, f6 /1 Add operands
stf [r7]= 17, 8 /1 Store Ali]
br.cloop L1

If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory operations can

be issued per clock, the above loop has to be unrolled by at least six if thereis no register rotation.
add r8 =717, 8

L1:(pl18) stf [r7] =f25 16 // Cycle 17,26...

(p18) stf [r8] = f26, 16 /l Cycle 17,26. ..

(pl7) fadd f25 = f5, f15 /1 Cycle 8,17, 26. ..
(pl6) Idf f5 =[r5], 8 /1l Cycle 0,9,18...
(pl6) Idf f15 = [r6], 8 /1l Cycle 0,9,18...

Volume 1: Floating-point Applications

6.3.1.1

(pl7) fadd f26 = f6, f16;; /'l Cycle 9,18,27 ...
(pl6) Idf f6 =1[r5], 8 /1l Cycle 1,10,19 ...
(pl6) Idf fi6 = [r6], 8 /1 Cycle 1,10,19 ...
(pl8) stf [r7] = f27, 16 /1 Cycle 20,29 ...
(p18) stf [r8] = f28, 16 /1 Cycle 20,29 ...
(pl7) fadd f27 =7, 17 ;; /1 Cycle 11,20 ...
(pl6) Idf f7 =1[r5], 8 /1 Cycle 3,12,21 ...
(pl6) Idf f17 =1[r6], 8 /1 Cycle 3,12,21 ...
(pl7) fadd f28 =18, f18 ;; // Cycle 12,21 ...
(pl6) Idf f8 =1([r5], 8 Il Cycle 4,13,22 ...
(pl6) Idf f18 =1[r6], 8 /1 Cycle 4,13,22 ...
(p18) stf [r7] = f29, 16 /1 Cycle 23,32 ...
(pl8) stf [r8 = f30, 16 /1l Cycle 23,32 ...
(pl6) fadd f29 =1f9, f19 ;; // Cycle 14,23 ...
(pl6) Idf f9 =[r5], 8 /1l Cycle 6,15,24 ...
(pl6) |df f19 =1[r6], 8 /1 Cycle 6,15,24 ...
(pl6) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(pl6) Idf fi10 = [r5], 8 /1l Cycle 7,16,25 ...
(pl6) |df f20 =([ré6], 8 /1 Cycle 7,16,25 ...
br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation interval of just
2 clocks without unralling (and 1.5 clocks if unrolled by 2):

L1: (p24) stf [r7] = 57, 8 /'l Cycle 15,17...
(p21) fadd f57 = 137, f47 /1 Cycle 9,11,13...
(pl6) Idf f32 =1([r5], 8 /1 Cycle 0,2,4,6...
(pl6) Idf f42 =1[r6], 8 /1 Cycle 0,2,4,6...

br.ctop L1;;

It isthus often advantageous to modulo schedule and then unroll (if required). Please see Chapter 5,
“ Software Pipelining and Loop Support” for details on how to rewrite loops using this
transformation.

Notes on FP Precision

The floating-point registers are 82 hitswide with 17 bits for exponent range, 64 bits for significand
precision and 1 sign bit. During computation, the result range and precision is determined by the
computational model chosen by the user. The computational model is indicated either statically in
the instruction encoding, or dynamically viathe precision control (PC) and widest-range-exponent
(WRE) bitsin the floating-point status register. Using an appropriate computational model, the user
can minimize the error accumulation in the computation. In the above matrix multiply example, if
the multiply and add computations are performed in full register file range and precision, the results
(in accumulators) can hold 64 bits of precision and up to 17 bits of range for inputs that might be
single precision numbers. With the rounding performed at the 64th precision bit (instead of the 24th
for single precision) asmaller error is accumulated with each multiply and add. Furthermore, with
17 bits of range (instead of 8 bitsfor single precision) large positive and negative products can be
added to the accumulator without overflow or underflow. In addition to providing more accurate
results the extra range and precision can often enhance the performance of iterative computations
that are required to be performed until convergence (asindicated by an error bound) is reached.

Volume 1: Floating-point Applications 1:195

6.3.2

6.3.3

1:196

Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (f ma) as the basic floating-point
computation, since it forms the core of many computations (linear algebra, series expansion, etc.)
and its latency in hardware is typically less than the sum of the latencies of an individual multiply
operation (with rounding) implementation and an individual add operation (with rounding)
implementation.

In computational loopsthat have aloop carried dependency and whose speed is often determined
by the latency of the floating-point computation rather than the peak computational rate, the
multiply-add operation can often be used advantageously. Consider the Livermore FORTRAN
Kernel 9 — General Linear Recurrence Equations:
DO 191 k= 1,n

B5(k+KB5I) = SA(k) + STB5 * SB(k)

STB5= B5(k+KB5I) - STBS
191 CONTI NUE

Since thereis atrue data dependency between the two statements on variable B5(k+KB51)) and
aloop-carried dependency on variable STB5, the loop number of clocks per iteration is entirely
determined by the latency of the floating-point operations. In the absence of an f ma type operation,
and assuming that the individual multiply and add latencies are 5 clocks each and the loads are

8 cycles, the loop would be:

L1: (pl6) |df f32 = [r5], 8 /1 Load SA(k)
(pl6) Idf f42 =1[r6], 8 /1 Load SB(k)
(p17) fmul fs5 =17, f43;; /1l tmp,Ck 0,15 ...
(pl7) fadd f6 =133, f5;; /1 B5,Ck 5,20 ...
(pl7) stf [r7] =f6, 8 /1 Store B5
(pl7) fsub f7 =16, f7 /1 STB5,dk 10,25 ..

br.ctop L1 ;;

With an f e, the overall latency of the chain of operations decreases and assuming a5 cyclef na,
the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).

L1: (pl6) |df f32 =[r5], 8 /1 Load SA(k)
(pl6) Idf f42 = [r6], 8 /1 Load SB(k)
(pl7) fm f6 =17, 43, 33;; /1 B5,Ck 0,10 ...
(pl7) stf [r7] =f6, 8 /1l Store B5
(pl7) fsub f7 =16, f7 /Il STB5,dk 5,15 ..
br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of asingle rounding error for the pair of
computations which is valuable when trying to compute small differences of large numbers.

Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a software based
sequence of operationsis used. The sequence consists of obtaining an initial guess (using f r cpa/
f rsgrt a instruction) and then refining the guess by performing Newton-Raphson iterations until
the error is sufficiently small so that it may not affect the rounding of the result. Examples of
double precision divide and square root sequences, optimized for latency and throughput, are
provided bel ow.

Note: For reduced precision, square and divide sequences can be completed with even fewer
instructions.

Volume 1: Floating-point Applications

intel.

6.3.3.1

Double Precision — Divide

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)

frcpa.sO f8,p6 = 6,17 ;;
fnma.s1 f9 = f7,f8,f1 ;;
fra.s1 f8 = f9,18,f8
frma.s1 f9 = £9,f9,f0 ;;
frm.s1 f8 =f9 ,f8,f8
frma.s1 f9 = £9,f9,f0 ;;
frma.sl1 f8 = £9,1f8,f8 ;;
fra.d.s1 f9 = f6,f8,f0 ;;
fnma.d.s1 f6 = f7,f9,f6 ;;
fra.d.sO f8 = f6,f8,f9

(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)
(p6)

frcpa.sO f8,p6 = 6,17 ;;
fra.s1 f9 = f6,18,f0
fnma.sl1 f10 = f7,1f8,f1 ;;
fma.s1 f9 = f10,f9,f9
frma.s1 f11 = £10,f10,f0
fma. sl f8 f10,f8,f8 ;;
fma.s1 f9 f11,f9,f9
fra.s1 10 = f11,f11,f0
frma.s1 f8 = f11,f8,f8 ;;
fra.d.s1 f9 = f10,f9,f9
fra.s1 f8 = f10,f8,f8 ;;

fnma.d.s1 f6 = f7,f9,f6 ;;

frma.d.sO f8 = f6,f8,f9

6.3.3.2

Double Precision — Square Root

Square Root (Max Throughput)?
(14 Instructions, 10 Groups)

Square Root (Min Latency)P
(17 Instructions, 9 Groups)

frsqrta.s0 f7,p6=f6 ;;

(p6) fma.s1 f8=f10,f7,f0
(p6) fma.sl f7=f6,f7,f0 ;;
(p6) fnma.s1 f9=f7,1f8,f10 ;;
(p6) fma.s1 f8=f9,f8,f8
(p6) fma.sl f7=f9,f7,f7 ;;
(p6) fnma.sl1 f9=f7,1f8,f10 ;;
(p6) fma.sl f8=f9,f8,f8
(p6) fma.s1 f7=f9,f7,f7 ;;
(p6) fnma.sl f9=f7,f8,f10 ;;
(p6) fma.sl £8=f9,f8,f8
(p6) fma.d.s1 f7=f9,f7,f7 ;;
(p6) fnma.sl f9=f7,f7,f6 ;;
(p6) frma.d.sO f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;

(p6) frma.s1 f8=f9,f7,f0
(p6) fma.s1 f7=f6,f7,f0 ;;
(p6) fnna.sl f9=f7,f8,f9 ;;
(p6) fma.s1 f10=f11,f9,f10
(p6) fma.sl1 f11=f9,f9,f0

(p6) frma.sl f12=f13,f9,f12 ;;

(p6) frma.sl f10=f11,f10,f9
(p6) frma.sl f11=f11,f11,f0
(p6) frma.s1 f9=f9,f12,f14 ;;
(p6) fma.sl f12=f10,f7,f7
(p6) frma.sl f7=f7,f11,f0

(p6) fma.sl f10=f11,f9,f10 ;;

(p6) frma.d.s1 f7=f9,f7,f12

(p6) frma.s1 f8=f10,f8,f8 ;;
(p6) fnma.sl f9=f7,f7,f6 ;;
(p6) frma.d.sO f7=f9,f8,f7 ;;

a. The following value is assumed preset: f10=1/2.
b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

For divide, the first instruction (f r cpa) provides an approximation (good to 8 hits) of the
reciprocal of f 7 and sets the predicate (p6) to 1, if theratio f 6/f 7 can be obtained using the

prescribed Newton-Raphson iterations. If, however, theratio f 6/f 7 is specia (finite/0, finite/

infinite, etc) the final result of f 6/f 7 isprovided in f 8 and the predicate (p6) is cleared. For

certain boundary conditions (when the operand values (f 6 and f 7) are well outside the single
precision, double precision and even double-extended precision ranges) frcpawill cause a software
assist fault and the software handler will produce theratio f 6/f 7 and returnit in f 8 and clear the
predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. SO isthe main

(architectural) statusfield and it is written to by the first operation (f r cpa) to signal any faults (V,

Volume 1: Floating-point Applications

1:197

6.3.4

6.3.5

1:198

intel.

Z, D), and by the last operation to signal any traps. The conditions of all intermediate operations are
ignored by writing them to S1. Thus these sequences not only obtain the correct |EEE 754 specified
result (in f 8) but the flags are also set (in SO) as per the standard's requirements. If the divide is
part of a speculative chain of operationsthat isusing S2 asits status field, then SO should be
replaced with S2 in these sequences. S1 can still be used by the intermediate operations of al the
divide sequences (i.e. those that target SO, S2, or S3) sinceitsflags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very advantageous
to have these operations be performed in software rather than hardware. In software, these
operations can be pipelined and the overall throughput be improved, whereas in hardware these
operations are typically not pipelineable.

Another significant advantage of the software based divide/sguare-root computations is that the
accuracy of the result can be controlled by the user and can be traded off for speed. Thistrade-off is
often used in graphics codes where the divide accuracy of about 14-bits suffices and the sequence
can be shorter than that used for single or double precision.

Computational Models

The Itanium architecture offers complete user control of the computational model. The user can
select the result’s precision and range, the rounding mode, and the | EEE trap response.
Appropriately selecting the computational model can result in code that has greater accuracy,
higher performance, or both.

Theregister file format is uniform for the 3 memory data types— single, double and
double-extended. Since all the computations are performed on registers (regardless of the data type
of its content) operands of different types can be easily combined. Also since the conversion from
the memory type to the register file format is done on loads automatically no extra operations are
required to perform the format conversion.

The C syntax semanticsis also easily emulated. Loads convert all input operands into the register
file format automatically. Data operands of different types, now residing in register file format can
be operated upon and all intermediate results coerced to double precision by statically indicating
the result precision in the instruction encoding. The computation leading to the final result can
specify the result precision and range (statically in the instruction encoding for single and double
precision, and dynamically in the status field bits for double-extended precision). Compliance to
the |A-32 FP computational style (range=extended, precision=single/double/extended) can also
achieved using the statusfield bits.

Multiple Status Fields

The FPSR is divided into 1 main (architectural) statusfield and 3 additional identical statusfields.
These additional status fields could be used to performance advantage.

First, divide and square-root sequences (described in Section 6.3.3) contain operations that might
cause intermediate results to overflow/underflow or be inexact even if the final result may not. In
order to maintain correct | EEE flag status the status flags of these computations need to be
discarded. One of these additional statusfields (typically statusfield 1) can be used to discard these

flags.

Volume 1: Floating-point Applications

6.3.6

6.3.6.1

Second, speculating floating-point operations requires maintaining the status flags of the specul ated
operations distinct from the architectural status flags until the speculated operations are committed
to architectural state (if they ever are). One of these additional status fields (typically statusfields 2
or 3) can be used for this purpose.

Consider the Livermore FORTRAN kernel 16 — Monte Carlo Search
DO 470 k= 1,n

k2= k2+1

j 4= j2+k+k

j 5= ZONE(j 4)

IF(j5-n) 420, 475, 450
4151 F(j5-n+l1) 430, 425, 425

4201 F(j5-n+LB) 435, 415, 415

4251 F(PLAN(j 5)-R) 445, 480, 440

4301 F(PLAN(j 5)-S) 445, 480, 440

4351 F(PLAN(j 5)-T) 445, 480, 440

4401 F(ZONE(j 4-1)) 455, 485, 470

445| F(ZONE(j 4-1)) 470, 485, 455

450k3= k3+1
F'F(D(j5)-(D(j5-1)*(T-D(j5-2))**2

+(S-D(j5-3))**2

, +(R-D(j 5-4))**2)) 445, 480, 440

455me mHl
I F(mZONE(1)) 465, 465, 460

460mE 1

4651 F(i1-m) 410, 480, 410

470 CONTI NUE

475 CONTI NUE

480 CONTI NUE

485 CONTI NUE

Profiling indicates that the conditional after statement 450 is most frequently executed. It is
therefore advantageous to specul atively execute the computation in the conditional while the
conditionalsin 415...445 are being evaluated. In the event that any of the conditionalsin 415...445
cause the control to be moved on beyond 450 the results (and flags) of the speculatively computed
operations (of the conditional after statement 450) can be discarded.

