
ii tt 11
ii tt 11

tttttt 11
ii nnnnn tt 11
ii nn nnn tt .11
ii nn nn tt eeee 11 INTERNAL COR~ESPONDENCE
ii nn
ii nn
ii nn

To:

nn tt ee ee 11
nn ttt eeeeee 11
nn ttt eeeeee 11

ee
ee ee
eeee

John Bayliss
Dave Best
Dick Kaiser
Barb Slaughter

From: Jim Weldon ,

' ,,cc:

Date: 20 November 1980

Brad Janeway
Paul Tyn·er
John Wipfli

Subject: Technical Revi S4l of iAPX 432 Canponent User's Gui de

The preliminary manual is now scheduled to go to print in early
December, 1980, leaving very few working days to complete the manual,
which wi 11 consist of about 80 pages· including a pref ace, 5 chapters,
and 2 component data sheets covering the GDP and IP.

Technical Review of this material must be accomplished by increments,
with all input to be received not 1 ater than December 2, 1980, if we
are to stay on schedule. . If your comments are going to· be of sweeping
oortent. we must comnence recei vino than at once to avoid reworkina
typeset, material, which could result~ in s 1 ippage of schedule. ~

Pl ease send your coornents to:

Steven Andersen or Jim Weldon
Marketing/Canmuni cations
210 Cal if orni a Avenue, Suite L
Palo Alto, CA 94306 - telephone (415) 328-2160

or call: Steve Andersen - {408) 377-6881

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to. the imolied warranties of merchantabilitv and fitness for a oarticular oumose. Intel Corooration
as5urnes no responsibility for any errors that ~ay appear in this d.ocument. inte.l Corporation ~akes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP in tel Megachassis
CREDIT In television Micromap

inreilec Muitibus
ICE iRMX Multi module
iCS iSBC PROMPT
im iSBX Promware
lnsite Library Manager RMX/80
Intel MCS System2000

UPI
,&ope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

LIST OF ILLUSTRATIONS

Chapter 1. Introduction to the iAPX Component User's Guide

Figure
1-1 An iAPX 432 System
1-2 432 I/O Model

Chapter 2. Introduction to iAPX GDP Architecture

Figure
2-1 Operations Defined on a Data Type
2-2 Some operations Defined on Character and Integer
2-3 Operations Defined
2-4 Different Access Paths and Rights to the Same Object
2-5 Network of Objects as an Object
2-6 Access Segment Symbology

Chapter 3. Introduction to the iAPX IP Architecture

Figure
3-1 Main System and Peripheral Subsystem
3-2 Basic I/O Service Cycle
3-3 Peripheral Subsystem Interface
3-4 Peripheral Subsvstem Hardware Interface
3-5 Interface Processor Window

Chapter 4. iAPX Processor Environment Definition

Figure
4-1 Basic iAPX Data Lengths
4-2 Hardware Error Detection
4-3 State Diagram for Processor Packetbus
4-4 Nominal Write Cycle Timing
4-5 Stretched Write Cycle Timing
4-6 Minimum Write Cycle Timing
4-7 Minimum Read Cycle (Buffered System)
4-8 Minimum Read Cycle (Not Buffered)
4-9 Minimum Faulted Access Cycle

!/

I f

Chapter 5. An iAPX 432 Multiprocessor System Implementation

Figure
5-1 Block Diagram (Two Processor 432 System)
5-2 Physical Partitioning (Two Processor 432 system)
5-3 Address/Specification Demultiplexing
5-4 Local Access Operation
5-5 Cancelled Access Detection
5-6 Cancelled Access (With Subsequent Access)
5-7 Static Memory System
5-8 Byte Swapping for 32-bit Operand
5-9 Parallel Memory Banks
5-10 Interface to IP
5-11 GDP Schematics
5-12 IP Schematics

APPENDIX

iAPX 43201/43202 GDP Data Sheets

Figure
1. 43201 Pin Assignment
2. 43202 Pin Assignment
3. 43201 Block Diagram
4a. 43202 Block Diagram
4b. GDP Logic Symbol
5. Hardware Error Detection
6. QUIP Layout
7. Modes of Selector Generation
8. Modes of Displacement Generation.
9. GDP Packetbus State Diagram
10. 43201 Output Timing Specification
11. 43201 Input Timing Specification
12. Clock Input Specification
13. 43201 Hardware Error Checking Timing
14. 43201 Initialization Timing
15. 43201 Interrogation Timing
16. 43202 Output Timing Specification
17. 43202 Input Timing Specification

iAPX 43203 IP Data Sheets

Figure
1. 43203 Pinout
2. 43203 Logic Symbol
3. 43203 Functional Block Diagram
4. 43203 Bus State Diagram
5. Timing Diagram for ACD Parameters
6. Timing Diagram for Local Processor Bus Timing
7. Multibus Interface Timing
8. Two Styles of ALE
9. XACK Interface Programmable Timing
10. Maximum Mode Interface
11. MULTIBUS System Interface

QUIP Specification Figures i~;

l { l

LIST OF TABLES

Chapter 4. 432 Processor Environment Definition

Table
4-1 ACD Specification Encoding
4-2 ICS Interpretation
4-3 PRQ Interpretation
4-4 BOUT Interpretation
4-5 iAPX 432 Component Signalling Scheme

Chapter 5.An iAPX 432 Multiprocessor System Implementation

Table
5-1
5-2
5-3

Miscellaneous Pin Connection
IPC Register Bit Designation
Peripheral Subsystem Dedicated Ports

APPENDIX

iAPX 43201/43202 GDP Data Sheets

Table
1. GDP Operator Instruction Set
2. 43201 DC Characteristics
3. 43201 AC Characteristics
4. 43201 Capacitance Ratings
5. 43202 DC Characteristics
6. 43202 AC Characteristics
7. 43202 Capacitance Ratings
8. GDP Absolute Maximum Ratings

iAPX 43203 IP Data Sheet

Table
1. 43203 Interface Pin Summary
2. Packetbus signals
3. IP Absolute Maximum Ratings
4. DC Characteristics
5. AC Characteristics
6. XACK Timing Parameters
7. 8-bit Processor Interface
8. 16-bit Processor Interface
9. Maximum Mode 8086 System

,

iAPX 432 COMPONENT USER~S GUIDE

CHAPTER 1

INTRODUCTION

Welcome to Intel"'s new iAPX 432 family of components. The

432 product line was designed to solve the [existing;

growing?] industrial problem of software development.

Today"'s state-of-the-art technology has produced large-scale

microprocessors capable of handling tremendous hardware

tasks, but has failed to relieve the ever-growing needs of

software design. Complex devices, conceptually des igri_ed to

control this problem have in the end only added more weight

to the burden.

WHAT IS THE PROBLEM?

Today~s system applications have evolved into highly complex

configurations~ Retail business systems, telephone switching

systems, laboratory and industrial control systems, commun

ication systems, word processors, and many other large-scale

systems have forced the industry to consider alternative

t

methods of handling the extensive requirements of multiple

programs, multiple users, and multiple processors. The

demands of existing high-level languages, operating system

software, and the increased number of peripheral controllers

and memory options have produced overwhelming problems for

the system designer.

To further compound the problem, tommorrow""' s applications

will increase system complexity by requiring fault-tolerant

computing, transparent multiprocessing, distributed opera

tion, networking, and multiple families of programming

languages. These system requirements are beyond the scope of

today""'s mini- and mainframe computers. This Component User""'s

Guide presents a hardware discussion of the two components,

the 43201 and 43202, that combine to form the General Data

Processor (GDP), and the 43203 Interface Processor ~(IP).

Also included in this book are instructions concerning the

hardware implementation of the iAPX 432 system concepts.

References to additional source documents are given as

needed.

WHAT IS THE SOLUTION?

As you become familiar with the iAPX 432 family members, you

will discover an innovative approach to the software

development problem. It is not enough to say the 432 family

processors have an enhanced architecture with the integra.-

2

ti on of over 100, 000 silicon gates into 64-pin packages,

nor is it enough to promise an increased throughput. What

must be understood is that all phases of hardware and

software design will be oriented toward safe and efficient

control of information with favorable results in develop

ment costs.

The solution to complex and growing software demands is the

development of the object-oriented machine. Such a machine

can provide the important qualities of abstraction and

decomposition. Abstraction is one of the inherent qualities

of the iAPX432 family, which hides the irrelevant detail of

predefined high-level languages, e.g., different number and

data types. Decomposition is the quality of breaking up

complex problems into manageable units and allows for

modular programming. The iAPX 432 hardware provides an

architectural structure that defines access limitations to

prevent the damage of any established data base. The

software designer need only be concerned with the construc

tion of individual, easy-to-understand program modules that

are more manageable and capable of working together as a

system unit. Refer to Chapter 2 for a discussion of 432

Architecture and its importance to the hardware designer.

HOW IS IT DONE?

A basic iAPX 432 system consists of one or more Intel

3

general data processors (GDP's), one or more interface

processors (IP""s), several independant I/O systems, and a

common memory· system. Each external I/O system may consist

of several I/O devices and microprocessors that may be

capable of providing their own complex arbitration schemes,

memory interleaving, and dynamic memory configuration. These

external processors view memory as a single and continuous

byte-addressable sequence, and are not aware of any system

interconnection (although that capability does exist).

Figure 1-1 illustrates a basic 432 system.

Figure 1-1 432 System Block Diagram

Programs executing in iAPX 432 processors view the memory

and the interconnect address spaces quite differently from

their attached processors. Programs are hardware-defined as

processes, which are controlled by access descriptors; i.e.,

each process is limited to specific objects that may only be

accessed if predefined conditions have been met. After

verifying access rights, the hardware automatically computes

physical addresses as they are required. The external

processors define processes; the interface processor

provides access to general data processors and memory

resources to run those processes.

4

/\P,c "3L

C1l) P

f'' V l 1If't'0(t 5 ~ C... lIII
·---~ C_

r- --

'

.,4,r(ti(,,,
An1\olEI>
Pf.OCE'>W.,,

~-=-=,-r
to<J\ L.

t.1lh1or..f I

I_ I
ll1 UL1 I tlf} "'a._

Co1. ;,t>JV'(f f,t.J_:j,

(l\C ,, . ; I ~;

1/.Jb::tJJl:_j;? -t- ~:=-·:::: .. (/.' :.· :;-;.i.J 1/0
1~.r-1..l'J:O. 1 ..:.:£-c(..,t ,.,i)lC<_::..<,td

Et
OJ
.p

U1 -.1;
~.,_.,

~\-U)

(\j
rr1
.. .;:J-

:><!
P-i
.,-~
·rl

~
~ "'•

,....-f
I

r-1

O.>
~.

~
·rl
ri::.

Processor management methodology becomes more important as

more subsystems are added. In the iAPX 432 system, processes

are scheduled to be executed according to policies, imple

mented in software, that determine how processes are to

share processors. As each process becomes available, i.e.,

reaches the head of its queue, it is dispatched to the next

available processor that can execute the process. Converse

ly, an idle processer will wait at a dispatching port for a

process to appear. Therefore, systems may become as complex

as the mind can imagine. Software Engineers are now pleased

to discover that the need to develop or redesign new

software to handle the complexity of increasing system

requirements does not exist! Hardware engineers are pleased

to save valuable design effort in increasing the hardware

capabilities by simply plugging additional GDP or IP units

into their printed circuit boards. Chapters 5 and 6 provide

a detailed discussion of the GDP and the IP and their

respective roles in implementing these concepts.

Figure 1-2 represents an iAPX 432 system model complete with

three GDP processors (43201 and 43202), three IP processors

{ 43203) , and three I/O subsystems. If the external

processors were identical, it would be conceivable to use

only one IP and several GDP""s .. The figure illustrates the

ease with which information is allocated to available

processors. Also shown is the independance of each subsystem

as separate tasks are defined without the need for under-

5

·,i
___ L.

I l
I I

----· ·-t ----t--· !
- i t

I l _.._ __ . __ ..__.
-1 -·

---r--- ·:···- ---- .

"'-··1--
I

-- ~-- ~--
I . -

-~-~---·--------·· ______ .. ____ _
r I • ! .

__ ____,,__. 1' --~- ... ··--· --· -··--·- ..

! .
1 I . ;

~--:-- ---- - -----,-·- -- - -- :·-

I
-r

__ L,__ a... -~ -- .!... - ·- - ~ -- -

• t ~ .

---l----'.-t-~!·-- ~-- ..

l • -T--.
i

_J. -··:
I
I
! -,---i
I ; -1-r

----~ - . -·-. ' ; - . l -.. I . - I

I i

--+--f-·· ·: ____ ; ·- .
J I ' •

_ _.: --.. ~--·--·~-- .J. -. I . I --1---+- -- :_ -! __ ! ___ ; ___ ~-_! -- I
t .. • t

1
'1 I I · . I i . . . I : I

-· ... ---t - -- .. -.. ~ .. • - . • ... - '

I ! . I i
----•- -· --· I

I I I
i.

I i
---·· .. l

i I
t

-- r
l

I

--- I --

!

. r

I
•. J -

I
I

- r

. ' -· . ~
I

j- - I

;.

.,

• I ... -·~ --~·- • ••-

; ~~ -7: .. · . -· -~· t. , ,· ... :
·-·--·-
·--. :i -----.

-I

r ·-- ·-

i - . - -.

.!

-:--- r

j.

i ·- .. ;

. p . ; \ -~o.._ . ·~
' I .

I
.. I . -.. +· -~ -- -i . - i . -- .

. ·--· ··-- t. - ; __ : ___ ~-·- ~-- ~, ...
~ : . : : : '

l----1- .. ;

• •. f - ~·. - • - -·- ••• ·-
I I

. - - ' - ' ; -. ·--'

. ! .. _ -~ ---· L ·--~-- --~· ---:- - .. i
. t .• ;

-- _:_ --:. --·~·- -·---...:.--··-··--·
I

• I '
' ~ I : I - - ·- _ ... _..... ___ ... -- -. - ----- _____ ... - ... -

! ·-·~_L__j ___ J._

I ' ! : 1· . • t
: ... ---~ -·· ·~-,----;---:---·----·;--

. ' -- - . i---···; ·--· ·-7-- ; - ..

. . -- --~ -- -- ~---- :__ ~ --i. -·--- ~-
- :---- - t: __ j ___ ~---~----. . I

-; -- ------ _!_ - _ _t ___ '.
1

· , i I . ~ --T-·--:-. i ---;- ...
I j ; ! ! '.
,L ___ _.---,.. ___ : -- -i.-

i I i : ; [I ; : ! I i I : ! ; '
J ___ ..j --r- L--1- ---L--l. -- I --:, - --1, --·- ---1·- ·1,--~--i,.-- -L- <-

I ! ! I ' i I : ~ I • 1

·---1 -l---·1t·---i- -1-- 1··---f . ---,---'.--·--}--! -1- -I -1 ---r' r-- 1 ·--t -:-.
I • ' I I . . I ' I ~

I ! i I I 1· . ~ l I I J 1' t I -i---·f--t----:·-·l·-1· -i ····- --,--; ---1 ··1- ~- .. -r··-1- --1

! I I _j -- l -L - -~ I

i.

I.

. I

I
I ..
I , .

.; __ . i
i I

. -
'

I

~ -

' ·- i- . - i"
l ;
t

I
-- I

'
!

I

r · - -
I
)
I
l
I
j
l - : .

I

I . . • -

I .

l.

, standing tasks for other subsystems. Refer to Chapter 4

for an actual 432 system configuration.

OBJECT-ORIENTED MACHINE

An object is a data structure that contains information in

an organized manner. An object-oriented machine, such as the

iAPX 432, is a device that handles data in terms of objects

rather than the specific elements within the object. Certain

primitive data types (Reals, Integers, Ordinals, etc.) each

have a specific structure that may vary from one type to the

next. A given binary number might represent a different

meaning to each of these data types. In the iAPX 432

architecture, these data structures may be found in a

contiguous set of memory locations or possibly a combination

of several segments.

A 432 object not only contains organized information but

also a basic set of operations defined to directly manipu

late the data structure. The 432 hardware inherently ensures

manipulation of the data structure by these specific

operations only. In this manner, violations to the data

structure are prevented. Also, each object can be referenced

as one thing; i.e., there is no need to address any of the

parts. Therefore, each object has a label to identify it

from among the various types.

6

Notice that objects are manipulated not only by the

hardware. Some objects are manipulated by a combination of

hardware and software, and some only by software. Frequently

used operations have been placed in the 432 structure

(hardware implemented) while less frequent operations have

been left to the software. Refer to Chapter 2 for a discus

s ion of the following objects: Processor objects, Process

objects, Context objects, Instruction objects, and data

objects. The coordination of these objects represents the

completed picture of the 432 system.

A FINAL NOTE

The In tel iAPX 43 2 family of components has been designed

specifically to provide a solution to the growing software

needs of the 80's. The 432 system should be viewed as a

time-saving system, a cost-saving system,

solve design development problems. Welcome

Oriented world of Intel's iAPX 432 family.

7

and a sys tern to

to the Object-

CHAPTER 2

INTRODUCTION TO iAPX 432 ARCHITECTURE

The purpose of this chapter is to familiarize the iAPX 432

hardware designer with the basic object-oriented concepts

provided by the 432 system. A solid understanding of the

following concepts is essential to the construction of 432

systems (Refer to the iAPX 432 General Data Processor

Architectural manual, Order no. 171860, and the iAPX 432

Interface Processor Architectural manual, Order No.171862,

for more detailed information on these concepts) .

The iAPX 432 system is an object-oriented, capability-based

architecture that supports software-transparent multiproces

sing and adaptive virtual memory. By including operating

system and high-level language functions in hardware, it

provides mainframe functionality and performance in a VLSI

microcomputer form factor. I/O processing is fully indepen

dent and decentralized, allowing other iAPX processors

(e.g., 86, 186) to perform I/O as attached processors~ The

IEEE floating point standard is fully supported in hardware.

The iAPX 432 combines VLSI technology with an architectural

8

and software design methodology to produce a new computer

architecture that will significantly reduce the cost of

large-scale software systems and enhance their reliability

and security.

Several key concepts are fundamental to an understanding of

the iAPX 432 architecture. They are:

Objects -- data structures having known types that can be

either system- or user-defined; moreover, objects are

acted upon by a restricted set of operations, which can

be individual machine instructions, software package,

or hidden hardware functions. In the 432, objects are

represented by segments, subsets of segments called

refinements, or arbitrarily complex networks of

segments and/or refinements.

Access descriptors -- sometimes called "object references"

or "capabilities," these are how objects refer to one

another. Each object confers upon its holder access to

an object, along with certain rights associated with

the object, for instance, read/write or send/receive.

Segments segments form the basis for the physical

representation of objects. Each segment is a contigu

ous block (that is, no gaps) of address space, up to

64K (65, 536) bytes long. Each segment has a hardware-

9

recognized base type, which must be either data segment

or access segment.

Data Segments -- data segments have no inherent structure,

but are hardware-recognized. They are variously used

to hold instructions and scalar data i terns, but not

object references.

Access Segments each access segment is a hardware-

recognized array of object references, protected by the

hardware to ensure that inadvertent or malicious

alteration of access rights or addressing information

does not occur.

System Management Objects --in addition to a base type (data

segment or access segment) , each segment is assigned a

system type so that objects can be built to represent

processors, processes, and storage resources. The

hardware-recognized typing of these objects, together

with a restricted set of operations defined on each

type, facilitates efficient system management as

processor management, process management, and storage

management.

Program Environment Objects -- by building "packages" or

modules of arbitrarily complex objects, a protected

program environment is established wherein access to

10

instructions, scalar

only be con trolled,

data

but

items,

also

and objects can not

hidden. Programming

abstractions such as "subroutine activation records"

and "static access environment" are realized in the

hardware as contexts and domains, respectively.

User-defined Objects -- also called "extended-type" objects,

these are objects whose structure and behavior are

defined by the user. This extends the concept of

hardware typing to include arbitrary objects (and

networks of objects) that can only be acted on by a

restricted set of operations, which may also be defined

by the user.

Type Management Objects -- in order to manage the arbitrary

user-defined types, the objects that are instances of

those types, and the operations that act upon them, the

432 architecture provides a hardware-recognized type

definition object that can be selectively made avail

able to other users, even though its inner workings are

hidden from them.

Object Locking -- objects can be locked by either hardware

or software to ensure object integrity in a multiple

processor environment.

OBJECTS

11

Operations Defined on Data Types

The concept of an object grows out of the natural concept of

different data types having different operations that act

upon them. Schematically, we depict the situation as shown

in Figure 2 .1.

Figure 2-1. Operations Defined on a Data Type

Operations Defined on CHARACTER and INTEGER types

Data types such as CHARACTER and INTEGER are familiar

examples of data types. The data i terns 'A' and 6 5 are

instances of these respective types, which are conceptually

different, even though they have the same internal represen

tation, assuming 'A' is represented in ASCII and 65 is

represented as a pure binary number in a byte.

These data types may have different operations defined on

them by:

o Machine instructions (such as an editing instruction

for characters, or an arithmetic instruction for

integers) ;

12

OPERATION f------------~~· ____ I

OPERATION 2 -----------~-~~·

I
OPERATION 3' ---------------·;;:

--·--- ---=--i
DATA'.
TYPEi ____ ,

m -- . .

FIGURE a! OPERATIONS DEFINED ON A DATA TYPE:

, - " ? .•

o Hidden hardware functions (such as a table look-up for

0

a character, or forming the 2's complement of an

integer) ,

Software-implemented functions (such as character

substring functions, or exponentiation of integers).

Schematically, we can depict this situation as shown in

Figure 2-2.

Figure 2-2. Some Operations Defined on CHARACTER and

INTEGER Types.

Characters and integers are not objects, but looking at them

this way may help to understand the rationale of objects.

Before CHARACTER and INTEGER data types were developed, they

existed as abstractions. Programmers coding in octal or

binary coded the chartacter 'A' the same as if they were

coding the integer 65, and the discipline of choosing the

appropriate operations (instructions or subroutines} for the

data types they had in mind were left to them.

Programming languages and their translators (assemblers,

compilers, and interpreters) introduced formalisms or

13

-
"' -Etiif:--------------/{ff\H:;-f)!

------- ----~---- ----·-·· -------- CHARACTER
I ... DATA -I

TYPE
TAB LE LOOK-UP,_' ---------;{HARD)

..... - -· -- ·-··

SUBSTRING-FUNCTION;.--------' {SOFT)!
, I

... -

---'-...J)

;-{fNsrJ; ... -:;p.. ADD---------------
I t.J TE:. C=t ER.

. (s-cff:rY/ ... ~h ,.
- - ·-·------·--··---~·--

FORM 2'S COMPLEMENT-, -------

lYrE . -- -- ·-----·--· ··--·-- - ·- -·-·---------

EXPONENT I AT 10 N -' ---------(HARD)· -""" -

z-i..
-r=1cru-Ffeiat _s_o-N1E·-o-FiERATfo~rs oEFINE-o ciN cHARAGTER ANo-1NfeGERrvfiEs

subroutines, functions, and procedures into the "art" of

programming code: by enforcing declarations of these

formerly abstract concepts in programs, language translators

could at least ensure that, for instance, a function call

was being used as a function call. (An interesting counter-

example of this occurred in FORTRAN, in which the statement:

A = F {X)

could be the assignment to A of either:

the value of the function F evaluated using X as an argu-

ment, or -

the Xth element of the array F (depending on the declaration

of F) .

Software Data Types and Associated Operations

As code abstractions (procedures, functions, and subrou-

tines) demonstrated their merit in enforcing discipline in

programming, data abstractions became realized as arrays,

vectors, records, and other formal structures. Each es sen-

tially different kind of data structure was realized as a

data type, and sets of operations were introduced

upon only certain data types.

For instance, the data type MJ.~TRIX was formalized in certain

14

languages, and the operations DETERMINANT and INVERT,

usually implemented in software, could be performed only on

a data structure of type MATRIX. If the type did not match

the operation, the program would not compile properly.

Compile-time checking ensured that execution time need not

be wasted on large programs that would not run properly

because a data type did no't match the operation applied to

it.

Hardware-Recognized Data Structures and Associated Opera

tions

The software concepts of typed data structµres and the

operations that can be applied to them are realized in the

machine architecture of the iAPX 432. In doing so, the 432

raises the level of the instruction interface from the

traditional data computational types of bytes, double bytes,

words, etc., to objects.

Just as languages defined operations on primitive data

types, the architecture of the 432 (and any language capable

of embracing this architecture) defines operations on

objects, which are instances of typed data structures. Thus,

a machine instruction on the 432 typically specifies as its

operands objects that represent:

15

o Processors in a multiprocessor environment

o Processes (tasks) in a concurrent environment

o Dispatching ports that bind processes to processors

o Interprocess messages sent from one process to

another, and synchronized using communication ports

o Domains (also called type managers) as the static

access environments of programs

o Contexts (subprograms)

And many more. These objects are all system objects; they

are instances of system types, that is, types built into the

system.

