
A PROGRAMMER'S
VIEW OF
THE INTEL 432 SYSTEM

Elliott I. Organick

McGRAW-HILL BOOK COMPANY
New York St. Louis san Francisco Auckland
Bogota Hamburg Johannesburg London
Madrid Mexico Montreal New Deihl
Panama Paris Sao Paule) Singapore
Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Organick, Elliott Irving, date.
A programmer's view of the Intel 432 system.

Includes bibliographical references and index.
1. Intel 432 (Computer)-Programrning. 2. Ada

(Computer program language) I. Title.
QA76.8.I267073 1983 001.64 82-24887
ISBN 0-07-047719-1

Copyright © 1983 by Intel Corp. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any fonn or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 KGP/KGP 89876543

ISBN 0-07-047719-1

The editor for this book was Stephen Guty, the designer
was Naomi Auerbach, and the production supervisor
was Thomas G. Kowalczyk. It was set in Times Roman
by Infonnation Sciences Corp.
Printed and bound by The Kingsport Press.

CONTENTS

Preface ix
Acknowledgment xiv

1. TOP-LEVEL VIEW OF THE INTEL 432 SYSTEM DESIGN 1

1.1. Computer Architecture and Multiprocessing
1.1.1. Multiprocessor Computer Systems
1.1.2. The Multiprocessing Model
1.1.3. Multiprocessor Memory Organization
1.1.4. i432 Multiprocessor System Organization

1.2. Object-Based Design
1.2.1. Object-Based Programming
1.2.2. Object-Based Operating Systems
1.2.3. Object-Based Computer Architecture

1.3. Object Filing Systems
1.4. Ada and the iAPX-432

1.4 .1. Ada Program Structures
1.4.2. Ada and Object-Based Programming

1.5. Remainder of This Book

2
2
3
5
6
7
8
9

11
13
16
16
17
18

2. PROGRAM STRUCTURES AND SEMANTICS IN ADA .. 21

2.1. Ada-A Top-Down View 21
2.2. Ada Packages 24
2.3. An Investment Portfolio Manager 26

2.3.1. Building an Ada Program Model to Match a Model of the
Investment Club Portfolio System 27

2.3.2. Portfolio Details 32
2.3.3. Allowing All Club Members to Query Their Club's Portfolio-

Many Single Users 33
2.3.4. Multi-User Solutions to the Investment Portfolio Application 35

2.4. Highlights of the Ada Code-Figure 2-2 Case 37
2.4.1. A Multiplicity of Queue_Mgr Instantiations 41
2.4.2. Details of the Queue_Mgr Package 41
2.4.3. Portfolio_Mgr Code 47

III

Iv Contents

2.4.4. Code for the Body of Portfolio_Mgr
2.4.5. Examination of the Club_Portfolio Package
2.4.6. Creation and Ownership of a Portfolio Instance
2.4.7. Ownership of More than One Portfolio

2.5. Giving Query-Only Access to an Investment Portfolio

50
53
55
55
56

3. TASK STRUCTURES IN ADA. .. 61

3. 1. Introduction
3.1.1. The Analogy between Tasks and Machines
3.1.2. A Specific Ada Tasking Structure
3.1.3. Static Creation of Tasks
3.1.4. Dynamic Creation of Tasks

3.2. Body Structures of Tasks
3.2.1. Non-Server/Non-Requestor Tasks
3.2.2. Pure Requestor Tasks
3.2.3. Pure Server Tasks
3.2.4. General Tasks

3.3. Concrete Examples
3.4. Chapter Summary

61
61
64
64
69
71
73
73
73
79
81
86

4. i432 OBJECT STRUCTURES FOR PROGRAM EXECUTION. 91

4.1. Introduction 91
4.1.1. A Primer on i432 Address-Space Structures 92
4.1.2. Run-Time Program Structures 103

4.2. The Process Object 107
4.3. The Context Object 110

4.3. 1. Details of the Context Object 112
4.3.2. Details of the Context Object's Data Part 118

4.4. The Domain Object 120
4.4.1. Access to the Public Part of a Domain 122
4.4.2. Use of the Private Part of a Domain 124
4.4.3. Processor Registers to Facilitate Domain Access 125
4.4.4. Section Summary 125

4.5. Some Object Structure Snapshots for the Investment Club Program 125
4.5.1. Snapshot 1 125
4.5.2. Snapshot 2 127
4.5.3. Snapshot 3 128
4.5.4. Snapshot 4 128
4.5.5. Snapshot 5 129
4.5.6. Snapshot 6 131
4.5.7. Snapshot 7 132
4.5.8. Section Summary 133

5. 1432 COMMUNICATION STRUCTURES FOR PROGRAM EXECUTION. 135

5.1. Introduction 135
5.1.1. Process Dispatching and Interprocess Communication-In General 135
5.1.2. Dispatching and Scheduling-A Technical Overview 137
5.1.3. Plan for Remainder of Chapter 140

Contents v

5.2. Processes as Schedulable and Dispatchable Units of Work 141
5 .2.1. Short-Term Scheduling Viewed as Communication 144
5.2.2. Long-Term Scheduling Viewed as Communication 144
5.2.3. Port Service Disciplines 145
5.2.4. Scheduling Viewed as Communication 146
5.2.5. Alternative Dispatching Ports of a Processor 147
5.2.6. A Second Look at a Process Object Structure 148

5.3. i432 Interprocess Communication 149
5.3.1. The SEND and RECEIVE Instructions 150
5.3.2. The CONDITIONAL SEND and CONDITIONAL RECEIVE

Instmctions.
5.3.3. The SURROGATE SEND and SURROGATE RECEIVE

Instructions.
5.3.4. Modelling Asynchronous SendlReceive Operations in

Standard Ada
5.4. The Unified View Offered by the Request/Server Model
5.5. Ada Programmers' Interface with iMAX for Interprocess

Communication
5.5.1. Structure and Main Features of Typed_Ports
5.5.2. The Simple_Port_Def Package
5.5.3. Carrier_Def and Surrogate_Port_Def Generic Packages
5.5.4. The Equivalence between Ada Rendezvous and iMAX

Typed_Ports Facility
5.6. Explicit Message-Based Communication for the Investment

Club Program

154

155

161
164

166
167
169
171

176

177

6. i432 OBJECT ACCESS AND TYPE MANAGEMENT. .. 183

6.1. Introduction 183
6.2. Hardware Support for Access Control and Type Management 187

6.2.1. Object Creation Instructions 190
6.2.2. The Inner Layer of Access Control 192
6.2.3. i432 Security Strategy 194
6.2.4. Instnlction-Level Use of Extended Type Objects 198

6.3. iMAX Interface to the Extended Type Facility 199
6.3.1. Implementation of Ada Access Types 202
6.3.2. Compile-Time and Run-Time Type Checking 204

6.4. Sealing the Membership Roster 208
6.5. Access Control Using Dynamic Packages 211

7. i4321NPUT/OUTPUT ... 217

7.1. Introduction 217
7.1.1. System Organization Revisited 218
7.1.2. Architectural Support for Input/Output 219
7.1.3. A Higher-Level View ofI/O in the i432 System 225

7.2. The iMAX I/O Interface 230
7.2.1. The I/O Device Abstraction Hierarchy 231
7.2.2. Synchronous and Asynchronous Interfaces 233

7.3. Structure, Acquisition, and Use of Synchronous I/O Device Interfaces 235
7.3.1. Acquisition of a Synchronous Device Interface 235
7.3.2. Two Example Uses of Synchronous Device Interfaces 237

vi Contents

7.4. Structure and Use of the Ansynchronous Device Interlace
7.5. I/O System Assessment
7.6. I/O Operations for the Portfolio Management Information System

7.6.1. Terminal Operations
7.6.2. On-Line Connection to the Stock Market

240
244
246
247
249

8. PROCESS MANAGEMENT .. 251

8.1. Introduction 251
8.2. The Process_Manager Interlace 253

8.2.1. The Create_Process Operation and Its Use 256
8.2.2. Other Operations of the Process_Manager Interlace and

Their Use 257
8.3. Different Possible Implementations of the Process_ Manager Interlace 259

8.3.1. A Simple, Close-to-the-Hardware Implementation 259
8.3.2. HighecLevel Implementations 260

8.4. Summary 261

9. MEMORY MANAGEMENT .. 263

9.1. Introduction 263
9.2. Management of Main Memory 267

9.2.1. Object Lifetime Strategies 272
9.2.2. Prevention of Dangling References 275
9.2.3. Frozen and Normal Memory 276
9.2.4. SRO Trees that Match Process Trees 277
9.2.5. Some Fine Points 281
9.2.6. The iMAX SRO_Manager Package 284
9.2.7. The Garbage Collector Process, GCOL 285

9.3. Management of Virtual Memory 288
9.3.1. Controlling the Resources of an MCO 291
9.3.2. Resource Usage Statistics 292

10. OBJECT FILING. .. 295

10.1. Introduction 295
10.2. Design Challenges for Object Filing 298

10.2.1. Unique Object Identifiers 298
10.2.2. Symbolic (Logical) Names for Objects 299
10.2.3. Composites for Solving the "Small Object Problem" 300
10.2.4. Efficient Management of Passive Object Space 304
10.2.5. Maintaining Consistency of a Collection of Objects

across Updates 305
10.3. Perlorming Transactions Using the iMAX Interlace Packages 308

10.3.1. The iMAX Transaction_Manager Package 308
10.3.2. The iMAX Passive_Store_Manager Package 308

10.4. A Final Glance at the Portfolio Management System 314
10.5. Chapter and Book Summary 316

Contents vii

APPENDIX A ..•..•••.••. 317

APPENDIX B .. 318

APPENDIXC .. 319

APPENDIX D .. 331

APPENDIX E .. 337

APPENDIX F .. 341

APPENDIX G .. 357

APPENDIX H .. 366
APPENDIX I .. 371

APPENDIX J 373

APPENDIX K .. 382

APPENDIX L .. 388

APPENDIX M .. 393

References 404

Index 407

PREFACE

Does any technological development of the computer era rival in importance
that of the microprocessor? I think not. The first microprocessors, whose short
history began just a decade ago, were based primarily on the advances in micro
electronic technology, which came much later than and was largely independent
of the computer itself. By contrast, today's impressive microprocessor break
throughs rest heavily on the synthesis of modem computer architecture and
operating systems principles and on recent improvements in the software disci
plines all of which represent decades of development. The three disciplines:
software engineering, programming methodology, and programming languages
are heavily utilized in the automation, testing and verification of the microproc
essor design itself, and this dependence continues to grow.

From the start, microprocessor designers and manufacturers enjoyed success
and acclamation merely by demonstrating that each new design emulated a yet
closer "approximation" to a contemporary mini or mainframe computer struc
ture. Observers required no crystal ball to conjecture that if circuit density,
speeds, and design automation continued to improve as projected, then
microprocessor designs would soon converge to the full power and logic of
large minicomputers and perhaps even of mainframe computers.

Most of such conjectures are now realities, However, far fewer observers
anticipated that the day would soon arrive when significant advances in main
frame computer architecture would be manifested in the microprocessor. In the
highly competitive computer industry it had seemed especially far fetched to
imagine that any relatively young semiconductor organization could wrest the
leadership in computer architecture from established computer companies.
This, too, appears to be happening -and this book is an effort to describe why
and how this shift of focus is occurring.

The Intel Corporation has been an acknowledged leader and major contribu
tor in microelectronic technology. In a recent advertisement, this company
claims credit for most of the technological breakthroughs since 1971. The
advertisement claims that the most recent, and by implication the most signifi
cant of these breakthroughs is the new iAPX 432 Micromainframe 1M system. 1

The claim is summarized as follows: "1981: with the goal of dramatically cut
ting software costs, Intel breaks with traditional computer architecture and
introduces an expandable multiprocessor system optimized for managing infor-

ix

x Preface

mation." This succinct assertion should serve as a serious challenge to most of
us, for if true, we computer professionals should gain an understanding of the
basis of this truth as quickly as possible so that we can seek ways to "apply" it.
True, or false, the curiosity of many has already been justifiably roused. There
will be much serious investigation of this claim.

Already much has been published about the iAPX 432, mainly in literature
and analyses provided by Intel itself. Much more is sure to follow from a wider
variety of sources as others gain access to copies of the new system, acquire
experience in applying it to their problems, and refute or confirm Intel's claim.
My effort not only attempts to make the claim of "breakthrough" better under
stood by a wide audience of computer professionals, engineers, analysts, pro
grammers, and students; it also has as its objective providing an introduction to
many of the principles and concepts of computer architecture, operating sys
tems, and programming language, which can help potential users of the iAPX
432 become effective users more quickly. The reader profile assumed for this
book is a person who is familiar with programming and who is familiar with
Ada2 or Pascal.

[Chapters of this book can serve as case-study text for several traditional computer sci
ence courses. I have used drafts of Chapters 2 and 3 for a course in programming
languages, sections from Chapters 1,4, 5, 6, 7, and 9 for a course in computer architec
ture, and plan to use sections from Chapters 1, and 4 through 10 for a course in operating
systems. Other computer science instructors may also find the material useful as text
material.]

The book is an outgrowth of my good fortune to be invited early in 1980 by
members of Intel's Special Systems Operation group at Aloha, Oregon to begin
a study and writing project on the iAPX 432, then in an advanced stage of
development. It was immediately clear to me, during the first visit to Aloha,
that a major advance in computer architecture was in the making. For a number
of years I had been a student of computer architecture, chiefly from the
viewpoint of matching computer structures to semantic models of programming
languages and of providing support in the architecture for secure and powerful
but structurally simple operating systems. The opportunity to study the new
Intel system and to write about what I might learn while the system itself was
still new and largely unfamiliar to many, even within Intel, would be an excit
ing but familiar experience. I "signed on" with little hesitation.

The study published here represents my understanding of the Intel 432 Sys
tem as of July 1982. It is primarily a technical description and discussion and
should by no means be viewed as a kept-current "product-description", even
though I was fortunate to receive help from individuals within Intel who were
engaged in the design and implementation of the 432 System as a product.

lThe The Wall Street Journal, Wednesday, July 21, 1982, page 5.

2 Ada is a registered trademark of the U.S. Government Ada Joint Program Office.

A Preliminary Perspective of the iAPX432
Architecture

Preface xi

Students of computer architecture should be aware that the iAPX 432 represents
major technology transfer in four areas of recent advance:

1. VLSI and CAD technology

2. Logical structures (semantics) for hardware systems

3. Logical stluctures (semantics) for software systems

4. Languages for system implementation

It is no small feat to integrate several technological advances into a new sys
tem that offers more promise than can be predicted from the individual
advances. Some readers may be interested in background issues related to these
individual areas of advance, at least one of which is still considered controver
sial. For these readers I offer a short analysis in the remainder of this discus
sion. In essence, application of these advances has led to an architecture that
offers an implementation of transparent multiprocessing and an object-based
computing and communication environment reaching new levels of simplicity
and efficiency. Chapter 1 fully explains these important objectives and tells why
the Intel 432 System was designed to accomplish them. You will no doubt want
to understand in greater detail what benefits can be gained from these design
decisions. Chapters 2 through 10 address this need and provide sufficient addi
tional detail to permit you to reach your own conclusions as to whether (a) the
design objectives are met and (b) the anticipated benefits do follow from reach
ing those design objectives. The last section of Chapter 1 outlines the purpose of
each of the following chapters. The "proper" introduction to this book, there
fore, begins with Chapter 1. However, I have been unable to resist the tempta
tion to offer the following four observations as an additional preface to that
introduction.

VLSI AND CAD TECHNOLOGY: Intel's leadership in semiconductor technology was
clearly demonstrated with the introduction in 1971 of the first (4-bit) microprocessor, the
4004. That leadership has continued. For such a leader, the NMOS semiconductor tech
nology used to produce the 432 chip set would seem today to represent a relatively "sim
ple" extension of previous advances. This advance appears to be primarily in process
control, as chip area has been substantially increased with still reasonable yields: At the
same time, there appears, superficially, to be no substantial advance over Intel's previ
ous accomplishments in device density, circuit layout, or layering. However, a closer
look reveals a significant increase in logical complexity and in the number and size of the
required circuit patterns beyond Intel's previous microprocessors.

xli Preface

ordered conceptual levels for description, analysis, and design-from the macrosimula
tor level (at which macroinstructions of the architecture are represented and understood),
to the mask level (at which the basic physical devices that represent abstractions at the
higher levels are represented and understood).3 Software design, analysis, and descrip
tion tools are built for use at each level. Not only do programs at each level check for
consistency within that level but additional programs have been developed to check for
consistency between levels. (This methodology is an application of recent advances in
computer science and software engineering theory related to formal specification and
verification.)

LoGICAL STRUcrURES FOR HARDWARE SYSTEMS: Here I refer to the semantics pro
vided in the computer's instruction set. One can identify two schools of thought among
computer system designers regarding the desirability of enriching the semantic content of
instructions: those that would keep the meaning of each instruction as simple (atomic) as
possible, and those that would select a set of semantically powerful (and more special
ized) instructions. The i432 is an application of the state-of-the-art of this second school.

The first school prefers that individual instructions have relatively elementary seman
tics, each instruction accomplishing a limited function, preferably one that can be
accomplished in single cycle of the processor. (For example, given a choice between use
of one-address versus three-address instructions, this school would likely choose one
address instructions.) Thus, it is sufficient that the set of available instructions spans all
the types of actions that the computer is expected to perform .. (One tries to choose a set
of instructions whose individual semantics are mutually orthogonal.)

A companion objective for this school is to speed up execution by embedding in pure
hardware the (simple) instructions that are most frequently executed and interpreting
less-frequently used instructions either in microcode or as macro-instruction subrou
tines.4 A corollary design objective is that, as much as possible, a maximum fraction of
the processor's logic is "engaged" during execution of each instruction.

For such systems, which have relatively simple logical structure, the computer's
resources can then in principle be optimized for the user's benefit, for example through
the use of high-quality compilers. 5

[On the other hand, by increasing the semantic content of individual instructions in the
instruction set, it appears to be more difficult to produce a compiler that chooses "best"
instruction sequences-and even if this is still possible, best instructions sequences may
still not be optimal in terms of overall use of the system's resources. A companion argu
ment is that raising the semantic content preempts the user's opportunity to exploit the
special cases that arise and that are recognized in particular situations.

Indeed, this argument carries over to the software/language level. Often the semantics
of a chosen programming language and/or its implementation preempts certain represen
tation and functional options that might be specified by a user. 6 Although such preemp
tion may be fine in most cases, it can force selection of inefficient solutions in those
cases where the user, who may have more global knowledge of the requirements in a
given case, can supply or suggest a better approach.]

3"A Methodology for VLSI Chip Design" by Wm. W. Lattin. J. A. Bayliss, D. L. Budde, J. R.
Rattner, and Wm. S. Richardson, in Lambda, Second Quarter, 1981, pages 34-44.

4"RlSC I: A Reduced Instruction Set VLSI Computer" by D. A. Patterson and C. H. Sequin in
Proceedings of the 8th Symposium on Computer Architecture, 1981, pages 443-457.

5"The 801 Minicomputer", by George Radin, in Symposium on Architectural Support for Pro
gramming Languages and Operating Systems, March, 1982, pages 39-47.

6, 'Toward Relaxing Assumptions in Languages and Their Implementations, " by Mary Shaw and
Wm. A. Wulf; Carnegie Mellon University, January, 1980.

Preface xIII

The second school (raising the semantic content of instructions) has included advo
cates having a variety of motivations, beginning with those primarily interested in match
ing the hardware to particular high-order programming languages or to particular
constructs within high-order languages, such as procedure call, coroutine call and associ
ated context switching, process switching, etc. More recently, a motivation for this
approach has come from those wishing to improve the performance, clarity, flexibility,
reliability, and functionality of operating systems.

It is from these latter motivations that instructions set semantics have been expanded
to include explicitly or implicitly, for example, direct support for data abstraction and
object management. In this category are also instructions which involve elaborate map
ping steps (access path management and traversal) for controlled sharing of information,
data and code protection, controls for processor and storage management (real and vir
tual), process synchronization, interprocess and interprocessor communication, etc.

This architectural progression can be ·traced back at least twenty years to the Bur
roughs B5000. Advances in concepts and implementation strategies have accelerated,
especially in the past ten years, as the costs of implementing instructions with higher
semantic content, largely with the aid of vertical microprogramming, have come down
drastically without significantly penalizing performance. The iAPX 432 represents a
technology transfer of the recent ideas and models represented by this approach. In this
book I show how the high semantic content of a subset of the i432 machine language
instructions strongly influences the behavior and efficiency of the system viewed from
the perspective of software development costs and programmer productivity.

LoGICAL STRUCTURES OF SOFTWARE SYSTEMS: Here I refer to the organization of the
functional elements and the interrelationships among principal support software modules
of a system-beginning with the "inner core" of the operating system, and extending to
the library facility, input output interfaces, and file system facility. I deliberately factor
out of this discussion the implementation of particular functions performed by an operat
ing system, such as access control and protection, interrupt handling, etc.

Much has been learned, especially in the past ten years, about operating system princi
ples, some through pure theoretical research, but most through design, implementation,
and observation and use of experimental and commercial systems. A good deal of the
recent progress is owed to an almost universal recognition that principles of good
engineering design and management are applicable to the systems programming
phenomenon. The iAPX 432 Operating Sytem (iMAX) is an application of the current
state of this software engineering art. Examining several examples of the iMAX structure
forms an important part of this book.

STATE-OF-THE-ART LANGUAGE FOR SYSTEM IMPLEMENTATION: The fourth concurrent
application of state-of-the-art technology is the choice of Ada as the system implementa
tion language base for the i432 System. Ada is itself the application of the current state
of the art in programming languages research and development. 7 Especially important is
the emphasis given to the separation of specification from implementation of program
units. Ada incorporates the semantic components needed to permit programmer teams to
construct and maintain large systems and applications at minimum overall cost.

Ada is also the language target to which a number of specialty languages, such as for
database applications, will likely be preprocessed.8 [Ada is well suited to the packaging,
structuring, and isolation of data objects and the procedures permitted to act on these
objects.]

7"lntroducing Ada", by Wm. E. Carlson, L. E. Druffel, D. A. Fisher, Wm. A. Whitaker, in
Proceedings of the 1980 Annual Conference, Oct 27-29, 1980, pp 263-271, Association for Com
puting Machinery (ACM).

8"Reference Manual for ADAPLEX" by J. M. Smith, S. Fox, and T. Landers, Computer Cor
poration of America, January, 1981.

Acknowledgment

This book, as is the computer system it describes, is a result of a large and
effective team effort. From the beginning, I sought and received participation
from and collaboration with key technical personnel at Intel.

The perspective of Nicole Allegre, Fred Dorr, Kevin Kahn, and Justin
Rattner provided suggestions for the book's technical scope, level, and for
many of its objectives. John Doerr, Barbara Slaughter, Don Ferris, and Justin
Rattner coordinated and expedited the interaction between me and the members
of the Intel design and implementation teams.

George Cox, Kevin Kahn, Fred Pollack, and Justin Rattner provided me with
an initial orientation on many of the system issues they had grappled with in the
design of the iAPX 432. Steve Ziegler, Dan Hammerstrom, and Konrad Lai
provided more technical assistance when I needed it.

Bill Courington critiqued early drafts of Chapters 1, 2, and 3. T. Don Dennis
read, analyzed, and corrected numerous drafts of Chapters 2 through 9 as did
Linda Hutchins of drafts of Chapters 2, 3, and 8. Don provided an intense
review of Chapters 4 and 9 and Linda contributed heavily to Chapter 8. Jim
Morris carefully read and was of great assistance in editing later drafts of
Chapters 2 through 6. Jim also helped my assistant Steve Voelker with the com
pilation of most of the Ada code displayed in Chapters 2 and 3 and in Appen
dixes C through G. Dave Hubka was a superb critic of Chapter 7 and Steve
Tolopka of Chapter 10, after Fred Pollack helped me set the level and orienta
tion for the latter. (The fact is, I received so much excellent assistance from all
these generous and able people that I have come to think of myself as their
ghost writer.)

Justin Rattner not only provided an insightful review of the entire book, but
has also coauthored Chapter 1. He, as well as each of the others who toiled with
me over each chapter in detail, was always encouraging, offering criticism that
was always constructive. Finally, Betty Organick helped by providing constant
encouragement.

I am grateful, too, to many other people, both at the University of Utah and
at Intel for encouragement and technical and other support. Without all this
help, this relatively ambitious book could not have become a reality.

ELLIOTT I. ORGANICK

Salt Lake City
July, 1982

TOP-LEVEL VIEW OF THE
INTEL 432 SYSTEM DESIGN

coauthored with Justin R. Rattner, Intel Corporation

The term "computer revolution" suggests to all of us computer technology's
rapid development and the equally rapid expansion of the applications of com
puters in our society, our institutions, our businesses and our homes. Even so,
computer systems develop remarkably slowly, and according to relatively fixed
patterns of logical and physical organization and its related style of use. A com
puter system's style of use determines in important but often subtle ways how
effective and productive its users will be. It is only every few years, perhaps
only once in a decade, that a sufficiently innovative computer system is
developed to justify a full-length book for describing it and discussing its style
of use. In 1981 the Intel Corporation announced such a system and named it the
iAPX432.

Our description focuses on this system's overall structure and functionality
from the viewpoint of the programmer who will use it. Our purpose is to help
others better appreciate the design of the system and how its developers per
ceive its promise for improving programmer productivity. In the process of
reading this book, a programmer can also expect to learn a good deal about
object-based architecture and gain a new perspective about programming itself.
To a very large extent, it is the measure of programmer productivity that will
determine how effective the Intel 432 System can be for a more productive
economy and hence for the general welfare.

This book examines the structure of the iAPX 432 system from three princi
pal but interrelated perspectives,

• its architecture (as exhibited by key elements of its instruction set and by its
physical organization),

• its operating system design, structlJlre, and unconventional interface with the
user

2 A Programmer's View of the Intel 432 System

• its implementation language, which serves not only as a tool for the systems
programmer, but is also available to the applications programmer. (The
language is really two languages in one. It is Ada, the proposed national and
international standard, and it is also a limited number of extensions of Ada
that allow the user to make full use of the underlying hardware, should a user
choose to do so.)

All three components, the architecture, the operating system, and the imple
mentation language are new; none is carried over from previous bottom-up
designs. In the following discussion we shall use the term' 'i432 System Archi
tecture" to refer to the composite of these three components. (Note that we
hereafter substitute the shorter acronym, "i432", for "iAPX 432", the one
used for formal reference to the system in publications of the Intel Corporation.)

To open our study we fIrst examine three important concepts in computer sys
tem architecture: multiprocessing, object-based design, and object filing sys
tems. The fIrst is a generally-accepted convergence point of modem systems;
the second and third are new departures. The principal theme of this book is that
the effective implementation of these three concepts, exhibited by the Intel 432
System, provides users with a new dimension for expressive power and produc
tivity for both system software and applications programs.

1.1. Computer Architecture and
Multiprocessing

"Computer architecture" is a popular term, understood from many vantage
points. Like a rich data base, there are many possible views. Technically, the
term architecture often refers to the functionality of the system that may be
achieved through use of the computer's instruction set (instruction set view).
Almost equally often, architecture refers to the physical components of the
computer system and their logical, physical, and functional interrelationships
(organization and technology view). When a trained computer systems person
can gather relevant facts related to either or both views of a candidate system, a
surprisingly complete appreciation of a new system can be acquired.

The view we shall take here is perhaps an unorthodox one to the expert, but
one that may provide some new insights for novice and expert alike. It is a per
spective (actually a bias) begun by trying to track the architectural develop
ments of most commercially available systems. It seems easier to appreciate the
advances reflected in the iAPX 432 system using this frame of reference.

1.1.1. Multiprocessor Computer Systems

Most commercially-available systems result from an evolving, cyclic, and
bottom-up process, lasting over a many-year span. They appear to their users as
part of a series of increasingly better, more general, faster, and more cost
effective models.

Top-Level View of the Intel 432 System Design 3

The objectives for these systems have varied, but here is a summary, ordered
roughly as a scale of objectives that reflects known historical development of
commercial computer systems:

• run single programs, produced from a variety of assemblers and compilers,
with static (later dynamic) resource allocation strategies,

• run several such programs in the same time frame, through time sharing, or
multiprogramming resource managers,

• accomplish all of the above while guaranteeing real-time response for some
programs executed,

• connect computers to a variety of input/output devices, backing store media,
and use external processors (e.g., "channels") to gain overlap of computing
and 110 transfer.

• increase computer speeds by making larger programs and data more directly
and more quickly accessible through the use virtual memory and cache
memory mechanisms,

• accomplish all of the above (though perhaps accepting some limits on per
formance) and provide controlled sharing of information resources among
related tasks (programs) and enforced separation of information resources
allocated among non-related tasks-all to achieve protection, security, relia
bility, and fairness in service,

• accomplish all of the above for increased work loads by providing several
processors for sharing the computational load, using some cooperative, proc
essor-pooling strategy.

Generally speaking, the more successful commercial systems have been those
which, though begun by meeting one of the earlier objectives, have, through
upgrading and other forms of modification, managed to meet a succession of
more "advanced" objectives on the above scale. Often, this success has been
met within a single computer family. In some cases, however, a family had to
be abandoned and a new one started, and in other less fortunate cases the entire
computer enterprise had to be abandoned or sold.

In any case, the last objective on our scale, that of a multiprocessor system,
most often with a store accessible by all processors, is a popular convergence
point in this evolution. In many commercial systems this last point has been
reached only after more than a decade of development.

1.1.2. The Multiprocessing Model

No matter what the cycle of product evolution, it seems safe to say that the
sharply reduced cost of circuitry, coupled with the need for ever more process
ing power and diversity of application, has driven architects of general purpose
systems toward solutions that involve multiprocessing structures. Thus far,

4 A Programmer's View of the Intel 432 System

many differences can be perceived in the specifics of these solutions. Even so,
one guiding principle or model predominates, that of furnishing a pooled set of
processors for execution of a network of interconnecting program units. Some
times the networks are structured as trees or related groups of trees, but in every
case, intercommunication among the asynchronous program units is achieved
by some one or group of synchronizing mechanisms.

In its most simplified (and abstract) form, one may view this multiprocessing
model as shown in Figure 1-1, which suggests a means for' 'marrying" process
ors to tasks that are ready to be executed.

A representation of a Ready Program Unit, such as a message pointing to a
"Task Control Block" (to use an older terminology, or to a "Process Object" ,
a term we will be using later), is entered on the Ready Queue in the direction
indicated by the arrow. The program unit is then bound to an Available Proc
essor, also representable as a pointer to an appropriate control block ("Proc
essor Object") when each "reaches" the front of its respective queue. This pair
of queues may be called a "Dispatching Port".

Queue of
Ready Program units

front

Queue of
Available Processors

front

Figure 1-1 Abstraction of a Dispatching Port.

A program unit is executed (i.e., is interpreted by the processor to which it is
bound) until a point is reached where the program unit cannot or may not con
tinue to run. (The program has run to completion, a supervisory process has
ordered it to be terminated, it has entered a wait state, or its time quantum has
been exhausted.) At this point, the program unit is either deallocated or
enqueued on some appropriate Wait Queue (not shown in the figure above). The
processor, in turn, then reenters the Queue of Available Processors in search of
new work to do. When a blocked program unit is again ready to run, it is
removed from the Wait Queue and reentered onto the Queue of Ready Program
Units.

This multiprocessing model has a number of attractive attributes, among
them its essential independence from any underlying semantic model of pro
gram structure and execution. It is important to observe that the model is
equally applicable, for example, for the mUltiprogramming of Fortran pro
grams, Cobol programs, Ada programs, including those which have multitask
ing structures, LISP-like or LISP-based applicative programs, or mixes of these.
Moreover, in principle, such a model should behave the same, except for
throughput rate, for any number (one or more) of actual processors.

Top-Level View of the Intel 432 System Design 5

1.1.3. Multiprocessor Memory Organization

Implementing a system based on this model is a major challenge. Should there
be one shared (central) store, private per processor stores, or combinations of
shared and private stores used in the design? For each selection, access paths
from the processors to the stores must be provided with sufficient bandwidth
(and in the case of shared stores, with sufficient switching speeds and reliability
[55]) to achieve satisfactory performance objectives. Such structures must offer
the promise of approximately linear increase in throughput with the number of
processors added, at least up to some acceptable number of processors. An
equally important set of design choices must be made to determine access paths
to secondary stores and to other 110 devices.

The per-processor private store solution is interesting because it offers oppor
tunities for introducing new levels of fault tolerance and improved performance
in special purpose systems. We call this organization, the multicomputer solu
tion. (The Tandem systems [5] are good examples.) Unfortunately, multicom
puter systems have two critical drawbacks when the objective is a general
purpose system. First, it is difficult if not impractical to model and implement
shared variable semantics in distributed stores. Unfortunately such semantics
are an integral part of nearly all the commonly used high-order languages.
Selecting the multicomputer approach seems, therefore, incompatible with the
goal of a general purpose system which is to accommodate the needs of a wide
class of programmers. Second, code for program units that are to be executed
by more than one processor must be copied to the private store of each such
processor that executes it. This extra cost seems acceptable for the objective of
redundancy to achieve failure tolerance, especially where the amount of copied
code can be limited to certain resident operating system modules. However, the
frequent extra copying of code is burdensome when the objective is to balance
processor loads dynamically, and on a system-wide basis. Furthermore, the
private store of any processor in an N-processor system is necessarily limited to
I/Nth the total store available. Therefore, were sharing permitted, there would
be a disproportionately greater chanoe for thrashing when using the individual
per-processor stores than in the N-times-as-Iarge shared store.

One shared central store is by far the most frequently advocated solution,
even though, for anyone switching mechanism used to route information flow
between the processors and the shared store, the number of processors cannot
exceed some practical limit before traffic congestion in the switch seriously re
stricts the total processing throughput of the system. (This limit can be deter
mined empirically.) We call this solution the multiprocessor system. The i432
system is our prime example.

Multiprocessor solutions may differ greatly in details as to how they execute
individual program units. Even so, the architectures of competing large-scale
general-purpose systems appear similar. At their highest level of abstraction,
they exhibit multiprocessing system superstructures. Unfortunately, because

6 A Programmer's View of the Intel 432 System

many of these systems have been grown "bottom-up", their implementations
and modes of use remain, to a variety of users, different in important ways.

1.1.4. i432 Multiprocessor System
Organization

Those system architects who can start "from scratch" with a top-down
approach, and who are able to profit fully from the mistakes and good ideas of
others, have the potential to produce far better implementations. They can begin
with the elegance and simplicity of the above-described superstructure (Fig
ure 1-1) and expand to consequent sublevels. Such a development has occurred
at Intel with the design of the iAPX 432 system architecture.

A first view of the system structure, showing the relationship between the
Computational Subsystem and the I/O Subsystem is given in Figure 1-2. The
Computational Subsystem contains three types of elements: processor modules,
memory modules, and one or more busses that form a multiprocessor intercon
nect. The topology may thus become quite complex, consisting of several
modules of each type. The processor modules themselves consist of the i432
General Data Processor (GDP) and its associated bus interface hardware. The
I/O Subsystem consists of one or more independent peripheral subsystems, each
interfaced to the Computational Subsystem through an Interface Processor (IP).
Multiprocessing is thus an integral part of both computation and I/O in the i432.

main
memory
module

Peripheral Subsystem

main
memory
module

I n t ere 0 nne c t

Figure 1-2 A simple i432 system topology.

Subsystem

]

Computational

I/O
Subsystem

The actual topology of an i432 System may vary from that shown in the fig
ure according to the particular bus and interconnect circuitry made available and
the performance objectives desired. (For a system that is to contain a relatively
large number of processors, say more than a total of six GDPs and IPs, an elab
orate bus interconnect structure might be required, but we do not dwell on this
matter here.)

Top-Level View of the Intel 432 System Design 7

Through careful attention to multiprocessing issues in the definition of both
its system organization and its architecture, the i432 also implements the idea of
transparent multiprocessing. This simple but important concept means that the
number of processors in an i432 system can be increased or decreased without
software Il\odification. It is even possible to start or stop a processor at any time
without damaging or informing a single piece of software. More importantly, no
reprogramming of either the operating system or the application is required to
exploit an increase in the number of processors.

It is interesting to note that multiprocessing in the i432 was not strictly
motivated by the traditional desire to share the workload among a pool of proc
essors. Somewhat less technical factors were actually responsible for the deci
sion to include multiprocessing in the initial implementation. First, it was felt
that competitive architectures would be available in different implementations
with a range of cost and performance levels at the time of the 432's introduc
tion. Second, unlike traditional computer manufacturers, semiconductor com
panies are rarely in a position to provide even a second implementation in less
than three or four years. [This is due not only to the relatively small size of
semiconductor companies, but also to the fact that they generally have, at any
moment in time, only one technology capable of cost-effectively implementing
a new architecture.]

These two factors led the Intel designers to seek a design approach that would
give the i432 a range of performance from just one implementation. Multiproc
essing proved to be a particularly attractive approach for the semiconductor
manufacturer because, to achieve increased performance, it relies on the
economies derived from replicating the processor circuitry rather than from a
complete redesign. Furthermore, multiprocessing also supports the concept of
modular, in-the-field, performance expansion either for I/O or data processing
with the installation of a simple printed circuit board. The latter gives i432
users a particularly cost-effective way to upgrade their products over time.

1.2. Object-Based Design

The development of a new computer family has frequently been launched with a
semantic model of a program structure and a supporting machine language in
mind. We may reflect back to the mM 704, ... , 7094 series for a good exam
ple. This important line of computers, although perhaps not begun with a well
formed model of program structure, was quickly brought into focus with the
development of Fortran. Later models in the evolved series added features and
components, such as more index registers, higher speed devices, better means
of communication with I/O systems, etc., but kept (indeed, were forced to
keep) as the principal objective the compilation/execution of Fortran-like object
programs. (This series died out before reaching the multiprocessor convergence
point.)

8 A Programmer's View of the Intel 432 System

Other examples can and should also be cited where the architectural series is
rooted to, or influenced strongly by, a view of a particular program structure
model. Thus the GE/Honeywell Multics series was strongly influenced by a
semantic model of PL/I programs in execution; the Burroughs B5500,
B6700, ... , B7800 series was rooted to the model of Extended Algol programs
in execution; that is, Algol60 programs extended to include coroutines, asyn
chronous tasks, and means for intercommunication among such program
components.

Like these earlier architectures, the i432 is also based on a semantic model of
program structures. Unlike many of its predecessors, however, the i432 is not
based on the model of a particular programming language. Instead, its
designers' aim was the direct execution-time support for both data abstraction
(i.e., programming with abstract data types) and domain-based operating sys
tems. The principal insight of the i432 architecture is the fact that both objec
tives can be supported by a common semantic model, known as the object
model. In this section, we explain the concepts of data abstraction by describing
the emerging object-based programming methodology and review the comple
mentary principles of object -based operating system design.

1.2.1. Object-Based Programming

Object-based programming, in contrast with the more conventional control
based style, emphasizes the view that a program largely describes the defini
tion, creation, manipulation of, and interaction among, a set of independent and
well-defined data structures called objects. The control-based style views a
program as a controlled sequence of events (actions) on its aggregate data struc
tures. In both styles, the objective of the program is to transform a set of speci
fied data values from some input or starting form to some specified output or
final form. Although the distinction between these two styles may at first appear
to be contrived or superficial, there are crucial differences. We attempt to
explain why in a very brief way here and distribute a more complete explana
tion throughout the remainder of the book, giving special emphasis to this
matter in Chapters 2 and 3.

In conventional, control-based programming, the programmer finds that, as a
program's complexity grows, it becomes increasingly difficult to retain a clear
view of the entire sequence (or sequences) of actions that comprise the program.
To this end, decomposing long sequences into groups of shorter ones (subrou
tines) helps a great deal. (In fact, the good programmer never allows a sequence
to grow very long in the first place, having the foresight to organize the pro
gram, top-down, into a structure of such subroutines.)

Unfortunately, the data operated on by these subroutines is not similarly
decomposed into independent entities. Most of the data is represented in global
structures that are freely shared by all subroutines; consequently, much of the

Top-Level View of the Intel 432 System Design 9

expected benefit of decomposition into subroutines is never realized. The source
of the problem is rooted in the number of subroutines and their mutual depen
dency on the foml and integrity of common data structures. As this number
increases, it is often difficult or impossible to arrange the subroutines and the
data they operate on into well-matched (isomorphic) substructures-for exam
ple, along strict hierarchical lines, even when using an Algol-based language
like Pascal.

In object-based programming, by contrast, one begins by associating a single
data structure, or instance thereof, with a fixed set of subprograms. The associ
ated subprograms are the only operations defined on that object. In Ada ter
minology, the data structure is known as an object and its associated set of
operations is called a "package". Ordinarily, one set of such "public" opera
tions is defined and made accessible to all components of the program that have
access to the data object. These public operations have well-defined
input/output specifications; their subprogram bodies and any subprograms on
which these bodies may further depend, are factored out and may be totally hid
den. The package can also be used to hide the representation of the object, so
that subprograms in other packages cannot choose to bypass those public sub
programs and manipulate the object directly.

This factoring is called data abstraction, and can lead to considerable design
simplification; that is, it can make the program more understandable, correct,
and reliable. Flexibility (and portability) is also enhanced, because the details
of the objects, their representations, and public operations may be changed or
replaced by a different set of details.

More formally [26], data abstraction allows us to focus on just those attri
butes of a data object or of a class of them that specify the names and define the
abstract meanings of the operations associated with such objects. We suppress
attributes that describe the representation of those objects and the implementa
tion of the operations associated with them in terms of still other objects and
operations.

The foregoing concepts, which have since led to the introduction of abstract
data types as constructs in modem high-order programming languages, were
seeded with the introduction of the class construct in Simula 67 [7] [15]. The
appreciation of the ideas associated with the Simula class then led to several
research contributions and proposals for introducing data abstraction in modem
programming languages [3] [36] [39] [62] [63]. The most recent development
is the Ada language design effort, whose constructs for data abstraction are built
on these earlier contributions.

1.2.2. Object-Based Operating Systems

Concurrent with development of data abstraction, much was being learned
about operating system principles. Some of this advance derived from pure

10 A Programmer's View of the Intel 432 System

theoretical research, but most came through the design, implementation, and
observation and use of real systems9. The lessons ranged over a wide space.
They recognized the importance, for example, of:

• avoiding monolithic, unwieldy structures-a one-time common consequence
of early computer designs wherein a computer could execute in one of only
two discernably different states, "user" or "supervisor",

• encouraging modular structures that isolate logically distinct functions, and
the associated system information (information hiding), so that key properties
of the system may be better analyzed and certified, repaired or modified,

• providing for easy interchange (replacement) of logically independent
software components (also implying a requirement of low overhead for sys
tem recompilation and reinitialization),

• providing for a system's easy extendability, even to the point where ordinary
users may participate in the extension,

• identifying and separating policy and mechanism, so that mechanisms may
be efficient while policy is easily altered,

• increased failure tolerance by providing the extra code and data structures
needed in the initial design (with hardware assistance, as needed),

• providing system and user code debugging aids in the initial design (with
hardware assistance, as needed).

The above list is hardly exhaustive, and more lessons are still being learned
about how to design and implement better systems. Much of the recent progress
is owed to an almost universal recognition that principles of good engineering
design and management are applicable to the programming of operating
systems.

Given that this list represents an "ideal" set of properties for an operating
system, many experimental investigations have focused considerable attention
on determining precisely what logical structure is best able to realize these
essential system characteristics. Here we use logical structure to mean the
organization of functional elements and intermodule relationships.

The first attempts at improving operating system organization focused on
minimizing the number of primitive functions upon which the system is built,
the so-called "kernel" approach, and on ways to "layer" subsequent functions
such that the system takes on strict hierarchical structure [18]. [Hardware sup
port for this organization was pioneered in Multics [25].] The observation that
not all operating system functions obeyed the same hierarchical relationships
led operating system designers to consider multiple, but strictly independent
hierarchies called domains [57] [58].

9 A substantial body of literature has been formed, centered initially on papers appearing in the
proceedings of symposiums held biannually since 1967 by ACM's Special Interest Group on Operat
ing Systems (SlOOPS).

Top-Level View of the Intel 432 System Design 11

Almost simultaneously, it was argued [64] that strict hierarchical layering in
the design of an entire system would severely limit the flexibility available to
high-level users. It was observed that operating system domains were each
responsible for the management of particular types of data structures called
"objects", which corresponded, in general, to instances of resources (e.g.,
page, file, and process) in the system .. In formal terms, an object was defined
[65] as an abstraction of an instance of a resource and thought of as a triple:

(unique name, type, representation)

The unique name distinguishes an object from all other objects. Uniqueness
of the name can span both space (in which the object resides) and time (beyond
the life of the system in which the object was created). The object's type defines
the nature of the resource represented. An object is an instance of its type
which, in a practical sense, defines a set valid operations on objects of that type.
The representation contains the infonnation content associated with an object.
An object's representation may include private data structures as well as refer
ences, in the fonn of unique names, to other objects. Representation also
implies certain forms and limits that may restrict the object's content.

The experimental systems proved that organizing the information and physi
cal resources of computer systems so they are represented as objects has a pro
found effect on the management of these resources. Management schemes are
simpler, fewer, and easier to implement and use; individual resources are easier
to specify, create (allocate), destroy (deallocate), manipUlate, and protect from
misuse, accidental or malicious. The ability to hide (and protect against direct
access to) unneeded representation and implementation details is an automatic
byproduct of the object basis of such systems.

While the experimental studies demonstrated the logical soundness of objects
and domains as an organizational model for a modem operating system, they
also showed, often in very convincing terms, that without direct hardware sup
port, they were simply too inefficient to be commercially practical. Much of the
experimental work in operating systems has moved to other areas in anticipation
of the necessary hardware innovations.

1.2.3. Object-Based Computer Architecture

The i432 architectural design began with a commitment to include hardware
support for both domain-based protection and data abstraction; in other words,
to produce an object-oriented architecture. After working on this problem for
some time, it was realized that a logical and desirable generalization of this goal
would be to use data abstraction· as the fundamental design framework of the
architecture. This generalization yields what is referred to as an object-based
architecture.

Although largely intended to overcome the performance problems associated
with object-based operating systems on conventional hardware, object-based

12 A Programmer's View of the Intel 432 System

architecture is actually some twenty years in the making. It is considered to
have begun with descriptor-based architectures [11] [30] [31] which pioneered
the concept and implementation of segmented virtual memory support. The
evolution then progressed with the introduction of capabilities and capability
based addressing concepts [13] [16] [20]-[24] [27] [59] [60] to the current view
of objects as abstractions of resources, which had its origins in the HYDRA sys
tem [64] [65]. A capability is an access authorization for a particular object;
object managers dispense capabilities for objects to programs units needing to
share their use. The i432 architecture models closely, with much hardware sup
port for capabilites, the object structure and object management concepts of
HYDRA.

At this point, and in advance of more detailed discussions in chapters 4, 5, 6,
and 9, we briefly introduce the nature of the architectural support provided in
the i432 System for object-based system design. This support assures that:

• Access to information objects among related program units is effectively
controlled.

• Information objects belonging to mutually independent program units are
effectively isolated.

[These two forms of control are achieved because data and program code
components are treated as structured objects under hardware and software
control at all times. User data and program code units may have arbitrarily
defined substructures. A "capability-based" accessing scheme provides the
underlying mechanism for accomplishing these objectives.]

• The hardware and operating system combine to control the execution of all
application programs, including the transfer of information and transfer of
control between modules of such programs.

• At all times, the hardware augmented by the operating system serves as a
manager of object managers, where the operating system and its user-defined
extensions serve as a collection of such object managers. An object manager,
also referred to as a type manager, is a facility for controlling the creation
and use of a data type definition and instances (objects) belonging to a
defined data type. Object managers may be composed of more fundamental
object managers so as to build up managers for complex databases.

• Certain objects (for example, Context Objects) are recognized by the
hardware as belonging to system-defined types; their creation and use is
managed in part by the hardware and in part by kernel modules of the operat
ing system.) Other objects are recognized and protected by the hardware as
"extended types" (user-defined types.) These objects are sensed by the
hardware (always) and controlled (managed) by their type managers (which
can be easily expressed as Ada packages).

Top-Level View of the Intel 432 System Design 13

• The instruction set of the processor includes operators that perform or facili
tate and control (creation, deletion, and alteration of) objects. These objects
include queues, entire program units, their subcomponents such as sets of
related instruction and constant objects (known as domains), and procedure
activation contexts and their subcomponents.

• The important functions of memory management, such as virtual memory
addressing and garbage collection, are performed correctly, efficiently, and
in conformance with the object -based model.

• Objects are not only a central focus, but a source of consistency and unity.
They are the building blocks of program structures. They are atomic units for
accessing and protection, for interprocedure and interprocess communication.
They transcend hardware, operating system, and application boundaries.
Once understood, they are the natural building blocks in models of real world
objects.

It is the intent of the i432 designers that the object base of the architecture be
used for more than the effective management of the system's configuration and
its individual resources (computer administrator view); in addition, it is
intended to be used for the general support of data abstraction for its benefits in
simplifying program organization (general and system programmers' view).
The potentially close connection between system management, on the one
hand, and program and data management, on the other, has not yet been
exploited fully in other systems. Indeed, it remains an open controversy as to
whether this "twinning" effect advanced by the i432 System design is a desir
able architectural objective [61], The view taken here is that providing archi
tectural support that assures exclusive use of objects as just defined (which, in
effect, is support for data abstraction in programming), automatically provides
the address space protection mechanisms needed for the proper management of
system resources.

1.3. Object Filing Systems

In traditional filing systems, programmers accustomed to either the conven
tional control-based programming style or to the newer object-based style have
been burdened with unreasonable overheads in dealing with the "intermediate
storage" aspects of programs. A typical programmer may be unaware, how
ever, of the magnitude of this burden. By intermediate storage we refer to the
use of secondary storage for holding interim information between processing
stages (compiler passes, for example) or between transactions (data base
activity, for example.) We consider a typical data processing scenario to shed
some light on this issue:

14 A Programmer's View of the Intel 432 System

Intermediate storage is conventionally represented as sequential or indexed
files of data which amount to streams of individual values or streams of records.
Intermediate steps of the program may then require selection and regrouping of
the data into more elaborately structured objects to perform the required
analysis, or to permit the required synthesis of results, or both. If copies of these
results are to be retained for further processing, however, they must be con
verted for output as sequential or indexed files into the form of value sequences
or record sequences. (Making the file records randomly accessible really adds
very little in the way of simplification in the conversion process if the data
objects have objects as substructures.)

Reprocessing the linearized or indexed output of one stage of processing
requires that the old objects be recreated before they can be reused or modified.
Not only is there the burden of processing involved in these repeated transfor
mations, but there is, more importantly, the burden of ensuring that the integrity
of these objects is preserved during and in between each "round trip" to and
from the intermediate and normally non-self-describing form usually selected
for the data representation in the file store.

An object-based system design offers the important opportunity to unify the
discipline of filing with that of object management and type control, and hence
to permit filing to become a natural extension of the addressing and protection
model of the operating system. Since objects have unique identifiers and can
have lifetimes that span multiple users and uses, it should be possible to view
and to treat an object, which retains its type, structure, and other attributes
under control of its type manager, in much the same way as files are viewed and
treated in conventional operating systems and data-base management systems.
With this approach, a file store is merely an extension of the system's uniform
address space. This extension of object-based architecture is called an objectfil
ing system [47].

The i432 Object Filing Subsystem is a planned part of the operating system; it
supports the permanent storage of i432 objects in a "passive address space".
Objects permanently stored are identified and protected in a manner that is con
sistent with the access control mechanisms over objects in the "active address
space" of the system. In particular, the identity, type, and structure of objects
are preserved whether they reside in passive space or active space.

Recall that objects have names whose uniqueness (theoretically, at least)
extends over space and time. The names of i432 objects in the passive address
space are unique in the true sense. An object in this space has a name that
differs from that of any extant object, any object that existed in the past, or any
object that will exist in the future. While residing in the active address space an
object has a name that is unique to that space. (At no time are there two active
space objects that have the same name.) Since cardinality of the set of active
space names is relatively small (2**24) compared with the (effectively infinite)

Top-Level View of the Intel 432 System Design 15

cardinality of the set of names used in the passive space, the Object Filing Sub
system maintains a unique mapping between the two name spaces. In this sense,
the set of names in the active space is used as a cache of the much larger set of
passive space names.

Objects in permanent store are automatically brought into active space when
their content is referenced. However, permanent space objects need not be
activated to be updated, and two or more programs can attempt to update a data
object in passive space without risking inconsistency of the updated object.
When two or more programs attempt access to the same shared object in per
manent store, the object filing system synchronizes multiple access to the object
via implicit calls to the type manager for that object. The synchronizing strategy
used is based on the concept of "Atomic Actions" [49, 50, 51] and outlined
briefly in Chapter 10.

Not only simple objects, but composites comprising a network of simple
objects can be filed in the passive store and retrieved as a unit. Individual com
ponents of a composite are cross-referenced by capabilities, called Access
Descriptors in i432 terminology. Relationships among the components of a
composite, like a program or like structured data, are preserved by preserving
the meaning of the references embedded in the components, independent of the
device on which the composite resides. These relationships are also preserved
when a composite is transferred to or from the active and passive address
spaces.

Among commercial systems only two have offered object filing services, the
IBM System/38 [28] and the Plessey System 250 [20]. [There have also been
several research implementations, one for HYDRA and one for the CAP operat
ing systems [43]]. Coincidentally, the architectures of all these systems provide
capability-based addressing mechanisms. The Multics system, operational since
1969 [44], offers an approximation to object filing. In this system, files are
directly addressable; they are represented as single, variable-length segments or
linear arrays of same, but there is no distinction between active and passive
space, so the system is subject to greater loss of information as a result of sys
tem crashes. [The same problem appears to exist for the IBM System/38 , where
the object also resides in a single space.]

Using an object filing system provides the programmer with the facility asso
ciated with a much richer base of support, normally provided only by data-base
management systems, a service that is usually built on top of the filing system,
rather than in place of it. It now appears that object filing can replace data-base
management in many programming situations. Coupling an object-based pro
gramming style with the use of an object filing facility is viewed by the i432
system designers as the critical step to be taken by programmers who wish to
make quantum jumps in the level of their productivity. Because it provides the
tools for practice with object-based programming, and because it provides the

16 A Programmers View of the Intel 432 System

object filing system as well, the i432 System may well be the first system of
wide availability to convert the potential of the quantum jump in programmer
productivity into a broad-based reality.

1.4. Ada and the iAPX-432

Ada is the application of the current state of the art in programming languages
research and development. It is the result of a collective effort to design a com
mon language for programming large scale and real time systems [2]. The
design work for this language, sponsored by the U.S. Government, Department
of Defense, began in 1974 with a series of "requirements" documents that were
widely reviewed. A large international community of computer professionals
participated in the studies and competitive preliminary designs that led to the
final form of the language, which is now being implemented for a variety of
computer systems.

Ada's most distinguishing characteristic, when compared with widely-used
predecessor languages, is the emphasis given to the separation of specification
from implementation of program units. Ada incorporates the semantic com
ponents needed to permit programmer teams to construct and maintain large
systems and applications at minimum overall cost. Ada will be accepted as a
national and international standard language, in large part, because it is
designed to enhance portability of programs by providing for a clean separation
of machine-independent logical constructs and machine-dependent data repre
sentation details.

1.4.1. Ada Program Structures

An Ada program may consist of a collection of packages and one main subpro
gram (i.e., the initial, or "starter" task) that activates the use of the packages.
Structuring the program into such a collection of program units has the advan
tage that, as the number of program units grows, there is a much better chance
that the programmer can maintain an understanding of its meaning (its sequence
of actions), since the number of possible interrelationships among the action
steps and the data is restricted by the use of the packages-which limit the
operations that may be performed on individual data objects, according to the
discipline (a kind of algebra) imposed by each package.

In short, a package can serve as the sole supervisor over the creation and use
of objects of a given type. In this way, the user is assured that all instances of a
given type will always be properly manipulated; that is, that the integrity of
each object's "internals" will always be properly maintained, without requiring
that the user be concerned with such details, which is the responsibility of the
package itself. In this style of programming the user may focus entirely on a
data object as a whole or on just those parts of direct concern, or both, when

Top-Level View of the Intel 432 System Design 17

invoking a particular (public) operation of the package. Ada allows the pro
grammer to define an unlimited variety of types of data objects and to delegate
the creation and use of data object instances to their respective (and distinct)
type managers.

Actually, we have only hinted at a part of the "disciplinary advantage" of an
Ada package. More generally, a package may include in its specification part
not only a set of valid operations on some (one or more instances of) data
objects, but may also contain declarations that define such data objects (type
definitions.)

Although the Ada package and its use offers an almost compelling reason to
use Ada for subsystems and applications programming, there are still other rea
sons for choosing Ada. In particular, there is the attraction for decomposing a
program into groups of intercommunicating tasks (processes), an idea elabo
rated first in Chapter 2 and expanded in Chapters 3 and 5. Ada tasks may be
created (and terminated) either statically or dynamically. They may be used to
gain abstract or actual concurr~ncy by arranging tasks to execute in pipeline or
parallel fashion. Tasks may be used to synchronize actions of other tasks and to
distribute work to other tasks. Modelling a system as a collection of Ada tasks
can lead to greater clarity as well as to faster execution (through concurrency
achieved when several processors are available to execute the tasks.)

1.4.2. Ada and Object-Based Programmi:ng

The Ada language encourages object-based programming and for that reason
was selected as the principal programming language for the i432. Most signifi
cantly, programs written in Ada for the i432 may be viewed as compatible
extensions of the operating system and the supporting hardware. There is, in
fact, no difference between "system programs" and "user programs" as there
is in conventional systems. For this reason, we shall begin our detailed study of
the i432 System in the next chapter, not with a closer look at the hardware
organization or at the operating system, but with a closer look at Ada itself.

To be sure, users are not prohibited from programming in other high-order
languages as widely different as Cobol and LISP. Indeed, it is expected that
those adopting the i432, be they system manufacturers, independent software
vendors, or universities, will develop language processing systems to suit their
needs, as is done with other general purpose systems.

To close out this introduction, we remark that Ada relates closely to the i432
architecture:

• Understanding the semantics of Ada programs will allow us to more easily
understand some of the most important aspects and innovations of the i432
object-based architecture.

• Once we understand the structure and interactions among the system-defined
i432 objects we will gain a better grasp of Ada semantics. From this we can

18 A Programmers View of the Intel 432 System

learn why the i432 is well-matched as a host for the execution of Ada
programs.

Our introduction has been a long one-and we are aware that the density
may be too much for full "digestion" on fIrst reading. Our readers are invited
to reread the germane parts as they proceed with the study of the following
chapters.

1.5. Remainder of This Book

Chapters 2 and 3 form a primer for readers who are not fully acquainted with
Ada or with object-based programming, or both. Our conviction is that, to
appreciate the architecture of the i432 System, a reader should fIrst know Ada
or a similar language and the way it is intended to be used. Chapter 2 focuses on
the use of packages as a basis for the design of a simple Investment Manage
ment System, a non-trivial Ada program. This example, which is developed and
enhanced throughout the book, also contains several Ada tasks. The structure
and use of Ada tasks is discussed at length in Chapter 3. Several alternative
task structures for the Investment Management System are discussed, some in
considerable detail. The nature of intertask communication, begun in this
chapter is revisited in Chapter 5 at greater length.

The architecture study itself is begun in Chapter 4 where a number of topics
related to object structures and object addressing are treated. Chapter 5 intro
duces the hardware and system software support for interprocess communica
tion. Here the i432 Port Objects and port operations, SEND, RECEIVE, etc.,
are introd\Jced and illustrated. Chapter 6 revisits the architectural and Ada
language support for object structures, emphasizing type management and
access control. Many features of the supporting operating system, known as
iMAX, especially several of its important "user-interfaces", are introduced
beginning with Chapter 5.

The importance of input-output peripheral subsystems, and their relationship
with the central object-based architecture of the i432 system, is recognized by
treating this topic separately in Chapter 7. This chapter introduces the reader to
the architecture of the i432 Interface Processor and its use as a key component
in the Peripheral Subsystem Interface for the Intel 432 System. A message
based model for Input/Output, using this interface is also introduced along with
a discussion of abstractions for I/O device interfaces, both asynchronous and
synchronous.

The topics of process management, memory management, and object fIling,
which may be of primary interest to system developers and architects, are
treated in Chapters 8, 9, and 10. Each chapter describes the iMAX provided
implementations of these services and the user interfaces to these facilities. In
the case of process management an iMAX-provided "template" is described
whose use enables system programmers to implement their own process

Top-Level View of the Intel 432 System Design 19

managers as needed. Chapter 9 describes the extensive memory management
facilities of iMAX and the supporting hardware. These include facilities to sup
port the stack and heap memory resources required, for example, by executing
Ada programs. In addition, memory management supports an on-the-fly gar
bage collector, dynamic memory compaction, and, where configured, a virtual
memory management subsystem. Chapter 10, as already noted, provides a com
plete introduction to object filing as it is currently planned.

Another feature of this book is a set of three sets of appendixes.

• The first set (A and B) provided lists of i432-based literature references.
These lists are in addition to the more general bibliography for the literature
cited in the text proper.

• The second set of appendixes (C, D, E, and F and G) contains a group of
compiled Ada program units comprising versions of the Investment Manage
ment System developed in Chapters 2 and 3. Readers are urged to study as
much of these appendixes as needed in the course of learning Ada through the
vehicle of the Investment Management System.

• The third set of appendixes (H, I, J, K, L, and M) comprise the user inter
faces to iMAX that are described in Chapters 5 through 10, respectively.
Readers are especially urged to read these appendixes as a means of confirm
ing (and expanding) their understanding of the functionality, scope, and flex
ibility of iMAX.

PROGRAM STRUCTURES AND
SEMANTICS IN ADA

2.1. Ada-A Top-Down View

When introducing a person to the Ada programming language, one may choose
among several views. Frequently, one presents a programming language in a
"bottom-up" manner by introducing a series of language constructs of increas
ing structure and/or semantic richness. Thus, for example, a bottom-up view of
Ada might introduce Ada's alphabet, followed by its identifiers, constants, vari
ables, declarations, statements, program units, and finally its programs. This
approach is typically followed by authors of language reference manuals.
Indeed, a reference manual for Ada, such as [2] is a useful companion piece for
this chapter.

Our approach to introducing Ada uses a "top-down" view. At the top-most
level, we examine entire Ada programs, regarding them in the general case as
networks of interrelated components called modules, or program units. Every
module has two distinct parts: the module's interface with the remainder of the
network (its specification), and the module's internal structure and implementa
tion code (its body). Although a module's internal structure may itself exhibit a
network substructure, we initially ignore this possibility.

This top-down approach is compatible with the view that program .1ng is an
explicit intellectual process of system design. A system is normally defined in
engineering parlance as an ensemble of interacting components (possibly
operating concurrently), each of which may have state information bound to it.
These interacting components constitute a collection of evolving information

21

22 A Programmer! View of the Intel 432 System

structures, whose lifetimes span the life of the associated module-which may
be, and often is, the lifetime of the system itself.

Ada, more than any other widely available programming language, and in
common with several experimental languages [3] [9] [36] [42] [45] [62] [63]
encourages the programmer to design and build programs as ensembles of
interacting, state-bearing, program units.

An Ada program may be composed of three kinds of program units that can
carry (have bound to them) evolving information structures:

• a main subprogram-which may be viewed as the' 'starter task" ,

• packages,

• tasks.

An Ada program begins execution with a single thread of control associated
with the main subprogram (starter task.) When a subprogram within a package
is called, the thread of control "moves over" into the code belonging to the
package. Eventually, the thread of control returns to the starter task, much as
the thread of control moves about from the main part of a Fortran program (or
from the outermost block of a Pascal program) to and from various called
subprograms.

At certain program points (for example, during the elaboration of task
declarations), new threads of control may be spawned. This spawning process
may proceed, recursively, to form a task tree. If the program as a whole ever
terminates, it does so only after all spawned tasks have terminated and in
reverse order of their activation.

Any task may call a subprogram within another package, but no new threads
of control are created as a direct result of such an operation. By a "package call"
we mean a call on a subprogram, i.e., operation, belonging to the public part of
the package. In the case of a package call, the thread of control may be thought
of as being transferred from the code of the caller to the code of the called pack
age, with the reverse effect occurring upon return from the package call.

By contrast, a task "calls another task", i.e., issues it an entry call, by send
ing it a message. (The message is implicit in the syntax of the entry call state
ment and in the matching entry declaration of the called task.) As a result of an
inter-task call, the caller's thread of control is merely suspended until the called
task acts on the message sent to it (completes the acceptance of the caller's mes
sage.) If all goes well, the caller is notified that the message has been accepted.
When this occurs, the caller resumes execution; that is, the caller's thread of
control resumes its execution and the called task proceeds along its separate
path of execution.

This protocol, including the temporary suspension of the caller, is referred to
as a rendezvous. The rendezvous is the only means provided in the language for
explicit communication among tasks; use of the rendezvous guarantees that a

Program Structures and Semantics in Ada 23

structuring discipline, in the spirit of "structured programming", is applied
across tasks.

[The i432 architecture offers the programmer a less structured (but more highly paral
lel) mechanism for achieving communication between tasks. For example, there are
means for explicitly sending messages to one or more tasks without waiting for a reply
from any task. To use these i432 facilities, a programmer calls a special package (to be
described in Chapter 5). Use of these message communications facilities will make the
program more difficult to move to other computer systems. It should be noted, however,
that the i432 operating system itself makes full use of these lower-level communication
operations to provide the utility packages used by the Ada compiler to implement task
facilities.]

When a rendezvous is completed, the calling task may once again execute,
possibly concurrently with the called task. In a system like the i432, actual con
currency of calling task and called task is achieved when each task is bound to a
distinct (available) processor. In principle, a task tree consisting of m spawned
and currently active tasks, including the starter task, could execute with m-fold
concurrency if m processors were available.

If one believes the definition of a system-an ensemble of components (pos
sibly operating in parallel), each of which may have state information bound to
it-then permitting Ada programs to exhibit rich package and task structures is
a significant advance in programming language design. Consider the contrasting
situation in Fortran or Pascal. Much of the state information of Fortran or Pascal
programs (for example, scalar variables, arrays, records, etc.) is bound to the
program as a whole, rather than to any of its subprogram parts. Thus, with the
exception of data declared in the outermost block of a Pascal program or in the
COMMON blocks and main unit of a Fortran program, all declared information
has a lifetime that is limited to a single activation of a block or subprogram. (In
Fortran 77 this constraint has been relaxed somewhat with the introduction of
the SA VB statement [41].)

A Fortran or Pascal programmer may have difficulty representing a real sys
tem to be modelled, or the programmer may have difficulty explaining to those
familiar with the real-world model how the program works. This is primarily
because the lack of multiple state spaces in Fortran and Pascal inhibits preserv
ing the correspondence between the system to be represented and the program
that models the system. Worse still, if some components in the real system
being modelled are concurrently active, then the correspondence between the
Fortran or Pascal program and the system being modelled becomes even
weaker.

The less the behavior of a system corresponds to the behavior of a program
that models the system, the more difficult is the chore of verifying this corre
spondence. Such programs are also more difficult to maintain (modify) as
changes are made to the specification of the model (changes to the originating

24 A Programmers View of the Intel 432 System

problem or requirements statement). Because life cycle costs of programs may
be dominated by their maintenance costs, especially for the case of large pro
grams, the importance of preserving a clear structural correspondence between
the program and the system being represented should impel us toward a
language like Ada.

[When using programming languages like Fortran or Pascal the effort is concentrated
in preserving the logical and thereby the functional correspondence between programs
and the systems they represent. While this type of correspondence is often sufficient,
especially for small programs, the difficulties induced when programs are "scaled up"
to realistic size have, in the past, been largely underestimated. Purely functional
languages are also being considered as replacements for Fortran and Pascal [4, 11], but
they are as yet untested in real applications involving sizeable data bases or in represent
ing models whose components have complex interactions. Moreover, architectures that
are especially suitable for such languages are not yet well understood.]

2.2. Ada Packages

The Ada package is the construct that the programmer can use to define data
abstractions; it is regarded by many experts as the most significant contribution
Ada makes toward reaching its software goals of lower costs with higher main
tainability, reliability, and verifiability. A package provides us with the means
to associate a clear set of specifications for the use of a data structure (or of a
class of such data structures) with a particular set of (hidden) implementation
details.

Before showing and discussing concrete examples, we identify two important
kinds of Ada packages. We refer to them as transformer packages and owner
packages. The transformer packages can be used to implement pure abstract
data types, and the owner packages can be used to implement more general
kinds of type managers .

• An operation of a transformer (or non-owner) package can update only the
data that is supplied to it through formal parameters(s); the package contains
no internal state information bound to it. (That is, there is no data internal to
the package that can be updated.) Since a transformer package "owns" no
state information, each operation of the package must return its result to its
caller. (A transformer package cannot "remember" the effects of preceding
calls to it.) An example of a transformer package would be one that creates
complex numbers, one that performs operations on complex numbers, or one
that does both.

• An owner package is "history-sensitive" in that it can "remember" the
effects of preceding calls to it. The owner package "owns" some state infor
mation; that is, the package contains internal data that can be updated during

Program Structures and Semantics in Ada 25

the course of the package's lifetime. Thus, an operation of the package may
be supplied data on which to operate through its formal parameter(s). In so
doing, it may update its state information. An operation of an owner package
need not return a result to its caller. An example of an owner package is one
that maintains a central table of active files for a compiler.

An Ada package may be used to:

1. specify a set of valid operations on one or more instances of a data type,

2. provide a body consisting of the operations specified in part 1,

3. hide all of the objects, specifications, and implementation details provided
in part 2 from the user of the operations specified in part 1.

Thus, for each owner or transformer form of package, there is a public and a
private part (also referred to as the visible and invisible parts.) The public part is
made directly accessible to a user program unit either by:

• prefixing the program unit with an explicit declaration that names the
package(s) that are to be made accessible (such a prefix is called a with list),
or by

• nesting the package within the user program unit, thereby making the
package's public part locally accessible (which is done by exploiting Algol
like scope rules).

The first of these mechanisms is an important innovation of Ada-like
languages; its use is strongly encouraged. The second of these mechanisms
should be discouraged; its use leads to programs that are difficult to read and
debug and is a "holdover" from earlier block-structured languages like
Algol 60.

In either case, the package's private part is not directly accessible to the user
program unit. This information becomes accessible only indirectly, by perform
ing operations that are specified in the interface information of the public part.

Thus, if a package named Shoe_Mgr has an operation OPI specified, for
example, as

procedure OPl(x: in string, y:out string);

then this operation may be invoked from the user program unit by

Shoe_Mgr. OPl ("baby shoes", new_shoe_style);

The user-visible specification of OPI (plus additional commentary about
OPl) describes the functional interface to OP1, i.e., describes what operation
OPI performs on its input arguments. However, the details of the implementa
tion of OPI are hidden from the user in the private part of the package, i.e., the

26 A Programmer's View of the Intel 432 System

methods that describe how OPt does its chore are hidden. Variable data within
the package may also be accessible only indirectly. In particular, if Shoe_Mgr
is an owner package, there may be in its private part a data base that is updated
as a result of invoking OPt. Access to this data base is only indirect, via OP!,
or via some other publicly specified operation of Shoe_Mgr.

Because the package structure ensures a clean separation between the public
(specification) part and the private part, the private part of a package can be
compiled separately from its public part. [Some non-critical details are deliber
ately glossed over in this initial exposition.] This means that a different private
part can be substituted-as better or more correct implementation ideas
evolve-without affecting the remainder of the program.

In the next section we provide more motivation and more details concerning
packages by introducing the skeletal structure for one realistic application of
, 'packaging. " We also motivate the need for a collection of related tasks.

2.3. An Investment Portfolio Manager

Here we describe a hypothetical, but not unrealistic, application that illustrates
the structure and use of a group of related packages. The program developed
here has direct application in any of several types of organizations that generally
rely on the management of a data base.

type of Data Base

Pension funds
Individual investment accounts
Personal investments records
Investment club portfolio

Managed by:

banks or trusts
brokerage houses
home-computer programmer
club officers

In each of these applications, the identity of the person(s) that manage the
data base may differ, but from the point of view of program structure all these
applications fall into the same category. For this example, however, we select
one specific application class so as to allow use of the terminology specific for
that class when discussing particulars. We choose investment club portfolios
and offer in the following paragraph, for those unfamiliar with such clubs, an
indication of the potentially substantial size of this application.

BACKGROUND: The National Association of Investment Clubs, NAIC, is an
affiliation of several thousand clubs-averaging about fifteen members each.
World-wide, there are thousands more such clubs. [The NAIC is itself a
member of the the World Federation of Associations of Investment Clubs!]
Each club usually meets monthly to review its respective stock portfolios, listen
to reports on new or held stocks, and make buy and sell decisions-usually exe
cuted the next day by the club's broker. Normally a club carries a limited
number of stocks in its portfolio, since the responsibility for watching held

Program Structures and Semantics In Ada 27

stocks is distributed among the club's membership-typically about one or two
stocks per member.

Our example Investment Portfolio Manager program will be austere in its
early stages. Later, we will introduce modifications that add functionality to the
program; we will suggest alternative methods for pursuing implementations
having certain advantages and/or disadvantages. Our initial example illustrates
a single-user computer program accessible to the secretary-treasurer of such a
club. This officer makes queries of the portfolio (data base) to prepare the
monthly report. In addition, she updates the portfolio to reflect buy and sell
transactions triggered at the monthly meeting, the results of which are reported
to her by the club's broker. Later, we will consider how other club members
might be given other types of access to the portfolio.

2.3.1. Building an Ada Program Model to
Match a Model of the Investment Club
Portfolio System

Our "object-based" program design methodology is a strategy for creating an
Ada program model whose structure mirrors a model of the real-world system to
be represented. Components of the program structure are chosen to correspond
to components of the real-world model.

In this case, the top-level view of the real world system is simple; it consists
of two components, the secretary-treasurer (the actor) and the portfolio data
base which "reacts" to the actor's initialize, query and update requests. In a
corresponding program model, an individual human actor may be represented
as a task that interprets the human actor's individual requests and converts them
into procedure calls to a program unit representing the portfolio data base. A
portfolio data base may be viewed as a data structure, together with a set of pro
cedures for managing it, including procedures that create or initialize it, query
it, and update it. A possible program analog for such a view is an Ada owner
package (Portfolio_Owner.) Our first view of the program structure can be seen
in Figure 2-1.

Secy_Treas
starter task

PortfoliO_OWner
package

Figure 2-1 Top-level program model for the investment club portfolio management
system.

28 A Programmer's View of the Intel 432 System

With Figure 2-1 as a starting structure we may then specify the information to
be kept in the data base and the set of requests that the secretary-treasurer may
make. Once this set of requirements has been confrrmed, a representation must
be proposed for the data structures of the data base as object structures in
storage.

Given this proposal, it is then possible to gauge the "semantic gap", if any,
between the requests to be posed by the secretary-treasurer and the more primi
tive object creation, accessing, and updating expressions we think we know
how to express in the programming language-in this case Ada. If the gap is
considered too great, it may be necessary or desirable to decompose
Portfolio_Owner package into a substructure, consisting of several packages.

For example, within a devised substructure of packages, top-level requests
may be decomposed by operations in intermediate packages into collections of
more primitive requests. These are then forwarded to the package whose opera
tions access the data structures directly. Such intermediate transformations
close the aforementioned semantic gap. (We have, in fact, followed this
approach in our case study.)

There are other good reasons for decomposing a program unit that represents
a data base into a substructure of other program units, even when there is no
perceived semantic gap between the requests to be made by a user of the data
base and the operations to be defined over that data base itself. Two principles
can be applied here.

1. Data structures should be implemented indirectly through operations (pro
cedures or functions) rather than by direct access to the data structure.
Directly accessing major data structures is considered poor programming
practice because it spreads direct, representation-specific references
throughout the entire program. In large programs, these direct references to
data structures can make alteration of their representation virtually impossi
ble, since there are usually too many places in the program that must be
changed to reflect the changes in the data structure. On the other hand,
indirect reference through packaged operations ensures isolation of
representation-specific references. Later, if there is a desire to change a data
structure representation in some manner, this is easily accomplished by
changing only the operations within the isolated package; no other part of the
program is normally affected.

This principle is applicable to our portfolio management program because,
as we extend the application, we will want to allow a number of program
units (in addition to that of the Secy _ Treas task) access to the same data
base.

2. Only those operations required to manipulate the data structure should be
made a part of a package that provides indirect access to a major data struc
ture. In our case study, many, but not all, of the operations in the

Program Structures and Semantics In Ada 29

Portfolio_Owner package would involve access to a portfolio. For example,
a user may wish to know the current price of some listed stock, whether or
not held in the club's portfolio.

Still other packages may be included in a substructure, either to take advan
tage of already existing library-level program units that are already available
and that shouldn't or needn't be duplicated, or as a means for "segmenting" the
top-level Portfolio_Owner package into smaller and more manageable com
ponents. Often, in the process of segmenting a larger module, it may be
discovered that two or more segments have some part in common, which may
then be "factored out" as still another segment of the substructure.

Naturally, this segmenting process may be overdone. Ideally, we would like
to see every element in the substructure reflect a particular part of the real world
model. In practice, this ideal can only be approximated. (For example, the pro
grammer is likely to encounter the need to include utility packages such as for
input-output device operations. Such packages may be only weakly related to
components of the system being modelled.)

The graph in Figure 2-2 shows a substructuring that arises as a result of
decomposing the Portfolio_Owner package of Figure 2-1 in the manner we
have just outlined. We explain this graph by explaining its individual
components.

• As mentioned, Secy _ Treas is the starter task for this program. Its own inter
nal structure, although not shown here, may be assumed to resemble that of a
simple command interpreter, or "shell", that responds to repeated input
commands from the human user-the club's secretary-treasurer. Each com
mand is translated into a calIon the Club_Portfolio package, for execution of
one of its public operations .

• Club_Portfolio serves as an interface between its principal user (Secy_ Treas)
and the portfolio itself. It receives and interprets requests from the user and
decomposes them into collections of more primitive requests (operations) that
are performed by the Portfolio_Mgr package.
Club_Portfolio is an owner package. It owns the portfolio instance created
with the aid of the Portfolio_Mgr package and defines a set of user-oriented
interactive query and update operations over the portfolio. (Club_Portfolio
also includes various other operations that do not involve access to the club's
portfolio, but do access other library packages.)

• Portfolio_Mgr defines a data structure of type portfolio and a set of opera
tions on instances of that type. Portfolio_Mgr is a transformer kind of pack
age. Its operations include create (to create a portfolio), and many useful
query and update operations, move elementary in nature than those in the
Club_Portfolio package. These operations form a minimal set necessary to
provide access to a portfolio data structure. Portfolio_Mgr is used to isolate
within one package all accesses to the portfolio that must be aware of the

30 A Programmer's View of the Intel 432 System

Purchase_Queue_
Mgr

Generic
Queue_Mgr

stock_Types_And_
Constants

Figure 2-2 Multi-package structure for single-user Investment Portfolio Manager
Program.

representation of the portfolio. Outside of the Portfolio_Mgr package, the
representation of a portfolio is unknown and not required to be known.

• Stock_Mkt_Info is a library package updated at the close of each market day
by a national wire service. To make this scenario more interesting, we
assume that this package is accessible to any club affiliated with the NAIC.
Initially, we may assume this library package is received daily as a tape or
disc and then mounted on an 110 device of the system prior to execution of
the portfolio application. In Chapter 7, we consider how the system can be
revised to model the situation where data for this package is received by wire
in real time.

Program Structures and Semantics In Ada 31

• Text_IO is a pre-defined Ada library package containing various input-output
operations accessible to the user. Text_IO is accessed by Club_Portfolio and
also (most likely) by Secy_ Treas.

• The three other packages shown in the figure are understood in terms of the
details of the Portfolio_Mgr package. The Portfolio_Mgr package,
described in greater detail below, maintains information on individual stocks
currently held by the club. This information is stored in queues, one queue
for each different stock held. When the club decides to sell some of its hold
ings in a given stock, it may want to sell its longest held shares first, in order
to ensure a possible long term capital gains tax benefit. Purchase records for
these shares are found at the front of the queue, assuming new purchase
records are always inserted at the end of the queue.

• Purchase_Queue_Mgr. Individual queue data structures are created at the
request of the Portfolio_Mgr when attempting to record the purchase of a
stock not currently held in the portfolio. Portfolio_Mgr delegates to a sub
sidiary package, Purchase_ Queue_Mgr, the responsibility for perlorming
the operations of create, enqueue, and dequeue for instances of such
queues.

• Queue_Mgr. We further assume that Purchase_Queue_Mgr is itself an
instance of a paradigm (or, in Ada parlance, a generic package) named
Queue_Mgr. Later, we give a more detailed explanation of Queue_Mgr
and how it is used.

• Stock_ Types_And_Constants. In Ada, a package may consist entirely of
a collection of type definitions, constant definitions, variable declarations,
or any consistent combination of these. We place in Stock_
Types_And_Constants all those data type definitions, constants, and vari
ables that are common (and hence that should be commonly accessible) to
the several packages which are dependent on these definitions.

In Figure 2-2, directed arcs indicate the general relationship "references".
The graph

means that A "references" B. Depending on what is being referenced, this
"references" relationship can mean several things. If the reference in B is a
procedure, then A references B in order to call a procedure of B. If the
reference in B is a constant or type, then A references B in order to obtain the
constant or type. If the reference in B is a variable, then A references B in order
to obtain the current value of the variable.

The implication of the "references" relation has an impact on order of com
pilation. Ada requires that the specification of a program unit B must be com-

32 A Programmer's View of the Intel 432 System

piled before compilation can occur for any program unit that "references" B.
Thus, in the diagram above, the specification of B must be compiled before
either part (specification or body) of A that "references" B. [Ada programs are
compiled from their individual program units using a set of dependency rela
tionships. These are usually accumulated in a "program library" as the com
piler works its way through the units of the program. We will not discuss the
technical aspects of "order of compilation in Ada"; for such details, readers are
referred to Chapter 10 of the Ada reference manual [2].]

2.3.2. Portfolio Details

For our case study, we assume that a portfolio data structure contains informa
tion ordered at three conceptual levels:

• information pertaining to the aggregate of all held stocks, such as:

• the portfolio name

• number of different stocks held

• a stock summary for each held stock

• information in a stock summary provides:

• corporate name

• stock exchange where listed and the corporation's acronym on that
exchange

• total number of shares

• average cost per share

• a purchase history

• information in a purchase history for a held stock includes, for each purchase
whose shares have not all been sold, the following items:

• date purchased

• price per share

• commission paid on the purchase

• no. of shares remaining from this purchase

With this informal description of the portfolio, we may choose specific
representations for the portfolio as a whole and for its components. These choices
can be expressed as Ada type declarations. We are now almost ready to display
and discuss most of the Ada code for this application, but we again request the
reader's patience, in order to consider two very interesting extensions.

These two extensions are described in the following two subsections, after which
we present and discuss the Ada code for all three versions of this application.

Program Structures and Semantics In Ada 33

2.3.3. Allowing All Club Members to Query
Their Club's Portfolio-Many Single Users

"Ordinary" members of the investment club should also have access to the
club's portfolio, provided they are restricted to read-only queries. The model in
Figure 2-1 must be amplified, as shown in Figure 2-3, so that there is now an
actor (or task) for each club member. We want Portfolio_Owner to accept and
respond properly to query requests transmitted by all tasks, but to reject create
and update requests transmitted by tasks denoted as "Member" tasks. How
should the program structure in Figure 2-2 be modified to provide for such mul
tiple access?

Portfolio_OWner
package

Figure 2-3 Top-level program model for Investment Portfolio Manager program: Second
view.

First, we consider a simple solution which assumes that the secretary
treasurer's use of the portfolio will never be concurrent with use by other
members. Figure 2-4 shows how we can achieve our objective. Two separate
program structures share the Club_Portfolio package and its subsidiary package
structure. The secretary-treasurer program structure is unaltered and an addi
tional program structure, representing any other club member, is now provided.

[We make the very strong assumption that no Member task may execute concurrently
with the Secy _ Treas task -but we do not indicate how this constraint is "policed". We
simply presume that this mutual exclusion is achieved by agreement outside the realm of
the program. The agreement needn't involve the club members themselves. Proper use of
the Object Filing Subsystem, described in Chapter 10, provides one way to provide for
the requisite mutual exclusion.]

A Member starter task is able to access Club_Portfolio only indirectly, via a
new Member_Ops package (which is accessible to each such Member task.)
The Member_ Ops package provides access only to the query operations within
Club_Portfolio. In fact, Member_Ops is composed only of operations that have
exactly the same name as the accessible query operations in Club_Portfolio.

34 A Programmer's View of the Intel 432 System

Secy_Treas
starter task

Portfolio....Mgr

Generic
Queue....Mgr

Figure 2-4 Giving a Member task query access to the Investment Portfolio.

The operations in Member_ Ops have specifications that are identical with the
like-named operations in Club_Portfolio. As we will see when we examine the
code, the body parts of the operations in the body part of Member_Ops are
merely "identity transformations"; that is, they merely call the corresponding
operations in Club_Portfolio. Restricting the Member_Ops package to the
query operations of Club_portfolio in this way ensures that a Member starter
task cannot update the club's portfolio.

Every unit of an Ada program subject to separate compilation may be pre
fixed by a with list. This list names just those (public parts of) packages that the
program unit can access directly. Thus, the with list that prefixes the Member

Program Structures and Semantics in Ada 35

starter task will include Member_Ops but not Club_Portfolio, and the with list
that prefixes Member_Ops contains Club_Portfolio. Inclusion of proper pack
age names in with lists in this manner provides the compiler with sufficient
information to control access to the appropriate portfolio operations.

The intent here is that the public operations of Member_ Ops be a proper sub
set of the public operations of Club_Portfolio. This subset constitutes what the
i432 architects call a "refinement" of the larger set. By utilizing the refinement
facility of the i432, Member_Ops can be defined as a physical subset of
Club_Portfolio. Special hardware-recognized descriptors can be used to control
access to such subsets in such a way that information outside the subset is inac
cessible to any program that has access to the subset. Refinements provide the
i432 user with the advantage of controlled information sharing without the usual
disadvantage of providing too much access. We discuss refinement further in
Chapter 4.

2.3.4. Multi-User Solutions to the Investment
Portfolio Application

In this subsection, we attempt to relax the constraint that the club's secretary
treasurer not be trying to update the portfolio while other club members are
querying it. To do this, we need to move from the case of two or more indepen
dent non-communicating tasks (as in 2.3.3) to a set of mutually dependent tasks.
This can be done by taking advantage of the intertask communication features
of Ada.

Our solution involves more control components. We now want a tree of tasks
(not a forest of tasks). One such structure is sketched in Figure 2-5. There is
only one starter task, which we will refer to as the Task_Master. This task
represents the top level (root node) of the tree of tasks. The counterpart of
Task_Master in the real world model is an agent delegated to admit club
members to a room containing computer terminals, or, more likely, is an
operating system that supervises the "login rituaL" Task_Master in the pro
gram model has responsibility for spawning tasks for club members of a particu
lar "title": president, vice-president, secy-treas, or ordinary member. (An
interesting variant is discussed in Chapter 3.)

We now assume there is also a club membership roster (name, title, etc.),
established and maintained as an auxiliary data base. Using this roster, we can
ensure that a member's access to the portfolio is a function of the member's
title. The Task_Master can be coded to spawn one task for each club member
when the system is initialized, or to wait to spawn a Member task when the
member' 'logs in" .

Since there are now two data bases, several club members may wish to access
them without being aware of potential access conflicts and without worrying
about preventing unauthorized accesses. The necessary supervision to prevent

36 A Programmer's View of the Intel 432 System

Portfolio_
Server

Portfolio_Mgr

Pur chase_Queue_
Mgr

GenerIC
Queue_Mgr

Membership_
Roster

(owner)

Figure 2-5 Case c. Multitasking structure' for Multi-user Investment Club Application
Program.

conflict can be delegated to "third parties". For example the club might be
expected to designate a "keeper" for each of its data bases, giving each keeper
the responsibility for verifying correct and authorized use of one data base. Our
program model can easily reflect this added structure.

Program Structures and Semantics in Ada 37

In the solution of Figure 2-5, the Task_Master spawns two server tasks:
Portfolio_Server and Roster_Server. Portfolio_Server is given sole access to
the Club_Portfolio package. Roster_Server is given sole access to the
Membership_Roster package. Individual Member tasks may make concurrent
requests to Portfolio_Server, but it will honor these requests only one at a time,
thus resolving potential conflicts over use of the portfolio.

Portfolio_Server requests service from Roster_Server to confirm the access
privileges of the Member task that requests a particular portfolio service.
(Roster_Server acts on these requests one at a time.) Access privileges of the
Member task are a function of .a member's "title", as checked by
Roster_Server. This checking strategy may be carried further. For example, the
club's secretary may be the only member accorded access to operations within
Roster_Server that involve updating the roster. (We do not outline this embel
lishment here.)

Given this subsystem structure, we can elaborate the permissions required for
various types of portfolio service beyond those we considered in the "many
single-users" case of2.3.3. For example, we can consider incorporating the fol
lowing controls:

Type of Request
query only
update portfolio
create portfolio
delete portfolio

Requestor(s) Authorized to Receive Service
any club member
secretary-treasure only
president and secy-treas acting together
president, vice-president and secy-treas,

all three acting together

In the remainder of this chapter and the next one, we display and discuss
some of the highlights of the Ada code for the three versions of this system. We
relegate complete source listings to Appendixes C, D, and E.

2.4. Highlights of the Ada Code-Figure 2-2 Case

The graph structure of Figure 2-2 serves as a useful guide to the code excerpts
we present here and to the code given in Appendixes C and D. We assume the
reader is still unfamiliar with Ada and therefore we scan the code bottom-up,
that is, we scan the modules in the order a compiler would see them. Accord
ingly, Figure 2-6 displays code for the Stock_ Types_And_ Constants package.

The least obvious data types and subtypes in this package are

• The type "dollars" is a non-negative fixed-point type, giving values to the
nearest penny. [Note that in the compiled version given in Appendix C, type
dollars is defined as integer.]

• The record type "stock_name_info" provides an identification of an indi
vidually held stock by its two components: an "external name" that we pre-

38 A Programmer's View of the Intel 432 System

This package has no body.

subtype lon~string is string(30);

type dollars is delta 0.01 range 0.00 .. 1_000_000.00;

type stock_code_pair is
record

code:
exch:

end record;

string (1. .4) ;
string (1. .4) ;

type stock_name_info is

Maximum is a million dollars here.
-- Precision is to nearest penny.

Abbreviation for listed stock.
Abbreviation for stock exchange.

record
print_name:
s tock_ code:

end record;

lon~string;
stock_code_pair;

type date is
record

day: integer range 1 .. 31;
month: integer range 1 .. 12;
year: integer range 1900 .. 4000;

end record;

type buy_sell_type is (buy, sell);

type buy_sell_record(buy_sell: buy_sell_type) is
record

stock_name:
buy_date:
num_shares:
per _share_pr ice:
commission:
case buy_sell is
when sell =>

of_buy_date:
when 0 thers =>
null;

end case;
end record;

stock_name_ inf 0;
date;
integer
dollars
dollars

date;

Record discriminant.
Extra data field.

No extra field.

subtype purchase_record is buy_sell_record(buy) ;

subtype sale_record is buy_sell_record(sell);
end stock_Types_And_Constants;

Figure 2-6 Code for the Stock_ Types_And_ Constants package.

Program Structures and Semantics In Ada 39

viously referred to as the corporate name and an "internal name" that we
previously referred to as the stock exchange/acronym. The corporate name is
of type "long_string", representing a string of up to thirty characters. The
stock exchange/acronym is represented by the type "stock_code_pair".

• The type "buy_sell_type" has two values in its universe: "buy" and
"sell". This type is used to facilitate the definitions of the last two types in
this package.

• The record type "buy _sell_record" is used to define the structure of pur
chase records embedded as components of a purchase history in the portfolio.
A buy _sell_record instance is also used for defining input arguments to
operations that update the portfolio. As a fine point concerning Ada, notice
that the buy_sell_record comes in two "flavors": buy and sell. The sell vari
ant includes an extra field, which specifies the buy date of shares to be sold.
When one declares an instance of a "buy _sell_record" type, one must sup
ply as the particular discriminant value either' 'buy" or "sell" .

• In order to avoid having to supply a discriminant value each time one
declares an instance of a buy_selLrecord to be allocated, the subtypes,
purchase_record and sale_record, are also defined in this package. Subtypes
are one of several useful data typing constructs in Ada. The subtype declara
tions are used here merely as a convenient renaming mechanism. [See Chap
ter 3 of the Ada Reference manual for more details.]

Figure 2-7 provides the skeleton structure of the generic Queue _Mgr pack
age. The complete version of the Queue_Mgr package is given in Appendix C.
Parts (b) and (c) of Figure 2-7 constitute the usual specification and body parts
of a package. The package is made into a generic package when it is prefixed
by a generic clause, as seen in part (a). The public part of the specification part
(b) defines a data type "queue" holding zero or more items, four queue opera
tions, and an exception that designates queue underflow (attempt to remove an
item from an empty queue.) An instance of type queue is created by a calion
the Create operation. The Is_empty operation determines whether or not a
queue is empty. The Add and Remove operations enqueue and dequeue ele
ments from the queue, respectively.

The detailed representation of a type queue instance is declared in the private
section of the specification part since this representation is of no concern to
users of the Queue_Mgr package. The body part of the Queue_Mgr package
contains the implementation details of the visible Create, Add, Remove, and
Is_empty operations. We look at these details later.

What makes this package interesting is that nowhere in part (b) and (c) do we
commit to what is meant by "item". The meaning of this identifier has been

40 A Programmer's View of the Intel 432 System

generic
type item is private;

generic Queue_Mgr package
Item is a parameter.

(a) Generic clause.

package Queue_Mgr is -- This package is a transformer.

Declaration for the private type queue goes here.

Specifications go here for:
functions named: Create and Is_empty, for
procedures named: Add and Remove, and for the
exception named: underflow.

private

-- Type declarations that define the queue structure go here.
A queue is a one-way linked list of items with a defined

-- head and tail.
-- structure of a queue instance is provided here:

-- end of specification part

(b) Specification part

package body Queue_Mgr is

Specification and body parts of:
functions named: Create and Is_empty and
procedures named: Add and Remove go here.

There are no local procedures needed for this package.
If there were any, their specification and body parts would go here.

There are no initialization steps needed when this package is
instantiated. If such steps were needed, they would go here,
preceded by begin.

end Queue_Mgr;

(c) Body part.

Figure 2-7 Skeleton structure for generic Queue_Mgr package.

factored out of the package. Use of the generic clause makes the identifier item
a generic parameter of the package.

When we wish to create a particular instance of Queue_Mgr, we must supply
a matching argument for this parameter. One can see how this is done in Fig
ure 2-8, which shows the Purchase_Queue_Mgr package as an instantiation of
the generic Queue_Mgr package.

The reader should notice the with list that prefixes the package instantiation
of Figure 2-8. A with list directs the compiler to provide access to the objects
declared in the listed packages.

Program Structures and Semantics in Ada 41

--------Purchase_Queue_Mgr---------
with Queue_Mgr, stock_TYPes_And_Constants;

package Purchase_Queue_Mgr is new Queue_Mgr(
item => stock_TYPes_And_Constants.purchase_recordl;

Instantiation of generic Queue_Mgr package to manage purchase queues
formed in portfolio instances by Portfolio_Mgr.

Agure 2-8 Purchase_ Queue_Mgr package as an instantiation of Queue_Mgr with item
bound to purchase_record type.