The availability of multiple additional status fields can allow auser to maintain multiple
computational environments and to dynamically select among them on an operation by operation
basis. One such useisin the implementation of interval arithmetic code where each primitive
operation isrequired to be computed in two different rounding modes to determine the interval of
the result.

Other Features

The Itanium architecture offers a number of other architectural constructs to enhance the
performance of different computational situations.

Operand Screening Support

Operand screening is often arequired or useful step prior to acomputation. The operand may be
screened to ensure that it isin avalid range (e.g. finite positive or zero input to square-root;

Volume 1: Floating-point Applications 1:199

6.3.6.2

1:200

intel.

non-zero divisor for divide) or it may be screened to take an early out — the result of the
computation is predetermined or could be computed more efficiently in another way. Thef cl ass
instruction can be used to classify the input operand to either be or not be a part of a set of classes.
Consider the following code used for screening invalid operands for square-root computation:

IF (A EQ NATVAL OR
A EQ SNAN OR A EQ QNAN OR
A EQ NEGINF OR A EQ POS INF OR
A LT. 0.0D0) THEN

WRI TE (*, “INVALID | NPUT OPERAND')
ELSE

WRI TE (*, “SQUARE-ROOT = *, SQRT(A))
ENDI F

The above conditional can be determined by two fclassinstructions asindicated below:

fclass.m pl, p2 = f2, Ox1E3;; /] Detect NaTVal, NaN, +Inf or -Inf
(p2)fclass.mpl, p2 = f2, 0x01lA /] Detect -Normor -Unorm

The resultant complimentary predicates (pl and p2) can be used to control the ELSE and THEN
statements respectively.

Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN intrinsic

M N(a, b) ortheequivalent Cidiom: a<b? a: b andthe FORTRAN intrinsic MAX(b, a) or
the equivalent C idiom: a<b? b: a. Theseinstructions can enhance performance by avoiding the
function call overhead in FORTRAN, and by reducing the critical path in C. The instructions are
designed to mimic the C statement behavior so that they can be generated by the compiler. They are
also not commutative. By appropriately selecting the input operand order, the user can either ignore
or catch NaNs.

Consider the problem of finding the minimum value in an array (similar to the Livermore
FORTRAN kernel 24):

XM N = X(1)

DO 24 k= 2,n
241 F(X(k) .LT. XMN) XM N = X(k)

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence if the
above code is implemented as:

| df f5 =1[r5], 8;;
L1: | df fé6 =1[r5], 8

fmn f5 =f6, f5

br.cloop L1 ;;

NaNsinthe array (X) will be ignored.

If thevalueinthearray X (loaded inf 6) isaNaN, the new minimum value (in f 5) will remain
unchanged, sincethe NaN will fail the. LT. comparisonand f mi n will return the second argument
—inthis case the old minimum valueinf 5.

However, if the code isimplemented as:

| df f5 =1[r5], 8;;
L1: 1 df f6 =1[r5], 8

fmn f5 =f5, 6

br.cloop L1 ;;

Volume 1: Floating-point Applications

6.3.6.3

6.3.6.4

6.3.7

NaNsin the array (X) will reset the minimum value.

Now, if thevalueinthearray X (loaded inf 6) isaNaN, the new minimum value (inf 5) will be set
to the NalN, since the NaN will fail the. LT. comparison and fminwill return the second argument
—inthiscasethe NaN in f 6. In the next iteration, the new array value (loaded in f6) will become
the new minimum.

fam n/f amax perform the comparison on the absolute value of the input operands (i.e. they
ignore the sign bit) but otherwise operate in the same (non-commutative) way asthef m n/f max
instructions.

Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point representations by
simply moving the integer to the significand field of the floating-point register using the setf.sig
instruction. The resulting floating-point value would be in its unnormal representation (unless the
unsigned integer was greater than 25).

Conversions from signed integers to floating-point and from floating-point to signed or unsigned
integers are accomplished by f cvt . xf and f cvt . f x/f cvt. f xu instructions respectively.
However, since signed integers are converted directly to their canonical floating-point
representations, they do not need to be normalized after conversion.

FP Subfield Handling

It is sometimes useful to assemble afloating-point value from its constituent fields. Multiplication
and division of floating-point values by powers of two, for example, can be easily accomplished by
appropriately adjusting the exponent. The Itanium architecture provides instructions that allow
moving floating-point fields between the integer and floating-point register files. Division of a
floating-point number by 2.0 is accomplished as follows:

getf.exp r5 =15 /1l Move S+Exp to int
add r5 =r5, -1 /1 Sub 1 from Exp

setf.exp fé6 =r5 /1l Move S+Exp to FP
fmrerge.se f5 =6, f5 /1 Merge S+E w Mant

Floating-point values can also be constructed from fields from different floating-point registers.

Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs of high
bandwidth, the Itanium architecture incorporates many architectural featuresto help manage the
memory hierarchy and increase performance. As described in Section 6.2, memory latency and
bandwidth are significant performance limiters in floating-point applications. The architecture
offers features to address both these limitations.

In order to enhance the core bandwidth to the floating-point register file, the architecture defines
load-pair instructions. In order to mitigate the memory latency, explicit and implicit data prefetch
instructions are defined. In order to maximize the utilization of caches, the architecture defines
locality attributes as part of memory access instructions to help control the allocation (and
de-allocation) of data in the caches. For instances where the instruction bandwidth may become a

Volume 1: Floating-point Applications 1:201

6.3.7.1

6.3.7.2

1:202

intel.

performance limiter, the architecture defines machine hintsto trigger relevant instruction
prefetches.

Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in memory to two
independent floating-point registers. The target registers are required to be odd and even physical
registers so that the machine can utilize just one access port to accomplish the register update.

Note: Theodd/even pair restriction ison physical register numbers, not logical register numbers.
A programming violation of this rule will cause anillegal operation fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides sufficient
bandwidth from the second level cache (L2) to sustain 2 load-pairs every cycle. Then loops that
require up to 2 data elements (of 8 bytes each) per floating-point instruction can run at peak speeds
when the dataisresidentin L2. A common example of such a caseis asimple double precision dot
product — DDOT:
DO11 =1, N
1C=C+ A(l) * B(1)

Theinner loop consists of two loads (for A and B) and amultiply-add (to accumulate the product on
C). Theloop would run at the latency of the fma due to the recurrence on C. In order to break the
recurrence on C, the loop is typically unrolled and multiple partial accumulators are used.

DO11 =1, N, 8

ClL=ClL+ All] * B[I]

C2 =C2 + Al +1] * B[I+1]
C3 =C3 + A[I+2] * B[l +2]
C4 =C4 + A[I+3] * B[I+3]
C5 = C5 + A[l+4] * B[+4]
C6 = C6 + A[I+5] * B[I+5]
C7 = C7 + A1 +6] * B[+6]

1C8 =C8 + AlI+7] * B[1+7]
C=Cl+C+C3+C4+C5+C6+C7 +C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 8 fmas. If
we assume the machine has two memory ports, thisloop would be limited by the availability of M
slotsand run a apeak rate of 1 clock per iteration. However, if thisloop isrewritten using 8
load-pairs (for A[1],A[| +1] andB[1],B[| +1] and A[| +2] ,A[| +3] and B[| +2] ,

B[| +3] and so on) and 8 fmasthisloop could run at a peak rate of 2 iterations per clock (or just
0.5 clocks per iteration) with just two M-units.

Data Prefetch

| f et ch allowsthe advance prefetching of aline (defined as 32 bytes or more) of datainto the
cache from memory. Allocation hints can be used to indicate the nature of the locality of the
subsequent accesses on that data and to indicate which level of cache that data needs to be
promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the load target is
never used) Ifetches can more effectively reduce the memory latency without using floating-point

registers as targets of the data being prefetched. Furthermore| f et ch allows prefetching the data
to different levels of caches.

Volume 1: Floating-point Applications

6.3.7.3

6.4

Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, spatial/non-spatial),
The Itanium architecture allows annotating the data accesses (loads/stores) to reflect these
attributes. Based on these annotations, the implementation can better manage the storage of the data
in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the various cache
levels. (Only two cache levels are architecturally identified). The non-temporal hint is best used for
datathat typically has no reuse with respect to that level of cache. The temporal hint is used for all
other data (that has reuse).

Summary

This chapter describes the limiting factors for many scientific and floating-point applications:
memory latency and bandwidth, functional unit latency, and number of available functional units. It
also describes the important features of floating-point support in the Itanium architecture beyond
the software-pipelining support described in Chapter 5, “ Software Pipelining and Loop Support”
that help to overcome some of these performance limiters. Architectural support for speculation,
rounding, and precision control are also described.

Examplesin the chapter include how to implement floating-point division and square root,
common scientific computations such as reductions, use of features such asthe f na instruction,
and various Livermore kernels.

Volume 1: Floating-point Applications 1:203

1:204

Volume 1: Floating-point Applications

intgl.

Index

Entries in this index are described by the volume number and page or range of pages where the entries can be
found. The volume number appears to the left of the colon. The page or range of pages appears to the right of the

colon. A range of pages is separated by a hyphen.

Symbols

32-bit virtual addressing 2:60
pointer “swizzling” model 2:60
sign-extension model 2:60
zero-extension model 2:60

A

AAA instruction 3:369
AAD instruction 3:370
AAM instruction 3:371
AAS instruction 3:372
abort 2:79, 2:408, 3:377, 3:379, 3:381, 3:383, 3:385,
3:389, 3:390, 3:392, 3:394, 3:403, 3:452
interruption priorities 2:91, 2:92
machine check abort 2:43, 2:491, 2:493
PAL-based interruptions 2:79, 2:80, 2:84, 2:96,
2:408
PSR.mc bitis 0 2:82
reset abort 2:483
abort handling 2:493
Access rights, segment descriptor 3:598
acquire semantics 1:64, 2:70, 2:236, 2:379
ADC instruction 3:373, 3:618
add 1:42, 1:43, 1:45, 1:70, 1:141, 1:171, 3:11, 3:263,
3:352, 3:357, 3:373, 3:374, 3:375, 3:376
ADD instruction 3:373, 3:375, 3:433, 3:618
addp4 3:12
address space model 2:427, 2:431
address translation 2:39, 2:51, 2:408, 2:427, 2:431,
2:487
addressable units 1:30
advanced load address table 1:55, 1:60, 1:140, 2:418
ALAT 1:55, 1:56, 1:57, 1:58, 1:59, 1:60, 1:140,
1:180, 2:73, 2:74, 2:75, 2:127, 2:417, 2:418
data speculation 1:55, 1:56, 1:60, 1:140, 2:447
related instructions 1:56
alloc 1:14, 1:36, 1:38, 1:40, 1:41, 1:42, 1:46, 1:66,
1:132, 2:57, 2:74, 2:117, 2:118, 2:119
and 3:15
AND instruction 3:377, 3:618
andcm 3:16
APIC flag, CPUID instruction 3:428
APIC, presence of 3:428
application programming model 1:39
application register
compare and exchange value register (CCV — AR 32)
1:26
epilog count register (EC — AR 66) 1:27
floating-point status register (FPSR — AR 40) 1:26
IA-32 time stamp counter (TSC) 1:26, 1:105, 2:27,
2:471
interval time counter (ITC — AR 44) 1:26
kernel registers (KR 0-7 — AR 0-7) 1:24
loop count register (LC — AR 65) 1:27
previous function state (PFS — AR 64) 1:27

Intel® Itanium® Architecture Software Developer’s Manual

register stack configuration register (RSC — AR 16)
1:24
RSE backing store pointer (BSP — AR 17) 1:25
RSE NaT collection register (RNAT — AR 19) 1:26
user NaT collection register (UNAT — AR 36) 1:26
application register state 1:19
application register model 1:20
ignored fields 1:20, 1:21
ignored register 1:19, 1:20, 1:29
read-only register 1:21, 1:25, 2:105
reserved fields 1:20, 1:21, 3:829
reserved register 1:19, 1:20, 1:21
reserved value 1:21
Arctangent, FPU operation 3:495
arithmetic instructions 1:42, 1:43, 3:322, 3:861
ARPL instruction 3:379
atomic operations 2:235
atomicity 2:57, 2:77, 2:235

B

B (default size) flag, segment descriptor 3:657
backing store pointer (BSP) 2:115, 2:119, 2:122, 2:125
backing store 1:23, 1:25, 1:42, 2:86, 2:115, 2:116,
2:487
backing store pointer application registers 2:122
backing store switches 2:128
BSPSTORE 2:125
backing store pointer application registers 2:122
banked general registers 2:16, 2:35, 2:81, 2:214
barrier synchronization 2:398, 2:399
BCD integers
packed 3:433, 3:434, 3:449, 3:451
unpacked 3:369, 3:370, 3:371, 3:372
be bit 1:31
PSR.be 2:85, 3:343, 3:349
RSC.be 2:121
Biased exponent 3:822
biased exponent 3:821, 3:822, 3:823, 3:824, 3:827
bit field and shift instructions 1:44, 1:45
boot flow 2:10, 2:483
firmware boot flow 2:483
boot sequence 2:9, 2:483
boot flow 2:10, 2:483
bootstrap processor (BSP) 2:483
BOUND instruction 3:381
BOUND range exceeded exception (#BR) 3:381
br 3:17
br.call 1:27, 1:36, 1:40, 1:65, 1:67, 2:118, 2:119,
2:126, 2:127, 2:421, 2:423, 3:317, 3:339
br.cexit 1:36, 1:37, 1:46, 1:65, 1:67, 1:170, 3:314,
3:316, 3:353, 3:357
br.ctop 1:36, 1:37, 1:46, 1:65, 1:67, 1:170, 1:172,
1:182, 3:314, 3:316, 3:353, 3:357
bria 1:10, 1:99, 1:101, 2:460
br.ret 1:27, 1:36, 1:40, 1:65, 1:67, 2:47, 2:57, 2:86,
2:92, 2:117, 2:118, 2:119, 2:120, 2:124

Index-1

Index

br.wexit 1:36, 1:37, 1:65, 1:67, 3:314, 3:316, 3:353,
3:356
br.wtop 1:36, 1:37, 1:65, 1:67, 1:175, 1:176, 3:314,
3:316, 3:353, 3:356
branch instructions 1:65, 1:68, 1:133, 3:314, 3:315,
3:331
branch predict instructions 1:14, 1:68, 1:69, 3:318
branch prediction hints 1:68, 1:164
modulo-scheduled loop support 1:66
branching 1:14, 1:22, 1:66, 1:133, 3:456, 3:526
break 3:25
brl 2:451, 3:26
brl.call 1:27, 1:36, 1:40, 1:65, 1:67, 2:118, 2:119,
2:126, 2:127, 2:451, 3:339, 3:340, 3:343
brp 3:28
BSF instruction 3:383
BSR instruction 3:385
bsw 1:46, 2:18, 2:86, 3:30, 3:314, 3:320, 3:343,
3:349, 3:357
BSWAP instruction 3:387
BT instruction 3:388
BTC instruction 3:390, 3:618
BTR instruction 3:392, 3:618
BTS instruction 3:394, 3:618
bundles 1:11, 1:30, 1:32, 1:33, 1:128, 1:129, 3:255
byte ordering 1:30, 1:31