Objects as high level, strongly typed operands

Intuitively, a system object is a high level operand that

raises the level of the instruction interface. "High-level"

in this sense means that the operand, rather than simply

being a byte or word of data, is an organized data structure

in memory that is recognized by the hardware as being an

instance of a type that can be manipulated only by a select

class of operations.

16

Traditional computer systems implement the abstractions of

access environment control, task management, process status,

interprocess communication, etc. using a combination of

software structures defined by operating systems, utilities,

and compilers, and associated supervisor calls.

The 432 implements these concepts as machine-inherent data

structures referenced by instructions as strongly typed

operands that are validity-checked at run time:

o Each has a type (base and system) , and

o Each can be used as an operand only as intended, i.e.,

only with a well defined subset of the operator

(instruction) set.

Many 432 system objects are highly organized "control

blocks" reminiscent of operating task control, message

queueing, fault handling, and other mechanisms. These

"control block" system object operands do not in and of

themselves enforce operating system policy, but rather

provide the basic mechanisms from which virtually any

operating system can be designed and built. These mechanisms

provide functionality needed to design and build clean, fast

running software. Indeed, for large, high availability

systems, the software development cycle can be shortened

17

using the 432 ..

Extended types

The 432 architecture allows users to define arbitrary data
..

structures as objects, and to define the restricted set of

operations that are allowed to act on these objects. These

user-defined object types are called extended types, since

they extend the set of recognized object types and the

operations allowed by each type.

Example of a 432 object and its associated operations

The processor object represents a unit of processing power

in the system and as such is an abstraction of the physical

processing unit, reflecting its various states (running,

queued, assigned, etc.). Processor objects in a given system

are in one-to-one correspondence with physical processors in

that system.

A processor object thus provides a means of assigning the

processor it represents to a particular process set (work

stream), and also provides a means of communicating with

(sending messages to) a processor.

Operations

18

Figure 2-3 indicates a processor object and the operations

that act apon it.

Figure 2-3 Operations defined on a procesor object.

Access descriptors-- "handles• for objects

When several users require access to the same object, at

least two problems can arise:

o Need-to-Know Rights. In a multi-user environment, not

all users need to have the same right~ to an object;

for instance, one user may require only "read" rights

to sensitive data, whereas another may require both

"read" and "write" rights to that data structure

(object); a mechanism is needed whereby different

rights can be conferred on different instances of

procedures. The solution to this problem is discussed

below.

0 Exclusive Access. In a multiprocessor environment,

one user of a data structure (object) may require

exclusive access to that object for a particular

operation, to ensure that no other processor alters

the object while the operation proceeds. The solution

19

_ -
-- ...

,..
-

-
.•. ·-·--- --· ·- _. ··- --··- ·---··-·--· . ····-·---~---

SUSPEND PROCESSOR! ---·------· :(HARD)i- ...
~.. STARf-PR6C-ESS.6RI· ____ , _______ i-(H-AR_D_) :-
-c
y·

._llo. -
CREATE .. PrfiYCE.SS(5jf OB_j_ECT]

I

--------- -----------------------·
LEGEND: INSTR = OPERATION '.IS A MACHINE INSTRUCTION (OPERATOR)

HARD = OPERATION !IS PERFORMED BY HARDWARE AS A RESULT OF
CONDITIONS DETECTED BY THE PROCESSOR

l ..

SOFT = OPERATION IS IMPLEMENTED BY SOFTWARE (E.G. AN OPERATING
SYSTEM)

FIGURE -e; OPERATIONS DEFINED ON A PROCESSOR OBJECT ·2.-3

-

_____ ..,. ___
-·· --· ··---····-·-- -

IPROCESSOIR
OBJECT ;

to this problem is described at the end of this

chapter under "Object Locking."

In the past, problems 1 like the first have been solved by

introducing "privileged" and "user" instructions or modes of

operation, which have the disadvantage that each user is

either "universally privileged" or "universally restricted."

Systems that generalize this scheme to three or more

levels typically encounter similar problems in their blanket

or graduated privilege schemes. Such schemes characteris-

tically do not take individual procedure access requirements

into account.

In the object-oriented, capability-based environment of the

432, several privilege and protection abstractions are

realized using access descriptors, which act as privilege
,

and protection "handles" for system objects. The 432

approach is to grant a procedure read/write rights to

explicit objects on an individual, need-to-know basis. By

possessing an access descriptor to an object, a procedure is

conferred the read/write rights specified by that access

descriptor, and is thus capable of reading/writing the

object. An access descriptor is thus sometimes called a

capability.

A running procedure context cannot read from or write to an

object unless that procedure has an access descriptor for

20

that object. Moreover, the procedure cannot read to or

write from the object accessed by the access descriptor

unless that read or write privilege is expressly granted, as

indicated in the access descriptor. Furthermore, the

procedure cannot delete the access descriptor unless that

right is explicitly indicated within the access descriptor

itself.

Thus, access descriptors provide:

o Controlled access to a particular object; if a request

,

to use an object matches the rights specified in the

access descriptor for that object, the access descrip-

tor maps a virtual address into a physical address,

permitting access.

o Read and/or write protection of the object by an

instance of a procedure, independent of other objects,

other procedures, and other instances of the same

procedure.

o Delete protection of the access descriptor itself.

o Other object-specific information, such as system

rights, an access descriptor validity check, and an

indication of object storage allocation.

21

Since an object can be subsetted (using a refiner, as

described later in this chapter) to obtain a smaller object,

access descriptors provide a granularity of protection not

found in "privilege-level" computer systems.

Access Paths

Many access descriptors can exist for the same object. Each

access descriptor belongs to some (but may be copied and/or

passed to another) procedure (context) , and defines the

access rights of the procedure using it to access an object.

For instance, Figure 2-4 shows three different access

descriptors to the same object. Context A can read from

Object A, but cannot write into it; Context B can write into

Object A, but cannot read from it; and Context C can both

read from and write into Object A.

Figure 2-4.

Object.

Different Access Paths and Rights to the Same

Segments -- the Representations of Objects

At the machine level, objects are represented by segments. A

segment is characterized as being a contiguous block of

22

CON TEXT A'S ACCESS DESCRIPTOR
TO OBJECT A

--

l .._1 ~ .,-I -
CONTE-XT-B;S AC-CES·S-DES-C-RIPT-bft1

TO OBJECT A J --- ··-- - - -------· . ------ - .. - -·· -

I •I .. VIRTUAL-TO-PHYSICAL
ADDRESS MAPPING ---

C-ONTEX·T--C'S AC-CE-SS [iESCRTPTOR !
TO OBJECT A ------ i

I --1 -"-
-1 ,,..

,,

I
I

(f8JECT-i. I
I

-- -- -- ---------------
FIGURE:aii DIFFERENT ACCESS PATHS AND RIGHTS TO THE SAME OBJECT.

- . - - ------- -- ------ - ... ·- -·--- --- - .. - ------ ----·---

;Z.-"'1-

memory and having:

o A base address.

o A length, which can be up to 65536 bytes.

o A base type and a system type, both of which depend on

the intended use of the segment as an object.

Relationship Between System Objects and Segments

Every segment is an object, but the converse does not hold.

Every object is either:

o A segment, or

o A subset of a segment (called a refinement) ,·or

o A collection of segments and/or refinements.

Both segments and system objects have these characteristics:

o Each has a base address. If an object is a single

segment, the base address is that of the segment. If

an object is a group of segments, the base address is

that of the "root" segment, i.e. the first in the

access path.

23

,

0 Each has a type, which must be either of type data

segment or type access segment.

o Each has a system type, which can be generic (data

segment or access list) , or can be specialized as a

transformer, domain, dispatching port, context,

operand stack, storage resource, etc.

o Each is represented by, and accessed through, a segment

descriptor in a segment table residing in memory. A

segment descriptor encodes a segment~ s base address,

length, base type, system type, processor class, and

other information.

Object Networks. As an example of an object that is a

collection of segments, consider the access segment (Object

0) together with the objects Al, A2, and A3 referenced by

its access descriptors. This collection defines a multiseg-

object. Extending this concept, each of the objects Aj

{j = 1, 2, 3) could itself be an access list referencin~

objects Bjk (k = 1, 2, 3). The resulting network of object~

Bll, Bl2, .•. , B32, B33, could then be considered an object

Figure 2-5 depicts such an object.

Figure 2-5. A Network of Objects as an Object.

24

iO

MORE ACCESS LISTS:i !A1_1 :_A3 __
- -·-·-~-

DATA SEGMENTS:: ; _BtU · ~-~ __ 8_12 __ 1 i __ Bj 3_1 ._821 __ ; i_ B22 __ t 1 __ 823 __ I 831 833 .,____ - --

i FIGURE 55\. A NETWORK OF OBJECTS AS AN OBJECT
----·------~-------- .. ···--------------·-- -·- . ---·- -- ···----·-··-----·- ---·-------

~-5

Two-Level Object Typing

Objects defined by the 432 architecture have two levels of

typing:

o A base type, which is either data segment or access

segment. Data segments cannot contain access descrip

tors; access segments contain only access descriptors.

o A system type, of which there are several: processor,

process, domain, context, and dispatching port are but

~ few system types.

Data Segments

Data segments can contain anything but access descriptors.

In fact, they can contain dummy copies of access descriptors

for purposes of inspection, but the dummy copies will not

"work" as access descriptors; if so referenced, the 432

hardware will not permit the operation to take place.

Data segments are used to hold instructions {as objects of

system type instruction segment), scalar data types, and any

type of data structure except an access descriptor. In

order to access a data segment, a procedure must hav·e an

25

access descriptor for the data segment.

Access Se<Jlllents

An access segment {sometimes called an "access list") is a

hardware-recognized array of access descriptors. In order

to access an access segment, a procedure must have an access

descriptor for the access segment itself.

Symbology. In this manual, access segments are symbolized

as shown in Figure 2-6.

Figure 2-6. Access Segment Symbology.

OBJECT LOCKING/EXCLUSION

Object Locking

Either software or hardware can lock (obtain exclusive

access to) an object when required by a sequence of instruc

tions or microinstructions. Object can be locked in three

ways:

0 Long-term software lock used

operation requires that an object

26

when a software

be locked for a

---· ·--·-···----·--·-·-"-----------···- ·- .. ·····-·· ---·····

NULL 4ccESS DESCRIPTOR

---------------------------VALID ACCESS DESCRIPTOR (AD)

--~------------------------, (BREAK TO SHOW VARIABLE l..ENGTH)i

---------------------------VALID ACCESS DESCRWTOR (AD)

-----------~------~-------"
AD TO 08,JECT DISCUSSED;

FIGURE UlU ACCESS SEGMENT SYMBOLOGYI
:2_-6

I
OBJECT I
UNDER ;

I Q'SCUSSIQN_I

period of time longer than the duration of one

instruction. Accomplished using the Lock Object/Un

lock Object instructions.

o Short-term software lock -- used by a processor when

executing an instruction that requires object locking

_for a period of time less than the duration of an

instruction.

o Short-term hardware lock -- used by a processor when

performing an operation on its own behalf that

requires an object to be locked.

27

CHAPTER 3

INTRODUCTION TO 43203 INTERFACE PROCESSOR

This introduction to the architecture of the Intel 43203

Interface Processor (IP) includes four topics. The first

introduces a basic I/O model. The second provides a brief

discussion of the 43201 and 43202 General Data Processor

(GDP) interface. (Refer to section 2 for a more detailed

discussion). The peripheral subsystem/IP interface is the

third topic, which provides information concerning the

software interface as well as the hardware interface. The

final topic introduces the supplementary IP facilities,

including the physical reference mode and the interconnect

access mode.

For a more detailed presentaion of the following concepts,

refer to the iAPX Interface Processor Architecture Reference

Manual, Order no. TBS)

A BASIC I/O MODEL

A typical application based on the iAPX 432 microprocessor

family consists of a main system and one or more peripheral

subsystems. Figure 3-1 illustrates a hypothetical configur-

28

fl)10J
1iic1·1:01 /

Do-'o-
"Dr o<R~<;...,"l...-- ,,,.

~' ; 1 ~,he..irJJ
.. ~vb~'f>teM..

Soss1s1~M

at ion that employs two peripheral subsystems. The main

svst~m hardware is comoosed of one or more iAPX 432 oeneral
-~-----· ------------ --- -----~ ------ -·-- ---- _,

data processors (GDPs) and a common memory that is shared by

these processors. The main system software is a collection

of one or more processes that execute on the GDP(s).

A fundamental principle of the iAPX 432 architecture is that

the main system environment is self-contained; neither

processors nor processes have any direct contact with the

"outside world." Conceptually, the main system is enclosed

by a wall that protects objects in memory from possible

damage by uncontrolled I/O operations.

Figure 3-1 Main System and Peripheral Subsystems

In an iAPX 432-based system, the bulk of processing required

to support input/output operations is delegated to peripher

al subsystems; this includes device control, timing,

interrupt handling and buffering. A peripheral subsystem is

an autonomous computer system with its own local memory, I/O

devices and controllers, at least one processor, and

software. The number of peripheral subsystems employed in

any given application depends on the I/0-intensiveness of

the application, and may be varied with changing needs,

independent of the number of GDPs in the system.

29

A peripheral subsystem resembles a mainframe channel in that

it assumes responsibility for low-level I/O device support,

executing in parallel with main system processor(s). Unlike

a simple channel, however, each peripheral subsystem can be

configured with a complement of hardware and software

resources that precisely fits application cost and perform

ance requirements. In general, any system that can communi

cate over a standard 8- or 16-bit microcomputer bus such as

Intel~s Multibus design may serve as an iAPX 432 peripher

al subsystem.

A peripheral subsystem is attached to the main system by

means of an IP. At the hardware level, the IP presents two

separate bus interfaces. One of these is the standard iAPX

432 Packetbus and the other is a very general interface

that can be adapted to most traditional 8-and 16-bit

microcomputer buses.

To support the transfer of data through the wall that

separates a peripheral subsystem from the main system, the

IP provides a set of software-controlled windows. A window

is used to expose a single object in main system memory so

that its contents may be transferred to or from the periph

eral subsystem.

The IP also provides a set of functions that are invoked by

30

software .. While the operation of these functions varies

considerably, they generally permit objects in main system

memory to be manipulated as entities, and enable communica

tion between main system processes and software executing in

a peripheral subsystem.

It is important to note that both the window and function

facilities utilize and strictly enforce the standard iAPX

432 addressing and protection systems. Thus, a window

provides protected access to an object, and a function

provides a protected way to operate in the main system. The

IP permits data to flow across the peripheral subsystem

boundary while preserving the integrity qf the main system.

As figure 3-2 illustrates, input/output operations in an

iAPX 432 system are based on the notion of passing messages

between main system processes and device interfaces located

in a peripheral subsystem. A device interface is considered

to be the hardware and software in the peripheral subsystem

that is responsible for managing an I/O device. An I/O

device is considered to be a "data repository," which may be

a real device (e.g., a terminal), a file, or a pseudo-device

(e • g • , a s poo 1 er) •

A message sent from a process that needs an I/O service

contains information that describes the requested operation

(e.g., ~~read file XYZii). The device interface interprets

31

@

I
rx., lJ ' (_o__.

'~.luf ~-~.-----~

\

the message and carries out the operation. If an operation

requests· input data, the device interface returns the data

as a message to the originating process. The device

interface may also return a message to positively acknow

ledge completion of a request.

A very general and very powerful mechanism for passing

messages between processes is inherent in the iAPX 432

architecture. A given peripheral subsystem may, or may not,

have its own message facility, but in any case, such a

facility will not be directly compatible with the iAPX

432"'s. By interposing a peripheral subsystem interface at

the subsystem boundary, the standard IP communication system

can be made compatible with any device interface (see figure

3-2).

Figure 3-2 Basic I/O Service Cycle

Figure 3-3 Peripheral Subsystem Interface

iAPX 432 INTERFACE

The IP exists in both the protected environment of the iAPX

432, and the conventional environment of the external

32

,,·">'

-=~;pluJ)
.:)u-b5-1 stt""'
l~ftA.C'1/

·;S'ttViOL
"On:•·I(, f 1'--"·(j·
J
'
' ~' . I' /t(,.~-

) ...>•.>. --·

ulv··(e.-

t J\v-tu ~ i w

subsystem.. Because of this, an IP is able to provide a

pathway over which data may flow between the iAPX 432 system

and the external subsystem. The IP operates at the boundary

between the systems, providing compatibility and protection.

In this position, the Interface Processor presents two

different views of itself, one to software and processors in

the iAPX 432 environment and another to its external

processor.

From the iAPX 432 side, an IP looks and behaves very much

like any oth~r processor. It attaches to the processor

packetbus in the same way as a GDP. Within the iAPX 432

memory, the IP supports an execution environment that is

compatible with, and largely identical to, the GDP. Thus,

the IP recognizes and manipulates system objects represent

ing processors, processes, ports, etc. It supports and

enforces the iAPX 432~s access control mechanisms, and

provides full interprocess and interprocessor communication

facilities.

The principle difference between the two processors is that

the GDP manipulates its environment in response to the

instruction it fetches, while the IP operates under the

direction of its external processor. Indeed, the IP may be

said to extend the instruction set of the attached processor

(AP) so that it may function in the environment of the iAPX

432 system

33

PERIPHERAL SUBSYSTEM INTERFACE

A peripheral subsystem interface (PSI) is a collection of

hardware and software that acts as an adapter that enables

message-based communication between a process in the main

system and a device interface in a peripheral subsystem (see

figure 3-3). Viewed from the iAPX 432 side, the peripheral

subsystem interface appears to be a process. The peripheral

subsystem interface may be designed to present any desired

appearance to a device interface. For example, it may look

like a collection of tasks, or like a collection of subrou

tines.

Hardware

The PSI hardware consists of an IP, an AP, and local memory

(see figure 3-4) • To improve performance, these may be

augmented by a DMA controller. The AP and the IP work

together as a team, each providing complementary facilities.

Considered as a whole, the AP/IP pair may be thought of as a

logical I/O processor that supports software operations in

both the main system and the peripheral subsystem.

Attahed Processor -- Almost any general-purpose CPU, such as

an 8085, an iAPX 86 or an iAPX 88 can be used as an AP. The

AP need not be dedicated exclusively to working with the_ IP.

34

-P£.~1Pf"ltl.J\'-
Svt:.SY'S1 ft{\

Dn'P...
lqp:_,

Ca\11C'l~< I
H 1-

- - - - - - -- - - ,

L.,__'<'et I
1J.1r 1:",jl I

-ov, · ·r~MI ,:·_ 11 ~.,~",. 1, \~+rt!r.u 1ir,1 .1_-•• ,_.

l

I
I
I
I

fi6oRE ~--4 Pt=t?.tCHf~~1- SuBs~sT~M 1AOrRf;~ H,1RD\Jv'1tR
t .r:fc.1 "1

It may, for example, also execute device interface soft

ware. Thus, the AP may be the only CPU in the peripheral

subsystem, or it may be one of several.

As figure 3-4 shows, the AP is "attached" to the interface

processor in a logical sense only. The physical connections

are standard bus signals and one interrupt line (which would

typically be routed to the AP via an interrupt controller) •

Continuing the notion of the logical I/O processor, the AP

fetches instructions, and provides the instructions needed

to alter the flow of execution, and to perform arithmetic,

logic and data transfer operations within the peripheral

subsystem.

Figure 3-4 Peripheral Subsystem Interface Hardware

Interface Processor -- The IP completes the logical I/O

processor by providing data paths between the peripheral

subsystem and the main system, and by providing functions

that effectively extend the AP ... s instruction set so that

software running on the logical I/O processor can operate in

the main system. Since these facilities are software

controlled, they are discussed in the next section.

35

As figure 3-4 shows, the IP presents both a peripheral

subsystem bus interface and a standard iAPX 432 Packetbus

interface. By bridging the two buses, the IP provides the

hardware link that permits data to flow under software

control between the main system and the peripheral subsys

tem.

The IP connects to the main system in exactly the same way

as a GDP. Thus, in addition to being able to access main

memory, the IP supports other iAPX 432 hardware-based

facilities, including processor communication, the alarm

signal and functional redundancy checking.

On the I/O subsystem side, the IP provides a very general

bus interface that can be adapted to any standard 8- or 16-

bi t microprocessor bus, including Intel"' s Multibus archi

tecture, as well as the component buses of the MCS-85 and

iAPX 86 families. The IP is connected to the peripheral

subsystem bus as if it were a memory component; it occupies

a block of memory addresses up to 64K bytes long. Like a

memory, the IP behaves passively within the peripheral

subsystem (except as noted below). It is driven by periph

eral subsystem memory references that fall within its

address range.

While the IP generally responds like a memory component, it

also provides an interrupt request signal. The interface

36

processor uses this line to notify its AP that an event has

occurred which requires its attention.

To summarize, the AP and the IP interact with each other by

means of address references generated by the AP and inter

rupt requests generated by the IP. Since the IP responds to

memory references, other active peripheral subsystem agents

(bus masters), such as DMA controllers, may obtain access to

main system memory via the IP.

Software

IP Controller The peripheral subsystem interface is

managed by software, referred to as the IP controller. The

IP controller executes on the AP and uses the facilities

provided by the AP and the IP to control the flow of data

between the main system and the peripheral subsystem.

While there are no actual constraints on the structure of

the IP controller, organizing it as a collection of tasks

running under the control of a multitasking operating system

(such as RMX-80 or iRMX-86) can simplify software develop

ment and modification. This type of organization supports

asynchronous message-based communication within the IP

controller, similar to the iAPX 432~s intrinsic interpro

cessor communication facility. Extending this approach to

the device interface as well results in a consistent,

37

system-wide communication model. However, communication

within the IP controller and between the IP controller and

device interfaces, is completely application-defined. It

may also be implemented via synchronous procedure calls,

with "messages" being passed in the form of parameters.

However it is structured, the IP controller interacts with

the main system through facilities provided by the interface

processor. There are three of these facilities: execution

environments, windows, and functions.

Execution Environments -- The IP an environment

within the main system that supports the operation of the IP

controller in that system. This environment is embodied in

a set of system objects that are used and manipulated by the

IP. At any given time, the IP controller is represented in

main memory by a process object and a context object. Like

a GDP, the IP itself is represented by a processor object.

Representing the IP and its controlling software like this

creates an execution environment that is analogous to the

environment of a process running on a GDP. This environment

provides a standard framework for addressing, protection and

communication within the main system.

Like a GDP, an IP actually supports multiple process

environments. The IP controller selects the environment in

which a function is to be executed. This permits, for

38

example, the establishment of separate environments corres

ponding to individual device interface tasks in the periph-

eral subsystem. If an error occurs while the IP controller

is executing a function on behalf of one device interface,

that error is confined to the associated process, and

processes associated with other device interfaces are not

affected.

Windows -- Every transfer of data between the main system

and a peripheral subsystem is performed with the aid of an

IP window. A window defines a correspondence, or mapping,

between a subrange of peripheral subsystem memory addresses

(within the range of addresses occupied by the IP) and an

object in main system memory (see figure 3-5). When an agent

in the peripheral subsystem (e.g., the IP controller) reads

a local windowed address, it obtains data from the assoc-

, iated object; writing into a windowed address transfers data

from the peripheral subsystem to the windowed object. The

action of the IP, in mapping the peripheral subsystem

address to the main system object, is transparent to the

agent making the reference; as far as it is concerned, it is

simply reading or writing local memory.

Figure 3-5 Interface Processor Window

39

Loetll nf1;•ok'/
fflJJC C..S~~ '-

No• me• I f~ll"c.·/----'' 1-rn'"'""""r"~--.-.......-...--l
~C~nc.e...--- /

Jn-lu.fru:..
i-'\OCB:'_,(JL ..

flddre:..1 ~.s

t.Utndoi.J
ITu~\'\Dr~

R;i.e,\.Cl'L.v

I v,...._._.__._~...1-1._.;_~

1 '-------JI

~Ir--------4--

I I

I Su bvGir'g~
l
l

I I
I
I

I

I I
_LI ---------1

--- -- -

OLfJ

) / f 1
..

:1'
"V ! .' t /I / ; I /

-- -- - J -

Since a window is referenced like local memory, any individ

ual transfer may be between an object and local memory, an

object and a processor register, or an object and an I/O

device. The latter may be appealing from the standpoint of

"efficiency," but it should be considered with caution.

