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PREFACE 

Does any technological development of the computer era rival in importance 
that of the microprocessor? I think not. The first microprocessors, whose short 
history began just a decade ago, were based primarily on the advances in micro
electronic technology, which came much later than and was largely independent 
of the computer itself. By contrast, today's impressive microprocessor break
throughs rest heavily on the synthesis of modem computer architecture and 
operating systems principles and on recent improvements in the software disci
plines all of which represent decades of development. The three disciplines: 
software engineering, programming methodology, and programming languages 
are heavily utilized in the automation, testing and verification of the microproc
essor design itself, and this dependence continues to grow. 

From the start, microprocessor designers and manufacturers enjoyed success 
and acclamation merely by demonstrating that each new design emulated a yet 
closer "approximation" to a contemporary mini or mainframe computer struc
ture. Observers required no crystal ball to conjecture that if circuit density, 
speeds, and design automation continued to improve as projected, then 
microprocessor designs would soon converge to the full power and logic of 
large minicomputers and perhaps even of mainframe computers. 

Most of such conjectures are now realities, However, far fewer observers 
anticipated that the day would soon arrive when significant advances in main
frame computer architecture would be manifested in the microprocessor. In the 
highly competitive computer industry it had seemed especially far fetched to 
imagine that any relatively young semiconductor organization could wrest the 
leadership in computer architecture from established computer companies. 
This, too, appears to be happening -and this book is an effort to describe why 
and how this shift of focus is occurring. 

The Intel Corporation has been an acknowledged leader and major contribu
tor in microelectronic technology. In a recent advertisement, this company 
claims credit for most of the technological breakthroughs since 1971. The 
advertisement claims that the most recent, and by implication the most signifi
cant of these breakthroughs is the new iAPX 432 Micromainframe 1M system. 1 

The claim is summarized as follows: "1981: with the goal of dramatically cut
ting software costs, Intel breaks with traditional computer architecture and 
introduces an expandable multiprocessor system optimized for managing infor-

ix 
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mation." This succinct assertion should serve as a serious challenge to most of 
us, for if true, we computer professionals should gain an understanding of the 
basis of this truth as quickly as possible so that we can seek ways to "apply" it. 
True, or false, the curiosity of many has already been justifiably roused. There 
will be much serious investigation of this claim. 

Already much has been published about the iAPX 432, mainly in literature 
and analyses provided by Intel itself. Much more is sure to follow from a wider 
variety of sources as others gain access to copies of the new system, acquire 
experience in applying it to their problems, and refute or confirm Intel's claim. 
My effort not only attempts to make the claim of "breakthrough" better under
stood by a wide audience of computer professionals, engineers, analysts, pro
grammers, and students; it also has as its objective providing an introduction to 
many of the principles and concepts of computer architecture, operating sys
tems, and programming language, which can help potential users of the iAPX 
432 become effective users more quickly. The reader profile assumed for this 
book is a person who is familiar with programming and who is familiar with 
Ada2 or Pascal. 

[Chapters of this book can serve as case-study text for several traditional computer sci
ence courses. I have used drafts of Chapters 2 and 3 for a course in programming 
languages, sections from Chapters 1,4, 5, 6, 7, and 9 for a course in computer architec
ture, and plan to use sections from Chapters 1, and 4 through 10 for a course in operating 
systems. Other computer science instructors may also find the material useful as text 
material.] 

The book is an outgrowth of my good fortune to be invited early in 1980 by 
members of Intel's Special Systems Operation group at Aloha, Oregon to begin 
a study and writing project on the iAPX 432, then in an advanced stage of 
development. It was immediately clear to me, during the first visit to Aloha, 
that a major advance in computer architecture was in the making. For a number 
of years I had been a student of computer architecture, chiefly from the 
viewpoint of matching computer structures to semantic models of programming 
languages and of providing support in the architecture for secure and powerful 
but structurally simple operating systems. The opportunity to study the new 
Intel system and to write about what I might learn while the system itself was 
still new and largely unfamiliar to many, even within Intel, would be an excit
ing but familiar experience. I "signed on" with little hesitation. 

The study published here represents my understanding of the Intel 432 Sys
tem as of July 1982. It is primarily a technical description and discussion and 
should by no means be viewed as a kept-current "product-description", even 
though I was fortunate to receive help from individuals within Intel who were 
engaged in the design and implementation of the 432 System as a product. 

lThe The Wall Street Journal, Wednesday, July 21, 1982, page 5. 

2 Ada is a registered trademark of the U.S. Government Ada Joint Program Office. 
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Architecture 

Preface xi 

Students of computer architecture should be aware that the iAPX 432 represents 
major technology transfer in four areas of recent advance: 

1. VLSI and CAD technology 

2. Logical structures (semantics) for hardware systems 

3. Logical stluctures (semantics) for software systems 

4. Languages for system implementation 

It is no small feat to integrate several technological advances into a new sys
tem that offers more promise than can be predicted from the individual 
advances. Some readers may be interested in background issues related to these 
individual areas of advance, at least one of which is still considered controver
sial. For these readers I offer a short analysis in the remainder of this discus
sion. In essence, application of these advances has led to an architecture that 
offers an implementation of transparent multiprocessing and an object-based 
computing and communication environment reaching new levels of simplicity 
and efficiency. Chapter 1 fully explains these important objectives and tells why 
the Intel 432 System was designed to accomplish them. You will no doubt want 
to understand in greater detail what benefits can be gained from these design 
decisions. Chapters 2 through 10 address this need and provide sufficient addi
tional detail to permit you to reach your own conclusions as to whether (a) the 
design objectives are met and (b) the anticipated benefits do follow from reach
ing those design objectives. The last section of Chapter 1 outlines the purpose of 
each of the following chapters. The "proper" introduction to this book, there
fore, begins with Chapter 1. However, I have been unable to resist the tempta
tion to offer the following four observations as an additional preface to that 
introduction. 

VLSI AND CAD TECHNOLOGY: Intel's leadership in semiconductor technology was 
clearly demonstrated with the introduction in 1971 of the first (4-bit) microprocessor, the 
4004. That leadership has continued. For such a leader, the NMOS semiconductor tech
nology used to produce the 432 chip set would seem today to represent a relatively "sim
ple" extension of previous advances. This advance appears to be primarily in process 
control, as chip area has been substantially increased with still reasonable yields: At the 
same time, there appears, superficially, to be no substantial advance over Intel's previ
ous accomplishments in device density, circuit layout, or layering. However, a closer 
look reveals a significant increase in logical complexity and in the number and size of the 
required circuit patterns beyond Intel's previous microprocessors. 
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ordered conceptual levels for description, analysis, and design-from the macrosimula
tor level (at which macroinstructions of the architecture are represented and understood), 
to the mask level (at which the basic physical devices that represent abstractions at the 
higher levels are represented and understood).3 Software design, analysis, and descrip
tion tools are built for use at each level. Not only do programs at each level check for 
consistency within that level but additional programs have been developed to check for 
consistency between levels. (This methodology is an application of recent advances in 
computer science and software engineering theory related to formal specification and 
verification. ) 

LoGICAL STRUcrURES FOR HARDWARE SYSTEMS: Here I refer to the semantics pro
vided in the computer's instruction set. One can identify two schools of thought among 
computer system designers regarding the desirability of enriching the semantic content of 
instructions: those that would keep the meaning of each instruction as simple (atomic) as 
possible, and those that would select a set of semantically powerful (and more special
ized) instructions. The i432 is an application of the state-of-the-art of this second school. 

The first school prefers that individual instructions have relatively elementary seman
tics, each instruction accomplishing a limited function, preferably one that can be 
accomplished in single cycle of the processor. (For example, given a choice between use 
of one-address versus three-address instructions, this school would likely choose one
address instructions.) Thus, it is sufficient that the set of available instructions spans all 
the types of actions that the computer is expected to perform .. (One tries to choose a set 
of instructions whose individual semantics are mutually orthogonal.) 

A companion objective for this school is to speed up execution by embedding in pure 
hardware the (simple) instructions that are most frequently executed and interpreting 
less-frequently used instructions either in microcode or as macro-instruction subrou
tines.4 A corollary design objective is that, as much as possible, a maximum fraction of 
the processor's logic is "engaged" during execution of each instruction. 

For such systems, which have relatively simple logical structure, the computer's 
resources can then in principle be optimized for the user's benefit, for example through 
the use of high-quality compilers. 5 

[On the other hand, by increasing the semantic content of individual instructions in the 
instruction set, it appears to be more difficult to produce a compiler that chooses "best" 
instruction sequences-and even if this is still possible, best instructions sequences may 
still not be optimal in terms of overall use of the system's resources. A companion argu
ment is that raising the semantic content preempts the user's opportunity to exploit the 
special cases that arise and that are recognized in particular situations. 

Indeed, this argument carries over to the software/language level. Often the semantics 
of a chosen programming language and/or its implementation preempts certain represen
tation and functional options that might be specified by a user. 6 Although such preemp
tion may be fine in most cases, it can force selection of inefficient solutions in those 
cases where the user, who may have more global knowledge of the requirements in a 
given case, can supply or suggest a better approach.] 

3"A Methodology for VLSI Chip Design" by Wm. W. Lattin. J. A. Bayliss, D. L. Budde, J. R. 
Rattner, and Wm. S. Richardson, in Lambda, Second Quarter, 1981, pages 34-44. 

4"RlSC I: A Reduced Instruction Set VLSI Computer" by D. A. Patterson and C. H. Sequin in 
Proceedings of the 8th Symposium on Computer Architecture, 1981, pages 443-457. 

5"The 801 Minicomputer", by George Radin, in Symposium on Architectural Support for Pro
gramming Languages and Operating Systems, March, 1982, pages 39-47. 

6, 'Toward Relaxing Assumptions in Languages and Their Implementations, " by Mary Shaw and 
Wm. A. Wulf; Carnegie Mellon University, January, 1980. 
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The second school (raising the semantic content of instructions) has included advo
cates having a variety of motivations, beginning with those primarily interested in match
ing the hardware to particular high-order programming languages or to particular 
constructs within high-order languages, such as procedure call, coroutine call and associ
ated context switching, process switching, etc. More recently, a motivation for this 
approach has come from those wishing to improve the performance, clarity, flexibility, 
reliability, and functionality of operating systems. 

It is from these latter motivations that instructions set semantics have been expanded 
to include explicitly or implicitly, for example, direct support for data abstraction and 
object management. In this category are also instructions which involve elaborate map
ping steps (access path management and traversal) for controlled sharing of information, 
data and code protection, controls for processor and storage management (real and vir
tual), process synchronization, interprocess and interprocessor communication, etc. 

This architectural progression can be ·traced back at least twenty years to the Bur
roughs B5000. Advances in concepts and implementation strategies have accelerated, 
especially in the past ten years, as the costs of implementing instructions with higher 
semantic content, largely with the aid of vertical microprogramming, have come down 
drastically without significantly penalizing performance. The iAPX 432 represents a 
technology transfer of the recent ideas and models represented by this approach. In this 
book I show how the high semantic content of a subset of the i432 machine language 
instructions strongly influences the behavior and efficiency of the system viewed from 
the perspective of software development costs and programmer productivity. 

LoGICAL STRUCTURES OF SOFTWARE SYSTEMS: Here I refer to the organization of the 
functional elements and the interrelationships among principal support software modules 
of a system-beginning with the "inner core" of the operating system, and extending to 
the library facility, input output interfaces, and file system facility. I deliberately factor 
out of this discussion the implementation of particular functions performed by an operat
ing system, such as access control and protection, interrupt handling, etc. 

Much has been learned, especially in the past ten years, about operating system princi
ples, some through pure theoretical research, but most through design, implementation, 
and observation and use of experimental and commercial systems. A good deal of the 
recent progress is owed to an almost universal recognition that principles of good 
engineering design and management are applicable to the systems programming 
phenomenon. The iAPX 432 Operating Sytem (iMAX) is an application of the current 
state of this software engineering art. Examining several examples of the iMAX structure 
forms an important part of this book. 

STATE-OF-THE-ART LANGUAGE FOR SYSTEM IMPLEMENTATION: The fourth concurrent 
application of state-of-the-art technology is the choice of Ada as the system implementa
tion language base for the i432 System. Ada is itself the application of the current state 
of the art in programming languages research and development. 7 Especially important is 
the emphasis given to the separation of specification from implementation of program 
units. Ada incorporates the semantic components needed to permit programmer teams to 
construct and maintain large systems and applications at minimum overall cost. 

Ada is also the language target to which a number of specialty languages, such as for 
database applications, will likely be preprocessed.8 [Ada is well suited to the packaging, 
structuring, and isolation of data objects and the procedures permitted to act on these 
objects.] 

7"lntroducing Ada", by Wm. E. Carlson, L. E. Druffel, D. A. Fisher, Wm. A. Whitaker, in 
Proceedings of the 1980 Annual Conference, Oct 27-29, 1980, pp 263-271, Association for Com
puting Machinery (ACM). 

8"Reference Manual for ADAPLEX" by J. M. Smith, S. Fox, and T. Landers, Computer Cor
poration of America, January, 1981. 
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TOP-LEVEL VIEW OF THE 
INTEL 432 SYSTEM DESIGN 

coauthored with Justin R. Rattner, Intel Corporation 

The term "computer revolution" suggests to all of us computer technology's 
rapid development and the equally rapid expansion of the applications of com
puters in our society, our institutions, our businesses and our homes. Even so, 
computer systems develop remarkably slowly, and according to relatively fixed 
patterns of logical and physical organization and its related style of use. A com
puter system's style of use determines in important but often subtle ways how 
effective and productive its users will be. It is only every few years, perhaps 
only once in a decade, that a sufficiently innovative computer system is 
developed to justify a full-length book for describing it and discussing its style 
of use. In 1981 the Intel Corporation announced such a system and named it the 
iAPX432. 

Our description focuses on this system's overall structure and functionality 
from the viewpoint of the programmer who will use it. Our purpose is to help 
others better appreciate the design of the system and how its developers per
ceive its promise for improving programmer productivity. In the process of 
reading this book, a programmer can also expect to learn a good deal about 
object-based architecture and gain a new perspective about programming itself. 
To a very large extent, it is the measure of programmer productivity that will 
determine how effective the Intel 432 System can be for a more productive 
economy and hence for the general welfare. 

This book examines the structure of the iAPX 432 system from three princi
pal but interrelated perspectives, 

• its architecture (as exhibited by key elements of its instruction set and by its 
physical organization), 

• its operating system design, structlJlre, and unconventional interface with the 
user 
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• its implementation language, which serves not only as a tool for the systems 
programmer, but is also available to the applications programmer. (The 
language is really two languages in one. It is Ada, the proposed national and 
international standard, and it is also a limited number of extensions of Ada 
that allow the user to make full use of the underlying hardware, should a user 
choose to do so.) 

All three components, the architecture, the operating system, and the imple
mentation language are new; none is carried over from previous bottom-up 
designs. In the following discussion we shall use the term' 'i432 System Archi
tecture" to refer to the composite of these three components. (Note that we 
hereafter substitute the shorter acronym, "i432", for "iAPX 432", the one 
used for formal reference to the system in publications of the Intel Corporation.) 

To open our study we fIrst examine three important concepts in computer sys
tem architecture: multiprocessing, object-based design, and object filing sys
tems. The fIrst is a generally-accepted convergence point of modem systems; 
the second and third are new departures. The principal theme of this book is that 
the effective implementation of these three concepts, exhibited by the Intel 432 
System, provides users with a new dimension for expressive power and produc
tivity for both system software and applications programs. 

1.1. Computer Architecture and 
Multiprocessing 

"Computer architecture" is a popular term, understood from many vantage 
points. Like a rich data base, there are many possible views. Technically, the 
term architecture often refers to the functionality of the system that may be 
achieved through use of the computer's instruction set (instruction set view). 
Almost equally often, architecture refers to the physical components of the 
computer system and their logical, physical, and functional interrelationships 
(organization and technology view). When a trained computer systems person 
can gather relevant facts related to either or both views of a candidate system, a 
surprisingly complete appreciation of a new system can be acquired. 

The view we shall take here is perhaps an unorthodox one to the expert, but 
one that may provide some new insights for novice and expert alike. It is a per
spective (actually a bias) begun by trying to track the architectural develop
ments of most commercially available systems. It seems easier to appreciate the 
advances reflected in the iAPX 432 system using this frame of reference. 

1.1.1. Multiprocessor Computer Systems 

Most commercially-available systems result from an evolving, cyclic, and 
bottom-up process, lasting over a many-year span. They appear to their users as 
part of a series of increasingly better, more general, faster, and more cost
effective models. 
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The objectives for these systems have varied, but here is a summary, ordered 
roughly as a scale of objectives that reflects known historical development of 
commercial computer systems: 

• run single programs, produced from a variety of assemblers and compilers, 
with static (later dynamic) resource allocation strategies, 

• run several such programs in the same time frame, through time sharing, or 
multiprogramming resource managers, 

• accomplish all of the above while guaranteeing real-time response for some 
programs executed, 

• connect computers to a variety of input/output devices, backing store media, 
and use external processors (e.g., "channels") to gain overlap of computing 
and 110 transfer. 

• increase computer speeds by making larger programs and data more directly 
and more quickly accessible through the use virtual memory and cache 
memory mechanisms, 

• accomplish all of the above (though perhaps accepting some limits on per
formance) and provide controlled sharing of information resources among 
related tasks (programs) and enforced separation of information resources 
allocated among non-related tasks-all to achieve protection, security, relia
bility, and fairness in service, 

• accomplish all of the above for increased work loads by providing several 
processors for sharing the computational load, using some cooperative, proc
essor-pooling strategy. 

Generally speaking, the more successful commercial systems have been those 
which, though begun by meeting one of the earlier objectives, have, through 
upgrading and other forms of modification, managed to meet a succession of 
more "advanced" objectives on the above scale. Often, this success has been 
met within a single computer family. In some cases, however, a family had to 
be abandoned and a new one started, and in other less fortunate cases the entire 
computer enterprise had to be abandoned or sold. 

In any case, the last objective on our scale, that of a multiprocessor system, 
most often with a store accessible by all processors, is a popular convergence 
point in this evolution. In many commercial systems this last point has been 
reached only after more than a decade of development. 

1.1.2. The Multiprocessing Model 

No matter what the cycle of product evolution, it seems safe to say that the 
sharply reduced cost of circuitry, coupled with the need for ever more process
ing power and diversity of application, has driven architects of general purpose 
systems toward solutions that involve multiprocessing structures. Thus far, 
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many differences can be perceived in the specifics of these solutions. Even so, 
one guiding principle or model predominates, that of furnishing a pooled set of 
processors for execution of a network of interconnecting program units. Some
times the networks are structured as trees or related groups of trees, but in every 
case, intercommunication among the asynchronous program units is achieved 
by some one or group of synchronizing mechanisms. 

In its most simplified (and abstract) form, one may view this multiprocessing 
model as shown in Figure 1-1, which suggests a means for' 'marrying" process
ors to tasks that are ready to be executed. 

A representation of a Ready Program Unit, such as a message pointing to a 
"Task Control Block" (to use an older terminology, or to a "Process Object" , 
a term we will be using later), is entered on the Ready Queue in the direction 
indicated by the arrow. The program unit is then bound to an Available Proc
essor, also representable as a pointer to an appropriate control block ("Proc
essor Object") when each "reaches" the front of its respective queue. This pair 
of queues may be called a "Dispatching Port". 

Queue of 
Ready Program units 

front 

Queue of 
Available Processors 

front 

Figure 1-1 Abstraction of a Dispatching Port. 

A program unit is executed (i.e., is interpreted by the processor to which it is 
bound) until a point is reached where the program unit cannot or may not con
tinue to run. (The program has run to completion, a supervisory process has 
ordered it to be terminated, it has entered a wait state, or its time quantum has 
been exhausted.) At this point, the program unit is either deallocated or 
enqueued on some appropriate Wait Queue (not shown in the figure above). The 
processor, in turn, then reenters the Queue of Available Processors in search of 
new work to do. When a blocked program unit is again ready to run, it is 
removed from the Wait Queue and reentered onto the Queue of Ready Program 
Units. 

This multiprocessing model has a number of attractive attributes, among 
them its essential independence from any underlying semantic model of pro
gram structure and execution. It is important to observe that the model is 
equally applicable, for example, for the mUltiprogramming of Fortran pro
grams, Cobol programs, Ada programs, including those which have multitask
ing structures, LISP-like or LISP-based applicative programs, or mixes of these. 
Moreover, in principle, such a model should behave the same, except for 
throughput rate, for any number (one or more) of actual processors. 
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1.1.3. Multiprocessor Memory Organization 

Implementing a system based on this model is a major challenge. Should there 
be one shared (central) store, private per processor stores, or combinations of 
shared and private stores used in the design? For each selection, access paths 
from the processors to the stores must be provided with sufficient bandwidth 
(and in the case of shared stores, with sufficient switching speeds and reliability 
[55]) to achieve satisfactory performance objectives. Such structures must offer 
the promise of approximately linear increase in throughput with the number of 
processors added, at least up to some acceptable number of processors. An 
equally important set of design choices must be made to determine access paths 
to secondary stores and to other 110 devices. 

The per-processor private store solution is interesting because it offers oppor
tunities for introducing new levels of fault tolerance and improved performance 
in special purpose systems. We call this organization, the multicomputer solu
tion. (The Tandem systems [5] are good examples.) Unfortunately, multicom
puter systems have two critical drawbacks when the objective is a general
purpose system. First, it is difficult if not impractical to model and implement 
shared variable semantics in distributed stores. Unfortunately such semantics 
are an integral part of nearly all the commonly used high-order languages. 
Selecting the multicomputer approach seems, therefore, incompatible with the 
goal of a general purpose system which is to accommodate the needs of a wide 
class of programmers. Second, code for program units that are to be executed 
by more than one processor must be copied to the private store of each such 
processor that executes it. This extra cost seems acceptable for the objective of 
redundancy to achieve failure tolerance, especially where the amount of copied 
code can be limited to certain resident operating system modules. However, the 
frequent extra copying of code is burdensome when the objective is to balance 
processor loads dynamically, and on a system-wide basis. Furthermore, the 
private store of any processor in an N-processor system is necessarily limited to 
I/Nth the total store available. Therefore, were sharing permitted, there would 
be a disproportionately greater chanoe for thrashing when using the individual 
per-processor stores than in the N-times-as-Iarge shared store. 

One shared central store is by far the most frequently advocated solution, 
even though, for anyone switching mechanism used to route information flow 
between the processors and the shared store, the number of processors cannot 
exceed some practical limit before traffic congestion in the switch seriously re
stricts the total processing throughput of the system. (This limit can be deter
mined empirically.) We call this solution the multiprocessor system. The i432 
system is our prime example. 

Multiprocessor solutions may differ greatly in details as to how they execute 
individual program units. Even so, the architectures of competing large-scale 
general-purpose systems appear similar. At their highest level of abstraction, 
they exhibit multiprocessing system superstructures. Unfortunately, because 
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many of these systems have been grown "bottom-up", their implementations 
and modes of use remain, to a variety of users, different in important ways. 

1.1.4. i432 Multiprocessor System 
Organization 

Those system architects who can start "from scratch" with a top-down 
approach, and who are able to profit fully from the mistakes and good ideas of 
others, have the potential to produce far better implementations. They can begin 
with the elegance and simplicity of the above-described superstructure (Fig
ure 1-1) and expand to consequent sublevels. Such a development has occurred 
at Intel with the design of the iAPX 432 system architecture. 

A first view of the system structure, showing the relationship between the 
Computational Subsystem and the I/O Subsystem is given in Figure 1-2. The 
Computational Subsystem contains three types of elements: processor modules, 
memory modules, and one or more busses that form a multiprocessor intercon
nect. The topology may thus become quite complex, consisting of several 
modules of each type. The processor modules themselves consist of the i432 
General Data Processor (GDP) and its associated bus interface hardware. The 
I/O Subsystem consists of one or more independent peripheral subsystems, each 
interfaced to the Computational Subsystem through an Interface Processor (IP). 
Multiprocessing is thus an integral part of both computation and I/O in the i432. 

main 
memory 
module 

Peripheral Subsystem 

main 
memory 
module 

I n t ere 0 nne c t 

Figure 1-2 A simple i432 system topology. 

Subsystem 

] 

Computational 

I/O 
Subsystem 

The actual topology of an i432 System may vary from that shown in the fig
ure according to the particular bus and interconnect circuitry made available and 
the performance objectives desired. (For a system that is to contain a relatively 
large number of processors, say more than a total of six GDPs and IPs, an elab
orate bus interconnect structure might be required, but we do not dwell on this 
matter here.) 
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Through careful attention to multiprocessing issues in the definition of both 
its system organization and its architecture, the i432 also implements the idea of 
transparent multiprocessing. This simple but important concept means that the 
number of processors in an i432 system can be increased or decreased without 
software Il\odification. It is even possible to start or stop a processor at any time 
without damaging or informing a single piece of software. More importantly, no 
reprogramming of either the operating system or the application is required to 
exploit an increase in the number of processors. 

It is interesting to note that multiprocessing in the i432 was not strictly 
motivated by the traditional desire to share the workload among a pool of proc
essors. Somewhat less technical factors were actually responsible for the deci
sion to include multiprocessing in the initial implementation. First, it was felt 
that competitive architectures would be available in different implementations 
with a range of cost and performance levels at the time of the 432's introduc
tion. Second, unlike traditional computer manufacturers, semiconductor com
panies are rarely in a position to provide even a second implementation in less 
than three or four years. [This is due not only to the relatively small size of 
semiconductor companies, but also to the fact that they generally have, at any 
moment in time, only one technology capable of cost-effectively implementing 
a new architecture.] 

These two factors led the Intel designers to seek a design approach that would 
give the i432 a range of performance from just one implementation. Multiproc
essing proved to be a particularly attractive approach for the semiconductor 
manufacturer because, to achieve increased performance, it relies on the 
economies derived from replicating the processor circuitry rather than from a 
complete redesign. Furthermore, multiprocessing also supports the concept of 
modular, in-the-field, performance expansion either for I/O or data processing 
with the installation of a simple printed circuit board. The latter gives i432 
users a particularly cost-effective way to upgrade their products over time. 

1.2. Object-Based Design 

The development of a new computer family has frequently been launched with a 
semantic model of a program structure and a supporting machine language in 
mind. We may reflect back to the mM 704, ... , 7094 series for a good exam
ple. This important line of computers, although perhaps not begun with a well
formed model of program structure, was quickly brought into focus with the 
development of Fortran. Later models in the evolved series added features and 
components, such as more index registers, higher speed devices, better means 
of communication with I/O systems, etc., but kept (indeed, were forced to 
keep) as the principal objective the compilation/execution of Fortran-like object 
programs. (This series died out before reaching the multiprocessor convergence 
point.) 
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Other examples can and should also be cited where the architectural series is 
rooted to, or influenced strongly by, a view of a particular program structure 
model. Thus the GE/Honeywell Multics series was strongly influenced by a 
semantic model of PL/I programs in execution; the Burroughs B5500, 
B6700, ... , B7800 series was rooted to the model of Extended Algol programs 
in execution; that is, Algol60 programs extended to include coroutines, asyn
chronous tasks, and means for intercommunication among such program 
components. 

Like these earlier architectures, the i432 is also based on a semantic model of 
program structures. Unlike many of its predecessors, however, the i432 is not 
based on the model of a particular programming language. Instead, its 
designers' aim was the direct execution-time support for both data abstraction 
(i.e., programming with abstract data types) and domain-based operating sys
tems. The principal insight of the i432 architecture is the fact that both objec
tives can be supported by a common semantic model, known as the object 
model. In this section, we explain the concepts of data abstraction by describing 
the emerging object-based programming methodology and review the comple
mentary principles of object -based operating system design. 

1.2.1. Object-Based Programming 

Object-based programming, in contrast with the more conventional control
based style, emphasizes the view that a program largely describes the defini
tion, creation, manipulation of, and interaction among, a set of independent and 
well-defined data structures called objects. The control-based style views a 
program as a controlled sequence of events (actions) on its aggregate data struc
tures. In both styles, the objective of the program is to transform a set of speci
fied data values from some input or starting form to some specified output or 
final form. Although the distinction between these two styles may at first appear 
to be contrived or superficial, there are crucial differences. We attempt to 
explain why in a very brief way here and distribute a more complete explana
tion throughout the remainder of the book, giving special emphasis to this 
matter in Chapters 2 and 3. 

In conventional, control-based programming, the programmer finds that, as a 
program's complexity grows, it becomes increasingly difficult to retain a clear 
view of the entire sequence (or sequences) of actions that comprise the program. 
To this end, decomposing long sequences into groups of shorter ones (subrou
tines) helps a great deal. (In fact, the good programmer never allows a sequence 
to grow very long in the first place, having the foresight to organize the pro
gram, top-down, into a structure of such subroutines.) 

Unfortunately, the data operated on by these subroutines is not similarly 
decomposed into independent entities. Most of the data is represented in global 
structures that are freely shared by all subroutines; consequently, much of the 
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expected benefit of decomposition into subroutines is never realized. The source 
of the problem is rooted in the number of subroutines and their mutual depen
dency on the foml and integrity of common data structures. As this number 
increases, it is often difficult or impossible to arrange the subroutines and the 
data they operate on into well-matched (isomorphic) substructures-for exam
ple, along strict hierarchical lines, even when using an Algol-based language 
like Pascal. 

In object-based programming, by contrast, one begins by associating a single 
data structure, or instance thereof, with a fixed set of subprograms. The associ
ated subprograms are the only operations defined on that object. In Ada ter
minology, the data structure is known as an object and its associated set of 
operations is called a "package". Ordinarily, one set of such "public" opera
tions is defined and made accessible to all components of the program that have 
access to the data object. These public operations have well-defined 
input/output specifications; their subprogram bodies and any subprograms on 
which these bodies may further depend, are factored out and may be totally hid
den. The package can also be used to hide the representation of the object, so 
that subprograms in other packages cannot choose to bypass those public sub
programs and manipulate the object directly. 

This factoring is called data abstraction, and can lead to considerable design 
simplification; that is, it can make the program more understandable, correct, 
and reliable. Flexibility (and portability) is also enhanced, because the details 
of the objects, their representations, and public operations may be changed or 
replaced by a different set of details. 

More formally [26], data abstraction allows us to focus on just those attri
butes of a data object or of a class of them that specify the names and define the 
abstract meanings of the operations associated with such objects. We suppress 
attributes that describe the representation of those objects and the implementa
tion of the operations associated with them in terms of still other objects and 
operations. 

The foregoing concepts, which have since led to the introduction of abstract 
data types as constructs in modem high-order programming languages, were 
seeded with the introduction of the class construct in Simula 67 [7] [15]. The 
appreciation of the ideas associated with the Simula class then led to several 
research contributions and proposals for introducing data abstraction in modem 
programming languages [3] [36] [39] [62] [63]. The most recent development 
is the Ada language design effort, whose constructs for data abstraction are built 
on these earlier contributions. 

1.2.2. Object-Based Operating Systems 

Concurrent with development of data abstraction, much was being learned 
about operating system principles. Some of this advance derived from pure 
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theoretical research, but most came through the design, implementation, and 
observation and use of real systems9. The lessons ranged over a wide space. 
They recognized the importance, for example, of: 

• avoiding monolithic, unwieldy structures-a one-time common consequence 
of early computer designs wherein a computer could execute in one of only 
two discernably different states, "user" or "supervisor", 

• encouraging modular structures that isolate logically distinct functions, and 
the associated system information (information hiding), so that key properties 
of the system may be better analyzed and certified, repaired or modified, 

• providing for easy interchange (replacement) of logically independent 
software components (also implying a requirement of low overhead for sys
tem recompilation and reinitialization), 

• providing for a system's easy extendability, even to the point where ordinary 
users may participate in the extension, 

• identifying and separating policy and mechanism, so that mechanisms may 
be efficient while policy is easily altered, 

• increased failure tolerance by providing the extra code and data structures 
needed in the initial design (with hardware assistance, as needed), 

• providing system and user code debugging aids in the initial design (with 
hardware assistance, as needed). 

The above list is hardly exhaustive, and more lessons are still being learned 
about how to design and implement better systems. Much of the recent progress 
is owed to an almost universal recognition that principles of good engineering 
design and management are applicable to the programming of operating 
systems. 

Given that this list represents an "ideal" set of properties for an operating 
system, many experimental investigations have focused considerable attention 
on determining precisely what logical structure is best able to realize these 
essential system characteristics. Here we use logical structure to mean the 
organization of functional elements and intermodule relationships. 

The first attempts at improving operating system organization focused on 
minimizing the number of primitive functions upon which the system is built, 
the so-called "kernel" approach, and on ways to "layer" subsequent functions 
such that the system takes on strict hierarchical structure [18]. [Hardware sup
port for this organization was pioneered in Multics [25].] The observation that 
not all operating system functions obeyed the same hierarchical relationships 
led operating system designers to consider multiple, but strictly independent 
hierarchies called domains [57] [58]. 

9 A substantial body of literature has been formed, centered initially on papers appearing in the 
proceedings of symposiums held biannually since 1967 by ACM's Special Interest Group on Operat
ing Systems (SlOOPS). 
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Almost simultaneously, it was argued [64] that strict hierarchical layering in 
the design of an entire system would severely limit the flexibility available to 
high-level users. It was observed that operating system domains were each 
responsible for the management of particular types of data structures called 
"objects", which corresponded, in general, to instances of resources (e.g., 
page, file, and process) in the system .. In formal terms, an object was defined 
[65] as an abstraction of an instance of a resource and thought of as a triple: 

(unique name, type, representation) 

The unique name distinguishes an object from all other objects. Uniqueness 
of the name can span both space (in which the object resides) and time (beyond 
the life of the system in which the object was created). The object's type defines 
the nature of the resource represented. An object is an instance of its type 
which, in a practical sense, defines a set valid operations on objects of that type. 
The representation contains the infonnation content associated with an object. 
An object's representation may include private data structures as well as refer
ences, in the fonn of unique names, to other objects. Representation also 
implies certain forms and limits that may restrict the object's content. 

The experimental systems proved that organizing the information and physi
cal resources of computer systems so they are represented as objects has a pro
found effect on the management of these resources. Management schemes are 
simpler, fewer, and easier to implement and use; individual resources are easier 
to specify, create (allocate), destroy (deallocate), manipUlate, and protect from 
misuse, accidental or malicious. The ability to hide (and protect against direct 
access to) unneeded representation and implementation details is an automatic 
byproduct of the object basis of such systems. 

While the experimental studies demonstrated the logical soundness of objects 
and domains as an organizational model for a modem operating system, they 
also showed, often in very convincing terms, that without direct hardware sup
port, they were simply too inefficient to be commercially practical. Much of the 
experimental work in operating systems has moved to other areas in anticipation 
of the necessary hardware innovations. 

1.2.3. Object-Based Computer Architecture 

The i432 architectural design began with a commitment to include hardware 
support for both domain-based protection and data abstraction; in other words, 
to produce an object-oriented architecture. After working on this problem for 
some time, it was realized that a logical and desirable generalization of this goal 
would be to use data abstraction· as the fundamental design framework of the 
architecture. This generalization yields what is referred to as an object-based 
architecture. 

Although largely intended to overcome the performance problems associated 
with object-based operating systems on conventional hardware, object-based 
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architecture is actually some twenty years in the making. It is considered to 
have begun with descriptor-based architectures [11] [30] [31] which pioneered 
the concept and implementation of segmented virtual memory support. The 
evolution then progressed with the introduction of capabilities and capability
based addressing concepts [13] [16] [20]-[24] [27] [59] [60] to the current view 
of objects as abstractions of resources, which had its origins in the HYDRA sys
tem [64] [65]. A capability is an access authorization for a particular object; 
object managers dispense capabilities for objects to programs units needing to 
share their use. The i432 architecture models closely, with much hardware sup
port for capabilites, the object structure and object management concepts of 
HYDRA. 

At this point, and in advance of more detailed discussions in chapters 4, 5, 6, 
and 9, we briefly introduce the nature of the architectural support provided in 
the i432 System for object-based system design. This support assures that: 

• Access to information objects among related program units is effectively 
controlled. 

• Information objects belonging to mutually independent program units are 
effectively isolated. 

[These two forms of control are achieved because data and program code 
components are treated as structured objects under hardware and software 
control at all times. User data and program code units may have arbitrarily 
defined substructures. A "capability-based" accessing scheme provides the 
underlying mechanism for accomplishing these objectives.] 

• The hardware and operating system combine to control the execution of all 
application programs, including the transfer of information and transfer of 
control between modules of such programs. 

• At all times, the hardware augmented by the operating system serves as a 
manager of object managers, where the operating system and its user-defined 
extensions serve as a collection of such object managers. An object manager, 
also referred to as a type manager, is a facility for controlling the creation 
and use of a data type definition and instances (objects) belonging to a 
defined data type. Object managers may be composed of more fundamental 
object managers so as to build up managers for complex databases. 

• Certain objects (for example, Context Objects) are recognized by the 
hardware as belonging to system-defined types; their creation and use is 
managed in part by the hardware and in part by kernel modules of the operat
ing system.) Other objects are recognized and protected by the hardware as 
"extended types" (user-defined types.) These objects are sensed by the 
hardware (always) and controlled (managed) by their type managers (which 
can be easily expressed as Ada packages). 
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• The instruction set of the processor includes operators that perform or facili
tate and control (creation, deletion, and alteration of) objects. These objects 
include queues, entire program units, their subcomponents such as sets of 
related instruction and constant objects (known as domains), and procedure 
activation contexts and their subcomponents. 

• The important functions of memory management, such as virtual memory 
addressing and garbage collection, are performed correctly, efficiently, and 
in conformance with the object -based model. 

• Objects are not only a central focus, but a source of consistency and unity. 
They are the building blocks of program structures. They are atomic units for 
accessing and protection, for interprocedure and interprocess communication. 
They transcend hardware, operating system, and application boundaries. 
Once understood, they are the natural building blocks in models of real world 
objects. 

It is the intent of the i432 designers that the object base of the architecture be 
used for more than the effective management of the system's configuration and 
its individual resources (computer administrator view); in addition, it is 
intended to be used for the general support of data abstraction for its benefits in 
simplifying program organization (general and system programmers' view). 
The potentially close connection between system management, on the one 
hand, and program and data management, on the other, has not yet been 
exploited fully in other systems. Indeed, it remains an open controversy as to 
whether this "twinning" effect advanced by the i432 System design is a desir
able architectural objective [61], The view taken here is that providing archi
tectural support that assures exclusive use of objects as just defined (which, in 
effect, is support for data abstraction in programming), automatically provides 
the address space protection mechanisms needed for the proper management of 
system resources. 

1.3. Object Filing Systems 

In traditional filing systems, programmers accustomed to either the conven
tional control-based programming style or to the newer object-based style have 
been burdened with unreasonable overheads in dealing with the "intermediate 
storage" aspects of programs. A typical programmer may be unaware, how
ever, of the magnitude of this burden. By intermediate storage we refer to the 
use of secondary storage for holding interim information between processing 
stages (compiler passes, for example) or between transactions (data base 
activity, for example.) We consider a typical data processing scenario to shed 
some light on this issue: 
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Intermediate storage is conventionally represented as sequential or indexed 
files of data which amount to streams of individual values or streams of records. 
Intermediate steps of the program may then require selection and regrouping of 
the data into more elaborately structured objects to perform the required 
analysis, or to permit the required synthesis of results, or both. If copies of these 
results are to be retained for further processing, however, they must be con
verted for output as sequential or indexed files into the form of value sequences 
or record sequences. (Making the file records randomly accessible really adds 
very little in the way of simplification in the conversion process if the data 
objects have objects as substructures.) 

Reprocessing the linearized or indexed output of one stage of processing 
requires that the old objects be recreated before they can be reused or modified. 
Not only is there the burden of processing involved in these repeated transfor
mations, but there is, more importantly, the burden of ensuring that the integrity 
of these objects is preserved during and in between each "round trip" to and 
from the intermediate and normally non-self-describing form usually selected 
for the data representation in the file store. 

An object-based system design offers the important opportunity to unify the 
discipline of filing with that of object management and type control, and hence 
to permit filing to become a natural extension of the addressing and protection 
model of the operating system. Since objects have unique identifiers and can 
have lifetimes that span multiple users and uses, it should be possible to view 
and to treat an object, which retains its type, structure, and other attributes 
under control of its type manager, in much the same way as files are viewed and 
treated in conventional operating systems and data-base management systems. 
With this approach, a file store is merely an extension of the system's uniform 
address space. This extension of object-based architecture is called an objectfil
ing system [47]. 

The i432 Object Filing Subsystem is a planned part of the operating system; it 
supports the permanent storage of i432 objects in a "passive address space". 
Objects permanently stored are identified and protected in a manner that is con
sistent with the access control mechanisms over objects in the "active address 
space" of the system. In particular, the identity, type, and structure of objects 
are preserved whether they reside in passive space or active space. 

Recall that objects have names whose uniqueness (theoretically, at least) 
extends over space and time. The names of i432 objects in the passive address 
space are unique in the true sense. An object in this space has a name that 
differs from that of any extant object, any object that existed in the past, or any 
object that will exist in the future. While residing in the active address space an 
object has a name that is unique to that space. (At no time are there two active 
space objects that have the same name.) Since cardinality of the set of active 
space names is relatively small (2**24) compared with the (effectively infinite) 
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cardinality of the set of names used in the passive space, the Object Filing Sub
system maintains a unique mapping between the two name spaces. In this sense, 
the set of names in the active space is used as a cache of the much larger set of 
passive space names. 

Objects in permanent store are automatically brought into active space when 
their content is referenced. However, permanent space objects need not be 
activated to be updated, and two or more programs can attempt to update a data 
object in passive space without risking inconsistency of the updated object. 
When two or more programs attempt access to the same shared object in per
manent store, the object filing system synchronizes multiple access to the object 
via implicit calls to the type manager for that object. The synchronizing strategy 
used is based on the concept of "Atomic Actions" [49, 50, 51] and outlined 
briefly in Chapter 10. 

Not only simple objects, but composites comprising a network of simple 
objects can be filed in the passive store and retrieved as a unit. Individual com
ponents of a composite are cross-referenced by capabilities, called Access 
Descriptors in i432 terminology. Relationships among the components of a 
composite, like a program or like structured data, are preserved by preserving 
the meaning of the references embedded in the components, independent of the 
device on which the composite resides. These relationships are also preserved 
when a composite is transferred to or from the active and passive address 
spaces. 

Among commercial systems only two have offered object filing services, the 
IBM System/38 [28] and the Plessey System 250 [20]. [There have also been 
several research implementations, one for HYDRA and one for the CAP operat
ing systems [43]]. Coincidentally, the architectures of all these systems provide 
capability-based addressing mechanisms. The Multics system, operational since 
1969 [44], offers an approximation to object filing. In this system, files are 
directly addressable; they are represented as single, variable-length segments or 
linear arrays of same, but there is no distinction between active and passive 
space, so the system is subject to greater loss of information as a result of sys
tem crashes. [The same problem appears to exist for the IBM System/38 , where 
the object also resides in a single space.] 

Using an object filing system provides the programmer with the facility asso
ciated with a much richer base of support, normally provided only by data-base 
management systems, a service that is usually built on top of the filing system, 
rather than in place of it. It now appears that object filing can replace data-base 
management in many programming situations. Coupling an object-based pro
gramming style with the use of an object filing facility is viewed by the i432 
system designers as the critical step to be taken by programmers who wish to 
make quantum jumps in the level of their productivity. Because it provides the 
tools for practice with object-based programming, and because it provides the 
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object filing system as well, the i432 System may well be the first system of 
wide availability to convert the potential of the quantum jump in programmer 
productivity into a broad-based reality. 

1.4. Ada and the iAPX-432 

Ada is the application of the current state of the art in programming languages 
research and development. It is the result of a collective effort to design a com
mon language for programming large scale and real time systems [2]. The 
design work for this language, sponsored by the U.S. Government, Department 
of Defense, began in 1974 with a series of "requirements" documents that were 
widely reviewed. A large international community of computer professionals 
participated in the studies and competitive preliminary designs that led to the 
final form of the language, which is now being implemented for a variety of 
computer systems. 

Ada's most distinguishing characteristic, when compared with widely-used 
predecessor languages, is the emphasis given to the separation of specification 
from implementation of program units. Ada incorporates the semantic com
ponents needed to permit programmer teams to construct and maintain large 
systems and applications at minimum overall cost. Ada will be accepted as a 
national and international standard language, in large part, because it is 
designed to enhance portability of programs by providing for a clean separation 
of machine-independent logical constructs and machine-dependent data repre
sentation details. 

1.4.1. Ada Program Structures 

An Ada program may consist of a collection of packages and one main subpro
gram (i.e., the initial, or "starter" task) that activates the use of the packages. 
Structuring the program into such a collection of program units has the advan
tage that, as the number of program units grows, there is a much better chance 
that the programmer can maintain an understanding of its meaning (its sequence 
of actions), since the number of possible interrelationships among the action 
steps and the data is restricted by the use of the packages-which limit the 
operations that may be performed on individual data objects, according to the 
discipline (a kind of algebra) imposed by each package. 

In short, a package can serve as the sole supervisor over the creation and use 
of objects of a given type. In this way, the user is assured that all instances of a 
given type will always be properly manipulated; that is, that the integrity of 
each object's "internals" will always be properly maintained, without requiring 
that the user be concerned with such details, which is the responsibility of the 
package itself. In this style of programming the user may focus entirely on a 
data object as a whole or on just those parts of direct concern, or both, when 
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invoking a particular (public) operation of the package. Ada allows the pro
grammer to define an unlimited variety of types of data objects and to delegate 
the creation and use of data object instances to their respective (and distinct) 
type managers. 

Actually, we have only hinted at a part of the "disciplinary advantage" of an 
Ada package. More generally, a package may include in its specification part 
not only a set of valid operations on some (one or more instances of) data 
objects, but may also contain declarations that define such data objects (type 
definitions.) 

Although the Ada package and its use offers an almost compelling reason to 
use Ada for subsystems and applications programming, there are still other rea
sons for choosing Ada. In particular, there is the attraction for decomposing a 
program into groups of intercommunicating tasks (processes), an idea elabo
rated first in Chapter 2 and expanded in Chapters 3 and 5. Ada tasks may be 
created (and terminated) either statically or dynamically. They may be used to 
gain abstract or actual concurr~ncy by arranging tasks to execute in pipeline or 
parallel fashion. Tasks may be used to synchronize actions of other tasks and to 
distribute work to other tasks. Modelling a system as a collection of Ada tasks 
can lead to greater clarity as well as to faster execution (through concurrency 
achieved when several processors are available to execute the tasks.) 

1.4.2. Ada and Object-Based Programmi:ng 

The Ada language encourages object-based programming and for that reason 
was selected as the principal programming language for the i432. Most signifi
cantly, programs written in Ada for the i432 may be viewed as compatible 
extensions of the operating system and the supporting hardware. There is, in 
fact, no difference between "system programs" and "user programs" as there 
is in conventional systems. For this reason, we shall begin our detailed study of 
the i432 System in the next chapter, not with a closer look at the hardware 
organization or at the operating system, but with a closer look at Ada itself. 

To be sure, users are not prohibited from programming in other high-order 
languages as widely different as Cobol and LISP. Indeed, it is expected that 
those adopting the i432, be they system manufacturers, independent software 
vendors, or universities, will develop language processing systems to suit their 
needs, as is done with other general purpose systems. 

To close out this introduction, we remark that Ada relates closely to the i432 
architecture: 

• Understanding the semantics of Ada programs will allow us to more easily 
understand some of the most important aspects and innovations of the i432 
object-based architecture. 

• Once we understand the structure and interactions among the system-defined 
i432 objects we will gain a better grasp of Ada semantics. From this we can 
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learn why the i432 is well-matched as a host for the execution of Ada 
programs. 

Our introduction has been a long one-and we are aware that the density 
may be too much for full "digestion" on fIrst reading. Our readers are invited 
to reread the germane parts as they proceed with the study of the following 
chapters. 

1.5. Remainder of This Book 

Chapters 2 and 3 form a primer for readers who are not fully acquainted with 
Ada or with object-based programming, or both. Our conviction is that, to 
appreciate the architecture of the i432 System, a reader should fIrst know Ada 
or a similar language and the way it is intended to be used. Chapter 2 focuses on 
the use of packages as a basis for the design of a simple Investment Manage
ment System, a non-trivial Ada program. This example, which is developed and 
enhanced throughout the book, also contains several Ada tasks. The structure 
and use of Ada tasks is discussed at length in Chapter 3. Several alternative 
task structures for the Investment Management System are discussed, some in 
considerable detail. The nature of intertask communication, begun in this 
chapter is revisited in Chapter 5 at greater length. 

The architecture study itself is begun in Chapter 4 where a number of topics 
related to object structures and object addressing are treated. Chapter 5 intro
duces the hardware and system software support for interprocess communica
tion. Here the i432 Port Objects and port operations, SEND, RECEIVE, etc., 
are introd\Jced and illustrated. Chapter 6 revisits the architectural and Ada 
language support for object structures, emphasizing type management and 
access control. Many features of the supporting operating system, known as 
iMAX, especially several of its important "user-interfaces", are introduced 
beginning with Chapter 5. 

The importance of input-output peripheral subsystems, and their relationship 
with the central object-based architecture of the i432 system, is recognized by 
treating this topic separately in Chapter 7. This chapter introduces the reader to 
the architecture of the i432 Interface Processor and its use as a key component 
in the Peripheral Subsystem Interface for the Intel 432 System. A message
based model for Input/Output, using this interface is also introduced along with 
a discussion of abstractions for I/O device interfaces, both asynchronous and 
synchronous. 

The topics of process management, memory management, and object fIling, 
which may be of primary interest to system developers and architects, are 
treated in Chapters 8, 9, and 10. Each chapter describes the iMAX provided 
implementations of these services and the user interfaces to these facilities. In 
the case of process management an iMAX-provided "template" is described 
whose use enables system programmers to implement their own process 
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managers as needed. Chapter 9 describes the extensive memory management 
facilities of iMAX and the supporting hardware. These include facilities to sup
port the stack and heap memory resources required, for example, by executing 
Ada programs. In addition, memory management supports an on-the-fly gar
bage collector, dynamic memory compaction, and, where configured, a virtual 
memory management subsystem. Chapter 10, as already noted, provides a com
plete introduction to object filing as it is currently planned. 

Another feature of this book is a set of three sets of appendixes. 

• The first set (A and B) provided lists of i432-based literature references. 
These lists are in addition to the more general bibliography for the literature 
cited in the text proper. 

• The second set of appendixes (C, D, E, and F and G) contains a group of 
compiled Ada program units comprising versions of the Investment Manage
ment System developed in Chapters 2 and 3. Readers are urged to study as 
much of these appendixes as needed in the course of learning Ada through the 
vehicle of the Investment Management System. 

• The third set of appendixes (H, I, J, K, L, and M) comprise the user inter
faces to iMAX that are described in Chapters 5 through 10, respectively. 
Readers are especially urged to read these appendixes as a means of confirm
ing (and expanding) their understanding of the functionality, scope, and flex
ibility of iMAX. 





PROGRAM STRUCTURES AND 
SEMANTICS IN ADA 

2.1. Ada-A Top-Down View 

When introducing a person to the Ada programming language, one may choose 
among several views. Frequently, one presents a programming language in a 
"bottom-up" manner by introducing a series of language constructs of increas
ing structure and/or semantic richness. Thus, for example, a bottom-up view of 
Ada might introduce Ada's alphabet, followed by its identifiers, constants, vari
ables, declarations, statements, program units, and finally its programs. This 
approach is typically followed by authors of language reference manuals. 
Indeed, a reference manual for Ada, such as [2] is a useful companion piece for 
this chapter. 

Our approach to introducing Ada uses a "top-down" view. At the top-most 
level, we examine entire Ada programs, regarding them in the general case as 
networks of interrelated components called modules, or program units. Every 
module has two distinct parts: the module's interface with the remainder of the 
network (its specification), and the module's internal structure and implementa
tion code (its body). Although a module's internal structure may itself exhibit a 
network substructure, we initially ignore this possibility. 

This top-down approach is compatible with the view that program .1ng is an 
explicit intellectual process of system design. A system is normally defined in 
engineering parlance as an ensemble of interacting components (possibly 
operating concurrently), each of which may have state information bound to it. 
These interacting components constitute a collection of evolving information 
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structures, whose lifetimes span the life of the associated module-which may 
be, and often is, the lifetime of the system itself. 

Ada, more than any other widely available programming language, and in 
common with several experimental languages [3] [9] [36] [42] [45] [62] [63] 
encourages the programmer to design and build programs as ensembles of 
interacting, state-bearing, program units. 

An Ada program may be composed of three kinds of program units that can 
carry (have bound to them) evolving information structures: 

• a main subprogram-which may be viewed as the' 'starter task" , 

• packages, 

• tasks. 

An Ada program begins execution with a single thread of control associated 
with the main subprogram (starter task.) When a subprogram within a package 
is called, the thread of control "moves over" into the code belonging to the 
package. Eventually, the thread of control returns to the starter task, much as 
the thread of control moves about from the main part of a Fortran program (or 
from the outermost block of a Pascal program) to and from various called 
subprograms. 

At certain program points (for example, during the elaboration of task 
declarations), new threads of control may be spawned. This spawning process 
may proceed, recursively, to form a task tree. If the program as a whole ever 
terminates, it does so only after all spawned tasks have terminated and in 
reverse order of their activation. 

Any task may call a subprogram within another package, but no new threads 
of control are created as a direct result of such an operation. By a "package call" 
we mean a call on a subprogram, i.e., operation, belonging to the public part of 
the package. In the case of a package call, the thread of control may be thought 
of as being transferred from the code of the caller to the code of the called pack
age, with the reverse effect occurring upon return from the package call. 

By contrast, a task "calls another task", i.e., issues it an entry call, by send
ing it a message. (The message is implicit in the syntax of the entry call state
ment and in the matching entry declaration of the called task.) As a result of an 
inter-task call, the caller's thread of control is merely suspended until the called 
task acts on the message sent to it (completes the acceptance of the caller's mes
sage.) If all goes well, the caller is notified that the message has been accepted. 
When this occurs, the caller resumes execution; that is, the caller's thread of 
control resumes its execution and the called task proceeds along its separate 
path of execution. 

This protocol, including the temporary suspension of the caller, is referred to 
as a rendezvous. The rendezvous is the only means provided in the language for 
explicit communication among tasks; use of the rendezvous guarantees that a 
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structuring discipline, in the spirit of "structured programming", is applied 
across tasks. 

[The i432 architecture offers the programmer a less structured (but more highly paral
lel) mechanism for achieving communication between tasks. For example, there are 
means for explicitly sending messages to one or more tasks without waiting for a reply 
from any task. To use these i432 facilities, a programmer calls a special package (to be 
described in Chapter 5). Use of these message communications facilities will make the 
program more difficult to move to other computer systems. It should be noted, however, 
that the i432 operating system itself makes full use of these lower-level communication 
operations to provide the utility packages used by the Ada compiler to implement task 
facilities. ] 

When a rendezvous is completed, the calling task may once again execute, 
possibly concurrently with the called task. In a system like the i432, actual con
currency of calling task and called task is achieved when each task is bound to a 
distinct (available) processor. In principle, a task tree consisting of m spawned 
and currently active tasks, including the starter task, could execute with m-fold 
concurrency if m processors were available. 

If one believes the definition of a system-an ensemble of components (pos
sibly operating in parallel), each of which may have state information bound to 
it-then permitting Ada programs to exhibit rich package and task structures is 
a significant advance in programming language design. Consider the contrasting 
situation in Fortran or Pascal. Much of the state information of Fortran or Pascal 
programs (for example, scalar variables, arrays, records, etc.) is bound to the 
program as a whole, rather than to any of its subprogram parts. Thus, with the 
exception of data declared in the outermost block of a Pascal program or in the 
COMMON blocks and main unit of a Fortran program, all declared information 
has a lifetime that is limited to a single activation of a block or subprogram. (In 
Fortran 77 this constraint has been relaxed somewhat with the introduction of 
the SA VB statement [41].) 

A Fortran or Pascal programmer may have difficulty representing a real sys
tem to be modelled, or the programmer may have difficulty explaining to those 
familiar with the real-world model how the program works. This is primarily 
because the lack of multiple state spaces in Fortran and Pascal inhibits preserv
ing the correspondence between the system to be represented and the program 
that models the system. Worse still, if some components in the real system 
being modelled are concurrently active, then the correspondence between the 
Fortran or Pascal program and the system being modelled becomes even 
weaker. 

The less the behavior of a system corresponds to the behavior of a program 
that models the system, the more difficult is the chore of verifying this corre
spondence. Such programs are also more difficult to maintain (modify) as 
changes are made to the specification of the model (changes to the originating 
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problem or requirements statement). Because life cycle costs of programs may 
be dominated by their maintenance costs, especially for the case of large pro
grams, the importance of preserving a clear structural correspondence between 
the program and the system being represented should impel us toward a 
language like Ada. 

[When using programming languages like Fortran or Pascal the effort is concentrated 
in preserving the logical and thereby the functional correspondence between programs 
and the systems they represent. While this type of correspondence is often sufficient, 
especially for small programs, the difficulties induced when programs are "scaled up" 
to realistic size have, in the past, been largely underestimated. Purely functional 
languages are also being considered as replacements for Fortran and Pascal [4, 11], but 
they are as yet untested in real applications involving sizeable data bases or in represent
ing models whose components have complex interactions. Moreover, architectures that 
are especially suitable for such languages are not yet well understood.] 

2.2. Ada Packages 

The Ada package is the construct that the programmer can use to define data 
abstractions; it is regarded by many experts as the most significant contribution 
Ada makes toward reaching its software goals of lower costs with higher main
tainability, reliability, and verifiability. A package provides us with the means 
to associate a clear set of specifications for the use of a data structure (or of a 
class of such data structures) with a particular set of (hidden) implementation 
details. 

Before showing and discussing concrete examples, we identify two important 
kinds of Ada packages. We refer to them as transformer packages and owner 
packages. The transformer packages can be used to implement pure abstract 
data types, and the owner packages can be used to implement more general 
kinds of type managers . 

• An operation of a transformer (or non-owner) package can update only the 
data that is supplied to it through formal parameters(s); the package contains 
no internal state information bound to it. (That is, there is no data internal to 
the package that can be updated.) Since a transformer package "owns" no 
state information, each operation of the package must return its result to its 
caller. (A transformer package cannot "remember" the effects of preceding 
calls to it.) An example of a transformer package would be one that creates 
complex numbers, one that performs operations on complex numbers, or one 
that does both. 

• An owner package is "history-sensitive" in that it can "remember" the 
effects of preceding calls to it. The owner package "owns" some state infor
mation; that is, the package contains internal data that can be updated during 
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the course of the package's lifetime. Thus, an operation of the package may 
be supplied data on which to operate through its formal parameter( s). In so 
doing, it may update its state information. An operation of an owner package 
need not return a result to its caller. An example of an owner package is one 
that maintains a central table of active files for a compiler. 

An Ada package may be used to: 

1. specify a set of valid operations on one or more instances of a data type, 

2. provide a body consisting of the operations specified in part 1, 

3. hide all of the objects, specifications, and implementation details provided 
in part 2 from the user of the operations specified in part 1. 

Thus, for each owner or transformer form of package, there is a public and a 
private part (also referred to as the visible and invisible parts.) The public part is 
made directly accessible to a user program unit either by: 

• prefixing the program unit with an explicit declaration that names the 
package(s) that are to be made accessible (such a prefix is called a with list), 
or by 

• nesting the package within the user program unit, thereby making the 
package's public part locally accessible (which is done by exploiting Algol
like scope rules). 

The first of these mechanisms is an important innovation of Ada-like 
languages; its use is strongly encouraged. The second of these mechanisms 
should be discouraged; its use leads to programs that are difficult to read and 
debug and is a "holdover" from earlier block-structured languages like 
Algol 60. 

In either case, the package's private part is not directly accessible to the user 
program unit. This information becomes accessible only indirectly, by perform
ing operations that are specified in the interface information of the public part. 

Thus, if a package named Shoe_Mgr has an operation OPI specified, for 
example, as 

procedure OPl(x: in string, y:out string); 

then this operation may be invoked from the user program unit by 

Shoe_Mgr. OPl ("baby shoes", new_shoe_style); 

The user-visible specification of OPI (plus additional commentary about 
OPl) describes the functional interface to OP1, i.e., describes what operation 
OPI performs on its input arguments. However, the details of the implementa
tion of OPI are hidden from the user in the private part of the package, i.e., the 
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methods that describe how OPt does its chore are hidden. Variable data within 
the package may also be accessible only indirectly. In particular, if Shoe_Mgr 
is an owner package, there may be in its private part a data base that is updated 
as a result of invoking OPt. Access to this data base is only indirect, via OP!, 
or via some other publicly specified operation of Shoe_Mgr. 

Because the package structure ensures a clean separation between the public 
(specification) part and the private part, the private part of a package can be 
compiled separately from its public part. [Some non-critical details are deliber
ately glossed over in this initial exposition.] This means that a different private 
part can be substituted-as better or more correct implementation ideas 
evolve-without affecting the remainder of the program. 

In the next section we provide more motivation and more details concerning 
packages by introducing the skeletal structure for one realistic application of 
, 'packaging. " We also motivate the need for a collection of related tasks. 

2.3. An Investment Portfolio Manager 

Here we describe a hypothetical, but not unrealistic, application that illustrates 
the structure and use of a group of related packages. The program developed 
here has direct application in any of several types of organizations that generally 
rely on the management of a data base. 

type of Data Base 

Pension funds 
Individual investment accounts 
Personal investments records 
Investment club portfolio 

Managed by: 

banks or trusts 
brokerage houses 
home-computer programmer 
club officers 

In each of these applications, the identity of the person(s) that manage the 
data base may differ, but from the point of view of program structure all these 
applications fall into the same category. For this example, however, we select 
one specific application class so as to allow use of the terminology specific for 
that class when discussing particulars. We choose investment club portfolios 
and offer in the following paragraph, for those unfamiliar with such clubs, an 
indication of the potentially substantial size of this application. 

BACKGROUND: The National Association of Investment Clubs, NAIC, is an 
affiliation of several thousand clubs-averaging about fifteen members each. 
World-wide, there are thousands more such clubs. [The NAIC is itself a 
member of the the World Federation of Associations of Investment Clubs!] 
Each club usually meets monthly to review its respective stock portfolios, listen 
to reports on new or held stocks, and make buy and sell decisions-usually exe
cuted the next day by the club's broker. Normally a club carries a limited 
number of stocks in its portfolio, since the responsibility for watching held 
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stocks is distributed among the club's membership-typically about one or two 
stocks per member. 

Our example Investment Portfolio Manager program will be austere in its 
early stages. Later, we will introduce modifications that add functionality to the 
program; we will suggest alternative methods for pursuing implementations 
having certain advantages and/or disadvantages. Our initial example illustrates 
a single-user computer program accessible to the secretary-treasurer of such a 
club. This officer makes queries of the portfolio (data base) to prepare the 
monthly report. In addition, she updates the portfolio to reflect buy and sell 
transactions triggered at the monthly meeting, the results of which are reported 
to her by the club's broker. Later, we will consider how other club members 
might be given other types of access to the portfolio. 

2.3.1. Building an Ada Program Model to 
Match a Model of the Investment Club 
Portfolio System 

Our "object-based" program design methodology is a strategy for creating an 
Ada program model whose structure mirrors a model of the real-world system to 
be represented. Components of the program structure are chosen to correspond 
to components of the real-world model. 

In this case, the top-level view of the real world system is simple; it consists 
of two components, the secretary-treasurer (the actor) and the portfolio data 
base which "reacts" to the actor's initialize, query and update requests. In a 
corresponding program model, an individual human actor may be represented 
as a task that interprets the human actor's individual requests and converts them 
into procedure calls to a program unit representing the portfolio data base. A 
portfolio data base may be viewed as a data structure, together with a set of pro
cedures for managing it, including procedures that create or initialize it, query 
it, and update it. A possible program analog for such a view is an Ada owner 
package (Portfolio_Owner.) Our first view of the program structure can be seen 
in Figure 2-1. 

Secy_Treas 
starter task 

PortfoliO_OWner 
package 

Figure 2-1 Top-level program model for the investment club portfolio management 
system. 
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With Figure 2-1 as a starting structure we may then specify the information to 
be kept in the data base and the set of requests that the secretary-treasurer may 
make. Once this set of requirements has been confrrmed, a representation must 
be proposed for the data structures of the data base as object structures in 
storage. 

Given this proposal, it is then possible to gauge the "semantic gap", if any, 
between the requests to be posed by the secretary-treasurer and the more primi
tive object creation, accessing, and updating expressions we think we know 
how to express in the programming language-in this case Ada. If the gap is 
considered too great, it may be necessary or desirable to decompose 
Portfolio_Owner package into a substructure, consisting of several packages. 

For example, within a devised substructure of packages, top-level requests 
may be decomposed by operations in intermediate packages into collections of 
more primitive requests. These are then forwarded to the package whose opera
tions access the data structures directly. Such intermediate transformations 
close the aforementioned semantic gap. (We have, in fact, followed this 
approach in our case study.) 

There are other good reasons for decomposing a program unit that represents 
a data base into a substructure of other program units, even when there is no 
perceived semantic gap between the requests to be made by a user of the data 
base and the operations to be defined over that data base itself. Two principles 
can be applied here. 

1. Data structures should be implemented indirectly through operations (pro
cedures or functions) rather than by direct access to the data structure. 
Directly accessing major data structures is considered poor programming 
practice because it spreads direct, representation-specific references 
throughout the entire program. In large programs, these direct references to 
data structures can make alteration of their representation virtually impossi
ble, since there are usually too many places in the program that must be 
changed to reflect the changes in the data structure. On the other hand, 
indirect reference through packaged operations ensures isolation of 
representation-specific references. Later, if there is a desire to change a data 
structure representation in some manner, this is easily accomplished by 
changing only the operations within the isolated package; no other part of the 
program is normally affected. 

This principle is applicable to our portfolio management program because, 
as we extend the application, we will want to allow a number of program 
units (in addition to that of the Secy _ Treas task) access to the same data 
base. 

2. Only those operations required to manipulate the data structure should be 
made a part of a package that provides indirect access to a major data struc
ture. In our case study, many, but not all, of the operations in the 
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Portfolio_Owner package would involve access to a portfolio. For example, 
a user may wish to know the current price of some listed stock, whether or 
not held in the club's portfolio. 

Still other packages may be included in a substructure, either to take advan
tage of already existing library-level program units that are already available 
and that shouldn't or needn't be duplicated, or as a means for "segmenting" the 
top-level Portfolio_Owner package into smaller and more manageable com
ponents. Often, in the process of segmenting a larger module, it may be 
discovered that two or more segments have some part in common, which may 
then be "factored out" as still another segment of the substructure. 

Naturally, this segmenting process may be overdone. Ideally, we would like 
to see every element in the substructure reflect a particular part of the real world 
model. In practice, this ideal can only be approximated. (For example, the pro
grammer is likely to encounter the need to include utility packages such as for 
input-output device operations. Such packages may be only weakly related to 
components of the system being modelled.) 

The graph in Figure 2-2 shows a substructuring that arises as a result of 
decomposing the Portfolio_Owner package of Figure 2-1 in the manner we 
have just outlined. We explain this graph by explaining its individual 
components. 

• As mentioned, Secy _ Treas is the starter task for this program. Its own inter
nal structure, although not shown here, may be assumed to resemble that of a 
simple command interpreter, or "shell", that responds to repeated input 
commands from the human user-the club's secretary-treasurer. Each com
mand is translated into a calIon the Club_Portfolio package, for execution of 
one of its public operations . 

• Club_Portfolio serves as an interface between its principal user (Secy_ Treas) 
and the portfolio itself. It receives and interprets requests from the user and 
decomposes them into collections of more primitive requests (operations) that 
are performed by the Portfolio_Mgr package. 
Club_Portfolio is an owner package. It owns the portfolio instance created 
with the aid of the Portfolio_Mgr package and defines a set of user-oriented 
interactive query and update operations over the portfolio. (Club_Portfolio 
also includes various other operations that do not involve access to the club's 
portfolio, but do access other library packages.) 

• Portfolio_Mgr defines a data structure of type portfolio and a set of opera
tions on instances of that type. Portfolio_Mgr is a transformer kind of pack
age. Its operations include create (to create a portfolio), and many useful 
query and update operations, move elementary in nature than those in the 
Club_Portfolio package. These operations form a minimal set necessary to 
provide access to a portfolio data structure. Portfolio_Mgr is used to isolate 
within one package all accesses to the portfolio that must be aware of the 
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Purchase_Queue_ 
Mgr 

Generic 
Queue_Mgr 

stock_Types_And_ 
Constants 

Figure 2-2 Multi-package structure for single-user Investment Portfolio Manager 
Program. 

representation of the portfolio. Outside of the Portfolio_Mgr package, the 
representation of a portfolio is unknown and not required to be known. 

• Stock_Mkt_Info is a library package updated at the close of each market day 
by a national wire service. To make this scenario more interesting, we 
assume that this package is accessible to any club affiliated with the NAIC. 
Initially, we may assume this library package is received daily as a tape or 
disc and then mounted on an 110 device of the system prior to execution of 
the portfolio application. In Chapter 7, we consider how the system can be 
revised to model the situation where data for this package is received by wire 
in real time. 
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• Text_IO is a pre-defined Ada library package containing various input-output 
operations accessible to the user. Text_IO is accessed by Club_Portfolio and 
also (most likely) by Secy_ Treas. 

• The three other packages shown in the figure are understood in terms of the 
details of the Portfolio_Mgr package. The Portfolio_Mgr package, 
described in greater detail below, maintains information on individual stocks 
currently held by the club. This information is stored in queues, one queue 
for each different stock held. When the club decides to sell some of its hold
ings in a given stock, it may want to sell its longest held shares first, in order 
to ensure a possible long term capital gains tax benefit. Purchase records for 
these shares are found at the front of the queue, assuming new purchase 
records are always inserted at the end of the queue. 

• Purchase_Queue_Mgr. Individual queue data structures are created at the 
request of the Portfolio_Mgr when attempting to record the purchase of a 
stock not currently held in the portfolio. Portfolio_Mgr delegates to a sub
sidiary package, Purchase_ Queue_Mgr, the responsibility for perlorming 
the operations of create, enqueue, and dequeue for instances of such 
queues. 

• Queue_Mgr. We further assume that Purchase_Queue_Mgr is itself an 
instance of a paradigm (or, in Ada parlance, a generic package) named 
Queue_Mgr. Later, we give a more detailed explanation of Queue_Mgr 
and how it is used. 

• Stock_ Types_And_Constants. In Ada, a package may consist entirely of 
a collection of type definitions, constant definitions, variable declarations, 
or any consistent combination of these. We place in Stock_ 
Types_And_Constants all those data type definitions, constants, and vari
ables that are common (and hence that should be commonly accessible) to 
the several packages which are dependent on these definitions. 

In Figure 2-2, directed arcs indicate the general relationship "references". 
The graph 

means that A "references" B. Depending on what is being referenced, this 
"references" relationship can mean several things. If the reference in B is a 
procedure, then A references B in order to call a procedure of B. If the 
reference in B is a constant or type, then A references B in order to obtain the 
constant or type. If the reference in B is a variable, then A references B in order 
to obtain the current value of the variable. 

The implication of the "references" relation has an impact on order of com
pilation. Ada requires that the specification of a program unit B must be com-
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piled before compilation can occur for any program unit that "references" B. 
Thus, in the diagram above, the specification of B must be compiled before 
either part (specification or body) of A that "references" B. [Ada programs are 
compiled from their individual program units using a set of dependency rela
tionships. These are usually accumulated in a "program library" as the com
piler works its way through the units of the program. We will not discuss the 
technical aspects of "order of compilation in Ada"; for such details, readers are 
referred to Chapter 10 of the Ada reference manual [2].] 

2.3.2. Portfolio Details 

For our case study, we assume that a portfolio data structure contains informa
tion ordered at three conceptual levels: 

• information pertaining to the aggregate of all held stocks, such as: 

• the portfolio name 

• number of different stocks held 

• a stock summary for each held stock 

• information in a stock summary provides: 

• corporate name 

• stock exchange where listed and the corporation's acronym on that 
exchange 

• total number of shares 

• average cost per share 

• a purchase history 

• information in a purchase history for a held stock includes, for each purchase 
whose shares have not all been sold, the following items: 

• date purchased 

• price per share 

• commission paid on the purchase 

• no. of shares remaining from this purchase 

With this informal description of the portfolio, we may choose specific 
representations for the portfolio as a whole and for its components. These choices 
can be expressed as Ada type declarations. We are now almost ready to display 
and discuss most of the Ada code for this application, but we again request the 
reader's patience, in order to consider two very interesting extensions. 

These two extensions are described in the following two subsections, after which 
we present and discuss the Ada code for all three versions of this application. 
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2.3.3. Allowing All Club Members to Query 
Their Club's Portfolio-Many Single Users 

"Ordinary" members of the investment club should also have access to the 
club's portfolio, provided they are restricted to read-only queries. The model in 
Figure 2-1 must be amplified, as shown in Figure 2-3, so that there is now an 
actor (or task) for each club member. We want Portfolio_Owner to accept and 
respond properly to query requests transmitted by all tasks, but to reject create 
and update requests transmitted by tasks denoted as "Member" tasks. How 
should the program structure in Figure 2-2 be modified to provide for such mul
tiple access? 

Portfolio_OWner 
package 

Figure 2-3 Top-level program model for Investment Portfolio Manager program: Second 
view. 

First, we consider a simple solution which assumes that the secretary
treasurer's use of the portfolio will never be concurrent with use by other 
members. Figure 2-4 shows how we can achieve our objective. Two separate 
program structures share the Club_Portfolio package and its subsidiary package 
structure. The secretary-treasurer program structure is unaltered and an addi
tional program structure, representing any other club member, is now provided. 

[We make the very strong assumption that no Member task may execute concurrently 
with the Secy _ Treas task -but we do not indicate how this constraint is "policed". We 
simply presume that this mutual exclusion is achieved by agreement outside the realm of 
the program. The agreement needn't involve the club members themselves. Proper use of 
the Object Filing Subsystem, described in Chapter 10, provides one way to provide for 
the requisite mutual exclusion.] 

A Member starter task is able to access Club_Portfolio only indirectly, via a 
new Member_Ops package (which is accessible to each such Member task.) 
The Member_ Ops package provides access only to the query operations within 
Club_Portfolio. In fact, Member_Ops is composed only of operations that have 
exactly the same name as the accessible query operations in Club_Portfolio. 
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Secy_Treas 
starter task 

Portfolio....Mgr 

Generic 
Queue....Mgr 

Figure 2-4 Giving a Member task query access to the Investment Portfolio. 

The operations in Member_ Ops have specifications that are identical with the 
like-named operations in Club_Portfolio. As we will see when we examine the 
code, the body parts of the operations in the body part of Member_Ops are 
merely "identity transformations"; that is, they merely call the corresponding 
operations in Club_Portfolio. Restricting the Member_Ops package to the 
query operations of Club_portfolio in this way ensures that a Member starter 
task cannot update the club's portfolio. 

Every unit of an Ada program subject to separate compilation may be pre
fixed by a with list. This list names just those (public parts of) packages that the 
program unit can access directly. Thus, the with list that prefixes the Member 
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starter task will include Member_Ops but not Club_Portfolio, and the with list 
that prefixes Member_Ops contains Club_Portfolio. Inclusion of proper pack
age names in with lists in this manner provides the compiler with sufficient 
information to control access to the appropriate portfolio operations. 

The intent here is that the public operations of Member_ Ops be a proper sub
set of the public operations of Club_Portfolio. This subset constitutes what the 
i432 architects call a "refinement" of the larger set. By utilizing the refinement 
facility of the i432, Member_Ops can be defined as a physical subset of 
Club_Portfolio. Special hardware-recognized descriptors can be used to control 
access to such subsets in such a way that information outside the subset is inac
cessible to any program that has access to the subset. Refinements provide the 
i432 user with the advantage of controlled information sharing without the usual 
disadvantage of providing too much access. We discuss refinement further in 
Chapter 4. 

2.3.4. Multi-User Solutions to the Investment 
Portfolio Application 

In this subsection, we attempt to relax the constraint that the club's secretary
treasurer not be trying to update the portfolio while other club members are 
querying it. To do this, we need to move from the case of two or more indepen
dent non-communicating tasks (as in 2.3.3) to a set of mutually dependent tasks. 
This can be done by taking advantage of the intertask communication features 
of Ada. 

Our solution involves more control components. We now want a tree of tasks 
(not a forest of tasks). One such structure is sketched in Figure 2-5. There is 
only one starter task, which we will refer to as the Task_Master. This task 
represents the top level (root node) of the tree of tasks. The counterpart of 
Task_Master in the real world model is an agent delegated to admit club 
members to a room containing computer terminals, or, more likely, is an 
operating system that supervises the "login rituaL" Task_Master in the pro
gram model has responsibility for spawning tasks for club members of a particu
lar "title": president, vice-president, secy-treas, or ordinary member. (An 
interesting variant is discussed in Chapter 3.) 

We now assume there is also a club membership roster (name, title, etc.), 
established and maintained as an auxiliary data base. Using this roster, we can 
ensure that a member's access to the portfolio is a function of the member's 
title. The Task_Master can be coded to spawn one task for each club member 
when the system is initialized, or to wait to spawn a Member task when the 
member' 'logs in" . 

Since there are now two data bases, several club members may wish to access 
them without being aware of potential access conflicts and without worrying 
about preventing unauthorized accesses. The necessary supervision to prevent 
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Portfolio_ 
Server 

Portfolio_Mgr 

Pur chase_Queue_ 
Mgr 

GenerIC 
Queue_Mgr 

Membership_ 
Roster 

(owner) 

Figure 2-5 Case c. Multitasking structure' for Multi-user Investment Club Application 
Program. 

conflict can be delegated to "third parties". For example the club might be 
expected to designate a "keeper" for each of its data bases, giving each keeper 
the responsibility for verifying correct and authorized use of one data base. Our 
program model can easily reflect this added structure. 
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In the solution of Figure 2-5, the Task_Master spawns two server tasks: 
Portfolio_Server and Roster_Server. Portfolio_Server is given sole access to 
the Club_Portfolio package. Roster_Server is given sole access to the 
Membership_Roster package. Individual Member tasks may make concurrent 
requests to Portfolio_Server, but it will honor these requests only one at a time, 
thus resolving potential conflicts over use of the portfolio. 

Portfolio_Server requests service from Roster_Server to confirm the access 
privileges of the Member task that requests a particular portfolio service. 
(Roster_Server acts on these requests one at a time.) Access privileges of the 
Member task are a function of .a member's "title", as checked by 
Roster_Server. This checking strategy may be carried further. For example, the 
club's secretary may be the only member accorded access to operations within 
Roster_Server that involve updating the roster. (We do not outline this embel
lishment here.) 

Given this subsystem structure, we can elaborate the permissions required for 
various types of portfolio service beyond those we considered in the "many 
single-users" case of2.3.3. For example, we can consider incorporating the fol
lowing controls: 

Type of Request 
query only 
update portfolio 
create portfolio 
delete portfolio 

Requestor( s) Authorized to Receive Service 
any club member 
secretary-treasure only 
president and secy-treas acting together 
president, vice-president and secy-treas, 

all three acting together 

In the remainder of this chapter and the next one, we display and discuss 
some of the highlights of the Ada code for the three versions of this system. We 
relegate complete source listings to Appendixes C, D, and E. 

2.4. Highlights of the Ada Code-Figure 2-2 Case 

The graph structure of Figure 2-2 serves as a useful guide to the code excerpts 
we present here and to the code given in Appendixes C and D. We assume the 
reader is still unfamiliar with Ada and therefore we scan the code bottom-up, 
that is, we scan the modules in the order a compiler would see them. Accord
ingly, Figure 2-6 displays code for the Stock_ Types_And_ Constants package. 

The least obvious data types and subtypes in this package are 

• The type "dollars" is a non-negative fixed-point type, giving values to the 
nearest penny. [Note that in the compiled version given in Appendix C, type 
dollars is defined as integer.] 

• The record type "stock_name_info" provides an identification of an indi
vidually held stock by its two components: an "external name" that we pre-
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This package has no body. 

subtype lon~string is string(30); 

type dollars is delta 0.01 range 0.00 .. 1_000_000.00; 

type stock_code_pair is 
record 

code: 
exch: 

end record; 

string (1. .4) ; 
string (1. .4) ; 

type stock_name_info is 

Maximum is a million dollars here. 
-- Precision is to nearest penny. 

Abbreviation for listed stock. 
Abbreviation for stock exchange. 

record 
print_name: 
s tock_ code: 

end record; 

lon~string; 
stock_code_pair; 

type date is 
record 

day: integer range 1 .. 31; 
month: integer range 1 .. 12; 
year: integer range 1900 .. 4000; 

end record; 

type buy_sell_type is (buy, sell); 

type buy_sell_record(buy_sell: buy_sell_type) is 
record 

stock_name: 
buy_date: 
num_shares: 
per _share_pr ice: 
commission: 
case buy_sell is 
when sell => 

of_buy_date: 
when 0 thers => 
null; 

end case; 
end record; 

stock_name_ inf 0; 
date; 
integer 
dollars 
dollars 

date; 

Record discriminant. 
Extra data field. 

No extra field. 

subtype purchase_record is buy_sell_record(buy) ; 

subtype sale_record is buy_sell_record(sell); 
end stock_Types_And_Constants; 

Figure 2-6 Code for the Stock_ Types_And_ Constants package. 
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viously referred to as the corporate name and an "internal name" that we 
previously referred to as the stock exchange/acronym. The corporate name is 
of type "long_string", representing a string of up to thirty characters. The 
stock exchange/acronym is represented by the type "stock_code_pair". 

• The type "buy_sell_type" has two values in its universe: "buy" and 
"sell". This type is used to facilitate the definitions of the last two types in 
this package. 

• The record type "buy _sell_record" is used to define the structure of pur
chase records embedded as components of a purchase history in the portfolio. 
A buy _sell_record instance is also used for defining input arguments to 
operations that update the portfolio. As a fine point concerning Ada, notice 
that the buy_sell_record comes in two "flavors": buy and sell. The sell vari
ant includes an extra field, which specifies the buy date of shares to be sold. 
When one declares an instance of a "buy _sell_record" type, one must sup
ply as the particular discriminant value either' 'buy" or "sell" . 

• In order to avoid having to supply a discriminant value each time one 
declares an instance of a buy_selLrecord to be allocated, the subtypes, 
purchase_record and sale_record, are also defined in this package. Subtypes 
are one of several useful data typing constructs in Ada. The subtype declara
tions are used here merely as a convenient renaming mechanism. [See Chap
ter 3 of the Ada Reference manual for more details.] 

Figure 2-7 provides the skeleton structure of the generic Queue _Mgr pack
age. The complete version of the Queue_Mgr package is given in Appendix C. 
Parts (b) and (c) of Figure 2-7 constitute the usual specification and body parts 
of a package. The package is made into a generic package when it is prefixed 
by a generic clause, as seen in part (a). The public part of the specification part 
(b) defines a data type "queue" holding zero or more items, four queue opera
tions, and an exception that designates queue underflow (attempt to remove an 
item from an empty queue.) An instance of type queue is created by a calion 
the Create operation. The Is_empty operation determines whether or not a 
queue is empty. The Add and Remove operations enqueue and dequeue ele
ments from the queue, respectively. 

The detailed representation of a type queue instance is declared in the private 
section of the specification part since this representation is of no concern to 
users of the Queue_Mgr package. The body part of the Queue_Mgr package 
contains the implementation details of the visible Create, Add, Remove, and 
Is_empty operations. We look at these details later. 

What makes this package interesting is that nowhere in part (b) and (c) do we 
commit to what is meant by "item". The meaning of this identifier has been 
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generic 
type item is private; 

generic Queue_Mgr package 
Item is a parameter. 

(a) Generic clause. 

package Queue_Mgr is -- This package is a transformer. 

Declaration for the private type queue goes here. 

Specifications go here for: 
functions named: Create and Is_empty, for 
procedures named: Add and Remove, and for the 
exception named: underflow. 

private 

-- Type declarations that define the queue structure go here. 
A queue is a one-way linked list of items with a defined 

-- head and tail. 
-- structure of a queue instance is provided here: 

-- end of specification part 

(b) Specification part 

package body Queue_Mgr is 

Specification and body parts of: 
functions named: Create and Is_empty and 
procedures named: Add and Remove go here. 

There are no local procedures needed for this package. 
If there were any, their specification and body parts would go here. 

There are no initialization steps needed when this package is 
instantiated. If such steps were needed, they would go here, 
preceded by begin. 

end Queue_Mgr; 

(c) Body part. 

Figure 2-7 Skeleton structure for generic Queue_Mgr package. 

factored out of the package. Use of the generic clause makes the identifier item 
a generic parameter of the package. 

When we wish to create a particular instance of Queue_Mgr, we must supply 
a matching argument for this parameter. One can see how this is done in Fig
ure 2-8, which shows the Purchase_Queue_Mgr package as an instantiation of 
the generic Queue_Mgr package. 

The reader should notice the with list that prefixes the package instantiation 
of Figure 2-8. A with list directs the compiler to provide access to the objects 
declared in the listed packages. 
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--------Purchase_Queue_Mgr---------
with Queue_Mgr, stock_TYPes_And_Constants; 

package Purchase_Queue_Mgr is new Queue_Mgr( 
item => stock_TYPes_And_Constants.purchase_recordl; 

Instantiation of generic Queue_Mgr package to manage purchase queues 
formed in portfolio instances by Portfolio_Mgr. 

Agure 2-8 Purchase_ Queue_Mgr package as an instantiation of Queue_Mgr with item 
bound to purchase_record type. 

2.4.1. A Multiplicity of Queue_Mgr 
Instantiations 

The full potential of a generic unit, such as the Queue_Mgr package, is realized 
when Queue_Mgr is instantiated more than once in the same program with dif
ferent arguments to match the generic parameter, item. We instantiate 
Queue_Mgr only once in the example being discussed here, since we only need 
to manage purchase records for common stocks. 

A more complete portfolio, however, might also hold purchase records for 
bonds, for Treasury bills, for Puts and Calls, for commodity options, etc. For 
each of these forms of purchase, a distinct record structure might be required. In 
such a case our application would include a number of Queue_Mgr instantia
tions. Thus, for the price of implementing a single "template" package, we 
obtain several useful packages. 

2.4.2. Details of the Queue_Mgr Package 

We are now ready to examine the full details of the Queue_Mgr package. Fig
ure 2-9 shows the specification part of Queue_Mgr. (This is a fleshed-out ver
sion of Figure 2-7 (b).) 

In Figure 2-9, we see the specification for the parameter parts of the three 
operations Add, Remove, and Is_empty. In Ada, a (formal) parameter is bound 
to its argument (actual parameter) in one of three modes: 

• as an input only parameter, in, 

• as an output only parameter, out, 

• as an input-output parameter, in out. 

An input only parameter may be specified with an initial value. (See, for exam
ple, the parameter to_front in the Add operation shown in Figure 2-9.) 
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package Queue_Mgr is 
type queue is private; 
null_queue: constant queue; 

function create return queue; 
Function: 

This package is a transformer. 

Example of a "deferred constant". 

Returns a reference to an empty queue instance. 

procedure Add( 
E: in item; 
Q: in queue; 
to_front: in boolean := false); -- Optional third parameter. 
Function: 

Adds the input item E to the logical "tail" of the queue 
structure referred to by Q, unless to_front is given 
a true input argument. 

procedure Remove( 
U: out item; 
Q: in queue); 
Function 

Removes an item U from the logical "front" of queue structure 
referred to by Q. U is an output parameter. 

function Is_empty( 
Q: in queue) 

return boolean; 
Function: 

Returns false value for instance of non-empty queue. 

underflow: exception; Raised if Remove is passed an 
empty queue. Propagated to caller. 

private 
type queue_element; -- Forward reference. 

type queue_element_ptr is access queue_element; 

type queue_element is 
record 

info: item; 
next: queue_element_ptr; 

end record; 

type queue_rep is 
record 

head: queue_element_ptr; 
tail: queue_element_ptr; 

end record; 

type queue is access queue_rep; 
nUll_queue: constant queue := null; 

end Queue_Mgr; 

Type item is a parameter. 
Link to next queue element. 

Representation of the queue 
structure at the top level. 

Figure 2-9 Specification part of Queue_Mgr package. 
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For each parameter, we designate both its binding mode and its type. Thus, 
in the specification for Remove, the parameter Q is specified as: 

Q: in queue 

The most common form of binding mode is the' 'input only" mode, designated 
by the in reserved word. This binding mode designates that the parameter is 
"read-only", i.e., cannot be stored into. The Ada compiler normally guarantees 
that an argument that is bound to an in parameter of procedure P is not modified 
by P. The default parameter binding mode for Ada is in, but our programs will 
usually show the binding mode explicitly. 

Since Purchase_ Queue_Mgr is a transformer package, a calIon the Remove 
operation to remove an item must designate the queue from which the item is to 
be removed. The parameter Q is a reference to a queue and as such is not itself 
modified when performing the Remove operation; hence the binding mode of Q 
is in. 

The second binding mode is "output only", designated by the out reserved 
word. The Remove operation returns the item that it removes by storing the 
removed item into its parameter U. For this 'reason and since U does not provide 
any input information to the Remove operation, U is designated as an out 
parameter: 

procedure Remove( 
U: out item; 
Q: in queue) ; 

Note that although we illustrate the encoding of Remove as a procedure, it 
should be evident that Remove can also specified and implemented as a func
tion, for example: 

function Remove ( 
Q: in queue) 

return item; 

The third form of binding mode for a parameter is denoted by in out. This 
form is used in cases where the specified argument matching a parameter P is a 
variable V whose value is needed as input for the activation of the called sub
program and where, during the activation, P may be updated (i.e., assigned a 
new value). If updating of P is performed, then upon return from the subpro
gram, V will have the last value assigned to P. (We will see only occasional use 
of the in out binding mode in this book.) 

[The specific rule for determining when to update an actual parameter V that is 
matched to a formal parameter P having an out or in out binding mode, is based on a 
need to assure the potential for execution efficiency. If V is a scalar or access type, then 
updating of V is performed only once, upon return from the call that names V as an argu
ment (a pure "copy-out" mechanism." However, if V is an array, record, or private 
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type, then, depending on the compiler used, each assignment to P can cause immediate 
updating of V ("reference parameter" mechanism).] 

The data type queue is declared private to indicate that users of Queue _Mgr 
are prohibited from operating directly on components of a queue instance. The 
only operations allowed on elements of type queue are the equality (inequality) 
relation and assignment to a variable, including parameter transmission. 

The representation of a queue instance is shown in the private clause follow
ing the visible specifications. Although any human reader of the source code 
can see how a queue instance is represented, the Ada compiler guarantees that 
the details of representation given in the private part of a package are visible 
only within the package. From outside the package, another program unit can 
only know that the type queue exists; it is not possible to determine the 
representation of a queue. 

We see from the private part that an instance of type queue_rep is a record 
consisting of a head and a tail pointer, each pointing to queue elements. In turn, 
a queue element is a record consisting of an infonnation item (info) and a 
pointer to the next queue element (next), the latter of type queue_element_ptr. 
The incomplete declaration, 

type queue_element; 

is known as a "forward reference" and is used to resolve cross-coupling in 
mutually dependent declarations involving access, i.e., pointer types. 

The body part of Queue_Mgr is displayed in Figure 2-10. Writing an Ada 
subprogram can be illustrated by examining the definitions for Add, Remove, 
and Is_empty in Figure 2-10. The Add procedure, for example, begins with a 
(necessarily) duplicate copy of its specification (given in Figure 2-9), followed 
by the keyword is. Following this, the remainder of a subprogram body nor
mally consists of a sequence of local declarations, possibly empty, followed by 
a sequence of statements. In this case, there is one locally declared object: the 
variable x. In any case, the statement sequence is heralded by the begin key
word and terminated by the end keyword. 

The Create operation, which has no parameters, returns a reference to a 
newly-allocated queue having zero elements. The head and tail pointers of this 
queue are each initialized to the null value, reflecting the fact that the queue is 
empty. A null-valued head and tail pointer is used by the Add, Remove, and 
Is_empty operations to detect special queue conditions. A few minutes' reflec
tion will convince the reader that the head pointer is null if and only if the tail 
pointer is null. 

In the Add operation, the local variable x of type queue_element_ptr is 
assigned a reference to a newly-allocated record of type queue_element. This 
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return new queue_rep (head => null, tail => null); 
end Create; 

procedure Add( 
E: in item; 
Q: in queue; 
to_front: in boolean: = false) -- Optional third parameter .. 

is 
x: queue_element_ptr := new queue_element (info => E, next => null); 

begin 
case to_front is 

when f al se => 
if Q.tail /= null then 

Q.tail.next := x; 
else 

Q.head : = x; 
end if; 
Q. tail: = x; 

when 0 thers => 
end Add; 

procedure Remove ( 
U: out item; 
Q: in queue) 

is 
begin 

if Q.head = null then 
raise underflow; 

else 
U : = Q. head. info; 
if Q.head.next = null then 

Q. head : = null; 
Q. tail : = null; 

else 
Q.head := Q. head. next; 

end if; 
end if; 

end Remove; 

function Is_empty( 
Q: in queue) return boolean 

is 
begin 

return Q.head = null; 
end Is_empty; 

Normal case. Add to tail of queue. 
If the queue is non-empty, 
add the item at the end of the queue. 
If the queue is empty, 
place the item at the head. 

-- See code details in Appendix C. 

-- Is Q.head last queue element? 

-- Return truth value of expression. 

