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PREFACE 

This manual describes the iAPX 432 interconnect architecture. It is 
assumed that the reader is already familiar with other Intel literature 
related to the iAPX 432 system. A list of references is provided below. 

Related Publications 

For general information about the iAPX 432 system: 

iAPX 432 General Data Processor Architecture Reference Manual, 
Order Number 171860. 

iAPX 432 Interface Processor Architecture Reference Manual, Order 
Nunber 171863. 

For detailed information about iAPX 432 processor components that may 
be used with the interconnect architecture, refer to: 

iAPX 43201/43202 General Data Processor Data Sheet, Order Number 
171873. 

iAPX 43203 Interface Processor Data Sheet, Order Number 171874. 

For more information about iAPX 432 interconnect components, refer to: 

iAPX 43204/43205 Data Sheet, Order Number 172866, which describes 
the Bus Interface Unit (BIU) and Memory Control Unit (MCU) 
interconnect components. 

For more information on the general topic of fault tolerance, refer to: 

The Theory and Practice of Reliable System Design, Sieworik and 
Swartz, 1982, Digital Press. This book contains a variety of 
background information. Chapter 18 is devoted to the iAPX 432: "A 
Design Method for High-Reliability Systems: The Intel 432", Daniel 
P. Sieworik and David P. Johnson. 
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INTRODUCTION 

CHAPTER 1 
KEY CONCEPTS 

The first phase of the iAPX 432 program introduced two processor types: 
the General Data Processor (GDP) and the Interface Processor (IP). The 
GDP was implemented with two VLSI components: iAPX 43201 and iAPX 
43202. The IP was implemented as a single VLSI component: the iAPX 
43203. These three VLSI components implement the processor 
architecture for the iAPX 432. System builders have constructed 
multiple processor systems by surrounding the VLSI processors with 
discrete logic, which provided the interface to shared memory and the 
interprocessor communication paths. The method for interconnecting 
iAPX 432 processors and memories was unique for each for each system, 
since no standard had been defined. 

This manual describes a unifying interconnect architecture for building 
iAPX 432 systems. The interconnect architecture has been implemented 
in a pair of VLSI components: the iAPX 43204 Bus Interface Unit (BIU) 
and the iAPX 43205 Memory Control Unit (MCU). Together, these 
components form the basis for constructing multiple-processor iAPX 432 
systems. The BIU performs as an intelligent switch. The MCU acts as 
an intelligent memory controller. 

The iAPX 432 interconnect architecture provides: 

• Integrated fault tolerance. The VLSI interconnect components 
(BIU/MCU) integrate all the detection and recovery logic required 
to build a system that can tolerate any single component failure. 

• Software-transparent faul t tolerance. Hardware performs all fault 
detection and recovery functions transparent to application 
software. The architecture never dies. 

• Configurability. The BIU and MCU support a range of fault 
tolerance and performance options to meet a di verse set of cost, 
performance, and reliability needs. 

• Standard VLSI solution. Very little external logic is required. 

• Reliable software. The iAPX 432 system's "need to know" 
(capability) addressing confines errors, protecting the system from 
errant software. 

The object-based architecture of the iAPX 432 provides a robust and 
flexible environment for cooperating, concurrent software systems. The 
iAPX 432 processors use a cooperating, self-dispatching mechanism to 
automatically share the workload between the available processors. The 
number of processors available in the system is transparent to software. 

1-1 



Key Concepts iAPX 432 Interconnect ARM 

The BIU and the MCU extend the logical robustness and flexibility of 
the iAPX 432 processors into the physical implementation of iAPX 432 
systems. The BIU and MCU allow the iAPX 432 hardware to modularly and 
transparently extend the processing power (from 1 to 63 modules of 
processors or memories), bus bandwidth (1 to 8 backplane buses), and 
fault-tolerant capabilities of the system. 

As Figure 1-1 shows, an iAPX 432 system based on the interconnect 
archi tecture may be expanded gracefully. A system with one processor 
and one memory may be built with a single memory bus. Transparent 
multiprocessing may be achieved by simply adding processor modules. 
When additional memory is required, memory modules may be added onto 
the single memory bus. When more memory bandwidth is required, 
additional memory (bus or buses) can be added. None of these 
alternative systems require any change to application software. 