Using a window to directly "connect" an I/O device and an

object in main memory has the undesirable effect of propo

gating the real-time constraints imposed by the device

beyond the subsystem boundary into the main system. It may

seriously complicate error recovery as well. Finally, since

there is a finite number of windows, most applications will

need to manage them as scarce resources that will not always

be instantly available. This means that at least some I/O

device transfers will have to be buffered in local memory

until a window becomes available. It may be simplest to

buffer all I/O device transfers and use the windows to

transfer data between local memory and main system memory.

There are four IP windows that may be mapped onto four

different objects. The IP controller may alter the windows

during execution to map different subranges and objects.

References to windowed subranges may be interleaved and may

be driven by different processors in the peripheral subsys

tem. For example, . the AP and a DMA controller may be

driving transfers concurrently, subject to the same bus

arbitration constraints that would apply if they were

accessing local memory.

40

Functions -- A fifth window provides the IP controller with

access to the IP""'s function facility. By writing operands

and an opcode into predefined locations in this window""' s

subrange, the IP controller requests the IP to execute a

function on its behalf. This procedure is very similar to

writing commands and data to a memory-mapped peripheral

controller (e.g., a floppy disk controller). Upon comple

tion of the function, the IP provides status information

that the IP controller can read through the window. The IP

can perform transfer requests through the other four windows

while it is executing a function.

The IP""'s function set permits the IP controller to:

o alter windows;

o exchange messages with GDP processes via the standard

IP communication facility;

o manipulate objects.

These functions may be viewed as instruction set extensions

to the AP, which permit the IP controller to operate in the

main system. The combination of the IP""'s function set and

windows, the AP""'s instruction set, and possibly additional

facilities provided by a peripheral subsystem operating

41

system, permits the construction of powerful IP controllers

that can relieve the main system of much I/0-related

processing. At the same time, by utilizing only a subset of

the available IP functions, relatively simple IP controllers

can also be built (in cases where this approach is more

appropriate).

SUPPLEMENTARY INTERFACE PROCESSOR FACILITIES

The preceding sections describe the IP as it is used most of

the time. The IP provides two additional capabilities that

are typically used less frequently, and only in exceptional

circumstances. These are physical reference mode and

interconnect access.

Physical Reference Mode

The IP normally operates in logical reference mode; this

mode is characterized by its object-oriented addressing and

protection system. There are times when logical referencing

is impossible because the objects used by the hardware to

perform logical-to-physical address development are absent

(or, less likely, are damaged) • In these situations the IP

can be used in physical reference mode.

In physical reference mode, the IP provides a reduced set of

functions. Its windows operate as in logical reference

42

mode, except that they are mapped onto memory segments

(rather than objects) that -are specified directly with 24~

bit addresses. In this respect, physical reference mode is

similar to traditional computer addressing techniques.

Physical reference mode is most often employed during system

initialization to load binary images of objects from a

peripheral subsystem into main memory. Once the required

object images are available, processors can begin normal

logical reference mode operations.

Interconnect Access

In addition to memory, the iAPX 432 architecture defines a

second address space called the processor-memory intercon-

nect. One of the IP windows is software-switchable to

either space. In logical reference mode, the interconnect

space is addressed in the same object-oriented manner as the

memory space, with the IP automatically performing the

logical-to-physical address development. In physical

reference mode, the interconnect space is addressed as an

array of 16-bit registers, with a register selected by a 24-

bit physical address.

43

CHAPTER 4

iAPX 432 PROCESSOR ENVIRONMENT DEFINITION

This chapter describes the requirements placed on the

logical structure of the iAPX 432 hardware environment.

These requirements are concerned directly with the

constraints of local memory, the type of data transferred

(address, control, or data), and the structure of the data

types.

The first section presents the information structure for an

iAPX 432 system and includes a discussion of memory system

requirements, physical addressing, data formats, data

representation, and hardware error detection. The second

section presents the elements of the· processor packet bus

and includes associated timing diagrams for Read, Write, and

Access cycles.

iAPX 432 INFORMATION STRUCTURE

The iAPX 432 system contains both read/write (RAM) and read

only (ROM) memory. Any attached processor (8 bit or 16 bit)

in the system can access all the contents of physical

44

memory. This section describes how information is repre-

sented and accessed.

Memory

The iAPX 432 implements a two-level memory structure. The

software system exists in a segmented environment in which a

logical address specifies the location of a data item. The

processor automatically translates this logical address into

a physical address for accessing the value in physical

memory.

Physical Addressing

Logical addresses are translated by the processor into

physical addresses. Physical addresses are transmitted to ,
memory by a processor to select the beginning byte of a

memory value to be referenced. A physical address is 24

binary bits in length. This results in a physical memory of

over 16.5 Megabytes.

Data Formats

When a processor executes the instructions of an operation

within a context, operands found in the segments of the

context may be manipulated. An individual operand may occupy

one, two, four, eight, or ten bytes of memory (byte, double

45

byte, word, double word, or extended word, respectively}.

All operands are referenced by a logical address as

described above. The displacement in such an address is the

displacement in bytes from the base address of the data

segment to the first byte of the operand. For operands

consisting of multiple bytes, the address locates the low

order byte while the higher-order bytes are found at the

next higher consecutive addresses.

Data Representation

An iAPX 432 convention has been adopted for representing

data structures stored in memory. The bits in a field are

numbered by increasing numeric significance, with the least

significant bit shown on the righ~. Increasing byte address

es are shown from right to left. Examples of the five basic

data lengths used in the iAPX 432 system are shown in figure

4-1.

Figure 4-1

Data Positioning

The data structures shown in figure 4-1 may be aligned on an

arbitrary byte boundary within a data segment. Note that

more efficient system operation may be obtained when multi

byte data structures are aligned on double-byte boundaries

46

.
DOUBLE B_Y!E;I

. DOUBLE W.O_Rl~!

EXTENDED.WORD\
.IBIT~

!ADDREssL-~
. 11\1..i..Cl I

17' 0

BITr---i
'ADDREssl____J

N

:15 I 8 *'l Q

I BIT.........,_I --rl ===1
! ADDRESS._ ___ _

l_J~ .. :tJ. __ N

'31 , 24'23 I 1615 ! 8~

I AD_D B ~~:;!1.!...l_ N_-.. _+-.~ - .:.. ;;l:;.;..I_ -_N_-±-. 2.-_ , IN - -+-;J_-. ,~

l.J§11.~. I 87 0

)31
I 242~ ...

I ~ I I I
1.~.±-~--i 1_N __ t._£_. IJ'L+.L. N

147' I 40 39 ! -·~~(3~_:' 1._ ~4 :~.~--j I 1_611_~ . i 8 7 0

> I I I I I
! N+4 I I N+3 1 N+2 1 I N+1 N

(if the memory system is organized in units of double

bytes).

Requirements of an iAPX 432 Memory System

The multiprocessor architecture of the iAPX 432 places

certain requirements on the operation of the memory system

to ensure the integrity of data items that can potentially

be accessed simultaneously. Indivisible read-modify-write

(RMW) operations to both double-byte and word operands in

memory are necessary for manipulating system objects. When

an RMW-read is processed for a location in memory, any other

RMW-reads from that location must be held off by the memory

system until an RMW-write to that location is received (or

until an RMW timeout occurs) • Note that while the memory

system is writing the RMW-write, any other types of reads ,

and writes are allowed. Also, for ordinary reads and writes

of double-byte or longer operands, the memory system must

ensure the entire operand has been either read or written

before beginning to process another access to the same

location; e.g., if two simultaneous writes to the same

location occurs, the set of locations used to store the

operand could contain some interleaved combination of the

two written values.

iAPX 432 Hardware Error Detection

47

iAPX 432 processors include a facility to support - the

hardware detection of functional errors. At INIT/ time each

iAPX 432 processor is configured to operate as either a

master or checker processor. A master operates in the

normal manner. A checker places all output pins that are

being checked into a high-impedance state. Thus a master

and checker processor may be parallel-connected such that

the checker is able to compare a master's output pin values

to those computed in the checker. Any comparison error

causes the checker to assert HERR/, FATAL/, and go idle. No

further activity will occur at the disagreeing master-

checker processor.

Figure 4-2 Hardware Error Detection

PACKET BUS DEFINITION

This section describes and defines the significance of the

19 signal lines that make up the processor packet bus, and

the general scheme by which timing relationships on these

lines are derived. Although this section defines all legal

bus activities, the processors do not necessarily perform

all allowed activities.

The packet bus consists of 3 control lines:

o Packet bus Request (PRQ) ,

48

--- ·------ .!~_?UT -

·~
:INPUTS
--·--··--

iCHECKER

·----·· ... - --
OUTPUT - - - -· - -- --

jCHECKED
! OUTPUTS
· --- ------- -- --~

-,,,,,..

FATAL
HERR

o Enable Buffer Outputs { BOUT) .

o Interconnect Status (ICS) ,

This bus also includes sixteen 3-state Address-Control-Data

lines {ACD15 through ACDO) • PRQ has two functions whose use

depends upon the application, i.e., PRQ either indicates the

first cycle of a tra~saction on t~e processor component bus

or the cancellation of a transaction initiated in the

previous cycle. Of the three control lines, BOUT has the

simplest function, serving as a direction control for

buffers in large systems requiring more electrical drive

than the processor components can provide. The ICS signal

has significance pertaining to one of three different

system conditions and depends on the state of the processor

component bus transaction. The processor interprets the ICS

input as an indication of one of the following:

o Whether or not an interprocess communication (IPC) is

waiting,

o Whether or not the slave requires more time to service

the processors request,

o Whether or not a bus ERROR has occurred.

49

The Address/Control/Data lines emit output specification

information to indicate the type of cycle being initiated,

addresses, data to be written, er control informa~

tion. They also receive data returned to the processor

during reads. Details of the ACD line operation and the

associated control lines are summarized below.

ACDlS - ACDO (Address/Control/Data) During the first

cycle (Tl or Tvo (See Figure 4-3) of a processor

component bus transaction (indicated by the rising

edge of PRQ), the high-order 8 ACD bits (ACD15 ••• ACD8)

specify the type of the current transaction.

In this first cycle, the low-order ACD bi ts

(~CD7 ••• ACDO) contain the least significant eight bits

of the 24 bit physical address.

,

During the subsequent cycle (T2), the remainder of the

address is present on the ACD pins (aligned such that

the most significant byte of the address is on ACD15

ACDO). If PRQ is asserted during T2, the access is

cancelled and the ACD line is not defined.

During the third cycle (T3 or Tw) of a processor

packet bus transaction the processor presents a high

impedance to the ACD lines for read transactions and

Tw or T3 asserts write data for write transactions.

50

. ,I ,

I ~.; I .. ,' \ •' ' . '_;,) ... · . ,.. '

·,.t ..

Ti

INITIAL STATE

Ti

Tl

T2

T3

Tv

Tvo

Tw

Tl

Processor Pocket Bus State Diagram

NEXT STATE

Tl
Ti

T2

T3
Tw
Tl
Ti

T3
Tw
Tv

T2

Tvo

Ti
Tl
T2

T2

Tw
T3

T3

Tw

TRIGGER

Bus cycle desired
No bus cycle desired

Unconditional

res high
res low

Tvo

Tv

Cancelled, Access Pending
Cancelled, No Acccess Pending

Additional transfer required
res low
All transfers completed if current cycle
nu.o,,..1::1nr1.or! t.1,,..~+o '
'-' Y._,.I I \,l,pt-'i;;;;lo.I HI I ,.;;

If read or if write but no pending write
Current write with pending write
Current write with overlapped write

Overlapped write

ICS Low
ICS High

Figure g:;;g - State Diagram for Processor Packet Bus
"9-3

' lb)

·4*

Once the bus has entered T3 or Tv, the sequence of

state transactions depends on the type of cycle

requested during the preceding Tl or Tvo. Accesses

ranging in length from 1 to 32 bytes may be requested

(see Table 4-1). If a transfer of more than one double

byte has been requested, it is necessary to enter T3

for every double-byte that is transferred. After any

transfer the processor may simply re-enter T3 or it

may enter Tw for any number of cycles (as dictated by

- ICS) and the number of double bytes remaining to be

transferred.

After all data is transferred, the processor enters

either Tv or Tvo. Tvo can be entered only when the

internal state of execution is such that the processor

is prepared to accomplish an immediate write transfer

(overlapped write). During Tvo, the ACD lines contain

address and specification information aligned in the

same fashion as in Tl. If th.e processor does not

require an overlapped write, the bus state moves to Tv

(the ACD lines will be floating). After Tv, a· new

bus cycle can be started with Tl, or the processor may

enter the idle state(Ti).

ICS (Interconnect Status) -- ICS has three possible inter

pretations depending on the state of the bus transac-

51

ACD ' ACD ACD ACD ACD ACD ACD ACO I

15 l 14 13 12 11 10 9 8

Access Op RMW l Length I Modifiers

0 - 0 - 0 - 000 - 1 Byte ACD 15 = 0:
Memory Read Nominal 001 - 2 Bytes 00-Inst Seg

010 - 4 Bytes Access
I

011 - 6 Bytes 01-Stack Seg
! 100 - 8 Bytes Access

1 - 1 - 1 - 101 - 10 Bytes
I 10-Context Ctl

Other Write RMW 110 - 16 Bytes* Seg Access
111 - 32 Bytes* 11-0ther

ACD 15 = 1:

I * Not implemented I CO-Reserved I
I 01-Reserved
I

t
10-Reserved
11-Interconn

l Register r

Table S!l!!l ACD Specification Encoding
i-i ,

IA~lc 4-~
tion (see ~igure I~ Notice that under most

conditions ICS has IPC significance for more than one

cycle. It is important to note that a valid low

during any cycle with IPC significance will signal the

processor that an IPC has been received. An iAPX 432

processor is required to record and service only one

IPC at a time. Logic in the interconnect system must

record and sequence multiple (possibly simultaneous)

IPC occurences to the processor. Thus the logic that

forms ICS must accomodate global and local IPC

·arrivals and requests for reconfiguration as individ-

ual events:

1. Assert IPC significance on ICS for the arrival

of an IPC.

2. When the iAPX 432 processor reads interconnect

address register 2, it will respond to one of

the status bits for the IPC signalled on res

in the following order:

Bit 2 (l=reconfigure, O=Do not reconfigure)

Bit l (l=global IPC arrived, O= No global IPC)

Bit 0 (l= Local IPC arrived, 0= No local IPC)

52

3e The logic in the interconnect system must

clear the highest order status bit that was

iAPX 432 processor -.-..:i .;..:;:
auu J...L.

additional IPC information has arrived the

interconnect system logic must signal an

additional IPC indication to the iAPX 432

processor.

PRQ (Processor Packet Bus Request) PRQ is normally low

and can go high only during Tl, T2 and Tvo. High

levels during Tvo and Tl indicate the first cycle of

an access. A high level during T2 indicates that the

current cycle is to be cancelled. See ,..J':fJ~~~ P~Q~

BOUT (Enable Buffered Outputs) BOUT is provided to

control external buffers when they are present. Table

BOUT and the waveforms show its state under various

conditions. Note that high to low transitions of BOUT

will occur during T3 (when required) and low to high

figure 4-3 State Diagram for Processor Packet Bus

Table 4-1 ACD Specification Encoding

Figure 4-4 Nominal Write Cycle Timing

53

I BOUT
;

'
!PC
STRETCH
ERR

*Note:

LEVEL
HIGH LOW STATE

NONE WAITING
I Ti' Tl, T2* See Note.

DON'T STRETCH T3, Tw
BUS ERROR NO ERROR i Tv, Tvo

I

!CS has no significance in a cycle following a T2 where PRQ
is asserted (cancelled access) or in any cycle during which
HERR/ is asserted.

TABL!: 4'-1. 1'11 ••Ml - ICS Interpretation

State PRQ Condition

Ti 0 Always
Tl 1 Initiate access
T2 0 Continue access

1 Cancel access
T3 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access .

IASLE 4-3 RJa::_ JJl - PRQ Interpretation

l

High Low

Write Always Never

J
--

Read Ti, Tl, T2 T3, Tv, Tw

I

iAPX 432 SIGNALLING SCHEME

PROCESSOR SLAVE

Inputs ACD: CLKA All: CLKB
Sampled Others: CLKA

Outputs All (except BOUT): CLKA ACD: CLKB
Driven Others: CLKB

BOUT: CLKA

Table iAPX 432 Component Signalling Scheme
~--s-

Figure 4-5 Stretched Write Cycle Timing

Figure 4-6 Minimum Write Cycle Timing

Figure 4-8 Minimum Read Timing/No External Buffers (BOUT not

used)

Figure 4-7 Minimum Read Cycle (Buffered System)

Figure 4-9 Minimum Faulted Access Cycle Timing (PRQ Cancel

lation)

Processor Packet Bus Timing Relationships

All· timing relationships on the processor packet bus are

derived from a simple scheme and related to Figure 4-3. Each

timing diagram shown in the following pages provides a

separate table illustrating the various system states during

the cycle. This approach to transfer timing was designed to

allow maximum time for the transfer to occur and yet

guarantee hold time.

Any agent connected to the processor packet bus is recogniz

ed as either a processor or a slave. Examples of processors

are the GDP and the IP. A memory system provides an example

of a slave.

54

NoNtNAL

f <

Nom 1/\/1\L WR.JTE. C..:/CL£

~ 6 C.L!<A- CyCLf3;.:S

n: 'II IL I 13 I rv I r:r.. II · I r 2- I

CLfU\ J l _ _Il_J I LJl
-----~ ADDR..)--

_ ____/\~-----------~!

/S8

eou.,.- _;--
Aco15 ~~cn6 ACD7 J\CDO

hi z hi z
spec Lo-adr

IfI-_adx· _MTd=.adr__ -::-r-
Hidata.l Lodatal

Hi z Hi z ·----Hi z Bi z
s~ Lo-adr

lli-adr Mid-adr

State

Ti
Tl
T2
T3
TV
•ri
Tl
T2

\...___/

*Undefined if
Single byte write

_

ACD15 ACD8 ACD7 ACDO State

hI-z fiI z Ti
spec Lo-adr Tl

nI-adr Mid-adr T2
nI-oataI Lo-datal T3
nI-data'l. Lo-data1.. Tw
HI-data2 Lo-data2 T3
nI-z nI-z TV
Hi-z Hi-z Ti

-n. I Tl T3 . I TV I T~

CJ...J<A
I I l~I ____ I

l\CD
/\DDR/~PEc.·: f\PDR W~ITf: /Yl1 ll

J..J

t~A

1:56 !PG. I PC.. 1Pc.. ST~£.7Ctf ~T RElC t-t

80UT

IYl 1N t ll1 Vf\1 wR 116. C'tt.L..E. . J
.3 c..L.KA C"/Ct.~. t , ... 1

'. ·, I ,

IV .. 'I ,, .1~. .I
r.. ·. .

_I

J~/\ _ _;-~, _ ____,r-__ __ _

-JJD ur /

l\C015 ACD8 ACD7 J\CDO

111-z 111-z
Spec Lo-adr

Hl-ndr M:ld-adr
--11I-datal* r.o-dataI .

.---~

l_a/

·spec Lo-adr
- 1__,li ... ---a.._,...d-r--~Mld-adr

Hi-datal Lo-datal
)

.s1J!ETO/

State

Tv (Preceded by read cycle)
Tl
T2
'1'3
Tvo
'1'2
T3

* Undefined if single byte write

ACD

1-SA

I.SB
\ {\ ',, r
---L~
'(·-7

tnl"-.JIN\UM RLAD CIC.LE (BuFflf?.[D ...SY51C1n)

& CL/vt C'/CLE.~

I n- I T.3 I

~ -1 II 1----1 .._____.JI.._____,

/\DDl? /sPtC ADOR. ----~-----~

_ ___./ \~---------------~!

x tPC. x I.PC.. x 1PC.. \ STl?.f.lCll I l5t1~£.1 ti/ '< £RR x IP(, ><==

__ /
.1\CD15 ACD8

111-z
spec

Hl-adr
Hi-z

ni-aatai*
nl-z
111-z

ACD7 ACDO
111-z

Lo-adr
Mid-adr

Hi-z
Lo-datal
nl-z
111-z

State
Tv (Preceded by a read)
Tl
T2
Tw
TJ
TV
Ti

• Undefined if single
byte read

ct:1GU~L <1-7 MINIMON Rf~D

C.'f<:.L~ U3oFFEUD 5'·1'Sff'1)

C.LJ<I\

/Sf:,

~
fY\ 1 N llYl U /Yl RE:./l IJ C YCL& 1 ..:J" CL K. /t C. 'IC. LES

TV -,-, 'fl- I ~ Iv I 1"L Ti

J n_ SU
RU\D 01~ -.. - -- -

_ __r \ ___ ~ __________ / _

ACD15 ACDB ACD7 ACDO

111-z 111-z
Spec Lo-Adr

Hi-Adr ---MTd-1\dr
Iii-data* Lo-datal

-lfI-z 111-z
111-Z lli-Z
Spec Lo-adr

~:__«-____ 1P_0 __

\ ____)
NO EXTERNAL BUFFERS (BOUT NOT USED>

State

Tv (Preceded by a read): AD TIMING
Tl
T2
T3
Tv
Ti * Undefined if single
Tl byte read

r16ufJ..E.. . .q-s N INIMoM

R.fA-ll C~Clf.

(Nor Bot=Ff.REt>')

CLJ<A-

t\ CD

1.slt

J:/j

! Jf
'--k
)J

Ii: I Tl-

1 I

_/

IPC..

,.,

I Pc..

ACD15 ACDB ACD7 ACDO

ui-z nl-z
Spec Lo-adr

Undefined Undefined
Spec Lo-adr

111-adr Mid-adr
~-1rr=a_a_t_a~,~~L-o--~a~a-t-a~

111-Z Hi-z
111-z 111-z

T.3 Tv

wRJTc MT.I\. - ·- - - - - - -

State

Ti
Tl
T2 Access Cancelled
Tl
T2
T3
'11V

Ti

* Undefined if single
·- byte write

I

FtGoRE. 4-c;
FAULT~})

N1Nf MU'1
f."K_(fSS C~CL f. .

In all tranfers between a processor and a slave, the data to

be driven are clocked three-quarters of a cycle before they

are to be sampled. The BOUT timing is unique because BOUT

is intended as a direction control for external buffers.

Detailed set-up and hold times depend on the processor

implementation and can be found in the A.C. characteristics

section.

Note that in all transfers between a processor and a slave,

data is clocked three quarters of a cycle before it is to be

sampled. This allows adequate time for the transfer and

ensures sufficient hold time after sampling.

Table 4-2 ICS Interpretation

Table 4-3 PRQ Interpretation

4-4

Table 4-5 iAPX 432 Component Signaling Scheme

55

CHAPTER 5

AN iAPX 432 MULTIPROCESSOR SYSTEM IMPLEMENTATION

The prototype system described here is a simple but func

tional multiprocessor system that demonstrates the major

characteristics of iAPX 432 system implementations.

The first section of this Chapter deals with the processor

component interconnection and inspects the associated

Interconnect Status (ICS) logic, the Processor Request (PRQ)

logic, and the Interconnect Processor (IPC) logic of iAPX

432 systems.

The second section describes the memory system logic and

includes a discussion of the system clock generator, the

PCLK generator, and a static byte-memory system. This

section also discusses the important concepts of memory

alignment, multibyte sequencing, and peripheral subsystem

connections.

SYSTEM DESCRIPTION

The iAPX 432 demonstration system contains one General Data

56

Processor (GDP, consisting of an Intel iAPX 43201/43202

device pair) , one Interface Processor (43203 IP device) , and

a 2147-based static memory system. This system is capable of

supporting a total of four attached processors. The IP

connects via cabling to the Multibus interface of a

peripheral subsystem. Figure 5-1 is a block diagram of the

two-processor iAPX 432 system. Figure 5-2 shows the

physical partitioning of the system.

Each processor provides demultiplexing and buffering logic

for the processor packet bus, IPC logic, and bus request

logic. The memory system contains the system clock

generator, the bus ·arbitration unit, the memory array, the

memory sequencer, and bus buffering logic.

Figure 5-1 Prototype System Block Diagram

PROCESSOR COMPONENT INTERCONNECTION

iAPX 432 processor components share some common requirements

in the system described. Refer to Figure 5-11 and Figure

5-12 (Appended to this Chapter) for schematics of the two

57

V'· I
.._J

fl>·

1·..J.

ACD tU5

1PC..

J
I

I'' i •I.

t. u f i' t:-•-

\P

------------------·- _L_~!lL~~~--~

Ft G\JR~ 5- I

l~A

1$

bv'.:.

H .. l.I'
l.oC. I(..