Figure 2-10 Full details of package body for Queue _Mgr. 
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newly allocated record is the new queue_element that is to be entered into 
queue Q; its info field is assigned the value of the input argument E. Note that 
the third parameter for Add is assigned the default value' 'false". The meaning 
of this construct is that the value "false" is assigned to the parameter 
"to_front" in the absence of a third argument. Thus, if the subprogram calling 
Add is satisfied with the default value "false" for the parameter to_front then it 
need not specify a third argument. On the other hand, an explicitly specified 
third argument value always overrides the default value. In Figure 2-10 we 
show only that part of the Add operation that handles the default case. The com
plete body for Add is given in Appendix C. 

The Remove operation is analogous to the Add operation and, in addition, 
offers us the opportunity to consider two issues of interest: an exception condi
tion and dynamic storage reclamation. If the given input queue parameter Q is 
non-empty at the time the Remove operation is called, then the output parame
ter U is assigned Q.head.info, the information item in the head queue element. 
If Q contains only one element at the time of the call, both head and tail indica
tors of Q are assigned the value null. If Q contains more than one element, the 
value of Q.head.next is copied into Q.head. In either case, all references to the 
removed queue_element are thereby deleted; the ultimate effect of this situation 
is that the heap space allocated to the removed queue_element is inaccessible 
and therefore recoverable. On the i432, this recovery is automatically per
formed by the system's hardware-assisted garbage collector. If the given input 
queue parameter Q is empty at the time the Remove operation is called, then the 
underflow exception is raised. 

When an exception is raised in a program unit, two actions are possible: the 
exception is handled locally or it is propagated back to the calling unit. The Ada 
programmer can supply a local exception handler, in this case, within the body 
of the Remove subprogram, as suggested in Figure 2-11, or, by choosing not to 
provide a local handler, can allow the exception to propagate back to the pro
gram unit that called Remove, perhaps to be handled in that program unit. This 
propagation continues back through the dynamic chain of subprogram calls until 
some program unit (ultimately, perhaps, the containing system) accepts respon
sibility for the exception. (In the absence of local handlers, Ada exceptions pro
pagate according to well-defined rules. [See Chapter 11, the Ada Reference 
Manual [2] for more details.]) 

If a local handler is supplied, then upon completing the execution of the 
handler, control immediately exits the program unit (returns to the caller.) 
Therefore, whether or not a local handler is provided, Ada semantics state that 
when an exception is raised, the program unit currently being executed is 
abandoned. 

The function Is_ empty returns the boolean value true if the head pointer is 
null; otherwise it returns the boolean value false. We see that an Ada function 



'rogram Structures and Semantics In Ada 47 

subprogram is, analogous to a procedure subprogram, defined by repeating its 
specification part and then supplying its body part. 

A careful reading of the program and comments of Figures 2-9, 2-10, and 
2-11 in the context of the foregoing discussion should be sufficient to persuade 
a reader new to Ada that such code is relatively easy to understand. 

procedure Remove ( 
U: out item; 
Q: in queue) 

is 
begin 

if Q.head = null then 
raise tmderflow; 

else 
U : = Q. head. info; 
if Q.head.next = null then -- Is Q.head last queue element? 

Q. head : = null; 
Q. tail : = null; 

else 
Q.head : = Q. head. next; 

end if; 
end if; 

exception 
when tmderflow => -- Local handler code goes here. 

end Remove; 

Figure 2-11 Local handler inserted in Remove subprogram. 

2.4.3. PorHolio_Mgr Code 

The specification part of the Portfolio_Mgr package is given in Appendix C. 
We list in Figure 2-12 the operations defined in this package. . 

Operation name 

Create 

Record_buy 
Record_sell 

Number_of_stocks 
stock_list 
Shares_and_av~cost 
Num_buys 
History_of_purchases 

Figure 2-12 The public operations of Portfolio_Mgr. 
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The function of each of these operations is explained in the comments following 
the specification of each operation; we do not explicitly repeat these explana
tions here. Rather, we focus our attention on the two private types, 
stock_summary and portfolio, that are defined in this package. The (private) 
specification of these types is repeated for convenience in Figure 2-13. 

private 

type s tock_ summary; - - forward reference 

type stock_summary is 
record 

stock_name: 

num_shares: 
av~cost_per_share: 
next: 
purchase_history: 

end record; 

stock_name_info := 
(print_name => "~~~~~~~~~~~~~~~~~~~A~~A~~A~A~A,,, 

stock_code => (code => "~AA~,,, exch => ,,~A~A,,)) 

integer : = 0; 
dollars : = 0.00; 
stock_summary_ptr : = null; 
Purchase_Queue_Mgr.queue 

: = Purchase_Queue_Mgr. Create () ; 

type portfolio_ptr is access portfolio; 

type portfolio is 
record 

portfolio_name: lon~string : = "not yet namedAAA~~A~AA~~AAAAAA,,; 
num_diff_stocks_held: integer : = 0; 
stock_list: stock_summary_ptr : = null; 

end record; 

Figure 2-13 Private clause of Portfolio_Mgr specification part. 

The effect of a calIon the Portfolio_Mgr.Create operation is to create an ini
tial "portfolio" (drawn from heap storage) and return an "access" to it. The 
structure of a portfolio, given in Figure 2-13, is invisible to Create's caller or to 
the caller of any of the other public operations. Hence, the returned access 
(reference) is without rights, forcing the user of this reference to go through 
Portfolio_Mgr to operate on the portfolio. Of course, nothing prohibits the user 
from distributing copies of the portfolio_ptr received as an output parameter 
value. (A more thorough discussion of access control issues is given in Chapters 
4 and 6.) 

From within the Portfolio_Mgr package, however, we can see that a created 
portfolio is a record containing a slot for the portfolio name, an indication that 
no stocks are held, and an empty list of stock summaries. Because the portfolio 
record type specifies initial values for its component fields, every variable of 
portfolio type and every dynamically created instance of portfolio type is initial-
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ized according to the values given above. This "default initialization" occurs 
unless there is an overriding initialization when a portfolio type variable is 
declared or a portfolio type instance is dynamically created. 

A major element of a portfolio is the linked list of stock summaries. A new 
stock_summary is added to a portfolio as a result of a calIon Port
folio_Mgr.Record __ buy to record a buy of a stock that is not now held. As a 
result of this new stock purchase, a purchase history is created for the new stock 
by virtue of creating a new instance of type stock_summary. This new pur
chase_history gets as its initial value a reference to a queue of purchases that is 
created by Purchase_Queue_Mgr.Create. (The call on this Create operation 
occurs for every new instance of stock_ summary, because of the default initial
ization specified for the purchase_history field of a stock_summary.) 
Thereafter, each new call on Portfolio_Mgr.Record_buy adds another entry to 
the respective purchase queue instance. 

Tradeoffs among alternative portfolio representations must be considered as 
early as possible by the applications designer. We consider two examples: 

1. Our choice of using a queue data structure, rather than a linked list for 
representing the purchase history for a stock, could well be too restrictive. 
The queue structure is suitable provided we are satisfied that held stocks are 
sold only on a first-in first-out basis and provided we are sure that "end 
users" of the system will rarely be interested in explicitly examining or 
altering the purchase history entries. If these assumptions are not good ones, 
then a linked list representation for purchase history records would no doubt 
be more appropriate; furthermore, an additional set of operations would be 
required in Portfolio_Mgr so the user of this package could request examina
tion and/or manipulation of records in a given purchase history. (Readers are 
invited to consider, as an exercise, what is involved in redesigning 
Portfolio_Mgr and the packages on which it depends to permit such added 
flexibility. ) 

2. We may wish to consider letting the portfolio record contain an array of 
stock summaries (rather than a linked list of summaries), each containing a 
purchase_queue. The major design tradeoffs here are between the storage 
management problems that arise (if arrays are used) and the limitations of 
sequential access (if linked lists are used). 

In our example, a linked list of stock summaries is attractive. As long as the 
number of stock summaries in a portfolio is of manageable size, sequential 
searching would be acceptable; thus, an array offers no advantage. On the 
other hand, by using linked lists, we take advantage of the i432's underlying 
storage resource allocation mechanisms for adding new list elements when 
needed. We also take advantage of the i432's underlying garbage collector 
for recovery of discarded list elements. Furthermore, using linked lists frees 
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us from having to specify arbitrary' 'boundary conditions" in advance, such 
as the maximum size of an array. 

[If we were to use an array to represent a portfolio, we might declare that a portfolio 
contains a "tableau" of size stock_surnmarys, where size is a constant given in 
Stock_ Types_And_Constants. A stock_summary would be (initially) a record consisting 
of an empty stock name, zero shares at zero cost, and a null pointer to a purchase history. 

Ada permits the declaration of dynamic arrays (See Chapter 3, the Ada Reference 
Manual [2]); this permits us to declare the maximum number of stock summaries in the 
tableau to be a variable whose value is computed at the time each portfolio instance is 
allocated. Figure 2-14 shows how such a portfolio record might be defined. 

type portfolio (newsize: integer range 1 .. 600) is 
record 

portfolio_name: long".string : = "not yet riamedAAAAAAAAAAAAAAAAA,,; 
num_diff_stocks_held:integer range o .. newsize := 0; 
tableau: array 1 .. newsize of stock_summary; 

end record; 

Figure 2-14 Type portfolio with a variable tableau capacity of up to 600 different stocks. 

The identifier newsize is a discriminant, that is, a parameter, of the record type. Its 
actual value may vary from 1 to 600. To create an instance of type portfolio, one sup
plies a matching argument value in the instantiating declaration, as in: 

my_folio: portfolio(newsize => 150); 

This declaration has the effect of reserving storage for a portfolio variable named 
my_folio that will contain a portfolio with a tableau capacity of 150 stocks. Once com
mitted to a tableau for a maximum of 150 stocks, however, it would not be convenient to 
change this "boundary value" during the life of the investment portfolio application.] 

2.4.4. Code for the Body of Portfolio_Mgr 

When developing the body part of an Ada package, it is not necessary that the 
body of any operation declared within the package actually be physically 
present in the body, as was the case for operations declared within the 
Queue_Mgr package body. Instead, one can elect to supply either a temporary 
implementation in the form of a null statement or a specification stub, using the 
key phrase is separate, which declares that the body is physically located in a 
separate compilation unit. 

The most common means of deferral is the use of the null statement imple
mentation, but in making this choice the programmer must remember, without 
help from the compiler, to supply the actual implementation later. Deferral by 
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means of the is separate stub may cause more voluminous program listings but 
has the advantage that forgetting to supply the separate body part will be 
noticed by the compiler or linker. (No execution will be permitted until such 
separate parts are supplied.) Figure 2-15 illustrates only the is separate method 
by showing portions of the Portfolio_Mgr body part. We choose this type of 
deferral throughout this text primarily for ease in organizing our figures. 

package body Portfolio_Mgr is -- Package body begins here. 

function Create ( 
folio_name: in lon~string) 

return portfolio_ptr; 
is separate; 

procedure Record_buy( 
folio_ptr: 
buy_info: 

is separate; 

in portfolio_ptr; 
in purchase_record) 

other procedure stubs go here. (See full code in Appendix C.) 

procedure Number_of_stocks( 
folio_ptr: in portfolio_ptr; 
num_stocks: out integer) 

is separate; 

other procedure stubs go here. (See full code in Appendix C.) 

Locally defined procedures and functions go here: 
function Search_for_stock_code( 

folio_ptr: in portfolio_ptr; 
buy_record: in purchase_record; 
create_if_not_found: in boolean) 

return stock_sununary_ptr; 
is separate; 

Function: 
Searches portfolio denoted by folio_ptr for presence of stock_code 
the same as that given in buy_record. If the stock is found, a 
reference to the stock summary for that held stock is returned. 
If the stock is not found, the action to be taken depends on the value 
of the input parameter create_if_not_found. If true, a new stock 
summary is created, initialized, and added to the portfolio, and a 
reference to it is returned. If create_if_not_found is false, 
null is returned. 

begin 

-- Statements to initialize this package, if needed, go here. 
-- (Delete the preceding begin if no statements are needed. ) 

end Portfolio_Mgr; -- End of package body. 

Flgure2-15 Selected pieces of the package body for Portfolio_Mgr. 
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In Figure 2-15 the function Search_for_stock_code is private (local) to 
Portfolio_Mgr; it is called only by procedures that are defined within 
Portfolio_Mgr. A separate compilation unit for Create appears in Figure 2-16. 

separate (Portfolio_Mgr) 

function Create ( 

is 

folio_name: in lon~string) 
return portfolio_ptr; 

folio_ptr: portfolio_ptr; 
begin 

folio_ptr := new portfolio; 

-- Prefix to indicate to the compiler 
that Portfolio_Mgr is the context 
in which the following function 

-- is to be compiled. 

Local reference variable. 

Allocates a new portfolio 
instance and assigns a reference 
to folio_ptr. 

folio_ptr.portfolio_name := folio_name; 

return folio_ptr; 
end Create; 

-- Name now assigned to this portfolio 

Figure 2-16 Separate compilation unit for function Create. Note the special prefix that 
identifies to the compiler the contextin which this unit should be compiled. 

The prefix "separate(Portfolio_Mgr)" advises the compiler that the contain
ing context of this unit is that of the body part of Portfolio_Mgr. Another way 
of stating this is that the prefix advises the compiler that the following body, 
although given physically here, actually resides logically within the body part 
of the Portfolio_Mgr package at the point at which the separate procedure 
declaration appears. Similar separate compilation units for Record_buy, 
Record_sell, and for Search_for_stock_code are given in Appendix D. These 
examples should be studied by the reader who needs more practice reading and 
comprehending Ada code. They also illustrate several additional features of Ada 
including the renames feature, a non-local exception handler, a case statement, 
and a while loop. 

[For example, the partially completed subprogram body for Record_sell in Appendix 
D includes a handler for the undert10w exception. 1bis handler would be invoked when 
the corresponding exception is raised in Purchase_ Queue_Mgr and propagates to the 
point of call in Record_sell. Upon completing execution of the handler, 

exception 
when underflow => history_underflow := true; 

execution of Record_sell would be abandoned. Control would then revert to the program 
point (in Club_Portfolio) following the calion Record_sell.] 
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We shift our attention to the Club_Portfolio package, under the assumption that 
the reader has gained some knowledge of Ada and, in particular, has a good 
understanding of the Portfolio_Mgr package. The specification part of 
Club_Portfolio, given in Appendix C, is straightforward. The package defines 
eleven public operations, as listed in Figure 2-17. 

Operation Name 

Print_club_valuation 
Print_club_holdings 

Find_s tock_ code 

Print_individual_stock_summary 
Print_shares_and_value_of_stock 
Print_average_cost 

Print_winners 
Print_losers 
Print_non_movers 

Enter_buy 
Enter_sell 

Figure 2-17 Public operations of Club_Portfolio. 

The Club_Portfolio package serves as an interface between users of the 
Portfolio_Mgr package and the Portfolio_Mgr package itself. Its primary duty 
is to convert the machine-oriented information encoded in the portfolio data 
structure into human-oriented printed matter. All direct access to the portfolio 
data structure is delegated to the the operations of Portfolio_Mgr, for reasons 
we discussed in Section 2.3. 

Only two operations, Find_stock_code and Print_club_ valuation, are 
value-returning functions. Find_stock_code is called to confirm the official 
corporate name for a stock and to obtain the corresponding unique internal iden
tifier for the corporate name: a stock_code_pair (defined in Stock_ 
Types_And_Constants.) Find_stock_code is designed such that if the caller 
provides an approximate corporate name, the response is a printout of all the 
names that "closely" match the given name. A null value is returned as the 
result of Find_stock_code in this case. If the caller provides a name that is an 
exact match with the name of a listed corporation, the printout confirms the 
match and the value returned is the stock_code_pair for this listed stock. 
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[Find_stock_code is analogous to the operation of opening a file for input/output. 
Normally, before any operations on a file can occur, it must be opened. An "open" 
operation is given an external, human-readable name of the file as input and returns an 
internal, machine-readable file name. From this point on, the user refers to every opera
tion on the file by using the internal name of the file.] 

The body of Find_stock_code contains calls to operations in the 
Stock_Mkt_Info package. This package provides the several lookup functions, 
including one that supplies a stock_code_pair, given the correct corporate 
name. The caller of Club_Portfolio can then use this piece of information for 
subsequent calls whose parameter lists require the stock_code_pair as an argu
ment. An example of such a call, might be 

Find_stock_price(Find_stock_code 
("General MotorsAAAAAAAAAAAAAAAA,,)) ; 

where Find_stock_price is assumed to be a public operation of the 
Stock_Mkt_Info package. (It is also possible for Club_Portfolio to supply 
Find_stock_price as one of its public operations; in the version presented here, 
however, this is not done.) 

The three operations, Print_winners, Print_losers, and Print_non_movers, 
are inserted to suggest the possibility of endowing Club_Portfolio with opera
tions that can trigger elaborate computational analyses of portfolio and stock 
market data. 

In the case of these three operations in particular, the invoked analyses are 
quite simple. The caller supplies a percentage deviation, such as 10%. The 
response is a list of zero or more of the held stocks for which there has been a 
net gain over average cost that is greater than 10%, or whose average loss is 
greater than 10%, or whose net gain or loss does not exceed 10%, respectively. 

Public operations that perform more elaborate analyses could be added later. 
Some embellishments might be added with only minor changes in the specifica
tion part. For example, an operation, Print_ winners_since could be defined in a 
way similar to Print_winners, by adding a number_of_months as a second 
input parameter. Thus: 

could be defined to respond by listing the held stocks for which there has been a 
net gain greater than 10% over the past 5 months. 

The access privileges required to perform the operations of Club_Portfolio 
depend on the operations themselves. Most operations require only read 
privilege for the portfolio instance. However, the, Enter_buy and Enter_sell 
operations involve updating the portfolio and, hence, require write privilege. 
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2.4.6. Creation and Ownership of a Portfolio Instance 

Creation of a portfolio instance occurs as part of the package initialization 
sequence for Club_Portfolio. This sequence is found at the end of the package 
body and is repeated here. 

begin 
our_portfolio := Portfolio_Mgr. Create ( 

"Twenty_cousins_clubAAAAAAAAAAA,,) ; 
end Club_Portfolio; 

The call on Portfolio_Mgr's Create operation returns a reference to a newly
allocated portfolio instance named "Twenty _cousins_club", which is assigned 
to Club_Portfolio's local variable, our_portfolio. Thereafter, Club_Portfolio 
owns (is bound to) this portfolio instance. This binding will endure for the life 
of the Club_Portfolio package; only one portfolio can be bound to the 
Club_Portfolio package. [In Chapter 3 we consider for an entirely different rea
son a modified version of Club_Portfolio. In that version the club's portfolio is 
not created during the package's initialization; instead, two public operations, 
Create_folio and Delete_folio are included. These operations enable users of 
the package to effect explicit creation and deletion of their portfolio.] 

2.4.7. Ownership of More than One Portfolio 

Programmed in this way, Club_Portfolio owns only the Twenty_cousins_club 
portfolio. [We assume the availability of system commands that make the entire 
package structure described in this section a permanent library object whose 
lifetime is like that of a protected file, We discuss object file lifetimes again in 
Chapters 4 and 10.] 

It is a relatively simple matter to program the Club_Portfolio package such 
that a multiplicity of package instances can be created for Club_Portfolio, each 
one owning a different portfolio. This may be done by "promoting" 
Club_Portfolio to a generic package. In this case, we could make the following 
changes to the heading of the package: 

generic 
folio_name: lon~string; -- parameter of generic package 

package Club_Portfolio is 

By using the generic version of Club_Portfolio, new package instances can 
be created as needed, each differently named and each having ownership (and 
jurisdiction) over at different portfolio. For example, 

package MY_Estate is new Club_Portfolio ( 
"Account_ 45AAAAAAAAAAAAAAAAAAAA,,) ; 

-- "computes" a new package instance 
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or, by: 

package Her_Estate is new Club_Portfolio ( 
"Estate_12AAAAAAAAAAAAAAAAAAAAA") ; 

-- "computes" a new package instance 

It is important for the reader to note here that with the latter set of declara
tions it is impossible to distinguish My _Estate from Her_Estate at execution 
time. On the other hand, the concept of "being able to distinguish a package at 
execution time" does not exist in standard Ada since the language does not 
allow users to form any sort of package "variable". In standard Ada, packages 
are strictly static, i.e., packages are distinguished strictly at compile time. 

The 432-Ada language extension to Ada allows users to define package 
"values". Thus, the ability to distinguish package instances at execution time 
may be important to users of 432-Ada. Package values and dynamic packages 
are discussed in Chapter 6. 

We are finished discussing the Ada program for the basic package structure 
of this chapter (Figure 2-2.) In the remaining section, we discuss the Ada cod
ing changes needed to implement the altered structure of Figure 2-4. These 
changes prove to be minimal. The next chapter discusses the more extensive 
changes needed to implement the structure changes suggested in Figure 2-5. 

2.5. Giving Query-Only Access to an 
Investment Portfolio 

In this section we discuss an implementation that provides "query-only" access 
for a task to a portfolio, as suggested in Figure 2-4. The solution suggested in 
Section 2.3.3 is elaborated here. There it was suggested that a task which is to 
be awarded query-only access to a portfolio be given only indirect access to 
Club_Portfolio, through an "intermediary" transformer package _ called 
Member _ Ops. Here we show the details of the intermediary package's 
implementation. 

Figures 2-18 and 2-19 show a straightforward way to program the specifica
tion and body parts of Member_Ops. 

As seen in Figure 2-19, the body for each procedure given in the body part of 
Member_Ops is a simple "one-liner". It consists of a repeat of its respective 
specification part, followed by a call to an identically-named procedure in the 
Club_Portfolio package, as in: 

<specification of P> 
is 
begin 

Club_Portfolio.p; 
end; 
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-------------.-------- Member_Ops package, version 1 -----------
with Club_Portfolio, stock_Types_And_Constants; 

package Member_Ops is 
use Club_Portfolio, stock_TYPes_And Constants; 

function Print_club_valuation 
return dollars; 

procedure Print_club_holdings; 

function Find_stoc~code( 
corporate_name: in lon~string) 

return stock_code_pair; 

procedure Pr int_ indi vi duaL stock _summary ( 
stock_code: in stoc~code_pair) ; 

-- etc 

end Member_Ops; 

Figure2-18 Membcf_Ops specification specification part. 

As shown in Figure 2-18 and 2-19, each call on a public operation of 
Member_ Ops will result in an extra .and seemingly superfluous inter-package 
calion the corresponding operation within Club_Portfolio. By using Ada's 
"inline" pragma we can instruct a good compiler to avoid compiling this 
"extra" level of indirection. If each procedure in Member_Ops is declared to 
be "inline" then no extra overhead is associated with the extra level of pro
cedure call. Rather, at the place of calling a procedure in Member _ Ops the 
procedures's body is substituted "inline" at the point of call in much the same 
manner as "macros" that are available in some machine code assemblers. In 
this manner, the extra level of procedure call disappears; the effect is that the 
call goes directly to the procedure in Club_Portfolio, bypassing the procedure 
in Member _ Ops. 

We make two observations about Figure 2-18: 
• Notice that the with list for Member_Ops enumerates only the two packages 

Club_Portfolio and Stock_ Types_And_Constants. By excluding Port
folio_Mgr, no reference can be made to one of its operations from within 
Member_Ops. In this way, Club_Portfolio serves as the only channel 
through which Member_ Ops can reference Portfolio_Mgr. Careful use of the 
with list mechanism gives us precisely the form of access control that we 
desire . 

• Observe how we resolve the potential ambiguity in the subprogram bodies 
within Member __ Ops. Each procedure P within Member_Ops contains a call 
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-------------------- Member_Ops body part, version 1 ---------------, 
package body Member_Ops is 

-- The body of each subprogram declaration given here is a call to 
-- the corresponding procedure in Club_Portfolio. 

function Print_club_valuations 
return dollars 

is begin return Club_Portfolio.Print_club_valuation; end; 

procedure Print_club_holdings 
is begin Club_Portfolio. Print_club_holdings; end; 

function Find_stoc~code( 
corporate_name: in lon~string) 

return stock_code_pair 
is begin return Club_Portfolio. Find_stock_code( 

corporate_name); end; 

procedure Print_individual_stock_summary( 
stock_code: in stock_code_pair) 

is begin Club_Portfolio. Print_individual_stock_summary( 
stock_code); end; 

-- etc . 

-- No local declarations and no initialization needed 

end Member_Ops; 

Figure 2-19 Body part of Member_ Ops, version 1. 

to a subprogram of Club_Portfolio having precisely the same name P and the 
same parameter list as P. This ambiguity is resolved by using "Club_ 
Portfolio" as a prefix. The prefix is needed to resolve the apparent ambiguity 
even though we have included the identifier, Club_Portfolio, in the use list 
of Member _ Ops. Without the prefix, the compiler will interpret each 
intended call on the P in Club_Portfolio as a recursive call on the P in the 
Member_Ops package. [For more discussion on this this point, the reader 
may wish to consult Chapter 8 of the Ada Reference Manual [2], which 
discusses the visibility rules of the language.] 

The use clause, 

tells the compiler that, for example, types such as percent, stock_code_pair, 
dollar, etc., which are not declared in the specification part of Member_Ops, 
will instead be found in one of the packages named in the use list. If the use 
list is not provided, the "full" names for each of these types must be used, 
that is: 
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Club_portfolio. percent, 
stock_TYPes_An~Constants.stock_code_pair, 
stock_TYPes_An~Constants. dollar, 
etc. 

[Readers familiar with Pascal will recognize that the Ada use list is somewhat like the 
Pascal with clause, which is also a useful mechanism for factoring out a common con
text for selected components. The Ada use list, however, brackets constructs of 
broader scope.] 
We now show a second way to program the Member_Ops package to indi

cate that calls on its query operations are to result in calls directly on those of 
Club_Portfolio. Ihis approach exploits Ada's renames feature, as shown in 
,Figure 2-20. Here, the specification part of each Member_Ops operation is 
replaced with a renames declaration; a corresponding body part is not required. 

------------------ Member Ops version 2 -------------------------
with Club_Portfolio, stock_TYPeS_And_Constants; 

package Member_Ops is 

The operations of this package are identical with those 
-- like-named operations in the Club_Portfolio package. 
-- Explanations of these functions are given in that package. 

function Print._club_ valuation 
return dollars 
renames Club_Portfolio. Print_club_ valuation; 

procedure Print_club_holdings 
renames Club_Portfolio.Print_club_holdings; 

function Find_stock_code( 
corporate_name: in lon~string) 

return stoc~_code_pair 
renames Club_Portfolio.Find_stoc~code; 

procedure Print_individual_stock_summary( 
stock_code: in stock_code_pair) 

renames Club_Portfolio. Print_individual_stock_summary; 

-- etc 

end Member _ Ops; There is no package body in this case. 

Figure 2-20 Second version of Member_ Ops, using the renames feature. 

To summarize, we see that to extend our application from the structure 
implied by Figure 2-2 to that of Figure 2-4 simply requires the addition of an 
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intennediate or "filter" package, Member_Ops, whose public operations are a 
proper subset of those in Club_Portfolio. Introduction of Member_Ops into the 
package structure provides us with the means for specifying that users be 
granted only query access to a portfolio instance. Use of the "inline" or 
renames feature ensures the absence of unnecessary overhead associated with 
the extra level of indirection. 

As mentioned at the end of Section 2-4, the extensions needed to pennit users 
concurrent access to the portfolio requires major additions to the structure 
(introduction of server tasks). We devote the whole of the next chapter to this 
important case. 



TASK STRUCTURES IN ADA 

3.1. Introduction 

Early in the preceding chapter we introduced the notion that an Ada task is a 
program unit possessing its own thread of control and capable of executing con
currently with other tasks in the same program (or system). We suggested that 
tasks would be useful in applications exhibiting behavior that is most closely 
modelled by systems that allow for concurrent but controlled access to shared 
structures, as in the case of the portfolio database. We noted that exploiting the 
tasking facility of a language is the key to simplifying the design and/or model
ling of such complex systems which, like the use of packages, offers a means 
for reducing the cost of software. 

3.1.1. The Analogy between Tasks and 
Machines 

One way to see why the "task" concept is so important in both software and 
application programs is to perceive a task to be an abstraction of a machine. In 
the same way that real systems are designed and best understood as ensembles 
of interacting physical machines, software systems can be designed and under
stood as ensembles of interacting abstract machines. The roles that tasks can 
play in programs are, with one important exception (to be discussed later), 
pretty much the same as the roles that machines play in real systems, such as 
offices, factories, and computer networks. 

Consider, for example,. the workstations in a factory as a set of such 
machines. Material flows along certain pre-established paths between the 
workstations. The paths and the stations can be modeled as the arcs and nodes 
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of a directed graph. Some sections of the directed graph, where two or more 
workstations are linked in series, represent pipeline flow of work, e.g., 

0--- 0---~-. 
Pipeline 

Concurrency, and hence increased throughput, is achieved in the pipeline 
case when stations E, F, G, ... are able to perform their respective operations 
on successive items of work at the same time. 

Other sections of the graph, where flow of work forks from one workstation 
to two or more other workstations, represent parallel flow of work, e.g., 

.------..[2] 
~0 

Distributor ~ 

Parallel 

Concurrency, and hence increased throughput, is achieved in the parallel case, 
when stations I, J, K, ... ,can be kept busy by operating on distinct inputs com
ing from station D. 

The station D serves as a distributor of work. (Two non-trivial special cases 
for D occur when it distributes to no other workstation and to exactly one other 
workstation. ) 

Another station C can serve as a collector of work (also regarded as an arbi
trator or synchronizer), e.g.~ 

~0 
~COllector 

Parallel 

Although our diagrams suggest work flow between related stations in only one 
direction, for some kind of work (e.g., data to be processed) there is flow in the 
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reverse direction as well. Also, for each directed arc representing work (or data) 
flow, there is present, although not always made explicit, some auxiliary con
trol arc(s), such as a request and an acknowledge arc, to regulate the work (or 
data) flow. 

The foregoing observations allow us to identify four different possible rela
tionships among related workstations, namely: pipeline, parallel, distribution, 
and collection (arbitration). Correspondingly, individual workstations (also 
Ada tasks) perform in one of four possible roles: 

1. as a distributor of work to none, one or more other stations, 

2. as a collector of work from two or more other stations-in which case it 
must perform some form of arbitration to determine the order in which to 
perform collected work (Alternatively, the function of the collector may be 
that of synchronizing the forward progress of its predecessor workstations.), 

3. as an element of a pipeline, or 

4. as an element of an array of stations executing in parallel. 

In a more abstract sense, a workstation S that accepts work does so to peiform a 
service on behalf of some workstation R that sends work. Hence, we may view 
Sand R as a server and requestor, respectively. Referring to the preceding 
structure diagrams, notice that an element of a pipeline, like workstation F, is 
necessarily both a requestor and a server, whereas workstation 0 may be a pure 
requestor and C may be a pure server. 

The important conclusion to draw from the above is that it is instructive to 
classify Ada tasks in the same way that we are able to for machines in general. 
Accordingly, tasks may be viewed as transmitting messages to other tasks as 
work (or data) flows between machines or office workstations. Generally, the 
message information between tasks can flow in both directions. This is because 
a request from a task Tl to a task T2 can involve both outbound and inbound 
information, by analogy with the in, in out and out parameter modes for a pro
cedure call from PI to P2. 

The concurrency advantages inherent in machine ensembles of real systems 
are also applicable to programs. The abstract concurrency potential of an Ada 
program structure is separated from the actual concurrency achieved, which is a 
function of the number of processors. Thus, an Ada program structured as a col
lection of m tasks that executes on a general purpose computer having n process
ors can have as many as mine m, n) tasks executing concurrently. The transparent 
multiprocessing of the i432 architecture described in Chapter 5 assures that, 
within a range of n, (where {n <= m)}, as n is increased or decreased, con
currency is (approximately) linearly increased or decreased-without, of 
course, any change in the program itself. The opportunity to achieve con
currency in this way is a principal reason to restructure important algorithms, 
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that have heretofore been expressed as purely sequential computations. 
The Ada task is, in a very important sense, more powerful than a real 

machine, which, in general, cannot create other real machines. An Ada task can 
directly cause the creation (startup, and destruction) of other tasks by exercising 
another dimension of control not possible with real machines. This new dimen
sion of control leads to the possibility that a task T can spawn a set of n children 
tasks, Cl, ... , Cn, setting each into an active state. Under these cir
cumstances, Task T may, but is not required to, function as a requestor of serv
ice from its offspring. T's children, in turn, mayor may not spawn other tasks, 
and mayor may not function as requestors, servers, or requestorlservers. 

3.1.2. A Specific Ada Tasking Structure 

It is convenient to regard Ada tasks as having four forms, corresponding to the 
four roles introduced above. Each role is exemplified in Figure 2-5; its actual 
form is illustrated subsequently: 

• Non-serverlnon-requestor task: such a task does not perform a service for 
another task and does not request the service of another task (although it may 
activate other tasks.) Task_Master is an example of a non-server/non
requestor task. 

• Pure requestor task: such a task requests the service of one or more other 
tasks (by issuing entry calls on server or server Irequestor tasks) but does not 
itself offer service to other tasks. Requestor tasks do not accept entry calls 
from other tasks. Each of the Member tasks is an example of a pure requestor 
task. 

• Pure server task: such a task has no other role but to wait for and then fill 
requests for service from other tasks. A pure server task does not issue an 
entry call for service from another task. The Roster_Server task is an exam
ple of a pure server task. 

• Server Irequestor task: such a task plays both a server and a requestor role 
(and in this sense exhibits the most general structure) by issuing service 
requests (entry calls) to other tasks in the course of filling service requests 
(accepting entry calls) from other program units. The Portfolio_Server task is 
an example or a server Irequestor task. 

As already noted, a task of any kind can create and activate a task of any 
kind. For example, the Task_Master has a very simple role to play: This task 
spawns a fixed set of other tasks, awaits their termination, and then terminates 
itself. To implement this simple view, we can encode Task_Master so that 
offspring tasks are created statically (Figure 3-1) or dynamic all y . 

3.1.3. Static Creation of Tasks 

In Ada, the static creation of a task by an executing parent task is accomplished 
in two steps: first, the declaration of a task object within the parent task is e1ab-
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orated (i.e., resources are allocated for the task object) and, second, the task 
object is activated. This activation occurs after the elaboration of the declarative 
part of the parent task has been completed (but before the statements of the 
parent task begin.) Momentarily we will show the syntactic structures used in 
elaborating and activating statically-created tasks. 

[In the i432 environment, elaboration of a task amounts to the creation of a 
Process Object representing the task. This object includes a Storage Resource 
Object defining an address space to be used as local storage for this task. 
Activation of the task is achieved by enqueuing the created Process Object at a 
Dispatching Port (see Chapter 4), thus indicating that the corresponding Process 
Object (task) is ready to be bound to an actual processor.] 

A task identifier in Ada can be statically declared in a direct manner by 
declaring the identifier to be a task. Similarly, a task identifier can be declared 
in an indirect manner by first declaring a task type and then declaring the task 
identifier as an instance of that task type. In either form of declaration, the pro
gram structure of the task is split into a specification part and a body part, just 
as for procedures . 
• All elements declared in the specification part are public. Besides providing 

the identifier of the task instance (or task type), the specification part 
supplies, for server or server/requestor tasks, a list of entry declarations 
specifying the services that this task is able to perform. (An entry declaration 
is similar in form to the specification of a procedure, but uses the key word 
entry.) For example, 

entry Print_winners ( 
spread: in percent); 

might appear as an entry declaration within the specification part of 
Portfolio_Server. A request for service, i.e., a task entry call, must conform 
to the entry specification in the same manner that a procedure call must con
form to the procedure specification . 

• The body part of a task is private. It has much the same form as a procedure 
body. In particular, it can be represented by a separate stub and compiled 
separately. Figure 3-1 shows a possible skeletal structure for a simplified 
view of the Task_Master. 

Alternatively, a task can be created dynamically. For example, the 
Task_Master need not create a task for member k until that member logs in on a 
terminal and implicitly requests a task to be created. We show how this is 
accomplished in Ada at the end of this section. 

The program structure given in Figure 3-1 is somewhat oversimplified because 
it does not suggest a workable way in which each individual Member task 
becomes associated with a person who wishes to gain access to the portfolio. For 
the moment we gloss over the missing details and assume the following: 

The Task_Master executes as a "log-in responder" program that responds to 
"attention" inputs from any of several terminals. When a person logs in to a 
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with Text_IO, Membership_Roster, Roster_Types_And_Constants, 
Club_Portfolio, Stoc~Types_And_Constants; 

use Text_IO, Membership_Roster, Roster_Types_And_Constants, 
Club_Portfolio, Stock_Types_And_Constants; 

procedure Task_Master is 

task type Member_Task; 

Assumes Task_Master is a non_server 
non_requestor. 

This is the full specification part, 
assuming that Member_Task is a pure 
requestor. 

member: array (1 .. 20) of Member_Task; 
-- An array named Member of 20 tasks 
-- of type Member_Task is instantiated. 

task body Member_Task is separate; -- stub. 

task Portfolio_Server is 
-- Entry declarations for this task go here. 
-- Details are given in Appendixes F and G. 

end Portfolio_Server; Instantiation of this task is 
-- accomplished upon elaborating this 
-- specification and its body part. 

task body Portfolio_Server is separate; -- Stub. 

task Roster~Server is 
-- Entry declarations for this task go here. 
-- Details are given in Appendixes F and G. 

end Roster_Server; Instantiation of this task is 
-- accomplished upon elaborating this 
-- specification and its body part. 

task body Roster_Server is separate; -- Stub. 

begin -- All 22 tasks become active here. 

-- Statements, if any, describing the 
-- actions of the Tas~Master go here. 

end Task_Master; Await termination of all spawned tasks 
-- and then terminate. 

Figure 3-1 Possible structure of Task_Master. 

particular tenninal and gives the proper identification, the Task_Master signals 
a matching Member task (already in execution) that it should take over the job 
of responding interactively to commands given at that tenninal. 
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According to the structure suggested in Figure 2-5, each input command is 
interpreted as a request to be serviced either by Portfolio_Server or by Roster. 
In either case, the command is properly formatted and sent by means of a task 
entry call to an appropriate entry of Portfolio_Server. The command is treated 
as follows: 

• If the request is a read-only query of the portfolio, the Portfolio_Server issues 
a corresponding call to the appropriate operator in Club_portfolio. This opera
tor returns a value that is transmitted to the Member task, which eventually 
causes the appropriate response to be displayed at the user's terminal. 

• If the request involves updating the portfolio, then Portfolio_Server fIrst 
issues a task entry call (request) to Roster_Server to confrrm the user's 
authorization to update the portfolio. Recall from the earlier discussion in 
Section 2.3.3 that the Roster_Server has sole access to the Member
ship_Roster owner package, which contains the member name, title, and 
portfolio /roster privileges . 

• If the Roster._Server's response to the confirmation request is affrrmative, 
Portfolio_Server then issues a call to the appropriate operation in 
Club_portfolio . 

• If the response from Roster_Server is negative, Portfolio_Server's 
response to the Member_ Task's request is a failure explanation. Eventu
ally, a failure explanation is sent to the Member's terminal. 

• If the request involves only querying or updating the membership roster, then 
Portfolio_Server issues the appropriate task entry call to Roster_Server and 
merely retransmits the response received to the Member task. In this instance 
the Portfolio_Server serves only as a "middleman." 

After each server task has completed a service request, it is free to accept 
another one. Service requests may be backlogged while a server task is perform
ing a particular service function or is busy performing some other action, possi
bly triggered by having completed some service request. A fair amount of 
concurrency may occur while different Member tasks execute in their respective 
command loops and formulate service requests and while Portfolio_Server and 
Roster_Server are busy performing service. 

There is also some blocking implied with this structure, as a consequence of 
the "rendezvous" discipline imposed in the semantics of Ada task communica
tion. This blocking could, under certain conditions, prove serious. Upon each 
task call from a requestor to a server, the requestor is blocked from further 
action until receipt of the server's response. The delay entailed for this response 
depends on the structure of the server task, including the means for handling 
backlogged requests encoded in the task. (We study these details in a later sec
tion of this chapter.) 
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Due to delays inherent in the rendezvous discipline, the response of the sys
tem suggested in Figure 2-5 can conceivably prove unsatisfactory under certain 
sequences of events. Consider, for example, the following scenario: 

1. Member(1) issues a portfolio update request. 

2. Member(2) issues a portfolio read request. 

3. Member(3) issues a request to update the membership roster. 

We assume Portfolio_Server acts on these requests in the above order: 

In accepting the request of Member(1), Portfolio_Server must fIrst call on 
Roster_Server and wait for a confInnation response. This response delays 
acceptance of the request from Member(2) to read from the portfolio, even 
though Portfolio_Server would be capable of responding to Member(2)'s 
request without help from Roster_Server. 

Suppose Portfolio_Server is now acting on the request of Member(2), which 
does not require service by the Roster_Server task. Now Member(3)'s request 
cannot be accepted by Portfolio_Server until completing the current read-only 
service request for Member(2), even though the third request would not conflict 
with the use of Club_Portfolio. Thus, during service to Member(2), 
Roster_Server is forced to idle even though there is a backlogged request that 
will (eventually) be forwarded to it by Portfolio_Server. 

The above scenario illustrates a situation in which delays can be expected for 
the planned task structure. Other sequences of requests would involve 
less forced idling. During periods of low "traffIc", idling of service tasks is 
inconsequential. 

A system designer is apt to seek a way to eliminate processes that are forced 
to idle or wait despite waiting requests, especially when these delays are 
regarded as critical impediments to satisfactory perfonnance. One of several 
approaches can be taken to remedy the problem: 

• One approach is to substitute for the Ada rendezvous mechanism a set of 
alternative communication operators available in i432 systems. Such opera
tors are given in specially-provided packages; their use results in the execu
tion of the i432 SEND instruction, RECEIVE instruction, and other i432 
instructions useful for achieving asynchronous intertask communication. We 
describe these operators and discuss their use in Chapter 5. 
[In certain applications, it is also possible to model such asynchronous communication 
within standard Ada. This can be done in various ways. For example, a requestor can 
use spawned "carrier tasks' , , each forwarding one request to the server task. This tac
tic frees the requestor task, permitting it to proceed with its execution even though the 
carrier tasks may become blocked. The question: how to minimize the waiting time of 
a requestor task, is also revisited at the end of the next section.] 
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• A second approach, more in keeping with the desire to conform with the Ada 
tasking model, would seek an alternative to the structure of Figure 3-1 that 
provides more pathways between the Member tasks and the two server tasks. 
One such restructuring is suggested in Figure 3-2. 

Although we discuss this approach further in a later section of this chapter, 
the reader is likely to deduce the essential idea of this approach rather 
quickly: 
Club members who have special responsibilities (or privileges) can be associ-

'ated with tasks in special categories that are distinct from the Member_Task 
category. Examples are the Secretary, who has responsibility for maintaining 
the membership roster, and the Treasurer, who maintains the portfolio. Each 
category of requestor task now transmits its requests to a server via its own 
package of valid operations on the portfolio and membership roster. These 
,packages make (by private operations) appropriate (though hidden) task entry 
calls to either Portfolio_Server or Roster_Server, as required. In this way, 
for example, the club's secretary can be updating the membership roster 
while another member is querying the portfolio. 

Note that the increased concurrency is achieved by providing independent 
pathways to the server tasks in order to avoid the "bottleneck" inherent in 
the previous solution. However, the price paid for removing this bottleneck 
should be made clear: there is an extra level of indirection in the program 
structure, analogous to the extra level of indirection that was introduced by 
the Member_Ops package. This implies an extra step in the access path to the 
service tasks. 

3.1.4. Dynamic Creation of Tasks 

As mentioned earlier, tasks may be created dynamically ("on demand") within 
an Ada program. In the preceding example, all twenty Member_Tasks, the 
Portfolio_Server task and the Roster_Server task are activated after elaboration 
of all declarations in Task_Master. Each can be created when and if needed, 
terminated after performing its function, and recreated later if needed. As the 
log-in responder, the Task_Master creates a task when a member logs in and 
deletes that task when the member logs out. 

In Ada, an instance of a task type is created dynamically by first declaring an 
access type for the task type, then declaring a variable of the access type, and 
finally assigning to the variable a pointer to a new instance of the task type. The 
new instance of the task type is formed as a result of evaluating an allocator 
expression. For example, referring to Figure 3-1, we can replace the declaration, 

Member: array (1 .. 20) of Member_Task; 
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secretary 

Membership_ 
Roster 

(owner) 

Rgure ·3-2 Revised Multitasking structure for Multi-user Investment Club Application 
Program. 
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with 

type Member_ptr is access Member_Task; 
type Member_Pool is array (1 .. 20) of Member~Ptr; 
Member: Member_Pool; 

thus declaring Member as an array in which each element can be assigned a 
pointer value to an instance of type Member_Task (an Access Descriptor to a 
Process Object, in i432 terms.) 

A statement of the form 

Member(k) := new Member_Task; 

appearing within the scope of the above declarations is executed to create new 
Member_ Task instances dynamically, using the allocator 

new Member_Task 

and assigning the resulting pointer value to Member(k). 
We shall hereafter assume that Member tasks of our portfolio system are 

created dynamically by using the scheme just indicated. This being so, we can 
regard each Member task as a pure requestor task. (Its specification part 
requires no entries, whereas a statically created Member_Task must have at 
least one entry to signal the Member_Task that a member has logged in. In the 
case of a dynamically created task, the fact that a Member_Task has been 
activated is the indication that a member has logged in.) 

For the scheme shown in Figure 3-1, Member tasks require service from 
Portfolio_Server and indirectly from Roster_Server; there is no significant 
advantage in creating these server tasks dynamically. Also, because no com
munication is required between the Task_Master and any of its spawned tasks, 
Task_Master offers no service (has no entries in its specification part.) 

Before moving on to discuss the structure of task bodies, we make one last 
remark concerning Figure 3-2 and dynamically created tasks. In the example of 
Figure 3-2, we chose to separate members with special responsibilities (e.g., the 
secretary) from ordinary members by creating separate tasks for club officers. 
(The code for these special tasks may not be different from that of ordinary 
members, but their with lists will certainly be different!) There is again no diffi
culty inherent in dynamically creating these separate tasks for secretary and 
treasurer. Figure 3-3 suggests the type of code that would be inserted in 
Task_Master. 

3.2. Body Structures of Tasks 

Task bodies describe the actions of tasks after they are activated. Necessary 
declarations are listed in the declarative part of the task body, as suggested in 
Figure 3-4. Such owned resources are private, i. e., not directly accessible to 
another task or package. A declaration section in a task is optional. 
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-- Secy_Ops and Treas_Ops are added to the with list. 

task type Secy; 
task body Secy is separate; 

task type Treas; 
task body Treas is separate; 

secretary is access Secy; 
Treasurer is access Treas; 

A pure requestor. 
stub. 

Another pure requestor. 
stub. 

Pointer variable declared. 
Another pointer variable declared. 

statements within the begin ... end part of Task_Master: 

secretary := new Secy; 

Treasurer : = new Treas; 

A new Secy task is created and a 
pointer to it is assigned to 
Secretary. 

A new Treas task is created and a 
pointer to it is assigned to 
Treasurer. 

Figure 3-3 Steps in the dynamic creation of Secretary and Treasurer tasks for the structure 
in Figure 3-2. 

task body Typical_Task is 

begin 

If needed, owned resources accessible to 
this task are declared here. For example, 

type declarations 
variable declarations 
subprogram declarations 
package declarations 

statement sequence(s) to be executed after this task 
-- is activated (and after the resources in the above 
-- "declare" section have heen elaborated) go here. 

end Typical_Task; 

Rgure 3-4 Skeletal structure of a task body. 

As indicated, declarations may include type declarations, variable instances 
of these or of other types (whose type declarations are listed in modules made 
visible via the with list of this task), etc. All these declarations are locally 
accessible from statements appearing within the begin. . • end section of the 
task body. 

We now proceed to examine the structure of task bodies which, not surpris
ingly, depend on the role of task at hand: 
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3.2.1. Non-Server INon-Requestor Tasks 

Any statement sequence allowable within a subprogram body is allowable in the 
body of anon-server Inon-requestor task, including statements that have the 
effect of spawning other tasks, but excluding statements whose semantics have 
the effect of requesting the service of other tasks or of providing service to other 
tasks. When the last statement in the begin ... end sequence of the task body 
has been executed, or when a terminate statement has been executed, the task 
is made a candidate for termination. If the task has spawned no other tasks or if 
all its spawned tasks have terminated, then this candidate task is terminated 
immediately. Otherwise, the task is fIrst put into a wait state to await termina
tion of all of its spawned tasks that are not yet terminated. This rule of termina
tion applies to any Ada task, regardless of role. 

3.2.2. Pure Requestor Tasks 

Bodies of requestor tasks are the same as for non-server/non-requestor tasks, 
except that entry call statements will appear (also referred to as task calls). An 
entry call has a syntax similar to that of a call on a package operation. For 
example, the entry call: 

Portfolio_Server. Print_winners (spread => 15); 

issued by, say Member(5) [See Figure 2-5.], is interpreted as a request for serv
ice from Portfolio_Server to print the list of stocks, each of which has a current 
value of at least 15% more than its purchase price. 

The caller, Member(5), is then suspended awaiting rendezvous with the 
server until the latter returns the acknowledgement that completes the rendez
vous. We introduce the nature and timing of these acknowledgements in the 
ensuing paragraphs. Upon receipt of the acknowledgement (comparable to, but 
not identical with return of control from a package call), the caller resumes its 
execution concurrently with that of the server. In general, each time a requestor 
issues a task call, it is temporarily suspended (blocked) while awaiting rendez
vous with the server. 

3.2.3. Pure Server Tasks 

Server tasks can be called to perform those services listed in the entry declara
tions (found in the specification part of the server task.) Again, the bodies of 
server tasks are as for non-server/non-requestor tasks but they include, in addi
tion, at least om! accept statement. This statement, used by itself (i.e., 
exposed), or nested within a select statement (as a select alternative), provides 
the principal means in Ada for the synchronization of tasks. First, we explain 
the semantics of the accept statement when it is exposed, and then we explain 
its use as a select alternative. 
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1. Semantics of exposed accepts: 

The semantics of the accept statement 

accep t E ( ... ) do Send 

appearing in a task T can be separated into two cases: 

1. if another task U, currently blocked, has previously performed the task 
entry call E( ... ) then task T continues execution by performing the state
ments in statement sequence S or 

2. if no other task has performed the task entry call E( ... ) then task T 
blocks until another task U does perform the task entry call E( ... ), at 
which time task T restarts its execution immediately by performing the 
statements in statement sequence S. 

In both cases task U is blocked from the time that it completes the task entry 
call E( ... ) until the time that task T completes execution of statement 
sequence S, at which time both tasks continue execution concurrently. For 
example, suppose the following accept statement appears in the body of 
Portfolio_Server: 

accept Print_winners ( 
spread: in percent) ; 

do 

-- statement sequence to achieve 
-- the required objective. 

end Print_winners; 

When control reaches the accept statement, the enclosed statement sequence 
is executed immediately if at least one entry call on Portfolio_Serv
er.Print_ winners has been issued. If more than one entry call has occurred, 
the excess entry calls are entered into a FIFO (first in/first out) queue associ
ated with the Portfolio_Server.Print_ winners entry. When control reaches 
the accept statement given above, a waiting entry call is removed from this 
queue in FIFO order. Thus, an accept statement always acts on the oldest 
unserviced pending entry call. 

A requestor task that issues an entry call is blocked in "rendezvous wait" 
until the issued entry call (possibly queued) has been acted on by completing 
the execution of the appropriate accept statement in a server task. Thus, com
pleting the execution of the accept statement completes the rendezvous and 
unblocks the requestor task so it can proceed with its next step of execution. 

The i432 hardware does not provide explicit hardware support for the Ada 
rendezvous. However, the Ada compiler does use the i432 message-based 
communication operations as primitive building blocks to implement the 
rendezvous mechanism. Based on the above discussion, one can see that the 
exposed accept statement should be used in a server task only when it is 
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acceptable that the server not advance past the accept statement until the 
corresponding entry call has been issued. Following is a possible application 
of this principle, set in the context of our portfolio example: 

Suppose that the Club_Portfolio package has an operation enabling deletion 
of the club's portfolio. Further suppose that the rule for allowing deletion of 
a portfolio instance is such that three club officers must concur on the dele
tion by making three independent requests of Portfolio_Server to delete the 
portfolio. Portfolio_Server is programmed to execute three accept state
ments in series, each for a deletion request from one of the three officers 
(say President, Vice-president, and Secretary.) The order of arrival of these 
three requests should not affect the correct execution of Portfolio._Server. 
Figure 3-5 shows a possible code fragment within the Portfolio_Server task 
body that implements the cooperative deletion of portfolio instances. By its 
construction, the last two accepts in the series are necessarily exposed even 
if the first one were a select alternative. [The actual code for this fragment of 
Portfolio_Server's body part can be seen in Appendix F. For this appendix, 
it is assumed that the Club_Portfolio package differs from that described in 
Chapter 2 and listed in Appendix C-by having two additional publicly 
accessible operations: Delete_folio and Create_folio. In this assumed revi
sion, the club's portfolio is explicitly created and explicitly deleted by 
authorized club members.] 
Consider a situation in which the secretary of the club, for example, refuses 
(or forgets) to issue a deletion request to an activated instance of Port
folio_Server that is attempting to delete a particular portfolio. The task T 
(e.g., Task_Master) that caused the activation of Portfolio_Server will wait 
forever for the secretary unless action is taken in task T to remedy this situa
tion. The action taken by T will normally involve placing a time limit on 
how long Portfolio_Server will be allowed to remain active before T aborts 
Portfolio_Server, indicating that Portfolio_server has "timed-out." T can 
use the attribute Portfolio_Server'TERMINATED to determine whether or 
not Portfolio_Server is still active. If T has no other work to perform other 
than waiting for Portfolio_Server to terminate, then T can "put itself to 
sleep" for short periods of time by means of Ada's delay statement. This 
ensures that T does not waste a processor doing "busy waiting" for 
Portfolio_Server. Finally, if T determines that Portfolio_Server has timed
out, then T can immediately terminate the task by executing the statement 

abort Portfolio_Server; 

The approach for coordinating deletion of a portfolio illustrated in Figure 3-5 
is motivated by the desire to minimize the blocking of more "important" 
tasks (President and Vice_president) in the course of issuing their respective 
delete requests. The extent of such blocking may, however, not be con-
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sidered critical. Instead, it may be considered more important to synchronize 
all three delete requests to prevent the "forward progress" of any club offi
cer until all have issued a delete request. The accept statements used in Fig
ure 3-5 may be nested to accomplish the desired synchronization. In general, 
a nested accept structure within a server task permits the server to behave as 
a synchronizer for two or more requestor tasks. 

accept President_delete ( 
name: in strin~of30; 

member_name: in strin~of30; 
check: out boolean) 

do 

Print name for portfolio 
instance. 

Check returns false 
on failure. 

statements to determine and set check with an appropriate value. 

end President_delete; 

accept Vice_pres_delete( 
name: in strin~of30; 

member_name: in strin~of30; 
check: out boolean) 

do 

Print name for portfolio 
instance. 

Check returns false 
on failure. 

statements to determine and set check with an appropriate value. 
end Vice-pres_delete; 

accept Secretary_delete( 

do 

name: in strin~of30; 

member_name: in strin~of30; 
check: ou t boolean) 

Print name for portfolio 
instance. 

Check returns false 
on failure. 

statements to determine and set check with an appropriate 
value followed by a statement sequence which has effect of 
deleting the given portfolio instance named three times 
(in this and previous two entry calls. ) 

end Secretary_delete; 

Figure 3-5 Example use of exposed accepts: Server-side of protocol for deleting a port
folio instance. 

2. Semantics of accepts nested within select statements: 

Although there are numerous cases, such as illustrated in Figure 3-5, in 
which a server task is willing to wait (having no other work to perform) at an 
accept statement, this is not always an acceptable policy. Typically, the 
server may be capable of responding to two or more different requests, or 
there may be some other action that can be taken by the server in the absence 
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of an entry call for a certain accept statement. In either of these cases there 
is a choice to be made among several alternatives, thereby eliminating the 
requirement that a task wait for a rendezvous when other work is pending 
and could be immediately initiated. This type of controlled choice is pro
vided through use of the selective wait statement. 

Analogous to the case statement, a selective wait statement controls the 
choice among a set of alternative code sequences. Whereas the choice of 
alternative in a case statement is simply determined by the value of a case 
selector variable, the choice of alternative in a selective wait statement is 
much more involved. In a selective wait statement, the choice is made by 
considering a number of factors, including (and most important for this dis
cussion) which of the several alternative accept statements, if any, have 
pending entry calls. Figure 3-6 illustrates the syntax of a selective wait state
ment within a task body. The structure shown is prototypical for a large class 
of server tasks. 

begin 
loop 

select 
{when <boolean guard for Service_I> =>} 

accept Service_I( ... ) 
do 

-- statement sequence. 
end Service_I; 

-- A statement sequence serving as 
-- a sequel to Service_1 may go here. 

or {when <boolean guard for Service_2> =>} 
accept Service_2( ... ) 

do 
-- statement sequence. 

end Service_.2; 
-- A statement sequence serving as 
-- a sequel to Service_2 may go here. 

or {when <boolean guard for Service_3> =>} 
accept Service_3( ... ) 

else 

do 
-- statement sequence. 

end Service_3; 
-- A statement sequence serving as 
-- a sequel to Service_3 may go here. 

statement sequence. 
end select; 

end loop; 
end; end of task body 

Figure 3-6 Selective wait loop for a task body. [Items in curly brackets are optional.] 
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The behavior of this type of server task is as follows: After activation, the 
task enters an endless loop (the loop .•• end brackets.) The repeatedly exe
cuted selective wait statement is represented by the brackets select ••• end. 
This statement, in turn, specifies a set of alternative actions which must con
sist of at least one accept statement. In the figure, there are four alternative 
actions: three accept statements and their respective (optional) sequels fol
lowed by an else clause. Any of the accept statements may be optionally 
prefixed by a guard clause of the form: 

when <boolean expression> => 

A guarded accept statement can be selected for execution if and only if its 
boolean expression evaluates to true at the beginning of execution of the 
selective wait statement when the various alternatives are being considered. 
In Ada terminology an alternative is defined to be open (i.e., eligible for 
selection) if it has no guard or if its guard is true; otherwise the alternative is 
defined to be closed. 

The select statement chooses a program fragment for execution based on 
boolean guard conditions and pending entry calls. At the beginning of execu
tion for a select statement, each alternative is examined to determine the 
subset of all open alternatives from which one will be selected for execution. 
Among the subset of open alternatives, there can be zero, one or many (more 
than one) alternatives for which unserviced entry call requests are pending. 
If exactly one open alternative A has a pending request then the program 
fragment associated with A is executed. If many open alternatives have 
pending requests then a choice is made among this set of alternatives. The 
underlying Ada system is responsible for making the choice on a fair and 
impartial basis in this case. Finally, if no open alternatives can be selected 
because none have unserviced requests pending, then the else clause of the 
select statement is executed. 

Other situations can arise which are defined in the semantics of the select 
statement. For example, if one or more open alternatives exist but these have 
no pending entry calls and no else clause has been supplied; the task blocks 
until the arrival of an entry call for one of the open alternatives. If no alter
natives are open and no else has been supplied, the task is considered by the 
underlying system to be deadlocked causing an exception to be raised in the 
deadlocked task. This exception can either be handled locally within the 
deadlocked task or propagated to the calling task by terminating or aborting 
the deadlocked task. 

[There are still other possible fonns of the select statement. The else clause may 
(1) be absent.or replaced by either one or more delay alternatives or (2) a single ter
minate alternative. Note also that an else clause is never prefixed by a guard clause. 
For more details on these options see Chapter 9 of the Ada Reference Manual.] 
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As indicated in Figure 3-6, an accept alternative can include a statement 
sequel. The actions of an accept alternative may be split into two parts that 
are executed in sequence: 

a. The rendezvous part, consisting of an accept statement to be perfolTIled 
while the requesting task is blocked, and 

b. The sequel part following the accept statement, executed concurrently 
with the calling task after completion of the rendezvous part. 

Careful use of the rendezvous part and the (optional) following sequel part of 
an accept alternative allows the programmer to minimize the time that the 
calling task is blocked in rendezvous. Recall that the calling task is blocked 
in rendezvous only while the server task is executing the rendezvous part; 
the calling task and server task continue concurrently at completion of the 
rendezvous part. Minimizing the time in execution of an accept statement 
follows the hardware analogy of issuing an early acknowledge when using a 
request/acknowledge protocol for message-based communication between 
asynchronously executing machines. 
[A concrete instance illustrating the tactic of early acknowledge occurs in a bank 
application when a customer makes a deposit or withdrawal. The teller completes the 
transaction after the customer has departed from the teller's window to do other 
things. In the corresponding task model the teller and customer tasks communicate 
(at the teller's window) during the rendezvous part, and the teller completes the tran
saction during the seq~el part (after the customer has departed the teller's window to 
do other things).] 

3.2.4. General Tasks. A more general fOlTIl of server task is one whose body 
includes entry calls to other tasks. Thus, the telTIl general task is meant to imply 
a body structure which exhibits both server and requestor behavior. After 
receiving a particular request for service, the server should be free to 
"delegate" the work to other server tasks. In Ada, a task call to an entry in 
some other task is permitted within any sequence of statements. In particular, a 
task entry call is permitted within the body of an accept statement or within its 
sequel. 

A good example of a general task is the Portfolio_Server suggested in Fig
ure 2-5. An entry call from a Member task to the Portfolio_Server task for the 
purpose of updating the portfolio generates another entry call from 
Portfolio_Server to Roster_Server. The latter entry call is made for the purpose 
of verifying the Member's authorization to write in the portfolio (write rights). 

Ada imposes no limit on the length of a chain of entry calls, prohibiting only 
those chains that are cyclic. Thus, Portfolio_Server may not issue an entry call 
to itself since, due to the blocking nature of the Ada rendezvous, this would 
result in Portfolio_Server becoming deadlocked. 

There is, of course, a practical limit on non-cyclic chains of entry calls; that 
limit is a function of the negative effect of chaining on Ada program perfOlTIl-
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ance. We have illustrated the nature of this negative effect in justifying the 
more elaborate task/package structure of Figure 3-2. 

Although cyclic chains of entry calls are prohibited, a non-chained cycle, in 
the sense of a "conversation", is not prohibited, and may even be desirable in 
certain applications. For example, task A calls task B. Task B's response is first 
to complete the required entry call from A (completing the rendezvous) and 
then to make an entry call to task A. (Later, A can respond in a like manner 
until the conversation is complete.) 

The option to establish a two-way (or, for that matter, a multi-way) conversa
tion may be useful in a variety of applications, especially those that are 
transaction- or command-and-control- oriented. 

We illustrate by example here a two-way conversation between tasks as a tac
tic to increase concurrency between the two tasks. In this example, we expand 
the discussion of the preceding subsection, in which we considered ways to split 
the requested service into a rendezvous part and a sequel part. 

Suppose server task B is required to perform a service requiring lengthy proc
essing that would block requestor task A in a prolonged rendezvous wait. If 
requestor A can otherwise be doing useful work during this interval, and if a 
processor is available for requestor A, we can decrease task A's blocked rendez
vous interval by the tactic of constructing a conversation between A and B. The 
protocol that takes the place of a simple rendezvous is as follows: 

• Server B completes its accept statement (rendezvous part) by copying all the 
(input) arguments supplied by A into variables locally accessible to B. This 
releases requestor A from its rendezvous after a minimal period of time, free
ing A to continue execution. 

• Server B then completes the required processing on A's behalf in the state
ment sequel. 

• When processing in the sequel part has reached the point where output results 
needed by A have been established, server B now assumes the role of reques
tor and issues a task call to A at an entry in A corresponding to a preplanned 
wait point, that is, a particular accept statement within A. This accept state
ment will appear in A at the point where A cannot do any more useful work 
without first obtaining its output results from server task B. 

• Task A reaches the preplanned wait point and accepts B's call, completing 
the second rendezvous merely by copying the output results transmitted in the 
entry call to A by B. This releases task B after a minimal blocked rendezvous 
interval. 

This tactic is cost effective only if the sum of the two rendezvous intervals for 
the pair of entry calls (A~B, then B ..;;o..A) is short relative to the time that 
would have been required for the single, prolonged rendezvous (A ->B). Fig
ure 3-7 shows a schematic of the Ada program structure for 4,tsk B' s part of the 
conversation. 



accept Lengthy_service ( 
param_l: in ... ; 
param_2: in ... ) 

do 
local_var_l : = param_l; 

local_var_2 : = param_2; 
end Lengthy_service; 

statements of the sequel 
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-- Copy value matched to param_l 
-- into this context. 
-- Do the same for param_2. 
-- First rendezvous completed. 

that perform lengthy processing 
on values of local_var_l and local_var_2 
to produce the result the requestor wants. 
This result is assumed to be stored locally 
in wanted_result. 

Requestor_task_name.Lengthy_service_result( 
wanted_resul t) ; -- Call back to requestor to give 

-- it the value of wanted_result. 
-- End of sequel; second rendezvous completed. 

Figure 3-7 Server-side protocol using two-way conversation for minimizing length of 
time requestor is hlocked in rendezvous. 

3.3. Concrete Examples 

The preceding discussions have laid the foundation required to understand Ada 
task structures and semantics. In this section, we examine fragments of concrete 
examples shown in full in Appendix F. This appendix provides the Ada 
representation of the Portfolio_Server task and the specification parts of the 
Roster_Server task and Membership_Roster packages. These program units are 
designed to conform with the structure in Figure 2-5. [Appendix G provides 
corresponding program units that conform with the structure in Figure 3-2. 

In the program structure implied by Figure 2-5, Portfolio_Server is burdened 
with a number of extra "responsibilities". It must forward a number of task 
entry calls to Roster_Server besides the entry calls it must convert into operator 
calls on Club_Portfolio. This dependence on Roster_Server, itself dependent 
on Membership_Roster, is probably sufficient to immediately reject the struc
turing strategy of Figure 2-5. Those readers with more experience in concurrent 
programming may agree already. However, we proceed, in the spirit of an exer
cise, to illustrate and explain the program structure required for the approach 
illustrated in Figure 2-5. 

Figure 3-8 lists the individual entries that are needed for the Portfolio_Server 
task. Each of these entries requires an entry declaration in the task specification 
part of Portfolio_Server. 

As can be seen in Figure 2-5, Portfolio_Server is directly dependent on the 
specifications for Roster_Server and for Club_Portfolio. In tum, Roster_Server 
is dependent on the specifications of the Membership_Roster package. 
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Type of entry 

Portfolio queries (9) 
(Executed as calls on 
operations in Club_Portfolio 
package. ) 

Portfolio update requests (2) 
(Executed as calls on operations 
in Club_Portfolio package after 
first making calls on Roster_ 
server. ) 

Portfolio create and delete 
reques ts (6) 
(Executed as calls on operations 
of Club_Portfolio after first 
making calls on Roster_Server.) 

Membership_Roster queries (2) 
(Executed by calls to 
Roster_Server. ) 

Membership_Roster updates (3) 
(Executed by calls to 

Roster_Server. ) 

Entry name 

Print_Club_portfolio 
Print_club_holdings 
Find_s tock... code 
Print_individual_stock_summary 
Print_shares_and_value_of_stock 
Print_average_cost 
Print_winners 
Print_losers 
Print_non_movers 

Enter_buy 
Enter_sell 

President_create_folio 
Vice_president_create_folio 
Treasurer_create_folio 
President_delete_folio 
Vice_president_create_folio 
Treasurer_delete_folio 

Lookup_member 
List_of_members 

Add_new_member 
Update_member 
Delete_member 

Figure 3-8 The 22 individual entries of Portfolio_Server used in the Figure 2-5 structure. 

A convenient way to proceed in the development of Portfolio_Server is fIrst 
to develop the specifIcations of Membership_Roster, then to develop the specif
ications of Roster_Server, and finally to develop the specifIcations of 
Portfolio_Server. This is indeed the way we arrived at the list of entries in Fig
ure 3-8. [Recall that we have already developed the Club_Portfolio package. 
See Appendix C, but recall that we now assume modifications of this package 
have been made to provide explicit Delete_folio and Create_folio operations.] 

Although our development appears from the above discussion to be strictly 
"bottom-up", this is not really the case. We find, as a matter of development 
methodology, it is convenient and "logical" to first design the program struc
ture in top-down fashion, then to design the specification parts for each node of 
the program structure in bottom-up fashion, and finally to program the body 
parts of these nodes in top-down fashion. We therefore follow this developmen
tal approach in the ensuing exposition. 
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We decide that the Membership_Roster package should "own" the roster, a 
private type. The skeletal form of this package's specification part is given in 
Figure 3-9. 

package Membership_Roster is 

type roster is private; See definition below. 

There are five operations, as follows (See Appendix F): 

Lookup_member, 
List_of_members, 
Add_new_member, 
Update_member, 

and 
Delete_member 

private 

-- Returns a copy of current member's record. 
-- Prints a list of the information in the roster. 
-- Adds a record for a new member. 
-- Updates the record for a current member. 

-- Deletes the record for a current member. 

type roster is array (1 .. max_num_members} of member_record; 

~- An instance of a roster is (assumed to be) instantiated in the 
-- body part of this package. 

end Membership_Roster; 

Figure 3-9 Skeleton of the Membership_Roster package specification. 

The five operations of Membership_Roster are explained in the comments of 
Figure 3-9. If successful, each of these operations performs the indicated action. 
The reader can see the full specification of these operations in Appendix F. 

Notice that the private type roster depends on the constant 
max_nuIR-members and on the type member_record. These two items are 
declared in the auxiliary package Roster_ Types_And_Constants, which 
appears in the with and use clauses of Membership_Roster. It will be seen later 
that Roster_Server and Portfolio_Server also depend on 
Roster_ Types_And_Constants. This dependence is explained below. 

The Roster_Server task has a total of 9 entry declarations. These declarations 
are listed in Figure 3-10. 

Roster_Server requires access to the representation of type member_record 
because it must provide responses to the title queries; to do this, it must be able 
to examine individual components of a member_record instance furnished to it 
in response to a call on Membership_Roster. Lookup_member. Both 
Portfolio_Server and Roster_Server forward individual member_records to 
Membership_Roster in the course of responding to/from roster update requests. 
For this reason, type member_record cannot be declared private. 



84 A Programmer's View of the Intel 432 System 

Type of entry 

Title queries, which are 
boolean functions (4) 
(Executed by calls to 

Membership_Roster. ) 

General queries of the 
roster (2) 
(Executed by calls to 
Membership_Roster.) 

Requests for membership 
roster updates (3) 
(Executed by calls to 

Membership_Roster.) 

Entry name 

Is_president 
Is_vice_president 
Is_ treasurer 
Is_secretary 

Lookup_member 
List of members 

Add_new_member 
Update_member 
Delete_member 

Figure 3-10 The 9 individual entries of Roster_Server used in the Figure 2-5 structure. 

Figure 3-11 is a skeletal fonn of the Roster_Server task's specification part, 
showing the details for three of its nine entries. The full set of entries can be 
examined in Appendix F. 

The use of entries in Portfolio_Server is now illustrated in discussing the 
protocol for updating the portfolio and for deleting the portfolio. Figure 3-12 is 
an excerpt from the specification part of Portfolio_Server, showing the entry 
for Enter_buy. Figure 3-13 shows the corresponding accept statement in the 
body part of Portfolio_Server. 

The first two parameters of the Enter_buy entry are control parameters. The 
caller's name must be supplied in my_name; this name should be that of the 
club's treasurer. The "unauthorized" parameter returns the value true if the 
supplied member name, as checked by Roster_Server's Is_treasurer entry, does 
not match that of the treasurer. With this specification for the Enter_buy entry, 
the body of the corresponding accept statement for Enter_buy (see Figure 3-13) 
begins with an Is_treasurer entry call. If this call sets the local variable 
check_boolean to true, a calion the Enter_buy operation of Club_Portfolio is 
then made, and unauthorized is set to false; otherwise, unauthorized is set to 
true. 

The final example of this section illustrates the three actions required to 
delete the portfolio. Figures 3-14, 3-15, and 3-16 show the set of three entry 
declarations in Portfolio_Server that must be called to accomplish the deletion 
of a portfolio. Figure 3-17 shows the corresponding sequence of three accept 
statements from the body part of Portfolio_Server. Perusal of the comments that 
accompany the three entry declarations in Portfolio_Server should convince the 
reader that the corresponding sequence of accept statements faithfully reflects 
these specifications. 
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task Roster_Server is 
use Membership._Roster, Roster_Types_And_Constants; 

Title queries: 

entry IS_President( 
member_name: in strin~of30; 
check: out boolean) ; 

Function: 
Calls Membership_Roster.Lookup_member to obtain record 
of member_name. Sets check true if member_name matches 
name of a member whose title is President, else returns 
with check still false. 

entry Is_Vice_president( 
member_name: in strin~of30; 
check: out boolean) ; 

Function: 
Similar to that of Is_president. 

Entry for 
Entry for 

Is_treasurer 
Is_.secretary 

goes here. 
goes here. 

General queries to the roster: 

Entry for 
Entry for 

Lookup_member 
List_of_members 

goes here. 
goes here. 

Requests for membership roster update: 

-- Entry for Addlnew_member goes here. 
-- Entry for Update_member goes here. 

entry Delete_member ( 
my_name: in strin~of30; 
member_name: in strin~of30; 
check: out boolean) ; 

Function: 
Calls Membership_Roster.Delete_member to delete all info on 
a current member in the membership roster. If deletion is 
successful, check is set true before executing the return. 
Returns with check false if Delete_member call "fails". 
(Can fail if my_name does not match with the name of the 
secretary, or if there isn't already a member of the given 
member_name in the roster.) 

end Roster_Server; 

Figure 3-11 Skeletal version of Roster_Server specification part. 
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with Club_Portfolio, Roster_Server, 
Stock_Types_And_Constants, Roster_Types_And_Constants; 

-- Not all of these dependencies were shown in 
-- Figures 2-5 and 3-2. 

task Portfolio_Server is 

use Club_Portfolio, Roster_Server, 
stock_Types_And_Constants, Roster_Types_And_Constants; 

-- Portfolio queries go here. (9 entries) 

------- Portfolio update requests: 
entry Enter_buy( 

my_name: 
unauthorized: 
purch_date: 
stock_code: 
nUID_shares: 
per_sh_price: 
commission: 

Function: 

in strin~of30; 
out boolean; 
in date; 
in stoc~code_pair; 
in natural; 
in dollars; 
in dollars); 

Determines if member whose name is value of my_name 
is authorized to update the portfolio. If not, returns 
with value of unauthorized set to true. If yes, sets 
unauthorized to false and then calls the corresponding 
operation in Club_Portfolio. 

Entry for Enter_sell goes here. 

---------- Portfolio create and delete requests (6 entries) 

---------- Membership roster requests (5 entries) 

end Portfolio_Server; 

Figure 3-12 Skeletal view of Portfolio_Server specification, showing entry for 
Enter_buy. 

3.4. Chapter Summary 

In this final section, we tie up some loose ends. First, we return to our supposi
tion that the task-and-package structure suggested in Figure 3-2 is more in keep
ing with the spirit of modular, concurrent programming than that of Figure 2-5. 
Second, we consider the broader applicability of our portfolio management case 
study. 

By interposing "specialist" packages, such as Member_ops, Treasurer_Ops, 
Secretary _ Ops, etc., between the tasks representing the interactive users and 
the two server tasks, Portfolio_Server and Roster_Server, we gain the benefit 
that the two servers are completely decoupled. In particular, Portfolio_Server is 
no longer required to communicate with Roster_Server in order to authorize 
portfolio operations. As a result of this decoupling, each server task is smaller 
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purch_ da te: 
stock_code: 

in 
in 

strin~of30; 
boolean; 
date; 
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Roster_Server. Is_ treasurer (my_name, check_boolean); 
if cheek_boolean then -- authorized 

Club_.portfolio. Enter_buy (purch_date, 
. stock_code, 

unauthorized: = false; 
else 

unauthorized: = true; 
end if; 

end Enter_buy; 

num_shares, 
per_sh_price, 
commission) ; 

Figure 3-13 Showing how the accept statement for Enter_buy involves a callan 
Roster_Server .Is_ treasurer. 

entry President_delete_folio( 
my_name: in strin~of30; 
portfolio~name: in lon~string; 
unauthorized: out boolean) ; 

Function: 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club President. 
If not, returns with value of unauthorized set to true. 
If yes, unauthorized is set false and then returns after 
recording the portfolio name supplied. Deletion will not 
actually be attempted until a sequence of three deletion 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 

Figure 3-14 Entry declaration for first of three calls to delete a portfolio. 
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entry Vice_president_delete_folio( 
my_name: in strin~of30; 
portfolio_name: in lon~string; 
unauthorized: out boolean) ; 

Function: 
Request at this entry accepted if and only if the 
most recently accepted entry call was for 
President_delete_folio, and that call was authorized. 
Determines if member whose name is value of my_name 
is the current club vice-president. 
If not, returns with value of unauthorized set to true. 
If yes, unauthorized is set false and then returns after 
recording the portfolio name supplied. Deletion will not 
actually be attempted until a sequence of three deletion 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 

Figure 3-15 Entry declaration for third of three calls to delete a portfolio. 

entry Treasurer_delete_folio( 
my_name: in strin~of30; 
portfolio_name: in lo~string; 
unauthorized: out boolean; 
check: out boolean) ; 

-- If set true, portfolio has been deleted. 

Function: 
Request at this entry accepted if and only if the two 
most recently accepted entry calls were for 
President_delete_folio and Vice_president_delete_folio 
in that order, and if both were authorized calls. 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club Treasurer. 
If not, returns with value of unauthorized set to true. 
If yes, unauthorized is set false. The three supplied 
portfolio names are checked. If all are not identical, 
then check is set to false and a return is executed. 
If they do match, then the Delete_folio operation in 
Club_Portfolio is called. If this call is successful 
(portfolio deleted), then check is set true; return to 
Treasurer_delete_folio's caller is then executed. 

Figure 3-16 Entry declaration for third of three calls to delete a portfolio. 
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accept President_delete_folio( 
my_name: in strin~of30; 
portfolio_name: in lon~string; 
unauthorized: out boolean) 

do 
Roster_Server. Is_ treasurer (my_name., check_boolean) 
if check_boolean then 

local_name_l := portfolio_name; Save copy of portfolio_name 
-- for checking at next accept. 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end President_delete_folio; 

-- Sequel of two accepts begins here .. 

accept Vice_president_delete_folio( 
my_name: in strin~of30; 
portfolio_name: in lon~string; 
unauthorized: out boolean) 

do 
Roster_Server. Is_vice_president(my_name, chec~boolean) 
if check_boolean and local_name_l = portfolio_name then 

local_name_2 : = portfolio_name; Save copy of portfolio_name 
-- for checking at next accept. 

unauthorized: = false; 
else 

unauthorized := true; 
end if; 

end Vice_president_delete_folio; 

accept Treasurer_delete_folio ( 
my_name: in strin~of30; 
portfolio_name: in lon~string; 
unauthorized: out boolean; 
check: out boolean) 

-- If set true, portfolio has been deleted. 
do 

Roster_Server. Is_treasurer (my_name, check_boolean) 
if check_boolean and local_name_l = portfolio_name 

and local_name_2 = portfolio_name then 
do 

unauthorized : = false; -- Authorization is OK. 
Club_Portfolio. Delete_folio (portfolio_name, check); 

Portfolio is deleted if check 
-- returned with value true. 

else 
unauthorized := true; 

end if; 
end Treasurer_delete_folio; 

-- End of sequel (end chain of three accepts). 

Figure 3-17 The sequence of three accept statements which must be executed to delete a 
portfolio instance. 
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and simpler (has fewer and simpler entries and accepts.) Each task has just those 
entries that enable it to arbitrate the possibly concurrent use of its related owner 
package (Club_Portfolio and Membership_Roster.) The program structure 
required for the decoupled setver tasks is shown in Appendix G. 

Setvice requests sent to Roster _ Setver are guaranteed to be authorized 
because of the interposed "filtering" packages. Thus, Roster_Setver has only 
the five entries that are in one-to-one correspondence with the operations of 
Membership_Roster; the accept statements of the former are simply calls on 
operations of the latter. 

In a similar vein, but with two notable exceptions, each setvice performed by 
Portfolio_Setver amounts to nothing more than a calion the corresponding 
operation of Club_Portfolio. The exceptions are the entries dealing with 
requests to create or delete a portfolio. The required coding for the chain of 
three accepts, shown in Appendix G, is just a slight amplification of the pro
gram fragment given in Figure 3-5. 

We trust that enough of the portfolio management system has now been dis
cussed and illustrated in Ada to tempt some readers to complete and test this 
application. More ambitious readers should also consider the question of the 
applicability of our case study in a context more general than a single Invest
ment Club. In particular, what changes (if any) from that of the Figure 3-2 
structure would be required to apply or extend the system for use in the manage
ment of more than one portfolio or with more than one set of authorities granted 
for accessing and updating the portfolio? 

A bank trust department that manages several distinct pension or other funds 
or a brokerage house that manages numerous investment portfolios would be 
expected to have more complicated authority structures than is the case for a 
single investment club. For example, if an account manager is "on vacation" 
when a buy or sell transaction is requested by an investor, the brokerage house 
must offer alternative access to the investor's portfolio. Otherwise, an eager or 
netvous investor may take a dim view of waiting to trade some stock until the 
account executive returns from vacation. 

Is it convenient to express the richer authority structures required in such 
situations without making substantial changes to the basic program structure in 
Figure 3-2 at and below the "setvice tier"? We think so. Also, how easy is it to 
modify the basic structure to accommodate a multiplicity of portfolios? Again, 
we think the changes required are minor, but we leave the matter of verifying 
these conjectures to the reader. 

Although we have not made a complete examination of Ada, we have now 
looked at this rich language in sufficient detail to allow the reader to evaluate it 
as a useful systems and applications programming language. We are ready, 
therefore, to consider how programs in Ada map onto the structure of the i432 
system architecture. In the next chapter, we look at the execution-time data 
structures of program units, in order to see how they are represented as i432 
object structures. 



i432 OBJECT STRUCTURES 
FOR PROGRAM EXECUTION 

4.1. Introduction 

As alluded to earlier, important advantages arise when the execution time data 
structure of a program exhibits a close correspondence with the conceptual pro
gram data structure it represents. A useful conceptual model that holds for most 
program data stnlctures is the directed graph; most programs (especially 
systems-oriented programs) make heavy use of directed graph data structures. 
Nevertheless, few architectures in existence today are able to provide signifi
cant support for a directed graph program data structure model; it is usually coh
sidered the programmer's task to map his topologically complex data structures 
onto the relatively "flat" structures of conventional architectures. The i432 
architecture provides the user with hardware, finnware, and software support 
for a directed graph model of program data structure. This is achieved by 
representing execution time structures as collections of independent address 
spaces which are objects. The correspondence between a directed graph data 
model and the execution time "object collection" model is: a directed graph 
node corresponds to an object and a directed graph arc corresponds to a refer
ence (or pointer) to an object. 

In this chapter we introduce readers to the details of the i432 execution time 
object collection model. We will focus primarily on the i432 object structures 
that arise and that are maintained during execution of programs having single 
threads of control. Consequently, we limit our discussion to structures that 
relate to intra-process operations, deferring until the next chapter higher-level 
relationships having to do with inter-process communication. The following 
subsection is offered as a review of the basic concepts of "object-oriented 
architectures", including a bit of historical perspective, that is relevant to this 
topic. 

91 
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4.1.1. A Primer on i432 Address-Space 
Structures 

An important problem in the design of modem computer architectures is to 
achieve acceptable execution efficiency while still providing the memory 
management and protection facilities required to support the dynamic behavior 
of objects in a rapidly changing data structure. The early innovative architec
tures, in particular the Burroughs B5000 (1961) and its sequels did succeed in 
providing hardware support for address space management. The B5000 mem
ory system exhibited a "segmented, virtual storage". Such systems as the 
B5000, sometimes referred to as "language-directed architectures", have 
served as useful early models of architectures with memory management sup
port. However, they were only slowly appreciated by other computer archi
tects, often for good reasons. 

For a glimpse at some reasons behind the slow acceptance of earlier architec
tures, the interested reader is referred to [9] [10] [19] [42] [45]; we will not 
cover these reasons in detail here. Many complaints about earlier architectures 
were difficult to dispel because of the relatively slow rate at which hardware, in 
particular, storage technology had been advancing. However, a more critical 
reason was the slow appreciation of the significant role played by the "descrip
tor" (or "codeword") concept [11] [31]. 

A descriptor is a reference or pointer to the base of a (related) address space. 
Descriptors and segments can be used to represent complex, directed graph 
structures: a descriptor represents an arc and a segment represents a node. All 
segments are independent of each other, i.e. every segment must be referenced 
through a descriptor and it is impossible to reference any part of segment B 

• through a descriptor for segment A. Segments are variable length, i.e., their 
size is set when they are created; the size is stored as a part of the descriptor that 
references the segment. Finally, segments are relocatable, i.e., a segment can 
be placed anywhere in memory without modification of the segment contents 
(only the descriptor must be modified to reflect the new segment base location). 

Descriptors must be managed carefully if the integrity of an execution-time 
program data structure (and, more generally, if the integrity of the system as a 
whole) is to be maintained. Descriptors should also be traversed as rapidly as 
possible, since descriptors amount to indirect addresses and are often cascaded, 
lengthening the access path to a target data or instruction component. 

The key to efficient implementation of descriptor-based addressing is direct 
hardware support, i.e., machine instructions that provide descriptor-based 
addressing at the architectural level. Since descriptors are used very frequently, 
it is important that they be recognized by the hardware as being different from 
all other forms of data. In some architectures, for example, Burroughs, a 
descriptor is recognized by the value in a tag field that is attached to every 
memory word but is not accessible to the general user, permitting the descriptor 
to be safely placed within a data segment. In such implementations of descrip-
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tors, access rights and storage (address) mapping information are encoded 
within the same reference word. 

The observant reader may have noticed by now that one of the primary diffi
culties in descriptor-based addressing occurs as a conflict between the desire to 
store the base address of a segment directly in a descriptor on the one hand and 
the desire to make segments relocatable on the other hand. When it is necessary 
to relocate a portion of the run-time structure (such as when segments are 
swapped back into the main store in a virtual memory system), every reference 
to the relocated segment (object) must be found and updated to account for the 
new location of the object. In certain circumstances, the search for these 
descriptors takes a significant amount of time. For many architects, such costs, 
related to the management of descriptors, was deemed prohibitive. 

A significant improvement on the descriptor concept occurred with the inven
tion and evolution of the capability concept [16] [22] [24] [37] [38] [59] [64] 
[65] . A capability, as we now view it, contains an indirect reference through a 
mapping table to a segment base, in contrast to a direct reference to a segment 
base that is part of a descriptor. Every capability that references a segment S 
does so by referencing the same entry M in the mapping table; this mapping 
table entry, in tum, directly references the base of segment S. Since all capabili
ties reference a segment base through the mapping table, relocation of a seg
ment S from base address A to base address B is achieved simply by modifying 
mapping table entry M to indicate that the segment base address it now refer
ences is at address B instead of the old base address A. This one relocation step 
automatically relocates the segment S referenced by all capabilities that refer
ence mapping table entry M. Thus, a reference to a segment is normally 
separated into two parts: 

1. access authorization and reference to the mapping table entry via a capability 

2. mapping table entry 

The use of capabilities not only so[ves the problem of how to achieve effi
cient segment relocation, but also leads to the solution of the problem: how to 
control the size and scope of protection domains; the latter is based on the 
observation that different users having different privilege can each be given dif
ferent capabilities for the same segment, i.e., capabilities with different access 
authorizations (meaning different access rights) for the same segment. 

By contrast, protection of individual address spaces in the Burroughs 
descriptor-based architectures was founded on the assumption that users execute 
only those programs that are compiled by system-provided high-order language 
compilers. Users program with "safe languages" only, and they access system 
services only through "safe interfaces". System-supplied compilers are trusted 
to generate instruction streams for software or applications programs that 
correctly manage the creation, distribution, and manipulation of descriptors, 
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thereby assuring the integrity and authenticity of execution-time program data 
structures, and more generally the integrity of the system as a whole. For those 
users who wish to have complete access to a processor's full instruction set, or 
to a wider range of languages and interfaces, or both, the above limitation has 
seemed too restrictive. 

The Burroughs "software" approach to providing system integrity did not 
solve the general protection problem. Even so, retrospective assessment now 
suggests that further evolution of the descriptor mechanism with additional 
hardware support for it, as in architectures like the i432, has indeed led to a 
solution of this problem. 

The failure to solve the general protection problem by prior architectures 
(descriptor-based or not) has had serious consequences. It has meant, for exam
ple, that system software modules must be set apart and explicitly protected 
from application programs; the former cannot be permitted to trust the integrity 
of in-bound pointer arguments such as descriptors. This disparity has, in tum, 
made it impractical and unsafe to permit users the freedom to substitute their 
own versions of selected system modules. A frequent consequence has been that 
much software within a system tends to be relegated to a small number of very 
large (monolithic) protection domains. This consequence, in turn, leads to high 
software maintenance costs. We return to this issue later in this section and 
again in Chapter 6; there we show why and how it is that i432 system solves the 
general protection problem with the consequent benefit that system software 
modules are indistinguishable in structure and privilege from user-written appli
cation programs. The important conclusion one should draw is that the user's 
interface to the i432 operating system is significantly different than in other sys
tems built on conventional architectures. In particular, all system modules can, 
in principle, be safely revised by users or replaced with other versions tailored 
to specific user needs. Protection domains are usually small, but in any case are 
type-specific, i.e., related to the type managed within that domain, rather than 
to a variety of available and possibly ad hoc protection mechanisms. 

Before proceeding too much further with our discussion of the i432 address
ing structure, we first distinguish between the terms object and segment. 
(Later, we drop this distinction.) An object is referenced only by a capability; a 
segment is referenced only by a mapping table entry. In i432 terminology, a 
capability, consisting of an access authorization part plus a reference to a map
ping table entry, is called an Access Descriptor, or just AD. The access authori
zation part of an AD is referred to as the access rights of the AD. Finally, the 
mapping table is called an Object Table and the mapping table entry is called an 
Object Descriptor. We will use this new terminology from this point forward 
when discussing the i432 architecture specifically. 

Normally, an object-based architecture is designed so that the hardware is 
aware of and maintains the access authorization part of a capability and the 
mapping table itself. The machine maintains only a single copy of the mapping 
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table entry for a given segment, this being is a crucial restriction. However, 
there may be multiple copies of the capability, since two or more program com
ponents may require access to the same object, possibly with different sets of 
authorizations. 

Processing a reference to an object by a capability is achieved in steps; the 
ingenuity of the architect/implementor is challenged to achieve these steps as 
rapidly as possible: 

1. Fetch the access authorization part of the capability (the access rights) and 
check that the coded authorization therein permits access to the object. (The 
check is based on current state information available to the processor.) 

2. Determine the location of the mapping table entry (the Object Descriptor) for 
the capability by using the logical mapping table entry address encoded 
within the capability. The logical address is usually a (mapping table name, 
offset) pair. The mapping table name is used to reference a particular map
ping table; the offset designates a specific mapping table entry within that 
mapping table. From the information in the mapping table entry, the base 
address of the segment can be obtained. 

[Speed-up of this two-step process is usually achieved with some kind of caching 
scheme that relies on a high probability, due to the presumed "locality of reference", 
that the same capability or the same Object Descriptor has been referenced very recently. 
The i432 provides small, on-chip, storage caches for this type of information. More 
details may be found by consulting the i432 Architecture Reference Manual.] 

Figure 4-1 illustrates, using i432 terminology, the relationships between 
Access Descriptors, Object Table entries, and segments-hereafter called 
objects. The figure shows two Access Descriptors, containing possibly different 
access rights, each referencing the same Object Descriptor, which in tum points 
to the target object. 

The structure suggested in Figure 4-1 typically arises as a result of executing 
"create object" operations in the following way: An object T is created. In this 
creation process, a.block of free storage space of the required length is commit
ted for T, and an Object Descriptor providing the physical memory location of 
the base of T is placed into a table, referred to as an Object Table. (An Object 
Table is simply a directory or list of similar Object Descriptors.) Next, a valid 
Access Descriptor (or AD) to T (referencing the new Object Descriptor) is 
formed and deposited into an AD slot specified as an output argument of the 
"create object" operation. In the i432, this entire procedure is accomplished as 
a single, indivisible instruction. The Access Descriptor for the created object is 
returned with all meaningful access rights turned on. This Access Descriptor 
uniquely identifies the object it references; the hardware prevents a user from 
altering the AD so as to designate a different object. Hence ADs cannot be 
accidentally altered or forged. 
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Figure 4-1 A low-level view of the accessing mechanism for a target object, T. Access 
Descriptors, ADI and AD2, have distinct access rights to T. Both AD's refer to the same 
Object Descriptor, which is located in a table of Object Descriptors. (The latter is itself 
an object whose absolute location may be thought of as determined from a table supplied 
at system initialization.) Access rights in ADI are "rw", meaning read and write, 
Access rights in AD2 are "rx", meaning read only. In the above, "x" refers to a miss
ing right. 

Some architectural designs restrict the allowable locations at which capabili
ties can be stored. This is the case in the i432 architecture, where Access 
Descriptors may be deposited only in that part of an object known as its access 
part. In this implementation, moreover, only Access Descriptors may be 
deposited in the access part of an object, as suggested in Figure 4-1. 

An i432 object is represented as a contiguous block of storage partitioned into 
two parts: a data part and an access part. Each of these parts can contain up to a 
maximum of 2**16 bytes; each part or both parts can be empty. Later in this 
section we discuss further the partitioning of i432 objects and the means for 
controlled access to information in each part of an object. 