ONE PROCESSOR MODULE 

ONE MEMORY MODULE 

EXPAN[)ED NUMBER 

OF MODULES 

EXPANDED NUMBER 

OF BUSES 

LEGEND 

P; iAPX 432 PROCESSOR (GDP OR IP) 
S; BIU 

M; MCU 

R; DYNAMIC RAM ARRAY 

Figure 1-1. Modular ExpanSion F-0396 

In an iAPX 432 system, each processor is unaware of the manner in which 
the memory address space is actually implemented. Hardware located in 
the BIUs determines how processor addresses are mapped to buses and 
memory systems. 
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iAPX 432 Interconnect ARM Key Concepts 

Figure 1-2 illustrates how iAPX 432 processors, BIUs, and MCUs are 
organized into a multiprocessor interconnect system. Each processor 
and its associated BIUs form a module. Each MCU and its associated 
storage array form a module. These modules form the basis for 
detection and confinement of errors. Every BIU and MCU constitutes a 
node in the interconnect system. A unique BIU or MCU may thus be named 
in a consistent way by referring to its node address, which consists of 
the number of the bus to which it is attached and the number of the 
module in which it is contained. The benefit of the unified, modular 
design of the iAPX 432 interconnect system is that all modules are 
alike -- no special backplane slots are required to change the number 
or mix of processors (GDPs and IPs) and memories in an iAPX 432 system. 
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I Processor 
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GOP 
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GOP IP 
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Figure 1-2. iAPX 432 Interconnect Topology 

BUS INTERFACE UNIT 

MACD 
Bus 

F-D398 

The Bus Interface Unit or BIU provides the switching function of the 
iAPX 432 interconnect system. That is, it accepts the access requests 
from an iAPX 432 processor and, based on the physical address, it 
decides which memory bus (es) will be used to perform the access. The 
BIU is also responsible for arbitrating the usage of the memory bus. 
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MEMORY CONTROL UNIT 

The Memory Control Unit, or MCU, interfaces memory storage arrays to 
the memory bus. The storage arrays will typically be constructed with 
high-density dynamic RAM (DRAM) components. All types of DRAMs are 
supported: 16K, 64K, 256K, even partially good components. The MCU 
manages the storage array as a logical collection of 32 data bits, 7 
bi ts of error correcting code (ECC), and an optional spare bit. The 
MCU can automatically refresh the dynamic storage array. In addition, 
the MCU can scrub single-bit errors from the storage array as a 
background task. Scrubbing is accomplished by periodically reading the 
storage array, correcting all single-bit errors, and detecting and 
reporting all double-bit errors. The MCU accepts variable length data 
requests from the memory bus and performs the necessary access 
sequencing to read or write the data into the storage array. A modest 
amount of external logic is required to interface the MCU to the 
storage array RAMs -- for simple configurations, as few as 12 external 
TTL packages are required. 

MEMORY BUS 

The memory bus (sometimes referred to as the MACD bus) provides the 
principal communication path, carrying all memory access requests and 
interprocessor communication. The memory bus connects BIUs to MCUs. 
Each node in the interconnect system tracks each operation on the 
memory bus to which it is attached. Thus, unlike most bus protocols, 
each BIU and MCU keeps track all of outstanding requests on the bus -
not just the ones it made. Control for the bus is fully distributed; 
there is no centralized bus controller. 

INTERLEAVING 

When several processors in a shared memory multiprocessor system demand 
information from a common area of memory (e.g., a shared instruction or 
data segment), they tend to impede the efforts of one another. All the 
processors are competing for the same memory bus. The iAPX 432 
interconnect system answers this problem by interleaving memory buses. 
Interleaving spreads the accesses to a common segment of memory across 
several memory buses. Different memory buses support the alternation 
of consecutive regions of a processor's address space. On the basis of 
the mid-order address bits from the processor's physical address, the 
BIUs control interleaving. A system designer may opt for no 
interleaving, two-way interleaving, or four-way interleaving under 
softWare control. Address bits 6, 7, and 8 may be used to select 
interleaving on 64-, 128-, or 256-byte boundaries. For example, when 
two-way interleaving is performed at 64-byte boundaries, a processor's 
requests for data between addresses 0 and 63 are served by one memory 
bus and those for data between addresses 64 and 127 are served by a 
different memory bus. 
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REQUEST/REPLY PAIRS AND PIPELINING 