C

cache synchronization 2:69
cache write policy attribute 2:66
cacheability and coherency attribute 2:65
Cacheable 2:64, 2:65, 2:66
cacheable pages 2:66
uncacheable pages 2:66
Caches, invalidating (flushing) 3:574, 3:733
Call gate 3:592
CALL instruction 3:396
Causality 2:394
obeying causality 2:394
CBW instruction 3:405
CDQ instruction 3:431
CF (carry) flag, EFLAGS register 3:373, 3:375, 3:388,
3:390, 3:392, 3:394, 3:407, 3:412, 3:435
character strings 1:74
chk 3:31
chk.a 1:34, 1:56, 1:57, 1:58, 1:140, 1:141, 1:142,
1:144, 2:69, 2:70, 2:88, 2:447, 3:304, 3:309
chk.a.clr 1:58, 1:59, 1:60, 3:304, 3:309, 3:339, 3:346,
3:352
chk.a.nc 1:59, 1:60, 3:304, 3:309, 3:352
chk.s 1:34, 1:52, 1:54, 1:56, 1:131, 1:143, 1:144,
2:88, 2:447, 3:280, 3:282, 3:303, 3:304
Classify floating-point value, FPU operation 3:539
CLC instruction 3:407
CLD instruction 3:408
CLI instruction 3:409

Index-2

intel.

clr 1:69, 3:286, 3:287, 3:288, 3:289, 3:290, 3:292,
3:293, 3:294, 3:296, 3:297, 3:298, 3:299
clrrrb 1:36, 1:40, 1:46, 1:58, 1:66, 1:67, 2:424, 3:33,
3:314, 3:320, 3:340, 3:347, 3:357
clrrrb.pr 1:66, 1:67, 3:314, 3:320
CLTS instruction 3:411
CMC instruction 3:412
CMOV flag, CPUID instruction 3:428
CMOVcc instructions 3:413, 3:428
cmp 1:37, 1:46, 1:48, 1:53, 1:131, 2:389, 2:398, 3:34,
3:265, 3:266, 3:267, 3:268, 3:352, 3:356
CMP instruction 3:417
cmpd 1:37, 1:46, 1:48, 1:53, 3:37, 3:265, 3:266,
3:267, 3:268, 3:352, 3:356, 3:357
CMPS instruction 3:419, 3:683
CMPSB instruction 3:419
CMPSD instruction 3:419
CMPSW instruction 3:419
cmpxchg 1:26, 1:49, 1:51, 1:60, 1:64, 2:69, 2:70,
2:73, 2:177, 2:380, 2:397, 2:398, 3:40, 3:352
CMPXCHG instruction 3:422, 3:618
CMPXCHGSB instruction 3:424
coalescing attribute 2:66
coalesced pages 2:67
coherency 1:120, 1:121, 2:65, 2:66, 2:236, 3:574,
3:733
compare instructions 1:13, 1:14, 1:22, 1:45, 1:46,
1:176, 3:264, 3:323, 3:428
compare types 1:46, 1:47, 1:48
normal compare 1:47
parallel compare 1:70, 1:160, 1:161, 3:326
unconditional compare 1:47
Compatibility
software 3:829
computational models 1:194
Condition code flags, EFLAGS register 3:413
Condition code flags, FPU status word
setting 3:534, 3:536, 3:539
Conditional jump 3:585
Conforming code segment 3:592, 3:598
constant register 2:417
Constants (floating point)
loading 3:485
context switching 1:41, 2:142, 2:424, 2:426, 2:479
address space switching 2:426
non-local control transfer 2:424
performance monitor 2:142, 2:143
RSE backing store 1:25, 2:128
thread switch within the same address space 2:426
control flow optimization 1:151
control flow optimizations 1:159
multiple values for one variable or register 1:161
multiway branches 1:161
parallel compares 1:159, 1:160, 1:161
control registers (CR) 2:16
banked general registers 2:35, 2:81
control register instructions 2:25

Intel® Itanium® Architecture Software Developer's Manual

intgl.

default control register (DCR — CR0) 2:25, 2:26
external interrupt control registers 2:34, 2:104,
2:214, 2:469
global control registers 2:25
interruption control registers 2:29
interruption faulting address (IFA — CR20) 2:31, 2:32
interruption function state (IFS — CR23) 2:33, 2:34
interruption hash address (IHA — CR25) 2:34
interruption immediate (IIM — CR24) 2:34
interruption instruction bundle pointer (IIP — CR19)
2:31
interruption instruction previous address (lIPA —
CR22) 2:32, 2:33
interruption processor status register (IPSR — CR16)
2:29
interruption status register (ISR — CR17) 2:29, 2:30
interruption status register fields 2:30
interruption TLB insertion register (ITIR - CR21) 2:32
interruption vector address (IVA — CR2) 2:28
interval time counter (ITC — AR44) 2:27
interval timer match register (ITM — CR1) 2:27
ITIR fields 2:32
page table address (PTA — CR8) 2:28
Control registers, moving values to and from 3:634
control speculative 1:12, 2:417, 2:447
corrected machine check 2:108, 2:492, 2:493
corrected machine check (CMC) 2:282
corrected machine check interrupt (CMCI) 2:492
Cosine, FPU operation 3:464, 3:515
cover 1:36, 1:40, 1:41, 1:42, 1:46, 1:67, 2:86, 2:118,
2:120, 2:123, 2:125, 2:127, 3:42, 3:314
CPL 3:409, 3:730
CPUID instruction 3:426
CPUID registers 1:29
CRO control register 3:616, 3:715
cross-modifying code 2:403
CS register 3:397, 3:563, 3:577, 3:589, 3:630, 3:657
current frame marker (CFM) 1:19, 1:22, 1:36, 1:40,
2:13, 2:118
size of frame (sof) 1:40
size of locals (sol) 1:40
CWD instruction 3:431
CWDE instruction 3:405
CX8 flag, CPUID instruction 3:428
cycles per instructions (CPI) 2:479
czx 3:43

D

DAA instruction 3:433
DAS instruction 3:434
data access bit 2:57, 2:59, 2:90, 3:377, 3:379, 3:381,
3:383, 3:385, 3:389, 3:390, 3:392, 3:394
data breakpoint register matching 2:244
DBR.addr 2:244
DBR.mask 2:244
trap code B bits 2:244
data breakpoint registers (DBR) 2:131, 2:132
data debug 2:57, 2:90

Intel® Itanium® Architecture Software Developer’s Manual

Index

data dependencies 1:55, 1:136, 1:137, 1:138, 2:13,
2:382, 2:387
data dependency 1:13, 1:137, 2:13, 2:386, 2:387,
2:388
data key miss fault 2:126, 2:147, 3:377, 3:379, 3:381,
3:383, 3:385, 3:389, 3:390, 3:392, 3:394
data key permission 2:57, 2:59, 2:89, 2:90, 3:377,
3:379, 3:381, 3:383, 3:385, 3:389, 3:390
data NaT page consumption 2:57, 2:59, 2:72, 2:89,
2:90, 3:377, 3:379, 3:381, 3:383, 3:385
data nested TLB faults 2:59, 2:415
data page not present 2:57, 2:59, 2:89, 2:90, 3:377,
3:379, 3:381, 3:383, 3:385, 3:389, 3:390
data prefetch
load instructions 1:50
semaphore instructions 1:51, 3:302
store instructions 1:50, 3:285, 3:300, 3:302, 3:303,
3:922
data serialization 2:14, 2:15, 3:337
data speculative 1:12, 1:13, 1:55, 1:142, 2:417
data TLB miss faults 2:57, 2:59
Debug 1:57, 2:175, 3:398, 3:399, 3:400, 3:403,
3:557, 3:561, 3:563, 3:587, 3:591, 3:592
break instruction fault 2:131, 2:147, 2:163
data debug fault 2:93, 2:126, 2:132, 2:147, 2:175
debug breakpoint registers (DBR/IBR) 2:16
debug instructions 2:133
debug model 2:243
debugging 2:131, 2:464, 3:595
debugging facilities 2:131
instruction breakpoints 2:464
instruction debug fault 2:131, 2:147, 2:175, 2:243
lower privilege transfer trap 2:131, 2:180, 2:244
single step trap 2:84, 2:94, 2:97, 2:131, 2:148,
2:149, 2:182, 2:243, 2:464
taken branch trap 2:84, 2:94, 2:97, 2:131, 2:148,
2:149, 2:181, 2:244, 2:464, 3:596
Debug registers, moving value to and from 3:636
DEC instruction 3:435, 3:618
Dekker’s algorithm 2:399, 2:400
Denormalization process 3:824
Denormalized finite number 3:539, 3:823, 3:826
denormalized numbers 3:820, 3:823, 3:824
dep 3:45
Dependencies 1:35, 1:36, 1:37, 1:139, 3:335, 3:336
dependency violation 1:35, 1:37, 1:38, 2:450
instruction execution 3:426, 3:549, 3:574, 3:679,
3:733
instruction group 1:35, 1:36, 1:37, 1:38, 1:65
register dependencies 1:35, 1:36, 1:37, 1:38
WAR dependency 1:37, 3:350
DF (direction) flag, EFLAGS register 3:408, 3:419,
3:560, 3:620, 3:638, 3:654, 3:700, 3:718
DIV instruction 3:437
Divide error exception (#DE) 3:437
division operations
double precision — divide 1:193
double precision — square root 1:193
DMA 1:17, 2:406

Index-3

Index

edge sensitive interrupt messages 2:113
Double-extended-precision, IEEE floating-point format
3:826
Double-precision, IEEE floating-point format 3:826
Double-real floating-point format 3:826
DS register 3:419, 3:601, 3:620, 3:654

E

Edge- and Level-sensitive Interrupts 2:113
EDI register 3:638, 3:700, 3:718, 3:722
Effective address 3:604
EF| 2:453, 2:483, 2:484, 2:485, 2:488, 2:490, 2:491
boot services 2:485, 2:490
EFIl boot manager 2:484, 2:485
EFI procedure calls 2:490
EFI system partition 2:484, 2:485
runtime services 2:490, 2:491
EFLAGS register
condition codes 3:414, 3:456, 3:461
flags affected by instructions 3:366
loading 3:597
popping 3:663
popping on return from interrupt 3:577
pushing 3:671
pushing on interrupts 3:563
saving 3:693
status flags 3:417, 3:586, 3:702, 3:727
EIP register 3:396, 3:563, 3:577, 3:589
ENTER instruction 3:440
epc 3:47
ES register 3:419, 3:560, 3:601, 3:654, 3:700, 3:722
ESI register 3:620, 3:638, 3:654, 3:718
ESP register 3:396, 3:658, 3:666
exception deferral 1:53, 2:45, 2:90
combined hardware/software deferral 2:445, 2:446
exception deferral of control speculative loads 2:445
hardware-only deferral 2:445, 2:446
software-only deferral 2:445, 2:446
exception indicator 2:72
exception qualification 2:89
Exceptions
BOUND range exceeded (#BR) 3:381
overflow exception (#OF) 3:563
returning from 3:577
execution unit type 1:23, 1:32, 3:255
Exponent
extracting from floating-point number 3:543
floating-point number 3:821
extended instructions 1:33, 3:255
Extended real
floating-point format 3:826
extensible firmware interface 2:453, 2:483
extensible firmware interface (EFI) 2:249
external interrupt (INT) 2:92, 2:101
control register usage examples 2:469
external (I/O) devices 2:97
external interrupt (INT)
external interrupt architecture 2:465

Index-4

intel.

external interrupt delivery 2:81, 2:101, 2:103, 2:104,
2:105, 2:467
external interrupt masking 2:102, 2:466
external interrupt sampling 2:103
external interrupt states 2:100
inactive 2:467
in-service/none pending 2:468
in-service/one pending 2:468
internal processor interrupts 2:98
interrupt acknowledge (INTA) cycle 2:112
interrupt enabling 2:102
interrupt masking 2:102
interrupt priorities 2:101, 2:465
interrupt registers 2:16
interrupt sources 2:97, 2:104, 2:113, 2:466
interrupt vectors 2:101, 2:102, 2:104, 2:466, 3:563
locally connected devices 2:98
pending 2:82, 2:98, 2:99, 2:102, 2:467, 2:468,
3:427, 3:455, 3:479, 3:487, 3:508, 3:522
external interrupt control registers 2:34, 2:104, 2:214,
2:466, 2:469
Local ID (LID — CR64) 2:104
external task priority (XTP) 2:109, 2:112
XTP cycle 2:113
XTP register 2:467
extr 3:48
Extract exponent and significand, FPU operation 3:543

F

F2XM1 instruction 3:443, 3:543
fabs 3:49
FABS instruction 3:445
fadd 3:50
FADD instruction 3:446
FADDP instruction 3:446
famax 3:51
famin 3:52
fand 3:53
fandcm 3:54
Far call
CALL instruction 3:396
Far pointer
loading 3:601
Far return
RET instruction 3:686
fault 1:92, 2:26, 2:81, 2:85, 2:92, 2:93, 2:94, 2:95,
2:96, 2:126, 2:407, 2:451, 3:255, 3:353
fault suppression 2:88
FBLD instruction 3:449
FBSTP instruction 3:451
fc 3:55
fchkf 3:56
FCHS instruction 3:454
fclass 1:37, 1:46, 1:48, 1:53, 1:89, 1:90, 1:196, 3:57,
3:324, 3:352, 3:356
FCLEX/FNCLEX instructions 3:455
fclrf 3:59
FCMOVcc instructions 3:428, 3:456

Intel® Itanium® Architecture Software Developer's Manual

intgl.