ClO<t

l GE:AllfAii:#

1--

tl\lA
f,uf'U-

~ ... ~~f'

I(..

fV\i ti' t I .,

f>i11JJ

----------.---------··----.. --·-·-·---· .. ·•·

,,

---f-·-··· ·---·····---··---·····-·--·--·------··--···--------------~-·-.. ··-----·----·--·--·---··-·-··

I

j '

-' .J'·.)

yY) I) L.1 I .8V ~
. <.~1 IA.~'il.:2 -··· .. ---·

·-- -----·--·--------:/-

//

/irt kt PH £J.i\L.
~ UB~ y'S'l cf ff\

ComEonent Pin Connect to

MASTER vcc
43201 CLR/ vcc

RDROM/ vcc
ALARM/ vcc

43202 MASTER vcc
CLR/ vcc

43203 HERR/ GND
CLR/ vcc
ALARM/ vcc

I f\Bl2. 5-1

processor boards.

Power supplied to iAPX 432 components is distributed across

multiple Vee

and GND pins. Each

to the appropriate supply.

power pin must be connected

Each Vee pin should be separate-

ly bypassed through a short, low-inductance path to ground.

Connections for eLKA and eLKB are made to all iAPX 432

components.

Each GDP or IP component requires interface logic to various

circuits within the system. The following paragraphs will

discuss the three specific areas of concern:

o PRQ - ISe Logic

o Bus Request/Grant Logic

o Processor ID and IPC Logic

Figure 5-3 Address Specification Demultiplexing

Figure 5-4 Local Access Operation

PRQ and ICS Logic

58

_JI._______.

\-------~-----------------,r-----------------------

-·------!-·------

I\\\ f) fl{)~4
d' I\(')\~

x---_

~~
d-~

(\ CAtJCtl/

PRQ (Packet bus Request) and ICS (Interconnect Status) are

the two signals that control data transfers on the processor

packet bus. res is a processor output examined by a

sequencer in managing the movement of information on the

bus. PRQ is a processor input that may either signal an

IPC, signal a bus error, or acknowledge the transfer of

data.

PRO-Related Logic

A TTL 748175 register is employed as a state sequencer in

decoding PRQ and generating several control signals. Figure

5-6 demonstrates the generation of LDLOW and LDHIGH strobes

for demultiplexing the processor packet bus address and

specification fields. The rising ~dge of LDLOW strobes the

specification field and the low 8 bits of the 24-bit

physical address into the ADDRo through ADDR7 latch/bus

drivers. The rising edge of LDHIGH strobes the mid-8 bits of

the physical address into the ADDRa through ADDRF latch/bus

drivers. The uppermost 8 bits of the physical address are

discarded in this system. The state sequencer also decodes

an access to the interconnect address space (ACD15 = 1 when

PRQ is asserted) and generates LOP (interconnect operation)

as shown in Figure 5-5 Furthermore, cancelled accesses

(denoted by two successive PRQ assertions) are detected by

the sequencer, which generates the CANCL/ pulse. (See Figure

59

5-5.) Three consecutive assertions of PRQ cause an access

to start, the CANCL/ signal to be asserted, and a new access

to begin. (See Figure 5-6.)

Figure 5-5 Cancelled Access

Figure 5-6 Cancelled Access with Overlapped Access

ICS-Related Logic

ICS (Interconnect Status) is a combination of several

signals that indicate either the status of a transfer,, the

occurrence of access errors, or the signalling of IPC

(Interprocessor Communication). The processor packet bus

definition in the iAPX 432 component data sheets defines the

time-dependent nature of res.

Processor ID and IPC Logic

After INIT/ is pulsed low, each processor reads interconnect

address space (address 0) to obtain an 8-bi t processor ID

number. Processor number 0 is not allowed as a processor ID

60

_J

L_f)lO W

l.D ,,, (;, 1{

__}\~!
CANltl/

_//

flrDt.S., I AC.DI H_, "'_.M .. _·x_-_v
/}) ID A oe - - I'

code. The hardware at each processor location returns a

unique 8-bit processor ID code.

IPC signals are transferred to a processor board by the

GLOBAL/ and LOCAL/ signals being held active for one clock

cycle. Each type of IPC is latched at the respective

processor. Interconnect address space (address 2) may be

read by a processor to disclose whether a local or global

{or both) IPC has been signaled. Once read, the IPC status

bits are cleared one at a time. See Table 5-2 for the IPC

bit encodings.

A processor that signals an IPC will send either a global or

a local IPC by writing to local address space register 2.

Logic on each processor board decodes the specification

field, interconnect address 2, and the processor ID field of

the data packet double byte. A processor may signal any

processor, all other processors, or itself.

Table 5-2 IPC Register Bit Designation

MEMORY SYSTEM LOGIC

The memory system (Figure 5-7) contains a static memory

system, an access sequencer, a bus arbiter, a PCLK generat-

61

ACD

ACD

15 0

x x x x x x x x 0 0 0 0 0 0 G L Interconnect Address 2 (READ)

L = Local !PC waiting
G = G 1oba1 !PC waiting
x = Undefined

15 0

x x x x x x x x 0 0 0 0 0 c c c Interconnect Address 2 (WRITE)

Signal Global IPC

X = Undefined

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

Signal Local IPC to Processor 1
Signal Local IPC to Processor 2
Signal Local IPC to Processor 3
Signal Local IPC to Processor 4

- !PC Register Bit Designation

/ (
/~ I " ~I 1')

or, and a clock generator for the system.

System Clock Generator

CLKA and CLKB for iAPX 432 components are

generated at four times the component operating frequency by

a crystal oscillator module that drives a Johnson counter.

CLKA and CLKB are symmetrical square waves in quadrature (90

degrees phase shift) •

PCLK Generator

PCLK, the timing signal for the system timer and process

timer in iAPX 432 components, is generated by dividing CLKA

by 1024.
,

Figure 5-7 Memory system schematic

Static Byte Memory System

The static memory system demonstrates the requirements of an

iAPX 432 system memory: alignment of data transfers,

multibyte sequencing, and Bus Arbitration. Figure 5-7 a

schematic of the memory system described.

62

I

1

I . ----'"·· -
. :.: ..:__-.:.-:.::~:; -:::..:: ,. __

r
t

Pf
Q!]1;iQ 11~-~----r-r-:-..... -r-------,
[!TI , .. ~. ,, __ ..;.,:----~.--+-..... -!-----,

Ir

~!~--~-~!---~----,--~~ l!
... L,.:._. ~ ,,;....,/

·; ;......;_-.~--_,, -_-. _..I, - -! ;·: 'LJ I

P-16uQE... s-7

..------- i l . , t 1f ~· ,...--:-..'.!.l
L------·! - ~ :"<-1.~:J.._" c.~.·. ~
~
•-'.~

/orl-
StATtc_ M E._~l?.1, SYSn""

G ,'-- !~

·---.. 4-.... - :~7.--

L.-~.

; .. -..-.

.. ,

·~~~
= ..

.t ... --- ·. - a i--r----r.-..!.::/

:(I

~.!...Irr":•

... - ··- ----·· . ~ .· ~

."': ... ----·- .. :, __ _

•• M•4•·
• .

- ~-!

·I
. ' I

I
I

I

;. ··-

'

... ,!',;
'"'-:1"1 ---' '

·- , !.'! i ~- I
iJ 11111 II r 5; J ;j
:•Af!+~lf1fll

:u S/57

.~· :,

. -·------.. ----·-

. - ---;
1$

j r.

Go IS'

.. '1 · . f ·-.,,

I I ' l I :
,,' c;1,,l .:i :I ,ls
~~~~~Ml 1~n~~~~g~, 

Ui3 ~-7--1""""'" 5~.IS 4· 
7 

U ·- r:r ff 

fl ·IJl fl 
r I 

:.-, . ,.._J rw ! 

• Ill # 4 I-It I A 

514 t;IS'7 "' ' + ..,. .,. ., . .., 

"I ' 7 "I '"I H,~,,,,_~ __ .,_ ______ ..,.._-=--~------..... --,,,-~--i--------.-------i..._ ______________ ~----~ 
::.- a) ~/ "'"'. 

t 
I- --

I I 

cfu ul 

·-Ir_,.;· .!-1·-l-·H_ 
~~~~~ 

j
! I

; I . I
,,, ,.,, I': /Si ff' 17 11 II

! ~

~-.Y

IW 1"' ft'; ,., lt7 I.; If ,,, H 1tl ilf r.J

c.::,,.
c:,

- r • t - •• "! : i . I . i "·l --: . :· ... J~·--.!....:..J

Alignment

Figure 5-8 depicts the transfer of a word operand (four

bytes) • A processor may request this operand from memory

without concern for its alignment in physical memory. The

word operand consisting of bytes 0 to 3 is aligned to a

double word boundary. The word operand consisting of bytes 3

to 6 is not aligned. The processor packet bus specification

field for each of these accesses is the same. (Only the

physical starting addresses differ) •

Physical address bit 0 indicates whether an access is

aligned on a double-byte boundary (address bit 0 = 0) or

unaligned (address bit 0 = 1) • When signal ALIGN/ is

asserted, the memory system will per form the appropriate

byte swapping to guarantee that right-justified data is

transferred on the processor packet bus.

In Figure 5-8 the double word operand reference to location

3 demonstrates an unaligned reference to a word operand. In

addition to the byte swapping requirement, references to two

consecutive memory locations are required to transfer each

double byte. Figure 5-9 shows how separately addressed

parallel memory arrays are used to accomplish the transfer

of any double-byte pair (aligned or unaligned).

63

7

-1

2

7

')
5

1{

3

/2.

D

\._

PhOC.fV\ M IYl t f~
\/If; ld

I-

"' l- t n () I~'/
~-ys1f((\

--- -·

-7

.:s
,r

b -

y

~ 2-

I D
--

3__..-- ..2 ---

J 0

··-·

D\\ A~f~N'~\ L.fl:l:J) l\1')

~tssot' t'~Q.._f->~

l 1 0
-·-··- ·---.. ··- .. -

{;-1 / 3 2.

fi6oe~ S'-8 B--{u .. swl\PP1N6 ~ -a1-s1 r
OPPR.f}NI)

3

5

{_ a ti nunl/..Lt >
/ ri o-, oul?)

Figure 5-8 Operand References with Alignments

Figure 5-9 Parallel Memory Array Organization

MultiByte Sequencing

The specification field of a processor packet bus transac-

tion indicates the number of sequential bytes to be

transferred at one time. The memory system uses the

parallel bank memory structure just described, with

appropriate contr9l, to sequence multibyte accesses.

A TTL 748163 counter is loaded with a recoded value for the

length information in the specification field of a processor

packet bus request. Accesses of encoded length 0 will cause

the BYTE signal to be asserted. The 748163 counts the

number of double-byte accesses required to complete the

transfer. At the end of a transfer the signal ERR is

asserted, which indicates (via signal MERR) the ICS bus

error significance (always errorless in this system) •

The access sequencer generates one HOLD assertion for each

unaligned double byte transferred. HOLD generates a wait

state via requesting processor~s ICS pin. Aligned

accesses and single byte accesses occur with no HOLD

64

:.:.. I. :- f,J
i'·. ; L { ·: ~.2...·

.,...,

- - c.i.oc.\ t rtH- \

_v-- I I -
---- -~-+--r~-+--+----i.::-l--l-~-+---+__::.-:-1-~f....-J.~~-- '°; -1.P ~v..>!-/h ..£:. ~ J .< -.._. -r .:;...1....,..---;..,,,rwr_,.._i

J

lo S--q
rrLilH.i. m -Pr:~J,UEL 'r/!8\')t.:·i (2.A/JKj

//./A .. . ~--r
" ' '-

penalty.

Bus Arbiter

The bus arbiter section of the memory system arbitrates

requests from among the four processors for use of the bus

and system memory. The arbi teruses BREQ4/ as the highest

priority and BREQl/ as the lowest to resolve simultaneous

requests. The resolved bus grant is returned to the

highest-priority requester by asserting the appropriate

BGRTn/ line. BGRTn/ remains asserted for the duration of

processor "n~s" access.

Peripheral Subsystem Connection

The IP board {Figure 5-12) connects via two buffered flat

cables to the Multibus slave interface (Figure 5-10) in the

peripheral subsystem containing the attached processor. The

buffers and synchronization logic to generate the SYNC

signal to the IP are located on the IP end of the cable

The Multibus interface board employs an Intel

8218 Multibus Arbiter to provide the peripheral subsystem

interlock function. Even though the Multibus interface is a

slave during data transfer operations, the IP uses its

HLDiHDA pins to lock the Multibus (a function of a Multibus

master) at certain key times. The HLD/HDA interlock is used

65

46;;;%5-

<\ 3~0~

tfcL•I-------__:;.· ·10 l'-'·. 7-'L I'!'(

,,,

.\)-----

ft-----c

-~t--------------------_,...

F1 <>o f2.E. 5' - 10 t kft~ e. FPt: ~ TO J: p
fi.\ ... , .111; 1 .,.,,,~ ltP1>...t(£.r1• b tf'

-1 •
..tl.1 l . ., f! (

-lr-dt1lc.4
bJi(c:...:J

ITLJ:;/I

to prevent any peripheral subsystem processor from generat

ing a new transfer to or from the IP while it is in critical

$ections of its internal operations (e.g., altering windows

into iAPX 432 memory) •

Eight output port locations are used by the board. These

ports are located at I/O addresses 0 through 7 and may be

byte-addressed only. Table 5-3 outlines the assignment of

functions to ports.

Table 5-3 Peripheral Subsystem Dedicated Ports

Chip select for the IP is decoded from ADR10 through ADR13

of the Multibus, allowing the IP to be memory-mapped within

any 64K-byte portion of the Multibus.

66

Multibus Port

0
1
2
3
4
5
6
7

- - ---- . - ~. . . : -

Designated Function

Deactivate INIT/
Activate INIT/
Pulse ALARM/
Reserved
Reserved
Reserved
Reserved
Reserved

- Peripheral Subsystem Dedicated Ports

t r
f
r
I

t

. t·.
•·· r

--

--~,

ti""' I I

:> -q
GDP sc~_Mrrrtcs

~~/!!~- -;~z-

I
r-····--.·

r--·--
1 I
! !

I

.. ::...' ::-·

. ~~N(t/--

___ I--_-___ -:J, f~
i

,pl...:!.f '
L.

:·;.

. " -

1 -~ r .. ,, .-~
~; - ·.- :d. ____ __......_ __ _.

! ~
~-.;.:---.:_
c
~·
r·:

'§1 :.:·~:~t
i

...... - -:--~ ~- _

- -- .. - -- ,_; __ . .:

·ti~-- --
'. "ll'i ·ll;1 6 s

··-· - t t !

·-··-I. - - .

I j
}l

.<

-h 1_1;;:~.rn·
1.;,.,;·-1~ ,, •• ;... I

.. - - .. - ~
···- . ···--·-4 -

:-: ~..._ ___ ,..,. ... ·--~~.,.---

--···-··---- -·-----· - .. ---. - ~-.. - ~·--- - ----- .. ~ -_. -··----...... ---. I,.

--·

t

l
I
I

j

f

I
· I

. ··-.
-~·

- -- ---···- -·-· ··-
.---·· =· - ... c....... ,,,_: ___ -

·-..___, ___ _ -· -----·-- -

• ..

I
- I

. ;.-·-- -· .. ~- . .
. - ... ·-·- ...

. "'i..

DESCRIPTION al J;EVlSK)N

_, · ...

------·---------.-------------------- -·· ---····----·-···----- -·- --·------------------- ---· --·-···- --

~· .

...
-· ·- -·· -- .

. ·-~- .• . ..-----··· :- -·-·-·

. r:
-- - ,. ... - ----- -.

. - ... ---
·~---+----------~--- -~----+--·~-

.•
. -- -- --- -· - - - .. ·- ..

-- --~·,,... --_--_·-_-·-_--_--_~_--:_~_-<"'I~~ ·-· __ -_ _._ ____ -J __ ···-· ______ ... C.u~~:l ~-~ ~t~t
. -_'·-~~. t ... ·-· :L&fsls I

orr--------~--...._-+-----------+----+-~~~~:il-.!.!:.~:_i-

'~''"'"'l'---4------+----JI&.i
CS*t--:---------~---------------+.---J..---1..!t.j

-l

-.. ---· --· -- ... ti~ y-_·-·.

'y,,/ •• ,...

bA: ::-•;;,;':"
.. :-1".t ..
• il.~!..:!,t.!£

~ "'"'"'""-j fl"'..-. ~ •.
,. l'ci.i< ,..c.:

NOTE

~ ___ ,-....... ·~

~'. 'L

S'

-....... ,. ~-- -~ ..

---·---
··- ·------------·
..... - '"' ... --··-------

~ - -- -- --------------i:! . -. --- . - '· --------=::
~~ = ---=--~--~~--==-=- :
~ - . . --·--- - - . <
U-- ···------ ------.. <,,I ".¢

. .. _ ·-····~· -·--· ---· ·-··· ... ··- ---= ----

:. ·--- -· ·------.·

------· - ··----------

-- ... : - ...

. 1 __

~~i:T

--

.,. fl! O<./
M'......CJ

--

('<t)C j.c;·N -· • - -- ··•• - . (J~ 7 { ...

~1'11:1" w••Ttr

AC'LMS£ ZHrr

"""" ... f'C.l.JI. .& .. ,
•:r./lt 11:.t'.~C'.,.

NOTE!:i
;--i1M.l.w......,..~· ~ .. f4»•,ra.;•1'MtQ••••-.

~;•;-.,7,:-,:~·~;,:~;::~~:.;;::-.:;;; _,J• ™SS.W 1:tlTtC.t.VE.
;:_~~~~~,c:v·:.· :,.::·":°~"'·! ... ~:~; .;~ It H~ '"'""'~noM ALOH.I. OA. ~M~
... ,:->1··-. •.. 1o -. ... rH1:4i...WfllalS.I ------

'># "''n c.J-.L~~~.;!~'-'-- ~~::~-~.'.:u_~_.,_a_E_n _______ ___,
CRAWN l'f 1 \ 1- OEViCI:: FIJNCTICN -----
COHrray_i~---i-----i-----------.---~----1
F't(l AP•111. J I ~HT

iAPX 43201 iAPX 43202

VLSI GENERAL DATA PROCESSOR

o Self-dispatching processors o Hardware implemented inter-

for software-transparent process communication and

multiprocessing. dynamic storage allocation

o Capability-based addressing o High-level language di-

and protection. rected instruction set with

0-3 operand references.

o 2 to the 40th bytes of

virtual address space.

o Functional redundancy

checking mode for hard

ware error detection.

o Symmetrical support of all

8-, 10-, 32-bit scaler data

types and proposed IEEE

standard 32-, 64-, and

80-bit floating point.

o Object-based architecture

for improved programmer

productivity.

67

The Intel iAPX 432 General Data Processor (GDP) consists of

two VLSI devices, the 43201 and the 43202. These companion

devices (Shown in Figures 1. and 2.) provide the general

data processing facility of the iAPX 432 Micromainframe.

The combination of VLSI technology and advanced architecture

in the iAPX 432 results in mainframe functionality with a

microcomputer form factor. The new object-based archi tec

ture significantly reduces the cost of large software

systems and enhances their reliability and security.

Software-transparent multiprocessing allows the user to

configure systems matched to the required performance and

provides an easy growth path. Hardware support fo~ operat

ing systems and high level languages ease their implementa

tion.

The GDP provides 240 bytes of virtual address space and

supports 8-,16-, and 32-bit machines with capability-based

addressing and protection. In addition, a hardware-imple

mented functional redundancy checking mode is provided for

the detection of hardware errors.

The iAPX 43201 and iAPX 43202 are fabricated with Intel.-s

highly reliable +5-Volt, depletion load, N-channel, silicon

gate HMOS technology and is packaged in a 64-pin Quad In

Line Package (QUIP) •

68

vaj q
~ {;:$ t

156 L-1 1 64 ~-. GNO

IS3 rl 2 63 CLKA

IS2 ,---1 3 62 VCC

IS~ [=I 4 61 h CLKB

ISO rl 5 60 I l GND

·1s5 ~ 6 59 ~ N.c.

IS~ 7 58 FATAL/

GND 8 57 CLR/

!1 µ115 9 56 I J INIT/

- C\
~ C µ!1~ r-1 10 55 t I ALARM/

~ 10
c: tin µ113 C--1 11 54 I I N.C. n
-!

~ ~ µ112 I I 12 53 I I N.C.

~ • µ111 r--1 13 52 I l ICS
n ~ .

g ~ µ110 1'114 51 rl PRO '
m o. ·
:c -
~ := vcc ~ 15 50 L__j vcc
- z
~ ~ µ19 16 49 r--l ACD15
O en

~ ~ µ18 11 17 48 I -- 1 ACD14
;; 3:
c: ~ µ17 II 18 47 II ACD13
~ -I

o µ16 I I 19 46 I I ACD12
z
ti'>
~ µI?. I I 20 45 I I ACD11
c:
~ µI~ f--i 21 44 I - l ACD10
n
; ~I~ II 22 43 11 ACD9

µt~ 23 42 ~ AC08

µ11 24 41 GND

µ10 25 40 AC07

GND 26 39 ACD6

MASTER d 27 38 I I ACDS

HERR/ r=l 2s 37 1-1 ACD4

N.C. ;:::i 29 36 P ACD3

RDROM/ ~ 30 35 h AC02

N.C. 31 34 P AC01

VCC 32 33 h ACOO

~l.2J)

CLKA ~ 1 64~156
vcc 2 63 IS3

CLKB 3 62~ 152

MASTER~ 4
61 IS1

PCLK/ 5
60 ~ISO

GND 6 59 ISS

HERR/ I I 7 58 IS4

CLR/ ~ 8

N.C. 9

57 ~ GND

56 µ115

N.C. ~ 10

N.C. 11

55 h µ114

54 1Jl13

BOUT I l 12
53 ~ µ112

ICS rl 13 52 µ111

PRO 14 51 µ110

vcc ~ 15
50 vcc

ACD15 16
49 ~ µ19

D ACD14 17 48 J.118

g ACD13 18 47 µ17

70 ACD12 L=:J 19 46 L_l µ16 rn
,..:> ACD11~20 45 ~µIS -A
w AC010 21 44 µ14 N

~
ACD9 d 22 43 b µ13 "'C z

> AC08 23 42 µ12
en
Cl>

i5
GND ~ 24 41 ~ µ11 z

:: ACD? 25 40 µIO m
z
-4
m AC06 26 39 . GND
x
m
(") ACOS I I 27 38 I I vcc c:
-4

0 AC04 fl 28 37 f-1 N.C. z
c: z
::j

AC03 1129 36 II N.C.

ACD~ ~ 30 35 ~ GND
ACD1. 31 34 N.C.

ACDO 32 33 N.C.

Figure 1. Instruction Decoder/Microinstruction Sequencer

Figure.2. ·Execution Unit 43202 Pin Assignment

Figure 3. 43201 Block Diagram

Figure 4a 43202 Block Diagram

Figure 5. Hardware Error Detection

69

iAPX 432 GDP Functional Description

The generalized data processor is organized internally as a

three-stage microprogram-controlled pipeline. The first

stage is the ins~ruction decoder (ID); the second stage is

the microinstruction sequencer (MS) ; and the third stage is

the execution unit (EU).

The first two stages of the pipeline are physically located

on the 43201 (Figure 3.) • Each stage of the pipeline can

be considered an independent subprocessor which operates

until the pipeline is full and then halts and waits for more

work to do.

Instruction Decoder

The first subprocessor of the pipeline is the ID, which

performs the following functions:

1. Receives macroinstructions

2. Processes variable-length fields

3. Extracts logical addresses

4. Generates starting addresses for the microinstruction

procedures

70

MASTER HEHR/

r·-----.. ---------------------------:::::::~~ii~j~~jij~~:::::::i·--------1------ ------

1 G.
II f I B~JJR I

;--+- HARDWARE

I I B I c~i~~~01 I
L_ __________________________ ___j 1

-~r:TRUCTION
-----,~ECODER

I
i

µ115 . ; ~:- '
1110 I

PROCESSOR ~ < . I IS&
PACKET BUS' CONTROL'. -
INTERFACE . ---------1-'-ISo

----------- -----l-----J--------------------1----!----l--t _____ -- ______________________ __]
ACD15 ••• ACDo, ISA, ISB INIT/ CLR/ t FATAL/

. - ALARM ROROM/

<\ ~lO t

5. Generates microinstructions for simple operations

Microinstruction Sequencer

The second subprocessor in the pipeline is the MS, which

performs the following functions:

1. Issues microinstructions to the EU (43202)

2. Executes microcode sequences out of an on-chip 3.SK x

16-bit microcode ROM

3. Responds to the bus control signals

4. Invokes macroinstruction fetches

5. Initiates interprocessor communication and fault

handling sequences

Execution Unit

The 43202 contains the third stage of the GDP pipeline--the

EU. (Refer to Figure 4.) This unit receives microinstruc

tions from the 43201 and routes them to one of the two

independent subprocessors that make up the EU. These two are

the data manipulation unit (DMU) and the reference genera

tion unit (RGU).