2.4.1. A Multiplicity of Queue_Mgr
Instantiations

The full potential of a generic unit, such as the Queue_Mgr package, is realized
when Queue_Mgr is instantiated more than once in the same program with dif
ferent arguments to match the generic parameter, item. We instantiate
Queue_Mgr only once in the example being discussed here, since we only need
to manage purchase records for common stocks.

A more complete portfolio, however, might also hold purchase records for
bonds, for Treasury bills, for Puts and Calls, for commodity options, etc. For
each of these forms of purchase, a distinct record structure might be required. In
such a case our application would include a number of Queue_Mgr instantia
tions. Thus, for the price of implementing a single "template" package, we
obtain several useful packages.

2.4.2. Details of the Queue_Mgr Package

We are now ready to examine the full details of the Queue_Mgr package. Fig
ure 2-9 shows the specification part of Queue_Mgr. (This is a fleshed-out ver
sion of Figure 2-7 (b).)

In Figure 2-9, we see the specification for the parameter parts of the three
operations Add, Remove, and Is_empty. In Ada, a (formal) parameter is bound
to its argument (actual parameter) in one of three modes:

• as an input only parameter, in,

• as an output only parameter, out,

• as an input-output parameter, in out.

An input only parameter may be specified with an initial value. (See, for exam
ple, the parameter to_front in the Add operation shown in Figure 2-9.)

42 A Programmer's View of the Intel 432 System

package Queue_Mgr is
type queue is private;
null_queue: constant queue;

function create return queue;
Function:

This package is a transformer.

Example of a "deferred constant".

Returns a reference to an empty queue instance.

procedure Add(
E: in item;
Q: in queue;
to_front: in boolean := false); -- Optional third parameter.
Function:

Adds the input item E to the logical "tail" of the queue
structure referred to by Q, unless to_front is given
a true input argument.

procedure Remove(
U: out item;
Q: in queue);
Function

Removes an item U from the logical "front" of queue structure
referred to by Q. U is an output parameter.

function Is_empty(
Q: in queue)

return boolean;
Function:

Returns false value for instance of non-empty queue.

underflow: exception; Raised if Remove is passed an
empty queue. Propagated to caller.

private
type queue_element; -- Forward reference.

type queue_element_ptr is access queue_element;

type queue_element is
record

info: item;
next: queue_element_ptr;

end record;

type queue_rep is
record

head: queue_element_ptr;
tail: queue_element_ptr;

end record;

type queue is access queue_rep;
nUll_queue: constant queue := null;

end Queue_Mgr;

Type item is a parameter.
Link to next queue element.

Representation of the queue
structure at the top level.

Figure 2-9 Specification part of Queue_Mgr package.

Program Structures and Semantics in Ada 43

For each parameter, we designate both its binding mode and its type. Thus,
in the specification for Remove, the parameter Q is specified as:

Q: in queue

The most common form of binding mode is the' 'input only" mode, designated
by the in reserved word. This binding mode designates that the parameter is
"read-only", i.e., cannot be stored into. The Ada compiler normally guarantees
that an argument that is bound to an in parameter of procedure P is not modified
by P. The default parameter binding mode for Ada is in, but our programs will
usually show the binding mode explicitly.

Since Purchase_ Queue_Mgr is a transformer package, a calIon the Remove
operation to remove an item must designate the queue from which the item is to
be removed. The parameter Q is a reference to a queue and as such is not itself
modified when performing the Remove operation; hence the binding mode of Q
is in.

The second binding mode is "output only", designated by the out reserved
word. The Remove operation returns the item that it removes by storing the
removed item into its parameter U. For this 'reason and since U does not provide
any input information to the Remove operation, U is designated as an out
parameter:

procedure Remove(
U: out item;
Q: in queue) ;

Note that although we illustrate the encoding of Remove as a procedure, it
should be evident that Remove can also specified and implemented as a func
tion, for example:

function Remove (
Q: in queue)

return item;

The third form of binding mode for a parameter is denoted by in out. This
form is used in cases where the specified argument matching a parameter P is a
variable V whose value is needed as input for the activation of the called sub
program and where, during the activation, P may be updated (i.e., assigned a
new value). If updating of P is performed, then upon return from the subpro
gram, V will have the last value assigned to P. (We will see only occasional use
of the in out binding mode in this book.)

[The specific rule for determining when to update an actual parameter V that is
matched to a formal parameter P having an out or in out binding mode, is based on a
need to assure the potential for execution efficiency. If V is a scalar or access type, then
updating of V is performed only once, upon return from the call that names V as an argu
ment (a pure "copy-out" mechanism." However, if V is an array, record, or private

44 A Programmer's View of the Intel 432 System

type, then, depending on the compiler used, each assignment to P can cause immediate
updating of V ("reference parameter" mechanism).]

The data type queue is declared private to indicate that users of Queue _Mgr
are prohibited from operating directly on components of a queue instance. The
only operations allowed on elements of type queue are the equality (inequality)
relation and assignment to a variable, including parameter transmission.

The representation of a queue instance is shown in the private clause follow
ing the visible specifications. Although any human reader of the source code
can see how a queue instance is represented, the Ada compiler guarantees that
the details of representation given in the private part of a package are visible
only within the package. From outside the package, another program unit can
only know that the type queue exists; it is not possible to determine the
representation of a queue.

We see from the private part that an instance of type queue_rep is a record
consisting of a head and a tail pointer, each pointing to queue elements. In turn,
a queue element is a record consisting of an infonnation item (info) and a
pointer to the next queue element (next), the latter of type queue_element_ptr.
The incomplete declaration,

type queue_element;

is known as a "forward reference" and is used to resolve cross-coupling in
mutually dependent declarations involving access, i.e., pointer types.

The body part of Queue_Mgr is displayed in Figure 2-10. Writing an Ada
subprogram can be illustrated by examining the definitions for Add, Remove,
and Is_empty in Figure 2-10. The Add procedure, for example, begins with a
(necessarily) duplicate copy of its specification (given in Figure 2-9), followed
by the keyword is. Following this, the remainder of a subprogram body nor
mally consists of a sequence of local declarations, possibly empty, followed by
a sequence of statements. In this case, there is one locally declared object: the
variable x. In any case, the statement sequence is heralded by the begin key
word and terminated by the end keyword.

The Create operation, which has no parameters, returns a reference to a
newly-allocated queue having zero elements. The head and tail pointers of this
queue are each initialized to the null value, reflecting the fact that the queue is
empty. A null-valued head and tail pointer is used by the Add, Remove, and
Is_empty operations to detect special queue conditions. A few minutes' reflec
tion will convince the reader that the head pointer is null if and only if the tail
pointer is null.

In the Add operation, the local variable x of type queue_element_ptr is
assigned a reference to a newly-allocated record of type queue_element. This

package body Queue_Mgr is;

function Create return queue
is

Program Structures and SemantIcs In Ada 45

return new queue_rep (head => null, tail => null);
end Create;

procedure Add(
E: in item;
Q: in queue;
to_front: in boolean: = false) -- Optional third parameter ..

is
x: queue_element_ptr := new queue_element (info => E, next => null);

begin
case to_front is

when f al se =>
if Q.tail /= null then

Q.tail.next := x;
else

Q.head : = x;
end if;
Q. tail: = x;

when 0 thers =>
end Add;

procedure Remove (
U: out item;
Q: in queue)

is
begin

if Q.head = null then
raise underflow;

else
U : = Q. head. info;
if Q.head.next = null then

Q. head : = null;
Q. tail : = null;

else
Q.head := Q. head. next;

end if;
end if;

end Remove;

function Is_empty(
Q: in queue) return boolean

is
begin

return Q.head = null;
end Is_empty;

Normal case. Add to tail of queue.
If the queue is non-empty,
add the item at the end of the queue.
If the queue is empty,
place the item at the head.

-- See code details in Appendix C.

-- Is Q.head last queue element?

-- Return truth value of expression.

Figure 2-10 Full details of package body for Queue _Mgr.

46 A Programmer's View of the Intel 432 System

newly allocated record is the new queue_element that is to be entered into
queue Q; its info field is assigned the value of the input argument E. Note that
the third parameter for Add is assigned the default value' 'false". The meaning
of this construct is that the value "false" is assigned to the parameter
"to_front" in the absence of a third argument. Thus, if the subprogram calling
Add is satisfied with the default value "false" for the parameter to_front then it
need not specify a third argument. On the other hand, an explicitly specified
third argument value always overrides the default value. In Figure 2-10 we
show only that part of the Add operation that handles the default case. The com
plete body for Add is given in Appendix C.

The Remove operation is analogous to the Add operation and, in addition,
offers us the opportunity to consider two issues of interest: an exception condi
tion and dynamic storage reclamation. If the given input queue parameter Q is
non-empty at the time the Remove operation is called, then the output parame
ter U is assigned Q.head.info, the information item in the head queue element.
If Q contains only one element at the time of the call, both head and tail indica
tors of Q are assigned the value null. If Q contains more than one element, the
value of Q.head.next is copied into Q.head. In either case, all references to the
removed queue_element are thereby deleted; the ultimate effect of this situation
is that the heap space allocated to the removed queue_element is inaccessible
and therefore recoverable. On the i432, this recovery is automatically per
formed by the system's hardware-assisted garbage collector. If the given input
queue parameter Q is empty at the time the Remove operation is called, then the
underflow exception is raised.

When an exception is raised in a program unit, two actions are possible: the
exception is handled locally or it is propagated back to the calling unit. The Ada
programmer can supply a local exception handler, in this case, within the body
of the Remove subprogram, as suggested in Figure 2-11, or, by choosing not to
provide a local handler, can allow the exception to propagate back to the pro
gram unit that called Remove, perhaps to be handled in that program unit. This
propagation continues back through the dynamic chain of subprogram calls until
some program unit (ultimately, perhaps, the containing system) accepts respon
sibility for the exception. (In the absence of local handlers, Ada exceptions pro
pagate according to well-defined rules. [See Chapter 11, the Ada Reference
Manual [2] for more details.])

If a local handler is supplied, then upon completing the execution of the
handler, control immediately exits the program unit (returns to the caller.)
Therefore, whether or not a local handler is provided, Ada semantics state that
when an exception is raised, the program unit currently being executed is
abandoned.

The function Is_ empty returns the boolean value true if the head pointer is
null; otherwise it returns the boolean value false. We see that an Ada function

'rogram Structures and Semantics In Ada 47

subprogram is, analogous to a procedure subprogram, defined by repeating its
specification part and then supplying its body part.

A careful reading of the program and comments of Figures 2-9, 2-10, and
2-11 in the context of the foregoing discussion should be sufficient to persuade
a reader new to Ada that such code is relatively easy to understand.

procedure Remove (
U: out item;
Q: in queue)

is
begin

if Q.head = null then
raise tmderflow;

else
U : = Q. head. info;
if Q.head.next = null then -- Is Q.head last queue element?

Q. head : = null;
Q. tail : = null;

else
Q.head : = Q. head. next;

end if;
end if;

exception
when tmderflow => -- Local handler code goes here.

end Remove;

Figure 2-11 Local handler inserted in Remove subprogram.

2.4.3. PorHolio_Mgr Code

The specification part of the Portfolio_Mgr package is given in Appendix C.
We list in Figure 2-12 the operations defined in this package. .

Operation name

Create

Record_buy
Record_sell

Number_of_stocks
stock_list
Shares_and_av~cost
Num_buys
History_of_purchases

Figure 2-12 The public operations of Portfolio_Mgr.

48 A Programmer's View of the Intel 432 System

The function of each of these operations is explained in the comments following
the specification of each operation; we do not explicitly repeat these explana
tions here. Rather, we focus our attention on the two private types,
stock_summary and portfolio, that are defined in this package. The (private)
specification of these types is repeated for convenience in Figure 2-13.

private

type s tock_ summary; - - forward reference

type stock_summary is
record

stock_name:

num_shares:
av~cost_per_share:
next:
purchase_history:

end record;

stock_name_info :=
(print_name => "~~~~~~~~~~~~~~~~~~~A~~A~~A~A~A,,,

stock_code => (code => "~AA~,,, exch => ,,~A~A,,))

integer : = 0;
dollars : = 0.00;
stock_summary_ptr : = null;
Purchase_Queue_Mgr.queue

: = Purchase_Queue_Mgr. Create () ;

type portfolio_ptr is access portfolio;

type portfolio is
record

portfolio_name: lon~string : = "not yet namedAAA~~A~AA~~AAAAAA,,;
num_diff_stocks_held: integer : = 0;
stock_list: stock_summary_ptr : = null;

end record;

Figure 2-13 Private clause of Portfolio_Mgr specification part.

The effect of a calIon the Portfolio_Mgr.Create operation is to create an ini
tial "portfolio" (drawn from heap storage) and return an "access" to it. The
structure of a portfolio, given in Figure 2-13, is invisible to Create's caller or to
the caller of any of the other public operations. Hence, the returned access
(reference) is without rights, forcing the user of this reference to go through
Portfolio_Mgr to operate on the portfolio. Of course, nothing prohibits the user
from distributing copies of the portfolio_ptr received as an output parameter
value. (A more thorough discussion of access control issues is given in Chapters
4 and 6.)

From within the Portfolio_Mgr package, however, we can see that a created
portfolio is a record containing a slot for the portfolio name, an indication that
no stocks are held, and an empty list of stock summaries. Because the portfolio
record type specifies initial values for its component fields, every variable of
portfolio type and every dynamically created instance of portfolio type is initial-

Program Structures and Semantics in Ada 49

ized according to the values given above. This "default initialization" occurs
unless there is an overriding initialization when a portfolio type variable is
declared or a portfolio type instance is dynamically created.

A major element of a portfolio is the linked list of stock summaries. A new
stock_summary is added to a portfolio as a result of a calIon Port
folio_Mgr.Record __ buy to record a buy of a stock that is not now held. As a
result of this new stock purchase, a purchase history is created for the new stock
by virtue of creating a new instance of type stock_summary. This new pur
chase_history gets as its initial value a reference to a queue of purchases that is
created by Purchase_Queue_Mgr.Create. (The call on this Create operation
occurs for every new instance of stock_ summary, because of the default initial
ization specified for the purchase_history field of a stock_summary.)
Thereafter, each new call on Portfolio_Mgr.Record_buy adds another entry to
the respective purchase queue instance.

Tradeoffs among alternative portfolio representations must be considered as
early as possible by the applications designer. We consider two examples:

1. Our choice of using a queue data structure, rather than a linked list for
representing the purchase history for a stock, could well be too restrictive.
The queue structure is suitable provided we are satisfied that held stocks are
sold only on a first-in first-out basis and provided we are sure that "end
users" of the system will rarely be interested in explicitly examining or
altering the purchase history entries. If these assumptions are not good ones,
then a linked list representation for purchase history records would no doubt
be more appropriate; furthermore, an additional set of operations would be
required in Portfolio_Mgr so the user of this package could request examina
tion and/or manipulation of records in a given purchase history. (Readers are
invited to consider, as an exercise, what is involved in redesigning
Portfolio_Mgr and the packages on which it depends to permit such added
flexibility.)

2. We may wish to consider letting the portfolio record contain an array of
stock summaries (rather than a linked list of summaries), each containing a
purchase_queue. The major design tradeoffs here are between the storage
management problems that arise (if arrays are used) and the limitations of
sequential access (if linked lists are used).

In our example, a linked list of stock summaries is attractive. As long as the
number of stock summaries in a portfolio is of manageable size, sequential
searching would be acceptable; thus, an array offers no advantage. On the
other hand, by using linked lists, we take advantage of the i432's underlying
storage resource allocation mechanisms for adding new list elements when
needed. We also take advantage of the i432's underlying garbage collector
for recovery of discarded list elements. Furthermore, using linked lists frees

50 A Programmer's View of the Intel 432 System

us from having to specify arbitrary' 'boundary conditions" in advance, such
as the maximum size of an array.

[If we were to use an array to represent a portfolio, we might declare that a portfolio
contains a "tableau" of size stock_surnmarys, where size is a constant given in
Stock_ Types_And_Constants. A stock_summary would be (initially) a record consisting
of an empty stock name, zero shares at zero cost, and a null pointer to a purchase history.

Ada permits the declaration of dynamic arrays (See Chapter 3, the Ada Reference
Manual [2]); this permits us to declare the maximum number of stock summaries in the
tableau to be a variable whose value is computed at the time each portfolio instance is
allocated. Figure 2-14 shows how such a portfolio record might be defined.

type portfolio (newsize: integer range 1 .. 600) is
record

portfolio_name: long".string : = "not yet riamedAAAAAAAAAAAAAAAAA,,;
num_diff_stocks_held:integer range o .. newsize := 0;
tableau: array 1 .. newsize of stock_summary;

end record;

Figure 2-14 Type portfolio with a variable tableau capacity of up to 600 different stocks.

The identifier newsize is a discriminant, that is, a parameter, of the record type. Its
actual value may vary from 1 to 600. To create an instance of type portfolio, one sup
plies a matching argument value in the instantiating declaration, as in:

my_folio: portfolio(newsize => 150);

This declaration has the effect of reserving storage for a portfolio variable named
my_folio that will contain a portfolio with a tableau capacity of 150 stocks. Once com
mitted to a tableau for a maximum of 150 stocks, however, it would not be convenient to
change this "boundary value" during the life of the investment portfolio application.]

2.4.4. Code for the Body of Portfolio_Mgr

When developing the body part of an Ada package, it is not necessary that the
body of any operation declared within the package actually be physically
present in the body, as was the case for operations declared within the
Queue_Mgr package body. Instead, one can elect to supply either a temporary
implementation in the form of a null statement or a specification stub, using the
key phrase is separate, which declares that the body is physically located in a
separate compilation unit.

The most common means of deferral is the use of the null statement imple
mentation, but in making this choice the programmer must remember, without
help from the compiler, to supply the actual implementation later. Deferral by

Program Structures and Semantics In Ada 51

means of the is separate stub may cause more voluminous program listings but
has the advantage that forgetting to supply the separate body part will be
noticed by the compiler or linker. (No execution will be permitted until such
separate parts are supplied.) Figure 2-15 illustrates only the is separate method
by showing portions of the Portfolio_Mgr body part. We choose this type of
deferral throughout this text primarily for ease in organizing our figures.

package body Portfolio_Mgr is -- Package body begins here.

function Create (
folio_name: in lon~string)

return portfolio_ptr;
is separate;

procedure Record_buy(
folio_ptr:
buy_info:

is separate;

in portfolio_ptr;
in purchase_record)

other procedure stubs go here. (See full code in Appendix C.)

procedure Number_of_stocks(
folio_ptr: in portfolio_ptr;
num_stocks: out integer)

is separate;

other procedure stubs go here. (See full code in Appendix C.)

Locally defined procedures and functions go here:
function Search_for_stock_code(

folio_ptr: in portfolio_ptr;
buy_record: in purchase_record;
create_if_not_found: in boolean)

return stock_sununary_ptr;
is separate;

Function:
Searches portfolio denoted by folio_ptr for presence of stock_code
the same as that given in buy_record. If the stock is found, a
reference to the stock summary for that held stock is returned.
If the stock is not found, the action to be taken depends on the value
of the input parameter create_if_not_found. If true, a new stock
summary is created, initialized, and added to the portfolio, and a
reference to it is returned. If create_if_not_found is false,
null is returned.

begin

-- Statements to initialize this package, if needed, go here.
-- (Delete the preceding begin if no statements are needed.)

end Portfolio_Mgr; -- End of package body.

Flgure2-15 Selected pieces of the package body for Portfolio_Mgr.

52 A Programmer's View of the Intel 432 System

In Figure 2-15 the function Search_for_stock_code is private (local) to
Portfolio_Mgr; it is called only by procedures that are defined within
Portfolio_Mgr. A separate compilation unit for Create appears in Figure 2-16.

separate (Portfolio_Mgr)

function Create (

is

folio_name: in lon~string)
return portfolio_ptr;

folio_ptr: portfolio_ptr;
begin

folio_ptr := new portfolio;

-- Prefix to indicate to the compiler
that Portfolio_Mgr is the context
in which the following function

-- is to be compiled.

Local reference variable.

Allocates a new portfolio
instance and assigns a reference
to folio_ptr.

folio_ptr.portfolio_name := folio_name;

return folio_ptr;
end Create;

-- Name now assigned to this portfolio

Figure 2-16 Separate compilation unit for function Create. Note the special prefix that
identifies to the compiler the contextin which this unit should be compiled.

The prefix "separate(Portfolio_Mgr)" advises the compiler that the contain
ing context of this unit is that of the body part of Portfolio_Mgr. Another way
of stating this is that the prefix advises the compiler that the following body,
although given physically here, actually resides logically within the body part
of the Portfolio_Mgr package at the point at which the separate procedure
declaration appears. Similar separate compilation units for Record_buy,
Record_sell, and for Search_for_stock_code are given in Appendix D. These
examples should be studied by the reader who needs more practice reading and
comprehending Ada code. They also illustrate several additional features of Ada
including the renames feature, a non-local exception handler, a case statement,
and a while loop.

[For example, the partially completed subprogram body for Record_sell in Appendix
D includes a handler for the undert10w exception. 1bis handler would be invoked when
the corresponding exception is raised in Purchase_ Queue_Mgr and propagates to the
point of call in Record_sell. Upon completing execution of the handler,

exception
when underflow => history_underflow := true;

execution of Record_sell would be abandoned. Control would then revert to the program
point (in Club_Portfolio) following the calion Record_sell.]

2.4.5. Examination of the Club_Portfolio
Package

Program Structures and Semantics In Ada 53

We shift our attention to the Club_Portfolio package, under the assumption that
the reader has gained some knowledge of Ada and, in particular, has a good
understanding of the Portfolio_Mgr package. The specification part of
Club_Portfolio, given in Appendix C, is straightforward. The package defines
eleven public operations, as listed in Figure 2-17.

Operation Name

Print_club_valuation
Print_club_holdings

Find_s tock_ code

Print_individual_stock_summary
Print_shares_and_value_of_stock
Print_average_cost

Print_winners
Print_losers
Print_non_movers

Enter_buy
Enter_sell

Figure 2-17 Public operations of Club_Portfolio.

The Club_Portfolio package serves as an interface between users of the
Portfolio_Mgr package and the Portfolio_Mgr package itself. Its primary duty
is to convert the machine-oriented information encoded in the portfolio data
structure into human-oriented printed matter. All direct access to the portfolio
data structure is delegated to the the operations of Portfolio_Mgr, for reasons
we discussed in Section 2.3.

Only two operations, Find_stock_code and Print_club_ valuation, are
value-returning functions. Find_stock_code is called to confirm the official
corporate name for a stock and to obtain the corresponding unique internal iden
tifier for the corporate name: a stock_code_pair (defined in Stock_
Types_And_Constants.) Find_stock_code is designed such that if the caller
provides an approximate corporate name, the response is a printout of all the
names that "closely" match the given name. A null value is returned as the
result of Find_stock_code in this case. If the caller provides a name that is an
exact match with the name of a listed corporation, the printout confirms the
match and the value returned is the stock_code_pair for this listed stock.

54 A Programmer's View of the Intel 432 System

[Find_stock_code is analogous to the operation of opening a file for input/output.
Normally, before any operations on a file can occur, it must be opened. An "open"
operation is given an external, human-readable name of the file as input and returns an
internal, machine-readable file name. From this point on, the user refers to every opera
tion on the file by using the internal name of the file.]

The body of Find_stock_code contains calls to operations in the
Stock_Mkt_Info package. This package provides the several lookup functions,
including one that supplies a stock_code_pair, given the correct corporate
name. The caller of Club_Portfolio can then use this piece of information for
subsequent calls whose parameter lists require the stock_code_pair as an argu
ment. An example of such a call, might be

Find_stock_price(Find_stock_code
("General MotorsAAAAAAAAAAAAAAAA,,)) ;

where Find_stock_price is assumed to be a public operation of the
Stock_Mkt_Info package. (It is also possible for Club_Portfolio to supply
Find_stock_price as one of its public operations; in the version presented here,
however, this is not done.)

The three operations, Print_winners, Print_losers, and Print_non_movers,
are inserted to suggest the possibility of endowing Club_Portfolio with opera
tions that can trigger elaborate computational analyses of portfolio and stock
market data.

In the case of these three operations in particular, the invoked analyses are
quite simple. The caller supplies a percentage deviation, such as 10%. The
response is a list of zero or more of the held stocks for which there has been a
net gain over average cost that is greater than 10%, or whose average loss is
greater than 10%, or whose net gain or loss does not exceed 10%, respectively.

Public operations that perform more elaborate analyses could be added later.
Some embellishments might be added with only minor changes in the specifica
tion part. For example, an operation, Print_ winners_since could be defined in a
way similar to Print_winners, by adding a number_of_months as a second
input parameter. Thus:

could be defined to respond by listing the held stocks for which there has been a
net gain greater than 10% over the past 5 months.

The access privileges required to perform the operations of Club_Portfolio
depend on the operations themselves. Most operations require only read
privilege for the portfolio instance. However, the, Enter_buy and Enter_sell
operations involve updating the portfolio and, hence, require write privilege.

Program Structures and Semantics in Ada 55

2.4.6. Creation and Ownership of a Portfolio Instance

Creation of a portfolio instance occurs as part of the package initialization
sequence for Club_Portfolio. This sequence is found at the end of the package
body and is repeated here.

begin
our_portfolio := Portfolio_Mgr. Create (

"Twenty_cousins_clubAAAAAAAAAAA,,) ;
end Club_Portfolio;

The call on Portfolio_Mgr's Create operation returns a reference to a newly
allocated portfolio instance named "Twenty _cousins_club", which is assigned
to Club_Portfolio's local variable, our_portfolio. Thereafter, Club_Portfolio
owns (is bound to) this portfolio instance. This binding will endure for the life
of the Club_Portfolio package; only one portfolio can be bound to the
Club_Portfolio package. [In Chapter 3 we consider for an entirely different rea
son a modified version of Club_Portfolio. In that version the club's portfolio is
not created during the package's initialization; instead, two public operations,
Create_folio and Delete_folio are included. These operations enable users of
the package to effect explicit creation and deletion of their portfolio.]

2.4.7. Ownership of More than One Portfolio

Programmed in this way, Club_Portfolio owns only the Twenty_cousins_club
portfolio. [We assume the availability of system commands that make the entire
package structure described in this section a permanent library object whose
lifetime is like that of a protected file, We discuss object file lifetimes again in
Chapters 4 and 10.]

It is a relatively simple matter to program the Club_Portfolio package such
that a multiplicity of package instances can be created for Club_Portfolio, each
one owning a different portfolio. This may be done by "promoting"
Club_Portfolio to a generic package. In this case, we could make the following
changes to the heading of the package:

generic
folio_name: lon~string; -- parameter of generic package

package Club_Portfolio is

By using the generic version of Club_Portfolio, new package instances can
be created as needed, each differently named and each having ownership (and
jurisdiction) over at different portfolio. For example,

package MY_Estate is new Club_Portfolio (
"Account_ 45AAAAAAAAAAAAAAAAAAAA,,) ;

-- "computes" a new package instance

56 A Programmer's View of the Intel 432 System

or, by:

package Her_Estate is new Club_Portfolio (
"Estate_12AAAAAAAAAAAAAAAAAAAAA") ;

-- "computes" a new package instance

It is important for the reader to note here that with the latter set of declara
tions it is impossible to distinguish My _Estate from Her_Estate at execution
time. On the other hand, the concept of "being able to distinguish a package at
execution time" does not exist in standard Ada since the language does not
allow users to form any sort of package "variable". In standard Ada, packages
are strictly static, i.e., packages are distinguished strictly at compile time.

The 432-Ada language extension to Ada allows users to define package
"values". Thus, the ability to distinguish package instances at execution time
may be important to users of 432-Ada. Package values and dynamic packages
are discussed in Chapter 6.

We are finished discussing the Ada program for the basic package structure
of this chapter (Figure 2-2.) In the remaining section, we discuss the Ada cod
ing changes needed to implement the altered structure of Figure 2-4. These
changes prove to be minimal. The next chapter discusses the more extensive
changes needed to implement the structure changes suggested in Figure 2-5.

2.5. Giving Query-Only Access to an
Investment Portfolio

In this section we discuss an implementation that provides "query-only" access
for a task to a portfolio, as suggested in Figure 2-4. The solution suggested in
Section 2.3.3 is elaborated here. There it was suggested that a task which is to
be awarded query-only access to a portfolio be given only indirect access to
Club_Portfolio, through an "intermediary" transformer package _ called
Member _ Ops. Here we show the details of the intermediary package's
implementation.

Figures 2-18 and 2-19 show a straightforward way to program the specifica
tion and body parts of Member_Ops.

As seen in Figure 2-19, the body for each procedure given in the body part of
Member_Ops is a simple "one-liner". It consists of a repeat of its respective
specification part, followed by a call to an identically-named procedure in the
Club_Portfolio package, as in:

<specification of P>
is
begin

Club_Portfolio.p;
end;

Program Structures and Semantics In Ada 57

-------------.-------- Member_Ops package, version 1 -----------
with Club_Portfolio, stock_Types_And_Constants;

package Member_Ops is
use Club_Portfolio, stock_TYPes_And Constants;

function Print_club_valuation
return dollars;

procedure Print_club_holdings;

function Find_stoc~code(
corporate_name: in lon~string)

return stock_code_pair;

procedure Pr int_ indi vi duaL stock _summary (
stock_code: in stoc~code_pair) ;

-- etc

end Member_Ops;

Figure2-18 Membcf_Ops specification specification part.

As shown in Figure 2-18 and 2-19, each call on a public operation of
Member_ Ops will result in an extra .and seemingly superfluous inter-package
calion the corresponding operation within Club_Portfolio. By using Ada's
"inline" pragma we can instruct a good compiler to avoid compiling this
"extra" level of indirection. If each procedure in Member_Ops is declared to
be "inline" then no extra overhead is associated with the extra level of pro
cedure call. Rather, at the place of calling a procedure in Member _ Ops the
procedures's body is substituted "inline" at the point of call in much the same
manner as "macros" that are available in some machine code assemblers. In
this manner, the extra level of procedure call disappears; the effect is that the
call goes directly to the procedure in Club_Portfolio, bypassing the procedure
in Member _ Ops.

We make two observations about Figure 2-18:
• Notice that the with list for Member_Ops enumerates only the two packages

Club_Portfolio and Stock_ Types_And_Constants. By excluding Port
folio_Mgr, no reference can be made to one of its operations from within
Member_Ops. In this way, Club_Portfolio serves as the only channel
through which Member_ Ops can reference Portfolio_Mgr. Careful use of the
with list mechanism gives us precisely the form of access control that we
desire .

• Observe how we resolve the potential ambiguity in the subprogram bodies
within Member __ Ops. Each procedure P within Member_Ops contains a call

58 AProgrammer's View of the Intel 432 System

-------------------- Member_Ops body part, version 1 ---------------,
package body Member_Ops is

-- The body of each subprogram declaration given here is a call to
-- the corresponding procedure in Club_Portfolio.

function Print_club_valuations
return dollars

is begin return Club_Portfolio.Print_club_valuation; end;

procedure Print_club_holdings
is begin Club_Portfolio. Print_club_holdings; end;

function Find_stoc~code(
corporate_name: in lon~string)

return stock_code_pair
is begin return Club_Portfolio. Find_stock_code(

corporate_name); end;

procedure Print_individual_stock_summary(
stock_code: in stock_code_pair)

is begin Club_Portfolio. Print_individual_stock_summary(
stock_code); end;

-- etc .

-- No local declarations and no initialization needed

end Member_Ops;

Figure 2-19 Body part of Member_ Ops, version 1.

to a subprogram of Club_Portfolio having precisely the same name P and the
same parameter list as P. This ambiguity is resolved by using "Club_
Portfolio" as a prefix. The prefix is needed to resolve the apparent ambiguity
even though we have included the identifier, Club_Portfolio, in the use list
of Member _ Ops. Without the prefix, the compiler will interpret each
intended call on the P in Club_Portfolio as a recursive call on the P in the
Member_Ops package. [For more discussion on this this point, the reader
may wish to consult Chapter 8 of the Ada Reference Manual [2], which
discusses the visibility rules of the language.]

The use clause,

tells the compiler that, for example, types such as percent, stock_code_pair,
dollar, etc., which are not declared in the specification part of Member_Ops,
will instead be found in one of the packages named in the use list. If the use
list is not provided, the "full" names for each of these types must be used,
that is:

Program Structures and Semantics In Ada 59

Club_portfolio. percent,
stock_TYPes_An~Constants.stock_code_pair,
stock_TYPes_An~Constants. dollar,
etc.

[Readers familiar with Pascal will recognize that the Ada use list is somewhat like the
Pascal with clause, which is also a useful mechanism for factoring out a common con
text for selected components. The Ada use list, however, brackets constructs of
broader scope.]
We now show a second way to program the Member_Ops package to indi

cate that calls on its query operations are to result in calls directly on those of
Club_Portfolio. Ihis approach exploits Ada's renames feature, as shown in
,Figure 2-20. Here, the specification part of each Member_Ops operation is
replaced with a renames declaration; a corresponding body part is not required.

------------------ Member Ops version 2 -------------------------
with Club_Portfolio, stock_TYPeS_And_Constants;

package Member_Ops is

The operations of this package are identical with those
-- like-named operations in the Club_Portfolio package.
-- Explanations of these functions are given in that package.

function Print._club_ valuation
return dollars
renames Club_Portfolio. Print_club_ valuation;

procedure Print_club_holdings
renames Club_Portfolio.Print_club_holdings;

function Find_stock_code(
corporate_name: in lon~string)

return stoc~_code_pair
renames Club_Portfolio.Find_stoc~code;

procedure Print_individual_stock_summary(
stock_code: in stock_code_pair)

renames Club_Portfolio. Print_individual_stock_summary;

-- etc

end Member _ Ops; There is no package body in this case.

Figure 2-20 Second version of Member_ Ops, using the renames feature.

To summarize, we see that to extend our application from the structure
implied by Figure 2-2 to that of Figure 2-4 simply requires the addition of an

60 . A Programmer's View of the Intel 432 System

intennediate or "filter" package, Member_Ops, whose public operations are a
proper subset of those in Club_Portfolio. Introduction of Member_Ops into the
package structure provides us with the means for specifying that users be
granted only query access to a portfolio instance. Use of the "inline" or
renames feature ensures the absence of unnecessary overhead associated with
the extra level of indirection.

As mentioned at the end of Section 2-4, the extensions needed to pennit users
concurrent access to the portfolio requires major additions to the structure
(introduction of server tasks). We devote the whole of the next chapter to this
important case.

TASK STRUCTURES IN ADA

3.1. Introduction

Early in the preceding chapter we introduced the notion that an Ada task is a
program unit possessing its own thread of control and capable of executing con
currently with other tasks in the same program (or system). We suggested that
tasks would be useful in applications exhibiting behavior that is most closely
modelled by systems that allow for concurrent but controlled access to shared
structures, as in the case of the portfolio database. We noted that exploiting the
tasking facility of a language is the key to simplifying the design and/or model
ling of such complex systems which, like the use of packages, offers a means
for reducing the cost of software.

3.1.1. The Analogy between Tasks and
Machines

One way to see why the "task" concept is so important in both software and
application programs is to perceive a task to be an abstraction of a machine. In
the same way that real systems are designed and best understood as ensembles
of interacting physical machines, software systems can be designed and under
stood as ensembles of interacting abstract machines. The roles that tasks can
play in programs are, with one important exception (to be discussed later),
pretty much the same as the roles that machines play in real systems, such as
offices, factories, and computer networks.

Consider, for example,. the workstations in a factory as a set of such
machines. Material flows along certain pre-established paths between the
workstations. The paths and the stations can be modeled as the arcs and nodes

61

62 A Programmer's View of the Intel 432 System

of a directed graph. Some sections of the directed graph, where two or more
workstations are linked in series, represent pipeline flow of work, e.g.,

0--- 0---~-.
Pipeline

Concurrency, and hence increased throughput, is achieved in the pipeline
case when stations E, F, G, ... are able to perform their respective operations
on successive items of work at the same time.

Other sections of the graph, where flow of work forks from one workstation
to two or more other workstations, represent parallel flow of work, e.g.,

.------..[2]
~0

Distributor ~

Parallel

Concurrency, and hence increased throughput, is achieved in the parallel case,
when stations I, J, K, ... ,can be kept busy by operating on distinct inputs com
ing from station D.

The station D serves as a distributor of work. (Two non-trivial special cases
for D occur when it distributes to no other workstation and to exactly one other
workstation.)

Another station C can serve as a collector of work (also regarded as an arbi
trator or synchronizer), e.g.~

~0
~COllector

Parallel

Although our diagrams suggest work flow between related stations in only one
direction, for some kind of work (e.g., data to be processed) there is flow in the

Task Structures In Ada 63

reverse direction as well. Also, for each directed arc representing work (or data)
flow, there is present, although not always made explicit, some auxiliary con
trol arc(s), such as a request and an acknowledge arc, to regulate the work (or
data) flow.

The foregoing observations allow us to identify four different possible rela
tionships among related workstations, namely: pipeline, parallel, distribution,
and collection (arbitration). Correspondingly, individual workstations (also
Ada tasks) perform in one of four possible roles:

1. as a distributor of work to none, one or more other stations,

2. as a collector of work from two or more other stations-in which case it
must perform some form of arbitration to determine the order in which to
perform collected work (Alternatively, the function of the collector may be
that of synchronizing the forward progress of its predecessor workstations.),

3. as an element of a pipeline, or

4. as an element of an array of stations executing in parallel.

In a more abstract sense, a workstation S that accepts work does so to peiform a
service on behalf of some workstation R that sends work. Hence, we may view
Sand R as a server and requestor, respectively. Referring to the preceding
structure diagrams, notice that an element of a pipeline, like workstation F, is
necessarily both a requestor and a server, whereas workstation 0 may be a pure
requestor and C may be a pure server.

The important conclusion to draw from the above is that it is instructive to
classify Ada tasks in the same way that we are able to for machines in general.
Accordingly, tasks may be viewed as transmitting messages to other tasks as
work (or data) flows between machines or office workstations. Generally, the
message information between tasks can flow in both directions. This is because
a request from a task Tl to a task T2 can involve both outbound and inbound
information, by analogy with the in, in out and out parameter modes for a pro
cedure call from PI to P2.

The concurrency advantages inherent in machine ensembles of real systems
are also applicable to programs. The abstract concurrency potential of an Ada
program structure is separated from the actual concurrency achieved, which is a
function of the number of processors. Thus, an Ada program structured as a col
lection of m tasks that executes on a general purpose computer having n process
ors can have as many as mine m, n) tasks executing concurrently. The transparent
multiprocessing of the i432 architecture described in Chapter 5 assures that,
within a range of n, (where {n <= m)}, as n is increased or decreased, con
currency is (approximately) linearly increased or decreased-without, of
course, any change in the program itself. The opportunity to achieve con
currency in this way is a principal reason to restructure important algorithms,

64 A Programmer's VIew of the Intel 432 System

that have heretofore been expressed as purely sequential computations.
The Ada task is, in a very important sense, more powerful than a real

machine, which, in general, cannot create other real machines. An Ada task can
directly cause the creation (startup, and destruction) of other tasks by exercising
another dimension of control not possible with real machines. This new dimen
sion of control leads to the possibility that a task T can spawn a set of n children
tasks, Cl, ... , Cn, setting each into an active state. Under these cir
cumstances, Task T may, but is not required to, function as a requestor of serv
ice from its offspring. T's children, in turn, mayor may not spawn other tasks,
and mayor may not function as requestors, servers, or requestorlservers.

3.1.2. A Specific Ada Tasking Structure

It is convenient to regard Ada tasks as having four forms, corresponding to the
four roles introduced above. Each role is exemplified in Figure 2-5; its actual
form is illustrated subsequently:

• Non-serverlnon-requestor task: such a task does not perform a service for
another task and does not request the service of another task (although it may
activate other tasks.) Task_Master is an example of a non-server/non
requestor task.

• Pure requestor task: such a task requests the service of one or more other
tasks (by issuing entry calls on server or server Irequestor tasks) but does not
itself offer service to other tasks. Requestor tasks do not accept entry calls
from other tasks. Each of the Member tasks is an example of a pure requestor
task.

• Pure server task: such a task has no other role but to wait for and then fill
requests for service from other tasks. A pure server task does not issue an
entry call for service from another task. The Roster_Server task is an exam
ple of a pure server task.

• Server Irequestor task: such a task plays both a server and a requestor role
(and in this sense exhibits the most general structure) by issuing service
requests (entry calls) to other tasks in the course of filling service requests
(accepting entry calls) from other program units. The Portfolio_Server task is
an example or a server Irequestor task.

As already noted, a task of any kind can create and activate a task of any
kind. For example, the Task_Master has a very simple role to play: This task
spawns a fixed set of other tasks, awaits their termination, and then terminates
itself. To implement this simple view, we can encode Task_Master so that
offspring tasks are created statically (Figure 3-1) or dynamic all y .

3.1.3. Static Creation of Tasks

In Ada, the static creation of a task by an executing parent task is accomplished
in two steps: first, the declaration of a task object within the parent task is e1ab-

Task Structures In Ada 65

orated (i.e., resources are allocated for the task object) and, second, the task
object is activated. This activation occurs after the elaboration of the declarative
part of the parent task has been completed (but before the statements of the
parent task begin.) Momentarily we will show the syntactic structures used in
elaborating and activating statically-created tasks.

[In the i432 environment, elaboration of a task amounts to the creation of a
Process Object representing the task. This object includes a Storage Resource
Object defining an address space to be used as local storage for this task.
Activation of the task is achieved by enqueuing the created Process Object at a
Dispatching Port (see Chapter 4), thus indicating that the corresponding Process
Object (task) is ready to be bound to an actual processor.]

A task identifier in Ada can be statically declared in a direct manner by
declaring the identifier to be a task. Similarly, a task identifier can be declared
in an indirect manner by first declaring a task type and then declaring the task
identifier as an instance of that task type. In either form of declaration, the pro
gram structure of the task is split into a specification part and a body part, just
as for procedures .
• All elements declared in the specification part are public. Besides providing

the identifier of the task instance (or task type), the specification part
supplies, for server or server/requestor tasks, a list of entry declarations
specifying the services that this task is able to perform. (An entry declaration
is similar in form to the specification of a procedure, but uses the key word
entry.) For example,

entry Print_winners (
spread: in percent);

might appear as an entry declaration within the specification part of
Portfolio_Server. A request for service, i.e., a task entry call, must conform
to the entry specification in the same manner that a procedure call must con
form to the procedure specification .

• The body part of a task is private. It has much the same form as a procedure
body. In particular, it can be represented by a separate stub and compiled
separately. Figure 3-1 shows a possible skeletal structure for a simplified
view of the Task_Master.

Alternatively, a task can be created dynamically. For example, the
Task_Master need not create a task for member k until that member logs in on a
terminal and implicitly requests a task to be created. We show how this is
accomplished in Ada at the end of this section.

The program structure given in Figure 3-1 is somewhat oversimplified because
it does not suggest a workable way in which each individual Member task
becomes associated with a person who wishes to gain access to the portfolio. For
the moment we gloss over the missing details and assume the following:

The Task_Master executes as a "log-in responder" program that responds to
"attention" inputs from any of several terminals. When a person logs in to a

66 A Programmer's View of the Intel 432 System

with Text_IO, Membership_Roster, Roster_Types_And_Constants,
Club_Portfolio, Stoc~Types_And_Constants;

use Text_IO, Membership_Roster, Roster_Types_And_Constants,
Club_Portfolio, Stock_Types_And_Constants;

procedure Task_Master is

task type Member_Task;

Assumes Task_Master is a non_server
non_requestor.

This is the full specification part,
assuming that Member_Task is a pure
requestor.

member: array (1 .. 20) of Member_Task;
-- An array named Member of 20 tasks
-- of type Member_Task is instantiated.

task body Member_Task is separate; -- stub.

task Portfolio_Server is
-- Entry declarations for this task go here.
-- Details are given in Appendixes F and G.

end Portfolio_Server; Instantiation of this task is
-- accomplished upon elaborating this
-- specification and its body part.

task body Portfolio_Server is separate; -- Stub.

task Roster~Server is
-- Entry declarations for this task go here.
-- Details are given in Appendixes F and G.

end Roster_Server; Instantiation of this task is
-- accomplished upon elaborating this
-- specification and its body part.

task body Roster_Server is separate; -- Stub.

begin -- All 22 tasks become active here.

-- Statements, if any, describing the
-- actions of the Tas~Master go here.

end Task_Master; Await termination of all spawned tasks
-- and then terminate.

Figure 3-1 Possible structure of Task_Master.

particular tenninal and gives the proper identification, the Task_Master signals
a matching Member task (already in execution) that it should take over the job
of responding interactively to commands given at that tenninal.

Task Structures In Ada 67

According to the structure suggested in Figure 2-5, each input command is
interpreted as a request to be serviced either by Portfolio_Server or by Roster.
In either case, the command is properly formatted and sent by means of a task
entry call to an appropriate entry of Portfolio_Server. The command is treated
as follows:

• If the request is a read-only query of the portfolio, the Portfolio_Server issues
a corresponding call to the appropriate operator in Club_portfolio. This opera
tor returns a value that is transmitted to the Member task, which eventually
causes the appropriate response to be displayed at the user's terminal.

• If the request involves updating the portfolio, then Portfolio_Server fIrst
issues a task entry call (request) to Roster_Server to confrrm the user's
authorization to update the portfolio. Recall from the earlier discussion in
Section 2.3.3 that the Roster_Server has sole access to the Member
ship_Roster owner package, which contains the member name, title, and
portfolio /roster privileges .

• If the Roster._Server's response to the confirmation request is affrrmative,
Portfolio_Server then issues a call to the appropriate operation in
Club_portfolio .

• If the response from Roster_Server is negative, Portfolio_Server's
response to the Member_ Task's request is a failure explanation. Eventu
ally, a failure explanation is sent to the Member's terminal.

• If the request involves only querying or updating the membership roster, then
Portfolio_Server issues the appropriate task entry call to Roster_Server and
merely retransmits the response received to the Member task. In this instance
the Portfolio_Server serves only as a "middleman."

After each server task has completed a service request, it is free to accept
another one. Service requests may be backlogged while a server task is perform
ing a particular service function or is busy performing some other action, possi
bly triggered by having completed some service request. A fair amount of
concurrency may occur while different Member tasks execute in their respective
command loops and formulate service requests and while Portfolio_Server and
Roster_Server are busy performing service.

There is also some blocking implied with this structure, as a consequence of
the "rendezvous" discipline imposed in the semantics of Ada task communica
tion. This blocking could, under certain conditions, prove serious. Upon each
task call from a requestor to a server, the requestor is blocked from further
action until receipt of the server's response. The delay entailed for this response
depends on the structure of the server task, including the means for handling
backlogged requests encoded in the task. (We study these details in a later sec
tion of this chapter.)

68 A Programmer's View of the Intel 432 System

Due to delays inherent in the rendezvous discipline, the response of the sys
tem suggested in Figure 2-5 can conceivably prove unsatisfactory under certain
sequences of events. Consider, for example, the following scenario:

1. Member(1) issues a portfolio update request.

2. Member(2) issues a portfolio read request.

3. Member(3) issues a request to update the membership roster.

We assume Portfolio_Server acts on these requests in the above order:

In accepting the request of Member(1), Portfolio_Server must fIrst call on
Roster_Server and wait for a confInnation response. This response delays
acceptance of the request from Member(2) to read from the portfolio, even
though Portfolio_Server would be capable of responding to Member(2)'s
request without help from Roster_Server.

Suppose Portfolio_Server is now acting on the request of Member(2), which
does not require service by the Roster_Server task. Now Member(3)'s request
cannot be accepted by Portfolio_Server until completing the current read-only
service request for Member(2), even though the third request would not conflict
with the use of Club_Portfolio. Thus, during service to Member(2),
Roster_Server is forced to idle even though there is a backlogged request that
will (eventually) be forwarded to it by Portfolio_Server.

The above scenario illustrates a situation in which delays can be expected for
the planned task structure. Other sequences of requests would involve
less forced idling. During periods of low "traffIc", idling of service tasks is
inconsequential.

A system designer is apt to seek a way to eliminate processes that are forced
to idle or wait despite waiting requests, especially when these delays are
regarded as critical impediments to satisfactory perfonnance. One of several
approaches can be taken to remedy the problem:

• One approach is to substitute for the Ada rendezvous mechanism a set of
alternative communication operators available in i432 systems. Such opera
tors are given in specially-provided packages; their use results in the execu
tion of the i432 SEND instruction, RECEIVE instruction, and other i432
instructions useful for achieving asynchronous intertask communication. We
describe these operators and discuss their use in Chapter 5.
[In certain applications, it is also possible to model such asynchronous communication
within standard Ada. This can be done in various ways. For example, a requestor can
use spawned "carrier tasks' , , each forwarding one request to the server task. This tac
tic frees the requestor task, permitting it to proceed with its execution even though the
carrier tasks may become blocked. The question: how to minimize the waiting time of
a requestor task, is also revisited at the end of the next section.]

Task Structures in Ada 69

• A second approach, more in keeping with the desire to conform with the Ada
tasking model, would seek an alternative to the structure of Figure 3-1 that
provides more pathways between the Member tasks and the two server tasks.
One such restructuring is suggested in Figure 3-2.

Although we discuss this approach further in a later section of this chapter,
the reader is likely to deduce the essential idea of this approach rather
quickly:
Club members who have special responsibilities (or privileges) can be associ-

'ated with tasks in special categories that are distinct from the Member_Task
category. Examples are the Secretary, who has responsibility for maintaining
the membership roster, and the Treasurer, who maintains the portfolio. Each
category of requestor task now transmits its requests to a server via its own
package of valid operations on the portfolio and membership roster. These
,packages make (by private operations) appropriate (though hidden) task entry
calls to either Portfolio_Server or Roster_Server, as required. In this way,
for example, the club's secretary can be updating the membership roster
while another member is querying the portfolio.

Note that the increased concurrency is achieved by providing independent
pathways to the server tasks in order to avoid the "bottleneck" inherent in
the previous solution. However, the price paid for removing this bottleneck
should be made clear: there is an extra level of indirection in the program
structure, analogous to the extra level of indirection that was introduced by
the Member_Ops package. This implies an extra step in the access path to the
service tasks.

3.1.4. Dynamic Creation of Tasks

As mentioned earlier, tasks may be created dynamically ("on demand") within
an Ada program. In the preceding example, all twenty Member_Tasks, the
Portfolio_Server task and the Roster_Server task are activated after elaboration
of all declarations in Task_Master. Each can be created when and if needed,
terminated after performing its function, and recreated later if needed. As the
log-in responder, the Task_Master creates a task when a member logs in and
deletes that task when the member logs out.

In Ada, an instance of a task type is created dynamically by first declaring an
access type for the task type, then declaring a variable of the access type, and
finally assigning to the variable a pointer to a new instance of the task type. The
new instance of the task type is formed as a result of evaluating an allocator
expression. For example, referring to Figure 3-1, we can replace the declaration,

Member: array (1 .. 20) of Member_Task;

70 A Programmer's View of the Intel 432 System

secretary

Membership_
Roster

(owner)

Rgure ·3-2 Revised Multitasking structure for Multi-user Investment Club Application
Program.

Task Structures In Ada 71

with

type Member_ptr is access Member_Task;
type Member_Pool is array (1 .. 20) of Member~Ptr;
Member: Member_Pool;

thus declaring Member as an array in which each element can be assigned a
pointer value to an instance of type Member_Task (an Access Descriptor to a
Process Object, in i432 terms.)

A statement of the form

Member(k) := new Member_Task;

appearing within the scope of the above declarations is executed to create new
Member_ Task instances dynamically, using the allocator

new Member_Task

and assigning the resulting pointer value to Member(k).
We shall hereafter assume that Member tasks of our portfolio system are

created dynamically by using the scheme just indicated. This being so, we can
regard each Member task as a pure requestor task. (Its specification part
requires no entries, whereas a statically created Member_Task must have at
least one entry to signal the Member_Task that a member has logged in. In the
case of a dynamically created task, the fact that a Member_Task has been
activated is the indication that a member has logged in.)

For the scheme shown in Figure 3-1, Member tasks require service from
Portfolio_Server and indirectly from Roster_Server; there is no significant
advantage in creating these server tasks dynamically. Also, because no com
munication is required between the Task_Master and any of its spawned tasks,
Task_Master offers no service (has no entries in its specification part.)

Before moving on to discuss the structure of task bodies, we make one last
remark concerning Figure 3-2 and dynamically created tasks. In the example of
Figure 3-2, we chose to separate members with special responsibilities (e.g., the
secretary) from ordinary members by creating separate tasks for club officers.
(The code for these special tasks may not be different from that of ordinary
members, but their with lists will certainly be different!) There is again no diffi
culty inherent in dynamically creating these separate tasks for secretary and
treasurer. Figure 3-3 suggests the type of code that would be inserted in
Task_Master.

3.2. Body Structures of Tasks

Task bodies describe the actions of tasks after they are activated. Necessary
declarations are listed in the declarative part of the task body, as suggested in
Figure 3-4. Such owned resources are private, i. e., not directly accessible to
another task or package. A declaration section in a task is optional.

72 A Programmer's View of the Intel 432 System

-- Secy_Ops and Treas_Ops are added to the with list.

task type Secy;
task body Secy is separate;

task type Treas;
task body Treas is separate;

secretary is access Secy;
Treasurer is access Treas;

A pure requestor.
stub.

Another pure requestor.
stub.

Pointer variable declared.
Another pointer variable declared.

statements within the begin ... end part of Task_Master:

secretary := new Secy;

Treasurer : = new Treas;

A new Secy task is created and a
pointer to it is assigned to
Secretary.

A new Treas task is created and a
pointer to it is assigned to
Treasurer.

Figure 3-3 Steps in the dynamic creation of Secretary and Treasurer tasks for the structure
in Figure 3-2.

task body Typical_Task is

begin

If needed, owned resources accessible to
this task are declared here. For example,

type declarations
variable declarations
subprogram declarations
package declarations

statement sequence(s) to be executed after this task
-- is activated (and after the resources in the above
-- "declare" section have heen elaborated) go here.

end Typical_Task;

Rgure 3-4 Skeletal structure of a task body.

As indicated, declarations may include type declarations, variable instances
of these or of other types (whose type declarations are listed in modules made
visible via the with list of this task), etc. All these declarations are locally
accessible from statements appearing within the begin. . • end section of the
task body.

We now proceed to examine the structure of task bodies which, not surpris
ingly, depend on the role of task at hand:

Task Structures in Ada 73

3.2.1. Non-Server INon-Requestor Tasks

Any statement sequence allowable within a subprogram body is allowable in the
body of anon-server Inon-requestor task, including statements that have the
effect of spawning other tasks, but excluding statements whose semantics have
the effect of requesting the service of other tasks or of providing service to other
tasks. When the last statement in the begin ... end sequence of the task body
has been executed, or when a terminate statement has been executed, the task
is made a candidate for termination. If the task has spawned no other tasks or if
all its spawned tasks have terminated, then this candidate task is terminated
immediately. Otherwise, the task is fIrst put into a wait state to await termina
tion of all of its spawned tasks that are not yet terminated. This rule of termina
tion applies to any Ada task, regardless of role.

3.2.2. Pure Requestor Tasks

Bodies of requestor tasks are the same as for non-server/non-requestor tasks,
except that entry call statements will appear (also referred to as task calls). An
entry call has a syntax similar to that of a call on a package operation. For
example, the entry call:

Portfolio_Server. Print_winners (spread => 15);

issued by, say Member(5) [See Figure 2-5.], is interpreted as a request for serv
ice from Portfolio_Server to print the list of stocks, each of which has a current
value of at least 15% more than its purchase price.

The caller, Member(5), is then suspended awaiting rendezvous with the
server until the latter returns the acknowledgement that completes the rendez
vous. We introduce the nature and timing of these acknowledgements in the
ensuing paragraphs. Upon receipt of the acknowledgement (comparable to, but
not identical with return of control from a package call), the caller resumes its
execution concurrently with that of the server. In general, each time a requestor
issues a task call, it is temporarily suspended (blocked) while awaiting rendez
vous with the server.

3.2.3. Pure Server Tasks

Server tasks can be called to perform those services listed in the entry declara
tions (found in the specification part of the server task.) Again, the bodies of
server tasks are as for non-server/non-requestor tasks but they include, in addi
tion, at least om! accept statement. This statement, used by itself (i.e.,
exposed), or nested within a select statement (as a select alternative), provides
the principal means in Ada for the synchronization of tasks. First, we explain
the semantics of the accept statement when it is exposed, and then we explain
its use as a select alternative.

74 A Programmers View of the Intel 432 System

1. Semantics of exposed accepts:

The semantics of the accept statement

accep t E (...) do Send

appearing in a task T can be separated into two cases:

1. if another task U, currently blocked, has previously performed the task
entry call E(...) then task T continues execution by performing the state
ments in statement sequence S or

2. if no other task has performed the task entry call E(...) then task T
blocks until another task U does perform the task entry call E(...), at
which time task T restarts its execution immediately by performing the
statements in statement sequence S.

In both cases task U is blocked from the time that it completes the task entry
call E(...) until the time that task T completes execution of statement
sequence S, at which time both tasks continue execution concurrently. For
example, suppose the following accept statement appears in the body of
Portfolio_Server:

accept Print_winners (
spread: in percent) ;

do

-- statement sequence to achieve
-- the required objective.

end Print_winners;

When control reaches the accept statement, the enclosed statement sequence
is executed immediately if at least one entry call on Portfolio_Serv
er.Print_ winners has been issued. If more than one entry call has occurred,
the excess entry calls are entered into a FIFO (first in/first out) queue associ
ated with the Portfolio_Server.Print_ winners entry. When control reaches
the accept statement given above, a waiting entry call is removed from this
queue in FIFO order. Thus, an accept statement always acts on the oldest
unserviced pending entry call.

A requestor task that issues an entry call is blocked in "rendezvous wait"
until the issued entry call (possibly queued) has been acted on by completing
the execution of the appropriate accept statement in a server task. Thus, com
pleting the execution of the accept statement completes the rendezvous and
unblocks the requestor task so it can proceed with its next step of execution.

The i432 hardware does not provide explicit hardware support for the Ada
rendezvous. However, the Ada compiler does use the i432 message-based
communication operations as primitive building blocks to implement the
rendezvous mechanism. Based on the above discussion, one can see that the
exposed accept statement should be used in a server task only when it is

Task Structures in Ada 75

acceptable that the server not advance past the accept statement until the
corresponding entry call has been issued. Following is a possible application
of this principle, set in the context of our portfolio example:

Suppose that the Club_Portfolio package has an operation enabling deletion
of the club's portfolio. Further suppose that the rule for allowing deletion of
a portfolio instance is such that three club officers must concur on the dele
tion by making three independent requests of Portfolio_Server to delete the
portfolio. Portfolio_Server is programmed to execute three accept state
ments in series, each for a deletion request from one of the three officers
(say President, Vice-president, and Secretary.) The order of arrival of these
three requests should not affect the correct execution of Portfolio._Server.
Figure 3-5 shows a possible code fragment within the Portfolio_Server task
body that implements the cooperative deletion of portfolio instances. By its
construction, the last two accepts in the series are necessarily exposed even
if the first one were a select alternative. [The actual code for this fragment of
Portfolio_Server's body part can be seen in Appendix F. For this appendix,
it is assumed that the Club_Portfolio package differs from that described in
Chapter 2 and listed in Appendix C-by having two additional publicly
accessible operations: Delete_folio and Create_folio. In this assumed revi
sion, the club's portfolio is explicitly created and explicitly deleted by
authorized club members.]
Consider a situation in which the secretary of the club, for example, refuses
(or forgets) to issue a deletion request to an activated instance of Port
folio_Server that is attempting to delete a particular portfolio. The task T
(e.g., Task_Master) that caused the activation of Portfolio_Server will wait
forever for the secretary unless action is taken in task T to remedy this situa
tion. The action taken by T will normally involve placing a time limit on
how long Portfolio_Server will be allowed to remain active before T aborts
Portfolio_Server, indicating that Portfolio_server has "timed-out." T can
use the attribute Portfolio_Server'TERMINATED to determine whether or
not Portfolio_Server is still active. If T has no other work to perform other
than waiting for Portfolio_Server to terminate, then T can "put itself to
sleep" for short periods of time by means of Ada's delay statement. This
ensures that T does not waste a processor doing "busy waiting" for
Portfolio_Server. Finally, if T determines that Portfolio_Server has timed
out, then T can immediately terminate the task by executing the statement

abort Portfolio_Server;

The approach for coordinating deletion of a portfolio illustrated in Figure 3-5
is motivated by the desire to minimize the blocking of more "important"
tasks (President and Vice_president) in the course of issuing their respective
delete requests. The extent of such blocking may, however, not be con-

76 A Programmer's View of the Intel 432 System

sidered critical. Instead, it may be considered more important to synchronize
all three delete requests to prevent the "forward progress" of any club offi
cer until all have issued a delete request. The accept statements used in Fig
ure 3-5 may be nested to accomplish the desired synchronization. In general,
a nested accept structure within a server task permits the server to behave as
a synchronizer for two or more requestor tasks.

accept President_delete (
name: in strin~of30;

member_name: in strin~of30;
check: out boolean)

do

Print name for portfolio
instance.

Check returns false
on failure.

statements to determine and set check with an appropriate value.

end President_delete;

accept Vice_pres_delete(
name: in strin~of30;

member_name: in strin~of30;
check: out boolean)

do

Print name for portfolio
instance.

Check returns false
on failure.

statements to determine and set check with an appropriate value.
end Vice-pres_delete;

accept Secretary_delete(

do

name: in strin~of30;

member_name: in strin~of30;
check: ou t boolean)

Print name for portfolio
instance.

Check returns false
on failure.

statements to determine and set check with an appropriate
value followed by a statement sequence which has effect of
deleting the given portfolio instance named three times
(in this and previous two entry calls.)

end Secretary_delete;

Figure 3-5 Example use of exposed accepts: Server-side of protocol for deleting a port
folio instance.

2. Semantics of accepts nested within select statements:

Although there are numerous cases, such as illustrated in Figure 3-5, in
which a server task is willing to wait (having no other work to perform) at an
accept statement, this is not always an acceptable policy. Typically, the
server may be capable of responding to two or more different requests, or
there may be some other action that can be taken by the server in the absence

Task Structures In Ada 77

of an entry call for a certain accept statement. In either of these cases there
is a choice to be made among several alternatives, thereby eliminating the
requirement that a task wait for a rendezvous when other work is pending
and could be immediately initiated. This type of controlled choice is pro
vided through use of the selective wait statement.

Analogous to the case statement, a selective wait statement controls the
choice among a set of alternative code sequences. Whereas the choice of
alternative in a case statement is simply determined by the value of a case
selector variable, the choice of alternative in a selective wait statement is
much more involved. In a selective wait statement, the choice is made by
considering a number of factors, including (and most important for this dis
cussion) which of the several alternative accept statements, if any, have
pending entry calls. Figure 3-6 illustrates the syntax of a selective wait state
ment within a task body. The structure shown is prototypical for a large class
of server tasks.

begin
loop

select
{when <boolean guard for Service_I> =>}

accept Service_I(...)
do

-- statement sequence.
end Service_I;

-- A statement sequence serving as
-- a sequel to Service_1 may go here.

or {when <boolean guard for Service_2> =>}
accept Service_2(...)

do
-- statement sequence.

end Service_.2;
-- A statement sequence serving as
-- a sequel to Service_2 may go here.

or {when <boolean guard for Service_3> =>}
accept Service_3(...)

else

do
-- statement sequence.

end Service_3;
-- A statement sequence serving as
-- a sequel to Service_3 may go here.

statement sequence.
end select;

end loop;
end; end of task body

Figure 3-6 Selective wait loop for a task body. [Items in curly brackets are optional.]

78 A Programmer's View of the Intel 432 System

The behavior of this type of server task is as follows: After activation, the
task enters an endless loop (the loop .•• end brackets.) The repeatedly exe
cuted selective wait statement is represented by the brackets select ••• end.
This statement, in turn, specifies a set of alternative actions which must con
sist of at least one accept statement. In the figure, there are four alternative
actions: three accept statements and their respective (optional) sequels fol
lowed by an else clause. Any of the accept statements may be optionally
prefixed by a guard clause of the form:

when <boolean expression> =>

A guarded accept statement can be selected for execution if and only if its
boolean expression evaluates to true at the beginning of execution of the
selective wait statement when the various alternatives are being considered.
In Ada terminology an alternative is defined to be open (i.e., eligible for
selection) if it has no guard or if its guard is true; otherwise the alternative is
defined to be closed.

The select statement chooses a program fragment for execution based on
boolean guard conditions and pending entry calls. At the beginning of execu
tion for a select statement, each alternative is examined to determine the
subset of all open alternatives from which one will be selected for execution.
Among the subset of open alternatives, there can be zero, one or many (more
than one) alternatives for which unserviced entry call requests are pending.
If exactly one open alternative A has a pending request then the program
fragment associated with A is executed. If many open alternatives have
pending requests then a choice is made among this set of alternatives. The
underlying Ada system is responsible for making the choice on a fair and
impartial basis in this case. Finally, if no open alternatives can be selected
because none have unserviced requests pending, then the else clause of the
select statement is executed.

Other situations can arise which are defined in the semantics of the select
statement. For example, if one or more open alternatives exist but these have
no pending entry calls and no else clause has been supplied; the task blocks
until the arrival of an entry call for one of the open alternatives. If no alter
natives are open and no else has been supplied, the task is considered by the
underlying system to be deadlocked causing an exception to be raised in the
deadlocked task. This exception can either be handled locally within the
deadlocked task or propagated to the calling task by terminating or aborting
the deadlocked task.

[There are still other possible fonns of the select statement. The else clause may
(1) be absent.or replaced by either one or more delay alternatives or (2) a single ter
minate alternative. Note also that an else clause is never prefixed by a guard clause.
For more details on these options see Chapter 9 of the Ada Reference Manual.]

Task Structures in Ada 79

As indicated in Figure 3-6, an accept alternative can include a statement
sequel. The actions of an accept alternative may be split into two parts that
are executed in sequence:

a. The rendezvous part, consisting of an accept statement to be perfolTIled
while the requesting task is blocked, and

b. The sequel part following the accept statement, executed concurrently
with the calling task after completion of the rendezvous part.

Careful use of the rendezvous part and the (optional) following sequel part of
an accept alternative allows the programmer to minimize the time that the
calling task is blocked in rendezvous. Recall that the calling task is blocked
in rendezvous only while the server task is executing the rendezvous part;
the calling task and server task continue concurrently at completion of the
rendezvous part. Minimizing the time in execution of an accept statement
follows the hardware analogy of issuing an early acknowledge when using a
request/acknowledge protocol for message-based communication between
asynchronously executing machines.
[A concrete instance illustrating the tactic of early acknowledge occurs in a bank
application when a customer makes a deposit or withdrawal. The teller completes the
transaction after the customer has departed from the teller's window to do other
things. In the corresponding task model the teller and customer tasks communicate
(at the teller's window) during the rendezvous part, and the teller completes the tran
saction during the seq~el part (after the customer has departed the teller's window to
do other things).]

3.2.4. General Tasks. A more general fOlTIl of server task is one whose body
includes entry calls to other tasks. Thus, the telTIl general task is meant to imply
a body structure which exhibits both server and requestor behavior. After
receiving a particular request for service, the server should be free to
"delegate" the work to other server tasks. In Ada, a task call to an entry in
some other task is permitted within any sequence of statements. In particular, a
task entry call is permitted within the body of an accept statement or within its
sequel.

A good example of a general task is the Portfolio_Server suggested in Fig
ure 2-5. An entry call from a Member task to the Portfolio_Server task for the
purpose of updating the portfolio generates another entry call from
Portfolio_Server to Roster_Server. The latter entry call is made for the purpose
of verifying the Member's authorization to write in the portfolio (write rights).

Ada imposes no limit on the length of a chain of entry calls, prohibiting only
those chains that are cyclic. Thus, Portfolio_Server may not issue an entry call
to itself since, due to the blocking nature of the Ada rendezvous, this would
result in Portfolio_Server becoming deadlocked.

There is, of course, a practical limit on non-cyclic chains of entry calls; that
limit is a function of the negative effect of chaining on Ada program perfOlTIl-

80 A Programmer's View of the Intel 432 System

ance. We have illustrated the nature of this negative effect in justifying the
more elaborate task/package structure of Figure 3-2.

Although cyclic chains of entry calls are prohibited, a non-chained cycle, in
the sense of a "conversation", is not prohibited, and may even be desirable in
certain applications. For example, task A calls task B. Task B's response is first
to complete the required entry call from A (completing the rendezvous) and
then to make an entry call to task A. (Later, A can respond in a like manner
until the conversation is complete.)

The option to establish a two-way (or, for that matter, a multi-way) conversa
tion may be useful in a variety of applications, especially those that are
transaction- or command-and-control- oriented.

We illustrate by example here a two-way conversation between tasks as a tac
tic to increase concurrency between the two tasks. In this example, we expand
the discussion of the preceding subsection, in which we considered ways to split
the requested service into a rendezvous part and a sequel part.

Suppose server task B is required to perform a service requiring lengthy proc
essing that would block requestor task A in a prolonged rendezvous wait. If
requestor A can otherwise be doing useful work during this interval, and if a
processor is available for requestor A, we can decrease task A's blocked rendez
vous interval by the tactic of constructing a conversation between A and B. The
protocol that takes the place of a simple rendezvous is as follows:

• Server B completes its accept statement (rendezvous part) by copying all the
(input) arguments supplied by A into variables locally accessible to B. This
releases requestor A from its rendezvous after a minimal period of time, free
ing A to continue execution.

• Server B then completes the required processing on A's behalf in the state
ment sequel.

• When processing in the sequel part has reached the point where output results
needed by A have been established, server B now assumes the role of reques
tor and issues a task call to A at an entry in A corresponding to a preplanned
wait point, that is, a particular accept statement within A. This accept state
ment will appear in A at the point where A cannot do any more useful work
without first obtaining its output results from server task B.

• Task A reaches the preplanned wait point and accepts B's call, completing
the second rendezvous merely by copying the output results transmitted in the
entry call to A by B. This releases task B after a minimal blocked rendezvous
interval.

This tactic is cost effective only if the sum of the two rendezvous intervals for
the pair of entry calls (A~B, then B ..;;o..A) is short relative to the time that
would have been required for the single, prolonged rendezvous (A ->B). Fig
ure 3-7 shows a schematic of the Ada program structure for 4,tsk B' s part of the
conversation.

accept Lengthy_service (
param_l: in ... ;
param_2: in ...)

do
local_var_l : = param_l;

local_var_2 : = param_2;
end Lengthy_service;

statements of the sequel

Task Structures in Ada 81

-- Copy value matched to param_l
-- into this context.
-- Do the same for param_2.
-- First rendezvous completed.

that perform lengthy processing
on values of local_var_l and local_var_2
to produce the result the requestor wants.
This result is assumed to be stored locally
in wanted_result.

Requestor_task_name.Lengthy_service_result(
wanted_resul t) ; -- Call back to requestor to give

-- it the value of wanted_result.
-- End of sequel; second rendezvous completed.

Figure 3-7 Server-side protocol using two-way conversation for minimizing length of
time requestor is hlocked in rendezvous.

3.3. Concrete Examples

The preceding discussions have laid the foundation required to understand Ada
task structures and semantics. In this section, we examine fragments of concrete
examples shown in full in Appendix F. This appendix provides the Ada
representation of the Portfolio_Server task and the specification parts of the
Roster_Server task and Membership_Roster packages. These program units are
designed to conform with the structure in Figure 2-5. [Appendix G provides
corresponding program units that conform with the structure in Figure 3-2.

In the program structure implied by Figure 2-5, Portfolio_Server is burdened
with a number of extra "responsibilities". It must forward a number of task
entry calls to Roster_Server besides the entry calls it must convert into operator
calls on Club_Portfolio. This dependence on Roster_Server, itself dependent
on Membership_Roster, is probably sufficient to immediately reject the struc
turing strategy of Figure 2-5. Those readers with more experience in concurrent
programming may agree already. However, we proceed, in the spirit of an exer
cise, to illustrate and explain the program structure required for the approach
illustrated in Figure 2-5.

Figure 3-8 lists the individual entries that are needed for the Portfolio_Server
task. Each of these entries requires an entry declaration in the task specification
part of Portfolio_Server.

As can be seen in Figure 2-5, Portfolio_Server is directly dependent on the
specifications for Roster_Server and for Club_Portfolio. In tum, Roster_Server
is dependent on the specifications of the Membership_Roster package.

82 A Programmers View of the Intel 432 System

Type of entry

Portfolio queries (9)
(Executed as calls on
operations in Club_Portfolio
package.)

Portfolio update requests (2)
(Executed as calls on operations
in Club_Portfolio package after
first making calls on Roster_
server.)

Portfolio create and delete
reques ts (6)
(Executed as calls on operations
of Club_Portfolio after first
making calls on Roster_Server.)

Membership_Roster queries (2)
(Executed by calls to
Roster_Server.)

Membership_Roster updates (3)
(Executed by calls to

Roster_Server.)

Entry name

Print_Club_portfolio
Print_club_holdings
Find_s tock... code
Print_individual_stock_summary
Print_shares_and_value_of_stock
Print_average_cost
Print_winners
Print_losers
Print_non_movers

Enter_buy
Enter_sell

President_create_folio
Vice_president_create_folio
Treasurer_create_folio
President_delete_folio
Vice_president_create_folio
Treasurer_delete_folio

Lookup_member
List_of_members

Add_new_member
Update_member
Delete_member

Figure 3-8 The 22 individual entries of Portfolio_Server used in the Figure 2-5 structure.

A convenient way to proceed in the development of Portfolio_Server is fIrst
to develop the specifIcations of Membership_Roster, then to develop the specif
ications of Roster_Server, and finally to develop the specifIcations of
Portfolio_Server. This is indeed the way we arrived at the list of entries in Fig
ure 3-8. [Recall that we have already developed the Club_Portfolio package.
See Appendix C, but recall that we now assume modifications of this package
have been made to provide explicit Delete_folio and Create_folio operations.]

Although our development appears from the above discussion to be strictly
"bottom-up", this is not really the case. We find, as a matter of development
methodology, it is convenient and "logical" to first design the program struc
ture in top-down fashion, then to design the specification parts for each node of
the program structure in bottom-up fashion, and finally to program the body
parts of these nodes in top-down fashion. We therefore follow this developmen
tal approach in the ensuing exposition.

Task Structures In Ada 83

We decide that the Membership_Roster package should "own" the roster, a
private type. The skeletal form of this package's specification part is given in
Figure 3-9.

package Membership_Roster is

type roster is private; See definition below.

There are five operations, as follows (See Appendix F):

Lookup_member,
List_of_members,
Add_new_member,
Update_member,

and
Delete_member

private

-- Returns a copy of current member's record.
-- Prints a list of the information in the roster.
-- Adds a record for a new member.
-- Updates the record for a current member.

-- Deletes the record for a current member.

type roster is array (1 .. max_num_members} of member_record;

~- An instance of a roster is (assumed to be) instantiated in the
-- body part of this package.

end Membership_Roster;

Figure 3-9 Skeleton of the Membership_Roster package specification.

The five operations of Membership_Roster are explained in the comments of
Figure 3-9. If successful, each of these operations performs the indicated action.
The reader can see the full specification of these operations in Appendix F.

Notice that the private type roster depends on the constant
max_nuIR-members and on the type member_record. These two items are
declared in the auxiliary package Roster_ Types_And_Constants, which
appears in the with and use clauses of Membership_Roster. It will be seen later
that Roster_Server and Portfolio_Server also depend on
Roster_ Types_And_Constants. This dependence is explained below.

The Roster_Server task has a total of 9 entry declarations. These declarations
are listed in Figure 3-10.

Roster_Server requires access to the representation of type member_record
because it must provide responses to the title queries; to do this, it must be able
to examine individual components of a member_record instance furnished to it
in response to a call on Membership_Roster. Lookup_member. Both
Portfolio_Server and Roster_Server forward individual member_records to
Membership_Roster in the course of responding to/from roster update requests.
For this reason, type member_record cannot be declared private.

84 A Programmer's View of the Intel 432 System

Type of entry

Title queries, which are
boolean functions (4)
(Executed by calls to

Membership_Roster.)

General queries of the
roster (2)
(Executed by calls to
Membership_Roster.)

Requests for membership
roster updates (3)
(Executed by calls to

Membership_Roster.)

Entry name

Is_president
Is_vice_president
Is_ treasurer
Is_secretary

Lookup_member
List of members

Add_new_member
Update_member
Delete_member

Figure 3-10 The 9 individual entries of Roster_Server used in the Figure 2-5 structure.

Figure 3-11 is a skeletal fonn of the Roster_Server task's specification part,
showing the details for three of its nine entries. The full set of entries can be
examined in Appendix F.

The use of entries in Portfolio_Server is now illustrated in discussing the
protocol for updating the portfolio and for deleting the portfolio. Figure 3-12 is
an excerpt from the specification part of Portfolio_Server, showing the entry
for Enter_buy. Figure 3-13 shows the corresponding accept statement in the
body part of Portfolio_Server.

The first two parameters of the Enter_buy entry are control parameters. The
caller's name must be supplied in my_name; this name should be that of the
club's treasurer. The "unauthorized" parameter returns the value true if the
supplied member name, as checked by Roster_Server's Is_treasurer entry, does
not match that of the treasurer. With this specification for the Enter_buy entry,
the body of the corresponding accept statement for Enter_buy (see Figure 3-13)
begins with an Is_treasurer entry call. If this call sets the local variable
check_boolean to true, a calion the Enter_buy operation of Club_Portfolio is
then made, and unauthorized is set to false; otherwise, unauthorized is set to
true.

The final example of this section illustrates the three actions required to
delete the portfolio. Figures 3-14, 3-15, and 3-16 show the set of three entry
declarations in Portfolio_Server that must be called to accomplish the deletion
of a portfolio. Figure 3-17 shows the corresponding sequence of three accept
statements from the body part of Portfolio_Server. Perusal of the comments that
accompany the three entry declarations in Portfolio_Server should convince the
reader that the corresponding sequence of accept statements faithfully reflects
these specifications.

Task Structures in Ada 85

task Roster_Server is
use Membership._Roster, Roster_Types_And_Constants;

Title queries:

entry IS_President(
member_name: in strin~of30;
check: out boolean) ;

Function:
Calls Membership_Roster.Lookup_member to obtain record
of member_name. Sets check true if member_name matches
name of a member whose title is President, else returns
with check still false.

entry Is_Vice_president(
member_name: in strin~of30;
check: out boolean) ;

Function:
Similar to that of Is_president.

Entry for
Entry for

Is_treasurer
Is_.secretary

goes here.
goes here.

General queries to the roster:

Entry for
Entry for

Lookup_member
List_of_members

goes here.
goes here.

Requests for membership roster update:

-- Entry for Addlnew_member goes here.
-- Entry for Update_member goes here.

entry Delete_member (
my_name: in strin~of30;
member_name: in strin~of30;
check: out boolean) ;

Function:
Calls Membership_Roster.Delete_member to delete all info on
a current member in the membership roster. If deletion is
successful, check is set true before executing the return.
Returns with check false if Delete_member call "fails".
(Can fail if my_name does not match with the name of the
secretary, or if there isn't already a member of the given
member_name in the roster.)

end Roster_Server;

Figure 3-11 Skeletal version of Roster_Server specification part.

86 A Programmer's View of the Inte/432 System

with Club_Portfolio, Roster_Server,
Stock_Types_And_Constants, Roster_Types_And_Constants;

-- Not all of these dependencies were shown in
-- Figures 2-5 and 3-2.

task Portfolio_Server is

use Club_Portfolio, Roster_Server,
stock_Types_And_Constants, Roster_Types_And_Constants;

-- Portfolio queries go here. (9 entries)

------- Portfolio update requests:
entry Enter_buy(

my_name:
unauthorized:
purch_date:
stock_code:
nUID_shares:
per_sh_price:
commission:

Function:

in strin~of30;
out boolean;
in date;
in stoc~code_pair;
in natural;
in dollars;
in dollars);

Determines if member whose name is value of my_name
is authorized to update the portfolio. If not, returns
with value of unauthorized set to true. If yes, sets
unauthorized to false and then calls the corresponding
operation in Club_Portfolio.

Entry for Enter_sell goes here.

---------- Portfolio create and delete requests (6 entries)

---------- Membership roster requests (5 entries)

end Portfolio_Server;

Figure 3-12 Skeletal view of Portfolio_Server specification, showing entry for
Enter_buy.

3.4. Chapter Summary

In this final section, we tie up some loose ends. First, we return to our supposi
tion that the task-and-package structure suggested in Figure 3-2 is more in keep
ing with the spirit of modular, concurrent programming than that of Figure 2-5.
Second, we consider the broader applicability of our portfolio management case
study.

By interposing "specialist" packages, such as Member_ops, Treasurer_Ops,
Secretary _ Ops, etc., between the tasks representing the interactive users and
the two server tasks, Portfolio_Server and Roster_Server, we gain the benefit
that the two servers are completely decoupled. In particular, Portfolio_Server is
no longer required to communicate with Roster_Server in order to authorize
portfolio operations. As a result of this decoupling, each server task is smaller

accept ICnter_buy (

do

my_name: in
unauthorized: out
purch_ da te:
stock_code:

in
in

strin~of30;
boolean;
date;
stock_code_pair;

num_shares: in natural;
per_sh_price: in dollars;
commission: in dollars)

Task Structures in Ada 87

Roster_Server. Is_ treasurer (my_name, check_boolean);
if cheek_boolean then -- authorized

Club_.portfolio. Enter_buy (purch_date,
. stock_code,

unauthorized: = false;
else

unauthorized: = true;
end if;

end Enter_buy;

num_shares,
per_sh_price,
commission) ;

Figure 3-13 Showing how the accept statement for Enter_buy involves a callan
Roster_Server .Is_ treasurer.

entry President_delete_folio(
my_name: in strin~of30;
portfolio~name: in lon~string;
unauthorized: out boolean) ;

Function:
Calls Roster_Server to determine if member whose name
is value of my_name is the current club President.
If not, returns with value of unauthorized set to true.
If yes, unauthorized is set false and then returns after
recording the portfolio name supplied. Deletion will not
actually be attempted until a sequence of three deletion
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

Figure 3-14 Entry declaration for first of three calls to delete a portfolio.

88 A Programmer's View of the Intel 432 System

entry Vice_president_delete_folio(
my_name: in strin~of30;
portfolio_name: in lon~string;
unauthorized: out boolean) ;

Function:
Request at this entry accepted if and only if the
most recently accepted entry call was for
President_delete_folio, and that call was authorized.
Determines if member whose name is value of my_name
is the current club vice-president.
If not, returns with value of unauthorized set to true.
If yes, unauthorized is set false and then returns after
recording the portfolio name supplied. Deletion will not
actually be attempted until a sequence of three deletion
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

Figure 3-15 Entry declaration for third of three calls to delete a portfolio.

entry Treasurer_delete_folio(
my_name: in strin~of30;
portfolio_name: in lo~string;
unauthorized: out boolean;
check: out boolean) ;

-- If set true, portfolio has been deleted.

Function:
Request at this entry accepted if and only if the two
most recently accepted entry calls were for
President_delete_folio and Vice_president_delete_folio
in that order, and if both were authorized calls.
Calls Roster_Server to determine if member whose name
is value of my_name is the current club Treasurer.
If not, returns with value of unauthorized set to true.
If yes, unauthorized is set false. The three supplied
portfolio names are checked. If all are not identical,
then check is set to false and a return is executed.
If they do match, then the Delete_folio operation in
Club_Portfolio is called. If this call is successful
(portfolio deleted), then check is set true; return to
Treasurer_delete_folio's caller is then executed.

Figure 3-16 Entry declaration for third of three calls to delete a portfolio.

Task Structures In Ada 89

accept President_delete_folio(
my_name: in strin~of30;
portfolio_name: in lon~string;
unauthorized: out boolean)

do
Roster_Server. Is_ treasurer (my_name., check_boolean)
if check_boolean then

local_name_l := portfolio_name; Save copy of portfolio_name
-- for checking at next accept.

unauthorized := false;
else

unauthorized := true;
end if;

end President_delete_folio;

-- Sequel of two accepts begins here ..

accept Vice_president_delete_folio(
my_name: in strin~of30;
portfolio_name: in lon~string;
unauthorized: out boolean)

do
Roster_Server. Is_vice_president(my_name, chec~boolean)
if check_boolean and local_name_l = portfolio_name then

local_name_2 : = portfolio_name; Save copy of portfolio_name
-- for checking at next accept.

unauthorized: = false;
else

unauthorized := true;
end if;

end Vice_president_delete_folio;

accept Treasurer_delete_folio (
my_name: in strin~of30;
portfolio_name: in lon~string;
unauthorized: out boolean;
check: out boolean)

-- If set true, portfolio has been deleted.
do

Roster_Server. Is_treasurer (my_name, check_boolean)
if check_boolean and local_name_l = portfolio_name

and local_name_2 = portfolio_name then
do

unauthorized : = false; -- Authorization is OK.
Club_Portfolio. Delete_folio (portfolio_name, check);

Portfolio is deleted if check
-- returned with value true.

else
unauthorized := true;

end if;
end Treasurer_delete_folio;

-- End of sequel (end chain of three accepts).

Figure 3-17 The sequence of three accept statements which must be executed to delete a
portfolio instance.

90 A Programmer's View of the Intel 432 System

and simpler (has fewer and simpler entries and accepts.) Each task has just those
entries that enable it to arbitrate the possibly concurrent use of its related owner
package (Club_Portfolio and Membership_Roster.) The program structure
required for the decoupled setver tasks is shown in Appendix G.

Setvice requests sent to Roster _ Setver are guaranteed to be authorized
because of the interposed "filtering" packages. Thus, Roster_Setver has only
the five entries that are in one-to-one correspondence with the operations of
Membership_Roster; the accept statements of the former are simply calls on
operations of the latter.

In a similar vein, but with two notable exceptions, each setvice performed by
Portfolio_Setver amounts to nothing more than a calion the corresponding
operation of Club_Portfolio. The exceptions are the entries dealing with
requests to create or delete a portfolio. The required coding for the chain of
three accepts, shown in Appendix G, is just a slight amplification of the pro
gram fragment given in Figure 3-5.

We trust that enough of the portfolio management system has now been dis
cussed and illustrated in Ada to tempt some readers to complete and test this
application. More ambitious readers should also consider the question of the
applicability of our case study in a context more general than a single Invest
ment Club. In particular, what changes (if any) from that of the Figure 3-2
structure would be required to apply or extend the system for use in the manage
ment of more than one portfolio or with more than one set of authorities granted
for accessing and updating the portfolio?

A bank trust department that manages several distinct pension or other funds
or a brokerage house that manages numerous investment portfolios would be
expected to have more complicated authority structures than is the case for a
single investment club. For example, if an account manager is "on vacation"
when a buy or sell transaction is requested by an investor, the brokerage house
must offer alternative access to the investor's portfolio. Otherwise, an eager or
netvous investor may take a dim view of waiting to trade some stock until the
account executive returns from vacation.

Is it convenient to express the richer authority structures required in such
situations without making substantial changes to the basic program structure in
Figure 3-2 at and below the "setvice tier"? We think so. Also, how easy is it to
modify the basic structure to accommodate a multiplicity of portfolios? Again,
we think the changes required are minor, but we leave the matter of verifying
these conjectures to the reader.

Although we have not made a complete examination of Ada, we have now
looked at this rich language in sufficient detail to allow the reader to evaluate it
as a useful systems and applications programming language. We are ready,
therefore, to consider how programs in Ada map onto the structure of the i432
system architecture. In the next chapter, we look at the execution-time data
structures of program units, in order to see how they are represented as i432
object structures.

i432 OBJECT STRUCTURES
FOR PROGRAM EXECUTION

4.1. Introduction

As alluded to earlier, important advantages arise when the execution time data
structure of a program exhibits a close correspondence with the conceptual pro
gram data structure it represents. A useful conceptual model that holds for most
program data stnlctures is the directed graph; most programs (especially
systems-oriented programs) make heavy use of directed graph data structures.
Nevertheless, few architectures in existence today are able to provide signifi
cant support for a directed graph program data structure model; it is usually coh
sidered the programmer's task to map his topologically complex data structures
onto the relatively "flat" structures of conventional architectures. The i432
architecture provides the user with hardware, finnware, and software support
for a directed graph model of program data structure. This is achieved by
representing execution time structures as collections of independent address
spaces which are objects. The correspondence between a directed graph data
model and the execution time "object collection" model is: a directed graph
node corresponds to an object and a directed graph arc corresponds to a refer
ence (or pointer) to an object.

In this chapter we introduce readers to the details of the i432 execution time
object collection model. We will focus primarily on the i432 object structures
that arise and that are maintained during execution of programs having single
threads of control. Consequently, we limit our discussion to structures that
relate to intra-process operations, deferring until the next chapter higher-level
relationships having to do with inter-process communication. The following
subsection is offered as a review of the basic concepts of "object-oriented
architectures", including a bit of historical perspective, that is relevant to this
topic.

91

92 A Programmers View of the Intel 432 System

4.1.1. A Primer on i432 Address-Space
Structures

An important problem in the design of modem computer architectures is to
achieve acceptable execution efficiency while still providing the memory
management and protection facilities required to support the dynamic behavior
of objects in a rapidly changing data structure. The early innovative architec
tures, in particular the Burroughs B5000 (1961) and its sequels did succeed in
providing hardware support for address space management. The B5000 mem
ory system exhibited a "segmented, virtual storage". Such systems as the
B5000, sometimes referred to as "language-directed architectures", have
served as useful early models of architectures with memory management sup
port. However, they were only slowly appreciated by other computer archi
tects, often for good reasons.

For a glimpse at some reasons behind the slow acceptance of earlier architec
tures, the interested reader is referred to [9] [10] [19] [42] [45]; we will not
cover these reasons in detail here. Many complaints about earlier architectures
were difficult to dispel because of the relatively slow rate at which hardware, in
particular, storage technology had been advancing. However, a more critical
reason was the slow appreciation of the significant role played by the "descrip
tor" (or "codeword") concept [11] [31].

A descriptor is a reference or pointer to the base of a (related) address space.
Descriptors and segments can be used to represent complex, directed graph
structures: a descriptor represents an arc and a segment represents a node. All
segments are independent of each other, i.e. every segment must be referenced
through a descriptor and it is impossible to reference any part of segment B

• through a descriptor for segment A. Segments are variable length, i.e., their
size is set when they are created; the size is stored as a part of the descriptor that
references the segment. Finally, segments are relocatable, i.e., a segment can
be placed anywhere in memory without modification of the segment contents
(only the descriptor must be modified to reflect the new segment base location).

Descriptors must be managed carefully if the integrity of an execution-time
program data structure (and, more generally, if the integrity of the system as a
whole) is to be maintained. Descriptors should also be traversed as rapidly as
possible, since descriptors amount to indirect addresses and are often cascaded,
lengthening the access path to a target data or instruction component.

The key to efficient implementation of descriptor-based addressing is direct
hardware support, i.e., machine instructions that provide descriptor-based
addressing at the architectural level. Since descriptors are used very frequently,
it is important that they be recognized by the hardware as being different from
all other forms of data. In some architectures, for example, Burroughs, a
descriptor is recognized by the value in a tag field that is attached to every
memory word but is not accessible to the general user, permitting the descriptor
to be safely placed within a data segment. In such implementations of descrip-

1432 Object Structures for Program Execution 93

tors, access rights and storage (address) mapping information are encoded
within the same reference word.

The observant reader may have noticed by now that one of the primary diffi
culties in descriptor-based addressing occurs as a conflict between the desire to
store the base address of a segment directly in a descriptor on the one hand and
the desire to make segments relocatable on the other hand. When it is necessary
to relocate a portion of the run-time structure (such as when segments are
swapped back into the main store in a virtual memory system), every reference
to the relocated segment (object) must be found and updated to account for the
new location of the object. In certain circumstances, the search for these
descriptors takes a significant amount of time. For many architects, such costs,
related to the management of descriptors, was deemed prohibitive.

A significant improvement on the descriptor concept occurred with the inven
tion and evolution of the capability concept [16] [22] [24] [37] [38] [59] [64]
[65] . A capability, as we now view it, contains an indirect reference through a
mapping table to a segment base, in contrast to a direct reference to a segment
base that is part of a descriptor. Every capability that references a segment S
does so by referencing the same entry M in the mapping table; this mapping
table entry, in tum, directly references the base of segment S. Since all capabili
ties reference a segment base through the mapping table, relocation of a seg
ment S from base address A to base address B is achieved simply by modifying
mapping table entry M to indicate that the segment base address it now refer
ences is at address B instead of the old base address A. This one relocation step
automatically relocates the segment S referenced by all capabilities that refer
ence mapping table entry M. Thus, a reference to a segment is normally
separated into two parts:

1. access authorization and reference to the mapping table entry via a capability

2. mapping table entry

The use of capabilities not only so[ves the problem of how to achieve effi
cient segment relocation, but also leads to the solution of the problem: how to
control the size and scope of protection domains; the latter is based on the
observation that different users having different privilege can each be given dif
ferent capabilities for the same segment, i.e., capabilities with different access
authorizations (meaning different access rights) for the same segment.

By contrast, protection of individual address spaces in the Burroughs
descriptor-based architectures was founded on the assumption that users execute
only those programs that are compiled by system-provided high-order language
compilers. Users program with "safe languages" only, and they access system
services only through "safe interfaces". System-supplied compilers are trusted
to generate instruction streams for software or applications programs that
correctly manage the creation, distribution, and manipulation of descriptors,

94 A Programmer's View of the Intel 432 System

thereby assuring the integrity and authenticity of execution-time program data
structures, and more generally the integrity of the system as a whole. For those
users who wish to have complete access to a processor's full instruction set, or
to a wider range of languages and interfaces, or both, the above limitation has
seemed too restrictive.

The Burroughs "software" approach to providing system integrity did not
solve the general protection problem. Even so, retrospective assessment now
suggests that further evolution of the descriptor mechanism with additional
hardware support for it, as in architectures like the i432, has indeed led to a
solution of this problem.

The failure to solve the general protection problem by prior architectures
(descriptor-based or not) has had serious consequences. It has meant, for exam
ple, that system software modules must be set apart and explicitly protected
from application programs; the former cannot be permitted to trust the integrity
of in-bound pointer arguments such as descriptors. This disparity has, in tum,
made it impractical and unsafe to permit users the freedom to substitute their
own versions of selected system modules. A frequent consequence has been that
much software within a system tends to be relegated to a small number of very
large (monolithic) protection domains. This consequence, in turn, leads to high
software maintenance costs. We return to this issue later in this section and
again in Chapter 6; there we show why and how it is that i432 system solves the
general protection problem with the consequent benefit that system software
modules are indistinguishable in structure and privilege from user-written appli
cation programs. The important conclusion one should draw is that the user's
interface to the i432 operating system is significantly different than in other sys
tems built on conventional architectures. In particular, all system modules can,
in principle, be safely revised by users or replaced with other versions tailored
to specific user needs. Protection domains are usually small, but in any case are
type-specific, i.e., related to the type managed within that domain, rather than
to a variety of available and possibly ad hoc protection mechanisms.

Before proceeding too much further with our discussion of the i432 address
ing structure, we first distinguish between the terms object and segment.
(Later, we drop this distinction.) An object is referenced only by a capability; a
segment is referenced only by a mapping table entry. In i432 terminology, a
capability, consisting of an access authorization part plus a reference to a map
ping table entry, is called an Access Descriptor, or just AD. The access authori
zation part of an AD is referred to as the access rights of the AD. Finally, the
mapping table is called an Object Table and the mapping table entry is called an
Object Descriptor. We will use this new terminology from this point forward
when discussing the i432 architecture specifically.