fcmp 1:37, 1:46, 1:48, 1:53, 1:88, 3:60, 3:324, 3:339,
3:352, 3:356, 3:357
FCOM instruction 3:458
FCOMI instruction 3:428, 3:461
FCOMIP instruction 3:461
FCOMP instruction 3:458
FCOMPP instruction 3:458
FCOS instruction 3:464
fevt.fx 3:63
fevt.xf 3:65
fevt.xuf 3:66
FDECSTP instruction 3:466
FDIV instruction 3:467
FDIVP instruction 3:467
FDIVR instruction 3:470
FDIVRP instruction 3:470
Feature information, processor 3:426
Fence 1:64, 2:69, 2:70, 3:429, 3:557, 3:561, 3:577,
3:595, 3:653, 3:655, 3:926
operations 1:64, 2:69, 2:70, 2:71, 3:408, 3:419,
3:456, 3:470, 3:531, 3:543, 3:556
semantics 1:64, 2:69, 2:70, 2:236, 3:921
fetchadd 1:49, 1:51, 1:60, 1:64, 2:69, 2:70, 2:73,
2:177, 2:380, 2:381, 2:398, 3:67, 3:352
FFREE instruction 3:473
FIADD instruction 3:446
FICOM instruction 3:474
FICOMP instruction 3:474
FIDIV instruction 3:467
FIDIVR instruction 3:470
FILD instruction 3:476
FIMUL instruction 3:491
FINCSTP instruction 3:478
FINIT/ENINIT instructions 3:479, 3:508
firmware address space 2:254
firmware entrypoint 2:282
firmware entrypoints 2:252
firmware interface table (FIT) 2:257
firmware model 2:484
firmware procedure 2:283
FIST instruction 3:480
FISTP instruction 3:480
FISUB instruction 3:528
FISUBR instruction 3:531
FLD instruction 3:483
FLD1 instruction 3:485
FLDCW instruction 3:487
FLDENYV instruction 3:489
FLDLZ2E instruction 3:485
FLDL2T instruction 3:485
FLDLG2 instruction 3:485
FLDLN2 instruction 3:485
FLDPI instruction 3:485
FLDZ instruction 3:485
floating-point applications 1:187
execution bandwidth 1:188
execution latency 1:187

Intel® Itanium® Architecture Software Developer’s Manual

Index

memory bandwidth 1:189
memory latency 1:188
performance limiters 1:187
floating-point architecture 1:11, 1:15, 1:75
Floating-point format
biased exponent 3:822
exponent 3:821
fraction 3:821
real number system 3:820
sign 3:821
significand 3:821
floating-point format 3:820, 3:821, 3:822, 3:824
floating-point instructions 1:26, 1:37, 1:81, 3:320,
3:322, 3:366, 3:487, 3:489, 3:508, 3:524
arithmetic instructions 1:88, 3:322, 3:861
integer multiply and add instructions 1:91
memory access instructions 1:81
non-arithmetic instructions 1:89
register to/from general register transfer instructions
1:87
floating-point programming model 1:75
data types and formats 1:75
floating-point register encodings 1:76, 1:77
floating-point register format 1:75, 1:76
floating-point status register 1:24, 1:26, 1:78, 1:79,
1:91
real types 1:75
floating-point register (FR)
high FP reg fault 3:360
low FP reg fault 3:359
floating-point register set 1:189
floating-point software assistance (FP SWA) 2:453
SWA faults 2:453, 2:454, 2:456
SWA traps 2:453, 2:454, 2:455
floating-point status register (FPSR) 1:26, 1:37, 1:78,
1:91, 2:453
floating-point system software
floating-point exception handling 2:453, 2:455
Flushing
caches 3:574, 3:733
TLB entry 3:576
flushrs 1:36, 1:41, 1:42, 1:46, 2:57, 2:117, 2:119,
2:120, 2:123, 2:125, 2:126, 2:127, 2:128
fma 3:70
fmax 3:71
fmerge 3:72
fmin 3:74
fmix 3:75
fmpy 3:77
fms 3:78
FMUL instruction 3:491
FMULP instruction 3:491
fneg 3:79
fnegabs 3:80
fnma 3:81
fnmpy 3:82
FNOP instruction 3:494
fnorm 3:83

Index-5

Index intel.

FNSTENYV instruction 3:489 FRSTOR instruction 3:506

for 3:84 FS register 3:601

FP precision 1:191 FSAVE/FNSAVE instructions 3:506, 3:508

FP subfield handling 1:197 FSCALE instruction 3:511

fpabs 3:85 fselect 3:115

fpack 3:86 fsetc 3:116

fpamax 3:87 FSIN instruction 3:513

fpamin 3:88 FSINCOS instruction 3:515

FPATAN instruction 3:495 FSQRT instruction 3:517

fpecmp 3:89 FST instruction 3:519

fpevt.fx 3:91 FSTCW/FNSTCW instructions 3:522

fpma 3:93 FSTENV/FNSTENYV instructions 3:524

fpmax 3:95 FSTP instruction 3:519

fpmerge 3:96 FSTSW/FNSTSW instructions 3:526

fpmin 3:98 fsub 3:117

fpmpy 3:99 FSUB instruction 3:528

fpms 3:100 FSUBP instruction 3:528

fpneg 3:102 FSUBR instruction 3:531

fpnegabs 3:103 FSUBRP instruction 3:531

fpnma 3:104 fswap 3:118

fpnmpy 3:106 fsxt 3:120

fprcpa 3:107 FTST instruction 3:534

FPREM instruction 3:497 FUCOM instruction 3:536

FPREML1 instruction 3:500 FUCOMI instruction 3:461

fprsgrta 3:109 FUCOMIP instruction 3:461

FPTAN instruction 3:503 FUCOMP instruction 3:536

FPU FUCOMPP instruction 3:536
checking for pending FPU exceptions 3:732 fwb 3:121
constants 3:485 FXAM instruction 3:539
existence of 3:427 FXCH instruction 3:541
floating-point format 3:820, 3:821 fxor 3:122

initialization 3:479 FXTRACT instruction 3:511, 3:543
FPU control word FYL2X instruction 3:545

loading 3:487, 3:489 . . .
RC field 3:480, 3:485, 3:519 FYLZXP1 instruction 3:547

restoring 3:506
saving 3:508, 3:524 G
storing 3:522
FPU data pointer 3:489, 3:506, 3:508, 3:524
FPU flag, CPUID instruction 3:427
FPU instruction pointer 3:489, 3:506, 3:508, 3:524
FPU last opcode 3:489, 3:506, 3:508, 3:524
FPU status word
condition code flags 3:458, 3:474, 3:534, 3:536,

gate interception 2:213
GDT (global descriptor table) 3:610, 3:613
GDTR (global descriptor table register) 3:610, 3:705
general register (GR)

NaT bit 1:21, 1:130, 1:142, 1:143
General-purpose registers

moving value to and from 3:630

3:539 ; .
FPU flags affected by instructions 3:366 popkp]).lng a” 3_'661
loading 3:489 pushing all 3:669
restoring 3:506 getf 3:123 _
saving 3:508, 3:524, 3:526 global TLB purge operations 2:69
TOP field 3:478 GS register 3:601
FPU tag word 3:489, 3:506, 3:508, 3:524
Fraction, floating-point number 3:821
frcpa 1:37, 1:46, 1:48, 1:53, 1:88, 1:192, 1:193, 2:456,
3:111, 3:322, 3:325, 3:352, 3:357 hardware debugger 2:134
FRNDINT instruction 3:505 hint 3:125
frsqrta 1:37, 1:46, 1:48, 1:53, 1:88, 1:192, 1:193, HLT instruction 3:549

2:456, 3:113, 3:322, 3:325, 3:352, 3:357

Index-6 Intel® Itanium® Architecture Software Developer's Manual

i bit
PSR.i 2:81, 2:101, 2:103, 2:104, 2:105, 2:217,
2:409, 2:412, 2:466, 2:467, 3:344
I/O port space 2:238, 2:239, 2:240, 2:241, 2:475,
2:476, 2:477, 3:556, 3:560, 3:652, 3:655
I/O port space model 2:238, 2:239
physical I/O port addressing 2:241
virtual I/O port addressing 2:239
IA-32 application execution model 1:99
I1A-32 instruction set execution 1:22, 1:39, 1:57,
1:100, 2:237
IA-32 operating mode transitions 1:102
instruction set execution in the Itanium architecture
1:100
instruction set modes 1:99
instruction set transitions 1:101, 2:213, 2:238
IA-32 application register state model 1:102
IA-32 application EFLAG register 1:112
IA-32 floating-point registers 1:114
1A-32 general purpose registers 1:102, 1:104, 1:106
IA-32 instruction pointer 1:107
I1A-32 MMX technology registers 1:118
IA-32 segment registers 1:107
IA-32 streaming SIMD extension registers 1:105,
1:119
IA-32 application support 2:248
procedure calls between Itanium and 1A-32
instruction sets 2:461
transitioning between Itanium and IA-32 instruction
sets 2:459
IA-32 architecture 1:5, 1:17, 2:5, 3:5, 3:359
IA-32 architecture handlers 2:462
IA-32 vectors that need Itanium-based OS support
2:463
shared Itanium/IA-32 exception vectors 2:462
unigque IA-32 exception vectors 2:462
unigue Itanium exception vectors 2:462
IA-32 compatible bus transactions 2:248
IA-32 current privilege level 2:216
IA-32 fault and trap handling 2:213
IA-32 faults 3:359
IA-32 floating-point exceptions 2:458
IA-32 GPFault 3:359
IA-32 1/O instructions 2:241, 2:242
IA-32 instruction behavior 2:213, 2:225
IA-32 instruction format 3:360
IA-32 instruction summary 2:226
IA-32 interruption 2:94, 2:246
IA-32 interruption priorities and classes 2:94
IA-32 interruption vector 2:187, 2:245
IA-32 memory ordering 2:236, 2:396
IA-32 MMX technology instructions 1:118, 3:745
IA-32 numeric exception model 2:247
IA-32 physical memory references 2:233
IA-32 privileged system resources 2:213

Intel® Itanium® Architecture Software Developer’s Manual

Index

IA-32 processes during a context switch 2:224
entering 1A-32 processes 2:224
exiting |1A-32 processes 2:225
IA-32 segmentation 1:120, 2:231
IA-32 streaming SIMD extension instructions 1:119,
3:809
IA-32 system and control register behavior 2:213
IA-32 system EFLAG register 2:217
IA-32 system environment 1:5, 1:9, 1:10, 1:17, 2:5,
2:9, 3:5, 3:427, 3:595, 3:596, 3:631, 3:657
IA-32 system register mapping 2:214
IA-32 system registers 2:220
IA-32 control registers 2:220
IA-32 debug registers 2:223
IA-32 machine check registers 2:224
IA-32 memory type range registers (MTRRs) 2:223
IA-32 model specific and test registers 2:223
IA-32 performance monitor registers 2:224
IA-32 system segment registers 2:215
IA-32 TLB forward progress requirements 2:232
IA-32 trap code 2:187
IA-32 usage of Itanium registers 1:122
ALAT 1:122
NaT/NaTVal response for IA-32 instructions 1:122
register stack engine 1:122, 3:595
IA-32 virtual memory references 2:232
protection keys 2:232
region identifiers 2:232
TLB access bit 2:232
TLB dirty bit 2:232
IA-32 virtual memory support 2:213
ic bit
PSR.ic 2:81, 2:82, 2:84, 2:85, 2:88, 2:89, 2:90,
2:91, 2:101, 2:103, 2:123, 2:146, 2:409
IDIV instruction 3:550
IDT (interrupt descriptor table) 3:563, 3:610
IDTR (interrupt descriptor table register) 3:610, 3:705
IEEE considerations 1:92
additions beyond the IEEE standard 1:98
arithmetic operations 1:97, 3:824
floating-point interruptions 1:92
inexact 1:93, 1:96, 2:455, 2:458, 3:443, 3:447,
3:452, 3:465, 3:468, 3:471, 3:481
integer invalid operations 1:97
mandated operations deferred to software 1:97
NaNs 1:77, 1:97, 3:451, 3:495, 3:497, 3:500,
3:529, 3:532, 3:545, 3:547, 3:820,
3:822, 3:823, 3:824, 3:825, 3:827
overflow 1:93, 1:95, 1:96, 2:454, 2:457, 3:414,
3:437, 3:443, 3:446, 3:449, 3:464
tininess 1:96
underflow 1:93, 1:96, 2:454, 2:458, 3:443, 3:445,
3:446, 3:447, 3:452, 3:454, 3:456
IEEE floating-point exception filter 2:453, 2:456
denormal/unnormal operand exception (fault) 2:457
divide by zero exception (fault) 2:457
inexact exception (trap) 2:458
invalid operation exception (fault) 2:457

Index-7

Index

overflow exception (trap) 2:457
underflow exception (trap) 2:458
IEEE-754 2:453, 2:456, 2:458, 3:819
ANSI/IEEE-754 standard compliant 1:187
IF (interrupt enable) flag, EFLAGS register 3:409, 3:719
if-conversion 1:153
illegal dependency fault 1:38, 2:147, 2:450
illegal operation fault 1:19, 1:20, 1:21, 1:38, 2:147,
3:255
implicit serialization 2:13
IMUL instruction 3:553
IN instruction 3:556
INC instruction 3:558, 3:618
Indefinite
description of 3:825
real 3:827
Index_Non 2.1 3:359
Infinity, floating-point format 3:824
in-flight resources 2:15
INIT flows 2:494
initialization event (INIT) 2:491
initialization interrupts 2:80, 2:97, 2:407
PALE_INIT 2:80, 2:92
Initialization FPU 3:479
INS instruction 3:560, 3:683
INSB instruction 3:560
INSD instruction 3:560
inserting/purging of translations 2:427
instruction breakpoint register matching 2:245
IBR.addr 2:245
IBR.mask 2:245
instruction breakpoint registers (IBR) 2:131, 2:132
instruction classes 3:336, 3:337, 3:350, 3:352
instruction dependencies 1:136
control dependencies 1:63, 1:136, 2:388
data dependencies 1:55, 1:137, 1:138, 1:139, 2:13
instruction encoding 1:32
bundles 1:11, 1:30, 1:32, 1:33, 1:128, 1:129, 3:255
instruction slots 1:32, 3:255
template 1:32, 1:33, 1:129, 3:255, 3:256
instruction field names 3:257, 3:260
instruction format 1:128, 3:258
instruction interception 2:213
instruction pointer (IP) 1:19, 1:22, 2:84, 2:410, 2:481
instruction serialization 2:14, 2:15, 2:412, 3:337, 3:429,
3:577
Instruction set
string instructions 3:419, 3:560, 3:620, 3:638,
3:654, 3:722
instruction set architecture (ISA) 1:5, 2:5, 3.5
instruction set features 1:10
instruction set transition model overview 1:10
instruction set transitions 2:33, 2:213, 2:238
instruction slots 1:32, 3:255
instruction slot mapping 1:32, 3:256
instruction stream 1:163, 3:494, 3:508, 3:524, 3:589,
3:647

Index-8

instruction stream alignment 1:163
instruction stream fetching 1:163
instruction type 1:32, 3:255, 3:695
ALU (A) 3:256
branch (B) 3:256
floating-point (F) 3:256
integer (1) 1:129, 3:256
memory (M) 1:129, 3:256
instruction/data TLB miss 2:57, 2:58, 2:59
INSW instruction 3:560
INT3 instruction 3:563
integer computation instructions 1:42
32-bit addresses and integers 1:43
arithmetic instructions 1:42, 1:43, 3:322, 3:861
bit field and shift instructions 1:44, 1:45
large constants 1:45
logical instructions 1:43
Integer, FPU data type
storing 3:480
integer/floating-point conversion 1:197
Intel Architecture (IA) 3:809
Inter-privilege level call
CALL instruction 3:396
Inter-privilege level return
RET instruction 3:686
inter-processor interrupt (IPl) 2:97, 2:98, 2:109, 2:473
inter-processor interrupt message 2:110, 2:494
data fields 2:110, 2:111
Interrupt 2:70, 2:80, 2:81, 2:92, 2:96, 2:97, 2:98, 2:99,
2:100, 2:101, 2:102, 2:103, 2:104, 2:105
Interrupt Acknowledge (INTA) 2:109
Interruption 2:79, 2:80, 2:81, 2:82, 2:83, 2:84, 2:85,
2:86, 2:87, 2:91, 2:92, 2:94, 2:96, 2:103
execution environment 2:409
heavyweight interruptions 2:413, 2:415
interruption handler 2:86, 2:407, 2:408, 2:409,
2:412
interruption handling 2:79, 2:82, 2:84, 2:85, 2:86,
2:412
interruption register state 2:410
lightweight interruptions 2:412
nested interruptions 2:415
resource serialization 2:411, 2:412
interruption model 2:81, 2:245
interruption priorities 2:91, 2:92, 2:94
interruption registers 2:214, 2:408, 2:410
interruption vector address (IVA) 2:408
interruption vector table (IVT) 2:79, 2:96, 2:408
interruption vectors 2:85, 2:96, 2:145, 2:149, 2:408
interruption vector definition 2:146
Interruptions 2:79, 2:80, 2:81, 2:84, 2:85, 2:86, 2:87,
2:91, 2:92, 2:94, 2:96, 2:125, 2:407, 2:408
aborts 2:79, 2:89, 2:91, 2:92, 2:408
faults 2:79, 2:80, 2:85, 2:89, 2:91, 2:92, 2:93, 2:94,
2:95, 2:407, 3:379, 3:381, 3:383, 3:385
interruption handling during instruction execution 2:82
interruption programming model 2:81
interrupts 2:79, 2:80, 2:81, 2:82, 2:85, 2:89, 2:91,
2:92, 2:94, 2:97, 2:98, 2:99, 2:101

Intel® Itanium® Architecture Software Developer's Manual

intgl.