71

PCLK/--.... ,.. ...

---DATA-::J
MANIPULATION'

UNIT

svsfel'Jrj
TIMERS

........
0:
0::
UJ
:C'

~·~·u· ··· v

iPROCESSOR

1

1 PACKET BUS
CONTROL

<{?>'JOJ._
Fi()(.)~~;. "\o..-·aLocKtHAGRAM

REFERENCE!
GENERATION!:
· UNIT

PROCESSOR:
. PACKET BUSI

-· ------ ----·-

iJ~_Q_Yil --
.J -

... I. }

I CLOCK GROUP'

1.Y.G_Gi 1_y_s_~_

"'
,,

.

1 Go·P 1
I LOGIC'
1§Y~BQ_~t ...

...

.·

....
.... ,,,.

.... ..

...

...
.... ,.

JALARM

.

1

:FATAL

1PCLK

INIT

!'°SYSTEM
GROUP

1

MASTER·} : HARDWARE :ij __ . c~~1f J~~~

The EU executes most microinstructions in one clock cycle.

However, each of the subprocessors has an associated

sequencer that may run for many cycles in response to

certain microinstructions. Those sequencers are invoked for

complicated arithmetic operations (in the DMU) and processor

packet bus transactions (in the RGU).

The DMU contains the registers and arithmetic capabilities

to perform the following functions:

,
.J... Hardware recognition -.&:

U.1. nine (9) data types

2. Built-in state machine for 16-, 32-, 64-bit multiply,

divide and modulus

3. Control functions for 32-, 64-, and 80-bi t floating

point arithmetic.

The RGU performs the following functions:

1. Provides the translation of a 40-bi t virtual address

into a 24-bit physical address

2. Provides for a hardware-enforced domain protection

system (read, write, alter, accessed)

3. Handles sequencing for 8-, 16-, 32-, 64-, and 80-bit

72

memory accesses

4. Controls on-chip top-of-stack registers

The 43201 and 43202 components, described above, together

form the GDP. Figure 4b is a diagram that shows both units

interfacing to the Packet bus as a single processor.

Hardware Error Detection On iAPX 432 Processors

iAPX 432 processors include a facility to support the

hardware detection of functional errors. At INIT time, each

iAPX 432 processor is configured to operate as either a

master or a checker processor. A master operates in the

normal manner. A checker places all output pins that are

being checked in the high-impedance state. Thus, a master

and checker are parallel-connected, pin for pin, so the

checker can compare its master~s output values with its own.

Any comparison error causes the checker to assert HERR, and

go idle (Refer to Figure 5.). No further activity can then

occur at the disagreeing master-checker GDP pair.

iAPX 43201/43202 Physical Interconnect

Figure 6 illustrates the iAPX 432 microcomputer form factor

using a Dual QUIP. This layout promotes the most efficient

73

.
t

~ llJPU'T OV'I PuT J..
7

---- --- ~l) IA ..

utilization of the GDP. Also shown are the accessible GDP

output/input signals.

Figure 6. QUIP Layout

432 Instructions

Intel iAPX 432 instruction codes have been designed to

minimize the space the instructions occupy in memory and

still allow for efficient encoding. In order to achieve the

ultimate in efficiency of storage the instructions are

encoded without regard for byte, word or other artificial

boundaries. The instructions may be viewed as a linear

sequence of bits in memory, with each instruction occupying

exactly the number of bits required for its complete

specification.

iAPX 432 processors view these instructions as composed of

fields of varying numbers of bi ts that are organized to

present information to the instruction decoder in the

sequence required for decoding. A unified form for all

instructions allows instruction decoding of all instructions

to proceed in the same fashion.

In general, GDP instructions consist of four main fields.

These fields are called the class field, the format field,

the reference field, and the opcode field. The reference

74

PIN 1

a.Kl\-----~

Ml\SltR CLKB -----Ji=-t

PCLK -·---_..;;;....c·

OOUT
151\'

/

Ft\TAL'

Al.MM'

field, in turn, may contain several other fields, depending

upon the number and complexity of the operand references in

the instruction. The fields of a GDP instruction are stored

in memory in the following format:

The class field is either 4 or 6 bits long, depending on its

encoding. The class field specifies the number of operands

required by the instruction and the primitive types of the

operands. The class field may indicate 0, 1, 2 or 3

references.

If the class field indicates one or more references, a

format field is required to specify whether the references

are implicit or explicit and their uses.

In the case of explicit references the format field can

indicate whether or not the reference is direct or indirect.

Further, the format field may indicate that a single

operand plays more than one role in the execution of the

instruction. As an example, consider an instruction to

increment the value of an integer in memory. This instruc

tion contains a class field, which specifies that the

operator is of order two and that the two operands both

occupy a word of storage, followed by a format field, whose

value indicates that a single reference specifies a logical

address to be used both for fetching the source operand and

for storing the result, followed by an explicit data

reference to the integer to be incremented, and finally

75

followed by an opcode field for the

INCREMENT INTEGER. It is possible for

indicate that an instruction contains

order-two operator

a format field to

fewer explicit data

references than are indicated by the instruction""s class

field. In such a case the other required data references

are implicit references, and the corresponding source or

result operands are obtained from or returned to the top of

the operand stack. The use of implicit references is

illustrated in the following example, which considers the

high-level language statement

A = A + B * C

The instruction stream fragment for this statement consists

of two instructions and has the following form:

opcode reference format class

~----< Increasing address

Assume that A, B,

class field (the

and C are

rightmost

integer operands. The first

field in the picture above)

specifies that the operator requires three references and

that all three references are to word operands.

76

The first format field contains a code specifying two

explicit data references. These references are to supply

only the two source operands. The destination is referenced

implicitly so that the result of the multiplication is to be

pushed onto the operand stack. The second class field is

identical to the first and specifies three required

references by the operator. In addition, all three refer

ences are to word operands. The second format field

specifies one explicit data reference to be used for both

the first source operand and the destination. The second

source operand is referenced implicitly and is to be popped

from the operand stack when the instruction is executed.

The reference fields themselves can be of various lengths

and can appear in various numbers, consistent with their

specification in the class and format fields. If implicit

references are specified, reference fields for them will not

appear. Direct references will require more bits to specify

than indirect references.

Following the class,

opcode field appears.

operator to be applied

preceding fields.

format, and reference fields, the

The opcode field specifies the

to the operands specified in the

77

Modes of Generation

Figures 7 and 8 illustrate the two iAPX 432 system modes of

generation, selector generation and displacement generation.

The modes of selector generation are concerned with the

object structure and how they are accessed by the operands.

The four modes of selector generation shown are:

1. Short Direct

2. Long Direct

3. Stack Indirect

4. General Indirect

The modes of displacement generation seek the physical

location and displacement of objects within a given segment

or segment= The four modes of displacement are:

1. Scalar data Reference mode

2. Record Item Reference Mode

3. Static Vector Element Reference mode

4. Dynamic Vector Element Reference mode

78

SHORT 0 I RECT

MODES OF SELECTOR GENERATION ~t---.----.---\~

~ ~

2 2

LONG DIRECT

2 6

STACK INDIRECT

TOP OF OPERAND
STACK

2 t 4

. .._,

• OBJECT
0

1lEHP.ENCE
LISTS

OSJECT
llEFERlNCE

LISTS

C8J1 CT
llErEP.; NCE

LIS rs

GENERAL I NO I RECT
DI sp l acement Leng th

1
! Segment Se 1 ec tor Len~ '_:h __ ___,

DISPLACEMENT SEGMENT SELECTORI
7 or 16 Bits 4 or 8 Bits X X

~l.--.1--.e.--..L.--c>-~-------

7 or 16 2 2 or 6

OBJ :c··
REFEll :Nr:E

LI: TS

DATA SECMENT

2

-
~·

OBJECT
REFERENCE

LISTS

j
I

!'