Associated with every i432 object is a type; this type is stored in a location in 
the Object Descriptor that is known to and accessible by the i432 hardware. The 
hardware recognizes many of the possible obje_ct types as being of special sig
nificance; objects carrying one of these special types are known as system 
objects. Most system objects have both a data part and an access part. There are 
several i432 system objects used to maintain the execution time environment of 
active programs. For example, Context Objects and Process Objects are both 
system objects that are used to control the execution of i432 programs. A Con
text Object is used to represent the activation record for a function or procedure. 
A Process Object contains the attributes of a process, e.g., an Ada task, that are 
required to schedule it, to dispatch it, to perform recovery if it faults, and to 
allow it to communicate with other processes. A Process Object serves as the 
root node of the object structure representing an active process. 
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Note that, although an i432 AD can be copied, it cannot be created, except in 
connection with the creation of an object of some type T (or of a "refinement" 
of such an object-as explained later). Also, since an AD cannot be altered to 
designate a different object than the one for which it is created, a type manager 
for type T objects can be certain of the integrity of all ADs for objects of type T 
passed to it as arguments for operations on type T objects. This assurance of AD 
integrity and authenticity is crucial to the implementation of type-specific pro
tection domains. Chapter 6 completes the presentation of this reasoning along 
with the necessary details on the i432's hardware support for object access and 
type control. 

We can imagine the genesis of Figure 4-1 as follows: Suppose that the crea
tion of object T results in the creation of AD 1 with both read and write access 
rights. At some later time, a procedure may be invoked to copy ADl, thus 
creating AD2. The copied access descriptor (AD2) will have access rights re
stricted to a subset of the rights of the original Access Descriptor (ADI). Note 
that AD2 need not be stored into the same object as AD 1. 

Additional objects may be dynamically created and thus added to the collec
tion of address spaces active during the execution of a program. For example, 
Figure 4-2 shows how the structure in Figure 4-1, in which AD2 is copied from 
ADI minus ADI '8 write rights, might be augmented with the addition of a 
newly created, second target object. Again, purely for convenience, we show 
all the Access Descriptors in Figure 4-2 in the same object. 

Access Part 
of 

Object A 

rwx ADI 

rxx AD2 

rwd AD3 

0- r-

~ 

0- I---

r 

Object Table Target objects 

I 
TI 

I .. 
OBJ. DESCR.I ~ 0 .. 

c:J OBJ. DESCR.2 
r. 

Figure 4-2 Address space structure of Figure 4-1 augmented with the addition of another 
object whose Access Descriptor, AD3 has read, write, and delete rights. 

In Figure 4-2, we introduce "delete rights" as a third access right encoded in 
an Access Descriptor (delete grants the owner the right to delete this AD, i.e., 
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the right to store a new AD (or a null AD) over an AD to be deleted). We see 
that some access rights associated with an AD refer to the AD itself, rather than 
to the object referenced by the AD. Thus, delete rights refers to a right to delete 
the AD, rather than to delete any elements in the object referred to by the AD. 

As we will see below, a possible side effect of deleting an i432 Access 
Descriptor, ADx, is the reclamation of the storage space occupied by object T 
referred to by the Access Descriptor ADx (and, potentially, other objects refer
enced by T.) The architect must be unusually careful in selecting rules by which 
Access Descriptors may be formed, copied, moved and deleted. Discovering 
consistent, useful, and safe sets of such rules has been the subject of intense 
research for at least ten years [33] [58] [60] [65]. 

We postpone until Chapter 6 a detailed discussion of rules selected by the 
i432 architects. Instead, we will mention such rules in passing, as they become 
relevant in our discussions. For example, a hardware fault is invoked if an 
attempt is made to delete an Access Descriptor that does not have its delete 
rights bit set. 

It is interesting to note how deletion of i432 Access Descriptors is related to 
deallocation of objects. The storage space for an object X becomes a candidate 
for deallocation by the i432 System's garbage collector when X is unreachable, 
i.e., either nowhere are there are any ADs that reference X or all ADs that do 
reference X reside in objects that are themselves unreachable. [There are several 
objects that are special and are defined always to be reachable; these special 
objects, recognizable by the i432 hardware, are called Processor Objects.] 
Object T2, illustrated in Figure 4-2, would be a candidate for garbage collection 
if AD3 were the only Access Descriptor referring to T2 and AD3 is overwritten 
with another, possibly null, Access Descriptor. In this situation, the i432 
System's garbage collector would eventually deallocate T2, resulting in the 
structure originally given by Figure 4-1. [It is also possible for objects belong
ing to circular lists to be deallocated, even though there is one Access Descrip
tor referring to each object in the list. Such a circular list, CL, would be deallo
cated by the garbage collector when no other Access Descriptor external to CL 
refers to an object within CL [12].] 

In short, at the hardware level a delete right of an AD is simply the right to 
overwrite it. Exercising the delete right has indirect consequences for object 
de allocation that must be handled at the software level. 

Earlier we indicated that an i432 object is logically and physically partitioned 
into a data part and an access part. Here we introduce some of the details of 
accessing and addressing elements within objects. We wish to satisfy the 
reader's curiosity; and having done so, then use abstractions when they seem 
appropriate. Figure 4-3 is offered to clarify the structure of an i432 object and 
the means for accessing information within it. 
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i432 Object 

t 
Object Descr. len_d data part 

Access Descr. l 
__ r_wx _____ : ........... : ..... !len..d • 1 en.. a ()o+-I-~t-... ----~ ..... 

len_a access part 

l 
Figure 4-3 First detailed view of an i432. object, showing its data part and access parts. 
The Object Descriptor contains the base address of the object and the lengths of both the 
data and access pruts, len_d and len_a, either of which may be zero.] 

Every i432 instruction fetches its input operands (if any) from some location 
within an object (in memory) and delivers its output result (if any) back to some 
location within an object (in memory). This approach is contrasted with almost 
every other computer architecture in existence today, in which intermediate 
data registers hold (at least one of) the operands for or the result of an instruc
tion. In these classical architectures the contents of the intermediate data regis
ters are loaded from or stored into memory locations by instructions distinct 
from the instructions that operate on the data in the registers. An i432 instruc
tion can have zero, one, two, or three operands; each of these operands 
addresses a location within an object in which the operand resides or will reside. 

The i432 processor interprets a data operand of an instruction (which is a log
ical address) as a two-part value, consisting of an object selector and a displace
ment. The object selector specifies a distinct Access Descriptor for the object. 
The displacement is then used by the microcode as an appropriate offset from 
the base address of the object, as indicated in the object selector, in arriving at a 
physical address of the target element to be accessed. [Readers wishing more 
details can find them in the iAPX 432 Architecture Reference Manual that is 
cited in Appendix B.] Whether the operand reference is to a data value or to an 
AD, the processor induces a fault whenever the specified displacement into a 
target object violates the bounds limit given in its Object Descriptor (len_a or 
len_d, whichever applies.) 

Possession of an AD for an object implies the same set of access rights both to 
the data part and to the access part of the object. Read/write access rights for the 
access part of an object are to be understood as follows: If an Access Descriptor, 
AD, for a target object, T, has read rights, then AD can be used to copy (read) 
any Access Descriptor in T. If the same AD has write rights, then AD can be 
used to replace (write) any Access Descriptor in T that has delete rights. 
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Before closing this primer on i432 object-space structures, we first introduce 
certain conventions for indexing into, for displaying, and for discussing struc
tures such as Figures 4-2 and 4-3. We then introduce the concept of Refinement 
Objects, how they are accessed, and how they may be diagrammed. 

4.1.1.1. More details about i432 objects. When referencing an AD that resides 
in the access part of an object, the specified displacement (measured in 32-bit 
words) is subtracted from the base address of the object. Thus, Access Descrip
tors are numbered ADO, AD!, AD2, ... , downward from the dividing line 
between the data and access parts. When referencing into the data part of an 
object, the displacement of a data field (measured in bytes) is added to the base 
of the object. Part (a) of Figure 4-4 illustrates these relationships. 

Obj. Descr. 
Access Descr. 

I rwx 0 ~1-~".LI _____ o 

(a) indexing into the 
access and data parts 

Obj. Descr. 
Access Descr. 

I 

Target Object 

data part 

.. 
ADO 
AD1 
AD2 
... 

i432 Object 

o+-_~~ o~---~~~~~~~~ L-_____ ~ L _____ _ rwx 

(b) processor-defined parts 
and software-defined 
extensions to data and 
access parts 

i432 Object 

Figure 4-4 A more detailed look at an i432 object. 
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The lowest-indexed portion of the access part or data part, or both, of an 
object may be predefined by the various i432 processors. (This is true for all 
system objects.) For such objects, the higher-indexed regions of the object are 
regarded as software-defined (or user-defined) extensions. We illustrate this key 
point in part (b) of Figure 4-4. Clearly, deciding what information is to be kept 



1432 Object Structures for Program ExecutIon 101 

in the processor-defined regions of an object can greatly affect the performance 
of the system as a whole. This point is addressed frequently later in this 
chapter. 

Access to any target requires traversal from an Access Descriptor, via a par
ticular Object Descriptor, to the target. However, for most matters of interest to 
us, it is quite unimportant to note this intermediate traversal step. Hence, we 
may adopt a simpler diagrammatic convention, which shows Access Descrip
tors pointing directly to their respective targets. Figure 4-5 shows the shorthand 
equivalent for Figure 4-2. We lose no significant generality with the use of this 
abstraction for the level of discourse used in most of this book. 

Access Part 
of 

Object A 

rwx ADl 

rxx AD2 

rwd AD3 

Target Object 

r-c:J 
T2 

. 
I 

Figure 4-5 Schematic view of accessing structure for objects Tl and T2. The access part 
of object A holds two different Access Descriptors for Tl and one Access Descriptor for 
T2. 

4.1.1.2. Access paths to Refinement Objects. It is often desirable to create a 
new object that is, in fact, a physica[ subobject of another (parent) object. The 
data part and access part of the subobject must be subparts of the data part and 
access part, respectively, of the parent object. That the subobject physically 
resides within its parent object is reflected in the fact that the subobject is 
defined in terms relative to the parent object. Each part of the subobject is 
defined to be of some (possibly different) size and to reside at some (possibly 
different) offset from the base address of the parent object. 

For example, one might wish to represent an "actual parameter block" for a 
procedure call as a subobject within the object representing the current activa
tion record. Each argument that matches a "by-reference" parameter must be 
represented by an AD that references the actual parameter. (In many cases this 
AD can reference a refinement of another object representing an activation 
record.) Such parameters must reside in the access part of the subobject. Any 
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parameters that represent access values (for example, a variable of access type 
that is passed "by-value") must also reside in the access part of the subobject. 
Any remaining (data) parameters must reside in the data part of the same parent. 
Note that we wish to regard the actual parameter block as a single logical 
object. 

The challenge to efficiently represent and control access to subobjects, has an 
elegant solution in the i432 System. The architecture provides a Refinement 
Descriptor mechanism to efficiently implement the concept of a subobject, as 
discussed above. A subobject is defined by a Refinement Descriptor which is 
inserted in the access path between an Access Descriptor and the Object 
Descriptor for the parent object. 

A Refinement Descriptor contains the thirty-two bit data image of the AD for 
the parent object, a length and an offset value for each of the two parts of the 
subobject. In i432 terminology, a subobject is called a Refinement Object. As 
suggested previously, a Refinement may have an empty data part or an empty 
access part. Refinement Descriptors are stored in Object Tables, along with 
Object Descriptors. Figure 4-6 illustrates the access path to the base of a Refine
ment Object having an access part and a data part. The offsets (from the base of 
the target object) and the lengths of each part of the Refinement Object are 
denoted by the pairs, (off_a, len_a) and (off_d, len_d), respectively. 

Target Object 

Object Table 

+ data 
Ref. Descr. len_d refinement 

L 
off_d, len_d + 0---off_a, len_a t 

-I 
length_d 

off_d 
Obj. Descr. 

~ length_d 

L base 
length_a t , off_a 

+ • access 
len_a refinement 
_t_ 

length_a 

_1 
Rgure 4-6 Refinement Descriptor as a prefix to an Object Descriptor. Access to the 
refinement is made using Refined_AD, while access to the full Object is made using 
ObjeccAD. 
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Several important applications of the refinement mechanism are exploited by 
the 432-Ada compiler. For example, we will see in more detail in Section 4-4 
that the public part of an Ada package is accessed as a refinement of a Domain 
Object that represents the union of the public and private parts of the package. 
The compiler ensures that every external reference to a package has access only 
to that collection of information accessible via the public part refinement. Thus, 
the i432 hardware is able to enforce Ada package (i432 domain) privacy. More 
importantly, by means of refinements the i432 hardware is able to enforce 
privacy over domains that are created at execution time. This scheme is illus
trated in Figure 4-7. 
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........ 
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Domain Object 
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AD4 
AD~ 
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~J 
b 
b 
b 
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public 
part 
only 

union of 
public 

and 
private 
parts 

Figure 4-7 Diagrammatic representation illustrating overlapping subspaces within the 
same object. Here, the subspace accessed by Caller_AD is a refinement of the host 
object accessed by Unrestricted_AD. The specific application occurs when distinguish
ing between the public and public-plus-private parts of an Ada package domain. 

4.1.2. Run-Time Program Structures 

The foregoing preliminaries provide us with a framework in which we can more 
fully appreciate i432 run-time program structures. We consider here only the 
execution of single-task Ada programs, such as illustrated in Figure 2-2; we 
defer until Chapter 5 a discussion of the program structures that arise during 
execution of multitask programs. First we consider the condition of a program 
after it has been compiled, and prior to its execution. 

A compiled program normally resides in the inactive state in the passive 
address space of the i432's Object Filing Subsystem [47]. The structure of the 
compiled program is generally the same as that for the data objects on which the 
program will operate: a directed graph (grouped into a composite within the 
Object Filing Subsystem). One node of this directed graph is special; it 
represents the program's root node. The root node corresponds to the object 
structure that represents the domain in which the program's initial (starter) task 
must execute. References within this root structure point to substructures, such 
as, for example, other Domain Objects representing various packages that may 
be called at run time. 
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In the case of a program like the one suggested in Figure 2-2, the compiler 
would notice that the Secretary _ Treas starter task and the several packages are 
not embedded within the starter task, but are rather separate units at the same 
Ada "library level." The compiler, therefore, generates a separate program 
structure unit (grouped as a composite object) for each library-level compilation 
and files it in the passive object space (permanent memory) of the Object Filing 
Subsystem. 

The Object Filing Subsystem permits the protection mechanisms to be 
extended in the i432 system from "volatile" memory to permanent memory. 
The Object Filing Subsystem merits a separate study in itself, however, and this 
is done in Chapter 1 O. 

When a user's program is invoked by the operating system, the various inac
tive program structure units are activated as needed. By "activated", we mean 
brought from passive (object filing) memory space into active (i432 virtual) 
memory space. 

As already mentioned, an active program is represented by networks 
(directed graphs) of Domain Objects; this network represents primarily the 
, 'static" components of the program unit. A Domain Object consists of a set of 
ADs and a set of data; the ADs reference Instruction Objects, an object for 
user-generated literal constants, user AD variables, etc., and the set of data con
taining domain control information, user data variables, etc. Also, if a package 
represented by the Domain Object D contains calls to other packages, then D 
will also contain ADs for the Domain Objects corresponding to those other 
packages. 

Access to a Domain Object D is controlled by the Ada compiler, because the 
compiler limits the generation of Access Descriptors for D (or for any refine
ment of D) to those Ada program units that have declared the need to access the 
corresponding Ada package for D. Ada packages that declare the need to access 
another package P are those packages that include P in their with list. 

Domain Objects for Ada library level packages that own variable data, as 
does Club_Portfolio, are not entirely static in nature. Values of data variables 
contained in such a Domain Object may vary from one activation of the Domain 
Object to the next. For example, each separate use of the investment club pro
gram may result in an alteration of the data owned by Club_Portfolio. When a 
program containing an Ada library level package P, represented by domain D, 
completes, then domain D must be deactivated. This implies that any owned 
variable values within D that were modified during the time D was active now 
has to be updated within the older, passive version of D. This assurance is 
needed so that future activations of D will reflect changes that occurred during 
the most recent activation of D. 

[Notice that it is the responsibility of the Object Filing System to maintain the passive 
version of Club_Portfolio's Domain Object in a consistent form. Thus, the Object Filing 
System possesses some of the functionality of a data management system, performing 
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database management at the level of the operating system! (We amplify this important 
observation in Chapter to.)] 

To execute a program at command level, an operating system module 
prepares an initial run-time object structure that represents the program. Then, a 
message, in the form of a reference (Access Descriptor) to this structure, is sent 
to a Dispatching Port, first mentioned in Chapter 1. At this port, the message is 
bound to a processor for execution. We discuss these details in the next chapter. 
Here, we focus on what constitutes the initial run-time object structure for the 
program and what is involved in forming it. 

To create an initial run-time object structure, the operating system first 
creates a Process Object for the program and attaches to it a Context Object, the 
first of a list of fixed-size Context Objects that are preallocated for the process. 
The first Context Object serves as the initial addressing environment or activa
tion record needed for execution of an initial procedure. Part of this addressing 
environment is an AD to the root Domain Object, discussed below. A schematic 
of this structure is given in Figure 4-8. The reference Process_AD is the mes
sage referred to in the preceding paragraph. Note that one such structure is 
formed for each task, including the "starter task", of every Ada program. 

[

Process 
Object 

-----t .. ~ 

Root 
Context 
Object 

Root 
Domain 
Object 

(Standard) 

Figure 4-8 Initial Object structure for a program ready for execution-many details still 
missing. 

The domain associated with the initial procedure of a task is called the root 
Domain Object. The root Domain Object was produced earlier by the compiler 
from an Ada source program and filed in the passive object space. The operat
ing system locates this object via a call on the Object Filing Subsystem, by sup
plying the program name and relevant directory information. Upon retrieval, 
the Domain Object is activated and a reference to it (Access Descriptor) is 
placed in the initial Context Object as another step toward completing the 
necessary addressing environment. Further steps of this nature are taken to fully 
initialize the needed addressing environment before actual program execution 
can begin. Among these is the allocation of a block of free storage space whose 
size is predetermined by the operating system. 

[If a program cannot run to completion with its initial storage allocation, the operating 
system provides the additional space during execution of the program.] 
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Each Context Object contains an operand stack and space for local variables. 
The block of free space is used to allocate a number of other kinds of objects, 
such as objects for Ada's dynamic arrays. Some of these objects may be 
automatically deallocated upon execution of relevant RETURN instructions. 
Context Objects are preallocated by the operating system before a process 
begins execution. As the process executes, a pointer to the current context 
moves back and forth through this list of preallocated Context Objects. Thus, 
Context Objects are not physically deallocated until storage for the process 
itself is deallocated (by becoming unreachable). 

Management of a block of free storage space strictly specific to a process is 
facilitated by associating with its Process Object a data structure called the stack 
SRO. An SRO, an abbreviation for Storage Resource Object, models a "bank 
savings account", provided with some initial deposit amount (of free space). 
An SRO includes a component that models a "bank book. " That component is 
used for keeping track of the balance of free address space available to this 
process. 

The "bank book" component records the beginning and ending addresses of 
the uncommitted portion of the original block of free storage awarded to the 
process. A procedure activation may lead to the dynamic allocation of objects 
needed for use with the current Context Object. Such allocation results in with
drawal of space from the bank book. Return from a called procedure results in 
recovery of this allocated space (a redeposit in the bank book). Note that storage 
space occupied by the Context Object is not itself drawn from the stack SRO, 
but rather is allocated from a global heap SRO in much the same manner as the 
space for the Process Object. 

Besides the use of the stack SRO, an executing program may request the 
creation of other storage bank accounts, called local heap SROs. These Storage 
Resource Objects define pools of storage space from which objects may be allo
cated dynamically in non-LIFO order, as required by the program in execution. 
In an Ada program, for example, a local heap SRO is created upon entering a 
procedure in which types are declared for variables whose assigned values 
require dynamic allocation of storage space, for example, Ada access types. A 
local heap SRO is created to supply the storage requirements (other than for the 
Process and Context Objects), for each spawned task. Recovery of local heap 
objects occurs automatically when the thread of control exits from the pro
cedure activation at which the local heap was created. However, prior to exit 
from that procedure activation, space within such a heap may be recovered by 
the System's on-the-fly garbage collector process. (The deallocation mecha
nisms for local heap objects are described in Chapter 9.) 

The process in execution also has access to a global heap SRO, from which 
objects may be allocated that have unbounded lifetimes. These objects are also 
reclaimed by the same garbage collector when no longer reachable. We expand 
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on this model governing the management of process memory in Chapter 9. See 
also [34,48]. 

We are now ready to examine the Process, Context, and Domain Objects in 
more detail. And, we do this in the next three sections. 

4.2. The Process Object 

A Process Object, which is created for each process, and hence for each Ada 
task, has the composite structure shown in Figure 4-9. To gain speed and access 
control, an internal processor register (Process Object Register) serves as a 
dedicated pointer to the currently executing Process Object. This register, which 
is never directly addressable, is loaded when a process is dispatched (i.e., when 
a Process Object is bound to a processor.) 

The offset of each descriptor and data item in the Process Object is fixed, so 
it can be known to the hardware logic, microcode, software, or to some combi
nation of these. Many of the items we identify within key system objects have 
offsets that are known to the microcode and to the operating system. 

[Preplanning the offsets of individual items within system objects is a non-trivial job 
that, in theory, carries considerable risk of introducing too much complexity or inflexi
bility, but which, in practice, offers a high enough payoff in the efficiency of both the 
software and hardware to be indispensable. Advances in high-level microcode 
languages, and high-level system implementation languages like Ada, are keys to the 
success of this approach.] 

3 data 
structures 

Process_AD • 
0 Process PSO AD 
1 Proc Obj Tab AD 
2 Proc_Claim AD 
3 CUrr Context AD 
4 Globals_Obj AD 

other ADs 

Process Object 

Figure 4-9 First view of a Process Object. Individual parts of the object are discussed in 
the text.) 

The access part of a Process Object, as suggested in Figure 4-9, holds two 
main sets of Access Descriptors. One set, not detailed here, is related to inter-
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process message-based communication and dispatching. The other set, detailed 
in Figure 4-9, is: 

o. a reference to the Physical Storage Object Component (or PSO) of the stack 
SRO 

1. a reference to the Object Table Component of the stack SRO 

2. a reference to the Claim Object Component of the stack SRO 

3. a reference to the Current Context Object 

4. a reference to the Process Globals Object 

The data structure representing an SRO contains three principal components. 
These are the PSO, the Object Table, and the Claim Object. The first three 
Access Descriptors in the Process Object refer to this set of three components 
for the stack SRO of the process. 

• The Physical Storage Object (PSO) , which is the bank book component, 
holds the set of physical addresses representing boundaries for blocks of 
unused storage of the SRO. 

• The Object Table component holds Object Descriptors and Refinement 
Descriptors for objects created from the free space controlled by the SRO. 
For a stack SRO, space for these objects is allocated and deallocated in LIFO 
(Last-In/First-Out) order, and hence the corresponding PSO component con
tains only a single pair of physical addresses, namely the beginning and end
ing points of currently unused storage. 

• The Claim Object component holds the value representing the total amount of 
storage as yet unallocated from this SRO. 

The AD in the Process Object that designates the current Context Object is 
continually changing during the execution of a program as procedure calls are 
made. At the outset, the current context is the root context mentioned in con
nection with Figure 4-8. Prior to execution, the operating system initializes a 
doubly-linked list of Context Objects, headed by the root context, that will nor
mally constitute the local addressing environment for Ada procedures. During 
program execution, as procedure calls are made, the AD in the Process Object 
that designates the current context designates different Context Objects in the 
preallocated list by simply moving back and forth through the forward and 
backward links of the doubly-linked preallocated list. (There are, of course, 
mechanisms in place for handling overflow of this list of Context Objects.) 
Thus, the Access Descriptor for the current context is "kept current" in the 
Process Object; this facilitates restarting a process, in case it was previously 
suspended for any reason. 
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[As we will see later, the current Context Object itself contains the instruction and 
stack pointers which must be reloaded into processor registers before actual resumption 
of execution can take place. Keeping the Current Context Object AD up to date in the 
Process Object also facilitates process-level fault recovery.] 

An important protection mechanism, related to the creation of objects by a 
process, is provided in an Object Table entry. When any object is created from 
an SRO, the level of the current context is recorded in the Object Descriptor as 
the level number for the created object. (The level number of the current con
text, or context level, is the length of the chain of Context Objects from and 
including the root context up to and including the current context.) Lifetimes of 
created objects cOlTespond to their respective level numbers; the higher the level 
number, the shorter the lifetime. (An object created from a global heap SRO is 
always given the level number zero.) 

The level number of an object is used by the hardware to ensure that no 
Access Descriptor D references an object of level number j if D resides within 
an object of level number i <j. Such potential dangling references are automat
ically prevented by a hardware prohibition that an AD for an object with a given 
level number (shorter lifetime) may not be stored into the access part of an 
object that has a lower level number (longer lifetime.) 

The Process Globals Object (PGO) is a read-only object that can be shared by 
all contexts within a process. A single i432 instruction, executed within any 
context, is sufficient to place the contents of the Process Globals Object in the 
directly addressable space of the processor. [We explain how this is done in 
Section 4-3.] 

The particular role of the PGO is left to be defined, usually by the operating 
system. For example, in the first release of the i432 operating system (iMAX), 
the PGO is filled in with references to a number of objects that are required by 
the Ada compiler in the execution of Ada programs. An important purpose of 
the PGO is to contain a reference to the global heap SRO. This reference is 
needed when an executing program needs to create an object having an 
unbounded lifetime, such as one destined to become a passive file. We have 
more to say about global heap SROs in Chapter 9. More details on the PGO 
may be found in the iMAX 432 Reference Manual that is cited in Appendix B. 

The data part of a Process Object consists of three distinct areas: 

1. Process Control Area 

2. Process Fault Area 

3. Context Fault Area 

A brief explanation for each of the above items follows: 
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1. The Process Control Area includes a collection of information needed for the 
management of a process. Some values are used for scheduling, while oth
ers are used by the hardware or software for process-related storage manage
ment and fault recovery. Among the values included here are: the current 
level number, a process clock value, service period and service count 
values, the process' own ID, and the process' status. (Process scheduling is a 
topic discussed at some length in Chapter 5 and again in Chapter 8.) 

All of the above information is prefixed by the Object Lock, which is used 
by the hardware or software to lock the entire Process Object, when neces
sary, to guarantee against harmful "interaction" with another processor 
while performing examination or manipulation of any part of the Process 
Object. [This lock also governs access to all Context Objects associated with 
this Process Object.] 

2. Process Fault Area. When the hardware detects a fault at the process level (a 
fault such that the process may not proceed until repaired by another proc
ess), the hardware deposits certain fault code and state information in the 
Process Fault Area. Recovery from a process-level fault involves sending the 
Process Object as a message to another process which is expected to know 
how to respond to this fault. 

3. Context Fault Area. If a context level fault (roughly equivalent to an Ada 
exception) should occur, there is a similar fault information area in the 
current Context Object into which the processor will deposit the appropriate 
information. Repair of a context level fault is normally delegated to a pro
cedure within the same process. However, provision must be made for the 
possible occurrence of another context level fault while attempting to repair 
the first. This case is handled by depositing the new context fault informa
tion in the Context Fault Data Area of the Process Object, thereby promoting 
this second sequential context level fault to process level. The processor 
knows when to perform this "promotion" from information available to it in 
an on-chip process status register. 

We continue our discussion of Process Objects in Chapter 5. Still more 
detailed information on Process Objects can be found in the i432 Architecture 
Reference Manual. 

4.3. The Context Object 

As mentioned earlier, this object plays a very similar role to that of an activa
tion record in stack-based run-time data structures for reentrant programs 
[40,44]. [Activation records are often called stack frames and sometimes 
called contours, especially when dealing with abstractions of activation records 
[32,46].] 
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Unlike classical implementation strategies for activation record management, 
each activation record in the i432 is a separate Context Object, with hardware 
means to protect it from inappropriate access by a processor executing either the 
current program or any other program. In most classical implementations, 
activation records are stacked into one contiguous block of storage. Access con
trols are, at best, maintained for the whole block and not for the individual 
activation records within it. 

Figure 4-10 provides us with our fIrst view of a Context Object. Again, we 
note that the offsets within the access and data parts are known to the micro
code. Moreover, as a means for speeding access to current context information, 
an internal processor register, the Context Object Register, is provided in the 
processor to hold an AD for the current Context Object. 
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local variables 

processor-
defined 
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defined ADs 
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software-
defined 
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Figure 4-10 Initial view of a Context Object 

In the discussions that follow, we will see that a major role of the Context 
Object is to serve as a receptacle for hardware state information characterizing a 
program executing in a given procedure activation. Slots of the Context Object 
designated to hold this information serve as storage images for values in a set of 
on-chip processor registers. In order to correctly preserve the storage image dur
ing each call (return) to (from) a context, microinstruction sequences store 
(load) processor state information into/from the Context Object. 
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4.3.1. Details of the Context Object 

We begin our discussion of the Context Object by looking first at the key 
Access Descriptors that lie at the base of the access part. These fourteen 
descriptors can be grouped into four categories: 

1. ADs that define the processor's current addressing environment 

2. ADs to key objects of the executing program 

3. ADs to relevant messages (intercontext or interprocess) 

4. ADs to objects at the "top" of the stack SRO 

Table 4-1 lists the individual ADs in each category and the slots to which 
they are assigned. We give an explanation of each of these ADs in the order 
listed in the table. The purpose of some of these ADs may be obvious to readers 
with experience in stack-based architectures. Even so, we present an explana
tion of the use of each of these ADs. In some cases, the full significance of the 
reference may not be clear until later . Some of the references are "constants" , 
deposited into the Context Object as part of the procedure entry semantics (ADs 
0, 1,8, and 9.) Some of the others (ADs 5,6,7, 10, and 11) are deposited with 
delete bit reset so that they cannot be modified by the user. 

TABLE 4-1. Processor-Defined Access Descriptors In the Context Object 

Category Access Descriptor Target 

Current Context (self reference) 
Access Environment 1 
Access Environment 2 
Access Environment 3 

2 Defining Domain (current domain) 

3 

4 

Calling Context (' 'dynamic chain link") 
Static Link ("static chain link") 
Global Constants 
Local Constants 

Context Message 
Precreated Message 
Intetprocess Message 

Top of Descriptor Stack 
Top of Storage Stack 

(parameter list) 
(argument list) 

(top Descriptor) 
(top Object Descriptor) 

Slot Index 

o 
5 
6 
7 

3 
8 

13 
1 
4 

2 
9 

12 

10 
11 

1. ADs that define the processor's current addressing environment. 
• The Current Context AD slot holds a self reference. This slot is assigned a 

value when the current Context Object is initialized in the course of exe
cuting a CALL instruction. (The hardware prevents assignment of a new 
value to this slot as long as this Context Object remains active, that is, 
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until a RETURN instruction has been executed from the procedure whose 
call resulted in the creation of this Context Object.) 

The value of the Current Context AD forms the root of the tree represent
ing the processor's current addressing environment. Whenever the proc
essor executes a CALL or RETURN instruction, it loads a copy of this 
value into its Context Register. Upon executing a RETURN, the processor 
restores in its Context Register the value of the Current Context AD of the 
predecessor Context Object. 
Upon completion of a CALL, the processor's "on-chip" Context Register 
also has a copy of the same (new) Context Object AD. The Context Regis
ter, which is never directly addressable, is used indirectly as an operand in 
a variety of instructions that require access to references contained in the 
Context Object. As we will see, the current directly addressable space of 
the processor is defined in terms of exactly four sets of primary refer
ences, one of these being the set contained in the Context Object. 

• ADs for Access Environments 1, 2, and 3. The values in these AD slots, 
which can be set (repeatedly) during execution within the current context, 
define the other three sets of primary references for the processor. A new 
value assigned to one of the three Access Environment AD slots has the 
affect of dynamically altering the current directly addressable space. Such 
alteration is achieved by executing an ENTER ACCESS ENVIRON
MENT (or ENTER GLOBAL) instruction, identifying the Access 
Environment slot that is to receive a specified AD. The important indirect 
effect of executing one of these instructions is to copy the same specified 
AD value into a corresponding on-chip Entry Register. 
[We are now able to explain more fully how the address ability of the processor is 
controlled. Recall that every operand reference (both data and access references) 
of an i432 instruction must specify some form of access selector that references 
the AD for the object in which the operand resides. The encoding of an access 
selector includes a two-bit field that designates one of four environment registers 
(Context Register, or Entry Registers 1, 2, or 3.) Therefore, the only objects that 
the processor can access are those whose ADs reside within the objects that are 
referred to in the four environment registers.] 

Since the ADs for exactly four objects define the directly addressable 
space, and since the access parts of each of these Objects can, in princi
ple, hold 2**14 AD's and since each object addressed by one of these 
AD's can have up to 2**16 bytes in its data part, directly addressable data 
space is 2**32 bytes. Directly accessible AD space is 4*(2** 14) Access 
Descriptors. 

An ENTER ACCESS ENVIRONMENT (or ENTER GLOBAL) instruc
tion indicates by operands specified in the instruction which of the three 
registers is to be updated and which of the 4*(2**14) directly addressable 
AD's is to be loaded into that register. Indeed, refreshing the addressable 



114 A Programmer's View of the Intel 432 System 

space in this way is the technique which must be used in the i432 when 
"chasing" a reference chain, some or all of whose AD links are not con
tained within the 4*(2** 14) directly accessible ADs. 

When a RETURN instruction is executed, the processor's directly 
addressable space is restored to that of the predecessor context by restor
ing into the Context Register and into Entry Registers 1, 2, and 3, the AD 
values saved in the corresponding slots of the predecessor Context Object. 
The values in these AD slots also provide important pieces of state infor
mation needed to recover from a fault that occurs in a successor context. 

2. References to key objects of this program. 
• Defining Domain Object AD. This slot is filled with a reference to the 

current Domain Object in which the AD for the currently executing 
instruction object resides. This is the primary Domain Object that will be 
accessed during active use of this Context Object. The hardware prevents 
assignment of a new value to this slot. 

Various components within the Domain Object may be needed as part of 
the processor's directly addressable space. A called procedure can make 
such a component directly addressable by executing an ENfER ACCESS 
ENVIRONMENf instruction to copy the value of the Current Domain 
Object AD into one of the Entry Registers. This step is then followed by a 
reference-chasing step to "fetch up" an AD for a desired target com
ponent accessible via the Domain Object. [The processor has a Current 
Domain Register. Upon executing a CALL instruction that has the effect 
of changing domains, this register is assigned a new AD value that points 
to the base of the private part of the new domain. This value remains valid 
during intradomain calls and is used by the processor to speed up the 
interpretation of such calls.] 

• The Predecessor Context AD serves simply as a backward (dynamic) link 
to the previous context and is used, for example, by the microcode in exe
cuting a procedure return instruction. This Access Descriptor is formed 
expressly without read, write, or delete rights. It does, however, carry a 
return right. Only if return rights are on within an AD used as a dynamic 
link can a RETURN instruction proceed to completion. 
A Context Object is given a Predecessor Context AD with return rights off 
in cases where objects are allocated (from a local heap) at the same level 
as that of the Context Object. Upon return from this environment, the exe
cution of the RETURN instruction faults, providing a means for a planned 
escape to a memory management module of the operating system. This 
module deallocates objects that were allocated at the level of the current 
Context Object in effect at the time the RETURN instruction was issued. 
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After this' 'cleanup" step, the unfinished RETURN instruction is allowed 
to resume in normal fashion. 
Absence of read and write rights in the predecessor context AD assures 
that it cannot: be used to access information in the calling procedure's con
text. This is a key component in the overall security strategy of the i432, a 
subject discussed at greater length in Chapter 6 . 

• Static Link AD. Static links are maintained by the i432 in the Context 
Objects for programs written in ianguages like Ada that use static binding 
for block structure semantics [45]. When the static link slots in Context 
Objects are used properly by a compiler, one can be assured that a called 
procedure is always invoked from the appropriate environment. 

The Access Descriptor in the Static Link slot refers to the (most recent) 
Context Object for the subprogram (or block) that statically encloses the 
subprogram (or block) for which the current Context Object has been 
created. Consider the case in which procedure A and procedure B reside 
immediately enclosed within procedure C. When A is active, the static 
link for A references the Context Object for the most recent activation of 
C, regardless of which procedure called A. If A calls B then the new Con
text Object for B will reference the Context Object for the most recent 
activation of C with its static lirik and the immediately previous Context 
Object for A with its dynamic link. 
[In languages like LISP, Snobol, and APL, which have dynamic binding seman
tics, the static link may never be nonnally used; only the dynamic link is used for 
the purpose of establishing the proper environment of a called procedure. An 
exception is the so-called "funarg" mechanism in LISP which would use the static 
link [50]. In languages like Fortran,Basic, and Cobol whose programs need have 
only one Context Object, the static links are never used; dynamic links would be 
used only for calls to system library routines.] 

• Global Constants AD and Local Constants AD. Unlike most other 
machines, the i432 does not provide instruction operands for which the 
value is given directly within the instruction itself. Thus, no operand value 
can be stored within an instruction; every operand, including constant 
operands, must come from an object external to an instruction object. 
Therefore, when a procedure begins execution, one of its first tasks would 
seem to be to make addressable some object containing local constants for 
the procedure. But this is impossible, because the ENTER ACCESS 
ENVIRONMENT instruction, which is the only instruction that can be 
used (in this situation) to make an object addressable, itself requires a con
stant operand! From this discussion it can be seen that the i432 must pro
vide a special constant data object that is made addressable by the CALL 
instruction itself. Every Domain Object contains an AD for a local data 
object in which constant data values reside for all procedures in the 
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domain. A CALL instruction copies the AD for the local data object from 
(a known offset in) the Domain Object to the new Context Object as a 
result of procedure invocation. Thus, the local data object is addressable 
when the procedure begins execution. In like manner, the CALL instruc
tion provides an AD to a global Constant Object in the new Context 
Object. The global constants object contains' 'popular" constants that are 
likely to be required in every procedure (e.g. the values one and zero). 
Every executing process in the i432 uses the same global Constant Object. 
It is provided primarily to prevent the proliferation of the' 'popular" con
stants in local data objects throughout the system. 

3. References to relevant messages (interprocedure or interprocess). 

• Interprocedure calls may transmit (accept) information to (from) the caller 
(callee) by means of explicit Message Objects. The message passing 
mechanism we describe below is used by a compiler to match an argument 
list prepared by a caller to a parameter list specified by a callee. Two 
slots, referred to the as Precreated Message AD and Context Message AD 
are used to achieve communication between caller and callee contexts. 

When subprogram P prepares to call subprogram Q by means of a CALL 
instruction, P places the actual parameters for Q in an arbitrary object 
which will become the Message Object, referenced by Access Descriptor 
M. Following this, M is copied into the precreated message AD slot. 
When the CALL instruction begins, the precreated message AD must 
refer to the Message Object. As part of the semantics of the CALL instruc
tion (P calls Q), the Precreated Message AD of P's Context Object is 
copied into the Context Message AD slot of the Context Object created for 
Q. Figure 4-11 illustrates the foregoing concept for the case of a chain of 
two interprocedure calls (P calling Q with message A, and Q calling R 
with message B.) Note that message objects need not be separate objects; 
they may, for example, be refinements of other objects. Thus, Message 
Object A in the figure could actually be a refinement of the Context 
Object for P. 

• Interprocess Message AD. The third message slot in the Context Object is 
reserved for receipt of messages from another process. As we will see in 
the next chapter, execution of the RECEIVE instruction causes the Access 
Descriptor for a received message to be deposited in the Interprocess Mes
sage AD slot. 

4. References to objects at the "top" of the stack SRO. 

The LIFO discipline for the (allocation) stack SRO is achieved by maintain
ing two ADs in each Context Object that reflect the current "state" of the 
stack SRO for that Context Object. One of these, the Top of Storage Stack 
AD, references the most recent Object Descriptor formed in the Object 
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Figure 4-11 Object structures for intercontext message communication. 

Table for the stack SRO. The other AD, the Top of Descriptor Stack AD, 
references the most recent Object Descriptor or Refinement Descriptor 
formed in the Object Table for the stack SRO. (A Refinement Descriptor is 
placed in the Object Table for the allocation stack SRO when a refinement is 
defined for an existing object previously created and allocated from the stack 
SRO.) The Top of Descriptor Stack AD references the "high water mark" in 
the Object Table for the allocation stack. The Top of Storage Stack AD 
references (indirectly through an Object Descriptor) the' 'high water mark" 
in allocated physical storage for the stack SRO. 

The RETURN instruction does not need to perform any action in order to 
reclaim storage space and Object Table space from the stack SRO. Since the 
previous context contains the complete state of the stack SRO in its own Top 
of Descriptor Stack and Top of Storage Stack ADs and since these two ADs 
reflected the state of the stack SRO in the previous context at the time of the 
procedure call, return to the previous context automatically restores the state 
of the stack SRO Jor the previous context. (Two kinds of space are recovered 
using these ADs. The Top of Storage Stack AD is used to recover storage 
space allocated via the SRO's Physical Storage Object while executing in the 
current context; the Top of Descriptor Stack is used to reclaim space occu
pied by Object and Refinement Descriptors formed in the SRO Object Table 
while executing in the current context.) 
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4.3.2. Details of the Context Object's Data Part 

We now look more closely at the data part of the Context Object. Figure 4-10 
indicates there are three major data areas, the flrst of which is flxed by the 
architectural design and contains flve key flelds. The parts of the flrst data area 
are listed and discussed briefly below: 

1. Context Status 

2. Stack Pointer (SP) 

3. Current Instruction Object Index 

4. Instruction Pointer (IP)-in bits 

5. Trace Control Data Area 

6. Working Storage 

7. Operand Stack 

We briefly explain these items in the following paragraphs: 

1. The Context Status entry holds two kinds of information: 
a. Fault state information (indicates whether a fault has occurred while exe

cuting in this context) 
b. User-supplied processor control codes (for determining precision and 

rounding modes to be used by the processor during execution in this con
text). Execution of the SET MODE instruction sets appropriate subfields 
of the Context Status slot, and automatically updates corresponding con
trol registers of the processor. These registers control the rounding and 
precision modes for floating point operators. In principle, these mode 
controls can be turned on and off at any time during execution of a pro
cedure. 

2. Stack Pointer (SP). The data part of the Context Object contains the operand 
stack that is used during the current procedure activation; the SP entry serves 
as the top-of-stack pointer or offset. SP is initialized, upon entry into the 
current context to the offset value for the base of the operand stack. This ini
tial value of SP is generated by the compiler and placed in a predetermined 
slot at the base of the Instruction Object referred to in the CALL instruction. 
(See next item for more details.) 

When execution in the current context commences, the initial SP value is not 
only copied into the data part of the Context Object, but is also loaded into a 
corresponding on-chip processor register. If a processor suspends execution, 
the processor's SP register value is written into the SP entry in the data part 
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of the current context. Resumption of execution in the context requires the 
reversal of this information transfer. 

3. Current Instruction Object Index. This value is an offset into the access part 
of the current Domain Object. It identifies the AD of the Instruction Object 
from which instructions are currently being executed. 

An Instruction Object represents the instructions (or a portion of the instruc
tions) that will be executed to perform the actions specified by a procedure. 
An Instruction Object contains no access part. The data part consists of a set 
of key data values followed by instructions. 

The data values in the Instruction Object are as follows. 

a. Parameter values to be used in initializing the required Context Object: 

• lengths of the data and access parts 

• offset into the data part used to determine the base of the operand stack 

b. Offset into the access part of the defining Domain Object for this Instruc
tion Object. The slot at this offset holds an AD for the Local Constants 
Object that is loaded into a slot. of the current Context Object as part of 
the CALL instruction. 

4. Instruction Pointer (IP). The IP is a bit offset into the Instruction Object for 
the currently activated procedure. The initial IP value, like that of the SP 
value, is placed by the compiler in a slot at the base of the Instruction 
Object. This value is later copied into the data part of the new Context 
Object during execution of the CALL instruction. 

The slot in the Context Object reserved for the IP is used to save the process
or's copy of the IP during execution of a CALL instruction, or, more gen
erally, for saving the IP whenever the processor suspends execution in this 
context and needs later to restore the IP to resume execution in the same con
text. 

5. Trace Mode Data Area. The i432 processor supports software debugging and 
analysis by providing a combination of user-enabled controls and by allocat
ing the special Trace Mode Data Area in each Context Object for use with 
these controls. This area contains three values, deposited to "advise" the 
processor on the means for resuming normal execution upon completion of 
any trace action. The saved values are: 

• Instruction Object Index 

• Instruction Pointer (IP) 

Denotes the Instruction Object containing the 
instruction that triggers this trace action. 

Identifies the particular instruction whose 
execution has triggered this trace action. 
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• Trace Event Code Encodes the form of resumption of normal 
execution, if any, that is appropriate upon 
completing execution of the trace action. 

Briefly, the implemented trace control strategy is as follows: First, an i432 
processor operates in one of four trace modes, as specified in the Process 
Object of the process to which the processor is currently bound. Second, the 
AD for an Instruction Object contains trace rights which is set on to open the 
Instruction Object for tracing. By tracing, we mean executing the Instruction 
Object whose AD is held in slot 1 of the current Domain Object (see the next 
section) in response to an enabled trace event. 

The particular trace event depends on the current trace mode of the proc
essor. The four modes are: 

• normal Tracing is disabled, overriding trace rights for individual 
Instruction Objects. 

• fault trace 

• flow trace 

• full trace 

Perform a trace on the faulting instruction prior to execut
ing the context-level fault handler. 

Perform a trace after BRANCHing or CALLing to or from 
an Instruction Object that is open for tracing and before 
and after executing a RETURN instruction. 

Perform a trace prior to executing every instruction in an 
an Instruction Object that is open for tracing. 

More details on these tracing features can be found in the i432 Architecture 
Reference Manual. 

6. Working Storage. The remainder of the Context Object data area is divided 
between working storage and the operand stack. The working storage area 
will normally be used to store the current value of data variables local to an 
executing procedure. 

7. Operand Stack. Values are pushed onto and popped from the operand stack 
during execution of instructions that are used in the evaluation of expres
sions. It is worth noting that data references to the operand stack in i432 
instructions are very short; this means that compiled i432 instruction 
sequences that make heavy use of this stack are themselves compact. In this 
book, however, we do not detail further the instruction formats and instruc
tion sequences used in expression evaluation at the i432 machine instruction 
level. Readers interested in these details should consult relevant chapters of 
the i432 Architecture Reference Manual. 

4.4. The Domain Object 

The "permanent" part of an executable program unit is represented by a 
Domain Object, as indicated in our brief introduction in Section 4-1. Here we 
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elaborate by showing some of the representation details. The reader should note 
that a Domain Object (also simply called a "domain") is readable and writable; 
thus any portion of a domain that can be accessed is modifiable, except for slots 
in which ADs are written that do not possess delete rights. 

A domain must consist of at least two AD slots that are required by the i432 
architecture. The first of these is an AD for the domain's Fault Information 
Object and the second of these is an AD for the domain's Trace Information 
Object. These objects provide the processor with the information it needs to 
intervene and shift the thread of control properly when fault or trace events 
arise. Information in the data part of a Domain Object may serve any purpose 
specified by the user (or compiler), as no part of it is required by the i432 archi
tecture. 

ADs that reside within a domain D are primarily ADs for Instruction Objects 
and ADs for other (external) domains that may be referenced while executing 
within the Instruction Objects referenced by D. In addition, a domain may con
tain other constant ADs, AD variables qnd data variables that represent informa
tion accessible by all Instruction Objects that reside within the domain. Since a 
Domain Object is writable, constant information must reside within a physically 
separate object whose AD resides within the domain. Figure 4-12 illustrates a 
simple case of a domain that contains only ADs for instruction objects and a sin
gle AD for the constant data object. 

The access part of the usual Domain Object (Figure 4-12) is logically divided 
into public and private parts. Thus, the access path begun with Public_AD 
leads through a Refinement Descriptor to its target. That target is not a separate 
object, but merely a "refinement" of the Domain Object. The refinement spans 
all the Access Descriptors from the one pointed to by Public _AD to the end 
(highest-indexed slot) of the access part of the host object. The access path 
represented by Private_AD leads not to a Refinement Descriptor, but directly to 
an Object Descriptor whose target is the entire Domain Object. (That is, at the 
representation level, the "private part" of the Domain Object is actually the 
entire Object.) The data part of a domain can be partitioned into a public part 
and a private part in the same manner as that described for the access part. 

Access Descriptors for other domains and for various other objects will nor
mally appear in a domain because of requirements generated by source pro
grams. We give two examples here: 

1. Consider the case of an Ada package A containing an operation that calls a 
public operation in another package B. An AD for B' s public part must be 
included in A's private part to enable A to access B. In general, for any 
interpackage reference in an Ada program the compiler will provide a 
corresponding "interdomain link" in the form of an AD residing in the 
private part of the referencing domain to the public part of the referenced 
domain. Later in this section we will discuss how the i432 architecture con
trols such calls. 
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Figure 4-12 Schematic of a Domain Object's access part having n locally defined (private 
procedures) and r publicly accessible operations along with one publicly accessible con
stants data object. 

2. In cases where an Ada package owns a set of variables, as in the case of an 
owner Ada package, the domain will include data locations or AD slots that 
hold the values of the owned variables. These data locations or AD slots will 
appear in the appropriate public or private part of the domain, according to 
whether the owned variables are declared in the public or private portion of 
the Ada package. 

4.4.1. Access to the Public Part of a Domain 

A public procedure of an Ada package is called from a given context using 
either of two instructions: CALL or CALL THROUGH DOMAIN. The CALL 
instruction is the more general of the two and can be used for all procedure calls 
if so desired. However, use of the CALL instruction to call a procedure that 
resides in any domain other than the current domain (an interdomain call) is 
more expensive than a call to a procedure that resides in the current domain (an 
intradomain call). The extra expense incurred is the expense of an extra ENTER 
ACCESS ENVIRONMENT instruction that must be performed to make the 
current domain addressable. The current domain must be addressable in order to 

I 
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reference the domain containing the procedure to be called. The CALL 
THROUGH DOMAIN instruction obviates the need for the extra instruction in 
an interdomain procedure call if the AD for the domain containing the pro
cedure to be called physically resides in the current domain. The instruction 
does this by effectively providing one extra AD reference step for a procedure 
call, i.e., from current context to defining domain to called domain, instead of 
from (any) directly addressable object to called domain. Besides making inter
domain procedure calls more efficient, the CALL THROUGH DOMAIN 
instruction makes the handling of certain fault and trace events less awkward. 

As we will see, a new Context Object will have access to all of the new 
Domain Object. Hence, it is critically important that the new context be inac
cessible from the calling context. This is assured because the called context is 
automatically made inaccessible when control returns to the calling procedure. 

The reader may well ask: "How can a calling procedure which possesses 
only the Public_AD for a Domain Object, provide the processor with the infor- > 

mation needed to establish a new context whose domain of definition extends 
over the entire domain specified by Private_AD?" Private_AD is not in pos
session of the caller and must not be allowed to come into the calling 
procedure's possession; otherwise the system's protection scheme could be 
breached. 

The answer is surprisingly simple. The microcode for a CALL (or CALL 
THROUGH DOMAIN) instruction converts Public_AD into Private_AD. To 
understand how the conversion from Public_AD to Private_AD is done, recall 
that Public_AD refers to a Refinement Descriptor which, in turn, points to the 
Object Descriptor for the entire Domain Object. In fact, the Refinement 
Descriptor contains a copy of Private_AD, as was implied but not detailed in 
Figure 4-6. This copy of Private_AD is then stored into the defining domain 
slot of the new Context Object for the called procedure. In short, the hardware 
executes a controlled amplification of the caller's access environment by pro
viding the derived Private_AD for use in the new Context Object. Such amplifi
cation is safe because, as was pointed out above, the caller can never gain a 
copy of Private_AD. 

[The i432 has an internal processor register named the Current Domain Register. A 
byproduct effect of an inter-domain call (return) is to set (restore) the Current Domain 
Register with the value of Private_AD for the new (antecedent) domain. Of course, only 
the micro-code has access to this register. Its value is automatically referenced by the 
micro-code during intra-domain calls.] 

After appending a new Context Object to the chain of Context Objects, 
several AD slots are then filled with information. First, a copy of Private_AD, 
is placed in the Defining Domain AD slot. and also in the on-chip Current 
Domain Register. In addition, information derived from the newly introduced 
Domain Object is copied into the new Context Object, as follows: (See also 
Section 4-3.): 
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• Current Instr. Object Index 

• Local Constants AD 
• Instruction Pointer 
• Stack Pointer 

calculated from calling instruction 

from the new Domain Object 
a fixed offset value 
from called Instruction Object 

In the above, "calculated from calling instruction" may require further 
explanation. By "calling instruction" we mean that the Instruction Object 
index is imbedded in the CALL (or CALL THROUGH DOMAIN) instruction 
that invoked the procedure call. By "calculated" we mean that the Instruction 
Object index given in the calling instruction is (usually) an offset relative to a 
domain refinement rather than an entire Domain Object. The offset required in 
the Context Object is the Instruction Object index relative to the entire Domain 
Object. This must be calculated by the i432. 

4.4.2. Use of the Private Part of a Domain 

We have just seen that once a call has been completed to a procedure in a new 
domain, the called procedure has access to the entire domain. We now discuss 
what is involved in using the full domain. Procedure calls fall into three classes: 

• Calls to locally defined private subprograms (intra-domain) 

• Calls to locally defined public subprograms (intra-domain) 

• Calls to procedures in other domains (inter-domain) 

The mechanics of a call to a locally-defined private subprogram provides us 
with the model for understanding the other kinds of calls. 

Let the called public procedure in package A be named Proc 1, and let there 
be a local procedure named, Local_Proc, defined in the body part of A such 
that during execution, Procl calls Local_Proc. Procl executes the CALL 
instruction, specifying the Static Link AD, the value of Private_AD as the 
domain of definition, and the offset from the base referenced by Private_AD 
that locates the Instruction Object for Local_proc. The effect of this CALL 
instruction is to produce a Context Object, newly appended on the Context 
Object chain, containing Private_AD in the Defining Domain AD slot. 

If Procl in package A calls another public operation, Proc2 in A, the call 
from Procl to Proc2 is made in exactly the same manner as that described above 
for Local_Proc as a private procedure contained in A. (It goes without saying 
that the same intra-domain calling mechanism is used when Proc 1 or 
Local_proc calls itself recursively.) 

An interdomain call, from either Procl or Local_proc, to an operation in 
another package B is again straightforward. The Domain Object for package A 
must contain a Public_AD value for package B or the head of a chain of refer
ences leading to Public_AD. The static link, the AD for package B, and the 
Instruction Object offest are specified in the CALL THROUGH DOMAIN (or 
CALL) instruction. This has the effect of establishing a Context Object for the 
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called procedure with access to the full domain of package B. [Of course, the 
compiler of package A has the responsibility for providing the Public_AD for 
package B, based on the explicit reference to B in the source code of A.] 

4.4.3. Processor Registers to Facilitate 
Domain Access 

We have just mentioned that the i432 processor achieves rapid access to the 
Current Domain Object via the on-chip Current Domain Register. In addition, 
iristruction fetching from the currently executing Instruction Object is, also 
made highly local to the processor; two on-chip registers facilitate instruction 
fetch: an Instruction Object Register holds the AD for the activated Instruction 
Object, and an IP Register holds the bit displacement into this object. 

4.4.4. Section Summary 

The present and foregoing two sections have focused on the individual forms of 
the objects required to execute programs on an i432. In the course of these 
inspections, we have gained some understanding of object creation and manipu
lation critical to the correct execution of i432 programs. To "put it all 
together", however, we need to follow an actual execution scenario. In particu
lar, we need to examine a series of execution snapshots for a program having 
sufficient structure to illustrate and reinforce many of the observations made so 
far. We attempt to do this in the final part of this chapter by revisiting the 
investment club program and studying a representative, albeit hypothetical and 
sketchy, snapshot sequence. 

4.5. Some Object Structure Snapshots for 
the Investment Club Program 

We will now attempt to trace the execution of the program structured in Fig
ure 2-1, beginning with the creation of the Secy _ Treas starter task and continu
ing to a call on the Add procedure in the Purchase_Queue_Mgr package while 
attempting to enter a buy transaction into the club's portfolio. We present and 
discuss briefly a total of seven related snapshots of i432 execution-time data 
structures. 

4.5.1. Snapshot 1 

Figure 4-13 shows the set-up required to begin executing in the starter task. The 
Process Object (lacking some detail to be investigated in the next chapter), the 
root Context Object, and the root Domain Object are all displayed. Since the 
Domain Object represents a starter task instead of a package, it has no public 
refinement. This snapshot also shows the initial object structure just prior to the 
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call on Club_Portfolio's Enter_buy (public) procedure, including the current 
context's precreated Message Object. 

In the figures illustrating these snapshots, we represent Access Descriptors in 
the access parts of objects using small open, or filled circles, or the mark "x". 
An open circle represents an AD that has some (possibly non-null) value, but 
not one which we wish to illustrate or discuss further. A filled circle will usually 
have a directed arc emanating from it. (Exceptions to this rule will be explained 
in connection with a later snapshot.) The mark "x" signifies a deliberate, 
recognizable, null AD value. 
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Figure 4-13 Initial object structure ready for execution of code in the Secy _ Treas starter 
task. This figure reveals the object structure just prior to calling the Enter_buy operation 
of the Club_Portfolio package shows the Message Object used with CALL instructions 
issued from the root context. (The root Domain Object has no public part.) 

We do not attempt to display or explain the role of each Access Descriptor or 
of each object referenced. However, we do indicate some highlights and some 
of the more subtle or crucial details. We rely on the reader to use these 

o 
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snapshots in part as exercises, to confirm the partial or full understanding 
already gained from earlier sections in this chapter. Necessity for some "back 
and forth" perusing within this chapter and also within the Ada program 
(Appendix C) is inevitable. 

4.5.2. Snapshot 2 

Figure 4-14 shows the state of affairs after completion of a call to the 
Enter_buy procedure. A new Context Object h~s been linked to the Domain 
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Figure 4-14 Object structure snapshot on entry into the Enter_buy operation of the 
Club_Portfolio package. Note that the Process Object now points to the new context and 
that the new context has one pointer into the old context and one into the (received) Mes
sage Object. 
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Object for Club_portfolio. Notice that the Access Descriptor from the Process 
Object to the root Context Object has been replaced with an Access Descriptor 

.. to the new Context Object for Enter_buy. (See preceding snapshot.) The root 
Context Object has no predecessor context, so its corresponding back-pointer is 
deliberately null, and marked "x". 

The next two bits of detail worth noticing are the AD that references back
ward to the predecessor context and the AD that references the Message Object 
associated with the predecessor context. The AD in slot eight is the return AD 
and serves as a backward link in the "dynamic chain" of Context Objects. It 
may have return rights, but in no case does it have read or write rights. Thus, it 
cannot be used to gain unauthorized access to information in the calling 
environment. The other AD of interest is the Current Message AD referring to 
the Message Object holding the actual parameters for Enter_buy. 

The Domain Object for Club_Portfolio has both a public and a private part. 
The reader is invited to study the objects pointed to from this Domain Object 
and to compare them with the objects implied from the Ada program and the 
discussions earlier in this chapter. 

To avoid excessive complexity in this and subsequent snapshots, we adopt 
the convention of not repeating the display of the Domain Object that goes with 
the predecessor Context Object. Also, we only display the current Context 
Object and its immediate predecessor. Static links are ignored. Thus, some of 
the filled AD circles in the predecessor Context Object have no arcs emanating 
from them since we do not show their respective targets. Generally, these tar
gets have been displayed previously, so the reader can, if need be, trace back
ward to determine the actual reference associated with any previously displayed 
AD. 

4.5.3. Snapshot 3 

Figure 4-15 shows the state of the object structure reflecting execution of a call 
on the Record_buy procedure of the Portfolio _Mgr package from Enter_buy 
in Club_Portfolio. The Process Object now points to the new Context Object 
for Record_ buy. 

Access to the Portfolio_Mgr Domain Object, from the new Context Object is 
via the Private_AD. The reader is urged to check that this part of the snapshot 
reflects the intent of the Ada program. 

4.5.4. Snapshot 4 

Figure 4-16 illustrates the situation immediately before a call by procedure 
Record_buy to the private-part function, Search_for_stock_code. There is 
only one change shown from the preceding snapshot: Record_buy has copied its 
input reference parameter (AD for the object instance of our_portfolio) into the 
new Message Object associated with the Context Object of Record_ buy. This 
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Figure 4-15 Snapshot showing object structure upon entry to Record_buy operation of the 
Portfolio_Mgr package. 

action is necessary for the Record_buy procedure to transmit its actual parame
ter reference (to our_portfolio) to the Search_for_stock_code procedure. 

4.5.5. Snapshot 5 

Figure 4-17 shows the object structure for the state that arises as a result of com
pletion of the call to the function Search_for_stock_code. The new Context 

I 
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Figure 4-16 Object structure snapshot with Record_buy about to execute a call on private 
function, Search_foe stock_code. 

Object created by the CALL instruction has for its Defining Domain Object AD 
a duplicate of the value of Private_Ad (the base of the Portfolio_Mgr Domain 
Object) that is in the Record_buy Context Object. 

We assume here that no other subprograms are called from 
Search_for_stock_code, so we don't bother to display the Message Object for 
the Context Object of Search_for_stock_code. 
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Figure 4-17 Object structure snapshot just after entry to the private function, 
Search_for _ stock_ code. 

4.5.6. Snapshot 6 

Figure 4-18 shows the object structure applicable for the case in which 
Record_buy has returned from Search_for_stock_code and is ready to issue a 
CALL on the public Add procedure of the Purchase_ Queue_Mgr package. 
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Figure 4-18 Object structure snapshot with Record_buy about to execute a call on the 
public Add procedure in the Purchase_Queue_Mgr package using a CALL THROUGH 
OOMAIN instruction. 

4.5.7 Snapshot 7 

Figure 4-19 shows our final snapshot, revealing the state of the object structure 
just after entering the Add procedure. The new Context Object is referenced by 
the Process Object. The new Context Object in tum references the 
Purchase_Queue_Mgr Domain Object. (There is provision in the private part of 
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this Domain Object for Access Descriptors referring to a queue object and to a 
queue element.) 
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Figure 4-19 Object structure snapshot just after entry into the Add procedure in the 
Purchase_ Queue_Mgr package. 

Again, we assume that no other procedures are called from Add, so we 
choose not to exhibit the Message Object associated with the Context Object for 
Add. 

4.5.8. Section Summary 

We have now introduced the "statics" and the "dynamics" of i432 Object 
Structures for single-thread-of-control processes. We have not looked at all the 
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relevant details, but we have more than scratched the surface. Some of the 
details left out here have only been postponed until a later chapter. For the rest, 
the reader is commended to other documents listed in Appendix A, or to actu
ally studying the i432 behavior by running programs and observing their 
behavior. 

We are now well equipped to look at the i432's unifying "request-server 
model" , whereby process dispatching and interprocess communication are uni
fied into a relatively simple, effective, and consistent structure. We are also 
ready to look at the implementation details of this model-and do this in the 
next chapter. 



i432 COMMUNICATION 
STRUCTURES FOR PROGRAM 
EXECUTION 

5.1. Introduction 

In the preceding chapter we were concerned primarily with the evolution of an 
i432 process after it had been created; moreover, we assumed that it was always 
active. From that viewpoint, the process itself (and its representation as a Proc
ess Object) was not manipulable. That approach was taken deliberately, but 
only to confine the scope of discussion. In this chapter, we are interested in 
examining the process in the larger scope of a typical operating environment. 
Here we examine the architectural models and mechanisms for the scheduling 
and dispatching of i432 processes and the corresponding models and mecha
nisms and for achieving interprocess communication among i432 processes. 
(We only view the process after it has been created and defer until Chapter 8 
consideration of operating system support structures for process management 
such as the explicit creation and destruction of processes.) Before taking a 
closer look at these models and mechanisms, we establish a conceptual frame of 
reference. In effect, we attempt first a brief review of two major objectives for 
modem computer systems. 

5.1.1. Process Dispatching and Interp.,ocess 
Communication-In General 

The initial and still a major objective of current computer operating systems, 
whether for uniprocessor or multiprocessor configurations, has been to ensure 
effective application of the computer to its workstream. A workstream is a rela
tive term; its meaning has changed during the several decades of computer and 
operating system development. For early mainframe computer systems con
trolled by primitive batch operating systems, the workstream was simply a 
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manually-ordered sequence of computer programs "presented" for execution. 
Later, related programs, such as compilations followed by execution, were pro
grammatically linked into steps of program sequences called jobs. For purposes 
of resource accounting and control, programs or program sequences were asso
ciated with particular users or user groups. Operating system modules computed 
charges for processor time and memory space utilization by user category for 
individual user or user group accounts. 

When computer systems were implemented with the ability to perform com
putation overlapped with input/output processing, achieving maximum 
"throughput" required that more attention be paid to the ordering of jobs in the 
workstream. Since such jobs could, by then, be maintained on disk and other 
on-line storage, the ordering process was increasingly delegated to the computer 
itself through the inclusion of software that could perform job scheduling. 
Coincidentally, mUltiprogramming models were developed and implemented 
that enabled the scheduling of jobs and job steps to become finer-grained; with 
multiprogramming, one job could be started before another was completed. 
Moreover, individual job steps of one job could be interleaved with steps of 
another job. The different priorities and deadline requirements of jobs and their 
individual program components were then taken into account in the formulation 
of scheduling policies and their implementation mechanisms. The potential 
degree of multiprogramming rose with the addition of extra I/O processors and 
eventually the addition of extra CPUs, which called for more sophistication in 
scheduling and dispatching algorithms. The superposition of interactive time
sharing requirements, which generally forced ordinary batch processing into a 
"background" mode of operation, led to the necessity for multilevel dynamic 
scheduling of workstream components; long-term scheduling was applied to the 
program components of jobs and short-term scheduling, using time slicing, per
mitted maximum effective interleaving of jobs and job components. 

In the models designers used for such purposes, it became natural to exploit 
hierarchical relationships such as: 

user class > individual user > job > individual program 

Finally, as individual programs acquired multitask substructures, the leaf nodes 
of the hierarchy became individual processes (e.g., Ada tasks). Thus, dynamic 
scheduling could now be applied to the individual tasks of the same program. 
The "mix" of work units being scheduled could now include individual tasks or 
task subsets of different programs, possibly belonging to different jobs. 

The workstreams of the modem mainframe computer system frequently 
depend on moment-to-moment outcomes of previous work units and on new 
arrivals, some representing predictable real-time demands (for example, in 
chemical process control applications) and some arising with unpredictable 
demands and frequency (for example, in business transaction processing). To 
meet this growth in complexity of workstream, algorithms and implementations 
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for the scheduling and dispatching of work in computer operating environments 
have tended to grow in complexity almost without control-often leading to 
disappointing or unreliable performance. 

Adding more processors to keep up with growing workloads introduces the 
need to synchronize processors propetly over shared object structures. This usu
ally contributes additional complexity to the problem of achieving good overall 
resource management. , 

The evolution of algorithms and structures for solving increasingly complex 
computer operating systems objectives has guided for several years a similar 
evolution in the algorithms and structures required to implement increasingly 
more complex user application programs. Today, application programs, espe
cially those that model real world systems, exhibit many of the structural and 
functional characteristics of operating systems-vis a vis scheduling and 
dispatching. [This observation was first made well over fifteen years ago [18].] 

As we have seen from Chapter 3, programs are often decomposed into groups 
of related tasks, not all of which need to run at once. When a task is invoked, it 
needs to execute. This means the task needs to be put into the workstream 
(scheduled) so that it can eventually be bound to a processor (dispatched). 

Tasks that are not currently ready to execute represent a pool of future candi
dates for the work stream. While in this future candidate status, tasks must also 
be monitored to ensure their proper transition to a ready state. Certain events are 
usually recognized for triggering the transition of a work unit from not-ready to 
ready. Other events are recognized for triggering other transitions, such as from 
ready to actively executing (invoked). In the first category, events like the 
arrival of messages serve as a trigger, while in the second category, events like 
the freeing-up of a processor may serve as a trigger. 

Before a task is invoked, its required input data must be available, often sup
plied by the invoking task. Before a task completes a particular invocation, it 
usually must transmit some output data (to some task that may be waiting to 
receive it). Keeping track of the input and output data streams (the communica
tions between tasks) for a complex structure of tasks, including some that are 
themselves created dynamically, is usually an overwhelmingly complex intel
lectual hurdle for a human programmer. (In the past, system architects have 
attempted to master this complexity primarily through the use of shared data 
and various synchronization mechanisms; there is very little concurrence today 
that indicates complexity has been mastered using these techniques.) 

5.1.2. Dispatching and Scheduling-A 
Technical Overview 

Positioning a work unit into the main workstream is referred to as scheduling 
that unit of work. Binding a work unit already in the main workstream to a proc
essor, so it can actually run, is referred to as dispatching it. The term short-term 
scheduling usually refers to the frequent repositioning of a work unit in the main 
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work stream at the end of a time slice by the recycling scheme just mentioned. 
The term long-term scheduling usually refers to the less-frequent repositioning 
of a work unit into the main workstream following reassessment analysis; this 
often involves substantial computation. (In the i432 model, a process P that is 
removed from the workstream for such reassessment, is said to be removed 
from the dispatching mix and sent to another process S which performs a long
term scheduling function on P.) 

The dispatching and scheduling problems of a computer operating system are 
related closely. Low-level work units in the mix such as individual Ada tasks 
must be given a fair share of the available processor power, but the decision as to 
what is fair often requires dynamic reassessment of the higher-level resource 
requirements of the programs or jobs of which such tasks may constitute a small 
part. 

When a process has used up a certain amount of processor time, it is usually 
preempted, that is, forced to become detached from the processor. At this point, 
either the task is recycled into the main workstream, thus assuring it of a future 
"turn" (i.e., rebinding to the processor), or it is taken out of the main work 
stream so that its needs may be reassessed. Various events may trigger the tran
sition of a task (and possibly of the higher level entity of which that task is a 
member) to and from the main workstream and reassessment status. 

Computer architects have faced difficult challenges in designing systems in 
which dispatching and short-term scheduling efficiency are not sacrificed to the 
flexibility required for long-term scheduling, and vice versa. As we will see 
later in this chapter, the i432 design meets this challenge successfully. 

Fortunately, the problem is simplified when using an appropriate message
based communication model for expressing the interactions between related 
tasks. Note that the challenge of managing the execution of a complex progrru~ 
is similar to the challenge of managing the workstream of a general-purpose 
computer. For this reason, a "bonus" is earned when using a common simplify
ing model both for organizing the implementation of scheduling and dispatching 
of jobs and for organizing the implementation of interprocess communication. 

It is the availability of a unifying request/server model that permits us to 
embrace a broad objective for this chapter. That is, the model helps us to dis
cuss the full environment of an i432 process as one topic. One panorama, as 
illustrated in the dual-state diagram of Figure 5-1, allows us to view all the sig
nificant states and transitions on processes and processors. 

The left and right halves of the model suggested by Figure 5-1 provide a glo
bal view of i432 process and processor state transitions, respectively. This 
chapter examines the details of this diagram and explains the underlying stra
tegies and mechanisms for implementing the model. Important for its apprecia
tion is understanding how and why processes are also treated as data objects; 
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Figure 5-1 Dual state graph' of i432 process scheduling and i432 processor dispatching. 
The left half of the diagram describes states of a process, while the right half of the 
diagram describes states of a processor. 

thus, as a data object, a process can, with the help of the processor, be sent as a 
message through a port to another process where it can itself be "processed" as 
needed. If the process is sent to a dispatching port, it is executed; if it is sent to 
any of the three illustrated communication ports on the right half of the 
diagram, it is treated as data by the receiving process. 

A model like the request/server developed for the i432 system [14] has no 
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doubt benefitted from much earlier research into operating systems principles 
[8] [52] [56]. We do not, however, need to digress here to review that history 
as the i432 model is rich enough to explain the implementation details of proc
ess management and interprocess communication. The model also serves to 
explain many key concepts needed by programmers who wish to mount ambi
tious mUltiprocess systems applications on the i432. 

5.1.3. Plan for Remainder of Chapter 

In the body of this chapter, we shall first view a process as a schedulable and 
dispatchable job. Recall from Chapter 1 we indicated that the i432 initiates 
execution by binding processes to processors at Dispatching Ports. To see how 
this is done, we will examine Process Objects, introduced in Chapter 4, in rela
tionship to three other i432 hardware-defined system objects, not yet discussed 
in the earlier chapters. These objects are known as Carrier Objects, Port 
Objects and Processor Objects. 

An abstract view of a port reveals it to be merely a queue consisting entirely 
of service requests waiting for servers or entirely of servers waiting for service 
requests. In the case of a Dispatching Port, the requests represent ready 
processes, and the servers represent available processors. In the case of a Com
munication Port, the requests represent messages that are waiting for the 
appropriate destination process and the servers represent processes that are wait
ing for messages. 

A more concrete view would show that a Port Object establishes (holds or 
anchors) a queue of requests or a queue of servers. As a system object, a Port is 
always locked during use; that is, it is never accessed by more than one proc
essor at a time. As a consequence, at least one queue at each Port, the request or 
the server queue, will always be empty. 

The i432 mechanisms and data structure representations needed to accom
plish the binding of a process to a processor at a Dispatching Port will be exam
ined in some detail. In the course of doing this, we will expand our earlier 
discussion of Process Objects, revealing some of the postponed details. As 
already mentioned, processes that are ready to run are not necessarily given 
"full-time access" to processor resources, out of fairness to other processes that 
may also be ready to run. 

In the i432, short-term scheduling (recycling a job on to its Dispatching Port), 
is made an automatic part of the hardware. On the other hand, the decision, 
whether or not to so reschedule is based on parameter values inserted by software 
into the hardware-recognized system objects. The effective separation of policy, 
as software-managed, and mechanism, as hardware managed-vis a vis 
scheduling and dispatching-is a major design goal of the architecture of the 
i432 system. 

We next consider programmatic relationships between processes, that is, pro-
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gram structures involving more than one process, as in multitask Ada programs. 
We examine the i432 architectural support provisions whereby processes can 
send to and receive messages from one another. The corresponding object struc
tures for achieving interprocess communication are examined. 

Once again, hardware-recognized Port Objects, and Carrier Objects are used 
in conjunction with Process Objects to accomplish the objective of message
based communication. As always, a Port Object is conceptually a queue con
taining either requests or servers (but never both)-where, in this case, the 
requests, which are essentially messages, are bound to servers, which are proc
esses. At this point in the exposition, we are able to suggest a possible means 
for executing some simple Ada task entry calls-and we do this. 

After introducing a few further representation details on Port and Carrier 
Objects, how the i432 hardware instructions use them and how the operating 
system software augments this planned use, we elaborate the request/server 
model, and then provide an interim review of the unifying system ideas. All this 
prepares us to examine some of operating system facilities available to i432 
users for constructing relatively efficient systems applications which draw their 
power and clarity from the use of message-based, inter-task communication. 
This discussion closes with observations on the equivalence of the Ada rendez
vous and the i432 port-based communication operations. 

We close the chapter by considering a few simple example applications, and, 
finally, we revisit the investment club program to consider ways to solve the 
bottlenecks implied in the multitasking structure of Figure 2-5. This is done by 
explicit use of the more efficient i432 interprocess communication mechanisms 
(made accessible to users through operating system modules), in place of direct 
application of tasking strategies that rely on the Ada rendezvous. At the end of 
this chapter, the reader should have a better picture of the tradeoffs between the 
two proposed solutions for the bottleneck problem. 

5.2. Processes as Scheduleable and 
Dispatchable Units of Work 

In the conceptual-level introduction for this chapter, we suggested how a proc
ess becomes bound to an i432 processor in a two-step sequence; first scheduling 
and then dispatching. One may wonder if it is really wise to separate these 
semantics in this way. Is an "overkill" implied here? Could not the system 
architect identify some shortcut leading to a more efficient means for switching 
processes? We jump ahead here to indicate a much lower level view of these 
actions, so that the reader can begin quickly to surmise why it is that short-term 
scheduling and dispatching can each be accomplished so efficiently within the 
i432 architecture. 

1. Recall that scheduling amounts to placing, at its position of relative impor-
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tance, the representation of a process P on the request queue portion of a 
Dispatching Port. The representation of a process is a Carrier Object that in 
tum refers to the Process Object representing process P. 

The role of a Carrier Object is, at fIrst view, simply a convenient queueing 
link. However, we have more to say about it later on when we explain how, 
as a purely hardware action, a process is positioned in a Dispatching Port's 
request queue. 

2. Dispatching is the binding of a request (process) at the head of the request 
queue portion of a Dispatching Port to a server (processor). Dispatching is a 
very effIcient operation on the i432; it is normally accomplished simply by 
moving a pointer, extracted from the queue entry of the selected request, to a 
proper position in the server. 

The request is the representation of a process and the server is a representa
tion of a processor. The pointer (Access Descriptor) for the request is a refer
ence to the Carrier Object for the process, and is copied into a pre specifIed 
slot in the object structure representing the processor. In the i432 implemen
tation, a processor representation is, by symmetry, similar in structure, con
sisting of a Carrier Object containing an Access Descriptor that references a 
Processor Object) The copied AD is actually deposited in the processor's 
Carrier Object. 
[Each physical i432 processor is associated at all times with a distinct Processor 
Object. This object may be viewed as a storage image, or virtual processor, that 
reflects the state of the physical processor. The Processor Object also contains vari
ous global control values for use by the processor, such as a set of alternative 
Dispatching Ports for use when special conditions arise.] 

Dispatching is achieved in the hardware as part of an automatic sequence ini
tiated whenever a processor terminates service for one process (for whatever 
reason) and is guided, via certain internal control information, to select work 
(a new process) from some selected Dispatching Port. 

Figure 5-2 is a schematic of the Carrier Object and the Process Object that it 
references. This fIgure illustrates the structure of a process sent as a request to a 
Dispatching Port. 

The same structure is used to represent an enqueued (or enqueueable) server. 
Later, we will see how this scheme simplifIes matters without loss of perform
ance. Figure 5-3 shows the (symm~trical) representation of a processor server 
for a Dispatching Port. 

The only discernible difference, at this schematic level, between the structure 
of Figure 5-2 and that of Figure 5-3 is the receptacle slot in the processor's Car
rier Object, In_Message_AD, which, at binding, receives a copy of a request
ing process' Request_AD. Figure 5-4 shows the relationship between a physical 
processor, its virtual representation (the Processor Object), and a process 
currently bound to it. 
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I Process AD . .. 
Carrier Object 0 __ 

Process Object 

Figure 5-2 Schematic of a (Process Object, Carrier Object) pair. The Process and Carrier 
Objects are mutually cross-referenced. 

[Ports have fixed-length request queues. Until an overflow of this queue is reached, 
each queue entry amounts simply to a reference to a structure like that shown in Fig
ure 5-2. When more entries are required, the "overflow" is accommodated in a linked 
list of such request structures, the head element of which is anchored in the Port Object. 
Links in the chain are embedded in the individual Carrier Objects. 

Logically, a Carrier Object may be reglll"ded as an extension of the' 'carried object" , 
in this case the Process Object. The primary reason for separating a conceptual process 
into a Carrier Object part and a Process Object part is related to efficient memory 
management. Carrier Objects are "factored out of" Process Objects in order to minimize 
the amount of information required to be present in physical store while performing fre
quent searches of, or manipulations on, enqueued requests or servers.] 

Server AD .. , 
In_Message_ADo 

0-

~ Processor AD 

Carrier Object 
0-~ 

Processor Object 

Figure 5-3 Schematic of a (Carrier Object, Processor Object) pair. The pair of objects are 
mutually cross-referenced. Binding to a request occurs when the slot marked 
In_Message_AD in the Carrier Object receives a copy of RequesCAD. 
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I i432 ~ . 
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Processor U~ Process 
Carrier 0- Carrier 
Object Object 0-1 0-

Process 

~ 
Object 

S 0 

i 432 Memory 

Figure 5-4 An i432 processor and its representation, the Processor Object R bound to a 
Process Object S through the respective Carrier Objects. 

5.2.1. Short-Term Scheduling Viewed as 
Communication 

Short-tenn scheduling on the i432 is achieved by using exactly the same mecha
nism that is used for interprocess message communication on the i432. To 
accomplish the latter, a process sends a message (request) to a Communication 
Port where the request will eventually be bound to a process (server). Short
tenn scheduling is accomplished by sending a process (request) to a Dispatching 
Port where the request will eventually be bound (dispatched) to a processor 
(server). 

5.2.2. Long-Term Scheduling Viewed as 
Communication 

Consider the analogous case of long-tenn scheduling, where the future claim of 
some process, call it A, on processor resources is to be reassessed. Here, the 
message is again the process in question (A). However, now process A is 
enqueued at a Communication Port where the server is not a processor, but a 
system process whose responsibility it is to decide on the fate of A. The same 
communication model serves for both long-tenn scheduling and short -tenn 
scheduling so long as the structure of the server is predefined to contain a recep
tacle slot for a message AD. 

And so, it should not be surprising that the Carrier Object structure for a 
process and for a processor is actually identical. Although we at first refrained 

I-
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from showing it, there is also an In~Message_AD slot in the process' Carrier 
Object (see Figure 5-3). In other words, depending on its role at the time, a 
process structure, headed by its own Carrier Object, may represent a request for 
service or a server. We will see a number of examples of this symmetry, of 
interest to application programmers, later in this chapter. 

5.2.3. Port Service Disciplines 

We have not yet indicated how short-term scheduling is achieved in an efficient 
manner-in part because we have not yet disclosed details on the queueing dis
ciplines associated with Port Objects. We, therefore, digress here to fill in some 
details on port disciplines. 

At the highest conceptual level, aPort Object is simply a queue. Although 
we sometimes distinguish between Communication Ports and Dispatching 
Ports, there is really very little difference between these two forms of port on 
the i432; the only real difference is the form of the requests and servers that are 
enqueued at a port. Recall that the characteristics of port usage ensures thai 
there will never be both requests and servers queued at the same port. At any 
instant in time a port is a queue of requests or a queue of servers. 

If two or more process servers arrive at a Port before a request arrives, they 
are always enqueued in FIFO order-on the theory that servers, if more than 
one, are essentially indistinguishable. 

If two or more requests arrive before a server arrives, they are enqueued 
according to a service discipline for that Port, which is set by system software. 
That discipline is encoded in the Port as one of four possible hardware-sensed 
service nwdes. Among these are FIFO-mode (first in-first out) and Priority
mode. [The latter implies ordering arriving requests according to their priority 
levels, and within a given priority by FIFO. A request of highest (absolute) 
priority goes at the front of the queue. The priority value of an arriving process 
request is actually supplied in the request's Carrier Object.] 

The discussion in the paragraph above holds only in case the request queue at 
a port does not "overflow." Every request queue (but not a server queue) asso
ciated with a port has a fixed size N that is given when the port is created. After 
N requests have arrived before the arrival of a server, the next request that 
arrives (before a server arrives) will cause the request queue to overflow. 
Instead of this next request being queued in the normal fashion, the carrier of 
the process that issued the request will be enqueued in a special "overflow 
queue" associated with the port, and the process blocks. 

The service discipline for the overflow queue is FIFO rather than the service 
discipline associated with the queue. However, overflow requests compete for 
service as soon as they enter the fixed.part of the request queue. Thus, a request 
arriving after N unserviced requests can never preempt the first of the N unserv
iced requests, regardless of its priority. Once the first of these requests becomes 
bound to a server, however, a slot in the fixed part of the request queue is freed 
up. At this time, the first of the overflow requests is inserted into the fixed por-
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tion of the queue in its correct position, according the the service discipline of 
the queue; this position may well be the head of the queue. Mter the overflow 
request is placed into the fixed part of the request queue, the freed process car
rier is sent to its specified "second port" which will be a Dispatching Port. 

A special service mode is used with Dispatching Ports, called Prior
ity/Deadline. In this mode, arriving requests are ordered by priority level, and 
within the same priority level by a deadline value which is a time span (from 
the present) within which that request, which in this case is a process, must be 
dispatched. 

If a processor tries to service (dispatch) a process from a Dispatching Port and 
the port is empty, the processor's Carrier Object is enqueued and the processor 
goes into a "sleep" state. It can only be awakened by an interprocessor com
munication signal (executed by another processor.) Awakening will occur when 
a request (Process Carrier) is next sent to that port. At this point, the executed 
microcode of the sending processor checks if there is a "sleeping" Processor 
Carrier waiting at the port to receive a Process Carrier request. If so, the exe
cuted microcode puts the AD of the incoming Process Carrier into the Processor 
Carrier Object and then awakens (by a special interprocessor "wakeup" signal) 
the physical processor associated with the Processor Carrier. 

The i432 also defines a fourth kind of port, called a Delay Port, that is used 
with the DELAY instruction. It allows a process to suspend itself for at least 
some time x, where x is specified in the DELAY instruction. 

5.2.4. Scheduling Viewed as Communication 

We are now almost prepared to see in more detail how the short-term schedul
ing of a process is accomplished. One more "piece of the puzzle" must be 
exposed. When a process is created, not only is its Process Object created, as 
discussed in Chapter 4, but also its Carrier Object is created and cross-coupled 
with it in the structure suggested in Figure 5-2. The full structure of the Carrier 
Object includes a data part and an access part, as in the format of Figure 4-4. 

Short-term scheduling is performed automatically by the i432 hardware using 
the standard model of interprocess communication. Each time the service period 
(time slice) for an executing process is used up, the executing process is 
automatically preempted. As part of this preemption, the processor checks 
whether the period count for the process (a decreasing counter) is still greater 
than zero. If so, the process is re-sent by the processor as a request to a "second 
port" specified by the Process Carrier, according to the priority and deadline 
values found in the process' Carrier Object. Normally, when the period count is 
non-zero, the "second port" specified by a process carrier is the process' 
Dispatching Port; however, when the period count becomes zero the "second 
port" specifies a special long-term scheduling port. This accomplishes short
term scheduling as a hardware operation done in conjunction with the preemp-
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tion step. The two short-term scheduling parameters, priority value and dead
line value, are placed into the data part of a process' carrier by the operating 
system. Both the service period and period count values are scheduling parame
ters that are placed in the Process Object data part as a consequence of perform
ing long-term scheduling on a process. 

Long-term scheduling is performed by the i432 operating system software. 
Again, the standard model of interprooess communication is used to achieve the 
scheduling function. Recall that, during preemption, if the period count was 
detected to have dropped to zero during dispatching, then the "second port" of 
the Process Carrier is set to a long-term scheduling port. Following this, the 
next preemption of the process will result in the preempted process being sent to 
the long-term scheduling port rather than to its (short-term) dispatching port. 
Eventually the preempted process will be bound as a message to a server proc
ess S at the long-term scheduling port. The process S will perform the long-term 
scheduling of the preempted process based on a reassessment of its resource 
requirements. 

5.2.5. Alternative Dispatching Ports of a 
Processor 

As suggested in Figure 5-1, when a processor-level fault occurs, the faulting 
processor FP is sent as a message to its Diagnostic_Port. A non-faulting proc
essor NFP, alerted to this event, is switched from its normal Dispatching_Port 
to serve at this Diagnostic_Port. When other unusual system events are 
detected, a non-faulting processor is automatically switched to serve at one of 
two other special service ports: the Alarm_Port or the Reconfiguration_Port. 
Messages received by processor NFP at these service ports amount to alterna
tive workstreams for NFP. We are now prepared to understand how this switch
ing of a processor from its ordinary workstream to an alternative workstream (at 
the Diagnostic_Port, Alarm_Port, or Reconfiguration_Port) is accomplished 
within the framework of the dispatching mechanism already described. 

When created by software, each Processor Object is associated with, not one, 
but four candidate workstreams. These are the three alternative workstreams 
listed above, together with the normal workstream. Each Processor Object has 
four pairs of prespecified Access Descriptor slots, one pair for use with each of 
four dispatching ports corresponding to the four workstreams, and one addi
tional Access Descriptor (Current Processor Carrier AD). One AD in each pair 
refers to the dispatching port, and the other refers to a corresponding Processor 
Carrier Object. The latter can itself be bound to a Process Carrier representing a 
process currently bound to the processor via that Port. The Current Processor 
Carrier AD, which refers to the Processor Carrier that is paired with the 
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currently used dispatching port, is loaded with each change in the processor's 
"Dispatching Mode." 

When one of the hardware events occurs, requiring a processor to switch to a 
particular alternative workstream (a new Dispatching Mode), an interposed 
hardware scenario proceeds roughly as follows: 

The hardware saves state infonnation of the currently executing process (A) 
in the Current Context Object and Process Object, as appropriate. Then, the 
Processor Object's Current Processor Carrier Object AD is loaded with a copy 
of the AD for the Processor Carrier paired with the AD for the dispatching port 
to be used next. (Note that the Process Carrier for process A remains linked to 
the Processor Carrier Object.) The next step taken depends on whether or not 
the newly-current Processor Carrier happens to be bound to a Process Carrier 
for some process B: 

• If no Process Carrier is currently bound, this means that a new work unit 
must be found at the corresponding dispatching port. (That is, a dispatching 
cycle must be entered. The Processor Carrier is sent to the proper dispatching 
port where it can become bound to a new Process Carrier. If no Process Car
rier is currently enqueued at that port, then the Processor Object will itself be 
enqueued as a server-to await the arrival of a Process Carrier.) 

• If there is a Process Carrier currently bound to the Processor Carrier, then the 
hardware skips the aforementioned Dispatching Cycle, and execution 
resumes (or commences-as the case may be) in that bound process (B). 

We see from the above scenario that preemption of processes from one 
workstream in favor of processes from another workstream, for whatever rea
son, is dealt with rather simply by the hardware. The strategy is based on pro
viding in the Processor Object the needed ADs that refer to the preassigned set 
of Dispatching Ports and to the preassigned and pre-created set of corresponding 
Processor Carrier Objects. 

Those wishing to see more details on the content of the Processor Object may 
consult the i432 Architecture Reference Manual. 

5.2.6. A Second Look at a Process Object Structure 

We are now prepared to take a second look at the Process Object in order to dis
cuss the items in it that were left hidden in Chapter 4. This will prepare us for 
expanding on interprocess communication in the next section. The discussions 
in this chapter have already provided the motivation for a number of the addi
tional details we discuss here. 

In Section 4.2 we described the contents of five of the processor-defined AD 
slots in the Process Object. As offset from the base of the object, these are: 
the PSO AD, Object Table AD, Claim Object AD, Current Context AD, and 
the Globals Object AD. Continuing from here, the additional slots and their 
functions are: 
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• Process Carrier AD. Each process has an associated Carrier Object, used 
when enqueuing the process as a request at a Port. The Process Carrier AD 
refers to that Carrier Object. 

• Dispatching Port AD. When a process is created, system software creates a 
distinct Dispatching Port object for the process and initializes certain values 
within this object, for example a set of dispatching parameter values. The 
Dispatching Port AD refers to this newly created object. 

• Scheduling Port AD. A process, upon creation, is also associated with a dis
tinct port for purposes of long-tenn scheduling. The Scheduling Port AD 
refers to that port. It is to this port that the process is sent, as a request, when 
it must be rescheduled. 

• Process Fault Access Area. The slots in this area receive copies of key state 
information, such as the Current Message AD, Current Port AD, Current 
Carrier AD, and Surrogate Carrier AD. Information is deposited here during 
execution of an interprocess communication instruction. As we will see in the 
next section, such instructions require many microcycles to complete and 
generate more than the usual amount of intermediate state information. If the 
instruction completes successfully, this area is nullified upon termination of 
the instruction. If it faults at some point (during some intermediate state), the 
information in this area is used by the software to complete the instruction. 

• Fault Port AD. A process, upon creation, is also associated with a distinct 
port for purposes of fault processing. The Fault Port AD refers to that port. It 
is to this port that the process is sent, as a request, when a process-level fault 
in the process requires processing by a fault-handling process. 

5.3. i432 Interprocess Communication 

The i432 architecture provides a state-of-the-art set of hardware-supported 
instructions that accomplish interprocess communication. These instructions 
represent a richer set than is needed simply for executing intertask communica
tion in Ada programs. Nevertheless, some of the first applications of these 
primitives to be shown here are those that may explain how some intertask Ada 
calls may be implemented. 

There are six principal instructions for sending and receiving messages, three 
send instructions and three receive instructions. 

SEND 
RECEIVE 

CONDITIONAL SEND 
CONDITIONAL RECEIVE 

SURROGATE SEND 
SURROGATE RECEIVE 
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All send and receive operations are asynchronous. For those unfamiliar with 
the significance of asynchronous operations, we offer the following review. By 
an asynchronous send operation we mean that a process sending a message 
needn't depend on the speed of execution of a potential receiver process. In 
general, the sender may send many messages without knowing (or even caring) 
whether or not any of these messages are ever actually received. The receiver, 
in fact, may not yet be ready to receive a message at the time the sender issues 
the send instruction. By an asynchronous receive operation, we mean that a 
process may issue a receive instruction without depending on the speed of exe
cution of the sending process. In fact, the receive instruction may be issued 
before the corresponding send instruction. 

The first two instructions, SEND and RECEIVE, may be taken as the "base" 
set. The others may be understood somewhat easily in terms of these two. Ada 
programmers can call (inline) procedures within an operating system package 
that will result in a direct, one-for-one translation of the procedure call state
ment into one of the six instructions given above. (See: Reference Manual for 
the Intel 432 Extensions to Ada, as cited in Appendix B.) 

5.3.1. The SEND and RECEIVE Instructions 

SEND and RECEIVE carry the semantic connotation of "blocking send" and 
"blocking receive", respectively, because a side effect of each is that the proc
ess issuing one of these instructions, is sometimes forced into a "blocked" 
state, pending completion of the instruction . 