IVA-based interruption 2:84, 2:85, 2:96, 2:408
PAL-based interruption 2:84, 2:407
traps 1:93, 2:79, 2:80, 2:84, 2:85, 2:91, 2:92,
2:94, 2:95, 2:407, 3:557, 3:561, 3:631
Interrupts
interrupt vector 4 3:563
returning from 3:577
software 3:563
interval timer 1:105, 2:16, 2:27, 2:28, 2:98, 2:107,
2:471, 2:472
INTn instruction 3:563
INTO instruction 3:563
invala 1:58, 1:60, 2:127, 2:422, 2:487, 3:126, 3:305,
3:309, 3:352
invala.e 1:58, 1:60, 2:417, 2:418, 2:419, 2:422,
3:305, 3:309, 3:339, 3:352
INVD instruction 3:574
INVLPG instruction 3:576
IOPL (I/O privilege level) field, EFLAGS register 3:409,
3:671, 3:719
IPI ordering 2:112
IRET instruction 3:577
IRETD instruction 3:577
ISR setting 2:145
Itanium architecture 1:1, 1:5, 1:9, 1:11, 1:12, 1:100,
1:102, 1:127, 1:135, 1:142, 2:1, 2:5, 3:1
Itanium data mem faults 3:360
Itanium instruction 1:103, 3:255, 3:335, 3:428, 3:595,
3:596
expressing parallelism 1:129
format 3:462, 3:537
Itanium instruction set 1:17, 3:428, 3:595, 3:596
syntax 1:128, 3:337
Itanium instruction mem faults 3:360
Itanium system environment 1:5, 1:9, 1:10, 1:17, 2:5,
2:9, 2:10, 2:11, 3:5, 3:359, 3:379, 3:381,
3:383, 3:385, 3:387, 3:389, 3:390, 3:392
Itanium-based firmware 1:5, 1:17, 2.5, 3.5
itc 1:24, 1:26, 1:27, 2:27, 2:28, 2:43, 2:44, 2:47,
2:50, 2:58, 2:431, 2:433, 2:434, 2:471
itr 2:40, 2:43, 2:44, 2:47, 2:50, 2:431, 2:432, 2:487,
2:490, 2:491, 3:129, 3:310, 3:311, 3:340

IVA-based interruptions 2:79, 2:80, 2:85, 2:407, 2:408

J

J-bit 3:821

Jcc instructions 3:585
JMP instruction 3:589
jmpe 1:10, 1:99, 1:101
Jump operation 3:589

L

LAHF instruction 3:595, 3:597
Lamport’s algorithm 2:400, 2:401
LAR instruction 3:598

d 3:131

Intel® Itanium® Architecture Software Developer’s Manual

Index

Id.a 1:49, 1:55, 1:59, 1:60, 1:140, 1:142, 1:148, 2:68,
2:69, 2:70, 2:74, 2:380, 2:445, 2:446, 2:447

Id.acq 1:49, 1:58, 1:64, 2:69, 2:70, 2:380, 2:384,
2:385, 2:386, 2:389, 2:391, 2:392, 2:393

Id.c 1:55, 1:56, 1:57, 1:58, 1:140, 1:141, 1:142,
1:148, 2:69, 2:70, 2:446, 2:447

Id.c.clr 1:49, 1:58, 1:59, 1:60, 2:74

Id.c.clr.acq 1:49, 1:58, 1:59, 1:60, 1:64, 2:69, 2:70,
2:74

Id.c.nc 1:49, 1:59, 1:60, 2:74

Id.s 1:49, 1:52, 1:54, 1:144, 2:68, 2:69, 2:70, 2:380,
2:445, 2:446, 2:447

Id.sa 1:49, 1:59, 1:60, 1:144, 2:68, 2:69, 2:70, 2:74,
2:380, 2:418, 2:445, 2:446, 2:447

d16 3:292

Id8.fill 1:26, 1:36, 1:50, 1:53, 1:54, 1:143, 2:417,
2:418, 3:286, 3:287, 3:292, 3:293, 3:294

Idf 3:135

Idf.a 1:49, 1:55, 1:59, 1:60

Idf.c 1:55

Idf.c.clr 1:49, 1:59, 1:60, 2:74

Idf.c.nc 1:49, 1:59, 1:60, 2:74

|df.fill 1:49, 1:50, 1:54, 1:81, 1:143, 2:70, 2:417,
2:418, 3:288, 3:289, 3:296, 3:297, 3:298

Idf.s 1:49, 1:52, 1:54, 2:70

Idf.sa 1:49, 1:59, 1:60, 2:70

Idfp 3:138

Idfp.a 1:49, 1:55, 1:57, 1:59, 1:60

Idfp.c 1:55

ldfp.c.clr 1:49, 1:59, 1:60

Idfp.c.nc 1:49, 1:59, 1:60

ldfp.s 1:49, 1:52, 1:54, 2:70

Idfp.sa 1:49, 1:59, 1:60, 2:70

LDS instruction 3:601

LDT (local descriptor table) 3:613

LDTR (local descriptor table register) 3:613, 3:713

LEA instruction 3:604

LEAVE instruction 3:606

LES instruction 3:601

level sensitive external interrupts 2:113

Ifetch 3:141

LFS instruction 3:601

LGDT instruction 3:610

LGS instruction 3:601

LIDT instruction 3:610

LLDT instruction 3:613

LMSW instruction 3:616

Load effective address operation 3:604

load instruction 1:155, 2:380, 3:871, 3:874, 3:877,
3:880, 3:882

loadrs 1:25, 1:36, 1:42, 1:46, 2:57, 2:92, 2:117,
2:119, 2:120, 2:123, 2:124, 2:125, 2:126

loadrs field 1:42, 2:120, 2:124

RSC.loadrs 1:42, 2:124, 2:125, 2:487

LOCK prefix 3:422, 3:424, 3:618, 3:737, 3:739

Locking operation 3:618

LODS instruction 3:620, 3:683

Index-9

Index

LODSB instruction 3:620
LODSD instruction 3:620
LODSW instruction 3:620
Log (base 2), FPU operation 3:547
Log epsilon, FPU operation 3:545
logical instructions 1:43
long branch handler 2:449
LOOP instructions 3:622
loop support 1:66, 1:165, 1:168
capacity limitations 1:179
conflicts in the ALAT 1:180
counted loop 1:67, 1:165, 1:170, 1:171
counted loop branches 1:170
epilog 1:66, 1:167, 1:168, 1:173
epilog count register (EC) 1:27
explicit prolog and epilog 1:184
implementing reductions 1:183
induction variable 1:166
initiation interval (II) 1:167
kernel 1:66, 1:167, 1:168, 1:173
kernel iteration 1:168
kernel loop 1:168
loop count application register (LC) 1:67, 1:165
loop unrolling 1:133, 1:166, 1:181
loop unrolling prior to software pipelining 1:181
loops with predicated instructions 1:176
multiple-exit loops 1:177
prolog 1:66, 1:167, 1:168, 1:173
redundant load elimination in loops 1:186
register rotation 1:15, 1:168, 1:169
software pipelining and advanced loads 1:179
software pipelining considerations 1:179
software-pipelined loop branches 1:170
source iteration 1:168
source loop 1:168
while loop 1:68, 1:172, 1:174, 3:684, 3:685
LOOPcc instructions 3:622
LSL instruction 3:624
LSS instruction 3:601
LTR instruction 3:628

M

machine check 2:43, 2:44, 2:79, 2:92, 2:222, 2:224,
2:408, 2:492, 2:493, 2:494, 3:428, 3:677,
3:735
machine check (MC) 2:282
machine check abort
PALE_CHECK 2:79, 2:92
machine check abort flows
machine check abort handling in OS 2:493
machine check handling in PAL 2:493
machine check handling in SAL 2:493
machine check aborts 2:483
machine checks 2:265
Machine status word, CRO register 3:616, 3:715
major opcode 1:33, 3:255, 3:256, 3:257
master boot record 2:485
mc bit

Index-10

intel.

PSR.mc 2:82, 2:84, 2:85, 2:101, 2:410, 3:345,
3:349
MCA 2:483
MCA (machine check architecture), CPUID instruction
3:428
MCE (machine check exception) flag, CPUID instruction
3:428
memory acceptance fence 2:475
memory access control 1:197
allocation control 1:61, 1:199
data prefetch 1:198
load-pair instructions 1:197, 1:198
memory access instructions 1:48, 1:49, 1:60, 2:379
memory access ordering 1:63, 2:70
memory ordering instructions 1:64
memory ordering rules 1:64
memory addressing model 1:30, 1:119
memory alignment 2:234
memory attribute 2:44, 2:63, 2:64, 2:65, 2:73, 2:74,
2:75, 3:428
effects of memory attributes on advanced/check loads
2:73
effects of memory attributes on memory reference
instructions 2:73
memory attribute transition 2:74
physical addressing memory attribute 2:65
virtual addressing memory attribute 2:64, 2:74
memory dependency 1:34, 2:69
read-after-write 1:35, 1:37, 1:38, 1:63, 2:69
write-after-read 1:35, 1:37, 1:38, 1:63, 2:69
write-after-write 1:35, 1:37, 1:38, 1:63, 2:69
memory endianess 1:120
memory fence 1:64, 2:396
memory fences 2:112, 2:382
memory hierarchy 1:61
hierarchy control and hints 1:60
memory consistency 1:63, 3:922, 3:923, 3:924
memory mapped /O model 2:238, 2:476
memory model 1:119, 2:231
memory ordering 1:64, 2:69, 2:128, 2:379, 2:380,
2:382, 2:387, 2:388, 2:389, 2:426, 3:926
acquire semantics 1:64, 2:70, 2:236, 2:379
memory ordering executions 2:382
memory ordering interactions 1:121
memory ordering model 2:236, 2:382, 2:395, 2:396
memory ordering semantics 1:64, 2:382
release semantics 1:64, 2:69, 2:236, 2:379
Memory ordering fence 1:64
memory reference 1:135, 1:136, 2:38, 3:378, 3:380,
3:382, 3:384, 3:386, 3:389, 3:391, 3:393
memory synchronization 2:396
mf 1:64, 2:112, 2:382, 3:145
mf.a 2:69, 2:70, 2:112, 2:475, 2:476, 2:477, 2:478,
3:305, 3:309
Min/Max/AMin/AMax 1:196
mix 3:146
MMX technology 1:15, 1:100, 1:103, 1:104, 1:118,
3:359, 3:428, 3:745, 3:746, 3:747, 3:749

Intel® Itanium® Architecture Software Developer's Manual

intgl.

mov 1:29, 1:36, 1:37, 1:45, 1:48, 1:66, 1:72, 1:73,
2:13, 2:18, 2:19, 2:47, 2:50, 2:122, 2:125
mov ar 3:149
mov cr 3:152
mov fr 3:153
mov gr 3:154
mov imm 3:154
mov indirect 3:156
MOV instruction 3:630
MOV instruction (control registers) 3:634
MOV instruction (debug registers) 3:636
mov ip 3:159
mov pr 3:160
mov psr 3:161
mov um 3:162
movl 3:163
MOVS instruction 3:638, 3:683
MOVSB instruction 3:638
MOVSD instruction 3:638
MOVSW instruction 3:638
MOVSX instruction 3:640
MOVZX instruction 3:641
MSR flag, CPUID instruction 3:427
MSRs (model specific registers)
existence of 3:427
reading 3:677
writing 3:735
MTRRs (memory type range registers)
flag, CPUID instruction 3:428
MUL instruction 3:371, 3:643
multimedia instructions 1:11, 1:15, 1:39, 1:70
data arrangement 1:72
parallel arithmetic 1:70
parallel shifts 1:71
multimedia support 1:15
multiple address space (MAS) 1:15, 2:37, 2:427, 2:428
multiple status fields 1:193, 1:194
multiply-add instruction 1:192
multiprocessor (MP)
multiprocessor instruction cache coherency 2:235
multiprocessor TLB coherency 2:233
mux 3:164

N

NaN
description of 3:822, 3:824
encoding of 3:823, 3:827
operating on 3:825
SNaNs vs. QNaNs 3:824
testing for 3:534
NaNs 1:77, 1:97, 1:196, 3:451, 3:495, 3:497, 3:500,
3:529, 3:532, 3:545, 3:547, 3:820, 3:822
NaT (not a thing) 1:127
NaT page consumption fault 2:72
NaTPage attribute 2:72
NaTVal (not a thing value) 1:21
Near call