MODES OF DISPLACEMENT GENERATION

Scalar Data Reference Hod! rDlsplacement

~~~~-~~-,-,--,-,{ 

IX 
·~{ EHENT (7 or 16 Bits) 

~~ 
I 

7 or "16 

SEUCTOR 

Static Vector Element Reference Mode 
{Base Length 

~:r ELEMENT INDEX I ------r~r--1~ 
~ -(~Sp~e~c~lf~le~d~~--LB_As_E_o_1_s_P_L~A~CE_H_EN_r_x ___ ~ 
) ·- lndlrectlv) J) 

Record Item Reference Mode 
rData Item Index Length 

~~18 A.SE D t SP LAC EH IE N-~--.-, -OA_T_A_l _TE_H __ O_F_F S-E-TTI ..... X,_---; 
Length (Specified . : (7 or. 16 Bits) : 

~~ __ I n d I rec t 1 y .~ _ _.___._· ____ 
0 
__ _...._ ____ -;~ 

DATA SEGMENT 1-4- 2 8 BI ts 7 o.r. 16 BI ts 

Top of Opcirand Stack 
or 

Variable In same 
Data Segment 

or 
Variable In another 

Data Segment 

Displacement to Base 
of Record Referenced 

SELECTOR 

~x ~ASE D I Sp LACE ME N-T-..,r--E-L E_H_E_N_T __ l_N_D_E_X--,.---~~ 
·: (Specified (Specified 

~ __ I n d I rec t I y 2-..._...J.. ___ 1 n __ dl _r•e_c_t_J_y_> _ __. ___ 
1 

.. ~Bits 1 ~28 BI.ts 

DATA SEGMENT 

DATA SEGMENT 

1-428 BI ts DATA SEGMENT. 

Top of Operand Stack 
or 

Variable Jn same 
Data Segment 

Top of Operand Stack 
or 

Variable in same 
Data Segment 

Top of Operand Stack 
or 

Variable Un same 
Data Se!1mcnt 

or 
Variable In another 

Data Se!Jment ----
Element 11 L11 

Scaling by 
Oa ta Type 

Element of 
Vector 

Referenced· 

Element r--
Olsplacement~EiECTOR 

or 
Variable In another 

Data Segment 

or 
Variable In another 

Data 

SELECTOR 

. ! :t l 

~ .. - i 
. I 

I. i 
•. r 

Record ( 
Referenced·::· 

r .. 
. I 

" : 

:. I 

.. -
· , ...•. '. ·;. 

t:~' ·: 

Element of • 
Vector 

Referenced 

Vector 
Referenced : 

't I 

'. 



Microarchitecture example 

This subsection describes the general internal organization 

(microarchitecture) of the GDP and describes an example of 

its operation. The example is intended to provide a 

"feeling" for the microarchitecture and is by no means 

comprehensive. Subsequent sections will describe specific 

hardware elements. No attempt is made to describe the 

detailed techniques by which exceptional events are handled. 

The GDP pipeline starts when the ID passes starting address

es (determined by interpreting the instruction stream) to 

the MIS, which in turn feeds to the EU sequences of microin

structions that are appropriate to the current macroinstruc

tion. The EU then executes the microinstructions. Most 

micro instructions are executed by the EU in a single cycle 

each. However, both the RGU and the DMU contain state 

machines 

certain 

that are capable of multiple-cycle 

microinstructions. In the case of 

responses to 

those that 

require multiple cycles for execution, the MIS waits for 

notification of completion from the EU before advancing its 

state. The ID, however, can advance to the next macroin

struction and often goes on decoding without waiting for the 

MIS. 

With some knowledge of the instruction set code and the 

79 



hardware pipeline it becomes possible to understand the 

tasks facing each of the pipeline stages. 

Instruction Operator Set 

Refer to Table 1 for the iAPX General Data Processor 

operator set summary. 

Figure 9. GDP Packet Bus State Diagram 

80 



.. 
,l .. ~·. :-i.~ .. ; . . 

I I 



- --- ---·--·-···\ I __ . __ ,/.:~...:...;_.; ..... ;..~.~•·--::._.-..:;--- --.-• . . . ., .. .. 

.·.· -D ;: '1( ; .:\~ ( _~: 
. • · ·· .. : , . .i:.:; INITIAL STATE 

_ '?--2"- ::.,f n 1t · J~\~~c~~c1:5~~~1red 
TRIGGER NEXT STATE 

.. , . ~--· 1-,+--~Tc=:-1-----+-----=T-=2--+-.-.r-n:..:...:C:::...;:O~n:.=.d-=-it.::._1:;....::· o~n~a....:..1 ___________ :.....-....JI·:.-.;.+· •.••. -~. : 

T2 T3 ICS high .. . . ' .... 

,; ·II".:""" -.• ':0: ., 
~ .· ~ . : . .:---1 

. "' ... 
'. -· ' • I 

.... ' . . : . \:f 
---·=--·-· -~'. ' ~.·:::I 

.... : 
~~ : 

TJ • . 

Tv 

·. ; ~ :. : :··la •.': : • ' 
· Tw ICS low ~-
11---- --Canc~lled1tfcc~.s·'f_ / 8- · 1 · ··· · i'' ; -~· = ::~~ : 

· Cancdl<J NtJ &:cesr- pe,,,.~.·..._ · ; · '· ·· · 
T3 Add it iona 1 trans fer required ~-.-'"':::-. · 
Tw ICS 1 O\'I 

_ . _ . Tv . All transfers completed if current cy~le_ 
----- -· ~--.·--_--·-~ ;...o~e..r:lcrweJJ:=\<1#.a-~-~ · -· - · ·-- ·-·--··- · ·-- ·-- ··· - --

is lead or if write but no pending write 
,Curren~e-~~Jt-b..--pend t-n g'Wt~-Jte·, 

· ~, .... ·_· *'~1--·-·~. · ____ ...,·..:-· -----'-'"---1-._current write with over la ed write 
·· ·. ·· ;~_../J~·o----- · ·---. -12_....- "-Over'lapp~sLwrlte..--<~ -----. _______ . - - .. . .... ·.-.· -· . . ,,. .. ·. :--- . ·-·~·.·· ...... ,. .......... -·-.:. 

res IDw· ··--··--· ~-----~- ·----~-----1~--~--t--~---L--- --- ~. J __ 
rc.s . 0;-c,,'l,_- ... ~- .. ---- . -._:--·-;-- -- ... ·-;-- -· r-. : --

0 , .... •·. - • ·-•·····-· • •• ··-r···- • ·• I·-

---- -· --- . -· ·-r,; . 
. -··-· .. 73 



43201 PIN DESCRIPTION 

Processor Packet bus Group 

ACD15 - ACDoo (Address/Control/Data lines, Inputs} 

The processor Packet bus Address/Control/Data lines 

are the basic communication path between the GDP and 

its environment. These lines are always inputs to the 

43201 and are driven by either the 43202 or the 

external environment. Note that the 43201 must receive 

the specification byte from the 43202 during Tl of a 

bus transaction (Figure 9 )'. As a result, the ACD 

receivers must be capable of slave timing as weli as 

processor timing (see processor Packet bus timing 

relationships for definition of processor and slave 

timing) • 

PRO (Processor Packet bus Request, Input, high asserted) 

The PRQ input is used to initiate a transaction 

between the GDP and the bus interface. PRQ is normally 

held low by the 43202 whenever there is no transac

tion. PRQ is asserted high during the first cycle of a 

bus transaction and returns low during the second 

cycle if the transaction is to be completed. The GDP 

may cancel a bus transaction by continually asserting 

81 



(instead of returning low) during the 

second cycle of the transaction. The GDP will cancel 

a transaction if a bounds or access rights violation 

for the transaction has been detected. PRQ is sampled 

on the rising edge of CLKB. 

ICS (Interconnect Status, Input, high asserted) 

The ICS input is continually monitored by the 43201 to 

determine the state of bus transactions. The inter-

pretation of ICS depends on the present cycle of a bus 

transaction and will indicate one of the following 

states: 

.i 
..I.. Interprocessor communication (IPC) message 

waiting. 

2. Input data invalid, a streched access. 

3. 

4. Bus error in external environment. 

During idle periods {GDP not using the bus) the bus 

interface may signal the GDP on ICS that an Interpro-

cessor communication message has been received. During 

a bus transaction, the bus interface will use ICS to 

handle bus protocol. (Refer to Figure 9 and Table 1 

82 



for the system relationship of the Packet bus group.) 

Intra-GDP Bus Group 

uI15 ••• uio (Microinstruction Bus lines, Outputs) 

These lines are used to transmit microinstructions 

from the 43201 to the 43202. These pins are high 

impedance in the checker state (Refer to Hardware 

Error Detection Group) • They are monitored by the 

hardware error checking logic. 

IS6···ISo (Interchip Status lines, Inputs) 

The 43201 receives information pertaining to micro 

program status from the 43202 over these lines. 

System Error Group 

FATAL/ (Fatal, Output, low asserted) 

FATAL/ is asserted by the 43201 under microcode 

control and is used by the GDP microcode to indicate 

to the system that the GDP cannot continue due to 

grossly incorrect information structures in memory. 

FATAL/ is synchronously asserted low and remains low 

until the processor is initialized. FATAL/ is not 

affected by the hardware checking logic. 

83 



ALARM/ (Alarm signal,Input, low asserted) 

The ALARM/ input signals the occurrence of an unusual 

system-wide condition (such as power fail). The 43201 

does not respond to ALARM/ until it has completed 

execution of the current 432 instruction , i.e., if 

any instruction is currently under execution. ALARM/ 

is active low and is sampled on the rising edge of 

CLKA. 

System-Wide Group 

INIT/ {Initialization, Input, low asserted) 

The INIT/ pin is used to establish initialization. 

INIT/ must be asserted low for at least 10 CLKA cycles 

before the initial state is reached to allow time for 

the 43201 to begin execution of a microcode sequence 

_t_L - L 

-i:nai:. initializes all --..::! A"'"'""") d.UU "'t.J.L.V.L. internal 

registers. Once this initialization sequence has been 

completed, normal operation begins. 

CLR/ (Clear, Input, low asserted) 

Assertion of CLR/ causes the 43201 to immediately trap 

to a microcode flow that halts the 43202, asserts 

FATAL/ and waits for a local IPC. 

84 



Hardware Error Detection Group 

MASTER (Master, Input, high asserted) 

The MASTER pin is used to place the processor in 

either master or checker mode. MASTER is sampled 

during initialization (INIT/ asserted). If MASTER is 

asserted throughout initialization, the 43201 

functions normally and drives the microinstruction 

bus. If MASTER is low throughout initialization, 

microinstruction bus signals uI15-uio go to their 

high-impedance state. A 43201 thus conditioned does 

not drive the microinstruction bus; rather, the bus is 

monitored and compares the data on the bus to its 

intern~lly generated result, signaling disagreement on 

its HERR/ line. MASTER should be tied to Vee for 

normal operation and pulsed low to enable hardware 

error checking and disable the bus (uI15-uio) outputs. 

HERR/ (Hardware Error, Output, low asserted) 

HERR/ is a signal produced by the 43201 to indicate 

disagreement between the data appearing on the micro

instruction bus (uI15 uio) and the internally 

generated result of the 43201. HERR/ is asserted low 

when disagreement occurs and is valid during CLKA. 

85 



Clock Group 

CLKA, CLKB (Clock A, Clock B, Inputs) 

Clock A provides the basic timing reference for the 

43201. Clock B (CLKB) overlaps CLKA by nominally 1/4 

cycle (90 degrees phase shift) • All external signals 

are referenced to CLKA. Refer to the A. C. Electrical 

Characteristics for exact statement of timing rela

tionships. 

Testing Input 

RDROM/ (Read ROM, Input, low asserted) 

The RDROM input line is used to force a sequential 

read of Read-Only-Memory. When the RDROM/ line is 

asserted low throughout initialization (INIT/ 

asserted), the 43201 goes into a special diagnostic 

mode. In this mode, the 43201 microinstruction 

sequencer steps through the 43201 microprogram ROM, 

sequentially displaying (but not executing) the 43201 

microprogram on the uI15-uio lines. The sequencer 

continues to cycle through the microprogram ROM until 

INCR uA/ is no longer asserted. The INCR uA/ feature 

is useful for testing, but should not be used during 

normal operation since it could lead to unpredictable 

results. INCR uA/ should be tied to Vee for normal 

86 



operation and only asserted low for testing (Power, 

ground, not connected). 

Vee C 4 pins) 

These pins supply +5 V + 10 % referenced to GND pins. 

GND (5 pins) 

These pins supply ground reference for the 43201. 

N.C. (No Connection, 5 pins) 

87 



43202 PIN DESCRIPTION 

Processor Packet Bus Group 

ACD15-ACD0 (Address/Control/Data lines, Inputs or Three

state Outputs, high asserted) 

The processor Packet bus Address/Control/Data lines 

are the basic communication path between the GDP and 

its environment. These pins are used three ways: 

1. They may indicate control information for bus 

transactions, 

2. they may issue physical addresses generated 

within by the GDP for an access, or 

3. they may transfer data (either direction). 

The ACD pins are monitored by the hardware error 

checking logic when the 43202 is in checker mode and 

are conditionally in the high impedance mode. 

PRQ (Processor Packet bus Request, Three-state Output, low 

asserted) 

PRQ is used to indicate the presence of a transaction 

between the GDP and its external environment. Normally 

88 



low, the PRQ pin is brought high during the 9ame cycle 

as the first double-byte of address information is 

being driven onto the ACD pins. PRQ remains high for 

only one cycle during the access, unless an address 

development fault occurs. The 43202 will leave PRQ 

high for a second cycle to indicate the GDP has 

detected an addressing or segment rights fault in 

completing address generation. PRQ is checked by the 

hardware error logic. PRQ is in a high impedance 

state when the 43202 is in checker mode (see MASTER 

description). 

ICS (Interconnect Status, Input, low asserted) 

ICS is an indication to the 43202 from the bus 

interface circuitry concerning the status of a bus 

transaction. The interpretation of the ICS state is 

dependent upon the present cycle of a bus transaction 

and may indicate: 

1. Interprocessor communication (IPC) 

waiting, 

2. Input data invalid, 

3. Output data not taken, 

message 

4. Bus error in external environment. 

89 



During idle periods (when the GDP is --"-UUI.. using 

bus) the bus interface may signal the GDP on ICS an 

Interprocessor communication message has been 

received. During a bus transaction, the bus interface 

will use ICS to handle bus protocol, i.e., data not 

taken, or (for a read) data invalid. When the 43202 is 

in checker mode (see MASTER description) ICS is always 

asserted. 

BOUT {Enable Output Buffers,Output, high asserted) 

BOUT is used to control bus external transceivers to 

buffer the 43201, 43202 from the processor component 

bus load= Though not required, the use of buffers may 

be desired in systems with heavy loading. BOUT is 

asserted when information is to leave the 43202 on the 

ACD lines. 

Intra-GDP Bus Group 

uI15-uio {Microinstruction lines, Inputs, high asserted) 

The uI15-ulo input lines provide the 43202 with 

microinstruction information sent from the 43201. 

IS6-ISo (Microprogram Status lines, Outputs, high asserted) 

90 



The IS6-ISo lines drive microprogram status informa

tion from the 43201 to the 43202. 

System Group 

PCLK/ (Processor Clock, Input, low asserted) 

PCLK/ is implemented to change the state of two 

processor timers. The affected timers are called the 

system timer and the service timer. Assertion of 

PCLK/ for one cycle causes the system timer to 

increment and the service timer to decrement. Asser

tion of PCLK/ for more than one cycle causes the 

system timer to be cleared and decrements the service 

timer. For proper operation PCLK/ must be unasserted 

for at least one cycle before being asserted. PCLK/ 

is synchronous with respect to CLKA, but is generally 

unrelated to other interface timings. 

CLR/ (Clear, Input,low asserted) 

The Clear (CLR/) input. causes the 43202 to cease the 

execution of any multiple cycle microinstruction 

under way when CLR/ is asserted. 

91 



Hardware Error Detection Group 

MASTER (Master, Input, high asserted; 25 k nominal pullup 

on-chip) • 

The MASTER input determines whether the 43202 is to 

function as a master or a checker. MASTER is continu

ally sampled by an internal flip-flop. When MASTER is 

seen to have changed state, all output lines will be 

controlled appropriately (driven or allowed to float) 

within 2 cycles (Such a change in state will not 

result in a spurious HERR/ assertion). The Checker 

mode affects the behavior of ACD15-ACD0, PRQ, and 

BOUT. ACD15-ACD0 and PRQ enter the high impedance 

state and BOUT is unconditionally low. 

HERR/ (Hardware Error, Output, low asserted). 

The HERR/ output 

detected. 

indicates a hardware error has been 

Clock Group 

CLKA, CLKB (Clock A, Clock B, Inputs) 

Clock A (CLKA) provides the basic timing reference for 

the 43202. Clock B (CLKB) overlaps CLKA by nominally 

1/4 cycle (90 degrees phase shift). Refer to the A. C. 

92 



Electrical Characteristics for exact statement of 

timing relationships. All external signals are 

referenced to CLKA. Power, ground not connected. 

Vee (Power Supply, 4 pins) 

These pins supply +5 V ±10%, referenced to GND pins. 

GND (Ground, 5 pins) 

These pins supply ground reference for the 43202. 

N.C. (No Connection, 7 pins) 

93 



.~ ~ 

Table_,...~/- .1.. 

General Data Processor Operator Set Summary 

Character Operators 

Move Character 

Zero Character 

One Character 

Save Character 

AND Character 

OR Character 

XOR Character 

XNOR Character 

Complement Character 

Add Character 

Subtract Character 

Increment Character 

Decrement Character 

Equal Character 

Not Equal Character 

Equal Zero Character 

Not Equal Zero Character 

Greater Than Character 

Greater Than or Equal Character 

94 



Convert Character to Short Ordinal 

Short-Ordinal Operators 

Move Short Ordinal 

Zero Short Ordinal 

One Short Ordinal 

Save Short Ordinal 

AND Short Ordinal 

OR Short Ordinal 

XOR Short Ordinal 

XNOR Short Ordinal 

Complement Short Ordinal 

Extract Short Ordinal 

Insert Short Ordinal 

Significant Bit Short Ordinal 

Add Short Ordinal 

Subtract Short Ordinal 

Increment Short Ordinal 

Decrement Short Ordinal 

Multiply Short Ordinal 

Divide Short Ordinal 

Remainder Short Ordinal 

95 



Equal Short Ordinal 

Not Equal Short Ordinal 

Equal Zero Short Ordinal 

Not Equal Zero Short Ordinal 

Greater Than Short Ordinal 

Greater Than or Equal Short Ordinal 

Convert Short Ordinal to Character 

Convert Short Ordinal to Ordinal 

Convert Short Ordinal to Temporary Real 

Short-Integer Operators 

Move Short Integer 

Zero Short Integer 

One Short Integer ' 

Save Short Integer 

Add Short Integer 

Subtract Short Integer 

Increment Short Integer 

Decrement Short Integer 

Negate Short Integer 

Multiply Short Integer 

Divide Short Integer 

Remainder Short Integer 

Equal Short Integer 

96 



Not Equal Short Integer 

Equal Zero Short Integer 

Not Equal Zero Short Integer 

Greater Than Short Integer 

Greater Than or Equal Short Integer 

Positive Short Integer 

Negative Short Integer 

Convert Short Integer to Integer 

Convert Short Integer to Temporary Real 

Ordinal Operators 

Move Ordinal 

Zero Ordinal 

One Ordinal 

Save Ordinal 

AND Ordinal 

OR Ordinal 

XOR Ordinal 

XNOR Ordinal 

Complement Ordinal 

Extract Ordinal 

Insert Ordinal 

97 



Significant Bit Ordinal 

Add Ordinal 

Subtract Ordinal 

Increment Ordinal 

Decrement Ordinal 

Multiply Ordinal 

Divide Ordinal 

Remainder Ordinal 

Equal Ordinal 

Not Equal Ordinal 

Equal Zero Ordinal 

Not Equal Zero Ordinal 

Greater Than Ordinal 

Greater Than or Equal Ordinal 

Convert Ordinal to Short Ordinal 

Convert Ordinal to Integer 

Convert Ordinal to Temporary Real 

Integer Operators 

Move Integer 

Zero Integer 

One Integer 

Save Integer 

QR 



Add Integer 

Subtract Integer 

Increment Integer 

Decrement Integer 

Negate Integer 

Multiply Integer 

Divide Integer 

Remainder Integer 

Equal Integer 

Not Equal Integer 

Equal Zero Integer 

Not Equal Zero Integer 

Greater Than Integer 

Greater Than or Equal Integer 

Positive Integer 

Negative Integer 

Convert Integer to Short Integer 

Convert Integer to Ordinal 

Convert Integer to Temporary Real 

Short-Real Operators 

Move Short Real 

Zero Short Real 

Save Short Real 

99 



Add Short Real - Short Real 

Add Short Real - Temporary Real 

Add Temporary Real - Short Real 

Subtract Short Real - Short Real 

Subtract Short Real - Temporary Real 

Subtract Temporary Real - Short Real 

Multiply Short Real - Short Real 

Multiply Short Real - Temporary Real 

Multiply Temporary Real - Short Real 

Divide Short Real - Short Real 

Divide Short Real - Temporary Real 

Divide Temporary Real - Short Real 

Negate Short Real 

Absolute Value Short Real 

Short-Real Operators 

Equal Short Real 

Equal Zero Short Real 

Greater Than Short Real 

Greater Than or Equal Short Real 

Positive Short Real 

Negative Short Real 

Convert Short Real to Temporary Real 

Real Operators 

inn 



Move Real 

Zero Real 

Save Real 

Add Real - Real 

Add Real - Temporary Real 

Add Temporary Real - Real 

Subtract Real - Real 

Subtract Real - Temporary Real 

Subtract Temporary Real - Real 

Multiply Real - Real 

Multiply Real - Temporary Real 

Multiply Temporary Real - Real 

Divide Real - Real 

Divide Real - Temporary Real 

Divide Temporary Real - Real 

Negate Real 

Absolute Value Real 

Equal Real 

Equal Zero Real 

Greater Than Real 

Greater Than or Equal Real 

Positive Real 

Negative Real 

Convert Real to Temporary Real 

101 



Temporary-Real Operators 

Move Temporary Real 

Zero Temporary Real 

Save Temporary Real 

Add Temporary Real 

Subtract Temporary Real 

Multiply Temporary Real 

Divide Temporary Real 

Remainder Temporary Real 

Negate Temporary Real 

Square Root Temporary Real 

Absolute Value Temporary Real 

Equal Temporary Real 

Equal Zero Temporary Real 

Greater Than Temporary Real 

Greater Than or Equal Temporary Real 

Positive Temporary Real 

Negative T~mporary Real 

Convert Temporary Real to Ordinal 

Convert Temporary Real to Integer 

Convert Temporary Real to Short Real 

Convert Temporary Real to Real 

Access Descriptor Movement Operators 

l O? _ 



Copy Access Descriptor 

Null Access Descriptor 

Rights Manipulation Operators 

Amplify Rights 

Restrict Rights 

Type Definition Manipulation Operators 

Create Public Type 

Create Private Type 

Retrieve Public Type Representation 

Retrieve Type Representation 

Retrieve Type Definition 

Refinement Operators 

Create Generic Refinement 

Create Typed Refinement 

Retrieve Refined Object 

Segment Creation Operators 

Create Data Segment 

Create Access Segment 

Create Typed Segment 



C.reate Access Descriptor 

Access Path Inspection Operators 

Inspect Access Descriptor 

Inspect Access 

Object Interlock Operators 

Lock Object 

Unlock Object 

Indivisibly Add Short Ordinal 

Indivisibly Add Ordinal 

Indivisibly Insert Short Ordinal 

Indivisibly Insert Ordinal 

Branch Operators 

Branch 

Branch True 

Branch False 

Branch Indirect 

Branch Intersegment 

Branch Intersegment without Trace 

Branch Intersegment and Link 



Context Communication Operators 

Enter Access Segment 

Enter Global Access Segment 

Set Context Mode 

Call Context 

Call Context with Message 

Return from Context 

Process Communication Operators 

Send 

Receive 

Conditional Send 

Conditional Receive 

Surrogate Send 

Surrogate Receive 

Delay 

Read Process Clock 

Processor Communication Operators 

Send to Processor 

Broadcast to Processors 

Read Processor Status and Clock 

Interconnect Operators 

(OS-
. , ("I c: 



Move to Interconnect 

Move from Interconnect 

(Note) Each of these operators is identical to the operator 

with the same assigned number and is specified by the same 

operator code .. 



.J..UO 

iAPX 432 Timing/ Characteristics 

Figures 10 through 15 contain input/output timing, clock 

input specifications, error checking timing, initialization 

timing, and microcode interrogation timing for the 43201. 

Tables 2, 3, and 4 contain the A. c., D. C., and capacitance 

specifications for the 43201. 

Figures 16 through 19 contain input/output timing, BOUT 

timing, and input clock timing for the 43202. Tables 5, 6, 

and 7 include the A. c., D. C., and capacitance specifica

tions for the 43202. 

Table 2. 43201 D. c. Electrical Characteristics 

Table 3. A. C. Electrical Characteristics 

Table 4. 43201 Capacitance 

Figure 10. 43201 Output Timing Specification 

Figure 11. 43201 Input Timing Specification 

Figure 12. Clock Input Specification 

Figure 13. 43201 Hardware Error Check Timing 

Figure 14. 43201 Initialization Timing 

LOI 
, l"l "T 



~V/ 

Figure 15. Microcode Interrogate Timing 

Table 5. 43202 DC Characteristics 

Table 6. 43202 AC Characteristics 

Table 7. 43202 Capacitance 

Figure 16. 43202 Output Timing Specification 

Figure 17. 43202 Input Timing Specification 

Figure 18. 43202 BOUT/ Timing Specification 

I r",CJ 
l.\..--10 

, 



-"! 116. ";l/ z I 
fft lPit / 1l\JVALID 

43J.0 ( 

fi6vec.. (O' :e:tfou.,.Pul -nrn1/JG S~EClf!CATIO;.J 



\~ ... <e /~¢ 
f\CD 15., ,f:'.fjf' 

_,i; r D ii\ f' 1;_; 11 o r ~) 
Ci-R. /> P.IJ.:;..rr\j---------

fN\J AL!D 

D\1A 

"'---~---;t 

; tdc · {d~ 



CLK~ ----""----" 



--- ---1--1--------

1IU{l/ 

t.dk. 

43;1.0( 
~ fll}kt~f.:~ E/Vi.:O~ C/1£CK flm/NC,. 

2;i; 

I 
I 
! 
i 



.fdc... 

JtJ ii( 



ALL ou1PuT 3- ~.+o~ 
'vAt.1D flA.)~ . at'. 

I e xc...l:Pf .bo'-"T -£re.....-1ous lr,lf\ 
td-a.... 

~,cu 
I 

loli..11.d+ 

\/ \ 
I i \ 

.f;o u-f 8' ~ 
.fen l:;oh.... 



.CLXB ------

.ACDlS •• ACD1--
(when inbound INVALJ:D 
-data) 

- - -- -
~-- --- --. -- ~ ---- -

++
·."td 

--~15 •• ACD$J 
XSA/_Jfor INVALID 

· hardware 
checking) 

7SB/ 