The interconnect system also supports pipelining on each of its memory 
buses. This allows several processors to issue memory requests before 
a memory module has performed all its previous requests. Each memory 
bus in an iAPX 432 interconnect system can queue a maximum of three 
memory requests. (That is, the maximum memory bus pipeline depth is 
three.) Pipelining can occur because each reguest from a processor is 
separated in time from the corresponding reply from the memory module 
that supports the request. Each memory access consists of a 
request/reply pair. Every request deepens the memory bus pipeline by 
one entry. Each reply removes one entry from the pipeline. All BIUs 
and MCUs track the state of the memory bus pipeline to which they are 
attached in order to determine when it is permissible to issue new 
requests or to return awaited replies. The memory requests are issued 
to a memory bus as ~ackets of information. Each request also has a 
data length field. n the memory bus, data requests may be variable 
length. Access lengths of from 1 to 16 bytes are supported. 

INTER PROCESSOR COMMUNICATION 

In contrast to standard systems, the iAPX 432 interconnect system also 
provides a facility for rapid interprocessor communication (IPC). In 
the iAPX 432, a processor may signal another processor or all other 
processors of a condition that requires attention (e.g., "stop 
execution", "flush caches", etc.). The IPC facility is supported in 
the interconnect system by a special form of memory bus message called 
a bus notification. Unlike standard memory request/reply pairs, the 
bus notification is a stand-alone memory bus packet that notifies the 
processor<s) of an IPC. Each BIU decides if its associated processor 
should act on the IPC on the basis of whether the processor ID 
contained in the bus notification matches the processor's unique ID or 
the global ID. Each processor in the system has a unique processor ID, 
held in its associated 8IU(s), which is established during system 
initialization. 

INTERCONNECT REGISTERS 

The programmable attributes of BIUs and MCUs in an iAPX 432 
interconnect system are contained in registers of the interconnect 
address space, which is separate from the memory address space. These 
interconnect registers are accessed with the Move To Interconnect and 
Move From Interconnect instructions of iAPX 432 processors. 
Interconnect registers are logically organized by interconnect objects 
in the iAPX 432 software system. If a processor is given permission to 
access an interconnect object, it may change the attributes of the 
interconnect system. 

Refinements of interconnect objects may be used to allow a processor a 
limited view of the total set of interconnect registers, restricted to 
those the processor has a "need to know": for example, to obtain its 
processor ID. A programmer can access the interconnect registers of 
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any of the nodes in the interconnect system by node-local addressing 
(N-Iocal). A node's address is composed of the unique module number 
and unique bus number that locate the node in the interconnect system. 
Each BIU and MCU in an interconnect system contains 32 unique 
interconnect registers. 

FAULT-TOLERANT SYSTEt1S 

Three basic principles form the basis for implementation of the iAPX 
432 fault handling mechanisms. First, the fault-tolerant functionality 
is achieved by replication of VLSI components. Second, the machine is 
parti tioned into a set of confinement areas. These areas form the 
basis for error detection and recovery. Third, only bus-oriented 
communication paths are used to provide system communication. 

VLSI replication is fundamental to achieve effective use of VLSI 
technology. The iAPX 432 allows the system designer to build a wide 
range of systems from a small set of VLSI components. These same 
components provide modular expansion of performance, memory storage, 
detection, and recovery capabilities. There are no special purpose 
components aimed solely at fault-tolerant applications. 

The purpose of a confinement area is to limit damage from error 
propagation and to localize the faulty area for recovery and repair. A 
confinement area is defined as a unit (module or memory bus) of the 
system which has a limited number of tightly controlled interfaces. 
Detection mechanisms are placed at every interface to ensure that no 
inconsistent data can leave the area and corrupt other confinements 
areas. When an error occurs in the system, it is immediately isolated 
to a confinement area. The error is known to be in that confinement 
area, and all other confinement areas are known to be error-free. 

By defining confinement areas, we provide a conceptual framework for 
the systematic and coherent placement and definition of the detection 
mechanisms. The confinement areas also provide a conceptual view of 
the system under fault conditions. This clarifies the external 
(software) view of the hardware, and eliminates the need for diagnostic 
probing as a method of fault isolation. 

All communication in the iAPX 432 system is done over buses. There are 
no point-to-point signals or daisy-chained signals. This makes modular 
growth possible since no signal definition is dependent on the number 
of resources in the system. This approach also makes on-line repair 
possible. The presence or absence of any module cannot prevent 
communication between any other modules. The memory bus defined by the 
BIU and MCU provides a uniform and regularly structured communications 
path that supports the modular expansion of both fault-tolerant and 
standard system capabilities. 