Intel® Itanium® Architecture Software Developer’s Manual

Index

CALL instruction 3:396
Near return
RET instruction 3:686
NEG instruction 3:618, 3:645
non-access instructions 2:87
non-cacheable memory 2:69
Nonconforming code segment 3:592
Non-number encodings, FPU 3:822
non-programmer-visible state 2:382
non-speculative 1:52, 2:67, 2:68, 2:69, 2:74, 2:447
non-speculative memory references 1:135, 2:63
data prefetch hint 1:136
loads from memory 1:135
stores to memory 1:135
non-temporal hint 1:199
nop 3:167
NOP instruction 3:647
no-recovery model 2:88, 2:89
Normalized finite number 3:821, 3:823
normalized numbers 1:77, 3:820, 3:821, 3:823
not a thing attribute (NaTPage) 2:72
NOT instruction 3:618, 3:648
Notation
reserved bits 3:829
NT (nested task) flag, EFLAGS register 3:577

O

OF (carry) flag, EFLAGS register 3:553
OF (overflow) flag, EFLAGS register 3:373, 3:375,
3:563, 3:643, 3:698, 3:708, 3:710, 3:725
OLR 2:282
operand screening support 1:195
operating environments 1:9, 1:10
Optimization of Memory References
Using Post-increment Loads and Stores 1:147
optimization of memory references 1:144
data interference 1:145
loop optimization 1:147
minimizing check code 1:148
optimizing code size 1:146
or 3:168
OR instruction 3:618, 3:650
orderable instruction 2:380, 2:384
ordered cacheable operations 2:393
ordering semantics 1:64, 2:69, 2:70, 2:383, 2:384
acquire 1:64, 2:69, 2:70, 2:236, 2:237, 2:379,
2:384
fence 1:64, 2:69, 2:70, 2:236, 2:237, 2:379, 2:384,
3:429, 3:557, 3:561, 3:577, 3:595
release 1:64, 2:69, 2:70, 2:236, 2:237, 2:379,
2:384, 3:686
unordered 1:64, 2:69, 2:70, 2:236, 2:379, 2:384,
3:456, 3:458, 3:461, 3:474, 3:534
OS boot flow sample code 2:497
OS kernel 2:485, 2:487
OS loader 2:484, 2:485
OUT instruction 3:652

Index-11

Index

OUTS instruction 3:654, 3:683

OUTSB instruction 3:654

OUTSD instruction 3:654

OUTSW instruction 3:654

overflow 1:14, 1:93, 1:95, 1:96, 2:454, 2:457, 3:414,
3:437, 3:443, 3:449, 3:476, 3:483, 3:485

Overflow exception (#OF) 3:563

P

pack 3:169
PACKSSDW instruction 3:751
PACKSSWSB instruction 3:751
PACKUSWB instruction 3:754
padd 3:171
PADDB instruction 3:756
PADDD instruction 3:756
padding restrictions 2:234
PADDSB instruction 3:759
PADDSW instruction 3:759
PADDUSB instruction 3:762
PADDUSW instruction 3:762
PADDW instruction 3:756
PAE (physical address extension) flag, CPUID instruction
3:427
PAL 1:5, 2:5, 2:320, 2:483, 2:485, 2:488, 2:489,
2:490, 2:491, 2:493, 3:5
entrypoints 2:252
procedures 2:252
PAL power on/reset 2:259
PALE_RESET 2:79
PAL procedure calling conventions 2:288
PAL procedure calls 2:488
PAL procedures 2:284, 2:483, 2:488, 2:490, 2:491
stacked PAL call 2:489
stacked registers 1:132, 2:488, 2:489
static PAL call 2:488
PAL self-test control word 2:264
PAL_BUS_GET_FEATURES 2:295
PAL_BUS SET_FEATURES 2:297
PAL_CACHE_FLUSH 2:298
PAL_CACHE_INFO 2:302
PAL_CACHE_INIT 2:305
PAL_CACHE_LINE_INIT 2:306
PAL_CACHE_PROT_INFO 2:307
PAL_CACHE_READ 2:309
PAL_CACHE_SHARED_INFO 2:311
PAL_CACHE_SUMMARY 2:313
PAL_CACHE_WRITE 2:314
PAL_COPY_INFO 2:316
PAL_COPY_PAL 2:317
PAL_DEBUG_INFO 2:318
PAL_ENTER_IA 32 _ENV 2:319
PAL_FIXED_ADDR 2:327
PAL_FREQ BASE 2:328
PAL_FREQ_RATIOS 2:329
PAL_HALT 2:330

Index-12

intel.

PAL_HALT_INFO 2:333
PAL_HALT_LIGHT 2:334
PAL_LOGICAL_TO_PHYSICAL 2:335
PAL_MC_CLEAR_LOG 2:338
PAL_MC_DRAIN 2:339
PAL_MC_DYNAMIC_STATE 2:340
PAL_MC_EXPECTED 2:351
PAL_MC_RESUME 2:273
PAL_MEM_ATTRIB 2:354
PAL_PERF_MON_INFO 2:355
PAL_PLATFORM_ADDR 2:356
PAL_PMI_ENTRYPOINT 2:357
PAL_PREFETCH_VISIBILITY 2:358
PAL_PROC_GET_FEATURES 2:359
PAL_PROC_SET_FEATURES 2:362
PAL_PTCE_INFO 2:363
PAL_REGISTER_INFO 2:364
PAL_RSE_INFO 2:365
PAL_TEST_INFO 2:366
PAL_TEST_PROC 2:367
PAL_VERSION 2:369
PAL_VM_INFO 2:370
PAL_VM_PAGE_SIZE 2:371
PAL_VM_SUMMARY 2:372
PAL_VM_TR_READ 2:374
PAL-based interrupt states 2:100
PAL-based interruptions 2:79, 2:80, 2:84, 2:96, 2:407,
2:408
PALE_CHECK 2:265
PALE_INIT 2:274
PALE_RESET 2:259
PAND instruction 3:765
PANDN instruction 3:767
pavg 3:174
pavgsub 3:177
pcmp 3:179
PCMPEQB instruction 3:769
PCMPEQD instruction 3:769
PCMPEQW instruction 3:769
PCMPGTB instruction 3:772
PCMPGTD instruction 3:772
PCMPGTW instruction 3:772
PE (protection enable) flag, CRO register 3:616
performance counters 1:28, 2:135, 2:136, 2:223,
2:479, 3:679
Performance Monitor Events 2:140
performance monitors 1:28, 2:135, 2:137, 2:215,
2:479, 2:480
performance monitor code sequences 2:141
performance monitor configuration (PMC) 2:135,
2:137
performance monitor data (PMD) 2:135, 2:479
performance monitor data registers (PMD) 1:19, 1:28
performance monitor interrupt service routine 2:141
performance monitor overflow registers 2:139
performance monitor registers 2:135, 2:137, 2:480
performance monitoring mechanisms 2:479

Intel® Itanium® Architecture Software Developer's Manual

intgl.

Performance-monitoring counters
reading 3:679
PGE (page-table-entry global flag), CPUID instruction
3:428
physical addressing 2:61, 2:64, 2:65, 2:76, 2:490,
2:491, 3:427, 3:428, 3:635
Pi
loading 3:485
pk bit 2:430
PSR.pk 2:82, 2:85, 2:430, 3:345, 3:350
platform management interrupt (PMI) 2:92, 2:278,
2:407, 2:483, 2:491, 2:495
PMADDWD instruction 3:775
pmax 3:181
PMI Flows 2:495
pmin 3:182
pmpy 3:183
pmpyshr 3:184
PMULHW instruction 3:777
PMULLW instruction 3:779
POP instruction 3:657
POPA instruction 3:661
POPAD instruction 3:661
popcnt 3:186
POPF instruction 3:663
POPFD instruction 3:663
population count 1:74, 3:277
POR instruction 3:781
power management 2:80, 2:281, 2:495
NORMAL 1:160, 3:539, 3:903, 3:905
predicate register (PR)
predicate register transfers 1:48
Predication 1:11, 1:13, 1:45, 1:131, 1:134, 1:151,
1:152, 1:153, 1:154, 1:155, 1:156
cache pollution reduction 1:156
downward code motion 1:155, 1:156
guidelines for removing branches 1:158
instruction prefetch hints 1:164
instruction scheduling 1:136, 1:138, 1:152
off-path predication 1:154
optimizing program performance using predication
1:153
performance costs of branches 1:151
predication considerations 1:156
predication in the itanium architecture 1:152
prediction resources 1:69, 1:151, 1:152
upward code motion 1:154, 1:155
Prefixes
LOCK 3:618
REP/REPE/REPZ/REPNE/REPNZ 3:683
preservation of floating-point state in the OS 2:421
preserved 2:282
preserved registers 2:417, 2:422
preserving ALAT coherency 2:422
privilege levels 1:22, 2:13, 3:595, 3:596, 3:686
current privilege level (CPL) 2:13, 3:730
privilege level transfer 1:74
processor status register (PSR) 2:13, 2:16, 2:18

Intel® Itanium® Architecture Software Developer’s Manual

Index

processor status register fields 2:19
processor status register instructions 2:18
privileged operation fault 2:147
probe 2:47, 2:50, 2:63, 2:87, 3:187, 3:310, 3:311,
3:357
Procedure 1:39, 1:40, 1:41, 3:379, 3:396, 3:397,
3:398, 3:399, 3:400, 3:401, 3:402, 3:403
procedure calls 1:39, 1:132, 2:417, 2:461, 2:488,
2:490
br.call 1:27, 1:36, 1:40, 1:65, 1:67, 3:317
brret 1:27, 1:36, 1:40, 1:65, 1:67, 2:47, 2:57,
2:86, 2:92, 3:315, 3:317
branch instructions 1:68, 1:133, 3:314, 3:315,
3:331
branches and hints 1:132
loops and software pipelining 1:133
register stack engine 1:39, 1:132, 2:86, 2:115,
3:595
rotating registers 1:23, 1:133
stacked register 1:40, 2:488, 2:490
Procedure stack
popping values from 3:657
pushing values on 3:666
Processor 2:249
processor abstraction layer 1:5, 1:17, 2:5, 2:483, 3:5
processor abstraction layer (PAL) 2:249, 2:251, 2:283
processor caches 2:75, 2:382
processor identifiers (CPUID) 1:19
processor identification registers 1:29
processor interrupt block 2:109, 2:110, 2:111, 2:473
processor min-state save area 2:270
processor ordered 2:236
processor state 2:289
system state 2:13, 2:15, 2:16
processor state parameter 2:268
processor status register (PSR) 2:13, 2:16, 2:18,
2:137, 2:410
programmed I/O 2:404, 2:405
protected mode 1:10, 1:100, 1:102, 1:109, 1:110,
1:111, 2:222, 2:460, 3:366, 3:374, 3:376
protection key registers (PKR) 2:16, 2:48
protection keys 1:16, 2:16, 2:48, 2:49, 2:427, 2:429,
2:430, 2:431, 2:437
psad 3:189
PSE (page size extensions) flag, CPUID instruction
3:427
pseudo-code functions 3:245
pshl 3:190
pshladd 3:191
pshr 3:192
pshradd 3:194
PSLLD instruction 3:783
PSLLQ instruction 3:783
PSLLW instruction 3:783
PSRAD instruction 3:786
PSRAW instruction 3:786
PSRLD instruction 3:789
PSRLQ instruction 3:789

Index-13

Index

PSRLW instruction 3:789

psub 3:195

PSUBB instruction 3:792

PSUBD instruction 3:792

PSUBSB instruction 3:795

PSUBSW instruction 3:795

PSUBUSB instruction 3:798

PSUBUSW instruction 3:798

PSUBW instruction 3:792

ptc.e 2:41, 2:43, 2:50, 2:57, 2:428, 2:434, 2:435,
2:436, 3:198, 3:310, 3:313, 3:341, 3:342

ptc.g 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63, 2:69,
2:70, 2:435, 2:436, 3:310, 3:312, 3:341

ptc.g, ptc.ga 3:199

ptc.ga 1:58, 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63,
2:69, 2:70, 2:428, 2:435, 2:436, 3:310

ptc.l 3:201

ptr 2:40, 2:43, 2:47, 2:50, 2:57, 2:431, 2:433, 2:487,
3:202, 3:310, 3:312, 3:341, 3:342, 3:345

PUNPCKHBW instruction 3:801

PUNPCKHDQ instruction 3:801

PUNPCKHWD instruction 3:801

PUNPCKLBW instruction 3:804

PUNPCKLDQ instruction 3:804

PUNPCKLWD instruction 3:804

PUSH instruction 3:666

PUSHA instruction 3:669

PUSHAD instruction 3:669

PUSHF instruction 3:671

PUSHFD instruction 3:671

PXOR instruction 3:807

Q

QNaN
description of 3:824
operating on 3:825

qualified exception deferral 2:90

R

RAR (read-after-read) dependency 3:335
RAW (read-after-write) dependency 3:335
RC (rounding control) field, FPU control word 3:480,
3:485, 3:519
RCL instruction 3:673
RCR instruction 3:673
RDMSR instruction 3:427, 3:677, 3:681
RDPMC instruction 3:679
RDTSC instruction 3:427, 3:681
reader of a resource 3:335
real mode 1:10, 1:100, 1:102, 1:109, 1:111, 2:460,
3:489, 3:506, 3:508, 3:524, 3:577, 3:663
real number 3:445, 3:447, 3:451, 3:454, 3:464, 3:468,
3:471, 3:480, 3:492, 3:495, 3:497, 3:500
Real numbers
encoding 3:822, 3:823, 3:827
indefinite 3:827

Index-14

intel.

notation 3:821
system 3:820
recovery model 2:88, 2:89
region identifier (RID) 2:38, 2:48, 2:427
region register (RR) 2:48, 2:427
register dependency 1:34, 1:35, 1:36
read-after-write (RAW) 1:35
write-after-read (WAR) 1:35
write-after-write (WAW) 1:35
register file transfers 1:72
register preservation 2:417
preservation at different points in the OS 2:420
preservation of stacked registers in the OS 2:420
preserving floating-point registers 2:418
preserving general registers 2:418
register rotation 1:15, 1:23, 1:168, 1:169
initializing rotating predicates 1:48, 1:169
register stack 1:14, 1:22, 1:23, 1:39, 1:40, 1:41, 1:42,
2:86, 2:115, 2:116, 2:118, 2:487, 3:446
clean partition 2:118, 2:124
current frame 1:22, 1:40, 2:86, 2:115, 2:118, 2:487,
3:440
dirty partition 2:118, 2:124
invalid partition 2:118, 2:124
register stack instructions 1:41
register stack operation 1:39
register stack configuration 1:23, 1:24, 1:42, 2:117,
2:120, 2:487
RSC 1:23, 1:24, 1:25, 1:42, 2:117, 2:120, 2:121,
2:125, 2:487, 3:354, 3:355
register stack engine 1:24, 1:39, 2:86, 2:115
release semantics 1:64, 2:69, 2:236, 2:379
release stores 2:380, 2:382, 2:393
Remainder, FPU operation 3:497, 3:500
REP/REPE/REPZ/REPNE/REPNZ prefixes 3:419,
3:560, 3:654, 3:683
reserved 1:19, 1:20, 1:21, 2:97, 2:283, 3:255, 3:426,
3:428, 3:429, 3:563, 3:597, 3:599, 3:625
Reserved bits 3:829
RET instruction 3:686
rfi 1:10, 1:34, 1:36, 1:38, 1:46, 1:67, 1:99, 2:18, 2:19,
2:57, 2:79, 2:81, 2:84, 2:86, 2:87, 2:88, 2:92
ROL instruction 3:673
ROR instruction 3:673
Rotate operation 3:673
Rounding
round to integer, FPU operation 3:505
RPL field 3:379
RSE 1:24, 1:25, 1:26, 1:39, 1:132, 2:86, 2:115, 2:116,
2:117, 2:119, 2:120, 2:121, 2:123, 2:124
RSE byte order 2:121
RSE control instructions 2:123
RSE initialization 2:130
RSE internal state 2:117
RSE interruptions 2:125
RSE mode 1:25, 2:120
RSE operation instructions and state modification
2:119
RSE privilege level 1:25, 2:120