-ul:1S •• uI,0' 
CLR/ 
PCLK/ 

·Mi\STER 

. ~ - --- - . r. -- __ .. -· .. 

DATA INVALID 

tdh 

DATA 

-=-==. +-Ji- --·--------"!>-~· 
tdc tdh 

•. .t32/02 INPUT TIMING SPECIFICATION 

' ; 



~~ ~ti:~~~'-~ ~;r? 
./ 

d~~ .. .fa c,. d--,,~::t:~ U~t-t., !l.~1 a¥ ro '°< 

~ -~Seth; 7!::i- ·+-ISO~ G r 

l~r--~ (O ~"";(_,_:Ji l"v-<rJ fi~m -1M1i 

fc~ ~~~ A I z s-1-J:;q-/ fa2- 3 s--1J# 

lf\PJL£.. l. 

(O.f)-f 



/01 ELECTRICAL CHARACTERISTICS 

f!'.c. Characteristics 

"~~ = 0 degrees C to 70 degrees C; VCC = SV + 10%; VSS ~ 
OV; unless otherwise specified) 

~?MBOL 

VILI (IS6 ••• Isa> 

VIHI (IS6•••IS0 ) 

VILC 

VIRC 
f-

VIL (Remaining 
Inputs) 

VIH{Remaininq 
Inputs) 

VOL(Micro-
Instruction 
Lines) 

VOE(Micro-
Instruction 
Lines) 

VOL 
•. 

VOE 

ICC 

IIL 

ILO 

PARAMETER MIN. MAX. UNIT CONDS 

Input Low Voltage -0.3 +0.7 v 
c:rs6 ••• Isa> 

Input High 3.0 vcc+o.s v 
Voltaqe 

Clock Input Low -0.3 +o.s v 
Voltage 

Clock Input High tvcc-1.0 vcc+o.s v 
Vol.tage 

Input Low Voltage -0.3 +0.8 v 

Input High 2.0 vcc+o.s v 
Voltage 

Output Low 0 +0.35 v IOL= 
Voltage (uix) O.lmA 

Output High 3.25 vcc v IOH= 
Voltage(uix) -O.lmA 

;. 

Output Low 0.45 v IOL= 
Vo1taqe 2.0mA 

output High 2.4 v IOH= 
Voltage -0.4mA 

Power Supply 400 mA 
Current 

Input Leakage +10 uA V!N=VCC 
Current 

Output Le:3.kage +10 uA .45V~ 

Cor:rent VOUTS 
vcc 

nBLE. 
/DS I-

l. -4 )JO ( t:Lf.C( RJCfl_ 
CH-~/:C-1 ~ e.( STl CS 



capacitance 

SYMBOL PA..~TER TYP. UNIT CONDITION 

Cin Input Capacitance 6 pF fc = lMHz 

* Cout Output Capacitance 12 pF VIN=VOUT=OV 

. :.~. . ... .: 

1 n1? t l. . · L\ .. <\ ).20 I . _C Af rr:t lA /JC t 

•. 



vcc Supply Voltage 4.SO s.so v 

q~ 
J:CC Supply Current 455 mA 

v:IL Clock Input Low Voltage -0.3 o.s v 

·t VIH -cl.eek Input Hi Voltage vcc-1.0 vcc+o.s v 
for CLXA, CI.KB inputs 

~~ V1LuI ttI Input Low Voltage -0.3 0.7 v 
Vl.RuI uI Input Hi Voltage 3.0 vcc+o.s v 

r for uio ~.uI15 
VIL Input LOw Voltage -0.3 0.8 v 
v:IB hput Hi Voltage 2.0 vcc+o.s v 

for remaining pins 

VOL . Output Low Voltage 0.45 v 
@IOL = 2 mA for ACDx, 
ISA/, HERR/; 8 mA for 
BOUT 

. j 

~ 
VOH Output Hi Voltage 2.4 vcc v 

@IOB = 50 uA for ACDx; 
200 uA for BOUT 

~t 
VOL (IS 

••• Is0f Output Low Voltage 0.3S v 
@IOL s .l mA 

VOS: (IS6 

~ 
••• Is0J Output Hi Voltage 3.25 vcc v 

@IOH = -.l mA 

ILI Input Leakage +10.0 uA -(Except MA.STER) 
ILil Input Leakage -400 uA 

MASTER input 
ILO Output L~akage +10.0 uA 

@Vout = (O. 45 •• Vee) -
I f:H:iL t- j- <\ 1Jo ;>_ 

==j=..:. ':;:::i.· .. :::~ ~ =~.:==v:<~. ~ n C C f1PreAc17/J<S/7{5 
/(_~~~ /<, 



-· 

; •· ... · 
,• 

"?. -. 

.. .::" .· 

"': 
.. 

. ·. 

• ;' ,_,:· "& 

capacitance 

SYMBOL 

Cin 

Cout 

; .·• ?• !' .. 
:-·. ! • ~- •. •• -~ -

. . .- .... 

·-

:• . 

. . . .- ·. ~··: ... 
,;_ ~ .. ·..: .·. 

}· , 

.. . .. ·.· .· . 

·. 
- .. 

· ... 
. , ... ; .. ~: ·... . 

-.... 
r . • 

·-

. . .: . ~ : .. 

: . 

... . '· ... 
.... - ·. •; .. - . 

. • .. ·· . 

PARAMETER 'I'YP. 

Input Capacitance 6 
. ~-

Output Capacitance 12 

' 

... . . ... :'·. 

!'· ......... "" 

~ .. - .. . . : . 

... . ·. 
-.• ... 

. 
:: -~~---~.~~: 

~ . -:,: . . : ........... 

•. .::· .... 

.. ': 

. .... 
. .. 

·,...';,. .. ·. 
"'·:"' . 

.·~ .. -· .. 
. ~ -=-~-... .: . 

·.: ..... .... 
·. 

... ~ . .,..; 

···=·.· 

. ··~· · .. 

·. 
·.: 

. ... ~ ·. . . ; 

·. f •• :e. · . 
. . 

. . , 
.. · . ·::" - '· -

"-· 

UNJ:T 

pF 

pF 

. : ... · .. , .. ·. ~f'#~L~ · :·l 

/ 

CONDITION 

f c = lMHz 

VIN=VOUT=OV 

~ 

·_·::.-



iAPX 43203 

VLSI INTERFACE PROCESSOR 

o Fully protected I/O inter

face to 432 memory 

o Buffered data path for 

high speed burst mode 

transfers 

o Initialization/diagnostic 

interface to 432 systems 

o Multiple 43203~s per system 

provide incremental I/O 

capacity 

o Silicon operating system 

instruction set extensions 

for attached iAPX proces

sors 

o Multibus™ system com

patible interface 

o Functional redundancy 

checking mode for hardware 

error detection 

The Intel 

facilities 

43203 Interface Processor 

in iAPX 432 micrornainframe 

(IP) provides I/O 

systems employing 

109 



unprotected peripheral subsystems. An IP maps a portion of 

peripheral subsystem address space into iAPX 432 system 

memory. As does any iAPX 432 processor, the IP operates in 

an object-oriented, descriptor-based, transparent multipro

cessing environment. 

The 43203 is a VLSI device, fabricated with Intel's highly 

reliable +5 Volt, depletion load, N-channel, silicon gate 

HMOS technology, and is packaged in a 64-pin Quad In-Line 

Package (QUIP). 

Figure 1. 43203 Pinout 

Figure 2. 43203 Logic Symbol 

Figure 3. 43203 Block Diagram 

110 



INT 64 

ALE 2 63 

OE 3 62 

INH1 4 61 

vss 5 60 

XACK/ 6 59 

OEN/ 1 58 

HLO 8 57 

HOA 9 56 

SYNC 10 55 

NAKI 11 54 

BOUT 12 53 

ICS 13 .52 

PRO 14 51 

vcc 15 50 

ACD15 16 49 

ACD14 11 48 

ACD13 ~8 47 

AC012 19 46 

AC011 20 45 

AC010 21' 44 

A<;:09 22 43 

AC08 23 42 

y_s~ 24 41 

A~I?? 25 40 

AC06 26 39 

ACOS 21· 38 

A_G04 28 37 

Aq03 29' 36 

ACD2 30 35 

AC01 31 34 

ACOO 32 33 

iAPX.432/03 lNTERFACE PROCESSOR PIN CONFIGURATION 

( ( t.... ..1 
I ._.,I 

A015 

AD14 

AD13 

AD12 

AD11 

AD10 

AD9. 

AD8 

vcc 

AD7 

ADS 

ADS 

A04 

A03 

A02 

AD1 

ADO 

vss 

PSR 

i;lt:IEN/ 

'!J_F!f_ 

CS/ 

ALARM/ 

CLR/ 

HERR/ 

FATAL/ 

~CLK/ 

INIT/ 

vcc 

CLKA 

CLKB 

vss 



··-··-43~f--I 
>ROCESSOR\ 

BUS ~ 

ACD15-Q! 

PRQ. 
-fcs·1 

-BOUTI 

~y~~i~! { t-AgT~~: 
~ SYSTEM, l PCLK/I 

'\ 

WIDE I ·-rNiT/1 ("')., 

VJ GROUP i CLR/I 

{ 
--------

CLOCK' · CLKAI 
GROUP -C[t(B, 

HARDWARE; HERR. 
ERROR : 

DETECTION· 
GROUP 

iAPX 4a2 SYSTEM. 

<==> 
__.... - ... -.... 
. .... 

..... -
- ... 

... 
- ... 

.... 

... 
.... .... 

~ It ~f 

/-43·2t1 
I IP I I LOGIC I 
1 

SYMBOL1 

•. 

<==> ..... ... .... 
..... .... 
...... . ... 
-· ... .. 

... 

..... 

... 

.... 
... ... 

rA'tffs-01 

-B}IENZ 
'-csT · 
I 

! 

I 
fWll71 

rAu:·1 

fbE· 
I-SYNC-I 

fDENl. 

IHLD 
rHoA-! 

:IN Ht 
1·xAc1<7·, 
(NAK/' 

l
p5-., 

BUS ~ 
:GROUP 

l :TiMING 

feiJFFE-RC_O_NTR o Li 
! GROUP ; 

} r~~i~NRTJr~~-g~~ 

l rACR~~~i}g1'.fGE1 
I INT1 !INTERRUPT'. 

\ P LC.G ( (_ 5'1M P.IJL 



iAPX 4:.i:l 
SYSTEM! 

PRO, ICS, BOUT! ..... ~.._ _ _.._~:..• 

ALARM,FATALl~~~---.... .... ~1 

PCLK,TNlT. ------+ ...... ·~· 

CLR, HERR -------~~· 

l DATA I 
I ACQUISITION! 
i UNIT 

CLKA CLKS: 

I~ 

- -----·- -------
;PERIPHERAL! 
! SUBSYSTEM I 

I CONTROL I 
l I 

H<=Pe.t. 3. ~ 432ro;lPUFONCTlbN1bfi[6CK-DlAGR-AM 1 

--
""""----.. 

I SUBYSTEM 

~All15 ... ADO 

- - - ----- ---------·· -_. 
BHEN, CS, WR ,... 

----~~ ·--~---- . ·-...... lALE, OE, DEN -
_llo. HCb~HiYA -

- ---·-- --· ·- ··- ------------

""' )NH1, XACK, NAK -
_]Ii, !INT. -
...... 1-PSR . -



Functional Description 

This data sheet describes the iAPX 432 Interface Processor 

(IP) Component. It is oriented toward hardware designers of 

iAPX 432 systems. iAPX 432 architectural information is 

provided in the Intel iAPX 432 General Data Processor 

Architecture Reference Manual (Order No. 171860). Detailed 

information about the IP is contained in the Intel iAPX 432 

Interface Processor Architecture Reference Manual (Order No. 

171863-001) • The Intel iAPX 432 Component User ... s Guide 

(Order No. 171861) provides additional hardware support 

information. 

The IP, operating in conjunction with an Attached Processor 

(AP), forms the logical I/O processor of an iAPX 432 system. 

The IP acts as a slave to the AP, mapping a portion of the 

AP ... s peripheral subsystem address space into iAPX 432 system 

memory with the same protection mechanisms as any iAPX 432 

processor. Five peripheral subsystem (PS) memory subranges 

may be mapped into iAPX 432 memory segments. These five 

windows (labeled 0 through 4) allow the AP to reference iAPX 

432 memory with logical addresses or, in special circum

stances, with direct 24-bit physical addresses. 

The IP does not execute instructions from an iAPX 432 memory 

segment, but rather accepts function requests from the AP 

and performs the specified operations in the iAPX 432 

system. Window 4 is designated for this function. 

111 



The AP may reference operands in iAPX 432 memory in random 

mode (random addressing order) or buffered mode {sequential 

addressing order) • Only window 0 can be used in buffered 

mode. It contains a 16-byte FIFO buffer which postwr i tes

/prefetches data. 

Window 1 may be used to reference the iAPX 432 interconnect 

address space when the IP is in physical mode. 

The sections of this data sheet are: 

o iAPX 43203 Pin Summary 

o 43203 Electrical Characteristics 

o Interfacing Peripheral Subsystems to the IP 

o IP/GDP Operator Comparison 

Table 1. 43203 Interface Processor Pin Summary 

112 



iAPX 43203 INTERFACE PROCESSOR PIN SUMMARY 

PIN GROUP 
PROCESSOR 
PACKET BUS 
GROUP 

SYSTEM 
ERROR GROUP 

SYSTEM-WIDE 
GROUP 

SYSTEM CLOCK 
GROUP 

HARDWARE ERROR 
DETECTION GROUP 

PIN GROUP 
PERIPHERAL 
SUBSYSTEM 
BUS GROUP 

PS TIM ING GROUP 

PS BUFFER CONTROL 
COt"lllD 
Ul,VUl 

PS INTERLOCK GROUP 

PS SYNCHRONIZATION 
GROUP 

PS INTERRUPT GROUP 

PS RESET GROUP 

432 SYSTEM SIDE 

PIN NAME 
ACD15 ••• ACDO 
PRQ 
ICS 
BOUT 

ALARM/ 
FATAL/ 
CLR/ 

PCLK/ 
!NIT/ 

CLKA 
CLKB 

HERR/ 

DIRECTION HARDWARE ERROR DETECTION 
I/0 
0 
I 
0 

I 
0 (I at Initialization) 
I 

I 
I 

I 
I 

0 (I at Initialization) 

x 
x 

PERIPHERAL SUBSYSTEM SIDE 

PIN NAME DIRECTION HARDWARE ERROR DETECTION 
ADlS ••• ADO I/0 x 
BHEN/ T 

J. 

CS/ I 
WR/ I 

ALE I 
OE I 
SYNC I 

DEN/ 0 x 
HLD 0 x 
HOA I 

XACK/ 0 x 
NAKI 0 x 
INHl 0 x 

INT 0 x 
PSR 0 x 

{ ( Zf{ 



43203 Pin Description 

Processor Packet bus Group 

The following pins, shown in Table 2, fully conform to 

the specification in the iAPX 432 Processor Packet bus 

definition of the iAPX 432 Component User~s Guide. The 

IP is capable of all defined state tr ans it ions. It 

uses only a subset of the allowable data transfer 

lengths: operands of 1, 2, 4, 6, and 8 bytes are 

supported. Figure 4 illustrates the Processor Packet 

bus states for the iAPX 43203 and also conforms to the 

Packet bus definition. 

Table 2. Processor Packet bus Group 

Figure 4. Processor Packet Bus State Diagram for iAPX 43203 

System Error Group 

ALARM/ {Alarm, Input, low asserted) 

The ALARM/ input signals the occurrence of an unusual 

system-wide condition such as power failure. ALARM/ is 

113 



iAPX 43203 PIN DESCRIPTION 

(07 

Processor Packet Bus Group 

The following pins fully conform to the specification in the iAPX 432 
Processor Packet Bus Definition of the iAPX 432 Component User's Guide. The 
IP is capable of all defined state transitions. The 43203 uses only a subset 
of the allowable data transfer lengths: operands of 1,2,4,6, and 8 bytes are 

~p~orted. J 

l 
t 

PIN NAME I/0 DESCRIPTION 

PRQ 0 

ICS I 

BOUT 0 

ACD15 ••• ACOO I/0 

f. ack et !!_ eg_uest 

Interconnect Status 

Asserted High 

I

I Enab1 e External ~uff ers for Output 

1 !\_ddress, fontrol, and Qata Bus \ 

Asserted High J 



Processor Packet Bus State Diagram 

---· ·-. --·· .. -- -· - .... ··..:.r. __ _..·;..._ .. -...... ,;,_.~·---..--.... =;a;;=- =""'="-+---

NEXT STATE TRIGGER . : ·~. 

.. ,.·· .•.. ··: . .. . 

... - -··· . ··t ·.. . ·. r . 
· : - -·: · · ·~ ·Ti Tl · Bus cycle des ired :-<,>~::F, :}-:·.::t~· 
.. · · · ·~ :. ; Ti No bus c c 1 e des ired 

.• -·· t'.'":.-:-. -r----::::'.~-----+------=:....:--.+--.:.:.=....:.=:.:::-.:::..L..::...:...=:._:.==-::...;_:~------------:. 

. ·' .. ·.· ..-........ ----Th--:-----+------+.;..;;~;;:._--p.-"'U..;..;.n ..... co=-n.;..;;d--.i..-..t--'i o~n'-"'a __ l ___________ ..... :. -· ....... : ~. · .... ~-: 

<-; :·. "d . rw ~~ ~~h .J . ,, : +c--: . 
. ~ ~:· ·i fi ~~~:~-1C~~~~:~t, r;J., &:!sr ·pe~cf : .. -~ T J' .. -~'. : 

..... I 
. . .. , .. 

.,. . 
: .. '.·.! 

. 
'• I ... 

TJ •. 

Tv 

Tvo 

. -... - I...; 

T3 Additional transfer required ·:·~ . . 
· Tw ICS lCM 

Tv All transfers completed if current cycle -- ·--- ... -- -rJ - 0~~~1 .P w't'": 1 ~ .. - -····--· - --·-·----· 
Ti is lead or if write but no pending write 
Tl Current write with pending write 

ur ent write with overlao ed write 
T2 Overlapped write . ~ . :· -:- . -.-.······ ...--.---::: . 

. ·--·. - ·-·. -. 7;; ; i ! -------:-------:·-·-
....... -··. ·--~---'.· .. -·.;_ ·--i----·--~ ·-

1 I 
' . -- --~ -·--·-·~ - .. _ ; 



sampled on the rising edge of CLKA. 

FATAL/ {Fatal, Output, low asserted) 

FATAL/ is asserted by the IP under microcode control 

when the processor is unable to continue due to 

various error or fault conditions. Once FATAL/ is 

asserted, it can only be reset by assertion of INIT/ 

(no hardware error checking) • 

System Wide Group 

CLR/ ·(Clear, Input, Low asserted). 

Clear Hardware Error. CLR/ is designed to be used in 

a system employing Hardware Error Detection. Assertion 

of CLR/ results in a microprogram trap which causes 

the IP to immediately terminate any bus transactions 

or internal operations which may be in progress at the 

time of the error and start a microsubroutine written 

to handle that situation. Once the service routine has 

been started, it cannot be interrupted by a second 

CLR/ assertion. Response to CLR/ can only be reenabled 

by assertion of the INIT/ pin. Normally, after a 

hardware error fault the microcode will execute its 

hardware error routine and then wait for an IPC which 

will cause it to reset the IP under microprogram 

114 



control. 

After the CLR/ pin is asserted, the IP master and 

checkers will try to "sync up" to each other. The 

earliest time that the components can be assumed to be 

resynchronized again is at the beginning of the fourth 

cycle after CLR/ is asserted. 

CLR/ is sampled by the IP on the rising edge of CLKA. 

PCLK/ {P Clock, Input, low asserted) 

Assertion of PCLK/ for one cycle causes the internal 

timers in the IP to "tick" (process timer decrements 

and system timer increments) . Assertion of PCLK/ for 

two or more cycles causes the system timer to be 

reset. 

INIT/ {Initize, Input, low asserted) 

Assertion of !NIT/ causes the internal state of the IP 

to be reset and start execution of the initialization 

microcode. INIT/ must be asserted for a minimum of 8 

clock cycles. After the INIT/ pin is returned to its 

nonasserted state, IP microcode will initialize all of 

the internal registers and windows and will wait for a 

local IPC. 

115 



During the first two clock periods that the INIT/ pin 

is asserted the HERR/ pin will be sampled to determine 

whether this IP is to be a master or a slave proces

sor. At this time, if it is a master, the IP will 

enable all of its hardware error detected signals so 

that they will be valid when INIT/ goes high. 

System Clock Group 

CLKA, CLKB (Clock A, Clock B, Inputs) 

CLKA provides the basic timing reference for the IP. 

CLKB follows CLKA by one quarter cycle and is used to 

assist internal timings. 

Hardware Detection Group 

HERR/ (Hardware Error Output, low asserted) (Open Drain 

Output) (Master Input, low asserted) 

Asserrtion of the HERR/ pin by the IP indicates that 

the IP has encountered a hardware error, either as a 

checker checking a master or as a master checking 

itself. HERR/ is asserted the cycle following the 

internal detection of a hardware error except for pins 

AD15-AD0 where it may be up to five clocks. Because 

116 



of the asynchronous nature of hardware error detection 

on the AD pins (see AD pin description) , HERR/ may 

tend to be asynchronous. For this reason when using 

HERR/ it is recommended that this pin be synchronized 

externally. 

After HERR/ has been asserted for a cycle it is 

released for the next cycle to allow an external 

pullup resistor to bring it high again. After that 

cycle, the processor may reassert HERR/. Upon 

assertion of HERR/ the chip select will become 

deselected. 

While !NIT/ is asserted HERR/ carries information 

regarding whether the IP is to perform hardware error 

detection on the peripheral subsystem side. If the pin 

is high, the IP will configure as a checker. If the 

pin is low, the IP will configure as a master. HERR/ 

must provide the master/checker information for at 

least two cycles preceding the rising edge of !NIT/. 

Peripheral Subsystem Bus Group 

AD15-AD0 (Address/Data, Input/output) 

These pins constitute a multiplexed address and data 

input/output bus. When the attached processor bus is 

117 



idle or during the first part of an access, these pins 

normally view the bus as an address. The address is 

asynchronously checked to see if it falls within 

(matches) any one of the five window address ranges. 

The address is latched on the falling edge of ALE 

thereby maintaining the state of a match or no match 

for the remainder of the access cycle. The addresses 

are then unlatched on the falling edge of OE. 

Once SYNC has pulsed high, the AD15-AD0 pins become 

data input and output pins. When WR/ is high (read 

mode), data is now accessed in the IP and the output 

buffers are enabled onto the AD pins if the OE is 

asserted. When WR/ is low (write mode), data is 

sampled by the IP after the rising edge of SYNC during 

the CLKA high time (refer to the discussion of 

programmable interface timing}. 

The address is always a 16-bit unsigned number. Data 

may be either 8 bi ts or 16 bi ts as defined by BHEN/ 

and ADo. 8-bit data may be transferred on either the 

high (AD15-ADg) or the low (AD7-AD0) byte. When 8-bit 

data is transferred on the high or low byte, the 

opposite byte is 3-stated. Twenty-bit addresses are 

accommodated by the external decoding of the addition

al address bits and incorporation in the external CS/ 

logic. 

118 



During the clock state in which write data is sampled, 

data must be set up before the rising edge of CLKA and 

must be held until the falling edge of that CLKA. Read 

data is driven out from a CLKA high and should be 

sampled on the next rising edge of CLKA. 

Hardware error detection sampling is not done syn

chronously to CLKA. It is sampled by the falling edge 

of the OE pin. The internal AD pin hardware error 

detection signal is then clocked and output on the 

HERR/ pin. At this point it may still not be syn

chronous with CLKA and should be externally synchron

ized. 

BHEN/ (Byte High Enable, Input, low asserted) 

This pin, together with ADo, determines whether 8 or 

16 bi ts of data are to be accessed, and if it is 8 

bi ts, whether it is to be accessed on the upper or 

lower byte position. This pin is latched by the 

falling edge of ALE and unlatched by the falling edge 

of OE. BHEN/ and ADo decode as follows: 

BHEN/ ADo DESCRIPTION 

0 0 16-bit access 

0 1 8 bits on upper byte, 

119 



1 a 

1 1 

lower byte tristated 

8 bits on lower byte, 

upper byte tristated 

8 bits on lower byte, 

upper byte tristated 

CS/ (Chip Select, Input, Low Asserted) 

Chip Select Specifies that this IP is selected and 

that a read or write cycle is requested. This pin is 

latched by the falling edge of ALE and unlatched by 

the falling edge of OE. 

WR/ (Write, Input,low asserted) 

This pin specifies whether the access is to be a read 

or a write. WR/ is asserted high for a read and 

asserted low for a write. This pin is latched by the 

falling edge of ALE and unlatched- by the falling edge 

of OE. 

PS Timing Group 

ALE (Address Latch Enable, Input, rising- and falling-edge

tr iggered) 

120 



The rising edge of ALE sets a flip-flop which enables 

Transfer Acknowlege (XACK/) to become active. The 

falling edge of ALE latches the address on the AD15-AD0 

pins and latches WR/, BHEN/ and CS/. 

OE (Data Output Enable, Input, high asserted) 

During a read cycle the OE pin enables read data on to 

the AD15-AD0 pins when it is asserted. During a read 

or write cycle the falling edge of OE signifies the 

end of the access cycle. Specifically, the falling 

edge of OE does three things: 

1. Resets the XACK/ enable flip-flop, thereby 

terminating XACK/. 

2. Terminates DEN/ (if read cycle). 

3. Opens address latches WR/, BHEN/, and CS/. 

SYNC (Synchronized Qualifier Signal, Input, high asserted) 

A rising edge on this signal must be synchronized to 

the IP CLKA falling edge. This signal qualifies the 

address, BHEN/, CA/ and WR/ indicating a valid 

condition. SYNC also initiates any internal action on 

the IP .... s part to process an access. It starts the 

121 



request for data to the IP in a read access. In a 

write access, data is expected one or two CLKA"'"s 

SYNC pulses high. At initialization time, IP micro-

code sets the write sample delay. However, this can 

be modified to one clock cycle by making a function 

request to the IP to change the write sample delay. 

When the hold/hold-acknowledge mechanism of the IP is 

used, and once HDA has pulsed high, a SYNC pulse is 

required to qualify the hold acknowledge since the HDA 

pin can be asynchronous. 

PS Buffer Control Group 

DEN/ (Data Enable, Output, low asserted) , 

This pin enables external data buffers which would be 

used in systems where the address and data are not 

multiplexed as they are in a Multibus system. DEN/ 

assertion begins no sooner than the CLKA high time of 

the first clock of SYNC assertion if a valid, mappable 

address range is detected. It is terminated with the 

falling edge of OE. In a write access, it is also 

terminated after XACK assertion. 

122 



PS Interlock Group 

BLD (Hold Request, Output, high asserted) 

The hold/hold-acknowledge mechanism is an interlocking 

mechanism between the peripheral subsystem and the IP. 

Hold is used by the IP to gain control of the subsys

tem bus to ensure that no subsystem processors will 

make an access to the IP while it alters internal 

registers. 

This signal is put out synchronously with the rising 

edge of CLKA. Hardware error detection sampling 

occurs during CLKA low time. 

In special cases it may not be necessary to use the 

HLD function interlocking. In this case HDA can be 

tied high and no SYNC pulse will be required for HDA 

qualification. The hardware detects this condition by 

noting that the HDA pin was high a half clock before 

HLD requests a hold. In this mode the HLD output 

still functions and can be monitored if desired. 

HDA (Hold Acknowledge, Input, high asserted) 

HDA is asserted by the peripheral subsystem when the 

IP"'s request for a hold has been granted. This pin 

need only be a high pulse and can be asynchronous to 

123 



CLKA. This pin must be followed by a SYNC pulse in 

order to synchronously qualify 

PS Synchronization Group 

XACK/ (Transfer Acknowledge, Output, low asserted) 

XACK/ is used to acknowledge that a data transfer has 

taken place. 

For random or local accesses, XACK/ indicates that a 

transfer to or from iAPX 432 memory has completed. 

For buffered accesses where the XACK-Delay is not in 

the advanced mode, XACK/ signifies that the transfer 

from/to the prefetch/postwr i te buffer in the IP has 

been completed. 

For buffered accesses which URP advancPd acknow1PdaP --- ---------- -------------_,-

mode (XD=O) the formation of an advanced XACK/ signal 

is requested. This allows the possibility of inter-

facing to the peripheral subsystem without wait 

states. The acknowledge will be advanced if the 

access is a read operation and the buffer contains the 

required data or the access is a write operation and 

the buffer contains sufficient space to accept the 

write data. In addition, the access must be valid. 

124 



If XACK/ is preceded by a low pulse on NAK/, then 

XACK/ signifies that the access encountered a fault. 

If the access was a random access, other than window 

i4, the window will be placed in the faulted state and 

any further accesses to this window will be ignored by 

the IP. 

If the IP is programmed to be in advanced acknowledge 

· mode (XD=O) and XACK/ is not returned before the 

peripheral subsystem issued SYNC, then XACK/ will be 

postponed until valid data has been established on the 

AD15-AD0 bus. 

Five conditions affecting XACK/ behavior: 

1. XACK-Delay, user programmable through an IP 

function request. This parameter establishes 

the minimum operating XACK-delay with respect 

to the SYNC signal. 

2. XACK-enable-flip-flop, set by the rising edge 

of the ALE signal and reset by the falling 

edge of the OE signal. 

3. Internal IP Registers. These are used to 

determine validity of the peripheral subsystem 

access and establish access modes. 

125 



4. Type of access behavior: Random, Local or 

Buffered= 

5. Bus Faults, non existant memory, etc. 

Hardware error detection occurs during the first clock 

of SYNC assertion. 

NAK/ Negative Acknowledge, Output, low asserted) 