In the iAPX 432 there are three distinct steps in responding to an 
error. First, the error is detected and localized to a confinement 
area. Next, the error is reported to all of the modules in the 
system. This prevents the incorrect data from propagating into another 
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confinement area and provides all the modules with the information 
required to perform recovery. Finally, the faulty confinement area is 
isolated from the system. Recovery occurs through the application of 
the redundant resources available in the system. 

ERROR CONFINEMENT 

Figure 1-3 shows the four types of confinement areas in a iAPX 432 
system. There is a confinement area for each module and each memory 
bus in a system. These confinement areas were chosen because modules 
and memory buses are the natural building blocks for iAPX 432 systems. 
Thus, when an error is detected, it is confined to one of the system 
building blocks. This allows the recovery and repair strategies to be 
built around the replacement of system building blocks. When a module 
or bus has its confinement mechanisms activated, it can be viewed as a 
self-checking unit. The operation of a self-checking unit is designed 
so that no inconsistent data will be allowed to leave the unit and 
corrupt another confinement area. Detection mechanisms reside at every 
interface, and all data is checked as it flows across the interface 
between confinement areas. 

The GDP confinement area includes the GDP and its associated BIUs plus 
the processor bus and support logic in the module. The only interfaces 
to a GDP confinement area are the memory buses. The BIUs are 
responsible for checking all of the information that leaves the GDP 
module. No information (control, address, or data) can leave a GDP 
confinement area without first being checked for correctness by one of 
the BIUs in the module. Error detection is performed by duplicating 
the GDP module. The duplicate module is built from identical 
components that are in checker mode. Any disagreement between a master 
and its checker generates an error signal. A duplicated module thus 
forms a self-checking module. 

The IP confinement area includes the IP and its associated BIUs plus 
the processor bus and support logic in the module. An IP module has 
interfaces to the memory buses in the system, plus an interface to an 
external I/O subsystem. The interfaces to the memory buses are checked 
by the BIUs in the same manner that was described for the GDP 
confinement area. The IP component is responsible for checking any 
data that leaves the confinement area via the peripheral subsystem (PS) 
bus. No information can leave an IP confinement area without first 
being checked for correctness by one of the BIUs or the IP. (The 
peripheral subsystem is not a confinement area.) 

At this time the application hardware or software must apply its own 
detection mechanisms to this subsystem. The PS bus represents a 
firewall between the central system and the I/O subsystem. The IP 
confinement area checks data as it leaves the IP: the application 
hardware and software must check data that leaves the I/O subsystem and 
enters the IP module. Error detection is performed by a duplicate 
checker module, as it was with the GDP module. 
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Figure 1-3. iAPX 432 Confinement Areas F-0400 

The memory confinement area includes the MCU, the RAM array, and the 
buses and support logic inside the module. A memory module has 
interfaces to two of the memory buses in the system. The MCU is 
responsible for checking all information that leaves the memory 
confinement area. No information can leave the confinement area 
without first being checked for correctness by the MCU. Error 
detection is performed by duplicating the MCU and applying an ECC code 
to the memory array. Thus, a self-checking memory module has two MCUs 
but only one memory array. 

Each memory bus confinement area includes a memory bus and the 
interface logic residing in the BIUs and MCUs attached to the memory 
bus. Each memory bus has interfaces to all of the GDP and IP modules 
plus some of the memory modules. Every node (BIU or MCU) attached to 
this bus is responsible for checking all of the information that flows 
off the memory bus and into its module. No information can leave the 
memory bus and enter a module without first being checked for 
correctness by either a BIU or an MCU. Error detection is performed by 
two interlaced parity bits, which cover the control and address/data 
lines. Error detection for the arbitration lines is achieved by 
duplication. 