• The SEND instruction specifies two operands: a Port Object AD and a Mes
sage Object AD. These operands indicate a port at which to enqueue the mes
sage as a request. As mentioned earlier, each Port Object incorporates a 
fixed-length request queue. We consider here two subcases, one that leads to 
immediate completion of the instruction (fixed length request queue not full) 
and the other that leads to blocking of the issuing process (fixed length 
request queue full). For each subcase we assume, for the sake of simplicity, 
that the governing port discipline is FIFO. 
1. The fixed-length request queue at the designated port is not full. In this 

case, the designated message_AD object is placed in the fixed length 
queue in FIFO order, thereby completing the instruction with rio further 
effect. 

2. The fixed-length request queue at the designated port is already full. In 
this case, the hardware causes the process to become unbound from its 
processor, and the process' carrier is appended to an oveiflow extension of 
the request queue. The process that issued the SEND is thereby blocked. 
The appended request has the structure shown in Figure 5-5. (The freed 
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processor goes automatically to its normal dispatching port in search of 
another job.) 

OVerflow 
Chain_AD .. 

, Message Object 
o-r-

OUt_Message_ADo 

Process AD 
Next_Carr. _AD 0 --. 

Carrier Object 
0-

Process Object 

I--

Figure 5-5 Schematic of request structure for a blocked SEND instruction. The 
message_AD specified in the SEND instruction is moved to the prespecified slot in the 
Carrier Object, marked OuCMessage_AD. 

[The data structure details of a Port Object have not yet been described, so the 
reader may well wonder how this is done. These details are actually not significant 
for us, but they can be examined by consulting the i432 Architecture Reference 
Manual.] 

If more than one such "overflow request" arrives at the same port, then 
the multiple blocked processes are linked through the Carrier Objects of 
the blocked processes. The head of such an overflow chain is always 
anchored to a pre specified position within the Port Object. 
When a server anives at a port, regardless of whether or not an "over
flow" condition exists, the head message AD entry of the fixed-length 
queue is bound to the server. This releases a slot in the fixed-length queue. 
The (always FIFO) first overflow queue entry is then detached from the 
overflow chain, and the message_AD in the Carrier Object component of 
the overflow queue entry is extracted and inserted in the freed queue slot 
of the fixed-length queue. The detached queue entry (a carrier, represent
ing a process) is then forwarded, using the second_port mechanism, to the 
request queue of its proper Dispatching Port (or Scheduling Port), thus 
unblocking the previously queued process. 
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The second port mechanism is actually a significant (and general) feature 
of the i432 architecture; it is used to unblock a process that has become 
enqueued by any send or receive operation. There is a pre specified slot in 
every Carrier Object, known as the Second Port AD. The Carrier Object 
for a process A has that slot preloaded with a copy of the Dispatching Port 
AD for process A. And so, when A issues a SEND (or a RECEIVE) 
instruction and then becomes blocked, the processor can later reschedule 
A as part of the unblocking operation. No additional i432 instructions need 
to be executed to accomplish this action. (For the SEND and RECEIVE 
instructions, the second port specification is implicit. Later, we will see 
that for the SURROGATE SEND and SURROGATE RECEIVE instruc
tions, the second port specification must be explicitly provided.) 

• The RECEIVE instruction simply specifies a port at which to pick up a mes
sage. The receptacle slot does not need to be specified because it is implicit 
in the architecture that a received message_AD is deposited in the prespeci
fied slot of the current Context Object. (This is the slot referred to in Section 
4.3.1 as Message Object AD.) Again, there are two subcases to consider, one 
that leads to immediate completion of the instruction (at least one request 
enqueued at the designated port) and the other that leads to the blocking of 
the issuing process (no requests at the designated port.) 

1. There is at least one request enqueued at the designated port. In this case, 
the message_AD at the head of the request queue is extracted from the 
port and assigned to the proper slot in the Context Object of the process 
that issued the RECEIVE operation. 
Note that when there is at least one enqueued request at a port there can be 
no servers also enqueued at that port. This is because there is strict adher
ence to a locking discipline governing each access of a port, which 
ensures that only one processor at a time may use the same Port Object. 
For example, if there is one enqueued request, then only the process that 
next locks that port can access it. If that process is a server, then it will 
become bound to the request. Only after that use of the port can another 
server become enqueued at the port. (Similar reasoning should convince 
the reader that if there is at least one server enqueued at a port, there can 
be no requests also enqueued at the same port.) 

2. There are no requests enqueued at the designated port. This condition 
leads to the blocking of the issuing process. Its Carrier Object is enqueued 
on a linked list of such servers that is anchored to the Port Object. Mter 
enqueuing the current process' carrier, the processor revisits its Dispatch
ing Port for another job. Figure 5-2 illustrates precisely the structure of an 
enqueued server process awaiting the arrival of a message, so we need not 
repeat it here. (One has only to change the name of the root AD from 
"Request_AD" to "Server_AD".) 
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When the enqueued server entry reaches the head of the server queue, it 
will become unblocked upon arrival of the first subsequent message. The 
SEND instruction supplying the new message_AD for that port causes the 
sent message._AD to be deposited in the Context Object of the enqueued 
process at the front of the server queue. The enqueued server entry is then 
detached from the queue and forwarded to its proper Dispatching Port. 
(This unblocking is accomplished using the implied Second Port AD 
found in the Process Carrier-as described earlier in the explanation for 
the SEND instruction.) 

An obvious application of the SEND and RECEIVE instructions in the com
piled version of an Ada program is . for implementing the execution of an 
"unconditional accept" statement within a server task. Recall from Section 
3.2.3, that an unconditional accept statement is one which requires the task to 
wait for a rendezvous (indefinitely) in case there are no task calls pending at 
entry E associated with this accept. Therefore, implementation of an uncondi
tional accept E could be defined as follows: Associate each entry E of a task 
with a port E-INIT. Issue a RECEIVE instruction for port E-INIT and, upon 
completing it, perform the body of the accept statement. Finally, issue a SEND 
instruction to port E-RESPOND (to be described below). 

A corresponding call of entry E within another task could be implemented as 
follows: Associate each entry E that is potentially called by a task with a port 
E-RESPOND. Issue a SEND instruction for port E-INIT and, upon completing 
it, perform a RECEIVE instruction for port E-RESPOND. Given this imple
mentation of the entry call and accept statements, note that port E-RESPOND 
never contains more than one server. This protocol is suggested in Figure 5-6, 
where the arrows indicate the direction of message flow. 

Port 1 

Caller taskl :-
~ 

Server task 

Figure 5-6 Structure of a two-way communication channel between a caller and a server 
task. The caller task issues a SEND, RECEIVE sequence and the server task issues a 
RECEIVE, SEND sequence. 
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Note that the Ada rendezvous semantics suggest that a calling task should be 
blocked until completion of the rendezvous. Implementing a task call using a 
blocking SEND, RECEIVE sequence, therefore, harmonizes with this intent. 

5.3.2. The CONDITIONAL SEND and 
CONDITIONAL RECEIVE Instructions 

These two instructions are provided to permit a process to avoid becoming 
blocked during a send or receive operation. Each of these instructions specifies 
one additional operand, a boolean variable, which is set true if the instruction 
has succeeded (i.e., message enqueued at port) and is set false if it has failed 
(i.e., instruction has no effect). In all other respects, the semantics of these 
instructions are identical with those of the simple SEND and RECEIVE instruc
tions described above. 

To decide whether to abort the attempt and set the boolean false, the 
hardware has merely to test, in the case of the send operation, whether or not 
the request queue at the specified port is full, and in the case of the receive 
operation, whether or not the request queue at the specified port is empty. 
Succeeding instructions can test the value of this boolean to determine the out
come of a preceding CONDITIONAL SEND or CONDmONAL RECEIVE 
instruction. 

The most obvious application for the CONDmONAL RECEIVE instructions 
is for polling. For example, when polling one or more ports for a message at 
any of them, one might use a sequence of CONDmONAL RECEIVEs. 

An interesting application that uses both the CONDmONAL SEND and 
CONDmONAL RECEIVE occurs in the efficient management of a situation in 
which multiple processors (or processes) are reserving and later releasing 
objects that are all of the same form. An efficiency problem can arise with 
respect to the garbage collector if the processes are reserving and releasing the 
objects at an extremely high rate of speed; in releasing objects the processes can 
generate garbage so rapidly that the garbage collector falls far behind and the 
system becomes hopelessly clogged with "garbage" objects. The situation can 
be relieved somewhat by locally managing a pool of objects that can be 
reserved for a period of time by one of several processes and later explicitly 
returned to the pool for recycling. 

One can think of this scheme as providing an "object buffer" outside the gar
bage collection mechanism that "protects" a system from becoming clogged 
during times of high activity with respect to objects. The scheme works very 
well in offloading the garbage collector during times of high activity; during 
times of low activity the garbage collector has no difficulty keeping up with the 
generation of "garbage" objects. The design challenge is to devise a pool 
management scheme that functions well during times of high activity, functions 
well during times of low activity in which the pool may be empty for long 
periods of time and, finally, ensures that the pool does not grow without bound. 
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From these requirements, it is easy to see that (1) a process should never wait 
for the return of an object to the pool if the process requests an object and finds 
the pool empty and (2) the size of the pool should be bounded. 

The management of the pool relies on CONDITIONAL SEND and CONDI
T�oNAL RECEIVE. In particular, the pool is represented by a port with a 
fixed-length queue size of N. A process that requires an object from the pool 
issues a CONDITIONAL RECEIVE· from the port. If an object exists in the 
pool (i.e., is queued at the port) then the process is bound to the object and the 
process continues. If the pool is empty (i.e., no objects are queued at the port) 
then the process does not block and can request that an object be newly allo
cated from a heap. When a process wishes to return an object to the pool it 
issues a CONDITIONAL SEND to the port with the object as the message. If 
the pool is not full (i.e., less than N objects are queued at the port) then the 
object is enqueued at the port to be later bound to a process that requests an 
object. If the pool is full (i.e., the fixed-length queue at the port is full) then the 
process does not block and can, by destroying its Access Descriptor to the 
object, ensure that the object will later be reclaimed by the garbage collector. 

[Neither the CONDITIONAL SEND nor the CONDITIONAL RECEIVE instruction 
is sufficient for simulating Ada's conditional entry statement if we use the implementa
tion for the accept statement discussed at the end of section 5.3.1. We now proceed to 
show why this is true. The conditional entry statement was not discussed in Chapter 3; its 
syntax is as follows: 

conditional entry call::= 
select 

entry_call [sequence_of_statements] 
else 

sequence_of_statements 
end select; 

The informal semantics are: "A conditional entry call issues the entry call if and only 
if a rendezvous is immediately possible" [2]. 

The use of a CONDITIONAL RECEIVE instruction by a requesting (calling) task can
not be used to implement Ada's conditional entry since this would require that the server 
(called) task be able to distinguish between its having been called by a conditional entry 
or an unconditional entry. This requirement would exist because in the implementation 
given in section 5.3.1, the server expects the requesting (calling) task to begin a rendez
vous by sending a message rather than by receiving a message. Neither can the CONDI
TIONAL SEND instruction be used to implement the conditional entry. This is because 
the CONDITIONAL SEND instruction succeeds (and therefore initiates an entry) if and 
only if a slot is available in the fixed-length queue of a port. This does not necessarily 
ensure that a server is waiting at the port to immediately process the request.] 

5.3.3. The SURROGATE SEND and 
SURROGATE RECEIVE Instructions 

The SURROOATE SEND and SURROOATE RECEIVE instructions are 
among the most interesting and innovative instructions in the entire i432 reper
toire. The SURROGATE SEND instruction allows a process to send a message 
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to a port without the risk of itself being blocked. Similarly, the SURROGATE 
RECEIVE instruction allows a process to wait for a message at several ports 
without the risk of being blocked at some port before all the waits have been 
issued. Note that CONDITIONAL SEND (CONDITIONAL RECEIVE) can be 
used to obtain the effect of SURROGATE SEND (SURROGATE RECEIVE), 
but the implementation involves polling, or "busy waiting", and is not nor
mally considered an efficient solution to the problems solved by SURROGATE 
SEND (SURROGATE RECEIVE). 

The risk of becoming blocked is avoided by automatically delegating that risk 
to a surrogate process. As a byproduct in studying the SURROGATE SEND and 
SURROGATE RECEIVE, we can gain added appreciation of the Carrier Object 
and its potential as an important new data type for computation structures. 

Normally, a conceptual process in the i432 is represented as a Process Carrier 
Object and a Process Object, each cross-referencing the other. However, the 
i432 also supports the concept of a surrogate process: a Carrier Object existing 
alone, without a corresponding Process Object. Under certain circumstances, to 
be revealed in this section, a surrogate process behaves exactly as does a proc
ess, with all the privileges normally enjoyed by a process. To emphasize its 
role, we will refer to a Carrier Object representing a surrogate process as a Sur
rogate Carrier. We study the role of a Surrogate Carrier throughout the rest of 
this section. 

With this introduction as background, we are now ready to explain the SUR
ROGA TE SEND and SURROGATE RECEIVE instructions . 

• The SURROGATE SEND instruction specifies, in addition to a Port Object, 
hereafter referred to as "First_port", and a Message Object AD, two more 
operands: 

• A Carrier Object -spawned to serve as a surrogate for the process that 
issued the instruction, and in doing so to convey the Message Object AD to 
First_port and to accept the risk of becoming blocked in case First_port's 
fixed-length request queue is full . 

• A Second_port Object-to which the surrogate will be sent as a message 
and become enqueued as a request, after delivering Message Object AD at 
the First_port. 

The action of SURROGATE SEND is specified as follows: 

The specified Message Object AD and Second Port AD operands are both 
placed in the Surrogate Carrier object at prespecified slots. The Surrogate 
Carrier is then treated by the hardware in a manner analogous to how it would 
be treated if it were the carrier of a process that had executed a SEND instruc
tion to the first port. That is, the Surrogate Carrier either immediately 
enqueues its Message Object AD in the fixed-length queue of the first port, or 
is blocked (linked into the chain of other blocked carriers), until it is able to 
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enqueue its message in the fixed-length queue. In either case, a server will (in 
normal circumstances) eventually accept the message. Finally, after the Sur
rogate Carrier has eventually managed to enqueue its message in the fixed
length queue of the first port, the Surrogate Carrier is sent as a message to the 
second port. Recall that the Second Port AD resides within the Surrogate Car
rier. The process that issued the SURROGATE SEND instruction always 
resumes execution at completion of the instruction; a process that issues a 
SURROGATE SEND instruction is never blocked as a result of that instruc
tion. Completion of the SURROGATE SEND instruction is defined as the 
point at which the Surrogate Carrier has become enqueued as a request in the 
fixed-length queue of the second port or the point at which the Surrogate Car
rier has become blocked at either the first or second port, whichever comes 
first. 

• Once one understands the SURROGATE SEND instruction, the semantics 
for SURROGATE RECEIVE becomes quite easy to grasp. This instruction 
specifies, in addition to a First_port, the same two additional operands as 
specified in SURROGATE SEND, namely: 

• A Carrier Object-spawned to serve as a surrogate for the process that 
issued the instruction, and in doing so to wait to receive a message at 
First_port and to accept the risk of becoming blocked in case First_port's 
request queue is empty . 

• A Second_port Object-to which the surrogate will be sent to deliver 
itself as a request, with the received Message Object AD embedded within 
it. 

The action of SURROGATE RECEIVE is specified as follows: 
The Second Port AD operand is placed in the Surrogate Carrier Object at a 
prespecified slot. The Surrogate Carrier is then treated by the hardware in a 
manner analogous to how it would be treated if it were the carrier of a process 
that had executed a RECEIVE instruction from the first port. That is, the Sur
rogate Carrier either immediately receives a Message Object AD from the 
fixed-length queue of the first port, or is blocked (linked into the chain of 
other blocked carriers), until it is able to receive a messag~ from the fixed
length queue. In either case, the Surrogate Carrier will (in normal cir
cumstances) eventually receive a message. At this point, the Surrogate Car
rier, carrying the message that it just received, is sent as a message to the 
Second Port. Recall that the second port AD resides within the Surrogate Car
rier. The process that issued the SURROGATE RECEIVE instruction always 
resumes execution at completion of the instruction; a process that issues a 
SURROGATE RECEIVE instruction is never blocked as a result of that 
instruction. Completion of the SURROGATE RECEIVE instruction is 
defined as the point at which the Surrogate Carrier has become enqueued as a 
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request in the fixed-length queue of the second port or the point at which the 
Surrogate Carrier has become blocked at either the first or second port, 
whichever comes first. 

Useful applications of i432 SENDs and RECEIVEs, including the SURRO
GATE instructions, are bound to be numerous. One can use these instructions 
directly by issuing calls to (inline) procedures implemented within a special, 
system-supplied Ada package. Calls to these procedures are compiled as i432 
SEND and RECEIVE instruction forms. In Section 5.5 we show how this is 
done. Here we merely sketch one or two possible applications for the SURRO
GATE instructions. 

In the remainder of this subsection we choose an instructive application for 
each of the SURROGATE operations. 

• For SURROGATE RECEIVE we choose as the application a simplified 
model of the Ada select statement. 

• For SURROGATE SEND we choose as the application a user-tailorable 
priority message system. 

Although the instructions generated by the i432 Ada compiler to represent a 
particular Ada select statement includes SURROGATE port operations, the 
model of implementation is more complex than we wish to consider here. (The 
full semantics of the select statement is surprisingly complex.) Hence, we 
choose to simulate here only a simple and special case. In particular, we con
sider the case where none of the accept alternatives are guarded by when condi
tions, where delay, terminate, and else alternatives are absent, and where 
applicable entry calls are unconditional only. 

For this restricted example, each of the alternative accept statements that 
constitute the select statement (numbered, in order, as 1, ... , k, ... , N for 
reference) is associated with its own ACCEPT_k port. In addition, a single 
R_ QUEUE port is used as a "junction box" for enqueuing each rendezvous 
that has occurred for the various accept statements within this select statement. 
The entry calls associated with each rendezvous may originate from any of 
several tasks. Figure 5-7 shows this message flow structure for three accept 
statement alternatives. Later, we will discuss the return flow structure for rout
ing of return messages that behave as end-of-rendezvous signals. 

The Ada compiler performs a select statement elaboration for each select 
statement that occurs within a task. This elaboration is perforriled as part of the 
initialization of the task. The elaboration is accomplished by the task issuing 
individual SURROGATE RECEIVE instructions, one for each select statement 
alternative. For example, 

SURROGATE RECEIVE (ACCEPT_I, Carrier_I, R_QUEUE) 
SURROGATE RECEIVE (ACCEPT_2, Carrier_2, R_QUEUE) 
SURROGATE RECEIVE (ACCEPT_3, Carrier_3, R_QUEUE) 
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.. 

Server task 

from various consumer tasks, A, B, C, etc. 

Figure 5-7 Structure of forward message flow to an Ada server task. 

Each of these instructions is a request to pick up a single message at an 
ACCEPT port and deliver it as a request to R_ QUEUE. If these instructions are 
followed by the instruction, 

RECEIVE (R_ QUEUE) 

then the select statement will eventually receive a carrier from R_ QUEUE that 
contains a message indicating that a rendezvous has commenced for one of its 
constituent accept statements. 

The enqueuing of incoming rendezvous requests into R_ QUEUE uses the 
queueing discipline of R_ QUEUE, so that the select statement merely picks the 
head rendezvous entry of the R_QUEUE port. (This implies that the Carrier_k 
sent to its ACCEPT _k port must contain appropriate priority information for 
select alternative k.) By examining the carrier associated with this rendezvous 
entry, the server task can determine all it needs to know to process the selected 
accept statement and any succeeding statements within the alternative. This is 
because the AD for each received Surrogate Carrier is unique (as is any AD), 
and so the carrier can be correlated to the accept statement with which it is 
associated. An important additional assumption made here is that the received 
message within the carrier associated with the rendezvous will also contain 
information that can be used to identify the calling task. This infomlation is 
needed to specify a target port for the end-of-rendezvous message and is sup
plied by the compiler in the generation of the message sent by the calling task. 

When the accept statement completes (the rendezvous completes), the exe
cuting task must perform two functions before it can continue: 
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1. it must respond with an end-of-rendezvous message to the calling task and 

2. it must ensure that the select statement is re-initialized. 

Responding to the calling task is carried out in almost exactly the same 
manner as the case of a simple rendezvous discussed earlier. An end-of
rendezvous message, including the result values for any out or in out parame
ters, is sent to the calling task's E-RESPOND port. Re-initializing the select 
statement ensures that the alternative just selected will be given another oppor
tunity to cause a rendezvous in case the select statement is executed again. 
Consequently, if the carrier associated with the rendezvous is Carrier_k then 
the select statement is re-initialized by executing the instruction 

SURROOATE RECEIVE (ACCEPT_k, Carrier_k, R_QUEUE) 

The calling task is not aware that it is intended to rendezvous by means of an 
unconditional accept statement or an accept statement within a select state
ment. Consequently, the action of the calling task is the same in both cases. 
This action was discussed in section 5.3.1. 

After the termination of a task containing one or more select statements, 
there must exist a finalization sequence of instructions that "cleans up" the 
apparatus currently pending for select statements. We leave such details, if of 
interest, to be pursued by the reader. 

The foregoing has been an extended example, which in essence has merely 
illustrated the use of SURROGATE RECEIVE instructions to implement what 
is commonly termed a "multiple wait" paradigm, familiar to many system pro
grammers. The example was deliberately couched in the Ada setting so readers 
can appreciate what may be involved in implementing a select statement. We 
have not considered a general solution to this implementation problem, but one 
can see how much machinery is involved. Without hardware support, such as 
provided in the i432, execution of the select statement might be too slow for 
frequent use. 

We now turn to our second example, the user-tailorable message priority sys
tem from Cox et al. [14], to illustrate the application of the SURROGATE 
SEND instruction. In this system, process PRODUCER sends a potentially 
infinite length stream of messages of varying priorities to process CONSUMER. 
The PRODUCER process cannot depend on the CONSUMER process' rate of 
message consumption, and the CONSUMER process cannot depend on the 
PRODUCER process' rate of production. 

Surrogate carriers are needed, not only to prevent process PRODUCER from 
becoming blocked while it issues its stream of messages, but also to ensure that 
each message sent is inserted into its proper position within the queue of mes
sages not yet consumed by process CONSUMER. 

For the remainder of this example we assume a priority queueing discipline at 
any ports in question and we refer to the information needed to place an object 
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into its proper position within a port as its priority. Note that when a process 
sends a message to a port using a priority queueing discipline, the priority of the 
message is taken from the Carrier Object that holds the message. Therefore, 
when a process sends a message using a SEND instruction the priority is taken 
from the carrier of the process that sends the message. But, of course, this can't 
be what we want for the above application. Not only does the priority of the 
process have nothing to do with the priority of the messages it is sending, but 
every message will have the same priority if the process' priority doesn't 
change-and this is clearly not what is intended. 

In order to be able to attach a priority to a message that is sent to a port, the 
SURROGATE SEND instruction must be used. The priority of the message to 
be sent is placed into the priority slot of the Surrogate Carrier that is specified as 
an operand to the SURROGATE SEND instruction. Since the Surrogate Carrier 
is the carrier that holds the message when it arrives at the port, it is the priority 
of the Surrogate Carrier that will be used to enqueue the message. For example, 

SURROGATE SEND (First_port, message_ref, my_carrier, Second_port) 

will cause the message_ref to be delivered by my_carrier to First_port. Assum
ing First_port's service mode has been set to Priority-mode and assuming that 
my _ carrier has its priority value set as desired, then the message will be 
inserted in priority order when my_carrier arrives at First_port. 

After delivery of the message, my _carrier is enqueued at Second_port (FIFO 
queueing discipline), where it can be picked up by process PRODUCER and 
reused in sending another message of the same or different priority value. Until 
needed however, the my_carrier may remain enqueued at Second_port, which 
serves as a pool (or "parking garage"). The pick-up of a "parked" carrier may 
be done with an ordinary RECEIVE or with a CONDITIONAL RECEIVE. For 
example: 

RECElVE(Secon~_port) 

will render the first available Carrier accessible for reuse in another SURRO
GATE SEND. The above scenario is illustrated in Figure 5-8 which diagrams 
the flow of messages of the several send and receive operations as directed arcs 
joining process and port objects. 

5.3.4. Modelling Asynchronous 
Send/Receive Operations in Standard Ada 

We have now examined the i432 architecture's facilities for support of asyn
chronous interprocess communication. In Section 5.5 we will examine how 
these facilities can be invoked explicitly by the user at the Ada level. It seems 
useful at this point to consider, as an alternative approach, how equivalent asyn
chronous intertask communication can be expressed in standard Ada, i.e., 
without direct appeal to the underlying i432 port-based operations. 
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Figure 5-8 Request flow graph for implementation of a user-tailorable message priority 
system to illustrate use of the SURROGATE SEND instruction. 

Recall that the Ada rendezvous mechanism forces synchronization of the task 
caller (sender) and the server task (receiver). Even so, it is possible to model 
asynchronous communication, and thereby to eliminate performance delays in 
certain common situations. This may be done provided the programmer is wil
ling to interpose "intermediary" tasks between the sender and receiver tasks. 
For example, if an Ada task A only sends information to another task B (i.e., if 
task A does not need to wait for completion of the associated accept statement 
in task B), then we can simulate an asynchronous send operation using the tech
nique mentioned in Section 3.1 and amplified below: 

Suppose a third task Q is interposed between A and B so that A does a ren
dezvous with Q. Then either: 

a. Q does a rendezvous with B, forwarding to it the message received from A. 

or 

Since Q can immediately accept the message from A, the time A is blocked 
in rendezvous with Q can be minimized. Note that B blocks only if Q is 
awaiting rendezvous with A. 

b. if A is expected to send a sequence of messages, Q, after accepting each 
message from A, spawns a new task and does a rendezvous with that 
spawned task, forwarding to it the message received from A. Each of the 
spawned tasks then does a rendezvous with B. Each spawned task terminates 
after completing the rendezvous with B. In this case, B blocks only if no 
spawned tasks are awaiting rendezvous with it and A blocks only if it sends 
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another message to Q before Q can complete the spawning of a new task for 
relaying an earlier message sent by A. 

We illustrate alternative (b) as follows: Suppose A would ordinarily have 
made the entry call 

B.Some_entry(k) ; 

and B accepts by 

accept B.Some_entry(k: integer) do 
-- statements that include k; 

end B. Some._entry; 

With task Q interposed, however, the call by A becomes 

Q. Relay_ to_Spawned (k) ; 

and the accept statement in B remains unchanged. A new task Q is defined at 
the same scope level as that of tasks A and B as follows: 

task Q is 
entry Relay_ to_Spawned (k: integer); 

end Q; 

task body Q is 
task type Spawned is 

entry Relay_to_B(k: integer); 
end Spawned; 

task body Spawned is 
begin 

accept Relay_to_B(k: integer) do 
B.Some_entry(k); 

end Relay_to_B; 
end Spawned; -- This task terminates upon completion 

-- of this accept. 

type ref_to_spawned is access Spawned; 
Spawned_Task: ref_to_spawned; 

begin 
loop 

accept Relay_ to_Spawned (k: integer) do 
Spawned_Task: = new Spawned; 
Spawned_Task.Relay_to_B(k); 

end Relay_to_Spawned; 
end loop; 

end Q; 

Under this scheme, each spawned task operates very much like the surrogate 
carrier of an i432 SURROOATE SEND instruction. (Observe that the variable 
Spawned_ Task is reused in Q. This means that earlier spawned tasks become 
unreachable by Q, so that after each of these spawned tasks terminates it 
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becomes a candidate for garbage collection. Also note the task Q can be rede
fined as a generic package having a generic parameter that designates the struc
ture of the relayed information.) 

The above scheme seems attractive because it relies on no special packages, 
such as those we will describe in Section 5.5 for use of i432 ports. On the other 
hand, the cost in performance may well be prohibitive, unless the underlying 
architecture can support the Ada rendezvous with efficiency comparable to that 
of the equivalent i432 port operations. Moreover, if the sender task (task A) is 
dependent on receipt of a response correlated with each sent message, additions 
to an already complicated task structure may be needed. We pursue this line of 
reasoning no further here; these matters should be left as open questions, to be 
answered when more experience has been gained with the use of Ada and with 
the i432 System. 

5.4. The Unified View Offered by the 
Request/Server Model 

We next want to illustrate the user-interface provided for the i432 architecture's 
interprocess communication facility, and we attempt this in the next section. 
There, we show how operations of interprocess communication can be made a 
direct and useful part of applications programs. However, before doing so, we 
can gain some useful perspective if we pause here to take stock. A few observa
tions are in order concerning the models and mechanisms introduced in this 
chapter thus far . 

• We have seen the merit of i432 architects' design choice to make scheduling 
and dispatching of processes fit into a message-based communication frame
work following the request/server model. Policies, which are best left to 
software derivation, are neatly separated from the mechanism~ of dispatching 
and scheduling, which are best done as swiftly as possible, and hence best 
done with as much hardware support as possible. 

An example of policy is the determination of which process to dispatch in a 
set of processes that are waiting for service. Dispatching decisions may vary 
greatly between applications; depending on the system environment, such 
decisions may be changing on a second-to-second basis. (One of the biggest 
dangers in transferring operating systems functions from software into 
hardware is that failure to properly separate policy issues from mechanism 
issues can result in policy decisions creeping into hardware, where they can
not be changed on any short-term basis.) 

• The model and the mechanisms, some newly invented in the i432, and most 
arrived at as a direct consequence of the object-based addressing and access 
controls of the architecture, lead to an efficient interprocess communication 
facility. The latter is not only general purpose, but in fact extends the state of 
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the art. This extension is embodied in the SURROGATE SEND and 
RECEIVE operations and, in tum depends on the innovation of the Carrier 
Object used in a uniform way for sends and receives, whether explicit or 
implicit, and whether for dispatching and scheduling or for more general 
process-to-process interaction. 

The special invention that appears to stand out above the rest is the Carrier 
Object used as a surrogate. Its full utility is probably yet to be determined, 
however at the "top level" we see that it provides a process a simple and 
direct way to exercise control over whether or not it blocks in sending and 
receiving messages. Certainly there are many applications in which a process 
must have this kind of control over its own destiny. Other relevant ideas con
cerning surrogates are: 

• In explaining the role of the Surrogate Carrier, we have used the analogy 
of a surrogate process, but there may be better explanations, or at least 
some useful supplementary explanations. For example, Cox et al. [14] 
have referred to the Surrogate Carrier as a "self-addressed, stamped 
envelope". In a SURROGATE . RECEIVE operation, such an envelope is 
sent to the First_port and left there, pending the arrival of the expected 
message. When the message arrives, it is stuffed into the envelope and 
"mailed". Since it is addressed, the envelope can reach its ultimate desti
nation, Second_port. Since it is stamped, it has the necessary "potential" 
for travel through the mail system to arrive at its destination. 

• The envelope analogy also holds for the SURROGATE SEND, but with a 
new "twist" required in the interpretation. Here one must understand that 
the envelope bearing the message, has significant value in its own right
much like the sturdy metal cake box, whose see-through top effectively 
alerts postal workers to its perishable and fragile contents, which may be 
more valuable than the cake it contains. The box must be returned to 
"grandmother", if another cake, on another birthday is to be forthcoming. 

• When models like the request/server, and analogies, like surrogate proc
esses or stamped return envelopes, help us grasp and perceive as simple, 
mechanisms that would otherwise appear formidable and complicated, 
they serve as critically important tools. Use of them may make the differ
ence between broad use of an innovative and powerful facility or broad 
shunning of it. This is why we can foretell wide use for message-based 
communication operators of the i432 architecture. 

• Asynchronous communication and synchronous communication are both 
available as modes of communication. There are many applications in which 
one or the other of asynchronous or synchronous communication is the most 
desirable method of interprocess communication. The i432 provides com
pletely asynchronous communication through, again, the utility of the surro-
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gate carrier object. Synchronous communication can always be accomplished 
by establishing a protocol (like the Ada rendezvous) between sending and 
receiving processes. Such a protocol requires that a process S, which sends a 
message to a process R, wait for a received acknowledgment message from R 
before proceeding. 

• Education of users to the potential of multiprocessing applications is a major 
challenge. Real-world applications are in many cases difficult to express with 
clarity without use of an underlying and unified communication model. The 
i432 communication model may well provide the needed catalyst. 

5.5. Ada Programmers' Interface with iMAX 
for Interprocess Communication 

An Ada programmer can use all of the i432 features for interprocess communi
cation described in Section 5.3 as an alternative or supplement to the Ada ren
dezvous facility. The i432 features are accessed by using either or both of two 
user-accessible Ada packages supplied by the iMAX operating system. These 
packages are: 

• Typed_Ports 

• Untyped_Ports 

The Typed_Ports package fulfills most user needs for i432 interprocess com
munication by permitting the programmer to create and use ports requiring mes
sages of a specific type. A typed port is thus a constraint of a port that allows an 
Ada programmer to send (receive) messages of only a single, specified type to 
(from) a port. This constraint is checked at compile time. The use of a typed 
port has the advantage that it follows the spirit of Ada's strong type-checking 
objective by allowing the Ada compiler to verify that the typed port is used 
correctly. We have provided the Ada specification for the Typed_Ports package 
in Appendix H. The reader is referred to that appendix if more details are 
desired. 

The second package, Untyped_Ports, is useful for lower-level applications, 
where it is essential to relax the one-port lone-mess age-type constraint. An 
untyped port can be used to transmit a message of any (Access Descriptor) type. 

The primary disadvantage of Untyped_Ports is that compile time checking of 
message types is impossible. The primary disadvantage of using Typed_Ports is 
that a programmer must create an individual instance of a generic package for 
each distinct message type required. For very large applications, this may pro
duce many generic instantiations that may, in turn, produce programs that 
require excessive memory space. However, for most applications, this disad
vantage is far outweighed by the convenience and built-in safety features 
offered by Typed_Ports. 
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Our objective in this section is to demonstrate the use of the Typed_ports 
package to allow an Ada programmer to gain access to the i432 communication 
model. First, we look at the key components of Type_Ports. Then we illustrate 
their use by revisiting the examples introduced at the end of the Section 5.3 and 
by showing how they may be coded in Ada. The section closes with observa
tions on the equivalence of the Ada rendezvous and the iMAX Typed_Ports 
facility and on some tradeoffs between the two approaches. In the next and last 
section of this chapter we revisit the investment club program to see how 
Typed_Ports may be used to advantage. 

5.5.1. Structure and Main Features of 
Typed_ Ports 

Typed_Ports is an Ada library unit package that contains three generic packages 
named: 

• Simple_Port_Def 

4t Carrier_Def 

4t Surrogate_Port_Def 

The Typed_Ports package is structured as three generic sub-packages so that 
programmers can choose to instantiate any of the three generic packages indi
vidually, thus minimizing, in appropriate cases, the size of instantiated pack
ages. Thus, for example, in an application not requiring SURROGATE SENDs 
and RECEIVEs, a programmer will create only instances of Simple_Port_Def. 
This will provide the capability to create and use ports with either FIFO or 
Priority service disciplines in SEND, RECEIVE, CONDITIONAL SEND, or 
CONDITIONAL RECEIVE operations. The skeletal structure of Typed_Ports 
is given in Figure 5-9. Excerpts from the code for Simple_Port_Def are given 
in Figure 5-10. 

Examining Figure 5-9 fIrst, we note that Typed_Ports depends on 
iMAX_Definitions. Actually, the iMAX_Definitions package is only the "tip 
of the iceberg." Other iMAX packages on which iMAX_Definitions is depen
dent (and on which Typed_Ports is indirectly dependent) are responsible for all 
the low-level storage, descriptor, and extended-type management that make 
interprocess communication at the user interface safe and easy to apply. We 
defer discussion of these topics until Chapters 6 and 9. 

Suppose a programmer wishes to establish simple communication between 
two tasks, A and B, by sending messages of type "memo" from A to B and 
messages of type "response" between B and A (assume that types memo and 
response have already been declareq.) According to the Ada specification in 
Figure 5-9, the following declarations would instantiate the packages required 
to achieve this communication: 
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with iMAX_Definitions; 
package TYPed_Ports is 

Function: 
TYPed_Ports consists of three packages which provide the user 
with a high level (Ada typed) view of ports, carriers and other 
operations. 

use iMAX_Definitions; 

generic 
type user_message is private; 

package Simple_Port_Def is 
Function: 

All messages that this package 
deals with are of this type. 

This package provides definitions and operations that enable 
the user to create ports, and do simple operations on those 
ports involving only messages of type "user_message". 

generic 
type user_message is private; 

type user_carrier_id is private; 

package Carrier_Def is 
Function: 

TYPe of message as 
specified by the user. 
TYPe of carrier_id as 
specified by the user. 

Definitions and operations on carriers are provided in 
thi s package. 

end Carrier_Def; 

generic 
type user_port is private; 

type user_message is private; 

type user - carrier is private; 

type user_carrier_port is private; 

package Surrogate_Port_Def is 
Function: 

Port capable of handling 
user_messages. 
TYPe of messages as 
specified by the user. 
Carrier capable of 
carrying user_messages. 
Port capable of handling 
user_carriers. 

This package contains surrogate port operations. 

end TYPed_Ports; 

Figure 5-9 Top_level structure of the iMAX Operating System package, Typed_Ports. 



i432 Communication Structures for Program Execution 169 

with Typed_Ports; 

package Memo_Port_Def is new Typed_Ports.Simple_Port_DefCmemo); 
package Response_Port_Def is new Typed_Ports. Simp 1 e_Port_Def Cresponse) ; 

5.5.2. The Simple_PorLDef Package 

In Figure 5-10, we reveal another layer of the Typed_Ports package; in particu
lar, we reveal the specification of the generic sub-package Simple_Port_Defs. 
By looking at this specification and understanding the semantics of the opera
tions inthe package, we can determine how to create ports and how to use them 
once they are created. Before proceeding to illustrate this use, we digress here 
to observe some fine points of Ada that we will exploit below. 

Note that the Create function in Typed_Ports returns an object of type 
user_port. To create a particular port, named my_memo_port, for transmitting 
objects of type memo, one can use the following declaration in any program 
unit that "imports" Memo_Port_Def: 

The declaration above specifies that my _memo_port is a port having a 
fixed-length message queue capacity of 15 messages of type memo, having a 
default service mode of FIFO, and whose storage is allocated from the global 
heap. 

By noting that the Create function returns an object of type user_port, the 
experienced Ada programmer would realize that a SUbtype declaration may be 
used as a renaming device to make the above declaration more compact. Thus, 
the given SUbtype declaration: 

The declaration and initialization of the variable my _memo_port can be 
written as follows: 

or, even more succinctly, as: 
use Memo_Port_Def; 

The ports to be shared by processes A and B must be created by the common 
parent of A and lB, using, for example, the set of declarations shown in Fig
ure 5-11. 

From examination of Figure 5-11, we learn how processes A and B would 
take advantage of the created ports for transmission of messages. For example, 
process A could send messages using: 
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generic 
type user_message is private; -- All messages that 

-- this package deals with are of this type. 
package Simple_Port_Def is 

Function: 
This package provides definitions and operations that enable 
the user to create ports, and do simple operations on those 
ports involving only messages of type "user_message". 

max_message_count: short_ordinal:= 1000; -- Max number of messages 
in a port's message queue. 

type user_port is private; -- Ports of this type 
-- can only be used with type user_message. 

type ~discipline is ( 
FIFO, First_inLfirst_out, also default ~discipline. 
priority); within same priority, FIFO is used. 

function Create ( 
message_count: short_ordinal range 1 .. max_message_count; 

Max number of messages in the port's message queue. 

port_discipline: ~discipline:= FIFO; 
sro: storage_resource : = null) 

return user_port; -- User port that is created. 

Function: 
A user_port with the specified message_count and the specified 
message queue discipline is created. The SRO used in the 
creation defaults to the default_global_heap_SRO. 

procedure Send (prt: user_port; msg: user_message); 

Function: 
The specified user_message is sent to the specified 
user_port. 

procedure Receive (prt: user_port; msg: out user_message) ; 

Function: 
A message will be received from the specified user_port. 

Figure 5-10 Excerpts from the generic package, Simple_PorcDef. 
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Figure 5-11 Ada code to instantiate two differently typed port-definition packages, one for 
memos going from A to B and one for responses going from B to A, and to create a sin
gle instance of each of these ports. 

declare 

my_question: 
the_answer: 

begin 

memo; 
response; 

Send (A_to_B_memo_port, my_question); 

end; 

Because of Ada's strong typing and overloading features, it isn't necessary to 
use the longer forms Memo_Port_Def.Send and Response_Port_Def.Receive 
in the procedure call statements given in the example above. Based on the type 
of the actual parameters to Send (Receive), the correct target procedure for each 

- call can be correctly resolved by the compiler (if no ambiguity exists). 
The specification of Simple_Port_Def given in Appendix H indicates that 

conditional versions of Send and Receive are also available in Simple_ 
Port_Def, and hence in Memo_Port_Def and Response_Port_Def. 

The hardware's ability to check on the validity of a Port Object argument 
includes being able also to check whether the caller's argument (which is an 
Access Descriptor) has send rights for a calIon Send or on Cond_send, or has 
receive rights for a calIon Receive or on Cond_receive. We defer discussion of 
such rights checking until Chapter 6. 
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tion. In all, four generic package instances must be instantiated for this particu
lar application. 

Figure 5-12 shows a set of declarations that would create the package 
instances. The declarations can be understood in terms of the explanations in the 
preceding section and in terms of the details of Appendix H. 

Creation of the two needed ports and a pool of Surrogate Carriers can be 
made part of an enclosing package, called Send_Reports, which also includes 
the operation to send a report. The body of this package, which follows the plan 
suggested by iMAX Operating System implementers, is shown in Figure 5-13. 
(See also the iMAX 432 Reference Manual as cited in Appendix B.) 

package body Send_Reports is 

first_port: report_port:= Create (10, priority); 
-- Creates a port having a capacity of 10 items 
-- of type report and with priority service mode. 

second_port: report_carrier_port: = Create (10) ; 
-- Creates a FIFO port having a capacity of 10 
-- messages of type Report_carrier. 

spare: report_carrier; 

procedure Send_a_report ( 
rpt: report; 
priority: short_ordinal) 

is 
b: boolean; 

begin 
Cond_receive (second_port, spare, b); 

-- Get spare carrier from 
-- carrier_pool (second_port). 

if b then 
Set_carrier_priori ty (spare, priority); 

-- Update spare carrier's priority value. 
else 

spare := Create (0, priority); 
-- If carrier pool is empty then create 
-- a new carrier with proper priority. 

end if; 
Surrogate_send (first_port, rpt, spare, second_port); 

After sending new report to first_port, 
carrier will be returned to the pool 

-- at second_port. 
end Send_a_.report; 

begin 
Initialization of this package starts here. 

-- Builds an initial pool of five carriers. 
for i in 1 .. 5 loop 

spare : = Create (0) ; 

Send (second_port, spare); 
end loop; 

end Send_Reports; 

Create a new carrier with 0 as id 
and a 0 default priority value. 
place spare into the pool. 

Figure5-13 Package body for a user's priority-message system 



174 A Programmer's View of the Intel 432 System 

The reader should have little trouble following the implementation shown in 
the body of the Send_Reports package. This package body is a good illustration 
of the usefulness of an initialization section for a package. In this initialization 
section, five carriers are created and sent to the "pool", i.e., to Second_port. 
All the carriers in the pool are "nameless"; that is, they have no useful id 
values. In addition, they do not initially acquire any distinguishing priority 
value. When Send_a_report is invoked, a carrier is fetched from the pool, 
given the desired priority value, and sent off with a given Report value. This is 
accomplished by using the Surrogate_send operation of the Report_Surro
gate_Port_Def package. 

In the event the receiving task runs more slowly than the sending task, the 
pool of carriers can become empty. This will happen if, for example, Consumer 
falls fifteen messages behind Producer at first_port. In this case, ten messages 
will be enqueued in the fixed-length queue at first_port and five carriers will be 
enqueued in the carrier queue at first_port. If Send_a_report is invoked to send 
a sixteenth message before Consumer can process a message, then Producer 
will find the carrier pool empty. If this occurs, Send_a_port simply creates and 
uses a fresh carrier. 

[At this point a reader may wish to review our earlier discussion of carrier pool 
management (in Section 5.3.2) where we considered a way to keep the pool from grow
ing too large by using a CONDmONAL SEND instruction. One may enhance the car
rier management scheme used in Send_Reports (Figure 5-13) in a similar way by taking 
advantage of the Cond_send operation.] 

- We close this section by considering how, with the aid of Typed_Ports, we 
can implement the message flow structure diagrammed in Figure 5-7 (multiple 
waiting). We shall consider the case where senders deposit messages in a fixed 
number of letter_boxes (three in our case). The single receiver fetches letters 
from a central_box by issuing Surrogate_receives from each of the 
letter_boxes and blocking Receives to the central_box. Each of the 
letter_boxes is a simple port that transmits messages of type letter. On the 
other hand, central_box is a port that transmits messages of type l.etter_carrier. 

By contrast with the preceding example, the number of letter_carriers 
required in this example is fixed. Exactly one letter_carrier for each letter_box 
is sufficient, since a carrier can shuttle back and forth between its respective 
letter_box and the central_box. Furthermore, the receiving process could not 
process the received letters any faster if there were more letter_carriers avail
able. All of the ports in this example have FIFO service mode. 

The declarations for instantiating the required generic packages from 
Typed_ports are identical with those shown in Figure 5-12, except that the 
word "Letter" replaces the word "Report" uniformly throughout the figure. 
Figure 5-14 shows a fragment of a program unit that uses these packages to 
create the required ports and carriers and to process letters received from other 
tasks. (Again, the structure of this program fragment follows that given in the 
iMAX 432 Reference Manual.) 
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declare 

use Letter_Port_Def, Letter_Carr ier_Def, 
Letter_Carr ier_Port_Def, Letter_Surrogate_Port_Def; 

letter_box: array (1 .. 3) of letter_port; 
-- Letter_box capacities 
-- set individually during 
-- initialization below. 

central_box: letter_carrier_port: = create (3) ; 
-- Letter_carrier capacity = 3 

letter_bearer: array (1 .. 3) of letter_carrier; 
Id values of carriers are 
assigned during initialization below 

bearer: letter_carrier; Carrier variable. 

ltr: letter; -- TYPe definition for letter assumed accessible. 
id: integer; 

begin 
-- Initialize 
letter_box (1) 
letter_box (2) 
letter_box (3) 

capacity values for individual letter_boxes. 
: = Create (8) ; Letter capacity = 8 
: = Create (12) ; Letter capacity = 12 
: = Create (4) ; Letter capacity = 4 

for i in 1 .. 3 loop 
letter_bearer (i) := Create (i) ; -- Id of ith carrier 

-- is made value of i. 
Surrogate_receive (letter_box (i) , letter_bearer (i) , central_box); 

Ith letter_bearer sent to ith letter_box to 
_.- await letter and bring it to the central box. 

end loop; 
-- Initialization ends here. 

loop 
Receive (central __ box, bearer); -- Recover carrier from pool. 
Get_carr i er_mes sage (bearer, ltr); -- Extract message and put in ltr. 
id := Get_carrier_id(bearer); -- Extract carrier's id. 
Surrogate_receive (letter_box (id) , letter_bearer (id) , central_box); 

--- Recycle letter_bearer to get another message. 
-- Process letter in ltr. 

end loop; 
end; 

Figure 5-14 Ada code for a multiple wait message structure. 

A few points about the program fragment in Figure 5-14 merit explanation . 

• The capacities chosen for the letter_boxes (8, 12, and 4) are problem depen
dent, selected according to the expected frequency with which other 
processes send letters to those boxes. On the other hand, the letter_carrier 
capacity of the central box need not be larger than 3, since there can never be 
more than three letter_carriers enqueued at the central_box. 
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• When a letter_carrier arrives at the central_box, its id value and its message 
are extracted. The id value is used to identify the letter_box that received the 
letter. Using this id value, another Surrogate_receive is issued to that 
letter_box. The letter_carrier from which the letter was extracted, having 
performed its duty, can now be sent back to its letter_box of origin to wait 
for another letter . 

• Mter the letter_carrier is recycled to its letter_box of origin, the most recent 
(FIFO order) letter received from the central_box is processed. 

5.5.4. The Equivalence between Ada 
Rendezvous and iMAX TypecCPorts Facility 

A discussion focusing on the equivalence between the two ways to express 
interprocess communication, namely: use (a) of Ada rendezvous statements and 
(b) i432 Port Objects and port operations, is now timely and perhaps overdue. 
We do not have in mind a definitive analysis of the two approaches, in part 
because to do so would require a much more thorough study of the Ada rendez
vous syntax and semantics than has been given in this book. Even so, some 
observations, based on what has been learned so far, are in order. In what fol
lows, we abbreviate "i432 Port Objects and port operations" as "i432 ports 
facility' , . 

Two questions should be answered. 

1. Are the two approaches equivalent? That is, 
• can Ada rendezvous semantics, i.e., those of the Ada entry call, condi

tional entry call, entry declarations, accept and select statements, be 
fully implemented using i432 ports facility? 

• can all i432 port operations be represented in terms of the Ada rendez
vous? 

2. Given a choice, which approach should be used? What special portability 
problems, if any, might be expected when transporting to and from ordinary 
Ada environments and the i432 Ada environment? 

In response to the first question, Intel compiler writers are in the process of 
implementing the full Ada rendezvous semantics in Ada using the underlying 
i432 ports facility. The success of this enterprise will demonstrate that the i432 
ports facility is at least as expressive as Ada rendezvous. The converse, 
expressing the semantics of the i432 ports facility (as expressed, for example by 
Typed_Ports) using Ada generic packages and Ada rendezvous statements, 
actually a straightforward exercise, would imply that the Ada rendezvous 
semantics offers at least the same expressive power for interprocess communi
cation as the Typed_Ports package. This being so, the equivalence proof rests 
solely on demonstrating each of these two mappings. The first mapping is to be 
demonstrated by Intel in due course and the second, hereafter called the 
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Typed_Ports_By _Rendezvous, is left as a challenge for the reader. 
Given the aforementioned equivalence, programs using either approach fall 

under the category of standard Ada, and the choice between the two approaches 
becomes a matter of pragmatics and style. For executing multitask programs on 
the i432, it is expected that, for many practical applications, the efficiency 
advantage of the Type_Ports operations will dominate the decision process. 
Transporting such programs to non-i432 Ada environments will simply require 
including in the new environment a copy of Typed_Ports_By _Rendezvous as a 
library-level package. (Nor will standard Ada programs transported to the i432 
from a non-i432 Ada environment require any change. To run more efficiently, 
however, it may pay to map certain time-critical rendezvous operations into 
i432 port operations.) 

5.6. Explicit Message-Based Communication 
for the Investment Club Program 

In Section 3.1, we promised to consider substituting explicit message transmis
sion for the Ada rendezvous in order to avoid the bottlenecks inherent in the 
program structure outlined in Figure 2-5. We do this here. Recall, several solu
tions were to be considered. One was to restructure the program as in fig
ure 3-2. That solution permits each Member task to call either the 
Portfolio_Server or the Roster_Server task, but only via a package 
(Member_Ops, Treas_Ops, or Secy_Ops) that acts as a "controlling switch", 
or "filter" . 

[Another possibility for eliminating performance delays was to use spawned inter
mediate tasks for relaying requests from Portfolio_Server to RostecServer. However, 
we have already examined what is involved in pursuing this approach (See the end of 
Section 5.3). It is not especially attractive, especially because each of the messages sent 
by Portfolio_Server (in the form of an entry call) requires the generation of a response 
(in the form of a result value) by RostecServer.] 

Deciding to replace the relatively high-level Ada rendezvous as the only 
means for inter-task communication, by substituting in its place Send and 
Receive operations available through. Typed_Ports, opens up a large space of 
possible solutions. We consider only one of these here. In this alternative, we 
keep the structure of Figure 2-5. The strategy to be used may be summarized as 
follows. Each Member_task communicates its request directly to the 
Portfolio_Server task. Three subcasesare then recognized: 

• The request requires service only from Roster_Server. Such a request is for
warded to the latter intact. In this . event, Roster_Server's response will go 
directly to the originator of the request, and not to Portfolio_Server. 

• The request is such that no confirmation is required from Roster_Server. 
Portfolio_Server immediately processes the request and sends a response 
directly to its originator. 
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• The request requires confIrmation from Roster_Server. In this case, 
Portfolio_Server places an Access Descriptor for the member's request in a 
new message sent to the Roster_Server. The latter's reply message to 
Portfolio_Server, whatever the outcome, always includes this same Access 
Descriptor. Whether the response from Roster_Server signals confIrmation or 
denial of authorization, Portfolio_Server will have suffIcient information to 
process the member's original request and send that member an appropriate 
reply. 

Figure 5-15 illustrates the message flow graph implied in the above strategy. 
In this figure, ports are depicted as nested within tasks merely to suggest that 
the containing tasks execute Receive operations on those ports. 

[There is no intention to imply, for example, that such ports must be declared within 
the contained tasks. Such nested declarations are not ruled out, however.] 

~ 

I I I 

Port_A 

Member_A 

( ( 

r--~D I I I I 0 

Port_B , Port_PS Port_RS 
0 

Member_B , 
Roster_servero ~ Portfolio_Server 

I I I 
Port_c 

Figure 5-15 Message flow graph for explicit message transmission between member tasks 
(including officers) and the portfolio and roster server tasks. 

No Surrogate operations are needed in implementing this strategy, and so 
only Simple_Port_Def must be instantiated. To keep the number of such 
instantiations to the minimum of one, each message implied in Figure 5-15 
must be formed as an instance of the same data type. In addition, each message 
should carry the identifIcation of the sending task, so that the response may be 
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directed to that sender. It should be fairly easy for the programmer to adhere to 
these two constraints. The following is an example of a message_type which 
may be used for all messages: 

type message_type is 
record 

command: integer; 
reply_port: user_port; 

Code representing particular request. 
If message is a reply, value is null, 
else value refers to the port 

strin~of30; 

end record; 

to which reply is to be sent. 
Same as member_name, except 
in case of Portfolio_Server 
and Roster_Server. 

A predefined type representing 
any Access Descriptor. See 
Section 6.3 for rules governing use 
of thi s type. 

The command field encodes the kind of request (and is equivalent to the 
entry identifier it replaces), such as Enter_buy, Enter_sell, etc. The reply_port 
field, which would be null for a reply message, explicitly specifies the port to 
which a reply message for this request is to be sent. [The value of this field may 
be considered an alternative to the sender_id when one can be inferred from the 
other.] 

The sender _id would be the same as a member's my _name argument. In 
case the sender is Portfolio_Server or Roster_Server, the name would simply 
be "Portfolio_Server" or "Roster_Server", respectively (and padded with 
trailing blanks as required). [Sender_id may be the null string when the sender 
is Roster_Server and the receiver is a member task.] Message_body would be 
an Access Descriptor for an object that contains all the in and in out (actual) 
parameters of the replaced entry call-but not including my_name, which is of 
course already provided as the sender_id. This object would be expressed as a 
record structure. For example, message_body in an Enter_buy message to 
Portfolio_Server would be an AD to an instance of the following record type: 

type Enter_buy_send_type is 
record 

purch_date: date; 
stock_code: stock_code_pair; 
num_shares: natural; 
per_sh_price: dollars; 
commission: dollars; 

end record; 

Responses from Portfolio_Server and from Roster_Server must also be 
formed into instances of message_type. For example, the message_body part of 
Portfolio_Server's response to a member's Enter_buy request might be an 
instance of the following one-component record type: 
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type Enter_buy_answer_type is 
record 

unauthorized: boolean := true; 
end record; 

Only one component is needed here, but we retain a record structure because 
we want message_body to be an access type, and the allocation of a new record 
instance (using the new operator) assures us that the compiler will provide the 
wanted Access Descriptor. A declaration and a statement like the following 
might be used to create a response record for the Enter_buy performed by 
Portfolio _ Server. 

my_response: message_type; 

my_response := new message_type' (10, 
Port_A, 
"Portfolio_Server' AAMMMAAAAAM", 
new Enter_buy_answer_type' (false)); 

Any response from Roster_Server that goes as a message to Port_PS, the 
same port to which messages from members arrive, must contain 
"Roster_Server" as the value of sender_id, but must also include a copy of the 
originating sender_id value as one of the components in the message_body 
instance. Therefore, when Roster_Server sends back a response for the 
Is_treasurer inquiry requested by Portfolio_Server, the formulated response 
requires a two-component message_body component, for example, 

type Is_treasurer_answer_type is 
record 

sender_id: 
check: 

end record; 

lon~string; 
boolean; 

-- Originating member name. 

In the context of the Roster_Server, a statement like the following might be 
used to formulate a response to the Is_ treasurer inquiry: 

my_response: message_type; 

my_response := new message_type' (3, 
Port_PS, 
"Roster_Server I AAAAAAAAAAAAAAAAA" , 
new Is_treasurer_answer_type' ( 

"JonesAAAAAAAAAAAAAAAAAAAAAAAAA ", 
false)) ; 

To be sure, for some categories of the incoming messages, the same record 
types may be used. Even so, there are enough differences to require a signifi
cant number of distinct record types, as just illustrated. Defining and keeping 
track of all the sender_id's and message_body types and properly using them in 
place of the argument lists in the eliminated entry calls is one of the major 
prices a programmer will pay to use direct message transmission in place of Ada 
entry calls. 
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We do not take this example much further, but only outline a few of the 
points that may be considered were one to implement the changes needed. 
Readers will find it instructive, however, to complete the exercise of converting 
the two server tasks given in Appendix F for direct message transmission. 

• The steps to be taken are those we illustrated in the preceding section. To 
make matters simple, both Portfolio_Server and Roster_Server may be 
coded to assume that the single instantiation of Simple_port_def and all of 
the created ports are accessible within the respective tasks. 

• As a reminder, all the ports will have FIFO service modes, else it would be 
necessary to use Surrogate send operations as in the user-tailorable message 
priority system detailed in the preceding section. (It would, in fact, be rea
sonable to consider making Port_PS a Priority port, if one wished to give 
special priority privileges to requests initiated from, say the club's Treasurer. 
This "enrichment" would serve as another useful exercise.) 

• Blocking Sends and Receives should be suitable for all types of message 
operations. Member_tasks should issue requests of Portfolio_Server as Send, 
Receive pairs-an important disciplinary requirement that is no longer han
dled for the user automatically, as when issuing task entry calls. 

• We preserve in the body part of both the Portfolio_Server and the 
Roster_Server the primary loop . .. end loop structure, which now consists 
basically of issuing a Receive call and then performing the indicated process
ing that leads, at the end, to the issuing of a "matching" Send. 

• We have already outlined the strategy to be followed by Portfolio_Server fol
lowing the issuance of a Receive call. The strategy followed by the 
Roster_Server after receiving a message is even simpler: just process the 
request and send a matching response either to Port_PS or to the receiving 
port of the member task that originated the request. 





i432 OBJECT ACCESS 
AND TYPE MANAGEMENT 

6.1. Introduction 

In Chapter 1 we outlined the roles played by the the i432 hardware and operat
ing system in support of access control over objects. It was suggested that the 
hardware and operating system form a partnership in providing a facility for the 
typing of objects and for enforcing the intended use of objects, according to 
their respective types. Moreover, we said that this typing facility is extended to 
the user, who can define new object types and specify how the system should 
control access to instances of typed objects. The main purpose of this chapter is 
to elaborate these concepts and to explain the details of object type management 
and object access control. 

We also suggested that part, but not all, of the provided type management 
facility could be exploited within the framework of the Ada language. It must 
be recognized, however, that Ada was designed for programs that execute in 
relatively static environments. This implies that an Ada program is expected to 
execute in a host system having a relatively fixed configuration. If there is to be 
a change in the host execution environment, an Ada program may have to be 
altered "off line", recompiled and then reloaded. The Ada language does not 
include linguistic constructs permitting an Ada program to adapt itself to on
going changes in the system in which it is embedded. This constraint may be 
explained in part by a desire to ensure that Ada programs are as machine 
independent (and as portable) as possible. 

The i432 System architecture is itself more "dynamic" than Ada in this 
regard. Programs can run on the i432 that are adaptive to on-going changes in 
the environment, such as dynamic changes in the attributes of external I/O de
vices. To achieve this additional adaptability at the Ada level of interface to the 
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i432, one may use certain extensions of Ada that expose the dynamic aspects of 
the i432 system. In particular, one can define variables that contain packages as 
their values. This is achieved by extending Ada to allow packages to be 
declared as types, just as with integers, boolean, arrays, etc. Different package 
values (instances) can then be stored into a package variable at execution time, 
thus achieving a dynamic, adaptive instance of a package. This is in contrast to 
standard Ada, in which an Ada program must be modified, recompiled and 
reloaded in order to achieve a different implementation of a package. 

Provision for the invocation of an alternative implementation of a given 
(abstract) data type, selected at run time, is not an entirely new proposal [54].] 
Moreover, we have already alluded to this language extension in connection 
with a suggestion in Chapter 2 for dynamically invoking different instances of 
the package Club_Portfolio, and we expand this idea in the ensuing discussion. 

An Ada programmer is able to express a wide range of access control over 
typed objects without use of any Ada language extension. As we will see, the 
architecture, the iMAX operating system interface, and the Ada compiler 
"cooperate" to let the programmer express such controls either implicitly, 
through judicious use of private declarations and pragmas placed in type 
manager packages, or explicitly, by means of calls to operations of the iMAX 
interface. 

The i432 System has the ability to control appropriately structured user
defined objects in the same way that it controls access to instances of system 
objects. When such user-defined objects are allocated, their respective Object 
Descriptors are encoded with a system type, "extended type", which is a 
system-recognized type. (These objects are called Extended Type Objects. In 
Intel parlance, such objects are also referred to as Dynamic Typed Objects for 
reasons which will become more clear when we discuss 432-Ada later in this 
chapter.) Ada users of the i432 can refer to Extended Type Objects as instances 
of Ada access types. 

Unlike instances of system objects whose types are recognized as special only 
by the architecture and operating system, the type of a user-defined Extended 
Type Object is specified by the programmer and is compiled into a system
defined object known as a Type Definition Object. Mter creation, each 
Extended Type Object contains, in its associated Object Descriptor, a reference 
to the Type Definition Object, which contains a user-defined set of attributes. 
This reference is readily accessible from 432-Ada by use of the type_value 
attribute; it may be used in various operations on the object, and also for per
forming run-time type checking. 

Our intent is to describe in more detail the respective roles played by the 
architecture, the operating system, and the compiler for achieving the desired 
controls on Extended Type Objects. It should be realized that it is precisely 
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these controls plus access rights that are required to implement type 
managers-and which the i432 System makes available to its users. Before 
closing this introduction, we provide some additional motivation for examining 
the Ada-level type management facility offered to the i432 user. 

Consider our portfolio management application. One officer, the club secre
tary, is to be given sole authorization to update the membership_roster object. 
It is to be kept in mind that, over the life of the club, secretaries may come and 
go. Ensuring that no ex -secretaries retain unauthorized access to the portfolio 
implies that write access rights must be dispensed under control beyond what 
was indicated in Chapter 3. In section 6.4, we revisit this problem to see what 
prog:r;am changes are required for accomplishing objectives of this sort. In par
ticular, we will see how treating the roster as an Extended Type Object pennits 
us to solve this access control problem. 

Another challenge related to the portfolio management application arises 
when providing for the use of more than one portfolio-owner package 
(Club_Portfolio). This need could arise in the case of a bank's Trust Depart
ment that manages a number of distinct portfolios for its clients. Each trust offi
cer of the bank would need write access rights to the several portfolios managed 
by that individual, while several officers and staff members of the bank might 
require read access rights to each portfolio. 

Earlier in this chapter we suggested an extension of Ada that would "pro
mote" a package declaration to a type declaration (that is, declare a class of 
packages), thus promoting a package from a program unit to the status of an 
Ada object. Individual variables could then be declared of a package type. Dif
ferent versions of the package body could, by appeal to a "manager" package, 
be selected and instantiated as needed and assigned dynamically to a (different) 
package variable. For convenience, we may name this new level of manager 
package Club_Portfolio_Mgr and assume that its Create operation returns an 
access to a distinct instance of Club_Portfolio each time Create is invoked. 

This "package type" extension to Ada serves well for dealing with the 
multi-I/O device problem. The challenge here is to compose a program that can 
continue to run in spite of dynamic changes in the set of available I/O devices 
and their respective functionalities. 

One way to achieve this measure of device independence is to make accessi
ble an abstraction for each candidate I/O device. This abstraction might take the 
form of a particular instance (implementation) of a package whose contained 
procedures are I/O operations. Each calion an input or output routine causes the 
appropriate I/O operation in the desired I/O package instance to be invoked. 
The ability to select dynamically the desired I/O package is possible with the 
"package type" language extension, because a package instance is promoted to 
the status of an Ada value that can be passed as an argument for a subprogram. 
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The use of package types is crucial to the implementation strategy in iMAX for 
the i432's Input/Output subsystem. The details of this particular application are 
examined in Chapter 7. 

It seems important to reiterate that the i432 architecture and the "package 
type" extension of Ada combine to transcend Ada's static limitations in safe 
and efficient ways. In particular, the extended Ada language and the i432 in 
combination leads to a greater degree of effective dynamic control over the 
transmission of functions and their functionalities than has been possible in 
most predecessor systems. 

Note first that Standard Ada explicitly rules out subprograms that have pro
cedures (or functions) as parameters. (Other high-order languages, -such as 
Fortran and various "Algols" do permit subprogram parameters provided, how
ever, that they are treated as constants and not variables.) The reasons why such 
parameters are forbidden in Ada are now obscure. A possible explanation is that 
permission to pass only procedure constants (and not procedure variables) as 
arguments to other procedures would violate a "completeness principle" in 
language design (and to allow procedure variables as well would too greatly 
expand the scope of Ada.) If procedure (or function) constant parameters were 
permitted in Ada, it would be no "hardship" for a modem compiler to fully 
check each subprogram call to ensure that the input/output characteristics (i.e., 
the functionality) of a supplied procedure (or function) constant argument 
matches that of the corresponding procedure (or function) parameter. Such 
compile-time checks are especially important for programs that execute on 
computers having conventional architectures, since fully-general run-time type 
checking is not convenient or feasible. 

A different situation arises for programs written in the "package type" exten
sion of Ada that are to execute on the i432. 

• First, the execution-time environment of the i432 provides relatively simple 
and safe mechanisms for passing procedures (or functions) as arguments and 
for performing fully general run-time type checks of the functionality of such 
arguments. In fact, passing of procedural arguments is generalized at little 
added cost, since what is passed in the Message Object for an i432 CALL 
instruction is a Domain Object AD, rather than an individual Instruction 
Object. (That is, one may pass as a single AD in the Message Object a refer
ence to the entire collection of subprograms implied by the domain AD.) The 
types of objects input to a called subprogram and the types of objects output 
from a called subprogram can be completely checked at run-time by taking 
advantage of the underlying type definition facilities for system objects and 
Extended Type Objects. Relatively small overhead is associated with these 
type checks . 

• Second, the compiler for the "package type" extension of Ada takes full 
advantage of these underlying i432 object access and type control mecha
nisms. 
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We are now ready to examine the relevant i432 System details provided in 
support of object access and type management. Section 6.2 reviews the 
hardware mechanisms while Section 6.3, 6.4, and 6.5 review the user
accessible iMAX services and companion Ada-language extensions. 

6.2. Hardware Support for Access Control 
and Type Management 

The need for dynamic control over types in running programs can arise in at 
least two kinds of applications: 

• Multiple-user environments. The various users come and go and they have 
changing needs and authority over the lifetime of a single application . 

• Multiple-lIO device environments. Peripheral devices of different attributes 
(functionality) are added to or deleted from the system during the lifetime of 
a single application. 

Recent experience in operating systems development has shown that in a 
multiple user situation it is imperative to provide satisfactory protection mecha
nisms for the controlled management and sharing of information objects. The 
general problem faced is to provide a means for the creator (or owner) of an 
object, X, to dispense restricted access privileges for X to other modules. For 
any object, X, the variety of accesses that might be, or should be, dispensed 
will naturally vary according to the particular level of the application (that is, its 
proximity to the hardware.) 

Determining what is a useful set of dispensable access rights has not been an 
easy problem for the system architect. It must be "complete" in a practical 
sense, so that any particular combination of access controls may be expressed. 
Moreover, the controls should not be circumventable, so that the system can 
remain secure. 

Trying to predict in advance the different forms of access control over all 
possible kinds of objects is hopeless. Architects of the i432 System have 
resolved the dilemma by applying the following three-step strategy: 

1. Establish a set of base rights (and companion hardware controls), that can be 
applied to access any object, such as read and write rights. For example, the 
owner of object X should be able to give to another module Y an Access 
Descriptor for X that contains read rights only, with the assurance that Y 
cannot modify that descriptor (amplify the rights) to include, for example, 
write rights as well. 

2. Augment the base rights with an additional set of type rights applicable to 
every system object and provide companion controls that permit proper 
interpretation of these rights for such system objects. (Type rights are inter
preted relative to the system type of the object; this interpretation may vary 
for objects of different system types. Base rights have the same interpreta-
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tion over all objects.) For example, X may be a Port Object whose owner 
may wish to dispense to some Ada task M an Access Descriptor for X, 
allowing task M to have only receive rights at that port. Denied send rights 
to X, a relatively unreliable task M cannot then use port X in its complete 
role as a local message queue. [The task M might otherwise attempt to 
Receive a message from X before Sending one to X, or attempt to Send too 
many messages to X (and cause an overflow of X's fixed-length message 
queue.) The first behavior would result in a blocked Receive and the second 
would result in a blocked Send-and either one would then result in 
deadlock for task M.] 

Implementing hardware-supervised type rights for system objects turns out 
to be an essential requirement for achieving security in the i432 system. We 
show why this is so later in this section. 

3. Beyond providing base rights for all objects and additional type rights 
tailored for specific system objects, provide a type definition mechanism for 
arbitrary new (user-definable) typed objects, called Extended Type Objects, 
together with a general mechanism for control over access to these objects. 
Users are given access to these two mechanisms through a suitable 432-Ada 
language and operating system interface. 
Since the hardware cannot know about user-defined types, a priori, a special 
representation, common to all such user-defined types, is required so that the 
hardware can recognize objects belonging to these types. In some' 'tagged 
architectures" , each object instance is paired with its type encoding to make 
the object instance self-describing [Gehringer 79]. The i432 architects have 
taken a related approach. 

To understand this approach we explain the use of the system type field in an 
i432 Object Descriptor. This field contains a tag that encodes the type of the 
object referenced. The encoding, which is set at object creation (for the life 
of the object), is subdivided into three principal categories: 
1. generic The referenced object has no special attributes assigned 

either by the hardware, the operating system, or the user. 

2. system The referenced object is a particular member of the set of 
predefined system objects, such as Process Object, Port 
Object, Domain Object, etc., whose attributes are prede
fined, partly by hardware and partly by stored definitions 
accessible to modules of the operating system. 

3. extended type The referenced object has a special set of attributes 
assigned by the user. This set is usually deduced by the 
compiler and assigned to the associated Type Definition 
Object (see below) to represent the type of the object. 
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Thus, an Extended Type Object is one which is recognized by the hardware 
as belonging to category three. An Extended Type Object itself contains a 
Type Definition Object AD in its associated Object Descriptor. This format, 
which relates the object to its type definition, is shown in Figure 6-1. 
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"extended_type" 
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data 
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access 
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Figure 6-1 Structure of an Extended Type Object, T, and its related Type Definition 
Object (TOO). The type of T, "extended_type", is encoded in T's Object Descriptor.· 
The particular set of attributes for this type is found in the TDO, referenced by the AD 
also found in T's Object Descriptor. The TDO generally contains a set of type-specific 
data and access attributes. 

[A similar treatment is used for each class of i432 system objects. The hardware 
recognizes the particular system type as encoded in the Object Descriptor. Additional 
type definition information for each system object class is found in the Type Defini
tion Object, which is referenced from the IDa AD placed in the Object Descriptor.] 

We see that Extended Type Objects are interpreted as instances of the type 
specified by the object's Type Definition Object (TDO). The format of an 
Extended Type O~ject T differs from that of a generic object only in two key 
respects: (a) its Object Descriptor marks it as being of type 
"extended_type", and (b) its Object Descriptor slot contains a reference to 
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its Type Definition Object. Since each TDO is unique, the reference to it in 
the Object Descriptor is also unique and hence identifies T as being an 
instance of a unique type. If two or more Typed Objects are intended to be of 
the same type, their Object Descriptors must contain the same Type Defini
tion Object AD. The i432 architecture does not specify the mechanism by 
which a system for the i432 preserves the uniqueness of TDOs. 

6.2.1. Object Creation Instructions 

Objects are created using one of two i432 instructions. These are: 

• CREATE OBJECT 

• CREATE TYPED OBJECT 

A generic object is created by executing the CREATE OBJECT instruction, 
and an object of system-recognized type, including "extended type", is created 
by executing the CREATE TYPED OBJECT instruction. 

Briefly, the CREATE OBJECT and CREATE TYPED OBJECT instructions 
specify the lengths for the access and data parts of the object to be created and 
an access selector for the destination slot that will receive the Access Descriptor 
for the created object. The CREATE TYPED OBJECT instruction also specifies 
an AD (which must have create rights set) for a system object known as a Type 
Control Object, or TCO. This object, as suggested in Figure 6-2, contains the 
information needed by the hardware for encoding the system type of the created 
object and for encoding the rights fields (base and type rights) in the AD for the 
created Typed Object. A TCO used for creating an Extended Type Object pro
vides the type encoding in the form of a reference to the type's TOO; a TCO 
used for creating a system object provides, in addition, a distinct system type 
code. (As might be expected, TCOs for i432 system objects have formats that 
are identical with those of Extended Type Objects.) 

TCO_AD 
encoded type 
and rights ., 
ADO 
Type Control 

Object 

-

data 
attributes 

access 
attributes 

Type Definition 
Object 

Figure 6-2 Structure of a Type Control Object 

A TCO contains the encoded type, e.g., "extended type", and also, in its 
zero-th AD slot an Access Descnptor (TOO_AD) for an object (the TOO) 
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whose system type is "Type Definition Object." A duplicate of the TDO_AD 
is placed into the Object Descriptor for the created Extended Type Object. 

There are two distinct levels of control that can be expressed (exercised) with 
respect to Typed Objects: 

1. Control over creation 

2. Control over access 

Who is permitted to create a Typed Object. 

Who determines the access rights to be placed in 
an AD for a Typed Object. 

Control over creation of non-generic objects is governed by possession of an 
AD having create rights set in the AD for the Type Control Object associated 
with a particular extended type. The TCO for a system object would normally 
be created by the operating system on behalf of a type manager; the operating 
system would supply to that type manager an Access Descriptor with create 
rights for that Type Control Object (TCO_AD). The type manager would then 
use TCO_AD during each activation of its Create operation to create an 
Extended Type Object on behalf of the type manager's caller. Ordinarily, this 
TCO_AD would be kept private to the type manager. 

Control over access to a previously created Extended Type Object, T, is 
governed merely by possession of an AD (with appropriate access rights) to T. 
When the Create operation within T's type manager returns an AD for T to the 
caller of Create, the decision as to what access rights to supply in the AD for T 
is the responsibility of the type manager. The AD for any newly created object 
always includes both read and write rights. If rights to T are to be restricted, 
then the type manager's own local object creation operator must "strip off" 
such rights in any copy of the AD for T that is passed back to Create's caller. A 
type manager will normally reserve for itself control over the amplification of 
rights to T. 

Any rights stripped off the AD for T when the AD is issued to the user can be 
reinstated by the type manager when the same AD is later presented to the type 
manager as an argument to another of its operations. Rights restriction and 
amplification are accomplished by taking advantage of the i432 RESTRICT 
RIGHTS and AMPLIFY RIGHTS instructions. The latter instruction can be 
executed only when the appropriate TCO_AD, maintained privately within a 
type manager, is specified as an argument. These details are elaborated later in 
this section. 

We now divide our discussion here into two parts. First we examine the 
"inner layer of access control" provided through the base and type rights fields 
of Access De~criptors, the base and system type fields within Object Descrip
tors, and the control functions that arise through the hardware's interpretation of 
these fields. These mechanisms form the foundation on which the system's 
security rests and also the foundation on which the extended type management 
facility is built. 
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In the second discussion we examine the security strategy-which, is based, 
in essence, on denying the programmer the freedom to manufacture Access 
Descriptors and on controlling Typed Object creation and amplification of 
rights to these objects. 

6.2.2. The Inner Layer of Access Control 

An Access Descriptor may be thought of as having a hardware-sensed record 
structure with three primary components: 

• logical_address Consists of two subfields: directory index and object 
index. These specify the referenced Object Descriptor 
(See Figure 4-1.) 

Consists of the valid bit, delete rights and unchecked 
copy rights, none of which is discussed here. 

Has two parts: base rights and type rights 

We limit our discussion here to the rights_fields component, consisting of 
two parts: base rights and type rights. (Base rights are also called representation 
rights.) 

• Representation rights, consist of read and write rights. These are interpreted 
by the hardware according to the position of an object as a source operand or 
destination operand within the operator (instruction) being performed. The 
representation rights bits are interpreted independently of the type of object 
on which a read or write is attempted. As mentioned in Chapter 4, representa
tion (or base) rights apply to both access and data parts 
For example, both the LOCK OBJECT and UNLOCK OBJECT instructions 
have operands that specify an AD for the object containing the lock. If that 
Access Descriptor has no write rights, the instruction will not be executed, 
and a context-level fault will occur. A similar circumstance occurs if an 
instruction attempts to read an Access Descriptor with write-only access. Any 
attempt to execute, say, a MOVE instruction that specifies a source AD hav
ing only write rights will induce a read fault. 

• The type rights field of an AD is interpreted according to the system type of 
the object referenced by the AD. The system type of the object is, in tum, 
encoded in the Object Descriptor referenced by the AD. We say more about 
Object Descriptors below. Figure 6-3 lists the processor-interpreted type 
rights for i432 system objects. A reader who wishes more details should con
sult the i432 GDP Architecture Reference Manual.] 

For the following discussions, it is useful to recall that there are two kinds of 
descriptors that can be referenced by an Access Descriptor: an Object Descrip
tor and a Refinement Descriptor. Let us assume that the target of the 
logical_address given in an Access_Descriptor is an Object Descriptor, and 
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Figure 6-3 System Objects on which type rights have been defined 

now glimpse at its internal structure. An Object Descriptor can be thought of as 
having three principal components: 

• physical_address_info The base physical address of an o~ject or a 

• memory _mgr _control_info 

• object_type 

secondary address of a non-memory resident 
object. 

A collection of items used in storage 
management, including garbage collection. 

There are two subfields: 
system type 
processor class 

We are concerned here only with object_type, which has two components 
that contribute to the classification of the described object. 

• The system type subfield qualifies each object according to its system
significant or user-defined function, if any. If an object has no system
significant function or user-defined function, its system type subfield is 
encoded as "generic". The availability of non-generic system types permits 
the hardware to detect a variety of object access faults that occur when an 
operand of an attempted instruction maps to an object whose system type is 
inconsistent with the semantics of that instruction. 
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For example, an attempt to execute a RECEIVE instruction whose operand 
does not specify a Port Object will lead to a process-level fault. There are a 
large number of hardware detected faults of this kind. Those who wish more 
information about these faults can find it in the published in the i432 Archi
tecture Reference Manual. 

• The processor class field may further categorize the system object, according 
to the kind of processor that is permitted to operate on this object. Currently, 
there are but two kinds of i432 processors, but in the future this number could 
increase. 

For example, the system's Interface Processor (IP) operates with a Processor 
Object that has a different format and content than the Processor Object asso
ciated with the General Data Processor (GDP), whose architecture we have 
been describing thus far. A processor-level fault will be caused when there is 
an attempt to bind a processor P to a Processor Object encoded for a different 
kind of processor Q. [The IP, of which there must be at least one in every 
i432 System, plays a critical role in interfacing the i432 with an I/O subsys
tem. The IP and the I/O subsystem are described in Chapter 7.] 

Not all object types are or should be associated with a particular kind of proc
essor. For example, generic objects are treated alike by both GDPs and IPs 
(even though the GDP's richer instruction set allows it to do more with such 
objects.) For this reason the processor class marked "all" is provided. It is 
used for objects that may be processed by the union of all kinds of processors 
extant in the system. 

[The i432 architects have laid the groundwork here for the eventual inclusion of a 
variety of other kinds of processors that may be co-attached through the system's gen
eral interconnect structure. As more experience is gained with use of the i432, it will 
be tempting for the system architects to design and add to the system other special
function processors besides the IP. A special purpose Garbage-Collector CGC) proc
essor is one conceivable candidate; a specialized LISP language processor may be 
another. 
Because different kinds of processors will have different instruction sets, it may be 
desirable that, even for identically formatted system objects, different type rights 
should be defined for different processors. Since the number of different kinds of 
processors that can be included in an i432 System is intended to be open-ended, the 
processor class field may play an especially important future role in the lifecycle of 
i432 Systems.] 

6.2.3. i432 Security Strategy 

Key to the i432 System security is a guarantee that every information object 
must be accessed via an Access Descriptor. All i432 processors satisfy this con
straint. It may not be clear from a casual examination of the instruction set of 
the GDP that a programmer is incapable of fabricating and using Access 
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Descriptors to gain access to any (and ultimately to every) object. What 
prevents the clever programmer from "fooling" the hardware into using an 
arbitrary AD to reach other objects? 

Put another way, if a programmer can manage to manufacture even one 
Access Descriptor with an arbitrary logical_address component, then the sys
tem is fundamentally insecure! A necessary condition for the system to be 
secure, therefore, is to deny any programmer, including any system program
mer (except the person responsible for the system's initialization), freedom to 
manufacture Access Descriptors in an uncontrolled fashion. This has been 
achieved, as the following discussion attempts to show. [Some not-so-curious 
readers may wish to skip the rest of this discussion.] 

In the normal course of events, Access Descriptors are created only as a 
byproduct of object creation. Once cveated, an Access Descriptor can be copied 
and parts of it altered, but only under controlled conditions. The 
logical_address part part of an AD can never be individually altered, i.e., 
without altering the entire AD. It seems sensible, therefore, first to examine the 
details of object creation. In the course of doing so, we will complete our expo
sition of the role of the Type Control Object. 

Objects can be created only by executing one of two i432 instructions. These 
are: 

• CREATE OBJECT 

Creates a generic object of specified lengths for its access and data parts 
(each of which may be zero) from a specified SRO and returns an Access 
Descriptor for the created object in a specified AD slot of another object. 

• CREATE TYPED OBJECT 

Creates a non-generic object of specified lengths for its access and data parts 
(each of which may be zero) from a specified SRO and a specified TCO, and 
returns an Access Descriptor for the created object in a specified slot of 
another object. The created Object Descriptor and Access Descriptor are 
respectively encoded with system_type and rights_fields copied from the 
specified Type Control Object. An AD for the object's TDO, copied from the 
TCO, is also placed in the created Object Descriptor. The AD for the speci
fied TCO must have create rights. 

Common to both of these instructions is the fact that creation of an object 
involves the creation of an Object Descriptor and an Access Descriptor that 
points to that Object Descriptor. The created Object Descriptor is placed in the 
Object Table associated with the specified SRO operand. The created Access 
Descriptor is assigned to a slot in the access part of the "destination" object 
specified by the destination AD (which must have delete rights itself). The 
hardware ensures that the created Access Descriptor cannot be placed in a slot 
in the data part of a destination object. Moreover, the hardware determines the 
encoding of the created Access Descriptor and Object Descriptor. 
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In the case of the CREATE OBJECT instruction, created Object Descriptors 
have generic system types. An object created by CREATE OBJECT can ini
tially inherit no special or privileged attributes. Only the use of the CREATE 
TYPED OBJECT instruction affords the opportunity to create an object that is 
encoded as a system object. But to successfully use this latter instruction, the 
programmer must specify, as an additional operand, an Access Descriptor for a 
Type Control Object. The TCO is, in essence, a template containing the system 
attributes (e.g., system type codes and rights) that will be "conferred" on the 
created object and the returned AD. 

How are TCOs for system objects created? A Type Control Object is a system 
object also. To create a TCO requires an Access Descriptor for an appropriate 
Type Control Object. If the reader has followed the line of reasoning to this 
point, all the earmarks of a "catch 22 situation" seem to be in evidence. It 
should be clear that there is no way for a programmer to create a system object 
unless at least one Type Control Object (along with its Object Descriptor and an 
associated AD (with create rights) is deposited in memory at some known loca
tion at the time the system is initialized. TCOs for other types of system objects 
can be constructed from the initial TCO. If the system program that is loaded at 
the time of system initialization is sufficiently reliable, and if the operating sys
tem code loaded subsequently is also reliable and sensitive Type Control Objects 
are hidden in the private parts of system packages, it should be possible to deny 
all users access to all Type Control Objects used by the system. This is the suffi
cient condition that is needed to guarantee the system security in the i432. 

By analogy with TCOs for system objects, users who program Ada type 
manager packages can create TCOs for Extended Type Objects with the aid of 
the operating system. These users are then responsible for control over the dis
tribution of ADs (having unrestricted rights) to these TCOs in securing their 
own subsystems. 

Our study of the i432 System's security strategy is not yet complete. We 
have examined the instructions for creating objects, and the controls governing 
the use of these instructions, but we have not yet introduced the AMPLIFY 
RIGHTS instruction (and its companion RESTRICT RIGHTS instruction). If 
the use of AMPLIFY RIGHTS were uncontrolled, this instruction would cer
tainly be a weak point in the System's "security armor." 

• The AMPLIFY RIGHTS instruction allows a programmer to add base and 
type rights to a specified Access Descriptor for an object T, but only if the 
instruction specifies an AD with amplify rights for the Type Control Object 
that "governs" rights amplification for T. In addition, other conditions 
explained below must be satisfied. When a suitable TCO is specified in the 
AMPLIFY RIGHTS instruction, the processor ORs the base and type rights 
of that TCO with those of the Access Descriptor to be altered. 
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The additional conditions to be satisfied are as follows: 

a. if the specified TCO is for a system typed object, then the object type 
encoded in the Object Descriptor for target object T must match the object 
type encoded in the TCO. 

b. if the specified TCO is for an Extended Type Object, then the TOO_AD 
encoded in the TCO must match the TOO _AD value in the Object 
Descriptor for target object T. 

Since the operating system denies users access to TCOs for system typed 
objects (and since an application subsystem user should not be able to gain 
access to a TCO for an Extended Type Object residing in a private area of an 
application program), there can be no system security risk here (and there 
should be no application security risk here either.) 

• Nor is the RESTRICT RIGHTS instruction a security risk. This instruction 
allows a programmer to remove base and type rights from an Access Descrip
tor (presumably before making it available to a less privileged "friend".) For 
this instruction, a Type Control Object must also be specified, but here, no 
controls on it are demanded. In fact, a TCO may be fabricated and specified 
as a refinement of an ordinary generic object. The Access Descriptor that 
references this TeO need have no special rights beyond read rights. The criti
cal issue here, however, is that the restriction of rights is done by the proc
essor, logically ANDing the base and type rights found in the TCO to those 
of the Access Descriptor to be altered. Since it is not the programmer but the 
hardware that performs the ANDing of rights, there is no chance that the 
RESTRICT RIGHTS instruction can be used for rights amplification instead. 

The last point to be made about the i432 security model is that, by careful 
plan, there is no way a user can manufacture and then use an Access Descriptor 
to access a "forbidden" target. Access Descriptors are constructed by the sys
tem only in connection with the creation of objects and refinements. Thereafter, 
only the rights fields of the AD can be altered-with amplification strictly con
trolled, as we have just seen. A user can destroy an Access Descriptor D that 
contains delete rights, but only if the user holds an AD with write rights for the 
object in which D resides. Moreover, such "destruction" is always controlled: 
either D is replaced by another valid and legal Access Descriptor, or D is 
replaced with a null AD-a descriptor that is marked invalid and hence never 
usable. Since the processor fetches ADs only from the access part of an object, 
it is of no use for a user to implant a manufactured (imitation) AD in the data 
part of an object with the expectation of "fooling" the processor into using it. 

What might appear as an obvious way to breach the system's security is for a 
user to acquire and use an AD with write rights for an Object Table. To do this, 
the user could first create an object in some SRO, thereby obtaining an AD for 
that object with full rights. Then, having write access to that SRO's Object 
Table, the user could modify the Object Descriptor for that created object to 
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represent any desired system type, for example, a Type Control Object for any 
kind of system type. However ADs for SROs made available to users by the 
operating system have read and write rights removed, so a user cannot succeed 
with such a plan. 

In summary, the foregoing has been presented as an informal proof that the 
capability-based system implemented in the i432 architecture is a sufficient 
foundation for a secure system. The system is secure to the extent that its 
operating system prevents users from gaining access to TCOs for system typed 
objects and from gaining possession of an AD with write rights for the Object 
Table of an SRO. 

6.2.4. Instruction-Level Use of Extended 
Type Objects 

The last instruction to be discussed in this section is RETRIEVE TYPE DEFIN
ITION. This instruction is used to retrieve the defining TDO _AD for an object 
A whose AD is currently accessible. The object A can be either an Extended 
Type Object or a system typed object. The RETRIEVE TYPE DEFINITION 
instruction takes two operands. The first specifies the Access Descriptor for the 
source object (A, as discussed above), and the second specifies the slot to 
receive the requested TDO-AD. The set of rights in the returned TDO_AD 
includes only read and write rights, but either or both of these can be removed 
using the RESTRICT RIGHTS instruction. 

We illustrate the use of the RETRIEVE TYPE DEFINITION instruction in a 
situation in which we are given an AD for an object R of some alleged type S, 
and we wish to verify that R actually has this type. An i432 instruction sequence 
like the following might be used: 

RETRIEVE TYPE DEFINITION (R_AD, unknOWIl_TDO_AD) 
TDO_AD for R is deposited 
in unknoWIl_TDO_AD. 

EQUAL ACCESS (unknOWIl_TDO_AD, type_S_TDO_AD, truth_value) 
Sets truth_value to true 
on equal compare of two 
given ADs, else sets 
truth_value to false. 

BRANCH FALSE (truth_value, Not_S) -- Branch to label Not_S 
-- if truth_value is false. 

-- Steps to be taken if object R is of type S. 

The actual content of a Type Definition Object is not specified in the i432 
Architecture. For many applications it may be sufficient for the TOO to be 
empty because the AD for it serves as the type's unique identifier. As we will 
see, however, in Chapter 10, Type Definition Objects may contain references 
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useful to modules of the Object Filing Subsystem for determining how to file 
typed objects in the passive, long-term store of the system. 

[One can easily conceive of an application in which a IDO is a Domain Object that 
refers to a set of operations (attributes) that may be performed on (associated with) a 
type. Such an application would differ from Dne controlled by a standard Ada compiler 
in the sense that the set of operations (attributes) defined for a particular extended type 
could be varied dynamically, as required. 

This form of dynamic typing is used in languages like LISP for which there is a pro
perty list associated with each variable. Properties and property values on such lists may 
be altered dynamically. In a database application, to choose a more familiar example, the 
access rules for typed records would be referenced indirectly from associated Type 
Definition Objects. These rules could be altered dynamically, by some supervisory 
module of the program. 

Certain applications in computer graphics also suggest themselves. For example, 
some spatial objects must be displayed under potentially changing display rules. These 
objects can also be represented as Typed Objects. One can see that the number of useful 
applications for Typed Objects appears to be open-ended.] 

In the next Section, we look at the more "benign" user interface provided by 
iMAX for gaining access to the architecture's Extended Type facility. 

6.3. iMAX Interface to the Extended Type Facility 

The iMAX Extended_ Type_Manager package, provides the user-level inter
face for managing objects with extended types. We have already introduced the 
reader to this package in Section 6.1, and we have explained the underlying 
hardware mechanisms on which the package depends in Section 6.2. There
fore, the reader should now have no difficulty understanding the Ada specifica
tions for this package (given in Appendix I). In this section, we quickly go over 
the highlights of these specifications and then show how a programmer would 
use the package for managing Extended Type Objects. 

In the context of this discussion, we may ask, who is the "user" of this 
iMAX package? It seems fair to say that systems programmers, such as those 
working for 'original equipment manufacturers (OEMs), including compiler 
writers, and some interpreter writers, will be the typical users. Applications pro
grammers who choose to program in Ada, who generally prefer to work at a 
higher level, should not need to use the iMAX package directly. We attempt to 
show why this is so later in this section. We first discuss the lower-level, or 
direct, use of the iMAX interface. We then show how the equivalent operations 
are expressed within Ada. 

The iMAX interface package offers six operations, as listed in Figure 6-4. 
Each of these corresponds to a key i432 hardware instruction whose semantics 
we have previously described. 
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Operation Name 

Create_type_definition 
Create_type_control 
Create_extended_type 

Restrict_rights 
Amplify_rights 

Applicable i432 instruction 

CREATE TYPED OBJECT 
CREATE TYPED OBJECT 
CREATE TYPED OBJECT 

RETRIEVE TYPE DEFINITION 

RESTRICT RIGHTS 
AMPLIFY RIGHTS 

Figure 6-4 Operations of the iMAX package Extended_ Type_Manager. 

We now suggest how one can program a type manager package, S_Mgr, that 
manages objects of some type S. This package would make calls on the iMAX 
Extended_ Type_Manager to obtain a TOO for type S, to obtain a governing 
TeO, and to create Extended Type Objects typed by S (which we hereafter call 
"Typed_S" objects.) In addition, S_Mgr might offer its users a predicate for 
determining whether a given typed object is a Typed_S object. We will also see 
that, unknown to the user of S_Mgr, the latter might perform Restrict_rights 
and Amplify ~rights calls on Extended_ Type_Manager. In short, a typical 
user-written type manager package is likely to make use of all the operations 
listed in the iMAX Extended_ Type_Manager package. We explain this idea 
further below where, for simplicity, we assume that S_Mgr is a transformer 
package, rather than an owner package. 