Normally, an object-based architecture is designed so that the hardware is
aware of and maintains the access authorization part of a capability and the
mapping table itself. The machine maintains only a single copy of the mapping

;432 Object Structures for Program Execution 95

table entry for a given segment, this being is a crucial restriction. However,
there may be multiple copies of the capability, since two or more program com
ponents may require access to the same object, possibly with different sets of
authorizations.

Processing a reference to an object by a capability is achieved in steps; the
ingenuity of the architect/implementor is challenged to achieve these steps as
rapidly as possible:

1. Fetch the access authorization part of the capability (the access rights) and
check that the coded authorization therein permits access to the object. (The
check is based on current state information available to the processor.)

2. Determine the location of the mapping table entry (the Object Descriptor) for
the capability by using the logical mapping table entry address encoded
within the capability. The logical address is usually a (mapping table name,
offset) pair. The mapping table name is used to reference a particular map
ping table; the offset designates a specific mapping table entry within that
mapping table. From the information in the mapping table entry, the base
address of the segment can be obtained.

[Speed-up of this two-step process is usually achieved with some kind of caching
scheme that relies on a high probability, due to the presumed "locality of reference",
that the same capability or the same Object Descriptor has been referenced very recently.
The i432 provides small, on-chip, storage caches for this type of information. More
details may be found by consulting the i432 Architecture Reference Manual.]

Figure 4-1 illustrates, using i432 terminology, the relationships between
Access Descriptors, Object Table entries, and segments-hereafter called
objects. The figure shows two Access Descriptors, containing possibly different
access rights, each referencing the same Object Descriptor, which in tum points
to the target object.

The structure suggested in Figure 4-1 typically arises as a result of executing
"create object" operations in the following way: An object T is created. In this
creation process, a.block of free storage space of the required length is commit
ted for T, and an Object Descriptor providing the physical memory location of
the base of T is placed into a table, referred to as an Object Table. (An Object
Table is simply a directory or list of similar Object Descriptors.) Next, a valid
Access Descriptor (or AD) to T (referencing the new Object Descriptor) is
formed and deposited into an AD slot specified as an output argument of the
"create object" operation. In the i432, this entire procedure is accomplished as
a single, indivisible instruction. The Access Descriptor for the created object is
returned with all meaningful access rights turned on. This Access Descriptor
uniquely identifies the object it references; the hardware prevents a user from
altering the AD so as to designate a different object. Hence ADs cannot be
accidentally altered or forged.

96 A Programmer's View of the Intel 432 System

Access Part
of

Object A

rw ADI

rx AD2

0-

0-

Object Table

-
~ OBJ. DESCR.

-

Target Object, T

o_ r--

Figure 4-1 A low-level view of the accessing mechanism for a target object, T. Access
Descriptors, ADI and AD2, have distinct access rights to T. Both AD's refer to the same
Object Descriptor, which is located in a table of Object Descriptors. (The latter is itself
an object whose absolute location may be thought of as determined from a table supplied
at system initialization.) Access rights in ADI are "rw", meaning read and write,
Access rights in AD2 are "rx", meaning read only. In the above, "x" refers to a miss
ing right.

Some architectural designs restrict the allowable locations at which capabili
ties can be stored. This is the case in the i432 architecture, where Access
Descriptors may be deposited only in that part of an object known as its access
part. In this implementation, moreover, only Access Descriptors may be
deposited in the access part of an object, as suggested in Figure 4-1.

An i432 object is represented as a contiguous block of storage partitioned into
two parts: a data part and an access part. Each of these parts can contain up to a
maximum of 2**16 bytes; each part or both parts can be empty. Later in this
section we discuss further the partitioning of i432 objects and the means for
controlled access to information in each part of an object.

Associated with every i432 object is a type; this type is stored in a location in
the Object Descriptor that is known to and accessible by the i432 hardware. The
hardware recognizes many of the possible obje_ct types as being of special sig
nificance; objects carrying one of these special types are known as system
objects. Most system objects have both a data part and an access part. There are
several i432 system objects used to maintain the execution time environment of
active programs. For example, Context Objects and Process Objects are both
system objects that are used to control the execution of i432 programs. A Con
text Object is used to represent the activation record for a function or procedure.
A Process Object contains the attributes of a process, e.g., an Ada task, that are
required to schedule it, to dispatch it, to perform recovery if it faults, and to
allow it to communicate with other processes. A Process Object serves as the
root node of the object structure representing an active process.

i432 Object Structures for Program Execution 97

Note that, although an i432 AD can be copied, it cannot be created, except in
connection with the creation of an object of some type T (or of a "refinement"
of such an object-as explained later). Also, since an AD cannot be altered to
designate a different object than the one for which it is created, a type manager
for type T objects can be certain of the integrity of all ADs for objects of type T
passed to it as arguments for operations on type T objects. This assurance of AD
integrity and authenticity is crucial to the implementation of type-specific pro
tection domains. Chapter 6 completes the presentation of this reasoning along
with the necessary details on the i432's hardware support for object access and
type control.

We can imagine the genesis of Figure 4-1 as follows: Suppose that the crea
tion of object T results in the creation of AD 1 with both read and write access
rights. At some later time, a procedure may be invoked to copy ADl, thus
creating AD2. The copied access descriptor (AD2) will have access rights re
stricted to a subset of the rights of the original Access Descriptor (ADI). Note
that AD2 need not be stored into the same object as AD 1.

Additional objects may be dynamically created and thus added to the collec
tion of address spaces active during the execution of a program. For example,
Figure 4-2 shows how the structure in Figure 4-1, in which AD2 is copied from
ADI minus ADI '8 write rights, might be augmented with the addition of a
newly created, second target object. Again, purely for convenience, we show
all the Access Descriptors in Figure 4-2 in the same object.

Access Part
of

Object A

rwx ADI

rxx AD2

rwd AD3

0- r-

~

0- I---

r

Object Table Target objects

I
TI

I ..
OBJ. DESCR.I ~ 0 ..

c:J OBJ. DESCR.2
r.

Figure 4-2 Address space structure of Figure 4-1 augmented with the addition of another
object whose Access Descriptor, AD3 has read, write, and delete rights.

In Figure 4-2, we introduce "delete rights" as a third access right encoded in
an Access Descriptor (delete grants the owner the right to delete this AD, i.e.,

98 A Programmer's View of the Intel 432 System

the right to store a new AD (or a null AD) over an AD to be deleted). We see
that some access rights associated with an AD refer to the AD itself, rather than
to the object referenced by the AD. Thus, delete rights refers to a right to delete
the AD, rather than to delete any elements in the object referred to by the AD.

As we will see below, a possible side effect of deleting an i432 Access
Descriptor, ADx, is the reclamation of the storage space occupied by object T
referred to by the Access Descriptor ADx (and, potentially, other objects refer
enced by T.) The architect must be unusually careful in selecting rules by which
Access Descriptors may be formed, copied, moved and deleted. Discovering
consistent, useful, and safe sets of such rules has been the subject of intense
research for at least ten years [33] [58] [60] [65].

We postpone until Chapter 6 a detailed discussion of rules selected by the
i432 architects. Instead, we will mention such rules in passing, as they become
relevant in our discussions. For example, a hardware fault is invoked if an
attempt is made to delete an Access Descriptor that does not have its delete
rights bit set.

It is interesting to note how deletion of i432 Access Descriptors is related to
deallocation of objects. The storage space for an object X becomes a candidate
for deallocation by the i432 System's garbage collector when X is unreachable,
i.e., either nowhere are there are any ADs that reference X or all ADs that do
reference X reside in objects that are themselves unreachable. [There are several
objects that are special and are defined always to be reachable; these special
objects, recognizable by the i432 hardware, are called Processor Objects.]
Object T2, illustrated in Figure 4-2, would be a candidate for garbage collection
if AD3 were the only Access Descriptor referring to T2 and AD3 is overwritten
with another, possibly null, Access Descriptor. In this situation, the i432
System's garbage collector would eventually deallocate T2, resulting in the
structure originally given by Figure 4-1. [It is also possible for objects belong
ing to circular lists to be deallocated, even though there is one Access Descrip
tor referring to each object in the list. Such a circular list, CL, would be deallo
cated by the garbage collector when no other Access Descriptor external to CL
refers to an object within CL [12].]

In short, at the hardware level a delete right of an AD is simply the right to
overwrite it. Exercising the delete right has indirect consequences for object
de allocation that must be handled at the software level.

Earlier we indicated that an i432 object is logically and physically partitioned
into a data part and an access part. Here we introduce some of the details of
accessing and addressing elements within objects. We wish to satisfy the
reader's curiosity; and having done so, then use abstractions when they seem
appropriate. Figure 4-3 is offered to clarify the structure of an i432 object and
the means for accessing information within it.

1432 Object Structures for Program Execution 99

i432 Object

t
Object Descr. len_d data part

Access Descr. l
__ r_wx _____ : : !len..d • 1 en.. a ()o+-I-~t-... ----~

len_a access part

l
Figure 4-3 First detailed view of an i432. object, showing its data part and access parts.
The Object Descriptor contains the base address of the object and the lengths of both the
data and access pruts, len_d and len_a, either of which may be zero.]

Every i432 instruction fetches its input operands (if any) from some location
within an object (in memory) and delivers its output result (if any) back to some
location within an object (in memory). This approach is contrasted with almost
every other computer architecture in existence today, in which intermediate
data registers hold (at least one of) the operands for or the result of an instruc
tion. In these classical architectures the contents of the intermediate data regis
ters are loaded from or stored into memory locations by instructions distinct
from the instructions that operate on the data in the registers. An i432 instruc
tion can have zero, one, two, or three operands; each of these operands
addresses a location within an object in which the operand resides or will reside.

The i432 processor interprets a data operand of an instruction (which is a log
ical address) as a two-part value, consisting of an object selector and a displace
ment. The object selector specifies a distinct Access Descriptor for the object.
The displacement is then used by the microcode as an appropriate offset from
the base address of the object, as indicated in the object selector, in arriving at a
physical address of the target element to be accessed. [Readers wishing more
details can find them in the iAPX 432 Architecture Reference Manual that is
cited in Appendix B.] Whether the operand reference is to a data value or to an
AD, the processor induces a fault whenever the specified displacement into a
target object violates the bounds limit given in its Object Descriptor (len_a or
len_d, whichever applies.)

Possession of an AD for an object implies the same set of access rights both to
the data part and to the access part of the object. Read/write access rights for the
access part of an object are to be understood as follows: If an Access Descriptor,
AD, for a target object, T, has read rights, then AD can be used to copy (read)
any Access Descriptor in T. If the same AD has write rights, then AD can be
used to replace (write) any Access Descriptor in T that has delete rights.

100 A Programmer's View of the Intel 432 System

Before closing this primer on i432 object-space structures, we first introduce
certain conventions for indexing into, for displaying, and for discussing struc
tures such as Figures 4-2 and 4-3. We then introduce the concept of Refinement
Objects, how they are accessed, and how they may be diagrammed.

4.1.1.1. More details about i432 objects. When referencing an AD that resides
in the access part of an object, the specified displacement (measured in 32-bit
words) is subtracted from the base address of the object. Thus, Access Descrip
tors are numbered ADO, AD!, AD2, ... , downward from the dividing line
between the data and access parts. When referencing into the data part of an
object, the displacement of a data field (measured in bytes) is added to the base
of the object. Part (a) of Figure 4-4 illustrates these relationships.

Obj. Descr.
Access Descr.

I rwx 0 ~1-~".LI _____ o

(a) indexing into the
access and data parts

Obj. Descr.
Access Descr.

I

Target Object

data part

..
ADO
AD1
AD2
...

i432 Object

o+-_~~ o~---~~~~~~~~ L-_____ ~ L _____ _ rwx

(b) processor-defined parts
and software-defined
extensions to data and
access parts

i432 Object

Figure 4-4 A more detailed look at an i432 object.

12
8
4
o

o
1
2

software
defined
extension

The lowest-indexed portion of the access part or data part, or both, of an
object may be predefined by the various i432 processors. (This is true for all
system objects.) For such objects, the higher-indexed regions of the object are
regarded as software-defined (or user-defined) extensions. We illustrate this key
point in part (b) of Figure 4-4. Clearly, deciding what information is to be kept

1432 Object Structures for Program ExecutIon 101

in the processor-defined regions of an object can greatly affect the performance
of the system as a whole. This point is addressed frequently later in this
chapter.

Access to any target requires traversal from an Access Descriptor, via a par
ticular Object Descriptor, to the target. However, for most matters of interest to
us, it is quite unimportant to note this intermediate traversal step. Hence, we
may adopt a simpler diagrammatic convention, which shows Access Descrip
tors pointing directly to their respective targets. Figure 4-5 shows the shorthand
equivalent for Figure 4-2. We lose no significant generality with the use of this
abstraction for the level of discourse used in most of this book.

Access Part
of

Object A

rwx ADl

rxx AD2

rwd AD3

Target Object

r-c:J
T2

.
I

Figure 4-5 Schematic view of accessing structure for objects Tl and T2. The access part
of object A holds two different Access Descriptors for Tl and one Access Descriptor for
T2.

4.1.1.2. Access paths to Refinement Objects. It is often desirable to create a
new object that is, in fact, a physica[subobject of another (parent) object. The
data part and access part of the subobject must be subparts of the data part and
access part, respectively, of the parent object. That the subobject physically
resides within its parent object is reflected in the fact that the subobject is
defined in terms relative to the parent object. Each part of the subobject is
defined to be of some (possibly different) size and to reside at some (possibly
different) offset from the base address of the parent object.

For example, one might wish to represent an "actual parameter block" for a
procedure call as a subobject within the object representing the current activa
tion record. Each argument that matches a "by-reference" parameter must be
represented by an AD that references the actual parameter. (In many cases this
AD can reference a refinement of another object representing an activation
record.) Such parameters must reside in the access part of the subobject. Any

102 A Programmer's View of the Intel 432 System

parameters that represent access values (for example, a variable of access type
that is passed "by-value") must also reside in the access part of the subobject.
Any remaining (data) parameters must reside in the data part of the same parent.
Note that we wish to regard the actual parameter block as a single logical
object.

The challenge to efficiently represent and control access to subobjects, has an
elegant solution in the i432 System. The architecture provides a Refinement
Descriptor mechanism to efficiently implement the concept of a subobject, as
discussed above. A subobject is defined by a Refinement Descriptor which is
inserted in the access path between an Access Descriptor and the Object
Descriptor for the parent object.

A Refinement Descriptor contains the thirty-two bit data image of the AD for
the parent object, a length and an offset value for each of the two parts of the
subobject. In i432 terminology, a subobject is called a Refinement Object. As
suggested previously, a Refinement may have an empty data part or an empty
access part. Refinement Descriptors are stored in Object Tables, along with
Object Descriptors. Figure 4-6 illustrates the access path to the base of a Refine
ment Object having an access part and a data part. The offsets (from the base of
the target object) and the lengths of each part of the Refinement Object are
denoted by the pairs, (off_a, len_a) and (off_d, len_d), respectively.

Target Object

Object Table

+ data
Ref. Descr. len_d refinement

L
off_d, len_d + 0---off_a, len_a t

-I
length_d

off_d
Obj. Descr.

~ length_d

L base
length_a t , off_a

+ • access
len_a refinement
t

length_a

_1
Rgure 4-6 Refinement Descriptor as a prefix to an Object Descriptor. Access to the
refinement is made using Refined_AD, while access to the full Object is made using
ObjeccAD.

1432 Object Structures for Program Execution 103

Several important applications of the refinement mechanism are exploited by
the 432-Ada compiler. For example, we will see in more detail in Section 4-4
that the public part of an Ada package is accessed as a refinement of a Domain
Object that represents the union of the public and private parts of the package.
The compiler ensures that every external reference to a package has access only
to that collection of information accessible via the public part refinement. Thus,
the i432 hardware is able to enforce Ada package (i432 domain) privacy. More
importantly, by means of refinements the i432 hardware is able to enforce
privacy over domains that are created at execution time. This scheme is illus
trated in Figure 4-7.

Unrestricted_AD
........

Access Part
of a

Domain Object

ADO
AD!

, AD2
AD3
AD4
AD~
AD6

~J
b
b
b
b_

public
part
only

union of
public

and
private
parts

Figure 4-7 Diagrammatic representation illustrating overlapping subspaces within the
same object. Here, the subspace accessed by Caller_AD is a refinement of the host
object accessed by Unrestricted_AD. The specific application occurs when distinguish
ing between the public and public-plus-private parts of an Ada package domain.

4.1.2. Run-Time Program Structures

The foregoing preliminaries provide us with a framework in which we can more
fully appreciate i432 run-time program structures. We consider here only the
execution of single-task Ada programs, such as illustrated in Figure 2-2; we
defer until Chapter 5 a discussion of the program structures that arise during
execution of multitask programs. First we consider the condition of a program
after it has been compiled, and prior to its execution.

A compiled program normally resides in the inactive state in the passive
address space of the i432's Object Filing Subsystem [47]. The structure of the
compiled program is generally the same as that for the data objects on which the
program will operate: a directed graph (grouped into a composite within the
Object Filing Subsystem). One node of this directed graph is special; it
represents the program's root node. The root node corresponds to the object
structure that represents the domain in which the program's initial (starter) task
must execute. References within this root structure point to substructures, such
as, for example, other Domain Objects representing various packages that may
be called at run time.

104 A Programmer's View of the Intel 432 System

In the case of a program like the one suggested in Figure 2-2, the compiler
would notice that the Secretary _ Treas starter task and the several packages are
not embedded within the starter task, but are rather separate units at the same
Ada "library level." The compiler, therefore, generates a separate program
structure unit (grouped as a composite object) for each library-level compilation
and files it in the passive object space (permanent memory) of the Object Filing
Subsystem.

The Object Filing Subsystem permits the protection mechanisms to be
extended in the i432 system from "volatile" memory to permanent memory.
The Object Filing Subsystem merits a separate study in itself, however, and this
is done in Chapter 1 O.

When a user's program is invoked by the operating system, the various inac
tive program structure units are activated as needed. By "activated", we mean
brought from passive (object filing) memory space into active (i432 virtual)
memory space.

As already mentioned, an active program is represented by networks
(directed graphs) of Domain Objects; this network represents primarily the
, 'static" components of the program unit. A Domain Object consists of a set of
ADs and a set of data; the ADs reference Instruction Objects, an object for
user-generated literal constants, user AD variables, etc., and the set of data con
taining domain control information, user data variables, etc. Also, if a package
represented by the Domain Object D contains calls to other packages, then D
will also contain ADs for the Domain Objects corresponding to those other
packages.

Access to a Domain Object D is controlled by the Ada compiler, because the
compiler limits the generation of Access Descriptors for D (or for any refine
ment of D) to those Ada program units that have declared the need to access the
corresponding Ada package for D. Ada packages that declare the need to access
another package P are those packages that include P in their with list.

Domain Objects for Ada library level packages that own variable data, as
does Club_Portfolio, are not entirely static in nature. Values of data variables
contained in such a Domain Object may vary from one activation of the Domain
Object to the next. For example, each separate use of the investment club pro
gram may result in an alteration of the data owned by Club_Portfolio. When a
program containing an Ada library level package P, represented by domain D,
completes, then domain D must be deactivated. This implies that any owned
variable values within D that were modified during the time D was active now
has to be updated within the older, passive version of D. This assurance is
needed so that future activations of D will reflect changes that occurred during
the most recent activation of D.

[Notice that it is the responsibility of the Object Filing System to maintain the passive
version of Club_Portfolio's Domain Object in a consistent form. Thus, the Object Filing
System possesses some of the functionality of a data management system, performing

1432 Object Structures for Program Execution 105

database management at the level of the operating system! (We amplify this important
observation in Chapter to.)]

To execute a program at command level, an operating system module
prepares an initial run-time object structure that represents the program. Then, a
message, in the form of a reference (Access Descriptor) to this structure, is sent
to a Dispatching Port, first mentioned in Chapter 1. At this port, the message is
bound to a processor for execution. We discuss these details in the next chapter.
Here, we focus on what constitutes the initial run-time object structure for the
program and what is involved in forming it.

To create an initial run-time object structure, the operating system first
creates a Process Object for the program and attaches to it a Context Object, the
first of a list of fixed-size Context Objects that are preallocated for the process.
The first Context Object serves as the initial addressing environment or activa
tion record needed for execution of an initial procedure. Part of this addressing
environment is an AD to the root Domain Object, discussed below. A schematic
of this structure is given in Figure 4-8. The reference Process_AD is the mes
sage referred to in the preceding paragraph. Note that one such structure is
formed for each task, including the "starter task", of every Ada program.

[

Process
Object

-----t .. ~

Root
Context
Object

Root
Domain
Object

(Standard)

Figure 4-8 Initial Object structure for a program ready for execution-many details still
missing.

The domain associated with the initial procedure of a task is called the root
Domain Object. The root Domain Object was produced earlier by the compiler
from an Ada source program and filed in the passive object space. The operat
ing system locates this object via a call on the Object Filing Subsystem, by sup
plying the program name and relevant directory information. Upon retrieval,
the Domain Object is activated and a reference to it (Access Descriptor) is
placed in the initial Context Object as another step toward completing the
necessary addressing environment. Further steps of this nature are taken to fully
initialize the needed addressing environment before actual program execution
can begin. Among these is the allocation of a block of free storage space whose
size is predetermined by the operating system.

[If a program cannot run to completion with its initial storage allocation, the operating
system provides the additional space during execution of the program.]

106 A Programmer's View of the Intel 432 System

Each Context Object contains an operand stack and space for local variables.
The block of free space is used to allocate a number of other kinds of objects,
such as objects for Ada's dynamic arrays. Some of these objects may be
automatically deallocated upon execution of relevant RETURN instructions.
Context Objects are preallocated by the operating system before a process
begins execution. As the process executes, a pointer to the current context
moves back and forth through this list of preallocated Context Objects. Thus,
Context Objects are not physically deallocated until storage for the process
itself is deallocated (by becoming unreachable).

Management of a block of free storage space strictly specific to a process is
facilitated by associating with its Process Object a data structure called the stack
SRO. An SRO, an abbreviation for Storage Resource Object, models a "bank
savings account", provided with some initial deposit amount (of free space).
An SRO includes a component that models a "bank book. " That component is
used for keeping track of the balance of free address space available to this
process.

The "bank book" component records the beginning and ending addresses of
the uncommitted portion of the original block of free storage awarded to the
process. A procedure activation may lead to the dynamic allocation of objects
needed for use with the current Context Object. Such allocation results in with
drawal of space from the bank book. Return from a called procedure results in
recovery of this allocated space (a redeposit in the bank book). Note that storage
space occupied by the Context Object is not itself drawn from the stack SRO,
but rather is allocated from a global heap SRO in much the same manner as the
space for the Process Object.

Besides the use of the stack SRO, an executing program may request the
creation of other storage bank accounts, called local heap SROs. These Storage
Resource Objects define pools of storage space from which objects may be allo
cated dynamically in non-LIFO order, as required by the program in execution.
In an Ada program, for example, a local heap SRO is created upon entering a
procedure in which types are declared for variables whose assigned values
require dynamic allocation of storage space, for example, Ada access types. A
local heap SRO is created to supply the storage requirements (other than for the
Process and Context Objects), for each spawned task. Recovery of local heap
objects occurs automatically when the thread of control exits from the pro
cedure activation at which the local heap was created. However, prior to exit
from that procedure activation, space within such a heap may be recovered by
the System's on-the-fly garbage collector process. (The deallocation mecha
nisms for local heap objects are described in Chapter 9.)

The process in execution also has access to a global heap SRO, from which
objects may be allocated that have unbounded lifetimes. These objects are also
reclaimed by the same garbage collector when no longer reachable. We expand

1432 Object Structures for Program Execution 107

on this model governing the management of process memory in Chapter 9. See
also [34,48].

We are now ready to examine the Process, Context, and Domain Objects in
more detail. And, we do this in the next three sections.

4.2. The Process Object

A Process Object, which is created for each process, and hence for each Ada
task, has the composite structure shown in Figure 4-9. To gain speed and access
control, an internal processor register (Process Object Register) serves as a
dedicated pointer to the currently executing Process Object. This register, which
is never directly addressable, is loaded when a process is dispatched (i.e., when
a Process Object is bound to a processor.)

The offset of each descriptor and data item in the Process Object is fixed, so
it can be known to the hardware logic, microcode, software, or to some combi
nation of these. Many of the items we identify within key system objects have
offsets that are known to the microcode and to the operating system.

[Preplanning the offsets of individual items within system objects is a non-trivial job
that, in theory, carries considerable risk of introducing too much complexity or inflexi
bility, but which, in practice, offers a high enough payoff in the efficiency of both the
software and hardware to be indispensable. Advances in high-level microcode
languages, and high-level system implementation languages like Ada, are keys to the
success of this approach.]

3 data
structures

Process_AD •
0 Process PSO AD
1 Proc Obj Tab AD
2 Proc_Claim AD
3 CUrr Context AD
4 Globals_Obj AD

other ADs

Process Object

Figure 4-9 First view of a Process Object. Individual parts of the object are discussed in
the text.)

The access part of a Process Object, as suggested in Figure 4-9, holds two
main sets of Access Descriptors. One set, not detailed here, is related to inter-

108 A Programmer's View of the Intel 432 System

process message-based communication and dispatching. The other set, detailed
in Figure 4-9, is:

o. a reference to the Physical Storage Object Component (or PSO) of the stack
SRO

1. a reference to the Object Table Component of the stack SRO

2. a reference to the Claim Object Component of the stack SRO

3. a reference to the Current Context Object

4. a reference to the Process Globals Object

The data structure representing an SRO contains three principal components.
These are the PSO, the Object Table, and the Claim Object. The first three
Access Descriptors in the Process Object refer to this set of three components
for the stack SRO of the process.

• The Physical Storage Object (PSO) , which is the bank book component,
holds the set of physical addresses representing boundaries for blocks of
unused storage of the SRO.

• The Object Table component holds Object Descriptors and Refinement
Descriptors for objects created from the free space controlled by the SRO.
For a stack SRO, space for these objects is allocated and deallocated in LIFO
(Last-In/First-Out) order, and hence the corresponding PSO component con
tains only a single pair of physical addresses, namely the beginning and end
ing points of currently unused storage.

• The Claim Object component holds the value representing the total amount of
storage as yet unallocated from this SRO.

The AD in the Process Object that designates the current Context Object is
continually changing during the execution of a program as procedure calls are
made. At the outset, the current context is the root context mentioned in con
nection with Figure 4-8. Prior to execution, the operating system initializes a
doubly-linked list of Context Objects, headed by the root context, that will nor
mally constitute the local addressing environment for Ada procedures. During
program execution, as procedure calls are made, the AD in the Process Object
that designates the current context designates different Context Objects in the
preallocated list by simply moving back and forth through the forward and
backward links of the doubly-linked preallocated list. (There are, of course,
mechanisms in place for handling overflow of this list of Context Objects.)
Thus, the Access Descriptor for the current context is "kept current" in the
Process Object; this facilitates restarting a process, in case it was previously
suspended for any reason.

i432 Object Structures for Program Execution 109

[As we will see later, the current Context Object itself contains the instruction and
stack pointers which must be reloaded into processor registers before actual resumption
of execution can take place. Keeping the Current Context Object AD up to date in the
Process Object also facilitates process-level fault recovery.]

An important protection mechanism, related to the creation of objects by a
process, is provided in an Object Table entry. When any object is created from
an SRO, the level of the current context is recorded in the Object Descriptor as
the level number for the created object. (The level number of the current con
text, or context level, is the length of the chain of Context Objects from and
including the root context up to and including the current context.) Lifetimes of
created objects cOlTespond to their respective level numbers; the higher the level
number, the shorter the lifetime. (An object created from a global heap SRO is
always given the level number zero.)

The level number of an object is used by the hardware to ensure that no
Access Descriptor D references an object of level number j if D resides within
an object of level number i <j. Such potential dangling references are automat
ically prevented by a hardware prohibition that an AD for an object with a given
level number (shorter lifetime) may not be stored into the access part of an
object that has a lower level number (longer lifetime.)

The Process Globals Object (PGO) is a read-only object that can be shared by
all contexts within a process. A single i432 instruction, executed within any
context, is sufficient to place the contents of the Process Globals Object in the
directly addressable space of the processor. [We explain how this is done in
Section 4-3.]

The particular role of the PGO is left to be defined, usually by the operating
system. For example, in the first release of the i432 operating system (iMAX),
the PGO is filled in with references to a number of objects that are required by
the Ada compiler in the execution of Ada programs. An important purpose of
the PGO is to contain a reference to the global heap SRO. This reference is
needed when an executing program needs to create an object having an
unbounded lifetime, such as one destined to become a passive file. We have
more to say about global heap SROs in Chapter 9. More details on the PGO
may be found in the iMAX 432 Reference Manual that is cited in Appendix B.

The data part of a Process Object consists of three distinct areas:

1. Process Control Area

2. Process Fault Area

3. Context Fault Area

A brief explanation for each of the above items follows:

110 A Programmer's View of the Intel 432 System

1. The Process Control Area includes a collection of information needed for the
management of a process. Some values are used for scheduling, while oth
ers are used by the hardware or software for process-related storage manage
ment and fault recovery. Among the values included here are: the current
level number, a process clock value, service period and service count
values, the process' own ID, and the process' status. (Process scheduling is a
topic discussed at some length in Chapter 5 and again in Chapter 8.)

All of the above information is prefixed by the Object Lock, which is used
by the hardware or software to lock the entire Process Object, when neces
sary, to guarantee against harmful "interaction" with another processor
while performing examination or manipulation of any part of the Process
Object. [This lock also governs access to all Context Objects associated with
this Process Object.]

2. Process Fault Area. When the hardware detects a fault at the process level (a
fault such that the process may not proceed until repaired by another proc
ess), the hardware deposits certain fault code and state information in the
Process Fault Area. Recovery from a process-level fault involves sending the
Process Object as a message to another process which is expected to know
how to respond to this fault.

3. Context Fault Area. If a context level fault (roughly equivalent to an Ada
exception) should occur, there is a similar fault information area in the
current Context Object into which the processor will deposit the appropriate
information. Repair of a context level fault is normally delegated to a pro
cedure within the same process. However, provision must be made for the
possible occurrence of another context level fault while attempting to repair
the first. This case is handled by depositing the new context fault informa
tion in the Context Fault Data Area of the Process Object, thereby promoting
this second sequential context level fault to process level. The processor
knows when to perform this "promotion" from information available to it in
an on-chip process status register.

We continue our discussion of Process Objects in Chapter 5. Still more
detailed information on Process Objects can be found in the i432 Architecture
Reference Manual.

4.3. The Context Object

As mentioned earlier, this object plays a very similar role to that of an activa
tion record in stack-based run-time data structures for reentrant programs
[40,44]. [Activation records are often called stack frames and sometimes
called contours, especially when dealing with abstractions of activation records
[32,46].]

1432 Object Structures for Program Execution 111

Unlike classical implementation strategies for activation record management,
each activation record in the i432 is a separate Context Object, with hardware
means to protect it from inappropriate access by a processor executing either the
current program or any other program. In most classical implementations,
activation records are stacked into one contiguous block of storage. Access con
trols are, at best, maintained for the whole block and not for the individual
activation records within it.

Figure 4-10 provides us with our fIrst view of a Context Object. Again, we
note that the offsets within the access and data parts are known to the micro
code. Moreover, as a means for speeding access to current context information,
an internal processor register, the Context Object Register, is provided in the
processor to hold an AD for the current Context Object.

1 operand 1 stack for this
rJ

context ,'"

work space for
local variables

processor-
defined

context_AD data fields

0 processor-
defined ADs

rv rJ
,'" rJ

13

software-
defined
ADs

Context Object

Figure 4-10 Initial view of a Context Object

In the discussions that follow, we will see that a major role of the Context
Object is to serve as a receptacle for hardware state information characterizing a
program executing in a given procedure activation. Slots of the Context Object
designated to hold this information serve as storage images for values in a set of
on-chip processor registers. In order to correctly preserve the storage image dur
ing each call (return) to (from) a context, microinstruction sequences store
(load) processor state information into/from the Context Object.

112 A Programmer's View of the Intel 432 System

4.3.1. Details of the Context Object

We begin our discussion of the Context Object by looking first at the key
Access Descriptors that lie at the base of the access part. These fourteen
descriptors can be grouped into four categories:

1. ADs that define the processor's current addressing environment

2. ADs to key objects of the executing program

3. ADs to relevant messages (intercontext or interprocess)

4. ADs to objects at the "top" of the stack SRO

Table 4-1 lists the individual ADs in each category and the slots to which
they are assigned. We give an explanation of each of these ADs in the order
listed in the table. The purpose of some of these ADs may be obvious to readers
with experience in stack-based architectures. Even so, we present an explana
tion of the use of each of these ADs. In some cases, the full significance of the
reference may not be clear until later . Some of the references are "constants" ,
deposited into the Context Object as part of the procedure entry semantics (ADs
0, 1,8, and 9.) Some of the others (ADs 5,6,7, 10, and 11) are deposited with
delete bit reset so that they cannot be modified by the user.

TABLE 4-1. Processor-Defined Access Descriptors In the Context Object

Category Access Descriptor Target

Current Context (self reference)
Access Environment 1
Access Environment 2
Access Environment 3

2 Defining Domain (current domain)

3

4

Calling Context (' 'dynamic chain link")
Static Link ("static chain link")
Global Constants
Local Constants

Context Message
Precreated Message
Intetprocess Message

Top of Descriptor Stack
Top of Storage Stack

(parameter list)
(argument list)

(top Descriptor)
(top Object Descriptor)

Slot Index

o
5
6
7

3
8

13
1
4

2
9

12

10
11

1. ADs that define the processor's current addressing environment.
• The Current Context AD slot holds a self reference. This slot is assigned a

value when the current Context Object is initialized in the course of exe
cuting a CALL instruction. (The hardware prevents assignment of a new
value to this slot as long as this Context Object remains active, that is,

1432 Object Structures for Program Execution 113

until a RETURN instruction has been executed from the procedure whose
call resulted in the creation of this Context Object.)

The value of the Current Context AD forms the root of the tree represent
ing the processor's current addressing environment. Whenever the proc
essor executes a CALL or RETURN instruction, it loads a copy of this
value into its Context Register. Upon executing a RETURN, the processor
restores in its Context Register the value of the Current Context AD of the
predecessor Context Object.
Upon completion of a CALL, the processor's "on-chip" Context Register
also has a copy of the same (new) Context Object AD. The Context Regis
ter, which is never directly addressable, is used indirectly as an operand in
a variety of instructions that require access to references contained in the
Context Object. As we will see, the current directly addressable space of
the processor is defined in terms of exactly four sets of primary refer
ences, one of these being the set contained in the Context Object.

• ADs for Access Environments 1, 2, and 3. The values in these AD slots,
which can be set (repeatedly) during execution within the current context,
define the other three sets of primary references for the processor. A new
value assigned to one of the three Access Environment AD slots has the
affect of dynamically altering the current directly addressable space. Such
alteration is achieved by executing an ENTER ACCESS ENVIRON
MENT (or ENTER GLOBAL) instruction, identifying the Access
Environment slot that is to receive a specified AD. The important indirect
effect of executing one of these instructions is to copy the same specified
AD value into a corresponding on-chip Entry Register.
[We are now able to explain more fully how the address ability of the processor is
controlled. Recall that every operand reference (both data and access references)
of an i432 instruction must specify some form of access selector that references
the AD for the object in which the operand resides. The encoding of an access
selector includes a two-bit field that designates one of four environment registers
(Context Register, or Entry Registers 1, 2, or 3.) Therefore, the only objects that
the processor can access are those whose ADs reside within the objects that are
referred to in the four environment registers.]

Since the ADs for exactly four objects define the directly addressable
space, and since the access parts of each of these Objects can, in princi
ple, hold 2**14 AD's and since each object addressed by one of these
AD's can have up to 2**16 bytes in its data part, directly addressable data
space is 2**32 bytes. Directly accessible AD space is 4*(2** 14) Access
Descriptors.

An ENTER ACCESS ENVIRONMENT (or ENTER GLOBAL) instruc
tion indicates by operands specified in the instruction which of the three
registers is to be updated and which of the 4*(2**14) directly addressable
AD's is to be loaded into that register. Indeed, refreshing the addressable

114 A Programmer's View of the Intel 432 System

space in this way is the technique which must be used in the i432 when
"chasing" a reference chain, some or all of whose AD links are not con
tained within the 4*(2** 14) directly accessible ADs.

When a RETURN instruction is executed, the processor's directly
addressable space is restored to that of the predecessor context by restor
ing into the Context Register and into Entry Registers 1, 2, and 3, the AD
values saved in the corresponding slots of the predecessor Context Object.
The values in these AD slots also provide important pieces of state infor
mation needed to recover from a fault that occurs in a successor context.

2. References to key objects of this program.
• Defining Domain Object AD. This slot is filled with a reference to the

current Domain Object in which the AD for the currently executing
instruction object resides. This is the primary Domain Object that will be
accessed during active use of this Context Object. The hardware prevents
assignment of a new value to this slot.

Various components within the Domain Object may be needed as part of
the processor's directly addressable space. A called procedure can make
such a component directly addressable by executing an ENfER ACCESS
ENVIRONMENf instruction to copy the value of the Current Domain
Object AD into one of the Entry Registers. This step is then followed by a
reference-chasing step to "fetch up" an AD for a desired target com
ponent accessible via the Domain Object. [The processor has a Current
Domain Register. Upon executing a CALL instruction that has the effect
of changing domains, this register is assigned a new AD value that points
to the base of the private part of the new domain. This value remains valid
during intradomain calls and is used by the processor to speed up the
interpretation of such calls.]

• The Predecessor Context AD serves simply as a backward (dynamic) link
to the previous context and is used, for example, by the microcode in exe
cuting a procedure return instruction. This Access Descriptor is formed
expressly without read, write, or delete rights. It does, however, carry a
return right. Only if return rights are on within an AD used as a dynamic
link can a RETURN instruction proceed to completion.
A Context Object is given a Predecessor Context AD with return rights off
in cases where objects are allocated (from a local heap) at the same level
as that of the Context Object. Upon return from this environment, the exe
cution of the RETURN instruction faults, providing a means for a planned
escape to a memory management module of the operating system. This
module deallocates objects that were allocated at the level of the current
Context Object in effect at the time the RETURN instruction was issued.

1432 Object Structures for Program Execution 115

After this' 'cleanup" step, the unfinished RETURN instruction is allowed
to resume in normal fashion.
Absence of read and write rights in the predecessor context AD assures
that it cannot: be used to access information in the calling procedure's con
text. This is a key component in the overall security strategy of the i432, a
subject discussed at greater length in Chapter 6 .

• Static Link AD. Static links are maintained by the i432 in the Context
Objects for programs written in ianguages like Ada that use static binding
for block structure semantics [45]. When the static link slots in Context
Objects are used properly by a compiler, one can be assured that a called
procedure is always invoked from the appropriate environment.

The Access Descriptor in the Static Link slot refers to the (most recent)
Context Object for the subprogram (or block) that statically encloses the
subprogram (or block) for which the current Context Object has been
created. Consider the case in which procedure A and procedure B reside
immediately enclosed within procedure C. When A is active, the static
link for A references the Context Object for the most recent activation of
C, regardless of which procedure called A. If A calls B then the new Con
text Object for B will reference the Context Object for the most recent
activation of C with its static lirik and the immediately previous Context
Object for A with its dynamic link.
[In languages like LISP, Snobol, and APL, which have dynamic binding seman
tics, the static link may never be nonnally used; only the dynamic link is used for
the purpose of establishing the proper environment of a called procedure. An
exception is the so-called "funarg" mechanism in LISP which would use the static
link [50]. In languages like Fortran,Basic, and Cobol whose programs need have
only one Context Object, the static links are never used; dynamic links would be
used only for calls to system library routines.]

• Global Constants AD and Local Constants AD. Unlike most other
machines, the i432 does not provide instruction operands for which the
value is given directly within the instruction itself. Thus, no operand value
can be stored within an instruction; every operand, including constant
operands, must come from an object external to an instruction object.
Therefore, when a procedure begins execution, one of its first tasks would
seem to be to make addressable some object containing local constants for
the procedure. But this is impossible, because the ENTER ACCESS
ENVIRONMENT instruction, which is the only instruction that can be
used (in this situation) to make an object addressable, itself requires a con
stant operand! From this discussion it can be seen that the i432 must pro
vide a special constant data object that is made addressable by the CALL
instruction itself. Every Domain Object contains an AD for a local data
object in which constant data values reside for all procedures in the

116 A Programmer's View of the Intel 432 System

domain. A CALL instruction copies the AD for the local data object from
(a known offset in) the Domain Object to the new Context Object as a
result of procedure invocation. Thus, the local data object is addressable
when the procedure begins execution. In like manner, the CALL instruc
tion provides an AD to a global Constant Object in the new Context
Object. The global constants object contains' 'popular" constants that are
likely to be required in every procedure (e.g. the values one and zero).
Every executing process in the i432 uses the same global Constant Object.
It is provided primarily to prevent the proliferation of the' 'popular" con
stants in local data objects throughout the system.

3. References to relevant messages (interprocedure or interprocess).

• Interprocedure calls may transmit (accept) information to (from) the caller
(callee) by means of explicit Message Objects. The message passing
mechanism we describe below is used by a compiler to match an argument
list prepared by a caller to a parameter list specified by a callee. Two
slots, referred to the as Precreated Message AD and Context Message AD
are used to achieve communication between caller and callee contexts.

When subprogram P prepares to call subprogram Q by means of a CALL
instruction, P places the actual parameters for Q in an arbitrary object
which will become the Message Object, referenced by Access Descriptor
M. Following this, M is copied into the precreated message AD slot.
When the CALL instruction begins, the precreated message AD must
refer to the Message Object. As part of the semantics of the CALL instruc
tion (P calls Q), the Precreated Message AD of P's Context Object is
copied into the Context Message AD slot of the Context Object created for
Q. Figure 4-11 illustrates the foregoing concept for the case of a chain of
two interprocedure calls (P calling Q with message A, and Q calling R
with message B.) Note that message objects need not be separate objects;
they may, for example, be refinements of other objects. Thus, Message
Object A in the figure could actually be a refinement of the Context
Object for P.

• Interprocess Message AD. The third message slot in the Context Object is
reserved for receipt of messages from another process. As we will see in
the next chapter, execution of the RECEIVE instruction causes the Access
Descriptor for a received message to be deposited in the Interprocess Mes
sage AD slot.

4. References to objects at the "top" of the stack SRO.

The LIFO discipline for the (allocation) stack SRO is achieved by maintain
ing two ADs in each Context Object that reflect the current "state" of the
stack SRO for that Context Object. One of these, the Top of Storage Stack
AD, references the most recent Object Descriptor formed in the Object

context
Mess. AD

Pre
created

context Object
for P

o
Mess. AD "-----,--

1432 Object Structures for Program Execution 117

context Object
for Q

Message
Object A

:'::;:'::;:;:::;:;:::;:;:;:;:;:;:::::::::::
.:.:-:-:.:.:.:.:.:-:-:.:.:-:.:.:.:-:-:-:-:
<::-:-:.:-:-:-:.:-:.:.:.:-:.:

Message
Object B

o

Figure 4-11 Object structures for intercontext message communication.

Table for the stack SRO. The other AD, the Top of Descriptor Stack AD,
references the most recent Object Descriptor or Refinement Descriptor
formed in the Object Table for the stack SRO. (A Refinement Descriptor is
placed in the Object Table for the allocation stack SRO when a refinement is
defined for an existing object previously created and allocated from the stack
SRO.) The Top of Descriptor Stack AD references the "high water mark" in
the Object Table for the allocation stack. The Top of Storage Stack AD
references (indirectly through an Object Descriptor) the' 'high water mark"
in allocated physical storage for the stack SRO.

The RETURN instruction does not need to perform any action in order to
reclaim storage space and Object Table space from the stack SRO. Since the
previous context contains the complete state of the stack SRO in its own Top
of Descriptor Stack and Top of Storage Stack ADs and since these two ADs
reflected the state of the stack SRO in the previous context at the time of the
procedure call, return to the previous context automatically restores the state
of the stack SRO Jor the previous context. (Two kinds of space are recovered
using these ADs. The Top of Storage Stack AD is used to recover storage
space allocated via the SRO's Physical Storage Object while executing in the
current context; the Top of Descriptor Stack is used to reclaim space occu
pied by Object and Refinement Descriptors formed in the SRO Object Table
while executing in the current context.)

118 A Programmer's View of the Intel 432 System

4.3.2. Details of the Context Object's Data Part

We now look more closely at the data part of the Context Object. Figure 4-10
indicates there are three major data areas, the flrst of which is flxed by the
architectural design and contains flve key flelds. The parts of the flrst data area
are listed and discussed briefly below:

1. Context Status

2. Stack Pointer (SP)

3. Current Instruction Object Index

4. Instruction Pointer (IP)-in bits

5. Trace Control Data Area

6. Working Storage

7. Operand Stack

We briefly explain these items in the following paragraphs:

1. The Context Status entry holds two kinds of information:
a. Fault state information (indicates whether a fault has occurred while exe

cuting in this context)
b. User-supplied processor control codes (for determining precision and

rounding modes to be used by the processor during execution in this con
text). Execution of the SET MODE instruction sets appropriate subfields
of the Context Status slot, and automatically updates corresponding con
trol registers of the processor. These registers control the rounding and
precision modes for floating point operators. In principle, these mode
controls can be turned on and off at any time during execution of a pro
cedure.

2. Stack Pointer (SP). The data part of the Context Object contains the operand
stack that is used during the current procedure activation; the SP entry serves
as the top-of-stack pointer or offset. SP is initialized, upon entry into the
current context to the offset value for the base of the operand stack. This ini
tial value of SP is generated by the compiler and placed in a predetermined
slot at the base of the Instruction Object referred to in the CALL instruction.
(See next item for more details.)

When execution in the current context commences, the initial SP value is not
only copied into the data part of the Context Object, but is also loaded into a
corresponding on-chip processor register. If a processor suspends execution,
the processor's SP register value is written into the SP entry in the data part

1432 Object Structures for Program Execution 119

of the current context. Resumption of execution in the context requires the
reversal of this information transfer.

3. Current Instruction Object Index. This value is an offset into the access part
of the current Domain Object. It identifies the AD of the Instruction Object
from which instructions are currently being executed.

An Instruction Object represents the instructions (or a portion of the instruc
tions) that will be executed to perform the actions specified by a procedure.
An Instruction Object contains no access part. The data part consists of a set
of key data values followed by instructions.

The data values in the Instruction Object are as follows.

a. Parameter values to be used in initializing the required Context Object:

• lengths of the data and access parts

• offset into the data part used to determine the base of the operand stack

b. Offset into the access part of the defining Domain Object for this Instruc
tion Object. The slot at this offset holds an AD for the Local Constants
Object that is loaded into a slot. of the current Context Object as part of
the CALL instruction.

4. Instruction Pointer (IP). The IP is a bit offset into the Instruction Object for
the currently activated procedure. The initial IP value, like that of the SP
value, is placed by the compiler in a slot at the base of the Instruction
Object. This value is later copied into the data part of the new Context
Object during execution of the CALL instruction.

The slot in the Context Object reserved for the IP is used to save the process
or's copy of the IP during execution of a CALL instruction, or, more gen
erally, for saving the IP whenever the processor suspends execution in this
context and needs later to restore the IP to resume execution in the same con
text.

5. Trace Mode Data Area. The i432 processor supports software debugging and
analysis by providing a combination of user-enabled controls and by allocat
ing the special Trace Mode Data Area in each Context Object for use with
these controls. This area contains three values, deposited to "advise" the
processor on the means for resuming normal execution upon completion of
any trace action. The saved values are:

• Instruction Object Index

• Instruction Pointer (IP)

Denotes the Instruction Object containing the
instruction that triggers this trace action.

Identifies the particular instruction whose
execution has triggered this trace action.

120 A Programmer's View of the Intel 432 System

• Trace Event Code Encodes the form of resumption of normal
execution, if any, that is appropriate upon
completing execution of the trace action.

Briefly, the implemented trace control strategy is as follows: First, an i432
processor operates in one of four trace modes, as specified in the Process
Object of the process to which the processor is currently bound. Second, the
AD for an Instruction Object contains trace rights which is set on to open the
Instruction Object for tracing. By tracing, we mean executing the Instruction
Object whose AD is held in slot 1 of the current Domain Object (see the next
section) in response to an enabled trace event.

The particular trace event depends on the current trace mode of the proc
essor. The four modes are:

• normal Tracing is disabled, overriding trace rights for individual
Instruction Objects.

• fault trace

• flow trace

• full trace

Perform a trace on the faulting instruction prior to execut
ing the context-level fault handler.

Perform a trace after BRANCHing or CALLing to or from
an Instruction Object that is open for tracing and before
and after executing a RETURN instruction.

Perform a trace prior to executing every instruction in an
an Instruction Object that is open for tracing.

More details on these tracing features can be found in the i432 Architecture
Reference Manual.

6. Working Storage. The remainder of the Context Object data area is divided
between working storage and the operand stack. The working storage area
will normally be used to store the current value of data variables local to an
executing procedure.

7. Operand Stack. Values are pushed onto and popped from the operand stack
during execution of instructions that are used in the evaluation of expres
sions. It is worth noting that data references to the operand stack in i432
instructions are very short; this means that compiled i432 instruction
sequences that make heavy use of this stack are themselves compact. In this
book, however, we do not detail further the instruction formats and instruc
tion sequences used in expression evaluation at the i432 machine instruction
level. Readers interested in these details should consult relevant chapters of
the i432 Architecture Reference Manual.

4.4. The Domain Object

The "permanent" part of an executable program unit is represented by a
Domain Object, as indicated in our brief introduction in Section 4-1. Here we

1432 Object Structures for Program Execution 121

elaborate by showing some of the representation details. The reader should note
that a Domain Object (also simply called a "domain") is readable and writable;
thus any portion of a domain that can be accessed is modifiable, except for slots
in which ADs are written that do not possess delete rights.

A domain must consist of at least two AD slots that are required by the i432
architecture. The first of these is an AD for the domain's Fault Information
Object and the second of these is an AD for the domain's Trace Information
Object. These objects provide the processor with the information it needs to
intervene and shift the thread of control properly when fault or trace events
arise. Information in the data part of a Domain Object may serve any purpose
specified by the user (or compiler), as no part of it is required by the i432 archi
tecture.

ADs that reside within a domain D are primarily ADs for Instruction Objects
and ADs for other (external) domains that may be referenced while executing
within the Instruction Objects referenced by D. In addition, a domain may con
tain other constant ADs, AD variables qnd data variables that represent informa
tion accessible by all Instruction Objects that reside within the domain. Since a
Domain Object is writable, constant information must reside within a physically
separate object whose AD resides within the domain. Figure 4-12 illustrates a
simple case of a domain that contains only ADs for instruction objects and a sin
gle AD for the constant data object.

The access part of the usual Domain Object (Figure 4-12) is logically divided
into public and private parts. Thus, the access path begun with Public_AD
leads through a Refinement Descriptor to its target. That target is not a separate
object, but merely a "refinement" of the Domain Object. The refinement spans
all the Access Descriptors from the one pointed to by Public _AD to the end
(highest-indexed slot) of the access part of the host object. The access path
represented by Private_AD leads not to a Refinement Descriptor, but directly to
an Object Descriptor whose target is the entire Domain Object. (That is, at the
representation level, the "private part" of the Domain Object is actually the
entire Object.) The data part of a domain can be partitioned into a public part
and a private part in the same manner as that described for the access part.

Access Descriptors for other domains and for various other objects will nor
mally appear in a domain because of requirements generated by source pro
grams. We give two examples here:

1. Consider the case of an Ada package A containing an operation that calls a
public operation in another package B. An AD for B' s public part must be
included in A's private part to enable A to access B. In general, for any
interpackage reference in an Ada program the compiler will provide a
corresponding "interdomain link" in the form of an AD residing in the
private part of the referencing domain to the public part of the referenced
domain. Later in this section we will discuss how the i432 architecture con
trols such calls.

122 A Programmer's View of the Intel 432 System

Private AD •
Fault_Instr.Obj.AD
Trace_Instr.Obj.AD

~ I I I ..
Instr. Object 2

Public AD.

I I -- Instr. Object n-l

0-1-

Domain Object .. I I
Constants Data Obj.

I I - Instr. Object n

I I
~

Instr. ObJect n+r-l

Figure 4-12 Schematic of a Domain Object's access part having n locally defined (private
procedures) and r publicly accessible operations along with one publicly accessible con
stants data object.

2. In cases where an Ada package owns a set of variables, as in the case of an
owner Ada package, the domain will include data locations or AD slots that
hold the values of the owned variables. These data locations or AD slots will
appear in the appropriate public or private part of the domain, according to
whether the owned variables are declared in the public or private portion of
the Ada package.

4.4.1. Access to the Public Part of a Domain

A public procedure of an Ada package is called from a given context using
either of two instructions: CALL or CALL THROUGH DOMAIN. The CALL
instruction is the more general of the two and can be used for all procedure calls
if so desired. However, use of the CALL instruction to call a procedure that
resides in any domain other than the current domain (an interdomain call) is
more expensive than a call to a procedure that resides in the current domain (an
intradomain call). The extra expense incurred is the expense of an extra ENTER
ACCESS ENVIRONMENT instruction that must be performed to make the
current domain addressable. The current domain must be addressable in order to

I

1432 Object Structures for Program Execution 123

reference the domain containing the procedure to be called. The CALL
THROUGH DOMAIN instruction obviates the need for the extra instruction in
an interdomain procedure call if the AD for the domain containing the pro
cedure to be called physically resides in the current domain. The instruction
does this by effectively providing one extra AD reference step for a procedure
call, i.e., from current context to defining domain to called domain, instead of
from (any) directly addressable object to called domain. Besides making inter
domain procedure calls more efficient, the CALL THROUGH DOMAIN
instruction makes the handling of certain fault and trace events less awkward.

As we will see, a new Context Object will have access to all of the new
Domain Object. Hence, it is critically important that the new context be inac
cessible from the calling context. This is assured because the called context is
automatically made inaccessible when control returns to the calling procedure.

The reader may well ask: "How can a calling procedure which possesses
only the Public_AD for a Domain Object, provide the processor with the infor- >

mation needed to establish a new context whose domain of definition extends
over the entire domain specified by Private_AD?" Private_AD is not in pos
session of the caller and must not be allowed to come into the calling
procedure's possession; otherwise the system's protection scheme could be
breached.

The answer is surprisingly simple. The microcode for a CALL (or CALL
THROUGH DOMAIN) instruction converts Public_AD into Private_AD. To
understand how the conversion from Public_AD to Private_AD is done, recall
that Public_AD refers to a Refinement Descriptor which, in turn, points to the
Object Descriptor for the entire Domain Object. In fact, the Refinement
Descriptor contains a copy of Private_AD, as was implied but not detailed in
Figure 4-6. This copy of Private_AD is then stored into the defining domain
slot of the new Context Object for the called procedure. In short, the hardware
executes a controlled amplification of the caller's access environment by pro
viding the derived Private_AD for use in the new Context Object. Such amplifi
cation is safe because, as was pointed out above, the caller can never gain a
copy of Private_AD.

[The i432 has an internal processor register named the Current Domain Register. A
byproduct effect of an inter-domain call (return) is to set (restore) the Current Domain
Register with the value of Private_AD for the new (antecedent) domain. Of course, only
the micro-code has access to this register. Its value is automatically referenced by the
micro-code during intra-domain calls.]

After appending a new Context Object to the chain of Context Objects,
several AD slots are then filled with information. First, a copy of Private_AD,
is placed in the Defining Domain AD slot. and also in the on-chip Current
Domain Register. In addition, information derived from the newly introduced
Domain Object is copied into the new Context Object, as follows: (See also
Section 4-3.):

124 A Programmer's View of the Inte/432 System

• Current Instr. Object Index

• Local Constants AD
• Instruction Pointer
• Stack Pointer

calculated from calling instruction

from the new Domain Object
a fixed offset value
from called Instruction Object

In the above, "calculated from calling instruction" may require further
explanation. By "calling instruction" we mean that the Instruction Object
index is imbedded in the CALL (or CALL THROUGH DOMAIN) instruction
that invoked the procedure call. By "calculated" we mean that the Instruction
Object index given in the calling instruction is (usually) an offset relative to a
domain refinement rather than an entire Domain Object. The offset required in
the Context Object is the Instruction Object index relative to the entire Domain
Object. This must be calculated by the i432.

4.4.2. Use of the Private Part of a Domain

We have just seen that once a call has been completed to a procedure in a new
domain, the called procedure has access to the entire domain. We now discuss
what is involved in using the full domain. Procedure calls fall into three classes:

• Calls to locally defined private subprograms (intra-domain)

• Calls to locally defined public subprograms (intra-domain)

• Calls to procedures in other domains (inter-domain)

The mechanics of a call to a locally-defined private subprogram provides us
with the model for understanding the other kinds of calls.

Let the called public procedure in package A be named Proc 1, and let there
be a local procedure named, Local_Proc, defined in the body part of A such
that during execution, Procl calls Local_Proc. Procl executes the CALL
instruction, specifying the Static Link AD, the value of Private_AD as the
domain of definition, and the offset from the base referenced by Private_AD
that locates the Instruction Object for Local_proc. The effect of this CALL
instruction is to produce a Context Object, newly appended on the Context
Object chain, containing Private_AD in the Defining Domain AD slot.

If Procl in package A calls another public operation, Proc2 in A, the call
from Procl to Proc2 is made in exactly the same manner as that described above
for Local_Proc as a private procedure contained in A. (It goes without saying
that the same intra-domain calling mechanism is used when Proc 1 or
Local_proc calls itself recursively.)

An interdomain call, from either Procl or Local_proc, to an operation in
another package B is again straightforward. The Domain Object for package A
must contain a Public_AD value for package B or the head of a chain of refer
ences leading to Public_AD. The static link, the AD for package B, and the
Instruction Object offest are specified in the CALL THROUGH DOMAIN (or
CALL) instruction. This has the effect of establishing a Context Object for the

1432 Object Structures for Program Execution 125

called procedure with access to the full domain of package B. [Of course, the
compiler of package A has the responsibility for providing the Public_AD for
package B, based on the explicit reference to B in the source code of A.]

4.4.3. Processor Registers to Facilitate
Domain Access

We have just mentioned that the i432 processor achieves rapid access to the
Current Domain Object via the on-chip Current Domain Register. In addition,
iristruction fetching from the currently executing Instruction Object is, also
made highly local to the processor; two on-chip registers facilitate instruction
fetch: an Instruction Object Register holds the AD for the activated Instruction
Object, and an IP Register holds the bit displacement into this object.

4.4.4. Section Summary

The present and foregoing two sections have focused on the individual forms of
the objects required to execute programs on an i432. In the course of these
inspections, we have gained some understanding of object creation and manipu
lation critical to the correct execution of i432 programs. To "put it all
together", however, we need to follow an actual execution scenario. In particu
lar, we need to examine a series of execution snapshots for a program having
sufficient structure to illustrate and reinforce many of the observations made so
far. We attempt to do this in the final part of this chapter by revisiting the
investment club program and studying a representative, albeit hypothetical and
sketchy, snapshot sequence.

4.5. Some Object Structure Snapshots for
the Investment Club Program

We will now attempt to trace the execution of the program structured in Fig
ure 2-1, beginning with the creation of the Secy _ Treas starter task and continu
ing to a call on the Add procedure in the Purchase_Queue_Mgr package while
attempting to enter a buy transaction into the club's portfolio. We present and
discuss briefly a total of seven related snapshots of i432 execution-time data
structures.

4.5.1. Snapshot 1

Figure 4-13 shows the set-up required to begin executing in the starter task. The
Process Object (lacking some detail to be investigated in the next chapter), the
root Context Object, and the root Domain Object are all displayed. Since the
Domain Object represents a starter task instead of a package, it has no public
refinement. This snapshot also shows the initial object structure just prior to the

126 A Programmer's View of the Intel 432 System

call on Club_Portfolio's Enter_buy (public) procedure, including the current
context's precreated Message Object.

In the figures illustrating these snapshots, we represent Access Descriptors in
the access parts of objects using small open, or filled circles, or the mark "x".
An open circle represents an AD that has some (possibly non-null) value, but
not one which we wish to illustrate or discuss further. A filled circle will usually
have a directed arc emanating from it. (Exceptions to this rule will be explained
in connection with a later snapshot.) The mark "x" signifies a deliberate,
recognizable, null AD value.

L
'r-' operan d I'V

stack

S

Process
ecy_Treas_AD Object local] fixed

work
variables space .. h key values

Root !"-
0

Context ~ -r--Object
AE- ~ 8

3 0
)(

0

I Message I 0
)(Object)(

I Domain Objects
.1 I

I
for Standard Ad a IJ I Private AD Root ~ I Library Packages

Domain ~ t-h I including Text_i
Object :

.. t-

1111 ::~ Instr. Obj. for I Secy_Treas
Public part of

J
Constants Data II Club_Portfolio

Domain Object
Obj.

Figure 4-13 Initial object structure ready for execution of code in the Secy _ Treas starter
task. This figure reveals the object structure just prior to calling the Enter_buy operation
of the Club_Portfolio package shows the Message Object used with CALL instructions
issued from the root context. (The root Domain Object has no public part.)

We do not attempt to display or explain the role of each Access Descriptor or
of each object referenced. However, we do indicate some highlights and some
of the more subtle or crucial details. We rely on the reader to use these

o

1432 Object Structures for Program Execution 127

snapshots in part as exercises, to confirm the partial or full understanding
already gained from earlier sections in this chapter. Necessity for some "back
and forth" perusing within this chapter and also within the Ada program
(Appendix C) is inevitable.

4.5.2. Snapshot 2

Figure 4-14 shows the state of affairs after completion of a call to the
Enter_buy procedure. A new Context Object h~s been linked to the Domain

t

r

Process
Object

,.L operand ---::L
rrl stack ,. rJ

J
Message 1
Object I

local
variables

key values

Root :--
Context)(
o . ~ bJect AE- 1 0

20
30
)(ii-I-+--I
)(
)(

~

Club_
Portfolio
Domain
Object

I

I ~
,

1 ~

,L operand t1
r~ stack ,.,..-

local
variables

key values

Enter_buy
Context
Object AE- ~

3

.--
o _>.-

1 Message
___ Obj ect

...... -+--+ ~

1

)(
)(

Enter_buy L
~nstr. Obj. J I

Constants Data

]

Public
Instr.
Objs.

Obj. Public part of
Portfolio_mgr

our_portfolio 114",-D_o_m_a_i_n_Ob_J=-' e_c_t----l
object

, stoc~_Mkt-:-Info I I stock_Types_and_ I
• DomaIn ObJ. -' Consts. Dom. Obj

~~------------~

Text_io Dom.Obj .

Figure 4-14 Object structure snapshot on entry into the Enter_buy operation of the
Club_Portfolio package. Note that the Process Object now points to the new context and
that the new context has one pointer into the old context and one into the (received) Mes
sage Object.

128 A Programmer's View of the Intel 432 System

Object for Club_portfolio. Notice that the Access Descriptor from the Process
Object to the root Context Object has been replaced with an Access Descriptor

.. to the new Context Object for Enter_buy. (See preceding snapshot.) The root
Context Object has no predecessor context, so its corresponding back-pointer is
deliberately null, and marked "x".

The next two bits of detail worth noticing are the AD that references back
ward to the predecessor context and the AD that references the Message Object
associated with the predecessor context. The AD in slot eight is the return AD
and serves as a backward link in the "dynamic chain" of Context Objects. It
may have return rights, but in no case does it have read or write rights. Thus, it
cannot be used to gain unauthorized access to information in the calling
environment. The other AD of interest is the Current Message AD referring to
the Message Object holding the actual parameters for Enter_buy.

The Domain Object for Club_Portfolio has both a public and a private part.
The reader is invited to study the objects pointed to from this Domain Object
and to compare them with the objects implied from the Ada program and the
discussions earlier in this chapter.

To avoid excessive complexity in this and subsequent snapshots, we adopt
the convention of not repeating the display of the Domain Object that goes with
the predecessor Context Object. Also, we only display the current Context
Object and its immediate predecessor. Static links are ignored. Thus, some of
the filled AD circles in the predecessor Context Object have no arcs emanating
from them since we do not show their respective targets. Generally, these tar
gets have been displayed previously, so the reader can, if need be, trace back
ward to determine the actual reference associated with any previously displayed
AD.

4.5.3. Snapshot 3

Figure 4-15 shows the state of the object structure reflecting execution of a call
on the Record_buy procedure of the Portfolio _Mgr package from Enter_buy
in Club_Portfolio. The Process Object now points to the new Context Object
for Record_ buy.

Access to the Portfolio_Mgr Domain Object, from the new Context Object is
via the Private_AD. The reader is urged to check that this part of the snapshot
reflects the intent of the Ada program.

4.5.4. Snapshot 4

Figure 4-16 illustrates the situation immediately before a call by procedure
Record_buy to the private-part function, Search_for_stock_code. There is
only one change shown from the preceding snapshot: Record_buy has copied its
input reference parameter (AD for the object instance of our_portfolio) into the
new Message Object associated with the Context Object of Record_ buy. This

s

i432 Object Structures for Program Execution 129

Process
ecy_Treas_AD Object I o~_portfolio ~

object

L 1 L operand operand l. ,,...
stack '",... 'r-- stack

, ...

J Message .l- Message
Object Object

local local
variables variables

key values key values

t" ~ ~

Enter_buy
0

Record_buy
context a Context

AE - 1

Object ~-l Object 2
3

~ -
)(

~)(,
r I Private - AD Portfolio] fublic -

Record_buy h Mgr Instr.
Domain Instr. Obj. Objs.
Object I"

I.
Constants Data I

Obj.
Public_AD

!-~

::51 Search for stockl
_Code Instr.Obj.

Public part of
Stock_Types_and_ Purchase_Queue_ I stock_MkClnfo I

Domaln ObJ. Consts. Dom. Obj. Mgr Dom. Obj.

Figure 4-15 Snapshot showing object structure upon entry to Record_buy operation of the
Portfolio_Mgr package.

action is necessary for the Record_buy procedure to transmit its actual parame
ter reference (to our_portfolio) to the Search_for_stock_code procedure.

4.5.5. Snapshot 5

Figure 4-17 shows the object structure for the state that arises as a result of com
pletion of the call to the function Search_for_stock_code. The new Context

I

s

130 A Programmers View of the Intel 432 System

Process
ecy_Treas_AD Object

r our_portfolio r
object

-
L operand 1 ,L operand ;:L
,rJ stack "..1 1 Message .l- ,oJ

stack ,..'"
Message

local
_ Object _ -- Object

local
variables variables

key values key values

t I- ~

Enter_buy • Record_buy
Context ~ Context
Object AE~ it Object AE - 1

2
3

-
)(§)(

~)(

•
I

Private_AD Portfolio_ 1 J~liC Mgr RecorcLbuy h Instr.
Domain ~nstr. Obj. Objs.
Object

1 Constants Uata I -
Public

Obj.
- AD

!: r--

::8"1
Search_for_stock

. - Code Instr.Obj.

Public part of
Stock_Types_and_ Purchase_Queue_ .1 Stock_Mkt_Info

.. Domain Obj. Consts. Dom. Obj. Mgr Dom . Obj. .

Figure 4-16 Object structure snapshot with Record_buy about to execute a call on private
function, Search_foe stock_code.

Object created by the CALL instruction has for its Defining Domain Object AD
a duplicate of the value of Private_Ad (the base of the Portfolio_Mgr Domain
Object) that is in the Record_buy Context Object.

We assume here that no other subprograms are called from
Search_for_stock_code, so we don't bother to display the Message Object for
the Context Object of Search_for_stock_code.

S

1432 Object Structures for Program Execution 131

Process
ecy_Treas_AD Object lour_portfolio

object

-
£ operand :L ,L operand ;L

stack ~

.1 Message .L 'r-' stack 't-'"

local
Object f-

local
variables variables

key values key values

~ I-- Search_for_ ;: -Record_buy -I--

Context I s tock_ code ~
)(

Object
AE- ~ i Context AE- 1 0

2 0
Object 3 0

)(

)(0
)(S)(
)()(,

I 1 Private_AD Portfolio_] fublic
Mgr Record_buy h Instr.

Domain \nstr. Obj. Objs.
Object

Public._AD I Constants Data I
: Obj.

i.- t--

:6"1 f Search for stock
_Code Instr.Obj.

Public part of I Stock_Mkt._Info I stock_Types_and_ Pur chase_Queue_
Domain Obj. Consts. Dom. Obj Mgr Dom. Obj.

Figure 4-17 Object structure snapshot just after entry to the private function,
Search_for _ stock_ code.

4.5.6. Snapshot 6

Figure 4-18 shows the object structure applicable for the case in which
Record_buy has returned from Search_for_stock_code and is ready to issue a
CALL on the public Add procedure of the Purchase_ Queue_Mgr package.

S

132 A Programmer's View of the Intel 432 System

Process
ecy_Treas_AD Object ,our_portfolio f

object

L operand 1 .L operand 11
,J ,.,.., "r-' '"r-stack 1 Message .L stack Message

Object ~ ... Object
local local
variables variables

key values key values

t' ~ ~
~

Enter_buy • Record_buy
Context S Context
Object AE -; 8 Object AE - 1

2

3i 3

:
~ II(

•
I

Private_AD Portfolio I J~bliC - Record_buy h Mgr Instr.
Domain ~nstr. Obj. Objs.
Object

- I, I cons~ants Data
ObJ.

Public_AD
~ ~

==51 I Search for stockj
_Code Instr.ObJ.

Public part of J Stock_Mkt_Info Stock_Types_and_ Purchase_Queue_
Domain Obj. Consts. Dom. Obj. Mgr Dom. Obj.

-""
p

Figure 4-18 Object structure snapshot with Record_buy about to execute a call on the
public Add procedure in the Purchase_Queue_Mgr package using a CALL THROUGH
OOMAIN instruction.

4.5.7 Snapshot 7

Figure 4-19 shows our final snapshot, revealing the state of the object structure
just after entering the Add procedure. The new Context Object is referenced by
the Process Object. The new Context Object in tum references the
Purchase_Queue_Mgr Domain Object. (There is provision in the private part of

i432 Object Structures for Program Execution 133

this Domain Object for Access Descriptors referring to a queue object and to a
queue element.)

Process
Secy_Treas_AD Object

,.L operand ;L
r,J stack rr-' I Message J

Object _
local ~

variables

key values

Enter_buy !'"
Context I
Object

)(

AE- ~ 8
3i-

~
)(
)(
)(
)(

t
I

------private_AD Pur chase_
Queue_Mgr
Domain
Object

PubliC_AD I
!--

I

lour_portfolio I
object

L operand 1. ,. ... stack ,.. ...

local
variables

key values

Record_buy I: -Context
Object AE- 1 0

2 0 3 0

~
0

--f--

0
~

LI I] Add Obj·h Instr.
I

Constants Data I
Obj.

stock_Types_and.... J
Consts. Dom. Obj.

I
0

Public
nstr.
bjs.

Figure 4-19 Object structure snapshot just after entry into the Add procedure in the
Purchase_ Queue_Mgr package.

Again, we assume that no other procedures are called from Add, so we
choose not to exhibit the Message Object associated with the Context Object for
Add.

4.5.8. Section Summary

We have now introduced the "statics" and the "dynamics" of i432 Object
Structures for single-thread-of-control processes. We have not looked at all the

134 A Programmer's View of the Intel 432 System

relevant details, but we have more than scratched the surface. Some of the
details left out here have only been postponed until a later chapter. For the rest,
the reader is commended to other documents listed in Appendix A, or to actu
ally studying the i432 behavior by running programs and observing their
behavior.

We are now well equipped to look at the i432's unifying "request-server
model" , whereby process dispatching and interprocess communication are uni
fied into a relatively simple, effective, and consistent structure. We are also
ready to look at the implementation details of this model-and do this in the
next chapter.

i432 COMMUNICATION
STRUCTURES FOR PROGRAM
EXECUTION

5.1. Introduction

In the preceding chapter we were concerned primarily with the evolution of an
i432 process after it had been created; moreover, we assumed that it was always
active. From that viewpoint, the process itself (and its representation as a Proc
ess Object) was not manipulable. That approach was taken deliberately, but
only to confine the scope of discussion. In this chapter, we are interested in
examining the process in the larger scope of a typical operating environment.
Here we examine the architectural models and mechanisms for the scheduling
and dispatching of i432 processes and the corresponding models and mecha
nisms and for achieving interprocess communication among i432 processes.
(We only view the process after it has been created and defer until Chapter 8
consideration of operating system support structures for process management
such as the explicit creation and destruction of processes.) Before taking a
closer look at these models and mechanisms, we establish a conceptual frame of
reference. In effect, we attempt first a brief review of two major objectives for
modem computer systems.

5.1.1. Process Dispatching and Interp.,ocess
Communication-In General

The initial and still a major objective of current computer operating systems,
whether for uniprocessor or multiprocessor configurations, has been to ensure
effective application of the computer to its workstream. A workstream is a rela
tive term; its meaning has changed during the several decades of computer and
operating system development. For early mainframe computer systems con
trolled by primitive batch operating systems, the workstream was simply a

135

136 A Programmer's View of the Intel 432 System

manually-ordered sequence of computer programs "presented" for execution.
Later, related programs, such as compilations followed by execution, were pro
grammatically linked into steps of program sequences called jobs. For purposes
of resource accounting and control, programs or program sequences were asso
ciated with particular users or user groups. Operating system modules computed
charges for processor time and memory space utilization by user category for
individual user or user group accounts.

When computer systems were implemented with the ability to perform com
putation overlapped with input/output processing, achieving maximum
"throughput" required that more attention be paid to the ordering of jobs in the
workstream. Since such jobs could, by then, be maintained on disk and other
on-line storage, the ordering process was increasingly delegated to the computer
itself through the inclusion of software that could perform job scheduling.
Coincidentally, mUltiprogramming models were developed and implemented
that enabled the scheduling of jobs and job steps to become finer-grained; with
multiprogramming, one job could be started before another was completed.
Moreover, individual job steps of one job could be interleaved with steps of
another job. The different priorities and deadline requirements of jobs and their
individual program components were then taken into account in the formulation
of scheduling policies and their implementation mechanisms. The potential
degree of multiprogramming rose with the addition of extra I/O processors and
eventually the addition of extra CPUs, which called for more sophistication in
scheduling and dispatching algorithms. The superposition of interactive time
sharing requirements, which generally forced ordinary batch processing into a
"background" mode of operation, led to the necessity for multilevel dynamic
scheduling of workstream components; long-term scheduling was applied to the
program components of jobs and short-term scheduling, using time slicing, per
mitted maximum effective interleaving of jobs and job components.

In the models designers used for such purposes, it became natural to exploit
hierarchical relationships such as:

user class > individual user > job > individual program

Finally, as individual programs acquired multitask substructures, the leaf nodes
of the hierarchy became individual processes (e.g., Ada tasks). Thus, dynamic
scheduling could now be applied to the individual tasks of the same program.
The "mix" of work units being scheduled could now include individual tasks or
task subsets of different programs, possibly belonging to different jobs.

The workstreams of the modem mainframe computer system frequently
depend on moment-to-moment outcomes of previous work units and on new
arrivals, some representing predictable real-time demands (for example, in
chemical process control applications) and some arising with unpredictable
demands and frequency (for example, in business transaction processing). To
meet this growth in complexity of workstream, algorithms and implementations

1432 Communication Structures for Program Execution 137

for the scheduling and dispatching of work in computer operating environments
have tended to grow in complexity almost without control-often leading to
disappointing or unreliable performance.

Adding more processors to keep up with growing workloads introduces the
need to synchronize processors propetly over shared object structures. This usu
ally contributes additional complexity to the problem of achieving good overall
resource management. ,

The evolution of algorithms and structures for solving increasingly complex
computer operating systems objectives has guided for several years a similar
evolution in the algorithms and structures required to implement increasingly
more complex user application programs. Today, application programs, espe
cially those that model real world systems, exhibit many of the structural and
functional characteristics of operating systems-vis a vis scheduling and
dispatching. [This observation was first made well over fifteen years ago [18].]

As we have seen from Chapter 3, programs are often decomposed into groups
of related tasks, not all of which need to run at once. When a task is invoked, it
needs to execute. This means the task needs to be put into the workstream
(scheduled) so that it can eventually be bound to a processor (dispatched).

Tasks that are not currently ready to execute represent a pool of future candi
dates for the work stream. While in this future candidate status, tasks must also
be monitored to ensure their proper transition to a ready state. Certain events are
usually recognized for triggering the transition of a work unit from not-ready to
ready. Other events are recognized for triggering other transitions, such as from
ready to actively executing (invoked). In the first category, events like the
arrival of messages serve as a trigger, while in the second category, events like
the freeing-up of a processor may serve as a trigger.

Before a task is invoked, its required input data must be available, often sup
plied by the invoking task. Before a task completes a particular invocation, it
usually must transmit some output data (to some task that may be waiting to
receive it). Keeping track of the input and output data streams (the communica
tions between tasks) for a complex structure of tasks, including some that are
themselves created dynamically, is usually an overwhelmingly complex intel
lectual hurdle for a human programmer. (In the past, system architects have
attempted to master this complexity primarily through the use of shared data
and various synchronization mechanisms; there is very little concurrence today
that indicates complexity has been mastered using these techniques.)

5.1.2. Dispatching and Scheduling-A
Technical Overview

Positioning a work unit into the main workstream is referred to as scheduling
that unit of work. Binding a work unit already in the main workstream to a proc
essor, so it can actually run, is referred to as dispatching it. The term short-term
scheduling usually refers to the frequent repositioning of a work unit in the main

138 A Programmer's View of the Intel 432 System

work stream at the end of a time slice by the recycling scheme just mentioned.
The term long-term scheduling usually refers to the less-frequent repositioning
of a work unit into the main workstream following reassessment analysis; this
often involves substantial computation. (In the i432 model, a process P that is
removed from the workstream for such reassessment, is said to be removed
from the dispatching mix and sent to another process S which performs a long
term scheduling function on P.)

The dispatching and scheduling problems of a computer operating system are
related closely. Low-level work units in the mix such as individual Ada tasks
must be given a fair share of the available processor power, but the decision as to
what is fair often requires dynamic reassessment of the higher-level resource
requirements of the programs or jobs of which such tasks may constitute a small
part.

When a process has used up a certain amount of processor time, it is usually
preempted, that is, forced to become detached from the processor. At this point,
either the task is recycled into the main workstream, thus assuring it of a future
"turn" (i.e., rebinding to the processor), or it is taken out of the main work
stream so that its needs may be reassessed. Various events may trigger the tran
sition of a task (and possibly of the higher level entity of which that task is a
member) to and from the main workstream and reassessment status.

Computer architects have faced difficult challenges in designing systems in
which dispatching and short-term scheduling efficiency are not sacrificed to the
flexibility required for long-term scheduling, and vice versa. As we will see
later in this chapter, the i432 design meets this challenge successfully.

Fortunately, the problem is simplified when using an appropriate message
based communication model for expressing the interactions between related
tasks. Note that the challenge of managing the execution of a complex progrru~
is similar to the challenge of managing the workstream of a general-purpose
computer. For this reason, a "bonus" is earned when using a common simplify
ing model both for organizing the implementation of scheduling and dispatching
of jobs and for organizing the implementation of interprocess communication.

It is the availability of a unifying request/server model that permits us to
embrace a broad objective for this chapter. That is, the model helps us to dis
cuss the full environment of an i432 process as one topic. One panorama, as
illustrated in the dual-state diagram of Figure 5-1, allows us to view all the sig
nificant states and transitions on processes and processors.

The left and right halves of the model suggested by Figure 5-1 provide a glo
bal view of i432 process and processor state transitions, respectively. This
chapter examines the details of this diagram and explains the underlying stra
tegies and mechanisms for implementing the model. Important for its apprecia
tion is understanding how and why processes are also treated as data objects;

1432 Communication Structures for Program Execution 139

Process Scheduling

time slice
exhausted

Short-term scheduling

~ Scheduler
Process

Long-term scheduling

Fault
Process

Fault processing

Processor Dispatching

normal
Dispatch_

Port -

Dispatch_Port
binding

"
process
execution

get normal
work

get work
at a special
dispatching port

processor
level fault

diagnostic
process
execution

get normal
work

.. _I alarm process J
alarm signal execution

'---------~ ... reconfiguration ~
reconfiguration
signal

process
execution

---'---11 .. ~ I CommunIcatIon_Port r----
Interprocess communication

Figure 5-1 Dual state graph' of i432 process scheduling and i432 processor dispatching.
The left half of the diagram describes states of a process, while the right half of the
diagram describes states of a processor.

thus, as a data object, a process can, with the help of the processor, be sent as a
message through a port to another process where it can itself be "processed" as
needed. If the process is sent to a dispatching port, it is executed; if it is sent to
any of the three illustrated communication ports on the right half of the
diagram, it is treated as data by the receiving process.

A model like the request/server developed for the i432 system [14] has no

140 A Programmer's View of the Intel 432 System

doubt benefitted from much earlier research into operating systems principles
[8] [52] [56]. We do not, however, need to digress here to review that history
as the i432 model is rich enough to explain the implementation details of proc
ess management and interprocess communication. The model also serves to
explain many key concepts needed by programmers who wish to mount ambi
tious mUltiprocess systems applications on the i432.

5.1.3. Plan for Remainder of Chapter

In the body of this chapter, we shall first view a process as a schedulable and
dispatchable job. Recall from Chapter 1 we indicated that the i432 initiates
execution by binding processes to processors at Dispatching Ports. To see how
this is done, we will examine Process Objects, introduced in Chapter 4, in rela
tionship to three other i432 hardware-defined system objects, not yet discussed
in the earlier chapters. These objects are known as Carrier Objects, Port
Objects and Processor Objects.

An abstract view of a port reveals it to be merely a queue consisting entirely
of service requests waiting for servers or entirely of servers waiting for service
requests. In the case of a Dispatching Port, the requests represent ready
processes, and the servers represent available processors. In the case of a Com
munication Port, the requests represent messages that are waiting for the
appropriate destination process and the servers represent processes that are wait
ing for messages.

A more concrete view would show that a Port Object establishes (holds or
anchors) a queue of requests or a queue of servers. As a system object, a Port is
always locked during use; that is, it is never accessed by more than one proc
essor at a time. As a consequence, at least one queue at each Port, the request or
the server queue, will always be empty.

The i432 mechanisms and data structure representations needed to accom
plish the binding of a process to a processor at a Dispatching Port will be exam
ined in some detail. In the course of doing this, we will expand our earlier
discussion of Process Objects, revealing some of the postponed details. As
already mentioned, processes that are ready to run are not necessarily given
"full-time access" to processor resources, out of fairness to other processes that
may also be ready to run.

In the i432, short-term scheduling (recycling a job on to its Dispatching Port),
is made an automatic part of the hardware. On the other hand, the decision,
whether or not to so reschedule is based on parameter values inserted by software
into the hardware-recognized system objects. The effective separation of policy,
as software-managed, and mechanism, as hardware managed-vis a vis
scheduling and dispatching-is a major design goal of the architecture of the
i432 system.

We next consider programmatic relationships between processes, that is, pro-

i432 CommunIcation Structures for Program Execution 141

gram structures involving more than one process, as in multitask Ada programs.
We examine the i432 architectural support provisions whereby processes can
send to and receive messages from one another. The corresponding object struc
tures for achieving interprocess communication are examined.

Once again, hardware-recognized Port Objects, and Carrier Objects are used
in conjunction with Process Objects to accomplish the objective of message
based communication. As always, a Port Object is conceptually a queue con
taining either requests or servers (but never both)-where, in this case, the
requests, which are essentially messages, are bound to servers, which are proc
esses. At this point in the exposition, we are able to suggest a possible means
for executing some simple Ada task entry calls-and we do this.

After introducing a few further representation details on Port and Carrier
Objects, how the i432 hardware instructions use them and how the operating
system software augments this planned use, we elaborate the request/server
model, and then provide an interim review of the unifying system ideas. All this
prepares us to examine some of operating system facilities available to i432
users for constructing relatively efficient systems applications which draw their
power and clarity from the use of message-based, inter-task communication.
This discussion closes with observations on the equivalence of the Ada rendez
vous and the i432 port-based communication operations.

We close the chapter by considering a few simple example applications, and,
finally, we revisit the investment club program to consider ways to solve the
bottlenecks implied in the multitasking structure of Figure 2-5. This is done by
explicit use of the more efficient i432 interprocess communication mechanisms
(made accessible to users through operating system modules), in place of direct
application of tasking strategies that rely on the Ada rendezvous. At the end of
this chapter, the reader should have a better picture of the tradeoffs between the
two proposed solutions for the bottleneck problem.

5.2. Processes as Scheduleable and
Dispatchable Units of Work

In the conceptual-level introduction for this chapter, we suggested how a proc
ess becomes bound to an i432 processor in a two-step sequence; first scheduling
and then dispatching. One may wonder if it is really wise to separate these
semantics in this way. Is an "overkill" implied here? Could not the system
architect identify some shortcut leading to a more efficient means for switching
processes? We jump ahead here to indicate a much lower level view of these
actions, so that the reader can begin quickly to surmise why it is that short-term
scheduling and dispatching can each be accomplished so efficiently within the
i432 architecture.

1. Recall that scheduling amounts to placing, at its position of relative impor-

142 A Programmer's View of the Intel 432 System

tance, the representation of a process P on the request queue portion of a
Dispatching Port. The representation of a process is a Carrier Object that in
tum refers to the Process Object representing process P.

The role of a Carrier Object is, at fIrst view, simply a convenient queueing
link. However, we have more to say about it later on when we explain how,
as a purely hardware action, a process is positioned in a Dispatching Port's
request queue.

2. Dispatching is the binding of a request (process) at the head of the request
queue portion of a Dispatching Port to a server (processor). Dispatching is a
very effIcient operation on the i432; it is normally accomplished simply by
moving a pointer, extracted from the queue entry of the selected request, to a
proper position in the server.

The request is the representation of a process and the server is a representa
tion of a processor. The pointer (Access Descriptor) for the request is a refer
ence to the Carrier Object for the process, and is copied into a pre specifIed
slot in the object structure representing the processor. In the i432 implemen
tation, a processor representation is, by symmetry, similar in structure, con
sisting of a Carrier Object containing an Access Descriptor that references a
Processor Object) The copied AD is actually deposited in the processor's
Carrier Object.
[Each physical i432 processor is associated at all times with a distinct Processor
Object. This object may be viewed as a storage image, or virtual processor, that
reflects the state of the physical processor. The Processor Object also contains vari
ous global control values for use by the processor, such as a set of alternative
Dispatching Ports for use when special conditions arise.]

Dispatching is achieved in the hardware as part of an automatic sequence ini
tiated whenever a processor terminates service for one process (for whatever
reason) and is guided, via certain internal control information, to select work
(a new process) from some selected Dispatching Port.

Figure 5-2 is a schematic of the Carrier Object and the Process Object that it
references. This fIgure illustrates the structure of a process sent as a request to a
Dispatching Port.

The same structure is used to represent an enqueued (or enqueueable) server.
Later, we will see how this scheme simplifIes matters without loss of perform
ance. Figure 5-3 shows the (symm~trical) representation of a processor server
for a Dispatching Port.

The only discernible difference, at this schematic level, between the structure
of Figure 5-2 and that of Figure 5-3 is the receptacle slot in the processor's Car
rier Object, In_Message_AD, which, at binding, receives a copy of a request
ing process' Request_AD. Figure 5-4 shows the relationship between a physical
processor, its virtual representation (the Processor Object), and a process
currently bound to it.

i432 Communication Structures for Program Execution 143

I Process AD . ..
Carrier Object 0 __

Process Object

Figure 5-2 Schematic of a (Process Object, Carrier Object) pair. The Process and Carrier
Objects are mutually cross-referenced.

[Ports have fixed-length request queues. Until an overflow of this queue is reached,
each queue entry amounts simply to a reference to a structure like that shown in Fig
ure 5-2. When more entries are required, the "overflow" is accommodated in a linked
list of such request structures, the head element of which is anchored in the Port Object.
Links in the chain are embedded in the individual Carrier Objects.

Logically, a Carrier Object may be reglll"ded as an extension of the' 'carried object" ,
in this case the Process Object. The primary reason for separating a conceptual process
into a Carrier Object part and a Process Object part is related to efficient memory
management. Carrier Objects are "factored out of" Process Objects in order to minimize
the amount of information required to be present in physical store while performing fre
quent searches of, or manipulations on, enqueued requests or servers.]

Server AD .. ,
In_Message_ADo

0-

~ Processor AD

Carrier Object
0-~

Processor Object

Figure 5-3 Schematic of a (Carrier Object, Processor Object) pair. The pair of objects are
mutually cross-referenced. Binding to a request occurs when the slot marked
In_Message_AD in the Carrier Object receives a copy of RequesCAD.

144 A Programmer's View of the Intel 432 System

I i432 ~ .
physical

j

Processor
processor Object

0-~ R

+ o- r--,

Processor U~ Process
Carrier 0- Carrier
Object Object 0-1 0-

Process

~
Object

S 0

i 432 Memory

Figure 5-4 An i432 processor and its representation, the Processor Object R bound to a
Process Object S through the respective Carrier Objects.

5.2.1. Short-Term Scheduling Viewed as
Communication

Short-tenn scheduling on the i432 is achieved by using exactly the same mecha
nism that is used for interprocess message communication on the i432. To
accomplish the latter, a process sends a message (request) to a Communication
Port where the request will eventually be bound to a process (server). Short
tenn scheduling is accomplished by sending a process (request) to a Dispatching
Port where the request will eventually be bound (dispatched) to a processor
(server).

5.2.2. Long-Term Scheduling Viewed as
Communication

Consider the analogous case of long-tenn scheduling, where the future claim of
some process, call it A, on processor resources is to be reassessed. Here, the
message is again the process in question (A). However, now process A is
enqueued at a Communication Port where the server is not a processor, but a
system process whose responsibility it is to decide on the fate of A. The same
communication model serves for both long-tenn scheduling and short -tenn
scheduling so long as the structure of the server is predefined to contain a recep
tacle slot for a message AD.

And so, it should not be surprising that the Carrier Object structure for a
process and for a processor is actually identical. Although we at first refrained

I-

1432 Communication Structures for Program Execution 145

from showing it, there is also an In~Message_AD slot in the process' Carrier
Object (see Figure 5-3). In other words, depending on its role at the time, a
process structure, headed by its own Carrier Object, may represent a request for
service or a server. We will see a number of examples of this symmetry, of
interest to application programmers, later in this chapter.

5.2.3. Port Service Disciplines

We have not yet indicated how short-term scheduling is achieved in an efficient
manner-in part because we have not yet disclosed details on the queueing dis
ciplines associated with Port Objects. We, therefore, digress here to fill in some
details on port disciplines.

At the highest conceptual level, aPort Object is simply a queue. Although
we sometimes distinguish between Communication Ports and Dispatching
Ports, there is really very little difference between these two forms of port on
the i432; the only real difference is the form of the requests and servers that are
enqueued at a port. Recall that the characteristics of port usage ensures thai
there will never be both requests and servers queued at the same port. At any
instant in time a port is a queue of requests or a queue of servers.

If two or more process servers arrive at a Port before a request arrives, they
are always enqueued in FIFO order-on the theory that servers, if more than
one, are essentially indistinguishable.

If two or more requests arrive before a server arrives, they are enqueued
according to a service discipline for that Port, which is set by system software.
That discipline is encoded in the Port as one of four possible hardware-sensed
service nwdes. Among these are FIFO-mode (first in-first out) and Priority
mode. [The latter implies ordering arriving requests according to their priority
levels, and within a given priority by FIFO. A request of highest (absolute)
priority goes at the front of the queue. The priority value of an arriving process
request is actually supplied in the request's Carrier Object.]

The discussion in the paragraph above holds only in case the request queue at
a port does not "overflow." Every request queue (but not a server queue) asso
ciated with a port has a fixed size N that is given when the port is created. After
N requests have arrived before the arrival of a server, the next request that
arrives (before a server arrives) will cause the request queue to overflow.
Instead of this next request being queued in the normal fashion, the carrier of
the process that issued the request will be enqueued in a special "overflow
queue" associated with the port, and the process blocks.

The service discipline for the overflow queue is FIFO rather than the service
discipline associated with the queue. However, overflow requests compete for
service as soon as they enter the fixed.part of the request queue. Thus, a request
arriving after N unserviced requests can never preempt the first of the N unserv
iced requests, regardless of its priority. Once the first of these requests becomes
bound to a server, however, a slot in the fixed part of the request queue is freed
up. At this time, the first of the overflow requests is inserted into the fixed por-

146 A Programmer's View of the Intel 432 System

tion of the queue in its correct position, according the the service discipline of
the queue; this position may well be the head of the queue. Mter the overflow
request is placed into the fixed part of the request queue, the freed process car
rier is sent to its specified "second port" which will be a Dispatching Port.

A special service mode is used with Dispatching Ports, called Prior
ity/Deadline. In this mode, arriving requests are ordered by priority level, and
within the same priority level by a deadline value which is a time span (from
the present) within which that request, which in this case is a process, must be
dispatched.

If a processor tries to service (dispatch) a process from a Dispatching Port and
the port is empty, the processor's Carrier Object is enqueued and the processor
goes into a "sleep" state. It can only be awakened by an interprocessor com
munication signal (executed by another processor.) Awakening will occur when
a request (Process Carrier) is next sent to that port. At this point, the executed
microcode of the sending processor checks if there is a "sleeping" Processor
Carrier waiting at the port to receive a Process Carrier request. If so, the exe
cuted microcode puts the AD of the incoming Process Carrier into the Processor
Carrier Object and then awakens (by a special interprocessor "wakeup" signal)
the physical processor associated with the Processor Carrier.

The i432 also defines a fourth kind of port, called a Delay Port, that is used
with the DELAY instruction. It allows a process to suspend itself for at least
some time x, where x is specified in the DELAY instruction.

5.2.4. Scheduling Viewed as Communication

We are now almost prepared to see in more detail how the short-term schedul
ing of a process is accomplished. One more "piece of the puzzle" must be
exposed. When a process is created, not only is its Process Object created, as
discussed in Chapter 4, but also its Carrier Object is created and cross-coupled
with it in the structure suggested in Figure 5-2. The full structure of the Carrier
Object includes a data part and an access part, as in the format of Figure 4-4.

Short-term scheduling is performed automatically by the i432 hardware using
the standard model of interprocess communication. Each time the service period
(time slice) for an executing process is used up, the executing process is
automatically preempted. As part of this preemption, the processor checks
whether the period count for the process (a decreasing counter) is still greater
than zero. If so, the process is re-sent by the processor as a request to a "second
port" specified by the Process Carrier, according to the priority and deadline
values found in the process' Carrier Object. Normally, when the period count is
non-zero, the "second port" specified by a process carrier is the process'
Dispatching Port; however, when the period count becomes zero the "second
port" specifies a special long-term scheduling port. This accomplishes short
term scheduling as a hardware operation done in conjunction with the preemp-

1432 Communication structures for Program Execution 147

tion step. The two short-term scheduling parameters, priority value and dead
line value, are placed into the data part of a process' carrier by the operating
system. Both the service period and period count values are scheduling parame
ters that are placed in the Process Object data part as a consequence of perform
ing long-term scheduling on a process.

Long-term scheduling is performed by the i432 operating system software.
Again, the standard model of interprooess communication is used to achieve the
scheduling function. Recall that, during preemption, if the period count was
detected to have dropped to zero during dispatching, then the "second port" of
the Process Carrier is set to a long-term scheduling port. Following this, the
next preemption of the process will result in the preempted process being sent to
the long-term scheduling port rather than to its (short-term) dispatching port.
Eventually the preempted process will be bound as a message to a server proc
ess S at the long-term scheduling port. The process S will perform the long-term
scheduling of the preempted process based on a reassessment of its resource
requirements.