Figure 1-4 illustrates how interconnect components are logically paired 
to form self-checking units. Functional Redundancy Checking (FRC) 
provides the logical error detection mechanism. The master processor 
and its associated BIUs generate memory bus requests. The checker 
processor and its associated BIUs are functionally redundant elements 
used for error detection. Logic in the master and checker BIUs 
compares all information sent to a memory bus by the master. If any 
disagreement is detected, an error report is generated. 
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Figure 1-4. FRC Configuration Pairing F-0399 

An example of processor-memory operation may help to clarify the 
operation of the confinement areas. This example is shown graphically 
in Figure 1-5. Assume that a GDP makes a read request to a memory 
location. That request will be mapped to a BIU on the addressed memory 
bus. As the information flows onto the memory bus it will be checked 
by the BIU. If any failure has occurred in the GDP confinement area 
(GDP, processor bus, BIUs, etc.) it is detected at this time. The 
information flows across the memory bus and into the addressed memory 
module. Before the information is accepted by the module, the MCU 
checks it for correctness. If a failure is detected, it is confined to 
the memory bus because the information was valid when it left the GDP 
confinement area. The MCU performs the memory operation and returns 
data onto the memory bus. As data flows onto the bus it is checked for 
correctness by the MCU. As the data flows into the GDP module from the 
memory bus it is checked for correctness by the BIU before being used 
by the GDP module. 
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Figure 1-5. Confinement Area Operation F-OIiOl 

The confinement area interfaces provide very tight error control and 
isolate the failure to one of the building blocks present in the 
system. The only remaining question concerns checking the detection 
mechanisms. Most of the detection mechanisms are self-checking in that 
the detection circuits are checked as part of normal operation. Those 
circuits that are not self-checking can be exercised during normal 
system operation to flush out any latent faults. 
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Four hardware error detection mechanisms are employed in the 
interconnect architecture: parity, Functional Redundancy Checking 
(FRC), error correcting codes (ECC), and buffer checking. All data, 
address, and control information that is moved across a memory bus is 
checked by a pair of parity bits that are interlaced among the signals 
that they check. FRC is a mechanism that allows identical VLSI 
components to be connected in parallel so that they may check each 
other's operation in real time. FRC error detection is an optional 
mechanism. MCUs perform ECC checks across all the address and data 
bits that are written to or read from the storage arrays they control. 
To cover the miscellaneous logic external to BIUs and MCUs, the VLSI 
components support a method of buffer checking that performs a sanity 
check to ensure that buffers are operating. 

REPORTING 

Immediately upon detecting an error, a message is broadcast to all the 
nodes in the system. This error report message identifies the fault 
confinement area, the type of error that occurred, and whether the 
error is permanant or transient. There are two reasons for sending 
this error report. First, it informs the rest of the system that an 
error has occurred. This prevents other confinement areas from using 
the inconsistent data. Second, it provides the necessary information 
for system recovery. After recovery, the error message is recorded in 
a log register in every node in the system. This log is available to 
software and is useful in monitoring the health of the system. 

The error messages are broadcast over a set of serial buses, which are 
totally independent from the buses used during normal operation. 
However, this network of serial buses follows exactly the same topology 
as the buses used for normal operation. A failure on one of these 
buses is limited to one of the confinement areas discussed earlier. 
The error reporting circuitry may be tested during normal operation to 
uncover any latent faults. 

Figure 1-6 illustrates the three-phase flow of error information in the 
interconnect system. In phase 1, an error is detected at a node in the 
interconnect system. The example illustrates an an error detected at 
BIU(2,1); i.e., the BIU on memory bus 2 in processor module 1. The 
detecting component reports the error to all components attached to the 
same bus. (A bold line indicates an active error reporting path.) At 
this point, if all error reporting nodes are intact, all nodes have 
received the error message. In phase 2, all components that received 
the phase 1 error message rebroadcast the message along their module 
paths. Finally, in phase 3, each component that has received an error 
message rebroadcasts the message along its bus path. This second 
rebroadcast ensures that all nodes receive the error message even if 
one module or one bus error report line has failed. At the end of 
phase 3, all interconnect components in the system have been informed 
of the error. 
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Figure 1-6. Three-Phase Error Reporting Mechanism 1'"-0402 

The actual error reporting paths are separate from, but run parallel 
to, the MACD and ACD (Address, Control, and Data) buses so that error 
reports may propagate even if a bus is inoperative. In addition, the 
reporting paths may be duplicated to remove any single-point dependency 
in delivering an error report. 

RECOVERY 

The recovery process begins after an error report message has been 
broadcast around the system. Recovery is a distr ibuted operation on 
the iAPX 432. Each node in ths system reads the error report message 
and decides what recovery needs to be taken. 
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For recovery to be successful, there must be redundant resources 
available in the system. There are fi ve redundancy mechanisms in the 
iAPX 432: retry buffers, ECC, module shadowing, bus switching, and the 
spare memory bit. The first two of these mechanisms provide 
information useful in recovering from transient errors, while the other 
mechanisms allow recovery from permanent errors in the system. These 
redundant resources cover the entire system and allow recovery from any 
detected error. The presence of redundant resources has no impact on 
system performance. 