As suggested, the public operations of S_Mgr would include the two basic 
operations to create a Typed_S object and to verify that a given object is of type 
S. See Figure 6-5. 

and other packages, as needed 

package S_Mgr is 
use Extended_Type_Manager; 

function Create_typed_S(len_d, len_a: short_ordinal) 
return typed_S_ref; 

function Is_type_S(unknown_typed: dynamic_typed) 
return boolean; 

-- Other function and procedure specifications that are 
-- particular to type S go here. 

Figure 6-5 Skeleton of a low-level Type manager. 
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Also included but not shown would be declarations of types and variable 
instances of these types, either public or private. 

Create_typed_S returns an AD for a Typed_S object, given as arguments the 
lengths of the access and data part. The base rights supplied in the returned AD 
depend on the application. Thus, if S_Mgr's callers are regarded as "unreli
able", both write and read rights would be withheld. (We see later that such a 
case corresponds to an Ada private access type.) The caller of Create_typed_S 
supplies neither a TCO argument nor an SRO argument. This is because the 
attributes of type S are known to the programmer of S_Mgr. Thus, when that 
package is initialized, references for both the TOO and TCO for type S are 
obtained by a (single) calIon the Create_type operation of the iMAX package. 

The function Is_type_S returns a boolean value true if the supplied reference 
is an AD for a Typed_S object and false otherwise. (In the implementatIon of 
Is_type_S, S_Mgr makes a call on the iMAX operation Re
trieve_type_definition to obtain an AD for the TDO of unknown_typed.) 

In the event S_Mgr has removed read and write rights, or both, when return
ing a reference for a created Typed_S object, then upon receiving subsequent 
calls, S_Mgr by the user might need to call on the Amplify _rights operation of 
the iMAX package. This would be done in order to restore the rights needed by 
S_Mgr so that processing of the call can continue. When processing is com
pleted, S_Mgr may wish to call on the Restrict_rights operation of the iMAX 
package to again remove the restored rights if, for example, the AD was sup
plied as an argument of an in out parameter. 

To be more concrete, let us suppose that S_Mgr includes the public operation 

procedure Update_typed_S( 
-- param1: in ..., 
-- param2: in ...; 

param3: in out typed_S_ref) 

If rights for Typed_S objects are not initially withheld from S_Mgr's caller, 
then the implementation of Update_typed_S uses param3 directly as received, 
and returns the same AD value after possibly modifying the object referred to 
by param3. If, however, base rights to Typed_S objects have been withheld, 
then the implementation of Update_typed_S would first issue a call like 

Amplify_rights ( 
ext_type 
tco 

=> param3, 
=> typed_S_ tco_ref) ; 

if both read and write were needed for updating the Typed_ S object specified 
by param3. Just before completion of the update procedure, a corresponding 
call to restrict the rights in param3 would also be issued: 

Restrict_rights ( 
ext_ type => param3, 
read_rights => 1, 
wri te_rights => 1, 
tco => typed_S_ tco_ref) ; 
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In both of the above calls, the value passed to the parameter "tco" is a variable 
that is strictly private to S_Mgr. 

The direct use of the iMAX interface package pennits the management of 
Extended Type Objects within a "spectrum" from fully private to fully public. 
If the type manager removes (supplies) all rights to Typed Object ADs before 
handing them to the user, such objects are clearly fully private (fully public). A 
fully private object models a real world object that is sealed. One cannot unseal 
it (to find out what is in it or to use what is in it) for lack of a key. A fully public 
object models a real world object that is open for inspection or manipulation. 

Intermediate points on the spectrum running from fully public to fully private 
are also possible. Suppose, for example, the user of a returned AD having both 
read and write rights for a Typed_ S object chooses to further restrict certain 
dispensed copies of the AD by stripping off these rights. Further suppose that 
some of the operations of S_Mgr, like Is_type_S (or Update_typed_S) are re
specified to require read rights or write rights, or both, and that exceptions are 
raised by S_Mgr when such rights are not provided with in or in out Typed_S 
references. In this situation, a much richer set of management controls can be 
exercised. 

A particular kind of intermediate level of control governs the provision of the 
right to verify the type of a Typed Object. Possession of a reference with read 
rights to an Extended Type Object can be used to model possession of an access 
to a "trademark" on that object. We can think of the Type Definition Object 
that is associated with a Typed Object as the object's trademark. Having access 
to the TOO pennits verification that the given object is an authentic instance of 
some type (assured by checking the object's trademark). 

The ability to check for,the expected trademark on a Typed Object in model
ling real-world systems can be regarded as a useful user-defined right that can 
be dispensed to those modules that need it. For the case where a type manager 
dispenses (at least) read rights to a created Typed Object, we can easily imple
ment such a scheme. It is only necessary to specify the Is_Type predicate of the 
type manager such that the caller must supply read rights in the in-bound refer
ence to the Typed Object. (To be specific, suppose module E is given exclusive 
access to the manager package T _Mgr. Suppose subprograms in E get ADs to 
created Typed_ T objects with read rights. This right can then be retained in 
copies destined to some of E's callers but stripped off of copies destined to oth
ers, thus dispensing the right of trademark-checking to some and withholding it 
from others.) 

6.3.1. Implementation of Ada Access Types 

The extended type facility (architecture and iMAX interface) described in the 
foregoing text forms the foundation for the i432 Ada compiler's implementation 
of Ada access types. Every access type variable of type T in an Ada program is 
an AD that references an Extended Type Object if and only if 
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is specified in the same unit in which T is declared. 
Declaring an access type T that references a limited private type (hereafter 

referred . to as a private access type) and specifying the pragma En
able_Dynamic_ Typing(T), directs the i432 Ada compiler to form sealed refer
ences for all instances of T, whether allocated statically or dynamically. Sealed 
references are ADs that have no base rights. Furthermore, when such instances 
are subsequently supplied as arguments to operations of the package in which 
the type T is declared, the compiler automatically generates the necessary calls 
~m operations of Extended_ Type_Manager to amplify base rights on in-bound 
arguments and to restrict these same rights on out-bound arguments. Rights 
amplication and restriction is made invisible to the user. 

This direct match made between the high-level concept of an Ada private 
access type and the i432/iMAX mechanisms for support of type managers has 
significant implications for the improvement of security and software produc
tivity. Benefits accrue mainly because local as well as system-wide security is 
automatically gained for the data of Ada programs declared using private access 
types. Since the achievement of total security is implemented simply by the use 
of the private access type feature of Ada, application programs need not be aug
mented with or encapsulated in code to invoke special system routines for 
achieving the same level of security. By avoiding such "embellishment", pro
grams can be simpler and easier to understand-hence the expected increase in 
software productivity. 

The benefits outlined above are gained at some cost in space and execution 
speed for an executing Ada program. For some Ada access types, a user might 
prefer that the compiler choose an untyped representation, thereby avoiding the 
costs of extra object creation and rights amplification and restriction (and 
assuming the implicit security risks as well). For this reason, the 432 Ada com
piler default specifies that untyped representation should be used for access 
types and that sealing should be inhibited. 

We now consider in somewhat greater detail the implementation of Ada 
access types and their use. Consider the following Ada program fragment: 

type R is 
record 

end record; 

type R_ref is access R; 

pragma Enable_Dynamic_TYPing(R_ref) ; 
Compiler generates code to produce a TOO for type R (TDO_R) 

-- and a TCO (TCO_R_ref) that contains an AD for TDO_R. 
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A subsequent program fragment may contain steps to declare an instance of 
type R_ref and to allocate a new value for R: 

Compiler generates an association between X and 
the AD for TCO_R_ref already obtained. 

X : = new R' ( .) ; 
Compiler generates, either directly or indirectly, 
a CREATE TYPED OBJECT instruction that 
specifies the AD for the TCO_R associated with 

-- variable X, thereby creating a Typed_R object 
-- and assigning the returned reference to X. 

The object structure resulting from executing the above assignment statement 
would appear as in Figure 6-6. 

Context Object 

X 
o J. Descrlptor 

for Typed_R 
object 

data part 

access part 

Figure 6-6 Data structure snapshot immediately after assigning to X a reference to a new 
Typed_R object. It is assumed that variable X has been allocated a slot in the access part 
of the current Context Object. 

6.3.2. Compile-Time and Run-Time Type 
Checking 

Since instances of Ada access types can be created dynamically as well as stati
cally, it is useful to review the kind of type checking automatically provided by 
the Ada compiler at compile time and/or run time. Such type checking is an 
essential building block in the security structure for all i432 application pro
grams. 

First, we need to review the Ada concept of type conversion to see how it 
applies to access types. Second, we need to appreciate how run-time checks are 
provided in those cases in which type conversion involves the special i432 Ada 
type dynamic_typed. A variable of this type can contain any Access Descriptor 
and is used in important ways when interfacing with the iMAXOperating Sys-
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tern. [Type dynamic_typed is a predefined type in the SYSTEM package sup
plied with the Ada compiler system and as such can be regarded as an extension 
of Ada.] 

Ada permits the programmer to specify the conversion of an expression value 
from one type (and representation) to another "related" type (and representa
tion). For example, if types X and Y are related types, then one may convert a 
value of type X to type Y or vice versa using the following syntax: 

declare 
first: X; 
second: Y; 

begin 

first := X (second) ; -- Converts value of type Y to value of type 
-- X and assigns it to first. 

second :=Y(first); -- Converts value of type X to value of type 
-- Y and assigns it to second. 

end; 

By related types we mean X and Y must belong to some common category. 
For example, both types must be numeric, or both types must both be arrays of 
some conformable dimensions and have related element types. More impor
tantly for this discussion, Ada also allows conversion between derived types, 
that is, between one type, A, derived from another type, B, and vice versa. [A 
reader may wish to consult Chapters 3 and 4 of the Ada Reference Manual for 
more details on type conversion.] For example, type A is said to be derived 
from type B if type A is declared in the declaration: 

type A is new B; 

or, in the declaration 

type A is new B constraint; 

In the second example, the constraint simply limits the domain of values that 
type A can have to a subset of those B has. For example, 

type mid_week is new day range tue .. thu; 

Following the same principle, all access types are related, as they may all be 
considered as having been derived from the "generic type" dynamic_typed. 
This means we can express the conversion of one particular access type to 
another using the same type conversion syntax as just described. 

The special, predefined dynamic_typed type has been introduced to provide 
a simple way for programs to manipulate reference (AD) values whose refer
enced types are unknown at compile time. We have encountered but not yet ela
borated one such example in Section 5.6, in which the record type "mes-
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sage_type" contained the component message_body, of type dynamic_typed. 
In this case, the sender must assign an access value of some particular type to 
the message_body component of the message and the receiver, in order to use 
the message_body, must convert this value of type dynamic_typed to some par
ticular and meaningful access type. 

Consider the following situation, in which we have three access variables A, 
B, and C, and where the value of one is to be assigned to another: 

type R_ref is access R; 

pragma Enable_Dynamic_Typing(R_ref); 

A: dynamic_ typed; 

-- A particular access type. 

A := dynamic_typed (B) ; -- Passes a compile-time type check. 

B := R_ref(A); -- Run_time check is generated by the compiler. 

C :=A; -- Illegal without invocation of 
-- Unchecked_type_conversion on 
-- right-hand side, as explained below. 

The first assignment "A : = dynamic _ typed(B)" is determined at compile 
time to be legal since a value of any access type can be assigned to a variable of 
type dynamic_typed. The second assignment "B : = R_ref(A)" supplies the 
information needed by the compiler to generate machine code for a run-time 
type check. This check is executed as follows: The system type that is encoded 
in the object descriptor for A is checked for equality with that of B. If not equal, 
a type fault exception is raised. If equal, and if the system types of neither is 
, 'extended type", then the check succeeds. If both types represent "extended 
type", then a further check is made for equality of the governing TDO_ADs. 
One of the TOO _ADs is stored within the Object Descriptor for the current 
value of object A and the other TOO_AD is that for type R_ref, which is B's 
correct type. Recall that the governing TOO_AD for A is found in the Object 
Descriptor for object A and the governing TOO _AD for type R_ref is stored 
within the TCO associated with type R_ref. The assignment completes nor
mally if the check succeeds; a type fault is raised if the check fails. 

To understand why the assignment "C : = A" is determined by the compiler 
to be illegal, we briefly review the key Ada rule governing assignment of values 
to variables. 

If the type of the name on the left hand side of an Ada assignment statement 
is not (resolvable at compile time or run time to be) equivalent to the type of the 
expression on the right hand side of the assignment, then Ada semantics 
requires that the generic function Unchecked_ Conversion must be applied to 
the right hand side expression. This precaution provides the compiler with the 
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opportunity to guarantee that the user is aware that he is stepping outside the 
bounds of Ada's type checking system. If Unchecked_conversion is not speci
fied and the two sides of an assignment statement are of incompatible types then 
the compiler can safely imply that the user has committed an unintentional 
error. 

with Unchecked_conversion; 

type some_access is access 

function Convert_any_to_some is new 

X: some_access; 
Y: dynamic._ typed; 

Unchecked_conversion(source => dynamic_typed; 
target => some_access); 

Declares a specific instance of 
the generic library subprogram, 
Unchecked_conversion. 

The function calIon the right-hand 
side specifies the target type. 
No run-time check occurs. 

[Adherence to these rules was implicit in the discussion we had in Section 5.6 con
cerning the sending (and receiving) of messages in which values of different access types 
were to be assigned to (and read from) the message_body component of various mes
sages transmitted through the same typed port. For those interested, the required use of 
Unchecked_conversion is defined in Chapter 13 of the Ada Reference Manual in the sec
tion entitled, "Unchecked Programming.' '] 

We can invoke Unchecked_conversion to transform the illegal assignment 
"C : = A" of the earlier example into a legal assignment. The Ada program 
fragment would be changed in, for example, the following manner: 

with unchecked_conversion; 

type R_ref is access 

function Convert_any_to_R_ref is new 
unchecked_conversion(source => dynamic_typed; 

target => R_ref) ; 
-- Declares a specific instance' of 
-- the generic library subprogram, 
-- Unchecked_conversion. 

pragma Enable_Dynamic_Typing(R_ref) ; 

A: dynamic_ typed; 
B, C: R_ref; -- A particular access type. 
A := dynamic_typed(B); -- Passes a compile-time type check. 
B :=R_ref(A); -- Run_time check is generated by the compiler. 
C : = Convert_any_ to_R_ref (A) ; 

The assignment is legal (although unsafe) 
even though there may be a mismatch 
between the current type associated with A 
and the type of C. No run-time check occurs. 
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6.4. Sealing the Membership Roster 

In Section 6.1 we suggested that another look at protection of the membership 
roster in the portfolio management application progt:am would be in order after 
gaining an understanding of the i432 security system. Our expectation is to 
improve security by preventing a person from masquerading as the officer 
authorized to update the membership roster, and thereby gaining improper 
authorization for Updating the portfolio. 

One can understand the security problem most easily by a review of the pro
gram structure in Figure 2-5. 

A portfolio update request to Portfolio_Server (Appendix F) is first con
firmed by a call to Roster_Server, which is sent the name of Portfolio_Server's 
caller. A simple name is not hard to forge, so let us assume that we have already 
"improved" Roster_Server by requiring that a password be supplied along 
with the person's name. That name and password must be checked by 
Roster_Server (Appendix F.) Only the club's current Secretary is permitted to 
write new names (and passwords) in the membership roster. The weak link in 
the security plan is that no provision has yet been made to prevent a person from 
"impersonating" the Secretary and thereby gaining the power to alter any and 
all other passwords in the roster. (Many useful systems rely on passwords as the 
basis for maintaining security, but, in this case, we shall assume that passwords 
are deemed insufficient.) 

We now consider how the sealing facility for i432 objects can be used to con
trol system security. Recall that a sealed object of type S is a Typed_S object 
under control of a type manager whose operations dispense ADs (for Typed_S 
objects) that never contain base rights. Recall also that the i432 Ada compiler 
guarantees that transformer type managers for objects reached via private access 
type variables dispense only sealed objects to users. It would appear that a 
straightforward approach to the use of seals for this problem might proceed as 
follows: 

At first glance, one might think that the owner package Membership_Roster, 
which creates the roster during its initialization, should be changed to a 
transformer package and given a public Create operation. The Create operation 
would then return a reference to a sealed membership roster. 

However, there is another potential security problem associated with this 
approach. In principle, any module that can access the package can also access 
this Create operation. Use of the Create operation would permit the imposter to 
populate an entirely different membership roster (using the Add_new_member 
operation) in which the imposter installs himself as the secretary. Having 
installed a fraudulent roster, the imposter could now issue entry calls to 
Portfolio_Server, supplying it with a reference to a "proper" member name 
along with a "proper", though fraudulent, membership roster. Roster_Server, 
called for confmnation by Portfolio_Server, would be duped into responding 
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with a message continning that the imposter is, in fact, the club secretary, 
thereby providing authorized access to the portfolio itself. 

A solution to this problem is to hide the Create operation, by letting it 
become part of the initialization sequence of the Membership_Roster 
package-which is the approach we had taken in the first place. Pursuing this 
idea further, let us suppose that in addition to steps required to create the 
membership roster, performed during the initialization of Membership_Roster, 
additional steps are executed that have the effect of transmitting to 
Task_Master a reference to the sealed roster. 

Transmitting the roster reference from Membership_Roster back to 
Task_Master presents a bit of a problem, as the reader will see in the following 
discussion. For the moment, however, let us postpone the question of how the 
requisite information is returned to the Task_Master, and instead pursue ques
tion: What will Task_Master be expected to do with that information? 

We propose that Task_Master provide a reference to the newly initialized 
membership roster to Portfolio_Server after it is started up, and also to the 
Secretary task, after it is started up. Thereafter, when Portfolio_Server accepts 
an entry call requesting update of the membership roster, Portfolio_Server can 
check (for an exact match) of its copy of the roster reference against the one 
supplied as an argument in the call. Here we presume that the specification of 
each operation in Portfolio_Server to update the roster has been modified to 
include the proper roster reference as an additional reference argument. This 
reference does not, of course, contain base rights. 

Central to this solution is the assumption that the Secretary task can be 
"trusted" not to send out copies of the roster reference it receives from 
Task_Master. This trust is well placed if the Secretary task is written by the 
same programmer who writes Task_Master, or who, at least, is not the same as 
the person who is the club's secretary. 

There is one more ingredient to the security strategy that should be discussed 
before we return to the postponed question of how the Task_Master receives the 
roster reference. How is an orderly "change of the guard" effected when the 
job of club secretary is passed to another individual? One simple solution would 
be to have either the retiring or the incoming secretary update the roster entries 
appropriately to reflect the change of duties. 

At first glance, this proposal seems to be a bit naive. In fact, however, it is 
naive only if it is to be assumed that the outgoing secretary is untrustworthy. 
OtherWise, there is no reason to believe this approach will not work. A 
trustworthy secretary would, as a "last act of office", alter the membership 
roster to reflect the change of guard. Thereafter, only the new secretary would 
be able to log in and attach to the Secretary task. 

More sophisticated solutions for the change-of-guard problem also come to 
mind. For example, Task_Master could be coded to receive from the Secretary 
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task a message, sent by an outgoing secretary, telling Task_Master to abort that 
Secretary task and to start up a new Secretary task to be used by the incoming 
secretary. It is not clear why or when this more elaborate approach would be 
required. 

We can now resume consideration of our postponed question: how should the 
reference to the created roster, produced by Membership_Roster during its ini
tialization, reach Task_Master? Four solutions are suggested, in increasing 
order of soundness. 

1. The information reaches Task_Master via shared storage. This approach is 
unattractive. The shared storage approach is possible only if Member
ship_Roster is statically nested within Task_Master. It is preferable that 
Membership_Roster be an Ada library-level package, but this approach is 
precluded if the package is nested within a task. 

2. The information is transmitted as the result of an Ada task entry call (after 
the membership roster is initialized) from the initialization part of 
Membership_Roster to Task_Master, using the rendezvous mechanism. But 
a task entry call from Membership_Roster to Task_Master will result in a 
deadlock situation, because only one thread of control is involved. (The 
pack~ge which Task_Master is in the process of activating, has called an 
entry in Task_Master; this is a circular deadlock situation.) 

3. The requisite values· are transmitted by explicit i432 message-based com
munication. (The deadlock problem in the preceding solution is avoided.) 
The steps to be taken are as follows: Mter completing its initialization of the 
membership roster, but before returning to its caller, Membership _Roster 
issues a Send of the requisite message (containing the initialized membership 
roster) to a Port that is commonly accessible to both Task_Master and 
Membership_Roster. When control returns to Task_Master, following the 
initialization of Membership_Roster, the former can issue a Receive for the 
membership roster message at the same Port. (Readers are referred to Chap
ter 5 for the explanation of Send and Receive steps.) 

4. Very likely the best solution, one that is wholly contained within the Ada 
rendezvous mechanism, would be to engage two distinct tasks in the activity 
of transmitting the information produced during initialization of Member
ship_Roster to Task_Master. Such a solution could be accomplished, for 
example, by having the Task_Master start up an auxiliary task, Mas
ters_Helper, that has no other responsibility but to instantiate Member
ship_Roster, which is now respecified as a generic package. 
A task entry call from Membership_Roster to Task_Master after the 
former's initialization of the membership roster is in full harmony with the 
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Ada rendezvous mechanism. Task_Master would, of course have to be pro
grammed to accept such a call. 

At this point Task_Master will have acquired the requisite reference to the 
membership roster. Membership_Roster will have been properly initialized, 
and Task_Master can now send to Portfolio_Server the information that the 
task needs to protect itself from receiving a bogus membership roster. 

To summarize, we have outlined, using the seal facility, a plan to strengthen 
significantly the security of the portfolio management program structure of Fig
ure 2-5. The increased level of security is as good as the security of the sealing 
mechanism itself, and is in tum as secure as the i432 architecture and operating 
system-which, as has been argued earlier, is indeed secure. 

We do not intend to show further security solution details for this progra'm 
structure. Instead, we leave these details, and the full satisfaction of producing 
them, entirely to the reader. We leave as yet another exercise for the reader the 
matter of deciding whether a comparable effort is required to increase security 
for the portfolio management program structure of Figure 3-2. 

6.5. Access Control Using Dynamic Packages 

In earlier discussions of Extended Type Objects we commented on the potential 
for dynamically (and efficiently) altering the attributes of typed objects. This 
alteration is made possible because the user can obtain, using the iMAX 
Retrieve_type_definition operation, an AD with full base rights for the Type 
Definition Object for a given Typed Object. It is true that we have not given a 
concrete example~ but nothing prevents a systems programmer, such as a com
piler writer, from exploiting extended Type Definition Objects more fully. 

The Intel 432-Ada compiler has also attempted to expose the dynamic char
acter of 432 Domain Objects at the level of the Ada programming language (as 
well as other i432 features) by slightly extending the language. This has 
provided an extension whose use offers the programmer, at a high level of 
abstraction, dynamic control over the internal data and access components of 
individual Domain Objects. To be more concrete, an Ada extension is provided 
that permits a package specification to be declared as a dynamic package. Mak
ing such a declaration implies a class of possible instances, anyone of which 
may be selected either statically or dynamically before an operation of the pack
age is applied. Dynamic selection of a governing package instance, for exam
ple, may be achieved simply by declaring variables to be of the given dynamic 
package type and later assigning a particular package instance to that variable. 
The particular package instance so assigned is a value formed by elaborating a 
package body (instance) declaration. This value must, of course, be accessible 
in the current context of the assignment to the package variable. A dynamic 
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package is implemented as a standard Ada generic package that is instantiated 
at execution time rather than compile time. 

The Club_Portfolio package of Chapter 2, for example, could be redeclared 
as a dynamic package. The specification part is identical to what we have 
already seen (in Appendix C), except for the "package heading" line, which 
now changes from: 

package Club_Portfolio is ... end; 

to 
generic package Club_Portfolio_Pkg is ... end; 

augmented with the type declaration 

type Club_Portfolio is access Club_Portfolio_Pkg; 

Variables of type Club_Portfolio may then be declared, as in: 

HiS_Estate: Club_Portfolio; 

Thus, in any scope in which both His_Estate and the dynamic package type 
Club_Portfolio are visible, one can provide (that is, declare) a particular pack
age body instance for Club_Portfolio, such as Volunteers_Portfolio. 

[1bis may be done using the declarations: 

Volunteers_Portfolio: constant Club_Portfolio := 
new Club_Portfolio_Pkg; 

package body Volunteers_Portfolio is 
-- Declarations and statements for the body 
-- of this version of the Club_Portfolio_Pkg 
-- package go here. 

end Volunteers_Portfolio; 
] 

It is then permissible to assign (the constant package value) 
Volunteers_Portfolio to His_Estate. Thereafter, one can make calls to opera
tions of Volunteers_Portfolio (Club_Portfolio) by prefixing its operation names 
with His_Estate. Several distinct package constants can be declared. By assign
ing distinct package constants to a particular package variable, the package can, 
when initialized, acquire a distinct portfolio instance or have operations with 
different implementation details, or both. (As an illustration of the latter, dif
ferent averaging rules might be used for the Print_average_cost operation in 
two different versions of the package body.) 

Suppose, for example, a subprogram, P, is being executed and that within the 
scope of P, both His_Estate and package Volunteers_Portfolio are visible. 
Then, within the body of P, we may have the following statement sequence: 

HiS_Estate := Volunteers_Portfolio; 

His_Estate. Print_average_cost( 
His_Estate. Find_stock_code( 

"General MotorsMAMAAAAAAMM,,)); 
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In this sequence, His_Estate is fIrst assigned the package value, which is a par
ticular implementation of Club_Portfolio. Then the call is made to display the 
average cost of the General Motors holdings of the portfolio owned by the pack
age assigned to His_Estate. 

We make several closing observations concerning the increase in expressive 
power gained when using the dynamic package facility. Subprogram P may call 
another subprogram Q, passing it His_Estate as an argument. Thus, Q could be 
defIned to accept as a parameter any matching package (that is any value of the 
specified package type) as an argument. We will see a convincing application of 
the passing of package type arguments in the next Chapter. The facility would 
not be possible were it not for the fact that, with the dynamic package exten
sion, users of Intel's extended 432-Ada language can declare variables of some 
particular package type. Other uses of package variables arise where it is neces
sary to select dynamically a particular package implementation, according to 
data- or data-representation dependent decisions. The full syntactic and seman
tic definitions for the dynamic package extensions to Ada, as well as more 
complete examples, are explained in the Reference Manual for the Intel 432 
Extensions to Ada, cited in Appendix B. 

Another use of the dynamic package is passing a function to a subprogram as 
an actual parameter. (Some readers may wish to skip over the following brack
eted discussion which shows the details.) 

[Our example, repeated from the reference manual just cited, demonstrates how a 
function can be passed to an integration procedure. The function is passed inside an 
actual parameter which is a package value. See also Figure 6-7. The function that will be 
the integrand function is the only element of the package named 
Integrable_Function_Pkg. The integrand function is specified as a parameter to 
Integrable_Function_Pkg so that many different packages can be created, differing only 
in that each carries a different integrand function. Any of these packages can later be 
passed as an actual parameter to an integration procedure named "Simpson_integrate". 
(This integration procedure uses the function that resides within the actual parameter 
package as its integrand function.) 

The creation of a package value is realized by using the standard Ada allocator expres
sion, extended to allow the type name to bea parkage value name. Thus, for example, to 
create a package that is passed to the Simpson_integrate shown in Figure 6-7, one may 
write 

function sine (x: in real) return real; 

function cosine (x: in real) return real; 

answer! := Simpson_integrate ( 
left, right, 
new Integrable_Function_Pkg (sine)); 

answer2 := Simpson_integrate ( 
left, right, 
new Integrable_Function_Pkg (cosine)); 
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type real is digits 8; 

generic 
with function Function_parameter (x: in real) 

return real; 
package Integrable_FunctioflLPkg is; 

F(x: in real) return real renames Function_parameter; 
end Integrable_FunctioflLPkg; 

type Integration_Pkg is access Integrable_Function_Pkg; 

function Simpson_integrate ( 
a, b: real; 
p: Integration_Pkg) 

return real 
is 

x, h, area: real; 

begin 

area: = area + h*p. F (x) ; 

end Simpson_integrate; 

This is the heart of the integration 
algorithm. 

Figure 6-7 Illustrating how an integrand function, F, can be passed as a parameter to the 
Simpson_integrate procedure. Note that F is locally defined in Integrable_Func
tion_Pkg. It is the only public operation of Integrable_Function_Pkg and renames the 
generic formal parameter, Function_Parameter. 

The 432-Ada compiler writers have implemented the dynamic package facil
ity in the following way. The value assigned to a package variable, P _v, of type 
T and body T _instance, is simply a reference (Access Descriptor) to a Domain 
Object, which is the representation of the package body T _instance. 

Readers will find that other interesting and potentially useful Ada extensions, 
including the means for specifying specific i432 instruction sequences, are 
described in the reference document on i432-Ada. (The package operations to 
include i432 instruction sequences are specified in the Reference Manual for the 
Intel 432 Extensions to Ada.) In most cases the objective of added high-level 
facility is to provide the user a better opportunity to take full advantage of the 
hardware architecture as "completed" by the iMAX operating system. 

432-Ada directly allows programmers to specify refinements to objects at the 
Ada level. (For example, a programmer can specify a refinement to a package.) 
Recall that Refinement Descriptors provide the underlying facility for control
ling access to subblocks of data and access parts of objects. At the level of 432-
Ada, a programmer can, by the use of the extended Ada refinement declaration, 
create (declare) aliases to existing Domain Objects, including subsets of the 
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operations of a given package. These declarations, which are discussed in 
Chapter 7, are directly supported by the i432 architecture through use of the 
refinement mechanism and the pertinent iMAX interfaces. 

Our account of the Access Control and Type Management in the i432 system 
is now complete. We have skirted several related topics that could have been 
included here. Among these are the low-level mechanisms for converting data 
references in i432 instructions to accesses into the data and access parts of target 
objects, touched on only briefly in in Chapter 4. Indeed, we have entirely 
skirted discussion of i432 instruction formats, their rich and variable structure, 
and the formats of the data reference components of the instructions. This topic 
is an interesting one, but is well covered in the GDP Architecture Reference 
Manual. 

Nor, have we yet examined other control information that is encoded in 
Object Descriptors that relates primarily to memory and object file manage
ment. We do this, however, in Chapters 9 and 10. 





i432 INPUT/OUTPUT 

7.1. Introduction 

Input/Output control programs and their supporting hardware are known as I/O 
Control Systems. They have evolved over a span of some twenty-five years. 
These control systems, which originated as key modules of early operating sys
tems, were often composed largely of software and were monolithic in structure 
(to achieve objectives of protection and throughput.) Over time, as the objec
tives of I/O control became better understood, hardware and software architec
tural support has become modularized and distributed out and away from the 
central core of the computer system. 

The earliest objectives of I/O Control Systems were to achieve input/output 
of multiple data streams at high rates, in such a way as to permit the central 
computer system to remain as free as possible to continue the processing of 
"compute-bound" functions, thus gaining overlap of computation and I/O 
transfer. About the time that it was learned how to achieve those objectives, a 
rapidly-expanding variety of I/O devices was becoming available, shifting the 
focus of the system designers to a new and more challenging objective, namely: 
How to help the user run programs having a maximum of device independence. 
Reaching this objective has often been painful and costly, especially since that 
objective was generally incompatible with previous I/O Contol System designs. 

A number of architectural schemes have been tried. Perhaps the most 
comprehensive strategy is that represented by the Multics I/O System, whose 
objectives and structure serve as a principal ancestor of the scheme adopted by 
the i432 System architects. That ancestor, ahead of its time, still serves as a 
paradigm for many modem conventional I/O Systems. [To better appreciate the 
i432 I/O System, one may need to compare it with more conventional 
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approaches, and hence the reader may find it useful to read Chapter 8 of "The 
Multics System" [44]. 

We do not base our discussion of i432 lIO, however, by initially showing it 
in juxtaposition with conventional structures. (We assume most readers are 
already familiar with the structure of some lIO system.) Instead, we adopt a 
bottom-up approach. First, we examine the architectural support for lIO (unique 
to the i432 System). We do this in the remainder of our introduction. Then, we 
examine the iMAX Operating System's user interfaces which rest on that archi
tecture (Sections 7.2 through 7.4). The flexibility of the provided interface also 
depends strongly on the 432-Ada extensions for package refinement access 
types illustrated later in this chapter. (See also Appendix B, Reference Manual 
for the Intel 432 Extensions to Ada.) These Ada extensions exploit the i432 
hardware operators that create and control access to refinements (in this case to 
refinements of Domain Objects). Having examined the i432 lIO structures and 
mechanisms, we make some higher-level observations and also identify 
advances made in the i432 lIO structure beyond that of more conventional sys
tems (Section 7.5). At the end of this chapter (Section 7.6), we again revisit our 
portfolio management information system to apply some of what has been 
learned about i432 I/O to that program. 

7.1.1. System Organization Revisited 

Figure 7-1 reviews the i432 system structure introduced in Chapter 1. In this 
simplified diagram we treat the multiprocessor interconnect as a single System 
bus and show the physical relationship between the Computational Subsystem 
and the I/O Subsystem. 

Figure 7-1 A simple 432 system topology. 

I/O 
Sub
system 

As mentioned in Chapter 1, the lIO Subsystem consists of one or more 
independent peripheral subsystems, each interfaced to the Computational Sub-
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system through an Interface Processor (IP). [Although their roles are different, 
both GDP and IP processors access the same object-structured main memory 
through the common System bus. Indeed, an essential role of the IP is to pro
vide the means for a Peripheral Subsystem to access the object-based 432 
memory.] 

7.1.2. Architectura~ Support for Input/Output 

Our main learning objective for this chapter is to understand how the Computa
tional Subsystem executes the input/output steps of programs. A necessary 
sub-objective is to understand, at least in an abstract sense, the architecture of a 
Peripheral Subsystem and how it functions in cooperation with the Computa
tional Subsystem. (Since individual Peripheral Subsystems are logically mutu
ally independent, it is sufficent to assume the presence of only one of them
and we do so in subsequent discussions.) A final objective is to learn how a user 
of the i432 System may take advantage of the operating system interface 
software provided for the programming of input/output operations. Because the 
underlying framework for specifying input and output operations is that of inter
process communication, the mechanisms outlined in Chapter 5 are directly 
applicable. 

An overriding goal of the total system architecture is to adhere to a modular 
design philosophy in hardware as well as in software. This translates into the 
objective of preserving a clean separation between subsystem components at 
each level, so that one component may be designed, implemented, and function 
(and possibly later modified) as independently as possible of another com
ponent. These objectives imply clear separation of roles among subsystem or 
subsubsystem components and the hiding of implementation details within indi
vidual components. Keeping these objectives in mind is especially helpful for 
learning how input/output works in this system. 

Some of the direct design consequences of these objectives are: 

• Interaction between the Computational Subsystem and a Peripheral Subsys
tem is accomplished entirely by message-based (nonnally asynchronous) 
communication. The Computational Subsystem operates without interrupts 
from a Peripheral Subsystem. 

• New input/output devices and code to drive them may be developed and 
brought on-line over the life of the system without shutting it down. (Devices 
may come and go.) 

• The disparity between the object-based storage organization and operating 
behavior of the Computational Subsystem and the record- or stream-based 
organization and real-time behavior of a variety of conventional and non
conventional 110 devices is bridged by a "smart interface" composed of 
hardware and software. Hereafter, we call this the Peripheral Subsystem 
Interface (or sometimes simply PSI). [Part of the software for this interface 
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resides in 432 memory and (the larger) part resides in the memory of the Peri
pheral Subsystem.] 

A prototypical Peripheral Subsystem and the Interface Processor to which it 
is attached, has a top-level structure as shown in Figure 7-2. 

Subsystem 
I bus 

I 
:~ interrupt 1 ine 

I 
---' 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;:::;:::;::::::::::::::::::::::::: 432 System bus 

Figure 7-2 Structure of a Peripheral Subsystem. 

The Interface Processor (IP) "takes orders" from the Attached Processor 
(AP) to perform functions for communicating with the Computational Subsys
tem. These orders are carried out in a 432 environment. In partiCUlar, the IP is 
represented by a Processor Object and each order that it executes is accom
plished in a specified process environment defined by a Process Object and a 
Context Object. These system objects, although somewhat specialized for the 
I/O interface, are comparable to those outlined in Chapters 4 and 5. Within the 
Peripheral Subsystem Interface, the AP and IP intercommunicate in ways famil
iar to those acquainted with memory mapped I/O subsystems. 

[A memory-mapped 110 structure is based on the idea that a dedicated block of the 
processor's address space represents not actual memory, but rather a mapping to a set of 
110 devices. That is, writing into a particular word (or word group) within this block of 
pseudo addresses is interpreted as an 110 command to a corresponding device. The 110 
command is sent over a local bus directly (or through some intermediary controller 

, hardware) to the mapped device, which then executes the command. 
Commands for reading from the device or writing to the device usually refer to 

specific buffer areas, also within the computer memory-writing into the buffer in exe
cuting a Read command, and reading from the buffer in executing a Write command. 
Upon completing a command, the device sends back a report to the processor by (a) writ
ing status information into one or more words within the same word group of computer 
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memory locations from which the 110 command was sent out, and (b) sending an inter
rupt signal to the computer. The notified processor may then read the status information 
to decide what to do next.] 

The Attached Processor controls the Interface Processor much like an ordi
nary processor drives a memory-mapped I/O device. That is, the IP responds to 
function requests, hereafter termed orders, as does a memory-mapped I/O de
vice, by executing or attempting to execute the requested order, by sending 
back status information, and by sending an interrupt to the AP when finished 
with an order. The order and returned status information are mapped from a 
dedicated block within the AP's address space onto a predetermined block 
within the data part of the IP's (single) Processor Object. Specification for this 
mapping is referred to as a Control Window. (The IP's Processor Object and its 
included Control Window are generally set at the time the system is initialized.) 

Other orders which can be issued by the AP to the IP include those that have 
the effect of setting up correspondences (maps) between buffer areas within 
selected dedicated blocks of the AP's address space and portions of the data 
parts of specified i432 objects. A total of four such maps, here called Data Win
dows may be established dynamically. (See Figure 7-3.) Each IP order, such as 
one to establish a Data Window, is written through the Control Window to a 
dedicated area in the data part of the JP's Processor Object known as the Func
tion Request Area. Once a Data Window is established, the AP can execute an 
arbitrary sequence of Read or Write instructions from or to addresses that fall 
within an established Data Window, thereby causing direct transfer of bytes 
between the data part of the mapped i432 Object and, depending on the instruc
tion set of the AP, either into designated registers within the AP or into other 
memory cells accessible to the AP. 

AP's Address Space Range 
Mapped to the IP 

i432 address space 

Object 

address 1-------1 _____ r------, ---'1--- \l\\\\\\/{\\\@\\\:\\ 

] 

data sub
range 

Window 
part 

Figure 7-3 IP Window Mapping. A range of peripheral subsystem address space (i.e., a 
64K byte section of the AP's address space) maps to the IP. A subrange (of this section) 
is mapped to a selected section (of equal size) in the data part of an i432 object. 



222 A Programmer's View of the Intel 432 System 

All such transfers are under hardware control of the parameters specifying the 
operative window; thus, any transfer that would copy data into or from sections 
of an i432 object that falls outside the bounds implied by the window will induce 
a fault. Notice of this fault is, in tum, transmitted to the AP by an interrupt. 

[For especially fast 110 operations, Data Window 0 may be used by the AP or by a 
Direct Memory Access (DMA) controller for "block transfer" kinds of Read and Write 
instructions. For such operations, Data Window 0 is placed in "block mode" and sup
plied with a "byte_count" parameter that specifies the size of the block to be copied 
into or from an i432 object. The IP architecture supports such high-speed block transfer 
by providing a small on-chip FIFO data buffer whose use helps to balance the speed and 
duty levels on the 432 System bus and 110 Subsystem bus. Further details on use of the 
two window modes, random and block transfer, in the iAPX 432 Interface Processor 
Architecture Reference Manual listed in Appendix B and hereafter referred to as the 
"IP-ARM" .] 

Upon completing an IP order, the "result", if any, and certain status infor
mation for that order are deposited by the IP at predetermined offsets within the 
Control Window; therefore, the AP can execute follow-up Read instructions to 
fetch this information. This is done by specifying as operands in Read instruc
tions the addresses in the AP address space that correspond, by virtue of the 
Control Window, to result and status information in the Function Request Area 
of the IP's Processor Object. [The Control Window opens on a block of storage 
within the data part of the IP's Processor Object. This block, whose default size 
is 256 bytes, but which may be set to a larger value, contains a number of key 
data structures, including specifications for the five windows and the Function 
Request Area into which each IP order is transferred before it is executed. The 
Control Window may also contain a buffer area used in the execution of an 
OPEN MESSAGE order about which we have more to say later.] 

We can already see, however, even from this limited overview that the IP is 
quite different from an ordinary memory-mapped I/O device in that the orders it 
performs are not explicit input -output data transfers but rather operations that 
extend the capablility of the AP for communicating in a controlled way with the 
Computational Subsystem. Some of the main examples of such orders (func
tions) are introduced here: 

• Functions that establish or disestablish correspondences (mappings) between 
specified sections of the AP's memory address space and data portions of 
specified i432 objects. The technical term used to describe these functions is 
Opening (Closing) a Window. 

As already suggested, opening a Window enables data transfers in either 
direction through the opened window. Once a Window is Opened, the AP 
(or, for that matter, any other processor attached to the same Peripheral Sub
system bus) can execute transfers to or from the mapped portion (in the data 
part) of an i432 object. 
Full i432 access control is exercised in completing an order to open a win
dow. Thus, the order to open a window must specify an AD for the i432 
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object that is to be viewed through the window; that AD must have appropri
ate Read or Write rights, or both, depending on the intended direction and 
nature of the data transfer through the window being established. The "entry 
state" operand supplied in the Open Window order indicates "read intent", 
"write intent"? and' 'block/random mode". If block mode is specified, then 
exactly one of "read intent" and "write intent" can be true; if random mode 
is specified, then either "read intent" or "write intent" or both can be true. 
Read rights, Write rights, or both are checked by the hardware, according to 
which intent(s) is (are) specified. 

• Functions that perform interprocess communication (RECEIVEs and SENDs) 
to and from a 432 process and an IP process. Including such orders in the 
repertoire of the IP permits i432 processes running on GDPs to drive the 
Peripheral Subsystem without being subject to hardware interrupts when the 
Peripheral Subsystem completes input/output orders on behalf of the i432 
process. From the viewpoint of an i432 process, execution of an 110 opera
tion is achieved entirely via message-based communication, thereby freeing 
the i432 process of the real time synchronization requirements for certain 110 
devices. 
A (blocking) RECEIVE order causes a specified IP process to fetch a mes
sage from a designated port in i432 object space. (The reference for the 
received message is then placed in a predetermined slot of the Context Object 
for that IP process in strict analogy with the way a RECEIVE is executed in a 
432 process.) A (blocking) SEND order causes a specified IP process to 
deliver a message to a designated port in i432 object space. CONDITIONAL 
SEND and RECEIVE orders and SURROGATE SEND and SURROGATE 
RECEIVE orders are also included in the order list of the IP. 

• Special functions that reduce windowing overhead associated with messages 
representing 110 requests and replies. Without these special functions, then 
when a message representing an 110 request is RECEIVEd from a request 
port, the AP iiright be required to inspect its command component before it 
can process its data component. To do this, AP would first have to open a 
data window on to the command component of the Message Object and then 
read and interpret this command information; only then could the AP always 
know how to open a data window on to the data component so as to perform 
the proper sequence of read or write instructions. This high windowing over
head might be prohibitive for certain kinds of frequently used block transfers, 
such as in frequent movement of small objects to a swapping store. 

Use of the high-level OPEN MESSAGE and CLOSE MESSAGE orders 
greatly reduces the effort to process data from a RECEIVEd message. If the 
RECEIVEd message object is of the IP _Message system type, then the 
OPEN MESSAGE order copies the command portion message object directly 
into a buffer positioned in a dedicated area of the Control Window section of 
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the IP's Processor Object. Thus, the command infonnation from the GDP 
process that is making the 110 request becomes immediately accessible to the 
IP. This command is then used, together with other operands supplied in ~he 
OPEN l\1ESSAGE order to open a data window on to the data component of 
the 110 request. The successful completion of this window opening is indi
cated by returning a true result for the OPEN l\1ESSAGE order (alternatively 
false). 

Similar IP-AP speed-up, and corresponding simplification of AP-side 
software, is achieved by using the CLOSE l\1ESSAGE order to transfer 
desired status infonnation after the transfer indicated by the 110 request has 
been completed. CLOSE l\1ESSAGE not only closes a (data) window speci
fied by an operand but also perfonns the equivalent of a CONDmONAL 
SEND of a specified message object to an i432 reply port. (Readers wishing 
to learn more about these powerful OPEN and CLOSE orders should consult 
the IP-ARM.) 

• A function that perfonns interprocessor communication, permitting the AP to 
send control signals to GDPs and IPs (individually or collectively, by broad
cast). During nonnal operations, the Computational Subsystem will drive the 
Peripheral Subsystem, but during system startup, maintenance, emergency 
shutdowns, and other special occasions, the AP must drive other processors 
attached to the 432 System Bus. Including interprocessor communication 
operations in the order list of the IP accomplishes this system control objective. 

Understanding how IP RECEIVE and SEND orders are implemented helps 
explain how the AP and IP cooperate to create the effect of a high-level inter
face for message-based communication between i432 processes and AP proc
esses. We provide some of these details here: 

• Whenever execution of a SEND (or RECEIVE) order causes an IP process to 
become blocked, this fact is recorded in the Function State field of the Func
tion Request Area; the AP, reading this state infonnati01'l, can learn that the 
process is blocked. The IP is itself able to execute other orders; and so the 
SEND or RECEIVE order is regarded as completed. (The IP issues a 
completion interrupt signal as a second means of informing the AP of this 
event.) 

• Whichever way the AP learns about the blocked process, the AP can then 
select another IP process to execute the next order. Selection of another IP 
process is done by simply writing the index for that process into the appropri
ate field in the IP's Function Request Facility Area through the Control Win
dow. The new order is then issued by writing it into still other predetermined 
fields of the same Function Request Facility Area. 

• When a blocked IP process becomes unblocked, it can be "re-used" by the 
AP in the execution of other IP orders. The scenario that explains how the AP 
learns of the unblocking may be described as follows: 
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• When a blocked IP process becomes unblocked, it is forwarded to the IP's 
Dispatching Port (by following the "second port mechanism" described in 
Chapter 5). An IP process, regarded as a message, is removed from the 
IP's Dispatching Port as a consequence of the AP issuing the IP a 
DISPATCH order. The AP issues such an order when it knows that the IP 
should (must) wait for the unblocking of one of the IP processes. 

• The effect of a DISPATCH order is that of a Surrogate Receive instruction. 
That is, the IP's Processor Carrier is sent to the Dispatch Port. The IP 
receives the enqueued IP Process as a message if one is enqueued there; 
otherwise the IP's Processor Carrier is itself enqueued as a server. The IP is 
itself not blocked and is free with one exception to execute subsequent or
ders issued by the AP; the exception is another DISPATCH order which 
cannot be executed because the IP has only one associated Processor Car
rier. Subsequently, upon forwarding an IP Process Carrier to the IP's 
Dispatching Port, an "assisting" GDP will determine that an IP Processor 
Carrier is enqueued there as a server, will bind the Process Carrier to the IP 
Processor Carrier, and will then send that IP an IPC (interprocessor com
munication) message to notify the IP of the received IP process. 

• The notified IP will send the AP an interrupt to indicate completion of the 
DISPATCH order. The AP must then read the "Selected Process Index" 
field, also through the Control Window, to determine which IP process has 
been dispatched. 

7.1.3. A Higher-Level View of I/O in the i432 
System 

Our purpose in introducing the foregoing low-level view of the interaction 
between the Computational Subsystem and the I/O Subsystem is to establish the 
basis for a more abstract model of I/O operations in which the Peripheral Sub
system Interface plays a key role but whose details can now be suppressed 
without risk of a "credibility gap." A single example, discussed in some depth 
seems sufficient for our purpose. We consider the case where an Ada task exe
cuting as an i432 process is programmed to issue a series of print requests (to 
print single lines of data on a line printer). Each such print request is forwarded 
across the Peripheral Subsystem Interface (PSI) to a process that is executing on 
a processor of the Peripheral Subsystem. The scenario is introduced with the aid 
of Figure 7-4 and detailed further with the aid of Figure 7-5. (In what follows, 
we use the terms task and process, respectively, to distinguish between program 
units viewed as Ada tasks executing in the i432 object space from program units 
viewed as non-Ada processes executing in the Peripheral Subsystem address 
space.) 

We assume that: task A issues a stream of print requests at a rate which is 
roughly independent of the printer device's ability to print lines under control of 
process C. For this reason, we imagine that for each print request to be formed, 
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task A draws a new message object from a pool of such objects found in the 
Print Reply Port. (It is likely that this pool is inti ali zed with some predetermined 
number of message objects, but we ignore such detail here.) After receiving a 
message object by executing an i432 RECEIVE instruction from the Print Reply 
Port, task A then writes into the message object a new request and SENDs it to 
some other port that the IP process, controlled by the AP, knows about. In Fig
ure 7-4, this port is called the Print Request Port. The AP process executing 
within the Peripheral Subsystem Interface issues an IP RECEIVE order to 
obtain access to the message object and then transfers the message information 
into the AP address space to form a new version of the message object under
standable to process C. Multitasking software on the AP side is assumed to use 
"mailbox" operations similar to the i432 port operations for intertask commun
ication. Hence, the AP mechanisms of the PSI are assumed to forward print 
requests to process C by transmitting messages to the Print Order Mailbox. 

Each time the printer device completes a print request, status information is 
returned to process C, which in tum transmits a reply message to the PSI (via 
another mailbox) to indicate the outcome of a print request. The PSI (AP proc
ess cooperating with the IP) then issues an IP SEND order to return the original 
i432 print message object to the pool maintained in the Print Reply Port. The 
returned message object is presumed to contain a version of the status informa
tion forwarded by process C that can be interpreted by task A. 

Notice that the pool of message objects in the Print Reply Port will be main
tained within some acceptable bounds so long as the rate of "production" of 
print requests and the rate of their "consumption" by the printer device is rea
sonably balanced. (Examples in Chapter 5 have already discussed ways that the 
number of messages in such a pool can be explicitly increased or decreased 
whenever appropriate.) 

Notice also that Figure 7-4 also hides the details of interpreting the message 
sent by task A (a program abstraction of a print command) and the details of 
transmitting that interpretation to process C in a form the latter can "under
stand". The reverse interpretation, namely, converting process C's response 
into a form that can be understood by task A, is also hidden. All these hidden 
details are assumed to be subsumed as the responsibility of the PSI. 

For this abstraction, we place no limit on the richness of this Peripheral Sub
system. For example, its 110 control software may be decomposed into modules 
such that control over individual devices is distributed to driver processes, like 
process C, which have access to the attributes of the specific devices they drive. 
Also, this Subsystem may be assumed to execute under supervision of a multi
tasking operating system. 

Under such a structure, the process that distributes work to a device driver, 
like process C, is the one that controls the IP. This process is not shown explic
itly in Figure 7-4. (It must execute on the AP.) In most cases, the processor that 
executes process C will also be the AP. However, we do not rule out cases 
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Figure 7-4 Model of the role played by the Peripheral Subsystem Interface, PSI. A is a 
user's Ada task running on a GDP formulating and sending line printer requests to a 
process C, which is a printer device manager program running on a processor of a Peri
pheral Subsystem, e.g., the AP. The language and representational gap between task A 
and process C is bridged by the PSI.) 

where a Peripheral Subsystem has several processors jointly sharing local 
memory and intercommunicating on the Subsystem bus. 

At the other extreme, a much more simple Peripheral Subsystem may have 
only one processor, the AP, with no provision for multitasking. In such a case, 
the AP process that controls the IP would also drive every I/O device within 
that Peripheral Subsystem. 

The important observation to be made here is that regardless of the structure 
used to implement a Peripheral Subsystem, the interface it presents to i432 tasks 
that need to drive it can be precisely the same. Thus, task A can follow a simple 
(and constant) protocol for executing I/O operations. To print a line, record, or 
file, it sends the appropriate message to the appropriate port (Print Request 
Port) and may then expect a reply, telling of the outcome of the print request, at 
some other port (Print Reply Port). It is totally unnecessary, however, that the 
i432 task wait for such a reply. In the model suggested by Figure 7-4, task A is 
actually free to ignore status information in the reply messages. Even if such 
status information is not ignored, its recognition can be "offset" from the I/O 
request that induces this status information by some pre-determined number of 
I/O requests. [Readers familiar with conventional buffered 110 schemes will 
recognize that the use of a pool of m message objects simulates an I/O buffer 
whose size is a multiple m of I/O blocks, where each block holds command, 
data, and status for one I/O operation.] 
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The model in Figure 7-4 is also applicable to the case where task A issues a 
series of input requests. In this case, a series of message objects, this time con
taining input requests, is sent to the PSI via a Read Request Port. These mes
sages contain space for input records to be obtain as a result of completing the 
input operation. If task A is itself a server for other requesting i432 tasks, then, 
to provide faster response to its requestors, task A might be programmed to 
issue a series of input requests as part of its initialization and in anticipation of 
any originating input requests that it receives as a server. In any case, the PSI 
communicates with process C, now regarded as an input device controller. 
Response messages forwarded by process C to the PSI now contain data 
obtained from the input device and also status information. The PSI then depos
its these packets into i432 message objects and SENDs them to the Input Reply 
Port from where they are RECEIVEd by task A. 

We see from the foregoing discussion that the model in Figure 7-4 is applica
ble for either output or input. This asynchronous model can be used as the basis 
for an even higher-level interface, in particular, for the benefit of programmers 
who wish to view 110 requests as purely synchronous actions. Indeed, iMAX 
provides a synchronous 110 interface superposed over the asynchronous inter
faces illustrated in Figure 7-4. This synchronous interface is described in Sec
tion 7.3. 

As promised, Figure 7-5 suggests some of the details for a possible structure 
of the Peripheral Subsystem Interface. All AP subprograms that directly control 
the IP or that execute Read or Write transfers through IP windows are collected 
in a single module called the IP Controller. A set of individual AP processes 
that communicate with specific device driver processes also form part of the 
PSI. (These AP processes know how to issue calls on the routines within the IP 
Controller module and hence know about the IP architecture. However, they are 
unaware of 110 device details. The device driver processes, on the other hand, 
know a great deal about the 110 devices they drive but need know nothing about 
the IP.) 

Below, we give a very brief account of the logic of the two server processes 
in the PSI that support Printer Process C . 

• The Printer Request Process executes an endless loop receiving messages 
from the Print Request Port. Since each of these messages exists in i432 
object space, the data part of the object that represents each message must be 
associated with a section of the AP's memory address space to become acces
sible to the AP. Getting each message and making it accessible is achieved by 
issuing first an IP RECEIVE order and then an Open Window order (offi
cially called ALTER MAP AND SELECf DATA SEGMENT), or alterna
tively by using simpler and faster OPEN MESSAGE / CLOSE MESSAGE 
sequences. 
Once the message has been placed in the window, the Printer Request Proc
ess can properly interpret the message and forward it-in this case to the 
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Figure 7-5 Exposing some details of the Peripheral Subsystem Interrace for the Print 
Example of Figure 7-4 

Printer Process (Process C). This forwarding may also be done by message
based communication similar to that which goes on in the 432 Subsystem, but 
internal to the Peripheral Subsystem. 
To distinguish between the two message systems, a distinct notation is used 
for describing message flow in the Peripheral Subsystem. Here, messages are 
said to be TRANSMITted and ACCEPTed through mailboxes, rather than 
SENDed and RECEIVEd through ports . 

• The Printer Reply Process operates as a server in a similar endless loop, 
accepting return messages, sent by the Printer Process, via the Print Response 
Mailbox, and forwarding a corresponding reply message to task A. The origi
nal print request message can also serve as an adequate reply message; that 
is, no new information other than returned status codes need be created for 
return to Task A. Hence, forwarding is done simply by issuing a SEND order 
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to the IP, specifying the destination port in the i432 object space. (If only 
status infonnation needs to be sent to the reply port, the reply code portion of 
the message object must be updated. This can be done in one of several ways: 
For example, an INDIVISIBLY INSERT SHORT ORDINAL order can be 
executed to write into the message object followed by execution of a SEND 
order. Alternatively, and more simply, a CLOSE MESSAGE order can be 
executed, accomplishing the same effect. Recall that this order writes speci
fied status infonnation into a specified message object and then perfonns the 
equivalent of a CONDITIONAL SEND to the proper reply port.) 

As indicated in Figure 7-5, task A will RECEIVE the forwarded reply mes
sage via the Print Reply Port; the message itself is identical with the original 
print request message except for the inclusion of returned status infonnaton. 
Task A may then "refill" the reply object with a new value and reSEND it as 
a new print request, via the Print Request Port. 

The Printer Driver Process (Process C) also executes in an endless loop. In this 
loop, it accepts a message from the Print Order Mailbox, issues the 
corresponding print command to the Printer Device, and, after fielding the 
received interrupt signal indicating completion (or other) outcome, transmits a 
reply message, via the Print Response Mailbox to the Printer Reply Process. 

[In the example of Figure 7-5 we showed as a possibility two AP processes within the 
PSI, both of which are in communication with Printer Driver Process C. In an actual 
implementation, the two PSI server processes would probably be combined into a sin
gle PSI process. In addition, the PSI would include (at least) one such server process 
for each I/O device driver process in the Peripheral Subsystem. Such specific details 
are to be found in the iMAX 432 Reference Manual cited in Appendix B.] 

We have now completed our scenario illustrating the intended role and possi
ble software structure of the Peripheral Subsystem Interface. We propose now 
to tum our attention away from this part of the system architecture and focus for 
the remainder of the chapter on the i432 user's higher level view of input-output 
processing. Space in this book does not permit including more of the interesting 
details of the IP architecture and its AP-side support software, but these are well 
presented in the IP-ARM. 

The next section explains the design strategy and intended use of the iMAX 
110 interface packages made available for users. Later sections illustrate possi
ble uses of these packages, including application to our portfolio management 
system. 

7.2. The iMAX I/O Interface 

Our introductory view of the 110 system reveals how the (central) 432 Subsys
tem is "screened" logically and physically by the Peripheral Subsystem Inter
face from the detailed structure and operation of the device drivers. This 
permits 110 functionality to be seen on the 432 side of the Interface, while hid
ing 110 implementation on the other side. The iMAX I/O Interface exploits this 
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separation further. Its use permits a programmer to "see" particular 110 de
vices, actual or simulated, from any of several different perspectives-from 
most generic in nature, and hence least device-dependent, to fully specific. 

A direct benefit of this approach is that it becomes especially easy to imple
ment connections to purely logical 110 devices; that is, what is syntactically 
expressed as an 110 request can be executed entirely as an internal transfer of 
data between co.-resident i432 objects. When two objects are "connected" in 
this way, one serves as a source and the other as a sink. Such a connection 
forms what is referred to in other operating systems as a "pipe". (Two-way 
channels can be established between pairs of i432 objects using a pair of I/O 
connections.) Even though the implementation of logical I/O devices represents 
an important special-case application of the iMAX 110 Interface described in 
this section, our discussions will primarily assume we are dealing with the gen
eral case, i.e., where the 110 device is a real one that resides on the AP side of 
the peripheral subsystem interface. 

Whatever the current perspective of a given device, the user of iMAX has the 
choice of specifying a given 110 request either in the form of a synchronous 110 
call (e.g., Read or Write) or in the form of an asynchronous action by invoking 
a Send or Receive procedure (in which the 110 request is supplied as a message 
argument). That is, the user may call an operation of the "synchronous inter
face" or of the "asynchronous interface"; iMAX provides a pair of such inter
faces, one for each device. The iMAX implementation of a synchronous Read 
or Write amounts to a call on the appropriate operation of the asynchronous 
interface (e.g., Send or Receive.) 

A synchronous interface provided by iMAX is implemented so as to provide 
input/output buffering; this assures that, typically, control will return from a 
call on Read or Write to an actual 110 device without having to wait while the 
generated 110 request message makes a round trip through the Peripheral Sub
system Interface and back again. The model provided in Figure 7-4, applied to 
either input or output, is useful for seeing why this is so. The necessary buffer
ing can be provided merely by ensuring a that a sufficient pool of (input or 
output) message objects is enqueued at the Reply Port accessible to the task exe
cuting the Read or Write call. 

A programmer may choose to "bypass" the provided synchronous interface 
and access the Peripheral Subsystem Interface directly by issuing calls on the 
provided asynchronous· interface. In this case the programmer is obligated by 
protocol to deal with lower-level matters, such as managing buffers, checking 
for replies, and handling error messages. 

7.2.1. The 1/0 Device Abstraction Hierarchy 

The basis for the multiple-view objective is the concept and use of a set of 110 
device abstractions, which specify public 110 operations having varying 
degrees of device dependence. The iMAX 110 Interface provides a set of these 
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abstractions, a paradigm by which the Ada programmer may create new device 
abstractions, and a rationale and means for selecting among them. Moreover, 
by using 432-Ada, selection of an operative device abstraction may be accom
plished dynamically. 

I/O device abstractions are thought of as forming a hierarchy. Proceeding 
toward the root of the hierarchy takes one to a more generic, and hence to a 
more device-independent view. The most generic view provides a small set of 
I/O operations common to all devices. Each successive (descendant) view 
includes more I/O operations, but these are common to successively smaller 
subclasses of devices. (Clearly, program units that can use a more generic view 
of a device, in expressing demands on it, will more easily survive changes in 
the actual device used.) 

A useful strategy to be followed is this: when I/O operations are to be per
formed that are more device dependent, steps of the program are first executed 
to change the current level of abstraction, that is, shift the view, to one that is 
less generic. After such operations are completed, execute steps to shift back to 
the earlier, more generic, view of the device. 

Adhering to such a strategy can isolate (and hence minimize) the number of 
program units that are subject to revision; only the isolated program units would 
require change when one I/O device is replaced by another of differing specific 
characteristics. Indeed, one can imagine many applications for which use of 
certain generic I/O device abstractions is sufficient, allowing (entire) programs, 
for all practical purposes, to be device independent. 

Consider, for example, these three levels of I/O device abstraction. At the 
root level, we have only operations that are independent of any specific 110 de
vice or device type. In this category are examples like, querying the identifica
tion and characteristics of the device, resetting it, or, if applicable, closing it. 

Abstractions at the next level in the hierarchy, are those that remain indepen
dent of particular devices but dependent on particular device types. At this 
level, for example, we have abstractions for a class of printers, a class of input 
devices, a class of storage devices, or a class of terminals. Each of these classes 
may be understood in the general sense as sinks, sources, stores, or some com
bination of these. For example, any printer device is first to be viewed as a sink 
for a data stream, and hence has a write operation in addition to the operations 
"inherited" from the more generic view of that device. (A particular printer 
may indeed have other output operations, like skipping two lines, but such 
operations may not be sufficiently common to all printers to be included in this 
view (in this level of abstraction).) In a like manner, we may assume that the 
generic class of all input devices, such as card and paper tape readers and read
only discs, have a generic read operation in addition to operations like query 
and reset. 

Abstractions at the next level would include operations that are specific, not 
just to a particular device class, but also to a particular device itself. For exam-
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pIe, a particular terminal device, viewed in more generic terms as a terminal 
sink, may include an operation to display a second window, another to move the 
cursor from one window to the other, and so forth. 

Adhering to the hierarchical view of device abstractions, we see that an 
abstraction at level k includes all the operations in the abstraction of its immedi
ate parent node, at level k-l in the hierarchy. Apart from its conceptual 
elegance, the idea of a device abstraction tree offers certain practical implemen
tation benefits, especially when the underlying architecture is that of the i432. 

For example, thinking in terms of Ada packages, the set of applicable opera
tions corresponding to a device abstraction at level k may be implemented as a 
domain refinement of a less generic abstraction (descendant node in the abstrac
tion tree) at a level greater than k. Shifting view from one device abstraction 
level to another, along a path in the hierarchy, is a matter of changing refine
ments. As we will see in the next section, shifting a view along such a path 
involves a call on Transform_interface, a special function made available in 
every refinement of a synchronous device interface. 

7.2.2. Synchronous and Asynchronous 
Interfaces 

As mentioned earlier, the iMAX 110 Interface "architecture" is intended to 
provide users the facilities for issuing either synchronous or asynchronous 110 
requests. These facilities are called I/O device inteifaces. The initial version of 
iMAX 432 provides device interfaces having generic 110 operations (Gen
eric_Source, Generic_Sink, and Generic_Store) and simple terminal 110 
operations. The iMAX packages that specify these 110 device interfaces are 
paradigms for all such interfaces. Studying them helps us understand not only 
how these interfaces are intended to be used, but also how interfaces for other 
device abstractions would be structured and used. 

A synchronous interface for a device abstraction is represented as a package 
refinement access type, hereafter mildly abbreviated as "pkg-ref access type" . 
The particular device viewed with that abstraction is represented as a refinement 
instance of that pkg-ref access type. As suggested at the end of Chapter 6, there 
may be any number of package instances for a particular pkg-ref access type. 
Package instances may be declared, assigned as values to variables of that type, 
and passed in procedure calls as actual parameters. 

The pkg-ref access type for a device abstraction provides the specifications 
for all operations germane to its level of abstraction and to the levels of all 
parent abstractions. There is no practical need for a pkg-ref access type 
representing the root node itself, which would contain the three common func
tions, Interface_description, Reset, and Close and two common utility func
tions, Transform_jnterface and Get_asynchronous_interface. Instead, these 
operations are absorbed into the three immediate offspring abstractions, as 
shown in Figure 7-6. 
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Figure 7-6 110 Operations for the three generic abstractions: Source, Sink, and Store 

The operations listed for each generic abstraction would also appear at the 
head of the list of operations in a descendant abstraction. For example, the 
pkg-ref access type, Terminal_Source contains the specifications, in the order 
shown, for all the operations of Source, followed by the two additional opera
tions: Get_terminal_characteristics and Set_terminal_characteristics. These 
additional operations may be used, for example to examine and then reset the 
baud rate of the terminal to one of the allowed rates. 

The two utility operations listed in Figure 7-6, Transform_interface and 
Get_asynchronous_interface, are of especial interest for this discussion . 

• Transform_interface is called to obtain a new view of the I/O interface, 
either an expanded view (more device dependent), or a restricted view (more 
generic). If the new view is valid for that interface, the function returns a dif
ferent refinement of that interface (actually a typed domain refinement). Use 
of Transform_interface is illustrated in Section 7.3 . 

• Get_asynchronous_interface returns a reference to the connection record that 
is implicitly created when the synchronous interface is itself created and ini
tialized. The connection record is a data type declared in the asynchronous 
interface package which is itself a set of definitions and operations used by all 
synchronous interface packages. A connection record defines the I/O chan
nel used for sending and receiving I/O request and reply messages. 
In particular, to use any of the Send or Receive (or Cond_send or 
Cond_receive) operations of the asynchronous interface, one must specify 
the proper connection record. By supplying Get_asynChronous_interface as a 
public operation, the user (as well as implementer) of the synchronous inter
face package is able to issue calls directly on the operations of asynchronous 
interface package. 

Basic 
I/O 
Inter-
face 
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The Asynchronous_la_Interface package may be used for transmitting I/O 
operations at any level of device abstraction. (Hence, only one such package 
is needed for use with all device abstractions.) We amplify our remarks on 
the use of Asynchronous_la_Interface in Section 7.4, where we take a 
closer'Iook at the structure and content of a connection record. 

7.3. Structure, Acquisition, and Use of 
Synchronous 1/0 Device Interfaces 

We give a more detailed view of iMAX synchronous I/O interfaces in this sub
section. To streamline our discussions, we provide in Appendix J listings of 
some relevant iMAX packages for ready reference. 

A key data structure belonging to any device interface is the query record, 
whose representation, query _record_rep, is defined in the package, 
la_Definitions, listed at the beginning of Appendix J. This record type has 
several fields used to identify the device and the Peripheral Subsystem to which 
the device is currently attached. The record also contains an array of abstraction 
descriptions, which is a list of valid views that can be supported by this device 
interface-and to (from) which the interface may be transformed. (It is this 
array that is consulted by the Transform_interface function.) 

Scanning the package Synchronous_la_Interfaces is instructive. This pack
age hosts three package refinement (pkg-ref) access type declarations named 
Source, Sink and Store. They are preceded by declarations for the exceptions 
that may be raised during activations of operations in instances of the three 
pkg-ref access types. Also, three subtypes are declared that define the buffer 
areas used in Read and Write operations of the pkg-ref access types. 
Explanations provided in the listing for the exceptions and the buffer area sub
types require no further amplification here. 

Following the exception and subtype declarations, there is a set of comments 
representing a paradigm of the basic, but non-existent root node device abstrac
tion. This paradigm is referred to as "package access Basic_la_Interface" . A 
copy of it is insetted into each of the succeeding pkg-ref access types: Source, 
Sink, and Store. The paradigm provides specifications for the five operations: 
Interface_description, Close, Reset, Transform_interface, and Get_asynchro
nous_interface. [The function Interface_description returns a reference to the 
instance of query __ record_rep for the particular device interface.] 

In the next two subsections we briefly overview the acquisition and then illus
trate the use of synchronous device interfaces. 

7.3.1. AcquiSition of a Synchronous Device 
Interface 

Before the I/O operations of a synchronous interface can be called, a user proc
ess must acquire an Access Descriptor for the desired interface (refinement). To 
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do this, the user process must appeal to a type manager that controls access to 
synchronous device interfaces. This manager package would have direct access 
to the package that defines the particular synchronous 110 device interfaces. A 
call on the operation of that type manager package returns a reference to the 
wanted synchronous device interface refinement. For some kinds of device 
interfaces, such as for disk files, activation of the Get_interface operation can 
in the process lead to a (dynamic) instantiation of a specific device interface 
package. In any case, what is returned is a refinement of a package, pre-existing 
or newly created. 

For example, the i432 system provides both a Tenninal_Manager and a 
File_Manager package. A Tenninal_Manager might pre-create instances of 
Source and/or Sink device interface packages for each attached tenninal. An 
i432 user process needing access to one of these tenninals would acquire an AD 
for a refinement to the needed interface by calling the Tenninal_Mana
ger.Get_tenninal_interface operation; this operation returns an AD for a refine
ment of a pre-existing interface package. It is likely, however, that synchronous 
interface packages for files would be created dynamically, on demand. Thus, an 
i432 process that needs to perform 110 operations on a particular file would first 
call the File_Manager.Get_file_interface operation) whose implementation 
could involve instantiation of the particular file interface package needed (e.g., 
Source or Sink). The net effect of creating this file interface and returning a 
refinement for it would be to open the specified file for operations of a particular 
kind. More concretely, the statement sequence: 

with File_Manager, ... ; 
use File_Manager, '" ; 

-- Where File_Sink is the 
-- sink interface pk~ref access type 
-- for files. 

would open my _file for writing by first creating a synchronous interface (sup
port) package for file sinks and then returning an AD for the appropriate refine
ment of it; the AD is then assigned to File_Sink_Instance. Subsequently, a call 
can be made to write into my_file, e.g., 

File_Sink_Instance.Write( .... ) ; 

and eventually to close out the file, e.g., 

Note that asynchronous as well as synchronous operations on the opened file 
can now be invoked. To perform the former, it is first necessary to acquire a 
reference to the connection created for File_sink. Thus, the statement 
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connection_of_mY_file 
:= File_Sink_Instance.Get_asynchronous_interface; 

assigns to connection_of_my_file the reference to be supplied in calls on the 
Send and Receive operations of the Asynchronous_10_Interface package. Fig
ure 7-7 illustrates a possible set of relationships that can arise between various 
user processes, the File_Manager, the interfaces packages, the Peripheral Sub
system Interface, and the AP process (File Server) used to drive an actual disk. 

432 S Y s tern 

®ser: ~ 
task -======11' 

1 '"---..... 
A 

®ser 
task _===== 

2 

l,_-....I 
Synchronous 
Interfaces 

Asynchronous 
Interface 

PSI 

PSI 

Peripheral Subsystem 

Figure 7-7 Major components involved in setting up and using synchronous file inter
faces. User tasks 1 and 2 make calls on the File_Manager package to open files on the 
disk. Opening each file results in creation of a synchronous file interface (interface A for 
task 1 and interface B for task 2). Each synchronous interface has access to the common 
asynchronous interface. Read or write calls through A or B are implemented with Send 
and Receive calls to C. Not shown are the connections and the Request and Reply ports 
referred to by the connections. 

7.3.2. Two Example Uses of Synchronous 
Device Interfaces 

EXAMPLE 1. Display_one_liner is a rudimentary procedure that accepts a refer
ence to a refinement instance of type Terminal_Sink as an argument for use in 
displaying character strings from a buffer. A skeleton of the subprogram for this 
procedure is shown in Figure 7-8. 
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use Synchronous_IO_Interfaces; 

procedure Display_one_liner( 
output_device: in Terminal_Sink; 

is 
begin 

output_device. Write (my_write_buffer, 0, 59); 

Type Terminal_Sink 
is defined in Appendix J. 

Display contents of 
buffer from offset zero. 
width of line is 59 chars. 

Figure 7-8 Illustration of generic terminal Write operation. 

[A package refinement access type, such as Terminal_Sink, is declared using the 
432-Ada package access type extension. For example, 

type Terminal_Sink is access package 

-- The set of subprogram specifications representing the 
-- public operations for this abstraction go here. 

end Terminal_Sink; 

In the most general sense, such a declaration can be regarded as a "template" that 
defines a named refinement (or abstraction) of a device interface; the latter is represented 
by a package instance that specifies and implements the full set of operations for a 
specific device type. Similar "package access" declarations are to be found in the 
specification of the Synchronous_IO _Interfaces found in Appendix J.] 

To call Display_one_liner, one must specify, as the argument, an instance of 
the package refinement access type Terminal_Sink. Default refinement 
instances of the types Terminal_Source and Terminal_Sink are already pro
vided by iMAX. They are accessible under the names Terminals(i).Source and 
Terminals(i).Sink. Here i is a value of type "interface_range" currently 
defined as: 

type interface_range is short_ordinal range O .. 5; 

(The range values 1 .. 5 correspond to terminals numbered 1 .. 5, 
and the value 0 is reserved for future Intel use.) 

Hence, a valid call might be: 

Display_one_liner (Terminals (1) . Sink) ; 

On the other hand, and although not particularly likely in this case, a user is 
free to substitute a different package body as the required device interface, so 
long as it has the same specification as that of package refinement access type 
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Tenninal_Sink. (This specification may be found in the iMAX package, 
Tenninal_IO_Interfaces, but, to save space, we do not show it in Appendix J.) 
For example, in 432-Ada, one may supply the declarations, 

pragma refinement (Terminal_Sink) ; -- The "Sink view" of 
-- Brand_X begins here. 

Function: 
The Brand_X_Terminal_Support package contains the 
specifications for all the operations for a terminal of 
Brand_X_Terminal_Type. Embedded within this package is the 
refinement pragma that marks the beginning of the subsequence 
of operations that collectively represent the Terminal_Sink 
abstraction. 

OUr_Terminal_Sink: constant Terminal_Sink 
: = Terminal_Sink (Brand_X_Terminal_Support) ; 

-- Our_Terminal_Sink is assigned an AD for the Terminal_Sink 
-- refinement of the package Brand_X_Terminal_Support. 

In this context, a call on Display _one_liner may specify Our_ Tenni
nal_Sink as the operative abstraction of the Brand_X interface; that is: 

Display_one_liner(OUr_Terminal_Sink); 

The above illustrates how specific refinements of device interfaces may be 
passed to procedures. We next show how different views of a given device 
abstraction may be selected dynamically. 

EXAMPLE 2. Now consider a procedure, Fancy_display, that expects as an 
argument a richer device interface than was required by Display_one_liner. 
Fancy_display, will, among its other duties, issue requests to draw straight 
lines at various angles, but only when the currently attached output device has 
the attributes of a graphics tenninal. When the attached device is character
oriented only, straight lines are merely simulated by strings of periods, 
asterisks, or other special characters. (This option produces jagged line approxi
mations, except for verticals and horizontals.) 

In this example straight-line approximations are displayed when invoking the 
Write operation of the device interface (using the "characters" view of the de
vice). "Actual" straight lines are drawn only when invoking the Draw_line 
operation of the device interface (using the "lines" view of the same interface). 

Figure 7-9 shows a skeleton form of Fancy_display. In this example, the local 
variables chars_output and graphic_output are assigned different abstractions 
(refinements) of the supplied device interface object through application of 
Transform_interface. The variable graphics_output gets the abstraction needed 
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for drawing lines and is used only after fIrst checking that the attached device 
currently has this functionality. This fact is determined by a call on the 
Interface_description operation of the given interface which returns the query 
record containing an array of the abstraction names supported by that interface. 
The reader should have little trouble following the rest of the code in Figure 7-9. 

7.4. Structure and Use of the Asynchronous 
Device Interface 

As mentioned at the end of Section 7.2, iMAX provides a standard asynchro
nous device interface which may be accessed by the user when it is more 
appropriate to issue 110 requests by sending messages than to issue procedure 
calls. This interface takes the form of the iMAX package, Asynchro
nous_la_Interface, whose specifIcation is given in Appendix J. 

The four data-transmission operations of this package, Send, Cond_send, 
Receive, and Cond_receive, can only be used by specifying an access to a 
connection_record, which is a high-level communication data structure that 
characterizes the asynchronous 110 channel between the program and the de
vice. A connection_record, whose formal defInition is given as follows, 
includes a request_port, a reply _port and a copy of the device description used 
in the companion synchronous device interface. 

type connection_record is 
record 

request_port: port; -- Port for I/O request messages. 
name: print_name; -- Identifying name. 
device_description: query_record; -- Device-specific information. 
reply_port: port; -- Port which may be used as 

-- a message reply port. 
end record; 

Access to such a record is easily, and safely gained via a calIon the 
Get_asynchronous_interface operation in the corresponding synchronous 110 
interface package (for the same device). 

An asynchronous 110 transaction (request or reply) takes the form of an 
I/O _message_record, whose top-level structure is, formally: 

type IO_message_record is 
record 

command_record: 
reply_port: 
data_buffer: 

end record; 

comman~record_rep; 
port; 
buffer_array; 

This record mirrors the structure of a typical 110 request used in driving a 
hardware device. The contents of the command_record component provides: 
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procedure Fancy_display( 
output_device: Fancy_Sink) Matching argument must be 

a package instance of FancY_Sink. 
is 

start, len: integer range 0 .. 

begin 

output_device. interface_description. buffer_length; 
Characters_ view; 

Characters_view is an abstraction 
capable of writing only character 
strings. 

chars_output := output_device. Transform_interface (Characters_view) ; 
-- Extract a new view of the given 
-- interface and assign to chars_output. 

chars_output. write (my_write_buffer, start, len); 

if 

-- Display title text line. 

The attached device has line_drawing capability (check if the 
new abstraction is included .in output_device. Interface_description 
abstractions) . 

then 
declare Block entry. 

graphic_output: Lines_view; Lines_view is an abstraction of 
Fancy_Sink capable of drawing lines. 

begin 
graphic_output : = output_device. Transform_interface (Lines_view) ; 

-- Extract a new view of the given inter-
-- face and assign to graphics_output. 

graphic_output. Draw_line (initial_x, initial_y, 
finaLx, fin.al_y ) ; 

Issue I/O request to draw specified 
-- line. 

end; 

else 
Use chars_output abstraction for drawing an approximation for 
straight line beginning with (initial_x, initial_y) and 
terminating with (final_x, final_y). 

end if; 

chars_output. Write (my_write_buffer, start, len); 
-- Display another text line. 

end Fancy_display; 

Figure 7-9 Illustrating dynamic selection of different abstractions of a device interface 
object supplied as an argument to a procedure. 

• the order code for read, write, etc. 

• an integer message_id, useful for identifying unsuccessful requests so that, 
upon receipt of error replies, such requests may be noted and perhaps retried 

• a reply_code identifying the kind of an error encountered, if any 
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• an array of records each providing control information for a buffer. This 
information includes the buffer's current "cursor" index, the buffer's 
length, etc. 

The need for the reply_port requires no motivation here. The data_buffer is 
an array of one or more buffer references to which the command is to be 
applied. If a Read command is sent, the buffer(s) are filled according to the 
input transfer rules for the particular device source. If a Write command is sent, 
the buffer(s) are emptied, according to the output transfer rules of for the partic
ular device sink. The listing in Appendix J provides the formal description for 
the data_ buffer field and the various definitions on which it is based. 

To Send or Receive an 110 request, one merely designates as arguments a 
connection and an la_message. The specifications for these two operations of 
the asynchronous interface are simply: 

procedure Send( 
c: connection; 
msg: lO_message) ; 

procedure Receive ( 
c: connection; 
msg: out lO_message); 

As might be suspected from our discussions in Chapter 5, the Cond_ send and 
Cond_receive operations also require the designation of a boolean variable 
(success) as an output argument. 

It is conceivable that a user would wish to execute 110 transactions using Sur
rogate Sends and Receives-to avoid anticipated blocking. These less likely 
operations are not provided in the Asynchronous_la_Interface. However, once 
a connection has been established for a device, the programmer is free to use its 
ports directly, such as by referring to them in Surrogate (or ordinary) Send and 
Surrogate (or ordinary) Receive operations made available in the iMAX 
Typed_Ports package. [Readers may wish to refresh their memories by review
ing Section 5.5.] 

We close a loop opened in Section 7.1 by reviewing two matters of detail: 

a. where messages go to that are sent through the asynchronous interface, and 

b. where messages come from that are returned through the asynchronous inter
face. 

Recall that messages are sent to (received from) the IP process whose proc
essor is controlled by the Attached Processor. (That IP processor is named in the 
device;:-description component of the connection_record specified in the send 
or receive operation.) 

One may usefully review Figure 7-5 at this point. A server process executing 
in the AP will be waiting to receive a sent 110 request as a result of having 
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issued a (blocking) RECEIVE order to its slave IP. The RECEIVE order must 
specify the request_port component named in the interface's connection_record 
so the IP can "know" where to go to receive the user's I/O request. In due 
course, the IP process will get an I/O request message from that request_port. 
A reply message, fonnulated by an AP process, will be sent by the AP via a 
SEND order to its IP. In tum, the IP will enqueue this message (as a request) at 
the reply _port named in the IO_message_record of the I/O request. 

One may now ask the following question: When a new device is added to a 
Peripheral Subsystem or, correspondingly, when a new synchronous interface 
object is added to the Computational Subsystem, how does this infonnation 
reach the other subsystem, respectively, that needs to know about these 
changes? Here is a brief two-part answer: 

• Whenever a new physical device is attached to a Peripheral Subsystem, 
access to that device must come under control of its appropriate type 
manager. This may require adding a new type manager or infonning an exist
ing type manager of additional resources. In either case, it is the governing 
type manager that is responsible for handing out synchronous interfaces that 
access the new device. Correspondingly, whenever a new synchronous inter
face refinement is created, the appropriate system table in the AP referred to 
in the underlying interface object is also updated so that AP can allocate a 
new pair of server processes for the new interface refinement instance (or 
achieve an equivalent effect by communicating appropriate requests directly 
to the proper device drivers) . 

• Note that the "business" described in the preceding paragraph goes under the 
more general heading of device allocation and deallocation. 

A device abstraction is just another i432 refinement, and so, when it is 
created, it becomes available for- use by any user process that acquires an 
Access Descriptor for it. In Section 7.3 we have already noted that control 
over the distribution of Access Descriptors for device abstractions is the 
responsibility of the type manager for such objects. An abstraction can safely 
be removed from the system, that is, deallocated, when there are no longer 
any Access Descriptors that refer to it. Deallocation may, therefore, be 
achieved explicitly by the operating system, or implicitly by the garbage 
collector. 

We do not rule out the possibility that two or more user processes may have 
concurrent access to the same device interface refinement instance. In that 
event, however, preventing conflicting use of the corresponding physical de
vice is the responsibility of the applications subsystem designer. 

The problem is no different than preventing conflict over concurrent use of a 
database. The usual way to solve this problem is to interpose a single Ada 
server task that acts as an arbiter between the several users and the device 
abstraction. A device abstraction that is to be shared would probably have an 
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Open operation defined on it, as well as a Close operation. The arbiter task 
would then respond to 110 requests by first checking to see whether or not the 
device (for example, a file, or a line printer), has been Opened to the caller. 

The allocation and de allocation of physical devices is dealt with in a similar 
way within a Peripheral Subsystem. An actual device is accessible only by a 
device driver process, which is in tum accessible to other AP processes. A 
physical device becomes accessible to a 432 process, therefore, only after the 
corresponding driver process has been created and after the specifics of that 
driver are recorded in the central system table addressable by the AP. The 
physical device description information that must be recorded in a newly 
created device abstraction, must be acquired through a secondary transaction 
with an AP process. (We leave these details to the imagination of the reader.) 

7.5. I/O System Assessment 

Our primary objective for this section is to put the 110 system, examined thus 
far, into a broader perspective. We will do this in two ways: first, we consider 
two high-level questions not yet raised, and second, we will attempt a brief 
comparison between the structure of the i432 110 system with today's tradi
tional 110 systems. 

We have skirted at least two high-level issues. The first is the matter of decid
ing how much of the technical material presented on i432 110 structures and 
mechanisms should be known to the "ordinary" user. The best answer we can 
give here is: none at all-provided we may assume that such a user has no need 
for directly specifying asynchronous 110 operations. 

Standard Ada defines the library packages Input_Output and Text_IO. The 
operations of these packages necessarily present procedural and hence synchro
nous interfaces. These operations form a rich set on which programmers may 
base still higher-level (synchronous interfaces). Other language processors 
would also be expected to be- implemented in Ada. One may, therefore, safely 
assume that most, if not all, users will always rely on some compiler to select 
and use the appropriate device interfaces made available by iMAX or by other 
system programmers. 

We also assume that readers of this chapter are the exceptions. They either 
have an intellectual or a practical need to know about the 110 structures and 
mechanisms discussed thus far. 

The other matter skirted thus far is how to decide when synchronous device 
interfaces are to be preferred over asynchronous interfaces. [How, for example, 
does the Ada compiler decide which type of interface to use in compiling the 
subprogram bodies for Read, Write, Get, and Put operations of the library pack
ages, Input_Output and Text_IO?] We can give a partial answer to this ques
tion here. The choice, whether for the applications or systems programmer, 
including compiler writer, will inevitably hinge on anticipated efficiency. 
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Asynchronous interfaces may well be more efficient for many types of physi
cal devices. However, for "simulated physical devices" like files or pipes 
(channels between programs), which involve relatively more software than 
hardware, use of synchronous device interfaces may well be more efficient. A 
complicating factor is that various influential parameters, such as system load
ing, new device designs and the like, may, in fact, change over time and alter 
the balance. Since iMAX provides both types of interfaces for every device, the 
subsystem designer can be assured of the flexibility needed over the long run. 

The i432 110 system structure mirrors many of the objectives and features 
provided in other conventional and contemporary systems. An especially impor
tant question to ask, therefore, is: In what key way (or ways) does it contrast 
with, or perhaps surpass, those systems? We provide one response here. 

The i432 110 systems takes full advantage of the underlying object- (and 
refinement-) based architecture. Device interface objects and their refinements 
are separate protection domains. That is, each interface object (or refinement) is 
necessarily created by a calIon an appropriate type manager, and hence, can 
have access to it restricted in a manner agreed to by the object manager. Also, 
each interface object owns just those local data objects needed to carry out its 
publicly accessible operations. Because each device interface (or abstraction of 
it) serves as a separate protected "island", any module that has access rights for 
an object (or refinement) is free to call on it directly in request of service. No 
"middleman" module is needed to serve as a reliable switching agent or 
broker. 

In (non-capability-based) conventional systems, the "grain size" of a pro
tected domain is necessarily quite coarse. In most systems, the total address 
space of a process may be decomposed into only a limited number of protected 
sub-address spaces, often one. Even in the Multics system, the number of pro
tected addresses spaces within a process is limited to the (relatively small) 
number of distinguished protection "rings". As a result, there is heavy reliance 
on "supervisor mode" and on an address space that is accessible only while the 
processor executes in this mode. Resulting 110 system structures have, there
fore, led to a path-critical step of indirection between the maker of an 110 
request (i.e., the caller) and the particular device interface object desired as a 
target. 

In these systems, interface objects are usually called DIM's, for device inter
face modules. An individual DIM is usually not protected. In Multics, for 
example, a user may compose a DIM. In between the caller and the particular 
DIM, it is, therefore, essential to place a major interpretation and switching 
module, access to which is protected. Let us call this the IOCP (for 110 Control 
Program). Unfortunately, the IOCP is necessarily large and unwieldy. 

Acall to an operation of a DIM is intercepted by the IOCP, which must vali
date it by consulting protected system tables. Such tables are also used to deter
mine the address of the desired DIM, and perhaps to perform some translation 
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of the user's call so that it may be "understood" by the target DIM. (The 
tables, often called "Attach Tables", allow the IOCP to map a user's logical 
device, or data-stream name, into a particular DIM.) 

These verifying, switching, and possible translation functions of the IOCP 
must be performed on every 110 request (if security is to remain tight). More
over, as the system grows or changes in configuration, such as when DIMs are 
changed or when new ones are added, the IOCP must be updated, and this must 
clearly be done with care. Usually, maintenance on the IOCP requires system 
shutdown. 

The i432 110 object based structure allows for the elimination of the IOCP 
and most, if not all, of its functions. The system-wide Attach Table mentioned 
above is, in the i432 structure, now safely distributed among the separately pro
tected device interface objects as owned device_description records and to 
tables resident in the various Peripheral Subsystems. 

In summary, elimination of the IOCP leads to an important efficiency (and 
system maintenance) advantage over conventional systems. This advantage 
arises as a direct consequence of the i432's object-based architecture. We trust 
that many readers' interests in 110 system architecture, and especially in that of 
the i432, has now crossed that magical threshold, leading to commitment for 
further study of this interesting subject, heretofore regarded by many as "too 
complex to master" . 

As promised in the opening of this chapter, we are now ready to revisit our 
portfolio management system to see how some of the i432 110 facilities may be 
used with, and perhaps to enhance, our case study information system. 

7.6. I/O Operations for the Portfolio 
Management Information System 

In all previous discussions of the portfolio management system, we deferred 
detailed discussion of input/output. Such postponement is no longer necessary. 
In this section we first review the structure of Figure 2-5, our "basic plan" for 
the portfolio management system. We do this expressly to suggest how the 
input/output operations, implicit for that plan, may be accomplished. In particu
lar, we consider the: 

• login sequence 

• session interactions 

• logout sequence 

that results in a club member being put in touch, 
through a terminal, with the corresponding Member 
task. 

the input/output operations in the command loop of 
Member task. 

that results in a disconnect between the member, the 
corresponding Member task, and the terminal just 
used. 
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We then consider one interesting enhancement of the original plan, namely 
the changes needed to provide on-line, up-to-the-minute, quotations on listed 
stocks. (Such quotations may be used by members merely for information 
purposes, or in performing analyses of portfolio holdings. The Club_Portfolio 
operations, Print_winners, Print_losers, and Print_non_movers fall in this 
category.) 

7.6.1. Terminal Operations 

For convenience in this discussion, we regard the Task_Master of the portfolio 
subsystem as the executive routine that responds to login requests of club
members and that also executes the logout function. Two scenarios are 
described, according to each of the following two assumptions: 

1. Member tasks have been created and activated in advance, one for each 
member. (We suppose that the Task_Master has created these tasks, but this 
assumption is not critical.) 

2. A Member task is created and activated anew by the Task_Master, each 
time the corresponding member logs in to a terminal. (In this case, the 
Member task instance is aborted when the member issues a logout command 
or when some time-out condition requires termination.) 

For all communication between the Task_Master and the terminals, asyn
chronous device interfaces are used; whereas, for all communication between 
Member tasks and their respective terminals, it seems sufficient to use synchro
nous device interfaces. We assume as well that for all communication between 
the Task_Master and individual Member tasks, the Ada rendezvous mechanism 
(synchronous communication) is also used (although the reader is free to con
sider alternative use of explicit message-based communication). In what fol
lows, we also assume that two device interface refinement instances have 
already been created for each physical terminal on which a member may log in, 
one a Terminal_Source instance and the other a Terminal_Sink instance. The 
Task_Master is assumed to hold a copy of the Access Descriptor for each of 
these terminal interface refinements, enabling it to read from or write to each 
terminal. We let AD_ T_Sink(k) and AD_ T_Source(k) represent references for 
the Terminal_Sink and Terminal_Source refinements for terminal k. 

Our two companion scenarios begin with the Task_Master issuing an asyn
chronous read request to each terminal and then entering a polling loop to await 
the arrival of a reply or receipt of some other message of interest. Each reply 
message signifies the beginning of a login sequence with a member. (If the 
sequence is not completed satisfactorily, the Task_Master issues another asyn
chronous read request to that terminal so as to be receptive to another login 
attempt.) When a login sequence is completed successfully at terminal k, the 
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Task_Master perfonns one of the following two actions (according to whether 
Scenario 1 or Scenario 2 is operative): 

1. (Scenario 1) Issues a Go entry call to the Member task identified in the login 
sequence, using AD_ T_Sink(k) and AD_ T_Source(k) as actual parameters, 
or 

2. (Scenario 2) Creates and activates a new Member task and then issues it a 
Go entry call containing AD_T_Sink(k) and AD_T_Source(k) as actual 
parameters. 

At this point, the club member is connected through terminal k to his/her 
Member task which can proceed with the execution of a series of commands 
issued from the terminal. The main structure of a Member task is presumed to 
be a "command loop", repeatedly requesting and then executing a command 
received from the terminal. To get a command, the Member task issues one or 
more procedural I/O read requests through T_Source(k), interspersed, as neces
sary, with procedural I/O write requests issued through T_Sink(k) to assist the 
member in fonnulating a correctly-phrased command. 