5.2.5. Alternative Dispatching Ports of a
Processor

As suggested in Figure 5-1, when a processor-level fault occurs, the faulting
processor FP is sent as a message to its Diagnostic_Port. A non-faulting proc
essor NFP, alerted to this event, is switched from its normal Dispatching_Port
to serve at this Diagnostic_Port. When other unusual system events are
detected, a non-faulting processor is automatically switched to serve at one of
two other special service ports: the Alarm_Port or the Reconfiguration_Port.
Messages received by processor NFP at these service ports amount to alterna
tive workstreams for NFP. We are now prepared to understand how this switch
ing of a processor from its ordinary workstream to an alternative workstream (at
the Diagnostic_Port, Alarm_Port, or Reconfiguration_Port) is accomplished
within the framework of the dispatching mechanism already described.

When created by software, each Processor Object is associated with, not one,
but four candidate workstreams. These are the three alternative workstreams
listed above, together with the normal workstream. Each Processor Object has
four pairs of prespecified Access Descriptor slots, one pair for use with each of
four dispatching ports corresponding to the four workstreams, and one addi
tional Access Descriptor (Current Processor Carrier AD). One AD in each pair
refers to the dispatching port, and the other refers to a corresponding Processor
Carrier Object. The latter can itself be bound to a Process Carrier representing a
process currently bound to the processor via that Port. The Current Processor
Carrier AD, which refers to the Processor Carrier that is paired with the

148 A Programmer's View of the Intel 432 System

currently used dispatching port, is loaded with each change in the processor's
"Dispatching Mode."

When one of the hardware events occurs, requiring a processor to switch to a
particular alternative workstream (a new Dispatching Mode), an interposed
hardware scenario proceeds roughly as follows:

The hardware saves state infonnation of the currently executing process (A)
in the Current Context Object and Process Object, as appropriate. Then, the
Processor Object's Current Processor Carrier Object AD is loaded with a copy
of the AD for the Processor Carrier paired with the AD for the dispatching port
to be used next. (Note that the Process Carrier for process A remains linked to
the Processor Carrier Object.) The next step taken depends on whether or not
the newly-current Processor Carrier happens to be bound to a Process Carrier
for some process B:

• If no Process Carrier is currently bound, this means that a new work unit
must be found at the corresponding dispatching port. (That is, a dispatching
cycle must be entered. The Processor Carrier is sent to the proper dispatching
port where it can become bound to a new Process Carrier. If no Process Car
rier is currently enqueued at that port, then the Processor Object will itself be
enqueued as a server-to await the arrival of a Process Carrier.)

• If there is a Process Carrier currently bound to the Processor Carrier, then the
hardware skips the aforementioned Dispatching Cycle, and execution
resumes (or commences-as the case may be) in that bound process (B).

We see from the above scenario that preemption of processes from one
workstream in favor of processes from another workstream, for whatever rea
son, is dealt with rather simply by the hardware. The strategy is based on pro
viding in the Processor Object the needed ADs that refer to the preassigned set
of Dispatching Ports and to the preassigned and pre-created set of corresponding
Processor Carrier Objects.

Those wishing to see more details on the content of the Processor Object may
consult the i432 Architecture Reference Manual.

5.2.6. A Second Look at a Process Object Structure

We are now prepared to take a second look at the Process Object in order to dis
cuss the items in it that were left hidden in Chapter 4. This will prepare us for
expanding on interprocess communication in the next section. The discussions
in this chapter have already provided the motivation for a number of the addi
tional details we discuss here.

In Section 4.2 we described the contents of five of the processor-defined AD
slots in the Process Object. As offset from the base of the object, these are:
the PSO AD, Object Table AD, Claim Object AD, Current Context AD, and
the Globals Object AD. Continuing from here, the additional slots and their
functions are:

1432 Communication Structures for Program Execution 149

• Process Carrier AD. Each process has an associated Carrier Object, used
when enqueuing the process as a request at a Port. The Process Carrier AD
refers to that Carrier Object.

• Dispatching Port AD. When a process is created, system software creates a
distinct Dispatching Port object for the process and initializes certain values
within this object, for example a set of dispatching parameter values. The
Dispatching Port AD refers to this newly created object.

• Scheduling Port AD. A process, upon creation, is also associated with a dis
tinct port for purposes of long-tenn scheduling. The Scheduling Port AD
refers to that port. It is to this port that the process is sent, as a request, when
it must be rescheduled.

• Process Fault Access Area. The slots in this area receive copies of key state
information, such as the Current Message AD, Current Port AD, Current
Carrier AD, and Surrogate Carrier AD. Information is deposited here during
execution of an interprocess communication instruction. As we will see in the
next section, such instructions require many microcycles to complete and
generate more than the usual amount of intermediate state information. If the
instruction completes successfully, this area is nullified upon termination of
the instruction. If it faults at some point (during some intermediate state), the
information in this area is used by the software to complete the instruction.

• Fault Port AD. A process, upon creation, is also associated with a distinct
port for purposes of fault processing. The Fault Port AD refers to that port. It
is to this port that the process is sent, as a request, when a process-level fault
in the process requires processing by a fault-handling process.

5.3. i432 Interprocess Communication

The i432 architecture provides a state-of-the-art set of hardware-supported
instructions that accomplish interprocess communication. These instructions
represent a richer set than is needed simply for executing intertask communica
tion in Ada programs. Nevertheless, some of the first applications of these
primitives to be shown here are those that may explain how some intertask Ada
calls may be implemented.

There are six principal instructions for sending and receiving messages, three
send instructions and three receive instructions.

SEND
RECEIVE

CONDITIONAL SEND
CONDITIONAL RECEIVE

SURROGATE SEND
SURROGATE RECEIVE

150 A Programmers View of the Intel 432 System

All send and receive operations are asynchronous. For those unfamiliar with
the significance of asynchronous operations, we offer the following review. By
an asynchronous send operation we mean that a process sending a message
needn't depend on the speed of execution of a potential receiver process. In
general, the sender may send many messages without knowing (or even caring)
whether or not any of these messages are ever actually received. The receiver,
in fact, may not yet be ready to receive a message at the time the sender issues
the send instruction. By an asynchronous receive operation, we mean that a
process may issue a receive instruction without depending on the speed of exe
cution of the sending process. In fact, the receive instruction may be issued
before the corresponding send instruction.

The first two instructions, SEND and RECEIVE, may be taken as the "base"
set. The others may be understood somewhat easily in terms of these two. Ada
programmers can call (inline) procedures within an operating system package
that will result in a direct, one-for-one translation of the procedure call state
ment into one of the six instructions given above. (See: Reference Manual for
the Intel 432 Extensions to Ada, as cited in Appendix B.)

5.3.1. The SEND and RECEIVE Instructions

SEND and RECEIVE carry the semantic connotation of "blocking send" and
"blocking receive", respectively, because a side effect of each is that the proc
ess issuing one of these instructions, is sometimes forced into a "blocked"
state, pending completion of the instruction .

• The SEND instruction specifies two operands: a Port Object AD and a Mes
sage Object AD. These operands indicate a port at which to enqueue the mes
sage as a request. As mentioned earlier, each Port Object incorporates a
fixed-length request queue. We consider here two subcases, one that leads to
immediate completion of the instruction (fixed length request queue not full)
and the other that leads to blocking of the issuing process (fixed length
request queue full). For each subcase we assume, for the sake of simplicity,
that the governing port discipline is FIFO.
1. The fixed-length request queue at the designated port is not full. In this

case, the designated message_AD object is placed in the fixed length
queue in FIFO order, thereby completing the instruction with rio further
effect.

2. The fixed-length request queue at the designated port is already full. In
this case, the hardware causes the process to become unbound from its
processor, and the process' carrier is appended to an oveiflow extension of
the request queue. The process that issued the SEND is thereby blocked.
The appended request has the structure shown in Figure 5-5. (The freed

1432 Communication Structures for Program Execution 151

processor goes automatically to its normal dispatching port in search of
another job.)

OVerflow
Chain_AD ..

, Message Object
o-r-

OUt_Message_ADo

Process AD
Next_Carr. _AD 0 --.

Carrier Object
0-

Process Object

I--

Figure 5-5 Schematic of request structure for a blocked SEND instruction. The
message_AD specified in the SEND instruction is moved to the prespecified slot in the
Carrier Object, marked OuCMessage_AD.

[The data structure details of a Port Object have not yet been described, so the
reader may well wonder how this is done. These details are actually not significant
for us, but they can be examined by consulting the i432 Architecture Reference
Manual.]

If more than one such "overflow request" arrives at the same port, then
the multiple blocked processes are linked through the Carrier Objects of
the blocked processes. The head of such an overflow chain is always
anchored to a pre specified position within the Port Object.
When a server anives at a port, regardless of whether or not an "over
flow" condition exists, the head message AD entry of the fixed-length
queue is bound to the server. This releases a slot in the fixed-length queue.
The (always FIFO) first overflow queue entry is then detached from the
overflow chain, and the message_AD in the Carrier Object component of
the overflow queue entry is extracted and inserted in the freed queue slot
of the fixed-length queue. The detached queue entry (a carrier, represent
ing a process) is then forwarded, using the second_port mechanism, to the
request queue of its proper Dispatching Port (or Scheduling Port), thus
unblocking the previously queued process.

152 A Programmer's View of the Intel 432 System

The second port mechanism is actually a significant (and general) feature
of the i432 architecture; it is used to unblock a process that has become
enqueued by any send or receive operation. There is a pre specified slot in
every Carrier Object, known as the Second Port AD. The Carrier Object
for a process A has that slot preloaded with a copy of the Dispatching Port
AD for process A. And so, when A issues a SEND (or a RECEIVE)
instruction and then becomes blocked, the processor can later reschedule
A as part of the unblocking operation. No additional i432 instructions need
to be executed to accomplish this action. (For the SEND and RECEIVE
instructions, the second port specification is implicit. Later, we will see
that for the SURROGATE SEND and SURROGATE RECEIVE instruc
tions, the second port specification must be explicitly provided.)

• The RECEIVE instruction simply specifies a port at which to pick up a mes
sage. The receptacle slot does not need to be specified because it is implicit
in the architecture that a received message_AD is deposited in the prespeci
fied slot of the current Context Object. (This is the slot referred to in Section
4.3.1 as Message Object AD.) Again, there are two subcases to consider, one
that leads to immediate completion of the instruction (at least one request
enqueued at the designated port) and the other that leads to the blocking of
the issuing process (no requests at the designated port.)

1. There is at least one request enqueued at the designated port. In this case,
the message_AD at the head of the request queue is extracted from the
port and assigned to the proper slot in the Context Object of the process
that issued the RECEIVE operation.
Note that when there is at least one enqueued request at a port there can be
no servers also enqueued at that port. This is because there is strict adher
ence to a locking discipline governing each access of a port, which
ensures that only one processor at a time may use the same Port Object.
For example, if there is one enqueued request, then only the process that
next locks that port can access it. If that process is a server, then it will
become bound to the request. Only after that use of the port can another
server become enqueued at the port. (Similar reasoning should convince
the reader that if there is at least one server enqueued at a port, there can
be no requests also enqueued at the same port.)

2. There are no requests enqueued at the designated port. This condition
leads to the blocking of the issuing process. Its Carrier Object is enqueued
on a linked list of such servers that is anchored to the Port Object. Mter
enqueuing the current process' carrier, the processor revisits its Dispatch
ing Port for another job. Figure 5-2 illustrates precisely the structure of an
enqueued server process awaiting the arrival of a message, so we need not
repeat it here. (One has only to change the name of the root AD from
"Request_AD" to "Server_AD".)

1432 Communication Structures for Program Execution 153

When the enqueued server entry reaches the head of the server queue, it
will become unblocked upon arrival of the first subsequent message. The
SEND instruction supplying the new message_AD for that port causes the
sent message._AD to be deposited in the Context Object of the enqueued
process at the front of the server queue. The enqueued server entry is then
detached from the queue and forwarded to its proper Dispatching Port.
(This unblocking is accomplished using the implied Second Port AD
found in the Process Carrier-as described earlier in the explanation for
the SEND instruction.)

An obvious application of the SEND and RECEIVE instructions in the com
piled version of an Ada program is . for implementing the execution of an
"unconditional accept" statement within a server task. Recall from Section
3.2.3, that an unconditional accept statement is one which requires the task to
wait for a rendezvous (indefinitely) in case there are no task calls pending at
entry E associated with this accept. Therefore, implementation of an uncondi
tional accept E could be defined as follows: Associate each entry E of a task
with a port E-INIT. Issue a RECEIVE instruction for port E-INIT and, upon
completing it, perform the body of the accept statement. Finally, issue a SEND
instruction to port E-RESPOND (to be described below).

A corresponding call of entry E within another task could be implemented as
follows: Associate each entry E that is potentially called by a task with a port
E-RESPOND. Issue a SEND instruction for port E-INIT and, upon completing
it, perform a RECEIVE instruction for port E-RESPOND. Given this imple
mentation of the entry call and accept statements, note that port E-RESPOND
never contains more than one server. This protocol is suggested in Figure 5-6,
where the arrows indicate the direction of message flow.

Port 1

Caller taskl :-
~

Server task

Figure 5-6 Structure of a two-way communication channel between a caller and a server
task. The caller task issues a SEND, RECEIVE sequence and the server task issues a
RECEIVE, SEND sequence.

154 A Programmer's View of the Intel 432 System

Note that the Ada rendezvous semantics suggest that a calling task should be
blocked until completion of the rendezvous. Implementing a task call using a
blocking SEND, RECEIVE sequence, therefore, harmonizes with this intent.

5.3.2. The CONDITIONAL SEND and
CONDITIONAL RECEIVE Instructions

These two instructions are provided to permit a process to avoid becoming
blocked during a send or receive operation. Each of these instructions specifies
one additional operand, a boolean variable, which is set true if the instruction
has succeeded (i.e., message enqueued at port) and is set false if it has failed
(i.e., instruction has no effect). In all other respects, the semantics of these
instructions are identical with those of the simple SEND and RECEIVE instruc
tions described above.

To decide whether to abort the attempt and set the boolean false, the
hardware has merely to test, in the case of the send operation, whether or not
the request queue at the specified port is full, and in the case of the receive
operation, whether or not the request queue at the specified port is empty.
Succeeding instructions can test the value of this boolean to determine the out
come of a preceding CONDITIONAL SEND or CONDmONAL RECEIVE
instruction.

The most obvious application for the CONDmONAL RECEIVE instructions
is for polling. For example, when polling one or more ports for a message at
any of them, one might use a sequence of CONDmONAL RECEIVEs.

An interesting application that uses both the CONDmONAL SEND and
CONDmONAL RECEIVE occurs in the efficient management of a situation in
which multiple processors (or processes) are reserving and later releasing
objects that are all of the same form. An efficiency problem can arise with
respect to the garbage collector if the processes are reserving and releasing the
objects at an extremely high rate of speed; in releasing objects the processes can
generate garbage so rapidly that the garbage collector falls far behind and the
system becomes hopelessly clogged with "garbage" objects. The situation can
be relieved somewhat by locally managing a pool of objects that can be
reserved for a period of time by one of several processes and later explicitly
returned to the pool for recycling.

One can think of this scheme as providing an "object buffer" outside the gar
bage collection mechanism that "protects" a system from becoming clogged
during times of high activity with respect to objects. The scheme works very
well in offloading the garbage collector during times of high activity; during
times of low activity the garbage collector has no difficulty keeping up with the
generation of "garbage" objects. The design challenge is to devise a pool
management scheme that functions well during times of high activity, functions
well during times of low activity in which the pool may be empty for long
periods of time and, finally, ensures that the pool does not grow without bound.

1432 Communication Structures for Program Execution 155

From these requirements, it is easy to see that (1) a process should never wait
for the return of an object to the pool if the process requests an object and finds
the pool empty and (2) the size of the pool should be bounded.

The management of the pool relies on CONDITIONAL SEND and CONDI
T�oNAL RECEIVE. In particular, the pool is represented by a port with a
fixed-length queue size of N. A process that requires an object from the pool
issues a CONDITIONAL RECEIVE· from the port. If an object exists in the
pool (i.e., is queued at the port) then the process is bound to the object and the
process continues. If the pool is empty (i.e., no objects are queued at the port)
then the process does not block and can request that an object be newly allo
cated from a heap. When a process wishes to return an object to the pool it
issues a CONDITIONAL SEND to the port with the object as the message. If
the pool is not full (i.e., less than N objects are queued at the port) then the
object is enqueued at the port to be later bound to a process that requests an
object. If the pool is full (i.e., the fixed-length queue at the port is full) then the
process does not block and can, by destroying its Access Descriptor to the
object, ensure that the object will later be reclaimed by the garbage collector.

[Neither the CONDITIONAL SEND nor the CONDITIONAL RECEIVE instruction
is sufficient for simulating Ada's conditional entry statement if we use the implementa
tion for the accept statement discussed at the end of section 5.3.1. We now proceed to
show why this is true. The conditional entry statement was not discussed in Chapter 3; its
syntax is as follows:

conditional entry call::=
select

entry_call [sequence_of_statements]
else

sequence_of_statements
end select;

The informal semantics are: "A conditional entry call issues the entry call if and only
if a rendezvous is immediately possible" [2].

The use of a CONDITIONAL RECEIVE instruction by a requesting (calling) task can
not be used to implement Ada's conditional entry since this would require that the server
(called) task be able to distinguish between its having been called by a conditional entry
or an unconditional entry. This requirement would exist because in the implementation
given in section 5.3.1, the server expects the requesting (calling) task to begin a rendez
vous by sending a message rather than by receiving a message. Neither can the CONDI
TIONAL SEND instruction be used to implement the conditional entry. This is because
the CONDITIONAL SEND instruction succeeds (and therefore initiates an entry) if and
only if a slot is available in the fixed-length queue of a port. This does not necessarily
ensure that a server is waiting at the port to immediately process the request.]

5.3.3. The SURROGATE SEND and
SURROGATE RECEIVE Instructions

The SURROOATE SEND and SURROOATE RECEIVE instructions are
among the most interesting and innovative instructions in the entire i432 reper
toire. The SURROGATE SEND instruction allows a process to send a message

156 A Programmer's View of the Intel 432 System

to a port without the risk of itself being blocked. Similarly, the SURROGATE
RECEIVE instruction allows a process to wait for a message at several ports
without the risk of being blocked at some port before all the waits have been
issued. Note that CONDITIONAL SEND (CONDITIONAL RECEIVE) can be
used to obtain the effect of SURROGATE SEND (SURROGATE RECEIVE),
but the implementation involves polling, or "busy waiting", and is not nor
mally considered an efficient solution to the problems solved by SURROGATE
SEND (SURROGATE RECEIVE).

The risk of becoming blocked is avoided by automatically delegating that risk
to a surrogate process. As a byproduct in studying the SURROGATE SEND and
SURROGATE RECEIVE, we can gain added appreciation of the Carrier Object
and its potential as an important new data type for computation structures.

Normally, a conceptual process in the i432 is represented as a Process Carrier
Object and a Process Object, each cross-referencing the other. However, the
i432 also supports the concept of a surrogate process: a Carrier Object existing
alone, without a corresponding Process Object. Under certain circumstances, to
be revealed in this section, a surrogate process behaves exactly as does a proc
ess, with all the privileges normally enjoyed by a process. To emphasize its
role, we will refer to a Carrier Object representing a surrogate process as a Sur
rogate Carrier. We study the role of a Surrogate Carrier throughout the rest of
this section.

With this introduction as background, we are now ready to explain the SUR
ROGA TE SEND and SURROGATE RECEIVE instructions .

• The SURROGATE SEND instruction specifies, in addition to a Port Object,
hereafter referred to as "First_port", and a Message Object AD, two more
operands:

• A Carrier Object -spawned to serve as a surrogate for the process that
issued the instruction, and in doing so to convey the Message Object AD to
First_port and to accept the risk of becoming blocked in case First_port's
fixed-length request queue is full .

• A Second_port Object-to which the surrogate will be sent as a message
and become enqueued as a request, after delivering Message Object AD at
the First_port.

The action of SURROGATE SEND is specified as follows:

The specified Message Object AD and Second Port AD operands are both
placed in the Surrogate Carrier object at prespecified slots. The Surrogate
Carrier is then treated by the hardware in a manner analogous to how it would
be treated if it were the carrier of a process that had executed a SEND instruc
tion to the first port. That is, the Surrogate Carrier either immediately
enqueues its Message Object AD in the fixed-length queue of the first port, or
is blocked (linked into the chain of other blocked carriers), until it is able to

i432 Communication Structures for Program Execution 157

enqueue its message in the fixed-length queue. In either case, a server will (in
normal circumstances) eventually accept the message. Finally, after the Sur
rogate Carrier has eventually managed to enqueue its message in the fixed
length queue of the first port, the Surrogate Carrier is sent as a message to the
second port. Recall that the Second Port AD resides within the Surrogate Car
rier. The process that issued the SURROGATE SEND instruction always
resumes execution at completion of the instruction; a process that issues a
SURROGATE SEND instruction is never blocked as a result of that instruc
tion. Completion of the SURROGATE SEND instruction is defined as the
point at which the Surrogate Carrier has become enqueued as a request in the
fixed-length queue of the second port or the point at which the Surrogate Car
rier has become blocked at either the first or second port, whichever comes
first.

• Once one understands the SURROGATE SEND instruction, the semantics
for SURROGATE RECEIVE becomes quite easy to grasp. This instruction
specifies, in addition to a First_port, the same two additional operands as
specified in SURROGATE SEND, namely:

• A Carrier Object-spawned to serve as a surrogate for the process that
issued the instruction, and in doing so to wait to receive a message at
First_port and to accept the risk of becoming blocked in case First_port's
request queue is empty .

• A Second_port Object-to which the surrogate will be sent to deliver
itself as a request, with the received Message Object AD embedded within
it.

The action of SURROGATE RECEIVE is specified as follows:
The Second Port AD operand is placed in the Surrogate Carrier Object at a
prespecified slot. The Surrogate Carrier is then treated by the hardware in a
manner analogous to how it would be treated if it were the carrier of a process
that had executed a RECEIVE instruction from the first port. That is, the Sur
rogate Carrier either immediately receives a Message Object AD from the
fixed-length queue of the first port, or is blocked (linked into the chain of
other blocked carriers), until it is able to receive a messag~ from the fixed
length queue. In either case, the Surrogate Carrier will (in normal cir
cumstances) eventually receive a message. At this point, the Surrogate Car
rier, carrying the message that it just received, is sent as a message to the
Second Port. Recall that the second port AD resides within the Surrogate Car
rier. The process that issued the SURROGATE RECEIVE instruction always
resumes execution at completion of the instruction; a process that issues a
SURROGATE RECEIVE instruction is never blocked as a result of that
instruction. Completion of the SURROGATE RECEIVE instruction is
defined as the point at which the Surrogate Carrier has become enqueued as a

158 A Programmer's View of the Intel 432 System

request in the fixed-length queue of the second port or the point at which the
Surrogate Carrier has become blocked at either the first or second port,
whichever comes first.

Useful applications of i432 SENDs and RECEIVEs, including the SURRO
GATE instructions, are bound to be numerous. One can use these instructions
directly by issuing calls to (inline) procedures implemented within a special,
system-supplied Ada package. Calls to these procedures are compiled as i432
SEND and RECEIVE instruction forms. In Section 5.5 we show how this is
done. Here we merely sketch one or two possible applications for the SURRO
GATE instructions.

In the remainder of this subsection we choose an instructive application for
each of the SURROGATE operations.

• For SURROGATE RECEIVE we choose as the application a simplified
model of the Ada select statement.

• For SURROGATE SEND we choose as the application a user-tailorable
priority message system.

Although the instructions generated by the i432 Ada compiler to represent a
particular Ada select statement includes SURROGATE port operations, the
model of implementation is more complex than we wish to consider here. (The
full semantics of the select statement is surprisingly complex.) Hence, we
choose to simulate here only a simple and special case. In particular, we con
sider the case where none of the accept alternatives are guarded by when condi
tions, where delay, terminate, and else alternatives are absent, and where
applicable entry calls are unconditional only.

For this restricted example, each of the alternative accept statements that
constitute the select statement (numbered, in order, as 1, ... , k, ... , N for
reference) is associated with its own ACCEPT_k port. In addition, a single
R_ QUEUE port is used as a "junction box" for enqueuing each rendezvous
that has occurred for the various accept statements within this select statement.
The entry calls associated with each rendezvous may originate from any of
several tasks. Figure 5-7 shows this message flow structure for three accept
statement alternatives. Later, we will discuss the return flow structure for rout
ing of return messages that behave as end-of-rendezvous signals.

The Ada compiler performs a select statement elaboration for each select
statement that occurs within a task. This elaboration is perforriled as part of the
initialization of the task. The elaboration is accomplished by the task issuing
individual SURROGATE RECEIVE instructions, one for each select statement
alternative. For example,

SURROGATE RECEIVE (ACCEPT_I, Carrier_I, R_QUEUE)
SURROGATE RECEIVE (ACCEPT_2, Carrier_2, R_QUEUE)
SURROGATE RECEIVE (ACCEPT_3, Carrier_3, R_QUEUE)

1432 Communication Structures for Program Execution 159

..

Server task

from various consumer tasks, A, B, C, etc.

Figure 5-7 Structure of forward message flow to an Ada server task.

Each of these instructions is a request to pick up a single message at an
ACCEPT port and deliver it as a request to R_ QUEUE. If these instructions are
followed by the instruction,

RECEIVE (R_ QUEUE)

then the select statement will eventually receive a carrier from R_ QUEUE that
contains a message indicating that a rendezvous has commenced for one of its
constituent accept statements.

The enqueuing of incoming rendezvous requests into R_ QUEUE uses the
queueing discipline of R_ QUEUE, so that the select statement merely picks the
head rendezvous entry of the R_QUEUE port. (This implies that the Carrier_k
sent to its ACCEPT _k port must contain appropriate priority information for
select alternative k.) By examining the carrier associated with this rendezvous
entry, the server task can determine all it needs to know to process the selected
accept statement and any succeeding statements within the alternative. This is
because the AD for each received Surrogate Carrier is unique (as is any AD),
and so the carrier can be correlated to the accept statement with which it is
associated. An important additional assumption made here is that the received
message within the carrier associated with the rendezvous will also contain
information that can be used to identify the calling task. This infomlation is
needed to specify a target port for the end-of-rendezvous message and is sup
plied by the compiler in the generation of the message sent by the calling task.

When the accept statement completes (the rendezvous completes), the exe
cuting task must perform two functions before it can continue:

160 A Programmer's View of the Intel 432 System

1. it must respond with an end-of-rendezvous message to the calling task and

2. it must ensure that the select statement is re-initialized.

Responding to the calling task is carried out in almost exactly the same
manner as the case of a simple rendezvous discussed earlier. An end-of
rendezvous message, including the result values for any out or in out parame
ters, is sent to the calling task's E-RESPOND port. Re-initializing the select
statement ensures that the alternative just selected will be given another oppor
tunity to cause a rendezvous in case the select statement is executed again.
Consequently, if the carrier associated with the rendezvous is Carrier_k then
the select statement is re-initialized by executing the instruction

SURROOATE RECEIVE (ACCEPT_k, Carrier_k, R_QUEUE)

The calling task is not aware that it is intended to rendezvous by means of an
unconditional accept statement or an accept statement within a select state
ment. Consequently, the action of the calling task is the same in both cases.
This action was discussed in section 5.3.1.

After the termination of a task containing one or more select statements,
there must exist a finalization sequence of instructions that "cleans up" the
apparatus currently pending for select statements. We leave such details, if of
interest, to be pursued by the reader.

The foregoing has been an extended example, which in essence has merely
illustrated the use of SURROGATE RECEIVE instructions to implement what
is commonly termed a "multiple wait" paradigm, familiar to many system pro
grammers. The example was deliberately couched in the Ada setting so readers
can appreciate what may be involved in implementing a select statement. We
have not considered a general solution to this implementation problem, but one
can see how much machinery is involved. Without hardware support, such as
provided in the i432, execution of the select statement might be too slow for
frequent use.

We now turn to our second example, the user-tailorable message priority sys
tem from Cox et al. [14], to illustrate the application of the SURROGATE
SEND instruction. In this system, process PRODUCER sends a potentially
infinite length stream of messages of varying priorities to process CONSUMER.
The PRODUCER process cannot depend on the CONSUMER process' rate of
message consumption, and the CONSUMER process cannot depend on the
PRODUCER process' rate of production.

Surrogate carriers are needed, not only to prevent process PRODUCER from
becoming blocked while it issues its stream of messages, but also to ensure that
each message sent is inserted into its proper position within the queue of mes
sages not yet consumed by process CONSUMER.

For the remainder of this example we assume a priority queueing discipline at
any ports in question and we refer to the information needed to place an object

;432 Communication Structures for Program Execution 161

into its proper position within a port as its priority. Note that when a process
sends a message to a port using a priority queueing discipline, the priority of the
message is taken from the Carrier Object that holds the message. Therefore,
when a process sends a message using a SEND instruction the priority is taken
from the carrier of the process that sends the message. But, of course, this can't
be what we want for the above application. Not only does the priority of the
process have nothing to do with the priority of the messages it is sending, but
every message will have the same priority if the process' priority doesn't
change-and this is clearly not what is intended.

In order to be able to attach a priority to a message that is sent to a port, the
SURROGATE SEND instruction must be used. The priority of the message to
be sent is placed into the priority slot of the Surrogate Carrier that is specified as
an operand to the SURROGATE SEND instruction. Since the Surrogate Carrier
is the carrier that holds the message when it arrives at the port, it is the priority
of the Surrogate Carrier that will be used to enqueue the message. For example,

SURROGATE SEND (First_port, message_ref, my_carrier, Second_port)

will cause the message_ref to be delivered by my_carrier to First_port. Assum
ing First_port's service mode has been set to Priority-mode and assuming that
my _ carrier has its priority value set as desired, then the message will be
inserted in priority order when my_carrier arrives at First_port.

After delivery of the message, my _carrier is enqueued at Second_port (FIFO
queueing discipline), where it can be picked up by process PRODUCER and
reused in sending another message of the same or different priority value. Until
needed however, the my_carrier may remain enqueued at Second_port, which
serves as a pool (or "parking garage"). The pick-up of a "parked" carrier may
be done with an ordinary RECEIVE or with a CONDITIONAL RECEIVE. For
example:

RECElVE(Secon~_port)

will render the first available Carrier accessible for reuse in another SURRO
GATE SEND. The above scenario is illustrated in Figure 5-8 which diagrams
the flow of messages of the several send and receive operations as directed arcs
joining process and port objects.

5.3.4. Modelling Asynchronous
Send/Receive Operations in Standard Ada

We have now examined the i432 architecture's facilities for support of asyn
chronous interprocess communication. In Section 5.5 we will examine how
these facilities can be invoked explicitly by the user at the Ada level. It seems
useful at this point to consider, as an alternative approach, how equivalent asyn
chronous intertask communication can be expressed in standard Ada, i.e.,
without direct appeal to the underlying i432 port-based operations.

162 A Programmer's View of the Intel 432 System

PRODUCER

Key:

Second_port
(FIFO)

4

PRODUCER

CONSUMER

Instruction

SURROGATE SEND
RECEIVE
RECEIVE

Arcs

1, 2
4
3

D
CONSUMER

Figure 5-8 Request flow graph for implementation of a user-tailorable message priority
system to illustrate use of the SURROGATE SEND instruction.

Recall that the Ada rendezvous mechanism forces synchronization of the task
caller (sender) and the server task (receiver). Even so, it is possible to model
asynchronous communication, and thereby to eliminate performance delays in
certain common situations. This may be done provided the programmer is wil
ling to interpose "intermediary" tasks between the sender and receiver tasks.
For example, if an Ada task A only sends information to another task B (i.e., if
task A does not need to wait for completion of the associated accept statement
in task B), then we can simulate an asynchronous send operation using the tech
nique mentioned in Section 3.1 and amplified below:

Suppose a third task Q is interposed between A and B so that A does a ren
dezvous with Q. Then either:

a. Q does a rendezvous with B, forwarding to it the message received from A.

or

Since Q can immediately accept the message from A, the time A is blocked
in rendezvous with Q can be minimized. Note that B blocks only if Q is
awaiting rendezvous with A.

b. if A is expected to send a sequence of messages, Q, after accepting each
message from A, spawns a new task and does a rendezvous with that
spawned task, forwarding to it the message received from A. Each of the
spawned tasks then does a rendezvous with B. Each spawned task terminates
after completing the rendezvous with B. In this case, B blocks only if no
spawned tasks are awaiting rendezvous with it and A blocks only if it sends

1432 Communication Structures for Program Execution 163

another message to Q before Q can complete the spawning of a new task for
relaying an earlier message sent by A.

We illustrate alternative (b) as follows: Suppose A would ordinarily have
made the entry call

B.Some_entry(k) ;

and B accepts by

accept B.Some_entry(k: integer) do
-- statements that include k;

end B. Some._entry;

With task Q interposed, however, the call by A becomes

Q. Relay_ to_Spawned (k) ;

and the accept statement in B remains unchanged. A new task Q is defined at
the same scope level as that of tasks A and B as follows:

task Q is
entry Relay_ to_Spawned (k: integer);

end Q;

task body Q is
task type Spawned is

entry Relay_to_B(k: integer);
end Spawned;

task body Spawned is
begin

accept Relay_to_B(k: integer) do
B.Some_entry(k);

end Relay_to_B;
end Spawned; -- This task terminates upon completion

-- of this accept.

type ref_to_spawned is access Spawned;
Spawned_Task: ref_to_spawned;

begin
loop

accept Relay_ to_Spawned (k: integer) do
Spawned_Task: = new Spawned;
Spawned_Task.Relay_to_B(k);

end Relay_to_Spawned;
end loop;

end Q;

Under this scheme, each spawned task operates very much like the surrogate
carrier of an i432 SURROOATE SEND instruction. (Observe that the variable
Spawned_ Task is reused in Q. This means that earlier spawned tasks become
unreachable by Q, so that after each of these spawned tasks terminates it

164 A Programmer's VIew of the Intel 432 System

becomes a candidate for garbage collection. Also note the task Q can be rede
fined as a generic package having a generic parameter that designates the struc
ture of the relayed information.)

The above scheme seems attractive because it relies on no special packages,
such as those we will describe in Section 5.5 for use of i432 ports. On the other
hand, the cost in performance may well be prohibitive, unless the underlying
architecture can support the Ada rendezvous with efficiency comparable to that
of the equivalent i432 port operations. Moreover, if the sender task (task A) is
dependent on receipt of a response correlated with each sent message, additions
to an already complicated task structure may be needed. We pursue this line of
reasoning no further here; these matters should be left as open questions, to be
answered when more experience has been gained with the use of Ada and with
the i432 System.

5.4. The Unified View Offered by the
Request/Server Model

We next want to illustrate the user-interface provided for the i432 architecture's
interprocess communication facility, and we attempt this in the next section.
There, we show how operations of interprocess communication can be made a
direct and useful part of applications programs. However, before doing so, we
can gain some useful perspective if we pause here to take stock. A few observa
tions are in order concerning the models and mechanisms introduced in this
chapter thus far .

• We have seen the merit of i432 architects' design choice to make scheduling
and dispatching of processes fit into a message-based communication frame
work following the request/server model. Policies, which are best left to
software derivation, are neatly separated from the mechanism~ of dispatching
and scheduling, which are best done as swiftly as possible, and hence best
done with as much hardware support as possible.

An example of policy is the determination of which process to dispatch in a
set of processes that are waiting for service. Dispatching decisions may vary
greatly between applications; depending on the system environment, such
decisions may be changing on a second-to-second basis. (One of the biggest
dangers in transferring operating systems functions from software into
hardware is that failure to properly separate policy issues from mechanism
issues can result in policy decisions creeping into hardware, where they can
not be changed on any short-term basis.)

• The model and the mechanisms, some newly invented in the i432, and most
arrived at as a direct consequence of the object-based addressing and access
controls of the architecture, lead to an efficient interprocess communication
facility. The latter is not only general purpose, but in fact extends the state of

i432 Communication Structures for Program Execution 165

the art. This extension is embodied in the SURROGATE SEND and
RECEIVE operations and, in tum depends on the innovation of the Carrier
Object used in a uniform way for sends and receives, whether explicit or
implicit, and whether for dispatching and scheduling or for more general
process-to-process interaction.

The special invention that appears to stand out above the rest is the Carrier
Object used as a surrogate. Its full utility is probably yet to be determined,
however at the "top level" we see that it provides a process a simple and
direct way to exercise control over whether or not it blocks in sending and
receiving messages. Certainly there are many applications in which a process
must have this kind of control over its own destiny. Other relevant ideas con
cerning surrogates are:

• In explaining the role of the Surrogate Carrier, we have used the analogy
of a surrogate process, but there may be better explanations, or at least
some useful supplementary explanations. For example, Cox et al. [14]
have referred to the Surrogate Carrier as a "self-addressed, stamped
envelope". In a SURROGATE . RECEIVE operation, such an envelope is
sent to the First_port and left there, pending the arrival of the expected
message. When the message arrives, it is stuffed into the envelope and
"mailed". Since it is addressed, the envelope can reach its ultimate desti
nation, Second_port. Since it is stamped, it has the necessary "potential"
for travel through the mail system to arrive at its destination.

• The envelope analogy also holds for the SURROGATE SEND, but with a
new "twist" required in the interpretation. Here one must understand that
the envelope bearing the message, has significant value in its own right
much like the sturdy metal cake box, whose see-through top effectively
alerts postal workers to its perishable and fragile contents, which may be
more valuable than the cake it contains. The box must be returned to
"grandmother", if another cake, on another birthday is to be forthcoming.

• When models like the request/server, and analogies, like surrogate proc
esses or stamped return envelopes, help us grasp and perceive as simple,
mechanisms that would otherwise appear formidable and complicated,
they serve as critically important tools. Use of them may make the differ
ence between broad use of an innovative and powerful facility or broad
shunning of it. This is why we can foretell wide use for message-based
communication operators of the i432 architecture.

• Asynchronous communication and synchronous communication are both
available as modes of communication. There are many applications in which
one or the other of asynchronous or synchronous communication is the most
desirable method of interprocess communication. The i432 provides com
pletely asynchronous communication through, again, the utility of the surro-

166 A Programmer's View of the Intel 432 System

gate carrier object. Synchronous communication can always be accomplished
by establishing a protocol (like the Ada rendezvous) between sending and
receiving processes. Such a protocol requires that a process S, which sends a
message to a process R, wait for a received acknowledgment message from R
before proceeding.

• Education of users to the potential of multiprocessing applications is a major
challenge. Real-world applications are in many cases difficult to express with
clarity without use of an underlying and unified communication model. The
i432 communication model may well provide the needed catalyst.

5.5. Ada Programmers' Interface with iMAX
for Interprocess Communication

An Ada programmer can use all of the i432 features for interprocess communi
cation described in Section 5.3 as an alternative or supplement to the Ada ren
dezvous facility. The i432 features are accessed by using either or both of two
user-accessible Ada packages supplied by the iMAX operating system. These
packages are:

• Typed_Ports

• Untyped_Ports

The Typed_Ports package fulfills most user needs for i432 interprocess com
munication by permitting the programmer to create and use ports requiring mes
sages of a specific type. A typed port is thus a constraint of a port that allows an
Ada programmer to send (receive) messages of only a single, specified type to
(from) a port. This constraint is checked at compile time. The use of a typed
port has the advantage that it follows the spirit of Ada's strong type-checking
objective by allowing the Ada compiler to verify that the typed port is used
correctly. We have provided the Ada specification for the Typed_Ports package
in Appendix H. The reader is referred to that appendix if more details are
desired.

The second package, Untyped_Ports, is useful for lower-level applications,
where it is essential to relax the one-port lone-mess age-type constraint. An
untyped port can be used to transmit a message of any (Access Descriptor) type.

The primary disadvantage of Untyped_Ports is that compile time checking of
message types is impossible. The primary disadvantage of using Typed_Ports is
that a programmer must create an individual instance of a generic package for
each distinct message type required. For very large applications, this may pro
duce many generic instantiations that may, in turn, produce programs that
require excessive memory space. However, for most applications, this disad
vantage is far outweighed by the convenience and built-in safety features
offered by Typed_Ports.

1432 Communication Structures for Program Execution 167

Our objective in this section is to demonstrate the use of the Typed_ports
package to allow an Ada programmer to gain access to the i432 communication
model. First, we look at the key components of Type_Ports. Then we illustrate
their use by revisiting the examples introduced at the end of the Section 5.3 and
by showing how they may be coded in Ada. The section closes with observa
tions on the equivalence of the Ada rendezvous and the iMAX Typed_Ports
facility and on some tradeoffs between the two approaches. In the next and last
section of this chapter we revisit the investment club program to see how
Typed_Ports may be used to advantage.

5.5.1. Structure and Main Features of
Typed_ Ports

Typed_Ports is an Ada library unit package that contains three generic packages
named:

• Simple_Port_Def

4t Carrier_Def

4t Surrogate_Port_Def

The Typed_Ports package is structured as three generic sub-packages so that
programmers can choose to instantiate any of the three generic packages indi
vidually, thus minimizing, in appropriate cases, the size of instantiated pack
ages. Thus, for example, in an application not requiring SURROGATE SENDs
and RECEIVEs, a programmer will create only instances of Simple_Port_Def.
This will provide the capability to create and use ports with either FIFO or
Priority service disciplines in SEND, RECEIVE, CONDITIONAL SEND, or
CONDITIONAL RECEIVE operations. The skeletal structure of Typed_Ports
is given in Figure 5-9. Excerpts from the code for Simple_Port_Def are given
in Figure 5-10.

Examining Figure 5-9 fIrst, we note that Typed_Ports depends on
iMAX_Definitions. Actually, the iMAX_Definitions package is only the "tip
of the iceberg." Other iMAX packages on which iMAX_Definitions is depen
dent (and on which Typed_Ports is indirectly dependent) are responsible for all
the low-level storage, descriptor, and extended-type management that make
interprocess communication at the user interface safe and easy to apply. We
defer discussion of these topics until Chapters 6 and 9.

Suppose a programmer wishes to establish simple communication between
two tasks, A and B, by sending messages of type "memo" from A to B and
messages of type "response" between B and A (assume that types memo and
response have already been declareq.) According to the Ada specification in
Figure 5-9, the following declarations would instantiate the packages required
to achieve this communication:

168 A Programmer's View of the Intel 432 System

with iMAX_Definitions;
package TYPed_Ports is

Function:
TYPed_Ports consists of three packages which provide the user
with a high level (Ada typed) view of ports, carriers and other
operations.

use iMAX_Definitions;

generic
type user_message is private;

package Simple_Port_Def is
Function:

All messages that this package
deals with are of this type.

This package provides definitions and operations that enable
the user to create ports, and do simple operations on those
ports involving only messages of type "user_message".

generic
type user_message is private;

type user_carrier_id is private;

package Carrier_Def is
Function:

TYPe of message as
specified by the user.
TYPe of carrier_id as
specified by the user.

Definitions and operations on carriers are provided in
thi s package.

end Carrier_Def;

generic
type user_port is private;

type user_message is private;

type user - carrier is private;

type user_carrier_port is private;

package Surrogate_Port_Def is
Function:

Port capable of handling
user_messages.
TYPe of messages as
specified by the user.
Carrier capable of
carrying user_messages.
Port capable of handling
user_carriers.

This package contains surrogate port operations.

end TYPed_Ports;

Figure 5-9 Top_level structure of the iMAX Operating System package, Typed_Ports.

i432 Communication Structures for Program Execution 169

with Typed_Ports;

package Memo_Port_Def is new Typed_Ports.Simple_Port_DefCmemo);
package Response_Port_Def is new Typed_Ports. Simp 1 e_Port_Def Cresponse) ;

5.5.2. The Simple_PorLDef Package

In Figure 5-10, we reveal another layer of the Typed_Ports package; in particu
lar, we reveal the specification of the generic sub-package Simple_Port_Defs.
By looking at this specification and understanding the semantics of the opera
tions inthe package, we can determine how to create ports and how to use them
once they are created. Before proceeding to illustrate this use, we digress here
to observe some fine points of Ada that we will exploit below.

Note that the Create function in Typed_Ports returns an object of type
user_port. To create a particular port, named my_memo_port, for transmitting
objects of type memo, one can use the following declaration in any program
unit that "imports" Memo_Port_Def:

The declaration above specifies that my _memo_port is a port having a
fixed-length message queue capacity of 15 messages of type memo, having a
default service mode of FIFO, and whose storage is allocated from the global
heap.

By noting that the Create function returns an object of type user_port, the
experienced Ada programmer would realize that a SUbtype declaration may be
used as a renaming device to make the above declaration more compact. Thus,
the given SUbtype declaration:

The declaration and initialization of the variable my _memo_port can be
written as follows:

or, even more succinctly, as:
use Memo_Port_Def;

The ports to be shared by processes A and B must be created by the common
parent of A and lB, using, for example, the set of declarations shown in Fig
ure 5-11.

From examination of Figure 5-11, we learn how processes A and B would
take advantage of the created ports for transmission of messages. For example,
process A could send messages using:

170 A Programmer's View of the Intel 432 System

generic
type user_message is private; -- All messages that

-- this package deals with are of this type.
package Simple_Port_Def is

Function:
This package provides definitions and operations that enable
the user to create ports, and do simple operations on those
ports involving only messages of type "user_message".

max_message_count: short_ordinal:= 1000; -- Max number of messages
in a port's message queue.

type user_port is private; -- Ports of this type
-- can only be used with type user_message.

type ~discipline is (
FIFO, First_inLfirst_out, also default ~discipline.
priority); within same priority, FIFO is used.

function Create (
message_count: short_ordinal range 1 .. max_message_count;

Max number of messages in the port's message queue.

port_discipline: ~discipline:= FIFO;
sro: storage_resource : = null)

return user_port; -- User port that is created.

Function:
A user_port with the specified message_count and the specified
message queue discipline is created. The SRO used in the
creation defaults to the default_global_heap_SRO.

procedure Send (prt: user_port; msg: user_message);

Function:
The specified user_message is sent to the specified
user_port.

procedure Receive (prt: user_port; msg: out user_message) ;

Function:
A message will be received from the specified user_port.

Figure 5-10 Excerpts from the generic package, Simple_PorcDef.

1432 Communication Structures for Program Execution 171

Figure 5-11 Ada code to instantiate two differently typed port-definition packages, one for
memos going from A to B and one for responses going from B to A, and to create a sin
gle instance of each of these ports.

declare

my_question:
the_answer:

begin

memo;
response;

Send (A_to_B_memo_port, my_question);

end;

Because of Ada's strong typing and overloading features, it isn't necessary to
use the longer forms Memo_Port_Def.Send and Response_Port_Def.Receive
in the procedure call statements given in the example above. Based on the type
of the actual parameters to Send (Receive), the correct target procedure for each

- call can be correctly resolved by the compiler (if no ambiguity exists).
The specification of Simple_Port_Def given in Appendix H indicates that

conditional versions of Send and Receive are also available in Simple_
Port_Def, and hence in Memo_Port_Def and Response_Port_Def.

The hardware's ability to check on the validity of a Port Object argument
includes being able also to check whether the caller's argument (which is an
Access Descriptor) has send rights for a calIon Send or on Cond_send, or has
receive rights for a calIon Receive or on Cond_receive. We defer discussion of
such rights checking until Chapter 6.

1432 Communication Structures for Program Execution 173

tion. In all, four generic package instances must be instantiated for this particu
lar application.

Figure 5-12 shows a set of declarations that would create the package
instances. The declarations can be understood in terms of the explanations in the
preceding section and in terms of the details of Appendix H.

Creation of the two needed ports and a pool of Surrogate Carriers can be
made part of an enclosing package, called Send_Reports, which also includes
the operation to send a report. The body of this package, which follows the plan
suggested by iMAX Operating System implementers, is shown in Figure 5-13.
(See also the iMAX 432 Reference Manual as cited in Appendix B.)

package body Send_Reports is

first_port: report_port:= Create (10, priority);
-- Creates a port having a capacity of 10 items
-- of type report and with priority service mode.

second_port: report_carrier_port: = Create (10) ;
-- Creates a FIFO port having a capacity of 10
-- messages of type Report_carrier.

spare: report_carrier;

procedure Send_a_report (
rpt: report;
priority: short_ordinal)

is
b: boolean;

begin
Cond_receive (second_port, spare, b);

-- Get spare carrier from
-- carrier_pool (second_port).

if b then
Set_carrier_priori ty (spare, priority);

-- Update spare carrier's priority value.
else

spare := Create (0, priority);
-- If carrier pool is empty then create
-- a new carrier with proper priority.

end if;
Surrogate_send (first_port, rpt, spare, second_port);

After sending new report to first_port,
carrier will be returned to the pool

-- at second_port.
end Send_a_.report;

begin
Initialization of this package starts here.

-- Builds an initial pool of five carriers.
for i in 1 .. 5 loop

spare : = Create (0) ;

Send (second_port, spare);
end loop;

end Send_Reports;

Create a new carrier with 0 as id
and a 0 default priority value.
place spare into the pool.

Figure5-13 Package body for a user's priority-message system

174 A Programmer's View of the Intel 432 System

The reader should have little trouble following the implementation shown in
the body of the Send_Reports package. This package body is a good illustration
of the usefulness of an initialization section for a package. In this initialization
section, five carriers are created and sent to the "pool", i.e., to Second_port.
All the carriers in the pool are "nameless"; that is, they have no useful id
values. In addition, they do not initially acquire any distinguishing priority
value. When Send_a_report is invoked, a carrier is fetched from the pool,
given the desired priority value, and sent off with a given Report value. This is
accomplished by using the Surrogate_send operation of the Report_Surro
gate_Port_Def package.

In the event the receiving task runs more slowly than the sending task, the
pool of carriers can become empty. This will happen if, for example, Consumer
falls fifteen messages behind Producer at first_port. In this case, ten messages
will be enqueued in the fixed-length queue at first_port and five carriers will be
enqueued in the carrier queue at first_port. If Send_a_report is invoked to send
a sixteenth message before Consumer can process a message, then Producer
will find the carrier pool empty. If this occurs, Send_a_port simply creates and
uses a fresh carrier.

[At this point a reader may wish to review our earlier discussion of carrier pool
management (in Section 5.3.2) where we considered a way to keep the pool from grow
ing too large by using a CONDmONAL SEND instruction. One may enhance the car
rier management scheme used in Send_Reports (Figure 5-13) in a similar way by taking
advantage of the Cond_send operation.]

- We close this section by considering how, with the aid of Typed_Ports, we
can implement the message flow structure diagrammed in Figure 5-7 (multiple
waiting). We shall consider the case where senders deposit messages in a fixed
number of letter_boxes (three in our case). The single receiver fetches letters
from a central_box by issuing Surrogate_receives from each of the
letter_boxes and blocking Receives to the central_box. Each of the
letter_boxes is a simple port that transmits messages of type letter. On the
other hand, central_box is a port that transmits messages of type l.etter_carrier.

By contrast with the preceding example, the number of letter_carriers
required in this example is fixed. Exactly one letter_carrier for each letter_box
is sufficient, since a carrier can shuttle back and forth between its respective
letter_box and the central_box. Furthermore, the receiving process could not
process the received letters any faster if there were more letter_carriers avail
able. All of the ports in this example have FIFO service mode.

The declarations for instantiating the required generic packages from
Typed_ports are identical with those shown in Figure 5-12, except that the
word "Letter" replaces the word "Report" uniformly throughout the figure.
Figure 5-14 shows a fragment of a program unit that uses these packages to
create the required ports and carriers and to process letters received from other
tasks. (Again, the structure of this program fragment follows that given in the
iMAX 432 Reference Manual.)

1432 Communication Structures for Program Execution 175

declare

use Letter_Port_Def, Letter_Carr ier_Def,
Letter_Carr ier_Port_Def, Letter_Surrogate_Port_Def;

letter_box: array (1 .. 3) of letter_port;
-- Letter_box capacities
-- set individually during
-- initialization below.

central_box: letter_carrier_port: = create (3) ;
-- Letter_carrier capacity = 3

letter_bearer: array (1 .. 3) of letter_carrier;
Id values of carriers are
assigned during initialization below

bearer: letter_carrier; Carrier variable.

ltr: letter; -- TYPe definition for letter assumed accessible.
id: integer;

begin
-- Initialize
letter_box (1)
letter_box (2)
letter_box (3)

capacity values for individual letter_boxes.
: = Create (8) ; Letter capacity = 8
: = Create (12) ; Letter capacity = 12
: = Create (4) ; Letter capacity = 4

for i in 1 .. 3 loop
letter_bearer (i) := Create (i) ; -- Id of ith carrier

-- is made value of i.
Surrogate_receive (letter_box (i) , letter_bearer (i) , central_box);

Ith letter_bearer sent to ith letter_box to
_.- await letter and bring it to the central box.

end loop;
-- Initialization ends here.

loop
Receive (central __ box, bearer); -- Recover carrier from pool.
Get_carr i er_mes sage (bearer, ltr); -- Extract message and put in ltr.
id := Get_carrier_id(bearer); -- Extract carrier's id.
Surrogate_receive (letter_box (id) , letter_bearer (id) , central_box);

--- Recycle letter_bearer to get another message.
-- Process letter in ltr.

end loop;
end;

Figure 5-14 Ada code for a multiple wait message structure.

A few points about the program fragment in Figure 5-14 merit explanation .

• The capacities chosen for the letter_boxes (8, 12, and 4) are problem depen
dent, selected according to the expected frequency with which other
processes send letters to those boxes. On the other hand, the letter_carrier
capacity of the central box need not be larger than 3, since there can never be
more than three letter_carriers enqueued at the central_box.

176 A Programmer's View of the Intel 432 System

• When a letter_carrier arrives at the central_box, its id value and its message
are extracted. The id value is used to identify the letter_box that received the
letter. Using this id value, another Surrogate_receive is issued to that
letter_box. The letter_carrier from which the letter was extracted, having
performed its duty, can now be sent back to its letter_box of origin to wait
for another letter .

• Mter the letter_carrier is recycled to its letter_box of origin, the most recent
(FIFO order) letter received from the central_box is processed.

5.5.4. The Equivalence between Ada
Rendezvous and iMAX TypecCPorts Facility

A discussion focusing on the equivalence between the two ways to express
interprocess communication, namely: use (a) of Ada rendezvous statements and
(b) i432 Port Objects and port operations, is now timely and perhaps overdue.
We do not have in mind a definitive analysis of the two approaches, in part
because to do so would require a much more thorough study of the Ada rendez
vous syntax and semantics than has been given in this book. Even so, some
observations, based on what has been learned so far, are in order. In what fol
lows, we abbreviate "i432 Port Objects and port operations" as "i432 ports
facility' , .

Two questions should be answered.

1. Are the two approaches equivalent? That is,
• can Ada rendezvous semantics, i.e., those of the Ada entry call, condi

tional entry call, entry declarations, accept and select statements, be
fully implemented using i432 ports facility?

• can all i432 port operations be represented in terms of the Ada rendez
vous?

2. Given a choice, which approach should be used? What special portability
problems, if any, might be expected when transporting to and from ordinary
Ada environments and the i432 Ada environment?

In response to the first question, Intel compiler writers are in the process of
implementing the full Ada rendezvous semantics in Ada using the underlying
i432 ports facility. The success of this enterprise will demonstrate that the i432
ports facility is at least as expressive as Ada rendezvous. The converse,
expressing the semantics of the i432 ports facility (as expressed, for example by
Typed_Ports) using Ada generic packages and Ada rendezvous statements,
actually a straightforward exercise, would imply that the Ada rendezvous
semantics offers at least the same expressive power for interprocess communi
cation as the Typed_Ports package. This being so, the equivalence proof rests
solely on demonstrating each of these two mappings. The first mapping is to be
demonstrated by Intel in due course and the second, hereafter called the

1432 Communication Structures for Program Execution 177

Typed_Ports_By _Rendezvous, is left as a challenge for the reader.
Given the aforementioned equivalence, programs using either approach fall

under the category of standard Ada, and the choice between the two approaches
becomes a matter of pragmatics and style. For executing multitask programs on
the i432, it is expected that, for many practical applications, the efficiency
advantage of the Type_Ports operations will dominate the decision process.
Transporting such programs to non-i432 Ada environments will simply require
including in the new environment a copy of Typed_Ports_By _Rendezvous as a
library-level package. (Nor will standard Ada programs transported to the i432
from a non-i432 Ada environment require any change. To run more efficiently,
however, it may pay to map certain time-critical rendezvous operations into
i432 port operations.)

5.6. Explicit Message-Based Communication
for the Investment Club Program

In Section 3.1, we promised to consider substituting explicit message transmis
sion for the Ada rendezvous in order to avoid the bottlenecks inherent in the
program structure outlined in Figure 2-5. We do this here. Recall, several solu
tions were to be considered. One was to restructure the program as in fig
ure 3-2. That solution permits each Member task to call either the
Portfolio_Server or the Roster_Server task, but only via a package
(Member_Ops, Treas_Ops, or Secy_Ops) that acts as a "controlling switch",
or "filter" .

[Another possibility for eliminating performance delays was to use spawned inter
mediate tasks for relaying requests from Portfolio_Server to RostecServer. However,
we have already examined what is involved in pursuing this approach (See the end of
Section 5.3). It is not especially attractive, especially because each of the messages sent
by Portfolio_Server (in the form of an entry call) requires the generation of a response
(in the form of a result value) by RostecServer.]

Deciding to replace the relatively high-level Ada rendezvous as the only
means for inter-task communication, by substituting in its place Send and
Receive operations available through. Typed_Ports, opens up a large space of
possible solutions. We consider only one of these here. In this alternative, we
keep the structure of Figure 2-5. The strategy to be used may be summarized as
follows. Each Member_task communicates its request directly to the
Portfolio_Server task. Three subcasesare then recognized:

• The request requires service only from Roster_Server. Such a request is for
warded to the latter intact. In this . event, Roster_Server's response will go
directly to the originator of the request, and not to Portfolio_Server.

• The request is such that no confirmation is required from Roster_Server.
Portfolio_Server immediately processes the request and sends a response
directly to its originator.

178 A Programmers View of the Intel 432 System

• The request requires confIrmation from Roster_Server. In this case,
Portfolio_Server places an Access Descriptor for the member's request in a
new message sent to the Roster_Server. The latter's reply message to
Portfolio_Server, whatever the outcome, always includes this same Access
Descriptor. Whether the response from Roster_Server signals confIrmation or
denial of authorization, Portfolio_Server will have suffIcient information to
process the member's original request and send that member an appropriate
reply.

Figure 5-15 illustrates the message flow graph implied in the above strategy.
In this figure, ports are depicted as nested within tasks merely to suggest that
the containing tasks execute Receive operations on those ports.

[There is no intention to imply, for example, that such ports must be declared within
the contained tasks. Such nested declarations are not ruled out, however.]

~

I I I

Port_A

Member_A

((

r--~D I I I I 0

Port_B , Port_PS Port_RS
0

Member_B ,
Roster_servero ~ Portfolio_Server

I I I
Port_c

Figure 5-15 Message flow graph for explicit message transmission between member tasks
(including officers) and the portfolio and roster server tasks.

No Surrogate operations are needed in implementing this strategy, and so
only Simple_Port_Def must be instantiated. To keep the number of such
instantiations to the minimum of one, each message implied in Figure 5-15
must be formed as an instance of the same data type. In addition, each message
should carry the identifIcation of the sending task, so that the response may be

i432 Communication Structures for Program Execution 179

directed to that sender. It should be fairly easy for the programmer to adhere to
these two constraints. The following is an example of a message_type which
may be used for all messages:

type message_type is
record

command: integer;
reply_port: user_port;

Code representing particular request.
If message is a reply, value is null,
else value refers to the port

strin~of30;

end record;

to which reply is to be sent.
Same as member_name, except
in case of Portfolio_Server
and Roster_Server.

A predefined type representing
any Access Descriptor. See
Section 6.3 for rules governing use
of thi s type.

The command field encodes the kind of request (and is equivalent to the
entry identifier it replaces), such as Enter_buy, Enter_sell, etc. The reply_port
field, which would be null for a reply message, explicitly specifies the port to
which a reply message for this request is to be sent. [The value of this field may
be considered an alternative to the sender_id when one can be inferred from the
other.]

The sender _id would be the same as a member's my _name argument. In
case the sender is Portfolio_Server or Roster_Server, the name would simply
be "Portfolio_Server" or "Roster_Server", respectively (and padded with
trailing blanks as required). [Sender_id may be the null string when the sender
is Roster_Server and the receiver is a member task.] Message_body would be
an Access Descriptor for an object that contains all the in and in out (actual)
parameters of the replaced entry call-but not including my_name, which is of
course already provided as the sender_id. This object would be expressed as a
record structure. For example, message_body in an Enter_buy message to
Portfolio_Server would be an AD to an instance of the following record type:

type Enter_buy_send_type is
record

purch_date: date;
stock_code: stock_code_pair;
num_shares: natural;
per_sh_price: dollars;
commission: dollars;

end record;

Responses from Portfolio_Server and from Roster_Server must also be
formed into instances of message_type. For example, the message_body part of
Portfolio_Server's response to a member's Enter_buy request might be an
instance of the following one-component record type:

180 A Programmer's View of the Intel 432 System

type Enter_buy_answer_type is
record

unauthorized: boolean := true;
end record;

Only one component is needed here, but we retain a record structure because
we want message_body to be an access type, and the allocation of a new record
instance (using the new operator) assures us that the compiler will provide the
wanted Access Descriptor. A declaration and a statement like the following
might be used to create a response record for the Enter_buy performed by
Portfolio _ Server.

my_response: message_type;

my_response := new message_type' (10,
Port_A,
"Portfolio_Server' AAMMMAAAAAM",
new Enter_buy_answer_type' (false));

Any response from Roster_Server that goes as a message to Port_PS, the
same port to which messages from members arrive, must contain
"Roster_Server" as the value of sender_id, but must also include a copy of the
originating sender_id value as one of the components in the message_body
instance. Therefore, when Roster_Server sends back a response for the
Is_treasurer inquiry requested by Portfolio_Server, the formulated response
requires a two-component message_body component, for example,

type Is_treasurer_answer_type is
record

sender_id:
check:

end record;

lon~string;
boolean;

-- Originating member name.

In the context of the Roster_Server, a statement like the following might be
used to formulate a response to the Is_ treasurer inquiry:

my_response: message_type;

my_response := new message_type' (3,
Port_PS,
"Roster_Server I AAAAAAAAAAAAAAAAA" ,
new Is_treasurer_answer_type' (

"JonesAAAAAAAAAAAAAAAAAAAAAAAAA ",
false)) ;

To be sure, for some categories of the incoming messages, the same record
types may be used. Even so, there are enough differences to require a signifi
cant number of distinct record types, as just illustrated. Defining and keeping
track of all the sender_id's and message_body types and properly using them in
place of the argument lists in the eliminated entry calls is one of the major
prices a programmer will pay to use direct message transmission in place of Ada
entry calls.

i432 Communication Structures for Program Execution 181

We do not take this example much further, but only outline a few of the
points that may be considered were one to implement the changes needed.
Readers will find it instructive, however, to complete the exercise of converting
the two server tasks given in Appendix F for direct message transmission.

• The steps to be taken are those we illustrated in the preceding section. To
make matters simple, both Portfolio_Server and Roster_Server may be
coded to assume that the single instantiation of Simple_port_def and all of
the created ports are accessible within the respective tasks.

• As a reminder, all the ports will have FIFO service modes, else it would be
necessary to use Surrogate send operations as in the user-tailorable message
priority system detailed in the preceding section. (It would, in fact, be rea
sonable to consider making Port_PS a Priority port, if one wished to give
special priority privileges to requests initiated from, say the club's Treasurer.
This "enrichment" would serve as another useful exercise.)

• Blocking Sends and Receives should be suitable for all types of message
operations. Member_tasks should issue requests of Portfolio_Server as Send,
Receive pairs-an important disciplinary requirement that is no longer han
dled for the user automatically, as when issuing task entry calls.

• We preserve in the body part of both the Portfolio_Server and the
Roster_Server the primary loop . .. end loop structure, which now consists
basically of issuing a Receive call and then performing the indicated process
ing that leads, at the end, to the issuing of a "matching" Send.

• We have already outlined the strategy to be followed by Portfolio_Server fol
lowing the issuance of a Receive call. The strategy followed by the
Roster_Server after receiving a message is even simpler: just process the
request and send a matching response either to Port_PS or to the receiving
port of the member task that originated the request.

i432 OBJECT ACCESS
AND TYPE MANAGEMENT

6.1. Introduction

In Chapter 1 we outlined the roles played by the the i432 hardware and operat
ing system in support of access control over objects. It was suggested that the
hardware and operating system form a partnership in providing a facility for the
typing of objects and for enforcing the intended use of objects, according to
their respective types. Moreover, we said that this typing facility is extended to
the user, who can define new object types and specify how the system should
control access to instances of typed objects. The main purpose of this chapter is
to elaborate these concepts and to explain the details of object type management
and object access control.

We also suggested that part, but not all, of the provided type management
facility could be exploited within the framework of the Ada language. It must
be recognized, however, that Ada was designed for programs that execute in
relatively static environments. This implies that an Ada program is expected to
execute in a host system having a relatively fixed configuration. If there is to be
a change in the host execution environment, an Ada program may have to be
altered "off line", recompiled and then reloaded. The Ada language does not
include linguistic constructs permitting an Ada program to adapt itself to on
going changes in the system in which it is embedded. This constraint may be
explained in part by a desire to ensure that Ada programs are as machine
independent (and as portable) as possible.

The i432 System architecture is itself more "dynamic" than Ada in this
regard. Programs can run on the i432 that are adaptive to on-going changes in
the environment, such as dynamic changes in the attributes of external I/O de
vices. To achieve this additional adaptability at the Ada level of interface to the

183

184 A Programmer's View of the Intel 432 System

i432, one may use certain extensions of Ada that expose the dynamic aspects of
the i432 system. In particular, one can define variables that contain packages as
their values. This is achieved by extending Ada to allow packages to be
declared as types, just as with integers, boolean, arrays, etc. Different package
values (instances) can then be stored into a package variable at execution time,
thus achieving a dynamic, adaptive instance of a package. This is in contrast to
standard Ada, in which an Ada program must be modified, recompiled and
reloaded in order to achieve a different implementation of a package.

Provision for the invocation of an alternative implementation of a given
(abstract) data type, selected at run time, is not an entirely new proposal [54].]
Moreover, we have already alluded to this language extension in connection
with a suggestion in Chapter 2 for dynamically invoking different instances of
the package Club_Portfolio, and we expand this idea in the ensuing discussion.

An Ada programmer is able to express a wide range of access control over
typed objects without use of any Ada language extension. As we will see, the
architecture, the iMAX operating system interface, and the Ada compiler
"cooperate" to let the programmer express such controls either implicitly,
through judicious use of private declarations and pragmas placed in type
manager packages, or explicitly, by means of calls to operations of the iMAX
interface.

The i432 System has the ability to control appropriately structured user
defined objects in the same way that it controls access to instances of system
objects. When such user-defined objects are allocated, their respective Object
Descriptors are encoded with a system type, "extended type", which is a
system-recognized type. (These objects are called Extended Type Objects. In
Intel parlance, such objects are also referred to as Dynamic Typed Objects for
reasons which will become more clear when we discuss 432-Ada later in this
chapter.) Ada users of the i432 can refer to Extended Type Objects as instances
of Ada access types.

Unlike instances of system objects whose types are recognized as special only
by the architecture and operating system, the type of a user-defined Extended
Type Object is specified by the programmer and is compiled into a system
defined object known as a Type Definition Object. Mter creation, each
Extended Type Object contains, in its associated Object Descriptor, a reference
to the Type Definition Object, which contains a user-defined set of attributes.
This reference is readily accessible from 432-Ada by use of the type_value
attribute; it may be used in various operations on the object, and also for per
forming run-time type checking.

Our intent is to describe in more detail the respective roles played by the
architecture, the operating system, and the compiler for achieving the desired
controls on Extended Type Objects. It should be realized that it is precisely

1432 Object Access and Type Management 185

these controls plus access rights that are required to implement type
managers-and which the i432 System makes available to its users. Before
closing this introduction, we provide some additional motivation for examining
the Ada-level type management facility offered to the i432 user.

Consider our portfolio management application. One officer, the club secre
tary, is to be given sole authorization to update the membership_roster object.
It is to be kept in mind that, over the life of the club, secretaries may come and
go. Ensuring that no ex -secretaries retain unauthorized access to the portfolio
implies that write access rights must be dispensed under control beyond what
was indicated in Chapter 3. In section 6.4, we revisit this problem to see what
prog:r;am changes are required for accomplishing objectives of this sort. In par
ticular, we will see how treating the roster as an Extended Type Object pennits
us to solve this access control problem.

Another challenge related to the portfolio management application arises
when providing for the use of more than one portfolio-owner package
(Club_Portfolio). This need could arise in the case of a bank's Trust Depart
ment that manages a number of distinct portfolios for its clients. Each trust offi
cer of the bank would need write access rights to the several portfolios managed
by that individual, while several officers and staff members of the bank might
require read access rights to each portfolio.

Earlier in this chapter we suggested an extension of Ada that would "pro
mote" a package declaration to a type declaration (that is, declare a class of
packages), thus promoting a package from a program unit to the status of an
Ada object. Individual variables could then be declared of a package type. Dif
ferent versions of the package body could, by appeal to a "manager" package,
be selected and instantiated as needed and assigned dynamically to a (different)
package variable. For convenience, we may name this new level of manager
package Club_Portfolio_Mgr and assume that its Create operation returns an
access to a distinct instance of Club_Portfolio each time Create is invoked.

This "package type" extension to Ada serves well for dealing with the
multi-I/O device problem. The challenge here is to compose a program that can
continue to run in spite of dynamic changes in the set of available I/O devices
and their respective functionalities.

One way to achieve this measure of device independence is to make accessi
ble an abstraction for each candidate I/O device. This abstraction might take the
form of a particular instance (implementation) of a package whose contained
procedures are I/O operations. Each calion an input or output routine causes the
appropriate I/O operation in the desired I/O package instance to be invoked.
The ability to select dynamically the desired I/O package is possible with the
"package type" language extension, because a package instance is promoted to
the status of an Ada value that can be passed as an argument for a subprogram.

186 A Programmer's View of the Intel 432 System

The use of package types is crucial to the implementation strategy in iMAX for
the i432's Input/Output subsystem. The details of this particular application are
examined in Chapter 7.

It seems important to reiterate that the i432 architecture and the "package
type" extension of Ada combine to transcend Ada's static limitations in safe
and efficient ways. In particular, the extended Ada language and the i432 in
combination leads to a greater degree of effective dynamic control over the
transmission of functions and their functionalities than has been possible in
most predecessor systems.

Note first that Standard Ada explicitly rules out subprograms that have pro
cedures (or functions) as parameters. (Other high-order languages, -such as
Fortran and various "Algols" do permit subprogram parameters provided, how
ever, that they are treated as constants and not variables.) The reasons why such
parameters are forbidden in Ada are now obscure. A possible explanation is that
permission to pass only procedure constants (and not procedure variables) as
arguments to other procedures would violate a "completeness principle" in
language design (and to allow procedure variables as well would too greatly
expand the scope of Ada.) If procedure (or function) constant parameters were
permitted in Ada, it would be no "hardship" for a modem compiler to fully
check each subprogram call to ensure that the input/output characteristics (i.e.,
the functionality) of a supplied procedure (or function) constant argument
matches that of the corresponding procedure (or function) parameter. Such
compile-time checks are especially important for programs that execute on
computers having conventional architectures, since fully-general run-time type
checking is not convenient or feasible.

A different situation arises for programs written in the "package type" exten
sion of Ada that are to execute on the i432.

• First, the execution-time environment of the i432 provides relatively simple
and safe mechanisms for passing procedures (or functions) as arguments and
for performing fully general run-time type checks of the functionality of such
arguments. In fact, passing of procedural arguments is generalized at little
added cost, since what is passed in the Message Object for an i432 CALL
instruction is a Domain Object AD, rather than an individual Instruction
Object. (That is, one may pass as a single AD in the Message Object a refer
ence to the entire collection of subprograms implied by the domain AD.) The
types of objects input to a called subprogram and the types of objects output
from a called subprogram can be completely checked at run-time by taking
advantage of the underlying type definition facilities for system objects and
Extended Type Objects. Relatively small overhead is associated with these
type checks .

• Second, the compiler for the "package type" extension of Ada takes full
advantage of these underlying i432 object access and type control mecha
nisms.

;432 Object Access and Type Management 187

We are now ready to examine the relevant i432 System details provided in
support of object access and type management. Section 6.2 reviews the
hardware mechanisms while Section 6.3, 6.4, and 6.5 review the user
accessible iMAX services and companion Ada-language extensions.

6.2. Hardware Support for Access Control
and Type Management

The need for dynamic control over types in running programs can arise in at
least two kinds of applications:

• Multiple-user environments. The various users come and go and they have
changing needs and authority over the lifetime of a single application .

• Multiple-lIO device environments. Peripheral devices of different attributes
(functionality) are added to or deleted from the system during the lifetime of
a single application.

Recent experience in operating systems development has shown that in a
multiple user situation it is imperative to provide satisfactory protection mecha
nisms for the controlled management and sharing of information objects. The
general problem faced is to provide a means for the creator (or owner) of an
object, X, to dispense restricted access privileges for X to other modules. For
any object, X, the variety of accesses that might be, or should be, dispensed
will naturally vary according to the particular level of the application (that is, its
proximity to the hardware.)

Determining what is a useful set of dispensable access rights has not been an
easy problem for the system architect. It must be "complete" in a practical
sense, so that any particular combination of access controls may be expressed.
Moreover, the controls should not be circumventable, so that the system can
remain secure.

Trying to predict in advance the different forms of access control over all
possible kinds of objects is hopeless. Architects of the i432 System have
resolved the dilemma by applying the following three-step strategy:

1. Establish a set of base rights (and companion hardware controls), that can be
applied to access any object, such as read and write rights. For example, the
owner of object X should be able to give to another module Y an Access
Descriptor for X that contains read rights only, with the assurance that Y
cannot modify that descriptor (amplify the rights) to include, for example,
write rights as well.

2. Augment the base rights with an additional set of type rights applicable to
every system object and provide companion controls that permit proper
interpretation of these rights for such system objects. (Type rights are inter
preted relative to the system type of the object; this interpretation may vary
for objects of different system types. Base rights have the same interpreta-

188 A Programmer's View of the Intel 432 System

tion over all objects.) For example, X may be a Port Object whose owner
may wish to dispense to some Ada task M an Access Descriptor for X,
allowing task M to have only receive rights at that port. Denied send rights
to X, a relatively unreliable task M cannot then use port X in its complete
role as a local message queue. [The task M might otherwise attempt to
Receive a message from X before Sending one to X, or attempt to Send too
many messages to X (and cause an overflow of X's fixed-length message
queue.) The first behavior would result in a blocked Receive and the second
would result in a blocked Send-and either one would then result in
deadlock for task M.]

Implementing hardware-supervised type rights for system objects turns out
to be an essential requirement for achieving security in the i432 system. We
show why this is so later in this section.

3. Beyond providing base rights for all objects and additional type rights
tailored for specific system objects, provide a type definition mechanism for
arbitrary new (user-definable) typed objects, called Extended Type Objects,
together with a general mechanism for control over access to these objects.
Users are given access to these two mechanisms through a suitable 432-Ada
language and operating system interface.
Since the hardware cannot know about user-defined types, a priori, a special
representation, common to all such user-defined types, is required so that the
hardware can recognize objects belonging to these types. In some' 'tagged
architectures" , each object instance is paired with its type encoding to make
the object instance self-describing [Gehringer 79]. The i432 architects have
taken a related approach.

To understand this approach we explain the use of the system type field in an
i432 Object Descriptor. This field contains a tag that encodes the type of the
object referenced. The encoding, which is set at object creation (for the life
of the object), is subdivided into three principal categories:
1. generic The referenced object has no special attributes assigned

either by the hardware, the operating system, or the user.

2. system The referenced object is a particular member of the set of
predefined system objects, such as Process Object, Port
Object, Domain Object, etc., whose attributes are prede
fined, partly by hardware and partly by stored definitions
accessible to modules of the operating system.

3. extended type The referenced object has a special set of attributes
assigned by the user. This set is usually deduced by the
compiler and assigned to the associated Type Definition
Object (see below) to represent the type of the object.

1432 Object Access and Type Management 189

Thus, an Extended Type Object is one which is recognized by the hardware
as belonging to category three. An Extended Type Object itself contains a
Type Definition Object AD in its associated Object Descriptor. This format,
which relates the object to its type definition, is shown in Figure 6-1.

1
Object Descr. le~d

AD_T

+ I rwx I
"extended_type"

I . r o- f-

1 en_a

l

Extended Type
Object T ,

data part

access part

data
attributes

access
attributes

Type Definition
Object

Figure 6-1 Structure of an Extended Type Object, T, and its related Type Definition
Object (TOO). The type of T, "extended_type", is encoded in T's Object Descriptor.·
The particular set of attributes for this type is found in the TDO, referenced by the AD
also found in T's Object Descriptor. The TDO generally contains a set of type-specific
data and access attributes.

[A similar treatment is used for each class of i432 system objects. The hardware
recognizes the particular system type as encoded in the Object Descriptor. Additional
type definition information for each system object class is found in the Type Defini
tion Object, which is referenced from the IDa AD placed in the Object Descriptor.]

We see that Extended Type Objects are interpreted as instances of the type
specified by the object's Type Definition Object (TDO). The format of an
Extended Type O~ject T differs from that of a generic object only in two key
respects: (a) its Object Descriptor marks it as being of type
"extended_type", and (b) its Object Descriptor slot contains a reference to

190 A Programmer's View of the Intel 432 System

its Type Definition Object. Since each TDO is unique, the reference to it in
the Object Descriptor is also unique and hence identifies T as being an
instance of a unique type. If two or more Typed Objects are intended to be of
the same type, their Object Descriptors must contain the same Type Defini
tion Object AD. The i432 architecture does not specify the mechanism by
which a system for the i432 preserves the uniqueness of TDOs.

6.2.1. Object Creation Instructions

Objects are created using one of two i432 instructions. These are:

• CREATE OBJECT

• CREATE TYPED OBJECT

A generic object is created by executing the CREATE OBJECT instruction,
and an object of system-recognized type, including "extended type", is created
by executing the CREATE TYPED OBJECT instruction.

Briefly, the CREATE OBJECT and CREATE TYPED OBJECT instructions
specify the lengths for the access and data parts of the object to be created and
an access selector for the destination slot that will receive the Access Descriptor
for the created object. The CREATE TYPED OBJECT instruction also specifies
an AD (which must have create rights set) for a system object known as a Type
Control Object, or TCO. This object, as suggested in Figure 6-2, contains the
information needed by the hardware for encoding the system type of the created
object and for encoding the rights fields (base and type rights) in the AD for the
created Typed Object. A TCO used for creating an Extended Type Object pro
vides the type encoding in the form of a reference to the type's TOO; a TCO
used for creating a system object provides, in addition, a distinct system type
code. (As might be expected, TCOs for i432 system objects have formats that
are identical with those of Extended Type Objects.)

TCO_AD
encoded type
and rights .,
ADO
Type Control

Object

-

data
attributes

access
attributes

Type Definition
Object

Figure 6-2 Structure of a Type Control Object

A TCO contains the encoded type, e.g., "extended type", and also, in its
zero-th AD slot an Access Descnptor (TOO_AD) for an object (the TOO)

1432 Object Access and Type Management 191

whose system type is "Type Definition Object." A duplicate of the TDO_AD
is placed into the Object Descriptor for the created Extended Type Object.

There are two distinct levels of control that can be expressed (exercised) with
respect to Typed Objects:

1. Control over creation

2. Control over access

Who is permitted to create a Typed Object.

Who determines the access rights to be placed in
an AD for a Typed Object.

Control over creation of non-generic objects is governed by possession of an
AD having create rights set in the AD for the Type Control Object associated
with a particular extended type. The TCO for a system object would normally
be created by the operating system on behalf of a type manager; the operating
system would supply to that type manager an Access Descriptor with create
rights for that Type Control Object (TCO_AD). The type manager would then
use TCO_AD during each activation of its Create operation to create an
Extended Type Object on behalf of the type manager's caller. Ordinarily, this
TCO_AD would be kept private to the type manager.

Control over access to a previously created Extended Type Object, T, is
governed merely by possession of an AD (with appropriate access rights) to T.
When the Create operation within T's type manager returns an AD for T to the
caller of Create, the decision as to what access rights to supply in the AD for T
is the responsibility of the type manager. The AD for any newly created object
always includes both read and write rights. If rights to T are to be restricted,
then the type manager's own local object creation operator must "strip off"
such rights in any copy of the AD for T that is passed back to Create's caller. A
type manager will normally reserve for itself control over the amplification of
rights to T.

Any rights stripped off the AD for T when the AD is issued to the user can be
reinstated by the type manager when the same AD is later presented to the type
manager as an argument to another of its operations. Rights restriction and
amplification are accomplished by taking advantage of the i432 RESTRICT
RIGHTS and AMPLIFY RIGHTS instructions. The latter instruction can be
executed only when the appropriate TCO_AD, maintained privately within a
type manager, is specified as an argument. These details are elaborated later in
this section.

We now divide our discussion here into two parts. First we examine the
"inner layer of access control" provided through the base and type rights fields
of Access De~criptors, the base and system type fields within Object Descrip
tors, and the control functions that arise through the hardware's interpretation of
these fields. These mechanisms form the foundation on which the system's
security rests and also the foundation on which the extended type management
facility is built.

192 A Programmer's View of the Intel 432 System

In the second discussion we examine the security strategy-which, is based,
in essence, on denying the programmer the freedom to manufacture Access
Descriptors and on controlling Typed Object creation and amplification of
rights to these objects.

6.2.2. The Inner Layer of Access Control

An Access Descriptor may be thought of as having a hardware-sensed record
structure with three primary components:

• logical_address Consists of two subfields: directory index and object
index. These specify the referenced Object Descriptor
(See Figure 4-1.)

Consists of the valid bit, delete rights and unchecked
copy rights, none of which is discussed here.

Has two parts: base rights and type rights

We limit our discussion here to the rights_fields component, consisting of
two parts: base rights and type rights. (Base rights are also called representation
rights.)

• Representation rights, consist of read and write rights. These are interpreted
by the hardware according to the position of an object as a source operand or
destination operand within the operator (instruction) being performed. The
representation rights bits are interpreted independently of the type of object
on which a read or write is attempted. As mentioned in Chapter 4, representa
tion (or base) rights apply to both access and data parts
For example, both the LOCK OBJECT and UNLOCK OBJECT instructions
have operands that specify an AD for the object containing the lock. If that
Access Descriptor has no write rights, the instruction will not be executed,
and a context-level fault will occur. A similar circumstance occurs if an
instruction attempts to read an Access Descriptor with write-only access. Any
attempt to execute, say, a MOVE instruction that specifies a source AD hav
ing only write rights will induce a read fault.

• The type rights field of an AD is interpreted according to the system type of
the object referenced by the AD. The system type of the object is, in tum,
encoded in the Object Descriptor referenced by the AD. We say more about
Object Descriptors below. Figure 6-3 lists the processor-interpreted type
rights for i432 system objects. A reader who wishes more details should con
sult the i432 GDP Architecture Reference Manual.]

For the following discussions, it is useful to recall that there are two kinds of
descriptors that can be referenced by an Access Descriptor: an Object Descrip
tor and a Refinement Descriptor. Let us assume that the target of the
logical_address given in an Access_Descriptor is an Object Descriptor, and

System Object

Context Object

Instruction Object

Port Object

Carrier Object
Processor Object

Storage Resource Object

Type Control Object

Type Definition Object

Object Table Object

;432 Object Access and Type Management 193

Type Rights

Return

Trace
Create a context

Receive
Send
Use as a Surrogate
Send an interprocessor message
Broadcast an interprocessor message

create

create typed object
Refine typed object
Amplify rights

Create
Retrieve

create (an Access Descriptor)

Figure 6-3 System Objects on which type rights have been defined

now glimpse at its internal structure. An Object Descriptor can be thought of as
having three principal components:

• physical_address_info The base physical address of an o~ject or a

• memory _mgr _control_info

• object_type

secondary address of a non-memory resident
object.

A collection of items used in storage
management, including garbage collection.

There are two subfields:
system type
processor class

We are concerned here only with object_type, which has two components
that contribute to the classification of the described object.

• The system type subfield qualifies each object according to its system
significant or user-defined function, if any. If an object has no system
significant function or user-defined function, its system type subfield is
encoded as "generic". The availability of non-generic system types permits
the hardware to detect a variety of object access faults that occur when an
operand of an attempted instruction maps to an object whose system type is
inconsistent with the semantics of that instruction.

194 A Programmer's View of the Intel 432 System

For example, an attempt to execute a RECEIVE instruction whose operand
does not specify a Port Object will lead to a process-level fault. There are a
large number of hardware detected faults of this kind. Those who wish more
information about these faults can find it in the published in the i432 Archi
tecture Reference Manual.

• The processor class field may further categorize the system object, according
to the kind of processor that is permitted to operate on this object. Currently,
there are but two kinds of i432 processors, but in the future this number could
increase.

For example, the system's Interface Processor (IP) operates with a Processor
Object that has a different format and content than the Processor Object asso
ciated with the General Data Processor (GDP), whose architecture we have
been describing thus far. A processor-level fault will be caused when there is
an attempt to bind a processor P to a Processor Object encoded for a different
kind of processor Q. [The IP, of which there must be at least one in every
i432 System, plays a critical role in interfacing the i432 with an I/O subsys
tem. The IP and the I/O subsystem are described in Chapter 7.]

Not all object types are or should be associated with a particular kind of proc
essor. For example, generic objects are treated alike by both GDPs and IPs
(even though the GDP's richer instruction set allows it to do more with such
objects.) For this reason the processor class marked "all" is provided. It is
used for objects that may be processed by the union of all kinds of processors
extant in the system.

[The i432 architects have laid the groundwork here for the eventual inclusion of a
variety of other kinds of processors that may be co-attached through the system's gen
eral interconnect structure. As more experience is gained with use of the i432, it will
be tempting for the system architects to design and add to the system other special
function processors besides the IP. A special purpose Garbage-Collector CGC) proc
essor is one conceivable candidate; a specialized LISP language processor may be
another.
Because different kinds of processors will have different instruction sets, it may be
desirable that, even for identically formatted system objects, different type rights
should be defined for different processors. Since the number of different kinds of
processors that can be included in an i432 System is intended to be open-ended, the
processor class field may play an especially important future role in the lifecycle of
i432 Systems.]

6.2.3. i432 Security Strategy

Key to the i432 System security is a guarantee that every information object
must be accessed via an Access Descriptor. All i432 processors satisfy this con
straint. It may not be clear from a casual examination of the instruction set of
the GDP that a programmer is incapable of fabricating and using Access

;432 Object Access and Type Management 195

Descriptors to gain access to any (and ultimately to every) object. What
prevents the clever programmer from "fooling" the hardware into using an
arbitrary AD to reach other objects?

Put another way, if a programmer can manage to manufacture even one
Access Descriptor with an arbitrary logical_address component, then the sys
tem is fundamentally insecure! A necessary condition for the system to be
secure, therefore, is to deny any programmer, including any system program
mer (except the person responsible for the system's initialization), freedom to
manufacture Access Descriptors in an uncontrolled fashion. This has been
achieved, as the following discussion attempts to show. [Some not-so-curious
readers may wish to skip the rest of this discussion.]

In the normal course of events, Access Descriptors are created only as a
byproduct of object creation. Once cveated, an Access Descriptor can be copied
and parts of it altered, but only under controlled conditions. The
logical_address part part of an AD can never be individually altered, i.e.,
without altering the entire AD. It seems sensible, therefore, first to examine the
details of object creation. In the course of doing so, we will complete our expo
sition of the role of the Type Control Object.

Objects can be created only by executing one of two i432 instructions. These
are:

• CREATE OBJECT

Creates a generic object of specified lengths for its access and data parts
(each of which may be zero) from a specified SRO and returns an Access
Descriptor for the created object in a specified AD slot of another object.

• CREATE TYPED OBJECT

Creates a non-generic object of specified lengths for its access and data parts
(each of which may be zero) from a specified SRO and a specified TCO, and
returns an Access Descriptor for the created object in a specified slot of
another object. The created Object Descriptor and Access Descriptor are
respectively encoded with system_type and rights_fields copied from the
specified Type Control Object. An AD for the object's TDO, copied from the
TCO, is also placed in the created Object Descriptor. The AD for the speci
fied TCO must have create rights.

Common to both of these instructions is the fact that creation of an object
involves the creation of an Object Descriptor and an Access Descriptor that
points to that Object Descriptor. The created Object Descriptor is placed in the
Object Table associated with the specified SRO operand. The created Access
Descriptor is assigned to a slot in the access part of the "destination" object
specified by the destination AD (which must have delete rights itself). The
hardware ensures that the created Access Descriptor cannot be placed in a slot
in the data part of a destination object. Moreover, the hardware determines the
encoding of the created Access Descriptor and Object Descriptor.

196 A Programmer's View of the Intel 432 System

In the case of the CREATE OBJECT instruction, created Object Descriptors
have generic system types. An object created by CREATE OBJECT can ini
tially inherit no special or privileged attributes. Only the use of the CREATE
TYPED OBJECT instruction affords the opportunity to create an object that is
encoded as a system object. But to successfully use this latter instruction, the
programmer must specify, as an additional operand, an Access Descriptor for a
Type Control Object. The TCO is, in essence, a template containing the system
attributes (e.g., system type codes and rights) that will be "conferred" on the
created object and the returned AD.

How are TCOs for system objects created? A Type Control Object is a system
object also. To create a TCO requires an Access Descriptor for an appropriate
Type Control Object. If the reader has followed the line of reasoning to this
point, all the earmarks of a "catch 22 situation" seem to be in evidence. It
should be clear that there is no way for a programmer to create a system object
unless at least one Type Control Object (along with its Object Descriptor and an
associated AD (with create rights) is deposited in memory at some known loca
tion at the time the system is initialized. TCOs for other types of system objects
can be constructed from the initial TCO. If the system program that is loaded at
the time of system initialization is sufficiently reliable, and if the operating sys
tem code loaded subsequently is also reliable and sensitive Type Control Objects
are hidden in the private parts of system packages, it should be possible to deny
all users access to all Type Control Objects used by the system. This is the suffi
cient condition that is needed to guarantee the system security in the i432.

By analogy with TCOs for system objects, users who program Ada type
manager packages can create TCOs for Extended Type Objects with the aid of
the operating system. These users are then responsible for control over the dis
tribution of ADs (having unrestricted rights) to these TCOs in securing their
own subsystems.

Our study of the i432 System's security strategy is not yet complete. We
have examined the instructions for creating objects, and the controls governing
the use of these instructions, but we have not yet introduced the AMPLIFY
RIGHTS instruction (and its companion RESTRICT RIGHTS instruction). If
the use of AMPLIFY RIGHTS were uncontrolled, this instruction would cer
tainly be a weak point in the System's "security armor."

• The AMPLIFY RIGHTS instruction allows a programmer to add base and
type rights to a specified Access Descriptor for an object T, but only if the
instruction specifies an AD with amplify rights for the Type Control Object
that "governs" rights amplification for T. In addition, other conditions
explained below must be satisfied. When a suitable TCO is specified in the
AMPLIFY RIGHTS instruction, the processor ORs the base and type rights
of that TCO with those of the Access Descriptor to be altered.

;432 Object Access and Type Management 197

The additional conditions to be satisfied are as follows:

a. if the specified TCO is for a system typed object, then the object type
encoded in the Object Descriptor for target object T must match the object
type encoded in the TCO.

b. if the specified TCO is for an Extended Type Object, then the TOO_AD
encoded in the TCO must match the TOO _AD value in the Object
Descriptor for target object T.

Since the operating system denies users access to TCOs for system typed
objects (and since an application subsystem user should not be able to gain
access to a TCO for an Extended Type Object residing in a private area of an
application program), there can be no system security risk here (and there
should be no application security risk here either.)

• Nor is the RESTRICT RIGHTS instruction a security risk. This instruction
allows a programmer to remove base and type rights from an Access Descrip
tor (presumably before making it available to a less privileged "friend".) For
this instruction, a Type Control Object must also be specified, but here, no
controls on it are demanded. In fact, a TCO may be fabricated and specified
as a refinement of an ordinary generic object. The Access Descriptor that
references this TeO need have no special rights beyond read rights. The criti
cal issue here, however, is that the restriction of rights is done by the proc
essor, logically ANDing the base and type rights found in the TCO to those
of the Access Descriptor to be altered. Since it is not the programmer but the
hardware that performs the ANDing of rights, there is no chance that the
RESTRICT RIGHTS instruction can be used for rights amplification instead.

The last point to be made about the i432 security model is that, by careful
plan, there is no way a user can manufacture and then use an Access Descriptor
to access a "forbidden" target. Access Descriptors are constructed by the sys
tem only in connection with the creation of objects and refinements. Thereafter,
only the rights fields of the AD can be altered-with amplification strictly con
trolled, as we have just seen. A user can destroy an Access Descriptor D that
contains delete rights, but only if the user holds an AD with write rights for the
object in which D resides. Moreover, such "destruction" is always controlled:
either D is replaced by another valid and legal Access Descriptor, or D is
replaced with a null AD-a descriptor that is marked invalid and hence never
usable. Since the processor fetches ADs only from the access part of an object,
it is of no use for a user to implant a manufactured (imitation) AD in the data
part of an object with the expectation of "fooling" the processor into using it.

What might appear as an obvious way to breach the system's security is for a
user to acquire and use an AD with write rights for an Object Table. To do this,
the user could first create an object in some SRO, thereby obtaining an AD for
that object with full rights. Then, having write access to that SRO's Object
Table, the user could modify the Object Descriptor for that created object to

198 A Programmer's View of the Intel 432 System

represent any desired system type, for example, a Type Control Object for any
kind of system type. However ADs for SROs made available to users by the
operating system have read and write rights removed, so a user cannot succeed
with such a plan.

In summary, the foregoing has been presented as an informal proof that the
capability-based system implemented in the i432 architecture is a sufficient
foundation for a secure system. The system is secure to the extent that its
operating system prevents users from gaining access to TCOs for system typed
objects and from gaining possession of an AD with write rights for the Object
Table of an SRO.

6.2.4. Instruction-Level Use of Extended
Type Objects

The last instruction to be discussed in this section is RETRIEVE TYPE DEFIN
ITION. This instruction is used to retrieve the defining TDO _AD for an object
A whose AD is currently accessible. The object A can be either an Extended
Type Object or a system typed object. The RETRIEVE TYPE DEFINITION
instruction takes two operands. The first specifies the Access Descriptor for the
source object (A, as discussed above), and the second specifies the slot to
receive the requested TDO-AD. The set of rights in the returned TDO_AD
includes only read and write rights, but either or both of these can be removed
using the RESTRICT RIGHTS instruction.

We illustrate the use of the RETRIEVE TYPE DEFINITION instruction in a
situation in which we are given an AD for an object R of some alleged type S,
and we wish to verify that R actually has this type. An i432 instruction sequence
like the following might be used:

RETRIEVE TYPE DEFINITION (R_AD, unknOWIl_TDO_AD)
TDO_AD for R is deposited
in unknoWIl_TDO_AD.

EQUAL ACCESS (unknOWIl_TDO_AD, type_S_TDO_AD, truth_value)
Sets truth_value to true
on equal compare of two
given ADs, else sets
truth_value to false.

BRANCH FALSE (truth_value, Not_S) -- Branch to label Not_S
-- if truth_value is false.

-- Steps to be taken if object R is of type S.