This signal precedes XACK/ by one half clock cycle in 

order to qualify it as a negative acknowledge. This 

pin pulses low for only one clock period. 

When the IP is in physical mode and making a local 

access, the use of negative acknowledge may be used to 

indicate that the access was made to nonexistant local 

address space. This will allow determination of the 

system configuration by a subsystem processor at 

system initialization time. 

This pin could be used to set a status bit and cause a 

special interrupt to transmit the information back to 

the subsystem. 

This signal is synchronously driven from the falling 

edge of CLKA. Hardware Error Detection occurs during 

126 



CLKA high. 

INBI (Inhibit, Output, high asserted) 

This pin is asynchronously asserted by non-clocked 

logic when a valid mappable address range is detected. 

It can be used to override other memories in the 

peripheral subsystem whose address space is overlapped 

by an IP window. After initialization, the microcode 

sets the INHI mode for each window by loading regis

ters in the IP for each window. Once the subsystem is 

allowed to make a function request, it can selectively 

disable or enable the inhibit mode on each window. 

This pin is gated off by CS/. 

The selection of the inhibit mode for window 0, when 

in buffered mode, causes a corresponding built-in 

XACK-delay which delays the acknowledge from going 

active until two clock periods after the rising edge 

of SYNC. This was done to facilitate most Multibus 

systems that us~ INHI which require that the acknow

ledge be delayed. When the Advanced XACK/ mode is 

programmed, the inhibit mode should not be used on 

window 0 when in buffered mode, since the acknowledge 

will not be effectively delayed. 

Hardware error detection occurs during the first cloc~ 

of SYNC assertion. 

127 



PS Interrupt Group 

INT (Interrupt, Output, high asserted) 

This output is a pulse 2 CLKA's wide, and is synchron

ously driven from the rising edge of CLKA. Hardware 

error detection occurs during CLKA low. 

PS Reset Group 

PSR (Peripheral Subsystem Reset, Output, high asserted) 

PSR is asserted by the IP under microprogram control. 

When asserted, the peripheral subsystem should be 

reset. In a debug type of control, it may be des ir

able to use this pin to set a status bit in an 

external register or possibly cause a special inter

rupt. This pin is normally asserted by the IP when 

the peripheral subsystem is believed to be faulty and 

would not respond to other means of control. 

This signal is put out synchronously with the rising 

edge of CLKA. Hardware error detection sampling 

access during CLKA low time. 

, ')Q 



Table 3. 43203 Electrical Characteristics 

Table 4. 43203 D. c. Characteristics 

Table 5. 43203 A. c. Characteristics 

Figure 5. Timing Diagram for ACD Parameters 

Figure 6. Timing Diagram for Local Processor Bus Timing 

Figure 7. Timing Diagram for Multibus Interface Timing 

Software Programmable Interface Timing 

To accommodate a wide variety of PS interfaces, there are 

two programmable IP timing parameters: XACK-delay and write 

sample delay. These parameters are located in a data 

structure in iAPX 432 system memory that is accessible to 

the IP via the function request facility. 

XACK-delay is a two-bit quantity that specifies the minimum 

delay before XACK/ is signalled on a transfer. The minimum 

delay can only be attained with buffered accesses. Figure 

XT displays the representation of the XACK-delay codes. 

Table 6. XACK/ Timing Parameters 

129 



43203 Electrical Characteristics 

Absolute Maximum Ratings 

Ambient Temperature Under Bias 

Storage Temperature 

Voltage on Any Pin with respect to GND 

Power Dissipation 

QO C to 700 C 

-650 C to +1500 C 

-1 V to +7 V 

2.5 Watts 



iAPX 43203 D.C. CHARACTERISTICS 

VCC=5V+l0% Ta=OOC to 7ooc 

sPt:c DESCRIPTION MIN MAX UNITS 

Vile Clock Input Low Voltage -0.3 +0.5 v 
Vihc Clock Input High Voltage 3.5 VCC+0.5 v 

Vil Input Low Voltage -0.3 0.8 v 
Vih Input High Voltage 2 VCC+0.5 v 
Ice Power Supply Current 450 mA 

Iil Input Leakage Current +10 uA 

Io Output Leakage Current +10 uA 

Iol @0.45 Vol 
HERR/ 8 mA 
FATAL/ 4 mA 
AD15 ••• ADO 4 mA 
OTHER 2 mA 

Ioh @2.4V -0.1 mA 



iAPX 43203 A.C. CHARACTERISTICS 

vcc = 5 + 10% Ta = ooc to ?OOC Loading: AD15 •.• ADO 20 to lOOpf 
OTHER 20 to 70pf 

SYMBOL DESCRIPTION 
8 MHz. 5 MHz. 

MIN MAX MIN MAX UNIT 
GLOSAC TI~ING REQUIRE~ENTS 

tcy Clock Cycle Time 125 1000 200 1000 nsec. 
tr,tf Clock Rise and Fall Time 10 10 nsec. 
tl,t2 
t3,t4 Clock Pulse Widths 26 250 45 250 nsec. 
tis Signal to INIT/ Hold Time 10 10 nsec. 
tie INIT/ Enable Time 8 8 tcy 

SYSTEM SIDE TIMING REQUIREMENTS 
tdc Signal to CLOCK Setup Time 5 5 nsec. 
tcd Clock to Signal Delay Time 55 75 nsec. 
tdh Clock to Signal Hold Time 25 35 nsec. 
tsi Signal to INIT/ Setup Time 15 25 nsec. 

PERIPHERAL SUBSYSTEM SIDE TIMING REQUIREMENTS 
tas Ab15 •.. ADO,CS/,WR/,BHEN/ 

Setup Time to ALE Low 0 o· nsec. 
tah AD15 ••• ADO,CS/,WR/,BHEN/ 

Hold Time to ALE Low 32 35 nsec. 
tss SYNC High Setup Time to 

CLKA High 50 60 nsec. 
tsh SYNC Low Hold Time to 

CLKA High 30 40 nsec. 
tsw SYNC High Pulse Width 50 2 tcy 60 2 tcy nsec. 
tds Write Data Setup to 

Sampling CLKA High 10 20 nsec. 
tdh Write Data Hold to Sampling 

CLKA Low (Advanced XACK/) 10 20 nsec. 
tdhx Write Data Hold to XACK/ 5 5 nsec. 
tasy AD15 ••• ADO,CS/,WR/,BHEN/ 

t'"-..L.--- ..L.- t'"\IU,-. 
1 """" 

1 ,.,.. nsec • .;:)eL up I.U ;) Tl'H .. .LLU - lOU -
tsdh CLKA High to HLD,INT,PSR 75 90 nsec. 



SYMBOL DESCRIPTION 
8 MHz. 5 MHz. 

MIN MAX MIN MAX UNIT 

PERIPHERAL SUBSYSTEM TIMING RESPONSES 
tsdh CLKA High to HLD, INT, PSR 75 90 nsec. 
taih Valid AD15 .•• ADO,CS/ 

to Chip INHl Valid Delay 80 85 nsec. 
tede OE to DEN/ Delay 65 70 nsec. 
tead OE to Enable AD15 •.. ADO Buffers 

Delay (Read Cycle) 70 75 nsec. 
tdad OE to Disable AD15 ••• ADO Buffers 

Delay (Read Cycle) 52 55 nsec. 
tdsx AD15 ••• AOO Read Data Valid 

Setup to XACK/ Active 
(Non-advanced XACK/) 20 20 nsec. 

teed CLKA High to Enable AD15 ••• ADO 
Buffers Delay 70 75 nsec. 

tcvd CLKA High to Valid Read Data Delay - 80 90 nsec. 
tax OE Inactive to XACK/ 

Inactive Delay 80 90 nsec. 
tdds AD15 ••• ADO Disable Setup 

to DEN/ High 0 0 nsec. 
txde XACK/ Low to DEN/ High 

(Write Cycle) 35 40 nsec. 
tcde CLKA High to DEN/ Low 70 75 nsec. 

XACK/ TIMING CHARACTERISTICS 

Buffered Accesses with XD=O 
tax ALE High to XACK/ Valid 0 65 0 70 nsec. 
tdsx AD15 ••• ADO Read Data Valid 

Setup to XACK/ Valid 
(When internal state does not 
allow XACK/ before SYNC) 20 20 nsec. 

tadx Valid AD15 ••. ADO to XACK/ Valid 
(when internal state allows 
XACK/ before SYNC) 120 140 nsec. 

Buffered Accesses (With 
XD=l or XD=2) or Random Accesses 

tdsx AD15 .•. ADO Read Data Valid 
Setup to XACK/ 20 20 nsec. 

Faulted Accesses 
tsdl CLKA Low to NAKI 75 90 nsec. 
tsnx Setup of NAK/ to XACK/ 50 50 nsec. 

Note: A 11 timing parameters are measured at the 1. 5 Vo 1 t 1eve1 except for CLKA 
and CLKB which are measured at the 1.8 Volt level. 

AC 



1.$11-

/SB 

L 

Coutrr -------------1 

L 

ACD 



110-

\'1 
r. 

-~ 

:c.Jt.}\ 

5Yr.(., 

ltflf #'.II/IL \L(l1~ 

L..r\T~ '/11llfl& 

____ / 

\IA LID c.)lc 17£. QA"'i J\ 

(1)1t\ 

,-- --
, "i'I \ 



,,,LAH t Lu:, 
,,.·\r\J I '..,', ro, f 

::'·<ti<~ 

HllOlC. I 

=r_, __ 

7 

l~d 

Ml.Alt 1!:,u~ 1 ~) • ;.~c.... C.t},k__ ,u;,,:,.llu,~ ocu.s $ -I 1~~-L.. 

O.)vt(~v...ul .. i::,-2(),:;; OC.(.(.;5$ u "'~ S('l'UL u'- .: Alc.1...,, .4~vvJ. •Ldr.::t;;::::;_) 

_/ \ 

\ 



Inhibit WR/ XD1 XDo XACK/ Formation 
Mode 

0 x 0 0 Advanced Acknowledge 
(XACK/ can occur before SYNC) 

0 1 0 1 Rising edge of SYNC 
0 0 0 1 Rising edge of SYNC plus 1 Clock 
0 1 1 0 Rising edge of SYNC plus 1 Clock 
0 0 1 0 Rising edge of SYNC plus 2 Clocks 
1 x 1 0 Rising edge of SYNC plus 2 Clocks 
1 x 0 1 Rising edge of SYNC plus 2 Clocks 
x x 1 1 Illegal condition 

Note: X=don't care condition 

1A~t '" Ligqre ~ - XACK/ Timing Parameters 

t 'I c· ,t.....l 
I - l f J 
' I I · 



Write sample delay is a one-bit quantity that specifies the 

position of the internal 

respect to the SYNC pulse. 

write data sampling pulse with 

If WSD=O, write data is sampled 

one clock period after SYNC is asserted. If WSD=l, write 

data is sampled two clock periods after SYNC is asserted. 

When initialized, the IP operates with the slowest int-erface 

timing {XD=lOB, Write Sample Delay = lB). 

Hardware Prograpnnable Interface Timing 

In addiion to the software programmable interface timing, 

the design of hardware external to the IP may control the 

delay in formation of XACK/. 

Noting that the rising edge of ALE sets the XACK/ enable 

flip-flop, ALE (style 2 in Figure 8.) may be used to 

postpone the generation of XACK/. The falling edge of ALE 

in both styles latches AD15-AD0, CS/, WR/, and BHEN/. 

Figure 8. Two Styles of ALE 

Buffered Accesses 

Window 0 has the special ability to be used in buffered 

130 



A LL 61 '/Lf.:2.. 



-

Xi\<:fC.. LJJH.oL[ .. 

fLIP n.o'P 

0( R 

a:c../--

fl.UID (),,,fl OCLl\JU.~c.0 
evrrEli!EO kllt.IH' l:V-11' 

1i1Je,urnRE.P u..w.111:: 
l\CCt:S!. <''"'"'°"'" ·1 (,D 

wtlJCt>w 

""tic•I 
l.Ot:11(.. 

H6uR ~ 

q.,..._ ____ _ 

IVIA Pl'£\) 

M<K/ 



access mode. High speed data tansfers to or from sequent(., 

locations in an iAPX 432 data segment are expedited by the 

IP through the use of an eight-double-byte (16-byte) FIFO. 

When an attached processor acquires data from an iAPX 432 

data segment, the IP prefetches data from iAPX 432 memory. 

When an attached processor transfers data to an iAPX 432 

system, the IP aggregates data in the FIFO before it 

postwrites into iAPX 432 system memory. Transfers into or 

out of the iAPX 432 system are performed in the largest size 

data packet .as possible. The IP has the capability to form 

8-, 6-, ·4_, 2- and 1-byte transfer requests. An IP will 

transfer smaller sized packets when necessary to complete a 

transfer that is not an even multiple of 8 bytes in length. 

Since data transferred on a processor Packet bus must always 

be right-justified, an IP performs byte packing or unpacking 

when data is moved. Read data from the iAPX 432 memory is 

acquired in 8-byte packets. The attached processor may use 

an 8- or 16-bit bus interface to the IP. Tables 7 and 8 

display the FIFO action for transfers of data from an 

attached processor to iAPX 432 memory via the IP. 

Table 7. 8-bit Processor Interface 

Table 8. 16-bit Pr0cessor Interface 

Hardware Error Detection with the 43203 

131 



OUC'l\I I "" UllL..111 nv 

1 0 
1 1 
1 0 
1 1 
1 0 
1 1 
1 0 

l\n"7 /\nn nut •• nuu 

Byte 6 
Byte 5 
Byte 4 
Byte 3 
Byte 2 
Byte 1 
Byte 0 

xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
Byte 5 
Byte 3 
Byte 1 

xx xx 

Byte 5 
Byte 3 
Byte 1 

xx xx 
xx xx 
xx xx 
xx xx 
Byte 6 
Byte 4 
Byte 2 
Byte 0 

Byte 6 

Byte 4 
Byte 2 
Byte 0 

XXXX- Undefined 

T;l"'r!I,.. 
I 11m::: 

6 
5 
4 
3 AP Bus 
2 Transfers 
1 
0 

8 Double Byte FIFO 

Data Fields of 
Processor 
Bus Packets 

TPtalC. 7 "f 1g • ma - 8 bit processor interface 

r3J A 



BHEN/ AO 

0 0 
0 0 
1 0 
0 1 
0 0 
1 0 

ADlS ADS AD7 ADO 

Byte 8 
Byte 6 
Hi-Z 
Byte 3 
Byte 2 
Hi-Z 

xx xx 
xx xx 
xx xx 
xx xx 
Byte 7 
Byte 5 
Byte 3 
Byte 1 

xx xx 

Byte 7 
Byte 5 
Byte 3 
Byte 1 

Byte 7 
Byte 5 
Byte 4 
Hi-Z 
Byte 1 
Byte 0 

xx xx 
xx xx 
xx xx 
Byte 8 
Byte 6 
Byte 4 
Byte 2 
Byte 0 

Byte 8 

Byte 6 
Byte 4 
Byte 2 
Byte 0 

XXXX - Undefined 

Time 

5 
4 
3 AP Bus 
2 Transfers 
1 
0 

8 Double Byte FIFO 

Data Fields of 
Processor 
Bus Packets 

lt\-8l..C. 8 of~Q!I e 1( 11 - 16 bit processor interface 

f3tB 



The 43203 presents an additional challenge in the area of 

hardware error detection, since two separate processor 

interfaces are supported: the iAPX 4 3 2 sys tern and the 

peripheral subsystem. 

When INIT/ is asserted, the FATAL/ and HERR/ pins of the 

43203 are examined to establish the mode that each interface 

is to enter. 

Representation of ~-~STER/CHECKER at initialization 

FATAL/ HERR/ iAPX 432 Side Peripheral Subsystem Side 

0 

0 

1 

1 

0 

1 

0 

1 

MASTER MASTER 

MASTER CHECKER 

CHECKER MASTER 

CHECKER CHECKER 

L~gic external to the 43203 must provide these signals. 

Peripheral Subsystem Interface Timing 

iAPX 432 systems are synchronous digital systems. The 

peripheral subsystem(s) employed with an iAPX 432 system 

132 



need not share the common (CLKA, CLKB) time base. Rather, 

the PS may operate at an independent frequency, allowing the 

system designer to tailor the cost/performance ratio of the 

PS to product needs. 

The asynchronism of the PS to the iAPX 432 is resolved by 

the IP signal SYNC. A synchronizer external to the IP is 

used to generate SYNC, allowing many forms of peripheral 

subsystem to be attached. Two examples of interfaces to 

standard Intel peripheral subsystems are described in this 

section (Refer to Figures 10. and 11): 

Interfacing 8086 Component Bus to the IP 

Interfacing the Multibus to the IP 

Timing calculations are included to show interface design 

and performance. 

Interfacing the 8086 Component Bus to the IP 

The following diagrams and calculations illustrate the 

design considerations in interfacing the 8086 component bus 

to the IP. Timing calculations are shown for both read and 

write accesses. The read access example assumes that the IP 

is operating in buffered mode and the buffer contains the 

required data. The calculations shown allow 8086 operation 

without wait states. 

133 



Table 9. 

Maximum Mode 8086 System 

8086 Write Data Setup Performance = -tcclh + tclcl + tcldv 

-15 + 250 + 110 = 345 ns; 4 MHz. 8086 

-15 + 200 + 110 = 295 ns; 5 MHz. 8086 

43203 Write Data Setup Requirements = tss + 2tcy + O.Stcy + 

tds 

8 + 2(200) + 0.5(200) + 20 = 528 ns; 5 MHz. 43203 

8 + 2(125) + 0.5(125) + 10 = 331 ns; 8 MHz. 43203 

8086 Write Data Hold Performance 

= -tcllh + 3tclcl + tclch + tchdx 

-15 + 3(250) + 151 + 10 = 896 ns; 4 MHz. 8086 

-15 + 3(200) + 118 + 10 = 713 ns; 5 MHz. 8086 

134 



ct.n- . -· 

r "'"' 
! 

.. I 

J ... _" :L ·~---P .---J•··--·-r·-J' -··-······--------·---··-···--·---· {> (_,.;_.,, 
.-... ·~ ! I . .~.- 7 ! 

1· [ t 7(--, r--..-.. . 
t__ --- . L--<1 ""' r. --
i . _~L~ _: __ :~-~:~. '~:-- r :'~J I 

I. 

t ·;.:11--~-".c . ---1 -J:~•~--. . -
. r !i,~- I l ____ _ 

i I 

; ".f: 1/1--------------·-·---I M,,. 

-i (ju--~ -.-----'. 

! --
l -- ·r 
I • 

I 
. I. 

I 

·--------- , .. ir/ 
.t>.._ "'..,.'=-'F • 

---------./· ,.,,0 

.. ' .: :.,.'/ffl.~1----.,------

,?1-~1r/c;:;, 
·--------------......: ,.-.~/ 

·. : Cf: o-----------
1 I 

---- -------. ··---.---""".'a..~Nlr.-1 ~-~? 

! _·; VJli./ 
I 

I 
I 

CS/ 

----· ·--~~- ---1 Jllll 

. ; ----i-l 
r--- (--~j --~ i" I -- .. - .. --- '• . ,., ·-:-----i-·{ -. "--. ___ J---~--- 11111 

·~.i·1 "1/ l_ ~--- J . . . 

[

ti 't ---~----1 _;>:::::; I 
. i ---[----~ L CJ= I 

__ ...L_ _________ ·---... - ··--tt--··· ····------···-·--·--.. -· ____ j : 

_____ , 

/ 

'·' D, 
if: ./(_, 



43203 Write Data Hold Requirements = -tss + 4tcy + tdh 

-8 + 4(200) + 20 = 812 ns; 5 MHz. 43203 

-8 + 4(125) + 10 = 502 ns; 8 ~..Hz. 43203 

8086 Read Data Setup Requirements = 3tclcl - tcllh - tdvcl 

3(250) - 15 - 30 = 705 4 MHz 

3(200) - 15 - 30 = 555 ns; 5 MHz 8086 

43203 Read Data Setup Performance 

= tss + 2tcy + tsd + 0.5tcy + tcvd 

8 + 2(200) + 8 + 0.5(200) + 90 = 516 ns; 5 MHz. 43203 

8 + 2(125) + 8 + 0.5(125) + 80 = 331 ns; 8 MHz. 43203 

Multibus Interfacing 

Table 10 demonstrates the interface of an IP to an Intel 

135 



Multibus peripheral subsystem. Calculations are included 

for minimum Multibus access time. 

Table 10. Multibus Interface to the IP Calculations 

Table 11. IP/GDP Operator Comparison Table 

(_ w h-er-~ 

136 



(' 

-. 

3M SR AND 64 LEAD QUIP SYSTEM 

r 
I 

I~. 
Convenient ZIF 
Socket 
Rapid interconnection to cir
cuitry is accomplished with a 
compact 64 lead zero-inser
tion-force connector. Gold 
tipped wiping leaf contacts 
insure a clean, gas tight inter
face with the ceramic carrier. 
The connector insulating ma
terial is the same durable 
glass-filled thermoplastic prov
en in our "Scotchflex" prod-

-( L ·. 
_ ( PHYSICAL 

I CERAMIC PACKAGE 

3M PART NO. 3534 SOCKET 

uct line and is flammability 
rated at 94 V-0. Solder pins 
are located on standard .100" 
centers making it compatible 
with existing printed circuit 
board design guidelines and 
standard assembly equipment. 
A "snap-in" heat dissipating 
cover holds the chip carrier 
in place. An ordinary screw
driver permits quick removal. 
See figure 1. 

TYPICAL PROPERTIES 

I 

3362-0000 QUIP BURN-IN/TEST SOCKET 

Complete. 8'-:-f rn-in 
Capability 
The 3M QUIP System in- . 
eludes· burn-in connector. 
This connector facilitates high 
volume production testing at 
a minimum cost The durable 
contacts and body ensure re-
1 i ab I e testing up to 200°c. 
The heat dissioatino cover 
features a positive locking 
quick release latch. See fig
ure 2. 

Ceramic: 94% Ah Os-Black I 
Metallization: Gold (60µ in. min.) over nickef and refractcl)'. 

I Cover. copper aUoy. 
Body: glass filled polyester. 
Contacts: copper alloy 725 with .000030" gold over nickel 

l 

Interface. 

3M PART NO. 3362 SOCKET {SURN-!N) latch: stainless steel. 
Cover: copper alloy. 
Contacts: gold plated (.00001 O in.} Be Ni. I 

I Body: polyphenylene sulfide (Ryton R4) I 

THERMAL 

64 LEAD QUIP SYSTEM 9JA: 50°C/watt maximum thermal resistance 

ELECTRICAL I Maximum resistance: .soon. I S4 LEAD QUIP SYSTEM 

I 

Maximum interlead capacitance: 5 pfd. 
i 

Dielectric withstanding voltage: 1000 volts at sea level. • 

Current rating: 1 amp. P,_er lead, limited to 30°C rise per 
lead. 

ENVIRONMENTAL I 
64 LEAD QUIP SYSTEM I Temperature rating: -55°C to 105°C. 
3M PART NO. 3362 SOCKET (BURN-IN) i Ternp~rature rating: -55°C to 200°C. 

· ( Electronic Products Division/3M 
:JM CENTER • SAINT PAUL. MINNESOTA 55101 

IU .. -QUP(71.2lR2 LJTHO IN U.S.A. 



B\. Jc~ ~ .. I I \j\J''1; 

,_.!, P~o"'a,·'uc~ B I ; "' t ~. ...;.. . . ~· ~ • · L ··Ui~er~n 

.• ""'i.. 

. __ _) 

3M· Brand 64 Lead Q . · . . uipSystem 
,_ .¢..· 

.~ 
:. 

: ·-:~ ·~- ~~--:-.· .. - . - ·-~· _;._:: .. -

, -~·:· .. :;~;-'.cl . . A ;~· :· • 
.. .-~1 - ... "' .. ,;-....... ,~ . 

. ~,,:· \~~' 
. ' 

:0'··:;. !11. .. \ .. . . • . ~ \ 
_,_,f::'· . ·1 .... ~ .................... ; 

. \ ................................. _ ... · ~ . . ~ __ .. - . . . 

e ource ystem From ..... ~ .,~,.c.,~·;<c""_ ... -·"'. 
The 3M Brand Rel iabl C ·':-·<>.· , ,_,~., 't'. 
Fc~age system abu~d-tn-Line Pack e eramic 
c" st1mplicity and rmgs built- <:3Pacitance F age 
aogs1. s to microproceower total times and i.m aster switching T 

I 

ng. Its sm II ssor pack- performance ~roved system he heart of th 
bw-profile cuta er size and !\.carrier to c n be achieved Syst~m is a reli e 3M QUIP 

Y one-third package area izmg feature e~ir;:;.ector polar~ ~ult1layer leadlable, co-fired 
greater b • allowing f assembly errors. mates costly tis design per~~ts package. 
with c oard density th or P acement and i. s easy re-
dua1-· Of'!Ventional 64 an Costly braz1·n a field repa1·r. 

Sh m-hne conf lead le d g nd . orter trace I igurations a s are eli . metallized 
m lower lead er;gths result rug_ged, optica~~nated. The resistance and §lmic structure . opaque certnert, dimensi is chemically 

and thermal! anally stable 
low thermal Y ?Onductive A 
possible theres1stance makes 
weater powe~sre of_ IC's with 
increasing equirements• 
formance. overall circuit per~ 



f11'!" __ .._. ____ ,....,. ________________________________ .......... __ ......... _____ ,'~. --------------

('-~.- ~OTES: . ~ ' • 

tEAOLESS QUAD IN-LINE 
CERAMIC PACKAGE 

SCOPE: 1rHIS SPECtFtCATIONI DETAILS THE REQUIREMENTS FOR A MlJL TIPOSITION 
LEADLESS CE;RAMIC PACKAGE SOCICET 

.05 
(1.64) 

PIN#1 

SPECI FICA T:IONS -
fttY.S!.cAj.,: INSULATOR MATERIAL - GLASS REINFORCIEO GRAV THERMO 

PLASTIC U.l. FLAMMABILITY RATING 94V-O 
CONTACT BASE METAL - COPPER-NICKEL-·TIN ALll.OV 125 
CONTACT INTERFACE - 0.000030,. (.762 umt MIN. GOLD OVER 

0.000050 .. (1.27 um~ MIN. NICKl:L 

~NYI AONM~NT Al.: 
TEMPERATURE RATING- -67°F to +2210f 

(-550C to +1050C) 

-1fiumE ==1111100~. 
~~ llTTTIJ -L uu ________ vvv -c .16 .30' 

(3.94) (7.62) 

CONNECTOR DETAIL HOLE PATTERN DETAIL 

USED ON 
IMPOlllANI NOflCE lO ,UllCHAIU; All SIJlcme111s. let~1nical llllotffiihOll illld ICCOIR 

3m nw•11.U11111~ c11111amell hc1c111 a•11 11.tsttd on IC515 we bclotve 111 lie 1ehJllle. llul Ille I .. • ,,-
acr.1uacy DI C1J1n1~e1enes~ 1tic1cul 1\ n11l g11d1an1ecd. and lhc i.iuow111g 1s miide 111 lieu ol 

~OOIPAN~ 
0111 w.111;11111u. u111hs Of u111~1td 

Scllc1's and 1n~11ul.1rtu1c1's oolv obtog.1111111 sh.lll bo to rnplacc such qua11111v of lhc 
pwdui:I p111vc!I tu be llelectovc Ne11lle1 selle1 mu 111a11ulJClu1e1 sh;IJI IJe toabla 101 <111y 
11111uy. lo~s 01 d.1111J~t:. duect 01 ro11:;eq11e1111at. aw;u1g uorl 11l 1ho use 111 °' the onabthtv ELECTRONIC PllODUCTS 111 u~e ll•u p1ullufl Btlu1c uSHlfl. usc1 shJll 1Mt11111ne the s1111abd11v ol the pwlluct IOI 
h•s 1111r.11dtd use. dnd u~ei as~umes ah 11!.k arid hall•loly ... 11a1soevc1 111 co11nec110A 
111e1ew1U1 N<1 sra1emt111 °' 1ec1111u11endJt11111 nol r.uma111ed ht.1e111 shaN have inv lulte St. Paul 01~lltCI1w11~ man ;191ee111e111 ·~i11ned l•v olhce1s 111 sell~• J'ld m01n11l.ic1uoe1. 

Minnesota 
TOLERANCE UNLESS NOTED INCH 

(mm) 
.0 .00 .000 

SCALE 

INCH ± .1 ±.02 ±. .005 DA. 

A ±.13~ APP, mm ±.6 
- -·--·-··--- ·--- -----

ISSUE ISSUE DATE A. 
Cl-f ANC!.t..f!IB 

l~i d, ... H_E•V-....... -C_H-.... 

3534 QUIP SOC I< ET 
:ATION SPECIFIC 

64 LE ADS 

-
SK-77-073 



j_' 

u NOTES: 
1.) CERAMIC MAT•t: AISi Mag 777 C94% At203 - BLACIO.· . ..._.. 
2.) METALLIZATION: REFRACTORY METAL+ NICKEL -t GOLD (60u" MfN.t. 
3J PACKAGE SUPPLIED TO 3M SPEC. NO. S-90-007. 
4.) MAXIMUM LEAD RESISTANCE .600f\.. 
5.) MINIMUM WIRE BOND PAD SIZE IS .025 LONG X .010 WIDE. 
6.) DIE PAO, SEAL RING, ANO NO. 1 LEAD ARE ELECTRICALLY ISOLATED . 

(41.9± .508) l
~·-------------~1._6~5_±_.0_2_0 ____ ~------- • 085 ± .009 ~ t-

(2.16 ± .228) - .J_ .020 

~ 
t516) 

.025 
(.635) 

.020 X 450 CHAMFER TVP. 6 
(.508) 

------~~-- ........ , ........ , 

0 0 

. 045 SO. MIN. TVP 64 
(1.14) 

IL .040 
- (1.01) TVP • 

DIE PAO FLAT WITHIN (·.~~!) 

USED ON 
IMron AHT MOllCl lO PUllCHASfll: All $1.tlcn1tnh. 1cc1i111u1111lolma111111 ind llCAlll 
mend~tlllllli "ll•lil<fttd hc1e111 dll bistd on lt$IS wt llell&vc Ill be lchable. but Ille 
OH:(utiafy 111 co111p1~1r11en lhueul 1s 1101 QUil.wlleed. ~Id Ille lullowing 15m~e111 hc11 ol 
.iH w.1114111111s C•llfe~s 011mphcd 

Scllel'• illld m;inul;iclutC(S Ol~V obhfllllOll "'~· be Ii> ICjllatl 5uch fjUilllhlV 111 lilt 
j110tluc1 prnvd 10 be d•leU1vc kc1ll1c1 ~rflei l\OI maoul•Cluftl ~h.itl be hablc IOI .,..V 
"'i•11v. lil\s OI dam.inc. dire~• ai con~eque1111.t1. 111~NlQ out ol lhe u~c ol 111 lhe 111;i!li111v 
to u•;c Ille jlloduU lldu1c us111g. u~c1 s11a11 dtle1m1ne lhc suolilbil•tv ul 1he pioducl kM 
111~ 1111cnac11 use ..nd usc1 i~ sunit~ au 11~k illd lf~jj,l~v wha1soevi:1 111 CM11ec11011 
me1c11J11h Nil ~1<11emcn1 QI 1ccummeMJh0111101 c1111u1ntd l1e1t111 ~llilD have illy 11 .. ce 
01 wllect 11111~ 111 an ~111ctmt111 sw.Jllcd by on1ct1s ul ~•»~• illtd ma1111IJch>1c1 

TOLEflANCE UNLESS NOTED 

.0 .00 .000 

INCll i..1 

INCM 
(mm) 

INCH 
(mm) 

'5JWJ] 
~comPAHY 
fUCTROtUC PRODUCTS 

St. Paul 
Minnesota 

SCALE 

ISSUE ISSUE DA TE ANO 
Ct-IANGE AECOAO REV. 

64 LEAD, QUAD INLINE 
CHIP CARRIER 

cu. 

ST -88364·8-
78-8018-487l 

.,., ... -· 

........ _______ ....,........., __ ....,... ... ~-.a-----------·--------.1 


	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	004a
	005
	005a
	006
	007
	008
	009
	010
	011
	012
	012a
	013
	013a
	014
	015
	016
	017
	018
	019
	019a
	020
	021
	022
	022a
	023
	024
	024a
	025
	026
	026a
	027
	028
	028a
	029
	030
	031
	031a
	032
	032a
	033
	034
	034a
	035
	036
	037
	038
	039
	039a
	040
	041
	042
	043
	044
	045
	046
	046a
	047
	048
	048a
	049
	050
	050a
	050b
	051
	051a
	052
	053
	053a
	053b
	054
	054a
	054b
	054c
	054d
	054e
	054f
	055
	056
	057
	057a
	057b
	057c
	058
	058a
	058b
	058c
	059
	060
	060a
	061
	061a
	062
	062a
	062b
	063
	063a
	064
	064a
	065
	065a
	066
	066a
	066b
	066c
	066d
	066e
	067
	068
	068a
	068b
	069
	070
	070a
	071
	071a
	071b
	072
	073
	073a
	074
	074a
	075
	076
	077
	078
	078a
	078b
	079
	080
	080a
	080b
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	108a
	108b
	108c
	108d
	108e
	108f
	108g
	108h
	108i
	108j
	108k
	108l
	109
	110
	110a
	110b
	110c
	111
	112
	112a
	113
	113a
	113b
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	129a
	129b
	129c
	129d
	129e
	129f
	129g
	129h
	130
	130a
	130b
	131
	131a
	131b
	132
	133
	134
	134a
	135
	136
	136a
	136b
	136c
	136d