The above command loop is exited upon receipt of a correctly fonned logout 
request. At this point, the Member task will execute one of the following 
sequences (according to whether Scenario 1 or Scenario 2 holds): 

1. (Scenario 1) Nullifies the two references (Access Descriptor copies), 
AD_ T_Sink(k) and AD_ T_Source(k), received from Task_Master; then 
issues a Ready _to_quit task entry call to the Task_Master. By accepting 
this call, the Task_Master knows that the Member task issuing the call has 
ceased making Read requests to terminal k. (The accept statement may be 
completed simply as a no op.) The Task_Master then reissues an asynchro
nous read request to the terminal whose identity was received as an in 
parameter from the Ready_to_quit entry call. The Task_Master now awaits 
another login request at this terminal. 

2. (Scenario 2) Issues a Ready _to_quit task entry call to the Task_Master. 
Upon acceptance of this call, which would also contain the identity of the 
terminal on which the quitting Member task has been executing, the 
Task_Master does the following: aborts the corresponding Member task; 
writes out a sign-off message on that terminal; and reissues an asynchronous 
read request to that terminal to await another login request. 

Without providing all the program structure details, which the reader may 
now easily fill in, we have offered a candidate pair of scenarios to show how the 
device interface objects (and refinements) described in the earlier sections of 
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this chapter can be used in carrying out the base plan of our portfolio manage
ment system. Other ways to use the i432 110 facilities can also be explored, and 
the reader is invited to do so. 

7.6.2. On-Line Connection to the Stock 
Market 

In the basic plan of Figure 2-5, we assumed the existence and accessibility of a 
library package, named Stock_Mkt_Info. (This package was placed in the with 
list of Club_Portfolio.) We suggested that calls from Club_Portfolio to 
Stock_Mkt_lnfo would get current prices of specified stocks, but we gave no 
hint as to how the stock market data in the latter package would be maintained 
current. 

In Plan 1, we may imagine that "Airlift Specialists, Inc." delivers a floppy 
disk each morning marked "Market_data". This disk contains the closing 
market data from the previous day. (Someone is then charged to mount this disk 
on the proper drive before the first login of a club member on that day.) Of 
course, a device driver and Source device interface object must be made avail
able for use of this disk. 

With Plan 1, it is still necessary to visualize how information would be read 
off that disk when needed. If the information on the disk is already well struc
tured, so that pruticular records may be picked out by associative lookup, the 
problem is made easy. In that event, we can presume that a subprogram local to 
Stock_Mkt_lnfo issues the appropriate 110 Read request, and that this subpro
gram is itself called, when needed, in the course of executing a public operation 
of Stock_Mkt_Info. That Read request may well use a synchronous device 
interface, because there is normally nothing else the caller wishes to do until the 
response is received. 

On the other hand, it is more reasonable to assume that information on the 
disk is stored in a format that requires all of it to be transferred into i432 object 
space in a form that can be searched efficiently-as part of. a lookup operation 
of Stock_Mkt_lnfo. Following this tack, some means is required to reinitialize 
Stock_Mkt_Info on a daily basis, prior to its first use that day by club 
members. Implied here is the need for a utility program that produces a new 
instance of Stock_Mkt_lnfo from a new Mkt_data disk. (This program would 
be executed by the person who mounts the new disk.) 

For Plan 1, we accepted the proposition that Stock_Mkt_Info must be reini
tialized daily to provide it with updated market data. For Plan 2 we now sup
pose that up-to-the-minute wire_service stock market data is available. 

To what extent must the structure of Stock_Mkt_Info be changed to take 
advantage of the wire service? Availability of wire service data implies that 
Stock_Mkt_data no longer needs to be reinitialized each day. Nor will this 
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package need to own any market data. The wire service itself provides a 
"smart" query service. Hence, the lookup operation within Stock_Mkt_Info 
needs merely to forward lookup calls in the form expected by the wire service. 

In this case, Stock_Mkt_Info will again need access to a Source device inter
face abstraction having a Read operation. The matching device driver in the 
Peripheral Subsystem now interfaces to a data communications system. If we 
assume that the AP or some other processor on the same Peripheral Subsystem 
bus serves as a network host, then the driver merely sends and receives mes
sages via that network host program. 

Again, we have sketched two plans as starting points for implementation of 
some details implied in the basic program structure given in Figure 2-5. Our 
immediate aim has been to help the reader relate what has been learned from 
preceding sections of this chapter to the investment portfolio application 
selected for this book. Readers will no doubt see other ways to take advantage 
of i432 I/O facilities, not only for application to our case study, but, more 
importantly, for application to systems of particular interest to them. 



PROCESS MANAGEMENT 

8.1. Introduction 

In this book we describe iMAX interfaces useful for the construction of 
application-specific operating systems. Each interface serves as a type manager 
for an important resource category, each resource being represented as an i432 
object. For example, the Typed_Ports and Extended_ Type_Manager interfaces 
described in preceding chapters are user-accessible facilities for managing Port 
Objects and Extended Type Objects, respectively. In this chapter we introduce 
the facility for the management of Process Objects, i.e., iMAX's Process_Man
ager (PM) interface, which provides users the means for creating and managing 
processes. 

iMAX defines a Process_Manager interface which is simply a template to 
which each actual process manager will conform. There may be several dif
ferent implementations of the Process_Manager interface, each providing a dif
ferent level of process management support. Moreover, within an individual 
application environment, such as within an executing Ada program, most users 
can remain indifferent to the nature of process management support provided by 
the underlying system. This is because the compiler and iMAX ensure that 
some implementation of Process_Manager can always be referenced correctly 
by an executing program that needs to spawn and exercise control over other 
processes, such as Ada tasks. 

System programmers can develop their own implementations of the Proc
ess_Manager interface, tailored to particular application environments. In this 
way, an implementer of a particular system can specify the scheduling policies, 
resource controls, resource accounting, and other services to be exercised over 
processes within that system. Each instance of Process_Manager also projects a 
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particular set of process management functions onto the processes managed by 
that instance. Among these functions might be those which create, start, 
suspend, resume, reschedule, reduce or extend memory resources for, destroy, 
inspect or adjust the state of, and keep statistics on processes. The system 
designer determines which classes of programs may use which Process_Mana
ger implementations. For example, a minimal process manager implementation 
(provided by iMAX) would be used to support processes within iMAX, and the 
processes which implement a higher level process manager. A system with its 
own higher level process manager would require all applications programs to 
use that process manager so they would not circumvent the resource scheduling 
and accounting policies implemented by it. 

The 432-Ada package refinement feature illustrated in Chapter 7 provides the 
ability to implement a specific set of process management services which can 
then be viewed through a pre-declared general process management interface. 
Using this feature, the process manager interface is defined as a package refine
ment access type. With this definition, a variable can be declared whose type is 
this package refinement access type; the value assigned to it references a pack
age instance that is a specific implementation of Process_Manager. 

In the remainder of this chapter we examine the Process_Manager interface 
in greater detail. Section 8.2 discusses the public operations of the Proc
ess_Manager package type in the context of the data types on which these 
operations depend. In reading this material, one may refer to Appendix K which 
presents the Process_Manager package refinement access type and related type 
definitions. Section 8.3 sketches different possible implementations of Proc
ess_Manager. Section 8.4 summarizes what aspects of process management 
have and have not been examined in this chapter. 

8.2. The Process_ Manager Interface 

The Process_Manager interface (PM) contains operations to control processes 
(Figure 8-1) and operations to read and set process attributes (Figure 8-2.) 

The control operations can best be understood in terms of the lifecycle of a 
process, as suggested by the macro-state graph in Figure 8-3. Most control 
operations appear as arcs on the state graph. The additional arc labeled' 'system 
stop" represents automatic action of the underlying system. The term macro
state is used because we choose to ignore a number of the details concerning a 
process when it is in the "executing" state. For example, a process in the exe
cuting state may, for scheduling purposes, be either actually in the dispatching 
mix or kept out of the dispatching mix (by the process manager). A process is 
said to be in the dispatching mix from the time it is first sent to its Dispatching 
Port with a new non-zero value for its period count (rescheduled) until its period 
count has been decremented to zero or until it incurs a fault that cannot be han
dled. (Thus, a process remains in the mix even if it is blocked on a port or is not 
running while a fault which it incurred is being handled.) 
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Each process may have specified for it a notification port and message 
through which the creator of the process, for example, may be notified of "ter
minal" events for that process. The notification message is sent to the notifica
tion port when the process can no longer execute, e.g., when it is terminated, 

Operation 

create_process 

start 

Suspend 

Resume 

Destroy 

Raise_exception 

Wai t_for_process._ 
termination 

Explanation 

creates and returns a new process. 

starts a newly created process or 
restarts a process from one of several 
non-executing states. 

Causes an executing process to be suspended 
until a later calIon Resume. 

Causes a suspended process to continue 
executing. 

Destroys a process. 

Delays the calling process by a specified 
amount of time. 

Causes a specified exception to be raised 
in a process. 

waits for a specified process to terminate. 

Figure 8-1 Operations of the Process_Manager for controlling a process. 

Operation 

Set_notification_port_ 
an<t-message 

Set_schedulin~info 

Explanation 

Returns a copy of the "unchanging" attributes 
of a process. 

Returns a copy of the "changing" attributes 

Returns a copy of the "changing" attributes 
of a process including its micro-state. 

Sets a notification port and a message 
for a process. 

Sets the maximum time a process can 
execute. 

Sets the parameters: 
time slice, deadline, and priority. 

Figure 8-2 Operations of the Process_Manager for reading and setting process attributes. 
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\ 
system 
stop 

I 
start 

Figure 8-3 Macro-state diagram to explain the lifecyc1e of a process 

destroyed, or removed from the dispatching mix for having exceeded some 
user-specified limit. 

The user-readable attributes of each process are collected in several records, 
defined in Figure 8-4. A process' fixed attributes are provided in proc
ess_info_rec; variable attributes (i.e., state information) of a process are pro
vided in two records: process_state_rec and process_micro_state_rec. The 
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functions, Read_process_info, Read_process_state, and Read_proc
ess_micro_state respectively return this infonnation. 

type process_states is ( 
executing, 
just_created, 
suspended, 
exceeded_memory_limit, 
exceeded_time_limit, 
system_error, 
terminated, 
destroyed) ; 

type process_micro_states is 
not_executing, 
on_processor, 
on_cport, 
on_service_port) ; 

type process_info_rec is 
record 

process_id: 
process_globals: 
name: 
notification_port: 
notification_message: 
time_limi t: 
schedul in~ inf 0: 

end record; 

type process_state_rec is 
record 

state: 
process_ clock: 

end record; 

-- Returned by Read_process_info. 
short_ ordinal; 
Process_Definitions.process_globals_rep; 
string; 
iMAX_Definitions.port; 
dynamic_ typed; 
time_limi t_ type; 
schedulin~info_rec; 

-- Returned by Read_process_state. 
process_states; 
milliseconds; 

type process_mic:ro_state_rec is 
record 

state: 
micro_state: 
process_clock: 

end record; 

-- Returned by Read_process_micro_state 
process_states; 
process_micro_states; 
milliseconds; 

Figure 8-4 Type definitions for process_states and process_info_ree. 

All process attributes, with the exception of process_globals, process_id, 
and the process state components, can be specified by the user. Some of these 
attributes can be set unconditionally; others are advisory only. For example, the 
caller can set (and later reset) the notification port and message, but can only set 
the time_limit and other scheduling parameters in an advisory sense. The 
underlying implementation can ignore advisory specifications in the event, for 
example, that processes are to be scheduled not individually, but in job-related 
groups. 
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For most process attributes, the implementation of Process_Manager supplies 
default values, so that the user is not required to specify them at all. The default 
values of some process attributes may be overridden only in the course of creating 
a process and cannot be changed thereafter. The name of a process is one such 
example. Other attributes, such as the notification port and message, may be set 
only after a process is created; a Set_ ... operation is used for this purpose. 

8.2.1. The Create_Process Operation and Its Use 

The specification of Create_process is given in Figure 8-5. Although this opera
tion has eight parameters, the caller is only required to specify init_proc which 

function Create_process ( 
init_proc: access_initial_proc; 

execute. -- The procedure to 
ini t_params: dynamic_ typed : = null; 

init_proc. -- Parameters to 
name: string; 

job: 
The text name of the process. 

Jobs_Manager_TYPes.job := null; 
The job in which the caller is executing, i.e., the job 
in the caller's process globals. 

heap_sro: i~Definitions.storage_resource := null; 
The sro from which to create the process. This determines 

-- the scope of the process and whether the process is frozen or 
-- normal. Default is the global heap sro in the caller's 
-- process globals. 

init_stac~objtab_size: objtab_size_type := 0; 
Initial size of the process stack object table. This is an 

-- advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

init_stac~size: memLsize_type := 0; 
-- Initial size of the process stack allocation block. This is an 
-- advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

call_stac~depth: integer : = 0; 
-- Number of contexts to be pre-allocated for this process. 
-- This is an advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

return process; -- Has controlJights. 

Function: 
A new process is created and returned. The parameter list 
includes only those process attributes which can be set only 
at process creation time. Default values are provided for 
all process attributes except the procedure to execute 
(init_proc); this is the only parameter which MUST be specified. 
Attributes for which there are no parameters may be changed after 
a process has been created (and before it is started, if desired) 
by calling one of the Set_ ... operations. 

Figure 8-5 Specification of the Create_process function in package access type Proc
ess_Manager. 
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supplies the beginning procedure, i.e., the initial execution environment for the 
new process. 

The dynamic package feature of 432-Ada is used to specify init_proc. An 
instance of the package access_initial_proc is passed as the init_proc parameter 
to Create_process. This instance is obtained by instantiating the generic pack
age initial_proc; in this instantiation, the initial procedure to be executed by the 
new process is given as the generic parameter main. Figure 8-6 shows the 
initial_proc and access_initial_proc specifications from Process_Mana
ger_ Types in Appendix K. 

generic 
with procedure maine Formal generic parameter. 

params: dynamic_typed); 
package initial_proc is 

procedure maine 
params: dynamic_typed) 

renames main; 
end initial_proc; -- End of generic package spec. 

type access_initial_proc is access initial_proc; 
Declares access_initial_proc to be an instance 

-- of the dynamic package named initial_proc. 

Figure 8-6 Specification of the generic package initiaCproc and package access type 
access_initiaCproc. The fonnal parameter of initial_proc is the procedure main which 
itself has one parameter whose type is dynamic_typed. 

Figure 8-7 shows an Ada program fragment which creates a process named 
"Task_Master" . The mechanism just described is used to specify 
Spawn_servers as the initial procedure of the new process. 

8.2.2. Other Operations of the 
Process_Manager ~nterface and Their Use 

The Create_process operation returns an AD with control_rights for the created 
process; no read or write rights are returned. Depending on the particular proc
ess manager implementation, the AD returned from the Create_process opera
tion mayor may not also have suspend_and_resume_rights. The rights 
returned by Create_process are software-defined type rights. Calls on all other 
operations in Process_Manager, with the exception of Suspend, Resume, and 
the Read_ ... operations, must supply an AD with controL rights for the speci
fied process. Calls on Suspend and Resume require that the AD for the specified 
process contain suspend_and_resume_rights. 

The creator of a process may make ADs for that process accessible to other 
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declare 
use Some_Process_Manager; 

procedure Spawn_servers( 
server_p: dynamic_typed) 

is begin. . . end; 

initial_environment: access_initial_proc; 
begin 

initial_environment := new initial_proc(init_proc => Spawn_servers); 
-- Create an instance of initial_proc with Spawn_servers as its 
-- one public operation. 

Can now make calIon Create_process as follows: 
Local_Process_Manager. Create_process ( 

end; 

init_proc => initial_environment, 
init_params => dynamic_typed (some_server_p), 
name => "Task_Master"); -- Remaining five arguments 

-- are defaulted. 

FIgure 8-7 An Ada program fragment to illustrate a call on Create_process. 

agents in a system. If any of these ADs have control_rights, the process may be 
controlled by the agents that have access to them. Alternatively, the creator of a 
process may remove control_rights from such ADs so that other agents may 
read information about the process but may not perform control operations on it. 
Similar considerations apply to suspend_and_resume_rights. In the simplest 
case, control operations may be used to start a process and let it execute to com
pletion. Wait_for_process_termination enables an agent to suspend its own 
operation until some other process has finished executing. To wait for the termi
nation of more than one process (i.e., for all or for some of these to terminate), 
the more general notification mechanism may be used. (Use ofWait_for_proc
ess_ termination is specified as mutually exclusive with use of the notification 
port and message mechanism.) A process may be aborted, no matter what its 
(macro) state, by a call to Destroy. 

Several of the Process_Manager operations, including Destroy, are per
formed asynchronously with the caller; users may need to be aware of the 
cause-and-effect time lags involved. Details such as these, and more complete 
descriptions of all PM operations, including those not mentioned here, are given 
in the PM interface specifications in Appendix K. 
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In the previous section, we described the general Process_Manager interface 
without reference to specific implementations of that interface. The functional
ity supported by a given Process_Manager implementation may range from a 
purely minimal scheme to an arbitrarily rich one. In this section, we examine 
two of the many possible implementations of Process_Manager, and discuss 
some of their ramifications. 

First, we review the architecture details needed to understand dispatching and 
scheduling of processes at the lowest level. Recall from Chapter 5 that a process 
is scheduled by specifying a service time, which is the maximum amount of 
compute time to be used during each of a given number of service periods; the 
latter is specified as the period count. (These values are embedded in the Proc
ess Object.) After each (but the last) service period has been completed, the 
process is reinserted into the request queue of its Dispatching Port in deadline
within-priority order. The specified deadline is an integer measure of how long 
the process may be delayed, relative to other enqueued processes of the same 
priority. (The deadline and priority values are maintained in the Process' Car
rier Object and are copied into the appropriate request queue entry when a proc
ess is reinserted into its Dispatching Port.) The copied deadline values for 
enqueued processes within a given priority level are updated by the hardware 
(to reflect the effect of elapsed time) each time another request (process) is 
inserted into the Dispatching Port. (These detailed hardware operations are 
described in the i432 Architecture Reference Manual.) 

8.3.1. A Simple, Close-to-the-Hardware 
Implementation 

A minimal process management implementation (MPM) might consist merely 
of allowing its users to create, initialize, and start processes. Suspend, Resume, 
Raise_exception, and Destroy would likely not be implemented. In this 
scheme, processes have an infinite time limit (period count) and they must not 
terminate. (Alternatively, processes could be automatically destroyed if they 
terminate. This option would probably require MPM to include a service proc
ess that would perform the destruction of the processes that terminate.) 

Defaults are provided for the process scheduling parameters (time slice or 
service time, deadline, and priority); users can override the defaults or change 
the scheduling parameters of an executing process by calling Set_schedu
ling_parameters. Thus, processes execute entirely under control of the 
hardware dispatching and scheduling mechanisms. Because they have an infin
ite period count, created processes would never be sent to their scheduling port, 
so MPM does not need to include a service process to handle the scheduling 
port. 
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Depending on the level of fault handling and memory management in the sys
tem, IvIPM might require its users to specify explicitly some of the optional 
parameters in the Create_process operation. For example, it might require users 
to specify the stack and stack object table sizes and the maximum call stack 
depth so that they would never need to be expanded. (In more sophisticated sys
tems, these parameters would usually be defaulted and the system would 
expand them as necessary.) The level of memory management support in the 
system also determines whether IvIPM processes can be created only during sys
tem initialization, or whether they can also be created any time after the system 
has been initialized. 

The most important consequence of a minimal process management imple
mentation is that it implements no scheduling policy on top of the hardware
provided scheduling mechanisms. MPM users must allocate processor resources 
among themselves in some way to prevent overloading the system. In the next 
subsection, we examine a possible implementation to address this issue. 

8.3.2. Higher-Level Implementations 

A much richer Process_Manager implementation, such as for a multi-user 
time-shared operating system, would dynamically control the amounts of proc
essor (and memory) resources consumed by each user. The optional job param
eter to Create_process allows Process_Manager implementations to provide 
policies and services that are based on a characterization of the user on whose 
behalf a process is created. Individual processes, or those grouped as jobs, 
might be suspended and resumed, examined and given more processor or 
storage resources if needed, restarted, or destroyed. Usage statistics might be 
gathered on a per-process or per-job basis. 

To facilitate implementation of such a scheme, iMAX provides a comprehen
sive set of process management primitives assembled in a Process Manager 
Support package. Figure 8-8 is a graphical outline of this rich implementation 
scheme. A process is sent to a Scheduler of the High Level PM Implementation 
whenever it undergoes a change that may affect the Scheduler's treatment of it 
or of other processes in the system. The agent which sends the process to its 
Scheduler may be part of a user's thread of control, or may be a service process 
of PM Support. Based on the states of the processes it receives, the Scheduler 
may move processes in and out of the mix via operations of PM Support, or 
may send notification messages to notification ports. 

In general, the strategy is to give PM implementers, through the PM Support 
package, the ability to specify and implement policies in terms of the primitive 
operations of iMAX and the underlying mechanisms of the architecture. Setting 
the service time, period count, deadline, and priority of a process are examples of 
policy specification via the operations of PM Support. Automatic dispatching and 
other port operations are examples of underlying mechanisms of the architecture. 
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High Level PM Implementation 
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interface 
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Figure 8-8 Program structures for use of a rich (and hypothetical) Process_Manager inter
face (PM): High-level view. Its implementation includes an auxiliary Scheduler process. 
Processes in need of rescheduling or other attention are sent via operations of the Support 
package to the Scheduler, using the process' port attribute. The agent sending a process 
to the scheduler may either be part of the user's thread of control or a separate process 
that is instantiated in the Support package. 

8.4. Summary 

In this chapter we have introduced the reader to some of the major design objec
tives for process management in the i432 System. iMAX provides a general 
framework in the form of the package Process_Manager_ Types which gives the 
specification of a Process_Manager interface. An iMAX-supplied implementa
tion of this interface may suffice for many users. Others may wish to implement 
their own versions of this interface. 
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We have indicated how individual implementations of this interlace can 
range from one offering minimal functionality to one offering a maximum of 
sophistication. We have also provided only a general introduction to the use of 
the Process_Manager interlace. What we have not done is examine in detail the 
structure of a rich implementation of the PM interlace. This can be done in a 
future effort, perhaps by others. We trust, however, that the opportunities to 
implement a range of process managers tailored to different user needs is now 
clear. No discussion of the opportunities for process management can be com
plete, however, without offering a companion introduction to the management 
of the storage resources for processes. We do this in the next chapter. 



MEMORY MANAGEMENT 

9.1. Introduction 

No significant general purpose computer system can function without service 
facilities for memory management and filing. In preceding chapters we have 
alluded to the i432 Memory Management and Object Filing services, but have 
avoided the temptation to discuss these subsystems in detail, reasoning that later 
was better. We have, however, suggested that these management facilities were 
as comprehensive as might be found in any of today's commercially available 
computer systems-truly a requirement if the i432 is to live up to its micro
mainframe' 'label" . 

In this chapter we first introduce i432 Memory Management and Object Fil
ing. We then present an overview of the design strategies and some implemen
tation details for Memory Management. We focus especially on those concepts 
and specifics that i432 subsystem designers and some applications programmers 
should know. Chapter 10 examines object filing in more detail. 

• By memory management, we refer to the dynamic allocation and deallocation 
of storage resources, spanning both primary storage ("main memory"), and 
a swapping store (typically disc memory). 

• By filing, we refer to the storing (and retrieving) of information units in (and 
from) long-term store (secondary memory). We assume all secondary 
memory structures are tied logically to one i432 System, but may reside at 
widely separated sites. 

• By object filing, we refer to the filing of objects that always retain their iden
tity and type even in the filed-away state. Such objects may be periodically 
brought back to short-term, active status, to participate as long as needed, as 
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objects in i432 computation structures-and then returned to file status, sup
planting older versions in long-term storage. 

Objects filed in long term status may have composite structures. Thus, even 
though no one object may exceed 128KB in length (64KB for data part and 
64KB for access part), the size of the composite may be quite large, or may 
have rich structure, or both. An example of a composite would be the com
piled representation of an Ada library-level package. It would consist of a 
Domain Object and its associated Instruction Objects, Constant Object, and 
objects representing owned data structures, if any. 
[Traditional files, which may be individually much longer than 128KB in length, may 
also be treated in the framework of the object filing system, much as regular files are 
routinely accessed, for example, when using Open, Read or Write, and Close 
sequences. ] 

The totality of object space may be viewed, as in Figure 9-1, to be partitioned 
into two main parts, active object space, and passive object space. An object 
may be created in the active space and later either deleted when it becomes 
unreachable, or transferred to the passive object space (an "intelligent" form of 
long-term storage") until needed again. We see that an active object is simply 
one that resides in active address space, while a passive object refers to an 
object residing in passive object space. The transfer of an object from active to 
passive space is controlled by the object's type manager, with default mecha
nisms provided for the same purpose in cases where the intent to "passivate" 
an object may be deduced by the system. 

V 
i 
r 
t 
u 

m 
o 
r 
y 

o b j e c t 
Active Ob'ect Space 

(Primary Memory) 

(Secondary Memory) 

Active Object Space 
o b j e c t 

Spa c e 
Passive Object Space 

(Secondary Memory) 

Passive Object Space 
Spa c e 

Figure 9-1 The Partition of i432 Object Space. 

F 
i 
1 
e 

S 
t 
o 
r 
e 



Memory Management 265 

Transfer from one space to another may be achieved through use of an accessi
ble iMAX interface package. Reference to the contents of a passive object, that 
is, Read, Write, or Update, may also be achieved by using this same interface. 
All such operations are accomplished while ensuring the consistency of the 
affected objects, through explicit use of provided synchronization mechanisms. 

These mechanisms permit an object to exist simultaneously in both active and 
passive object space so that changes to a version in active space may be 
reflected in passive space under controlled conditions. Use of these mecha
nisms guarantees data consistency under conditions where two or more proc
esses may be attempting accesses to the same passive object during the same 
time frame. The same mechanisms protect against system crashes. A full system 
crash causes loss of the active space but not the passive space. Such a crash 
need not be catastrophic, therefore, if users periodically update objects in pas
sive space. 

Before going further, it is important to stress that the system's storage is actu
ally implemented in two parts, following a "two-space model". To most users, 
however, storage appears as a single space. The two-space or two-level view of 
store is more visible to type managers than to most programmers and is cer
tainly invisible to all novice users. 

The active object space is itself decomposed into two parts. Active objects 
may reside in either main memory or secondary memory. The totality of 
memory comprising the active object space is the virtual memory of the i432 
system. Active objects in main memory may of course be addressed directly, 
using the i432 hardware and software discussed in earlier chapters. 

An attempt to address an active object that resides in secondary memory 
results in a detected fault, which invokes the machinery of the i432 Memory 
Management Subsystem to transfer the referenced object to main memory. This 
latter facility, usually referred to as a "virtual memory" or "virtual storage sys
tem" , has become a standard service offered with most minicomputers and with 
nearly all oftoday's mainframe systems. 

[A brief historical reminder: the modern segmented virtual storage concept is rooted in 
the Burroughs B5000 system architecture, fIrst announced in 1961 [11]. In that system, 
storage descriptors hold a hardware-sensed "presence bit" to indicate presence or 
absence of the target segment in main memory. If the presence bit is false, a hardware 
segment fault is signalled, invoking the system's software memory management subsys
tem. There follows an attempt to fetch the object from secondary storage, update the 
descriptor's presence bit, and return control to the routine that faulted, so that execution 
may continue as though no segment fault had occurred. (The i432 Object Descriptor has 
an allocated bit that corresponds directly with the B5000's presence bit. In both cases 
this bit is set by software and sensed by hardware.) 

Shifting a B5000 segment from primary to secondary memory is a decision made and 
executed by software components of the memory management subsystem. Many of 
today's systems also support recording the nature and frequency of object use. The 
hardware automatically records some or all of this usage information; in turn, software 
decisions to transfer segments to secondary memory are based on these usage data. An 
early example was the GE645 system architecture [44]. Segment descriptors for this sys-
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tern contained "has-been-accessed" and "has-been-written" bits. (Each i432 Object 
Descriptor also has such bit fields set by the hardware. These are called, respectively, the 
accessed and altered bits. . 

In principle, the early and current virtual memory management systems are qualita
tively quite similar. Current systems are more effective, especially because the amount 
of affordable main memory has increased by more than two orders of magnitude since 
the early 1960s. The extra space means that more structuring information can be main
tained in memory (such as tables and pointers describing the users' information objects.) 
Moreover, this structuring "overhead" can be better distributed in memory. The result is 
that more comprehensive algorithms are used for managing primary memory, thus limit
ing the frequency of swapping to secondary memory.] 

In spite of the many significant advances just cited, most current architec
tures still fail to provide effective support for parallel garbage collection. (Such 
support is, in fact, a significant architectural feature of the i432, as described at 
the end of Section 9.2.) A parallel garbage collector can be reclaiming storage 
objects while other processors execute programs that consume reclaimed space 
[17]. 

In conventional systems, execution of the garbage collector algorithm is 
necessarily mutually exclusive with execution of application programs that rely 
on an available supply of reclaimed storage blocks. This circumstance leads to 
interruptions of application programs at unpredicatable points in time when the 
services of the garbage collector become critical. Because of this problem, real 
world applications, whose forward progress must not be interrupted for garbage 
collection, are conventionally programmed to avoid the need for it. All too 
often, applications programmers have avoided the problem by choosing pro
gramming languages (like Fortran, Cobol, and Assembly language) whose 
semantics do not rely on implicit garbage collection. Unfortunately, choice of 
such languages has often led to other expenses such as in program maintenance. 
Effective use of modem high-order languages like Ada implies the need for gar
bage collection. As a consequence, one can expect to see added pressure 
applied to system designers for the development of architectures suitable for 
parallel garbage collection. 

With this historical development and commentary as background, we natur
ally expect a significant degree of maturity in the model and implementation for 
memory management in the iMAX Operating System-even in the first 
released versions. For example, parallel effective garbage collection and 
memory compaction algorithms run, when needed, not only as separate proc
esses, but also on separate processors, in support of programs that generate 
large numbers of objects having relatively short lifetimes. 

The first released version of the iMAX Memory Management provides 
sophisticated algorithms for management of main (real) memory only. These 
routines form the nucleus of the virtual memory and object filing algorithms. 
Our description of the entire Memory Management and Object Filing subsys
tems are therefore given "bottom-up". First we describe the model for main 
memory management in Section 9.2. We then describe the design and imple-
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mentation extensions for virtual memory management (Section 9.3) and object 
filing (Chapter 10). At the end of Chapter 10, we view the behavior of our port
folio management system as it is expected to operate under the fully
implemented Virtual Memory Management and Object Filing Subsystems. 

The first release of iMAX is useful for a variety of applications that can run 
entirely in main (real) memory-which can be as large as 16MB. (Recall that 
users are provided with advanced 110 Subsystems as described in Chapter 7.) 
Conceivably, thisflrst collection of memory management packages will also be 
useful as a starting base for system designers wishing to extend the operating 
system to provide their own virtual memory management or filing system, or 
both. These designers need not wait to use a more comprehensive iMAX 
release. 

We end this introduction by reminding the reader of the close relationship 
between memory management and process management. Any user, advanced 
enough to take full advantage of the several iMAX memory management inter
faces, will very likely also need to know about and perhaps use the iMAX inter
face provided for process management which we have already introduced in 
Chapter 8. 

9.2. Management of Main Memory 

A set of operating system packages and tasks, hereafter referred to as Memory 
Management, performs the functions of main memory management. The tasks 
cooperate to assume not only the responsibility of making the most of the avail
able physical space, a relatively scarce resource, but also to construct and main
tain in a consistent state, the mappings of all i432 objects and their components 
from logical to physical addresses. Memory Management responds to explicit 
(and implicit) demands for resources needed as processes request creation of 
objects (and progress from one context to another). Neither the Operating Sys
tem nor any individual process is required to "know in advance" how many 
objects, or of what sizes, will be needed for execution. This is, of course, a cru
cial point. Any initial allocation selected for a process by the system may be 
extended by Memory Management as needed, up to the limit of the system's 
available space resources. 

To reach this objective, Memory Management constructs and maintains in 
main memory an elaborate set of private data structures. The overhead of space 
and processing effort associate~ with the storage and management of these data 
structures is not insignificant by standards used for many predecessor systems. 
However, the increased functionality that is derived is paid for with main 
storage that has become relatively inexpensive and with extra processing that 
can be run for the most part concurrently with the execution of users' code. 
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It makes little sense for us to present a full description of all these internal 
records and of the governing procedural components of Memory Management. 
Not only would such a presentation require the space of a small book, but the 
details presented, which are subject to change, would be of interest mainly to 
those who wish to construct their own complete operating system. For that audi
ence, specialized literature would be more useful. Instead, we take a subsystem 
designer's view in explaining Memory Management. The principal data struc
ture one needs to know about for use of these interfaces is the Storage Resource 
Object. We have discussed the top-level structure of SROs in Chapters 4 and 8. 
In this section, however, the SRO becomes a focus of attention. 

Recall that a Storage Resource Object records the use of one or more blocks 
of contiguous main memory. Figure 9-2 illustrates some of the details of an 
SRO that might be used for managing one block of physical memory (called the 
allocation block). This block is represented in the Physical Storage Object 
(PSO) by a storage block specifier consisting of a pair of physical addresses that 
serve as bounds on the block. The figure is illustrative of the initial condition of 
a global heap SRO; the PSO for this initial condition defines only a single (very 
large) block of storage. (Later snapshots of the PSO would show it containing a 
number of storage block specifiers, each defining a distinct allocation block. 
These block specifiers are actually linked in a single list and the list is searched 
in a convenient way each time space for a new object of a given size must be 
found.) 

All global heap storage space is drawn from one of two system-wide PSOs, 
one for the normal global heap SRO and one for the frozen global heap SRO. 
Each normal (or frozen) local heap SRO shares the same system-wide normal 
(or frozen) PSO. When it is necessary to allocate space for a new object, the 
i432 uses a "rotate-first-fit" algorithm for selecting the allocation block out of 
which the object will be created. The header part of the PSO provides the state 
information needed to apply the rotate-first fit algorithm [35]. The strategy of 
using one global PSO for essentially all heap allocation system wide assures 
relatively even distribution of free space and hence minimizes the amount of 
work required by the compaction algorithm on the rare occasions when it is 
invoked. Using a global PSO assures that the search will be short, since alloca
tion blocks will generally be large compared with the average size of created 
objects allocated from them. 

A different strategy is used for allocation for stack SROs. The PSO for a 
stack SRO is not shared with any other SRO. (When a process P is created, its 
stack SRO is also created, as is the associated PSO. Memory Management ini
tializes the PSO's single storage block specifier to represent an allocation block 
of size (optionally) specified in the call that creates P. See the init_stack_size 
parameter in Figure 8-5.) 

When an object is created from any kind of SRO, a chunk of available space 
of the requisite size is allocated and its O~ject Descriptor is constructed and 
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Figure 9-2 Structure of an SRO and the block of physical storage it refers to. An SRO 
holds Access Descriptors for a Physical Storage Object, an Object Table, and a Claim 
Object. A PSO may hold one or more storage block specifiers, each containing two 
physical addresses that are bound a block of available space and thus define an allocation 
block. (The "x" marks an absolute physical address, rather than a logical address or 
offset.) Although not shown, the Object Table holds Object Descriptors for objects resid
ing in the allocation block of the related PSO. The Claim Object holds an ordinal value 
representing the current (total) amount of storage space controlled by this SRO. 

added to the SRO's Object Table. That descriptor contains a physical address 
pointing to the base of the allocated chunk as well as the lengths of its data and 
access parts. A corresponding adjustment is made to the Current End Address 
component of the affected storage block specifier in the PSO. 

For each new object created from an SRO, the allocation block represented 
by the affected storage block specifier naturally shrinks in size. Any request to 
create a new object Z whose size exceeds that available from any of the storage 
block specifiers within a PSO will invoke additional system "machinery" to 
adjust the PSO so that at least the particular object creation request can succeed. 
For example, the PSO can be provided a new storage block specifier of suffi
cient size for allocation of object Z. Alternatively, the allocation block of an 
existing storage block specifier can be increased by an appropriate amount. 

The approach to adjusting the PSO depends on the allocation discipline used. 
When it is necessary to increase the available resources for a heap SRO, it is 
sufficient to add to its PSO another storage block specifier representing a dis-

ck 
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joint allocation block; however, to facilitate the automatic reclamation space 
occupied by stacked objects, the PSO for a stack SRO is best managed with a 
single storage block specifier. In the rare occasions when a stack must be 
enlarged, it is done primarily by enlarging the allocation block represented by 
the specifier or, in case the stack SRO uses normal rather than frozen memory, 
by replacing the specifier with a new one that represents a larger allocation 
block and relocating all the currently stacked objects into the space governed by 
the new specifier. (The strategy used in the current implementation is to set a 
fixed size for the initial allocation block of a stack SRO (e.g., 4K bytes); this 
block is then doubled in size each time it must be enlarged, until some large 
system-determined upper bound is reached; after this, another storage block 
specifier containing a second, disjoint allocation block is added to the PSO of 
the stack SRO.) 

The immediate memory resource supplying the space needed for adjustment 
of PSO storage block specifiers is the so-called Free List. (This list is a private 
data structure maintained by Memory Management and is a list of free-to-use 
memory blocks sorted in order by base address. Sorting in base address order 
enables the manager of a Free List to immediately coalescence newly added 
blocks in the list to adjoining blocks. Actually, two such Free Lists are main
tained, one for normal memory and one for frozen memory.) New blocks of 
memory are added to the Free List whenever an object is reclaimed by the Gar
bage Collector or whenever local heap objects are automatically deleted by vir
tue of executing RETURN instructions. 

One can imagine ideal conditions in which a dynamic equilibrium might pre
vail between the rate at which new blocks of free storage (having some size dis
tribution) are added to a Free List F and the rate at which storage blocks (having 
the same size distribution) are dispensed from allocation blocks of PSOs whose 
storage block specifiers are "acquired from" F. Since a real system can only 
approach such an equilibrium occasionally, backup mechanisms must be pro
vided when deficiencies arise in the Free List. 

• The Garbage Collector process can be requested to find all unreachable 
objects, entries for which can then be placed on the Free List. (As just men
tioned, new blocks added to the Free List are coalesced with adjoining ones.) 

• When no block on the Free List is of sufficient size, the Compaction process 
can be requested to relocate allocated objects until a contiguous free block of 
sufficient size is formed by "coalescence". Note that the compaction algo
rithm can fail if, after coalescing all of the PSO's allocation blocks, there is 
still an insufficient amount of free space available. 

• Finally, if a virtual memory facility is available, some currently allocated 
objects can be swapped out to secondary storage, thereby freeing up suffi
cient main memory. 
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The i432 Memory Management subsystem utilizes all of these strategies to 
adjust the equilibrium between the Free List resources and the demands on PSO 
allocation blocks. The decision strategy used, that is, which of the available 
mechanisms to invoke when, is made by the iMAX module that manages the 
Free List in response to a request for a free storage block that is larger than 
currently available. The decision is based on the size R of the block requested 
and the current "operating condition" of the Free List. Two key parameters, for 
example, might describe the operating condition: (a) the total amount of storage 
S on the Free List and (b) mean free block size F (the ratio of S and the number 
of free blocks on the list.) 

As long as S substantially exceeds R, recourse to a relatively costly replace
ment algorithm for swapping out selected objects from real memory can prob
ably be avoided. When activated, the Compaction process runs only until a free 
block of a specified size is obtained or until the ratio F rises above a given 
threshold, whichever the reason for its activation. The frequency of appeal to 
the Garbage Collector is a direct function of the kinds of programs being exe
cuted. (Thus, executing Ada programs may, and LISP-like programs will defin
itely, lead to heavy use of the Garbage Collector; by contrast, the Garbage Col
lector should not be needed at all when executing a mix of Basic, Fortran, and 
Cobol programs.) Although the interplay between the three space reclamation 
mechanisms is clearly complex, just the fact that the Memory Management can 
choose among the three of them at any given time offers, in principle, a degree 
of flexibility and an opportunity for achieving performance levels that have not 
been furnished through most prevjous operating system designs. 

The Claim Object component of an SRO, shown in Figure 9-2, denotes an 
allocation limit for an SRO (either virtual or actual, depending on whether the 
particular system does or does not support virtual memory). The claim value is 
decremented as objects are allocated from the SRO and incremented when they 
are later reclaimed by the Garbage Collector. Two or more related SROs may 
share the same Claim Object, and hence can be managed as a unit. Thus, one 
claim value may be used to maintain control over allocation from a group of 
SROs related to a process tree. (We come back to this point in Section 9.3.) 

Thus far we have primarily considered the internal structure of SROs and the 
relationship between its structure and the underlying support of Memory 
Management. We are now ready to consider, at a higher level, how SROs are 
used to manage storage resources needed to execute programs. To understand 
how SROs are used at this level, our starting view is that of an i432 System exe
cuting a collection of logically-independent processes. During its "lifetime" 
each of these processes may spawn a tree of subsidiary (related) processes. We 
will examine the allocation of objects, as required by the various processes 
within this picture, the strategies and mechanisms used, and the related low
level services put at the disposal of the systems programmer, should these be 
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needed. We will also examine the strategies and mechanisms used for dealloca
tion of these same objects. 

It turns out (by design) that to understand allocation and deallocation of 
objects, one needs primarily to understand the structure and management of 
SROs, especially those used within individual process families. To get started, 
then, we fIrst examine a means for classifying allocated objects according to 
their expected lifetimes. We then examine the relationships among SROs. 

We fInd that, as a process tree grows (and shrinks), so grows (and shrinks) a 
companion tree structure of SROs-whose use accounts for the dynamic alloca
tion (and deallocation) of process-related objects. Interestingly enough, nearly 
everything we learn about SROs as used in the management of main memory 
carries over to the management of virtual memory, which spans main memory 
and secondary memory. 

Three kinds of SROs are found useful, corresponding to three kinds of life
times the objects allocated from these SROs will have. These are referred to as: 

1. global heap SROs 

2. stack SROs 

3. local heap SROs 

9.2.1. Object Lifetime Strategies 

We can speak about an object's lifetime, in terms of major events that transpire 
from the point of its allocation to its deallocation. Strictly speaking, the life
times of objects created by processes lie on a continuum, from fleetingly short 
to "eternal" . From a practical point of view, however, object lifetimes fall con
veniently into three broad, relatively easily managed categories: 

1. An object should live (that is, remain allocated) as long as it is reachable 
from another reachable object. The lifetime for such an object may be 
independent of the lifetime of the process that creates it, and is, therefore, 
allocated from a global heap SRO. Ada library-level packages are 
represented by i432 objects that fall in this category. 

Reclamation of space for objects allocated from a global heap SRO can 
occur only via the services of the system's Garbage Collector. (This task can 
run concurrently with any of the other Memory Management tasks (includ
ing the Compaction process), and concurrently with all user tasks.) 

2. An object, X, should live only for the duration of an activation of subpro
gram, P, for which X has been allocated. Several kinds of objects local to a 
subprogram may need to be created for use during activation of that subpro
gram. Among these are arrays of records, and records containing arrays of 
dynamic dimensions that cannot fIt into the preallocated Context Object 
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whose size is fixed. Domain Objects representing Ada packages declared 
local to a subprogram are also allocated from the stack SRO. These objects 
are automatically deallocated from that stack SRO (and their space explicitly 
reclaimed) upon execution of the matching RETURN instruction. 

3. An object, X, is allocated while executing in a context, G, but its lifetime is 
tied to that of a specified predecessor context, C. Falling in this category is 
any object, X, representing an instance of an Ada access type whose 
declaration is elaborated while the program executes in context C, but which 
is actually allocated during execution in this or a subsequent context, G as a 
consequence of either a variable declaration or the evaluation of an allocator 
expression. Object X would be allocated from a local heap SRO created dur
ing execution within context C. 
[In the special case where C and G are the same context, instances of type access 
variables, e.g., Extended Type Objects, would still be allocated from a local heap 
SRO allocated within context C. Note that instances for non-access types declared in 
an enclosing scope need not be allocated as separate objects from the stack SRO, but 
may be stored in the local variable or operand stack areas of the current Context 
Object. This simpler treatment is possible for simple variables, and arrays.] 

Deallocation of object X would occur no later than when Context Object C is 
deallocated. This event occurs when the subprogram activation, for which 
Context Object C was constructed, is completed. The dynamic link AD in a 
Context Object for a subprogram activation that allocates a local heap SRO 
is always stripped of its return rights. Upon executing the RETURN instruc
tion, use of the dynamic link AD induces a fault (raises an exception.) The 
handler invokes a Memory Management routine which deallocates the local 
heap SRO and all the objects allocated in it and reclaims all storage associ
ated with the affected local heap SRO. (The choice, whether or not to 
employ a separate service task to perform this reclamation is an iMAX 
implementation decision. In principle such a task could execute concurrently 
with the Garbage Collector and also concurrently with the user program for 
whom the service is performed.) 

The interim, between the time that object X is created and the point at which 
context C is deallocated, may be relatively long, in part because the number 
of contexts intervening between C and G, may be quite large. It is possible 
that, during this interim, object X may become unreachable. This condition 
makes the storage for object X a candidate for reclamation by the Garbage 
Collector and the latter may reclaim it before (perhaps long before) the 
thread of control exits from context C. 

In the case of objects whose lifetimes fall in category one, there can be no 
special trigger for deallocation and reclamation. Hence, an unreachable object, 
i.e., garbage, may continue in the allocated state for an indefinite period of 
time, especially when there is plenty of free space left to be allocated. On the 
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other hand, in the case of objects whose lifetimes fall in category two, the 
trigger for deallocation can be (and is) keyed to a precisely-defined hardware 
event, namely execution of a RETURN instruction. Since the frequency of allo
cation for such objects is high, it is fortunate that their deallocation is assured at 
the earliest safe time. 

We have already suggested that for category three objects (those drawn from 
local heap SROs) the mechanism guaranteeing their deallocation is intermediate 
between those used for objects of the first two categories-and so is the 
response time. Software, namely the compiler, sets up a hardware trigger of 
the event, and software, namely iMAX, handles the event. The mechanism 
takes advantage of level numbers associated with objects allocated from local 
heap SROs. In the remainder of this subsection we explain and illustrate this 
mechanism. 

Associated with a stack SRO is a counter representing the current level 
number; this counter is incremented and decremented by one during execution 
of each CALL and RETURN instruction, respectively. When an object Y is 
created from a stack SRO, it acquires a level number attribute equal to the 
current level number of the stack SRO from which Y is created. This attribute is 
represented as a hardware-sensed value in Y's Object Descriptor. When a local 
heap SRO, H, is created by a process R, the heap H acquires a level number 
equal to the current level counter in R's stack SRO. Subsequently, all objects 
allocated from H acquire the same level number as that of H. [Note that level 
numbers are not the same as display indices used in stack architectures to denote 
the lexical, levels. Level numbers represent the length of the dynamic chain 
whereas display indices represent the length of the static chain.] 

The deallocation semantics of the RETURN instruction executed in current 
context C is such that all objects having level numbers equal to or greater than 
that of context C are deallocated from the stack SRO and then the stack SRO's 
level counter is decremented by one. Part of these semantics is carried out by 
software. This is the part having to do with deallocation of a local heap SRO 
that was allocated and assigned the level number of the current Context Object 
C; return of control from this context causes (with software intervention) deallo
cation of the local heap SRO and necessarily of all objects created from it. 

Consider the following illustrative scenario: 

• Some process, Q, is executing with a Context Object C. Suppose there is now 
a need to allocate a local heap SRO, so it can be used later for the allocation 
of objects of, say, access type S. As indicated above, this local heap SRO is 
logically allocated from process Q's stack SRO and is given a level number 
that is the same as that of Context Object C. 

• Subsequent execution within context C may now lead to extensions of the 
dynamic chain via the generation of contexts for D and then E, all assumed to 
lie within the scope of access type S. (These Context Objects have succes-
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sively higher level numbers.) Object instances of type S may, therefore, be 
created at any point subsequent to the creation of its local heap SRO, during 
execution within contexts C, D, and E. 

• Now consider what happens when the process executes the chain of three 
RETURN instructions from contexts E, D, and C, respectively. Each execu
tion of a RETURN instruction leads to the deallocation of all objects on the 
stack SRO having the level number equal to that of the stack SRO. (The stack 
SRO's level counter is then decremented by one.) The local heap SRO, there
fore, remains allocated after executing RETURN instructions from contexts E 
to D and from D to C, assuring that prior to each RETURN, objects of access 
type S are still accessible from the current and earlier contexts. Such accessi
bility is, of course, required by Ada visibility rules . 

• When the RETURN instruction within context C is executed, however, a 
fault occurs because the dynamic link in context C has no return rights; 
iMAX intercedes, deallocates the ·local heap SRO and all the objects allo
cated from it, and "fixes" the dynamic link AD (by reinstating return rights) 
to allow the RETURN instruction to complete without further fault. At this 
point the hardware proceeds with the deallocation of all other objects allo
cated from the stack SRO during execution of context C (objects whose level 
numbers equal the current value of the stack SRO's level counter.) The level 
counter is then decremented once again and control returns to the context 
which caused creation of context C. 

9.2.2. Prevention of Dangling References 

The automatic (and explicit) deallocation mechanisms invoked for objects 
drawn from stack (and local heap) SROs implies the need for a companion 
mechanism that prevents the occurrence of accessible Access Descriptors for 
objects already deallocated. Such dangling references must be prevented to 
ensure the integrity of the system. 

The insertion of level numbers in Object Descriptors is the key idea behind 
the i432 architects' solution to this problem. During execution of every i432 
instruction that writes an Access Descriptor, Obj_AD, into the access part of an 
object, B, the hardware checks that the level number of Obj is less than or equal 
to that of B. A lifetime-violation fault occurs if this test fails. The effect of this 
test is to guarantee that objects referenced by Access Descriptors have equal or 
longer lifetimes than the Objects holding such references. 

Translated into higher-level terms, the hardware imposes the following res
triction on the transmission of Access Descriptors: If procedure R calls pro
cedure T, then T may not return to R an AD for either T's Context Object, or 
for any object having the same level number as T's Context Object. In Ada 
terms, T may not return to its caller an access value for an object whose type is 
declared immediately within the scope of T. 
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Note that the converse is not true, since R may safely pass to T, as an input 
argument, any AD accessible in R's context. This is true, because the object 
referenced by any such AD is guaranteed to have a longer lifetime than that of 
T's context. 

Note also that all objects created from a global heap SRO have level number 
values of zero; hence any procedure T is free to return as an output argument, or 
as a returned value, an Access Descriptor for an object allocated from a global 
heap SRO. This means that, occasionally, an object that might otherwise be 
drawn from a local heap SRO must be drawn instead from a global heap SRO. 
Indeed, code generated by the i432 Ada compiler conforms with the above 
"conventions", and so no compiled code can generate lifetime-violation faults. 

[In truth, the hardware actually offers a way to eliminate the overhead of the level 
compatibility check. This check is clearly unnecessary when, for example, it is known 
that the AD being copied into some target object is a reference to a level zero object. 
Every AD has an unchecked copy rights bit. If this bit is set on, the level check is 
bypassed when the AD is copied. Certain iMAX modules take advantage of this escape 
feature-which should otherwise be used with extreme caution. (Note that the overhead 
of level checking is always bypassed by the hardware when the target object is the 
current Context Object. A little thought should convince the reader it is safe to copy any 
AD into the current Context Object; this is because there can be no shorter-lived object 
accessible to a process than its own current Context Object.)] 

So far, we have looked only at the memory management of a single process. 
In a later subsection we extend the explanation to full process trees and to 
forests of such trees that represent logically independent processes. Before 
doing so, however, we make some additional comments about global heap 
SROs. 

9.2.3. Frozen and Normal Memory 

The version of iMAX which operates with main memory only (no virtual memory 
and no object filing) recognizes two categories of objects having indefinite (level 
zero) lifetimes. In one category are objects that should never be made inaccessi
ble. Low-level System Objects like Dispatching Ports, Processor Objects, 
Processor and Process Carriers fall in this category. Such objects are placed in a 
section of memory named frozen memory, governed by the frozen global heap 
SRO. A user, concerned with processing that has "tight" time constraints, may 
require that the stack SRO for a process be placed in frozen memory and hence 
allocated from the frozen global heap SRO. (This may be done by using the 
iMAX interface package called Process..:.. Globals_Definitions.) 

Objects not allocated from the frozen global heap SRO are allocated from the 
normal global heap SRO. Recall that an attempt to add a new storage block 
specifier to the PSO of a normal heap SRO can lead to an attempt by the Com
paction process to relocate objects currently allocated from the SRO (so as to 
create an allocation block of sufficient size from the modified the Free List.) To 
perform relocation, the Compaction process must have mutually exclusive 
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access to the Object Table of the SRO. During compaction, therefore, all 
objects allocated from that SRO must perforce be temporarily inaccessible to 
any other task. As we will see, such inaccessibility may rule out use of normal 
memory for some processes. 

Initially, the management of all of main memory reduces to the management 
of just two global heap SROs, one for frozen memory and the other for normal 
memory. When a process is created, it is allocated a stack SRO, which will 
itself be allocated from one of the above two global heap SROs. The stack 
SRO's PSO component is also created from the same global heap SRO. Thus, 

• If the stack SRO is allocated from normal memory, the stack SRO's alloca
tion block defines a block of normal memory. Hence, objects created from 
this stack SRO are subject to occasional inaccessibility (on the rare occasions 
when the Compaction process is relocating objects that were allocated from 
that stack SRO) . 

• If the stack SRO is allocated from frozen memory, then the stack SRO's allo
cation block defines a block of frozen memory. Objects in frozen memory 
can never be relocated. Hence, all objects created from this stack SRO will 
remain accessible for the entire life of that process. 

The PSO component for a local heap SRO is also the same as that of the 
governing global heap SRO. Hence, if the local heap SRO is allocated from 
normal memory, objects created from it are also subject to occasional inaccessi
bility because the allocation block for a local heap SRO defines a block of nor
mal memory. 

The Process Globals Object, first mentioned in Chapter 4, contains an entry 
called the default_global_heap_SRO. 'This pointer is preset upon process crea
tion by the process'-management component of the operating system to refer to 
the normal global heap SRO, but can be "overridden" by the caller of 
PM.Create_process, as was suggested in Chapter 8. Also, the iMAX user inter
face package, Process_Globals_Definitions provides the means for reading or 
resetting this default value. (We do not include the specification of this package 
in our Appendix; however, it may be examined by consulting the iMAX 432 
Reference Manual (Appendix B).) 

9.2.4. SRO Trees that Match Process Trees 

Process trees are typically formed in the execution of Ada programs and in pro
grams written in other languages that also provide multitasking semantics. The 
model developed in Chapter 3 is, therefore, useful. An Ada program begins 
execution as a single process. The start-up of a new task is represented at a 
lower level as the creation of an offspring process. Since any Ada task may 
spawn none, one, or more other tasks, a tree of processes results from these 
actions. An Ada task may not terminate until all its offspring tasks have ter
minated (or have been aborted.) Therefore, when an Ada program completes 
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execution, we are assured that all processes, including the root process, have 
been terminated. Note that if we traverse a path from the root node of this tree 
to any leaf node, we encounter processes having ever shorter lifetimes. 

A simple resource-allocation view may be superimposed over the process 
view just given. The root process needs storage resources to operate with, and 
these resources must have longer lifetimes than those of its immediate off
spring. This principle is, of course, applied recursively, giving rise to a 
corresponding tree of SROs having correspondingly shorter lifetimes (higher 
level numbers). 

Logically speaking, the stack SRO provided to the root process serves as the 
"fund" from which resources are drawn for use by each offspring process. (For 
those interested, we explain the physical relationships below.) When a task 
issues an (implicit or explicit) request for the creation of a new task, the 
resources required for the corresponding offspring process are only logically 
allocated from a local heap SRO created by the parent. 

The physical relationships among nodes of the SRO tree are as follows: All 
SROs, Object Tables, and PSOs for stack SROs are allocated from the global 
heap SRO. (The PSO component of the global heap rooting the SRO tree is 
shared by all the local heap SROs in the tree. The Claim Object component of 
the global heap rooting the SRO tree is shared by all the heap SROs in the tree. 
Thus, as new heap objects are allocated (deallocated) during execution in the 
process tree, the single claim value is decremented (incremented) appropriately. 
Note that the claim for a process tree is also charged for the allocation blocks of 
its stack SROs, but these charges are made in advance, i.e., when a stack SRO 
is created and when it becomes necessary to enlarge its allocation block. 

The logical relationships among the SROs of the tree are superposed over 
these physical allocations by way of software-defined extensions in the SRO 
itself. These include parent, offspring and sibling references. The use of these 
references enables iMAX routines to update storage resource relationships in a 
process tree as individual processes are born, are terminated, or require more 
resources including more free space or lengthier Object Tables during their 
lifetimes. 

Here we make clear why a local heap SRO is allocated to account for the 
stack SROs for use of spawned processes. A parent may spawn more than one 
process while executing in one particular context. Moreover, the order in which 
the offspring are created and terminated in this context cannot be determined at 
compile time. Therefore, keeping track of stack SROs associated with activated 
offspring processes requires a heap management discipline. (The Object Table 
in the parent process' stack SRO cannot be used to keep track of these proc
esses.) 

To be more concrete, suppose a parent process allocates only one local heap 
SRO when executing in a context D in which one or more offspring processes 
are created. (The same local heap SRO may also serve for the allocation of 
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object instances for access types.) Each process spawned within context D can 
then be given a stack SRO, that is reachable from this local heap SRO. A parent 
process cannot return from context D to its caller without fIrst being assured of 
the demise of each of its offspring. This assurance corresponds to being certain 
that all stack SROs reachable from all local heap SROs allocated in a given con
text have been deallocated. Only then can the local heap SRO be safely deallo
cated along with logical deallocation of the associated Context Object of the 
parent process. (The rules just stated apply as well when offspring processes 
become parents for their offspring.) 

The important conclusion to be drawn from this lengthy discussion, is that no 
new lifetime strategies need be introduced when expanding storage resource 
allocation from a single process to a tree of processes. The same mechanisms 
introduced in preceding subsections, in particular the level number attributes of 
allocated objects and constraints over their use, still apply. 

Figure 9-3 shows a process tree at a point where six processes coexist. Fig
ure 9-4 illustrates an SRO tree representing a possible snapshot of the resource 
allocation history for the process tree in the preceding fIgure. 

Figure 9-3 A sample process tree. Process A spawns processes B, C, and D. Process D 
spawns processes E and F. 

Figure 9-4 reinforces what we said earlier regarding allocation of local heap 
SROs for use in spawning processes. In this fIgure it is assumed that processes 
Band C are both spawned while process A is executing in the same context 
(level 5). Stack SROs for these offspring processes are linked as immediate 
offspring of the same local heap SRO and acquire level numbers (6) that are 
each one higher than that of the parent local heap SRO. Thereafter, successive 
contexts for the execution of processes Band C begin with level 6. Later, while 
executing at level 7, process A spawns process D, using another local heap SRO 
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Rgure 9-4 A possible SRO tree for the process tree of Figure 9-3. Level numbers are 
shown to the left of each SRO. Process A spawns B and C while in a context at level 5 
and spawns D while in a context at level 7. Two different local heap SROs are used. 
Process D spawns E and F at levels 10 and 12, respectively. A created local heap SRO 
has a level number greater than or equal to that of its parent stack SRO, while the level 
number of a stack SRO is always one greater than that of its parent heap SRO. 

(with level 7) to serve as the parent SRO for the stack SRO for D. (The stack 
SRO for D is given a level number that is one higher, i.e., 8.) The figure then 
suggests that in later contexts of process D, processes E and F are spawned in a 
similar way, and following similar level numbering rules. Note that a local heap 
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SRO may serve simply as a resource-management link between the stack SRO 
of one process R and the stack SROs ofR's offspring processes; it need have no 
other function. 

9.2.5. Some Fine Points 

In this subsection, we answer five questions that may well have come up in a 
first reading of this material. The questions and the answers expand on some of 
the details we have sketched earlier. 

1. Question: How does an executing process acquire more memory resources 
when there is no more free space in its stack SRO and more is needed? (This 
question assumes that the claim value for the SRO is not exhausted and that 
there is still space in the Object Table associated with the SRO. Such prob
lems are examined in answer to the succeeding two questions.) 

ANSWER: Memory Management fields all storage allocation faults, and so is 
aware of all failing attempts to allocate objects from SROs having insuffi
cient free space. (The hardware senses an attempt to allocate an object from 
an SRO that would result in a negative value in the Claim Object.) This fault 
is corrected when it occurs for any kind of SRO. The actual mechanism by 
which the fault is corrected is somewhat complex; its explanation is made 
easier by refening to the state transition diagram in Figure 9-5. 

The life cycle of a byte of physical storage begins in an initial "SRO" state. 
It is moved to the "allocated in use" state by hardware (object creation). 

• Stack allocated space is returned to the "SRO" state by execution of a 
hardware RETURN instruction. 

• A byte allocated from local heap space may go directly to the "Free List" 
state via a software-induced return level fault fielded by iMAX. (This is 
the fault required to recover space for objects from local heap space on 
exit from a context level in which the local heap was created.) 

• Other bytes, part of local and global objects, are garbage collected. First, 
they move to the "Allocated garbage" state, meaning they become candi
dates for reclamation. At some point later, the Garbage Collector process 
(GCOL) finds such objects and puts them on Memory Management's free 
list; hence the "Free List" state. 
Movement from the Free List to the SRO state occurs whenever Memory 
Management runs its Compaction algorithm. Compaction first searches 
SROs for "depleted" storage block specifiers, i.e., those having fewer 
than some (small) number N of free bytes. These specifiers and the space 
they control are removed from the SRO and placed on the free list. At this 
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point, memory is compacted; in the process the free list may be reorgan
ized. Finally, Compaction searches the free list for large blocks, which are 
placed in SROs that need them; that is, depleted SROs are "reloaded" 
with new (additional) resources, i.e., with new storage block specifiers. 

hardware allocation 

return (stack only) 

compaction last 
compaction 

return (level fault) 

Agure 9-5 States of physical memory in the i432 Memory Management Model. 

If more physical space is needed in a stack SRO using frozen memory, then 
no relocation (compaction) is permitted. Instead, the SRO is given an addi
tional block of free space and its PSO is assigned another storage block 
specifier containing the additional space. (That specifier is then linked to the 
previous one ( s) in the PSO.) 

2. Question: How is overflow of an Object Table for a stack or local heap SRO 
dealt with? Presumably an overflow could occur if there is a need for more 
Object and Refinement Descriptors for the objects allocated in the SRO than 
there is room in the associated Object Table. 

ANSWER: The initial size of an Object Table is a constant, determined by 
the Operating System designers. If this size proves to be too small for some 
SRO, the resulting fault will invoke the appropriate module of Memory 
Management to correct the matter. The solution is either to enlarge the 
Object Table by first relocating the table and then enlarging it, or else to 
create an "overflow" Object Table. (Since enlargement involves reloca
tion, Object Tables of SROs for frozen storage are expanded only by use of 
overflow tables. Overflow Object Tables are linked in a list, with the links 
held in a hidden, system-wide table called the Table of Object Tables. Find
ing space to enlarge the Object Table or to build an overflow table requires 
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some of the same SRO management steps outlined in our response to the 
preceding question. So, we need not repeat that explanation. 

3. Question: How is undeiflow of the claim value for an SRO tree dealt with? 
An underflow . can occur whenever an already created process in the 
corresponding process tree needs to expand its SRO Object Table or alloca
tion block, or when a new process and its initial storage resources must be 
allocated. 

ANSWER: This problem is considered one to be solved by the Process_Man
ager. For example, the process on whose behalf the claim value underflow 
is attempted can be sent as a message to its notification port, as discussed in 
Section 8.1. 

4. Question: How are level violations avoided when SENDing messages 
between processes? A message is sent in the form of an Access Descriptor 
which is copied into the address space of the receiver. Presumably the sender 
does not know the level of the context in which the receiver will be execut
ing upon receipt of the message. Moreover, since the message structure itself 
may contain Access Descriptors for other objects, how can the sender be 
sure that the receiver will not incur a level violation when attempting to copy 
any such Access Descriptors. 

ANSWER: In the most general case, level violations can indeed be incurred 
in transmitting a message from a Sender process, via a Port Object, to a 
Receiver process. Recall from Chapter 4 that the AD for a sent message is 
ultimately assigned to the Interprocess Message AD slot in the Context 
Object of the Receiver process. Also, the Sender must have access to the AD 
for the Message Object in order to send it. Therefore, if level violations are 
to be avoided, the lifetime of the Message Object must be comparable to or 
greater than those of the Sender's Context Object, the Port Object used for 
transmission, and the Receiver's Context Object. Moreover, if the message 
is to reach its destination and not be lost en route, the lifetime of the 
Receiver's Context Object must not end before that of the Sender's Context 
Object and the lifetime of the Port Object must not end before the message is 
received. These constraints are expressed in the following two sets of "level 
relationships' , : 

(1) level(Message Obj.) <= min(level(Sender's Context Obj.), 
level(Port Obj.), 
level(Receiver's Context Obj.» 

(2) level(Port Object) 
<= level(Receiver's Context Object) 

<= level(Sender's Context Object) 

There is no problem' 'living with" these constraints so long as all interproc
ess communication is achieved using ports created from instantiations of the 
iMAX Typed_.Ports package described in Appendix G. Recall that mes-
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sages enqueued on such ports are instances of access types declared in the 
same generic package that defines the port itself. Hence, all Message 
Objects referred to by such access variables are necessarily allocated from 
the same local heap SRO from which the port itself is created. Therefore, the 
level of the Port Object is always the same as the level of every Message 
Object whose AD is enqueued on it. To assure that the remaining constraints 
are satisfied, it is sufficient that the context in which the instance of 
Typed_Ports is created is the same as (or is an antecedent of) the context in 
which the Sender and Receiver Processes are spawned. (A programmer who 
chooses to use ports created from the iMAX Untyped_Ports package must 
exercise more care to avoid level-check violations. This tradeoff is not 
unreasonable.) 

5. Question: Thus far, no mention has been made of Process Objects and how 
they are allocated when a process is created. From what SRO or SROs are 
Process Objects allocated? How and when are Process Objects deallocated? 

ANSWER: Process Objects (together with their lists of preallocated Context 
Objects) are allocated from the global heap SRO (frozen or normal). Process 
Objects retain level zero attributes, however preallocated Context Objects 
have their levels adjusted when they are logically taken off the' 'preallocated 
list" and linked into the dynamic chain. It is essential that Process Objects 
have level zero so that Process Management routines can manipulate them 
(and refer to them) without risk of incurring level violations. 

A process P terminates when it executes a RETURN instruction from its root 
context. By design, this return step induces a return level fault (no return 
rights in the dynamic link). Such a fault causes P's Carrier Object to be 
enqueued as a request on the Fault Port. The iMAX process serving the Fault 
Port can access P's Process Object, and through it all of P's Context Objects 
and other level zero objects, via P's Carrier Object. The iMAX fault han
dling process is able to invoke the requisite Memory Management routines to 
reclaim all of P' s remaining storage resources. 
[To do its job, Memory Management uses the per-system Table of Object Tables 
mentioned in the answer to the second question in this series. This table contains a 
number of useful pieces of infonnation needed to locate the related storage resources 
of a process. We do not go into further details here.] 

9.2.6. The iMAX SRO_Manager Package 

A limited but very useful subset of the SRO management functions, described 
in preceding subsections, is made available to users through the iMAX interface 
package named SRO_Manager. We give its specification in Appendix L. [A 
comparable and identically-named package is available for use with the virtual 
memory management system.] 
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The SRO_Manager package allows a user to create local heap SROs (from 
the current stack SRO) and to manage them individually. Typical users are 
those wishing to design and implement their own interpreters and simulators. 
(The Access Descriptor for the created local heap SRO is returned with create 
rights, after which the user is free to call for the removal of such rights when 
passing out copies of this Access Descriptor. Create rights are needed for creat
ing new objects from a heap SRO.) 

SRO_Manager does not offer the Nser the opportunity to create separate stack 
SROs, since the underlying architecture provides one for each process and there 
is no way for the underlying architecture to use more than one per process. 
However, a user is free to call for the creation of objects from either the 
system-provided stack SRO or from a heap SRO and to use these objects for any 
explicit purpose, such as for simulating stacks. 

In particular, a user may create an object of specified size from any local 
heap SRO (or from the one global heap SRO) for which an Access Descriptor 
with create rights can be supplied as an argument. The Create_object (also 
Create_typed_object) operation appHes only to local and global heap SROs. 
Recall that a user process P can get access to the global heap SRO associated 
with P by using the iMAX Process_Globals_Definitions interface package. 

In addition, a user may call for the creation of "stack objects" from the 
current stack SRO using the Create_stack_object operation. (By stack objects, 
we simply mean objects that will be automatically deallocated upon exit from 
the context in which they were created.) 

A user may also issue calls, for the creation of refinements for specified objects 
created from either the stack SRO or from a heap SRO. Thus, the operation, Cre
ate_generic_refinement, whose specification is repeated for convenience in Fig
ure 9-6, allows the user to acquire an Access Descriptor for a refinement of any 
specifiable object from a heap SRO. The call also specifies the offsets and lengths 
for the data and access parts of the refinement. 

All of the operations of this package are translated into single i432 instruc
tions with the exception of the operation for creating a local heap SRO whose 
specification is repeated in Figure 9-7. 

9.2.7. The Garbage Collector Process, GCOL 

As mentioned in the introduction to this chapter, the ability to perform parallel 
garbage collection effectively is an important i432 System property. The iMAX 
process GCOL executes Dijkstra's "On the Fly Garbage Collection" algorithm 
[17] in parallel with most other iMAX processes and with all user processes. In 
this subsection we give a limited overview of the algorithm and of the i432 
architectural support on which it is based. A full description of the actual i432 
implementation of this algorithm is beyond the scope of interest here. 



286 A Programmer's View of the Intel 432 System 

procedure Create_generic_refinement( 
obj: dynamic_typed; -- Object to be refined. 
d-offset: short_ordinal; -- Data part offset of the 

-- refinement in bytes. 
d-length: short_ordinal; -- Data part length of the 

refinement (in bytes) - 1. 
a-offset: short_ordinal; Access part offset of the 

refinement (number of AD slots). 
a-length: short_ordinal; Access part length of the 

refinement (number of AD slots) . 
rtn: out dynamic_typed; The resulting refinement. 
sro: storage_resource_withLcreate :=null); 

-- SRO for create. 

-- Function: 
A heap refinement is created from the specified object, 
with data and access parts at specified offsets, each with 
with specified lengths. The base type of the created 
refinement will be the same as the base type of the 
original object. Its system type will be generic. 

Figure ~ Specification for operation to create a refinement of an object created from a 
local heap SRO. 

function Create_local_heap 
return storage_resource; 

-- Function: 

-- AD for an SRO. 

This function creates a local heap SRO. 
The lifetime of the created local heap SRO is that of the 
Context Object for the caller. 

Figure ~7 Specification of the Create_locaL heap operation, copied from the iMAX 
SRO_Management package. 

The conceptual framework for this algorithm is as follows: The system is 
modelled as a set of "mutators" and a "collector", all potentially able to run in 
parallel. A mutator is a process that acquires (consumes) objects for its use from 
a pool of free storage and in doing so marks those objects as "in use". When 
the collector runs through a collection cycle, it performs two scans over all 
objects that can have been consumed by mutators since the last collection cycle. 
Each such scan is also called a "marking phase" because during these scans the 
collector marks the objects encountered in such a way that upon completion of 
the second scan, it is possible to identify by the marks found on the objects, 
which are garbage. These objects are then added to the free storage pool. An 
underlying requirement for the success of the collector algorithm is that the 
object structure, which may be viewed as a set of directed graphs, can be 
scanned completely. To accomplish this, there must be for each separate 
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directed graph a distinguished or root node from which to pursue the scan of 
that graph to completion. The collector must have a list of such roots at its 
disposal. In the i432 implementation, the set of Processor Objects serves, in 
essence, as the requisite set of root nodes. 

Understanding how the algorithm works is also based on understanding the 
marking scheme used by the mutators and the collector. This scheme requires 
tri -state marking for each object. Thought of as "colors", these states are 
white, gray, and black. (This implies that any i432 implementation scheme 
must provide for a two-bit field for encoding the color of an object. As 
explained below, these two bits are allocated in the Object and Refinement 
Descriptors. ) 

It is assumed at the outset that all free objects are marked white and that 
whenever a mutator acquires a free object, it is automatically marked black. 
Before explaining what the collector does, we note how mutator marking is 
implemented by the i432 hardware. 

Although not previously mentioned, i432 Object (and Refinement) Descrip
tors contain a hardware-recognized and hardware-manipulated reclamation bit. 
(For reasons to be explained below, this same bit is also referred to in the i432 
architecture literature as the copied bit.) When an object or a refinement is 
created by the processor, the reclamation bit in the corresponding Object or 
Refinement Descriptor, is set true, in effect changing the marking from white to 
black. Thus, the processor cooperates with any object -consuming process to 
mark black each newly created object (or refinement). Another important point 
to note about the reclamation bit is that whenever the processor executes a 
COPY AD instruction to copy an AD for some object T, the reclamation bit in 
the Object Descriptor for T is set to true. (For purposes of garbage collection, a 
Refinement Descriptor is regarded as representing an object that has a single 
AD in its access part, namely the AD for the underlying object. Hence, if 
COpy AD copies an AD for a refinement R of T, then the reclamation bit in the 
Refinement Descriptor for R is marked true, which has the effect of marking R 
black.) 

The first marking phase of a parallel collector cycle begins by scanning all 
such descriptors and resetting their gray bits to white to indicate that all objects 
referred to by the containing descriptors are potentially garbage when 
discovered to be unreachable as a result of the second marking phase. 

The purpose of the second marking phase is to mark all non-garbage objects 
black so that any remaining objects in the structure that are still white are then 
considered to be garbage. (Note that during the second phase a mutator execut
ing in parallel can mark white objects gray without interfering with the plan of 
the collector.) The second marking phase begins by first marking gray all 
objects representing root nodes. Then all objects colored gray are scanned. For 
each of these, the object itself is re-colored black and all its "successor 
objects", i.e., all objects, if any, referred to in the access part of the blackened 
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node, are colored gray. This scan over all objects colored gray is continued 
until no more gray objects can be found. At this point all non-garbage objects 
have been colored black and all objects still white are garbage. The Object 
Tables are scanned once again and the memory spaces for all objects still 
colored white are linked into the Free List. 

The i432 Garbage Collector puts itself to sleep at the close of each collector 
cycle (after first invoking the appropriate module of Memory Management that 
needs to know the Collector is finished). How frequently the Garbage Collector 
is reawakened to run again is an issue to be decided by the iMAX implementers. 
In simple implementations, GCOL can be awakened at equally-spaced intervals 
of time. In more sophisticated implementations, the sleep period can be deter
mined dynamically on the basis of various performance measures and statistics 
gathered by the system. 

One final note of detail concerns the encoding of the three colors. In the i432 
implementation, a second bit in the Descriptor is also reserved for color encod
ing. This bit is software defined and augments the hardware-defined reclama
tion bit. The particular encoding of the bit pair to represent the three colors, 
white, gray, and black, although cleverly done, needn't concern us here. 

What is important is that the algorithm permits mutators to execute while the 
collector is in operation. Some garbage created by a mutator while the collector 
is in operation may be collected in that cycle, but is guaranteed to be collected 
at latest in the next cycle. The correctness of the algorithm and the implementa
tion also assures that, no non-garbage objects can ever be mistakenly collected 
as garbage. The frequency at which the collector is run determines how seldom 
a mutator will run out of objects to consume and be temporarily forced to wait 
for garbage collection. For many kinds of real-world applications this kind of 
interruption need never occur. 

We have now completed our primary overview of main memory manage
ment. In the next section we revisit this design especially to show how it may 
be generalized to the management of virtual memory. 

9.3. Management of Virtual Memory 

The model presented for the management of main memory in the i432 is gen
eralized here in two ways. The first form of generalization is to express the 
management of storage resources for collections of process trees through the 
mechanism of an MCO or Memory Controller Object. The other form of gen
eralization is to extend main memory, i.e., Real Memory, to a Virtual Memory 
address space that includes Real Memory. When available, either the "Real 
Memory Only" model or the Virtual Memory model may be used in i432 Sys
tems; both models will be implemented to include the MCO generalization and 
both models will be implemented with a companion Object Filing System to 
form a "complete" memory, having both active and passive address spaces. 
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The whole of memory (real or virtual) memory may be viewed logically as a 
single data structure which is a collection of Memory Controller Objects or 
MCOs, one allocated to each user. A user can be abstractly viewed as a set of 
jobs (each possibly executing as a process tree). The storage resources needed 
for this set of jobs are represented as a "forest" of SRO trees, with each being 
rooted in the same global heap SRO. Hence, an MCO controls the resources 
implied by such a forest. 

An MCO contains several parameters used to control allocations of primary 
and virtual memory within the resource. Certain usage statistics, and history 
information (counts of key events) are also maintained in the MCO. These data 
may be periodically examined and used as a basis for adjusting the control 
parameters. To simplify our discussions, the mechanism and rationale of the 
MCO is introduced in the context of the Virtual Memory implementation. 
(Where appropriate, we point out which MCO parameters have meaning only in 
the Virtual Memory implementation.) 

Two iMAX interfaces are provided. Each provides a different view of 
memory, one for ordinary users (the SRO_Manager package) and one for 
privileged users (the MCO_Manager package) who wish to operate directly on 
MCOs. Some applications subsystem designers fall in the first category. 
Designers of high-level memory and process managers fall in the latter 
category. 

In order to appreciate the two views of an MCO, we need to learn more about 
its detailed structure. We could approach this problem bottom-up by first sug
gesting that an MCO is merely a tree structure of SROs and focus on the 
management of the individual SROs in the tree and not on the management of 
the tree as a whole. In a sense, this is what has been done in the preceding sec
tion. We pursue this a bit further before proceeding with a top-down view of the 
MCO. 

The concept of the process tree is, of course, independent of the scope of the 
System's active address space (whether limited to real memory or expanded to a 
virtual memory). The concept and utility of the SRO tree, matching the process 
tree, also carries over intact. 

Even though the System's virtual address space is much larger than real 
memory, it is still managed as a scarce resource. Therefore, there is still the 
need to maintain two Physical Storage Objects (PSOs), one for normal virtual 
memory and one for frozen virtual memory. 

[In the virtual memory system, objects allocated from the frozen global heap SRO are 
not only non-relocatable but also non-swappable. However, objects allocated from the 
normal global heap SRO are relocatable and may also be swappable. Whether or not 
such objects are swappable, and if so at what "frequency", depends on a resource con
trol parameter that can be set for the governing MeO.] 

The MCO defines one distinct section of virtual memory for the entire collec
tion of independent processes whose resources are drawn from the specified glo
bal heap SRO-which serves as the root node of the SRO tree for that MCO. 
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An example SRO tree controlled by an MCO is depicted in Figure 9-8. 
Resources for each process tree are rooted in a stack SRO, itself an offspring of 
the global heap SRO. 

o 

key: 
ghp = global heap SRO 
stk = stack SRO 
lhp = local heap SRO 

5 

Figure 9-8 Snapshot of an SRO tree for an MCO. The virtual memory for a collection of 
independent processes, is allocated from the root (global heap) SRO. This figure shows 
the stack SROs for root processes A, B, and C. Of these, only process C shows offspring 
(processes D, E, and F). 

In Figure 9-8 we illustrate a hypothetical case where a user's SRO tree has at 
least three co-existent independent processes, A, B, and C. One of these, proc
ess C, has some offspring processes, D, E, and F, as evidenced by the stack 
SROs that have been allocated from local heap SROs rooted in the stack SRO 
for process C. Since the same lifetime strategies as described in the main 
memory model carry over here, there should be no surprises upon examining 
the (hypothetical) level numbers shown in the figure for the various SROs. 

As already mentioned, objects created from SROs representing frozen 
memory are themselves allocated from frozen memory. They can never be relo
cated or swapped out. However, objects created from SROs representing 
normal memory may exist either in primary memory or in swapping store. An 
object residing in primary memory has the allocated bit in its Object Descriptor 
set to true, and set to false if it either resides in swapping store or is not 
currently accessible due to some on-going Memory Management operation, 
such as relocation, which causes objects to be regarded as temporarily 
"invalid". Relocation may occur when Memory Management determines that 
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compaction is needed to reduce fragmentation in primary normal memory. The 
object is also subject to being swapped out when free space simply becomes too 
scarce. 

9.3.1. Controlling the Resources of an MCO 

An MeO can be created, destroyed, altered, or inspected via calls to the iMAX 
MeO_Manager package (See Appendix L). A set of three resource control 
parameter values must be specified in creating an MeO. By studying these three 
parameters we can learn how a user would be expected to achieve high-level 
control over the memory resources in an i432 virtual memory system. Setting 
these control parameters can be done intelligently only if some gathered MeO 
performance statistics can be made easily accessible to the user. As we will see, 
these statistics are automatically updated and made accessible to a user having 
the appropriate type rights to the MeO. 

The three resource control parameters are: 

• memory type Determines whether memory management can relocate 
and swap objects created from the MeO. 

• scan rate 

• allocation limit 

Defines the "rate" at which objects created from the 
MeO are considered for swapping. 

Determines the number of bytes of virtual memory that 
can be allocated from this MeO without making an 
explicit call to alter this value. 

We have already explained the role played by "memory type" and have sug
gested the role of "scan rate". If the memory type is normal, then objects 
belonging to the MeO are relocatable (and can be swapped out if the scan rate 
is not never). 

The scan rate parameter has meaning for MeOs used in a Virtual Memory 
implementations. When the system as a whole needs to locate objects to be 
swapped out, it scans the list of MeOs in the system, selecting for swapping 
only objects in MeOs whose scan rates are high enough. More concretely, 
objects belonging to MeOs with a scan rate of 1 will be considered each time 
the replacement algorithm passes through memory looking for objects to swap. 
Objects belonging to MeOs with a swapping rate of 2 will be scanned on every 
other pass through memory, and so on. In the current implementation there are 
sixteen rates defined: asap, 1,2, ... 14, and never. 

[Setting the rate to asap indicates that all objects associated with this Mea are 
immediately swappable, regardless of reference history; setting the rate to never makes 
the object unswappable. The ASAP rate might be chosen for the Mea of some user U 
under the following scenario: A high-level load controller perceives a thrashing problem. 
The controller then (a) stops all processes belonging to U and then (b) requests the high
level Mea manager to set U's scan rate to asap, thereby expediting the swapping out of 
objects associated with U.] 
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If the allocation limit is Lim bytes, then hardware and software combine to 
guarantee that no more than Lim bytes of memory will be allocated for all the 
processes created from this MCO. (Lim measures bytes of virtual memory in 
Virtual Memory implementations and real memory in Real Memory Only 
implementations. ) 

The control based on Lim is achieved in a remarkably simple way, as fol
lows: The representation of the MCO includes a reference to a hardware
recognized Claim Object. This Claim Object is assigned a specified allocation 
limit at MCO creation. Moreover, all SROs in the tree belonging to this MCO 
have their Claim Object ADs pointing to this "master" Claim Object. Each 
time an object is allocated from any of these SROs, the MCO Claim Object is 
automatically adjusted (decremented) by the hardware by the number of bytes 
allocated for that object. A storage claim undeiflow fault is caused if an 
attempted allocation would result in a negative storage claim for the affected 
MCO. When the Garbage Collector reclaims an object belonging to an MCO, 
the software increments the affected MCO by the number of bytes reclaimed. 

The behavior implied by the above type of control can occasionally exhibit 
unexpected (and indeterminate) "pauses" brought about by the processes of a 
MCO allocating and deallocating objects faster than the Garbage Collector can 
reclaim them. That is, unless the Garbage Collector can run, find, and reclaim 
deallocated objects fast enough, the MCO's claim value may exhibit sporadic 
underflow conditions which will have no overall effect except on system 
response. (This phenomenon is possible because in the current implementation 
the Garbage Collector performs a global function and executes asynchronously 
with a user's processes.) 

9.3.2. Resource Usage Statistics 

The MCO_Manager package offers a Read_MCO_statistics function which 
returns a record containing the current static and dynamic "operating" statistics 
for a specified MCO. Component values of this record, itemized below, may 
be examined and used in attempts to dynamically adjust the subsequent per
formance behavior of the processes whose resources are governed by the MCO. 

• storage_claim; ordinal; Total of virtual memory yet to 
be allocated under processor 
control. 

• secondary; ordinal; Total virtual memory currently 
allocated and residing on disk. 

• number_of_heap_SROs: 

• number_of_object_tables: 

ordinal; 

ordinal; 

ordinal; 

Same as number of active 
processes under this MCO. 
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Combined missing object fault 
rate for all processes running 
under this MCO. 

A low-valued fault_rate suggests that the "scan rate" can be reduced 
(increased in frequency). (The effect of changing the current scan rate can in 
some cases be noted by observing the relationship between the reported values 
of storage_claim and secondary.) 

Other feedback infonnation of value to the "MCO controller", whether per
son or program, includes the reported number of stack SROs, which indicates 
the number of "living" processes. Perfonnance of certain processes executing 
under an MCO may well be affected by the total number N of its processes, 
especially if N represents a large fraction of all the processes currently active in 
the system; in that event, the user might wish to exercise other controls on the 
programs themselves (e.g., to suspend, resume, or adjust scheduling parameters 
of some of the process trees under this MCO, using operations of the Proc
ess_Manager interface discussed in Chapter 8). 

The specification part of the MCO_Manager package is given in Appendix 
L. iMAX also provides the lower-level interface to the SRO components of an 
MCO in an SRO_Manager package similar to the one already described in Sec
tion 9.2 but adjusted for use in the virtual memory implementation of SROs. 
Because the two SRO_Manager packages are so similar, we do not give the vir
tual memory version in Appendix L. Readers wishing to examine this interface 
may consult the iMAX 432 Reference Manual. 





OBJECT FILING 

10.1. Introduction 

Our introduction to Object Filing for the i432 System was really begun with the 
disclosure in Section 9.1 that i432 Memory is divided into two distinct spaces, 
active object space and passive object space. (See Figure 9-1.) In Chapter 9 we 
were concerned primarily with management of the active object space. Here we 
consider the management of the passive space and the interface between the two 
spaces. 

Examining the Object Filing Subsystem design allows us, finally, to view 
i432 object space top-down. From at least one top-most perspective, the object 
space appears homogeneous. Objects in active space and objects in passive 
space are governed by similar accessing and typing rules, structures, and 
mechanisms. The Object Filing Subsystem provides in software the same archi
tecture for support of object structures, typing, and the consequent protection 
domains in the passive space as the hardware provides in the active space. (To 
be sure, as we examine object structures in more detail, there are some semantic 
differences, but most are inspired by implementation considerations.) 

The particular role played by an object tends to determine the object space or 
spaces in which it resides during its lifetime. An object may be created to live, 
for example: 

• (Case A) entirely in active space, or 

• (Case B) entirely in passive space, or 

• (Case C) in passive space but may be updated from new versions made active 
periodically from most recent passive versions, or 

• (Case D) in passive space but serves only as a source for versions that enter 
active space, to live and die there. 

295 
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From the above examples (which do not form an exhaustive list of the possi
bilities) we observe that, unlike virtual memory, the same object may exist 
simultaneously (in different versions) in both spaces. Also bear in mind that 
objects may be deallocated from either active or passive space. If an object is 
deallocated from active space, its passive counterpart, if any, survives-and 
vice versa. We now illustrate each of these four cases: 

• Case A. All objects created in active space that are allocated with greater
than-zero level numbers live entirely in active space and are deallocated from 
that space. They are never transferred to the passive space. (Level-zero 
objects created in active space need not be "passivated", i.e., put into pas
sive space. Passivation of such objects, as we see later, may be under user 
control.) 

• Case B. Certain objects may be created, initialized and updated directly in 
the passive space using a sequence of steps bracketed by an Open and a Close 
operation. It is possible to prohibit such objects from entering the active 
space. Objects which may be too costly to activate frequently, such as large 
directories of other passive objects, are usually treated this way. [The Object 
Filing Subsystem provides for objects of type "data_file" which may be 
longer than 128K-bytes; these objects, managed by a separate type manager, 
are always treated as Case B objects that are never activated.] 

• Case C. A Domain Object representing an Ada owner package for a small 
data-base is a good example. As a result of compilation, this object, together 
with objects holding owned data and the related Instruction Objects, are 
constructed as a passive composite of individual objects. Its presence in the 
passive store is recorded in a directory kept in the passive store. When the 
package is initialized on first use, the corresponding Domain Object is impli
citly "activated", meaning a version is placed in active space, where it is 
updated either during that initialization or as a result of responding to subse
quent calls, or both. During each active period, the same Domain Object, 
identical with respect to identification, type, and structure, exists both as an 
active object and as a passive object. 

When the process( es) using this owner package terminates execution and 
there are no more active space Access Descriptors referring to the active 
Domain Object, it can be transferred to passive space, effectively replacing 
the older version in an implicit update operation. (Assuring that this "auto
update" takes place is an option that can be specified.) Until needed again in 
active space, the new version in passive space will be the only extant version 
of the object. This cycle is repeated for each active period in the life of the 
Domain Object-until it is explicitly destroyed or implicitly deallocated 
from the passive object space by a reclamation scheme whose function is 
analogous to the one used for garbage collection of active space. 
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[The tenn "owner package" as used here has the sense defined in Chapter 2. Later we 
use the tenn "ownership" in a different sense, namely as an attribute of a reference to 
a passive-space object. (This attribute is used as a means for the efficient management 
of the passive object space.) The context in which "owner" appears should resolve 
any possible ambiguity.] 

• Case D. A Domain Object representing an Ada library-level package falls in 
this category. This Domain Object, as in Case C, is also initially created in 
passive space and is periodically activated when needed. Here, however, the 
object is discarded when its period of activation is completed; it is not used to 
update the passive-space version. Two familiar subcases come to mind. 

1. The Domain Object represents a transformer package, such as a 
mathematical function library package; it has no variable declarations 
(although its individual subprograms may), and thus has no state that can 
change while in active space. Hence, the version in passive space never 
needs updating and will live in passive space until no longer needed (that 
is, until explicitly or implicitly deallocated.) 
[A program that is given a reference for the transfonner package can cause activa
tion of the corresponding Domain Object as a result of a first calIon an operation 
of the package. Thereafter, while the Domain Object remains activated, the public 
operations of the shared and reentrant Domain Object may be repeatedly invoked 
by calls from the same or other packages or tasks belonging to the same or 
independent programs.] 

2. The Domain Object represents a library owner package, X. Because X 
owns data that can be modified during use by a referencing program, a 
new active space version, i.e., a fresh library copy of X's corresponding 
Domain Object is created each time a different executing program 
accesses X. Hence, several active versions of X's Domain Object may 
coexist in the active object space. (Within a single program, however, X 
can be shared by two or more processes, but only with care for proper 
arbitration over access to X's shared data.) Domain Objects for such 
library packages as X do not need to be saved in passive space. Each new 
program execution that needs access to X must be guaranteed access to the 
library package in its initial condition. 

Notice that for Cases C and D, by maintaining (possibly older) versions of 
objects in passive space, a system crash may well leave the active space in an 
unreliable state but will always leave the passive space undamaged. Therefore, 
recovery from a system crash is always feasible, provided the secondary storage 
medium used for the passive space is· highly reliable. Also notice that for Case 
B, where an object lives its entire life in passive space, proper synchronization 
of multiple (apparently concurrent) attempts to access the passive object, for 
either reading, initializing, or updating it, can assure users of the system that 
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consistency is preserved. Passive space consistency is also preserved for other 
classes of objects. 

These key design objectives: (1) recoverability from system crashes and (2) 
consistency preservation, (3) over a space of objects belonging to a wide variety 
of (user-definable) types, are simple to appreciate conceptually. Object Filing 
achieves in the i432 implementation, but not without a price paid in the com
plexity of the required mechanisms needed to accomplish the objectives 
efficiently. 

One may rightly ask, "Do not other commercial systems also achieve the 
same objectives?" The response is almost. Usually, some component of the 
"triad" is deemphasized or even sacrificed. For example, limiting the emphasis 
on achieving crash recoverability, as in the IBM System/38 [28,29], or failure 
to provide a uniform means for dealing with a variety of object types with con
comitant protection domains, as in the Tandem system [5], or both, as in Mul
tics [44], are usually evidenced even in advanced systems. 

[Several successful commercial systems provide "one-level" (in our terminology, 
one-space) stores, in which virtual memory is suuficiently large to serve both as an 
object store and as a file store. Such systems are vulnerable to crashes in which key 
references to objects in secondary store are lostfrom volatile store at crash time, leading 
to the loss of the entire object space. Such systems must rely on recovery schemes based 
on the use of backup copies and complex data structures (such as transaction journals) 
that must be maintained to use these backup copies. In most cases, the quality of the 
recovery is only as good as the frequency with which backup copies are made.] 

This completes our general introduction to the nature of and motivation for 
object filing. The next section explains some of the problems common to the 
design of object filing systems and how they are generally met in the i432 sub
system. Section 10.3 examines the user interface to the i432 Object Filing Sub
system, a listing for which is given in Appendix M. Section lOA briefly revisits 
the design of our Portfolio Management application to consider what changes 
are in order in the light of object filing, while Section 10.5 serves as a short 
summary of this chapter and of the book as a whole. 

10.2. DeSign Challenges for Object Filling 

The designers of any successful object filing system must have solved a collec
tion of challenging implementation problems. In turn, these solutions often 
hinge on the development of effective mechanisms. This is also true for the i432 
Object Filing Subsystem. We introduce some of these problems in this section. 
In several cases, we explain some of the mechanisms employed in their solu
tions. Such detail is given primarily where it can help system programmers 
understand how to take advantage ofiMAX's user interface for Object Filing. 