The actual content of a Type Definition Object is not specified in the i432
Architecture. For many applications it may be sufficient for the TOO to be
empty because the AD for it serves as the type's unique identifier. As we will
see, however, in Chapter 10, Type Definition Objects may contain references

1432 Object Access and Type Management 199

useful to modules of the Object Filing Subsystem for determining how to file
typed objects in the passive, long-term store of the system.

[One can easily conceive of an application in which a IDO is a Domain Object that
refers to a set of operations (attributes) that may be performed on (associated with) a
type. Such an application would differ from Dne controlled by a standard Ada compiler
in the sense that the set of operations (attributes) defined for a particular extended type
could be varied dynamically, as required.

This form of dynamic typing is used in languages like LISP for which there is a pro
perty list associated with each variable. Properties and property values on such lists may
be altered dynamically. In a database application, to choose a more familiar example, the
access rules for typed records would be referenced indirectly from associated Type
Definition Objects. These rules could be altered dynamically, by some supervisory
module of the program.

Certain applications in computer graphics also suggest themselves. For example,
some spatial objects must be displayed under potentially changing display rules. These
objects can also be represented as Typed Objects. One can see that the number of useful
applications for Typed Objects appears to be open-ended.]

In the next Section, we look at the more "benign" user interface provided by
iMAX for gaining access to the architecture's Extended Type facility.

6.3. iMAX Interface to the Extended Type Facility

The iMAX Extended_ Type_Manager package, provides the user-level inter
face for managing objects with extended types. We have already introduced the
reader to this package in Section 6.1, and we have explained the underlying
hardware mechanisms on which the package depends in Section 6.2. There
fore, the reader should now have no difficulty understanding the Ada specifica
tions for this package (given in Appendix I). In this section, we quickly go over
the highlights of these specifications and then show how a programmer would
use the package for managing Extended Type Objects.

In the context of this discussion, we may ask, who is the "user" of this
iMAX package? It seems fair to say that systems programmers, such as those
working for 'original equipment manufacturers (OEMs), including compiler
writers, and some interpreter writers, will be the typical users. Applications pro
grammers who choose to program in Ada, who generally prefer to work at a
higher level, should not need to use the iMAX package directly. We attempt to
show why this is so later in this section. We first discuss the lower-level, or
direct, use of the iMAX interface. We then show how the equivalent operations
are expressed within Ada.

The iMAX interface package offers six operations, as listed in Figure 6-4.
Each of these corresponds to a key i432 hardware instruction whose semantics
we have previously described.

200 A Programmers View of the Intel 432 System

Operation Name

Create_type_definition
Create_type_control
Create_extended_type

Restrict_rights
Amplify_rights

Applicable i432 instruction

CREATE TYPED OBJECT
CREATE TYPED OBJECT
CREATE TYPED OBJECT

RETRIEVE TYPE DEFINITION

RESTRICT RIGHTS
AMPLIFY RIGHTS

Figure 6-4 Operations of the iMAX package Extended_ Type_Manager.

We now suggest how one can program a type manager package, S_Mgr, that
manages objects of some type S. This package would make calls on the iMAX
Extended_ Type_Manager to obtain a TOO for type S, to obtain a governing
TeO, and to create Extended Type Objects typed by S (which we hereafter call
"Typed_S" objects.) In addition, S_Mgr might offer its users a predicate for
determining whether a given typed object is a Typed_S object. We will also see
that, unknown to the user of S_Mgr, the latter might perform Restrict_rights
and Amplify ~rights calls on Extended_ Type_Manager. In short, a typical
user-written type manager package is likely to make use of all the operations
listed in the iMAX Extended_ Type_Manager package. We explain this idea
further below where, for simplicity, we assume that S_Mgr is a transformer
package, rather than an owner package.

As suggested, the public operations of S_Mgr would include the two basic
operations to create a Typed_S object and to verify that a given object is of type
S. See Figure 6-5.

and other packages, as needed

package S_Mgr is
use Extended_Type_Manager;

function Create_typed_S(len_d, len_a: short_ordinal)
return typed_S_ref;

function Is_type_S(unknown_typed: dynamic_typed)
return boolean;

-- Other function and procedure specifications that are
-- particular to type S go here.

Figure 6-5 Skeleton of a low-level Type manager.

;432 Object Access and Type Management 201

Also included but not shown would be declarations of types and variable
instances of these types, either public or private.

Create_typed_S returns an AD for a Typed_S object, given as arguments the
lengths of the access and data part. The base rights supplied in the returned AD
depend on the application. Thus, if S_Mgr's callers are regarded as "unreli
able", both write and read rights would be withheld. (We see later that such a
case corresponds to an Ada private access type.) The caller of Create_typed_S
supplies neither a TCO argument nor an SRO argument. This is because the
attributes of type S are known to the programmer of S_Mgr. Thus, when that
package is initialized, references for both the TOO and TCO for type S are
obtained by a (single) calIon the Create_type operation of the iMAX package.

The function Is_type_S returns a boolean value true if the supplied reference
is an AD for a Typed_S object and false otherwise. (In the implementatIon of
Is_type_S, S_Mgr makes a call on the iMAX operation Re
trieve_type_definition to obtain an AD for the TDO of unknown_typed.)

In the event S_Mgr has removed read and write rights, or both, when return
ing a reference for a created Typed_S object, then upon receiving subsequent
calls, S_Mgr by the user might need to call on the Amplify _rights operation of
the iMAX package. This would be done in order to restore the rights needed by
S_Mgr so that processing of the call can continue. When processing is com
pleted, S_Mgr may wish to call on the Restrict_rights operation of the iMAX
package to again remove the restored rights if, for example, the AD was sup
plied as an argument of an in out parameter.

To be more concrete, let us suppose that S_Mgr includes the public operation

procedure Update_typed_S(
-- param1: in ...,
-- param2: in ...;

param3: in out typed_S_ref)

If rights for Typed_S objects are not initially withheld from S_Mgr's caller,
then the implementation of Update_typed_S uses param3 directly as received,
and returns the same AD value after possibly modifying the object referred to
by param3. If, however, base rights to Typed_S objects have been withheld,
then the implementation of Update_typed_S would first issue a call like

Amplify_rights (
ext_type
tco

=> param3,
=> typed_S_ tco_ref) ;

if both read and write were needed for updating the Typed_ S object specified
by param3. Just before completion of the update procedure, a corresponding
call to restrict the rights in param3 would also be issued:

Restrict_rights (
ext_ type => param3,
read_rights => 1,
wri te_rights => 1,
tco => typed_S_ tco_ref) ;

202 A Programmer's View of the Intel 432 System

In both of the above calls, the value passed to the parameter "tco" is a variable
that is strictly private to S_Mgr.

The direct use of the iMAX interface package pennits the management of
Extended Type Objects within a "spectrum" from fully private to fully public.
If the type manager removes (supplies) all rights to Typed Object ADs before
handing them to the user, such objects are clearly fully private (fully public). A
fully private object models a real world object that is sealed. One cannot unseal
it (to find out what is in it or to use what is in it) for lack of a key. A fully public
object models a real world object that is open for inspection or manipulation.

Intermediate points on the spectrum running from fully public to fully private
are also possible. Suppose, for example, the user of a returned AD having both
read and write rights for a Typed_ S object chooses to further restrict certain
dispensed copies of the AD by stripping off these rights. Further suppose that
some of the operations of S_Mgr, like Is_type_S (or Update_typed_S) are re
specified to require read rights or write rights, or both, and that exceptions are
raised by S_Mgr when such rights are not provided with in or in out Typed_S
references. In this situation, a much richer set of management controls can be
exercised.

A particular kind of intermediate level of control governs the provision of the
right to verify the type of a Typed Object. Possession of a reference with read
rights to an Extended Type Object can be used to model possession of an access
to a "trademark" on that object. We can think of the Type Definition Object
that is associated with a Typed Object as the object's trademark. Having access
to the TOO pennits verification that the given object is an authentic instance of
some type (assured by checking the object's trademark).

The ability to check for,the expected trademark on a Typed Object in model
ling real-world systems can be regarded as a useful user-defined right that can
be dispensed to those modules that need it. For the case where a type manager
dispenses (at least) read rights to a created Typed Object, we can easily imple
ment such a scheme. It is only necessary to specify the Is_Type predicate of the
type manager such that the caller must supply read rights in the in-bound refer
ence to the Typed Object. (To be specific, suppose module E is given exclusive
access to the manager package T _Mgr. Suppose subprograms in E get ADs to
created Typed_ T objects with read rights. This right can then be retained in
copies destined to some of E's callers but stripped off of copies destined to oth
ers, thus dispensing the right of trademark-checking to some and withholding it
from others.)

6.3.1. Implementation of Ada Access Types

The extended type facility (architecture and iMAX interface) described in the
foregoing text forms the foundation for the i432 Ada compiler's implementation
of Ada access types. Every access type variable of type T in an Ada program is
an AD that references an Extended Type Object if and only if

;432 Object Access and Type Management 203

is specified in the same unit in which T is declared.
Declaring an access type T that references a limited private type (hereafter

referred . to as a private access type) and specifying the pragma En
able_Dynamic_ Typing(T), directs the i432 Ada compiler to form sealed refer
ences for all instances of T, whether allocated statically or dynamically. Sealed
references are ADs that have no base rights. Furthermore, when such instances
are subsequently supplied as arguments to operations of the package in which
the type T is declared, the compiler automatically generates the necessary calls
~m operations of Extended_ Type_Manager to amplify base rights on in-bound
arguments and to restrict these same rights on out-bound arguments. Rights
amplication and restriction is made invisible to the user.

This direct match made between the high-level concept of an Ada private
access type and the i432/iMAX mechanisms for support of type managers has
significant implications for the improvement of security and software produc
tivity. Benefits accrue mainly because local as well as system-wide security is
automatically gained for the data of Ada programs declared using private access
types. Since the achievement of total security is implemented simply by the use
of the private access type feature of Ada, application programs need not be aug
mented with or encapsulated in code to invoke special system routines for
achieving the same level of security. By avoiding such "embellishment", pro
grams can be simpler and easier to understand-hence the expected increase in
software productivity.

The benefits outlined above are gained at some cost in space and execution
speed for an executing Ada program. For some Ada access types, a user might
prefer that the compiler choose an untyped representation, thereby avoiding the
costs of extra object creation and rights amplification and restriction (and
assuming the implicit security risks as well). For this reason, the 432 Ada com
piler default specifies that untyped representation should be used for access
types and that sealing should be inhibited.

We now consider in somewhat greater detail the implementation of Ada
access types and their use. Consider the following Ada program fragment:

type R is
record

end record;

type R_ref is access R;

pragma Enable_Dynamic_TYPing(R_ref) ;
Compiler generates code to produce a TOO for type R (TDO_R)

-- and a TCO (TCO_R_ref) that contains an AD for TDO_R.

204 A Programmer's View of the Intel 432 System

A subsequent program fragment may contain steps to declare an instance of
type R_ref and to allocate a new value for R:

Compiler generates an association between X and
the AD for TCO_R_ref already obtained.

X : = new R' (.) ;
Compiler generates, either directly or indirectly,
a CREATE TYPED OBJECT instruction that
specifies the AD for the TCO_R associated with

-- variable X, thereby creating a Typed_R object
-- and assigning the returned reference to X.

The object structure resulting from executing the above assignment statement
would appear as in Figure 6-6.

Context Object

X
o J. Descrlptor

for Typed_R
object

data part

access part

Figure 6-6 Data structure snapshot immediately after assigning to X a reference to a new
Typed_R object. It is assumed that variable X has been allocated a slot in the access part
of the current Context Object.

6.3.2. Compile-Time and Run-Time Type
Checking

Since instances of Ada access types can be created dynamically as well as stati
cally, it is useful to review the kind of type checking automatically provided by
the Ada compiler at compile time and/or run time. Such type checking is an
essential building block in the security structure for all i432 application pro
grams.

First, we need to review the Ada concept of type conversion to see how it
applies to access types. Second, we need to appreciate how run-time checks are
provided in those cases in which type conversion involves the special i432 Ada
type dynamic_typed. A variable of this type can contain any Access Descriptor
and is used in important ways when interfacing with the iMAXOperating Sys-

;432 Object Access and Type Management 205

tern. [Type dynamic_typed is a predefined type in the SYSTEM package sup
plied with the Ada compiler system and as such can be regarded as an extension
of Ada.]

Ada permits the programmer to specify the conversion of an expression value
from one type (and representation) to another "related" type (and representa
tion). For example, if types X and Y are related types, then one may convert a
value of type X to type Y or vice versa using the following syntax:

declare
first: X;
second: Y;

begin

first := X (second) ; -- Converts value of type Y to value of type
-- X and assigns it to first.

second :=Y(first); -- Converts value of type X to value of type
-- Y and assigns it to second.

end;

By related types we mean X and Y must belong to some common category.
For example, both types must be numeric, or both types must both be arrays of
some conformable dimensions and have related element types. More impor
tantly for this discussion, Ada also allows conversion between derived types,
that is, between one type, A, derived from another type, B, and vice versa. [A
reader may wish to consult Chapters 3 and 4 of the Ada Reference Manual for
more details on type conversion.] For example, type A is said to be derived
from type B if type A is declared in the declaration:

type A is new B;

or, in the declaration

type A is new B constraint;

In the second example, the constraint simply limits the domain of values that
type A can have to a subset of those B has. For example,

type mid_week is new day range tue .. thu;

Following the same principle, all access types are related, as they may all be
considered as having been derived from the "generic type" dynamic_typed.
This means we can express the conversion of one particular access type to
another using the same type conversion syntax as just described.

The special, predefined dynamic_typed type has been introduced to provide
a simple way for programs to manipulate reference (AD) values whose refer
enced types are unknown at compile time. We have encountered but not yet ela
borated one such example in Section 5.6, in which the record type "mes-

206 A Programmer's View of the Intel 432 System

sage_type" contained the component message_body, of type dynamic_typed.
In this case, the sender must assign an access value of some particular type to
the message_body component of the message and the receiver, in order to use
the message_body, must convert this value of type dynamic_typed to some par
ticular and meaningful access type.

Consider the following situation, in which we have three access variables A,
B, and C, and where the value of one is to be assigned to another:

type R_ref is access R;

pragma Enable_Dynamic_Typing(R_ref);

A: dynamic_ typed;

-- A particular access type.

A := dynamic_typed (B) ; -- Passes a compile-time type check.

B := R_ref(A); -- Run_time check is generated by the compiler.

C :=A; -- Illegal without invocation of
-- Unchecked_type_conversion on
-- right-hand side, as explained below.

The first assignment "A : = dynamic _ typed(B)" is determined at compile
time to be legal since a value of any access type can be assigned to a variable of
type dynamic_typed. The second assignment "B : = R_ref(A)" supplies the
information needed by the compiler to generate machine code for a run-time
type check. This check is executed as follows: The system type that is encoded
in the object descriptor for A is checked for equality with that of B. If not equal,
a type fault exception is raised. If equal, and if the system types of neither is
, 'extended type", then the check succeeds. If both types represent "extended
type", then a further check is made for equality of the governing TDO_ADs.
One of the TOO _ADs is stored within the Object Descriptor for the current
value of object A and the other TOO_AD is that for type R_ref, which is B's
correct type. Recall that the governing TOO_AD for A is found in the Object
Descriptor for object A and the governing TOO _AD for type R_ref is stored
within the TCO associated with type R_ref. The assignment completes nor
mally if the check succeeds; a type fault is raised if the check fails.

To understand why the assignment "C : = A" is determined by the compiler
to be illegal, we briefly review the key Ada rule governing assignment of values
to variables.

If the type of the name on the left hand side of an Ada assignment statement
is not (resolvable at compile time or run time to be) equivalent to the type of the
expression on the right hand side of the assignment, then Ada semantics
requires that the generic function Unchecked_ Conversion must be applied to
the right hand side expression. This precaution provides the compiler with the

;432 Object Access and Type Management 207

opportunity to guarantee that the user is aware that he is stepping outside the
bounds of Ada's type checking system. If Unchecked_conversion is not speci
fied and the two sides of an assignment statement are of incompatible types then
the compiler can safely imply that the user has committed an unintentional
error.

with Unchecked_conversion;

type some_access is access

function Convert_any_to_some is new

X: some_access;
Y: dynamic._ typed;

Unchecked_conversion(source => dynamic_typed;
target => some_access);

Declares a specific instance of
the generic library subprogram,
Unchecked_conversion.

The function calIon the right-hand
side specifies the target type.
No run-time check occurs.

[Adherence to these rules was implicit in the discussion we had in Section 5.6 con
cerning the sending (and receiving) of messages in which values of different access types
were to be assigned to (and read from) the message_body component of various mes
sages transmitted through the same typed port. For those interested, the required use of
Unchecked_conversion is defined in Chapter 13 of the Ada Reference Manual in the sec
tion entitled, "Unchecked Programming.' ']

We can invoke Unchecked_conversion to transform the illegal assignment
"C : = A" of the earlier example into a legal assignment. The Ada program
fragment would be changed in, for example, the following manner:

with unchecked_conversion;

type R_ref is access

function Convert_any_to_R_ref is new
unchecked_conversion(source => dynamic_typed;

target => R_ref) ;
-- Declares a specific instance' of
-- the generic library subprogram,
-- Unchecked_conversion.

pragma Enable_Dynamic_Typing(R_ref) ;

A: dynamic_ typed;
B, C: R_ref; -- A particular access type.
A := dynamic_typed(B); -- Passes a compile-time type check.
B :=R_ref(A); -- Run_time check is generated by the compiler.
C : = Convert_any_ to_R_ref (A) ;

The assignment is legal (although unsafe)
even though there may be a mismatch
between the current type associated with A
and the type of C. No run-time check occurs.

208 A Programmers View ot the Intel 432 System

6.4. Sealing the Membership Roster

In Section 6.1 we suggested that another look at protection of the membership
roster in the portfolio management application progt:am would be in order after
gaining an understanding of the i432 security system. Our expectation is to
improve security by preventing a person from masquerading as the officer
authorized to update the membership roster, and thereby gaining improper
authorization for Updating the portfolio.

One can understand the security problem most easily by a review of the pro
gram structure in Figure 2-5.

A portfolio update request to Portfolio_Server (Appendix F) is first con
firmed by a call to Roster_Server, which is sent the name of Portfolio_Server's
caller. A simple name is not hard to forge, so let us assume that we have already
"improved" Roster_Server by requiring that a password be supplied along
with the person's name. That name and password must be checked by
Roster_Server (Appendix F.) Only the club's current Secretary is permitted to
write new names (and passwords) in the membership roster. The weak link in
the security plan is that no provision has yet been made to prevent a person from
"impersonating" the Secretary and thereby gaining the power to alter any and
all other passwords in the roster. (Many useful systems rely on passwords as the
basis for maintaining security, but, in this case, we shall assume that passwords
are deemed insufficient.)

We now consider how the sealing facility for i432 objects can be used to con
trol system security. Recall that a sealed object of type S is a Typed_S object
under control of a type manager whose operations dispense ADs (for Typed_S
objects) that never contain base rights. Recall also that the i432 Ada compiler
guarantees that transformer type managers for objects reached via private access
type variables dispense only sealed objects to users. It would appear that a
straightforward approach to the use of seals for this problem might proceed as
follows:

At first glance, one might think that the owner package Membership_Roster,
which creates the roster during its initialization, should be changed to a
transformer package and given a public Create operation. The Create operation
would then return a reference to a sealed membership roster.

However, there is another potential security problem associated with this
approach. In principle, any module that can access the package can also access
this Create operation. Use of the Create operation would permit the imposter to
populate an entirely different membership roster (using the Add_new_member
operation) in which the imposter installs himself as the secretary. Having
installed a fraudulent roster, the imposter could now issue entry calls to
Portfolio_Server, supplying it with a reference to a "proper" member name
along with a "proper", though fraudulent, membership roster. Roster_Server,
called for confmnation by Portfolio_Server, would be duped into responding

1432 Object Access and Type Management 209

with a message continning that the imposter is, in fact, the club secretary,
thereby providing authorized access to the portfolio itself.

A solution to this problem is to hide the Create operation, by letting it
become part of the initialization sequence of the Membership_Roster
package-which is the approach we had taken in the first place. Pursuing this
idea further, let us suppose that in addition to steps required to create the
membership roster, performed during the initialization of Membership_Roster,
additional steps are executed that have the effect of transmitting to
Task_Master a reference to the sealed roster.

Transmitting the roster reference from Membership_Roster back to
Task_Master presents a bit of a problem, as the reader will see in the following
discussion. For the moment, however, let us postpone the question of how the
requisite information is returned to the Task_Master, and instead pursue ques
tion: What will Task_Master be expected to do with that information?

We propose that Task_Master provide a reference to the newly initialized
membership roster to Portfolio_Server after it is started up, and also to the
Secretary task, after it is started up. Thereafter, when Portfolio_Server accepts
an entry call requesting update of the membership roster, Portfolio_Server can
check (for an exact match) of its copy of the roster reference against the one
supplied as an argument in the call. Here we presume that the specification of
each operation in Portfolio_Server to update the roster has been modified to
include the proper roster reference as an additional reference argument. This
reference does not, of course, contain base rights.

Central to this solution is the assumption that the Secretary task can be
"trusted" not to send out copies of the roster reference it receives from
Task_Master. This trust is well placed if the Secretary task is written by the
same programmer who writes Task_Master, or who, at least, is not the same as
the person who is the club's secretary.

There is one more ingredient to the security strategy that should be discussed
before we return to the postponed question of how the Task_Master receives the
roster reference. How is an orderly "change of the guard" effected when the
job of club secretary is passed to another individual? One simple solution would
be to have either the retiring or the incoming secretary update the roster entries
appropriately to reflect the change of duties.

At first glance, this proposal seems to be a bit naive. In fact, however, it is
naive only if it is to be assumed that the outgoing secretary is untrustworthy.
OtherWise, there is no reason to believe this approach will not work. A
trustworthy secretary would, as a "last act of office", alter the membership
roster to reflect the change of guard. Thereafter, only the new secretary would
be able to log in and attach to the Secretary task.

More sophisticated solutions for the change-of-guard problem also come to
mind. For example, Task_Master could be coded to receive from the Secretary

210 A Programmer's View of the Intel 432 System

task a message, sent by an outgoing secretary, telling Task_Master to abort that
Secretary task and to start up a new Secretary task to be used by the incoming
secretary. It is not clear why or when this more elaborate approach would be
required.

We can now resume consideration of our postponed question: how should the
reference to the created roster, produced by Membership_Roster during its ini
tialization, reach Task_Master? Four solutions are suggested, in increasing
order of soundness.

1. The information reaches Task_Master via shared storage. This approach is
unattractive. The shared storage approach is possible only if Member
ship_Roster is statically nested within Task_Master. It is preferable that
Membership_Roster be an Ada library-level package, but this approach is
precluded if the package is nested within a task.

2. The information is transmitted as the result of an Ada task entry call (after
the membership roster is initialized) from the initialization part of
Membership_Roster to Task_Master, using the rendezvous mechanism. But
a task entry call from Membership_Roster to Task_Master will result in a
deadlock situation, because only one thread of control is involved. (The
pack~ge which Task_Master is in the process of activating, has called an
entry in Task_Master; this is a circular deadlock situation.)

3. The requisite values· are transmitted by explicit i432 message-based com
munication. (The deadlock problem in the preceding solution is avoided.)
The steps to be taken are as follows: Mter completing its initialization of the
membership roster, but before returning to its caller, Membership _Roster
issues a Send of the requisite message (containing the initialized membership
roster) to a Port that is commonly accessible to both Task_Master and
Membership_Roster. When control returns to Task_Master, following the
initialization of Membership_Roster, the former can issue a Receive for the
membership roster message at the same Port. (Readers are referred to Chap
ter 5 for the explanation of Send and Receive steps.)

4. Very likely the best solution, one that is wholly contained within the Ada
rendezvous mechanism, would be to engage two distinct tasks in the activity
of transmitting the information produced during initialization of Member
ship_Roster to Task_Master. Such a solution could be accomplished, for
example, by having the Task_Master start up an auxiliary task, Mas
ters_Helper, that has no other responsibility but to instantiate Member
ship_Roster, which is now respecified as a generic package.
A task entry call from Membership_Roster to Task_Master after the
former's initialization of the membership roster is in full harmony with the

;432 Object Access and Type Management 211

Ada rendezvous mechanism. Task_Master would, of course have to be pro
grammed to accept such a call.

At this point Task_Master will have acquired the requisite reference to the
membership roster. Membership_Roster will have been properly initialized,
and Task_Master can now send to Portfolio_Server the information that the
task needs to protect itself from receiving a bogus membership roster.

To summarize, we have outlined, using the seal facility, a plan to strengthen
significantly the security of the portfolio management program structure of Fig
ure 2-5. The increased level of security is as good as the security of the sealing
mechanism itself, and is in tum as secure as the i432 architecture and operating
system-which, as has been argued earlier, is indeed secure.

We do not intend to show further security solution details for this progra'm
structure. Instead, we leave these details, and the full satisfaction of producing
them, entirely to the reader. We leave as yet another exercise for the reader the
matter of deciding whether a comparable effort is required to increase security
for the portfolio management program structure of Figure 3-2.

6.5. Access Control Using Dynamic Packages

In earlier discussions of Extended Type Objects we commented on the potential
for dynamically (and efficiently) altering the attributes of typed objects. This
alteration is made possible because the user can obtain, using the iMAX
Retrieve_type_definition operation, an AD with full base rights for the Type
Definition Object for a given Typed Object. It is true that we have not given a
concrete example~ but nothing prevents a systems programmer, such as a com
piler writer, from exploiting extended Type Definition Objects more fully.

The Intel 432-Ada compiler has also attempted to expose the dynamic char
acter of 432 Domain Objects at the level of the Ada programming language (as
well as other i432 features) by slightly extending the language. This has
provided an extension whose use offers the programmer, at a high level of
abstraction, dynamic control over the internal data and access components of
individual Domain Objects. To be more concrete, an Ada extension is provided
that permits a package specification to be declared as a dynamic package. Mak
ing such a declaration implies a class of possible instances, anyone of which
may be selected either statically or dynamically before an operation of the pack
age is applied. Dynamic selection of a governing package instance, for exam
ple, may be achieved simply by declaring variables to be of the given dynamic
package type and later assigning a particular package instance to that variable.
The particular package instance so assigned is a value formed by elaborating a
package body (instance) declaration. This value must, of course, be accessible
in the current context of the assignment to the package variable. A dynamic

212 A Programmer's View of the Intel 432 System

package is implemented as a standard Ada generic package that is instantiated
at execution time rather than compile time.

The Club_Portfolio package of Chapter 2, for example, could be redeclared
as a dynamic package. The specification part is identical to what we have
already seen (in Appendix C), except for the "package heading" line, which
now changes from:

package Club_Portfolio is ... end;

to
generic package Club_Portfolio_Pkg is ... end;

augmented with the type declaration

type Club_Portfolio is access Club_Portfolio_Pkg;

Variables of type Club_Portfolio may then be declared, as in:

HiS_Estate: Club_Portfolio;

Thus, in any scope in which both His_Estate and the dynamic package type
Club_Portfolio are visible, one can provide (that is, declare) a particular pack
age body instance for Club_Portfolio, such as Volunteers_Portfolio.

[1bis may be done using the declarations:

Volunteers_Portfolio: constant Club_Portfolio :=
new Club_Portfolio_Pkg;

package body Volunteers_Portfolio is
-- Declarations and statements for the body
-- of this version of the Club_Portfolio_Pkg
-- package go here.

end Volunteers_Portfolio;
]

It is then permissible to assign (the constant package value)
Volunteers_Portfolio to His_Estate. Thereafter, one can make calls to opera
tions of Volunteers_Portfolio (Club_Portfolio) by prefixing its operation names
with His_Estate. Several distinct package constants can be declared. By assign
ing distinct package constants to a particular package variable, the package can,
when initialized, acquire a distinct portfolio instance or have operations with
different implementation details, or both. (As an illustration of the latter, dif
ferent averaging rules might be used for the Print_average_cost operation in
two different versions of the package body.)

Suppose, for example, a subprogram, P, is being executed and that within the
scope of P, both His_Estate and package Volunteers_Portfolio are visible.
Then, within the body of P, we may have the following statement sequence:

HiS_Estate := Volunteers_Portfolio;

His_Estate. Print_average_cost(
His_Estate. Find_stock_code(

"General MotorsMAMAAAAAAMM,,));

1432 Object Access and Type Management 213

In this sequence, His_Estate is fIrst assigned the package value, which is a par
ticular implementation of Club_Portfolio. Then the call is made to display the
average cost of the General Motors holdings of the portfolio owned by the pack
age assigned to His_Estate.

We make several closing observations concerning the increase in expressive
power gained when using the dynamic package facility. Subprogram P may call
another subprogram Q, passing it His_Estate as an argument. Thus, Q could be
defIned to accept as a parameter any matching package (that is any value of the
specified package type) as an argument. We will see a convincing application of
the passing of package type arguments in the next Chapter. The facility would
not be possible were it not for the fact that, with the dynamic package exten
sion, users of Intel's extended 432-Ada language can declare variables of some
particular package type. Other uses of package variables arise where it is neces
sary to select dynamically a particular package implementation, according to
data- or data-representation dependent decisions. The full syntactic and seman
tic definitions for the dynamic package extensions to Ada, as well as more
complete examples, are explained in the Reference Manual for the Intel 432
Extensions to Ada, cited in Appendix B.

Another use of the dynamic package is passing a function to a subprogram as
an actual parameter. (Some readers may wish to skip over the following brack
eted discussion which shows the details.)

[Our example, repeated from the reference manual just cited, demonstrates how a
function can be passed to an integration procedure. The function is passed inside an
actual parameter which is a package value. See also Figure 6-7. The function that will be
the integrand function is the only element of the package named
Integrable_Function_Pkg. The integrand function is specified as a parameter to
Integrable_Function_Pkg so that many different packages can be created, differing only
in that each carries a different integrand function. Any of these packages can later be
passed as an actual parameter to an integration procedure named "Simpson_integrate".
(This integration procedure uses the function that resides within the actual parameter
package as its integrand function.)

The creation of a package value is realized by using the standard Ada allocator expres
sion, extended to allow the type name to bea parkage value name. Thus, for example, to
create a package that is passed to the Simpson_integrate shown in Figure 6-7, one may
write

function sine (x: in real) return real;

function cosine (x: in real) return real;

answer! := Simpson_integrate (
left, right,
new Integrable_Function_Pkg (sine));

answer2 := Simpson_integrate (
left, right,
new Integrable_Function_Pkg (cosine));

214 A Programmer's View of the Intel 432 System

type real is digits 8;

generic
with function Function_parameter (x: in real)

return real;
package Integrable_FunctioflLPkg is;

F(x: in real) return real renames Function_parameter;
end Integrable_FunctioflLPkg;

type Integration_Pkg is access Integrable_Function_Pkg;

function Simpson_integrate (
a, b: real;
p: Integration_Pkg)

return real
is

x, h, area: real;

begin

area: = area + h*p. F (x) ;

end Simpson_integrate;

This is the heart of the integration
algorithm.

Figure 6-7 Illustrating how an integrand function, F, can be passed as a parameter to the
Simpson_integrate procedure. Note that F is locally defined in Integrable_Func
tion_Pkg. It is the only public operation of Integrable_Function_Pkg and renames the
generic formal parameter, Function_Parameter.

The 432-Ada compiler writers have implemented the dynamic package facil
ity in the following way. The value assigned to a package variable, P _v, of type
T and body T _instance, is simply a reference (Access Descriptor) to a Domain
Object, which is the representation of the package body T _instance.

Readers will find that other interesting and potentially useful Ada extensions,
including the means for specifying specific i432 instruction sequences, are
described in the reference document on i432-Ada. (The package operations to
include i432 instruction sequences are specified in the Reference Manual for the
Intel 432 Extensions to Ada.) In most cases the objective of added high-level
facility is to provide the user a better opportunity to take full advantage of the
hardware architecture as "completed" by the iMAX operating system.

432-Ada directly allows programmers to specify refinements to objects at the
Ada level. (For example, a programmer can specify a refinement to a package.)
Recall that Refinement Descriptors provide the underlying facility for control
ling access to subblocks of data and access parts of objects. At the level of 432-
Ada, a programmer can, by the use of the extended Ada refinement declaration,
create (declare) aliases to existing Domain Objects, including subsets of the

;432 Object Access and Type Management 215

operations of a given package. These declarations, which are discussed in
Chapter 7, are directly supported by the i432 architecture through use of the
refinement mechanism and the pertinent iMAX interfaces.

Our account of the Access Control and Type Management in the i432 system
is now complete. We have skirted several related topics that could have been
included here. Among these are the low-level mechanisms for converting data
references in i432 instructions to accesses into the data and access parts of target
objects, touched on only briefly in in Chapter 4. Indeed, we have entirely
skirted discussion of i432 instruction formats, their rich and variable structure,
and the formats of the data reference components of the instructions. This topic
is an interesting one, but is well covered in the GDP Architecture Reference
Manual.

Nor, have we yet examined other control information that is encoded in
Object Descriptors that relates primarily to memory and object file manage
ment. We do this, however, in Chapters 9 and 10.

i432 INPUT/OUTPUT

7.1. Introduction

Input/Output control programs and their supporting hardware are known as I/O
Control Systems. They have evolved over a span of some twenty-five years.
These control systems, which originated as key modules of early operating sys
tems, were often composed largely of software and were monolithic in structure
(to achieve objectives of protection and throughput.) Over time, as the objec
tives of I/O control became better understood, hardware and software architec
tural support has become modularized and distributed out and away from the
central core of the computer system.

The earliest objectives of I/O Control Systems were to achieve input/output
of multiple data streams at high rates, in such a way as to permit the central
computer system to remain as free as possible to continue the processing of
"compute-bound" functions, thus gaining overlap of computation and I/O
transfer. About the time that it was learned how to achieve those objectives, a
rapidly-expanding variety of I/O devices was becoming available, shifting the
focus of the system designers to a new and more challenging objective, namely:
How to help the user run programs having a maximum of device independence.
Reaching this objective has often been painful and costly, especially since that
objective was generally incompatible with previous I/O Contol System designs.

A number of architectural schemes have been tried. Perhaps the most
comprehensive strategy is that represented by the Multics I/O System, whose
objectives and structure serve as a principal ancestor of the scheme adopted by
the i432 System architects. That ancestor, ahead of its time, still serves as a
paradigm for many modem conventional I/O Systems. [To better appreciate the
i432 I/O System, one may need to compare it with more conventional

217

218 A Programmer's View of the Intel 432 System

approaches, and hence the reader may find it useful to read Chapter 8 of "The
Multics System" [44].

We do not base our discussion of i432 lIO, however, by initially showing it
in juxtaposition with conventional structures. (We assume most readers are
already familiar with the structure of some lIO system.) Instead, we adopt a
bottom-up approach. First, we examine the architectural support for lIO (unique
to the i432 System). We do this in the remainder of our introduction. Then, we
examine the iMAX Operating System's user interfaces which rest on that archi
tecture (Sections 7.2 through 7.4). The flexibility of the provided interface also
depends strongly on the 432-Ada extensions for package refinement access
types illustrated later in this chapter. (See also Appendix B, Reference Manual
for the Intel 432 Extensions to Ada.) These Ada extensions exploit the i432
hardware operators that create and control access to refinements (in this case to
refinements of Domain Objects). Having examined the i432 lIO structures and
mechanisms, we make some higher-level observations and also identify
advances made in the i432 lIO structure beyond that of more conventional sys
tems (Section 7.5). At the end of this chapter (Section 7.6), we again revisit our
portfolio management information system to apply some of what has been
learned about i432 I/O to that program.

7.1.1. System Organization Revisited

Figure 7-1 reviews the i432 system structure introduced in Chapter 1. In this
simplified diagram we treat the multiprocessor interconnect as a single System
bus and show the physical relationship between the Computational Subsystem
and the I/O Subsystem.

Figure 7-1 A simple 432 system topology.

I/O
Sub
system

As mentioned in Chapter 1, the lIO Subsystem consists of one or more
independent peripheral subsystems, each interfaced to the Computational Sub-

1432lnputlOutput 219

system through an Interface Processor (IP). [Although their roles are different,
both GDP and IP processors access the same object-structured main memory
through the common System bus. Indeed, an essential role of the IP is to pro
vide the means for a Peripheral Subsystem to access the object-based 432
memory.]

7.1.2. Architectura~ Support for Input/Output

Our main learning objective for this chapter is to understand how the Computa
tional Subsystem executes the input/output steps of programs. A necessary
sub-objective is to understand, at least in an abstract sense, the architecture of a
Peripheral Subsystem and how it functions in cooperation with the Computa
tional Subsystem. (Since individual Peripheral Subsystems are logically mutu
ally independent, it is sufficent to assume the presence of only one of them
and we do so in subsequent discussions.) A final objective is to learn how a user
of the i432 System may take advantage of the operating system interface
software provided for the programming of input/output operations. Because the
underlying framework for specifying input and output operations is that of inter
process communication, the mechanisms outlined in Chapter 5 are directly
applicable.

An overriding goal of the total system architecture is to adhere to a modular
design philosophy in hardware as well as in software. This translates into the
objective of preserving a clean separation between subsystem components at
each level, so that one component may be designed, implemented, and function
(and possibly later modified) as independently as possible of another com
ponent. These objectives imply clear separation of roles among subsystem or
subsubsystem components and the hiding of implementation details within indi
vidual components. Keeping these objectives in mind is especially helpful for
learning how input/output works in this system.

Some of the direct design consequences of these objectives are:

• Interaction between the Computational Subsystem and a Peripheral Subsys
tem is accomplished entirely by message-based (nonnally asynchronous)
communication. The Computational Subsystem operates without interrupts
from a Peripheral Subsystem.

• New input/output devices and code to drive them may be developed and
brought on-line over the life of the system without shutting it down. (Devices
may come and go.)

• The disparity between the object-based storage organization and operating
behavior of the Computational Subsystem and the record- or stream-based
organization and real-time behavior of a variety of conventional and non
conventional 110 devices is bridged by a "smart interface" composed of
hardware and software. Hereafter, we call this the Peripheral Subsystem
Interface (or sometimes simply PSI). [Part of the software for this interface

220 A Programmer's View of the Intel 432 System

resides in 432 memory and (the larger) part resides in the memory of the Peri
pheral Subsystem.]

A prototypical Peripheral Subsystem and the Interface Processor to which it
is attached, has a top-level structure as shown in Figure 7-2.

Subsystem
I bus

I
:~ interrupt 1 ine

I
---'

::;:::;:::;::::::::::::::::::::::::: 432 System bus

Figure 7-2 Structure of a Peripheral Subsystem.

The Interface Processor (IP) "takes orders" from the Attached Processor
(AP) to perform functions for communicating with the Computational Subsys
tem. These orders are carried out in a 432 environment. In partiCUlar, the IP is
represented by a Processor Object and each order that it executes is accom
plished in a specified process environment defined by a Process Object and a
Context Object. These system objects, although somewhat specialized for the
I/O interface, are comparable to those outlined in Chapters 4 and 5. Within the
Peripheral Subsystem Interface, the AP and IP intercommunicate in ways famil
iar to those acquainted with memory mapped I/O subsystems.

[A memory-mapped 110 structure is based on the idea that a dedicated block of the
processor's address space represents not actual memory, but rather a mapping to a set of
110 devices. That is, writing into a particular word (or word group) within this block of
pseudo addresses is interpreted as an 110 command to a corresponding device. The 110
command is sent over a local bus directly (or through some intermediary controller

, hardware) to the mapped device, which then executes the command.
Commands for reading from the device or writing to the device usually refer to

specific buffer areas, also within the computer memory-writing into the buffer in exe
cuting a Read command, and reading from the buffer in executing a Write command.
Upon completing a command, the device sends back a report to the processor by (a) writ
ing status information into one or more words within the same word group of computer

i432lnputlOutput 221

memory locations from which the 110 command was sent out, and (b) sending an inter
rupt signal to the computer. The notified processor may then read the status information
to decide what to do next.]

The Attached Processor controls the Interface Processor much like an ordi
nary processor drives a memory-mapped I/O device. That is, the IP responds to
function requests, hereafter termed orders, as does a memory-mapped I/O de
vice, by executing or attempting to execute the requested order, by sending
back status information, and by sending an interrupt to the AP when finished
with an order. The order and returned status information are mapped from a
dedicated block within the AP's address space onto a predetermined block
within the data part of the IP's (single) Processor Object. Specification for this
mapping is referred to as a Control Window. (The IP's Processor Object and its
included Control Window are generally set at the time the system is initialized.)

Other orders which can be issued by the AP to the IP include those that have
the effect of setting up correspondences (maps) between buffer areas within
selected dedicated blocks of the AP's address space and portions of the data
parts of specified i432 objects. A total of four such maps, here called Data Win
dows may be established dynamically. (See Figure 7-3.) Each IP order, such as
one to establish a Data Window, is written through the Control Window to a
dedicated area in the data part of the JP's Processor Object known as the Func
tion Request Area. Once a Data Window is established, the AP can execute an
arbitrary sequence of Read or Write instructions from or to addresses that fall
within an established Data Window, thereby causing direct transfer of bytes
between the data part of the mapped i432 Object and, depending on the instruc
tion set of the AP, either into designated registers within the AP or into other
memory cells accessible to the AP.

AP's Address Space Range
Mapped to the IP

i432 address space

Object

address 1-------1 _____ r------, ---'1--- \l\\\\\\/{\\\@\\\:\\

]

data sub
range

Window
part

Figure 7-3 IP Window Mapping. A range of peripheral subsystem address space (i.e., a
64K byte section of the AP's address space) maps to the IP. A subrange (of this section)
is mapped to a selected section (of equal size) in the data part of an i432 object.

222 A Programmer's View of the Intel 432 System

All such transfers are under hardware control of the parameters specifying the
operative window; thus, any transfer that would copy data into or from sections
of an i432 object that falls outside the bounds implied by the window will induce
a fault. Notice of this fault is, in tum, transmitted to the AP by an interrupt.

[For especially fast 110 operations, Data Window 0 may be used by the AP or by a
Direct Memory Access (DMA) controller for "block transfer" kinds of Read and Write
instructions. For such operations, Data Window 0 is placed in "block mode" and sup
plied with a "byte_count" parameter that specifies the size of the block to be copied
into or from an i432 object. The IP architecture supports such high-speed block transfer
by providing a small on-chip FIFO data buffer whose use helps to balance the speed and
duty levels on the 432 System bus and 110 Subsystem bus. Further details on use of the
two window modes, random and block transfer, in the iAPX 432 Interface Processor
Architecture Reference Manual listed in Appendix B and hereafter referred to as the
"IP-ARM" .]

Upon completing an IP order, the "result", if any, and certain status infor
mation for that order are deposited by the IP at predetermined offsets within the
Control Window; therefore, the AP can execute follow-up Read instructions to
fetch this information. This is done by specifying as operands in Read instruc
tions the addresses in the AP address space that correspond, by virtue of the
Control Window, to result and status information in the Function Request Area
of the IP's Processor Object. [The Control Window opens on a block of storage
within the data part of the IP's Processor Object. This block, whose default size
is 256 bytes, but which may be set to a larger value, contains a number of key
data structures, including specifications for the five windows and the Function
Request Area into which each IP order is transferred before it is executed. The
Control Window may also contain a buffer area used in the execution of an
OPEN MESSAGE order about which we have more to say later.]

We can already see, however, even from this limited overview that the IP is
quite different from an ordinary memory-mapped I/O device in that the orders it
performs are not explicit input -output data transfers but rather operations that
extend the capablility of the AP for communicating in a controlled way with the
Computational Subsystem. Some of the main examples of such orders (func
tions) are introduced here:

• Functions that establish or disestablish correspondences (mappings) between
specified sections of the AP's memory address space and data portions of
specified i432 objects. The technical term used to describe these functions is
Opening (Closing) a Window.

As already suggested, opening a Window enables data transfers in either
direction through the opened window. Once a Window is Opened, the AP
(or, for that matter, any other processor attached to the same Peripheral Sub
system bus) can execute transfers to or from the mapped portion (in the data
part) of an i432 object.
Full i432 access control is exercised in completing an order to open a win
dow. Thus, the order to open a window must specify an AD for the i432

i432lnputlOutput 223

object that is to be viewed through the window; that AD must have appropri
ate Read or Write rights, or both, depending on the intended direction and
nature of the data transfer through the window being established. The "entry
state" operand supplied in the Open Window order indicates "read intent",
"write intent"? and' 'block/random mode". If block mode is specified, then
exactly one of "read intent" and "write intent" can be true; if random mode
is specified, then either "read intent" or "write intent" or both can be true.
Read rights, Write rights, or both are checked by the hardware, according to
which intent(s) is (are) specified.

• Functions that perform interprocess communication (RECEIVEs and SENDs)
to and from a 432 process and an IP process. Including such orders in the
repertoire of the IP permits i432 processes running on GDPs to drive the
Peripheral Subsystem without being subject to hardware interrupts when the
Peripheral Subsystem completes input/output orders on behalf of the i432
process. From the viewpoint of an i432 process, execution of an 110 opera
tion is achieved entirely via message-based communication, thereby freeing
the i432 process of the real time synchronization requirements for certain 110
devices.
A (blocking) RECEIVE order causes a specified IP process to fetch a mes
sage from a designated port in i432 object space. (The reference for the
received message is then placed in a predetermined slot of the Context Object
for that IP process in strict analogy with the way a RECEIVE is executed in a
432 process.) A (blocking) SEND order causes a specified IP process to
deliver a message to a designated port in i432 object space. CONDITIONAL
SEND and RECEIVE orders and SURROGATE SEND and SURROGATE
RECEIVE orders are also included in the order list of the IP.

• Special functions that reduce windowing overhead associated with messages
representing 110 requests and replies. Without these special functions, then
when a message representing an 110 request is RECEIVEd from a request
port, the AP iiright be required to inspect its command component before it
can process its data component. To do this, AP would first have to open a
data window on to the command component of the Message Object and then
read and interpret this command information; only then could the AP always
know how to open a data window on to the data component so as to perform
the proper sequence of read or write instructions. This high windowing over
head might be prohibitive for certain kinds of frequently used block transfers,
such as in frequent movement of small objects to a swapping store.

Use of the high-level OPEN MESSAGE and CLOSE MESSAGE orders
greatly reduces the effort to process data from a RECEIVEd message. If the
RECEIVEd message object is of the IP _Message system type, then the
OPEN MESSAGE order copies the command portion message object directly
into a buffer positioned in a dedicated area of the Control Window section of

224 A Programmer's View of the Intel 432 System

the IP's Processor Object. Thus, the command infonnation from the GDP
process that is making the 110 request becomes immediately accessible to the
IP. This command is then used, together with other operands supplied in ~he
OPEN l\1ESSAGE order to open a data window on to the data component of
the 110 request. The successful completion of this window opening is indi
cated by returning a true result for the OPEN l\1ESSAGE order (alternatively
false).

Similar IP-AP speed-up, and corresponding simplification of AP-side
software, is achieved by using the CLOSE l\1ESSAGE order to transfer
desired status infonnation after the transfer indicated by the 110 request has
been completed. CLOSE l\1ESSAGE not only closes a (data) window speci
fied by an operand but also perfonns the equivalent of a CONDmONAL
SEND of a specified message object to an i432 reply port. (Readers wishing
to learn more about these powerful OPEN and CLOSE orders should consult
the IP-ARM.)

• A function that perfonns interprocessor communication, permitting the AP to
send control signals to GDPs and IPs (individually or collectively, by broad
cast). During nonnal operations, the Computational Subsystem will drive the
Peripheral Subsystem, but during system startup, maintenance, emergency
shutdowns, and other special occasions, the AP must drive other processors
attached to the 432 System Bus. Including interprocessor communication
operations in the order list of the IP accomplishes this system control objective.

Understanding how IP RECEIVE and SEND orders are implemented helps
explain how the AP and IP cooperate to create the effect of a high-level inter
face for message-based communication between i432 processes and AP proc
esses. We provide some of these details here:

• Whenever execution of a SEND (or RECEIVE) order causes an IP process to
become blocked, this fact is recorded in the Function State field of the Func
tion Request Area; the AP, reading this state infonnati01'l, can learn that the
process is blocked. The IP is itself able to execute other orders; and so the
SEND or RECEIVE order is regarded as completed. (The IP issues a
completion interrupt signal as a second means of informing the AP of this
event.)

• Whichever way the AP learns about the blocked process, the AP can then
select another IP process to execute the next order. Selection of another IP
process is done by simply writing the index for that process into the appropri
ate field in the IP's Function Request Facility Area through the Control Win
dow. The new order is then issued by writing it into still other predetermined
fields of the same Function Request Facility Area.

• When a blocked IP process becomes unblocked, it can be "re-used" by the
AP in the execution of other IP orders. The scenario that explains how the AP
learns of the unblocking may be described as follows:

i432lnputlOutput 225

• When a blocked IP process becomes unblocked, it is forwarded to the IP's
Dispatching Port (by following the "second port mechanism" described in
Chapter 5). An IP process, regarded as a message, is removed from the
IP's Dispatching Port as a consequence of the AP issuing the IP a
DISPATCH order. The AP issues such an order when it knows that the IP
should (must) wait for the unblocking of one of the IP processes.

• The effect of a DISPATCH order is that of a Surrogate Receive instruction.
That is, the IP's Processor Carrier is sent to the Dispatch Port. The IP
receives the enqueued IP Process as a message if one is enqueued there;
otherwise the IP's Processor Carrier is itself enqueued as a server. The IP is
itself not blocked and is free with one exception to execute subsequent or
ders issued by the AP; the exception is another DISPATCH order which
cannot be executed because the IP has only one associated Processor Car
rier. Subsequently, upon forwarding an IP Process Carrier to the IP's
Dispatching Port, an "assisting" GDP will determine that an IP Processor
Carrier is enqueued there as a server, will bind the Process Carrier to the IP
Processor Carrier, and will then send that IP an IPC (interprocessor com
munication) message to notify the IP of the received IP process.

• The notified IP will send the AP an interrupt to indicate completion of the
DISPATCH order. The AP must then read the "Selected Process Index"
field, also through the Control Window, to determine which IP process has
been dispatched.

7.1.3. A Higher-Level View of I/O in the i432
System

Our purpose in introducing the foregoing low-level view of the interaction
between the Computational Subsystem and the I/O Subsystem is to establish the
basis for a more abstract model of I/O operations in which the Peripheral Sub
system Interface plays a key role but whose details can now be suppressed
without risk of a "credibility gap." A single example, discussed in some depth
seems sufficient for our purpose. We consider the case where an Ada task exe
cuting as an i432 process is programmed to issue a series of print requests (to
print single lines of data on a line printer). Each such print request is forwarded
across the Peripheral Subsystem Interface (PSI) to a process that is executing on
a processor of the Peripheral Subsystem. The scenario is introduced with the aid
of Figure 7-4 and detailed further with the aid of Figure 7-5. (In what follows,
we use the terms task and process, respectively, to distinguish between program
units viewed as Ada tasks executing in the i432 object space from program units
viewed as non-Ada processes executing in the Peripheral Subsystem address
space.)

We assume that: task A issues a stream of print requests at a rate which is
roughly independent of the printer device's ability to print lines under control of
process C. For this reason, we imagine that for each print request to be formed,

226 A Programmer's View of the Intel 432 System

task A draws a new message object from a pool of such objects found in the
Print Reply Port. (It is likely that this pool is inti ali zed with some predetermined
number of message objects, but we ignore such detail here.) After receiving a
message object by executing an i432 RECEIVE instruction from the Print Reply
Port, task A then writes into the message object a new request and SENDs it to
some other port that the IP process, controlled by the AP, knows about. In Fig
ure 7-4, this port is called the Print Request Port. The AP process executing
within the Peripheral Subsystem Interface issues an IP RECEIVE order to
obtain access to the message object and then transfers the message information
into the AP address space to form a new version of the message object under
standable to process C. Multitasking software on the AP side is assumed to use
"mailbox" operations similar to the i432 port operations for intertask commun
ication. Hence, the AP mechanisms of the PSI are assumed to forward print
requests to process C by transmitting messages to the Print Order Mailbox.

Each time the printer device completes a print request, status information is
returned to process C, which in tum transmits a reply message to the PSI (via
another mailbox) to indicate the outcome of a print request. The PSI (AP proc
ess cooperating with the IP) then issues an IP SEND order to return the original
i432 print message object to the pool maintained in the Print Reply Port. The
returned message object is presumed to contain a version of the status informa
tion forwarded by process C that can be interpreted by task A.

Notice that the pool of message objects in the Print Reply Port will be main
tained within some acceptable bounds so long as the rate of "production" of
print requests and the rate of their "consumption" by the printer device is rea
sonably balanced. (Examples in Chapter 5 have already discussed ways that the
number of messages in such a pool can be explicitly increased or decreased
whenever appropriate.)

Notice also that Figure 7-4 also hides the details of interpreting the message
sent by task A (a program abstraction of a print command) and the details of
transmitting that interpretation to process C in a form the latter can "under
stand". The reverse interpretation, namely, converting process C's response
into a form that can be understood by task A, is also hidden. All these hidden
details are assumed to be subsumed as the responsibility of the PSI.

For this abstraction, we place no limit on the richness of this Peripheral Sub
system. For example, its 110 control software may be decomposed into modules
such that control over individual devices is distributed to driver processes, like
process C, which have access to the attributes of the specific devices they drive.
Also, this Subsystem may be assumed to execute under supervision of a multi
tasking operating system.

Under such a structure, the process that distributes work to a device driver,
like process C, is the one that controls the IP. This process is not shown explic
itly in Figure 7-4. (It must execute on the AP.) In most cases, the processor that
executes process C will also be the AP. However, we do not rule out cases

i432lnputlOutput 227

-- Computational Subsystem --I----Peripheral Subsystem------

i432
SEND

Print
Order
Mailbox

Print
i432 '-----I Reply

IP SEND Print
L-------i Response

Mailbox RECEIVE Port

Figure 7-4 Model of the role played by the Peripheral Subsystem Interface, PSI. A is a
user's Ada task running on a GDP formulating and sending line printer requests to a
process C, which is a printer device manager program running on a processor of a Peri
pheral Subsystem, e.g., the AP. The language and representational gap between task A
and process C is bridged by the PSI.)

where a Peripheral Subsystem has several processors jointly sharing local
memory and intercommunicating on the Subsystem bus.

At the other extreme, a much more simple Peripheral Subsystem may have
only one processor, the AP, with no provision for multitasking. In such a case,
the AP process that controls the IP would also drive every I/O device within
that Peripheral Subsystem.

The important observation to be made here is that regardless of the structure
used to implement a Peripheral Subsystem, the interface it presents to i432 tasks
that need to drive it can be precisely the same. Thus, task A can follow a simple
(and constant) protocol for executing I/O operations. To print a line, record, or
file, it sends the appropriate message to the appropriate port (Print Request
Port) and may then expect a reply, telling of the outcome of the print request, at
some other port (Print Reply Port). It is totally unnecessary, however, that the
i432 task wait for such a reply. In the model suggested by Figure 7-4, task A is
actually free to ignore status information in the reply messages. Even if such
status information is not ignored, its recognition can be "offset" from the I/O
request that induces this status information by some pre-determined number of
I/O requests. [Readers familiar with conventional buffered 110 schemes will
recognize that the use of a pool of m message objects simulates an I/O buffer
whose size is a multiple m of I/O blocks, where each block holds command,
data, and status for one I/O operation.]

228 A Programmers View of the Intel 432 System

The model in Figure 7-4 is also applicable to the case where task A issues a
series of input requests. In this case, a series of message objects, this time con
taining input requests, is sent to the PSI via a Read Request Port. These mes
sages contain space for input records to be obtain as a result of completing the
input operation. If task A is itself a server for other requesting i432 tasks, then,
to provide faster response to its requestors, task A might be programmed to
issue a series of input requests as part of its initialization and in anticipation of
any originating input requests that it receives as a server. In any case, the PSI
communicates with process C, now regarded as an input device controller.
Response messages forwarded by process C to the PSI now contain data
obtained from the input device and also status information. The PSI then depos
its these packets into i432 message objects and SENDs them to the Input Reply
Port from where they are RECEIVEd by task A.

We see from the foregoing discussion that the model in Figure 7-4 is applica
ble for either output or input. This asynchronous model can be used as the basis
for an even higher-level interface, in particular, for the benefit of programmers
who wish to view 110 requests as purely synchronous actions. Indeed, iMAX
provides a synchronous 110 interface superposed over the asynchronous inter
faces illustrated in Figure 7-4. This synchronous interface is described in Sec
tion 7.3.

As promised, Figure 7-5 suggests some of the details for a possible structure
of the Peripheral Subsystem Interface. All AP subprograms that directly control
the IP or that execute Read or Write transfers through IP windows are collected
in a single module called the IP Controller. A set of individual AP processes
that communicate with specific device driver processes also form part of the
PSI. (These AP processes know how to issue calls on the routines within the IP
Controller module and hence know about the IP architecture. However, they are
unaware of 110 device details. The device driver processes, on the other hand,
know a great deal about the 110 devices they drive but need know nothing about
the IP.)

Below, we give a very brief account of the logic of the two server processes
in the PSI that support Printer Process C .

• The Printer Request Process executes an endless loop receiving messages
from the Print Request Port. Since each of these messages exists in i432
object space, the data part of the object that represents each message must be
associated with a section of the AP's memory address space to become acces
sible to the AP. Getting each message and making it accessible is achieved by
issuing first an IP RECEIVE order and then an Open Window order (offi
cially called ALTER MAP AND SELECf DATA SEGMENT), or alterna
tively by using simpler and faster OPEN MESSAGE / CLOSE MESSAGE
sequences.
Once the message has been placed in the window, the Printer Request Proc
ess can properly interpret the message and forward it-in this case to the

1432 Input/Output 229

---- 432 Memory------I--- Peripheral Subsystem Memory-----

Computational Peripheral SUbsystem~ Peripheral
-- Subsystem ----.II- Interface Subsystem --------

f
----------.wiAP

ITRANSMIT Print
Print Order

Request Port Printer Mailbox
Request ~--

IP RECEIVE Process

. ____ 1 ___ J

I
I IP

AP
ACCEPT

: Controller
I

!.---
Printer

Print
i432 Reply Port
RECEIVE

IP SEND

r-----:'---""l lAP
Printer IACCEPT
Reply I
Process Print

Response
Mailbox AP

TRANSMIT

Figure 7-5 Exposing some details of the Peripheral Subsystem Interrace for the Print
Example of Figure 7-4

Printer Process (Process C). This forwarding may also be done by message
based communication similar to that which goes on in the 432 Subsystem, but
internal to the Peripheral Subsystem.
To distinguish between the two message systems, a distinct notation is used
for describing message flow in the Peripheral Subsystem. Here, messages are
said to be TRANSMITted and ACCEPTed through mailboxes, rather than
SENDed and RECEIVEd through ports .

• The Printer Reply Process operates as a server in a similar endless loop,
accepting return messages, sent by the Printer Process, via the Print Response
Mailbox, and forwarding a corresponding reply message to task A. The origi
nal print request message can also serve as an adequate reply message; that
is, no new information other than returned status codes need be created for
return to Task A. Hence, forwarding is done simply by issuing a SEND order

230 A Programmer's View of the Intel 432 System

to the IP, specifying the destination port in the i432 object space. (If only
status infonnation needs to be sent to the reply port, the reply code portion of
the message object must be updated. This can be done in one of several ways:
For example, an INDIVISIBLY INSERT SHORT ORDINAL order can be
executed to write into the message object followed by execution of a SEND
order. Alternatively, and more simply, a CLOSE MESSAGE order can be
executed, accomplishing the same effect. Recall that this order writes speci
fied status infonnation into a specified message object and then perfonns the
equivalent of a CONDITIONAL SEND to the proper reply port.)

As indicated in Figure 7-5, task A will RECEIVE the forwarded reply mes
sage via the Print Reply Port; the message itself is identical with the original
print request message except for the inclusion of returned status infonnaton.
Task A may then "refill" the reply object with a new value and reSEND it as
a new print request, via the Print Request Port.

The Printer Driver Process (Process C) also executes in an endless loop. In this
loop, it accepts a message from the Print Order Mailbox, issues the
corresponding print command to the Printer Device, and, after fielding the
received interrupt signal indicating completion (or other) outcome, transmits a
reply message, via the Print Response Mailbox to the Printer Reply Process.

[In the example of Figure 7-5 we showed as a possibility two AP processes within the
PSI, both of which are in communication with Printer Driver Process C. In an actual
implementation, the two PSI server processes would probably be combined into a sin
gle PSI process. In addition, the PSI would include (at least) one such server process
for each I/O device driver process in the Peripheral Subsystem. Such specific details
are to be found in the iMAX 432 Reference Manual cited in Appendix B.]

We have now completed our scenario illustrating the intended role and possi
ble software structure of the Peripheral Subsystem Interface. We propose now
to tum our attention away from this part of the system architecture and focus for
the remainder of the chapter on the i432 user's higher level view of input-output
processing. Space in this book does not permit including more of the interesting
details of the IP architecture and its AP-side support software, but these are well
presented in the IP-ARM.

The next section explains the design strategy and intended use of the iMAX
110 interface packages made available for users. Later sections illustrate possi
ble uses of these packages, including application to our portfolio management
system.

7.2. The iMAX I/O Interface

Our introductory view of the 110 system reveals how the (central) 432 Subsys
tem is "screened" logically and physically by the Peripheral Subsystem Inter
face from the detailed structure and operation of the device drivers. This
permits 110 functionality to be seen on the 432 side of the Interface, while hid
ing 110 implementation on the other side. The iMAX I/O Interface exploits this

i432lnputlOutput 231

separation further. Its use permits a programmer to "see" particular 110 de
vices, actual or simulated, from any of several different perspectives-from
most generic in nature, and hence least device-dependent, to fully specific.

A direct benefit of this approach is that it becomes especially easy to imple
ment connections to purely logical 110 devices; that is, what is syntactically
expressed as an 110 request can be executed entirely as an internal transfer of
data between co.-resident i432 objects. When two objects are "connected" in
this way, one serves as a source and the other as a sink. Such a connection
forms what is referred to in other operating systems as a "pipe". (Two-way
channels can be established between pairs of i432 objects using a pair of I/O
connections.) Even though the implementation of logical I/O devices represents
an important special-case application of the iMAX 110 Interface described in
this section, our discussions will primarily assume we are dealing with the gen
eral case, i.e., where the 110 device is a real one that resides on the AP side of
the peripheral subsystem interface.

Whatever the current perspective of a given device, the user of iMAX has the
choice of specifying a given 110 request either in the form of a synchronous 110
call (e.g., Read or Write) or in the form of an asynchronous action by invoking
a Send or Receive procedure (in which the 110 request is supplied as a message
argument). That is, the user may call an operation of the "synchronous inter
face" or of the "asynchronous interface"; iMAX provides a pair of such inter
faces, one for each device. The iMAX implementation of a synchronous Read
or Write amounts to a call on the appropriate operation of the asynchronous
interface (e.g., Send or Receive.)

A synchronous interface provided by iMAX is implemented so as to provide
input/output buffering; this assures that, typically, control will return from a
call on Read or Write to an actual 110 device without having to wait while the
generated 110 request message makes a round trip through the Peripheral Sub
system Interface and back again. The model provided in Figure 7-4, applied to
either input or output, is useful for seeing why this is so. The necessary buffer
ing can be provided merely by ensuring a that a sufficient pool of (input or
output) message objects is enqueued at the Reply Port accessible to the task exe
cuting the Read or Write call.

A programmer may choose to "bypass" the provided synchronous interface
and access the Peripheral Subsystem Interface directly by issuing calls on the
provided asynchronous· interface. In this case the programmer is obligated by
protocol to deal with lower-level matters, such as managing buffers, checking
for replies, and handling error messages.

7.2.1. The 1/0 Device Abstraction Hierarchy

The basis for the multiple-view objective is the concept and use of a set of 110
device abstractions, which specify public 110 operations having varying
degrees of device dependence. The iMAX 110 Interface provides a set of these

232 A Programmer's View of the Intel 432 System

abstractions, a paradigm by which the Ada programmer may create new device
abstractions, and a rationale and means for selecting among them. Moreover,
by using 432-Ada, selection of an operative device abstraction may be accom
plished dynamically.

I/O device abstractions are thought of as forming a hierarchy. Proceeding
toward the root of the hierarchy takes one to a more generic, and hence to a
more device-independent view. The most generic view provides a small set of
I/O operations common to all devices. Each successive (descendant) view
includes more I/O operations, but these are common to successively smaller
subclasses of devices. (Clearly, program units that can use a more generic view
of a device, in expressing demands on it, will more easily survive changes in
the actual device used.)

A useful strategy to be followed is this: when I/O operations are to be per
formed that are more device dependent, steps of the program are first executed
to change the current level of abstraction, that is, shift the view, to one that is
less generic. After such operations are completed, execute steps to shift back to
the earlier, more generic, view of the device.

Adhering to such a strategy can isolate (and hence minimize) the number of
program units that are subject to revision; only the isolated program units would
require change when one I/O device is replaced by another of differing specific
characteristics. Indeed, one can imagine many applications for which use of
certain generic I/O device abstractions is sufficient, allowing (entire) programs,
for all practical purposes, to be device independent.

Consider, for example, these three levels of I/O device abstraction. At the
root level, we have only operations that are independent of any specific 110 de
vice or device type. In this category are examples like, querying the identifica
tion and characteristics of the device, resetting it, or, if applicable, closing it.

Abstractions at the next level in the hierarchy, are those that remain indepen
dent of particular devices but dependent on particular device types. At this
level, for example, we have abstractions for a class of printers, a class of input
devices, a class of storage devices, or a class of terminals. Each of these classes
may be understood in the general sense as sinks, sources, stores, or some com
bination of these. For example, any printer device is first to be viewed as a sink
for a data stream, and hence has a write operation in addition to the operations
"inherited" from the more generic view of that device. (A particular printer
may indeed have other output operations, like skipping two lines, but such
operations may not be sufficiently common to all printers to be included in this
view (in this level of abstraction).) In a like manner, we may assume that the
generic class of all input devices, such as card and paper tape readers and read
only discs, have a generic read operation in addition to operations like query
and reset.

Abstractions at the next level would include operations that are specific, not
just to a particular device class, but also to a particular device itself. For exam-

i432lnputlOutput 233

pIe, a particular terminal device, viewed in more generic terms as a terminal
sink, may include an operation to display a second window, another to move the
cursor from one window to the other, and so forth.

Adhering to the hierarchical view of device abstractions, we see that an
abstraction at level k includes all the operations in the abstraction of its immedi
ate parent node, at level k-l in the hierarchy. Apart from its conceptual
elegance, the idea of a device abstraction tree offers certain practical implemen
tation benefits, especially when the underlying architecture is that of the i432.

For example, thinking in terms of Ada packages, the set of applicable opera
tions corresponding to a device abstraction at level k may be implemented as a
domain refinement of a less generic abstraction (descendant node in the abstrac
tion tree) at a level greater than k. Shifting view from one device abstraction
level to another, along a path in the hierarchy, is a matter of changing refine
ments. As we will see in the next section, shifting a view along such a path
involves a call on Transform_interface, a special function made available in
every refinement of a synchronous device interface.

7.2.2. Synchronous and Asynchronous
Interfaces

As mentioned earlier, the iMAX 110 Interface "architecture" is intended to
provide users the facilities for issuing either synchronous or asynchronous 110
requests. These facilities are called I/O device inteifaces. The initial version of
iMAX 432 provides device interfaces having generic 110 operations (Gen
eric_Source, Generic_Sink, and Generic_Store) and simple terminal 110
operations. The iMAX packages that specify these 110 device interfaces are
paradigms for all such interfaces. Studying them helps us understand not only
how these interfaces are intended to be used, but also how interfaces for other
device abstractions would be structured and used.

A synchronous interface for a device abstraction is represented as a package
refinement access type, hereafter mildly abbreviated as "pkg-ref access type" .
The particular device viewed with that abstraction is represented as a refinement
instance of that pkg-ref access type. As suggested at the end of Chapter 6, there
may be any number of package instances for a particular pkg-ref access type.
Package instances may be declared, assigned as values to variables of that type,
and passed in procedure calls as actual parameters.

The pkg-ref access type for a device abstraction provides the specifications
for all operations germane to its level of abstraction and to the levels of all
parent abstractions. There is no practical need for a pkg-ref access type
representing the root node itself, which would contain the three common func
tions, Interface_description, Reset, and Close and two common utility func
tions, Transform_jnterface and Get_asynchronous_interface. Instead, these
operations are absorbed into the three immediate offspring abstractions, as
shown in Figure 7-6.

234 A Programmer's View of the Intel 432 System

Operations of the Package Refinement Access Types for
Generic Abstractions

Source

Interface_description
Close
Reset

Transform_interface
Get_asynchronous_

interface
Read

Sink

Interface_description
Close
Reset

Transform-interface
Get_asynchronous_

interface
Write
Flush

Store

Interface_description
Close
Reset

Transform_interface
Get_asynchronous_

interface
Read
write
Flush

Figure 7-6 110 Operations for the three generic abstractions: Source, Sink, and Store

The operations listed for each generic abstraction would also appear at the
head of the list of operations in a descendant abstraction. For example, the
pkg-ref access type, Terminal_Source contains the specifications, in the order
shown, for all the operations of Source, followed by the two additional opera
tions: Get_terminal_characteristics and Set_terminal_characteristics. These
additional operations may be used, for example to examine and then reset the
baud rate of the terminal to one of the allowed rates.

The two utility operations listed in Figure 7-6, Transform_interface and
Get_asynchronous_interface, are of especial interest for this discussion .

• Transform_interface is called to obtain a new view of the I/O interface,
either an expanded view (more device dependent), or a restricted view (more
generic). If the new view is valid for that interface, the function returns a dif
ferent refinement of that interface (actually a typed domain refinement). Use
of Transform_interface is illustrated in Section 7.3 .

• Get_asynchronous_interface returns a reference to the connection record that
is implicitly created when the synchronous interface is itself created and ini
tialized. The connection record is a data type declared in the asynchronous
interface package which is itself a set of definitions and operations used by all
synchronous interface packages. A connection record defines the I/O chan
nel used for sending and receiving I/O request and reply messages.
In particular, to use any of the Send or Receive (or Cond_send or
Cond_receive) operations of the asynchronous interface, one must specify
the proper connection record. By supplying Get_asynChronous_interface as a
public operation, the user (as well as implementer) of the synchronous inter
face package is able to issue calls directly on the operations of asynchronous
interface package.

Basic
I/O
Inter-
face

i432lnputlOutput 235

The Asynchronous_la_Interface package may be used for transmitting I/O
operations at any level of device abstraction. (Hence, only one such package
is needed for use with all device abstractions.) We amplify our remarks on
the use of Asynchronous_la_Interface in Section 7.4, where we take a
closer'Iook at the structure and content of a connection record.

7.3. Structure, Acquisition, and Use of
Synchronous 1/0 Device Interfaces

We give a more detailed view of iMAX synchronous I/O interfaces in this sub
section. To streamline our discussions, we provide in Appendix J listings of
some relevant iMAX packages for ready reference.

A key data structure belonging to any device interface is the query record,
whose representation, query _record_rep, is defined in the package,
la_Definitions, listed at the beginning of Appendix J. This record type has
several fields used to identify the device and the Peripheral Subsystem to which
the device is currently attached. The record also contains an array of abstraction
descriptions, which is a list of valid views that can be supported by this device
interface-and to (from) which the interface may be transformed. (It is this
array that is consulted by the Transform_interface function.)

Scanning the package Synchronous_la_Interfaces is instructive. This pack
age hosts three package refinement (pkg-ref) access type declarations named
Source, Sink and Store. They are preceded by declarations for the exceptions
that may be raised during activations of operations in instances of the three
pkg-ref access types. Also, three subtypes are declared that define the buffer
areas used in Read and Write operations of the pkg-ref access types.
Explanations provided in the listing for the exceptions and the buffer area sub
types require no further amplification here.

Following the exception and subtype declarations, there is a set of comments
representing a paradigm of the basic, but non-existent root node device abstrac
tion. This paradigm is referred to as "package access Basic_la_Interface" . A
copy of it is insetted into each of the succeeding pkg-ref access types: Source,
Sink, and Store. The paradigm provides specifications for the five operations:
Interface_description, Close, Reset, Transform_interface, and Get_asynchro
nous_interface. [The function Interface_description returns a reference to the
instance of query __ record_rep for the particular device interface.]

In the next two subsections we briefly overview the acquisition and then illus
trate the use of synchronous device interfaces.

7.3.1. AcquiSition of a Synchronous Device
Interface

Before the I/O operations of a synchronous interface can be called, a user proc
ess must acquire an Access Descriptor for the desired interface (refinement). To

236 A Programmer's View of the Intel 432 System

do this, the user process must appeal to a type manager that controls access to
synchronous device interfaces. This manager package would have direct access
to the package that defines the particular synchronous 110 device interfaces. A
call on the operation of that type manager package returns a reference to the
wanted synchronous device interface refinement. For some kinds of device
interfaces, such as for disk files, activation of the Get_interface operation can
in the process lead to a (dynamic) instantiation of a specific device interface
package. In any case, what is returned is a refinement of a package, pre-existing
or newly created.

For example, the i432 system provides both a Tenninal_Manager and a
File_Manager package. A Tenninal_Manager might pre-create instances of
Source and/or Sink device interface packages for each attached tenninal. An
i432 user process needing access to one of these tenninals would acquire an AD
for a refinement to the needed interface by calling the Tenninal_Mana
ger.Get_tenninal_interface operation; this operation returns an AD for a refine
ment of a pre-existing interface package. It is likely, however, that synchronous
interface packages for files would be created dynamically, on demand. Thus, an
i432 process that needs to perform 110 operations on a particular file would first
call the File_Manager.Get_file_interface operation) whose implementation
could involve instantiation of the particular file interface package needed (e.g.,
Source or Sink). The net effect of creating this file interface and returning a
refinement for it would be to open the specified file for operations of a particular
kind. More concretely, the statement sequence:

with File_Manager, ... ;
use File_Manager, '" ;

-- Where File_Sink is the
-- sink interface pk~ref access type
-- for files.

would open my _file for writing by first creating a synchronous interface (sup
port) package for file sinks and then returning an AD for the appropriate refine
ment of it; the AD is then assigned to File_Sink_Instance. Subsequently, a call
can be made to write into my_file, e.g.,

File_Sink_Instance.Write(....) ;

and eventually to close out the file, e.g.,

Note that asynchronous as well as synchronous operations on the opened file
can now be invoked. To perform the former, it is first necessary to acquire a
reference to the connection created for File_sink. Thus, the statement

i432lnputlOutput 237

connection_of_mY_file
:= File_Sink_Instance.Get_asynchronous_interface;

assigns to connection_of_my_file the reference to be supplied in calls on the
Send and Receive operations of the Asynchronous_10_Interface package. Fig
ure 7-7 illustrates a possible set of relationships that can arise between various
user processes, the File_Manager, the interfaces packages, the Peripheral Sub
system Interface, and the AP process (File Server) used to drive an actual disk.

432 S Y s tern

®ser: ~
task -======11'

1 '"---.....
A

®ser
task _=====

2

l,_-....I
Synchronous
Interfaces

Asynchronous
Interface

PSI

PSI

Peripheral Subsystem

Figure 7-7 Major components involved in setting up and using synchronous file inter
faces. User tasks 1 and 2 make calls on the File_Manager package to open files on the
disk. Opening each file results in creation of a synchronous file interface (interface A for
task 1 and interface B for task 2). Each synchronous interface has access to the common
asynchronous interface. Read or write calls through A or B are implemented with Send
and Receive calls to C. Not shown are the connections and the Request and Reply ports
referred to by the connections.

7.3.2. Two Example Uses of Synchronous
Device Interfaces

EXAMPLE 1. Display_one_liner is a rudimentary procedure that accepts a refer
ence to a refinement instance of type Terminal_Sink as an argument for use in
displaying character strings from a buffer. A skeleton of the subprogram for this
procedure is shown in Figure 7-8.

238 A Programmer's View of the Intel 432 System

use Synchronous_IO_Interfaces;

procedure Display_one_liner(
output_device: in Terminal_Sink;

is
begin

output_device. Write (my_write_buffer, 0, 59);

Type Terminal_Sink
is defined in Appendix J.

Display contents of
buffer from offset zero.
width of line is 59 chars.

Figure 7-8 Illustration of generic terminal Write operation.

[A package refinement access type, such as Terminal_Sink, is declared using the
432-Ada package access type extension. For example,

type Terminal_Sink is access package

-- The set of subprogram specifications representing the
-- public operations for this abstraction go here.

end Terminal_Sink;

In the most general sense, such a declaration can be regarded as a "template" that
defines a named refinement (or abstraction) of a device interface; the latter is represented
by a package instance that specifies and implements the full set of operations for a
specific device type. Similar "package access" declarations are to be found in the
specification of the Synchronous_IO _Interfaces found in Appendix J.]

To call Display_one_liner, one must specify, as the argument, an instance of
the package refinement access type Terminal_Sink. Default refinement
instances of the types Terminal_Source and Terminal_Sink are already pro
vided by iMAX. They are accessible under the names Terminals(i).Source and
Terminals(i).Sink. Here i is a value of type "interface_range" currently
defined as:

type interface_range is short_ordinal range O .. 5;

(The range values 1 .. 5 correspond to terminals numbered 1 .. 5,
and the value 0 is reserved for future Intel use.)

Hence, a valid call might be:

Display_one_liner (Terminals (1) . Sink) ;

On the other hand, and although not particularly likely in this case, a user is
free to substitute a different package body as the required device interface, so
long as it has the same specification as that of package refinement access type

1432lnputlOutput 239

Tenninal_Sink. (This specification may be found in the iMAX package,
Tenninal_IO_Interfaces, but, to save space, we do not show it in Appendix J.)
For example, in 432-Ada, one may supply the declarations,

pragma refinement (Terminal_Sink) ; -- The "Sink view" of
-- Brand_X begins here.

Function:
The Brand_X_Terminal_Support package contains the
specifications for all the operations for a terminal of
Brand_X_Terminal_Type. Embedded within this package is the
refinement pragma that marks the beginning of the subsequence
of operations that collectively represent the Terminal_Sink
abstraction.

OUr_Terminal_Sink: constant Terminal_Sink
: = Terminal_Sink (Brand_X_Terminal_Support) ;

-- Our_Terminal_Sink is assigned an AD for the Terminal_Sink
-- refinement of the package Brand_X_Terminal_Support.

In this context, a call on Display _one_liner may specify Our_ Tenni
nal_Sink as the operative abstraction of the Brand_X interface; that is:

Display_one_liner(OUr_Terminal_Sink);

The above illustrates how specific refinements of device interfaces may be
passed to procedures. We next show how different views of a given device
abstraction may be selected dynamically.

EXAMPLE 2. Now consider a procedure, Fancy_display, that expects as an
argument a richer device interface than was required by Display_one_liner.
Fancy_display, will, among its other duties, issue requests to draw straight
lines at various angles, but only when the currently attached output device has
the attributes of a graphics tenninal. When the attached device is character
oriented only, straight lines are merely simulated by strings of periods,
asterisks, or other special characters. (This option produces jagged line approxi
mations, except for verticals and horizontals.)

In this example straight-line approximations are displayed when invoking the
Write operation of the device interface (using the "characters" view of the de
vice). "Actual" straight lines are drawn only when invoking the Draw_line
operation of the device interface (using the "lines" view of the same interface).

Figure 7-9 shows a skeleton form of Fancy_display. In this example, the local
variables chars_output and graphic_output are assigned different abstractions
(refinements) of the supplied device interface object through application of
Transform_interface. The variable graphics_output gets the abstraction needed

240 A Programmer's View of the Intel 432 System

for drawing lines and is used only after fIrst checking that the attached device
currently has this functionality. This fact is determined by a call on the
Interface_description operation of the given interface which returns the query
record containing an array of the abstraction names supported by that interface.
The reader should have little trouble following the rest of the code in Figure 7-9.

7.4. Structure and Use of the Asynchronous
Device Interface

As mentioned at the end of Section 7.2, iMAX provides a standard asynchro
nous device interface which may be accessed by the user when it is more
appropriate to issue 110 requests by sending messages than to issue procedure
calls. This interface takes the form of the iMAX package, Asynchro
nous_la_Interface, whose specifIcation is given in Appendix J.

The four data-transmission operations of this package, Send, Cond_send,
Receive, and Cond_receive, can only be used by specifying an access to a
connection_record, which is a high-level communication data structure that
characterizes the asynchronous 110 channel between the program and the de
vice. A connection_record, whose formal defInition is given as follows,
includes a request_port, a reply _port and a copy of the device description used
in the companion synchronous device interface.

type connection_record is
record

request_port: port; -- Port for I/O request messages.
name: print_name; -- Identifying name.
device_description: query_record; -- Device-specific information.
reply_port: port; -- Port which may be used as

-- a message reply port.
end record;

Access to such a record is easily, and safely gained via a calIon the
Get_asynchronous_interface operation in the corresponding synchronous 110
interface package (for the same device).

An asynchronous 110 transaction (request or reply) takes the form of an
I/O _message_record, whose top-level structure is, formally:

type IO_message_record is
record

command_record:
reply_port:
data_buffer:

end record;

comman~record_rep;
port;
buffer_array;

This record mirrors the structure of a typical 110 request used in driving a
hardware device. The contents of the command_record component provides:

i432lnputlOutput 241

procedure Fancy_display(
output_device: Fancy_Sink) Matching argument must be

a package instance of FancY_Sink.
is

start, len: integer range 0 ..

begin

output_device. interface_description. buffer_length;
Characters_ view;

Characters_view is an abstraction
capable of writing only character
strings.

chars_output := output_device. Transform_interface (Characters_view) ;
-- Extract a new view of the given
-- interface and assign to chars_output.

chars_output. write (my_write_buffer, start, len);

if

-- Display title text line.

The attached device has line_drawing capability (check if the
new abstraction is included .in output_device. Interface_description
abstractions) .

then
declare Block entry.

graphic_output: Lines_view; Lines_view is an abstraction of
Fancy_Sink capable of drawing lines.

begin
graphic_output : = output_device. Transform_interface (Lines_view) ;

-- Extract a new view of the given inter-
-- face and assign to graphics_output.

graphic_output. Draw_line (initial_x, initial_y,
finaLx, fin.al_y) ;

Issue I/O request to draw specified
-- line.

end;

else
Use chars_output abstraction for drawing an approximation for
straight line beginning with (initial_x, initial_y) and
terminating with (final_x, final_y).

end if;

chars_output. Write (my_write_buffer, start, len);
-- Display another text line.

end Fancy_display;

Figure 7-9 Illustrating dynamic selection of different abstractions of a device interface
object supplied as an argument to a procedure.

• the order code for read, write, etc.

• an integer message_id, useful for identifying unsuccessful requests so that,
upon receipt of error replies, such requests may be noted and perhaps retried

• a reply_code identifying the kind of an error encountered, if any

242 A Programmer's View of the Intel 432 System

• an array of records each providing control information for a buffer. This
information includes the buffer's current "cursor" index, the buffer's
length, etc.

The need for the reply_port requires no motivation here. The data_buffer is
an array of one or more buffer references to which the command is to be
applied. If a Read command is sent, the buffer(s) are filled according to the
input transfer rules for the particular device source. If a Write command is sent,
the buffer(s) are emptied, according to the output transfer rules of for the partic
ular device sink. The listing in Appendix J provides the formal description for
the data_ buffer field and the various definitions on which it is based.

To Send or Receive an 110 request, one merely designates as arguments a
connection and an la_message. The specifications for these two operations of
the asynchronous interface are simply:

procedure Send(
c: connection;
msg: lO_message) ;

procedure Receive (
c: connection;
msg: out lO_message);

As might be suspected from our discussions in Chapter 5, the Cond_ send and
Cond_receive operations also require the designation of a boolean variable
(success) as an output argument.

It is conceivable that a user would wish to execute 110 transactions using Sur
rogate Sends and Receives-to avoid anticipated blocking. These less likely
operations are not provided in the Asynchronous_la_Interface. However, once
a connection has been established for a device, the programmer is free to use its
ports directly, such as by referring to them in Surrogate (or ordinary) Send and
Surrogate (or ordinary) Receive operations made available in the iMAX
Typed_Ports package. [Readers may wish to refresh their memories by review
ing Section 5.5.]

We close a loop opened in Section 7.1 by reviewing two matters of detail:

a. where messages go to that are sent through the asynchronous interface, and

b. where messages come from that are returned through the asynchronous inter
face.

Recall that messages are sent to (received from) the IP process whose proc
essor is controlled by the Attached Processor. (That IP processor is named in the
device;:-description component of the connection_record specified in the send
or receive operation.)

One may usefully review Figure 7-5 at this point. A server process executing
in the AP will be waiting to receive a sent 110 request as a result of having

i432lnputlOutput 243

issued a (blocking) RECEIVE order to its slave IP. The RECEIVE order must
specify the request_port component named in the interface's connection_record
so the IP can "know" where to go to receive the user's I/O request. In due
course, the IP process will get an I/O request message from that request_port.
A reply message, fonnulated by an AP process, will be sent by the AP via a
SEND order to its IP. In tum, the IP will enqueue this message (as a request) at
the reply _port named in the IO_message_record of the I/O request.

One may now ask the following question: When a new device is added to a
Peripheral Subsystem or, correspondingly, when a new synchronous interface
object is added to the Computational Subsystem, how does this infonnation
reach the other subsystem, respectively, that needs to know about these
changes? Here is a brief two-part answer:

• Whenever a new physical device is attached to a Peripheral Subsystem,
access to that device must come under control of its appropriate type
manager. This may require adding a new type manager or infonning an exist
ing type manager of additional resources. In either case, it is the governing
type manager that is responsible for handing out synchronous interfaces that
access the new device. Correspondingly, whenever a new synchronous inter
face refinement is created, the appropriate system table in the AP referred to
in the underlying interface object is also updated so that AP can allocate a
new pair of server processes for the new interface refinement instance (or
achieve an equivalent effect by communicating appropriate requests directly
to the proper device drivers) .

• Note that the "business" described in the preceding paragraph goes under the
more general heading of device allocation and deallocation.

A device abstraction is just another i432 refinement, and so, when it is
created, it becomes available for- use by any user process that acquires an
Access Descriptor for it. In Section 7.3 we have already noted that control
over the distribution of Access Descriptors for device abstractions is the
responsibility of the type manager for such objects. An abstraction can safely
be removed from the system, that is, deallocated, when there are no longer
any Access Descriptors that refer to it. Deallocation may, therefore, be
achieved explicitly by the operating system, or implicitly by the garbage
collector.

We do not rule out the possibility that two or more user processes may have
concurrent access to the same device interface refinement instance. In that
event, however, preventing conflicting use of the corresponding physical de
vice is the responsibility of the applications subsystem designer.

The problem is no different than preventing conflict over concurrent use of a
database. The usual way to solve this problem is to interpose a single Ada
server task that acts as an arbiter between the several users and the device
abstraction. A device abstraction that is to be shared would probably have an

244 A Programmer's View of the Intel 432 System

Open operation defined on it, as well as a Close operation. The arbiter task
would then respond to 110 requests by first checking to see whether or not the
device (for example, a file, or a line printer), has been Opened to the caller.

The allocation and de allocation of physical devices is dealt with in a similar
way within a Peripheral Subsystem. An actual device is accessible only by a
device driver process, which is in tum accessible to other AP processes. A
physical device becomes accessible to a 432 process, therefore, only after the
corresponding driver process has been created and after the specifics of that
driver are recorded in the central system table addressable by the AP. The
physical device description information that must be recorded in a newly
created device abstraction, must be acquired through a secondary transaction
with an AP process. (We leave these details to the imagination of the reader.)

7.5. I/O System Assessment

Our primary objective for this section is to put the 110 system, examined thus
far, into a broader perspective. We will do this in two ways: first, we consider
two high-level questions not yet raised, and second, we will attempt a brief
comparison between the structure of the i432 110 system with today's tradi
tional 110 systems.

We have skirted at least two high-level issues. The first is the matter of decid
ing how much of the technical material presented on i432 110 structures and
mechanisms should be known to the "ordinary" user. The best answer we can
give here is: none at all-provided we may assume that such a user has no need
for directly specifying asynchronous 110 operations.

Standard Ada defines the library packages Input_Output and Text_IO. The
operations of these packages necessarily present procedural and hence synchro
nous interfaces. These operations form a rich set on which programmers may
base still higher-level (synchronous interfaces). Other language processors
would also be expected to be- implemented in Ada. One may, therefore, safely
assume that most, if not all, users will always rely on some compiler to select
and use the appropriate device interfaces made available by iMAX or by other
system programmers.

We also assume that readers of this chapter are the exceptions. They either
have an intellectual or a practical need to know about the 110 structures and
mechanisms discussed thus far.

The other matter skirted thus far is how to decide when synchronous device
interfaces are to be preferred over asynchronous interfaces. [How, for example,
does the Ada compiler decide which type of interface to use in compiling the
subprogram bodies for Read, Write, Get, and Put operations of the library pack
ages, Input_Output and Text_IO?] We can give a partial answer to this ques
tion here. The choice, whether for the applications or systems programmer,
including compiler writer, will inevitably hinge on anticipated efficiency.

1432lnputlOutput 245

Asynchronous interfaces may well be more efficient for many types of physi
cal devices. However, for "simulated physical devices" like files or pipes
(channels between programs), which involve relatively more software than
hardware, use of synchronous device interfaces may well be more efficient. A
complicating factor is that various influential parameters, such as system load
ing, new device designs and the like, may, in fact, change over time and alter
the balance. Since iMAX provides both types of interfaces for every device, the
subsystem designer can be assured of the flexibility needed over the long run.

The i432 110 system structure mirrors many of the objectives and features
provided in other conventional and contemporary systems. An especially impor
tant question to ask, therefore, is: In what key way (or ways) does it contrast
with, or perhaps surpass, those systems? We provide one response here.

The i432 110 systems takes full advantage of the underlying object- (and
refinement-) based architecture. Device interface objects and their refinements
are separate protection domains. That is, each interface object (or refinement) is
necessarily created by a calIon an appropriate type manager, and hence, can
have access to it restricted in a manner agreed to by the object manager. Also,
each interface object owns just those local data objects needed to carry out its
publicly accessible operations. Because each device interface (or abstraction of
it) serves as a separate protected "island", any module that has access rights for
an object (or refinement) is free to call on it directly in request of service. No
"middleman" module is needed to serve as a reliable switching agent or
broker.

In (non-capability-based) conventional systems, the "grain size" of a pro
tected domain is necessarily quite coarse. In most systems, the total address
space of a process may be decomposed into only a limited number of protected
sub-address spaces, often one. Even in the Multics system, the number of pro
tected addresses spaces within a process is limited to the (relatively small)
number of distinguished protection "rings". As a result, there is heavy reliance
on "supervisor mode" and on an address space that is accessible only while the
processor executes in this mode. Resulting 110 system structures have, there
fore, led to a path-critical step of indirection between the maker of an 110
request (i.e., the caller) and the particular device interface object desired as a
target.

In these systems, interface objects are usually called DIM's, for device inter
face modules. An individual DIM is usually not protected. In Multics, for
example, a user may compose a DIM. In between the caller and the particular
DIM, it is, therefore, essential to place a major interpretation and switching
module, access to which is protected. Let us call this the IOCP (for 110 Control
Program). Unfortunately, the IOCP is necessarily large and unwieldy.

Acall to an operation of a DIM is intercepted by the IOCP, which must vali
date it by consulting protected system tables. Such tables are also used to deter
mine the address of the desired DIM, and perhaps to perform some translation

246 A Programmer's VIew of the Intel 432 System

of the user's call so that it may be "understood" by the target DIM. (The
tables, often called "Attach Tables", allow the IOCP to map a user's logical
device, or data-stream name, into a particular DIM.)

These verifying, switching, and possible translation functions of the IOCP
must be performed on every 110 request (if security is to remain tight). More
over, as the system grows or changes in configuration, such as when DIMs are
changed or when new ones are added, the IOCP must be updated, and this must
clearly be done with care. Usually, maintenance on the IOCP requires system
shutdown.

The i432 110 object based structure allows for the elimination of the IOCP
and most, if not all, of its functions. The system-wide Attach Table mentioned
above is, in the i432 structure, now safely distributed among the separately pro
tected device interface objects as owned device_description records and to
tables resident in the various Peripheral Subsystems.

In summary, elimination of the IOCP leads to an important efficiency (and
system maintenance) advantage over conventional systems. This advantage
arises as a direct consequence of the i432's object-based architecture. We trust
that many readers' interests in 110 system architecture, and especially in that of
the i432, has now crossed that magical threshold, leading to commitment for
further study of this interesting subject, heretofore regarded by many as "too
complex to master" .

As promised in the opening of this chapter, we are now ready to revisit our
portfolio management system to see how some of the i432 110 facilities may be
used with, and perhaps to enhance, our case study information system.

7.6. I/O Operations for the Portfolio
Management Information System

In all previous discussions of the portfolio management system, we deferred
detailed discussion of input/output. Such postponement is no longer necessary.
In this section we first review the structure of Figure 2-5, our "basic plan" for
the portfolio management system. We do this expressly to suggest how the
input/output operations, implicit for that plan, may be accomplished. In particu
lar, we consider the:

• login sequence

• session interactions

• logout sequence

that results in a club member being put in touch,
through a terminal, with the corresponding Member
task.

the input/output operations in the command loop of
Member task.

that results in a disconnect between the member, the
corresponding Member task, and the terminal just
used.

1432Input/Output 247

We then consider one interesting enhancement of the original plan, namely
the changes needed to provide on-line, up-to-the-minute, quotations on listed
stocks. (Such quotations may be used by members merely for information
purposes, or in performing analyses of portfolio holdings. The Club_Portfolio
operations, Print_winners, Print_losers, and Print_non_movers fall in this
category.)

7.6.1. Terminal Operations

For convenience in this discussion, we regard the Task_Master of the portfolio
subsystem as the executive routine that responds to login requests of club
members and that also executes the logout function. Two scenarios are
described, according to each of the following two assumptions:

1. Member tasks have been created and activated in advance, one for each
member. (We suppose that the Task_Master has created these tasks, but this
assumption is not critical.)

2. A Member task is created and activated anew by the Task_Master, each
time the corresponding member logs in to a terminal. (In this case, the
Member task instance is aborted when the member issues a logout command
or when some time-out condition requires termination.)

For all communication between the Task_Master and the terminals, asyn
chronous device interfaces are used; whereas, for all communication between
Member tasks and their respective terminals, it seems sufficient to use synchro
nous device interfaces. We assume as well that for all communication between
the Task_Master and individual Member tasks, the Ada rendezvous mechanism
(synchronous communication) is also used (although the reader is free to con
sider alternative use of explicit message-based communication). In what fol
lows, we also assume that two device interface refinement instances have
already been created for each physical terminal on which a member may log in,
one a Terminal_Source instance and the other a Terminal_Sink instance. The
Task_Master is assumed to hold a copy of the Access Descriptor for each of
these terminal interface refinements, enabling it to read from or write to each
terminal. We let AD_ T_Sink(k) and AD_ T_Source(k) represent references for
the Terminal_Sink and Terminal_Source refinements for terminal k.

Our two companion scenarios begin with the Task_Master issuing an asyn
chronous read request to each terminal and then entering a polling loop to await
the arrival of a reply or receipt of some other message of interest. Each reply
message signifies the beginning of a login sequence with a member. (If the
sequence is not completed satisfactorily, the Task_Master issues another asyn
chronous read request to that terminal so as to be receptive to another login
attempt.) When a login sequence is completed successfully at terminal k, the

248 A Programmer's VIew of the Intel 432 System

Task_Master perfonns one of the following two actions (according to whether
Scenario 1 or Scenario 2 is operative):

1. (Scenario 1) Issues a Go entry call to the Member task identified in the login
sequence, using AD_ T_Sink(k) and AD_ T_Source(k) as actual parameters,
or

2. (Scenario 2) Creates and activates a new Member task and then issues it a
Go entry call containing AD_T_Sink(k) and AD_T_Source(k) as actual
parameters.