Intel® Itanium® Architecture Software Developer's Manual

intgl.

rsm 2:18, 2:19, 2:33, 2:103, 2:104, 2:138, 2:230,
2:412, 2:466, 2:479, 3:207, 3:309, 3:312

RSM instruction 3:692

rum 1:73, 2:13, 2:18, 2:138, 2:479, 3:209, 3:309,
3:312, 3:338, 3:345, 3:357

S

SAL 1.5, 1:17, 2:5, 2:460, 2:483, 2:484, 2:485,
2:488, 2:490, 2:491, 2:492, 2:493, 2:494
SAL procedure calls 2:490
SAL instruction 3:694, 3:726
SALE_ENTRY 2:261
SAR instruction 3:694, 3:726
SBB instruction 3:618, 3:698
Scale, FPU operation 3:511
SCAS instruction 3:683, 3:700
SCASB instruction 3:700
SCASD instruction 3:700
SCASW instruction 3:700
scratch 2:283
scratch registers 2:81, 2:417, 2:422
Segment descriptor
segment limit 3:624
Segment limit 3:624
Segment registers
moving values to and from 3:630
Segment selector
RPL field 3:379
self test state parameter 2:262
self-modifying code 2:402
Semaphore 3:302
semaphore instructions 1:35, 1:51, 2:380, 3:302
semaphore operations 1:51, 2:235, 2:382, 2:391,
2:392
Semaphores
behavior of uncacheable and misaligned
semaphores 2:381
sequential consistency (SC)
SC system 2:395
sequential semantics 2:70
inter-processor interrupt messages 2:70, 2:110,
2:111
sequential pages 2:70
serialization 2:13, 2:14, 2:15, 2:411, 2:412, 3:335,
3:336, 3:337, 3:429, 3:577, 3:595
SETcc instructions 3:702
setf 3:210
SF (sign) flag, EFLAGS register 3:373, 3:375
SGDT instruction 3:705
SHAF instruction 3:693
shl 3:212
SHL instruction 3:694, 3:726
shladd 3:213
shladdp4 3:214
SHLD instruction 3:708
shr 3:215

Intel® Itanium® Architecture Software Developer’s Manual

Index

SHR instruction 3:694, 3:726
SHRD instruction 3:710
shrp 3:216
SIDT instruction 3:705
Sign, floating-point number 3:821
signed infinities 3:819, 3:822, 3:824
Signed infinity 3:824
Signed zero 3:822
signed zeros 3:819, 3:820, 3:822
Significand
extracting from floating-point number 3:543
of floating-point number 3:821
Sine, FPU operation 3:513, 3:515
single address space (SAS) 1:16, 2:37, 2:427, 2:429,
2:431
single instruction multiple data (SIMD) 3:810
single stepping 2:87
Single-precision, IEEE floating-point format 3:826
Single-real floating-point format 3:826
SLDT instruction 3:713
SMSW instruction 3:715
SNaN
description of 3:824
operating on 3:825
typical uses of 3:825
sof field
CFM.sof 2:84, 2:118, 2:119, 2:123, 2:124, 2:127
software pipelining 1:11, 1:15, 1:133, 1:167, 1:179,
1:181
sol field
CFM.sol 2:119, 2:124, 2:127
special instruction notations 3:261
special use registers 2:417
Speculation 1:11, 1:12, 1:130, 1:135, 1:139, 1:144,
1:145, 2:67, 2:68, 2:69, 2:445, 2:447
advanced load 1:49, 1:55, 1:56, 1:57, 1:59, 1:140,
1:141, 1:142, 1:148, 2:69, 2:73, 2:74
advanced load check 1:56, 1:57, 1:142, 3:303,
3:304
advanced load example 1:141
always-defer model 2:88
check load 1:49, 1:55, 1:57, 1:58, 1:59, 1:141,
1:142, 2:73, 2:74
combining data and control speculation 1:144
control speculation 1:12, 1:51, 1:52, 1:53, 1:54,
1:59, 1:130, 1:139, 1:142, 1:143, 2:447
control speculation example 1:143
control speculative load 1:12, 1:142, 1:143, 1:144
data speculation 1:12, 1:55, 1:56, 1:59, 1:60,
1:131, 1:139, 1:140, 2:447
recovery code 1:12, 1:13, 1:56, 1:141, 1:142,
1:143, 1:144, 2:446, 2:447
recovery code example 1:141
speculation attributes 2:67
speculation check 1:52, 1:56, 1:144, 3:282, 3:303,
3:304
speculation considerations 1:144
speculation model in the itanium architecture 1:139,
1:140

Index-15

Index

speculation recovery code 2:447
speculation related exception handlers 2:447
speculative 1:12, 1:13, 1:52, 155, 2:67, 2:68, 2:69,
2:74, 2:447
speculative load exceptions 2:89
speculatively accessible 2:68
speculatively inaccessible 2:68
unaligned handler 2:447
speculative advanced load 1:144
spillffill 1:54, 1:81, 1:87, 2:86, 2:115, 2:116, 2:119
spin lock 2:397, 2:398
square root operations 1:192
Square root, FPU operation 3:517
srlz 3:217
SS register 3:601, 3:631, 3:658
ssm 2:18, 2:19, 2:33, 2:103, 2:138, 2:412, 2:479,
3:218, 3:309, 3:312, 3:341, 3:357, 3:692
st 1:13, 1:49, 1:60, 2:70, 2:384, 2:386, 2:387, 2:388,
2:389, 2:391, 2:394, 2:395, 3:219, 3:357
st.rel 1:49, 1:60, 1:64, 2:69, 2:70, 2:112, 2:380, 2:384,
2:385, 2:387, 2:388, 2:389, 2:392, 2:393
st.spill 1:49, 1:60, 2:70
stl 1:58, 3:286, 3:287, 3:295, 3:357, 3:854, 3:857,
3:858
st16 3:295
st8.spill 1:26, 1:36, 1:37, 1:51, 1:53, 1:54, 1:143,
2:417, 2:418, 3:286, 3:287, 3:295, 3:338
stack frame 1:14, 1:22, 1:23, 1:25, 1:36, 1:39, 1:40,
1:41, 1:42, 2:115, 2:116, 3:440, 3:441, 3:442
Stack pointer (ESP register) 3:666
stacked calling convention 2:283
stacked registers 1:21, 1:40, 1:132, 2:115, 2:116,
2:117, 2:118, 2:417, 2:420, 2:487
deallocated 2:127
stacked general registers 1:21, 2:115, 2:418
state mappings 3:359
static calling convention 2:283
static general registers 1:21, 2:115, 2:418
Status flags, EFLAGS register 3:414, 3:417, 3:456,
3:461, 3:586, 3:702, 3:727
STC instruction 3:717
STD instruction 3:718
stf 1:49, 1:60, 2:70, 3:221, 3:288, 3:289, 3:298, 3:299,
3:357

stf.spill 1:49, 1:51, 1:54, 1:60, 1:81, 1:143, 2:70,
2:417, 2:418, 3:288, 3:289, 3:298, 3:299

STl instruction 3:719

store buffers 2:382, 2:389, 2:390, 2:391

store instruction 2:380, 3:871, 3:874, 3:877, 3:880,
3:882, 3:923, 3:924, 3:926

STOS instruction 3:683, 3:722

STOSB instruction 3:722

STOSD instruction 3:722

STOSW instruction 3:722

STR instruction 3:724

streaming SIMD extension technology 1:100, 3:359,
3:428

Index-16

intel.

String operations 3:419, 3:560, 3:620, 3:638, 3:654,
3:722
sub 3:223
SUB instruction 3:372, 3:434, 3:618, 3:725
subpaging 2:442, 2:443
sum 1:73, 2:13, 2:18, 2:138, 2:479, 3:224, 3:309,
3:312, 3:338, 3:345, 3:357, 3:433, 3:446
supervisor accesses 2:234
sxt 3:225
sync 3:226
system abstraction layer 1:5, 1:17, 2:5, 2:483, 3.5
system abstraction layer (SAL) 2:249, 2:283
system architecture features 1:15, 2:11
support for multiple address space operating systems
1:15
support for single address space operating systems
1:16
system performance and scalability 1:16
system security and supportability 1:16
system calls 2:422, 2:423, 2:424
system descriptors 2:215
system flag interception 2:213
system memory model 2:231
system register model 2:17, 2:213
IA-32 state 1:104, 1:106, 2:213, 2:214
shared 1:106, 2:214, 2:215, 3:618
undefined 1:103, 1:104, 1:106, 2:214, 3:383, 3:385,
3:387, 3:388, 3:390, 3:392, 3:394, 3:429
unmodified 1:103, 1:104, 1:106, 2:214, 3:580
system register resources 2:13, 2:15, 2:16

T

tak 2:49, 2:50, 2:63, 2:87, 2:430, 3:227, 3:310, 3:313,
3:341, 3:342, 3:345, 3:352, 3:357
Tangent, FPU operation 3:503
Task gate 3:593
Task register
loading 3:628
storing 3:724
Task switch
CALL instruction 3:396
return from nested task, IRET instruction 3:577
tbit 1:37, 1:46, 1:48, 1:53, 1:131, 3:228, 3:279, 3:352,
3:356, 3:357
template 1:32, 1:33, 1:129, 3:255, 3:256
temporal hint 1:199, 3:925
TEST instruction 3:727
thash 2:50, 2:54, 2:55, 2:56, 2:440, 2:441, 3:230,
3:310, 3:313, 3:340, 3:341, 3:345, 3:352
Time-stamp counter, reading 3:681
Tiny number 3:823
TLB 1:57, 2:16, 2:29, 2:32, 2:37, 2:38, 2:39, 2:40,
2:41, 2:42, 2:43, 2:44, 2:45, 2:46, 2:47, 2:48
page not present vector 2:96, 2:150, 2:442
TLB miss 2:42, 2:51, 2:52, 2:55, 2:56, 2:57, 2:58,
2:59, 2:439
TLB miss handlers 2:59, 2:438, 2:441

Intel® Itanium® Architecture Software Developer's Manual

intgl.

TLB purges 2:39, 2:42, 2:44
translation insertion format 2:45
VHPT translation vector 2:96, 2:150, 2:440
TLB entry, invalidating (flushing) 3:576
tnat 1:37, 1:46, 1:48, 1:53, 1:54, 3:231, 3:279, 3:280,
3:352, 3:356, 3:357
tpa 2:50, 2:63, 2:86, 2:87, 3:233, 3:310, 3:313,
3:341, 3:342, 3:345, 3:352, 3:357
translation caches (TCs) 2:433
TC insertion 2:433
TC purge 2:431, 2:434
translation lookaside buffer (TLB) 2:16, 2:37, 2:39,
3:428, 3:576
translation registers (TRs) 2:431
TR insertion 2:432
TR purge 2:431, 2:432, 2:433
trap 1:93, 1:95, 2:84, 2:85, 2:94, 2:95, 2:96, 2:407,
3:410, 3:563, 3:564, 3:565, 3:566, 3:567
TS (task switched) flag, CRO register 3:411
TSC (time stamp counter) flag, CPUID instruction 3:427
TSD flag, CR4 register 3:681
TSS
relationship to task register 3:724
ttag 2:50, 2:53, 2:54, 2:55, 2:56, 2:439, 3:234, 3:310,
3:313, 3:345, 3:352, 3:357

U

UC memory attribute 2:240
UD2 instruction 3:729
unaligned reference handler 2:447, 2:448, 2:449
Uncacheable 2:64, 2:65, 3:925
uncacheable pages 2:66
unchanged 2:19, 2:157, 2:283, 3:464, 3:479, 3:503,
3:511, 3:513, 3:515, 3:664, 3:686, 3:863
Undefined
format opcodes 3:534
undefined behavior 1:38
underflow 1:14, 1:93, 1:96, 2:454, 2:458, 3:443,
3:445, 3:446, 3:447, 3:448, 3:452, 3:454
Underflow, numeric 3:823
unimplemented addresses 2:63
unimplemented physical address bits 2:62
unimplemented virtual address bits 2:62
unnormalized numbers 1:77
unordered semantics 2:379
Unordered values 3:458, 3:461, 3:534, 3:536
unpack 3:235
unsupported data reference handler 2:449, 2:450
user mask (UM) 1:19, 1:28

V

vector numbers 2:80, 2:101, 2:465, 3:367, 3:571
VERR instruction 3:730
Version information, processor 3:426

Intel® Itanium® Architecture Software Developer’s Manual

Index

VERW instruction 3:730
VHPT 2:28, 2:29, 2:34, 2:37, 2:38, 2:39, 2:41, 2:47,
2:48, 2:50, 2:51, 2:52, 2:53, 2:54, 2:55
TLB and VHPT search faults 2:59
TLB/VHPT search 2:58, 2:59
translation searching 2:57
VHPT configuration 2:51
VHPT searching 2:52
VHPT short format 2:52
VHPT short-format index 2:55
VHPT updates 2:438
VHPT walker 2:39, 2:41, 2:48, 2:51, 2:52, 2:53,
2:54, 2:55, 2:56, 2:57, 2:58, 2:59
virtual addressing 2:37, 2:38, 2:63, 2:74, 2:487,
2:490, 2:491
virtual aliasing 2:61
virtual hash page table (VHPT) 2:28, 2:34, 2:37, 2:51
virtual region number (VRN) 2:38, 2:62, 2:427
virtualized interrupt flag 2:217
visible 1:64, 2:69, 2:70, 2:380, 2:386, 3:598, 3:624,
3:926
VM (virtual 8086 mode) flag, EFLAGS register 3:577
VM86 1:10, 1:100, 1:102, 1:109, 1:110, 2:219, 2:222,
2:460, 3:569, 3:570
VME (virtual 8086 mode enhancements) flag, CPUID
instruction 3:427
VME extensions 2:217, 2:222