10.2.1. Unique Object Identifiers 

The number of objects in the System's object space at anyone time may never 
be very large, but certainly the total number of objects created may grow to a 
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very large number over the life of an i432 System. For this reason, a means 
must be found to generate unique object identifiers (internal names). These 
identifiers must retain their significance not only over time, but also across sig
nificant boundaries of the system. 

Thus, to avoid confusion, when an object is deleted from a system its unique 
identifier (DID) should not be re-used to refer to some object created later. 
While it exists, an object must retain its identity whether residing in active 
space or passive space and, if the latter, whether physically residing on one 
storage device or another, whether connected to one peripheral subsystem or 
another of the same i432 System, or to a peripheral subsystem of some quite 
distinct i432 System. 

The key to keeping track of objects as they are transferred across the boundary 
from active to passive space, or vice versa, is the use of unique identifiers. The 
system maintains an Active Object Directory (or AOD) for recording the pres
ence of objects in active space, and a (much larger) Passive Object Directory (or 
POD) for recording the presence of objects in passive space. (The POD itself 
effectively resides only in the passive space and is subdivided, one per struc
ture.) When an object is activated from the passive address space, an entry for it 
is created and placed in the AOD. That entry contains the DID for the object and 
its Active Access Descriptor. Correspondingly, when an active object is no 
longer needed, its entry in the AOD is eliminated. If, however, an active object, 
no longer needed in the active space, is needed to update its version in the pas
sive space (i.e., needs to be made passive), the appropriate place for it in the pas
sive space is determined by its POD entry. (A DID contains both a logical-device 
id that selects the appropriate POD and a logical address of the object's POD 
entry, so the mapping from DID to POD entry can be done efficiently.) 

Finding ways to generate such unique internal names, to search for objects 
based on these names, and eventually to delete these names, requires a rela
tively complex underlying mechanism. A detailed explanation is not appropriate 
here because, by design, DIDs are not in any way accessible to the user, any 
more than is the circuitry of the i432 processor. (An explanation is found else
where [47].) 

10.2.2. Symbolic (Logical) Names for 
Objects 

Objects must not only be uniquely named internally, but they must also have 
external symbolic names. These symbolic names can then be used in the process 
of linking one component of a program structure to another. (Such external 
symbolic names are also referred to as logical names.) It is important that two 
or more different objects can have the same symbolic name, for example a ver
sion of an operating system module and a replacement version. Often, it is the 
symbolic name of an object that appears in the source program. This name is 
then preserved by the compiler as a literal constant and may be used as an argu-
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ment in the activation of a directory search routine when it becomes necessary 
later to complete a link to the object denoted by that external symbolic name. 
Two examples come to mind: 

1. Suppose some user program (' 'User_billing' ') is activated each week to per
form a billing function, and further suppose that User_billing is designed to 
access a system-supplied library level package named "Sys_Accounting". 
The user properly deserves the assurance that each weekly activation of 
User_billing will access the latest version of Sys_Accounting. The i432 
Object Filing Subsystem is designed to achieve the dynamic (symbolic) link
ing of User_ billing to Sys_Accounting, and the dynamic unlinking of these 
two modules whenever User_billing is deactivated. 

2. Consider two separate i432 Systems S1 and S2. Suppose a user program is 
represented as a single composite "A" in the passive store of Sl (on some 
storage device.) This device is then dismounted from Sl and mounted on S2. 
Later, the user activates "A" under control of the iMAX version in current 
use on S2. Object "A", when last passivated in Sl, was unlinked from the 
iMAX modules of Sl; hence, when activated on S2, it should be dynami
cally re-linked to the corresponding iMAX modules of S2. These modules 
are physically (and possibly logically) different from those on Sl, but have 
the same symbolic names as those on S 1. 

The symmetry of dynamic linking and unlinking is achieved in the i432's 
Object Filing Subsystem using the mechanism of Link Objects interposed 
between the referring object and its referent (intended target). A Link Object is 
a Typed Object (of type "Link") that contains the symbolic name of the 
referent. A POD entry for some referent X that has an associated Link Object 
will actually point to the Link Object for X rather than to X itself. Calling the 
Directory Manager to retrieve X by specifying its symbolic name causes the 
return of a valid Active AD for X. (In the process of obtaining this AD, X's 
Link Object is said to be "evaluated" .) Later, an attempt to store this AD for X 
in some other passive space object Y will result in the storing of a Passive AD 
for X's Link Object, and not an AD for X itself. This Passive AD is later invali
dated as part of the unlinking process that occurs when the referring object is 
deactivated. (Link Objects are themselves never activated.) A more complete 
explanation of this mechanism is given elsewhere [47]. 

[Some earlier filing systems, such as on Multics, introduced dynamic linking via 
"link segments" but lacked the object-based architectural support to make dynamic 
unlinking practical.] 

1 0.2.3. Composites for Solving the "Small 
Object Problem" 

Object-based architectures encourage the creation of large numbers of relatively 
small objects. (Earlier studies on other systems [6,53] indicate the average size 
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of program components is only two or three hundred bytes). Maintaining small 
objects in permanent store and repeatedly activating (and deactivating) them one 
by one in large numbers can incur sizable space and performance penalties. 

As suggested in Section 9.1, the solution pursued for the i432 Object Filing 
Subsystem is to rely on the use of composites to minimize these penalties. A 
composite represents a single logical entity in permanent store. (We discuss 
some of the details of composites at the end of this subsection.) When a com
posite must be activated (passivated), the entire group of simple objects that 
comprise the composite is activated (passivated) as one action. 

A composite may be referenced externally only via its root. Thus, a user's 
Working Directory will consist primarily of entries representing composites. A 
familiar scenario will illustrate how a composite would be referenced: 

• John Smith logs on to the System. for the purpose of executing the program 
named "Ours". We assume that Smith has a Working Directory named 
"J_Smith" and that this directory is searched for a match on the symbolic 
name "Ours". The matched entry would contain the unique identifier (UID) 
for the composite representing the program Ours. 

• The System will then determine whether or not Ours is currently active; it 
may be active if some other user who shares Ours happens to be executing it. 
(Ours is currently active if there is an entry containing its UID in the system
wide Active Object Directory (or AOD). IT so, then that entry also contains 
an active AD for Ours.) 

• IT Ours is not currently in the active space, then the information found in the 
directory J_Smith will be used to determine which logical device holds Ours. 
(For each logical device used for the permanent file store, the System will 
maintain a directory of passive objects (POD) held on it. The particular POD 
is accessed directly from an index in the UID and the entry so found will con
tain the file store address of the root object of Ours). 

• An implicit activation procedure then causes the root object of Ours and each 
of its components to be activated. As each of these is activated, all intra
composite and inter-composite references are converted to active ADs within 
the objects so activated. 

[The following may help explain the above procedure. There is a difference between 
the activation time of an AD for an object and the activation time of the object itself. 
The activation of the AD occurs wheIilever the AD is moved to the active space; an 
appropriate AOD entry is made, and any links involved are evaluated, etc. However, 
th~ object itself still remains in the passive space. Later, when an attempt is made to 
reference the object using the AD, auto-activation will "copy" the object into the 
active space. As part of this copying process, any ADs to objects in the composite will 
be activated by the process just described. In this way, all ADs to objects in the com
posite will be fully resolved (since all objects in the composite are activated); how
ever, for inter-composite references, the ADs are activated but not the objects to 
which they refer.] 
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The passive space versions for some or all of the components of a composite 
undergoing deactivation may need to be updated. The mechanisms for deter
mining if an object's passive version needs to be updated and how it should be 
done are discussed in greater detail at the end of this subsection. Briefly, how
ever, the idea is as follows: If the object X is a typed object, then its TOO will 
be consulted in performing the deactivation of X. X's type manager may have 
placed in X's TOO a port AD and an AD for a procedure D to be used in pas
sivating X. The port AD is used to send X to a service process P defined by X's 
type manager, and hence to perform passivation as an asynchronous action. (P 
will then call the defined passivation procedure to operate on X.) Passivation 
can also be performed synchronously by invoking the AD for procedure D 
directly. 

10.2.3.1 Additional Details on Composites. 

• An important (implementation-driven) design decision is that no component 
of a composite (other than the root) may be referenced from outside the com
posite. Hence, the root of a composite has an entry in the Passive Object 
Directory but its components do not. A composite must be stored in toto on a 
single logical storage structure. 

Object Filing deals with logical disk structures, not physical devices. A single 
logical disk structure may actually be composed of several physical disk de
vices. Alternatively, several logical disk structures can reside on a single 
physical disk. Object Filing maintains a POD for each of possibly many logi
cal disk structures on the system. 
[The decision to "confine" each composite to a logical structure facilitates efficient 
transfer of passive information into primary memory, as the transfer of an entire com
posite can be made in one logically indivisible operation. Since composites can be 
very large, they are not stored contiguously on disk. Rather, they are broken up into 
(4KB) chunks, the fIrst containing pointers to the others. A small composite «4K 
bytes) is transferable with a single disk operation.] 

• A composite passive object comes into existence by stepwise construction, 
one object at a time, beginning with its root object-which may, of course, 
contain both data and Passive Access Descriptors (PADs). An action must be 
selected and associated with the storing of each PAD in the root object. If the 
action is "component", the object whose PAD is being stored becomes part 
of the composite. (Of course, PADs to other composites, either already 
defined or about to be defined, may also be stored in the root.) 
Suppose, for example, A is the root and B is to be made a component of A's 
composite. Using appropriate Object Filing operation sequences' to be 
described in a later section (e.g., Open A for writing, ... ), various PADs can 
be stored in A. In particular, a PAD for B will be stored in A using the "com
ponent" action. These representations can then be completed using the 
appropriate Object Filing operation sequences (e.g., Open B for update, ... ). 
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If B is to point to other objects that should be part of A's composite, then a 
similar sequence of Object Filing operations will be performed on B as was 
performed on A (e.g., Open B for writing, ... ). By selecting the "com
ponent" action for a PAD stored in B, the object referred to becomes a com
ponent of B's (and thus A's) composite. The definition of a composite 
proceeds in this recursive fashion, each object in the composite being defined 
individually after its' 'parent" is defined . 

• The root of a composite and its individual components, are normally made 
part of active space by a purely implicit mechanism, simply by referencing 
their contents; the activation occurs automatically, as in the handling of a 
Virtual Memory fault. As suggested earlier, activation of an object has the 
effect of creating an entry for the referenced passive object in the Active 
Object Directory. 

[The contents of a passive object can also be transferred to active space explicitly, fol
lowing a more' 'primitive" route. For example, let X be an object currently in passive 
space for which there currently exists no Active AD. First, a Passive Access Descrip
tor for X, typically obtained by a directory lookup operation, is converted into an 
Active AD for X. (A side effect of this operation is the creation of an Object Descrip
tor for X.) With the Active AD, it is possible to open X for reading. Subsequent 
retrieval operations can then be invoked to copy data and ADs from the passive ver
sion of X into any specified destinations of the active space.] 

10.2.3.2 Mechanisms for Making Active Objects Passive. We now return to the 
question raised earlier: "How does the system know what active objects of 
level-zero should be passivated, and when and how are they passivated?" Here 
we provide a more detailed answer. 

The key design principle is that passivation decisions and actions for a Typed 
Object are under control of its type manager. In the absence of a passivation 
subprogram in the type manager, the usual case for type managers written by 
casual users, system-provided default functions will be applied. 

When a Typed Object X is to be subject to Object Filing, the information 
placed in the TOO (by X's type manager) can include an Access Descriptor for 
a special port. The port is called a passivation/Utero If such a port reference is 
supplied, then X's type manager will also have activated a Passivation Process 
to receive messages at the port. (In addition to supplying an AD for the passiva
tion filter for X, there may also be deposited in a pre specified slot in X's TOO 
an AD for an appropriate passivation procedure.) We now indicate how this 
information is used. 

Suppose, for example, the active-space Garbage Collector process has 
discovered that a certain level-zero object X is no longer reachable. Rather than 
directly sending an AD for X as a message to Memory Management, indicating 
that X' s space~an now be reclaimed, the Garbage Collector first determines (by 
examining a software-defined bit in X's Object Descriptor) if there currently 
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exists a version of X in passive space. If so, a message to passivate X is sent to 
the passivation filter. It is assumed that the Passivation Process receiving X has 
access to a procedure specified by X's type manager which is to be invoked to 
perform the required passivation operations on X. 

In the event that X contains ADs to other (unreachable) typed objects, Y, Z, 
etc., of different types than X, the Passivation Process may not need to send Y, 
Z, etc., to their respective filters. Instead, calls can be executed directly on the 
passivation procedures for Y, Z, etc. Such synchronous action is possible 
whenever the TOO for one of these objects also contains the AD for the 
appropriate passivation procedure. If no such procedure reference is supplied in 
the TOO, then the system supplies a default passivation procedure which 
updates the passive version of the object before completing the deallocation of 
the active object. 

A special type-specific passivation procedure designed by the type manager 
is usually used to ensure that objects are in a consistent state before passivation. 
(When invoked, a passivation procedure can conceivably also gather usage 
statistics. Thus, billing information can be accumulated, or special purpose 
messages can be sent to other processes providing them with up-to-date usage 
information.) 

10.2.4. Efficient Management of Passive 
Object Space 

How should passive objects be reclaimed? The i432 designers have recognized 
certain practical obstacles that prevent efficient and effective garbage collection 
of passive space using the same type of algorithm employed for the manage
ment of active space. We mention here some of the more obvious of these 
obstacles. Foremost is the matter of 110 overhead. Passive objects may be scat
tered over a number of different, possibly dismountable, structures. To identify 
objects that are no longer referenced, it would be necessary to chase chains of 
Passive Access Descriptors through these objects, perhaps across system sites. 
Under the best of circumstances, therefore, such action can involve lengthy 
searches and include numerous lengthy 110 requests. (Passive Access Descrip
tors will tend to spread through networks of passive objects just as Active 
Access Descriptors are spread through networks of active objects.) Hence, not 
only can we expect high 110 overhead, but also too much time may be con
sumed in freeing up space, allowing unreachable objects to remain too long in 
the system and perhaps leading to what may be unacceptable operational delays. 

The solution adopted is to reduce greatly the number of Passive Access 
Descriptors that are relevant to the reclamation process that operates over the 
passive space. This is done by including an ownership right}~ Passive Access 
Descriptors and by legislating that: • 



Object Filing 305 

• among all the PADs that can reference a passive space object X, only one 
PAD can contain owner rights for X, 

• although PADs without owner rights can reference objects on other struc
tures, a PAD with owner rights must be on the same structure as the object it 
references, and 

• when an object is no longer reachable by a PAD having owner rights, the 
object becomes reclaimable. 

The "single-owner-only" rule can conceivably be restrictive in rare cases, but 
the implementation tradeoffs strongly favor accepting this restriction. In this 
scheme each time an unreachable passive space object X is deleted, all other 
passive space objects referenced from "owner" PADs within X can also be 
deleted. This approach involves relatively little search overhead. (A more com
plete discussion of the implementation tradeoffs leading to the single-owner
only scheme is not attempted here.) 

10.2.5. Maintaining Consistency of a 
Collection of Objects across Updates 

A major challenge, the fifth and last in the series listed here, is how to maintain 
the consistency of the entire system object space, given that (a) a crash can 
occur at a point where an update action on a collection of objects is incomplete 
and (b) independently executing programs may interfere with one another in the 
course of updating collections of objects. 

The i432 solution to this problem builds on two prior design choices and on 
the introduction of a third strategy (and mechanism) specific to the solution. 
• First, object space is already cleanly divided between active and passive 

space, so that any crash that occurs while updating active space objects can
not impair the integrity and consistency of the passive space. 

• Second, the introduction of composites into the passive space design suggests 
that the scope of passive space update actions be defined in terms of compo
sites and not in terms of their individual components. Hence, even if there 
were no way to prevent the introduction of an inconsistency, it should be 
comparatively easy to isolate the region of inconsistency just to those (prob
ably few) composites that are affected by the update and replace or recon
struct only these objects using available backup information. 

• Third, the application of Atomic Actions to collections of composites com
pletely prevents partial updating-and hence prevents the introduction of 
inconsistencies caused either by system crashes or by overlapping query and 
updating actions. Controlling the references to the passive representations of 
objects using Atomic Actions serves as a needed synchronizing mechanism 
among concurrently executing processes that share objects in the passive 
address space. 
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At a very high level, an Atomic Action, also called a Transaction in iMAX 
terminology, is nothing more than a framework in which a set of individual 
interactions with objects in the passive space can be conducted in a controlled 
way. In particular, if the passive object space is in a consistent state before 
the Transaction, the passive object space is guaranteed to be in a consistent 
state at the end of the Transaction. Moreover, by its nature, one Transaction 
cannot "interfere with" another one. Users who expect to make explicit use 
of a type manager do not need to know how the Transaction framework is 
implemented. The users only need to know how to set up and use the 
Transactions. 

The remainder of this subsection elaborates the new concepts and mecha
nisms needed to understand how the synchronization scheme is implemented. 
Some readers may wish to skip this discussion on a fIrst reading. We elaborate 
on the meaning of Atomic Actions and in so doing also introduce the concept of 
pseudo-temporal environments. Both of these ideas have recently been studied 
and extended in proposals by Reed [49, 50] as a basis for synchronizing opera
tions over databases in distributed computing systems. While Reed's proposals 
are ambitious and unproven in practice, they are applied in the i432 System 
under circumstances that are carefully restricted, and hence have a much higher 
probability of becoming a practical success. 

An Atomic Action, as defIned by Reed [50], " ... is a computation that, 
although composed of primitive computational steps, cannot be decomposed 
from the point of view of computations outside of the Atomic Action. . . The 
Atomic Action simplifIes the task of coping with unplanned concurrency and 
failure ... Atomic Actions remain atomic in the face of failure; that is, if a 
failure occurs that prevents the completion of an Atomic Action, the state of all 
data the Atomic Action has attempted to modify must appear to all other 
observers to be the state that obtained prior to starting the Atomic Action. " 

When an i432 program needs to execute a series of (higher-level) operations 
on one or more passive (composite) objects, the individual operations, and all 
their substeps are grouped and executed as a single Atomic Action, i.e., a 
Transaction. This assures that no other program can destructively interfere, or 
be interfered with in a destructive way, as a result. As we will see shortly, the 
iMAX Operating System enforces the use of such Atomic Actions on passive 
objects, since all requests for operations on passi',e objects must be "filtered" 
through interface packages. 

After any Atomic Action is initiated and before it completes, it may be 
explicitly aborted by the program that invokes it, or be implicitly aborted as a 
result of any kind of failure including a time-out or a system crash, without 
creating a net change to the passive object (or objects) involved in the Atomic 
Action. An Atomic Action is completed only upon successful execution of a 
Commit operation. This operation puts into effect all the changes produced in 
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the form of tentative new versions of the passive objects involved in that 
Atomic Action. 

The Atomic Action mechanism is successfully implemented by completing 
all its steps in a distinct section of modelled time (not real time), called pseudo 
time. The recording of events in pseudo time is controlled by a mechanism 
which Reed has called a Pseudo Temporal Environment, or PrE. (Pseudo times 
are used to replace real time only during Atomic Actions. The use of a PrE 
assures that all the pseudo times for one Atomic Action fall in an interval that is 
distinct from all other intervals of pseudo time during which other such Atomic 
Actions may occur.) 

A good way to understand pseudo time is to understand its three key attri
butes: (We .again quote (and paraphrase) from Reed.) 

1. A read operation from a passive object returns the value written by the latest 
pseudo-time ordered write operation that precedes the read. 

2. If two steps, A and B, of a computation are ordered such that A precedes B, 
then, within an Atomic Action, the pseudo time of A is strictly less than the 
pseudo time of B. (This property ensures that sequential programs still 
behave the way they would were real-time orderings used.) 

3. Pseudo-time orderings correspond to real-time orderings whenever events 
occur far enough apart in real time. That is, we don't care what pseudo time 
ordering is assigned to nearly simultaneous events that are not ordered parts 
of the same computation. We do care that two events, observed to be 
ordered in the real world, that is, from outside the system, would be ordered 
in the modelled or pseudo time in the same way. 

The pseudo time for an event is determined by generating it from a Pseudo 
Temporal Environment. It is therefore natural to inquire about PrEs to learn 
what they are and how they work. However, a little thought suggests that we 
don't have to know much about PTEs, other than how to use them. 

One can think of each PrE as a special clock function that returns pseudo 
times when requested that fall in a guaranteed-to-be-distinct interval. This 
"clock" is an abstraction that can be represented as a private data type, speci
fied in an Ada package. Of course, the implementation of the PTE data type 
would be hidden. This is precisely the approach taken in the iMAX Object Fil
ing Subsystem, where a user interface package, Transaction_Manager, is avail
able. Use of this package allows one to acquire Access Descriptors for newly 
created PrEs upon request. [Reed has provided the details of one example 
implementation.] In the i432 implementation, PrEs are referenced by access 
variables of type "transaction". 

With the foregoing as the essential background concepts, we are now ready to 
describe more precisely what a Transaction is and how it is used in the i432 
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Object Filing Subsystem. Hereafter, we consistently substitute "Transaction" 
for' 'Atomic Action" . 

1 0.3. Performing Transactions Using the 
IMAX Interface Packages 

To perform a Transaction, two interface packages are used: 

• Transaction_Manager To Create a Transaction, and later to either Abort 
it or Commit it. 

• Passive_Store_Manager To perform operations such as Update, Passivate, 
Open, Close, Put, Get, etc., on active and passive 
versions of objects. 

10.3.1. The iMAX Transaction_Manager 
Package 

A user first calls Start_transaction to instantiate a new Transaction and to obtain 
an AD for it. This Transaction will remain accessible until the user later calls 
Abort_transaction or Commit_transaction, which cause the specified Transac
tion to be "decommissioned." (No more pseudo-times will be issued from it.) 
More importantly, Abort_ transaction would be called to cancel the Transaction 
produced thus far and Commit_transaction would be called to close out the 
Transaction. 

Both Abort_transaction and Commit_transaction also have the effect of 
Closeing out all passive objects that have been Opened for this Transaction by a 
call to the Passive_Store_Manager. (In particular, objects that were opened for 
"read" are automatically closed; those opened for "write", however, must 
have been closed explicitly, else the commit will fail.) 

The remaining operation of Transaction_Manager is the function Transac
tion_info, which retUrns a record of useful information concerning the specified 
Transaction. This record includes the Transaction's print name, its state 
(whether active, committed, or aborted), the time remaining before mandatory 
abortion, the number of passive objects currently associated with the specified 
Transaction, and whether or not the specified Transaction is currently blocked 
waiting for an Open operation to succeed. (Open operations are explained in the 
succeeding subsection.) The specifications for Transaction_Manager are given 
in Appendix M along with the specifications for Passive_Store_Manager. 

10.3.2. The iMAX Passive_ Store_ Manager 
Package 

The operations of this package can be grouped into two major categories. The 
first is a simple interface to Object Filing that allows users to explicitly specify 
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how or whether an active space object should be passivated. The remaining 
operations, which fall into several subcategories, are provided for a user or a 
type manager that needs to directly manipulate a passive version of an object. 
Figures 10-1 and 10-2 list the public operations of this package in each of the 
two major categories. 

Operation 

Update 

Reset_acti ve_ version 

Explanation 

Makes .a specified passive space object 
agree with its active version. 

Deletes the specified active version so that 
the next reference to the object causes 
a fresh copy to be made from the latest 
passive space version. 

Figure 10-1 Active-version operators of the Passive_Store_Manager package. Both 
operators allow specification of a Transaction. 

The protocol for use of the active-version operators listed in Figure 10-1 
requires that the caller either specify a previously created Transaction as an 
argument or default that argument. In the latter case, Object Filing automati
cally generates a new Transaction to "surround" the active-version operation. 
For example, the following sequences are functionally equivalent: 

start_ transaction (my_ transaction) ; 
Update (my_object, my_transaction); 

Commit_transaction (my_transaction) ; 

and (simply) 

Update (my_object) ; 

A specified passive store object to be Updated must be known to the passive 
space; i.e., either a PAD with owner rights exists for the object, or the object is 
a component of a composite that has been Opened in either write or update 
mode using the same Transaction. The new passive version that is produced 
(resulting from Update) is not "committed" until the specified Transaction is 
itself committed. 

The procedure Reset_active_ version provides the mechanism for explicitly 
discarding unreachable level-zero active space objects which might otherwise 
be implicitly passivated via the passivation filter mechanism described in Sec
tion 10.2. Thus, the procedure call 

ensures, provided that my _ transaction is later committed, that any subsequent 
reference to my_object will cause it to be restored from its last passive version. 
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Sub-category 

Open and 
Close 

Put and 
Delete 

Get 
operations 

Miscellaneous 
operations 

Operation 

Open 

Close 

Put_ 
access_descriptor 

Put_list_of_ 
access_descriptors 

Delete_ 
access_descriptor 

Copy_ 
access_descriptor 

Get_ 
access_descriptor 

Get_passi ve_ 
definition_info 

Explanation 

Opens the passive version of an 
object for read, write, or 
update. Only one such version 
can be open for write or update. 

Closes the opened passive version. 

Transfers data from an active space 
object to a passive space object. 

stores a specified AD in a passive 
space object. 

stores a specified block of ADs 
in a passive space object. 

Deletes a specified AD from a 
passive space object. 

Copies an AD from one passive space 
object to another. 

Transfers data from a passive space 
object to an active space object. 

Returns a specified AD from a 
passive space object. 

Returns characteristics and state 
of a specified passive space object. 

Binds a specified link object to a 
specified passive space object. 

Changes the "auto_copy" attribute of 
a passive object's link object. 

Changes the "copyable" attribute of 
a passive object to false. 

Changes the "activatable" attribute 
of a passive object to false. 

Figure 10-2 Passive space manipulation operators of the Passive_ Store_Manager. 

(This reset mechanism is particularly useful for compilers that must guarantee 
the constancy of Domain Objects for library packages, as discussed under Case 
D, Section 10.1.) 

The protocol for using the passive space manipulation operators listed in Fig
ure 10-2 requires that the affected passive versions fIrst be Opened for that type 
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of operation. Thus, the caller first Opens a specified passive object X, for a 
given access mode, for example 

handle_l :=Passive_Store_Manager.Open(my_object, write, my_transaction); 

or 

handle_2 :=Passive_Store_Manager.Open(my_object, update); 

Opening a passive object returns its passive_definition, i.e., a "handle" on a 
version of the passive object. (The handle is of private type "passive_ 
definition" .) 

Note that the implementation of Open automatically generates a Transaction 
for this operation in the event an argument for this optional parameter is not 
supplied. (There is also a fourth (optional) Open parameter, a time_out value, 
which the caller can supply. This is the amount of time Open should be allowed 
to remain blocked before aborting it, in case my_object happens already to be 
Opened for write or update. Providing the opportunity to supply time_out 
values on Opens (and on Start_transactions) helps users avoid deadlock. Of 
course, a malicious user can still specify lengthy time_out values.) 

An access mode may have one of the three values listed in the following defi
nition of type open_mode. 

type open_mode is 
-- The type of access requested in doing an Open operation. 

(read, -- Only read requests will be permitted on the 
-- passive definition. 

write, -- Read and write requests will be permitted on the 
-- passive definition. A new version is created 
-- ab initio. 

update); -- Read and write requests permitted on the 
-- passive definition. 

To succeed with an invocation of Open, the caller-supplied reference for the 
object to be Opened must have rights commensurate with the specified 
open_mode. For example, the caller's AD must have read and write rights if 
the access_mode is "write" or "update"; otherwise, read rights are sufficient. 

The handle retunled by an Open refers to a version of the desired passive 
object. Each version has associated with it the times it was last opened for read
ing and for writing. 

Executing an Open for "reading" selects the most recent version whose 
open-for-write time is less than the Transaction time specified in this Open 
operation. (The cunent Open request will, however, block if the selected ver
sion is (now) being written and if its open-for-writing time is earlier than the 
Transaction specified in this Open.) Concurrent activations of an Open request 
for reading of the same same passive space object are permitted. When the last 
outstanding Open on an older version of a passive object is Closed, that version 
is deleted. 
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Executing an Open for "writing" will produce a new version. The specified 
Transaction must, however be later than the open-for-read and open-for-write 
times (if any) for the most recently committed version. If not, the Object Filing 
System "refuses" this request, since writing values associated with an earlier 
time would imply that those previously read values, marked by a later time, are 
erroneous. If the specified Transaction is indeed later than the open time of the 
most recent version, the Open is permitted, but may be required to wait until the 
most recent version, if currently Opened, is either committed or aborted. This is 
because Object Filing assures that Opens for writing may not overlap in time. 
Blocked Open requests are queued in order of their specified Transactions. (In 
short, only one Open at a time is allowed for writing into a given passive object. 
Only after the associated Transaction is either committed or aborted can another 
Open for writing into the same passive object be permitted.) 

A Transaction associated with an Open cannot be committed until all the 
Opened objects have been closed. The Close operation assures that the 
corresponding Opened object is in a consistent state and may therefore be 
installed as a new passive version. Objects that have only been Opened for read
ing do not have to be explicitly Closed. Failure to invoke the Close operation 
"promptly enough" for an object opened for write or update can cause the 
current Open to be aborted, as explained in the next paragraph. 

Since Open operations may be blocked awaiting completion of other Transac
tions that involve the same passive definition, the current Open call is allowed 
to be timed-out. (If the caller fails to specify a time-out argument value, the sys
tem will supply a default value.) A Transaction fails, and will be aborted to 
avoid deadlock, if an Open (or any other step) associated with this Transaction 
times out. 

A Transaction may be used to place an active space object X in passive space 
that does not currently have a passive version. This is done in steps: first, a Pas
sive AD with owner rights for X is stored into some other object that already 
exists in passive space (using the Put_access_descriptor operation). Next, X is 
Updated. [A more "lengthy route" can be taken. Instead of Updating X, one 
can instead Open it in write mode. The effect of this Open operation is to create 
a new passive object of the same size and type as the active space object X. 
Once the new passive space object has been created in this way, other Put 
operations (Put_data and Put_access_descriptor) can be called to transfer data 
values and Access Descriptors into the passive version.] 

Once an existing passive object has been Opened for either reading, writing 
or updating, various other operations may be performed. For example, Put and 
Get operations may be used, depending on the Open's access-mode. Put opera
tions would be used to assign values to a newly created passive object. Fig
ure 10-3 illustrates the specifications for the operations Put_data. 

A similar operation, Put_data_file, can be used to assign values to objects of 
type data_file. The specification for this operation is not illustrated here 
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because it belongs to a different iMAX interface package. Nevertheless, it 
seems appropriate to remind the reader that Object Filing also includes manage
ment of the non-activatable type data_file, instances of which may be as large 
as 2**32 bytes. (Note that ordinary passive space objects are not expandable; 
however, passive space data_file objects are expandable though they are never 
activatable.) The corresponding Get operations have nearly identical specifica
tions, except for the intended direction of transfer. 

procedure Put_data( 
psv_def: 
act_buf: 
psv_disp: 

sz: 

-- Function: 

passive_definition; -- An object's passive definition. 
dynamic_typed; -- Active object containing data. 
passive_data_segment_displacement := 0; 

-- Displacement into "psv_def". 
active_data_segment_size : = -1; 

-- Number of bytes to transfer from 
-- "act_buf" to "psv_def". (Default 
-- means copy all of "act_buf".) 

active_data_segment_displacement := 0); 
-- Displacement into "act_buf". 

Data is transferred from an active object to a passive object. 

Figure 10-3 Example specification of PuCdata operation. PuCdata transfers data into a 
version of a passive object. 

A key point to remember about Transactions as implemented in the i432 
Object Filing Subsystem is that more than one passive_definition may be 
opened with the same Transaction. In this way, a user can lock out other 
processes from accessing a collection of related (composite) objects while the 
Transaction is in progress. To assure that synchronization works as expected, a 
Transaction value awarded to a process by Transaction_Manager.Start_transac
tion should be kept local to the process that requests it. Thus, it would be a mis
take for one process to send another a copy of a Transaction reference if both 
processes might then engage in the same Transaction on the same objects as this 
joint activity could totally defeat the objective of synchronization. 

Before dosing .this section, we comment on the process of activating passive 
version objects, in part to give one practical reason why it is not always desir
able to allow a passive version object to be activated. The process of activating 
an object involves the construction of an Object Descriptor for each AD stored 
in the object. The "valid" bit in each such Object Descriptor is set false to indi
cate that the underlying object is not in main memory and a software-defined bit 
in the Object Descriptor is set to indicate that a version of this underlying object 
exists in the passive object space. Copying of the contents of such underlying 
objects from passive space to active space is then triggered by ensuing "pres
ence" faults and accomplished by a fault handling mechanism similar to the one 
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used in virtual memory management. Since the overhead for constructing an 
Object Descriptor is not insignificant, objects like directories that contain large 
numbers of Passive ADs are made non-activatable. Retrieval, i.e., activation, 
of individual Passive ADs from such a directory can be done using the Get_ac
cess_ descriptor operation. 

This concludes our all-too-brief overview of the Object Filing Subsystem 
planned for the i432. It deserves a more complete exposition, but our book is 
already a long one. Reinforcement of the foregoing discussions can be accom
plished by a review of Appendix M. The reader is also directed to the open 
literature [47] and to the iMAX 432 Reference Manual. 

Certainly, the reader should be aware by now that the Object Filing Subsys
tem will greatly extend the functionality and hence the applicability of the i432 
System. When these extensions are in place, a new watershed in commercial 
operating systems will have been achieved, no doubt inducing other designers 
to emulate such facilities. 

10.4. A Final Glance at the Portfolio 
Management System 

Readers have a surprise in store as we undertake our final inspection of the port
folio management system. It might seem that nothing we have learned in 
Chapters 9 and 10 need affect the design decisions and options we have con
sidered in preceding chapters. Our new knowledge of i432 Memory Manage
ment, either of main memory or the more general virtual memory, seems largely 
irrelevant to this design. True, the performance of the proposed subsystem may 
be affected by the amount of main memory available or by the overhead of 
managing a more general virtual memory, but to any first approximation, it is 
difficult to see how knowledge of specific performance characteristics vis a vis 
Memory Management can be significant. And so, only the Object Filing Subsys
tem is left to consider as possibly relevant. 

On the one hand, presence of the Object Filing Subsystem assures the 
integrity, reliability, and longevity of the portfolio data base. Without Object 
Filing, our application would be incomplete, unless we were to explicitly 
include the I/O requests that save (and retrieve) the portfolio data in (and from) 
long-term store between the end-users' terminal sessions. [The only way to 
avoid including such steps would be to assure that the portfolio always resides 
in virtual memory. This approach has some merit, but it does not provide for 
full insurance against system crashes.] Presence of the underlying Object Filing 
Subsystem quite fortunately makes the transport of our portfolio to and from 
long-term store automatic and transparent. Neither the users of the subsystem, 
nor we, its designers, need be troubled with such matters. Put another way, the 
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underlying Object Filing Subsystem can be said, actually, to complete our 
design! 

Having said all this, we should be ready for the promised surprise. Since the 
Object Filing Subsystem offers synchronization services as well as ' 'crash 
insurance" , we had better reexamine our design to see how much in the way of 
synchronization mechanism, already built into our design, is actually redun
dant. In fact a good deal of the task and package structure in the Figures 2-5 and 
3-2 "solutions" appear in need of reassessment. 

Our designs were built on the premise that whenever Ada owner packages 
can be accessed concurrently by more than one task, arbiter tasks are needed as 
intermediaries. Apart from whatever other services are rendered by 
Portfolio_Server in the Figure 2-5 solution, and by both Portfolio_Server and 
Roster_Server in the Figure 3-2 solution, these server tasks are essentially 
arbiters. But, they are only needed because Ada semantics provides no guaran
tee of synchronization over the use of owned data of packages. 

Consider this: Each time the Treasurer task (or any other task properly 
authorized) needs to read or update the portfolio objects, it is necessary only to 
execute an Atomic Action on those objects. Ordinary Member tasks may also 
issue read requests of the portfolio objects as Atomic Actions. (Ordinary club 
members would be barred from opening portfolio objects for writing or updat
ing by being denied the proper rights.) There can be no conflict. The individual 
Atomic Actions would be encoded as the operations within the Portfolio_Mgr 
package. 

We may now ask, "Why use arbiter tasks at all in our applications and sub
systems programming-if Object Filing eliminates the need for them?" Two 
good answers come to mind: 

• First, it seems important to be able to design application subsystems like 
portfolio management so they can run in the absence of Object Filing serv
ices-even if only to be able to simulate our design in a "leaner" environ
ment, one lacking Object Filing. (Certainly, if it is important to be able to 
"port" an application to another system that lacks certain rich system serv
ices, relying on them must be avoided.) 

• Second, the synchronization of access to objects provided by Object Filing 
pertains only to the objects in passive space. Users who want concurrent 
access to objects in active space must still provide explicit synchronization, 
such as by use of arbiter tasks. For example, if A were to activate an object X 
and then B tries to activate X, then A and B would share the same copy; the 
need for synchronization in this case still remains. 

Notice that both responses are arguments for knowing how to accomplish 
synchronization in at least two different ways. Therefore, readers are invited to 
learn more about the two Object Filing Subsystem interfaces introduced in the 
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last section and are urged, as an exercise, to redesign our portfolio management 
system one more time. 

10.5. Chapter and Book Summary 

We have reached the end of our several studies. At the beginning, we asserted 
that a proper examination and appreciation of the i432 System would involve a 
study of the new system's System Implementation Language, its Architecture, 
and its Operating System. In this book, we have done all three and roughly in 
this order. 

We hope readers who were more interested in the Architecture or in the 
Operating System did not grow too impatient with the progression we chose, 
did, more or less, diligently read straight through this book, and can now see 
why it helps to become familiar with the language Ada-and the model of com
putation implied by Ada-in order to appreciate the many innovative aspects of 
the hardware and software design. 

The i432 System is not an Ada machine. Most of it was designed indepen
dently of Ada, but with a similar semantic model of computation as its basis. 
Hence, we have not felt it necessary to introduce readers to the entire Ada 
language. On the other hand, because of its powerful programmer support facil
ities, including the full Ada-fanguage and at least one powerful extension 
(dynamic packages), the System permits many advanced users of the i432 Sys
tem to provide their "customers" with a wide variety of other language proc
essors and tailored operating system extensions for the development of end-user 
applications. 

Finally, we hope that the reader has been rewarded in reading this book, as 
has the writer by writing it, by having acquired both an in-depth perception of, 
and an enthusiasm for the i432 System and for the creative and productive work 
of its many designers and implementers. We hope their system proves to be a 
pronounced success in its primary objective, which-from the start of the 
venture-has been to offer us a system that helps users to reduce significantly 
the cost of building and maintaining system and application software. 
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Stock_ Types_And_ Constants 

package stock_Types_And_Constants is 

-- This package has no body. 

subtype long_string is string(l .. 30); 

type dollars is new integer; 

type stock_code_pair is 
record 

code: 
exch: 

string (1 .. 4) ; 
string (1. . 4) ; 

abbreviation for listed stock 
abbreviation for stock exchange 

end record; 

type stock_name_info is 
record 

print_name: 
stock_code: 

end record; 

type date is 
record 

long_string; 
stock_code_pair; 

day: integer range 1 .. 31; 
month: integer range 1 .. 12; 
year: integer range 1900 .. 4000; 

end record; 

type buy_sell_type is (buy, sell); 

type buy_sell_record(buy_sell: buy_sell_type) is 
record 

stock.,name: 
buy_date: 
nUIILshares: 
per_share_price: 
commission: 
case buy_sell is 
when sell => 

of_buy_date: 
when others => 
null; 

end case; 
end record; 

stock_name_ inf 0; 
date; 
integer; 
dollars; 
dollars; 

date; 

-- record discriminant 
extra data field 

-- no extra field 

subtype purchase_record is buy_sell_record(buy) ; 
subtype sale_record is buy_sell_record(sell) ; 

end stock_Types_And_Constants; 
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Generic Queue Manager 

generic 

type item is private; 

package Queue_Mgr is 
type queue is private; 
null_queue: constant queue; 

function Create 
return queue; 

procedure Add( 
E: in 
Q: in 

item; 
queue; 

A "deferred constant", permitting a user to 
express a test to determine if a created 
instance of queue is or is not null 
without actually knowing how "nullness" 
is represented. 

to_front: in boolean: = false); -- optional third parameter 

procedure Remove( 
U: out item; 
Q: in queue) ; 

function Is_empty( 
Q: in queue) 

return boolean; 

underflow: exception; raised if Remove 
is passed an empty queue 

private 
type queue_element; forward reference 

type queue_element_ptr is access queue_element; 

type queue_element is 
record 

info: item; 
next: queue_element_ptr; 

end record; 

type queue_rep is 
record 

head: queue_element_ptr; 
tail: queue_element_ptr; 

end record; 

type queue is access queue_rep; 
null_queue: constant queue := null; 

end Queue_Mgr; 

Initialization of this 
-- constant is hidden. 



Body Part of Generic Queue Manager 

pragma environmentC"GenQueMgr.spe"); 
package body Queue_Mgr is 

function Create 
return queue 

is 
begin 

Appendix C 321 

return new queue_repChead => null, tail => null); 
end Create; 

procedure AddC 
E: in 
Q: in 

item; 
queue; 

to_front: in boolean: = false) -- optional third parameter 
is 

x: queue_element_ptr := new queue_elementCinfo => E, next => null); 
begin 

case to_front is 
when false => 

if Q.tail j= null then 
Q. tail. next : = x; 

else 
Q.head : = x; 

end if; 
Q. tail : =: x; 

when others => 
if Q.tail j= null then 

x.next := Q.head; 
else 

Q. tail: = x; 
end if; 
Q.head : = x; 

end case; 
end Add; 

procedure RemoveC 
U: out item; 
Q: in queue) 

is 
begin 

if Q.head = null then 
raise Underflow; 

else 
U : = Q. head. info; 
if Q. head. next = null then 

Q. head: = null; 
Q. tail : = null; 

else 
Q.head :=: Q.head.next; 

end if; 
end if; 

end Remove; 

Put E at tail of queue. 
-- queue not empty 

-- Put E at front of queue. 
-- queue not empty 

-- Is Q.head last queue element? 
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function Is_empty( 
Q: in queue) 

return boolean 
is 
begin 

return Q.head = null; -- Return truth value of expression. 
end Is_empty; 

pragrna environment ("GenQueMgr. bdr", "StkTypCon. spr") ; 

package Purchase_Queue_Mgr is new Queue_Mgr( 
item => Stock_Types_And_Constants.purchase_record); 

Instantiation of generic Queue_Mgr package to manage purchase queues 
formed in portfolio instances by Portfolio_Mgr. 

Portfolio_Manager specification 

pragrna environment ("PurQueMgr . spr" , "StkTypCon. spr" , "StkMktInf . spr") ; 

package Portfolio_Mgr is 

type portfolio_ptr is private; 
null_portfolio: constant portfolio_ptr; -- A "deferred constant. " 

type stocks_held(nurn integer) is -- Need to specify nurn 
-- when instantiating this record. 

record 
name: 
nurn_shares: 

end record; 

array (1 .. nurn) of stock_name_info; 
array (1 .. nurn) of integer; 

type stocks_held~ptr is access stocks_held; 
Used as parameter type in Stock_list. 

type index is range O .. 1000; 

type array_of_purchases is 
array (index range <» of purchase_record; 

type array_of_purchases_ptr is access array_of_purchases; 
Used as parameter type in 
History_of_purchases. 

exceeds_holdings: exception; 
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function Create ( 
folio_name: in long_string) 

return portfolio_ptr; Access made with read, 
and write writes 
(No create rights.) 

Function: 
Creates an instance of type portfolio (allocated from global 
heap store) with folio_name as print_name and returns a pointer 
(access descriptor) to this instance. 

procedure Record_buy( 
folio_ptr: in portfolio_ptr; 
buy_info: in purchase_record); 

Function 
Adds new buy transaction to purchase history for this stock. 

procedure Record_sell ( 
folio_ptr: in portfolio_ptr; 
sell_info: in sale_record; 
history_underflow: out boolean); 

Function: 
Deletes number of shares sold from purchase record in portfolio 
for buy_date matching buy date in sell_info. Raises 
Exceeds_holdings exception to print an error message if 
num_shares exceeds number of shares recorded as purchased on 
that date. If not all held shares of that buy_date are sold, 
an entry for the residual shares is put back at front of queue. 
The recorded conunission in the effected purchase_record 
is reduced by the ratio of shares retained to shares held before 
this sale. 
Sets history_underflow true in handling Underflow exception raised 
in Purchase_Queue_Mgr. 

procedure Number_of_stocks( 
folio_ptr: in portfolio_ptr; 
num_stocks: out integer); 

Function: 
output p~ITameter is number of different stocks currently held 
in portfolio accessed by folio_ptr. 

procedure Stoc~list( 
folio_ptr: in 
num_stocks: out 
stocks: out 

Function: 

portfolio_ptr; 
integer; 
stocks_held_ptr) ; 

Returns a reference to a stocks_held record 
which is an array of records, each consisting of the 
name and number of shares. held for a stock 
held in portfolio accessed by folio_ptr. 
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folio_ptr: 
s tock_ code: 
mmLshares: 
avg_cost: 

in portfolio_ptr; 
in stock_code_pair; 
out integer; 
out dollars); 

Function: 
output parameters supply number of shares and average cost 
per share, including commissions, for stock denoted by given 
stock_code in portfolio denoted by folio_ptr. 

procedure Num_buys( 
folio_ptr: in 
stock_code: in 
num_purchases: out 

Function: 

portfolio_ptr; 
stoc~code_pair; 
integer) ; 

output parameter is number of different purchases for 
which stock of given stock_code is currently held in 
portfolio denoted by folio_ptr. 

procedure History_of_purchases( 
folio_ptr: in portfolio_ptr; 
num_purchases: in 
stock_code: in 
purchase_history: out 

integer; 
stock_code_pair; 
array_of_purchases_ptr) ; 

Function: 
output parameter is a reference to an array of purchase 
records of length num_purchases for which the stock of the 
given stock_code is currently held in portfolio_ptr denoted 
by folio_ptr. See Stock_Types_And_Constants for format of a 
purchase_record. 

function Get_portfolio_name( 
folio_ptr: in portfolio_ptr := null_portfolio) 

return long_string; -- Name of portfolio. 

Function: 
If the input parameter folio_ptr corresponds to an existing 
portfolio, its name is returned; otherwise 
"No such portfoliohAAhhhhhAAhh" is returned. 

private 

type stock_summary; -- Forward reference. 
type stock_summary_ptr is access stock_summary; 

type stock_summary is 
record 

stock_name: 

num_shares: 
avg _ cost_per _share: 
next: 
purchase_history: 

end record; 

stock_name_info := 
(print_name => "hhhhhhAAAAAAAAAAAAAhAAAAAAhAAA" , 
stock_code => (code => "AAAA",exch => "AAAA,,)) 

integer : = 0; 
dollars : = 0; 
stock_summary_ptr : = null; 
Purchase_Queue_Mgr.queue 

Purchase_Queue_Mgr. Create () ; 
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type portfolio; Forward reference. 
type portfolio_ptr is access portfolio; 
type portfolio is 

record 
portfolio_name: long _string : = "not yet namedAAAAMAAAAAAAAAAA,,; 
num_diff_stocks_held: integer : = 0; 
stock_list: stock_summary_ptr : = null; 

end record; 

null_portfolio: constant portfolio_ptr := null; 

end Portfolio_Mgr; 

Portfolio_ Manager body 

pragma environment ("PrtMgr. spr", "PurQueMgr. spr", 
"StkTypCon. spr", "StkMkt1nf'. spr") ; 

with Portfolio_Mgr, Purchase_Queue_Mgr, Stock_Types_And_Constants, 
Stock_Mkt_ 1nf 0; 

package body Portfolio_Mgr is -- Package body begins here 

function Create ( 
folio_name: in long_string) 

return portfolio_ptr 
is separate; 

procedure Record_buy( 
folio_ptr: in portfolio_ptr; 
buy_info: in purchase_record) 

is separate; 

procedure Record_sell ( 
folio_ptr: 
sell_info: 
history_underflow: 

is separate; 

in portfolio_ptr; 
in sale_record; 
out boolean) 

procedure Number_of_stocks( 
folio_ptr: in portfolio_ptr; 
num_stocks: out integer) 

is separate; 

procedure stock_list( 
folio_ptr: in portfolio_ptr; 

integer; 
stocks_held_ptr) 

num_stocks: out 
stocks: out 

is separate; 

folio_ptr: 
stock_code: 
num_shares: 
avg_cost: 

is separate; 

in portfolio_ptr; 
in stoc~code_pair; 
ou t integer; 
out dollars) 
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procedure NurnLbuys( 
folio_ptr: in 
stock_code: in 
num_purchases: out 

is separate; 

portfolio_ptr; 
stock...,.code_pair; 
integer) 

procedure History_of_purchases( 
folio_ptr: in portfolio_ptr; 
num_purchases: in integer; 
stock_code: in stock...,.code_pair; 
purchase_history:out Purchase_Queue_Mgr.queue) 

is s~parate; 

function Get_portfolio_name ( 
folio_ptr: in portfolio_ptr := null_portfolio) 

return long_string -- Name of portfolio. 
is separate; 

-- Locally defined procedures and functions go here: 

function SearchLfor_stock...,.code( 
folio_ptr: in portfolio_ptr; 
buy_record: in purchase_record; 
create_if_not_found: in boolean) 

return stock...,.summary_ptr; 
is separa te; 

Function: 

begin 

Searches portfolio denoted by folio_ptr for presence of stock_code 
the same as that given in buy_record. If the stock is found, a 
reference to the stock summary for that held stock is returned. 
If the stock is not found, the action to be taken depends on the value 
of the input parameter create_if_not_found. If true, a new stock 
summary is created, initialized, and added to the portfolio, and a 
reference to it is returned. If create_if_not_found is false, 
null is returned. 

-- statements to initalize this package, if needed, go here. 

null; 
end Portfolio_Mgr; -- End of package body. 

Club_ Portfolio specification 

pragma environment ("PrtMgr. spr", "TxtIo. spr", 
"StkTypCon.spr", "StkMktInf.spr"); 

package Club_Portfolio is 

subtype percent is integer range O .. 500; 
Used in winners, losers and 
non-movers procedures. See below 



function Print_club_valuation 
return dollars; 

Function: 
Prints total value of club's portfolio, 
based on current market prices. 

procedure Print_club_holdings; 

Function: 
For each held stock, prints: 
number of shares held, 
average per-share purchase price, 
current per-share price, 
current value of holdings in this stock. 

function Find_stoc~code( 
corporate_name: in long_string) 
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return stock~code_pair; Returns the standard stock code, 
-- if any, corresponding to input argument. 

Function: 
Prints as well as returns the stock code (abbreviation for stock 
and exchange where listed.) 

procedure Print_individual_stoc~summary( 
stoc~code: in stock_code_pair); -- Standard code for stock. 

Function: 
Prints summary info on held stock with given stock code 
total no. of shares held, this stock, current per-share price and 
current value of shares. Also, for each purchase of shares still 
held, prints: 
purchase date, no. of shares, per-share purchase price, 
and commission. 

procedure Print_shares_an~value_of_stock( 
stock_code: in stock_code_pair); 

Function: 
For the given stock_code, prints the number of held shares, 
current price per share, and total market value. 

procedure Print_average_cost( 
stock_code: in stoc~code_pair) ; 

Function: 
Prints, for the stock denoted by stoc~code, the average cost, 
including commissions, of all such stock now held. 

procedure Print_winners ( 
spread: in percent) ; 

Function: 

-- Percent deviation. 

Prints list of held stocks for each of which, based on latest 
market quotes, the club has a "paper" gain of spread percent 
or more over average purchase cost for that stock (including 
commission. ) 
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procedure Print_losers ( 
spread: in percent); -- Percent deviation. 

Ftmction: 
Analogous with Print_winners. 

procedure Print_non_movers( 
spread: in percent); -- Percent deviation. 

Ftmction: 
Lists stocks for which "paper" gain is less than spread. See 
description of Print_winners. 

procedure Enter_buy( 
purch_date: in date; 
stock_code: in stock_code_pair; 
num_shares: in natural; 
per_sh_price: in dollars; 
commission: in dollars); 

Ftmction: 
Records a buy transaction in club's portfolio. 
and provides confirmation copy of response, including 
error messages, if any. (Confirmation copy may also go 
to an archive file.) 

procedure Enter_sell ( 
sell_date: in date; 
stock_code: in stock_code_pair; 
num_shares: in natural; 
of_buy_date: in date; 
sell_commiss: in dollars); Selling commission is not 

recorded in portfolio, 

Ftmction: 

but used to indicate net gain or 
loss in confirmation copy. 

Records sale of shares bought on of_buy_date. Num_shares held 
for this buy date are deleted from the portfolio. A confirmation 
copy of this sell transaction is produced, indicating net gain 
or loss (and whether long- or short-term) and including error 
messages, if any. (Confirmation copy may also go to an archive 
file. ) 

Readers of Chapter 3 should note that this is the place where 
the declaration would go for our_portfolio, now appearing in 
the body part of this package; also, the specifications 
for Create_folio and Delete_folio would be placed 
here to revise this package for use with the tasks defined 
in Appendixes F and G. To complete this revision, delete the 
initialization section of the body part of this package. 
These insertions are shown as comments below. 

our_portfolio: portfolio_ptr ; Declares a variable of type 
portfolio_ptr which can hold 
a reference to a portfolio 
instance. 



function Create_folio ( 
portfolio_name: in long_string; 
check: out boolean) 

return portfolio_ptr; 

procedure Delete_folio( 
portfolio_name: in long_string; 
check: out boolean) ; 

end Club_Portfolio; 

Club_ Portfolio body 
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pragma environment ("ClbPrt. spr", "PrtMgr. spr", "Txtlo. spr", "StkTypCon. spr", 
"StkMktlnf. spr"); 

with Club_Portfolio, Portfolio_mgr, Stock_Mkt_lnfo, Text_lO, 
Stock_Types_And_Constants; 

package body Club_Portfolio is 

our_portfolio: portfolio_ptr; Declares a variable of type 
portfolio_ptr which can hold 
a reference to a portfolio 
instance. 

The above declaration would be moved to the specification part 
of this package to modify it for use with the tasks 
in Appendixes F and G. 

function Print_club_valuation 
return dollars 

is separate; _.- stub 

procedure Print_club_holdings is separate; -- stub 

function Fin~stoc~code( 
corporate_name: in long_string) 

return stoc~code_pair 
is separate; .-- stub 

-- calls on operation of stoc~Mkt_lnfo package 

procedure Print_individual_stock_summary( 
stock_code: in stoc~code_pair) 

is separate; .-- stub 

procedure Print_shares_and_value~of_stock( 
stock_code: in stoc~code_pair) 

is separate; ._- stub 

procedure Print_average_cost ( 
stock_code: in stoc~code_pair) 

is separate; ._- stub 

procedure Pr int_ winners ( 
spread: in percent) 

is separate; -- stub 
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procedure Print_losers ( 
spread: in percent} 

is separate; -- stub 

procedure Print_non_movers( 
spread: in percent} 

is separate; -- stub 

procedure Enter_buy( 
purch_date: in date; 
stock_code: in stoc~code_pair; 
mIDl_shares: in natural; 
per_sh_price: in dollars; 
commission: in dollars} 

is separate; -- stub 

procedure Enter_sell ( 
sell_date: in date; 
stock_code: in stoc~code_pair; 
num_shares: in natural; 
of_buy_date: in date; 
sell_commiss: in dollars) 

is separate; -- stub 

Insert body parts of Create_folio and Delete_folio here if 
revisions for use with tasks in Appendices F and G are made. 
These are shown as comments below. 

procedure Create_folio( 
portfolio_name: 
check: 

is separate; -- stub 

procedure Delete_folio ( 
portf olio_name: 
check: 

is separate; stub 

in long _string; 
out boolean) 

in long_string; 
ou t boolean) 

Local declarations (of this package) go here: 

package initialization 
begin 

our_portfolio : = Portfolio_Mgr. Create ("Twenty_cousins_clubAAAAAAAAAAA,,) ; 
Reference to a newly allocated 

-- portfolio instance, named 
-- Twenty_cousins_club assigned 
-- to our_portfolio. 

Above initialization section would be removed when recompiling to 
produce revisions for use with tasks defined in Appendices F and G. 

end Club_Portfolio; 
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pragma environment ("PrtMgr. bdr", "PurQueMgr. spr", "StkTypCon. spr", 
"StkMktlnf. spr") ; 

separate (Portfolio._Mgr) Prefix to indicate to the compiler 
that Portfolio_Mgr is the context 
in which the following function 

func ti on Create ( 

is 

folio_name: in long_string) 
return portfolio_ptr 

folio_ptr: portfolio_ptr; 
begin 

is to be compiled. 

Local reference variable. 

folio_ptr := new portfolio; Allocates a new portfolio 
instance and assigns a reference 
to folio_ptr. 

return folio_ptr; 
end Create; 

separate (Portfolio._Mgr) 

procedure Record_buy( 
folio_ptr: 
buy_info: 

is 
num_diff_stocks 
mark: 

begin 

: = folio_name; 
-- Name now assigned to this portfolio. 

Prefix to indicate to the compiler 
that Portfolio_Mgr is the context 
in which the following procedure 
is to be compiled. 

in portfolio_ptr; 
in purchase_record) 

integer renames folio_ptr.num_diff_stocks_held; 
stoc~summary_ptr; 

Determine, by a calIon the local function, 
Search_for_stoc~code, whether the new purchase is 
is for a held stock. If not held, assign a reference to 
its stock summary to m~k; if not held, create and initialize 
a new stock summary and assign a reference to it to mark. 

mark: = Search_for_stock_code (folio_ptr, 
buy_info.stoc~name, 
create_if_not_found => true); 
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-- Update the stock summary information. 

mark.avg_cost_per_share := (mark.avg_cost_per_share * 
dollars (mark. num_shares) 

+ buy_info.per_share_price * 
dollars (buy_info.num_shares) 

+ buy_info. commission) 

/ (dollars(mark.num_shares 
+ buy_info. num_shares)) ; 

mark.num_shares 

-- Now add new item to purchase history queue 
Add (buy_info, mark. purchase_history) ; 

end Record_buy; 

separate (Portfolio_Mgr) Prefix to indicate to the compiler 
that Portfolio_Mgr is the context 
in which the following procedure 
is to be compiled. 

procedure Record_sell ( 
folio_ptr: 
sell_info: 
history_underflow: 

in portfolio_ptr; 
in sale_record; 
out boolean) 

is 
num_diff_stocks: 
mark: 

integer renames folio_ptr.num_diff_stocks_held; 
stock_summary_ptr; 

begin 
Determine, by a calIon the local function, 
Search_for_stock_code, whether the new purchase is for a 
held stock such that the function will return a null 
reference value if the stock is not held. 

mark := Search_for_stoc~code(folio_ptr, 
sell_info. stock_name, 
create_if_not_found => false) ; 

Value returned indicates search outcome. 

if mark = null then No such stock held. 
raise Exceeds_holdings; Exception propagates to caller. 

elsif mark.num_shares < sell_info.nllmLshares then 
raise Exceeds_holdings; -- Don't have enough shares to sell. 

else 
Remove purchase history records (as many as needed) 
representing the holdings that must be sold) for which the 
of_buy_date matches that given in sell_info. If not enough 
stock held of that of_buy_date, raise Exceeds_holdings. 
If there are leftover shares in a purchase record, put the 
updated purchase_record back in the queue. 
Update values of nUllLshares and average_cost_per_sh 
in the stock_summary record. 
Coding to accomplish all this is not included here. 
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end if; 
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exception 
when Underflow ~ -- Raised in activation of 

-- Purchase_Queue_Mgr.Remove. 
history_underflow := true; 

end Record_sell; 

separate (PortfoliO_Mgr) 
function Search_for_stock_code( 

folio_ptr: in portfolio_ptr; 
buy_record: in purchase_record; 
create_if_not_found: in boolean) 

return stoc~summary_ptr; 

is 

Function: 
Searches portfolio denoted byfolio_ptr for presence of stock_code 
the same as that given in buy_record. If the stock is found, a 
reference to the stock summary for that held stock is returned. 
If the stock is not found, the action to be taken depends on the value 
of the input parameter create_if_not_found. If true, a new stock 
summary is created, initialized, and added to the portfolio, and a 
reference to it is returned. If create_if_not_found is false, 
null is returned. 

cursor : stock_summary_ptr; 
begin 

cursor := folio_ptr.stock_list; 
Sets cursor to head of stock 
summary list in portfolio. 
Empty portfolio. if cursor "" null then 

if create_if_not_found = true then 
Allocate a new stock summary with 

-- an initially empty purchase history 
-- and add it to the portfolio. 

: = new stock_summary; 

return folio_ptr.stock_list; 

else 
return null; 

end if; 
else 

Return reference to new stock summary. 

Return null reference. 

loop 
if cursor. stock_name = buy_record then 

return cursor; 

else 
cursor := cursor. next; 
if cursor = null then 

if create_if_not_found 

Found stock_summary. 
Return reference to existing 
stock summary. 

Advance one link in the chain. 
Last stock summary in portfolio. 

=. true then 
Allocate a new stock summary with 
an initially empty purchase history 
and add it to the end of the portfolio. 
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cursor.next :=new stoc~summary; 
return cursor. next; Return reference to 

new stock summary. 
else 

re turn null; 
end if; 

end if; 
end if; 

end loop; 

Return null reference. 

end if; 
end Search_for_stoc~code; 

separate (Portfolio_Mgr) 

procedure Stoc~list( 
folio_ptr: in 
num_stocks: out 
stocks: out 

is 
n: integer; 

portfolio_ptr; 
integer; 
stocks_held_ptr) 

cursor: stoc~summary_ptr; 
begin 
n:= folio_ptr.nllmLdiff_stocks_held; -- Get value from portfolio. 

if n = 0 
then 

num_stocks: = 0; 
stocks: = null; 

else 
stocks: = new stocks_held(num => n); 

Create an instance of type stocks_held 
-- whose arrays, name and nllmLshares, 
-- are of length n. 

cursor: = folio_ptr. stoc~list; 
Initial value of cursor points to 

-- first stock summary. 

for i in 1 .. n 
loop 

stocks. name (i) := cursor.stoc~name; 
stocks.nllmLshares(i) := cursor.nllmLshares; 

-- Fill ith slot in each array. 

cursor := cursor. next; 

end loop; 
end if; 

end Stoc~list; 

-- Advance the cursor. 

separate (PortfoliO_Mgr) 

folio_ptr: 
stock_code: 
num_shares: 
avg_cost: 

in portfolio_ptr; 
in stoc~code_pair; 
out integer; 
out dollars) 
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is 
cursor: stock_summary_ptr; 

begin 
cursor: = folio_ptr.stock_list; Initialize current_ptr 

to refer to first stock_summary 
in the portfolio. 

while cursor 1= null and then 
cursor. stock_name. stock_code 1= stoc~code loop 

cursor : = ClU'sor. next; - - Advance to next summary. 
end loop; 

if cursor = null then -- No such stock 
nwn_shares : = 0; 
avg_cost : = 0; 

else 
nwn_shares : = cursor. nwn_shares; 
avg_cost : = cursor. avg_cost_per_share; 
end if; 

end Shares_ancLavg_cost; 

Selected operation bodies for Club_Portfolio 

pragma environment ("ClbPrt. bdr", "PrtMgr. spr", "TxtIo. spr", "StkTypCon. spr", 
"StkMktInf. spr"); 

separate (Club_Portfolio) Prefix to indicate to the compiler 
that Club_Portfolio is the context 
in which the following function 
is to be compiled. 

function Print_club_valuation 
return dollars 
is 

-- local variable 
stocks: 
nwn: 

check: 
price: 

total_ value: 
code: 

declarations: 
stocks_helcLptr; 
integer; 
-- Values returned from calIon stock_list. 
boolean; 
dollars; 
-- values returned from calIon Find_stock_price 
dollars := 0; of the portfolio 
stock_ code_pair; 

no_price: 
begin 

exception; 

Portfolio_Mgr.stock_listCfolio_ptr => our_portfolio, 
nllmLstocks => nwn, 

for i in 1 .. nwn 
loop 

stocks => stocks); 

code: = stocks.name.stock_code(i); -- gets next stock_code_pair value 
nwn:= stocks.nwn_shares(i); -- gets next nwn_shares value 
Stock_Mkt_Irrfo.Find_stoc~price(code, price, check); 

-- get price per share of this stock. 
if not check then raise no_price; end if; 
total_value: = total_value + dollars (nwn) * price; 

end loop; 
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-- Put(total_value); this kind of put is unimplemented 
return total_value; 

exception 
when no_price => Put ("no price for"); 

Put(code); this kind of put is unimplemented. 
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Member _ Cps package, version 1 

pragma environment ("ClbPrt. spr" , "stkTypCon.spr"); 

package Member_Ops is 
use Club_Portfolio, stock_TYPes_And_Constants; 

function Print_club_valuation 
return dollars; 

Function: 
Prints total value of club's portfolio, 
based on current market prices. 

procedure Print_club_holdings; 

Function: 
For each held stock, prints: 
number of shares held, 
average per-share purchase price, 
current per-share price, 
current value of holdings in this stock. 

function Find_stock_code( 
corporate_name: in long_string) 

return stock_code_pair; Returns the standard stock code, if any, 
-- corresponding to the input argument. 

Function: 
Prints as well as returns the stock code (abbreviation for stock 
and exchange where listed.) 

procedure Print_individual_stock_summary( 
stock_code: in stock_code_pair); -- standard code for stock 

Function: 
Prints slunmary info on held stock with given stock code 
total no. of shares held, this stock, current per-share price and 
current value of shares. Also, for each purchase of shares still 
held, prints: 

purchase date, no. of shares, per-share purchase price, 
and commission. 

procedure Print_shares_andLvalue_of_stock( 
stock_code: in stock_code_pair) ; 

Function: 
For the given stock_code, prints the number of held shares, 
current price per share, and total market value. 
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procedure Print_average_cost( 
stoc~code: in stoc~code_pair); 

Function: 
Prints, for the stock denoted by stock_code, the average cost, 
including commissions, of all such stock now held. 

procedure Print_winners ( 
spread: in percent) ; -- Percentage spread. 

Prints list of held stocks for each of which, based on latest 
market quotes, the club has a "paper" gain of spread percent 
or more over average purchase cost for that stock (including 
commission. ) 

procedure Print_losers ( 
spread: in percent) ; -- Percentage spread. 

Function: 
Analogous with Print_winners. 

procedure Print_nonLmovers( 
spread: in percent); 

Function: 

Percentage spread. 

Lists stocks for which "paper" gain is less than spread. See 
description of Print_winners. 

end Member _ Ops; 

Member _ Ops body part, version 1 

package body Member_Ops is 

-- The body of each subprogram declaration given here is a call to 
-- the corresponding procedure in Club_Portfolio. 

function Print_club_valuation 
return dollars 
is begin return Club_Portfolio.Print_club_valuation(); end; 

procedure Print_club_holdings 
is begin Club_Portfolio. Print_club_holdings; end; 

function Fin~stoc~code( 
corporate_name: in long_string) 

return stoc~code_pair 
is begin return Club_Portfolio.Fin~stoc~code( 

corporate_name); end; 

procedure Print_individual_stoc~summary( 
stoc~code: in stoc~code_pair) 

is begin Club_Portfolio.Print_individual_stoc~summary( 
stock_code) ; end; 
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stock_code: in stock_code_pair) 
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is begin Club_Portfolio. Print_shares_and_value_of_stock ( 
stock_code) ; end; 

procedure Print_average_cost( 
stoc~code: in stock_code_pair) 

is begin Club_Portfolio. Print_average_cost( 
stock_code); end; 

procedure Print_winners ( 
spread: in percent) 

is begin Club_Portfolio. Print_winners ( 
spread) ; end; 

procedure Print_losers ( 
spread: in percent) 

is begin Club_Portfolio. Print_losers ( 
spread); end; 

procedure Print_non_movers( 
spread: in percent) 

is begin Club_Portfolio. Print_non_movers( 
spread); end; 

-- There are no local declarations here 
-- and no initialization statements are required either. 

end Member_Ops; 

Member _ Ops, version 2 
pragma environment("ClbPrt.spr", "stkTypCon.spr"); 

package Member_Ops is 

The operations of this package are identical with those 
-- like-named operations in the Club_Portfolio package. 
-- Explanations of these functions are given in that package. 

function Print_clllb_valuation 
return dollars 
renames Club_Portfolio. Print_club_valuation; 

procedure Print_club_holdings 
renames Club_Portfolio. Print_club_holdings; 

function Find_stoc~code( 
corporate_name: in long_string) 

return stock_code_pair 
renames Club_Portfolio.Fin~stoc~code; 

procedure Print_individual_stock_sununary( 
stoc~code: in stoc~code_pair) -- Standard code for stock. 

renames Club_Portfolio.Print_individual_stoc~summary; 
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procedure Print_shares_andlvalue_of_stock( 
stock_code: in stock_code_pair) 

renames Club_Portfolio. Print_shares_andlvalue_of_stock; 

procedure Print_average_cost( 
stock_code: in stoc~code_pair) 

renames Club_Portfolio. Print_average_cost; 

procedure Print_winners ( 
spread: in percent) -- TYPe percent declared in Club_Portfolio. 

renames Club_Portfolio. Print_winners; 

procedure Print_losers ( 
spread: in percent) 

renames Club_Portfolio. Print_losers; 

procedure Print_non_movers( 
spread: in percent) 

renames Club_Portfolio.Print_no~movers; 

end Member _ Ops; -- There is no package body in this case. 



Appendix F 

Roster _ Types_And_ Constants package 
may be used with either Figure 2-5 or Figure 3-2 

subtype string _.of30 is string (1. .30) ; 
type officers is (President, Vice_president, Secretary, 

Treasurer, Member); 
Example of an enumeration type definition. 

type member_record is 

string_of30; 
officers; 

record 
member_name: 
title: 
soc_sec_no: integer range 000_00_0001 .. 99_999_9999; 

Underscores within an integer literal are 
-- are ignored by the Ada compiler. 

end record; 

mrucnUllLmembers: constant integer := 30; 

Membership_Roster (owner) package 
may be used with either Figure 2-5 or Figure 3-2 

pragma environment ("RosTypCon. spr", "TxtIo. spr") ; 

package Membership_Roster is 

type roster is private; -- See definition below. 

procedure Lookup_member ( 
member_name: in string_of30; 
member_info: out member_record; 
check: out boolean); 

Function: 
If a member_record is found whose name component matches 
that of the input argument, member_name, then that 
member_record is assigned to the output parameter, 
member_info, and check is set true; 
check is set false if no match is found. 
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procedure List_of_members{ 
names_only: in boolean:= true; 
check: out boolean) ; 

Function: 
When the input argument matching names_only is true, 
prints the full list of the member names in alphabetical order. 
When the names_only value is false, prints the full member_record 
for each member, in alphabetical order by member name. 

Requests for membership roster update 

my_name: 
new_member_name: 
new_member _ inf 0: 

check: 

in string_of30; 
in string_of30; 
out member_record; 
out boolean) ; 

Function: 
If the value of my_name matches the name of the secretary, 
if the roster is not already full, and 
if the value of new_member_name is not the same as the 
name component in any current member's record, a new 
member_record is added to the roster with the value of 
new_member_info. If successful, check is set true, else 
check is set false upon return. 

procedure Update_member ( 
MY_name: in string_of30; 
old_member_name: in string_of30; 
old_member_info: out member_record; 
check: out boolean) ; 

Function: 
If the value of my_name matches the name of the secretary, 
and if the value of old_member_name is the same as the 
name component in some current member's record, that record 
is replaced in the roster with a record whose value is that of 
new_member_info. If successful, check is set true, else 
check is set false upon return. 

procedure Delete_member ( 
my_name: in string_of30; 
member_name: in string_of30; 
check: out boolean); 

private 

Function: 
If the value of my_name matches the name of the secretary, 
and if the value of member_name is the same as the 
name component in some current member's record, that record 
is deleted from the roster. If successful, check is 
set true, else check is set false upon return. 

type roster is array (1 .. M~num_members) of member_record; 

An instance of a roster is (assumed to be) instantiated in the 
body part of this package. 
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end Membership_Roster; 

Roster_Server task 
for use with the Figure 2-5 structure 

task Roster_Server is 

Title queries 

entry IS_President( 
member_name: in string_of30; 
check: out boolean) ; 

Function: 

The specification part for 
the Roster_Server task referred to 
in Figure 3-1 

Calls Membership_Roster.Lookup_member to obtain 
member's record. 
Sets check true if member_name matches that of a member 
whose title is President, else returns with check 
set to false. 

entry Is_Vice_president( 
member_name: in string_of30; 
check: out boolean); 

Function: 
Calls Membership_Roster.Lookup_member to obtain 
member's record. 
Sets check true if member name matches that of a member 
whose title is Vice-president, else returns with check 
set to false. 

entry Is_Treasurer( 
member_name: in string_of30; 
check: out boolean) ; 

Function: 
Calls Membership_Roster.Lookup_member to obtain 
member's record. 
Sets check true if member_name matches that of a member 
whose title is Treasurer, else returns with check 
set to false. 

entry Is_Secretary( 
member_name: in string_of30; 
check: out boolean) ; 

Function: 
Calls Membership_Roster. Lookup_member to obtain 
member's record. 
Sets check true if member_name matches that of a member 
whose title is Secretary, else returns with check 
set to false. 
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General queries to the roster. 

entry Lookup_member ( 
member_name: in string_of30; 
member_info: out member_record; 
check: out boolean); 

Function: 
Calls Membership_Roster.Lookup_member to acquire copy 
of info on a member and sets check true if Lookup 
succeeds. Returns with check set to false if 
Lookup call "fails". 

entry List_of_members{ 
names_only: in boolean:= true; 
check: out boolean) ; 

Function: 
Calls Membership_Roster. List_of_members to print the 
membership roster. If names_only is false, the full 
member_record is printed for each member; 
otherwise, only member names are printed. 
Returns with check set to false if roster is empty; 
else returns with check set to true. 

Requests for membership roster update 

entry Add_new_member( 
my_name: 
new_member_name: 
new_member _ inf 0: 

check: 

Function: 

in string_of30; 
in string_of30; 
out member_record; 
out boolean) ; 

Calls Membership_Roster.AddLnew_member to insert info on 
a member into the membership roster. 
Returns with check false if Add_new_member call "fails"; 
else returns with check set to true. 
(Can fail if my_name does not match with the name of the 
of the Secretary, or if there is already a member of the 
given new_member_name in the roster, or if the roster is 
already full. ) 

entry Update_member ( 
my_name: 
old_member _name: 
01 d_member _ inf 0: 
check: 

Function: 

in string_of30; 
in string_of30; 
out member_record; 
out boolean) ; 

Calls Membership_Roster .. Update_rnember to modify info on an. 
a current ("old") member in the membership roster. 
Returns with check false if Update_member call "fails"; 
else returns with check set to true. 
(Can fail if my_name does not match with the name of the 
of the Secretary or if there is no such member of the 
given old_member_name in the roster.) 



entry Delete_member ( 
my_name: 
member_name: 
check: 

Function: 

in string_of30; 
in string_of30; 
out boolean) ; 
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Calls Membership_Roster.Delete_member to delete all info on 
a current member in the membership roster. 
Returns with check false if Delete member call "fails"· 
else returns with check set to tru~. ' 
(Can fail if there isn't already a member of the given 

member_name in the roster.) 

end Roster_Server; 

Portfolio_Server task for use with the Figure 2-5 structure 

task Portfolio_Server is 

Portfolio queries 

entry Print_club_valuation( 
value: out dollars); 

Function: 

The specification part for 
the Portfolio_Server task referred to 
in Figure 3-1 

Calls the corresponding operation of Club_Portfolio to 
print and "return" total value of portfolio instance, 
based on current market prices. Note: in Ada, an entry 
call may not implicitly return a value. 
The value must be returned explicitly, as an in out 
or out parameter of the entry. 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Find_stock_code( 
corporate_name: in long_string; 
stock.,.code: out stock_code_pair) ; 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Print_individual_stock.,.summary( 
stock.,.code: in stock_code_pair); 

Func;tion: 
Calls the corresponding operation in Club_Portfolio. 
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entry Print_shares_an~value_of_stock( 
stock_code: in stock_code_pair); 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Print_average_cost( 
stoc~code: in stock_code_pair); 

Function: 
Calls corresponding operation in Club_Portfolio. 

entry Print_winners ( 
spread: in percent); 

Function: 

-- Percentage spread. 

Calls the corresponding operation in Club_Portfolio. 

entry Print_losers ( 
spread: in percent); -- Percentage spread. 

Function: 
Analogous with Print_winners. 

entry Print_no~movers( 
spread: in percent); -- Percentage spread. 

Function: 
Calls the corresponding operation in Club_Portfolio. 

Note: All the following entries involve task calls on Roster_Server. 
The individual membership Roster instance referenced 
indirectly through Roster_Server is assumed to be created 
upon initialization of the Membership_Roster package. 

Portfolio update requests 

entry Enter_buy ( 
my_name: 
unauthorized: 
purch_date: 
stoc~code: 
num_shares: 
per_slLprice: 
commission: 

Function: 

in string_of30; 
out boolean; 
in date; 
in stoc~code_pair; 
in natural; 
in dollars; 
in dollars); 

Determines if member whose name is value of my_name 
is authorized to update the Roster. If not, returns 
with value of unauthorized still set to true. If yes, sets 
unauthorized to false and then calls the corresponding 
operation in Club_Portfolio. 



entry Enter_sell ( 
in 
out 
in 

string_of30; 
boolean; 
date; 

in stock_code_pair; 
in natural; 
in 
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my_name: 
unauthorized: 
sell_date: 
stock....code: 
num_shares: 
of_buy_date: 
sell_commiss: in 

date; 
dollars) ; Selling commission is not 

recorded in Roster, 

Function: 

but used to indicate net gain or 
loss in confirmation copy. 

Determines if person whose name is value of my_name 
is authorized to update the Roster. If not, returns 
with value of unauthorized still set to true. If yes, sets 
unauthorized to false and then calls the corresponding 
operation in Club_Portfolio. 

Portfolio create and delete requests 

entry President_create_folio( 
my_name: in string_of30; 
portfolio_name: in long_string; 
unauthorized: out boolean) ; 

Function: 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club President. 
If not, returns with value of unauthorized still true. 
If yes, sets unauthorized to false and then returns after 
recording the portfolio name supplied. creation will not 
actually be attempted until a sequence of three creation 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 

entry Vice_president_create_folio( 
my_name: in string_of30; 
portfolio_name: in long_string; 
unauthorized: out boolean); 

Function: 
Request at this entry accepted if and only if the 
most recently accepted entry call was for 
President_create_folio, and that call was authorized. 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club Vice-president. 
If not, returns with value of unauthorized set to true. 
If yes, sets unauthorized to false and then returns after 
recording the portfolio name supplied. creation will not 
actually be attempted until a sequence of three creation 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 
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entry Treasurer_create_folio( 
my_name: 
portf 01 io_name: 
unauthorized: 
check: 

Function: 

in string_of30; 
in long_string; 
out boolean; 
out boolean) ; 

-- If set true, portfolio has been created. 

Request at this entry accepted if and only if the two 
most recently accepted entry calls were for 
President_create_folio and Vice_president_create_folio 
in that order, and if both were authorized calls. 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club Treasurer. 
If not, returns with value of unauthorized still true. 
If yes, sets unauthorized to false. The three supplied 
portfolio names are checked. If all are not identical, 
a return is executed (with check set to false.) 
If they do match, then the Create_folio operation in 
Club_Portfolio is called. If this call is successful 
(new portfolio created), then check is set true; return to 
Treasurer_create_folio's caller is then executed. 

entry President_delete_folio{ 
my_name: in string_of30; 
portfolio_name: in long_string; 
unauthorized: out boolean) ; 

Function: 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club President. 
If not, returns with value of unauthorized set to true. 
If yes, sets unauthorized to false and then returns after 
recording the portfolio name supplied. Deletion will not 
actually be attempted until a sequence of three deletion 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 

entry Vice_president_delete_folio{ 
my_name: in string_of30; 
portfolio_name: in long_string; 
unauthorized: out boolean); 

Function: 
Request at this entry accepted if and only if the 
most recently accepted entry call was for 
President_delete_folio, and that call was authorized. 
Determines if member whose name is value of my_name 
is the current club vice-president. 
If not, returns with value of unauthorized set to true. 
If yes, sets unauthorized to false and then returns after 
recording the portfolio name supplied. Deletion will not 
actually be attempted until a sequence of three deletion 
requests for the same portfolio name has been received, one 
each from the three club officers: President, vice-president 
and treasurer. 
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entry Treasurer_delete_folio( 
my_name: 
portf olio_name: 
lUlauthor ized: 
check: 

in string_of30; 
in long_string; 
out boolean; 
out boolean) ; 

-- If set true, portfolio has been deleted. 

Function: 
Request at this entry accepted if and only if the two 
most recently accepted entry calls were for 
President_delete_folio and Vice_president_delete_folio 
in that order, and if both were authorized calls. 
Calls Roster_Server to determine if member whose name 
is value of my_name is the current club Treasurer. 
If not, returns with value of lUlauthorized set to true. 
If yes, sets lUlauthorized to false. The three supplied 
portfolio names are checked. If all are not identical, 
a return is executed (with check still set to false.) 
If they do match, then the Delete_folio operation in 
Club_Portfolio is called. If this call is successful 
(portfolio deleted), then check is set true; return to 
Treasurer_delete_folio's caller is then executed. 

Membership Roster queries 

entry Lookup_member( 
member_name: in string_of30; 
member_info: out member_record; 
check: out boolean) ; 

Function: 
Calls Roster_Server.Lookup_member to acquire copy of 
info on a member. Returns with check set to false, 
if lookup call "fails" else with check set to true. 

entry List_of_members( 
names_only: in boolean: = true; 
check: out boolean) ; 

Function: 
Calls Roster_Server.List_of_members to print the membership 
Roster. If names_only is false, the full member_record 
is printed for each member and returns with check 
set to true; otherwise, only member names 
are printed. Returns with check false Portfolio is empty. 

Membership Roster updates 

entry Add_new_member( 
my_name: 
new_member_name: 
new_member_info: 
check:. 

in string_of30; 
in string_of30; 
out member_record; 
out boolean) ; 
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Function: 
calls Roster_Server.Add_new_member to insert info on 
a member into the membership Roster. 
Returns with check false if Add_new_member call "fails"; 
else returns with check set to true. 
(Can fail if my_name does not match with the name of the 
of the Secretary or if there is already a member of the 
given new_member_name in the Roster, or if the Roster is 
already full.) 

entry Update_member ( 
my_name: 
old_member_name: 
old_member_info: 
check: 

Function: 

in string_of30; 
in string_of30; 
out member_record; 
out boolean) ; 

Calls Roster_Server.Update_member to modify info on an 
a current ("old") member in the membership Roster. 
Returns with check false if Update_call "fails"; 
else returns with check set to true. 
(Can fail if my_name does not match with the name of the 
of the Secretary or if there is no such member of the 
given old_member_name in the Roster.) 

entry Delete_member ( 
my_name: in string_of30; 
member_name: in string_of30; 
check: out boolean) ; 

Function: 
calls Roster_Server.Delete_member to delete all info on 
a current member in the membership Roster. 
Returns with check false if Delete_call "fails"; 
else returns with check set to true. 
(Can fail if there isn't already a member of the given 
member_name in the Roster.) 

end Portfolio_Server; 

Portfolio_ Server body part 

pragma environment ("TskMst2-5. spr", "Txtlo. spr", "MemRos. spr", 
"RosTypCon.spr", "ClbPrt.spr", "StkTypCon.spr"); 

separate (Task_Master) Prefix to indicate to the compiler 
that Tas~Master is the context 

task body Portfolio_Server is 

check_boolean: boolean; 

in which the following task 
is to be compiled. 

Used in Create and Delete 
accepts. 
Used in predicates 



begin 

loop 

select 

Accepts for portfolio queries 

or 

or 

or 

or 

accept Print_club_valuation( 
value: out dollars) 

do 
value :=Club_Portfolio.Print_club_valuation(); 

end Print_club_valuation; 

accept Print_club_holdings 
do 

Club_Portfolio. Print_club_holdings; 
end Print_club_holdings; 

accept Find_stoc~code( 
corporate_name: in long_string; 
stock_code: out stock_code_pair) 

do 
stock...,code := 
Club_Portfolio.Find_stock_code(corporate_name); 

end Find_stock_code; 

accept Print_individual_stock_summary( 
stock_code: in stock_code_pair) 

do 
Club_Portfolio.Print_individual_stoc~summary( 

stock_code) ; 
end Print_individual_stock_summary; 

do 
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Club_Portfolio. Print_shares_and_value_of_stock(stock_code ); 
end Print_shares_and_ value_of_stock; 

or 

accept Print_average_cost( 
stoc~code: in stock_code_pair) 

do 
Club_Portfolio.Print_average_cost(stock_code); 

end Print_average_cost; 
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or 

accept Print_winners ( 
spread: in percent) -- Percentage spread. 

do 
Club_Portfolio.Print_winners(spread); 

end Print_winners; 

or 

accept Print_losers ( 

or 

or 

spread: in percent) -- Percentage spread. 

do 
Club_Portfolio.Print_losers(spread); 

end Print_losers; 

accept Print_non_movers( 
spread: in percent) 

do 
-- Percentage spread. 

Club_Portfolio. Print_non_movers (spread) ; 
end Print_non_movers; 

Accepts for Roster update requests 

or 

accept Enter_buy ( 

do 

my_name: 
unauthorized: 
purch_date: 
stock_code: 
nUIILshares: 
per_sh_price: 
commission: 

in string_of30; 
out boolean; 
in date; 
in stock_code_pair; 
in natural; 
in dollars; 
in dollars) 

Roster_server. Is_Treasurer (my_name, check-boolean) ; 
if check_boolean then 

Club_Portfolio. Enter_buy (purch_date, 
stock_code, 
nUIILshares, 
per_sh_price, 
commission) ; 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end Enter_buy; 

accept Enter_sell ( 
my_name: 
unauthorized: 
sell_date: 
stock_code: 
num_shares: 
of_buy_date: 
sell_commiss: 

in string_of30; 
out boolean; 
in date; 
in stock-code_pair; 
in natural; 
in date; 
in dollars) 



or 
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do 
Roster_Server.ls_Treasurer(my_name,check_boolean); 
if chec~boolean then 

Club_Portfolio. Enter_sell (sell_date, 
stock_code, 
mUILshares, 
of_buy_date, 
sell_commiss); 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end Enter_sell; 

Roster create and delete requests 

accept President_create_folio( 
my_name: in string_of30; 
portfolio_name: in string_of30; 
unauthorized: out boolean) 

do 
Roster_Server. Is_President(my_name,check_boolean); 
if check_boolean then 

local_name_l : = portfolio_name; Save copy of portfolio_name 
for checking on subsequent 
accepts. 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end President_create_folio; 

-- Sequel of two accepts begins here. 

accept Vice_president_create_folio( 
my_name: in string_of30; 
portfolio_name: in string_of30; 
unauthorized: out boolean) 

do 
Roster_Server. Is_Vice_president(my_name,chec~boolean); 
if check_boolean and local_name_l = portfolio_name then 

10cal_name_2 :=portfolio_name; Save copy of portfolio_name 
for checking on subsequent 
accept. 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end Vice_president_create_folio; 
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or 

accept Treasurer_create_folio( 
my_name: 
portfolio_name: 
unauthorized: 
check: 

in string_of30; 
in string_of30; 
out boolean; 
out boolean) 

-- If set true, portfolio has been created. 
do 
Roster_Server.Is_Treasurer(my_name,chec~boolean); 
if check_boolean 

and local_name_l = portfolio_name 
and local_name_2 = portfolio_name then 

unauthorized: = false; 
Club_Portfolio. Create_folio (portfolio_name, check); 

Portfolio is created if 
check is returned with 

-- the value, true. 
else 

unauthorized := true; 
end if; 

end Treasurer_Create_folio; 

End of sequel (end chain of three accepts). 

accept President_delete_folio( 
my_name: in string_of30; 
portfolio_name: in string_of30; 
unauthorized: out boolean) 

do 
Roster_Server.Is_President(my_name,chec~boolean); 
if check_boolean then 

local_name_l :=portfolio_name; Save copy of portfolio_name 
for checking on subsequent 
accepts. 

unauthorized := false; 
else 

unauthorized := true; 
end if; 

end President_delete_folio; 

-- Sequel of two accepts begins here. 

accept Vice_president_delete_folio( 
my_name: in string_of30; 
portfolio_name: in string_of30; 
unauthorized: out boolean) 

do 
Roster_Server.Is_Vice_president(my_name,chec~boolean); 
if chec~boolean 

and local_name_l = portfolio_name 
local_name_2 :=portfolio_name; 

unauthorized := false; 
else 

unauthorized: = true; 
end if; 

end Vice_president_delete_folio; 

then 
Save copy of portfolio_name 
for checking on subsequent 
accept. 
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accept Treasurer_delete_folio( 
my_name: 
portfolio_name: 
unauthorized: 
check: 

in string_of30; 
in string_of30; 
out boolean; 
out boolean) 

-- If set true, portfolio has been deleted. 
do 

Roster_Server.Is_Treasurer(my_name,check_boolean); 
if check_boolean 

or 

and local_name_l = portfolio_name 
and local_name_2 = portfolio_name then 

unauthorized := false; 
Club_Portfolio. Delete_folio (portfolio_name, check); 

Portfolio is deleted if 
check is returned with 

-- the value, true. 
else 

unauthorized := true; 
end if; 
end Treasurer_delete_folio; 

End of sequel (end chain of three accepts). 

Membership Roster query requests 

or 

or 

accept Lookup_member ( 

do 

member_name: in string_of30; 
member_info: out member_record; 
check: out boolean) 

Roster_Server. Lookup_member (member_name, 
member_info, check); 

end Lookup_member; 

accept List_of_members( 
names_only: in boolean:= true; 
check: out boolean) 

do 
Roster_Server. List_of_members (names_only, check); 

end List_of_members; 
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Membership Roster updates 

or 

or 

do 

my_name: 
new_member _name: 
new_member_info: 
check: 

in string_of30; 
in string _of30; 
out member_record; 
out boolean) 

Roster_Server. AddLnew_member (my_name, 
new_member_name, 
new_member _ inf 0, 

check) ; 
end AddLnew_member; 

accept Update_member ( 
my_name: 
old_member_name: 
old_member _ inf 0: 

check: 
do 

in string _of30; 
in string_of30; 
out member_record; 
out boolean) 

Roster_Server. Update_member (my_name, 
old_member _name, 
01 d_member _ inf 0, 
check) ; 

end Update_member; 

accept Delete_member ( 
my_name: in 
member_name: in 

string_of30; 
string_of30; 

check: out boolean) 
do 

Roster_Server. Delete_member (my_name, 
member_name, 
check) ; 

end Delete_member; 

end select; 

end loop; 

end Portfolio_Server; 



Roster_Server task for use with the Figure 3-2 structure 

task Roster_Server is The specification part for 
the Roster_Server task referred to 
in Figure 3-1 

General queries to the roster. 

en try Lookup_member ( 
member_name: in long_string; 
member_info: out member_record; 
check: out boolean) ; 

Function: 
Calls Membership_Roster.Lookup_member to acquire copy 
for info on a member and sets check true if Lookup 
succeeds. Returns with check set to false if 
Lookup call "fails", else returns with check set to true. 

entry List_of_members( 
names_only: in boolean:= true; 
check: out boolean) ; 

Function: 
Calls Membership_Roster. List_of_members to print the 
membership roster. If names_only is false, the full 
member_record is printed for each member; 
otherwise, only member names are printed. 
Returns with check set to false if roster is empty; 
else returns with check set to true. 

Requests for membership roster update 

entry Add_new_member( 
new_member _name: 
new_member _ inf 0: 

check: 

Function: 

in long_string; 
out member_record; 
out boolean) ; 

Calls Membership_Roster.Add_new_member to insert info on 
a member into the membership roster. 
Returns with check false if Add_new_member call "fails"; 
else returns with check set to true. 
(Can fail if there is already a member for the given 
new_member_name in the roster, or if the roster is 
already full. ) 

357 
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entry Update_member ( 
old_member _name: 
old_member_info: 
check: 

Ftmction: 

in long _string; 
out member_record; 
out boolean) ; 

Calls Membership_Roster.Update_member to modify info on an 
a current ("old") member in the membership roster. 
Returns with check false if Update_member call "fails"; 
else returns with check set to true. 
(Fails if there is no such member for the given 
old_member_name in the roster.) 

entry Delete_member ( 
member_name: in long_string; 
check: out boolean) ; 

Ftmction: 
Calls Membership_Roster.Delete_member to delete all info on 
a current member in the membership roster. 
Returns with check false if Delete_member call "fails"; 
else returns with check set to true. 
(Fails if there isn't already a member for the given 

member_name in the roster.) 

end Roster_server; 

Portfolio_Server task 
for use with the Figure 3-2 structure 

task Portfolio_Server is 

Portfolio queries: 

entry Print_club_valuation( 
value: out dollars) ; 

Ftmction: 

The specification part for 
the Portfolio_Server task referred to 
in Figure 3-1 

Calls the corresponding operation for Club_Portfolio to 
print and "return" total value for portfolio instance, 
based on current market prices. Note: in Ada, an entry 
call may not implicitly return a value. 
The value must be returned explicitly, as an in out 
or out parameter for the entry. 