At this point, the club member is connected through terminal k to his/her
Member task which can proceed with the execution of a series of commands
issued from the terminal. The main structure of a Member task is presumed to
be a "command loop", repeatedly requesting and then executing a command
received from the terminal. To get a command, the Member task issues one or
more procedural I/O read requests through T_Source(k), interspersed, as neces
sary, with procedural I/O write requests issued through T_Sink(k) to assist the
member in fonnulating a correctly-phrased command.

The above command loop is exited upon receipt of a correctly fonned logout
request. At this point, the Member task will execute one of the following
sequences (according to whether Scenario 1 or Scenario 2 holds):

1. (Scenario 1) Nullifies the two references (Access Descriptor copies),
AD_ T_Sink(k) and AD_ T_Source(k), received from Task_Master; then
issues a Ready _to_quit task entry call to the Task_Master. By accepting
this call, the Task_Master knows that the Member task issuing the call has
ceased making Read requests to terminal k. (The accept statement may be
completed simply as a no op.) The Task_Master then reissues an asynchro
nous read request to the terminal whose identity was received as an in
parameter from the Ready_to_quit entry call. The Task_Master now awaits
another login request at this terminal.

2. (Scenario 2) Issues a Ready _to_quit task entry call to the Task_Master.
Upon acceptance of this call, which would also contain the identity of the
terminal on which the quitting Member task has been executing, the
Task_Master does the following: aborts the corresponding Member task;
writes out a sign-off message on that terminal; and reissues an asynchronous
read request to that terminal to await another login request.

Without providing all the program structure details, which the reader may
now easily fill in, we have offered a candidate pair of scenarios to show how the
device interface objects (and refinements) described in the earlier sections of

i432lnputlOutput 249

this chapter can be used in carrying out the base plan of our portfolio manage
ment system. Other ways to use the i432 110 facilities can also be explored, and
the reader is invited to do so.

7.6.2. On-Line Connection to the Stock
Market

In the basic plan of Figure 2-5, we assumed the existence and accessibility of a
library package, named Stock_Mkt_Info. (This package was placed in the with
list of Club_Portfolio.) We suggested that calls from Club_Portfolio to
Stock_Mkt_lnfo would get current prices of specified stocks, but we gave no
hint as to how the stock market data in the latter package would be maintained
current.

In Plan 1, we may imagine that "Airlift Specialists, Inc." delivers a floppy
disk each morning marked "Market_data". This disk contains the closing
market data from the previous day. (Someone is then charged to mount this disk
on the proper drive before the first login of a club member on that day.) Of
course, a device driver and Source device interface object must be made avail
able for use of this disk.

With Plan 1, it is still necessary to visualize how information would be read
off that disk when needed. If the information on the disk is already well struc
tured, so that pruticular records may be picked out by associative lookup, the
problem is made easy. In that event, we can presume that a subprogram local to
Stock_Mkt_lnfo issues the appropriate 110 Read request, and that this subpro
gram is itself called, when needed, in the course of executing a public operation
of Stock_Mkt_Info. That Read request may well use a synchronous device
interface, because there is normally nothing else the caller wishes to do until the
response is received.

On the other hand, it is more reasonable to assume that information on the
disk is stored in a format that requires all of it to be transferred into i432 object
space in a form that can be searched efficiently-as part of. a lookup operation
of Stock_Mkt_lnfo. Following this tack, some means is required to reinitialize
Stock_Mkt_Info on a daily basis, prior to its first use that day by club
members. Implied here is the need for a utility program that produces a new
instance of Stock_Mkt_lnfo from a new Mkt_data disk. (This program would
be executed by the person who mounts the new disk.)

For Plan 1, we accepted the proposition that Stock_Mkt_Info must be reini
tialized daily to provide it with updated market data. For Plan 2 we now sup
pose that up-to-the-minute wire_service stock market data is available.

To what extent must the structure of Stock_Mkt_Info be changed to take
advantage of the wire service? Availability of wire service data implies that
Stock_Mkt_data no longer needs to be reinitialized each day. Nor will this

250 A Programmer's View of the Intel 432 System

package need to own any market data. The wire service itself provides a
"smart" query service. Hence, the lookup operation within Stock_Mkt_Info
needs merely to forward lookup calls in the form expected by the wire service.

In this case, Stock_Mkt_Info will again need access to a Source device inter
face abstraction having a Read operation. The matching device driver in the
Peripheral Subsystem now interfaces to a data communications system. If we
assume that the AP or some other processor on the same Peripheral Subsystem
bus serves as a network host, then the driver merely sends and receives mes
sages via that network host program.

Again, we have sketched two plans as starting points for implementation of
some details implied in the basic program structure given in Figure 2-5. Our
immediate aim has been to help the reader relate what has been learned from
preceding sections of this chapter to the investment portfolio application
selected for this book. Readers will no doubt see other ways to take advantage
of i432 I/O facilities, not only for application to our case study, but, more
importantly, for application to systems of particular interest to them.

PROCESS MANAGEMENT

8.1. Introduction

In this book we describe iMAX interfaces useful for the construction of
application-specific operating systems. Each interface serves as a type manager
for an important resource category, each resource being represented as an i432
object. For example, the Typed_Ports and Extended_ Type_Manager interfaces
described in preceding chapters are user-accessible facilities for managing Port
Objects and Extended Type Objects, respectively. In this chapter we introduce
the facility for the management of Process Objects, i.e., iMAX's Process_Man
ager (PM) interface, which provides users the means for creating and managing
processes.

iMAX defines a Process_Manager interface which is simply a template to
which each actual process manager will conform. There may be several dif
ferent implementations of the Process_Manager interface, each providing a dif
ferent level of process management support. Moreover, within an individual
application environment, such as within an executing Ada program, most users
can remain indifferent to the nature of process management support provided by
the underlying system. This is because the compiler and iMAX ensure that
some implementation of Process_Manager can always be referenced correctly
by an executing program that needs to spawn and exercise control over other
processes, such as Ada tasks.

System programmers can develop their own implementations of the Proc
ess_Manager interface, tailored to particular application environments. In this
way, an implementer of a particular system can specify the scheduling policies,
resource controls, resource accounting, and other services to be exercised over
processes within that system. Each instance of Process_Manager also projects a

251

252 A Programmer's View of the Intel 432 System

particular set of process management functions onto the processes managed by
that instance. Among these functions might be those which create, start,
suspend, resume, reschedule, reduce or extend memory resources for, destroy,
inspect or adjust the state of, and keep statistics on processes. The system
designer determines which classes of programs may use which Process_Mana
ger implementations. For example, a minimal process manager implementation
(provided by iMAX) would be used to support processes within iMAX, and the
processes which implement a higher level process manager. A system with its
own higher level process manager would require all applications programs to
use that process manager so they would not circumvent the resource scheduling
and accounting policies implemented by it.

The 432-Ada package refinement feature illustrated in Chapter 7 provides the
ability to implement a specific set of process management services which can
then be viewed through a pre-declared general process management interface.
Using this feature, the process manager interface is defined as a package refine
ment access type. With this definition, a variable can be declared whose type is
this package refinement access type; the value assigned to it references a pack
age instance that is a specific implementation of Process_Manager.

In the remainder of this chapter we examine the Process_Manager interface
in greater detail. Section 8.2 discusses the public operations of the Proc
ess_Manager package type in the context of the data types on which these
operations depend. In reading this material, one may refer to Appendix K which
presents the Process_Manager package refinement access type and related type
definitions. Section 8.3 sketches different possible implementations of Proc
ess_Manager. Section 8.4 summarizes what aspects of process management
have and have not been examined in this chapter.

8.2. The Process_ Manager Interface

The Process_Manager interface (PM) contains operations to control processes
(Figure 8-1) and operations to read and set process attributes (Figure 8-2.)

The control operations can best be understood in terms of the lifecycle of a
process, as suggested by the macro-state graph in Figure 8-3. Most control
operations appear as arcs on the state graph. The additional arc labeled' 'system
stop" represents automatic action of the underlying system. The term macro
state is used because we choose to ignore a number of the details concerning a
process when it is in the "executing" state. For example, a process in the exe
cuting state may, for scheduling purposes, be either actually in the dispatching
mix or kept out of the dispatching mix (by the process manager). A process is
said to be in the dispatching mix from the time it is first sent to its Dispatching
Port with a new non-zero value for its period count (rescheduled) until its period
count has been decremented to zero or until it incurs a fault that cannot be han
dled. (Thus, a process remains in the mix even if it is blocked on a port or is not
running while a fault which it incurred is being handled.)

Process Management 253

Each process may have specified for it a notification port and message
through which the creator of the process, for example, may be notified of "ter
minal" events for that process. The notification message is sent to the notifica
tion port when the process can no longer execute, e.g., when it is terminated,

Operation

create_process

start

Suspend

Resume

Destroy

Raise_exception

Wai t_for_process._
termination

Explanation

creates and returns a new process.

starts a newly created process or
restarts a process from one of several
non-executing states.

Causes an executing process to be suspended
until a later calIon Resume.

Causes a suspended process to continue
executing.

Destroys a process.

Delays the calling process by a specified
amount of time.

Causes a specified exception to be raised
in a process.

waits for a specified process to terminate.

Figure 8-1 Operations of the Process_Manager for controlling a process.

Operation

Set_notification_port_
an<t-message

Set_schedulin~info

Explanation

Returns a copy of the "unchanging" attributes
of a process.

Returns a copy of the "changing" attributes

Returns a copy of the "changing" attributes
of a process including its micro-state.

Sets a notification port and a message
for a process.

Sets the maximum time a process can
execute.

Sets the parameters:
time slice, deadline, and priority.

Figure 8-2 Operations of the Process_Manager for reading and setting process attributes.

254 A Programmer's View of the Intel 432 System

\
system
stop

I
start

Figure 8-3 Macro-state diagram to explain the lifecyc1e of a process

destroyed, or removed from the dispatching mix for having exceeded some
user-specified limit.

The user-readable attributes of each process are collected in several records,
defined in Figure 8-4. A process' fixed attributes are provided in proc
ess_info_rec; variable attributes (i.e., state information) of a process are pro
vided in two records: process_state_rec and process_micro_state_rec. The

Process Management 255

functions, Read_process_info, Read_process_state, and Read_proc
ess_micro_state respectively return this infonnation.

type process_states is (
executing,
just_created,
suspended,
exceeded_memory_limit,
exceeded_time_limit,
system_error,
terminated,
destroyed) ;

type process_micro_states is
not_executing,
on_processor,
on_cport,
on_service_port) ;

type process_info_rec is
record

process_id:
process_globals:
name:
notification_port:
notification_message:
time_limi t:
schedul in~ inf 0:

end record;

type process_state_rec is
record

state:
process_ clock:

end record;

-- Returned by Read_process_info.
short_ ordinal;
Process_Definitions.process_globals_rep;
string;
iMAX_Definitions.port;
dynamic_ typed;
time_limi t_ type;
schedulin~info_rec;

-- Returned by Read_process_state.
process_states;
milliseconds;

type process_mic:ro_state_rec is
record

state:
micro_state:
process_clock:

end record;

-- Returned by Read_process_micro_state
process_states;
process_micro_states;
milliseconds;

Figure 8-4 Type definitions for process_states and process_info_ree.

All process attributes, with the exception of process_globals, process_id,
and the process state components, can be specified by the user. Some of these
attributes can be set unconditionally; others are advisory only. For example, the
caller can set (and later reset) the notification port and message, but can only set
the time_limit and other scheduling parameters in an advisory sense. The
underlying implementation can ignore advisory specifications in the event, for
example, that processes are to be scheduled not individually, but in job-related
groups.

256 A Programmer's View of the Intel 432 System

For most process attributes, the implementation of Process_Manager supplies
default values, so that the user is not required to specify them at all. The default
values of some process attributes may be overridden only in the course of creating
a process and cannot be changed thereafter. The name of a process is one such
example. Other attributes, such as the notification port and message, may be set
only after a process is created; a Set_ ... operation is used for this purpose.

8.2.1. The Create_Process Operation and Its Use

The specification of Create_process is given in Figure 8-5. Although this opera
tion has eight parameters, the caller is only required to specify init_proc which

function Create_process (
init_proc: access_initial_proc;

execute. -- The procedure to
ini t_params: dynamic_ typed : = null;

init_proc. -- Parameters to
name: string;

job:
The text name of the process.

Jobs_Manager_TYPes.job := null;
The job in which the caller is executing, i.e., the job
in the caller's process globals.

heap_sro: i~Definitions.storage_resource := null;
The sro from which to create the process. This determines

-- the scope of the process and whether the process is frozen or
-- normal. Default is the global heap sro in the caller's
-- process globals.

init_stac~objtab_size: objtab_size_type := 0;
Initial size of the process stack object table. This is an

-- advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

init_stac~size: memLsize_type := 0;
-- Initial size of the process stack allocation block. This is an
-- advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

call_stac~depth: integer : = 0;
-- Number of contexts to be pre-allocated for this process.
-- This is an advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

return process; -- Has controlJights.

Function:
A new process is created and returned. The parameter list
includes only those process attributes which can be set only
at process creation time. Default values are provided for
all process attributes except the procedure to execute
(init_proc); this is the only parameter which MUST be specified.
Attributes for which there are no parameters may be changed after
a process has been created (and before it is started, if desired)
by calling one of the Set_ ... operations.

Figure 8-5 Specification of the Create_process function in package access type Proc
ess_Manager.

Process Management 257

supplies the beginning procedure, i.e., the initial execution environment for the
new process.

The dynamic package feature of 432-Ada is used to specify init_proc. An
instance of the package access_initial_proc is passed as the init_proc parameter
to Create_process. This instance is obtained by instantiating the generic pack
age initial_proc; in this instantiation, the initial procedure to be executed by the
new process is given as the generic parameter main. Figure 8-6 shows the
initial_proc and access_initial_proc specifications from Process_Mana
ger_ Types in Appendix K.

generic
with procedure maine Formal generic parameter.

params: dynamic_typed);
package initial_proc is

procedure maine
params: dynamic_typed)

renames main;
end initial_proc; -- End of generic package spec.

type access_initial_proc is access initial_proc;
Declares access_initial_proc to be an instance

-- of the dynamic package named initial_proc.

Figure 8-6 Specification of the generic package initiaCproc and package access type
access_initiaCproc. The fonnal parameter of initial_proc is the procedure main which
itself has one parameter whose type is dynamic_typed.

Figure 8-7 shows an Ada program fragment which creates a process named
"Task_Master" . The mechanism just described is used to specify
Spawn_servers as the initial procedure of the new process.

8.2.2. Other Operations of the
Process_Manager ~nterface and Their Use

The Create_process operation returns an AD with control_rights for the created
process; no read or write rights are returned. Depending on the particular proc
ess manager implementation, the AD returned from the Create_process opera
tion mayor may not also have suspend_and_resume_rights. The rights
returned by Create_process are software-defined type rights. Calls on all other
operations in Process_Manager, with the exception of Suspend, Resume, and
the Read_ ... operations, must supply an AD with controL rights for the speci
fied process. Calls on Suspend and Resume require that the AD for the specified
process contain suspend_and_resume_rights.

The creator of a process may make ADs for that process accessible to other

258 A Programmer's View of the Intel 432 System

declare
use Some_Process_Manager;

procedure Spawn_servers(
server_p: dynamic_typed)

is begin. . . end;

initial_environment: access_initial_proc;
begin

initial_environment := new initial_proc(init_proc => Spawn_servers);
-- Create an instance of initial_proc with Spawn_servers as its
-- one public operation.

Can now make calIon Create_process as follows:
Local_Process_Manager. Create_process (

end;

init_proc => initial_environment,
init_params => dynamic_typed (some_server_p),
name => "Task_Master"); -- Remaining five arguments

-- are defaulted.

FIgure 8-7 An Ada program fragment to illustrate a call on Create_process.

agents in a system. If any of these ADs have control_rights, the process may be
controlled by the agents that have access to them. Alternatively, the creator of a
process may remove control_rights from such ADs so that other agents may
read information about the process but may not perform control operations on it.
Similar considerations apply to suspend_and_resume_rights. In the simplest
case, control operations may be used to start a process and let it execute to com
pletion. Wait_for_process_termination enables an agent to suspend its own
operation until some other process has finished executing. To wait for the termi
nation of more than one process (i.e., for all or for some of these to terminate),
the more general notification mechanism may be used. (Use ofWait_for_proc
ess_ termination is specified as mutually exclusive with use of the notification
port and message mechanism.) A process may be aborted, no matter what its
(macro) state, by a call to Destroy.

Several of the Process_Manager operations, including Destroy, are per
formed asynchronously with the caller; users may need to be aware of the
cause-and-effect time lags involved. Details such as these, and more complete
descriptions of all PM operations, including those not mentioned here, are given
in the PM interface specifications in Appendix K.

8.3. Different Possible Implementations of
the Process_ Manager Interface

Process Management 259

In the previous section, we described the general Process_Manager interface
without reference to specific implementations of that interface. The functional
ity supported by a given Process_Manager implementation may range from a
purely minimal scheme to an arbitrarily rich one. In this section, we examine
two of the many possible implementations of Process_Manager, and discuss
some of their ramifications.

First, we review the architecture details needed to understand dispatching and
scheduling of processes at the lowest level. Recall from Chapter 5 that a process
is scheduled by specifying a service time, which is the maximum amount of
compute time to be used during each of a given number of service periods; the
latter is specified as the period count. (These values are embedded in the Proc
ess Object.) After each (but the last) service period has been completed, the
process is reinserted into the request queue of its Dispatching Port in deadline
within-priority order. The specified deadline is an integer measure of how long
the process may be delayed, relative to other enqueued processes of the same
priority. (The deadline and priority values are maintained in the Process' Car
rier Object and are copied into the appropriate request queue entry when a proc
ess is reinserted into its Dispatching Port.) The copied deadline values for
enqueued processes within a given priority level are updated by the hardware
(to reflect the effect of elapsed time) each time another request (process) is
inserted into the Dispatching Port. (These detailed hardware operations are
described in the i432 Architecture Reference Manual.)

8.3.1. A Simple, Close-to-the-Hardware
Implementation

A minimal process management implementation (MPM) might consist merely
of allowing its users to create, initialize, and start processes. Suspend, Resume,
Raise_exception, and Destroy would likely not be implemented. In this
scheme, processes have an infinite time limit (period count) and they must not
terminate. (Alternatively, processes could be automatically destroyed if they
terminate. This option would probably require MPM to include a service proc
ess that would perform the destruction of the processes that terminate.)

Defaults are provided for the process scheduling parameters (time slice or
service time, deadline, and priority); users can override the defaults or change
the scheduling parameters of an executing process by calling Set_schedu
ling_parameters. Thus, processes execute entirely under control of the
hardware dispatching and scheduling mechanisms. Because they have an infin
ite period count, created processes would never be sent to their scheduling port,
so MPM does not need to include a service process to handle the scheduling
port.

260 A Programmer's View of the Intel 432 System

Depending on the level of fault handling and memory management in the sys
tem, IvIPM might require its users to specify explicitly some of the optional
parameters in the Create_process operation. For example, it might require users
to specify the stack and stack object table sizes and the maximum call stack
depth so that they would never need to be expanded. (In more sophisticated sys
tems, these parameters would usually be defaulted and the system would
expand them as necessary.) The level of memory management support in the
system also determines whether IvIPM processes can be created only during sys
tem initialization, or whether they can also be created any time after the system
has been initialized.

The most important consequence of a minimal process management imple
mentation is that it implements no scheduling policy on top of the hardware
provided scheduling mechanisms. MPM users must allocate processor resources
among themselves in some way to prevent overloading the system. In the next
subsection, we examine a possible implementation to address this issue.

8.3.2. Higher-Level Implementations

A much richer Process_Manager implementation, such as for a multi-user
time-shared operating system, would dynamically control the amounts of proc
essor (and memory) resources consumed by each user. The optional job param
eter to Create_process allows Process_Manager implementations to provide
policies and services that are based on a characterization of the user on whose
behalf a process is created. Individual processes, or those grouped as jobs,
might be suspended and resumed, examined and given more processor or
storage resources if needed, restarted, or destroyed. Usage statistics might be
gathered on a per-process or per-job basis.

To facilitate implementation of such a scheme, iMAX provides a comprehen
sive set of process management primitives assembled in a Process Manager
Support package. Figure 8-8 is a graphical outline of this rich implementation
scheme. A process is sent to a Scheduler of the High Level PM Implementation
whenever it undergoes a change that may affect the Scheduler's treatment of it
or of other processes in the system. The agent which sends the process to its
Scheduler may be part of a user's thread of control, or may be a service process
of PM Support. Based on the states of the processes it receives, the Scheduler
may move processes in and out of the mix via operations of PM Support, or
may send notification messages to notification ports.

In general, the strategy is to give PM implementers, through the PM Support
package, the ability to specify and implement policies in terms of the primitive
operations of iMAX and the underlying mechanisms of the architecture. Setting
the service time, period count, deadline, and priority of a process are examples of
policy specification via the operations of PM Support. Automatic dispatching and
other port operations are examples of underlying mechanisms of the architecture.

Create_
process

Process Management 261

Use r Level (Process creator)

start Suspend Resume Raise_exception. . .
Message sent
to user via
Notification...

! port

~--~------~------~---------PM interface--~------~--------------~

High Level PM Implementation

various
calls

PM Support (Package)

start

l

Scheduler
Process

port
interface

(agent)

Hardware Dispatching Mix

Figure 8-8 Program structures for use of a rich (and hypothetical) Process_Manager inter
face (PM): High-level view. Its implementation includes an auxiliary Scheduler process.
Processes in need of rescheduling or other attention are sent via operations of the Support
package to the Scheduler, using the process' port attribute. The agent sending a process
to the scheduler may either be part of the user's thread of control or a separate process
that is instantiated in the Support package.

8.4. Summary

In this chapter we have introduced the reader to some of the major design objec
tives for process management in the i432 System. iMAX provides a general
framework in the form of the package Process_Manager_ Types which gives the
specification of a Process_Manager interface. An iMAX-supplied implementa
tion of this interface may suffice for many users. Others may wish to implement
their own versions of this interface.

262 A Programmer's View of the Intel 432 System

We have indicated how individual implementations of this interlace can
range from one offering minimal functionality to one offering a maximum of
sophistication. We have also provided only a general introduction to the use of
the Process_Manager interlace. What we have not done is examine in detail the
structure of a rich implementation of the PM interlace. This can be done in a
future effort, perhaps by others. We trust, however, that the opportunities to
implement a range of process managers tailored to different user needs is now
clear. No discussion of the opportunities for process management can be com
plete, however, without offering a companion introduction to the management
of the storage resources for processes. We do this in the next chapter.

MEMORY MANAGEMENT

9.1. Introduction

No significant general purpose computer system can function without service
facilities for memory management and filing. In preceding chapters we have
alluded to the i432 Memory Management and Object Filing services, but have
avoided the temptation to discuss these subsystems in detail, reasoning that later
was better. We have, however, suggested that these management facilities were
as comprehensive as might be found in any of today's commercially available
computer systems-truly a requirement if the i432 is to live up to its micro
mainframe' 'label" .

In this chapter we first introduce i432 Memory Management and Object Fil
ing. We then present an overview of the design strategies and some implemen
tation details for Memory Management. We focus especially on those concepts
and specifics that i432 subsystem designers and some applications programmers
should know. Chapter 10 examines object filing in more detail.

• By memory management, we refer to the dynamic allocation and deallocation
of storage resources, spanning both primary storage ("main memory"), and
a swapping store (typically disc memory).

• By filing, we refer to the storing (and retrieving) of information units in (and
from) long-term store (secondary memory). We assume all secondary
memory structures are tied logically to one i432 System, but may reside at
widely separated sites.

• By object filing, we refer to the filing of objects that always retain their iden
tity and type even in the filed-away state. Such objects may be periodically
brought back to short-term, active status, to participate as long as needed, as

263

264 A Programmer's View of the Intel 432 System

objects in i432 computation structures-and then returned to file status, sup
planting older versions in long-term storage.

Objects filed in long term status may have composite structures. Thus, even
though no one object may exceed 128KB in length (64KB for data part and
64KB for access part), the size of the composite may be quite large, or may
have rich structure, or both. An example of a composite would be the com
piled representation of an Ada library-level package. It would consist of a
Domain Object and its associated Instruction Objects, Constant Object, and
objects representing owned data structures, if any.
[Traditional files, which may be individually much longer than 128KB in length, may
also be treated in the framework of the object filing system, much as regular files are
routinely accessed, for example, when using Open, Read or Write, and Close
sequences.]

The totality of object space may be viewed, as in Figure 9-1, to be partitioned
into two main parts, active object space, and passive object space. An object
may be created in the active space and later either deleted when it becomes
unreachable, or transferred to the passive object space (an "intelligent" form of
long-term storage") until needed again. We see that an active object is simply
one that resides in active address space, while a passive object refers to an
object residing in passive object space. The transfer of an object from active to
passive space is controlled by the object's type manager, with default mecha
nisms provided for the same purpose in cases where the intent to "passivate"
an object may be deduced by the system.

V
i
r
t
u

m
o
r
y

o b j e c t
Active Ob'ect Space

(Primary Memory)

(Secondary Memory)

Active Object Space
o b j e c t

Spa c e
Passive Object Space

(Secondary Memory)

Passive Object Space
Spa c e

Figure 9-1 The Partition of i432 Object Space.

F
i
1
e

S
t
o
r
e

Memory Management 265

Transfer from one space to another may be achieved through use of an accessi
ble iMAX interface package. Reference to the contents of a passive object, that
is, Read, Write, or Update, may also be achieved by using this same interface.
All such operations are accomplished while ensuring the consistency of the
affected objects, through explicit use of provided synchronization mechanisms.

These mechanisms permit an object to exist simultaneously in both active and
passive object space so that changes to a version in active space may be
reflected in passive space under controlled conditions. Use of these mecha
nisms guarantees data consistency under conditions where two or more proc
esses may be attempting accesses to the same passive object during the same
time frame. The same mechanisms protect against system crashes. A full system
crash causes loss of the active space but not the passive space. Such a crash
need not be catastrophic, therefore, if users periodically update objects in pas
sive space.

Before going further, it is important to stress that the system's storage is actu
ally implemented in two parts, following a "two-space model". To most users,
however, storage appears as a single space. The two-space or two-level view of
store is more visible to type managers than to most programmers and is cer
tainly invisible to all novice users.

The active object space is itself decomposed into two parts. Active objects
may reside in either main memory or secondary memory. The totality of
memory comprising the active object space is the virtual memory of the i432
system. Active objects in main memory may of course be addressed directly,
using the i432 hardware and software discussed in earlier chapters.

An attempt to address an active object that resides in secondary memory
results in a detected fault, which invokes the machinery of the i432 Memory
Management Subsystem to transfer the referenced object to main memory. This
latter facility, usually referred to as a "virtual memory" or "virtual storage sys
tem" , has become a standard service offered with most minicomputers and with
nearly all oftoday's mainframe systems.

[A brief historical reminder: the modern segmented virtual storage concept is rooted in
the Burroughs B5000 system architecture, fIrst announced in 1961 [11]. In that system,
storage descriptors hold a hardware-sensed "presence bit" to indicate presence or
absence of the target segment in main memory. If the presence bit is false, a hardware
segment fault is signalled, invoking the system's software memory management subsys
tem. There follows an attempt to fetch the object from secondary storage, update the
descriptor's presence bit, and return control to the routine that faulted, so that execution
may continue as though no segment fault had occurred. (The i432 Object Descriptor has
an allocated bit that corresponds directly with the B5000's presence bit. In both cases
this bit is set by software and sensed by hardware.)

Shifting a B5000 segment from primary to secondary memory is a decision made and
executed by software components of the memory management subsystem. Many of
today's systems also support recording the nature and frequency of object use. The
hardware automatically records some or all of this usage information; in turn, software
decisions to transfer segments to secondary memory are based on these usage data. An
early example was the GE645 system architecture [44]. Segment descriptors for this sys-

266 A Programmer's View of the 'ntel432 System

tern contained "has-been-accessed" and "has-been-written" bits. (Each i432 Object
Descriptor also has such bit fields set by the hardware. These are called, respectively, the
accessed and altered bits. .

In principle, the early and current virtual memory management systems are qualita
tively quite similar. Current systems are more effective, especially because the amount
of affordable main memory has increased by more than two orders of magnitude since
the early 1960s. The extra space means that more structuring information can be main
tained in memory (such as tables and pointers describing the users' information objects.)
Moreover, this structuring "overhead" can be better distributed in memory. The result is
that more comprehensive algorithms are used for managing primary memory, thus limit
ing the frequency of swapping to secondary memory.]

In spite of the many significant advances just cited, most current architec
tures still fail to provide effective support for parallel garbage collection. (Such
support is, in fact, a significant architectural feature of the i432, as described at
the end of Section 9.2.) A parallel garbage collector can be reclaiming storage
objects while other processors execute programs that consume reclaimed space
[17].

In conventional systems, execution of the garbage collector algorithm is
necessarily mutually exclusive with execution of application programs that rely
on an available supply of reclaimed storage blocks. This circumstance leads to
interruptions of application programs at unpredicatable points in time when the
services of the garbage collector become critical. Because of this problem, real
world applications, whose forward progress must not be interrupted for garbage
collection, are conventionally programmed to avoid the need for it. All too
often, applications programmers have avoided the problem by choosing pro
gramming languages (like Fortran, Cobol, and Assembly language) whose
semantics do not rely on implicit garbage collection. Unfortunately, choice of
such languages has often led to other expenses such as in program maintenance.
Effective use of modem high-order languages like Ada implies the need for gar
bage collection. As a consequence, one can expect to see added pressure
applied to system designers for the development of architectures suitable for
parallel garbage collection.

With this historical development and commentary as background, we natur
ally expect a significant degree of maturity in the model and implementation for
memory management in the iMAX Operating System-even in the first
released versions. For example, parallel effective garbage collection and
memory compaction algorithms run, when needed, not only as separate proc
esses, but also on separate processors, in support of programs that generate
large numbers of objects having relatively short lifetimes.

The first released version of the iMAX Memory Management provides
sophisticated algorithms for management of main (real) memory only. These
routines form the nucleus of the virtual memory and object filing algorithms.
Our description of the entire Memory Management and Object Filing subsys
tems are therefore given "bottom-up". First we describe the model for main
memory management in Section 9.2. We then describe the design and imple-

Memory Management 267

mentation extensions for virtual memory management (Section 9.3) and object
filing (Chapter 10). At the end of Chapter 10, we view the behavior of our port
folio management system as it is expected to operate under the fully
implemented Virtual Memory Management and Object Filing Subsystems.

The first release of iMAX is useful for a variety of applications that can run
entirely in main (real) memory-which can be as large as 16MB. (Recall that
users are provided with advanced 110 Subsystems as described in Chapter 7.)
Conceivably, thisflrst collection of memory management packages will also be
useful as a starting base for system designers wishing to extend the operating
system to provide their own virtual memory management or filing system, or
both. These designers need not wait to use a more comprehensive iMAX
release.

We end this introduction by reminding the reader of the close relationship
between memory management and process management. Any user, advanced
enough to take full advantage of the several iMAX memory management inter
faces, will very likely also need to know about and perhaps use the iMAX inter
face provided for process management which we have already introduced in
Chapter 8.

9.2. Management of Main Memory

A set of operating system packages and tasks, hereafter referred to as Memory
Management, performs the functions of main memory management. The tasks
cooperate to assume not only the responsibility of making the most of the avail
able physical space, a relatively scarce resource, but also to construct and main
tain in a consistent state, the mappings of all i432 objects and their components
from logical to physical addresses. Memory Management responds to explicit
(and implicit) demands for resources needed as processes request creation of
objects (and progress from one context to another). Neither the Operating Sys
tem nor any individual process is required to "know in advance" how many
objects, or of what sizes, will be needed for execution. This is, of course, a cru
cial point. Any initial allocation selected for a process by the system may be
extended by Memory Management as needed, up to the limit of the system's
available space resources.

To reach this objective, Memory Management constructs and maintains in
main memory an elaborate set of private data structures. The overhead of space
and processing effort associate~ with the storage and management of these data
structures is not insignificant by standards used for many predecessor systems.
However, the increased functionality that is derived is paid for with main
storage that has become relatively inexpensive and with extra processing that
can be run for the most part concurrently with the execution of users' code.

268 A Programmer's View of the Intel 432 System

It makes little sense for us to present a full description of all these internal
records and of the governing procedural components of Memory Management.
Not only would such a presentation require the space of a small book, but the
details presented, which are subject to change, would be of interest mainly to
those who wish to construct their own complete operating system. For that audi
ence, specialized literature would be more useful. Instead, we take a subsystem
designer's view in explaining Memory Management. The principal data struc
ture one needs to know about for use of these interfaces is the Storage Resource
Object. We have discussed the top-level structure of SROs in Chapters 4 and 8.
In this section, however, the SRO becomes a focus of attention.

Recall that a Storage Resource Object records the use of one or more blocks
of contiguous main memory. Figure 9-2 illustrates some of the details of an
SRO that might be used for managing one block of physical memory (called the
allocation block). This block is represented in the Physical Storage Object
(PSO) by a storage block specifier consisting of a pair of physical addresses that
serve as bounds on the block. The figure is illustrative of the initial condition of
a global heap SRO; the PSO for this initial condition defines only a single (very
large) block of storage. (Later snapshots of the PSO would show it containing a
number of storage block specifiers, each defining a distinct allocation block.
These block specifiers are actually linked in a single list and the list is searched
in a convenient way each time space for a new object of a given size must be
found.)

All global heap storage space is drawn from one of two system-wide PSOs,
one for the normal global heap SRO and one for the frozen global heap SRO.
Each normal (or frozen) local heap SRO shares the same system-wide normal
(or frozen) PSO. When it is necessary to allocate space for a new object, the
i432 uses a "rotate-first-fit" algorithm for selecting the allocation block out of
which the object will be created. The header part of the PSO provides the state
information needed to apply the rotate-first fit algorithm [35]. The strategy of
using one global PSO for essentially all heap allocation system wide assures
relatively even distribution of free space and hence minimizes the amount of
work required by the compaction algorithm on the rare occasions when it is
invoked. Using a global PSO assures that the search will be short, since alloca
tion blocks will generally be large compared with the average size of created
objects allocated from them.

A different strategy is used for allocation for stack SROs. The PSO for a
stack SRO is not shared with any other SRO. (When a process P is created, its
stack SRO is also created, as is the associated PSO. Memory Management ini
tializes the PSO's single storage block specifier to represent an allocation block
of size (optionally) specified in the call that creates P. See the init_stack_size
parameter in Figure 8-5.)

When an object is created from any kind of SRO, a chunk of available space
of the requisite size is allocated and its O~ject Descriptor is constructed and

Level No.
---....J ---,-..

0-
~:)t~,o~r~ag~e::--....::R~es~.
Obj. (SRO)

I Claim:J~
Claim Object

Object Table

-

Memol}' Management 269

I
Allocated

CUrr. end I
addr. .. -

start addr.
x·- Free

header info

physical
storage Obj. Allocation Blo

(PSO) of Memory

Figure 9-2 Structure of an SRO and the block of physical storage it refers to. An SRO
holds Access Descriptors for a Physical Storage Object, an Object Table, and a Claim
Object. A PSO may hold one or more storage block specifiers, each containing two
physical addresses that are bound a block of available space and thus define an allocation
block. (The "x" marks an absolute physical address, rather than a logical address or
offset.) Although not shown, the Object Table holds Object Descriptors for objects resid
ing in the allocation block of the related PSO. The Claim Object holds an ordinal value
representing the current (total) amount of storage space controlled by this SRO.

added to the SRO's Object Table. That descriptor contains a physical address
pointing to the base of the allocated chunk as well as the lengths of its data and
access parts. A corresponding adjustment is made to the Current End Address
component of the affected storage block specifier in the PSO.

For each new object created from an SRO, the allocation block represented
by the affected storage block specifier naturally shrinks in size. Any request to
create a new object Z whose size exceeds that available from any of the storage
block specifiers within a PSO will invoke additional system "machinery" to
adjust the PSO so that at least the particular object creation request can succeed.
For example, the PSO can be provided a new storage block specifier of suffi
cient size for allocation of object Z. Alternatively, the allocation block of an
existing storage block specifier can be increased by an appropriate amount.

The approach to adjusting the PSO depends on the allocation discipline used.
When it is necessary to increase the available resources for a heap SRO, it is
sufficient to add to its PSO another storage block specifier representing a dis-

ck

270 A Programmer's VIew of the Intel 432 System

joint allocation block; however, to facilitate the automatic reclamation space
occupied by stacked objects, the PSO for a stack SRO is best managed with a
single storage block specifier. In the rare occasions when a stack must be
enlarged, it is done primarily by enlarging the allocation block represented by
the specifier or, in case the stack SRO uses normal rather than frozen memory,
by replacing the specifier with a new one that represents a larger allocation
block and relocating all the currently stacked objects into the space governed by
the new specifier. (The strategy used in the current implementation is to set a
fixed size for the initial allocation block of a stack SRO (e.g., 4K bytes); this
block is then doubled in size each time it must be enlarged, until some large
system-determined upper bound is reached; after this, another storage block
specifier containing a second, disjoint allocation block is added to the PSO of
the stack SRO.)

The immediate memory resource supplying the space needed for adjustment
of PSO storage block specifiers is the so-called Free List. (This list is a private
data structure maintained by Memory Management and is a list of free-to-use
memory blocks sorted in order by base address. Sorting in base address order
enables the manager of a Free List to immediately coalescence newly added
blocks in the list to adjoining blocks. Actually, two such Free Lists are main
tained, one for normal memory and one for frozen memory.) New blocks of
memory are added to the Free List whenever an object is reclaimed by the Gar
bage Collector or whenever local heap objects are automatically deleted by vir
tue of executing RETURN instructions.

One can imagine ideal conditions in which a dynamic equilibrium might pre
vail between the rate at which new blocks of free storage (having some size dis
tribution) are added to a Free List F and the rate at which storage blocks (having
the same size distribution) are dispensed from allocation blocks of PSOs whose
storage block specifiers are "acquired from" F. Since a real system can only
approach such an equilibrium occasionally, backup mechanisms must be pro
vided when deficiencies arise in the Free List.

• The Garbage Collector process can be requested to find all unreachable
objects, entries for which can then be placed on the Free List. (As just men
tioned, new blocks added to the Free List are coalesced with adjoining ones.)

• When no block on the Free List is of sufficient size, the Compaction process
can be requested to relocate allocated objects until a contiguous free block of
sufficient size is formed by "coalescence". Note that the compaction algo
rithm can fail if, after coalescing all of the PSO's allocation blocks, there is
still an insufficient amount of free space available.

• Finally, if a virtual memory facility is available, some currently allocated
objects can be swapped out to secondary storage, thereby freeing up suffi
cient main memory.

Memoty Management 271

The i432 Memory Management subsystem utilizes all of these strategies to
adjust the equilibrium between the Free List resources and the demands on PSO
allocation blocks. The decision strategy used, that is, which of the available
mechanisms to invoke when, is made by the iMAX module that manages the
Free List in response to a request for a free storage block that is larger than
currently available. The decision is based on the size R of the block requested
and the current "operating condition" of the Free List. Two key parameters, for
example, might describe the operating condition: (a) the total amount of storage
S on the Free List and (b) mean free block size F (the ratio of S and the number
of free blocks on the list.)

As long as S substantially exceeds R, recourse to a relatively costly replace
ment algorithm for swapping out selected objects from real memory can prob
ably be avoided. When activated, the Compaction process runs only until a free
block of a specified size is obtained or until the ratio F rises above a given
threshold, whichever the reason for its activation. The frequency of appeal to
the Garbage Collector is a direct function of the kinds of programs being exe
cuted. (Thus, executing Ada programs may, and LISP-like programs will defin
itely, lead to heavy use of the Garbage Collector; by contrast, the Garbage Col
lector should not be needed at all when executing a mix of Basic, Fortran, and
Cobol programs.) Although the interplay between the three space reclamation
mechanisms is clearly complex, just the fact that the Memory Management can
choose among the three of them at any given time offers, in principle, a degree
of flexibility and an opportunity for achieving performance levels that have not
been furnished through most prevjous operating system designs.

The Claim Object component of an SRO, shown in Figure 9-2, denotes an
allocation limit for an SRO (either virtual or actual, depending on whether the
particular system does or does not support virtual memory). The claim value is
decremented as objects are allocated from the SRO and incremented when they
are later reclaimed by the Garbage Collector. Two or more related SROs may
share the same Claim Object, and hence can be managed as a unit. Thus, one
claim value may be used to maintain control over allocation from a group of
SROs related to a process tree. (We come back to this point in Section 9.3.)

Thus far we have primarily considered the internal structure of SROs and the
relationship between its structure and the underlying support of Memory
Management. We are now ready to consider, at a higher level, how SROs are
used to manage storage resources needed to execute programs. To understand
how SROs are used at this level, our starting view is that of an i432 System exe
cuting a collection of logically-independent processes. During its "lifetime"
each of these processes may spawn a tree of subsidiary (related) processes. We
will examine the allocation of objects, as required by the various processes
within this picture, the strategies and mechanisms used, and the related low
level services put at the disposal of the systems programmer, should these be

272 A Programmer's View of the Intel 432 System

needed. We will also examine the strategies and mechanisms used for dealloca
tion of these same objects.

It turns out (by design) that to understand allocation and deallocation of
objects, one needs primarily to understand the structure and management of
SROs, especially those used within individual process families. To get started,
then, we fIrst examine a means for classifying allocated objects according to
their expected lifetimes. We then examine the relationships among SROs.

We fInd that, as a process tree grows (and shrinks), so grows (and shrinks) a
companion tree structure of SROs-whose use accounts for the dynamic alloca
tion (and deallocation) of process-related objects. Interestingly enough, nearly
everything we learn about SROs as used in the management of main memory
carries over to the management of virtual memory, which spans main memory
and secondary memory.

Three kinds of SROs are found useful, corresponding to three kinds of life
times the objects allocated from these SROs will have. These are referred to as:

1. global heap SROs

2. stack SROs

3. local heap SROs

9.2.1. Object Lifetime Strategies

We can speak about an object's lifetime, in terms of major events that transpire
from the point of its allocation to its deallocation. Strictly speaking, the life
times of objects created by processes lie on a continuum, from fleetingly short
to "eternal" . From a practical point of view, however, object lifetimes fall con
veniently into three broad, relatively easily managed categories:

1. An object should live (that is, remain allocated) as long as it is reachable
from another reachable object. The lifetime for such an object may be
independent of the lifetime of the process that creates it, and is, therefore,
allocated from a global heap SRO. Ada library-level packages are
represented by i432 objects that fall in this category.

Reclamation of space for objects allocated from a global heap SRO can
occur only via the services of the system's Garbage Collector. (This task can
run concurrently with any of the other Memory Management tasks (includ
ing the Compaction process), and concurrently with all user tasks.)

2. An object, X, should live only for the duration of an activation of subpro
gram, P, for which X has been allocated. Several kinds of objects local to a
subprogram may need to be created for use during activation of that subpro
gram. Among these are arrays of records, and records containing arrays of
dynamic dimensions that cannot fIt into the preallocated Context Object

Memory Management 273

whose size is fixed. Domain Objects representing Ada packages declared
local to a subprogram are also allocated from the stack SRO. These objects
are automatically deallocated from that stack SRO (and their space explicitly
reclaimed) upon execution of the matching RETURN instruction.

3. An object, X, is allocated while executing in a context, G, but its lifetime is
tied to that of a specified predecessor context, C. Falling in this category is
any object, X, representing an instance of an Ada access type whose
declaration is elaborated while the program executes in context C, but which
is actually allocated during execution in this or a subsequent context, G as a
consequence of either a variable declaration or the evaluation of an allocator
expression. Object X would be allocated from a local heap SRO created dur
ing execution within context C.
[In the special case where C and G are the same context, instances of type access
variables, e.g., Extended Type Objects, would still be allocated from a local heap
SRO allocated within context C. Note that instances for non-access types declared in
an enclosing scope need not be allocated as separate objects from the stack SRO, but
may be stored in the local variable or operand stack areas of the current Context
Object. This simpler treatment is possible for simple variables, and arrays.]

Deallocation of object X would occur no later than when Context Object C is
deallocated. This event occurs when the subprogram activation, for which
Context Object C was constructed, is completed. The dynamic link AD in a
Context Object for a subprogram activation that allocates a local heap SRO
is always stripped of its return rights. Upon executing the RETURN instruc
tion, use of the dynamic link AD induces a fault (raises an exception.) The
handler invokes a Memory Management routine which deallocates the local
heap SRO and all the objects allocated in it and reclaims all storage associ
ated with the affected local heap SRO. (The choice, whether or not to
employ a separate service task to perform this reclamation is an iMAX
implementation decision. In principle such a task could execute concurrently
with the Garbage Collector and also concurrently with the user program for
whom the service is performed.)

The interim, between the time that object X is created and the point at which
context C is deallocated, may be relatively long, in part because the number
of contexts intervening between C and G, may be quite large. It is possible
that, during this interim, object X may become unreachable. This condition
makes the storage for object X a candidate for reclamation by the Garbage
Collector and the latter may reclaim it before (perhaps long before) the
thread of control exits from context C.

In the case of objects whose lifetimes fall in category one, there can be no
special trigger for deallocation and reclamation. Hence, an unreachable object,
i.e., garbage, may continue in the allocated state for an indefinite period of
time, especially when there is plenty of free space left to be allocated. On the

274 A Programmer's View of the Intel 432 System

other hand, in the case of objects whose lifetimes fall in category two, the
trigger for deallocation can be (and is) keyed to a precisely-defined hardware
event, namely execution of a RETURN instruction. Since the frequency of allo
cation for such objects is high, it is fortunate that their deallocation is assured at
the earliest safe time.

We have already suggested that for category three objects (those drawn from
local heap SROs) the mechanism guaranteeing their deallocation is intermediate
between those used for objects of the first two categories-and so is the
response time. Software, namely the compiler, sets up a hardware trigger of
the event, and software, namely iMAX, handles the event. The mechanism
takes advantage of level numbers associated with objects allocated from local
heap SROs. In the remainder of this subsection we explain and illustrate this
mechanism.

Associated with a stack SRO is a counter representing the current level
number; this counter is incremented and decremented by one during execution
of each CALL and RETURN instruction, respectively. When an object Y is
created from a stack SRO, it acquires a level number attribute equal to the
current level number of the stack SRO from which Y is created. This attribute is
represented as a hardware-sensed value in Y's Object Descriptor. When a local
heap SRO, H, is created by a process R, the heap H acquires a level number
equal to the current level counter in R's stack SRO. Subsequently, all objects
allocated from H acquire the same level number as that of H. [Note that level
numbers are not the same as display indices used in stack architectures to denote
the lexical, levels. Level numbers represent the length of the dynamic chain
whereas display indices represent the length of the static chain.]

The deallocation semantics of the RETURN instruction executed in current
context C is such that all objects having level numbers equal to or greater than
that of context C are deallocated from the stack SRO and then the stack SRO's
level counter is decremented by one. Part of these semantics is carried out by
software. This is the part having to do with deallocation of a local heap SRO
that was allocated and assigned the level number of the current Context Object
C; return of control from this context causes (with software intervention) deallo
cation of the local heap SRO and necessarily of all objects created from it.

Consider the following illustrative scenario:

• Some process, Q, is executing with a Context Object C. Suppose there is now
a need to allocate a local heap SRO, so it can be used later for the allocation
of objects of, say, access type S. As indicated above, this local heap SRO is
logically allocated from process Q's stack SRO and is given a level number
that is the same as that of Context Object C.

• Subsequent execution within context C may now lead to extensions of the
dynamic chain via the generation of contexts for D and then E, all assumed to
lie within the scope of access type S. (These Context Objects have succes-

Memory Management 275

sively higher level numbers.) Object instances of type S may, therefore, be
created at any point subsequent to the creation of its local heap SRO, during
execution within contexts C, D, and E.

• Now consider what happens when the process executes the chain of three
RETURN instructions from contexts E, D, and C, respectively. Each execu
tion of a RETURN instruction leads to the deallocation of all objects on the
stack SRO having the level number equal to that of the stack SRO. (The stack
SRO's level counter is then decremented by one.) The local heap SRO, there
fore, remains allocated after executing RETURN instructions from contexts E
to D and from D to C, assuring that prior to each RETURN, objects of access
type S are still accessible from the current and earlier contexts. Such accessi
bility is, of course, required by Ada visibility rules .

• When the RETURN instruction within context C is executed, however, a
fault occurs because the dynamic link in context C has no return rights;
iMAX intercedes, deallocates the ·local heap SRO and all the objects allo
cated from it, and "fixes" the dynamic link AD (by reinstating return rights)
to allow the RETURN instruction to complete without further fault. At this
point the hardware proceeds with the deallocation of all other objects allo
cated from the stack SRO during execution of context C (objects whose level
numbers equal the current value of the stack SRO's level counter.) The level
counter is then decremented once again and control returns to the context
which caused creation of context C.

9.2.2. Prevention of Dangling References

The automatic (and explicit) deallocation mechanisms invoked for objects
drawn from stack (and local heap) SROs implies the need for a companion
mechanism that prevents the occurrence of accessible Access Descriptors for
objects already deallocated. Such dangling references must be prevented to
ensure the integrity of the system.

The insertion of level numbers in Object Descriptors is the key idea behind
the i432 architects' solution to this problem. During execution of every i432
instruction that writes an Access Descriptor, Obj_AD, into the access part of an
object, B, the hardware checks that the level number of Obj is less than or equal
to that of B. A lifetime-violation fault occurs if this test fails. The effect of this
test is to guarantee that objects referenced by Access Descriptors have equal or
longer lifetimes than the Objects holding such references.

Translated into higher-level terms, the hardware imposes the following res
triction on the transmission of Access Descriptors: If procedure R calls pro
cedure T, then T may not return to R an AD for either T's Context Object, or
for any object having the same level number as T's Context Object. In Ada
terms, T may not return to its caller an access value for an object whose type is
declared immediately within the scope of T.

276 A Programmer's View of the Intel 432 System

Note that the converse is not true, since R may safely pass to T, as an input
argument, any AD accessible in R's context. This is true, because the object
referenced by any such AD is guaranteed to have a longer lifetime than that of
T's context.

Note also that all objects created from a global heap SRO have level number
values of zero; hence any procedure T is free to return as an output argument, or
as a returned value, an Access Descriptor for an object allocated from a global
heap SRO. This means that, occasionally, an object that might otherwise be
drawn from a local heap SRO must be drawn instead from a global heap SRO.
Indeed, code generated by the i432 Ada compiler conforms with the above
"conventions", and so no compiled code can generate lifetime-violation faults.

[In truth, the hardware actually offers a way to eliminate the overhead of the level
compatibility check. This check is clearly unnecessary when, for example, it is known
that the AD being copied into some target object is a reference to a level zero object.
Every AD has an unchecked copy rights bit. If this bit is set on, the level check is
bypassed when the AD is copied. Certain iMAX modules take advantage of this escape
feature-which should otherwise be used with extreme caution. (Note that the overhead
of level checking is always bypassed by the hardware when the target object is the
current Context Object. A little thought should convince the reader it is safe to copy any
AD into the current Context Object; this is because there can be no shorter-lived object
accessible to a process than its own current Context Object.)]

So far, we have looked only at the memory management of a single process.
In a later subsection we extend the explanation to full process trees and to
forests of such trees that represent logically independent processes. Before
doing so, however, we make some additional comments about global heap
SROs.

9.2.3. Frozen and Normal Memory

The version of iMAX which operates with main memory only (no virtual memory
and no object filing) recognizes two categories of objects having indefinite (level
zero) lifetimes. In one category are objects that should never be made inaccessi
ble. Low-level System Objects like Dispatching Ports, Processor Objects,
Processor and Process Carriers fall in this category. Such objects are placed in a
section of memory named frozen memory, governed by the frozen global heap
SRO. A user, concerned with processing that has "tight" time constraints, may
require that the stack SRO for a process be placed in frozen memory and hence
allocated from the frozen global heap SRO. (This may be done by using the
iMAX interface package called Process..:.. Globals_Definitions.)

Objects not allocated from the frozen global heap SRO are allocated from the
normal global heap SRO. Recall that an attempt to add a new storage block
specifier to the PSO of a normal heap SRO can lead to an attempt by the Com
paction process to relocate objects currently allocated from the SRO (so as to
create an allocation block of sufficient size from the modified the Free List.) To
perform relocation, the Compaction process must have mutually exclusive

Memory Management 2n

access to the Object Table of the SRO. During compaction, therefore, all
objects allocated from that SRO must perforce be temporarily inaccessible to
any other task. As we will see, such inaccessibility may rule out use of normal
memory for some processes.

Initially, the management of all of main memory reduces to the management
of just two global heap SROs, one for frozen memory and the other for normal
memory. When a process is created, it is allocated a stack SRO, which will
itself be allocated from one of the above two global heap SROs. The stack
SRO's PSO component is also created from the same global heap SRO. Thus,

• If the stack SRO is allocated from normal memory, the stack SRO's alloca
tion block defines a block of normal memory. Hence, objects created from
this stack SRO are subject to occasional inaccessibility (on the rare occasions
when the Compaction process is relocating objects that were allocated from
that stack SRO) .

• If the stack SRO is allocated from frozen memory, then the stack SRO's allo
cation block defines a block of frozen memory. Objects in frozen memory
can never be relocated. Hence, all objects created from this stack SRO will
remain accessible for the entire life of that process.

The PSO component for a local heap SRO is also the same as that of the
governing global heap SRO. Hence, if the local heap SRO is allocated from
normal memory, objects created from it are also subject to occasional inaccessi
bility because the allocation block for a local heap SRO defines a block of nor
mal memory.

The Process Globals Object, first mentioned in Chapter 4, contains an entry
called the default_global_heap_SRO. 'This pointer is preset upon process crea
tion by the process'-management component of the operating system to refer to
the normal global heap SRO, but can be "overridden" by the caller of
PM.Create_process, as was suggested in Chapter 8. Also, the iMAX user inter
face package, Process_Globals_Definitions provides the means for reading or
resetting this default value. (We do not include the specification of this package
in our Appendix; however, it may be examined by consulting the iMAX 432
Reference Manual (Appendix B).)

9.2.4. SRO Trees that Match Process Trees

Process trees are typically formed in the execution of Ada programs and in pro
grams written in other languages that also provide multitasking semantics. The
model developed in Chapter 3 is, therefore, useful. An Ada program begins
execution as a single process. The start-up of a new task is represented at a
lower level as the creation of an offspring process. Since any Ada task may
spawn none, one, or more other tasks, a tree of processes results from these
actions. An Ada task may not terminate until all its offspring tasks have ter
minated (or have been aborted.) Therefore, when an Ada program completes

278 A Programmer's View of the Intel 432 System

execution, we are assured that all processes, including the root process, have
been terminated. Note that if we traverse a path from the root node of this tree
to any leaf node, we encounter processes having ever shorter lifetimes.

A simple resource-allocation view may be superimposed over the process
view just given. The root process needs storage resources to operate with, and
these resources must have longer lifetimes than those of its immediate off
spring. This principle is, of course, applied recursively, giving rise to a
corresponding tree of SROs having correspondingly shorter lifetimes (higher
level numbers).

Logically speaking, the stack SRO provided to the root process serves as the
"fund" from which resources are drawn for use by each offspring process. (For
those interested, we explain the physical relationships below.) When a task
issues an (implicit or explicit) request for the creation of a new task, the
resources required for the corresponding offspring process are only logically
allocated from a local heap SRO created by the parent.

The physical relationships among nodes of the SRO tree are as follows: All
SROs, Object Tables, and PSOs for stack SROs are allocated from the global
heap SRO. (The PSO component of the global heap rooting the SRO tree is
shared by all the local heap SROs in the tree. The Claim Object component of
the global heap rooting the SRO tree is shared by all the heap SROs in the tree.
Thus, as new heap objects are allocated (deallocated) during execution in the
process tree, the single claim value is decremented (incremented) appropriately.
Note that the claim for a process tree is also charged for the allocation blocks of
its stack SROs, but these charges are made in advance, i.e., when a stack SRO
is created and when it becomes necessary to enlarge its allocation block.

The logical relationships among the SROs of the tree are superposed over
these physical allocations by way of software-defined extensions in the SRO
itself. These include parent, offspring and sibling references. The use of these
references enables iMAX routines to update storage resource relationships in a
process tree as individual processes are born, are terminated, or require more
resources including more free space or lengthier Object Tables during their
lifetimes.

Here we make clear why a local heap SRO is allocated to account for the
stack SROs for use of spawned processes. A parent may spawn more than one
process while executing in one particular context. Moreover, the order in which
the offspring are created and terminated in this context cannot be determined at
compile time. Therefore, keeping track of stack SROs associated with activated
offspring processes requires a heap management discipline. (The Object Table
in the parent process' stack SRO cannot be used to keep track of these proc
esses.)

To be more concrete, suppose a parent process allocates only one local heap
SRO when executing in a context D in which one or more offspring processes
are created. (The same local heap SRO may also serve for the allocation of

Memory Management 279

object instances for access types.) Each process spawned within context D can
then be given a stack SRO, that is reachable from this local heap SRO. A parent
process cannot return from context D to its caller without fIrst being assured of
the demise of each of its offspring. This assurance corresponds to being certain
that all stack SROs reachable from all local heap SROs allocated in a given con
text have been deallocated. Only then can the local heap SRO be safely deallo
cated along with logical deallocation of the associated Context Object of the
parent process. (The rules just stated apply as well when offspring processes
become parents for their offspring.)

The important conclusion to be drawn from this lengthy discussion, is that no
new lifetime strategies need be introduced when expanding storage resource
allocation from a single process to a tree of processes. The same mechanisms
introduced in preceding subsections, in particular the level number attributes of
allocated objects and constraints over their use, still apply.

Figure 9-3 shows a process tree at a point where six processes coexist. Fig
ure 9-4 illustrates an SRO tree representing a possible snapshot of the resource
allocation history for the process tree in the preceding fIgure.

Figure 9-3 A sample process tree. Process A spawns processes B, C, and D. Process D
spawns processes E and F.

Figure 9-4 reinforces what we said earlier regarding allocation of local heap
SROs for use in spawning processes. In this fIgure it is assumed that processes
Band C are both spawned while process A is executing in the same context
(level 5). Stack SROs for these offspring processes are linked as immediate
offspring of the same local heap SRO and acquire level numbers (6) that are
each one higher than that of the parent local heap SRO. Thereafter, successive
contexts for the execution of processes Band C begin with level 6. Later, while
executing at level 7, process A spawns process D, using another local heap SRO

280 A Programmer's View of the Intel 432 System

o~
1 A

stk

5 lhp

/

61:1
EJ

6

key:

llr-!-l
~

ghp = global heap SRO
stk = stack SRO
lhp = local heap SRO

7

13~
~

Rgure 9-4 A possible SRO tree for the process tree of Figure 9-3. Level numbers are
shown to the left of each SRO. Process A spawns B and C while in a context at level 5
and spawns D while in a context at level 7. Two different local heap SROs are used.
Process D spawns E and F at levels 10 and 12, respectively. A created local heap SRO
has a level number greater than or equal to that of its parent stack SRO, while the level
number of a stack SRO is always one greater than that of its parent heap SRO.

(with level 7) to serve as the parent SRO for the stack SRO for D. (The stack
SRO for D is given a level number that is one higher, i.e., 8.) The figure then
suggests that in later contexts of process D, processes E and F are spawned in a
similar way, and following similar level numbering rules. Note that a local heap

Memory Management 281

SRO may serve simply as a resource-management link between the stack SRO
of one process R and the stack SROs ofR's offspring processes; it need have no
other function.

9.2.5. Some Fine Points

In this subsection, we answer five questions that may well have come up in a
first reading of this material. The questions and the answers expand on some of
the details we have sketched earlier.

1. Question: How does an executing process acquire more memory resources
when there is no more free space in its stack SRO and more is needed? (This
question assumes that the claim value for the SRO is not exhausted and that
there is still space in the Object Table associated with the SRO. Such prob
lems are examined in answer to the succeeding two questions.)

ANSWER: Memory Management fields all storage allocation faults, and so is
aware of all failing attempts to allocate objects from SROs having insuffi
cient free space. (The hardware senses an attempt to allocate an object from
an SRO that would result in a negative value in the Claim Object.) This fault
is corrected when it occurs for any kind of SRO. The actual mechanism by
which the fault is corrected is somewhat complex; its explanation is made
easier by refening to the state transition diagram in Figure 9-5.

The life cycle of a byte of physical storage begins in an initial "SRO" state.
It is moved to the "allocated in use" state by hardware (object creation).

• Stack allocated space is returned to the "SRO" state by execution of a
hardware RETURN instruction.

• A byte allocated from local heap space may go directly to the "Free List"
state via a software-induced return level fault fielded by iMAX. (This is
the fault required to recover space for objects from local heap space on
exit from a context level in which the local heap was created.)

• Other bytes, part of local and global objects, are garbage collected. First,
they move to the "Allocated garbage" state, meaning they become candi
dates for reclamation. At some point later, the Garbage Collector process
(GCOL) finds such objects and puts them on Memory Management's free
list; hence the "Free List" state.
Movement from the Free List to the SRO state occurs whenever Memory
Management runs its Compaction algorithm. Compaction first searches
SROs for "depleted" storage block specifiers, i.e., those having fewer
than some (small) number N of free bytes. These specifiers and the space
they control are removed from the SRO and placed on the free list. At this

282 A Programmer's VIew of the Intel 432 System

point, memory is compacted; in the process the free list may be reorgan
ized. Finally, Compaction searches the free list for large blocks, which are
placed in SROs that need them; that is, depleted SROs are "reloaded"
with new (additional) resources, i.e., with new storage block specifiers.

hardware allocation

return (stack only)

compaction last
compaction

return (level fault)

Agure 9-5 States of physical memory in the i432 Memory Management Model.

If more physical space is needed in a stack SRO using frozen memory, then
no relocation (compaction) is permitted. Instead, the SRO is given an addi
tional block of free space and its PSO is assigned another storage block
specifier containing the additional space. (That specifier is then linked to the
previous one (s) in the PSO.)

2. Question: How is overflow of an Object Table for a stack or local heap SRO
dealt with? Presumably an overflow could occur if there is a need for more
Object and Refinement Descriptors for the objects allocated in the SRO than
there is room in the associated Object Table.

ANSWER: The initial size of an Object Table is a constant, determined by
the Operating System designers. If this size proves to be too small for some
SRO, the resulting fault will invoke the appropriate module of Memory
Management to correct the matter. The solution is either to enlarge the
Object Table by first relocating the table and then enlarging it, or else to
create an "overflow" Object Table. (Since enlargement involves reloca
tion, Object Tables of SROs for frozen storage are expanded only by use of
overflow tables. Overflow Object Tables are linked in a list, with the links
held in a hidden, system-wide table called the Table of Object Tables. Find
ing space to enlarge the Object Table or to build an overflow table requires

Memoty Management 283

some of the same SRO management steps outlined in our response to the
preceding question. So, we need not repeat that explanation.

3. Question: How is undeiflow of the claim value for an SRO tree dealt with?
An underflow . can occur whenever an already created process in the
corresponding process tree needs to expand its SRO Object Table or alloca
tion block, or when a new process and its initial storage resources must be
allocated.

ANSWER: This problem is considered one to be solved by the Process_Man
ager. For example, the process on whose behalf the claim value underflow
is attempted can be sent as a message to its notification port, as discussed in
Section 8.1.

4. Question: How are level violations avoided when SENDing messages
between processes? A message is sent in the form of an Access Descriptor
which is copied into the address space of the receiver. Presumably the sender
does not know the level of the context in which the receiver will be execut
ing upon receipt of the message. Moreover, since the message structure itself
may contain Access Descriptors for other objects, how can the sender be
sure that the receiver will not incur a level violation when attempting to copy
any such Access Descriptors.

ANSWER: In the most general case, level violations can indeed be incurred
in transmitting a message from a Sender process, via a Port Object, to a
Receiver process. Recall from Chapter 4 that the AD for a sent message is
ultimately assigned to the Interprocess Message AD slot in the Context
Object of the Receiver process. Also, the Sender must have access to the AD
for the Message Object in order to send it. Therefore, if level violations are
to be avoided, the lifetime of the Message Object must be comparable to or
greater than those of the Sender's Context Object, the Port Object used for
transmission, and the Receiver's Context Object. Moreover, if the message
is to reach its destination and not be lost en route, the lifetime of the
Receiver's Context Object must not end before that of the Sender's Context
Object and the lifetime of the Port Object must not end before the message is
received. These constraints are expressed in the following two sets of "level
relationships' , :

(1) level(Message Obj.) <= min(level(Sender's Context Obj.),
level(Port Obj.),
level(Receiver's Context Obj.»

(2) level(Port Object)
<= level(Receiver's Context Object)

<= level(Sender's Context Object)

There is no problem' 'living with" these constraints so long as all interproc
ess communication is achieved using ports created from instantiations of the
iMAX Typed_.Ports package described in Appendix G. Recall that mes-

284 A Programmer's View of the Intel 432 System

sages enqueued on such ports are instances of access types declared in the
same generic package that defines the port itself. Hence, all Message
Objects referred to by such access variables are necessarily allocated from
the same local heap SRO from which the port itself is created. Therefore, the
level of the Port Object is always the same as the level of every Message
Object whose AD is enqueued on it. To assure that the remaining constraints
are satisfied, it is sufficient that the context in which the instance of
Typed_Ports is created is the same as (or is an antecedent of) the context in
which the Sender and Receiver Processes are spawned. (A programmer who
chooses to use ports created from the iMAX Untyped_Ports package must
exercise more care to avoid level-check violations. This tradeoff is not
unreasonable.)

5. Question: Thus far, no mention has been made of Process Objects and how
they are allocated when a process is created. From what SRO or SROs are
Process Objects allocated? How and when are Process Objects deallocated?

ANSWER: Process Objects (together with their lists of preallocated Context
Objects) are allocated from the global heap SRO (frozen or normal). Process
Objects retain level zero attributes, however preallocated Context Objects
have their levels adjusted when they are logically taken off the' 'preallocated
list" and linked into the dynamic chain. It is essential that Process Objects
have level zero so that Process Management routines can manipulate them
(and refer to them) without risk of incurring level violations.

A process P terminates when it executes a RETURN instruction from its root
context. By design, this return step induces a return level fault (no return
rights in the dynamic link). Such a fault causes P's Carrier Object to be
enqueued as a request on the Fault Port. The iMAX process serving the Fault
Port can access P's Process Object, and through it all of P's Context Objects
and other level zero objects, via P's Carrier Object. The iMAX fault han
dling process is able to invoke the requisite Memory Management routines to
reclaim all of P' s remaining storage resources.
[To do its job, Memory Management uses the per-system Table of Object Tables
mentioned in the answer to the second question in this series. This table contains a
number of useful pieces of infonnation needed to locate the related storage resources
of a process. We do not go into further details here.]

9.2.6. The iMAX SRO_Manager Package

A limited but very useful subset of the SRO management functions, described
in preceding subsections, is made available to users through the iMAX interface
package named SRO_Manager. We give its specification in Appendix L. [A
comparable and identically-named package is available for use with the virtual
memory management system.]

Memory Management 285

The SRO_Manager package allows a user to create local heap SROs (from
the current stack SRO) and to manage them individually. Typical users are
those wishing to design and implement their own interpreters and simulators.
(The Access Descriptor for the created local heap SRO is returned with create
rights, after which the user is free to call for the removal of such rights when
passing out copies of this Access Descriptor. Create rights are needed for creat
ing new objects from a heap SRO.)

SRO_Manager does not offer the Nser the opportunity to create separate stack
SROs, since the underlying architecture provides one for each process and there
is no way for the underlying architecture to use more than one per process.
However, a user is free to call for the creation of objects from either the
system-provided stack SRO or from a heap SRO and to use these objects for any
explicit purpose, such as for simulating stacks.

In particular, a user may create an object of specified size from any local
heap SRO (or from the one global heap SRO) for which an Access Descriptor
with create rights can be supplied as an argument. The Create_object (also
Create_typed_object) operation appHes only to local and global heap SROs.
Recall that a user process P can get access to the global heap SRO associated
with P by using the iMAX Process_Globals_Definitions interface package.

In addition, a user may call for the creation of "stack objects" from the
current stack SRO using the Create_stack_object operation. (By stack objects,
we simply mean objects that will be automatically deallocated upon exit from
the context in which they were created.)

A user may also issue calls, for the creation of refinements for specified objects
created from either the stack SRO or from a heap SRO. Thus, the operation, Cre
ate_generic_refinement, whose specification is repeated for convenience in Fig
ure 9-6, allows the user to acquire an Access Descriptor for a refinement of any
specifiable object from a heap SRO. The call also specifies the offsets and lengths
for the data and access parts of the refinement.

All of the operations of this package are translated into single i432 instruc
tions with the exception of the operation for creating a local heap SRO whose
specification is repeated in Figure 9-7.

9.2.7. The Garbage Collector Process, GCOL

As mentioned in the introduction to this chapter, the ability to perform parallel
garbage collection effectively is an important i432 System property. The iMAX
process GCOL executes Dijkstra's "On the Fly Garbage Collection" algorithm
[17] in parallel with most other iMAX processes and with all user processes. In
this subsection we give a limited overview of the algorithm and of the i432
architectural support on which it is based. A full description of the actual i432
implementation of this algorithm is beyond the scope of interest here.

286 A Programmer's View of the Intel 432 System

procedure Create_generic_refinement(
obj: dynamic_typed; -- Object to be refined.
d-offset: short_ordinal; -- Data part offset of the

-- refinement in bytes.
d-length: short_ordinal; -- Data part length of the

refinement (in bytes) - 1.
a-offset: short_ordinal; Access part offset of the

refinement (number of AD slots).
a-length: short_ordinal; Access part length of the

refinement (number of AD slots) .
rtn: out dynamic_typed; The resulting refinement.
sro: storage_resource_withLcreate :=null);

-- SRO for create.

-- Function:
A heap refinement is created from the specified object,
with data and access parts at specified offsets, each with
with specified lengths. The base type of the created
refinement will be the same as the base type of the
original object. Its system type will be generic.

Figure ~ Specification for operation to create a refinement of an object created from a
local heap SRO.

function Create_local_heap
return storage_resource;

-- Function:

-- AD for an SRO.

This function creates a local heap SRO.
The lifetime of the created local heap SRO is that of the
Context Object for the caller.

Figure ~7 Specification of the Create_locaL heap operation, copied from the iMAX
SRO_Management package.

The conceptual framework for this algorithm is as follows: The system is
modelled as a set of "mutators" and a "collector", all potentially able to run in
parallel. A mutator is a process that acquires (consumes) objects for its use from
a pool of free storage and in doing so marks those objects as "in use". When
the collector runs through a collection cycle, it performs two scans over all
objects that can have been consumed by mutators since the last collection cycle.
Each such scan is also called a "marking phase" because during these scans the
collector marks the objects encountered in such a way that upon completion of
the second scan, it is possible to identify by the marks found on the objects,
which are garbage. These objects are then added to the free storage pool. An
underlying requirement for the success of the collector algorithm is that the
object structure, which may be viewed as a set of directed graphs, can be
scanned completely. To accomplish this, there must be for each separate

Memoty Management 287

directed graph a distinguished or root node from which to pursue the scan of
that graph to completion. The collector must have a list of such roots at its
disposal. In the i432 implementation, the set of Processor Objects serves, in
essence, as the requisite set of root nodes.

Understanding how the algorithm works is also based on understanding the
marking scheme used by the mutators and the collector. This scheme requires
tri -state marking for each object. Thought of as "colors", these states are
white, gray, and black. (This implies that any i432 implementation scheme
must provide for a two-bit field for encoding the color of an object. As
explained below, these two bits are allocated in the Object and Refinement
Descriptors.)

It is assumed at the outset that all free objects are marked white and that
whenever a mutator acquires a free object, it is automatically marked black.
Before explaining what the collector does, we note how mutator marking is
implemented by the i432 hardware.

Although not previously mentioned, i432 Object (and Refinement) Descrip
tors contain a hardware-recognized and hardware-manipulated reclamation bit.
(For reasons to be explained below, this same bit is also referred to in the i432
architecture literature as the copied bit.) When an object or a refinement is
created by the processor, the reclamation bit in the corresponding Object or
Refinement Descriptor, is set true, in effect changing the marking from white to
black. Thus, the processor cooperates with any object -consuming process to
mark black each newly created object (or refinement). Another important point
to note about the reclamation bit is that whenever the processor executes a
COPY AD instruction to copy an AD for some object T, the reclamation bit in
the Object Descriptor for T is set to true. (For purposes of garbage collection, a
Refinement Descriptor is regarded as representing an object that has a single
AD in its access part, namely the AD for the underlying object. Hence, if
COpy AD copies an AD for a refinement R of T, then the reclamation bit in the
Refinement Descriptor for R is marked true, which has the effect of marking R
black.)

The first marking phase of a parallel collector cycle begins by scanning all
such descriptors and resetting their gray bits to white to indicate that all objects
referred to by the containing descriptors are potentially garbage when
discovered to be unreachable as a result of the second marking phase.

The purpose of the second marking phase is to mark all non-garbage objects
black so that any remaining objects in the structure that are still white are then
considered to be garbage. (Note that during the second phase a mutator execut
ing in parallel can mark white objects gray without interfering with the plan of
the collector.) The second marking phase begins by first marking gray all
objects representing root nodes. Then all objects colored gray are scanned. For
each of these, the object itself is re-colored black and all its "successor
objects", i.e., all objects, if any, referred to in the access part of the blackened

288 A Programmer's View of the Intel 432 System

node, are colored gray. This scan over all objects colored gray is continued
until no more gray objects can be found. At this point all non-garbage objects
have been colored black and all objects still white are garbage. The Object
Tables are scanned once again and the memory spaces for all objects still
colored white are linked into the Free List.

The i432 Garbage Collector puts itself to sleep at the close of each collector
cycle (after first invoking the appropriate module of Memory Management that
needs to know the Collector is finished). How frequently the Garbage Collector
is reawakened to run again is an issue to be decided by the iMAX implementers.
In simple implementations, GCOL can be awakened at equally-spaced intervals
of time. In more sophisticated implementations, the sleep period can be deter
mined dynamically on the basis of various performance measures and statistics
gathered by the system.

One final note of detail concerns the encoding of the three colors. In the i432
implementation, a second bit in the Descriptor is also reserved for color encod
ing. This bit is software defined and augments the hardware-defined reclama
tion bit. The particular encoding of the bit pair to represent the three colors,
white, gray, and black, although cleverly done, needn't concern us here.

What is important is that the algorithm permits mutators to execute while the
collector is in operation. Some garbage created by a mutator while the collector
is in operation may be collected in that cycle, but is guaranteed to be collected
at latest in the next cycle. The correctness of the algorithm and the implementa
tion also assures that, no non-garbage objects can ever be mistakenly collected
as garbage. The frequency at which the collector is run determines how seldom
a mutator will run out of objects to consume and be temporarily forced to wait
for garbage collection. For many kinds of real-world applications this kind of
interruption need never occur.

We have now completed our primary overview of main memory manage
ment. In the next section we revisit this design especially to show how it may
be generalized to the management of virtual memory.

9.3. Management of Virtual Memory

The model presented for the management of main memory in the i432 is gen
eralized here in two ways. The first form of generalization is to express the
management of storage resources for collections of process trees through the
mechanism of an MCO or Memory Controller Object. The other form of gen
eralization is to extend main memory, i.e., Real Memory, to a Virtual Memory
address space that includes Real Memory. When available, either the "Real
Memory Only" model or the Virtual Memory model may be used in i432 Sys
tems; both models will be implemented to include the MCO generalization and
both models will be implemented with a companion Object Filing System to
form a "complete" memory, having both active and passive address spaces.

Memory Management 289

The whole of memory (real or virtual) memory may be viewed logically as a
single data structure which is a collection of Memory Controller Objects or
MCOs, one allocated to each user. A user can be abstractly viewed as a set of
jobs (each possibly executing as a process tree). The storage resources needed
for this set of jobs are represented as a "forest" of SRO trees, with each being
rooted in the same global heap SRO. Hence, an MCO controls the resources
implied by such a forest.

An MCO contains several parameters used to control allocations of primary
and virtual memory within the resource. Certain usage statistics, and history
information (counts of key events) are also maintained in the MCO. These data
may be periodically examined and used as a basis for adjusting the control
parameters. To simplify our discussions, the mechanism and rationale of the
MCO is introduced in the context of the Virtual Memory implementation.
(Where appropriate, we point out which MCO parameters have meaning only in
the Virtual Memory implementation.)

Two iMAX interfaces are provided. Each provides a different view of
memory, one for ordinary users (the SRO_Manager package) and one for
privileged users (the MCO_Manager package) who wish to operate directly on
MCOs. Some applications subsystem designers fall in the first category.
Designers of high-level memory and process managers fall in the latter
category.

In order to appreciate the two views of an MCO, we need to learn more about
its detailed structure. We could approach this problem bottom-up by first sug
gesting that an MCO is merely a tree structure of SROs and focus on the
management of the individual SROs in the tree and not on the management of
the tree as a whole. In a sense, this is what has been done in the preceding sec
tion. We pursue this a bit further before proceeding with a top-down view of the
MCO.

The concept of the process tree is, of course, independent of the scope of the
System's active address space (whether limited to real memory or expanded to a
virtual memory). The concept and utility of the SRO tree, matching the process
tree, also carries over intact.

Even though the System's virtual address space is much larger than real
memory, it is still managed as a scarce resource. Therefore, there is still the
need to maintain two Physical Storage Objects (PSOs), one for normal virtual
memory and one for frozen virtual memory.

[In the virtual memory system, objects allocated from the frozen global heap SRO are
not only non-relocatable but also non-swappable. However, objects allocated from the
normal global heap SRO are relocatable and may also be swappable. Whether or not
such objects are swappable, and if so at what "frequency", depends on a resource con
trol parameter that can be set for the governing MeO.]

The MCO defines one distinct section of virtual memory for the entire collec
tion of independent processes whose resources are drawn from the specified glo
bal heap SRO-which serves as the root node of the SRO tree for that MCO.

290 A Programmer's View of the Intel 432 System

An example SRO tree controlled by an MCO is depicted in Figure 9-8.
Resources for each process tree are rooted in a stack SRO, itself an offspring of
the global heap SRO.

o

key:
ghp = global heap SRO
stk = stack SRO
lhp = local heap SRO

5

Figure 9-8 Snapshot of an SRO tree for an MCO. The virtual memory for a collection of
independent processes, is allocated from the root (global heap) SRO. This figure shows
the stack SROs for root processes A, B, and C. Of these, only process C shows offspring
(processes D, E, and F).

In Figure 9-8 we illustrate a hypothetical case where a user's SRO tree has at
least three co-existent independent processes, A, B, and C. One of these, proc
ess C, has some offspring processes, D, E, and F, as evidenced by the stack
SROs that have been allocated from local heap SROs rooted in the stack SRO
for process C. Since the same lifetime strategies as described in the main
memory model carry over here, there should be no surprises upon examining
the (hypothetical) level numbers shown in the figure for the various SROs.

As already mentioned, objects created from SROs representing frozen
memory are themselves allocated from frozen memory. They can never be relo
cated or swapped out. However, objects created from SROs representing
normal memory may exist either in primary memory or in swapping store. An
object residing in primary memory has the allocated bit in its Object Descriptor
set to true, and set to false if it either resides in swapping store or is not
currently accessible due to some on-going Memory Management operation,
such as relocation, which causes objects to be regarded as temporarily
"invalid". Relocation may occur when Memory Management determines that

Memory Management 291

compaction is needed to reduce fragmentation in primary normal memory. The
object is also subject to being swapped out when free space simply becomes too
scarce.

9.3.1. Controlling the Resources of an MCO

An MeO can be created, destroyed, altered, or inspected via calls to the iMAX
MeO_Manager package (See Appendix L). A set of three resource control
parameter values must be specified in creating an MeO. By studying these three
parameters we can learn how a user would be expected to achieve high-level
control over the memory resources in an i432 virtual memory system. Setting
these control parameters can be done intelligently only if some gathered MeO
performance statistics can be made easily accessible to the user. As we will see,
these statistics are automatically updated and made accessible to a user having
the appropriate type rights to the MeO.

The three resource control parameters are:

• memory type Determines whether memory management can relocate
and swap objects created from the MeO.

• scan rate

• allocation limit

Defines the "rate" at which objects created from the
MeO are considered for swapping.

Determines the number of bytes of virtual memory that
can be allocated from this MeO without making an
explicit call to alter this value.

We have already explained the role played by "memory type" and have sug
gested the role of "scan rate". If the memory type is normal, then objects
belonging to the MeO are relocatable (and can be swapped out if the scan rate
is not never).

The scan rate parameter has meaning for MeOs used in a Virtual Memory
implementations. When the system as a whole needs to locate objects to be
swapped out, it scans the list of MeOs in the system, selecting for swapping
only objects in MeOs whose scan rates are high enough. More concretely,
objects belonging to MeOs with a scan rate of 1 will be considered each time
the replacement algorithm passes through memory looking for objects to swap.
Objects belonging to MeOs with a swapping rate of 2 will be scanned on every
other pass through memory, and so on. In the current implementation there are
sixteen rates defined: asap, 1,2, ... 14, and never.

[Setting the rate to asap indicates that all objects associated with this Mea are
immediately swappable, regardless of reference history; setting the rate to never makes
the object unswappable. The ASAP rate might be chosen for the Mea of some user U
under the following scenario: A high-level load controller perceives a thrashing problem.
The controller then (a) stops all processes belonging to U and then (b) requests the high
level Mea manager to set U's scan rate to asap, thereby expediting the swapping out of
objects associated with U.]

292 A Programmer's View of the Intel 432 System

If the allocation limit is Lim bytes, then hardware and software combine to
guarantee that no more than Lim bytes of memory will be allocated for all the
processes created from this MCO. (Lim measures bytes of virtual memory in
Virtual Memory implementations and real memory in Real Memory Only
implementations.)

The control based on Lim is achieved in a remarkably simple way, as fol
lows: The representation of the MCO includes a reference to a hardware
recognized Claim Object. This Claim Object is assigned a specified allocation
limit at MCO creation. Moreover, all SROs in the tree belonging to this MCO
have their Claim Object ADs pointing to this "master" Claim Object. Each
time an object is allocated from any of these SROs, the MCO Claim Object is
automatically adjusted (decremented) by the hardware by the number of bytes
allocated for that object. A storage claim undeiflow fault is caused if an
attempted allocation would result in a negative storage claim for the affected
MCO. When the Garbage Collector reclaims an object belonging to an MCO,
the software increments the affected MCO by the number of bytes reclaimed.

The behavior implied by the above type of control can occasionally exhibit
unexpected (and indeterminate) "pauses" brought about by the processes of a
MCO allocating and deallocating objects faster than the Garbage Collector can
reclaim them. That is, unless the Garbage Collector can run, find, and reclaim
deallocated objects fast enough, the MCO's claim value may exhibit sporadic
underflow conditions which will have no overall effect except on system
response. (This phenomenon is possible because in the current implementation
the Garbage Collector performs a global function and executes asynchronously
with a user's processes.)

9.3.2. Resource Usage Statistics

The MCO_Manager package offers a Read_MCO_statistics function which
returns a record containing the current static and dynamic "operating" statistics
for a specified MCO. Component values of this record, itemized below, may
be examined and used in attempts to dynamically adjust the subsequent per
formance behavior of the processes whose resources are governed by the MCO.

• storage_claim; ordinal; Total of virtual memory yet to
be allocated under processor
control.

• secondary; ordinal; Total virtual memory currently
allocated and residing on disk.

• number_of_heap_SROs:

• number_of_object_tables:

ordinal;

ordinal;

ordinal;

Same as number of active
processes under this MCO.

ordinal;

MemoIY Management 293

Combined missing object fault
rate for all processes running
under this MCO.

A low-valued fault_rate suggests that the "scan rate" can be reduced
(increased in frequency). (The effect of changing the current scan rate can in
some cases be noted by observing the relationship between the reported values
of storage_claim and secondary.)

Other feedback infonnation of value to the "MCO controller", whether per
son or program, includes the reported number of stack SROs, which indicates
the number of "living" processes. Perfonnance of certain processes executing
under an MCO may well be affected by the total number N of its processes,
especially if N represents a large fraction of all the processes currently active in
the system; in that event, the user might wish to exercise other controls on the
programs themselves (e.g., to suspend, resume, or adjust scheduling parameters
of some of the process trees under this MCO, using operations of the Proc
ess_Manager interface discussed in Chapter 8).

The specification part of the MCO_Manager package is given in Appendix
L. iMAX also provides the lower-level interface to the SRO components of an
MCO in an SRO_Manager package similar to the one already described in Sec
tion 9.2 but adjusted for use in the virtual memory implementation of SROs.
Because the two SRO_Manager packages are so similar, we do not give the vir
tual memory version in Appendix L. Readers wishing to examine this interface
may consult the iMAX 432 Reference Manual.

OBJECT FILING

10.1. Introduction

Our introduction to Object Filing for the i432 System was really begun with the
disclosure in Section 9.1 that i432 Memory is divided into two distinct spaces,
active object space and passive object space. (See Figure 9-1.) In Chapter 9 we
were concerned primarily with management of the active object space. Here we
consider the management of the passive space and the interface between the two
spaces.

Examining the Object Filing Subsystem design allows us, finally, to view
i432 object space top-down. From at least one top-most perspective, the object
space appears homogeneous. Objects in active space and objects in passive
space are governed by similar accessing and typing rules, structures, and
mechanisms. The Object Filing Subsystem provides in software the same archi
tecture for support of object structures, typing, and the consequent protection
domains in the passive space as the hardware provides in the active space. (To
be sure, as we examine object structures in more detail, there are some semantic
differences, but most are inspired by implementation considerations.)

The particular role played by an object tends to determine the object space or
spaces in which it resides during its lifetime. An object may be created to live,
for example:

• (Case A) entirely in active space, or

• (Case B) entirely in passive space, or

• (Case C) in passive space but may be updated from new versions made active
periodically from most recent passive versions, or

• (Case D) in passive space but serves only as a source for versions that enter
active space, to live and die there.

295

296 A Programmer's View of the Intel 432 System

From the above examples (which do not form an exhaustive list of the possi
bilities) we observe that, unlike virtual memory, the same object may exist
simultaneously (in different versions) in both spaces. Also bear in mind that
objects may be deallocated from either active or passive space. If an object is
deallocated from active space, its passive counterpart, if any, survives-and
vice versa. We now illustrate each of these four cases:

• Case A. All objects created in active space that are allocated with greater
than-zero level numbers live entirely in active space and are deallocated from
that space. They are never transferred to the passive space. (Level-zero
objects created in active space need not be "passivated", i.e., put into pas
sive space. Passivation of such objects, as we see later, may be under user
control.)

• Case B. Certain objects may be created, initialized and updated directly in
the passive space using a sequence of steps bracketed by an Open and a Close
operation. It is possible to prohibit such objects from entering the active
space. Objects which may be too costly to activate frequently, such as large
directories of other passive objects, are usually treated this way. [The Object
Filing Subsystem provides for objects of type "data_file" which may be
longer than 128K-bytes; these objects, managed by a separate type manager,
are always treated as Case B objects that are never activated.]

• Case C. A Domain Object representing an Ada owner package for a small
data-base is a good example. As a result of compilation, this object, together
with objects holding owned data and the related Instruction Objects, are
constructed as a passive composite of individual objects. Its presence in the
passive store is recorded in a directory kept in the passive store. When the
package is initialized on first use, the corresponding Domain Object is impli
citly "activated", meaning a version is placed in active space, where it is
updated either during that initialization or as a result of responding to subse
quent calls, or both. During each active period, the same Domain Object,
identical with respect to identification, type, and structure, exists both as an
active object and as a passive object.

When the process(es) using this owner package terminates execution and
there are no more active space Access Descriptors referring to the active
Domain Object, it can be transferred to passive space, effectively replacing
the older version in an implicit update operation. (Assuring that this "auto
update" takes place is an option that can be specified.) Until needed again in
active space, the new version in passive space will be the only extant version
of the object. This cycle is repeated for each active period in the life of the
Domain Object-until it is explicitly destroyed or implicitly deallocated
from the passive object space by a reclamation scheme whose function is
analogous to the one used for garbage collection of active space.

Object Filing 297

[The tenn "owner package" as used here has the sense defined in Chapter 2. Later we
use the tenn "ownership" in a different sense, namely as an attribute of a reference to
a passive-space object. (This attribute is used as a means for the efficient management
of the passive object space.) The context in which "owner" appears should resolve
any possible ambiguity.]

• Case D. A Domain Object representing an Ada library-level package falls in
this category. This Domain Object, as in Case C, is also initially created in
passive space and is periodically activated when needed. Here, however, the
object is discarded when its period of activation is completed; it is not used to
update the passive-space version. Two familiar subcases come to mind.

1. The Domain Object represents a transformer package, such as a
mathematical function library package; it has no variable declarations
(although its individual subprograms may), and thus has no state that can
change while in active space. Hence, the version in passive space never
needs updating and will live in passive space until no longer needed (that
is, until explicitly or implicitly deallocated.)
[A program that is given a reference for the transfonner package can cause activa
tion of the corresponding Domain Object as a result of a first calIon an operation
of the package. Thereafter, while the Domain Object remains activated, the public
operations of the shared and reentrant Domain Object may be repeatedly invoked
by calls from the same or other packages or tasks belonging to the same or
independent programs.]

2. The Domain Object represents a library owner package, X. Because X
owns data that can be modified during use by a referencing program, a
new active space version, i.e., a fresh library copy of X's corresponding
Domain Object is created each time a different executing program
accesses X. Hence, several active versions of X's Domain Object may
coexist in the active object space. (Within a single program, however, X
can be shared by two or more processes, but only with care for proper
arbitration over access to X's shared data.) Domain Objects for such
library packages as X do not need to be saved in passive space. Each new
program execution that needs access to X must be guaranteed access to the
library package in its initial condition.

Notice that for Cases C and D, by maintaining (possibly older) versions of
objects in passive space, a system crash may well leave the active space in an
unreliable state but will always leave the passive space undamaged. Therefore,
recovery from a system crash is always feasible, provided the secondary storage
medium used for the passive space is· highly reliable. Also notice that for Case
B, where an object lives its entire life in passive space, proper synchronization
of multiple (apparently concurrent) attempts to access the passive object, for
either reading, initializing, or updating it, can assure users of the system that

298 A Programmer's View of the Intel 432 System

consistency is preserved. Passive space consistency is also preserved for other
classes of objects.

These key design objectives: (1) recoverability from system crashes and (2)
consistency preservation, (3) over a space of objects belonging to a wide variety
of (user-definable) types, are simple to appreciate conceptually. Object Filing
achieves in the i432 implementation, but not without a price paid in the com
plexity of the required mechanisms needed to accomplish the objectives
efficiently.

One may rightly ask, "Do not other commercial systems also achieve the
same objectives?" The response is almost. Usually, some component of the
"triad" is deemphasized or even sacrificed. For example, limiting the emphasis
on achieving crash recoverability, as in the IBM System/38 [28,29], or failure
to provide a uniform means for dealing with a variety of object types with con
comitant protection domains, as in the Tandem system [5], or both, as in Mul
tics [44], are usually evidenced even in advanced systems.

[Several successful commercial systems provide "one-level" (in our terminology,
one-space) stores, in which virtual memory is suuficiently large to serve both as an
object store and as a file store. Such systems are vulnerable to crashes in which key
references to objects in secondary store are lostfrom volatile store at crash time, leading
to the loss of the entire object space. Such systems must rely on recovery schemes based
on the use of backup copies and complex data structures (such as transaction journals)
that must be maintained to use these backup copies. In most cases, the quality of the
recovery is only as good as the frequency with which backup copies are made.]

This completes our general introduction to the nature of and motivation for
object filing. The next section explains some of the problems common to the
design of object filing systems and how they are generally met in the i432 sub
system. Section 10.3 examines the user interface to the i432 Object Filing Sub
system, a listing for which is given in Appendix M. Section lOA briefly revisits
the design of our Portfolio Management application to consider what changes
are in order in the light of object filing, while Section 10.5 serves as a short
summary of this chapter and of the book as a whole.

10.2. DeSign Challenges for Object Filling

The designers of any successful object filing system must have solved a collec
tion of challenging implementation problems. In turn, these solutions often
hinge on the development of effective mechanisms. This is also true for the i432
Object Filing Subsystem. We introduce some of these problems in this section.
In several cases, we explain some of the mechanisms employed in their solu
tions. Such detail is given primarily where it can help system programmers
understand how to take advantage ofiMAX's user interface for Object Filing.

10.2.1. Unique Object Identifiers

The number of objects in the System's object space at anyone time may never
be very large, but certainly the total number of objects created may grow to a

Object Filing 299

very large number over the life of an i432 System. For this reason, a means
must be found to generate unique object identifiers (internal names). These
identifiers must retain their significance not only over time, but also across sig
nificant boundaries of the system.

Thus, to avoid confusion, when an object is deleted from a system its unique
identifier (DID) should not be re-used to refer to some object created later.
While it exists, an object must retain its identity whether residing in active
space or passive space and, if the latter, whether physically residing on one
storage device or another, whether connected to one peripheral subsystem or
another of the same i432 System, or to a peripheral subsystem of some quite
distinct i432 System.

The key to keeping track of objects as they are transferred across the boundary
from active to passive space, or vice versa, is the use of unique identifiers. The
system maintains an Active Object Directory (or AOD) for recording the pres
ence of objects in active space, and a (much larger) Passive Object Directory (or
POD) for recording the presence of objects in passive space. (The POD itself
effectively resides only in the passive space and is subdivided, one per struc
ture.) When an object is activated from the passive address space, an entry for it
is created and placed in the AOD. That entry contains the DID for the object and
its Active Access Descriptor. Correspondingly, when an active object is no
longer needed, its entry in the AOD is eliminated. If, however, an active object,
no longer needed in the active space, is needed to update its version in the pas
sive space (i.e., needs to be made passive), the appropriate place for it in the pas
sive space is determined by its POD entry. (A DID contains both a logical-device
id that selects the appropriate POD and a logical address of the object's POD
entry, so the mapping from DID to POD entry can be done efficiently.)

Finding ways to generate such unique internal names, to search for objects
based on these names, and eventually to delete these names, requires a rela
tively complex underlying mechanism. A detailed explanation is not appropriate
here because, by design, DIDs are not in any way accessible to the user, any
more than is the circuitry of the i432 processor. (An explanation is found else
where [47].)

10.2.2. Symbolic (Logical) Names for
Objects

Objects must not only be uniquely named internally, but they must also have
external symbolic names. These symbolic names can then be used in the process
of linking one component of a program structure to another. (Such external
symbolic names are also referred to as logical names.) It is important that two
or more different objects can have the same symbolic name, for example a ver
sion of an operating system module and a replacement version. Often, it is the
symbolic name of an object that appears in the source program. This name is
then preserved by the compiler as a literal constant and may be used as an argu-

300 A Programmer's View of the Intel 432 System

ment in the activation of a directory search routine when it becomes necessary
later to complete a link to the object denoted by that external symbolic name.
Two examples come to mind:

1. Suppose some user program (' 'User_billing' ') is activated each week to per
form a billing function, and further suppose that User_billing is designed to
access a system-supplied library level package named "Sys_Accounting".
The user properly deserves the assurance that each weekly activation of
User_billing will access the latest version of Sys_Accounting. The i432
Object Filing Subsystem is designed to achieve the dynamic (symbolic) link
ing of User_ billing to Sys_Accounting, and the dynamic unlinking of these
two modules whenever User_billing is deactivated.