W

WAIT/FWAIT instructions 3:732

WAR (write-after-read) dependency 3:335
WAW (write-after-write) dependency 3:335
WBINVD instruction 3:733

Write BSPSTORE 2:129

Write-back and invalidate caches 3:733
writer of a resource 3:335

WRMSR instruction 3:427, 3:735

X

XADD instruction 3:618, 3:737

xchg 1:49, 1:51, 1:60, 1:64, 2:69, 2:70, 2:73, 2:177,
2:380, 2:392, 3:237, 3:357, 3:387, 3.618

XCHG instruction 3:618, 3:739

XLAT/XLATB instruction 3:741

xma 3:239

xmpy 3:241

xor 3:242

XOR instruction 3:618, 3:743

Z

Zero, floating-point format 3:822

ZF (zero) flag, EFLAGS register 3:422, 3:424, 3:598,
3:622, 3:624, 3:683, 3:730

zxt 3:243

Index-17

Index

Index-18

Intel® Itanium® Architecture Software Developer's Manual

	Part I: Application Architecture Guide
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Instruction Set Reference
	1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptions
	1.3.2 Part 2: IA-32 Instruction Set Descriptions

	1.4 Terminology
	1.5 Related Documents
	1.6 Revision History

	Introduction to the Intel® Itanium® Architecture 2
	2.1 Operating Environments
	2.2 Instruction Set Transition Model Overview
	2.3 Intel® Itanium® Instruction Set Features
	2.4 Instruction Level Parallelism
	2.5 Compiler to Processor Communication
	2.6 Speculation
	2.6.1 Control Speculation
	2.6.2 Data Speculation
	2.6.3 Predication

	2.7 Register Stack
	2.8 Branching
	2.9 Register Rotation
	2.10 Floating-point Architecture
	2.11 Multimedia Support
	2.12 Intel® Itanium® System Architecture Features
	2.12.1 Support for Multiple Address Space Operating Systems
	2.12.2 Support for Single Address Space Operating Systems
	2.12.3 System Performance and Scalability
	2.12.4 System Security and Supportability

	2.13 Terminology

	Execution Environment 3
	3.1 Application Register State
	3.1.1 Reserved and Ignored Registers and Fields
	3.1.2 General Registers
	3.1.3 Floating-point Registers
	3.1.4 Predicate Registers
	3.1.5 Branch Registers
	3.1.6 Instruction Pointer
	3.1.7 Current Frame Marker
	3.1.8 Application Registers
	3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)
	3.1.8.2 Register Stack Configuration Register (RSC – AR 16)
	3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)
	3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)
	3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)
	3.1.8.6 Compare and Store Data register (CSD - AR 25)
	3.1.8.7 Compare and Exchange Value Register (CCV – AR 32)
	3.1.8.8 User NaT Collection Register (UNAT – AR 36)
	3.1.8.9 Floating-point Status Register (FPSR – AR 40)
	3.1.8.10 Interval Time Counter (ITC – AR 44)
	3.1.8.11 Previous Function State (PFS – AR 64)
	3.1.8.12 Loop Count Register (LC – AR 65)
	3.1.8.13 Epilog Count Register (EC – AR 66)

	3.1.9 Performance Monitor Data Registers (PMD)
	3.1.10 User Mask (UM)
	3.1.11 Processor Identification Registers

	3.2 Memory
	3.2.1 Application Memory Addressing Model
	3.2.2 Addressable Units and Alignment
	3.2.3 Byte Ordering

	3.3 Instruction Encoding Overview
	3.4 Instruction Sequencing Considerations
	3.4.1 RAW Dependency Special Cases
	3.4.2 WAW Dependency Special Cases
	3.4.3 WAR Dependency Special Cases
	3.4.4 Processor Behavior on Dependency Violations

	3.5 Undefined Behavior

	Application Programming Model 4
	4.1 Register Stack
	4.1.1 Register Stack Operation
	4.1.2 Register Stack Instructions

	4.2 Integer Computation Instructions
	4.2.1 Arithmetic Instructions
	4.2.2 Logical Instructions
	4.2.3 32-bit Addresses and Integers
	4.2.4 Bit Field and Shift Instructions
	4.2.5 Large Constants

	4.3 Compare Instructions and Predication
	4.3.1 Predication
	4.3.2 Compare Instructions
	4.3.3 Compare Types
	4.3.4 Predicate Register Transfers

	4.4 Memory Access Instructions
	4.4.1 Load Instructions
	4.4.2 Store Instructions
	4.4.3 Semaphore Instructions
	4.4.4 Control Speculation
	4.4.4.1 Control Speculation Concepts
	4.4.4.2 Control Speculation and Instructions
	4.4.4.3 Control Speculation and Compares
	4.4.4.4 Control Speculation without Recovery
	4.4.4.5 Operating System Control over Exception Deferral
	4.4.4.6 Register Spill and Fill

	4.4.5 Data Speculation
	4.4.5.1 Data Speculation Concepts
	4.4.5.2 Data Speculation and Instructions
	4.4.5.3 Detailed Functionality of the ALAT and Related Instructions
	4.4.5.4 Combining Control and Data Speculation
	4.4.5.5 Instruction Completers for ALAT Management

	4.4.6 Memory Hierarchy Control and Consistency
	4.4.6.1 Hierarchy Control and Hints
	4.4.6.2 Memory Consistency

	4.4.7 Memory Access Ordering

	4.5 Branch Instructions
	4.5.1 Modulo-scheduled Loop Support
	4.5.2 Branch Prediction Hints
	4.5.3 Branch Predict Instructions

	4.6 Multimedia Instructions
	4.6.1 Parallel Arithmetic
	4.6.2 Parallel Shifts
	4.6.3 Data Arrangement

	4.7 Register File Transfers
	4.8 Character Strings and Population Count
	4.8.1 Character Strings
	4.8.2 Population Count

	4.9 Privilege Level Transfer

	Floating-point Programming Model 5
	5.1 Data Types and Formats
	5.1.1 Real Types
	5.1.2 Floating-point Register Format
	5.1.3 Representation of Values in Floating-point Registers

	5.2 Floating-point Status Register
	5.3 Floating-point Instructions
	5.3.1 Memory Access Instructions
	5.3.2 Floating-point Register to/from General Register Transfer Instructions
	5.3.3 Arithmetic Instructions
	5.3.4 Non-arithmetic Instructions
	5.3.5 Floating-point Status Register (FPSR) Status Field Instructions
	5.3.6 Integer Multiply and Add Instructions

	5.4 Additional IEEE Considerations
	5.4.1 Floating-point Interruptions
	5.4.1.1 Disabled Floating-point Register Fault
	5.4.1.2 Floating-point Exception Fault
	5.4.1.3 Floating-point Exception Trap

	5.4.2 Definition of Overflow
	5.4.3 Definition of Tininess, Inexact and Underflow
	5.4.4 Integer Invalid Operations
	5.4.5 Definition of Arithmetic Operations
	5.4.6 Definition and Propagation of NaNs
	5.4.7 IEEE Standard Mandated Operations Deferred to Software
	5.4.8 Additions beyond the IEEE Standard

	IA-32 Application Execution Model in an Intel® Itanium® System Environment 6
	6.1 Instruction Set Modes
	6.1.1 Instruction Set Execution in the Intel® Itanium® Architecture
	6.1.2 IA-32 Instruction Set Execution
	6.1.3 Instruction Set Transitions
	6.1.3.1 JMPE Instruction
	6.1.3.2 Branch to IA Instruction

	6.1.4 IA-32 Operating Mode Transitions

	6.2 IA-32 Application Register State Model
	6.2.1 IA-32 General Purpose Registers
	6.2.2 IA-32 Instruction Pointer
	6.2.3 IA-32 Segment Registers
	6.2.3.1 Data and Code Segments
	6.2.3.2 Segment Descriptor and Environment Integrity
	6.2.3.3 IA-32 Environment Run-time Integrity Checks

	6.2.4 IA-32 Application EFLAG Register
	6.2.5 IA-32 Floating-point Registers
	6.2.5.1 IA-32 Floating-point Stack
	6.2.5.2 Special Cases
	6.2.5.3 IA-32 Floating-point Control Registers
	6.2.5.4 IA-32 Floating-point Environment

	6.2.6 IA-32 Intel® MMX™ Technology Registers
	6.2.7 IA-32 Streaming SIMD Extension Registers

	6.3 Memory Model Overview
	6.3.1 Memory Endianess
	6.3.2 IA-32 Segmentation
	6.3.3 Self Modifying Code
	6.3.4 Memory Ordering Interactions

	6.4 IA-32 Usage of Intel® Itanium® Registers
	6.4.1 Register Stack Engine
	6.4.2 ALAT
	6.4.3 NaT/NaTVal Response for IA-32 Instructions

	Part II: Optimization Guide for the Intel® Itanium® Architecture
	About the Optimization Guide 1
	1.1 Overview of the Optimization Guide

	Introduction to Programming for the Intel® Itanium® Architecture 2
	2.1 Overview
	2.2 Registers
	2.3 Using Intel® Itanium® Instructions
	2.3.1 Format
	2.3.2 Expressing Parallelism
	2.3.3 Bundles and Templates

	2.4 Memory Access and Speculation
	2.4.1 Functionality
	2.4.2 Speculation
	2.4.3 Control Speculation
	2.4.4 Data Speculation

	2.5 Predication
	2.6 Architectural Support for Procedure Calls
	2.6.1 Stacked Registers
	2.6.2 Register Stack Engine

	2.7 Branches and Hints
	2.7.1 Branch Instructions
	2.7.2 Loops and Software Pipelining
	2.7.3 Rotating Registers

	2.8 Summary

	Memory Reference 3
	3.1 Overview
	3.2 Non-speculative Memory References
	3.2.1 Stores to Memory
	3.2.2 Loads from Memory
	3.2.3 Data Prefetch Hint

	3.3 Instruction Dependencies
	3.3.1 Control Dependencies
	3.3.1.1 Instruction Scheduling and Control Dependencies

	3.3.2 Data Dependencies
	3.3.2.1 Basics of Data Dependency
	3.3.2.2 Data Dependency in the Intel® Itanium® Architecture
	3.3.2.3 Instruction Scheduling and Data Dependencies

	3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies
	3.4.1 Speculation Model in the Intel® Itanium® Architecture
	3.4.2 Using Data Speculation in the Intel® Itanium® Architecture
	3.4.2.1 Advanced Load Example
	3.4.2.2 Recovery Code Example
	3.4.2.3 Terminology Review

	3.4.3 Using Control Speculation in the Intel® Itanium® Architecture
	3.4.3.1 The NaT Bit
	3.4.3.2 Control Speculation Example
	3.4.3.3 Spills, Fills and the UNAT Register
	3.4.3.4 Terminology Review

	3.4.4 Combining Data and Control Speculation

	3.5 Optimization of Memory References
	3.5.1 Speculation Considerations
	3.5.2 Data Interference
	3.5.3 Optimizing Code Size
	3.5.4 Using Post�increment Loads and Stores
	3.5.5 Loop Optimization
	3.5.6 Minimizing Check Code

	3.6 Summary

	Predication, Control Flow, and Instruction Stream 4
	4.1 Overview
	4.2 Predication
	4.2.1 Performance Costs of Branches
	4.2.1.1 Prediction Resources
	4.2.1.2 Instruction Scheduling

	4.2.2 Predication in the Intel® Itanium® Architecture
	4.2.3 Optimizing Program Performance Using Predication
	4.2.3.1 Applying if�Conversion
	4.2.3.2 Off-path Predication
	4.2.3.3 Upward Code Motion
	4.2.3.4 Downward Code Motion
	4.2.3.5 Cache Pollution Reduction

	4.2.4 Predication Considerations
	4.2.4.1 Unbalanced Execution Paths
	4.2.4.2 Case 1
	4.2.4.3 Case 2
	4.2.4.4 Case 3
	4.2.4.5 Overlapping Resource Usage
	4.2.4.6 Case 1

	4.2.5 Guidelines for Removing Branches

	4.3 Control Flow Optimizations
	4.3.1 Reducing Critical Path with Parallel Compares
	4.3.2 Reducing Critical Path with Multiway Branches
	4.3.3 Selecting Multiple Values for One Variable or Register with Predication
	4.3.3.1 Selecting One of Several Values
	4.3.3.2 Reducing Register Usage

	4.3.4 Improving Instruction Stream Fetching
	4.3.4.1 Instruction Stream Alignment

	4.4 Branch and Prefetch Hints
	4.5 Summary

	Software Pipelining and Loop Support 5
	5.1 Overview
	5.2 Loop Terminology and Basic Loop Support
	5.3 Optimization of Loops
	5.3.1 Loop Unrolling
	5.3.2 Software Pipelining

	5.4 Loop Support Features in the Intel® Itanium® Architecture
	5.4.1 Register Rotation
	5.4.2 Note on Initializing Rotating Predicates
	5.4.3 Software-pipelined Loop Branches
	5.4.3.1 Counted Loop Branches
	5.4.3.2 Counted Loop Example
	5.4.3.3 While Loop Branches

	5.4.4 Terminology Review

	5.5 Optimization of Loops in the Intel® Itanium® Architecture
	5.5.1 While Loops
	5.5.2 Loops with Predicated Instructions
	5.5.3 Multiple-exit Loops
	5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops
	5.5.3.2 Pipelining with Explicit Multiple Exits

	5.5.4 Software Pipelining Considerations
	5.5.5 Software Pipelining and Advanced Loads
	5.5.5.1 Capacity Limitations
	5.5.5.2 Conflicts in the ALAT

	5.5.6 Loop Unrolling Prior to Software Pipelining
	5.5.7 Implementing Reductions
	5.5.8 Explicit Prolog and Epilog
	5.5.9 Redundant Load Elimination in Loops

	5.6 Summary

	Floating-point Applications 6
	6.1 Overview
	6.2 FP Application Performance Limiters
	6.2.1 Execution Latency
	6.2.2 Execution Bandwidth
	6.2.3 Memory Latency
	6.2.4 Memory Bandwidth

	6.3 Floating-point Features in the Intel® Itanium® Architecture
	6.3.1 Large and Wide Floating-point Register Set
	6.3.1.1 Notes on FP Precision

	6.3.2 Multiply-Add Instruction
	6.3.3 Software Divide/Square Root Sequence
	6.3.3.1 Double Precision – Divide
	6.3.3.2 Double Precision – Square Root

	6.3.4 Computational Models
	6.3.5 Multiple Status Fields
	6.3.6 Other Features
	6.3.6.1 Operand Screening Support
	6.3.6.2 Min/Max/AMin/AMax
	6.3.6.3 Integer/Floating-point Conversion
	6.3.6.4 FP Subfield Handling

	6.3.7 Memory Access Control
	6.3.7.1 Load-pair Instructions
	6.3.7.2 Data Prefetch
	6.3.7.3 Allocation Control

	6.4 Summary