Ftmction: 
Calls the corresponding operation in Club_Portfolio. 

entry Find_stock_code( 
corporate_name: in long_string; 
stock_code: out stock_code_pair); 

Ftmction: 
Calls the corresponding operation in Club_Portfolio. 
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entry Print_individual_stoc~summary( 
stock_code: in stock_code_pair) ; 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Print_shares_and_value_of_stock( 
stock_code: in stock_code_pair) ; 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Print_average_cost( 
stock_code: in stock_code_pair); 

Function: 
Calls corresponding operation in Club_Portfolio. 

entry Print_winners ( 
spread: in percent) ; -- percentage spread 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Print_losers ( 
spread: in percent) ; -- percentage spread 

Function: 
Analogous with Print_winners. 

entry Print_non_movers( 
spread: in percent) ; -- percentage spread 

Function: 
Calls the corresponding operation in Club_Portfolio. 

Portfolio update requests: 

entry Enter_buy ( 
purch_date: in date; 
stock_code: in stoc~code_pair; 
num_shares: in natural; 
per_sh_price: in dollars; 
commission: in dollars); 

Function: 
Calls the corresponding operation in Club_Portfolio. 

entry Enter_sell ( 
sell_date: in date; 
stock_code: in stoc~code_pair; 
num_shares: in natural; 
of_buy_date: in date; 
sell_commiss: in dollars); 

Function: 

Selling commission is not 
recorded in portfolio, 
but used to indicate net gain or 
loss in confirmation copy. 

Calls the corresponding operation in Club_Portfolio. 
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-- Portfolio create and delete requests: 

entry President_create_folio( 
portfolio_name: in long_string; 
check_point: out boolean) ; 

Function: 
Returns after recording supplied value for portfolio_name 
and setting the value for chec~point to true. 
Creation will not actually be attempted until a sequence 
for three creation requests for the same portfolio_name 
been received, one each from the three officers: President, 
Vice-president, and Treasurer. 

entry Vice_president_create_folio( 
portfolio_name: in long_string; 
check_point: out boolean) ; 

Function: 
Request at this entry accepted if and only if the 
most recently accepted entry call was for 
President_create_folio. 
Returns after recording supplied value for portfolio_name 
and setting the value for check_point to true. 
Creation will not actually be attempted until a sequence 
for three creation requests for the same portfolio_name 
been received, one each from the three officers: President, 
Vice-president, and Treasurer. 

entry Treasurer_create_folio( 
portfolio_name: in long_string; 
check: out boolean) ; 

-- If set true, portfolio has been created. 

Function: 
Request at this entry accepted if and only if the two 
most recently accepted entry calls were for 
President_create_folio and Vice_president_create_folio 
in that order. The three supplied portfolio names 
are now checked. If all are not identical, 
a return is executed (with check set to false.) 
If they do match, then the Create_folio operation in 
Club Portfolio is called. If this call is successful 
(new-portfolio created), then check is set true; return to 
'l'reasurer_create_folio's caller is. then executed. 

entry President_delete_folio( 
portfolio_name: in long_string; 
check_point: out boolean) ; 

Function: 
Returns after recording supplied value for portfolio_name 
and setting the value for chec~point to true. 
Deletion will not actually be attempted until a sequence 
for three deletion requests for the same portfolio_name 
been received, one each from the three of'ficers: President, 
Vice-president, and Treasurer. 



entry Vice_president_delete_folio( 
portfolio_name: in long_string; 
check....point: out boolean) ; 

Function: 
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Request at this entry accepted if and only if the 
most recently accepted entry call was for 
President_delete_folio. 
Returns after recording supplied value for portfolio_name 
and setting the value for check_point to true. 
Deletion will not actually be attempted until a sequence 
for three deletion requests for the same portfolio_name 
been received, one each from the three officers: President, 
Vice-president, and Treasurer. 

entry Treasurer_delete_folio( 
portfolio_name: in long_string; 
check: out boolean) ; 

-- If set true, portfolio has been created. 

Function: 
Request at this entry accepted if and only if the two 
most recently accepted entry calls were for 
President_delete_folio and Vice_president_delete_folio 
in <that order. The three supplied portfolio names 
are now checked. If all are not identical, 
a return is executed (with check set to false.) 
If they do match, then the Delete_folio operation in 
Club_Portfolio is called. If this call is successful 
(portfolio deleted), then check is set true; return to 
Treasurer_delete_folio's caller is then executed. 

end Portfolio_Server; 

Portfolio_ Server 

body part 

pragma environment ("TskMst3-2. spr" , "ClbPrt.spr", "StkTypCon.spr"); 

separate (Task_Master) Prefix to indicate to the compiler 
that Task....Master is the context 
in which the following task 
is to be compiled. 

task body Portfolio_Server is 

local_name_l, local_name_2: long_string; -- Used in Create and Delete 
-- accepts. 
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begin 

loop 

select 

Accepts for portfolio queries 

or 

or 

or 

or 

or 

or 

accept Print_club_valuation( 
value: out dollars) 

do 
value := Club_Portfolio. Print_club_valuation() ; 

end Print_club_valuation; 

accept Print_club_holdings 
do 

Club_Portfolio. Print_club_holdings; 
end Print_club_holdings; 

accept Find_stock_code( 
corporate_name: in long_string; 
stock_code: out stock_code_pair) 

do 
stock_code := 
Club_Portfolio. Find_stock_code (corporate_name) ; 

end Find_stoc~code; 

accept Print_individual_stoc~summary( 
stock_code: in stock_code_pair) 

do 
Club_Portfolio.Print_individual_stoc~summary( 

stock_code) ; 
end Print_individual_stock_summary; 

accept Print_shares_and_value_of_stock( 
stock_code: in stock_code_pair) 

do 
Club_Portfolio. Print_shares_and-value_of_stock(stock_code) ; 

end Print_shares_and_value_of_stock; 

accept Print_average_cost( 
stock_code: in stock_code_pair) 

do 
Club_Portfolio. Print_average_cost (stock_code) ; 

end Print_average_cost; 

accept Print_winners ( 
spread: in percent) -- percentage spread 



or 

or 

do 
Club_Portfolio.Print_winners(spread); 

end Print_winners; 

accept Print_losers ( 
spread: in percent) 

do 
-- percentage spread 

Club_Portfolio. Print_losers (spread) ; 
end Print_losers; 

accept Print_no~movers( 
spread: in percent) 

do 
-- percentage spread 

Club_Portfolio.Print_no~movers(spread) ; 
end Print_no~movers; 

or 

Accepts for portfolio update requests 

or 

or 

accept Enter_buy ( 

do 

purch_date: in date; 
stock_code: in stock_code_pair; 
nUl1Lshares: in natural; 
per_shLprice: in dollars; 
commission: in dollars) 

Club_Portfolio. Enter_buy (purch_date, 
stock....code, 
nUl1Lshares, 
per _sh_pr i ce, 
commission) ; 

accept Enter_sell ( 

do 

sell_date: in date; 
stock....code: in stock....code_pair; 
nUl1Lshares: in natural; 
of_buy_date: in date; 
sell_connniss: in dollars) 

Club_Portfolio. Enter_sell (sell_date, 
stock_code, 
nUl1Lshares, 
of_buy_date, 
sell_commiss) ; 

end Enter_sell; 
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Portfolio create and delete requests 

or 

accept President_create_folio( 
portfolio_name: in long_string; 
check_point: out boolean) 

do 

check_point := true; 
end President_create_folio; 

-- Sequel for two accepts begins here. 

accept Vice_president_create_folio( 
portfolio_name: in long_string; 

do 
check_point: out boolean) 

if local_name_l = portfolio_name 
local_name_2 := portfolio_name; 

check_point := true; 
else 

check_point := false; 
end if; 

end Vice_president_create_folio; 

accept Treasurer_create_folio( 
portfolio_name: in long_string; 
check: out boolean) 

Save copy for portfolio_name 
for checking on subsequent 
accepts. 

then 
Save copy for portfolio_name 
for checking on subsequent 
accept. 

-- If set true, portfolio has been created. 
do 

if local_name_l = portfolio_name 
and local_name_2 = portfolio_n~e then 

Club_Portfolio. Create_folio (portfolio_name, check); 
Portfolio is created if 
check is returned with 

-- the value, true. 
end if; 

end Treasurer_Create_folio; 

End for sequel (end chain for three accepts). 

accept President_delete_folio( 
portfolio_name: in long_string; 
check_point: out boolean) 

do 

check_point := true; 
end President_delete_folio; 

Save copy for portfolio_name 
for checking on subsequent 
accepts. 



Sequel for two accepts begins here. 

accept Vice_president_delete_folio( 
portfolio_name: in long_string; 

do 
chec~point: ou t boolean) 

if local._name_l = portfolio_name 
local_name_2 := portfolio_name; 

check_point := true; 
else 

check_point := false; 
end if; 

end Vice_president_delete_folio; 

accept Treasurer_delete_folio ( 
portfolio_name: in long_string; 
check: out boolean) 
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then 
Save copy for portfolio_name 
for checking on subsequent 
accept. 

-- If set true, portfolio has been deleted. 
do 

if local_name_l = portfolio_name 
and local_name_2 = portfolio_name then 

Club_Portfolio. Delete_folio (portfolio_name, check); 
Portfolio is deleted if 
check is returned with 

-- the value, true. 
end if; 

end Treasurer_delete_folio; 

-- End for sequel (end chain for three accepts). 

end select; 

end loop; 

end Portfolio_Server; 
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PackageTyped_Po~s 

of the 
iMAX Operating System 

with iMAX_Definitions; 
package Typed_Ports is 

366 

Function: 
Typed_Ports consists of three packages which provide the user 
with a high level (Ada typed) view of ports, carriers and other 
operations. 
Private sections are not shown in this Appendix. 

use i~Definitions; 

generic 
type user_message is private; All messages that this package 

deals with are of this type. 

Function: 
This package provides definitions and operations that enable 
the user to create ports, and do simple operations on those 
ports involving only messages of type "user_message". 

type user_port is private; 

type q_discipline is ( 

Max number of messages 
in a port's message. 
queue 

Ports of this type can only be used 
with type user_message. 

FIFO, First_in_first_out, also default q_discipline. 
priority); Within same priority, FIFO is used. 

no_send_rights: 
no_receive_rights: 

exception; 
exception; 

function Has_sendlrights( 
prt : user_port) 

return boolean; 

Function: 

User_port whose sendlrights 
are to be checked. 
Result of inquiry. 

Returns true if the specified port has send rights. 
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function Has_receive_rights( 
prt : user_port) User_port whose receive_rights 

are to be checked. 
return boolean; Result of inquiry. 

Function: 
Returns true if the specified port has receive rights. 

function Create ( 
message_ count: 

port_discipline: 

sro: 

return user __ port; 

Function: 

short_ordinal range 1 .. m~message_count; 
Max number of 
messages in the 
port's message 
queue. 

q_discipline : = FIFO; Organization of 
the port's message 
queue. 

storage_resource := null) SRO used in the 
creation. 
User port that is 
created. 

A user_port with the specified message_count and the specified 
message queue discipline is created. The SRO used in the 
creation defaults to the default_global_heap_SRO. 

procedure Send( 
prt: user_port; 
msg: user_message) ; 

Function: 

Port to which a message is to be sent. 
Message that is to be sent. 

The specified, user_message is sent to the specified 
user_port. In case the send cannot succeed immediately, 
the calling process will sendlblock. 

procedure Con~send( 
prt: user_port; 
msg: user_message; 
suc: out boolean) ; 

Function: 

Port to which a message is to be sent. 
Message to be sent. 
True if send succeeded, false otherwise. 

An attempt is made to send the specified message to the 
specified port. If the send cannot succeed immediately, then 
false will be returned, otherwise true. 

procedure Receive( 
prt: user._port; 

msg: out user_message); 

Function: 

Port from which a message is to be 
received. 
Received message. 

A message will be received from the specified user_port. The 
calling process will be delayed until the receive succeeds. 
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procedure Cond_receive( 
prt: user_port; 

msg: out user_message; 
suc: out boolean) ; 

Function: 

Port from which a message is to be 
received. 
Received message, if any. 
True if message was received, false 
otherwise. 

An attempt is made to receive a message from the specified 
user_port. If the receive cannot cusseed immediately, false 
be returned. Otherwise true is returned together with the 
received message. 

generic 
type user_message is private; 

type user_carrier_id is private; 

Type of message as 
specified by the user. 
Type of carrier_id as 
specified by the user. 

package Carrier_Def is 

Function: 
Definitions and operations on carriers are provided in 
this package. 

type user_carrier is private; 

function Create ( 
id: user_carrier_id; 
pri: short_ordinal:= 0; 

User_carriers can only carry 
messages of type user_message. 

Carier will have this id 
priority. 

sro: storage_resource:= null) 
return user_carrier; 

SRO used for creation 
carrier that is created. 

Function: 
A user_carrier with the specified id and priority is 
created. The SRO used for the creation defaults to the 
default_global_heap_SRO of the calling process. 

procedure Get_carrier_message( 
car: user_carrier; 

msg: out user_message) ; 

Function: 

Carrier from which we want to 
extract a message. 
Message previously received by 
the carrier. 

The message most recently received by the specified 
user_carrier is returned. This operation will null the 
message of the user_carrier. 

function Get_carrier_id( 
car: user_carrier) 

return user_carrier_id; 

Function: 

Carrier whose id is requested. 
Id of the carrier. 

The id of the specified carrier is returned. 



procedure Set_carrier_priority( 
car_id: user_carrier_id; 
pr i : short_ ordinal : = 0) ; 

Ftmction: 
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Sets priority of a carrier specified by "car_id" 
to the value given by "pri". If no value for "pri" is 
given, the default value, zero, is supplied. 

end Carr ier _Def ; 

generic 
type user_port is private; 

type user_message is private; 

type user_carrier is private; 

Port capable of handling 
user_messages. 

type user_carrier_port is private; 

TYPe of messages as 
specified by the user. 
Carrier capable of 
carrying user_messages. 
Port capable of handling 
user_carriers. 

Ftmction: 
This package contains surrogate port operations. 

Note: 
It is the programmers' responsibility when instantiating 
packages of this generic package, to provide generic 
parameters that are in correct relation to one another. 

no_send_rights: 
no_receive_rights: 
no_use_rights: 

exception; 
exception; 
exception; 

procedure Surrogate_send( 
prt: user_port; 

msg: user_message; 
car: user_carrier; 

Ftmction: 

Port to which a user_message 
is to be sent. 
Message that is to be sent. 
Carrier used in surrogate 
operation. 
Destination port where carrier 
will be sent (as a message) 
after the message is sent. 

The specified message will be sent to the specified port. 
In cxase the send cannot suceed immediately, then the 
specified carrier will block. When eventually the send 
succeeds, the carrier will be sent to the specified port. 
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procedure Surrogate_receive( 
prt : user_port; 

car: user_carrier; 

Ftmction: 

Port from which a message is 
to be received. 
Carrier used in surrogate 
operation. 
Destination port where carrier 
will be sent (a message) 
after receiving a message. 

The specified carrier will receive a message from the 
specified port. If the receive cannot succeed immediately, 
the carrier will block. When eventually the receive 
succeeds, the carrier carrying the received message will 
be sent to the specified destination port. 

end Type<l.Ports; 
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[AUTIlOR'S NaTE: When the manuscript for this book was completed, the iMAX package 
for this appendix was undergoing revision. The package given here is comparable to but 
not identical with the actual version used in iMAX.] 

with Descriptor_Definitions, iMAX_Definitions; 
package Extended~TYPerManager is 

Function: 
This pack.age provides operations for creation and manipulation 
of type_definition objects, type definition objects, 
and extended_type objects. 

use iMAX_Definitions; 

type rights is range 0 .. 1; 

no_create_rights: 
no_amplify_rights: 
type_faul t: 

exception; 
exception; 
exception; 

procedure Create_type( 
len_d: short_ordinal; 
le~a: short_ordinal; 
sro: storage_resource:= null) 
tco: out type_control; 
tdo: out type_definition) 

Function: 

TOO data part in bytes. 
TOO access part in 32-bit words. 
SRO used in creation. 
Created TYPe Control Object. 
Created TYPe Definition Object. 

A type_control object for an Extended TYPe Object is created 
containing an AD for the TYPe Definition Object also created 
in this procedure. The type_definition object is created with 
specified lengths for data (le~d) and access (len_a) parts. 
The object is created from the specified SRO which defaults 
to the default_global_heap_sro. 
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function Create_extended_type( 
len_d: short_ordinal; 
len_a: short_ordinal; 

In bytes. 
In 32-bi t words. 

tco: type_control; 
sro: storage_resource:= null) 

return type_definition; 

A TCO_AD with create rights. 
SRO used in creation. 
Created Type Definition Object. 

Function: 
An Extended Type Object is created with specified lengths 
for data (len_d) and access (len_a) parts, and with a 
specifiedAD for a Type Control Object (tco). 
The specified TCO_AD must have create_rights. 
If not, a no_create_rights exception is raised. 
The object is created from the specified 
SRO which defaults to the default_global_heap_sro. 

function Retrieve_type_definition( 
ext_type: extended_type) Extended_type object whose 

type_definition is requested. 
return type_definition; Type_definition of extended_type 

object. 

Function: 
This function returns an AD for type_definition object 
given the specified AD (ext_type) for an Extended Type 
Object. The returned type_definition object access 
descriptor has no defined type rights but does contain 
base rights. 

procedure Restrict_rights ( 
ext_type: in out 
type_right_1: 
type_right_2 : 
type_right_3: 
delete_rights: 
unchecked_ copy _r ights: 
read_rights: 
wri te_rights: 
tco: 

Function: 

extended_ type; 
rights: = 1; 
right : = 1; 
rights: = 1; 
rights: = 1; 
rights: = 1; 
rights: = 1; 
rights: = 1; 
type_control) ; 

Removes the right(s) from the specified AD for an 
Extended Type Object (ext_type). If a particular right 
is not specified, it is not removed. 

procedure Amplify_rights ( 
ext_type: in out 
tco: 

Function: 

ext ende <l. type; 
type_control) ; -- with amplify rights. 

Amplifies the right(s) from the specified AD for an 
Extended Type Object (ext_type). The specified TCO_AD (tco) 
must have amplify rights. If not, a no_create_rights 
exception is raised. If the TOO_AD in the specified TCO 
does not match the TOO_AD in the specified Extended Type Object, 
a type_fault exception is raised. 
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Package 10_ Definitions 
of the 
iMAX Operating System 

with iMAX_Definitions; 

package la_Definitions is 

Ftmction: 
This package contains definitions common to the synchronous and 
asynchronous I/O interfaces. 

use iMAX_Defini tions; 

type abstraction_description is 
record 

abstraction_name: array (1 .. 30) of character; 
abstraction_type: type_description; 

end record; 

type abstractions_.array is array (1 .. 10) of abstraction_description; 

type query_record_rep is 
record 

device_name: print_name; 
buffer_length: short_ordinal; 
fixed_length: boolean; 

device_number: short_ordinal; 
AP _number: short_ ordinal; 
abstractions: abstractions_array; 

end record; 

Printable device identifier. 
Preferred buffer length minus one. 
True if "preferred" length 
is required. 
Unique system device identifier. 
Controlling attached processor ID. 
Description of supported 
abstractions. 

type query_record is access query_record_rep; 

end la_Definitions; 
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Package Synchronous_IO_lnterfaces 
of the 
iMAX Operating System 

with Asynchronous_la_Interface, i~Definitions, 
IO_Defini tions; 

package Synchronous_la_Interfaces is 

Function: 
This package includes definitions of the standard synchronous 
I/O interfaces and related types. 

use la_Definitions; 

-- Exceptions 

end_of_file: exception; 
transformatio~not_allowed: exception; 

exception; 

transf er _ error: exception; 

No more input data. 
TransformLinterface was 
called with an unrecognized 
new interface type. 
The specified operation is 
not recognized by the driver 
or support routine. 
An I/O or protocol error 
detected during a data transfer. 

subtype xfer_range is integer range 0 .. 2**16; 
-- Up to 65,636 bytes can be transferred 
-- with one operation. 

The following set of operations is required of all synchronous I/O 
Interfaces. 

type Basic_la_Interface is access package 

Function: 
This package type defines the mInImum synchronous interface. 
It must be provided for all devices. It includes only routines 
for determining and changing device interface characteristics 
and closing the interface. 

function Interface_description 
return query_record; -- static interface description 

procedure Close; 

Function: 
This routine renders the interface unusable, after first 
flushing any buffers and completing any outstanding 
operations. Any further operations will cause an error. 
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procedure Reset; 

Function: 
This routine reintializes the interface. The effect of 
Reset is device-dependent. 

function TransformLinterface( 
new_interface_type: type_description) -- type of the new interface 

return dynamic_typed; 

Function: 
This routine returns a new, possibly expanded or restricted 
view, of this I/O interface. The transformations allowed can 
be determined by calling Get_Interface_Characteristics. 

function Get_asynchronous_interface 
return Asynchronous_10_Interface. connection; 

Function: 
This function returns a package which implements the standard 
Asynchronous device interface. 

type Source is access package 

Function: 
This package type defines the synchronous source interface 

The following functions and procedures are described in the 
Basic_10_interface package. 

function Interface_description 
return query_record; 

procedure Close; 

procedure Reset; 

function Transform_interface ( 
new_interface_type: type_description) -- type of the new interface 

return dynamic_typed; 

function Get_asynchronous_interface 
return Asynchronous_10_Interface. connection; 

-- End of basic package. 
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procedure Read ( 
data_access: i~Definitions.dynamic_typed; 

offset: 

requested_length: xf er _range; 

returned_length: out xfer_range) ; 

Function: 

Access for object 
containing buffer offset. 
Offset of buffer 
wi thin obj ect. 
Number of bytes 
to transfer. 
Number of bytes 
actually transferred. 

This routine does a device dependent read operation, controlled 
by the interface characteristics buffer_length and fixed_length. 

The number of bytes returned will be less than or equal to that 
requested when fixe~length is false. The end_of_file 
exception is raised when there is no more data (returned_length 
is zero). 

The number of bytes returned is a multiple of the preferred 
buffer length (buffer_length plus one) when fixed_length is true. 
The operation_not_allowed exception is raised if the 
requested_length is not at least as large as the preferred 
buffer length. The end_of_file exception is raised when there 
is no more data (returned_length is zero). 

end Source; 

type Sink is access package 

Function: 
This package type defines the synchronous sink interface. 

-- The following functions and procedures are described in the 
-- BasiC_la_interface package. 

function Interface_description 
return query_record; 

procedure Close; 

procedure Reset; 

function Transform_interface ( 
new_interface_type: type_description) -- type of the new interface 

return dynamic_typed; 

function Get_asynchronous_interface 
return Asynchronous_la_Interface. connection; 

-- End of basic package. 

procedure Flush; 

Function: 
This routine ensures that all previously-written data has 
reached the destination device. 



procedure write ( 
data_access: 

offset: 

length: 

Function: 

AppendIx J 3n 

i~Definitions.dynamic_typed; 
-- Access for object containing buffer. 

xfer_range; Offset of buffer 
within object. 

xfer_range); Number of bytes 
to transf er . 

This routine does a device dependent write operation. If 
. fixed_length is true, the length must be equal to the preferred 

buffer length (buffer_length plus one). (For some interfaces, 
a multiple of the preferred buffer length may be allowed.) 

end Sink; 

type Store is access package 

Function: 
This package type defines the synchronous store. 

-- The following functions and procedures are described 
-- in the Basic_IO_interface package. 

function Interface_description 
return query_record; 

procedure Close; 

procedure Reset; 

function Transform_interface ( 
new_interface_type: type_description) -- type of the new interface 

return dynamic_typed; 

function Get_asynchronous_interface 
return Asynchronous_IO_Interface.connection; 

-- end of basic package 

procedure Flush; 

Function: 
This routine ensures that all previously written data has 
reached the destination device. 
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procedure Read( 
data_access: read_buff; 
offset: xfer_range; 
requested_length: xfer_range; 
returned_length: out xfer_range) ; 

Function: 
This routine does a device dependent read operation, controlled 
by the interface characteristics buffer_length and fixed_length. 

The number of bytes returned will be less than or equal to that 
requested when fixe~length is false. The end_of_file 
exception is raised when there is no more data (returned_length 
is zero). 

The number of bytes returned is a multiple of the preferred 
buffer length (buffer_length plus one) when fixed_length is true. 
The operation_not_allowed exception is raised if the 
requested_length is not at least as large as the preferred 
buffer length. The end_of_file exception is raised when there 
is no more data (returne~length is zero). 

procedure write ( 
data_access: 
offset: 
length: 

Function: 

i~Definitions.dynamic_typed; 
xfer_range; 
xfer_range) ; 

This routine does a device dependent write operation. If 
fixed_length is true, the length must be equal to the preferred 
buffer length (buffer_length plus one). (For some interfaces, 
a multiple of the preferred buffer length may be allowed.) 

end store; 

end Synchronous_IO_Interfaces; 



Package Asynchronous_IO_lnterface 
of the 
iMAX Operating System 

with i~Definitions, la_Definitions; 

package Asynchronous_la_Interface is 

Function: 
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This package defines the asynchronous I/O protocol. This protocol 
is used between GOP processes and AP device drivers as well as 
within the GOP. 

use iMAX_Definitions, la_Definitions; 

The "connection" type, which is the primary type provided by the 
Asynchronous_la_Interface package, is an access to the following 
record type. All Asynchronous_la_Interface operators take a 
connection as one parameter. 

type connection_record is 
record 

request_port: port; 
name: print_name; 
device_description: query_record; 
reply_port: port; 

end record; 

Port for I/O request messages. 
Identifying name. 
Device-specific information. 
Port which may be used as 
a message reply port. 

type connection is access connection_record; 

The representation of an I/O transaction is an access segment with 
at least three access descriptors. the first entry is for the 
command_record which is a data segment describing the operation to be 
performed. The second entry is a reply port for the response message, 
and the third and succeeding entries are for data buffers. Since Ada 
requires that this structure be declared in reverse order, here is a 
picture of what is coming. 
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type conunand_ value is range 0 short_ordinal' last; 

type error_value is range 0 short_ordinal 'last; 

subtype buffer_range is short_ordinal range 1 .. 1; 

type buffer_description 
record 

offset: 
requested_length: 
returned_length: 

end record; 

is 

short_ ordinal; 
short_ordinal; 
short_ordinal; 

type conunand_record_rep_val is 
record 

conunand: 
message_id: 
reply_code: 
buffer_descriptions: 

end record; 

conunand_ val ue; 
short_ ordinal; 
error_value; 
array (buffer_range) of buffer_description; 

type buffer_array is array (buffer_range) of dynamic_typed; 

-- I/O conunand codes 
reset: constant conunand_value : = 1; 
read: constant conunand_value : = 2; 
wr i te: cons tan t conunand_ value : = 3; 
close: constant conunand_value : = 4; 
flush: constant conunand_value : = 5; 
set_device_characteristics: constant conunand_value := 6; 
get_device_characteristics: constant conunand_value := 7; 

-- reply codes 
,Sluccess: 
end_of_file: 
not_processed: 
reset_required: 
inval id_ conunand: 
bad_dat~buffer_size: 
invalid_request: 
hard_ 10_ error: 
interf ace_,c losed: 
reset_returned: 

cons tan t conunand_ val ue : = 0; 
cons tan t conunand_ value : = 1; 
cons tan t conunand_ val ue : = 2; 
cons tan t conunand_ val ue : = 3; 
constant conunand_value := 4; 
cons tant conunand_ value : = 5; 
constant conunand_ value : = 6; 
constant conunand_value := 7; 
constant conunand_value := 8; 
cons tan t conunand_ value : = 9; 

type IO_message_record is 
record 

conunand_record: 
reply_port: 
data_buffer: 

end record; 

conunand_record_rep; 
port; 
buffer_array; 



type la_message is access IO_message_record; 

procedure Send ( 
c: connection; 
msg: la_message); 

Function: 
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This routine sends a message to an I/O device using 
the request_port in the connection. 

procedure Receive( 
c: comlection; 
msg: out la_message); 

Function: 
This routine receives a reply to an I/O request on the 
reply_port in the connection. 

procedure Cond_send( 
c: connection; 
msg: la_message; 
success: out boolean); 

Function: 
This: routine attempts to· send an I/O request message to 
the request_port in the· connection. If the operation succeeds., 
success is assigned true. If the port is full and the operation 
fails,. success is assigned false and the request message is not 
sent. 

procedure Cond_receive( 
c: connection; 
msg: out la_message; 
success: out boolean) ; 

Function:' 
This routine attempts to receive a reply to an I/O request usimg 
a conditiona-l receive' on the reply_port in the connection. 

end Asynchronous_10_Interface; 
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Package Process_Manager _ Types 
of the 
iMAX Operating System 

with Process_Globals_Definitions, i~Definitions 
Descriptor_Definitions; 

package Process_Manager_Types is 

382 

microsec_per_stu: constant := 256; 
-- Length of a system time unit in microseconds. 

subtype milliseconds is integer range 0 .. max_int; 

All of the following constants and types related to time 
-- are in units of milliseconds. 

max_time_Iimit: constant := 24 * 24* 60 * 60 * 1000; 
-- Maximum time limit is 24 days in milliseconds. 

infinite_time_Iimit: constant :=max_time_Iimit + 1; 
-- The value "infinite_time_Iimit" is used to 
-- indicate that the process is to be allowed to run forever. 

subtype time_Iimit_type is milliseconds range 0 .. infinite_time_Iimit; 

max_time_slice: constant := (2**16 - 1) * microsec_per_stu / 1000; 
subtype time_slice_type is milliseconds range 0 .. max_time_slice; 

max_deadline: constant := (2**14 - 1) * microsec_per_stu / 1000; 
subtype deadline_type is milliseconds range 0 .. max_deadline; 

type scheduling_info_rec is 
record 

time_slice: time_slice_type; 
deadline: deadline_type; 
priority: short_ordinal; 

end record; 

type process~states is ( 
executing, 
just_created, 
suspended, 
exceeded_memory_limit, 
exceeded_time_Iimit, 
system_error, 
terminated, 
destroyed) ; 

in milliseconds 
in milliseconds 
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type process_micro_states is 
not_executing, 
on....processor, 

micro state of an executing process 

on....cport, 
on.... service_port , 
in....service) ; 

-- includes dispatching and delay ports 
-- being serviced by iMAX 

type process_info_rec is 
Those attributes of a process which are either constant, or 
changed only by the user, over the lifetime of the process. 

record 

The following attributes are constant over the lifetime of 
the process. 

process_id: short_ordinal; 
-- The iMAX-assigned id of the process. 
-- This is the id used when the process does any locking operations. 

process_globals: Process_Globals_Definitions.process_globals_rep; 
The iMAX-assigned process globals object of the process. 

-- Compilers generate code which uses iMAX_defined fields in this 
-- object. Users may also define their own fields in this object. 

name: string; 
-- The user-assigned text name of the process. 

-- The following attributes are defaulted when the process is 
-- created, and may be set by the user. 

notification_port: i~Definitions.port; 
The notification_msg will be conditionally sent to this 
notification_port when the process' state becomes 
exceeded_memory_limit, exceeded_time_Iimit, system_error, 
terminated, or destroyed. It is the user's responsibility 
to ensure that the conditional send will not fail; if the 
notification_port is full at the time of the conditional 
send, the notification_msg will not be sent. 

notification_msg: dynamic_typed; 
-- The message to be sent to the notification_port. 

The following attributes are defaulted when the process is created 
and may be set only in an "advisory" sense. 1. e., in setting 
them, the user is advising the Process_Manager as to how it 
should set them. Particular Process_Manager implementations 
may ignore this advice. 

time_limit: time_Iimit_type; 
-- The processor time limit for the process. 

schedul ing _ inf 0: schedul ing _ inf o_rec; 
-- The scheduling parameters for the process. 

end record; 

type process_state_rec is 
-- Those attributes of a process which are changed by the system 
-- over the lifetime of the process. 
record 

state: 
-- The current 

process_clock: 
-- The current 

end record; 

process_states; 
state of the process. 

milliseconds; 
time used by the process in milliseconds. 
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type process_micro_state_rec is 
-- Process_state_rec plus micro 
record 

state. 

state: process_states; 
-- The current 

micro_state: 
-- The current 

process_clock: 
-- The current 

end record; 

generic 
with procedure main( 

state of the process. 
process_micro_states; 

micro state of the process. 
milliseconds; 

time used by the process in milliseconds. 

params: dynamic_typed); 
package initial_proc is 

procedure main ( 
params: dynamic_typed); 

renames main; 
end initial_proc; 

type access_initial_proc is access initial_proc; 

control_rights: constant Descriptor_Definitions. rights .= 
Descriptor_Definitions.type_right_l; 

suspen~an~resume_rights: constant Descriptor_Definitions.rights .= 
Descriptor_Definitions.type_right_2; 

type Process_Manager is access package 

Function: 
All operations requiring a process as a parameter, with the 
exception of Suspend, Resume, and the Rea~. .. operations, 
require the passed process AD to have controCrights . 
The operations Suspend and Resume also require the passed 
process AD to have suspentLantLresume_rights. 

type process_rep is limited private; 

type process is access process_rep; 
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function Create_process ( 
init_proc: access_initial_proc; 

execute. -- The procedure to 
ini t_params: dynamic_typed: = null; 

init_proc. -- Parameters to 
name: string; 

job: 
The text name of the process. 

Jobs_Manager_Types.job :=null; 
The job in which the caller is executing, i.e., the job 
in the caller "s process globals. 

heap_sro: i~Definitions.storage_resource :=null; 
The sro from which to create the process. This determines 

-- the scope of the process and whether the process is frozen or 
-- normal. Default is the global heap sro in the caller's 
-- process globals. 

init_stac~objtab_size: integer := 0; 
Initial size of the process stack object table. This is an 

-- advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

ini t_stac~size: integer : = 0; 
-- Initial size of the process stack allocation block. This is an 
-- advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

call_stack_depth: integer: = 0; 
Number of contexts to be pre-allocated for this process. 

-- This is an advisory parameter, and may be ignored by particular 
-- Process_Manager implementations. 

return process; -- Has controCrights. 

Function: 
A new process is created and returned. The parameter list 
includes only those process attributes which can be set only 
at process creation time. Default values are provided for 
all process attributes except the procedure to execute 
(init_proc); this is the only parameter which MUST be specified. 
Attributes for which there are no parameters may be changed after 
a process has been created (and before it is started, if desired) 
by calling one of the Set_ ... operations below. 

procedure Start ( 
prcs: process); 

Function: 
This procedure serves two purposes: to initially start a newly 
created process, and to restart a process which has entered 
a state in which it can not execute (for example, when it has 
exceeded its memory or processor time limit, or has encountered 
an error.) The passed process must be in a state other than 
executing, suspended, or destroyed. 

procedure Suspend( 
prcs: process); -- Must have suspend_and_resume_rights. 

Function: 
The passed process is prevented from executing on a processor 
until Resume is called on it. The effect of this call may 
be asynchronous, i.e., the process may continue to execute 
for a time after Suspend is called. 
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procedure Resume( 
prcs: process); -- Must have suspend_and_resume_rights. 

Function: 
The passed process is continued executing after having had 
Suspend called on it. 

procedure Destroy( 
prcs: process); 

Function: 
The passed process is destroyed. The effect of this call may 
be asynchronous, i.e., the process may continue to execute for 
a time after Destroy is called and before it is actually 
destroyed. 

procedure Delay_caller ( 
time: milliseconds); 

Function: 
The calling process is delayed for at least the specified 
length of time. 

procedure Raise_exception( 
prcs: process; 
e: System. exception) ; 

Function: 
The specified exception is raised in the passed process. 
The effect of this call may be asynchronous, i.e., the 
exception may not be raised until some time after 
Raise_exception is called. 

procedure Wait_for_process_termination; 
prcs: process); 

Function: 
This procedure is provided for users who do not need the 
full generality of the notification port mechanism. 
If the notification message and port have already been set, 
an exception will be raised. Otherwise, a notification port 
will be created, set, and received from, resulting in the 
caller blocking until the passed process' state becomes 
exceededLmemory_limit, exceededLtime_Iimit, system-error, 
terminated, or destroyed. 

functian ReadLprocess_info( 
prcs: process) 

return process_info_rec; 

Function: 
Returns the "unchanging" attributes of the passed process. 



function Readlprocess_state( 
prcs: process) 

return process_state_rec; 

Function: 
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Returns the "changing" attributes of the passed process. 

function Readlprocess_micro_state( 
prcs: process) 

return process_micro_state_rep; 

Function: 
Returns the "changing" attributes of the passed process, 
including the micro state. 

procedure Set_notification_port_and_message; 
prcs: process: 
port: i~_Definitions.port; 
msg: dynamic_typed); 

Function: 
The notification port and message of the passed process are set. 
An exception is raised if a call to Wai t_for_process_ termination 
is currently outstanding on the process. 

procedure Set_time_limit( 
prcs: process; 
lim: time __ limi t_ type) ; -- in milliseconds 

Function: 
Since time_limit is an advisory parameter, the time limit of 
the passed process mayor may not be set. 

procedure Set_scheduling_info ( 
prcs: process; 
svc: schedul ing _ inf o_rec) ; 

Function: 
Since scheduling_info is an advisory parameter, the scheduling 
parameters of the passed process mayor may not be set. 

end Process_Manager; 



Appendix L 
Package SRO_Manager 
of the 
iMAX Operating System 

Real Memory Only version 

[Author's note: The actual iMAX version for this package specifies four additional 
operations, not given in this appendix. These are: 

Create_system_ objecCfrom_heap, 
Create_system_ objecC from_stack , 
Deallocate_heap_object, and 
Read_storage_ claim. 
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with i~Definitions; 

package SRO_Manager is 

Ftmction: 
This package provides a low_level interface to memory management. 
All but the Create_Iocal_heap function are implemented as 
432 instructions. The "heap" allocation instructions take an 
optional parameter, i.e., a default SRO. At compile time this 
parameter defaults to null, but at run time will default to 
the default global heap SRO in the process globals object of 
the the executing process. The "stack" allocation intructions 
do not need an SRO parameter since the stack SRO is referenced 
implici tly. 

use iMAX_Definitions; 

-- Type Rights for SRO Access Descriptors: 

create_rights: constant Descriptor_Definitions. rights 
Descriptor_Definitions.type_right_l; 

procedure Create_object( 
d_Iength: short_ordinal; Length of object data part 

(in bytes) - l. 
a_length: 

obj: 
SRO: 

Ftmction: 

out 

short_ ordinal Length of object access part 
(number of AD slots) 

object; created object. 
storage_resource := null); 

-- SRO for create. 

A heap data object of the specified size(s) is created. 
If the SRO parameter is defaulted, then the default global 
heap SRO in process globals is used for the create. 
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procedure Create_generic_refinement( 
obj: dynamic_typed; Object to be refined. 
d-offset: short_ordinal; Data part offset of the 

refinement in bytes. 
d-Iength: short_ordinal; Data part length of the 

refinement (in bytes) - 1. 
a-offset: short_ordinal; Access part offset of the 

refinement in bytes. 
a-length: short_ordinal; Access part length of the 

refinement (number of AD slots) . 
rtn: out dynamic_typed; The resulting refinement. 
sro: storage_resource_wi th_create : = null) ; 

-- SRO for create. 

Function: 
A heap refinement is created from the specified object, 
with data and access parts at specified offsets, each with 
with specified lengths. The base type of the created 
refinement will be the same as the base type of the 
original object. Its system type will be generic. 

procedure Create __ stack_obj ect ( 
d_Iength: short_ordinal; 

a_length: short_ordinal 

obj: out obj ect) ; 

-- Function: 

Length of object data part 
(in bytes) - l. 
Length of object access part 
(number of AD slots) . 
Created object. 

A stack object of the specified size(s) is created. 

procedure Create_stac~generic_refinement( 
obj: dynamic_yped; Object to be refined. 
d-offset: short_ordinal; Data part offset of the 

refinement in bytes. 
d-Iength: short_ordinal; Data part length of the 

refinement (in bytes) - 1. 
a-offset: short_ordinal; Access part offset of the 

refinement in bytes. 
a-length: short_ordinal; Access part length of the 

refinement (number of AD slots) . 
rtn: out dynamic_typed; The resulting refinement. 

Function: 
A stack refinement is created from the specified object, 
with data and access parts at specified offsets, each with 
with specified lengths. The base type of the created 
refinement will be the same as the base type of the 
original object. Its system type will be generic. 

function Create_Iocal_heap 
return storage_resource; 

Function: 
This function creates a local heap SRO. 
The lifetime of the local heap SRO is that of the current 
context Object of the caller. 

end SRO_Manager; 
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Package MOO_Manager 
of the 
iMAX Operating System 

with Descriptor_Definitions, i~Definitions; 

package MCa_Manager is 

Function: 
This package provides operations for creating and destroying 
MCas, reading and adjusting the parameters associated with each 
MCa, and reading the usage statistics for each Mca. 
The private section for this package is not shown. 

type memory_control_obj ect_rep is limited private; 
type memory_control_object is access memory_control_object_rep; 

asap: constant:= 0; 
never: constant := 0; 

type scan_rate_type is (asap, 1 .. 14, never); 

The scan rate determines how often the objects of the Mca are 
considered for swapping. This rate in terms of passes through all 
Mcas in the system. For each pass only some of the Mcas are 
considered. 

Scan Rate Value 
o 
1 
2 
3 

N 
never 

type MCa_parameters_ type is 
record 

allocation_limit: ordinal; 

When Mca Is Scanned 
As soon as possible. 
Every pass. 
Every other pass. 
Every third pass. 

Every Nth pass. 
Never. The Mca is non-swappable. 

frozen: 
scan_rate: 

boolean; 
sCaD.-rate_ type; 

Bytes this Mca can 
allocate without 
software intervention. 
Frozen or normal memory. 
Rate objects Mca are 
considered for swapping. 

end record; 



type MCa_statistics_type is 
record 

storage_claim: ordinal; 

secondary: ordinal; 

number_of_stac~SROs: 
number_of_heap_SROs: 
number_of_object_tables: 

fault rate: 
end record; 

ordinal 
ordinal 
ordinal 

ordinal; 
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Total virtual memory exposed 
to hardware allocation. 
Total virtual memory residing 
on disk. 

-- Fault rate of this Mca 

-- Software-defined Type Rights for Mca access descriptors: 

control_rights: constant Descriptor_Definitions.rights 
: = Descriptor_Definitions. type_right_l; 

function Create ( 
MCa_parameters: MCa_parameters_type) 

return memory_.control_obj ect; 

Function: 

With control rights. 

This function creates a new Mca and returns an AD 
with control rights for this object. The MCa parameters 
determine how much virtual memory can be allocated from 
the Mca without software intervention, whether the memory 
is frozen or normal, and what scan rate should be used 
for objects allocated from this Mca. 

procedure Destroy( 
mco: memory_control_object); 

Function: 

AD with control rights for 
the Mca to be destroyed. 

This procedure destroys the Mca specified. It calls Low_Level 
Process_Management to destroy any processes living in the Mca 
and nulls all Access Descriptors which link the SRas in the 
Mca together. 

Note: no globally allocated objects are destroyed. 

function Retrieve_global_heap( 
mco: memory_control_object) 

return iMAX_Definitions.storage_resource; 

Function: 

AD with control rights 
for an Mca. 

AD for the root SRO. 

This function returns an Access Descriptor for the global heap 
SRO which is the root of the SRa tree associated with the Mca. 
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function Read_MCO_parameters( 
mco: memory_control_object) 

return MCO_parameters_ type; 

Ftmction: 
This function returns the parameters associated with a MCO. 

procedure Adjust_MCO_allocation_limit{ 
mco: memory_control_object; 

adjustment: ordinal; 

increment: boolean) 

Ftmction: 

AD with control rights 
for MCO to be adjusted. 
Amount MCO's allocation 
limit is to be adjusted. 
true => increment, 
false => decrement 

This procedure adjusts a MCO's allocation limit up or down by 
the specified amount. 

procedure Adjust_MCO_scan_rate{ 
mco: memory control object; 

Ftmction: 

AD with control rights 
for MCO to be adjusted. 
New scan rate. 

This procedure sets the MCO's scan rate to that specified. 

function Read_MCO_statistics{ 
mco: memory_control_object) 

return MCO_statistics_type; 

Ftmction: 
This function returns the statistics associated with a MCO. 

end MCO_Manager; 
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Package Transaction_Manager 
of the 
iMAX Operating System 

package Transaction_.Manager is 

Function: 
This package manages transactions. These are used to synchronize 
access to passive-objects in a manner that maintains 
the consistency of a collection of objects. 

When a user wants to access one or more passive objects, 
she will first start a transaction. This transaction will then be used 
in the Open and Update operations for the passive objects that 
she wants to access. When she has completed all operations, she will 
issue a Commit operation on the transaction. This commits all the 
changes she has made, thereby committing new versions for the passive 
objects that have been changed. The "commit" operation is 
is indivisible, i.e., all changes made or none (e.g., in case of a 
system crash). If the user issues an Abon operation, all changes 
are forgotten. A time out is associated with a transaction. If this 
time expires before the transaction is committed, the transaction 
manager will abort the transaction. 

The private section for this package is not supplied here. 

type transaction_rec is private; 

type transaction is access transactionLrec; 

type transaction_state is( 
active, 
committed, 
aborted) ; 

Initial state of transaction. 
state after transaction is committed. 
state after transaction is aborted. 

subtype milliseconds is integer range -1 .. integer' last; 
-- An instance of this type indicates a number of milliseconds. 

393 
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type transactio~info_rec is 
-- Returned by Transaction_info. 
record 

pname: print_name; 
state: transactio~state; 
time_left: milliseconds; 

num_items: ordinal; 

blocked: boolean; 

end record; 

Print name for this transaction. 
Its state. 
Time left until Transactio~Manager 
will cause an abort. 
Number of passive object definitions 
associated with this transaction. 
True if transaction is blocked 
waiting for an open operation. 

default_time_out: constant milliseconds := 1000; 

-- EXCEPTIONS 

Default value used in 
start_transaction operation. 

transactio~not_active: exception; 
-- The specified transaction is not in the active state. 

transaction_already_committed: exception; 
The specified transaction has already been committed; abort is 

-- not possible. 

-- OPERATIONS 

procedure Start_transaction( 
t: out transaction; The created transaction. 
time_out: milliseconds: = 0; After this time, the transaction 

will be aborted. 
pname: 

Function: 

(others => ' '); 
Name to be associated with this 

-- transaction. 

A new transaction is created. 
If the specified real-time elapses before a 
Commit operation is done on this transaction, the transaction will 
be aborted. If the user does not specify a value for time_out, 
the system default value is used. 

procedure Commit_transaction( 
t: transaction) ; -- The transaction to be committed. 

Function: 
The specified transaction is committed and all changes made under 
this transaction become commited. The passive object definitions 
associated with this transaction must already be closed when 
Commit_transaction is called, or the Commit will fail. If the 
transaction is in the "abort" state, the exception "transaction_not 
active" will be raised. This operation changes the state of the 
transaction from "active" to "committed". If the state was already 
committed, this operation is a no-op. 
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procedure Abort_transaction ( 
t: transaction) ; -- The transaction to be aborted. 

Function: 
The specified operation is aborted. This implies that the passive 
object definitions associated with this transaction resort to their 
original state, i.e., the new versions that are being created are 
destroyed. If the transaction is in the "committed" state, the 
exception "transaction_already_committed" will be raised. This 
operation changes the state of the transaction from "active" to 
"aborted". If the state was already aborted, this operation is 
a no-op. 

function Transaction_info ( 
t: transaction) 

Function: 

The transaction whose state is to 
be reported on. 

Transaction information. 

The information associated with a transaction is returned. 
This includes its print_name, state, time remaining, whether it 
is blocked, and the number of passive object definitions 
associated with the transaction. 

end Transaction_Manager; 
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Package Passive_Store_Manager 
of the 
iMAX Operating System 

with Transaction_Manager; 
package Passive_Store_Manager is; 

Function: 
This package provides the interface between Object Filing and 
the outside world. It includes the facilities to define, store, 
and retrieve passive objects. The operations can be grouped as follows 

ACTIVE-VERSION OPERATIONS 

These provide the simplest interface to Object Filing, and include 
the Update and Reset_active_version procedures. 
These routines take an AD for some active object and change 
the correspondence between the current active and passive versions 
of the obj ect. These routines can be used without referencing any 
of the other facilities provided by this package. 

"Update" makes the passive version of the object look like the 
current active version of the object. 
"Reset_active_version" removes the object from the active 
space, but does not change its passive definition; subsequent 
references to the object will cause its active version to be restore 
from a previously saved passive version. 

OPEN and CLOSE 

These routines (and the remainder of this package) are provided for 
the user or type manager who needs to directly manipulate the passive 
representation of an object. This may be desirable either for 
efficiency, or (more importantly) because the object cannot be 
represented in the active space. 

"Open" is used to make the passive definition of an object available 
to the user. Further operations (see below) can then be used to 
read/write portions of the object. If the object was opened in 
write or update mode, "Close" must be used to indicate that the 
object is in a consistent state before the stored version of the 
passive object is actually changed. 
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GET, PUT, and DELETE 

These operations are used to actually manipulate the passive 
definitions of objects. Such objects must already have been Opened. 

Get operations are used to transfer data or Access Descriptors 
from passive objects to active objects. Put operations are used to 
transfer data or Access Descriptors from active objects to passive 
objects. The Delete operation allows the user to delete an Access 
Descriptor from the passive representation of an object. 

MISCELLANEOUS 

The routines in this section allow the user to examine and set 
various attributes pertaining to a particular passive object. 

The private section of this package is not given. 

subtype transaction is Transactio~Manager.transaction; 

subtype milliseconds is integer range -1 .. integer' last; 

type passive_definition_rec is private; 

type passive_definition is access passive_defini tion_rec; 

type open_mode is 
-- The type of access requested in doing an Open operation. 

(read, Only read requests will be permitted on passive definition. 
write, Read and write requests permitted on passive definition. 

A new version is created ab initio. 
update); Read and write requests permitted on passive definition. 

The -1 lower bound in the next two subtypes is used by Get/Put 
data/Access_Descriptor to specify that the size of the passed buffer 
is to be used. 

subtype access_segment_size is integer range -1 ., 2 ** 14; 

subtype active_data_segment_size is integer range -1 2 ** 16; 

subtype passive_data_segment_size is 
integer range 0 .. integer 'last; 

subtype access_segMent_displacement is 
integer range 0 .. 2 ** 14 - 1; 

subtype active_data~segment_displacement is 
integer range 0 .. 2 ** 16 - 1; 

subtype passive_data_segment_displacement is 
integer range 0 .. integer'last - 1; 
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type passive_definition-info is 
record 

open_mode: 
copyable: 
activatable: 
lirik....associated: 

lin1e 
auto_copy: 

sys_type: 
psor_type: 
access_length: 
data_length: 

end record; 

type put_acLaction is 

access_mode; 
boolean; 
boolean; 
boolean; 

boolean; 
boolean; 

If true, object can be copied. 
If false, object cannot be activated. 
If true, object has an associated 
link object. 
If true, object is a "link" object. 
Applicable only to "link" objects. 
If true, storing a passive AD will 
cause automatic copy of link object. 

systeIJL types; 
processor_types; 
access_segment_size; 
passive_data_segment_size; 

In Access Descriptors. 
In bytes. 

-- Action taken when Access 
(plain, 

Descriptor is stored in a passive definition. 
No action. AD for object with owner 
rights must already exist in some passive 
object. 

owner_if_none, 

owner, 
component, 

EXCEPTIONS 

Give AD owner rights if no passive 
descriptor for the object has owner 
rights. 
Give AD owner rights. 
Store referenced object as a component of 
passive object being defined. 
Copy referenced composite as a 
distinct object. 
Copy referenced composite as well as 
composites referenced 
with owner rights. This is applied 
recursively. 
Same as "copy_as_owner" except referenced 
composite is made a component of the 
passive definition being defined. 
Same as "full_copy_as_owner" except 
referenced composites are made components 
of the passive definition being defined. 

transaction-not_active: exception 
renames Transaction-Manager.transaction_not_active; 

-- Specified transaction is not in the active state. 

open_timed_out: exception; 
-- Open operation timed out thereby cancelling the requested operation. 

no_version_available: exception; 
-- The specified object version is not available. 

object_inaccessible: exception; 
-- The specified object cannot be accessed, e.g., structure not mounted 

object_unknown: exception; 
The specified object is unknown; usually, due to the object having 

-- been destroyed. 
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object_lacks_owner: exception; 
-- No passive object has an AD with owner rights for the object. 

rea~rights_missing: exception; 
-- Specified AD for an object lacks read rights. 

write_rights_missing: exception; 
-- Specified AD for an object lacks write rights. 

update_illogical: exception; 
Open specified "update" access mode for an object with no passive 

-- definition. 

more_owners_not_allowed: exception; 
-- More passive ADs with owner rights are not permitted. 

cannot_be_component: exception; 
-- The specified object cannot be made a component of the specified 
-- passive definition. 

copy_of_object_not_allowed: exception; 
-- The specified object may not be copied. 

bounds_error_on_passive_object: exception; 
-- The supplied displacement or length would cause an access beyond 
-- the end of the passive object. 

bounds_error_on_active_object: exception; 
-- The supplied displacement or length would cause an access beyond 
-- the end of the active object. 

passive_definition_not_open: exception; 
-- Due to the state of the associated transaction, the specified passive 
-- definition can no longer be used. 

delete_rights_missing: exception; 
-- Specified AD lacks delete rights. 

-- OPERATIONS THAT MANIPULATE ACTIVE OBJECT VERSIONS 

procedure Update( 
obj: dynamic_typed; 

t: transaction : = null) ; 

Function: 

Reference to object that is to be 
updated in the passive store. 
Transaction that will be associated 
with updated object version. 

This is the "generic" update procedure for object filing. It is 
the standard update procedure for untyped objects. It may also 
be called by the type manager for typed objects if no special 
semantics are required for object update. 

Obj must be "known" to the passive space; either a passive AD 
wi th owner rights must already exist for obj, or obj may 
be a component of a composite that has been opened in either write 
or update mode using the same transaction. Obj must contain both 
read and write rights. 

The procedure causes the given object's passive version to agree 
with its current active version. The object's passive version that 
is produced as a result of the update will not become "committed" 
until the specified transaction is committed. 
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procedure Reset_active_version( 
obj: dynamic_typed; 

t: transaction := null); 

Function: 

Object affected. 

Transaction associated with the 
action. 

This procedure is used to return an object to a previously-saved 
state. Obj must be "mown" to the passive space. 
The current active version of the object is deleted so that the next 
reference to the object will cause it to be restored from its last 
passive version. Obj must contain both read and write rights. 

OPEN AND CLOSE OPERATIONS 

func ti on Open ( 
obj: dynamic_typed; 

mode: 
t: 

access_mode; 
transaction : = null; 

time_out: milliseconds : = -1) ; 

return passive_definition; 

Function: 

Reference to the object whose passive 
definition will be opened. 
Read, write, or update. 
Transaction that will be associated 
with the returned passive definition. 
Amount of time Open should block 
until Open is aborted. 

The passive definition of the referenced object is opened. 
The caller's AD must have read and write rights if the specified 
access mode is "write" or "update"; otherwise, read rights are 
sufficient. If "time_out" is not specified, the system default 
is used. Specifying a 0 for "time_out" is a conditional Open. 

procedure Close ( 
psv_def: passive_definition); Passive definition to be closed. 

Function: 
Closes the given passive object definition. 
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-- PUT AND DELETE OPERATIONS 

procedure Put_data( 
psv_def: 
act_buf: 
psv_disp: 

passive_definition; -- An object's passive definition. 
dynamic_typed; -- Active object containing data. 
passive_data_segment_displacemment : = 0; 

sz: 
-- Displacement into "psv_def". 

active_data_segment_size := -1; 
-- Number of bytes to transfer from "act_buf" 
-- to "psv_def". (Default means copy all of 
-- "act_buf".) 

active_data_segment_displacement := 0); 
Displacement into "act_buf". 

Function: 
Data is transferred from an active object to a passive object. 

procedure Put_access_descriptor( 
psv_def: passive_defini tion; 
AD: dynamic_ typed; 

A passive definition for an obj. 
An AD that is to be stored in 
"psv_def" . 

action: in out put_ad_action; Action to be taken in "psv_def". 
disp: access_segment_displacement := 0); 

-- Slot in "psv_def" to store "obj". 

Function: 
The specified AD is stored in the passive object referenced by 
"psv_def" using the specified action. If the put_ad_action is 
"owner_if_none" , then "action" is set either to "plain" or to 
"owner" on output. 

procedure Put_Iist_of_access_descriptors( 
psv_def: passive_definition; -- A passive definition for an object. 
list: dynamic_typed; -- An active object. 
action: put_ad_action := owner_if_none; 

-- Action to be taken with respect 
-- to the AD's. 

psv_disp: passive_access_segment_displacement := 0; 
-- The starting slot to store the 
-- specified ADs. 

num_of_ads: access_segment_size: = -1; 
-- Number of ADs to Put in "psv_def". 
-- (Default means store all the ADs.) 

act_disp: access_segment_displacement := 0); 

Function: 

The starting slot to get the ADs 
-- to store in "psv_def". 

The specified ADs are stored in the specified passive object. 
This operation is equivalent to doing a sequence of 
Put_access_descriptor operations. This operation is provided 
as a convenience to the user. 
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procedure Delete_access_descriptor( 
psv_def: passive_definition; -- Passive definition for an object. 
disp: access_segment_displacement) ; 

-- AD to be deleted. 

Function: 
The selected AD is deleted from "psv_def". The selected AD 
must have delete rights. 

procedure Copy_access_descriptor( 
from_psv_def: passive_definition; -- Passive definition for an object. 
fromLdisp: access_segment_displacement; 

-- slot in "fromLPsv_def" 
-- containing the AD to be copied. 

to_psv_def: 
to_disp: 

passive_definition; -- Passive definition for an object. 
access_segment_displacement) ; 

action: 

Function: 

slot in "to_psv_def" where AD 
should be copied. 
Action to be taken with 
respect to the copied AD. 

An AD is copied from one passive definition to the other 
using the specified action. 

-- GET OPERATIONS 

procedure Get_data( 
psv_def: passive_definition; -- An object's passive definition. 
act_buf: dynamic_typed; -- Active object containing data. 
psv_disp: passive_data_segment_displacement : = 0; 

-- Displacement into passive definition. 
sz: active_dat8..-segment_size : = -1; 

-- Number of bytes to transfer to 
-- "act_buf" from "psv_def" . (Default is 
-- size of "act_buf".) 

act_disp: active_dat8..-segment_displacement : = 0) ; 
Displacement into "act_buf". 

Function: 
Data is transferred from a passive object to an active object. 

function Get_access_descriptor( 
psv_def: passive_definition; 

disp: active_segment_displacement) 
return dynamic_typed; 

Function: 

Passive definition for ani 
object. 
Selects an AD. 

The AD at displacement "disp" in the passive object 
referenced by "psv_def" is returned. 
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-- MISCELLANEOUS: INFORMATION AND SET A'ITRIBU'IE OPERATIONS: 

function Get_passive_definition-info( 
psv_def: passive_definition) 

return passive_definition_info; 

Function: 

Passive definition for some 
object. 

Information about the object's passive definition is returned. 

procedure Associate_link( 
psv_def: passive_definition; 

link: dynamic_typed; 
action: in out put_ad_action) ; 

Function: 

Passive definition for some 
object. 
Reference to a link object. 
Action taken with respect to 
"link". 

The specified link object is associated with the passive object 
referenced by "psv_def". To do this association, the passive 
object must be opened in "update" or "write" mode. 
If put_ad_action is "owner_if_none" , then "action" 
is set either to "plain" or to "owner" on output. 

procedure Set_a.uto_copy( 
psv_def: passive_definition; 

boolean) ; 

Function: 

Passive definition for some 
object. 
Value to set to. 

The "autocopy" attribute of the referenced composite link object 
is changed. Psv_def must be open for "write" or "update". 

procedure Set_not_copyable( 
psv_def: passive_definition); 

Function: 

Passive definition for some 
object. 

The "copyable" attribute of the referenced composite link object 
is changed to false. Psv_def must be open for "write" or "update". 

procedure Set_not_activatable( 
psv_def: passive_defini tion) ; 

Function: 

Passive definition for some 
object. 

The "activatable" attribute of the referenced composite link object 
is changed to false. Psv_def must be open for "write" or "update". 
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INDEX 

Abort statement, 75 
Abort transaction operation, 308 
Accept alternative statement sequel, 79 
Accept statement (see Ada, accept state-

ment) 
Accepts nested in select statement, 76-77 
Access to Domain Object, 104 
Access authorization, 94 
Access control, 183 

hardware support for, 187-199 
inner layer, 192-194 
using dynamic packages, 211-215 

Access Descriptor (see AD) 
Access Environment ADs, 113 
Access part of object, 96 
Access rights, 93 

dispensable, 187 
Access selector, 113 
Accessing and addressing elements in ob

jects, 98 
Accessing mechanism, low-level view of, 

96 
Activating a composite, 313 
Activating passive version objects, 313 
Activation record, 110-111 
Active address space, 14 
Active object(s), 264 

making them passive, 303-304 
space, 264-265, 295 

Active Object Directory, 303 
AD (Access Descriptor), 15, 94-103, 191 

Context Message AD, 116 
Context Object processor-defined ADs, 

152 
Current Context AD slot, 112 
Current Processor Carrier AD, 147 
Defining Domain AD slot, 114, 123 
deletion of, 98 
Dispatching Port AD slot, 149 
Fault Port AD slot, 149 
Global Constants AD slot, 115 

AD (Access Descriptor) (Cont.): 
IIL-Message_AD, 142 
integrity and authenticity, 94 
Interprocess Message AD slot, 116 
Local Constants AD, 115, 124 
OULMessage_AD, 151 
Passive (see Passive Access Descriptor) 
Pre created Message AD, 116 
Predecessor Context AD slot, 114 
Private_AD for Domain Object, 123-125 
Process Carrier AD'slot, 149 
Process Object, processor-defined AD 

slots, 148 
Public_AD for Domain Object, 122-124 
Scheduling Port AD, 149 
Second Port AD, 152 
Static Link AD slot, 115 
TCO_AD,191 
TDO_AD, 189, 190 
Top of Descriptor Stack AD, 117 
Top of Storage Stack lAD, 116-117 
type rights field of, 192 
unchecked copy rights bit in, 276 

Ada, 16-18, 21-24 
abort statement, 75 
accept alternative statement sequel, 79 
accept statement, 73-79 

guard clause, 78 
implementation of, 153 

accepts nested in selected statement, 76-
77 

accepts types, implementation and use 
of, 202-204 

case statement, 52 
delay alternatives, 78 
delay statement, 75 
else clause, 78 
exception handler, 52 
extensions, 184-186, 214 

package type, 185-186 
(See also 432-Ada language extension) 
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Ada (Cont.): 

is separate phrase, 50 
limited private type, 203 
and object-based programming, 17-18, 

27 
package, 16-17, 24-26, 257 
pragma Enable_Dynamic_ Typing, 203 
pragma inline, 57 
private clause, 44 
program structures in, 16-17, 21-37 
renames declaration, 59 
renames feature, 52 
rendezvous and iMAX Typed_Ports 

equivalence, 176-177 
rendezvous semantics, 176-177 
select statement, 73 

implementation model, 158 
semantics of, 78 

separate prefix, 52 
separate procedure declaration, 50-52 
task. 17, 79-80 
task structures in [see Task(s)] 
terminate alternative, 78 
terminate statement, 73 
use list, 58 
while loop, 52 
with list, 25, 34-35 

Address space management, 92-103 
AlarID-Port, 147 
Allocated bit of Object Descriptor, 265, 

290 
Allocation of storage space for a process, 

105 
Allocation block, 268 
Allocation limit, 292 
Allocator expression, 69, 273 
ALTER MAP AND SELECT DATA 

SEGMENT order, 228 
Altered bit of Object Descriptor, 266 
Amplification of access environment, 123 
AMPLIFY RIGHTS instruction, 191, 196-

197 
AP (see Attached Processor) 
Architecture: 

computer (see Computer architecture> 
language-directed,92 

Asynchronous communication, modelling 
in standard Ada, 161 

Asynchronous device interface: 
structure of, 240-244 
synchronous and, choosing between, 

244-245 

Asynchronous interface, 233-235 
operations, 234 
package, connection record, 234 

Asynchronous intertask communication, 68 
Asynchronous modes of communication, 

165-166 
Asynchronous send and receive opera

tions, 150 
Asynchronous send operation, simulation 

of, 162 
Asynchronous_la_Interface package, 235, 

240, 242, 379-381 
Atomic Action(s), 15, 305-308 

on portfolio objects, 315 
Attach Table, 246 
Attached Processor (AP), 220-228 

file server process, 237 
mechanisms of the PSI, 225 
multitasking software, 226 
processes, 228 
Read or Write instructions, 222 

Base rights, 187, 192 
Basic_IO_Interface paradigm, 235 
Binding modes for parameters, 43 
Block and random transfer modes, 223 
Block transfers at high speed, 222 
Blocking connotation of send and receive 

operations, 150-154 
Body part, 21 

CALL instruction, 106, 113, 116, 122-124 
CALL THROUGH DOMAIN instruction, 

122-124 
Capability, 12,93 
Carrier Object(s), 140-144, 161 

logical view of, 143 
schematic of, 142, 143 
structure of, 142 
surrogate, 165-166 

Carrier pool management, 174 
CarrieLDef generic package, 167, 172-176 
Case statement, 52 
Claim Object, 108 

component or SRO, 271 
master, 292 

Claim value, 271 
underflow, 283 

CLOSE MESSAGE order, 223, 224, 228 
Close operation, 233-235, 310, 312 



Closed accept alternative, 78 
Club_Portfolio: 

creation of, 55 
creating multiple instances of, 55 

as dynamic package, 212 
initialization sequence for, 55 
package, 29, 53-54, 326-330 
PrinLclub_ valuation function body, 

335-336 
public operations of, 53 
selected bodies, 335-336 
(See also Portfoli<LMgr) 

Commit operation, 306 
CommiLtransaction operation, 308 
Communication Port, 140, 144-145 

distinguished from Dispatching Port, 145 
Communication structures, 135 
Compaction algorithm, 281 
Compaction process, 270 
Composite(s) 301, 313 

details on, 302-303 
how referenced, 301 
object, 264 
for solving the "small object problem," 

300-304 
Computational Subsystem, 6, 219 

interaction with Peripheral Subsystem, 
219 

Computer architecture: 
multiprocessing and, 2 
object-based, 11-13, 94 

Conditional entry statement, 155 
CONDITIONAL RECEIVE instruction, 

154-155 
CONDITIONAL SEND and RECEIVE 

orders, 223 
CONDITIONAL SEND instruction, 154-

155 
Connection record, 235 
Connectio~record, definition of, 240 
Context Fault Area, 110 
Context level, 109 

fault repair, 110 
Context Message AD, 116 
Context Object(s), 105-107, 110-120 

automatic allocation, 106 
data part, 118-120 
details of, 112 
preallocated list of, 105 
processor-defined ADs, 152 

Context Object Register, 111 
Context predecessor, 128 
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Context Status, 118 
Contours, 110 
Control, thread of, 22 
Control-based programming, 8 
Control operations for processes, 253 
ControLrights rights, 257, 258 
Copied bit of Object Descriptor, 287 
CREATE OBJECT instruction, 106, 190-

192, 195, 196 
Create object operation, 95 
Create rights, 190, 191,285 
CREATE TYPED OBJECT instruction, 

190, 195, 196 
Create_generic_refinement operation, 285 
Create_locaLheap operation, 286 
Create_object operation, 285 
Create_process operation, 256-258, 260 
Create_stacLobject operation, 285 
Create_typed_object operation, 285 
Current Context AD slot, 112-113 
Current Domain Register, 114, 123, 125 
Current Instruction Object Index, 119, 124 
Current level number, 110 
Current Processor Carrier AD, 147 

Dangling reference prevention, 109, 275-
276 

Data abstraction, 8, 9, 13 
Data part of an object, 96 
Data-transmission operations of Asyn-

chronous_IO_lnterface, 240 
Data Window, 221 
Data.-file objects, 313 
Deadline value, 146 
Debugging, software, 119 
Default global heap SRO, 277 
Defining Domain AD slot, 114, 124 
Delay alternatives, 78 
DELAY instruction, 146 
Delay Port, 146 
Delay statement, 75 
Delete rights, 97 
Derived types, 205 
Descriptor, 92 

Access (see AD) 
Object (see Object Descriptor) 

Refinement, 102. 108, 117 
Descriptor-based addressing, 92 
Destroy process operation, 259 
Device abstraction: 

allocation and deallocation, 243 
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Device abstraction (Cont.): 

defined Open and Close operations, 244 
Device driver process, 226 
Device Interface module (DIM), 245-246 
Device interface objects as separate pro-

tection domains, 245 
Diagnostic_Port, 147 
Directed graph, 91, 103 
DISPATCH order, 225 
Dispatching, 137, 142 

mix, 138, 252 
and scheduling of processes at lowest 

level,259 
Dispatching Port(s), 4, 105, 145, 146, 252 

AD slot, 149 
of the IP, 225 
preassigned set, 147 
of a processor, 147-148 

Dispatchin~Port, normal and alternative, 
147 

Displacement component of data operand, 
99 

Domain(s), 13, 120 
access to public part, 142;-124 
independent, 10 

Domain-based operating system, 8 
Domain Object(s), 104, 105, 120-125 

for Ada library level packages, 104 
private and public parts, 121 

Dynamic allocation of objects, 106 
Dynamic binding semantics, I 15 
Dynamic chain, 128 

length,274 
Dynamic link, 114 
Dynamic (symbolic) linking, 300 
Dynamic package(s), 56, 211-215 

facility, 213-214 
implementation of, 214 

used for passing function argument, 213 
Dynamic scheduling, 136 
Dynamic Typed Object, 184 
Dynamic unlinking, 300 
Dynamic_typed type, 205 

Else clause, 78 
ENTER ACCESS ENVIRONMENT in

struction, 113, 114, 122 
ENTER GLOBAL instruction, 113 
Entry call(s), 22, 180 

chain of, 80 
Entry declaration, 65, 81 

Entry Register, 113, 114 
Environment registers, 113 
Exception handler, 52 
Exposed accept statement, 73 
Extended type, 12 
Extended Type Object(s), 184, 188-189 

as instances of Ada access types, 184 
Extended __ Type_Manager: 

operations of, 200 
package, 199-202, 371-372 

External symbolic names for objects, 299-
300 

Fault code, 110 
Fault Information Object, 121 
Fault Port AD slot, 149 
Fault state, 118 
FIFO (first-in, first-out): 

mode of port service, 145 
queueing discipline, 145, 161 

File open operation, 236 
File_Manager package, 236 
Files, traditional, 264 
Filing. 263 

object (see Object filing) 
First-in. first-out (see FIFO) 
FirsLport Object, 156, 157 
432-Ada language extension, 56 
Free List, 270 

state, 281 
Frozen global heap SRO, 268, 276-277, 290 
Function Request Area, 221, 224 
Function State field, 224 

Garbage collection and Ada, 271 
Garbage collector (GCOL), 270-273 

algorithm in conventional systems, 266 
process, 194, 270, 281 

details, 285-288 
General Data Processor (GDP), 6, 194 
Generic abstraction, 234 
Generic clause, 40 
Generic package, 31, 40, 55 
Generic parameter, 40 
Generic Queue_Mgr package, 40, 320-322 
Generic_Sink abstraction, 233, 234 
Generic_Source abstraction, 233, 234 
Get operations, 308, 310 
GeLaccess_descriptor operation, 314 



GeLasynchronous_interface operation, 
233, 234 

GeLfile_interface operation, 236 
GeLterminaLcharacteristics operation, 

234 
GeLterminaLinterface operation, 236 
Global Constants AD slot, 115 
Global heap SRO, 106,272 

frozen, 268, 276-277, 290 
normal, 268, 276-277 

Global heap storage space, 268 

Hardware support for access control and 
type management, 187-199 

HYDRA system, 12, 15 

I/O (Input/Output), 217-250 
architectural support for, 219-225 
buffering, 231 
channel, 234 
device abstraction, 231-233 

forming a hierarchy, 232 
generic, 232 

device interfaces, 233 
synchronous, 235-237 

devices, logical, implementation of, 
231 

higher-level view of, 225-230 
operations: generic, 234 

via message-based communication, 
223 

request message, 231 
I/O Control Program, 245-246 
I/O Control Systems, 217 
I/O Subsystem, 6, 218 
I/O_message_record definition, 240 
iAPX 432: 

Published Papers, 317 
Titles of Manuals and Booklets, 318 

i432: 
address-space structures, 92-103 
instruction, 99 
interprocess communication, 149-164 
object details, 100-101 
Object Filing Subsystem, 14, 295 
object space, 263-266 
port operations, 176-177 
process and processor state transitions, 

138 
security strategy, 194-198 

i432 (Cont.): 
system topology, 6 

iMAX: 
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Asynchronous_la_Interface package, 
379-381 

Extende<LType_Manager package, 199-
202, 371-372 

interface as type manager, 251 
I/O Interface, 230-235 
la_Definitions package, 373 
MCO_Manager package, 390-392 
Passive_Store_Manager package, 308-

314, 396-403 
Process_Manager interface, 251-262 
Process_ManageL Types, 382-387 
SRO_Manager package, 284-285. 388-

389 
Support for interprocess communication. 

166-177 
Synchronous_la_Interfaces package. 

374-378 
Transactio"----.Manager package, 308. 

393-395 
Type<LPorts package, 176-177. 366-370 

iMALDefinitions package. 167 
In-bound Message AD, 142 
INDIVISIBLY INSERT SHORT ORDI-

NAL order, 230 
Initial run-time object structure. 105 
IniLproc parameter of Create_process. 

257 
Input/Output (see I/O) 
InpuLOutput, library package, 244 
Instruction data operand. 99 
Instruction formats for expression evalua-

tion. 120 . 
Instruction Object, 119, 120 
Instruction Object Index, 124 

Current, 119, 124 
Instruction Object Register, 124 
Instruction Pointer (IP). 119, 124 
Instruction Pointer Register, 125 
Interdomain call, 122 
Interdomain link. 121 
Interface Processor (IP), 6, 194, 220-230 

orders for, 221 
process re-use by the AP, 224 
process selection, 224 
response to function requests, 221 
Window Mapping. 221 
window opening and closing. 222 

Interface Processor Controller, 228 
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Interface_description operation. 233. 235 
Intermediary tasks for modelling asynchro

nous communication. 162 
Internal names. generating unique. 299 
Interprocess communication. 135 

iMAX support for, 166-177 
Interprocess Message AD slot, 116 
Interprocessor communications (lPC), 146 

message, 226 
Interprocessor wakeup signal, 146 
Interrupt signal. 224 
Intradomain call, 116. 122 
Investment club program: 

execution snapshots. 125-133 
implemented with message-based com

munication. 177-181 
message flow graph, 178 
(See also Club_Portfolio) 

Investment portfolio manager, 26-27 
(See also Portfolio_Mgr) 

la_Definitions package. 235, 373 
IP (see Instruction Pointer; Interface Pro

cessor) 
IPC (see Interprocessor communications) 
Is separate phrase. 50 

Job, 136, 260 
ordering of, in workstream, 136 
parameter to Create process, 260 

Level: 
compatibility check, 276 
context, 109, 110 
number for a created object, 109 
number attribute, 274 
number counter, 274 
violations, avoiding, when sending mes

sages, 283 
Library packages InpuLOutput and TexL 

10,244 
Lifetime of created object, 109 
Lifetime-violation fault. 275 
Limited private type, 203 
Link Objects, 300 
Local Constants AD, 115, 124 
Local heap SRO, 106, 273 
LOCK OBJECT instruction, 192 
Logical disk structures, per disk, 302 
Logical names for objects, 299-300 
Long-term scheduling. 138, 144-145, 149 

parameters, 146-147 

Long-term scheduling (Cont.): 
viewed as communication. 144-145 

Mailboxes, Print Order and Print Re-
sponse.230 

Main memory management. 263, 267-288 
Main subprogram. 22 
Mapping table entry, 93, 94 
Masters_Helper task, 210 
MCO (see Memory Controller Object) 
Member task, 33-37, 71. 247-248 

command loop, 248 
MembeLOps package, 33-35, 56-60 

version I, 337-339 
version 2, 339-340 

Membership roster protection, 208 
Membership __ Roster package, 37, 208-211, 

341-342 
specification part, 82, 83 

Memory. normal and frozen, 276-277 
Memory compaction algorithm, 266 
Memory Controller Object (MCO), 291-293 

MCO_Manager package, 291-293, 390-
392 

operating statistics, dynamic and static, 
292 

parameters, 291 
performance statistics, 292 
representation. 293 

Memory management, 263-293 
main. 267-288 
and process management. 267 
virtual, 288-293 

Memory Management Subsystem, 265, 
268 

Memory mapped 1/0 subsystem, 220 
Memory space, two-space model of, 265 
Memory type, 291 
Message Object. 116 

pool of. 226 
Precreated, 126 

Message priority system, 160, 171-172 
Message_type, definition of, 179 
Mix, 136 

dispatching, 138, 252 
Module, 21 
MPM (minimal process management imple-

mentation), 259-260 
Multicomputer, 5 
Multiple wait paradigm, 160 
Multiple waiting, 174 



Multiprocessing, 2 
transparent, 7 

Multiprocessing model, 3-4 
Multiprocessor: 

interconnect, 6 
memory organization, 5-6 

Multiprocessor system, 2-3, 5 
organization, 6-7 

Multiprogramming models, 136 

Names, logical, for objects, 299-300 
Non-faulting processor (NFP), 147 
Non-owner package, 24 
Normal and frozen memory, 276 
Normal global heap SRO, 268, 276-277 

Object(s), 94 
auto-activation, 301 
composite, 264 
consistency across updates, 305-308 
creation instructions, 190-192 
definition of, 8 
detailed view of, 99, 100 
fully private, 202 
having unbounded lifetimes, 106 
as independent address spaces, 91 
non-relocatable and non-swappable, 291 
processor-defined part, 101 
sealed, 202, 208 
software-defined extension, 100 
trademark,202 
of type dat3--file, 313 

Object-based architecture, 11-13, 94 
Object-based design, 7-8 
Object-based operating systems, 9-11 
Object-based program design methodology 

27 
Object-based programming, 8-9, 17-18 
Object Descriptor, 94-96, 99, 101-102, 

116-117, 265-266 
accessed bit, 266 
altered bit, 266 
principal component s of, 193 
valid bit, 313 

Object filing, 263-264, 295-316 
design challenges for, 298-308 
system for, 13-16 

Object Filing Subsystem, 33, 104, 295 
Object identifier, unique, 298-299, 301 
Object lifetime strategies, 272-275 
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Object Lock, 110 
Object manager, 12 
Object-oriented architecture, 11 
Object partition, 96 
Object selector component of data oper

and,99 
Object space in which object resides, 295 
Object Table, 95, 108, 109, 117 

handling overflow, 282 
Object type, 97 

management, 183 
One-space store, 302 
Open, implementation of, 311 
Open and Close operations, 308, 310 
Open accept alternative, 78 
OPEN MESSAGE order, 222-224, 228 
Open parameter, 311 
Open Window order, 223, 228 
OpeILmode parameter for Open, 311 
Opening a passive object, 311 
Operand Stack, 120 
Operating system: 

application-specific, 251 
model based on objects and domains, 8 
organization, 7 

Orders for Interface Processor, 221 
Out-bound Message AD, 151 
Owner package, 24-25, 296 
Ownership right in a PAD, 304-305 

Package(s), 22, 24-26 
owner, 24, 25, 296 
public and private parts of, 25 
public part of, 22 
transformer, 24 
visible and invisible parts of, 25 

Package instance, dynamic selection of, 
211 

Package refinement: 
access type, 214, 218, 233, 238, 252 
specifying, 214 

Package type extension to Ada, 184 
Package value, 213 . 
Package variable, 211, 214 

assigning package instance to, 211 
uses of, 213 

PAD (see Passive Access Descriptor) 
Parallel flow, 62 
Parallel garbage collection, architectural 

support for, 266 
Parameter binding modes, 43 
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Passivating a Typed Object, 303 
Passivation filter, 303, 304 
Passive Access Descriptor (PAD), 302-

305 
owner right, 305 

requirement for Update or Passivate, 
309 

storing via a "component" action, 302 
Passive address space, 14 
Passive object, 264, 301-303 

space, 264, 295 
efficient management of, 305 

Passive Object Directory, 301 
Passive_definition, 311 
Passive_Store_Manager package, 308-314, 

396-403 
active-version operators, 309 
passive space manipulation operations, 

310 
Peripheral Subsystem, 219, 250 
Peripheral Subsystem Interface (PSI), 219, 

225,237 
details for, 228 
role of, 226 
structure of, 228 

PGO (Process Globals Object), 109, 277 
Physical devices: 

allocation and deallocation of, 244 
simulated, 245 

Physical storage, state diagram, 281 
Physical Storage Object (PSO), 108, 268-

269,289 
Pipeline flow, 62 
Pkg-ref (see Package refinement) 
PM (see Process_Manager) 
POD (Passive Object Directory), 301 
Policy and mechanism separation, 140 
Pool of message objects, 226 
Port(s): 

abstract view of, 140 
concrete view of, 140 
dispatching (see Dispatching Ports) 
hardware-sensed service modes, 145 

Port Object, 140-141 
Port service disciplines, 145-146 
Portfolio details, 32 
Portfolio management information system, 

I/O operations, 246-250 
Portfolio management system, final inspec

tion of, 314-316 
Portfolio_Mgr: 

Create function body, 331 

Portfolio_Mgr (Cont.): 
package, 27-32, 47-52, 322-326 
public operations of, 47, 48 
RecorcLbuy procedure body, 331 
RecorcLsell procedure body, 332 
SearclLfoLstocLcode function body, 

333 
separate bodies, 331-335 
Shares_ancLav~cost procedure body, 

334-335 
StocLlist procedure body, 334 
(See also Club_Portfolio) 

Portfolio_Server task. 37, 64, 67, 
178-181. 208, 209, 315 

body part, 350-356, 361-365 
entries, 81-82 
for use with Figure 2-5 structure, 345-

350 
for use with Figure 3-2 structure, 358-

361 
Pragma Enable_Dynamic_ Typing, 203 
Pragma inline, 57 
Precreated Message AD, 116 
Precreated Message Object, 126 
Predecessor Context AD slot, 114 
Priority/Deadline port service mode, 

146 
Priority-mode of port service, 175 
Priority queueing discipline, 161 
Private access type, 203 
Private clause, 44 
Private_AD for Domain Object, 123-125 
Procedure call classes, 122-124 
Procedures as parameters, prohibition of, 

186 
Process: 

as scheduleable and dispatchable job, 
140-149 

surrogate, 156 
Process Carrier AD slot, 144, 149 
Process Carrier Object, 143 
Process clock, 110 
Process Control Area, 110 
Process Fault Access Area slots, 149 
Process Fault Area, 110 
Process Globals Object (PGO), 109, 277 
Process ID, 108 
Process lifecycle, 252, 254 
Process macro-state, 252, 254 
Process management, 251-262 

functions of, 252 
minimal implementation, 259-260 



Process Manager Support package, 260 
Process Object(s), 65, 107-110, 128, 140, 

141 
access part, 107 
allocation of, 284 
creation of, 146 
data part, 109-110 
management of, 251 
processor-defined AD slots, 148 
structure of, 148-] 49 

Process Object Register, 107 
Process preemption, 138, 148 
Process status, 110 
Process trees, 277-281, 289 
Processes as scheduleable and dispatchable 

units of work, 141-149 
Process-level fault recovery, 110 
Process_Globals_Definitions interface 

package, 276 
Process_Manager, 251-262 

access package, 382-387 
implementation for multi-user time

shared operating system, 260 
instance, 251 
interface, 252-258 

implementations, 251-252, 259 
Process_ManageL Types package, 257, 

258, 382-387 
Processor Carrier of the IP, 225 
Processor Carrier Object(s), 142 

precreated set, 147 
Processor class, 193-194 
Processor control codes, 119 
Processor dispatching mode, 147-148 
Processor Object, 98, 140, 142 

creation of, 147 
Processor registers for domain access, 125 
Processor switch to another workstream, 

148 
Processors, special-function, 194 
Program structure, directed graph repre-

sentation, 91 
Program units, 21 
Protection domains, 93, 94 
Protection problem, 94 
Pseudo-temporal environment (PTE), 306, 

307 
Pseudo time, 307 
PSI (see Peripheral Subsystem Interface) 
PSO (see Physical Storage Object) 
PTE (pseudo-temporal environment), 306, 

307 
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Public_AD for Domain Object, 122-124 
Purchase_Queue_Mgr package, 31, 43, 

125, 322 
Put and Delete operations, 308, 310 
Put and Get operations, 312 
PuLdata and PULaccess_descriptor oper

ations, 312 
PuLdat~file operation, 312 

Query record for device interface, 235 
Queue: 

of Available Processors, 4 
of Ready Program Units, 4 

Queueing discipline, 145 
Queue_Mgr package, 31, 39-47, 320-322 

Raise_exception operation, 259 
Read rights, 97, 192, 257 
Rea<LMCO_statistics operation, 292 
RECEIVE and SEND order implementa-

tion, 224 
RECEIVE instruction, 116, 152-154 

conditional, 154-155 
surrogate, 155-158, 160 

RECEIVE order, 224, 243 
Receive rights, 171 
Reclamation bit of Object Descriptor, 287 
Reconfiguratio"--Port, 147 
Refinement Descriptor, 102, 108, 117 
Refinement Object, 102 
Refinements: 

creation of, 285 
of Domain Objects, 104, 218 

Related types, 205 
Relocation-in-process state, 291 
Renames declaration, 59 
Renames feature, 52 
Rendezvous, 22-23, 67, 176-177 

early acknowledge for, 79 
hardware support for, 74 
mechanism, 162, 210 
minimizing delay for, 79, 80 
suspension, 73 

Reply_port, 240 
Representation rights, 192 
Request/acknowledge protocol, 79 
Request queue, 145 

fixed-length, 150, 151 
overflow, 143, 145 

extension, 150 
Request/server model, 138-140, 165 
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RequesLport, 240 
Reset operation, 233-235 
ReseLactive_ version operation, 309 
Resource control parameter, 291-292 
RESTRICT RIGHTS instruction, 191, 196, 

197 
Resume process operation, 259 
RETRIEVE TYPE DEFINITION instruc

tion, 198 
RETURN instruction, 106, 113-114, 273 

deallocation semantics, 274 
fault, 114 

Return rights, 114, 128, 273 
Root Context Object, 125 
Root Domain Object, 105, 125 
Root node for program, 103 
RosteLServer task, 37, 64, 67, 178-181, 

315 
entries for, 83, 84 
for use with Figure 2-5 structure, 343-

345 
for use with Figure 3-2 structure, 357-

358 
RosteL TypeLAncLConstants package. 

83,341 
Rotate-first fit algorithm. 268 
Run-time program structures. 103-107 

Scan rate, 293 
Scheduling, 137-147, 259 

and dispatching of i432 processes, 135 
long-term (see Long-term scheduling) 
short-term (see Short-term scheduling) 
viewed as communication, 146-147 

Scheduling Port AD slot, 149 
Sealed object, 202, 208 
Sealed reference, 203 
Second Port AD, 152 
Second port mechanism. 146, 151, 225 
SeconcLport Object, 156. 157 
Secretary task, 209-210 
Secy_Treas task, 29-31 
Segments. 92-95 

relocation, 93 
Select alternative, 73 
Select statement (see Ada, select statement) 
Selective wait loop, 77 
Selective wait statement, 77 
Semantic model of program structure, 8 
SEND and RECEIVE instructions, appli-

cations for, 153. 158 

SEND instructions, 150-153 
conditional, 154-155 
surrogate, 155-158, 160, 161 

SEND order, 224, 243 
Send rights. 171 
Separate compilation unit. 50 
Separate prefix, 52 
Separate procedure declaration. 50-52 
Server queue, 145 
Server task. 37 

general form, 79 
Service count, 110, 259 
Service period, 110. 147 
SET MODE instruction. 118 
SeLschedulin~parameters operation, 259 
SeLterminaLcharacteristics operation. 

234 
Short-term scheduling. 137. 144, 145 

hardware support. 140 
parameters. 146-147 
viewed as communication, 144 

SIGOPS (Special Interest Group on Oper-
ating Systems), IOn. 

Simple_PorLDef package. 169-172 
Simula class construct. 9 
Single-owner-only rule for PADs, 305 
Software debugging, 119 
Software-defined type rights, 257 
SP (see Stack Pointer) 
Specification part, 21, 53 
Specification stub, 50 
SRO (see Storage Resource Object) 
Stack frames, 110 
Stack Pointer (SP), 118, 124 

entry, 118 
register, 118 

Stack SRO, 106, 272 
allocation strategy, 268 
handling overflow, 282 

Starter task, 22, 29 
StarLtransaction operation, 308, 309 
Static Link AD slot, 115 
StocLMkLInfo: 

on-line connection for, 249-250 
package, 30 

StoclLsummary, 48-50 
StocLTypes_AncLConstants package, 

37, 38, 41, 319 
Storage block specifier, 269 
Storage claim underflow fault, 292 
Storage Resource Objects (SRO), 65, 106, 

108, 109, 268-275 



Storage Resource Objects (SRO) (ConI.): 
global heap (see Global heap SRO) 
stack (see Stack SRO) 
state, 281 
structure of, 268 
three kinds of, 272 
tree(s): controlled by MCO, 292 

logical relationships among nodes, 278 
and matching process trees, 277-281 
physical relationships among nodes, 

278 
structures of, 272 

(See also iMax, SRO_Manager package) 
Surrogate Carriers, 156, 163 

pool of, 172 
Surrogate process, 156, 165 
SURROGATE RECEIVE application, 158 
SURROGATE RECEIVE instruction, 155-

158 
SURROGATE SEND and SURROGATE 

RECEIVE orders, 223 
SURROGATE SEND application, 158 
SURROGATE SEND instruction, 155-158, 

160,161 
Surrogate_PorLDef generic package, 167, 

172-176 
Suspend process operation, 259 
Suspend_ancLresume_rights rights, 257, 

258 
Swapped-out state, 291 
Swapping store, 263 
Symbolic names for objects, 299-300 
Synchronous and asynchronous device in-

terfaces, choosing between, 244-245 
Synchronous device interface, 233-240 

acquisition of, 235-237 
examples of, 237-240 
refinement, 233 

Synchronous I/O call, 231 
Synchronous I/O device interfaces, 235-

237 
Synchronous interface(s), 231 

for use with standard Ada, 244 
Synchronous_IO_Interfaces package, 374-

378 
System crashes, protecting against, 265 
System objects, 96, 184, 196 
System type, 188, 193 

generic, 193 
subfield, 193 

Table of Object Tables, 282 
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Task(s), 22-23 
dynamic creation of, 64, 69-71 
non-server/non-requestor form, 64, 73 
Process Object for representing, 65 
pure requestor form, 64, 73 
pure server form, 64, 73 
server/requestor form, 64 
starter, 22, 29 
static creation of, 64-69 
viewed as machines, 61-64 

Task activation, 65 
Task body, 71-81 

skeletal structure of, 72 
Task elaboration, 64-65 
Task entry call, 65 
Task forms, 64 
Task identifier, 65 
Task roles, 63 
Task spawned, 22, 64 
Task structures [see Task(s)] 
Task type, 69, 71 

new instance of, 71 
TasLMaster and terminal communication, 

247-248 
TasLMaster task, 35-37, 64-66, 69, 71, 

209-211 
TCO (see Type Control Object) 
TCO_AD,191 
TDO (see Type Definition Object) 
TDO_AD, 189, 190 
Terminal operations, 247-249 
Terminal sink, 233 
TerminaLManager package, 236 
TerminaLSink, 237-239, 247 
Terminate alternative, 78 
Terminate statement, 73 
Text_IO package, 31, 244 
Thread of control, 22 
Time slice, 146 
Time slicing, 136 
Top of Descriptor Stack AD, 117 
Top of Storage Stack AD, 116-117 
Trace Event Code, 120 
Trace Information Object, 121 
Trace Mode Data Area, 119-120 
Trace rights, 120 
Tracing, 120 
Transaction(s), 306-308 

performing, 308 
TransactiolLinfo operation, 308 
TransactiolLManager package, 308, 393-

395 
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TransforllLinterface application, 239 
TransforllLinterface operation, 233-235 
Transformer package, 24, 297 
Transparent multiprocessing, 7 
Two-space model of memory space, 265 
Type of an object, 96 
Type checking, compile-time and run-time, 

204-207 
Type Control Object (TCO), 190-191, 196-

197 
creation of, 196 
for system objects, 196 
TCO_AD,191 

Type conversion, 204-205 
Type definition mechanism, hardware sup

port for, 188 
Type Definition Object (TDO), 184, 189-

190, 198-202, 302, 304 
AD,190 
content, 198 

Type dynamic_typed, 204-206 
Type management, hardware support for, 

187-199 
Type manager, 12, 304 

package, how programmed, 200 
Type rights, 187, 192 

field of AD, 192 
Typed Object(s), 184 

passivation decisions and actions, 303-
304 

verifying its type, 202 
Typed_Ports: 

implemented by rendezvous, 174 
package, 166-167, 174, 366-370 
structure of, 167-169 

Type_value attribute, 184 

UID (unique object identifier), 298-299, 
301 

Unchecked copy rights bit in AD, 276 
Unchecke<LConversion generic function, 

206-207 
Unique object identifier (UID), 298-299, 

301 
UNLOCK OBJECT instruction, 192 
Untype<LPorts package, 166 
Update operation, 308, 309 
Use list, 58 

Valid bit of Object Descriptor, 313 
Virtual memory, 265 

facility, 270 
management of, 288-293 

WaiLfoLprocess_termination operation, 
258 

While loop, 52 
Windowing overhead reduction, 223 
With list, 25, 34-35 
Working Storage, 120 
Workstream, computer, 135-137 
Work stream alternative, 147 
Write rights, 97, 192 
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