2. Consider two separate i432 Systems S1 and S2. Suppose a user program is
represented as a single composite "A" in the passive store of Sl (on some
storage device.) This device is then dismounted from Sl and mounted on S2.
Later, the user activates "A" under control of the iMAX version in current
use on S2. Object "A", when last passivated in Sl, was unlinked from the
iMAX modules of Sl; hence, when activated on S2, it should be dynami
cally re-linked to the corresponding iMAX modules of S2. These modules
are physically (and possibly logically) different from those on Sl, but have
the same symbolic names as those on S 1.

The symmetry of dynamic linking and unlinking is achieved in the i432's
Object Filing Subsystem using the mechanism of Link Objects interposed
between the referring object and its referent (intended target). A Link Object is
a Typed Object (of type "Link") that contains the symbolic name of the
referent. A POD entry for some referent X that has an associated Link Object
will actually point to the Link Object for X rather than to X itself. Calling the
Directory Manager to retrieve X by specifying its symbolic name causes the
return of a valid Active AD for X. (In the process of obtaining this AD, X's
Link Object is said to be "evaluated" .) Later, an attempt to store this AD for X
in some other passive space object Y will result in the storing of a Passive AD
for X's Link Object, and not an AD for X itself. This Passive AD is later invali
dated as part of the unlinking process that occurs when the referring object is
deactivated. (Link Objects are themselves never activated.) A more complete
explanation of this mechanism is given elsewhere [47].

[Some earlier filing systems, such as on Multics, introduced dynamic linking via
"link segments" but lacked the object-based architectural support to make dynamic
unlinking practical.]

1 0.2.3. Composites for Solving the "Small
Object Problem"

Object-based architectures encourage the creation of large numbers of relatively
small objects. (Earlier studies on other systems [6,53] indicate the average size

Object Filing 301

of program components is only two or three hundred bytes). Maintaining small
objects in permanent store and repeatedly activating (and deactivating) them one
by one in large numbers can incur sizable space and performance penalties.

As suggested in Section 9.1, the solution pursued for the i432 Object Filing
Subsystem is to rely on the use of composites to minimize these penalties. A
composite represents a single logical entity in permanent store. (We discuss
some of the details of composites at the end of this subsection.) When a com
posite must be activated (passivated), the entire group of simple objects that
comprise the composite is activated (passivated) as one action.

A composite may be referenced externally only via its root. Thus, a user's
Working Directory will consist primarily of entries representing composites. A
familiar scenario will illustrate how a composite would be referenced:

• John Smith logs on to the System. for the purpose of executing the program
named "Ours". We assume that Smith has a Working Directory named
"J_Smith" and that this directory is searched for a match on the symbolic
name "Ours". The matched entry would contain the unique identifier (UID)
for the composite representing the program Ours.

• The System will then determine whether or not Ours is currently active; it
may be active if some other user who shares Ours happens to be executing it.
(Ours is currently active if there is an entry containing its UID in the system
wide Active Object Directory (or AOD). IT so, then that entry also contains
an active AD for Ours.)

• IT Ours is not currently in the active space, then the information found in the
directory J_Smith will be used to determine which logical device holds Ours.
(For each logical device used for the permanent file store, the System will
maintain a directory of passive objects (POD) held on it. The particular POD
is accessed directly from an index in the UID and the entry so found will con
tain the file store address of the root object of Ours).

• An implicit activation procedure then causes the root object of Ours and each
of its components to be activated. As each of these is activated, all intra
composite and inter-composite references are converted to active ADs within
the objects so activated.

[The following may help explain the above procedure. There is a difference between
the activation time of an AD for an object and the activation time of the object itself.
The activation of the AD occurs wheIilever the AD is moved to the active space; an
appropriate AOD entry is made, and any links involved are evaluated, etc. However,
th~ object itself still remains in the passive space. Later, when an attempt is made to
reference the object using the AD, auto-activation will "copy" the object into the
active space. As part of this copying process, any ADs to objects in the composite will
be activated by the process just described. In this way, all ADs to objects in the com
posite will be fully resolved (since all objects in the composite are activated); how
ever, for inter-composite references, the ADs are activated but not the objects to
which they refer.]

302 A Programmer's View of the Intel 432 System

The passive space versions for some or all of the components of a composite
undergoing deactivation may need to be updated. The mechanisms for deter
mining if an object's passive version needs to be updated and how it should be
done are discussed in greater detail at the end of this subsection. Briefly, how
ever, the idea is as follows: If the object X is a typed object, then its TOO will
be consulted in performing the deactivation of X. X's type manager may have
placed in X's TOO a port AD and an AD for a procedure D to be used in pas
sivating X. The port AD is used to send X to a service process P defined by X's
type manager, and hence to perform passivation as an asynchronous action. (P
will then call the defined passivation procedure to operate on X.) Passivation
can also be performed synchronously by invoking the AD for procedure D
directly.

10.2.3.1 Additional Details on Composites.

• An important (implementation-driven) design decision is that no component
of a composite (other than the root) may be referenced from outside the com
posite. Hence, the root of a composite has an entry in the Passive Object
Directory but its components do not. A composite must be stored in toto on a
single logical storage structure.

Object Filing deals with logical disk structures, not physical devices. A single
logical disk structure may actually be composed of several physical disk de
vices. Alternatively, several logical disk structures can reside on a single
physical disk. Object Filing maintains a POD for each of possibly many logi
cal disk structures on the system.
[The decision to "confine" each composite to a logical structure facilitates efficient
transfer of passive information into primary memory, as the transfer of an entire com
posite can be made in one logically indivisible operation. Since composites can be
very large, they are not stored contiguously on disk. Rather, they are broken up into
(4KB) chunks, the fIrst containing pointers to the others. A small composite «4K
bytes) is transferable with a single disk operation.]

• A composite passive object comes into existence by stepwise construction,
one object at a time, beginning with its root object-which may, of course,
contain both data and Passive Access Descriptors (PADs). An action must be
selected and associated with the storing of each PAD in the root object. If the
action is "component", the object whose PAD is being stored becomes part
of the composite. (Of course, PADs to other composites, either already
defined or about to be defined, may also be stored in the root.)
Suppose, for example, A is the root and B is to be made a component of A's
composite. Using appropriate Object Filing operation sequences' to be
described in a later section (e.g., Open A for writing, ...), various PADs can
be stored in A. In particular, a PAD for B will be stored in A using the "com
ponent" action. These representations can then be completed using the
appropriate Object Filing operation sequences (e.g., Open B for update, ...).

Object Filing 303

If B is to point to other objects that should be part of A's composite, then a
similar sequence of Object Filing operations will be performed on B as was
performed on A (e.g., Open B for writing, ...). By selecting the "com
ponent" action for a PAD stored in B, the object referred to becomes a com
ponent of B's (and thus A's) composite. The definition of a composite
proceeds in this recursive fashion, each object in the composite being defined
individually after its' 'parent" is defined .

• The root of a composite and its individual components, are normally made
part of active space by a purely implicit mechanism, simply by referencing
their contents; the activation occurs automatically, as in the handling of a
Virtual Memory fault. As suggested earlier, activation of an object has the
effect of creating an entry for the referenced passive object in the Active
Object Directory.

[The contents of a passive object can also be transferred to active space explicitly, fol
lowing a more' 'primitive" route. For example, let X be an object currently in passive
space for which there currently exists no Active AD. First, a Passive Access Descrip
tor for X, typically obtained by a directory lookup operation, is converted into an
Active AD for X. (A side effect of this operation is the creation of an Object Descrip
tor for X.) With the Active AD, it is possible to open X for reading. Subsequent
retrieval operations can then be invoked to copy data and ADs from the passive ver
sion of X into any specified destinations of the active space.]

10.2.3.2 Mechanisms for Making Active Objects Passive. We now return to the
question raised earlier: "How does the system know what active objects of
level-zero should be passivated, and when and how are they passivated?" Here
we provide a more detailed answer.

The key design principle is that passivation decisions and actions for a Typed
Object are under control of its type manager. In the absence of a passivation
subprogram in the type manager, the usual case for type managers written by
casual users, system-provided default functions will be applied.

When a Typed Object X is to be subject to Object Filing, the information
placed in the TOO (by X's type manager) can include an Access Descriptor for
a special port. The port is called a passivation/Utero If such a port reference is
supplied, then X's type manager will also have activated a Passivation Process
to receive messages at the port. (In addition to supplying an AD for the passiva
tion filter for X, there may also be deposited in a pre specified slot in X's TOO
an AD for an appropriate passivation procedure.) We now indicate how this
information is used.

Suppose, for example, the active-space Garbage Collector process has
discovered that a certain level-zero object X is no longer reachable. Rather than
directly sending an AD for X as a message to Memory Management, indicating
that X' s space~an now be reclaimed, the Garbage Collector first determines (by
examining a software-defined bit in X's Object Descriptor) if there currently

304 A Programmer's VIew of the Intel 432 System

exists a version of X in passive space. If so, a message to passivate X is sent to
the passivation filter. It is assumed that the Passivation Process receiving X has
access to a procedure specified by X's type manager which is to be invoked to
perform the required passivation operations on X.

In the event that X contains ADs to other (unreachable) typed objects, Y, Z,
etc., of different types than X, the Passivation Process may not need to send Y,
Z, etc., to their respective filters. Instead, calls can be executed directly on the
passivation procedures for Y, Z, etc. Such synchronous action is possible
whenever the TOO for one of these objects also contains the AD for the
appropriate passivation procedure. If no such procedure reference is supplied in
the TOO, then the system supplies a default passivation procedure which
updates the passive version of the object before completing the deallocation of
the active object.

A special type-specific passivation procedure designed by the type manager
is usually used to ensure that objects are in a consistent state before passivation.
(When invoked, a passivation procedure can conceivably also gather usage
statistics. Thus, billing information can be accumulated, or special purpose
messages can be sent to other processes providing them with up-to-date usage
information.)

10.2.4. Efficient Management of Passive
Object Space

How should passive objects be reclaimed? The i432 designers have recognized
certain practical obstacles that prevent efficient and effective garbage collection
of passive space using the same type of algorithm employed for the manage
ment of active space. We mention here some of the more obvious of these
obstacles. Foremost is the matter of 110 overhead. Passive objects may be scat
tered over a number of different, possibly dismountable, structures. To identify
objects that are no longer referenced, it would be necessary to chase chains of
Passive Access Descriptors through these objects, perhaps across system sites.
Under the best of circumstances, therefore, such action can involve lengthy
searches and include numerous lengthy 110 requests. (Passive Access Descrip
tors will tend to spread through networks of passive objects just as Active
Access Descriptors are spread through networks of active objects.) Hence, not
only can we expect high 110 overhead, but also too much time may be con
sumed in freeing up space, allowing unreachable objects to remain too long in
the system and perhaps leading to what may be unacceptable operational delays.

The solution adopted is to reduce greatly the number of Passive Access
Descriptors that are relevant to the reclamation process that operates over the
passive space. This is done by including an ownership right}~ Passive Access
Descriptors and by legislating that: •

Object Filing 305

• among all the PADs that can reference a passive space object X, only one
PAD can contain owner rights for X,

• although PADs without owner rights can reference objects on other struc
tures, a PAD with owner rights must be on the same structure as the object it
references, and

• when an object is no longer reachable by a PAD having owner rights, the
object becomes reclaimable.

The "single-owner-only" rule can conceivably be restrictive in rare cases, but
the implementation tradeoffs strongly favor accepting this restriction. In this
scheme each time an unreachable passive space object X is deleted, all other
passive space objects referenced from "owner" PADs within X can also be
deleted. This approach involves relatively little search overhead. (A more com
plete discussion of the implementation tradeoffs leading to the single-owner
only scheme is not attempted here.)

10.2.5. Maintaining Consistency of a
Collection of Objects across Updates

A major challenge, the fifth and last in the series listed here, is how to maintain
the consistency of the entire system object space, given that (a) a crash can
occur at a point where an update action on a collection of objects is incomplete
and (b) independently executing programs may interfere with one another in the
course of updating collections of objects.

The i432 solution to this problem builds on two prior design choices and on
the introduction of a third strategy (and mechanism) specific to the solution.
• First, object space is already cleanly divided between active and passive

space, so that any crash that occurs while updating active space objects can
not impair the integrity and consistency of the passive space.

• Second, the introduction of composites into the passive space design suggests
that the scope of passive space update actions be defined in terms of compo
sites and not in terms of their individual components. Hence, even if there
were no way to prevent the introduction of an inconsistency, it should be
comparatively easy to isolate the region of inconsistency just to those (prob
ably few) composites that are affected by the update and replace or recon
struct only these objects using available backup information.

• Third, the application of Atomic Actions to collections of composites com
pletely prevents partial updating-and hence prevents the introduction of
inconsistencies caused either by system crashes or by overlapping query and
updating actions. Controlling the references to the passive representations of
objects using Atomic Actions serves as a needed synchronizing mechanism
among concurrently executing processes that share objects in the passive
address space.

306 A Programmer's View of the Intel 432 System

At a very high level, an Atomic Action, also called a Transaction in iMAX
terminology, is nothing more than a framework in which a set of individual
interactions with objects in the passive space can be conducted in a controlled
way. In particular, if the passive object space is in a consistent state before
the Transaction, the passive object space is guaranteed to be in a consistent
state at the end of the Transaction. Moreover, by its nature, one Transaction
cannot "interfere with" another one. Users who expect to make explicit use
of a type manager do not need to know how the Transaction framework is
implemented. The users only need to know how to set up and use the
Transactions.

The remainder of this subsection elaborates the new concepts and mecha
nisms needed to understand how the synchronization scheme is implemented.
Some readers may wish to skip this discussion on a fIrst reading. We elaborate
on the meaning of Atomic Actions and in so doing also introduce the concept of
pseudo-temporal environments. Both of these ideas have recently been studied
and extended in proposals by Reed [49, 50] as a basis for synchronizing opera
tions over databases in distributed computing systems. While Reed's proposals
are ambitious and unproven in practice, they are applied in the i432 System
under circumstances that are carefully restricted, and hence have a much higher
probability of becoming a practical success.

An Atomic Action, as defIned by Reed [50], " ... is a computation that,
although composed of primitive computational steps, cannot be decomposed
from the point of view of computations outside of the Atomic Action. . . The
Atomic Action simplifIes the task of coping with unplanned concurrency and
failure ... Atomic Actions remain atomic in the face of failure; that is, if a
failure occurs that prevents the completion of an Atomic Action, the state of all
data the Atomic Action has attempted to modify must appear to all other
observers to be the state that obtained prior to starting the Atomic Action. "

When an i432 program needs to execute a series of (higher-level) operations
on one or more passive (composite) objects, the individual operations, and all
their substeps are grouped and executed as a single Atomic Action, i.e., a
Transaction. This assures that no other program can destructively interfere, or
be interfered with in a destructive way, as a result. As we will see shortly, the
iMAX Operating System enforces the use of such Atomic Actions on passive
objects, since all requests for operations on passi',e objects must be "filtered"
through interface packages.

After any Atomic Action is initiated and before it completes, it may be
explicitly aborted by the program that invokes it, or be implicitly aborted as a
result of any kind of failure including a time-out or a system crash, without
creating a net change to the passive object (or objects) involved in the Atomic
Action. An Atomic Action is completed only upon successful execution of a
Commit operation. This operation puts into effect all the changes produced in

Object Filing 307

the form of tentative new versions of the passive objects involved in that
Atomic Action.

The Atomic Action mechanism is successfully implemented by completing
all its steps in a distinct section of modelled time (not real time), called pseudo
time. The recording of events in pseudo time is controlled by a mechanism
which Reed has called a Pseudo Temporal Environment, or PrE. (Pseudo times
are used to replace real time only during Atomic Actions. The use of a PrE
assures that all the pseudo times for one Atomic Action fall in an interval that is
distinct from all other intervals of pseudo time during which other such Atomic
Actions may occur.)

A good way to understand pseudo time is to understand its three key attri
butes: (We .again quote (and paraphrase) from Reed.)

1. A read operation from a passive object returns the value written by the latest
pseudo-time ordered write operation that precedes the read.

2. If two steps, A and B, of a computation are ordered such that A precedes B,
then, within an Atomic Action, the pseudo time of A is strictly less than the
pseudo time of B. (This property ensures that sequential programs still
behave the way they would were real-time orderings used.)

3. Pseudo-time orderings correspond to real-time orderings whenever events
occur far enough apart in real time. That is, we don't care what pseudo time
ordering is assigned to nearly simultaneous events that are not ordered parts
of the same computation. We do care that two events, observed to be
ordered in the real world, that is, from outside the system, would be ordered
in the modelled or pseudo time in the same way.

The pseudo time for an event is determined by generating it from a Pseudo
Temporal Environment. It is therefore natural to inquire about PrEs to learn
what they are and how they work. However, a little thought suggests that we
don't have to know much about PTEs, other than how to use them.

One can think of each PrE as a special clock function that returns pseudo
times when requested that fall in a guaranteed-to-be-distinct interval. This
"clock" is an abstraction that can be represented as a private data type, speci
fied in an Ada package. Of course, the implementation of the PTE data type
would be hidden. This is precisely the approach taken in the iMAX Object Fil
ing Subsystem, where a user interface package, Transaction_Manager, is avail
able. Use of this package allows one to acquire Access Descriptors for newly
created PrEs upon request. [Reed has provided the details of one example
implementation.] In the i432 implementation, PrEs are referenced by access
variables of type "transaction".

With the foregoing as the essential background concepts, we are now ready to
describe more precisely what a Transaction is and how it is used in the i432

308 A Programmer's View of the Intel 432 System

Object Filing Subsystem. Hereafter, we consistently substitute "Transaction"
for' 'Atomic Action" .

1 0.3. Performing Transactions Using the
IMAX Interface Packages

To perform a Transaction, two interface packages are used:

• Transaction_Manager To Create a Transaction, and later to either Abort
it or Commit it.

• Passive_Store_Manager To perform operations such as Update, Passivate,
Open, Close, Put, Get, etc., on active and passive
versions of objects.

10.3.1. The iMAX Transaction_Manager
Package

A user first calls Start_transaction to instantiate a new Transaction and to obtain
an AD for it. This Transaction will remain accessible until the user later calls
Abort_transaction or Commit_transaction, which cause the specified Transac
tion to be "decommissioned." (No more pseudo-times will be issued from it.)
More importantly, Abort_ transaction would be called to cancel the Transaction
produced thus far and Commit_transaction would be called to close out the
Transaction.

Both Abort_transaction and Commit_transaction also have the effect of
Closeing out all passive objects that have been Opened for this Transaction by a
call to the Passive_Store_Manager. (In particular, objects that were opened for
"read" are automatically closed; those opened for "write", however, must
have been closed explicitly, else the commit will fail.)

The remaining operation of Transaction_Manager is the function Transac
tion_info, which retUrns a record of useful information concerning the specified
Transaction. This record includes the Transaction's print name, its state
(whether active, committed, or aborted), the time remaining before mandatory
abortion, the number of passive objects currently associated with the specified
Transaction, and whether or not the specified Transaction is currently blocked
waiting for an Open operation to succeed. (Open operations are explained in the
succeeding subsection.) The specifications for Transaction_Manager are given
in Appendix M along with the specifications for Passive_Store_Manager.

10.3.2. The iMAX Passive_ Store_ Manager
Package

The operations of this package can be grouped into two major categories. The
first is a simple interface to Object Filing that allows users to explicitly specify

Object Filing 309

how or whether an active space object should be passivated. The remaining
operations, which fall into several subcategories, are provided for a user or a
type manager that needs to directly manipulate a passive version of an object.
Figures 10-1 and 10-2 list the public operations of this package in each of the
two major categories.

Operation

Update

Reset_acti ve_ version

Explanation

Makes .a specified passive space object
agree with its active version.

Deletes the specified active version so that
the next reference to the object causes
a fresh copy to be made from the latest
passive space version.

Figure 10-1 Active-version operators of the Passive_Store_Manager package. Both
operators allow specification of a Transaction.

The protocol for use of the active-version operators listed in Figure 10-1
requires that the caller either specify a previously created Transaction as an
argument or default that argument. In the latter case, Object Filing automati
cally generates a new Transaction to "surround" the active-version operation.
For example, the following sequences are functionally equivalent:

start_ transaction (my_ transaction) ;
Update (my_object, my_transaction);

Commit_transaction (my_transaction) ;

and (simply)

Update (my_object) ;

A specified passive store object to be Updated must be known to the passive
space; i.e., either a PAD with owner rights exists for the object, or the object is
a component of a composite that has been Opened in either write or update
mode using the same Transaction. The new passive version that is produced
(resulting from Update) is not "committed" until the specified Transaction is
itself committed.

The procedure Reset_active_ version provides the mechanism for explicitly
discarding unreachable level-zero active space objects which might otherwise
be implicitly passivated via the passivation filter mechanism described in Sec
tion 10.2. Thus, the procedure call

ensures, provided that my _ transaction is later committed, that any subsequent
reference to my_object will cause it to be restored from its last passive version.

310 A Programmer's View of the Intel 432 System

Sub-category

Open and
Close

Put and
Delete

Get
operations

Miscellaneous
operations

Operation

Open

Close

Put_
access_descriptor

Put_list_of_
access_descriptors

Delete_
access_descriptor

Copy_
access_descriptor

Get_
access_descriptor

Get_passi ve_
definition_info

Explanation

Opens the passive version of an
object for read, write, or
update. Only one such version
can be open for write or update.

Closes the opened passive version.

Transfers data from an active space
object to a passive space object.

stores a specified AD in a passive
space object.

stores a specified block of ADs
in a passive space object.

Deletes a specified AD from a
passive space object.

Copies an AD from one passive space
object to another.

Transfers data from a passive space
object to an active space object.

Returns a specified AD from a
passive space object.

Returns characteristics and state
of a specified passive space object.

Binds a specified link object to a
specified passive space object.

Changes the "auto_copy" attribute of
a passive object's link object.

Changes the "copyable" attribute of
a passive object to false.

Changes the "activatable" attribute
of a passive object to false.

Figure 10-2 Passive space manipulation operators of the Passive_ Store_Manager.

(This reset mechanism is particularly useful for compilers that must guarantee
the constancy of Domain Objects for library packages, as discussed under Case
D, Section 10.1.)

The protocol for using the passive space manipulation operators listed in Fig
ure 10-2 requires that the affected passive versions fIrst be Opened for that type

Object Filing 311

of operation. Thus, the caller first Opens a specified passive object X, for a
given access mode, for example

handle_l :=Passive_Store_Manager.Open(my_object, write, my_transaction);

or

handle_2 :=Passive_Store_Manager.Open(my_object, update);

Opening a passive object returns its passive_definition, i.e., a "handle" on a
version of the passive object. (The handle is of private type "passive_
definition" .)

Note that the implementation of Open automatically generates a Transaction
for this operation in the event an argument for this optional parameter is not
supplied. (There is also a fourth (optional) Open parameter, a time_out value,
which the caller can supply. This is the amount of time Open should be allowed
to remain blocked before aborting it, in case my_object happens already to be
Opened for write or update. Providing the opportunity to supply time_out
values on Opens (and on Start_transactions) helps users avoid deadlock. Of
course, a malicious user can still specify lengthy time_out values.)

An access mode may have one of the three values listed in the following defi
nition of type open_mode.

type open_mode is
-- The type of access requested in doing an Open operation.

(read, -- Only read requests will be permitted on the
-- passive definition.

write, -- Read and write requests will be permitted on the
-- passive definition. A new version is created
-- ab initio.

update); -- Read and write requests permitted on the
-- passive definition.

To succeed with an invocation of Open, the caller-supplied reference for the
object to be Opened must have rights commensurate with the specified
open_mode. For example, the caller's AD must have read and write rights if
the access_mode is "write" or "update"; otherwise, read rights are sufficient.

The handle retunled by an Open refers to a version of the desired passive
object. Each version has associated with it the times it was last opened for read
ing and for writing.

Executing an Open for "reading" selects the most recent version whose
open-for-write time is less than the Transaction time specified in this Open
operation. (The cunent Open request will, however, block if the selected ver
sion is (now) being written and if its open-for-writing time is earlier than the
Transaction specified in this Open.) Concurrent activations of an Open request
for reading of the same same passive space object are permitted. When the last
outstanding Open on an older version of a passive object is Closed, that version
is deleted.

312 A Programmer's View of the Intel 432 System

Executing an Open for "writing" will produce a new version. The specified
Transaction must, however be later than the open-for-read and open-for-write
times (if any) for the most recently committed version. If not, the Object Filing
System "refuses" this request, since writing values associated with an earlier
time would imply that those previously read values, marked by a later time, are
erroneous. If the specified Transaction is indeed later than the open time of the
most recent version, the Open is permitted, but may be required to wait until the
most recent version, if currently Opened, is either committed or aborted. This is
because Object Filing assures that Opens for writing may not overlap in time.
Blocked Open requests are queued in order of their specified Transactions. (In
short, only one Open at a time is allowed for writing into a given passive object.
Only after the associated Transaction is either committed or aborted can another
Open for writing into the same passive object be permitted.)

A Transaction associated with an Open cannot be committed until all the
Opened objects have been closed. The Close operation assures that the
corresponding Opened object is in a consistent state and may therefore be
installed as a new passive version. Objects that have only been Opened for read
ing do not have to be explicitly Closed. Failure to invoke the Close operation
"promptly enough" for an object opened for write or update can cause the
current Open to be aborted, as explained in the next paragraph.

Since Open operations may be blocked awaiting completion of other Transac
tions that involve the same passive definition, the current Open call is allowed
to be timed-out. (If the caller fails to specify a time-out argument value, the sys
tem will supply a default value.) A Transaction fails, and will be aborted to
avoid deadlock, if an Open (or any other step) associated with this Transaction
times out.

A Transaction may be used to place an active space object X in passive space
that does not currently have a passive version. This is done in steps: first, a Pas
sive AD with owner rights for X is stored into some other object that already
exists in passive space (using the Put_access_descriptor operation). Next, X is
Updated. [A more "lengthy route" can be taken. Instead of Updating X, one
can instead Open it in write mode. The effect of this Open operation is to create
a new passive object of the same size and type as the active space object X.
Once the new passive space object has been created in this way, other Put
operations (Put_data and Put_access_descriptor) can be called to transfer data
values and Access Descriptors into the passive version.]

Once an existing passive object has been Opened for either reading, writing
or updating, various other operations may be performed. For example, Put and
Get operations may be used, depending on the Open's access-mode. Put opera
tions would be used to assign values to a newly created passive object. Fig
ure 10-3 illustrates the specifications for the operations Put_data.

A similar operation, Put_data_file, can be used to assign values to objects of
type data_file. The specification for this operation is not illustrated here

Object Filing 313

because it belongs to a different iMAX interface package. Nevertheless, it
seems appropriate to remind the reader that Object Filing also includes manage
ment of the non-activatable type data_file, instances of which may be as large
as 2**32 bytes. (Note that ordinary passive space objects are not expandable;
however, passive space data_file objects are expandable though they are never
activatable.) The corresponding Get operations have nearly identical specifica
tions, except for the intended direction of transfer.

procedure Put_data(
psv_def:
act_buf:
psv_disp:

sz:

-- Function:

passive_definition; -- An object's passive definition.
dynamic_typed; -- Active object containing data.
passive_data_segment_displacement := 0;

-- Displacement into "psv_def".
active_data_segment_size : = -1;

-- Number of bytes to transfer from
-- "act_buf" to "psv_def". (Default
-- means copy all of "act_buf".)

active_data_segment_displacement := 0);
-- Displacement into "act_buf".

Data is transferred from an active object to a passive object.

Figure 10-3 Example specification of PuCdata operation. PuCdata transfers data into a
version of a passive object.

A key point to remember about Transactions as implemented in the i432
Object Filing Subsystem is that more than one passive_definition may be
opened with the same Transaction. In this way, a user can lock out other
processes from accessing a collection of related (composite) objects while the
Transaction is in progress. To assure that synchronization works as expected, a
Transaction value awarded to a process by Transaction_Manager.Start_transac
tion should be kept local to the process that requests it. Thus, it would be a mis
take for one process to send another a copy of a Transaction reference if both
processes might then engage in the same Transaction on the same objects as this
joint activity could totally defeat the objective of synchronization.

Before dosing .this section, we comment on the process of activating passive
version objects, in part to give one practical reason why it is not always desir
able to allow a passive version object to be activated. The process of activating
an object involves the construction of an Object Descriptor for each AD stored
in the object. The "valid" bit in each such Object Descriptor is set false to indi
cate that the underlying object is not in main memory and a software-defined bit
in the Object Descriptor is set to indicate that a version of this underlying object
exists in the passive object space. Copying of the contents of such underlying
objects from passive space to active space is then triggered by ensuing "pres
ence" faults and accomplished by a fault handling mechanism similar to the one

314 A Programmer's View of the Intel 432 System

used in virtual memory management. Since the overhead for constructing an
Object Descriptor is not insignificant, objects like directories that contain large
numbers of Passive ADs are made non-activatable. Retrieval, i.e., activation,
of individual Passive ADs from such a directory can be done using the Get_ac
cess_ descriptor operation.

This concludes our all-too-brief overview of the Object Filing Subsystem
planned for the i432. It deserves a more complete exposition, but our book is
already a long one. Reinforcement of the foregoing discussions can be accom
plished by a review of Appendix M. The reader is also directed to the open
literature [47] and to the iMAX 432 Reference Manual.

Certainly, the reader should be aware by now that the Object Filing Subsys
tem will greatly extend the functionality and hence the applicability of the i432
System. When these extensions are in place, a new watershed in commercial
operating systems will have been achieved, no doubt inducing other designers
to emulate such facilities.

10.4. A Final Glance at the Portfolio
Management System

Readers have a surprise in store as we undertake our final inspection of the port
folio management system. It might seem that nothing we have learned in
Chapters 9 and 10 need affect the design decisions and options we have con
sidered in preceding chapters. Our new knowledge of i432 Memory Manage
ment, either of main memory or the more general virtual memory, seems largely
irrelevant to this design. True, the performance of the proposed subsystem may
be affected by the amount of main memory available or by the overhead of
managing a more general virtual memory, but to any first approximation, it is
difficult to see how knowledge of specific performance characteristics vis a vis
Memory Management can be significant. And so, only the Object Filing Subsys
tem is left to consider as possibly relevant.

On the one hand, presence of the Object Filing Subsystem assures the
integrity, reliability, and longevity of the portfolio data base. Without Object
Filing, our application would be incomplete, unless we were to explicitly
include the I/O requests that save (and retrieve) the portfolio data in (and from)
long-term store between the end-users' terminal sessions. [The only way to
avoid including such steps would be to assure that the portfolio always resides
in virtual memory. This approach has some merit, but it does not provide for
full insurance against system crashes.] Presence of the underlying Object Filing
Subsystem quite fortunately makes the transport of our portfolio to and from
long-term store automatic and transparent. Neither the users of the subsystem,
nor we, its designers, need be troubled with such matters. Put another way, the

Object Filing 315

underlying Object Filing Subsystem can be said, actually, to complete our
design!

Having said all this, we should be ready for the promised surprise. Since the
Object Filing Subsystem offers synchronization services as well as ' 'crash
insurance" , we had better reexamine our design to see how much in the way of
synchronization mechanism, already built into our design, is actually redun
dant. In fact a good deal of the task and package structure in the Figures 2-5 and
3-2 "solutions" appear in need of reassessment.

Our designs were built on the premise that whenever Ada owner packages
can be accessed concurrently by more than one task, arbiter tasks are needed as
intermediaries. Apart from whatever other services are rendered by
Portfolio_Server in the Figure 2-5 solution, and by both Portfolio_Server and
Roster_Server in the Figure 3-2 solution, these server tasks are essentially
arbiters. But, they are only needed because Ada semantics provides no guaran
tee of synchronization over the use of owned data of packages.

Consider this: Each time the Treasurer task (or any other task properly
authorized) needs to read or update the portfolio objects, it is necessary only to
execute an Atomic Action on those objects. Ordinary Member tasks may also
issue read requests of the portfolio objects as Atomic Actions. (Ordinary club
members would be barred from opening portfolio objects for writing or updat
ing by being denied the proper rights.) There can be no conflict. The individual
Atomic Actions would be encoded as the operations within the Portfolio_Mgr
package.

We may now ask, "Why use arbiter tasks at all in our applications and sub
systems programming-if Object Filing eliminates the need for them?" Two
good answers come to mind:

• First, it seems important to be able to design application subsystems like
portfolio management so they can run in the absence of Object Filing serv
ices-even if only to be able to simulate our design in a "leaner" environ
ment, one lacking Object Filing. (Certainly, if it is important to be able to
"port" an application to another system that lacks certain rich system serv
ices, relying on them must be avoided.)

• Second, the synchronization of access to objects provided by Object Filing
pertains only to the objects in passive space. Users who want concurrent
access to objects in active space must still provide explicit synchronization,
such as by use of arbiter tasks. For example, if A were to activate an object X
and then B tries to activate X, then A and B would share the same copy; the
need for synchronization in this case still remains.

Notice that both responses are arguments for knowing how to accomplish
synchronization in at least two different ways. Therefore, readers are invited to
learn more about the two Object Filing Subsystem interfaces introduced in the

316 A Programmer's View of the Intel 432 System

last section and are urged, as an exercise, to redesign our portfolio management
system one more time.

10.5. Chapter and Book Summary

We have reached the end of our several studies. At the beginning, we asserted
that a proper examination and appreciation of the i432 System would involve a
study of the new system's System Implementation Language, its Architecture,
and its Operating System. In this book, we have done all three and roughly in
this order.

We hope readers who were more interested in the Architecture or in the
Operating System did not grow too impatient with the progression we chose,
did, more or less, diligently read straight through this book, and can now see
why it helps to become familiar with the language Ada-and the model of com
putation implied by Ada-in order to appreciate the many innovative aspects of
the hardware and software design.

The i432 System is not an Ada machine. Most of it was designed indepen
dently of Ada, but with a similar semantic model of computation as its basis.
Hence, we have not felt it necessary to introduce readers to the entire Ada
language. On the other hand, because of its powerful programmer support facil
ities, including the full Ada-fanguage and at least one powerful extension
(dynamic packages), the System permits many advanced users of the i432 Sys
tem to provide their "customers" with a wide variety of other language proc
essors and tailored operating system extensions for the development of end-user
applications.

Finally, we hope that the reader has been rewarded in reading this book, as
has the writer by writing it, by having acquired both an in-depth perception of,
and an enthusiasm for the i432 System and for the creative and productive work
of its many designers and implementers. We hope their system proves to be a
pronounced success in its primary objective, which-from the start of the
venture-has been to offer us a system that helps users to reduce significantly
the cost of building and maintaining system and application software.

Appendix A
The iAPX 432-Published Papers

1. S. Zeigler, N. Allegre, R. Johnson, J. Moms, and G. Burns, "Ada for the Intel 432 Microcom
puter," IEEE Computer, pp. 47-56 (June, 1981).

2. K. C. Kahn and F. J. Pollack, "An Extensible Operating System for the Intel 432," Proceed
ings Compcon Spring 1981, pp. 398-404{February 1981).

3. S. Ziegler, N. Allegre, D. Coar, R. Johnson, J. Morris, and G. Burns, "The Intel 432 Ada Pro
gramming Environment," Proceedings Com peon Spring 1981, pp. 405-410 (February 1981).

4. G. W. Cox, W. M. Korwin, K. Lai, and F. J. Pollack, "A Unified Model and Implementation
for Interprocess Communication in a Multiprocessor Environment," Proceedings of the 8th
Symposium on Operating System Principles, (December, 1981).

5. F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn, K. Lai, and J. R. Rattner, "Sup
porting Ada Memory Management in the iAPX-432," Symposium on Architectural Supportfor
Programming Languages and Operating Systems, (March, 1982).

6. F. J. Pollack, K. C. Kahn, and R. M. Wilkinson, "The iMAX-432 Object Filing System,"
Proceedings of the 8th Symposium on Operating System Principles, (December, 1981).

7. K. C. Kahn, W. M. Corwin, T. D. Dennis, H. D'Hooge, M. R. Gifkins, L. A. Hutchins, and
F. J. Pollack, "iMAX: A Multiprocessor Operating System for an Object-Based Computer,"
Proceedings of the 8th Symposium on Operating System Principles, (December, 1981).

8. K. C. Kahn, "A Small-Scale Operating System Foundation for Microprocessor Applications,"
Proceedings of the IEEE, Vol. 66, No.2, (February, 1978).

9. R. Ebersole, "Designing a High-Perfonnance Bus for a Multiprocessor System," Phoenix
Conference on Computers and Communications, (May 1982).

10. D. Kinder, "Transparent Multiprocessing Boosts f,LC Throughput", Electronic Design News,
(April 15, 1982).

11. R. Kaiser, "The 432 Micromainframe Architecture, " Proceedings of the 35th Conference of the
American Institute of Aeronautics and Aerospace, (September, 1981).

12. R. Johnson, "The Intel iAPX-432: An Architecture for Ada," Proceedings of the Symposium
on High-Level Computer Achitecture, (October, 1981).

13. H. I. Jacob, "An Architecture for the 80's-The Intel iAPX-432," Proceedings of Midcon '81,
(November, 1981).

14. J. R. Rattner and W. W. Lattin, "Ada betennines Architecture of 32-bit Microprocessor,"
Electronics, (Feb. 24, 1981).

15. D. Kinder, "Ada, iMAX, and Intel's iAPX 432," Annual Conference Proceedingsfor Associa
zione I taliana Per Il Calcolo Automatico, (October, 1982).

16. M. J. McGowan, "The Information Management Capabilities of the iAPX 432 Processor,"
Computer Technology Review, (Summer, t982).

17. K. C. Kahn, "Object-Oriented Languages Tackle Massive Programming Headaches," Elec
tronics, (November 17, 1982).

317

Appendix B
The iAPX 432: Titles of Manuals and Booklets
published by
Intel Corporation, Santa Clara, California

Summaries
1. Intel 432 System Summary: Manager's Perspective
2. iAPX 43201143202 VLSI General Data Processor Data Sheet
3. iAPX 43203 VLSI Interface Processor Data Sheet
4. System 432/600 32-bit Extensible Computer System Data Sheet
5. iMAX 432 Multifunction Application Executive Data Sheet
6. Intel 432 Cross Development System Data Sheet
7. Intel 432 Asynchronous Communication Link Data Sheet
8. Intel iAPX 43204/43205 Interconnect Data Sheet and Electrical Specification

Technical Manuals/or the iAPX 432 Family
9. Introduction to the iAPX 432 Architecture

10. iAPX 432 Object Primer
11. iAPX 432 General Data Processor Architecture Manual (Advance Partial Issue of -002)
12. iAPX 432 Interface Processor Architecture Reference Manual
13. iAPX 432 Interconnect Architecture Reference Manual

Technical Manuals/or the Intel 432 Cross Development System
14. Introduction to the Intel 432 Cross Development System
15. Reference Manual for the Ada Programming Language
16. Reference Manual for the Intel 432 Extensions to Ada
17. Intel 432 CDS Ada Support Package User's Guide
18. Intel 432 CDS VAX Host User's Guide
19. Asynchronous Communication Link User's Guide
20. Intel 432 CDS Workstation User's Guide

iMAX432
21. iMAX 432 Reference Manual

System 432/600
22. System 432/600 System Reference Manual
23. System 432/600 Diagnostic Software User's Guide.
24. System 432/600 Hardware Reference Manual
25. System 432/670 Installation and Maintenance Manual

318

Appendix C
Stock_ Types_And_ Constants

package stock_Types_And_Constants is

-- This package has no body.

subtype long_string is string(l .. 30);

type dollars is new integer;

type stock_code_pair is
record

code:
exch:

string (1 .. 4) ;
string (1. . 4) ;

abbreviation for listed stock
abbreviation for stock exchange

end record;

type stock_name_info is
record

print_name:
stock_code:

end record;

type date is
record

long_string;
stock_code_pair;

day: integer range 1 .. 31;
month: integer range 1 .. 12;
year: integer range 1900 .. 4000;

end record;

type buy_sell_type is (buy, sell);

type buy_sell_record(buy_sell: buy_sell_type) is
record

stock.,name:
buy_date:
nUIILshares:
per_share_price:
commission:
case buy_sell is
when sell =>

of_buy_date:
when others =>
null;

end case;
end record;

stock_name_ inf 0;
date;
integer;
dollars;
dollars;

date;

-- record discriminant
extra data field

-- no extra field

subtype purchase_record is buy_sell_record(buy) ;
subtype sale_record is buy_sell_record(sell) ;

end stock_Types_And_Constants;

319

320 A Programmer's View of the Intel 432 System

Generic Queue Manager

generic

type item is private;

package Queue_Mgr is
type queue is private;
null_queue: constant queue;

function Create
return queue;

procedure Add(
E: in
Q: in

item;
queue;

A "deferred constant", permitting a user to
express a test to determine if a created
instance of queue is or is not null
without actually knowing how "nullness"
is represented.

to_front: in boolean: = false); -- optional third parameter

procedure Remove(
U: out item;
Q: in queue) ;

function Is_empty(
Q: in queue)

return boolean;

underflow: exception; raised if Remove
is passed an empty queue

private
type queue_element; forward reference

type queue_element_ptr is access queue_element;

type queue_element is
record

info: item;
next: queue_element_ptr;

end record;

type queue_rep is
record

head: queue_element_ptr;
tail: queue_element_ptr;

end record;

type queue is access queue_rep;
null_queue: constant queue := null;

end Queue_Mgr;

Initialization of this
-- constant is hidden.

Body Part of Generic Queue Manager

pragma environmentC"GenQueMgr.spe");
package body Queue_Mgr is

function Create
return queue

is
begin

Appendix C 321

return new queue_repChead => null, tail => null);
end Create;

procedure AddC
E: in
Q: in

item;
queue;

to_front: in boolean: = false) -- optional third parameter
is

x: queue_element_ptr := new queue_elementCinfo => E, next => null);
begin

case to_front is
when false =>

if Q.tail j= null then
Q. tail. next : = x;

else
Q.head : = x;

end if;
Q. tail : =: x;

when others =>
if Q.tail j= null then

x.next := Q.head;
else

Q. tail: = x;
end if;
Q.head : = x;

end case;
end Add;

procedure RemoveC
U: out item;
Q: in queue)

is
begin

if Q.head = null then
raise Underflow;

else
U : = Q. head. info;
if Q. head. next = null then

Q. head: = null;
Q. tail : = null;

else
Q.head :=: Q.head.next;

end if;
end if;

end Remove;

Put E at tail of queue.
-- queue not empty

-- Put E at front of queue.
-- queue not empty

-- Is Q.head last queue element?

322 A Programmer's View of the Intel 432 System

function Is_empty(
Q: in queue)

return boolean
is
begin

return Q.head = null; -- Return truth value of expression.
end Is_empty;

pragrna environment ("GenQueMgr. bdr", "StkTypCon. spr") ;

package Purchase_Queue_Mgr is new Queue_Mgr(
item => Stock_Types_And_Constants.purchase_record);

Instantiation of generic Queue_Mgr package to manage purchase queues
formed in portfolio instances by Portfolio_Mgr.

Portfolio_Manager specification

pragrna environment ("PurQueMgr . spr" , "StkTypCon. spr" , "StkMktInf . spr") ;

package Portfolio_Mgr is

type portfolio_ptr is private;
null_portfolio: constant portfolio_ptr; -- A "deferred constant. "

type stocks_held(nurn integer) is -- Need to specify nurn
-- when instantiating this record.

record
name:
nurn_shares:

end record;

array (1 .. nurn) of stock_name_info;
array (1 .. nurn) of integer;

type stocks_held~ptr is access stocks_held;
Used as parameter type in Stock_list.

type index is range O .. 1000;

type array_of_purchases is
array (index range <» of purchase_record;

type array_of_purchases_ptr is access array_of_purchases;
Used as parameter type in
History_of_purchases.

exceeds_holdings: exception;

Appendix C 323

function Create (
folio_name: in long_string)

return portfolio_ptr; Access made with read,
and write writes
(No create rights.)

Function:
Creates an instance of type portfolio (allocated from global
heap store) with folio_name as print_name and returns a pointer
(access descriptor) to this instance.

procedure Record_buy(
folio_ptr: in portfolio_ptr;
buy_info: in purchase_record);

Function
Adds new buy transaction to purchase history for this stock.

procedure Record_sell (
folio_ptr: in portfolio_ptr;
sell_info: in sale_record;
history_underflow: out boolean);

Function:
Deletes number of shares sold from purchase record in portfolio
for buy_date matching buy date in sell_info. Raises
Exceeds_holdings exception to print an error message if
num_shares exceeds number of shares recorded as purchased on
that date. If not all held shares of that buy_date are sold,
an entry for the residual shares is put back at front of queue.
The recorded conunission in the effected purchase_record
is reduced by the ratio of shares retained to shares held before
this sale.
Sets history_underflow true in handling Underflow exception raised
in Purchase_Queue_Mgr.

procedure Number_of_stocks(
folio_ptr: in portfolio_ptr;
num_stocks: out integer);

Function:
output p~ITameter is number of different stocks currently held
in portfolio accessed by folio_ptr.

procedure Stoc~list(
folio_ptr: in
num_stocks: out
stocks: out

Function:

portfolio_ptr;
integer;
stocks_held_ptr) ;

Returns a reference to a stocks_held record
which is an array of records, each consisting of the
name and number of shares. held for a stock
held in portfolio accessed by folio_ptr.

324 A Programmer's View of the Intel 432 System

folio_ptr:
s tock_ code:
mmLshares:
avg_cost:

in portfolio_ptr;
in stock_code_pair;
out integer;
out dollars);

Function:
output parameters supply number of shares and average cost
per share, including commissions, for stock denoted by given
stock_code in portfolio denoted by folio_ptr.

procedure Num_buys(
folio_ptr: in
stock_code: in
num_purchases: out

Function:

portfolio_ptr;
stoc~code_pair;
integer) ;

output parameter is number of different purchases for
which stock of given stock_code is currently held in
portfolio denoted by folio_ptr.

procedure History_of_purchases(
folio_ptr: in portfolio_ptr;
num_purchases: in
stock_code: in
purchase_history: out

integer;
stock_code_pair;
array_of_purchases_ptr) ;

Function:
output parameter is a reference to an array of purchase
records of length num_purchases for which the stock of the
given stock_code is currently held in portfolio_ptr denoted
by folio_ptr. See Stock_Types_And_Constants for format of a
purchase_record.

function Get_portfolio_name(
folio_ptr: in portfolio_ptr := null_portfolio)

return long_string; -- Name of portfolio.

Function:
If the input parameter folio_ptr corresponds to an existing
portfolio, its name is returned; otherwise
"No such portfoliohAAhhhhhAAhh" is returned.

private

type stock_summary; -- Forward reference.
type stock_summary_ptr is access stock_summary;

type stock_summary is
record

stock_name:

num_shares:
avg _ cost_per _share:
next:
purchase_history:

end record;

stock_name_info :=
(print_name => "hhhhhhAAAAAAAAAAAAAhAAAAAAhAAA" ,
stock_code => (code => "AAAA",exch => "AAAA,,))

integer : = 0;
dollars : = 0;
stock_summary_ptr : = null;
Purchase_Queue_Mgr.queue

Purchase_Queue_Mgr. Create () ;

Appendix C 325

type portfolio; Forward reference.
type portfolio_ptr is access portfolio;
type portfolio is

record
portfolio_name: long _string : = "not yet namedAAAAMAAAAAAAAAAA,,;
num_diff_stocks_held: integer : = 0;
stock_list: stock_summary_ptr : = null;

end record;

null_portfolio: constant portfolio_ptr := null;

end Portfolio_Mgr;

Portfolio_ Manager body

pragma environment ("PrtMgr. spr", "PurQueMgr. spr",
"StkTypCon. spr", "StkMkt1nf'. spr") ;

with Portfolio_Mgr, Purchase_Queue_Mgr, Stock_Types_And_Constants,
Stock_Mkt_ 1nf 0;

package body Portfolio_Mgr is -- Package body begins here

function Create (
folio_name: in long_string)

return portfolio_ptr
is separate;

procedure Record_buy(
folio_ptr: in portfolio_ptr;
buy_info: in purchase_record)

is separate;

procedure Record_sell (
folio_ptr:
sell_info:
history_underflow:

is separate;

in portfolio_ptr;
in sale_record;
out boolean)

procedure Number_of_stocks(
folio_ptr: in portfolio_ptr;
num_stocks: out integer)

is separate;

procedure stock_list(
folio_ptr: in portfolio_ptr;

integer;
stocks_held_ptr)

num_stocks: out
stocks: out

is separate;

folio_ptr:
stock_code:
num_shares:
avg_cost:

is separate;

in portfolio_ptr;
in stoc~code_pair;
ou t integer;
out dollars)

326 A Programmer's View of the Intel 432 System

procedure NurnLbuys(
folio_ptr: in
stock_code: in
num_purchases: out

is separate;

portfolio_ptr;
stock...,.code_pair;
integer)

procedure History_of_purchases(
folio_ptr: in portfolio_ptr;
num_purchases: in integer;
stock_code: in stock...,.code_pair;
purchase_history:out Purchase_Queue_Mgr.queue)

is s~parate;

function Get_portfolio_name (
folio_ptr: in portfolio_ptr := null_portfolio)

return long_string -- Name of portfolio.
is separate;

-- Locally defined procedures and functions go here:

function SearchLfor_stock...,.code(
folio_ptr: in portfolio_ptr;
buy_record: in purchase_record;
create_if_not_found: in boolean)

return stock...,.summary_ptr;
is separa te;

Function:

begin

Searches portfolio denoted by folio_ptr for presence of stock_code
the same as that given in buy_record. If the stock is found, a
reference to the stock summary for that held stock is returned.
If the stock is not found, the action to be taken depends on the value
of the input parameter create_if_not_found. If true, a new stock
summary is created, initialized, and added to the portfolio, and a
reference to it is returned. If create_if_not_found is false,
null is returned.

-- statements to initalize this package, if needed, go here.

null;
end Portfolio_Mgr; -- End of package body.

Club_ Portfolio specification

pragma environment ("PrtMgr. spr", "TxtIo. spr",
"StkTypCon.spr", "StkMktInf.spr");

package Club_Portfolio is

subtype percent is integer range O .. 500;
Used in winners, losers and
non-movers procedures. See below

function Print_club_valuation
return dollars;

Function:
Prints total value of club's portfolio,
based on current market prices.

procedure Print_club_holdings;

Function:
For each held stock, prints:
number of shares held,
average per-share purchase price,
current per-share price,
current value of holdings in this stock.

function Find_stoc~code(
corporate_name: in long_string)

Appendix C 327

return stock~code_pair; Returns the standard stock code,
-- if any, corresponding to input argument.

Function:
Prints as well as returns the stock code (abbreviation for stock
and exchange where listed.)

procedure Print_individual_stoc~summary(
stoc~code: in stock_code_pair); -- Standard code for stock.

Function:
Prints summary info on held stock with given stock code
total no. of shares held, this stock, current per-share price and
current value of shares. Also, for each purchase of shares still
held, prints:
purchase date, no. of shares, per-share purchase price,
and commission.

procedure Print_shares_an~value_of_stock(
stock_code: in stock_code_pair);

Function:
For the given stock_code, prints the number of held shares,
current price per share, and total market value.

procedure Print_average_cost(
stock_code: in stoc~code_pair) ;

Function:
Prints, for the stock denoted by stoc~code, the average cost,
including commissions, of all such stock now held.

procedure Print_winners (
spread: in percent) ;

Function:

-- Percent deviation.

Prints list of held stocks for each of which, based on latest
market quotes, the club has a "paper" gain of spread percent
or more over average purchase cost for that stock (including
commission.)

328 A Programmer's View of the Intel 432 System

procedure Print_losers (
spread: in percent); -- Percent deviation.

Ftmction:
Analogous with Print_winners.

procedure Print_non_movers(
spread: in percent); -- Percent deviation.

Ftmction:
Lists stocks for which "paper" gain is less than spread. See
description of Print_winners.

procedure Enter_buy(
purch_date: in date;
stock_code: in stock_code_pair;
num_shares: in natural;
per_sh_price: in dollars;
commission: in dollars);

Ftmction:
Records a buy transaction in club's portfolio.
and provides confirmation copy of response, including
error messages, if any. (Confirmation copy may also go
to an archive file.)

procedure Enter_sell (
sell_date: in date;
stock_code: in stock_code_pair;
num_shares: in natural;
of_buy_date: in date;
sell_commiss: in dollars); Selling commission is not

recorded in portfolio,

Ftmction:

but used to indicate net gain or
loss in confirmation copy.

Records sale of shares bought on of_buy_date. Num_shares held
for this buy date are deleted from the portfolio. A confirmation
copy of this sell transaction is produced, indicating net gain
or loss (and whether long- or short-term) and including error
messages, if any. (Confirmation copy may also go to an archive
file.)

Readers of Chapter 3 should note that this is the place where
the declaration would go for our_portfolio, now appearing in
the body part of this package; also, the specifications
for Create_folio and Delete_folio would be placed
here to revise this package for use with the tasks defined
in Appendixes F and G. To complete this revision, delete the
initialization section of the body part of this package.
These insertions are shown as comments below.

our_portfolio: portfolio_ptr ; Declares a variable of type
portfolio_ptr which can hold
a reference to a portfolio
instance.

function Create_folio (
portfolio_name: in long_string;
check: out boolean)

return portfolio_ptr;

procedure Delete_folio(
portfolio_name: in long_string;
check: out boolean) ;

end Club_Portfolio;

Club_ Portfolio body

Appendix C 329

pragma environment ("ClbPrt. spr", "PrtMgr. spr", "Txtlo. spr", "StkTypCon. spr",
"StkMktlnf. spr");

with Club_Portfolio, Portfolio_mgr, Stock_Mkt_lnfo, Text_lO,
Stock_Types_And_Constants;

package body Club_Portfolio is

our_portfolio: portfolio_ptr; Declares a variable of type
portfolio_ptr which can hold
a reference to a portfolio
instance.

The above declaration would be moved to the specification part
of this package to modify it for use with the tasks
in Appendixes F and G.

function Print_club_valuation
return dollars

is separate; _.- stub

procedure Print_club_holdings is separate; -- stub

function Fin~stoc~code(
corporate_name: in long_string)

return stoc~code_pair
is separate; .-- stub

-- calls on operation of stoc~Mkt_lnfo package

procedure Print_individual_stock_summary(
stock_code: in stoc~code_pair)

is separate; .-- stub

procedure Print_shares_and_value~of_stock(
stock_code: in stoc~code_pair)

is separate; ._- stub

procedure Print_average_cost (
stock_code: in stoc~code_pair)

is separate; ._- stub

procedure Pr int_ winners (
spread: in percent)

is separate; -- stub

330 A Programmer's View of the Intel 432 System

procedure Print_losers (
spread: in percent}

is separate; -- stub

procedure Print_non_movers(
spread: in percent}

is separate; -- stub

procedure Enter_buy(
purch_date: in date;
stock_code: in stoc~code_pair;
mIDl_shares: in natural;
per_sh_price: in dollars;
commission: in dollars}

is separate; -- stub

procedure Enter_sell (
sell_date: in date;
stock_code: in stoc~code_pair;
num_shares: in natural;
of_buy_date: in date;
sell_commiss: in dollars)

is separate; -- stub

Insert body parts of Create_folio and Delete_folio here if
revisions for use with tasks in Appendices F and G are made.
These are shown as comments below.

procedure Create_folio(
portfolio_name:
check:

is separate; -- stub

procedure Delete_folio (
portf olio_name:
check:

is separate; stub

in long _string;
out boolean)

in long_string;
ou t boolean)

Local declarations (of this package) go here:

package initialization
begin

our_portfolio : = Portfolio_Mgr. Create ("Twenty_cousins_clubAAAAAAAAAAA,,) ;
Reference to a newly allocated

-- portfolio instance, named
-- Twenty_cousins_club assigned
-- to our_portfolio.

Above initialization section would be removed when recompiling to
produce revisions for use with tasks defined in Appendices F and G.

end Club_Portfolio;

Appendix D
Selected operation bodies for Portfolio_Mgr

pragma environment ("PrtMgr. bdr", "PurQueMgr. spr", "StkTypCon. spr",
"StkMktlnf. spr") ;

separate (Portfolio._Mgr) Prefix to indicate to the compiler
that Portfolio_Mgr is the context
in which the following function

func ti on Create (

is

folio_name: in long_string)
return portfolio_ptr

folio_ptr: portfolio_ptr;
begin

is to be compiled.

Local reference variable.

folio_ptr := new portfolio; Allocates a new portfolio
instance and assigns a reference
to folio_ptr.

return folio_ptr;
end Create;

separate (Portfolio._Mgr)

procedure Record_buy(
folio_ptr:
buy_info:

is
num_diff_stocks
mark:

begin

: = folio_name;
-- Name now assigned to this portfolio.

Prefix to indicate to the compiler
that Portfolio_Mgr is the context
in which the following procedure
is to be compiled.

in portfolio_ptr;
in purchase_record)

integer renames folio_ptr.num_diff_stocks_held;
stoc~summary_ptr;

Determine, by a calIon the local function,
Search_for_stoc~code, whether the new purchase is
is for a held stock. If not held, assign a reference to
its stock summary to m~k; if not held, create and initialize
a new stock summary and assign a reference to it to mark.

mark: = Search_for_stock_code (folio_ptr,
buy_info.stoc~name,
create_if_not_found => true);

331

332 A Programmer's View of the Intel 432 System

-- Update the stock summary information.

mark.avg_cost_per_share := (mark.avg_cost_per_share *
dollars (mark. num_shares)

+ buy_info.per_share_price *
dollars (buy_info.num_shares)

+ buy_info. commission)

/ (dollars(mark.num_shares
+ buy_info. num_shares)) ;

mark.num_shares

-- Now add new item to purchase history queue
Add (buy_info, mark. purchase_history) ;

end Record_buy;

separate (Portfolio_Mgr) Prefix to indicate to the compiler
that Portfolio_Mgr is the context
in which the following procedure
is to be compiled.

procedure Record_sell (
folio_ptr:
sell_info:
history_underflow:

in portfolio_ptr;
in sale_record;
out boolean)

is
num_diff_stocks:
mark:

integer renames folio_ptr.num_diff_stocks_held;
stock_summary_ptr;

begin
Determine, by a calIon the local function,
Search_for_stock_code, whether the new purchase is for a
held stock such that the function will return a null
reference value if the stock is not held.

mark := Search_for_stoc~code(folio_ptr,
sell_info. stock_name,
create_if_not_found => false) ;

Value returned indicates search outcome.

if mark = null then No such stock held.
raise Exceeds_holdings; Exception propagates to caller.

elsif mark.num_shares < sell_info.nllmLshares then
raise Exceeds_holdings; -- Don't have enough shares to sell.

else
Remove purchase history records (as many as needed)
representing the holdings that must be sold) for which the
of_buy_date matches that given in sell_info. If not enough
stock held of that of_buy_date, raise Exceeds_holdings.
If there are leftover shares in a purchase record, put the
updated purchase_record back in the queue.
Update values of nUllLshares and average_cost_per_sh
in the stock_summary record.
Coding to accomplish all this is not included here.

null;
end if;

Appendix 0 333

exception
when Underflow ~ -- Raised in activation of

-- Purchase_Queue_Mgr.Remove.
history_underflow := true;

end Record_sell;

separate (PortfoliO_Mgr)
function Search_for_stock_code(

folio_ptr: in portfolio_ptr;
buy_record: in purchase_record;
create_if_not_found: in boolean)

return stoc~summary_ptr;

is

Function:
Searches portfolio denoted byfolio_ptr for presence of stock_code
the same as that given in buy_record. If the stock is found, a
reference to the stock summary for that held stock is returned.
If the stock is not found, the action to be taken depends on the value
of the input parameter create_if_not_found. If true, a new stock
summary is created, initialized, and added to the portfolio, and a
reference to it is returned. If create_if_not_found is false,
null is returned.

cursor : stock_summary_ptr;
begin

cursor := folio_ptr.stock_list;
Sets cursor to head of stock
summary list in portfolio.
Empty portfolio. if cursor "" null then

if create_if_not_found = true then
Allocate a new stock summary with

-- an initially empty purchase history
-- and add it to the portfolio.

: = new stock_summary;

return folio_ptr.stock_list;

else
return null;

end if;
else

Return reference to new stock summary.

Return null reference.

loop
if cursor. stock_name = buy_record then

return cursor;

else
cursor := cursor. next;
if cursor = null then

if create_if_not_found

Found stock_summary.
Return reference to existing
stock summary.

Advance one link in the chain.
Last stock summary in portfolio.

=. true then
Allocate a new stock summary with
an initially empty purchase history
and add it to the end of the portfolio.

334 A Programmer's View of the Intel 432 System

cursor.next :=new stoc~summary;
return cursor. next; Return reference to

new stock summary.
else

re turn null;
end if;

end if;
end if;

end loop;

Return null reference.

end if;
end Search_for_stoc~code;

separate (Portfolio_Mgr)

procedure Stoc~list(
folio_ptr: in
num_stocks: out
stocks: out

is
n: integer;

portfolio_ptr;
integer;
stocks_held_ptr)

cursor: stoc~summary_ptr;
begin
n:= folio_ptr.nllmLdiff_stocks_held; -- Get value from portfolio.

if n = 0
then

num_stocks: = 0;
stocks: = null;

else
stocks: = new stocks_held(num => n);

Create an instance of type stocks_held
-- whose arrays, name and nllmLshares,
-- are of length n.

cursor: = folio_ptr. stoc~list;
Initial value of cursor points to

-- first stock summary.

for i in 1 .. n
loop

stocks. name (i) := cursor.stoc~name;
stocks.nllmLshares(i) := cursor.nllmLshares;

-- Fill ith slot in each array.

cursor := cursor. next;

end loop;
end if;

end Stoc~list;

-- Advance the cursor.

separate (PortfoliO_Mgr)

folio_ptr:
stock_code:
num_shares:
avg_cost:

in portfolio_ptr;
in stoc~code_pair;
out integer;
out dollars)

Appendix D 335

is
cursor: stock_summary_ptr;

begin
cursor: = folio_ptr.stock_list; Initialize current_ptr

to refer to first stock_summary
in the portfolio.

while cursor 1= null and then
cursor. stock_name. stock_code 1= stoc~code loop

cursor : = ClU'sor. next; - - Advance to next summary.
end loop;

if cursor = null then -- No such stock
nwn_shares : = 0;
avg_cost : = 0;

else
nwn_shares : = cursor. nwn_shares;
avg_cost : = cursor. avg_cost_per_share;
end if;

end Shares_ancLavg_cost;

Selected operation bodies for Club_Portfolio

pragma environment ("ClbPrt. bdr", "PrtMgr. spr", "TxtIo. spr", "StkTypCon. spr",
"StkMktInf. spr");

separate (Club_Portfolio) Prefix to indicate to the compiler
that Club_Portfolio is the context
in which the following function
is to be compiled.

function Print_club_valuation
return dollars
is

-- local variable
stocks:
nwn:

check:
price:

total_ value:
code:

declarations:
stocks_helcLptr;
integer;
-- Values returned from calIon stock_list.
boolean;
dollars;
-- values returned from calIon Find_stock_price
dollars := 0; of the portfolio
stock_ code_pair;

no_price:
begin

exception;

Portfolio_Mgr.stock_listCfolio_ptr => our_portfolio,
nllmLstocks => nwn,

for i in 1 .. nwn
loop

stocks => stocks);

code: = stocks.name.stock_code(i); -- gets next stock_code_pair value
nwn:= stocks.nwn_shares(i); -- gets next nwn_shares value
Stock_Mkt_Irrfo.Find_stoc~price(code, price, check);

-- get price per share of this stock.
if not check then raise no_price; end if;
total_value: = total_value + dollars (nwn) * price;

end loop;

336 A Programmer's VIew of the Intel 432 System

-- Put(total_value); this kind of put is unimplemented
return total_value;

exception
when no_price => Put ("no price for");

Put(code); this kind of put is unimplemented.

Appendix E

Member _ Cps package, version 1

pragma environment ("ClbPrt. spr" , "stkTypCon.spr");

package Member_Ops is
use Club_Portfolio, stock_TYPes_And_Constants;

function Print_club_valuation
return dollars;

Function:
Prints total value of club's portfolio,
based on current market prices.

procedure Print_club_holdings;

Function:
For each held stock, prints:
number of shares held,
average per-share purchase price,
current per-share price,
current value of holdings in this stock.

function Find_stock_code(
corporate_name: in long_string)

return stock_code_pair; Returns the standard stock code, if any,
-- corresponding to the input argument.

Function:
Prints as well as returns the stock code (abbreviation for stock
and exchange where listed.)

procedure Print_individual_stock_summary(
stock_code: in stock_code_pair); -- standard code for stock

Function:
Prints slunmary info on held stock with given stock code
total no. of shares held, this stock, current per-share price and
current value of shares. Also, for each purchase of shares still
held, prints:

purchase date, no. of shares, per-share purchase price,
and commission.

procedure Print_shares_andLvalue_of_stock(
stock_code: in stock_code_pair) ;

Function:
For the given stock_code, prints the number of held shares,
current price per share, and total market value.

337

338 A Programmer's View of the Intel 432 System

procedure Print_average_cost(
stoc~code: in stoc~code_pair);

Function:
Prints, for the stock denoted by stock_code, the average cost,
including commissions, of all such stock now held.

procedure Print_winners (
spread: in percent) ; -- Percentage spread.

Prints list of held stocks for each of which, based on latest
market quotes, the club has a "paper" gain of spread percent
or more over average purchase cost for that stock (including
commission.)

procedure Print_losers (
spread: in percent) ; -- Percentage spread.

Function:
Analogous with Print_winners.

procedure Print_nonLmovers(
spread: in percent);

Function:

Percentage spread.

Lists stocks for which "paper" gain is less than spread. See
description of Print_winners.

end Member _ Ops;

Member _ Ops body part, version 1

package body Member_Ops is

-- The body of each subprogram declaration given here is a call to
-- the corresponding procedure in Club_Portfolio.

function Print_club_valuation
return dollars
is begin return Club_Portfolio.Print_club_valuation(); end;

procedure Print_club_holdings
is begin Club_Portfolio. Print_club_holdings; end;

function Fin~stoc~code(
corporate_name: in long_string)

return stoc~code_pair
is begin return Club_Portfolio.Fin~stoc~code(

corporate_name); end;

procedure Print_individual_stoc~summary(
stoc~code: in stoc~code_pair)

is begin Club_Portfolio.Print_individual_stoc~summary(
stock_code) ; end;

procedure Print_shares_and_value_Qf_stock(
stock_code: in stock_code_pair)

Appendix E 339

is begin Club_Portfolio. Print_shares_and_value_of_stock (
stock_code) ; end;

procedure Print_average_cost(
stoc~code: in stock_code_pair)

is begin Club_Portfolio. Print_average_cost(
stock_code); end;

procedure Print_winners (
spread: in percent)

is begin Club_Portfolio. Print_winners (
spread) ; end;

procedure Print_losers (
spread: in percent)

is begin Club_Portfolio. Print_losers (
spread); end;

procedure Print_non_movers(
spread: in percent)

is begin Club_Portfolio. Print_non_movers(
spread); end;

-- There are no local declarations here
-- and no initialization statements are required either.

end Member_Ops;

Member _ Ops, version 2
pragma environment("ClbPrt.spr", "stkTypCon.spr");

package Member_Ops is

The operations of this package are identical with those
-- like-named operations in the Club_Portfolio package.
-- Explanations of these functions are given in that package.

function Print_clllb_valuation
return dollars
renames Club_Portfolio. Print_club_valuation;

procedure Print_club_holdings
renames Club_Portfolio. Print_club_holdings;

function Find_stoc~code(
corporate_name: in long_string)

return stock_code_pair
renames Club_Portfolio.Fin~stoc~code;

procedure Print_individual_stock_sununary(
stoc~code: in stoc~code_pair) -- Standard code for stock.

renames Club_Portfolio.Print_individual_stoc~summary;

340 A Programmer's View of the Intel 432 System

procedure Print_shares_andlvalue_of_stock(
stock_code: in stock_code_pair)

renames Club_Portfolio. Print_shares_andlvalue_of_stock;

procedure Print_average_cost(
stock_code: in stoc~code_pair)

renames Club_Portfolio. Print_average_cost;

procedure Print_winners (
spread: in percent) -- TYPe percent declared in Club_Portfolio.

renames Club_Portfolio. Print_winners;

procedure Print_losers (
spread: in percent)

renames Club_Portfolio. Print_losers;

procedure Print_non_movers(
spread: in percent)

renames Club_Portfolio.Print_no~movers;

end Member _ Ops; -- There is no package body in this case.

Appendix F

Roster _ Types_And_ Constants package
may be used with either Figure 2-5 or Figure 3-2

subtype string _.of30 is string (1. .30) ;
type officers is (President, Vice_president, Secretary,

Treasurer, Member);
Example of an enumeration type definition.

type member_record is

string_of30;
officers;

record
member_name:
title:
soc_sec_no: integer range 000_00_0001 .. 99_999_9999;

Underscores within an integer literal are
-- are ignored by the Ada compiler.

end record;

mrucnUllLmembers: constant integer := 30;

Membership_Roster (owner) package
may be used with either Figure 2-5 or Figure 3-2

pragma environment ("RosTypCon. spr", "TxtIo. spr") ;

package Membership_Roster is

type roster is private; -- See definition below.

procedure Lookup_member (
member_name: in string_of30;
member_info: out member_record;
check: out boolean);

Function:
If a member_record is found whose name component matches
that of the input argument, member_name, then that
member_record is assigned to the output parameter,
member_info, and check is set true;
check is set false if no match is found.

341

342 A Programmer's VIew of the Intel 432 System

procedure List_of_members{
names_only: in boolean:= true;
check: out boolean) ;

Function:
When the input argument matching names_only is true,
prints the full list of the member names in alphabetical order.
When the names_only value is false, prints the full member_record
for each member, in alphabetical order by member name.

Requests for membership roster update

my_name:
new_member_name:
new_member _ inf 0:

check:

in string_of30;
in string_of30;
out member_record;
out boolean) ;

Function:
If the value of my_name matches the name of the secretary,
if the roster is not already full, and
if the value of new_member_name is not the same as the
name component in any current member's record, a new
member_record is added to the roster with the value of
new_member_info. If successful, check is set true, else
check is set false upon return.

procedure Update_member (
MY_name: in string_of30;
old_member_name: in string_of30;
old_member_info: out member_record;
check: out boolean) ;

Function:
If the value of my_name matches the name of the secretary,
and if the value of old_member_name is the same as the
name component in some current member's record, that record
is replaced in the roster with a record whose value is that of
new_member_info. If successful, check is set true, else
check is set false upon return.

procedure Delete_member (
my_name: in string_of30;
member_name: in string_of30;
check: out boolean);

private

Function:
If the value of my_name matches the name of the secretary,
and if the value of member_name is the same as the
name component in some current member's record, that record
is deleted from the roster. If successful, check is
set true, else check is set false upon return.

type roster is array (1 .. M~num_members) of member_record;

An instance of a roster is (assumed to be) instantiated in the
body part of this package.

Appendix F 343

end Membership_Roster;

Roster_Server task
for use with the Figure 2-5 structure

task Roster_Server is

Title queries

entry IS_President(
member_name: in string_of30;
check: out boolean) ;

Function:

The specification part for
the Roster_Server task referred to
in Figure 3-1

Calls Membership_Roster.Lookup_member to obtain
member's record.
Sets check true if member_name matches that of a member
whose title is President, else returns with check
set to false.

entry Is_Vice_president(
member_name: in string_of30;
check: out boolean);

Function:
Calls Membership_Roster.Lookup_member to obtain
member's record.
Sets check true if member name matches that of a member
whose title is Vice-president, else returns with check
set to false.

entry Is_Treasurer(
member_name: in string_of30;
check: out boolean) ;

Function:
Calls Membership_Roster.Lookup_member to obtain
member's record.
Sets check true if member_name matches that of a member
whose title is Treasurer, else returns with check
set to false.

entry Is_Secretary(
member_name: in string_of30;
check: out boolean) ;

Function:
Calls Membership_Roster. Lookup_member to obtain
member's record.
Sets check true if member_name matches that of a member
whose title is Secretary, else returns with check
set to false.

344 A Programmer's View of the Intel 432 System

General queries to the roster.

entry Lookup_member (
member_name: in string_of30;
member_info: out member_record;
check: out boolean);

Function:
Calls Membership_Roster.Lookup_member to acquire copy
of info on a member and sets check true if Lookup
succeeds. Returns with check set to false if
Lookup call "fails".

entry List_of_members{
names_only: in boolean:= true;
check: out boolean) ;

Function:
Calls Membership_Roster. List_of_members to print the
membership roster. If names_only is false, the full
member_record is printed for each member;
otherwise, only member names are printed.
Returns with check set to false if roster is empty;
else returns with check set to true.

Requests for membership roster update

entry Add_new_member(
my_name:
new_member_name:
new_member _ inf 0:

check:

Function:

in string_of30;
in string_of30;
out member_record;
out boolean) ;

Calls Membership_Roster.AddLnew_member to insert info on
a member into the membership roster.
Returns with check false if Add_new_member call "fails";
else returns with check set to true.
(Can fail if my_name does not match with the name of the
of the Secretary, or if there is already a member of the
given new_member_name in the roster, or if the roster is
already full.)

entry Update_member (
my_name:
old_member _name:
01 d_member _ inf 0:
check:

Function:

in string_of30;
in string_of30;
out member_record;
out boolean) ;

Calls Membership_Roster .. Update_rnember to modify info on an.
a current ("old") member in the membership roster.
Returns with check false if Update_member call "fails";
else returns with check set to true.
(Can fail if my_name does not match with the name of the
of the Secretary or if there is no such member of the
given old_member_name in the roster.)

entry Delete_member (
my_name:
member_name:
check:

Function:

in string_of30;
in string_of30;
out boolean) ;

Appendix F 345

Calls Membership_Roster.Delete_member to delete all info on
a current member in the membership roster.
Returns with check false if Delete member call "fails"·
else returns with check set to tru~. '
(Can fail if there isn't already a member of the given

member_name in the roster.)

end Roster_Server;

Portfolio_Server task for use with the Figure 2-5 structure

task Portfolio_Server is

Portfolio queries

entry Print_club_valuation(
value: out dollars);

Function:

The specification part for
the Portfolio_Server task referred to
in Figure 3-1

Calls the corresponding operation of Club_Portfolio to
print and "return" total value of portfolio instance,
based on current market prices. Note: in Ada, an entry
call may not implicitly return a value.
The value must be returned explicitly, as an in out
or out parameter of the entry.

Function:
Calls the corresponding operation in Club_Portfolio.

entry Find_stock_code(
corporate_name: in long_string;
stock.,.code: out stock_code_pair) ;

Function:
Calls the corresponding operation in Club_Portfolio.

entry Print_individual_stock.,.summary(
stock.,.code: in stock_code_pair);

Func;tion:
Calls the corresponding operation in Club_Portfolio.

346 A Programmer's View of the Intel 432 System

entry Print_shares_an~value_of_stock(
stock_code: in stock_code_pair);

Function:
Calls the corresponding operation in Club_Portfolio.

entry Print_average_cost(
stoc~code: in stock_code_pair);

Function:
Calls corresponding operation in Club_Portfolio.

entry Print_winners (
spread: in percent);

Function:

-- Percentage spread.

Calls the corresponding operation in Club_Portfolio.

entry Print_losers (
spread: in percent); -- Percentage spread.

Function:
Analogous with Print_winners.

entry Print_no~movers(
spread: in percent); -- Percentage spread.

Function:
Calls the corresponding operation in Club_Portfolio.

Note: All the following entries involve task calls on Roster_Server.
The individual membership Roster instance referenced
indirectly through Roster_Server is assumed to be created
upon initialization of the Membership_Roster package.

Portfolio update requests

entry Enter_buy (
my_name:
unauthorized:
purch_date:
stoc~code:
num_shares:
per_slLprice:
commission:

Function:

in string_of30;
out boolean;
in date;
in stoc~code_pair;
in natural;
in dollars;
in dollars);

Determines if member whose name is value of my_name
is authorized to update the Roster. If not, returns
with value of unauthorized still set to true. If yes, sets
unauthorized to false and then calls the corresponding
operation in Club_Portfolio.

entry Enter_sell (
in
out
in

string_of30;
boolean;
date;

in stock_code_pair;
in natural;
in

Appendix F 347

my_name:
unauthorized:
sell_date:
stock....code:
num_shares:
of_buy_date:
sell_commiss: in

date;
dollars) ; Selling commission is not

recorded in Roster,

Function:

but used to indicate net gain or
loss in confirmation copy.

Determines if person whose name is value of my_name
is authorized to update the Roster. If not, returns
with value of unauthorized still set to true. If yes, sets
unauthorized to false and then calls the corresponding
operation in Club_Portfolio.

Portfolio create and delete requests

entry President_create_folio(
my_name: in string_of30;
portfolio_name: in long_string;
unauthorized: out boolean) ;

Function:
Calls Roster_Server to determine if member whose name
is value of my_name is the current club President.
If not, returns with value of unauthorized still true.
If yes, sets unauthorized to false and then returns after
recording the portfolio name supplied. creation will not
actually be attempted until a sequence of three creation
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

entry Vice_president_create_folio(
my_name: in string_of30;
portfolio_name: in long_string;
unauthorized: out boolean);

Function:
Request at this entry accepted if and only if the
most recently accepted entry call was for
President_create_folio, and that call was authorized.
Calls Roster_Server to determine if member whose name
is value of my_name is the current club Vice-president.
If not, returns with value of unauthorized set to true.
If yes, sets unauthorized to false and then returns after
recording the portfolio name supplied. creation will not
actually be attempted until a sequence of three creation
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

348 A Programmer's VIew of the Intel 432 System

entry Treasurer_create_folio(
my_name:
portf 01 io_name:
unauthorized:
check:

Function:

in string_of30;
in long_string;
out boolean;
out boolean) ;

-- If set true, portfolio has been created.

Request at this entry accepted if and only if the two
most recently accepted entry calls were for
President_create_folio and Vice_president_create_folio
in that order, and if both were authorized calls.
Calls Roster_Server to determine if member whose name
is value of my_name is the current club Treasurer.
If not, returns with value of unauthorized still true.
If yes, sets unauthorized to false. The three supplied
portfolio names are checked. If all are not identical,
a return is executed (with check set to false.)
If they do match, then the Create_folio operation in
Club_Portfolio is called. If this call is successful
(new portfolio created), then check is set true; return to
Treasurer_create_folio's caller is then executed.

entry President_delete_folio{
my_name: in string_of30;
portfolio_name: in long_string;
unauthorized: out boolean) ;

Function:
Calls Roster_Server to determine if member whose name
is value of my_name is the current club President.
If not, returns with value of unauthorized set to true.
If yes, sets unauthorized to false and then returns after
recording the portfolio name supplied. Deletion will not
actually be attempted until a sequence of three deletion
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

entry Vice_president_delete_folio{
my_name: in string_of30;
portfolio_name: in long_string;
unauthorized: out boolean);

Function:
Request at this entry accepted if and only if the
most recently accepted entry call was for
President_delete_folio, and that call was authorized.
Determines if member whose name is value of my_name
is the current club vice-president.
If not, returns with value of unauthorized set to true.
If yes, sets unauthorized to false and then returns after
recording the portfolio name supplied. Deletion will not
actually be attempted until a sequence of three deletion
requests for the same portfolio name has been received, one
each from the three club officers: President, vice-president
and treasurer.

Appendix F 349

entry Treasurer_delete_folio(
my_name:
portf olio_name:
lUlauthor ized:
check:

in string_of30;
in long_string;
out boolean;
out boolean) ;

-- If set true, portfolio has been deleted.

Function:
Request at this entry accepted if and only if the two
most recently accepted entry calls were for
President_delete_folio and Vice_president_delete_folio
in that order, and if both were authorized calls.
Calls Roster_Server to determine if member whose name
is value of my_name is the current club Treasurer.
If not, returns with value of lUlauthorized set to true.
If yes, sets lUlauthorized to false. The three supplied
portfolio names are checked. If all are not identical,
a return is executed (with check still set to false.)
If they do match, then the Delete_folio operation in
Club_Portfolio is called. If this call is successful
(portfolio deleted), then check is set true; return to
Treasurer_delete_folio's caller is then executed.

Membership Roster queries

entry Lookup_member(
member_name: in string_of30;
member_info: out member_record;
check: out boolean) ;

Function:
Calls Roster_Server.Lookup_member to acquire copy of
info on a member. Returns with check set to false,
if lookup call "fails" else with check set to true.

entry List_of_members(
names_only: in boolean: = true;
check: out boolean) ;

Function:
Calls Roster_Server.List_of_members to print the membership
Roster. If names_only is false, the full member_record
is printed for each member and returns with check
set to true; otherwise, only member names
are printed. Returns with check false Portfolio is empty.

Membership Roster updates

entry Add_new_member(
my_name:
new_member_name:
new_member_info:
check:.

in string_of30;
in string_of30;
out member_record;
out boolean) ;

350 A Programmer's View of the Intel 432 System

Function:
calls Roster_Server.Add_new_member to insert info on
a member into the membership Roster.
Returns with check false if Add_new_member call "fails";
else returns with check set to true.
(Can fail if my_name does not match with the name of the
of the Secretary or if there is already a member of the
given new_member_name in the Roster, or if the Roster is
already full.)

entry Update_member (
my_name:
old_member_name:
old_member_info:
check:

Function:

in string_of30;
in string_of30;
out member_record;
out boolean) ;

Calls Roster_Server.Update_member to modify info on an
a current ("old") member in the membership Roster.
Returns with check false if Update_call "fails";
else returns with check set to true.
(Can fail if my_name does not match with the name of the
of the Secretary or if there is no such member of the
given old_member_name in the Roster.)

entry Delete_member (
my_name: in string_of30;
member_name: in string_of30;
check: out boolean) ;

Function:
calls Roster_Server.Delete_member to delete all info on
a current member in the membership Roster.
Returns with check false if Delete_call "fails";
else returns with check set to true.
(Can fail if there isn't already a member of the given
member_name in the Roster.)

end Portfolio_Server;

Portfolio_ Server body part

pragma environment ("TskMst2-5. spr", "Txtlo. spr", "MemRos. spr",
"RosTypCon.spr", "ClbPrt.spr", "StkTypCon.spr");

separate (Task_Master) Prefix to indicate to the compiler
that Tas~Master is the context

task body Portfolio_Server is

check_boolean: boolean;

in which the following task
is to be compiled.

Used in Create and Delete
accepts.
Used in predicates

begin

loop

select

Accepts for portfolio queries

or

or

or

or

accept Print_club_valuation(
value: out dollars)

do
value :=Club_Portfolio.Print_club_valuation();

end Print_club_valuation;

accept Print_club_holdings
do

Club_Portfolio. Print_club_holdings;
end Print_club_holdings;

accept Find_stoc~code(
corporate_name: in long_string;
stock_code: out stock_code_pair)

do
stock...,code :=
Club_Portfolio.Find_stock_code(corporate_name);

end Find_stock_code;

accept Print_individual_stock_summary(
stock_code: in stock_code_pair)

do
Club_Portfolio.Print_individual_stoc~summary(

stock_code) ;
end Print_individual_stock_summary;

do

Appendix F 351

Club_Portfolio. Print_shares_and_value_of_stock(stock_code);
end Print_shares_and_ value_of_stock;

or

accept Print_average_cost(
stoc~code: in stock_code_pair)

do
Club_Portfolio.Print_average_cost(stock_code);

end Print_average_cost;

352 A Programmer's VIew of the Intel 432 System

or

accept Print_winners (
spread: in percent) -- Percentage spread.

do
Club_Portfolio.Print_winners(spread);

end Print_winners;

or

accept Print_losers (

or

or

spread: in percent) -- Percentage spread.

do
Club_Portfolio.Print_losers(spread);

end Print_losers;

accept Print_non_movers(
spread: in percent)

do
-- Percentage spread.

Club_Portfolio. Print_non_movers (spread) ;
end Print_non_movers;

Accepts for Roster update requests

or

accept Enter_buy (

do

my_name:
unauthorized:
purch_date:
stock_code:
nUIILshares:
per_sh_price:
commission:

in string_of30;
out boolean;
in date;
in stock_code_pair;
in natural;
in dollars;
in dollars)

Roster_server. Is_Treasurer (my_name, check-boolean) ;
if check_boolean then

Club_Portfolio. Enter_buy (purch_date,
stock_code,
nUIILshares,
per_sh_price,
commission) ;

unauthorized := false;
else

unauthorized := true;
end if;

end Enter_buy;

accept Enter_sell (
my_name:
unauthorized:
sell_date:
stock_code:
num_shares:
of_buy_date:
sell_commiss:

in string_of30;
out boolean;
in date;
in stock-code_pair;
in natural;
in date;
in dollars)

or

Appendix F 353

do
Roster_Server.ls_Treasurer(my_name,check_boolean);
if chec~boolean then

Club_Portfolio. Enter_sell (sell_date,
stock_code,
mUILshares,
of_buy_date,
sell_commiss);

unauthorized := false;
else

unauthorized := true;
end if;

end Enter_sell;

Roster create and delete requests

accept President_create_folio(
my_name: in string_of30;
portfolio_name: in string_of30;
unauthorized: out boolean)

do
Roster_Server. Is_President(my_name,check_boolean);
if check_boolean then

local_name_l : = portfolio_name; Save copy of portfolio_name
for checking on subsequent
accepts.

unauthorized := false;
else

unauthorized := true;
end if;

end President_create_folio;

-- Sequel of two accepts begins here.

accept Vice_president_create_folio(
my_name: in string_of30;
portfolio_name: in string_of30;
unauthorized: out boolean)

do
Roster_Server. Is_Vice_president(my_name,chec~boolean);
if check_boolean and local_name_l = portfolio_name then

10cal_name_2 :=portfolio_name; Save copy of portfolio_name
for checking on subsequent
accept.

unauthorized := false;
else

unauthorized := true;
end if;

end Vice_president_create_folio;

354 A Programmers View of the Intei432 System

or

accept Treasurer_create_folio(
my_name:
portfolio_name:
unauthorized:
check:

in string_of30;
in string_of30;
out boolean;
out boolean)

-- If set true, portfolio has been created.
do
Roster_Server.Is_Treasurer(my_name,chec~boolean);
if check_boolean

and local_name_l = portfolio_name
and local_name_2 = portfolio_name then

unauthorized: = false;
Club_Portfolio. Create_folio (portfolio_name, check);

Portfolio is created if
check is returned with

-- the value, true.
else

unauthorized := true;
end if;

end Treasurer_Create_folio;

End of sequel (end chain of three accepts).

accept President_delete_folio(
my_name: in string_of30;
portfolio_name: in string_of30;
unauthorized: out boolean)

do
Roster_Server.Is_President(my_name,chec~boolean);
if check_boolean then

local_name_l :=portfolio_name; Save copy of portfolio_name
for checking on subsequent
accepts.

unauthorized := false;
else

unauthorized := true;
end if;

end President_delete_folio;

-- Sequel of two accepts begins here.

accept Vice_president_delete_folio(
my_name: in string_of30;
portfolio_name: in string_of30;
unauthorized: out boolean)

do
Roster_Server.Is_Vice_president(my_name,chec~boolean);
if chec~boolean

and local_name_l = portfolio_name
local_name_2 :=portfolio_name;

unauthorized := false;
else

unauthorized: = true;
end if;

end Vice_president_delete_folio;

then
Save copy of portfolio_name
for checking on subsequent
accept.

Appendix F 355

accept Treasurer_delete_folio(
my_name:
portfolio_name:
unauthorized:
check:

in string_of30;
in string_of30;
out boolean;
out boolean)

-- If set true, portfolio has been deleted.
do

Roster_Server.Is_Treasurer(my_name,check_boolean);
if check_boolean

or

and local_name_l = portfolio_name
and local_name_2 = portfolio_name then

unauthorized := false;
Club_Portfolio. Delete_folio (portfolio_name, check);

Portfolio is deleted if
check is returned with

-- the value, true.
else

unauthorized := true;
end if;
end Treasurer_delete_folio;

End of sequel (end chain of three accepts).

Membership Roster query requests

or

or

accept Lookup_member (

do

member_name: in string_of30;
member_info: out member_record;
check: out boolean)

Roster_Server. Lookup_member (member_name,
member_info, check);

end Lookup_member;

accept List_of_members(
names_only: in boolean:= true;
check: out boolean)

do
Roster_Server. List_of_members (names_only, check);

end List_of_members;

356 A Programmer's View of the Intel 432 System

Membership Roster updates

or

or

do

my_name:
new_member _name:
new_member_info:
check:

in string_of30;
in string _of30;
out member_record;
out boolean)

Roster_Server. AddLnew_member (my_name,
new_member_name,
new_member _ inf 0,

check) ;
end AddLnew_member;

accept Update_member (
my_name:
old_member_name:
old_member _ inf 0:

check:
do

in string _of30;
in string_of30;
out member_record;
out boolean)

Roster_Server. Update_member (my_name,
old_member _name,
01 d_member _ inf 0,
check) ;

end Update_member;

accept Delete_member (
my_name: in
member_name: in

string_of30;
string_of30;

check: out boolean)
do

Roster_Server. Delete_member (my_name,
member_name,
check) ;

end Delete_member;

end select;

end loop;

end Portfolio_Server;

Roster_Server task for use with the Figure 3-2 structure

task Roster_Server is The specification part for
the Roster_Server task referred to
in Figure 3-1

General queries to the roster.

en try Lookup_member (
member_name: in long_string;
member_info: out member_record;
check: out boolean) ;

Function:
Calls Membership_Roster.Lookup_member to acquire copy
for info on a member and sets check true if Lookup
succeeds. Returns with check set to false if
Lookup call "fails", else returns with check set to true.

entry List_of_members(
names_only: in boolean:= true;
check: out boolean) ;

Function:
Calls Membership_Roster. List_of_members to print the
membership roster. If names_only is false, the full
member_record is printed for each member;
otherwise, only member names are printed.
Returns with check set to false if roster is empty;
else returns with check set to true.

Requests for membership roster update

entry Add_new_member(
new_member _name:
new_member _ inf 0:

check:

Function:

in long_string;
out member_record;
out boolean) ;

Calls Membership_Roster.Add_new_member to insert info on
a member into the membership roster.
Returns with check false if Add_new_member call "fails";
else returns with check set to true.
(Can fail if there is already a member for the given
new_member_name in the roster, or if the roster is
already full.)

357

358 A Programmer's View of the Intel 432 System

entry Update_member (
old_member _name:
old_member_info:
check:

Ftmction:

in long _string;
out member_record;
out boolean) ;

Calls Membership_Roster.Update_member to modify info on an
a current ("old") member in the membership roster.
Returns with check false if Update_member call "fails";
else returns with check set to true.
(Fails if there is no such member for the given
old_member_name in the roster.)

entry Delete_member (
member_name: in long_string;
check: out boolean) ;

Ftmction:
Calls Membership_Roster.Delete_member to delete all info on
a current member in the membership roster.
Returns with check false if Delete_member call "fails";
else returns with check set to true.
(Fails if there isn't already a member for the given

member_name in the roster.)

end Roster_server;

Portfolio_Server task
for use with the Figure 3-2 structure

task Portfolio_Server is

Portfolio queries:

entry Print_club_valuation(
value: out dollars) ;

Ftmction:

The specification part for
the Portfolio_Server task referred to
in Figure 3-1

Calls the corresponding operation for Club_Portfolio to
print and "return" total value for portfolio instance,
based on current market prices. Note: in Ada, an entry
call may not implicitly return a value.
The value must be returned explicitly, as an in out
or out parameter for the entry.

Ftmction:
Calls the corresponding operation in Club_Portfolio.

entry Find_stock_code(
corporate_name: in long_string;
stock_code: out stock_code_pair);

Ftmction:
Calls the corresponding operation in Club_Portfolio.

Appendix G 359

entry Print_individual_stoc~summary(
stock_code: in stock_code_pair) ;

Function:
Calls the corresponding operation in Club_Portfolio.

entry Print_shares_and_value_of_stock(
stock_code: in stock_code_pair) ;

Function:
Calls the corresponding operation in Club_Portfolio.

entry Print_average_cost(
stock_code: in stock_code_pair);

Function:
Calls corresponding operation in Club_Portfolio.

entry Print_winners (
spread: in percent) ; -- percentage spread

Function:
Calls the corresponding operation in Club_Portfolio.

entry Print_losers (
spread: in percent) ; -- percentage spread

Function:
Analogous with Print_winners.

entry Print_non_movers(
spread: in percent) ; -- percentage spread

Function:
Calls the corresponding operation in Club_Portfolio.

Portfolio update requests:

entry Enter_buy (
purch_date: in date;
stock_code: in stoc~code_pair;
num_shares: in natural;
per_sh_price: in dollars;
commission: in dollars);

Function:
Calls the corresponding operation in Club_Portfolio.

entry Enter_sell (
sell_date: in date;
stock_code: in stoc~code_pair;
num_shares: in natural;
of_buy_date: in date;
sell_commiss: in dollars);

Function:

Selling commission is not
recorded in portfolio,
but used to indicate net gain or
loss in confirmation copy.

Calls the corresponding operation in Club_Portfolio.

360 A Programmer's View of the Intel 432 System

-- Portfolio create and delete requests:

entry President_create_folio(
portfolio_name: in long_string;
check_point: out boolean) ;

Function:
Returns after recording supplied value for portfolio_name
and setting the value for chec~point to true.
Creation will not actually be attempted until a sequence
for three creation requests for the same portfolio_name
been received, one each from the three officers: President,
Vice-president, and Treasurer.

entry Vice_president_create_folio(
portfolio_name: in long_string;
check_point: out boolean) ;

Function:
Request at this entry accepted if and only if the
most recently accepted entry call was for
President_create_folio.
Returns after recording supplied value for portfolio_name
and setting the value for check_point to true.
Creation will not actually be attempted until a sequence
for three creation requests for the same portfolio_name
been received, one each from the three officers: President,
Vice-president, and Treasurer.

entry Treasurer_create_folio(
portfolio_name: in long_string;
check: out boolean) ;

-- If set true, portfolio has been created.

Function:
Request at this entry accepted if and only if the two
most recently accepted entry calls were for
President_create_folio and Vice_president_create_folio
in that order. The three supplied portfolio names
are now checked. If all are not identical,
a return is executed (with check set to false.)
If they do match, then the Create_folio operation in
Club Portfolio is called. If this call is successful
(new-portfolio created), then check is set true; return to
'l'reasurer_create_folio's caller is. then executed.

entry President_delete_folio(
portfolio_name: in long_string;
check_point: out boolean) ;

Function:
Returns after recording supplied value for portfolio_name
and setting the value for chec~point to true.
Deletion will not actually be attempted until a sequence
for three deletion requests for the same portfolio_name
been received, one each from the three of'ficers: President,
Vice-president, and Treasurer.

entry Vice_president_delete_folio(
portfolio_name: in long_string;
check....point: out boolean) ;

Function:

AppendIx G 361

Request at this entry accepted if and only if the
most recently accepted entry call was for
President_delete_folio.
Returns after recording supplied value for portfolio_name
and setting the value for check_point to true.
Deletion will not actually be attempted until a sequence
for three deletion requests for the same portfolio_name
been received, one each from the three officers: President,
Vice-president, and Treasurer.

entry Treasurer_delete_folio(
portfolio_name: in long_string;
check: out boolean) ;

-- If set true, portfolio has been created.

Function:
Request at this entry accepted if and only if the two
most recently accepted entry calls were for
President_delete_folio and Vice_president_delete_folio
in <that order. The three supplied portfolio names
are now checked. If all are not identical,
a return is executed (with check set to false.)
If they do match, then the Delete_folio operation in
Club_Portfolio is called. If this call is successful
(portfolio deleted), then check is set true; return to
Treasurer_delete_folio's caller is then executed.

end Portfolio_Server;

Portfolio_ Server

body part

pragma environment ("TskMst3-2. spr" , "ClbPrt.spr", "StkTypCon.spr");

separate (Task_Master) Prefix to indicate to the compiler
that Task....Master is the context
in which the following task
is to be compiled.

task body Portfolio_Server is

local_name_l, local_name_2: long_string; -- Used in Create and Delete
-- accepts.

362 A Programmer's View of the Intel 432 System

begin

loop

select

Accepts for portfolio queries

or

or

or

or

or

or

accept Print_club_valuation(
value: out dollars)

do
value := Club_Portfolio. Print_club_valuation() ;

end Print_club_valuation;

accept Print_club_holdings
do

Club_Portfolio. Print_club_holdings;
end Print_club_holdings;

accept Find_stock_code(
corporate_name: in long_string;
stock_code: out stock_code_pair)

do
stock_code :=
Club_Portfolio. Find_stock_code (corporate_name) ;

end Find_stoc~code;

accept Print_individual_stoc~summary(
stock_code: in stock_code_pair)

do
Club_Portfolio.Print_individual_stoc~summary(

stock_code) ;
end Print_individual_stock_summary;

accept Print_shares_and_value_of_stock(
stock_code: in stock_code_pair)

do
Club_Portfolio. Print_shares_and-value_of_stock(stock_code) ;

end Print_shares_and_value_of_stock;

accept Print_average_cost(
stock_code: in stock_code_pair)

do
Club_Portfolio. Print_average_cost (stock_code) ;

end Print_average_cost;

accept Print_winners (
spread: in percent) -- percentage spread

or

or

do
Club_Portfolio.Print_winners(spread);

end Print_winners;

accept Print_losers (
spread: in percent)

do
-- percentage spread

Club_Portfolio. Print_losers (spread) ;
end Print_losers;

accept Print_no~movers(
spread: in percent)

do
-- percentage spread

Club_Portfolio.Print_no~movers(spread) ;
end Print_no~movers;

or

Accepts for portfolio update requests

or

or

accept Enter_buy (

do

purch_date: in date;
stock_code: in stock_code_pair;
nUl1Lshares: in natural;
per_shLprice: in dollars;
commission: in dollars)

Club_Portfolio. Enter_buy (purch_date,
stock....code,
nUl1Lshares,
per _sh_pr i ce,
commission) ;

accept Enter_sell (

do

sell_date: in date;
stock....code: in stock....code_pair;
nUl1Lshares: in natural;
of_buy_date: in date;
sell_connniss: in dollars)

Club_Portfolio. Enter_sell (sell_date,
stock_code,
nUl1Lshares,
of_buy_date,
sell_commiss) ;

end Enter_sell;

Appendix G 363

364 A Programmer's View of the Intel 432 System

Portfolio create and delete requests

or

accept President_create_folio(
portfolio_name: in long_string;
check_point: out boolean)

do

check_point := true;
end President_create_folio;

-- Sequel for two accepts begins here.

accept Vice_president_create_folio(
portfolio_name: in long_string;

do
check_point: out boolean)

if local_name_l = portfolio_name
local_name_2 := portfolio_name;

check_point := true;
else

check_point := false;
end if;

end Vice_president_create_folio;

accept Treasurer_create_folio(
portfolio_name: in long_string;
check: out boolean)

Save copy for portfolio_name
for checking on subsequent
accepts.

then
Save copy for portfolio_name
for checking on subsequent
accept.

-- If set true, portfolio has been created.
do

if local_name_l = portfolio_name
and local_name_2 = portfolio_n~e then

Club_Portfolio. Create_folio (portfolio_name, check);
Portfolio is created if
check is returned with

-- the value, true.
end if;

end Treasurer_Create_folio;

End for sequel (end chain for three accepts).

accept President_delete_folio(
portfolio_name: in long_string;
check_point: out boolean)

do

check_point := true;
end President_delete_folio;

Save copy for portfolio_name
for checking on subsequent
accepts.

Sequel for two accepts begins here.

accept Vice_president_delete_folio(
portfolio_name: in long_string;

do
chec~point: ou t boolean)

if local._name_l = portfolio_name
local_name_2 := portfolio_name;

check_point := true;
else

check_point := false;
end if;

end Vice_president_delete_folio;

accept Treasurer_delete_folio (
portfolio_name: in long_string;
check: out boolean)

Appendix G 365

then
Save copy for portfolio_name
for checking on subsequent
accept.

-- If set true, portfolio has been deleted.
do

if local_name_l = portfolio_name
and local_name_2 = portfolio_name then

Club_Portfolio. Delete_folio (portfolio_name, check);
Portfolio is deleted if
check is returned with

-- the value, true.
end if;

end Treasurer_delete_folio;

-- End for sequel (end chain for three accepts).

end select;

end loop;

end Portfolio_Server;

Appendix H
PackageTyped_Po~s

of the
iMAX Operating System

with iMAX_Definitions;
package Typed_Ports is

366

Function:
Typed_Ports consists of three packages which provide the user
with a high level (Ada typed) view of ports, carriers and other
operations.
Private sections are not shown in this Appendix.

use i~Definitions;

generic
type user_message is private; All messages that this package

deals with are of this type.

Function:
This package provides definitions and operations that enable
the user to create ports, and do simple operations on those
ports involving only messages of type "user_message".

type user_port is private;

type q_discipline is (

Max number of messages
in a port's message.
queue

Ports of this type can only be used
with type user_message.

FIFO, First_in_first_out, also default q_discipline.
priority); Within same priority, FIFO is used.

no_send_rights:
no_receive_rights:

exception;
exception;

function Has_sendlrights(
prt : user_port)

return boolean;

Function:

User_port whose sendlrights
are to be checked.
Result of inquiry.

Returns true if the specified port has send rights.

Appendix H 367

function Has_receive_rights(
prt : user_port) User_port whose receive_rights

are to be checked.
return boolean; Result of inquiry.

Function:
Returns true if the specified port has receive rights.

function Create (
message_ count:

port_discipline:

sro:

return user __ port;

Function:

short_ordinal range 1 .. m~message_count;
Max number of
messages in the
port's message
queue.

q_discipline : = FIFO; Organization of
the port's message
queue.

storage_resource := null) SRO used in the
creation.
User port that is
created.

A user_port with the specified message_count and the specified
message queue discipline is created. The SRO used in the
creation defaults to the default_global_heap_SRO.

procedure Send(
prt: user_port;
msg: user_message) ;

Function:

Port to which a message is to be sent.
Message that is to be sent.

The specified, user_message is sent to the specified
user_port. In case the send cannot succeed immediately,
the calling process will sendlblock.

procedure Con~send(
prt: user_port;
msg: user_message;
suc: out boolean) ;

Function:

Port to which a message is to be sent.
Message to be sent.
True if send succeeded, false otherwise.

An attempt is made to send the specified message to the
specified port. If the send cannot succeed immediately, then
false will be returned, otherwise true.

procedure Receive(
prt: user._port;

msg: out user_message);

Function:

Port from which a message is to be
received.
Received message.

A message will be received from the specified user_port. The
calling process will be delayed until the receive succeeds.

368 A Programmer's View of the Intei432 System

procedure Cond_receive(
prt: user_port;

msg: out user_message;
suc: out boolean) ;

Function:

Port from which a message is to be
received.
Received message, if any.
True if message was received, false
otherwise.

An attempt is made to receive a message from the specified
user_port. If the receive cannot cusseed immediately, false
be returned. Otherwise true is returned together with the
received message.

generic
type user_message is private;

type user_carrier_id is private;

Type of message as
specified by the user.
Type of carrier_id as
specified by the user.

package Carrier_Def is

Function:
Definitions and operations on carriers are provided in
this package.

type user_carrier is private;

function Create (
id: user_carrier_id;
pri: short_ordinal:= 0;

User_carriers can only carry
messages of type user_message.

Carier will have this id
priority.

sro: storage_resource:= null)
return user_carrier;

SRO used for creation
carrier that is created.

Function:
A user_carrier with the specified id and priority is
created. The SRO used for the creation defaults to the
default_global_heap_SRO of the calling process.

procedure Get_carrier_message(
car: user_carrier;

msg: out user_message) ;

Function:

Carrier from which we want to
extract a message.
Message previously received by
the carrier.

The message most recently received by the specified
user_carrier is returned. This operation will null the
message of the user_carrier.

function Get_carrier_id(
car: user_carrier)

return user_carrier_id;

Function:

Carrier whose id is requested.
Id of the carrier.

The id of the specified carrier is returned.

procedure Set_carrier_priority(
car_id: user_carrier_id;
pr i : short_ ordinal : = 0) ;

Ftmction:

Appendix H 369

Sets priority of a carrier specified by "car_id"
to the value given by "pri". If no value for "pri" is
given, the default value, zero, is supplied.

end Carr ier _Def ;

generic
type user_port is private;

type user_message is private;

type user_carrier is private;

Port capable of handling
user_messages.

type user_carrier_port is private;

TYPe of messages as
specified by the user.
Carrier capable of
carrying user_messages.
Port capable of handling
user_carriers.

Ftmction:
This package contains surrogate port operations.

Note:
It is the programmers' responsibility when instantiating
packages of this generic package, to provide generic
parameters that are in correct relation to one another.

no_send_rights:
no_receive_rights:
no_use_rights:

exception;
exception;
exception;

procedure Surrogate_send(
prt: user_port;

msg: user_message;
car: user_carrier;

Ftmction:

Port to which a user_message
is to be sent.
Message that is to be sent.
Carrier used in surrogate
operation.
Destination port where carrier
will be sent (as a message)
after the message is sent.

The specified message will be sent to the specified port.
In cxase the send cannot suceed immediately, then the
specified carrier will block. When eventually the send
succeeds, the carrier will be sent to the specified port.

370 A Programmer's VIew of the Intel 432 System

procedure Surrogate_receive(
prt : user_port;

car: user_carrier;

Ftmction:

Port from which a message is
to be received.
Carrier used in surrogate
operation.
Destination port where carrier
will be sent (a message)
after receiving a message.

The specified carrier will receive a message from the
specified port. If the receive cannot succeed immediately,
the carrier will block. When eventually the receive
succeeds, the carrier carrying the received message will
be sent to the specified destination port.

end Type<l.Ports;

Appendix I
Package Extended_ Type_Manager
of the
iMAX Operating System

[AUTIlOR'S NaTE: When the manuscript for this book was completed, the iMAX package
for this appendix was undergoing revision. The package given here is comparable to but
not identical with the actual version used in iMAX.]

with Descriptor_Definitions, iMAX_Definitions;
package Extended~TYPerManager is

Function:
This pack.age provides operations for creation and manipulation
of type_definition objects, type definition objects,
and extended_type objects.

use iMAX_Definitions;

type rights is range 0 .. 1;

no_create_rights:
no_amplify_rights:
type_faul t:

exception;
exception;
exception;

procedure Create_type(
len_d: short_ordinal;
le~a: short_ordinal;
sro: storage_resource:= null)
tco: out type_control;
tdo: out type_definition)

Function:

TOO data part in bytes.
TOO access part in 32-bit words.
SRO used in creation.
Created TYPe Control Object.
Created TYPe Definition Object.

A type_control object for an Extended TYPe Object is created
containing an AD for the TYPe Definition Object also created
in this procedure. The type_definition object is created with
specified lengths for data (le~d) and access (len_a) parts.
The object is created from the specified SRO which defaults
to the default_global_heap_sro.

371

372 A Programmer's View of the Intel 432 System

function Create_extended_type(
len_d: short_ordinal;
len_a: short_ordinal;

In bytes.
In 32-bi t words.

tco: type_control;
sro: storage_resource:= null)

return type_definition;

A TCO_AD with create rights.
SRO used in creation.
Created Type Definition Object.

Function:
An Extended Type Object is created with specified lengths
for data (len_d) and access (len_a) parts, and with a
specifiedAD for a Type Control Object (tco).
The specified TCO_AD must have create_rights.
If not, a no_create_rights exception is raised.
The object is created from the specified
SRO which defaults to the default_global_heap_sro.

function Retrieve_type_definition(
ext_type: extended_type) Extended_type object whose

type_definition is requested.
return type_definition; Type_definition of extended_type

object.

Function:
This function returns an AD for type_definition object
given the specified AD (ext_type) for an Extended Type
Object. The returned type_definition object access
descriptor has no defined type rights but does contain
base rights.

procedure Restrict_rights (
ext_type: in out
type_right_1:
type_right_2 :
type_right_3:
delete_rights:
unchecked_ copy _r ights:
read_rights:
wri te_rights:
tco:

Function:

extended_ type;
rights: = 1;
right : = 1;
rights: = 1;
rights: = 1;
rights: = 1;
rights: = 1;
rights: = 1;
type_control) ;

Removes the right(s) from the specified AD for an
Extended Type Object (ext_type). If a particular right
is not specified, it is not removed.

procedure Amplify_rights (
ext_type: in out
tco:

Function:

ext ende <l. type;
type_control) ; -- with amplify rights.

Amplifies the right(s) from the specified AD for an
Extended Type Object (ext_type). The specified TCO_AD (tco)
must have amplify rights. If not, a no_create_rights
exception is raised. If the TOO_AD in the specified TCO
does not match the TOO_AD in the specified Extended Type Object,
a type_fault exception is raised.

Appendix J
Package 10_ Definitions
of the
iMAX Operating System

with iMAX_Definitions;

package la_Definitions is

Ftmction:
This package contains definitions common to the synchronous and
asynchronous I/O interfaces.

use iMAX_Defini tions;

type abstraction_description is
record

abstraction_name: array (1 .. 30) of character;
abstraction_type: type_description;

end record;

type abstractions_.array is array (1 .. 10) of abstraction_description;

type query_record_rep is
record

device_name: print_name;
buffer_length: short_ordinal;
fixed_length: boolean;

device_number: short_ordinal;
AP _number: short_ ordinal;
abstractions: abstractions_array;

end record;

Printable device identifier.
Preferred buffer length minus one.
True if "preferred" length
is required.
Unique system device identifier.
Controlling attached processor ID.
Description of supported
abstractions.

type query_record is access query_record_rep;

end la_Definitions;

373

374 A Programmer's View of the Intel 432 System

Package Synchronous_IO_lnterfaces
of the
iMAX Operating System

with Asynchronous_la_Interface, i~Definitions,
IO_Defini tions;

package Synchronous_la_Interfaces is

Function:
This package includes definitions of the standard synchronous
I/O interfaces and related types.

use la_Definitions;

-- Exceptions

end_of_file: exception;
transformatio~not_allowed: exception;

exception;

transf er _ error: exception;

No more input data.
TransformLinterface was
called with an unrecognized
new interface type.
The specified operation is
not recognized by the driver
or support routine.
An I/O or protocol error
detected during a data transfer.

subtype xfer_range is integer range 0 .. 2**16;
-- Up to 65,636 bytes can be transferred
-- with one operation.

The following set of operations is required of all synchronous I/O
Interfaces.

type Basic_la_Interface is access package

Function:
This package type defines the mInImum synchronous interface.
It must be provided for all devices. It includes only routines
for determining and changing device interface characteristics
and closing the interface.

function Interface_description
return query_record; -- static interface description

procedure Close;

Function:
This routine renders the interface unusable, after first
flushing any buffers and completing any outstanding
operations. Any further operations will cause an error.

Appendix J 375

procedure Reset;

Function:
This routine reintializes the interface. The effect of
Reset is device-dependent.

function TransformLinterface(
new_interface_type: type_description) -- type of the new interface

return dynamic_typed;

Function:
This routine returns a new, possibly expanded or restricted
view, of this I/O interface. The transformations allowed can
be determined by calling Get_Interface_Characteristics.

function Get_asynchronous_interface
return Asynchronous_10_Interface. connection;

Function:
This function returns a package which implements the standard
Asynchronous device interface.

type Source is access package

Function:
This package type defines the synchronous source interface

The following functions and procedures are described in the
Basic_10_interface package.

function Interface_description
return query_record;

procedure Close;

procedure Reset;

function Transform_interface (
new_interface_type: type_description) -- type of the new interface

return dynamic_typed;

function Get_asynchronous_interface
return Asynchronous_10_Interface. connection;

-- End of basic package.

376 A Progratnmer's View of the Intel 432 System

procedure Read (
data_access: i~Definitions.dynamic_typed;

offset:

requested_length: xf er _range;

returned_length: out xfer_range) ;

Function:

Access for object
containing buffer offset.
Offset of buffer
wi thin obj ect.
Number of bytes
to transfer.
Number of bytes
actually transferred.

This routine does a device dependent read operation, controlled
by the interface characteristics buffer_length and fixed_length.

The number of bytes returned will be less than or equal to that
requested when fixe~length is false. The end_of_file
exception is raised when there is no more data (returned_length
is zero).

The number of bytes returned is a multiple of the preferred
buffer length (buffer_length plus one) when fixed_length is true.
The operation_not_allowed exception is raised if the
requested_length is not at least as large as the preferred
buffer length. The end_of_file exception is raised when there
is no more data (returned_length is zero).

end Source;

type Sink is access package

Function:
This package type defines the synchronous sink interface.

-- The following functions and procedures are described in the
-- BasiC_la_interface package.

function Interface_description
return query_record;

procedure Close;

procedure Reset;

function Transform_interface (
new_interface_type: type_description) -- type of the new interface

return dynamic_typed;

function Get_asynchronous_interface
return Asynchronous_la_Interface. connection;

-- End of basic package.

procedure Flush;

Function:
This routine ensures that all previously-written data has
reached the destination device.

procedure write (
data_access:

offset:

length:

Function:

AppendIx J 3n

i~Definitions.dynamic_typed;
-- Access for object containing buffer.

xfer_range; Offset of buffer
within object.

xfer_range); Number of bytes
to transf er .

This routine does a device dependent write operation. If
. fixed_length is true, the length must be equal to the preferred

buffer length (buffer_length plus one). (For some interfaces,
a multiple of the preferred buffer length may be allowed.)

end Sink;

type Store is access package

Function:
This package type defines the synchronous store.

-- The following functions and procedures are described
-- in the Basic_IO_interface package.

function Interface_description
return query_record;

procedure Close;

procedure Reset;

function Transform_interface (
new_interface_type: type_description) -- type of the new interface

return dynamic_typed;

function Get_asynchronous_interface
return Asynchronous_IO_Interface.connection;

-- end of basic package

procedure Flush;

Function:
This routine ensures that all previously written data has
reached the destination device.

378 A Programmer's View of the Intel 432 System

procedure Read(
data_access: read_buff;
offset: xfer_range;
requested_length: xfer_range;
returned_length: out xfer_range) ;

Function:
This routine does a device dependent read operation, controlled
by the interface characteristics buffer_length and fixed_length.

The number of bytes returned will be less than or equal to that
requested when fixe~length is false. The end_of_file
exception is raised when there is no more data (returned_length
is zero).

The number of bytes returned is a multiple of the preferred
buffer length (buffer_length plus one) when fixed_length is true.
The operation_not_allowed exception is raised if the
requested_length is not at least as large as the preferred
buffer length. The end_of_file exception is raised when there
is no more data (returne~length is zero).

procedure write (
data_access:
offset:
length:

Function:

i~Definitions.dynamic_typed;
xfer_range;
xfer_range) ;

This routine does a device dependent write operation. If
fixed_length is true, the length must be equal to the preferred
buffer length (buffer_length plus one). (For some interfaces,
a multiple of the preferred buffer length may be allowed.)

end store;

end Synchronous_IO_Interfaces;

Package Asynchronous_IO_lnterface
of the
iMAX Operating System

with i~Definitions, la_Definitions;

package Asynchronous_la_Interface is

Function:

Appendix J 379

This package defines the asynchronous I/O protocol. This protocol
is used between GOP processes and AP device drivers as well as
within the GOP.

use iMAX_Definitions, la_Definitions;

The "connection" type, which is the primary type provided by the
Asynchronous_la_Interface package, is an access to the following
record type. All Asynchronous_la_Interface operators take a
connection as one parameter.

type connection_record is
record

request_port: port;
name: print_name;
device_description: query_record;
reply_port: port;

end record;

Port for I/O request messages.
Identifying name.
Device-specific information.
Port which may be used as
a message reply port.

type connection is access connection_record;

The representation of an I/O transaction is an access segment with
at least three access descriptors. the first entry is for the
command_record which is a data segment describing the operation to be
performed. The second entry is a reply port for the response message,
and the third and succeeding entries are for data buffers. Since Ada
requires that this structure be declared in reverse order, here is a
picture of what is coming.

380 A Programmer's View of the Intel 432 System

type conunand_ value is range 0 short_ordinal' last;

type error_value is range 0 short_ordinal 'last;

subtype buffer_range is short_ordinal range 1 .. 1;

type buffer_description
record

offset:
requested_length:
returned_length:

end record;

is

short_ ordinal;
short_ordinal;
short_ordinal;

type conunand_record_rep_val is
record

conunand:
message_id:
reply_code:
buffer_descriptions:

end record;

conunand_ val ue;
short_ ordinal;
error_value;
array (buffer_range) of buffer_description;

type buffer_array is array (buffer_range) of dynamic_typed;

-- I/O conunand codes
reset: constant conunand_value : = 1;
read: constant conunand_value : = 2;
wr i te: cons tan t conunand_ value : = 3;
close: constant conunand_value : = 4;
flush: constant conunand_value : = 5;
set_device_characteristics: constant conunand_value := 6;
get_device_characteristics: constant conunand_value := 7;

-- reply codes
,Sluccess:
end_of_file:
not_processed:
reset_required:
inval id_ conunand:
bad_dat~buffer_size:
invalid_request:
hard_ 10_ error:
interf ace_,c losed:
reset_returned:

cons tan t conunand_ val ue : = 0;
cons tan t conunand_ value : = 1;
cons tan t conunand_ val ue : = 2;
cons tan t conunand_ val ue : = 3;
constant conunand_value := 4;
cons tant conunand_ value : = 5;
constant conunand_ value : = 6;
constant conunand_value := 7;
constant conunand_value := 8;
cons tan t conunand_ value : = 9;

type IO_message_record is
record

conunand_record:
reply_port:
data_buffer:

end record;

conunand_record_rep;
port;
buffer_array;

type la_message is access IO_message_record;

procedure Send (
c: connection;
msg: la_message);

Function:

Appendix J 381

This routine sends a message to an I/O device using
the request_port in the connection.

procedure Receive(
c: comlection;
msg: out la_message);

Function:
This routine receives a reply to an I/O request on the
reply_port in the connection.

procedure Cond_send(
c: connection;
msg: la_message;
success: out boolean);

Function:
This: routine attempts to· send an I/O request message to
the request_port in the· connection. If the operation succeeds.,
success is assigned true. If the port is full and the operation
fails,. success is assigned false and the request message is not
sent.

procedure Cond_receive(
c: connection;
msg: out la_message;
success: out boolean) ;

Function:'
This routine attempts to receive a reply to an I/O request usimg
a conditiona-l receive' on the reply_port in the connection.

end Asynchronous_10_Interface;

Appendix K
Package Process_Manager _ Types
of the
iMAX Operating System

with Process_Globals_Definitions, i~Definitions
Descriptor_Definitions;

package Process_Manager_Types is

382

microsec_per_stu: constant := 256;
-- Length of a system time unit in microseconds.

subtype milliseconds is integer range 0 .. max_int;

All of the following constants and types related to time
-- are in units of milliseconds.

max_time_Iimit: constant := 24 * 24* 60 * 60 * 1000;
-- Maximum time limit is 24 days in milliseconds.

infinite_time_Iimit: constant :=max_time_Iimit + 1;
-- The value "infinite_time_Iimit" is used to
-- indicate that the process is to be allowed to run forever.

subtype time_Iimit_type is milliseconds range 0 .. infinite_time_Iimit;

max_time_slice: constant := (2**16 - 1) * microsec_per_stu / 1000;
subtype time_slice_type is milliseconds range 0 .. max_time_slice;

max_deadline: constant := (2**14 - 1) * microsec_per_stu / 1000;
subtype deadline_type is milliseconds range 0 .. max_deadline;

type scheduling_info_rec is
record

time_slice: time_slice_type;
deadline: deadline_type;
priority: short_ordinal;

end record;

type process~states is (
executing,
just_created,
suspended,
exceeded_memory_limit,
exceeded_time_Iimit,
system_error,
terminated,
destroyed) ;

in milliseconds
in milliseconds

Appendix K 383

type process_micro_states is
not_executing,
on....processor,

micro state of an executing process

on....cport,
on.... service_port ,
in....service) ;

-- includes dispatching and delay ports
-- being serviced by iMAX

type process_info_rec is
Those attributes of a process which are either constant, or
changed only by the user, over the lifetime of the process.

record

The following attributes are constant over the lifetime of
the process.

process_id: short_ordinal;
-- The iMAX-assigned id of the process.
-- This is the id used when the process does any locking operations.

process_globals: Process_Globals_Definitions.process_globals_rep;
The iMAX-assigned process globals object of the process.

-- Compilers generate code which uses iMAX_defined fields in this
-- object. Users may also define their own fields in this object.

name: string;
-- The user-assigned text name of the process.

-- The following attributes are defaulted when the process is
-- created, and may be set by the user.

notification_port: i~Definitions.port;
The notification_msg will be conditionally sent to this
notification_port when the process' state becomes
exceeded_memory_limit, exceeded_time_Iimit, system_error,
terminated, or destroyed. It is the user's responsibility
to ensure that the conditional send will not fail; if the
notification_port is full at the time of the conditional
send, the notification_msg will not be sent.

notification_msg: dynamic_typed;
-- The message to be sent to the notification_port.

The following attributes are defaulted when the process is created
and may be set only in an "advisory" sense. 1. e., in setting
them, the user is advising the Process_Manager as to how it
should set them. Particular Process_Manager implementations
may ignore this advice.

time_limit: time_Iimit_type;
-- The processor time limit for the process.

schedul ing _ inf 0: schedul ing _ inf o_rec;
-- The scheduling parameters for the process.

end record;

type process_state_rec is
-- Those attributes of a process which are changed by the system
-- over the lifetime of the process.
record

state:
-- The current

process_clock:
-- The current

end record;

process_states;
state of the process.

milliseconds;
time used by the process in milliseconds.

384 A Programmer's View of the Intel 432 System

type process_micro_state_rec is
-- Process_state_rec plus micro
record

state.

state: process_states;
-- The current

micro_state:
-- The current

process_clock:
-- The current

end record;

generic
with procedure main(

state of the process.
process_micro_states;

micro state of the process.
milliseconds;

time used by the process in milliseconds.

params: dynamic_typed);
package initial_proc is

procedure main (
params: dynamic_typed);

renames main;
end initial_proc;

type access_initial_proc is access initial_proc;

control_rights: constant Descriptor_Definitions. rights .=
Descriptor_Definitions.type_right_l;

suspen~an~resume_rights: constant Descriptor_Definitions.rights .=
Descriptor_Definitions.type_right_2;

type Process_Manager is access package

Function:
All operations requiring a process as a parameter, with the
exception of Suspend, Resume, and the Rea~. .. operations,
require the passed process AD to have controCrights .
The operations Suspend and Resume also require the passed
process AD to have suspentLantLresume_rights.

type process_rep is limited private;

type process is access process_rep;

Appendix K 385

function Create_process (
init_proc: access_initial_proc;

execute. -- The procedure to
ini t_params: dynamic_typed: = null;

init_proc. -- Parameters to
name: string;

job:
The text name of the process.

Jobs_Manager_Types.job :=null;
The job in which the caller is executing, i.e., the job
in the caller "s process globals.

heap_sro: i~Definitions.storage_resource :=null;
The sro from which to create the process. This determines

-- the scope of the process and whether the process is frozen or
-- normal. Default is the global heap sro in the caller's
-- process globals.

init_stac~objtab_size: integer := 0;
Initial size of the process stack object table. This is an

-- advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

ini t_stac~size: integer : = 0;
-- Initial size of the process stack allocation block. This is an
-- advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

call_stack_depth: integer: = 0;
Number of contexts to be pre-allocated for this process.

-- This is an advisory parameter, and may be ignored by particular
-- Process_Manager implementations.

return process; -- Has controCrights.

Function:
A new process is created and returned. The parameter list
includes only those process attributes which can be set only
at process creation time. Default values are provided for
all process attributes except the procedure to execute
(init_proc); this is the only parameter which MUST be specified.
Attributes for which there are no parameters may be changed after
a process has been created (and before it is started, if desired)
by calling one of the Set_ ... operations below.

procedure Start (
prcs: process);

Function:
This procedure serves two purposes: to initially start a newly
created process, and to restart a process which has entered
a state in which it can not execute (for example, when it has
exceeded its memory or processor time limit, or has encountered
an error.) The passed process must be in a state other than
executing, suspended, or destroyed.

procedure Suspend(
prcs: process); -- Must have suspend_and_resume_rights.

Function:
The passed process is prevented from executing on a processor
until Resume is called on it. The effect of this call may
be asynchronous, i.e., the process may continue to execute
for a time after Suspend is called.

386 A Programmer's View of the Intel 432 System

procedure Resume(
prcs: process); -- Must have suspend_and_resume_rights.

Function:
The passed process is continued executing after having had
Suspend called on it.

procedure Destroy(
prcs: process);

Function:
The passed process is destroyed. The effect of this call may
be asynchronous, i.e., the process may continue to execute for
a time after Destroy is called and before it is actually
destroyed.

procedure Delay_caller (
time: milliseconds);

Function:
The calling process is delayed for at least the specified
length of time.

procedure Raise_exception(
prcs: process;
e: System. exception) ;

Function:
The specified exception is raised in the passed process.
The effect of this call may be asynchronous, i.e., the
exception may not be raised until some time after
Raise_exception is called.

procedure Wait_for_process_termination;
prcs: process);

Function:
This procedure is provided for users who do not need the
full generality of the notification port mechanism.
If the notification message and port have already been set,
an exception will be raised. Otherwise, a notification port
will be created, set, and received from, resulting in the
caller blocking until the passed process' state becomes
exceededLmemory_limit, exceededLtime_Iimit, system-error,
terminated, or destroyed.

functian ReadLprocess_info(
prcs: process)

return process_info_rec;

Function:
Returns the "unchanging" attributes of the passed process.

function Readlprocess_state(
prcs: process)

return process_state_rec;

Function:

Appendix K 387

Returns the "changing" attributes of the passed process.

function Readlprocess_micro_state(
prcs: process)

return process_micro_state_rep;

Function:
Returns the "changing" attributes of the passed process,
including the micro state.

procedure Set_notification_port_and_message;
prcs: process:
port: i~_Definitions.port;
msg: dynamic_typed);

Function:
The notification port and message of the passed process are set.
An exception is raised if a call to Wai t_for_process_ termination
is currently outstanding on the process.

procedure Set_time_limit(
prcs: process;
lim: time __ limi t_ type) ; -- in milliseconds

Function:
Since time_limit is an advisory parameter, the time limit of
the passed process mayor may not be set.

procedure Set_scheduling_info (
prcs: process;
svc: schedul ing _ inf o_rec) ;

Function:
Since scheduling_info is an advisory parameter, the scheduling
parameters of the passed process mayor may not be set.

end Process_Manager;

Appendix L
Package SRO_Manager
of the
iMAX Operating System

Real Memory Only version

[Author's note: The actual iMAX version for this package specifies four additional
operations, not given in this appendix. These are:

Create_system_ objecCfrom_heap,
Create_system_ objecC from_stack ,
Deallocate_heap_object, and
Read_storage_ claim.

388

with i~Definitions;

package SRO_Manager is

Ftmction:
This package provides a low_level interface to memory management.
All but the Create_Iocal_heap function are implemented as
432 instructions. The "heap" allocation instructions take an
optional parameter, i.e., a default SRO. At compile time this
parameter defaults to null, but at run time will default to
the default global heap SRO in the process globals object of
the the executing process. The "stack" allocation intructions
do not need an SRO parameter since the stack SRO is referenced
implici tly.

use iMAX_Definitions;

-- Type Rights for SRO Access Descriptors:

create_rights: constant Descriptor_Definitions. rights
Descriptor_Definitions.type_right_l;

procedure Create_object(
d_Iength: short_ordinal; Length of object data part

(in bytes) - l.
a_length:

obj:
SRO:

Ftmction:

out

short_ ordinal Length of object access part
(number of AD slots)

object; created object.
storage_resource := null);

-- SRO for create.

A heap data object of the specified size(s) is created.
If the SRO parameter is defaulted, then the default global
heap SRO in process globals is used for the create.

Appendix L 389

procedure Create_generic_refinement(
obj: dynamic_typed; Object to be refined.
d-offset: short_ordinal; Data part offset of the

refinement in bytes.
d-Iength: short_ordinal; Data part length of the

refinement (in bytes) - 1.
a-offset: short_ordinal; Access part offset of the

refinement in bytes.
a-length: short_ordinal; Access part length of the

refinement (number of AD slots) .
rtn: out dynamic_typed; The resulting refinement.
sro: storage_resource_wi th_create : = null) ;

-- SRO for create.

Function:
A heap refinement is created from the specified object,
with data and access parts at specified offsets, each with
with specified lengths. The base type of the created
refinement will be the same as the base type of the
original object. Its system type will be generic.

procedure Create __ stack_obj ect (
d_Iength: short_ordinal;

a_length: short_ordinal

obj: out obj ect) ;

-- Function:

Length of object data part
(in bytes) - l.
Length of object access part
(number of AD slots) .
Created object.

A stack object of the specified size(s) is created.

procedure Create_stac~generic_refinement(
obj: dynamic_yped; Object to be refined.
d-offset: short_ordinal; Data part offset of the

refinement in bytes.
d-Iength: short_ordinal; Data part length of the

refinement (in bytes) - 1.
a-offset: short_ordinal; Access part offset of the

refinement in bytes.
a-length: short_ordinal; Access part length of the

refinement (number of AD slots) .
rtn: out dynamic_typed; The resulting refinement.

Function:
A stack refinement is created from the specified object,
with data and access parts at specified offsets, each with
with specified lengths. The base type of the created
refinement will be the same as the base type of the
original object. Its system type will be generic.

function Create_Iocal_heap
return storage_resource;

Function:
This function creates a local heap SRO.
The lifetime of the local heap SRO is that of the current
context Object of the caller.

end SRO_Manager;

390 A Programmer's View of the Intel 432 System

Package MOO_Manager
of the
iMAX Operating System

with Descriptor_Definitions, i~Definitions;

package MCa_Manager is

Function:
This package provides operations for creating and destroying
MCas, reading and adjusting the parameters associated with each
MCa, and reading the usage statistics for each Mca.
The private section for this package is not shown.

type memory_control_obj ect_rep is limited private;
type memory_control_object is access memory_control_object_rep;

asap: constant:= 0;
never: constant := 0;

type scan_rate_type is (asap, 1 .. 14, never);

The scan rate determines how often the objects of the Mca are
considered for swapping. This rate in terms of passes through all
Mcas in the system. For each pass only some of the Mcas are
considered.

Scan Rate Value
o
1
2
3

N
never

type MCa_parameters_ type is
record

allocation_limit: ordinal;

When Mca Is Scanned
As soon as possible.
Every pass.
Every other pass.
Every third pass.

Every Nth pass.
Never. The Mca is non-swappable.

frozen:
scan_rate:

boolean;
sCaD.-rate_ type;

Bytes this Mca can
allocate without
software intervention.
Frozen or normal memory.
Rate objects Mca are
considered for swapping.

end record;

type MCa_statistics_type is
record

storage_claim: ordinal;

secondary: ordinal;

number_of_stac~SROs:
number_of_heap_SROs:
number_of_object_tables:

fault rate:
end record;

ordinal
ordinal
ordinal

ordinal;

Appendix L 391

Total virtual memory exposed
to hardware allocation.
Total virtual memory residing
on disk.

-- Fault rate of this Mca

-- Software-defined Type Rights for Mca access descriptors:

control_rights: constant Descriptor_Definitions.rights
: = Descriptor_Definitions. type_right_l;

function Create (
MCa_parameters: MCa_parameters_type)

return memory_.control_obj ect;

Function:

With control rights.

This function creates a new Mca and returns an AD
with control rights for this object. The MCa parameters
determine how much virtual memory can be allocated from
the Mca without software intervention, whether the memory
is frozen or normal, and what scan rate should be used
for objects allocated from this Mca.

procedure Destroy(
mco: memory_control_object);

Function:

AD with control rights for
the Mca to be destroyed.

This procedure destroys the Mca specified. It calls Low_Level
Process_Management to destroy any processes living in the Mca
and nulls all Access Descriptors which link the SRas in the
Mca together.

Note: no globally allocated objects are destroyed.

function Retrieve_global_heap(
mco: memory_control_object)

return iMAX_Definitions.storage_resource;

Function:

AD with control rights
for an Mca.

AD for the root SRO.

This function returns an Access Descriptor for the global heap
SRO which is the root of the SRa tree associated with the Mca.

392 A Programmer's View of the Intel 432 System

function Read_MCO_parameters(
mco: memory_control_object)

return MCO_parameters_ type;

Ftmction:
This function returns the parameters associated with a MCO.

procedure Adjust_MCO_allocation_limit{
mco: memory_control_object;

adjustment: ordinal;

increment: boolean)

Ftmction:

AD with control rights
for MCO to be adjusted.
Amount MCO's allocation
limit is to be adjusted.
true => increment,
false => decrement

This procedure adjusts a MCO's allocation limit up or down by
the specified amount.

procedure Adjust_MCO_scan_rate{
mco: memory control object;

Ftmction:

AD with control rights
for MCO to be adjusted.
New scan rate.

This procedure sets the MCO's scan rate to that specified.

function Read_MCO_statistics{
mco: memory_control_object)

return MCO_statistics_type;

Ftmction:
This function returns the statistics associated with a MCO.

end MCO_Manager;

Appendix M
Package Transaction_Manager
of the
iMAX Operating System

package Transaction_.Manager is

Function:
This package manages transactions. These are used to synchronize
access to passive-objects in a manner that maintains
the consistency of a collection of objects.

When a user wants to access one or more passive objects,
she will first start a transaction. This transaction will then be used
in the Open and Update operations for the passive objects that
she wants to access. When she has completed all operations, she will
issue a Commit operation on the transaction. This commits all the
changes she has made, thereby committing new versions for the passive
objects that have been changed. The "commit" operation is
is indivisible, i.e., all changes made or none (e.g., in case of a
system crash). If the user issues an Abon operation, all changes
are forgotten. A time out is associated with a transaction. If this
time expires before the transaction is committed, the transaction
manager will abort the transaction.

The private section for this package is not supplied here.

type transaction_rec is private;

type transaction is access transactionLrec;

type transaction_state is(
active,
committed,
aborted) ;

Initial state of transaction.
state after transaction is committed.
state after transaction is aborted.

subtype milliseconds is integer range -1 .. integer' last;
-- An instance of this type indicates a number of milliseconds.

393

394 A Programmer's View of the Intel 432 System

type transactio~info_rec is
-- Returned by Transaction_info.
record

pname: print_name;
state: transactio~state;
time_left: milliseconds;

num_items: ordinal;

blocked: boolean;

end record;

Print name for this transaction.
Its state.
Time left until Transactio~Manager
will cause an abort.
Number of passive object definitions
associated with this transaction.
True if transaction is blocked
waiting for an open operation.

default_time_out: constant milliseconds := 1000;

-- EXCEPTIONS

Default value used in
start_transaction operation.

transactio~not_active: exception;
-- The specified transaction is not in the active state.

transaction_already_committed: exception;
The specified transaction has already been committed; abort is

-- not possible.

-- OPERATIONS

procedure Start_transaction(
t: out transaction; The created transaction.
time_out: milliseconds: = 0; After this time, the transaction

will be aborted.
pname:

Function:

(others => ' ');
Name to be associated with this

-- transaction.

A new transaction is created.
If the specified real-time elapses before a
Commit operation is done on this transaction, the transaction will
be aborted. If the user does not specify a value for time_out,
the system default value is used.

procedure Commit_transaction(
t: transaction) ; -- The transaction to be committed.

Function:
The specified transaction is committed and all changes made under
this transaction become commited. The passive object definitions
associated with this transaction must already be closed when
Commit_transaction is called, or the Commit will fail. If the
transaction is in the "abort" state, the exception "transaction_not
active" will be raised. This operation changes the state of the
transaction from "active" to "committed". If the state was already
committed, this operation is a no-op.

Appendix M 395

procedure Abort_transaction (
t: transaction) ; -- The transaction to be aborted.

Function:
The specified operation is aborted. This implies that the passive
object definitions associated with this transaction resort to their
original state, i.e., the new versions that are being created are
destroyed. If the transaction is in the "committed" state, the
exception "transaction_already_committed" will be raised. This
operation changes the state of the transaction from "active" to
"aborted". If the state was already aborted, this operation is
a no-op.

function Transaction_info (
t: transaction)

Function:

The transaction whose state is to
be reported on.

Transaction information.

The information associated with a transaction is returned.
This includes its print_name, state, time remaining, whether it
is blocked, and the number of passive object definitions
associated with the transaction.

end Transaction_Manager;

396 A Programmer's View of the Intel 432 System

Package Passive_Store_Manager
of the
iMAX Operating System

with Transaction_Manager;
package Passive_Store_Manager is;

Function:
This package provides the interface between Object Filing and
the outside world. It includes the facilities to define, store,
and retrieve passive objects. The operations can be grouped as follows

ACTIVE-VERSION OPERATIONS

These provide the simplest interface to Object Filing, and include
the Update and Reset_active_version procedures.
These routines take an AD for some active object and change
the correspondence between the current active and passive versions
of the obj ect. These routines can be used without referencing any
of the other facilities provided by this package.

"Update" makes the passive version of the object look like the
current active version of the object.
"Reset_active_version" removes the object from the active
space, but does not change its passive definition; subsequent
references to the object will cause its active version to be restore
from a previously saved passive version.

OPEN and CLOSE

These routines (and the remainder of this package) are provided for
the user or type manager who needs to directly manipulate the passive
representation of an object. This may be desirable either for
efficiency, or (more importantly) because the object cannot be
represented in the active space.

"Open" is used to make the passive definition of an object available
to the user. Further operations (see below) can then be used to
read/write portions of the object. If the object was opened in
write or update mode, "Close" must be used to indicate that the
object is in a consistent state before the stored version of the
passive object is actually changed.

Appendix M 397

GET, PUT, and DELETE

These operations are used to actually manipulate the passive
definitions of objects. Such objects must already have been Opened.

Get operations are used to transfer data or Access Descriptors
from passive objects to active objects. Put operations are used to
transfer data or Access Descriptors from active objects to passive
objects. The Delete operation allows the user to delete an Access
Descriptor from the passive representation of an object.

MISCELLANEOUS

The routines in this section allow the user to examine and set
various attributes pertaining to a particular passive object.

The private section of this package is not given.

subtype transaction is Transactio~Manager.transaction;

subtype milliseconds is integer range -1 .. integer' last;

type passive_definition_rec is private;

type passive_definition is access passive_defini tion_rec;

type open_mode is
-- The type of access requested in doing an Open operation.

(read, Only read requests will be permitted on passive definition.
write, Read and write requests permitted on passive definition.

A new version is created ab initio.
update); Read and write requests permitted on passive definition.

The -1 lower bound in the next two subtypes is used by Get/Put
data/Access_Descriptor to specify that the size of the passed buffer
is to be used.

subtype access_segment_size is integer range -1 ., 2 ** 14;

subtype active_data_segment_size is integer range -1 2 ** 16;

subtype passive_data_segment_size is
integer range 0 .. integer 'last;

subtype access_segMent_displacement is
integer range 0 .. 2 ** 14 - 1;

subtype active_data~segment_displacement is
integer range 0 .. 2 ** 16 - 1;

subtype passive_data_segment_displacement is
integer range 0 .. integer'last - 1;

398 A Programmer's View of the Intel 432 System

type passive_definition-info is
record

open_mode:
copyable:
activatable:
lirik....associated:

lin1e
auto_copy:

sys_type:
psor_type:
access_length:
data_length:

end record;

type put_acLaction is

access_mode;
boolean;
boolean;
boolean;

boolean;
boolean;

If true, object can be copied.
If false, object cannot be activated.
If true, object has an associated
link object.
If true, object is a "link" object.
Applicable only to "link" objects.
If true, storing a passive AD will
cause automatic copy of link object.

systeIJL types;
processor_types;
access_segment_size;
passive_data_segment_size;

In Access Descriptors.
In bytes.

-- Action taken when Access
(plain,

Descriptor is stored in a passive definition.
No action. AD for object with owner
rights must already exist in some passive
object.

owner_if_none,

owner,
component,

EXCEPTIONS

Give AD owner rights if no passive
descriptor for the object has owner
rights.
Give AD owner rights.
Store referenced object as a component of
passive object being defined.
Copy referenced composite as a
distinct object.
Copy referenced composite as well as
composites referenced
with owner rights. This is applied
recursively.
Same as "copy_as_owner" except referenced
composite is made a component of the
passive definition being defined.
Same as "full_copy_as_owner" except
referenced composites are made components
of the passive definition being defined.

transaction-not_active: exception
renames Transaction-Manager.transaction_not_active;

-- Specified transaction is not in the active state.

open_timed_out: exception;
-- Open operation timed out thereby cancelling the requested operation.

no_version_available: exception;
-- The specified object version is not available.

object_inaccessible: exception;
-- The specified object cannot be accessed, e.g., structure not mounted

object_unknown: exception;
The specified object is unknown; usually, due to the object having

-- been destroyed.

Appendix M 399

object_lacks_owner: exception;
-- No passive object has an AD with owner rights for the object.

rea~rights_missing: exception;
-- Specified AD for an object lacks read rights.

write_rights_missing: exception;
-- Specified AD for an object lacks write rights.

update_illogical: exception;
Open specified "update" access mode for an object with no passive

-- definition.

more_owners_not_allowed: exception;
-- More passive ADs with owner rights are not permitted.

cannot_be_component: exception;
-- The specified object cannot be made a component of the specified
-- passive definition.

copy_of_object_not_allowed: exception;
-- The specified object may not be copied.

bounds_error_on_passive_object: exception;
-- The supplied displacement or length would cause an access beyond
-- the end of the passive object.

bounds_error_on_active_object: exception;
-- The supplied displacement or length would cause an access beyond
-- the end of the active object.

passive_definition_not_open: exception;
-- Due to the state of the associated transaction, the specified passive
-- definition can no longer be used.

delete_rights_missing: exception;
-- Specified AD lacks delete rights.

-- OPERATIONS THAT MANIPULATE ACTIVE OBJECT VERSIONS

procedure Update(
obj: dynamic_typed;

t: transaction : = null) ;

Function:

Reference to object that is to be
updated in the passive store.
Transaction that will be associated
with updated object version.

This is the "generic" update procedure for object filing. It is
the standard update procedure for untyped objects. It may also
be called by the type manager for typed objects if no special
semantics are required for object update.

Obj must be "known" to the passive space; either a passive AD
wi th owner rights must already exist for obj, or obj may
be a component of a composite that has been opened in either write
or update mode using the same transaction. Obj must contain both
read and write rights.

The procedure causes the given object's passive version to agree
with its current active version. The object's passive version that
is produced as a result of the update will not become "committed"
until the specified transaction is committed.

400 A Programmer's VIew of the Intel 432 System

procedure Reset_active_version(
obj: dynamic_typed;

t: transaction := null);

Function:

Object affected.

Transaction associated with the
action.

This procedure is used to return an object to a previously-saved
state. Obj must be "mown" to the passive space.
The current active version of the object is deleted so that the next
reference to the object will cause it to be restored from its last
passive version. Obj must contain both read and write rights.

OPEN AND CLOSE OPERATIONS

func ti on Open (
obj: dynamic_typed;

mode:
t:

access_mode;
transaction : = null;

time_out: milliseconds : = -1) ;

return passive_definition;

Function:

Reference to the object whose passive
definition will be opened.
Read, write, or update.
Transaction that will be associated
with the returned passive definition.
Amount of time Open should block
until Open is aborted.

The passive definition of the referenced object is opened.
The caller's AD must have read and write rights if the specified
access mode is "write" or "update"; otherwise, read rights are
sufficient. If "time_out" is not specified, the system default
is used. Specifying a 0 for "time_out" is a conditional Open.

procedure Close (
psv_def: passive_definition); Passive definition to be closed.

Function:
Closes the given passive object definition.

Appendix M 401

-- PUT AND DELETE OPERATIONS

procedure Put_data(
psv_def:
act_buf:
psv_disp:

passive_definition; -- An object's passive definition.
dynamic_typed; -- Active object containing data.
passive_data_segment_displacemment : = 0;

sz:
-- Displacement into "psv_def".

active_data_segment_size := -1;
-- Number of bytes to transfer from "act_buf"
-- to "psv_def". (Default means copy all of
-- "act_buf".)

active_data_segment_displacement := 0);
Displacement into "act_buf".

Function:
Data is transferred from an active object to a passive object.

procedure Put_access_descriptor(
psv_def: passive_defini tion;
AD: dynamic_ typed;

A passive definition for an obj.
An AD that is to be stored in
"psv_def" .

action: in out put_ad_action; Action to be taken in "psv_def".
disp: access_segment_displacement := 0);

-- Slot in "psv_def" to store "obj".

Function:
The specified AD is stored in the passive object referenced by
"psv_def" using the specified action. If the put_ad_action is
"owner_if_none" , then "action" is set either to "plain" or to
"owner" on output.

procedure Put_Iist_of_access_descriptors(
psv_def: passive_definition; -- A passive definition for an object.
list: dynamic_typed; -- An active object.
action: put_ad_action := owner_if_none;

-- Action to be taken with respect
-- to the AD's.

psv_disp: passive_access_segment_displacement := 0;
-- The starting slot to store the
-- specified ADs.

num_of_ads: access_segment_size: = -1;
-- Number of ADs to Put in "psv_def".
-- (Default means store all the ADs.)

act_disp: access_segment_displacement := 0);

Function:

The starting slot to get the ADs
-- to store in "psv_def".

The specified ADs are stored in the specified passive object.
This operation is equivalent to doing a sequence of
Put_access_descriptor operations. This operation is provided
as a convenience to the user.

402 A Programmers View of the Intel 432 System

procedure Delete_access_descriptor(
psv_def: passive_definition; -- Passive definition for an object.
disp: access_segment_displacement) ;

-- AD to be deleted.

Function:
The selected AD is deleted from "psv_def". The selected AD
must have delete rights.

procedure Copy_access_descriptor(
from_psv_def: passive_definition; -- Passive definition for an object.
fromLdisp: access_segment_displacement;

-- slot in "fromLPsv_def"
-- containing the AD to be copied.

to_psv_def:
to_disp:

passive_definition; -- Passive definition for an object.
access_segment_displacement) ;

action:

Function:

slot in "to_psv_def" where AD
should be copied.
Action to be taken with
respect to the copied AD.

An AD is copied from one passive definition to the other
using the specified action.

-- GET OPERATIONS

procedure Get_data(
psv_def: passive_definition; -- An object's passive definition.
act_buf: dynamic_typed; -- Active object containing data.
psv_disp: passive_data_segment_displacement : = 0;

-- Displacement into passive definition.
sz: active_dat8..-segment_size : = -1;

-- Number of bytes to transfer to
-- "act_buf" from "psv_def" . (Default is
-- size of "act_buf".)

act_disp: active_dat8..-segment_displacement : = 0) ;
Displacement into "act_buf".

Function:
Data is transferred from a passive object to an active object.

function Get_access_descriptor(
psv_def: passive_definition;

disp: active_segment_displacement)
return dynamic_typed;

Function:

Passive definition for ani
object.
Selects an AD.

The AD at displacement "disp" in the passive object
referenced by "psv_def" is returned.

Appendix M 403

-- MISCELLANEOUS: INFORMATION AND SET A'ITRIBU'IE OPERATIONS:

function Get_passive_definition-info(
psv_def: passive_definition)

return passive_definition_info;

Function:

Passive definition for some
object.

Information about the object's passive definition is returned.

procedure Associate_link(
psv_def: passive_definition;

link: dynamic_typed;
action: in out put_ad_action) ;

Function:

Passive definition for some
object.
Reference to a link object.
Action taken with respect to
"link".

The specified link object is associated with the passive object
referenced by "psv_def". To do this association, the passive
object must be opened in "update" or "write" mode.
If put_ad_action is "owner_if_none" , then "action"
is set either to "plain" or to "owner" on output.

procedure Set_a.uto_copy(
psv_def: passive_definition;

boolean) ;

Function:

Passive definition for some
object.
Value to set to.

The "autocopy" attribute of the referenced composite link object
is changed. Psv_def must be open for "write" or "update".

procedure Set_not_copyable(
psv_def: passive_definition);

Function:

Passive definition for some
object.

The "copyable" attribute of the referenced composite link object
is changed to false. Psv_def must be open for "write" or "update".

procedure Set_not_activatable(
psv_def: passive_defini tion) ;

Function:

Passive definition for some
object.

The "activatable" attribute of the referenced composite link object
is changed to false. Psv_def must be open for "write" or "update".

References

1. ACM. Proceedings of the 1981 Conference on Functional Programming Languages and Com
puter Architecture, ACM, New York, 1981.

2. Department of Defense. Reference Manual for the Ada Programming Language Superintendent
of Documents, U.S. Government Printing Office, Washington, D.C. 20402,1980.

3. A. A. Ambler, D. I. Good, J. C. Brown, W. F. Burger, R. M. Cohen, C. G. Hoch, R. E.
Wells. Gypsy: A Language for Specification and Implementation of Verifiable Programs, SIG
PlAN Notices 12(3): 1-10, March, 1977.

4. J. Backus. Can Programming be Liberated from the Von Neumann Style? A functional Style
and its Algebra of Programs. Communications oftheACM21(8): 613-641, Aug, 1978.

5. J. F. Bartlett. A NonStop Operating System. In Eleventh Hawaii Internation Conference on Sys
temSciences, pages 103-117. January, 1978.

6. A. Batson, S. Ju, D. Wood. Measurements of Segment Size. In Proceedings of the 2nd Sympo
sium on Operating System Principles, pages 25 - 29. ACM, New York, October 1969.

7. G. M. Birtwistle, O. J. Dahl, B. Myhrhaug, K. Nygaard. Simula Begin. Auerbach Publishers
Inc., Philadelphia, 1973.

8. P. Brinch Hansen. Operating System Principles. Prentice-Hall, Englewood Cliffs, New Jersey,
1973.

9. P. Brinch Hansen. The Programming Language Concurrent Pascal. IEEE Trans. Software Eng.
SE-1 (2): 199-207, 1975.

10. D. M. Bulman. Stack Computers: An Introduction. Computers 10(5): 18-28, May, 1977.
11. D. M. Bulman. Stack Computers. Computer 10(5): 14-16, May, 1977.
12. Burroughs Corporation. The Descriptor-A definition of the B5000 Information Processing Sys

tem. Burroughs Corp, Detroit, Michigan, 1961.
13. J. Cohen. Garbage Collection of Linked Data Structures. ACM Computing Surveys 13(3):

341 - 367, September, 1981.
14. D. C. Cosserat. A Capability Oriented Multi-Processor System for Real-Time Applications. In

Proceedings of the International Conference on Computer Communications. Infotech, Maiden
head, October, 1972.

15. G. W. Cox, Wm. W. Corwin, K. K. Lai, F. J. Pollack. A Unified Model and Implementation
for Interprocess Communication in a Multiprocessor Environment. December, 1981.

16. O. J. Dahl, K. Nygaard. Simula-An Algol-Based Simulation Language. Communications of
the ACM 9(9), September, 1966.

17. J. B. Dennis, E. C. Van Horn. Programming Semantics for Multiprogrammed Computations.
Communications of the ACM 9(3): 143-155, March, 1966.

18. E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, E. M. F. Steffens. On-the-Fly Gar
bage Collection: An Exercise in Cooperation. Communications of teh ACM 20: 966-975,
Novenber, 1978.

19. E. W. Dijkstra. Programming Languages. Academic Press, New York, 1968, chapter
Cooperating Sequential Processes.

20. R. W. Doran. High-Level Language Computer Architecture. Academic Press, New York,
1975, pages 63-108. Chapter: Architecture of Stack Machines.

21. D. M. England. Architectural Features of System 250. In Infotech State of the Art Report on
Operating Systems. Infotech, "Infotech", 1972.

22. D. M. England. Capability Concept Mechanism and Structure in System 250. In Proceedings of
the International Workshop on Protection in Operating Systems. INRIA, August, 1974.

404

References 405

23. R. S. Fabry. A User's View of Capabilities. Quarterly Report, University of Chicago ICR,
November 1967.

24. R. S. Fabry. Preliminary Description of a Supervisor for a Machine Oriented Around Capabili
ties. Quarterly Repo11, August, 1968.

25. R. S. Fabry. Capability-Based Addressing. Communications of the ACM 17(7): 403-412, July,
1974.

26. E. F. Gehringer. Variable-Length Capabilities as a Solution to the Small-Object Problem. In
Proceedings of the 7th Symposium on Operating Systems Principles. ACM, New York, 1979.

27. R. M. Graham. Protection in an Information Processing Utility. In CACM, pages 365-369.
ACM, New York, May, 1%8.

28. J. V. Guttag. Abstract Data Types and the Development of Data Structures. Communications of
theACM20(6): 3%--404, June, 1977.

29. D. Halton. Hardware of the System 250. In Proceedings of International Switching Symposium.
,1972.

30. M. E. Houdek, G. R. Mitchell. Translating a Large Virtual Address. IBM Systeml38 Technical
Developments. (mM GSD G580-0237), 1978.

31. M. E. Houdek, F. G. Soltis, R. L. HoffiruuI. mM System/38 Support for Capability-Based
Addressing. In Proceedings of the 8th Symposium on Computer Architecture, pages 341-348.
ACMIIEEE, New York, May, 1981.

32. J. K. Iliffe, J. G. Jodeit. A Dynamic Storage Allocation Scheme. Computer Journal 5(3):
200-209, October, 1962.

33. J. K. Iliffe. Basic Machine Principles. Americal Elsevier Publishing Company, Inc., New
York,1968.

34. J. B. Johnston. The Contour Model of Block Structured Processes. SIGPLAN Notices 6(2):
55-82, 1971.

35. A. K. Jones, P. Schwarz. Experience Using Multiprocessor Systems-A Status Report. ACM
Computing Surveys 12(2): 121-168, June, 1980.

36. K. C. Kahn, Wm. M. Corwin, T. D. Dennis, H. D'Hooge, D. E. Hubka, L. A. Hutchins, J. T.
Montague, F. J. Pollack, M. R. Gifkins. iMAX: A Multiprocessor Operating System for an
Object-Based Computer. Proceedings of the 8th Symposium on Operating Systems Principles
15(5): 127-136, December 1981.

37. D. E. Knuth. Fundamental Algorithms, The Art of Computer Programming. Addison-Wesley
Publishing Company, Reading, MA, 1968.

38. B. W. Lampson, J. J. Horning, R. L. London, J. O. Mitchel, G. J. Popek. Report on the Pro
gramming Language Euclid. SIGPLAN Notices 12(2): 1-79, February, 1978.

39. B. W. Lampson, H. E. Sturgis. Reflections on an Operating System Design. Communications of
the ACM 19(5): 251--265, May, 1976.

40. H. M. Levy. A Comparative Study of Capability-Based Computer architecture. Master's thesis,
University of Washington, Dept. of Computer Science, December, 1981.

41. B. H. Liskov, S. N. Zilles. Programming with Abstract Data Types. SIGPLAN Notices ACM 9:
50-59, April 1974.

42. B. Liskov, A. Snyder, R. Atkinson, C. Schaffert. Abstraction Mechanisms in CLU. Communi
cations of the ACM 20(8): 564-576, August, 1977.

43. Wm. M. McKeeman. Introduction to Computer Architecture. SRA, Chicago, 1980, pages
319-382. Chapter 7: Stack Computers.

44. L. P. Meissner, E. I. Organick. FORIRAN 77~ Addison-Wesley, Reading, MA, 1980.
45. J. G. Mitchell, Wm. Maybury, R. E. Sweet. Mesa Language Manual Xerox Palo Alto Research

Center, Palo Alto, CA, 1979.
46. G. J. Myers. Advances in Computer Architecture, 2nd edition. John Wiley and Sons, New

York,1981.
47. R. M. Needham, R. D. H. Walker. The Cambridge CAP Computer and its Protection System.

In In Proceedings of the 6th Symposium on Operating System Principles, pages 1-10.
ACM/SIGOPS, November, 1977.

48. E. I. Organick. The Multics System: An Examination of Its Structure. Massachusetts Institute
Technology Press, C'Ullbridge, MA, 1972.

49. E.1. Organick. Computer System Organization. Academic Press, New York, 1973.
50. E. I. Organick, A. I. Forsythe, R. P. Plummer. Programming Language Structures. Academic

Press, New York, 1978.

406 A Programmer's View of the Intel 432 System

51. E. J. Pollack, K. C. Kahn, R. M. Wilkinson. The iMAX-432 Object Filing System. In Proceed
ings of the 8th Symposium on Operating System Principles, pages 137-147. ACM, New York,
December, 1981. ACM order no. 534810.

52. F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn, K. K. Lai, J. R. Rattner. Sup
porting Ada Memory Management in the iAPX-432. In ACM (editor), Proceedings of Sympo
sium on Architectural Support for Programming Languages and Operating Systems, pages
117-131. ACM-SIGPLAN, New York, March-April, 1982.

53. D. P. Reed. Naming and Synchronization in a Decentralized Computer System. PhD thesis,
M.1. T. Dept. of Electrical Engineering and Computer Science, September, 1978. Also available
as an M.I.T. Laboratory for Computer Science Technical REport TR-205.

54. D. P. Reed. Implementing Atomic Actions on Decentralized Data. December, 1979. Preprints
of Proceedings of the 7th Symposium on Operating System Principles, ACM, New York.

55. D. P. Reed, L. Svobodova. SWAlLOW: A Distributed Data Storage System for a Local Net
work in Zurich, Switzerland. International Workshop on Local Networks, August, 1980.

56. J. M. Saltzer. Traffic Control in a Multiplexed Computer System. PhD thesis, M.I.T., Dept.
Electrical Engineering, May, 1966. Also Project MAC Tech. Rept. TR-30, July 1966, 79 pp.

57. M. Satyanarayanan. A Study of File Sizes and Functional Lifetimes. In Proceedings of the 8th
Symposium on Operating Systems Principles, pages 96-108. ACM' New York, December,
1981.

58. M. Shaw. Research Directions in Abstract Data Structures. SIGPlAN Notices 8(2): 66-70,
March, 1976.

59. D. P. Siewiorek, R. S. Swan. The Theory and Practice of Reliable System Design. Digital
Equipment Press, Bedford, MA, 1982. Chapter 18: Design Methodology for High Reliability
Systems: The Intel 432, coauthored with David Johnson.

60. M. J. Spier, E. I. Organick. The Multics Interprocess Communication Facility. In Proceedings
of the 2nd Symposium on Operating System Principles. ACM, New York, October, 1969.
Reprinted in Freeman, ed., Software Systems Principles A Survey, pages 133 -152, 1975 Chi
cago, SRA.

61. M. J. Spier, T. N. Hastings, D. N. Cutler. An Experimental Implementation of the
KernellDomain Architecture. ACM Operating Systems Review 7(4): 8-21, October, 1973.
Also, Proceedings of the 4th Symposium on Operating Systems Principles.

62. M. J. Spier. A Model Implementation for Protective Domains. International Journal ofCom
puter and Information Sciences 2(3): 201-229.

63. M. V. WIlkes. Time-Sharing Computer Systems. American Elsevier, New York, 1968.
64. M. V. Wilkes, R. M. Needham. The Cambridge CAP Computer and its Operating System.

North Holland, New York, 1979.
65. M. V. Wilkes. Hardware Support for Memory Protection: Capability Implementations. In

Proceedings Symposium on Architectural Support for Programming Languages and Operating
Systems. pages 107-116. ACM, New York, March-April, 1982.

66. N. Wirth. Modula: A Language for Modular Programming. Software: Practice and Experience
7(1): 3-35, January, 1977.

67. Wm. A. Wulf. Alphard: Toward a Language to Support Structured Programs. Technical
Report, Carnegie-Mellon University, Computer Science Dept., 1974.

68. Wm. A. Wulf, E. Cohen, Wm. Corwin, A. Jones, R. Levin, C. Pierson, F.Pollack. Hydra: The
Kernel of a Multiprocessor Operating System. Communications of the ACM 16(6): 337-345,
June, 1974.

69. Wm. A. Wuif, R. Levin, S. P. Harbison. HYDRAIC.mmp: An Experimental Computer System.
McGraw-Hill Book Company, New York, 1981.

INDEX

Abort statement, 75
Abort transaction operation, 308
Accept alternative statement sequel, 79
Accept statement (see Ada, accept state-

ment)
Accepts nested in select statement, 76-77
Access to Domain Object, 104
Access authorization, 94
Access control, 183

hardware support for, 187-199
inner layer, 192-194
using dynamic packages, 211-215

Access Descriptor (see AD)
Access Environment ADs, 113
Access part of object, 96
Access rights, 93

dispensable, 187
Access selector, 113
Accessing and addressing elements in ob

jects, 98
Accessing mechanism, low-level view of,

96
Activating a composite, 313
Activating passive version objects, 313
Activation record, 110-111
Active address space, 14
Active object(s), 264

making them passive, 303-304
space, 264-265, 295

Active Object Directory, 303
AD (Access Descriptor), 15, 94-103, 191

Context Message AD, 116
Context Object processor-defined ADs,

152
Current Context AD slot, 112
Current Processor Carrier AD, 147
Defining Domain AD slot, 114, 123
deletion of, 98
Dispatching Port AD slot, 149
Fault Port AD slot, 149
Global Constants AD slot, 115

AD (Access Descriptor) (Cont.):
IIL-Message_AD, 142
integrity and authenticity, 94
Interprocess Message AD slot, 116
Local Constants AD, 115, 124
OULMessage_AD, 151
Passive (see Passive Access Descriptor)
Pre created Message AD, 116
Predecessor Context AD slot, 114
Private_AD for Domain Object, 123-125
Process Carrier AD'slot, 149
Process Object, processor-defined AD

slots, 148
Public_AD for Domain Object, 122-124
Scheduling Port AD, 149
Second Port AD, 152
Static Link AD slot, 115
TCO_AD,191
TDO_AD, 189, 190
Top of Descriptor Stack AD, 117
Top of Storage Stack lAD, 116-117
type rights field of, 192
unchecked copy rights bit in, 276

Ada, 16-18, 21-24
abort statement, 75
accept alternative statement sequel, 79
accept statement, 73-79

guard clause, 78
implementation of, 153

accepts nested in selected statement, 76-
77

accepts types, implementation and use
of, 202-204

case statement, 52
delay alternatives, 78
delay statement, 75
else clause, 78
exception handler, 52
extensions, 184-186, 214

package type, 185-186
(See also 432-Ada language extension)

407

408 Index

Ada (Cont.):

is separate phrase, 50
limited private type, 203
and object-based programming, 17-18,

27
package, 16-17, 24-26, 257
pragma Enable_Dynamic_ Typing, 203
pragma inline, 57
private clause, 44
program structures in, 16-17, 21-37
renames declaration, 59
renames feature, 52
rendezvous and iMAX Typed_Ports

equivalence, 176-177
rendezvous semantics, 176-177
select statement, 73

implementation model, 158
semantics of, 78

separate prefix, 52
separate procedure declaration, 50-52
task. 17, 79-80
task structures in [see Task(s)]
terminate alternative, 78
terminate statement, 73
use list, 58
while loop, 52
with list, 25, 34-35

Address space management, 92-103
AlarID-Port, 147
Allocated bit of Object Descriptor, 265,

290
Allocation of storage space for a process,

105
Allocation block, 268
Allocation limit, 292
Allocator expression, 69, 273
ALTER MAP AND SELECT DATA

SEGMENT order, 228
Altered bit of Object Descriptor, 266
Amplification of access environment, 123
AMPLIFY RIGHTS instruction, 191, 196-

197
AP (see Attached Processor)
Architecture:

computer (see Computer architecture>
language-directed,92

Asynchronous communication, modelling
in standard Ada, 161

Asynchronous device interface:
structure of, 240-244
synchronous and, choosing between,

244-245

Asynchronous interface, 233-235
operations, 234
package, connection record, 234

Asynchronous intertask communication, 68
Asynchronous modes of communication,

165-166
Asynchronous send and receive opera

tions, 150
Asynchronous send operation, simulation

of, 162
Asynchronous_la_Interface package, 235,

240, 242, 379-381
Atomic Action(s), 15, 305-308

on portfolio objects, 315
Attach Table, 246
Attached Processor (AP), 220-228

file server process, 237
mechanisms of the PSI, 225
multitasking software, 226
processes, 228
Read or Write instructions, 222

Base rights, 187, 192
Basic_IO_Interface paradigm, 235
Binding modes for parameters, 43
Block and random transfer modes, 223
Block transfers at high speed, 222
Blocking connotation of send and receive

operations, 150-154
Body part, 21

CALL instruction, 106, 113, 116, 122-124
CALL THROUGH DOMAIN instruction,

122-124
Capability, 12,93
Carrier Object(s), 140-144, 161

logical view of, 143
schematic of, 142, 143
structure of, 142
surrogate, 165-166

Carrier pool management, 174
CarrieLDef generic package, 167, 172-176
Case statement, 52
Claim Object, 108

component or SRO, 271
master, 292

Claim value, 271
underflow, 283

CLOSE MESSAGE order, 223, 224, 228
Close operation, 233-235, 310, 312

Closed accept alternative, 78
Club_Portfolio:

creation of, 55
creating multiple instances of, 55

as dynamic package, 212
initialization sequence for, 55
package, 29, 53-54, 326-330
PrinLclub_ valuation function body,

335-336
public operations of, 53
selected bodies, 335-336
(See also Portfoli<LMgr)

Commit operation, 306
CommiLtransaction operation, 308
Communication Port, 140, 144-145

distinguished from Dispatching Port, 145
Communication structures, 135
Compaction algorithm, 281
Compaction process, 270
Composite(s) 301, 313

details on, 302-303
how referenced, 301
object, 264
for solving the "small object problem,"

300-304
Computational Subsystem, 6, 219

interaction with Peripheral Subsystem,
219

Computer architecture:
multiprocessing and, 2
object-based, 11-13, 94

Conditional entry statement, 155
CONDITIONAL RECEIVE instruction,

154-155
CONDITIONAL SEND and RECEIVE

orders, 223
CONDITIONAL SEND instruction, 154-

155
Connection record, 235
Connectio~record, definition of, 240
Context Fault Area, 110
Context level, 109

fault repair, 110
Context Message AD, 116
Context Object(s), 105-107, 110-120

automatic allocation, 106
data part, 118-120
details of, 112
preallocated list of, 105
processor-defined ADs, 152

Context Object Register, 111
Context predecessor, 128

Index 409.

Context Status, 118
Contours, 110
Control, thread of, 22
Control-based programming, 8
Control operations for processes, 253
ControLrights rights, 257, 258
Copied bit of Object Descriptor, 287
CREATE OBJECT instruction, 106, 190-

192, 195, 196
Create object operation, 95
Create rights, 190, 191,285
CREATE TYPED OBJECT instruction,

190, 195, 196
Create_generic_refinement operation, 285
Create_locaLheap operation, 286
Create_object operation, 285
Create_process operation, 256-258, 260
Create_stacLobject operation, 285
Create_typed_object operation, 285
Current Context AD slot, 112-113
Current Domain Register, 114, 123, 125
Current Instruction Object Index, 119, 124
Current level number, 110
Current Processor Carrier AD, 147

Dangling reference prevention, 109, 275-
276

Data abstraction, 8, 9, 13
Data part of an object, 96
Data-transmission operations of Asyn-

chronous_IO_lnterface, 240
Data Window, 221
Data.-file objects, 313
Deadline value, 146
Debugging, software, 119
Default global heap SRO, 277
Defining Domain AD slot, 114, 124
Delay alternatives, 78
DELAY instruction, 146
Delay Port, 146
Delay statement, 75
Delete rights, 97
Derived types, 205
Descriptor, 92

Access (see AD)
Object (see Object Descriptor)

Refinement, 102. 108, 117
Descriptor-based addressing, 92
Destroy process operation, 259
Device abstraction:

allocation and deallocation, 243

410 Index

Device abstraction (Cont.):

defined Open and Close operations, 244
Device driver process, 226
Device Interface module (DIM), 245-246
Device interface objects as separate pro-

tection domains, 245
Diagnostic_Port, 147
Directed graph, 91, 103
DISPATCH order, 225
Dispatching, 137, 142

mix, 138, 252
and scheduling of processes at lowest

level,259
Dispatching Port(s), 4, 105, 145, 146, 252

AD slot, 149
of the IP, 225
preassigned set, 147
of a processor, 147-148

Dispatchin~Port, normal and alternative,
147

Displacement component of data operand,
99

Domain(s), 13, 120
access to public part, 142;-124
independent, 10

Domain-based operating system, 8
Domain Object(s), 104, 105, 120-125

for Ada library level packages, 104
private and public parts, 121

Dynamic allocation of objects, 106
Dynamic binding semantics, I 15
Dynamic chain, 128

length,274
Dynamic link, 114
Dynamic (symbolic) linking, 300
Dynamic package(s), 56, 211-215

facility, 213-214
implementation of, 214

used for passing function argument, 213
Dynamic scheduling, 136
Dynamic Typed Object, 184
Dynamic unlinking, 300
Dynamic_typed type, 205

Else clause, 78
ENTER ACCESS ENVIRONMENT in

struction, 113, 114, 122
ENTER GLOBAL instruction, 113
Entry call(s), 22, 180

chain of, 80
Entry declaration, 65, 81

Entry Register, 113, 114
Environment registers, 113
Exception handler, 52
Exposed accept statement, 73
Extended type, 12
Extended Type Object(s), 184, 188-189

as instances of Ada access types, 184
Extended __ Type_Manager:

operations of, 200
package, 199-202, 371-372

External symbolic names for objects, 299-
300

Fault code, 110
Fault Information Object, 121
Fault Port AD slot, 149
Fault state, 118
FIFO (first-in, first-out):

mode of port service, 145
queueing discipline, 145, 161

File open operation, 236
File_Manager package, 236
Files, traditional, 264
Filing. 263

object (see Object filing)
First-in. first-out (see FIFO)
FirsLport Object, 156, 157
432-Ada language extension, 56
Free List, 270

state, 281
Frozen global heap SRO, 268, 276-277, 290
Function Request Area, 221, 224
Function State field, 224

Garbage collection and Ada, 271
Garbage collector (GCOL), 270-273

algorithm in conventional systems, 266
process, 194, 270, 281

details, 285-288
General Data Processor (GDP), 6, 194
Generic abstraction, 234
Generic clause, 40
Generic package, 31, 40, 55
Generic parameter, 40
Generic Queue_Mgr package, 40, 320-322
Generic_Sink abstraction, 233, 234
Generic_Source abstraction, 233, 234
Get operations, 308, 310
GeLaccess_descriptor operation, 314

GeLasynchronous_interface operation,
233, 234

GeLfile_interface operation, 236
GeLterminaLcharacteristics operation,

234
GeLterminaLinterface operation, 236
Global Constants AD slot, 115
Global heap SRO, 106,272

frozen, 268, 276-277, 290
normal, 268, 276-277

Global heap storage space, 268

Hardware support for access control and
type management, 187-199

HYDRA system, 12, 15

I/O (Input/Output), 217-250
architectural support for, 219-225
buffering, 231
channel, 234
device abstraction, 231-233

forming a hierarchy, 232
generic, 232

device interfaces, 233
synchronous, 235-237

devices, logical, implementation of,
231

higher-level view of, 225-230
operations: generic, 234

via message-based communication,
223

request message, 231
I/O Control Program, 245-246
I/O Control Systems, 217
I/O Subsystem, 6, 218
I/O_message_record definition, 240
iAPX 432:

Published Papers, 317
Titles of Manuals and Booklets, 318

i432:
address-space structures, 92-103
instruction, 99
interprocess communication, 149-164
object details, 100-101
Object Filing Subsystem, 14, 295
object space, 263-266
port operations, 176-177
process and processor state transitions,

138
security strategy, 194-198

i432 (Cont.):
system topology, 6

iMAX:

Index 411

Asynchronous_la_Interface package,
379-381

Extende<LType_Manager package, 199-
202, 371-372

interface as type manager, 251
I/O Interface, 230-235
la_Definitions package, 373
MCO_Manager package, 390-392
Passive_Store_Manager package, 308-

314, 396-403
Process_Manager interface, 251-262
Process_ManageL Types, 382-387
SRO_Manager package, 284-285. 388-

389
Support for interprocess communication.

166-177
Synchronous_la_Interfaces package.

374-378
Transactio"----.Manager package, 308.

393-395
Type<LPorts package, 176-177. 366-370

iMALDefinitions package. 167
In-bound Message AD, 142
INDIVISIBLY INSERT SHORT ORDI-

NAL order, 230
Initial run-time object structure. 105
IniLproc parameter of Create_process.

257
Input/Output (see I/O)
InpuLOutput, library package, 244
Instruction data operand. 99
Instruction formats for expression evalua-

tion. 120 .
Instruction Object, 119, 120
Instruction Object Index, 124

Current, 119, 124
Instruction Object Register, 124
Instruction Pointer (IP). 119, 124
Instruction Pointer Register, 125
Interdomain call, 122
Interdomain link. 121
Interface Processor (IP), 6, 194, 220-230

orders for, 221
process re-use by the AP, 224
process selection, 224
response to function requests, 221
Window Mapping. 221
window opening and closing. 222

Interface Processor Controller, 228

412 Index

Interface_description operation. 233. 235
Intermediary tasks for modelling asynchro

nous communication. 162
Internal names. generating unique. 299
Interprocess communication. 135

iMAX support for, 166-177
Interprocess Message AD slot, 116
Interprocessor communications (lPC), 146

message, 226
Interprocessor wakeup signal, 146
Interrupt signal. 224
Intradomain call, 116. 122
Investment club program:

execution snapshots. 125-133
implemented with message-based com

munication. 177-181
message flow graph, 178
(See also Club_Portfolio)

Investment portfolio manager, 26-27
(See also Portfolio_Mgr)

la_Definitions package. 235, 373
IP (see Instruction Pointer; Interface Pro

cessor)
IPC (see Interprocessor communications)
Is separate phrase. 50

Job, 136, 260
ordering of, in workstream, 136
parameter to Create process, 260

Level:
compatibility check, 276
context, 109, 110
number for a created object, 109
number attribute, 274
number counter, 274
violations, avoiding, when sending mes

sages, 283
Library packages InpuLOutput and TexL

10,244
Lifetime of created object, 109
Lifetime-violation fault. 275
Limited private type, 203
Link Objects, 300
Local Constants AD, 115, 124
Local heap SRO, 106, 273
LOCK OBJECT instruction, 192
Logical disk structures, per disk, 302
Logical names for objects, 299-300
Long-term scheduling. 138, 144-145, 149

parameters, 146-147

Long-term scheduling (Cont.):
viewed as communication. 144-145

Mailboxes, Print Order and Print Re-
sponse.230

Main memory management. 263, 267-288
Main subprogram. 22
Mapping table entry, 93, 94
Masters_Helper task, 210
MCO (see Memory Controller Object)
Member task, 33-37, 71. 247-248

command loop, 248
MembeLOps package, 33-35, 56-60

version I, 337-339
version 2, 339-340

Membership roster protection, 208
Membership __ Roster package, 37, 208-211,

341-342
specification part, 82, 83

Memory. normal and frozen, 276-277
Memory compaction algorithm, 266
Memory Controller Object (MCO), 291-293

MCO_Manager package, 291-293, 390-
392

operating statistics, dynamic and static,
292

parameters, 291
performance statistics, 292
representation. 293

Memory management, 263-293
main. 267-288
and process management. 267
virtual, 288-293

Memory Management Subsystem, 265,
268

Memory mapped 1/0 subsystem, 220
Memory space, two-space model of, 265
Memory type, 291
Message Object. 116

pool of. 226
Precreated, 126

Message priority system, 160, 171-172
Message_type, definition of, 179
Mix, 136

dispatching, 138, 252
Module, 21
MPM (minimal process management imple-

mentation), 259-260
Multicomputer, 5
Multiple wait paradigm, 160
Multiple waiting, 174

Multiprocessing, 2
transparent, 7

Multiprocessing model, 3-4
Multiprocessor:

interconnect, 6
memory organization, 5-6

Multiprocessor system, 2-3, 5
organization, 6-7

Multiprogramming models, 136

Names, logical, for objects, 299-300
Non-faulting processor (NFP), 147
Non-owner package, 24
Normal and frozen memory, 276
Normal global heap SRO, 268, 276-277

Object(s), 94
auto-activation, 301
composite, 264
consistency across updates, 305-308
creation instructions, 190-192
definition of, 8
detailed view of, 99, 100
fully private, 202
having unbounded lifetimes, 106
as independent address spaces, 91
non-relocatable and non-swappable, 291
processor-defined part, 101
sealed, 202, 208
software-defined extension, 100
trademark,202
of type dat3--file, 313

Object-based architecture, 11-13, 94
Object-based design, 7-8
Object-based operating systems, 9-11
Object-based program design methodology

27
Object-based programming, 8-9, 17-18
Object Descriptor, 94-96, 99, 101-102,

116-117, 265-266
accessed bit, 266
altered bit, 266
principal component s of, 193
valid bit, 313

Object filing, 263-264, 295-316
design challenges for, 298-308
system for, 13-16

Object Filing Subsystem, 33, 104, 295
Object identifier, unique, 298-299, 301
Object lifetime strategies, 272-275

Index 413

Object Lock, 110
Object manager, 12
Object-oriented architecture, 11
Object partition, 96
Object selector component of data oper

and,99
Object space in which object resides, 295
Object Table, 95, 108, 109, 117

handling overflow, 282
Object type, 97

management, 183
One-space store, 302
Open, implementation of, 311
Open and Close operations, 308, 310
Open accept alternative, 78
OPEN MESSAGE order, 222-224, 228
Open parameter, 311
Open Window order, 223, 228
OpeILmode parameter for Open, 311
Opening a passive object, 311
Operand Stack, 120
Operating system:

application-specific, 251
model based on objects and domains, 8
organization, 7

Orders for Interface Processor, 221
Out-bound Message AD, 151
Owner package, 24-25, 296
Ownership right in a PAD, 304-305

Package(s), 22, 24-26
owner, 24, 25, 296
public and private parts of, 25
public part of, 22
transformer, 24
visible and invisible parts of, 25

Package instance, dynamic selection of,
211

Package refinement:
access type, 214, 218, 233, 238, 252
specifying, 214

Package type extension to Ada, 184
Package value, 213 .
Package variable, 211, 214

assigning package instance to, 211
uses of, 213

PAD (see Passive Access Descriptor)
Parallel flow, 62
Parallel garbage collection, architectural

support for, 266
Parameter binding modes, 43

414 Index

Passivating a Typed Object, 303
Passivation filter, 303, 304
Passive Access Descriptor (PAD), 302-

305
owner right, 305

requirement for Update or Passivate,
309

storing via a "component" action, 302
Passive address space, 14
Passive object, 264, 301-303

space, 264, 295
efficient management of, 305

Passive Object Directory, 301
Passive_definition, 311
Passive_Store_Manager package, 308-314,

396-403
active-version operators, 309
passive space manipulation operations,

310
Peripheral Subsystem, 219, 250
Peripheral Subsystem Interface (PSI), 219,

225,237
details for, 228
role of, 226
structure of, 228

PGO (Process Globals Object), 109, 277
Physical devices:

allocation and deallocation of, 244
simulated, 245

Physical storage, state diagram, 281
Physical Storage Object (PSO), 108, 268-

269,289
Pipeline flow, 62
Pkg-ref (see Package refinement)
PM (see Process_Manager)
POD (Passive Object Directory), 301
Policy and mechanism separation, 140
Pool of message objects, 226
Port(s):

abstract view of, 140
concrete view of, 140
dispatching (see Dispatching Ports)
hardware-sensed service modes, 145

Port Object, 140-141
Port service disciplines, 145-146
Portfolio details, 32
Portfolio management information system,

I/O operations, 246-250
Portfolio management system, final inspec

tion of, 314-316
Portfolio_Mgr:

Create function body, 331

Portfolio_Mgr (Cont.):
package, 27-32, 47-52, 322-326
public operations of, 47, 48
RecorcLbuy procedure body, 331
RecorcLsell procedure body, 332
SearclLfoLstocLcode function body,

333
separate bodies, 331-335
Shares_ancLav~cost procedure body,

334-335
StocLlist procedure body, 334
(See also Club_Portfolio)

Portfolio_Server task. 37, 64, 67,
178-181. 208, 209, 315

body part, 350-356, 361-365
entries, 81-82
for use with Figure 2-5 structure, 345-

350
for use with Figure 3-2 structure, 358-

361
Pragma Enable_Dynamic_ Typing, 203
Pragma inline, 57
Precreated Message AD, 116
Precreated Message Object, 126
Predecessor Context AD slot, 114
Priority/Deadline port service mode,

146
Priority-mode of port service, 175
Priority queueing discipline, 161
Private access type, 203
Private clause, 44
Private_AD for Domain Object, 123-125
Procedure call classes, 122-124
Procedures as parameters, prohibition of,

186
Process:

as scheduleable and dispatchable job,
140-149

surrogate, 156
Process Carrier AD slot, 144, 149
Process Carrier Object, 143
Process clock, 110
Process Control Area, 110
Process Fault Access Area slots, 149
Process Fault Area, 110
Process Globals Object (PGO), 109, 277
Process ID, 108
Process lifecycle, 252, 254
Process macro-state, 252, 254
Process management, 251-262

functions of, 252
minimal implementation, 259-260

Process Manager Support package, 260
Process Object(s), 65, 107-110, 128, 140,

141
access part, 107
allocation of, 284
creation of, 146
data part, 109-110
management of, 251
processor-defined AD slots, 148
structure of, 148-] 49

Process Object Register, 107
Process preemption, 138, 148
Process status, 110
Process trees, 277-281, 289
Processes as scheduleable and dispatchable

units of work, 141-149
Process-level fault recovery, 110
Process_Globals_Definitions interface

package, 276
Process_Manager, 251-262

access package, 382-387
implementation for multi-user time

shared operating system, 260
instance, 251
interface, 252-258

implementations, 251-252, 259
Process_ManageL Types package, 257,

258, 382-387
Processor Carrier of the IP, 225
Processor Carrier Object(s), 142

precreated set, 147
Processor class, 193-194
Processor control codes, 119
Processor dispatching mode, 147-148
Processor Object, 98, 140, 142

creation of, 147
Processor registers for domain access, 125
Processor switch to another workstream,

148
Processors, special-function, 194
Program structure, directed graph repre-

sentation, 91
Program units, 21
Protection domains, 93, 94
Protection problem, 94
Pseudo-temporal environment (PTE), 306,

307
Pseudo time, 307
PSI (see Peripheral Subsystem Interface)
PSO (see Physical Storage Object)
PTE (pseudo-temporal environment), 306,

307

Index 415

Public_AD for Domain Object, 122-124
Purchase_Queue_Mgr package, 31, 43,

125, 322
Put and Delete operations, 308, 310
Put and Get operations, 312
PuLdata and PULaccess_descriptor oper

ations, 312
PuLdat~file operation, 312

Query record for device interface, 235
Queue:

of Available Processors, 4
of Ready Program Units, 4

Queueing discipline, 145
Queue_Mgr package, 31, 39-47, 320-322

Raise_exception operation, 259
Read rights, 97, 192, 257
Rea<LMCO_statistics operation, 292
RECEIVE and SEND order implementa-

tion, 224
RECEIVE instruction, 116, 152-154

conditional, 154-155
surrogate, 155-158, 160

RECEIVE order, 224, 243
Receive rights, 171
Reclamation bit of Object Descriptor, 287
Reconfiguratio"--Port, 147
Refinement Descriptor, 102, 108, 117
Refinement Object, 102
Refinements:

creation of, 285
of Domain Objects, 104, 218

Related types, 205
Relocation-in-process state, 291
Renames declaration, 59
Renames feature, 52
Rendezvous, 22-23, 67, 176-177

early acknowledge for, 79
hardware support for, 74
mechanism, 162, 210
minimizing delay for, 79, 80
suspension, 73

Reply_port, 240
Representation rights, 192
Request/acknowledge protocol, 79
Request queue, 145

fixed-length, 150, 151
overflow, 143, 145

extension, 150
Request/server model, 138-140, 165

416 Index

RequesLport, 240
Reset operation, 233-235
ReseLactive_ version operation, 309
Resource control parameter, 291-292
RESTRICT RIGHTS instruction, 191, 196,

197
Resume process operation, 259
RETRIEVE TYPE DEFINITION instruc

tion, 198
RETURN instruction, 106, 113-114, 273

deallocation semantics, 274
fault, 114

Return rights, 114, 128, 273
Root Context Object, 125
Root Domain Object, 105, 125
Root node for program, 103
RosteLServer task, 37, 64, 67, 178-181,

315
entries for, 83, 84
for use with Figure 2-5 structure, 343-

345
for use with Figure 3-2 structure, 357-

358
RosteL TypeLAncLConstants package.

83,341
Rotate-first fit algorithm. 268
Run-time program structures. 103-107

Scan rate, 293
Scheduling, 137-147, 259

and dispatching of i432 processes, 135
long-term (see Long-term scheduling)
short-term (see Short-term scheduling)
viewed as communication, 146-147

Scheduling Port AD slot, 149
Sealed object, 202, 208
Sealed reference, 203
Second Port AD, 152
Second port mechanism. 146, 151, 225
SeconcLport Object, 156. 157
Secretary task, 209-210
Secy_Treas task, 29-31
Segments. 92-95

relocation, 93
Select alternative, 73
Select statement (see Ada, select statement)
Selective wait loop, 77
Selective wait statement, 77
Semantic model of program structure, 8
SEND and RECEIVE instructions, appli-

cations for, 153. 158

SEND instructions, 150-153
conditional, 154-155
surrogate, 155-158, 160, 161

SEND order, 224, 243
Send rights. 171
Separate compilation unit. 50
Separate prefix, 52
Separate procedure declaration. 50-52
Server queue, 145
Server task. 37

general form, 79
Service count, 110, 259
Service period, 110. 147
SET MODE instruction. 118
SeLschedulin~parameters operation, 259
SeLterminaLcharacteristics operation.

234
Short-term scheduling. 137. 144, 145

hardware support. 140
parameters. 146-147
viewed as communication, 144

SIGOPS (Special Interest Group on Oper-
ating Systems), IOn.

Simple_PorLDef package. 169-172
Simula class construct. 9
Single-owner-only rule for PADs, 305
Software debugging, 119
Software-defined type rights, 257
SP (see Stack Pointer)
Specification part, 21, 53
Specification stub, 50
SRO (see Storage Resource Object)
Stack frames, 110
Stack Pointer (SP), 118, 124

entry, 118
register, 118

Stack SRO, 106, 272
allocation strategy, 268
handling overflow, 282

Starter task, 22, 29
StarLtransaction operation, 308, 309
Static Link AD slot, 115
StocLMkLInfo:

on-line connection for, 249-250
package, 30

StoclLsummary, 48-50
StocLTypes_AncLConstants package,

37, 38, 41, 319
Storage block specifier, 269
Storage claim underflow fault, 292
Storage Resource Objects (SRO), 65, 106,

108, 109, 268-275

Storage Resource Objects (SRO) (ConI.):
global heap (see Global heap SRO)
stack (see Stack SRO)
state, 281
structure of, 268
three kinds of, 272
tree(s): controlled by MCO, 292

logical relationships among nodes, 278
and matching process trees, 277-281
physical relationships among nodes,

278
structures of, 272

(See also iMax, SRO_Manager package)
Surrogate Carriers, 156, 163

pool of, 172
Surrogate process, 156, 165
SURROGATE RECEIVE application, 158
SURROGATE RECEIVE instruction, 155-

158
SURROGATE SEND and SURROGATE

RECEIVE orders, 223
SURROGATE SEND application, 158
SURROGATE SEND instruction, 155-158,

160,161
Surrogate_PorLDef generic package, 167,

172-176
Suspend process operation, 259
Suspend_ancLresume_rights rights, 257,

258
Swapped-out state, 291
Swapping store, 263
Symbolic names for objects, 299-300
Synchronous and asynchronous device in-

terfaces, choosing between, 244-245
Synchronous device interface, 233-240

acquisition of, 235-237
examples of, 237-240
refinement, 233

Synchronous I/O call, 231
Synchronous I/O device interfaces, 235-

237
Synchronous interface(s), 231

for use with standard Ada, 244
Synchronous_IO_Interfaces package, 374-

378
System crashes, protecting against, 265
System objects, 96, 184, 196
System type, 188, 193

generic, 193
subfield, 193

Table of Object Tables, 282

Index 417

Task(s), 22-23
dynamic creation of, 64, 69-71
non-server/non-requestor form, 64, 73
Process Object for representing, 65
pure requestor form, 64, 73
pure server form, 64, 73
server/requestor form, 64
starter, 22, 29
static creation of, 64-69
viewed as machines, 61-64

Task activation, 65
Task body, 71-81

skeletal structure of, 72
Task elaboration, 64-65
Task entry call, 65
Task forms, 64
Task identifier, 65
Task roles, 63
Task spawned, 22, 64
Task structures [see Task(s)]
Task type, 69, 71

new instance of, 71
TasLMaster and terminal communication,

247-248
TasLMaster task, 35-37, 64-66, 69, 71,

209-211
TCO (see Type Control Object)
TCO_AD,191
TDO (see Type Definition Object)
TDO_AD, 189, 190
Terminal operations, 247-249
Terminal sink, 233
TerminaLManager package, 236
TerminaLSink, 237-239, 247
Terminate alternative, 78
Terminate statement, 73
Text_IO package, 31, 244
Thread of control, 22
Time slice, 146
Time slicing, 136
Top of Descriptor Stack AD, 117
Top of Storage Stack AD, 116-117
Trace Event Code, 120
Trace Information Object, 121
Trace Mode Data Area, 119-120
Trace rights, 120
Tracing, 120
Transaction(s), 306-308

performing, 308
TransactiolLinfo operation, 308
TransactiolLManager package, 308, 393-

395

418 Index

TransforllLinterface application, 239
TransforllLinterface operation, 233-235
Transformer package, 24, 297
Transparent multiprocessing, 7
Two-space model of memory space, 265
Type of an object, 96
Type checking, compile-time and run-time,

204-207
Type Control Object (TCO), 190-191, 196-

197
creation of, 196
for system objects, 196
TCO_AD,191

Type conversion, 204-205
Type definition mechanism, hardware sup

port for, 188
Type Definition Object (TDO), 184, 189-

190, 198-202, 302, 304
AD,190
content, 198

Type dynamic_typed, 204-206
Type management, hardware support for,

187-199
Type manager, 12, 304

package, how programmed, 200
Type rights, 187, 192

field of AD, 192
Typed Object(s), 184

passivation decisions and actions, 303-
304

verifying its type, 202
Typed_Ports:

implemented by rendezvous, 174
package, 166-167, 174, 366-370
structure of, 167-169

Type_value attribute, 184

UID (unique object identifier), 298-299,
301

Unchecked copy rights bit in AD, 276
Unchecke<LConversion generic function,

206-207
Unique object identifier (UID), 298-299,

301
UNLOCK OBJECT instruction, 192
Untype<LPorts package, 166
Update operation, 308, 309
Use list, 58

Valid bit of Object Descriptor, 313
Virtual memory, 265

facility, 270
management of, 288-293

WaiLfoLprocess_termination operation,
258

While loop, 52
Windowing overhead reduction, 223
With list, 25, 34-35
Working Storage, 120
Workstream, computer, 135-137
Work stream alternative, 147
Write rights, 97, 192

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418