For transient errors, each BIU maintains an internal buffer that allows 
outstanding processor requests to be retried if a transient error 
occurs. A single-bit correcting ECC code is applied to each word in 
the memory arrays. Al though this provides redundancy for both 
permanent and transient errors, its primary purpose is to correct soft 
errors, which occur in DRAMs. 

For permanent errors, every module in the system may be paired with 
another self-checking module of the same type. This pair of 
self-checking modules operates in lock step and provides a complete and 
current backup for all state information in the module. This mechanism 
is known as module shadowing because if one module (the primary) fails, 
a duplicate module (the shadow) is ready to fill in. A fault-tolerant 
module is also called a QMR (Quad t10dular Redundant) module because 
most components are replicated four times. There are two self-checking 
modules and each of these has a master and a checker. See Figure 1-7 
for an example of the pairing of QMR modules. 

Each memory bus in the system may be paired with another memory bus. 
During normal operation the buses run independently. Both contribute 
to the total memory bandwith available in the system. However, if one 
bus fails, the other bus is capable of handling the bus requests 
(switching buses and rerouting accesses) that normally would have been 
handled by the failed bus. 

Inside of each memory module, a spare bit may be added to each word in 
the memory array. If one bit in the array fails, the spare bit can be 
switched in to replace the failed bit. 

For transient errors, all of the outstanding access will be retried, 
and the t1fCUs will return corrected data if there are any single-bit 
errors in the memory arrays. 
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Figure 1-7. QMR Configuration Pairing F-0403 

For permanent errors, the redundant resource is switched in to replace 
the failed unit. This switch is done on a node-by-node basis; there is 
no centralized element that controls the switch. Each node knows which 
module or memory bus it is backing up (shadowing). If the error report 
identifies its partner as the faulty unit, it then becomes active and 
takes over operation for the faulty unit. After the resource switch is 
complete, all of the outstanding accesses are retried. This allows 
operation to resume at a point before the failure corrupted data. 

These reconfiguration and recovery actions are performed by the 
hardware without any software intervention. After recovery is 
complete, the hardware informs the system software of the error and 
subsequent recovery actions. System software now makes policy 
decisions regarding optimum system configuration, given the resources 
remaining in the system. Software can elect to continue running with 
same number of modules but with reduced fault tolerance (because of the 
failure), or it can remove the module from service, thus reducing 
performance but retaining the same level of fault tolerance. The 
"marrying" of primary and shadow modules is under software control, 
gi ving the system a great deal of configuration flexibility. These 
policy decisions are carried out while normal system operation 
continues. 
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Figures 1-8 and 1-9 show two examples of recovery operation. Table 1-1 
lists the recovery mechanisms provided by the interconnect system and 
the areas of the system which each covers. 
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Figure 1-8. Bus Reconfiguration F-0404 
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Figure 1-9. Module Reconfiguration 

Table 1-1. Recovery Mechanisms and Coverage 

MECHANISM COVERAGE 

Retry 
ECC 
Spare Bit 
Memory Bus Pairs 
Module Shadowing 

Transient Errors 
Storage Array Address and Data 
DRAM Replacement 
Memory Bus Failure 
Module Failure. GOP. IP. or Memory 

F-0405 
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Figure 1-10 illustrates the range of alternatives available to system 
designers when they build iAPX 432 systems. The most fault-tolerant 
systems are built from a QMR configuration of processors that can 
tolerate any single component failure without crashing the system. 
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Figure 1-10. Fault-Tolerant Alternatives F-0397 
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The lowest cost configurations can be built using basic processor 
modules without FRC or QMR. This type of configuration will crash if a 
component fails, but can be made "self-healing" by adding intelligent 
software to the I/O subsystem. Unlike QMR, self-healing does not 
protect against the system crashing, but it does allow the system to 
recover from a failure in a short period of time. The "healing" takes 
place in three steps. First, a watchdog timer on an I/O subsystem 
alerts I/O subsystem software that the central system has failed. 
Second, the I/O subsystem checks BIU/MCU error logging registers and 
runs diagnostics to identify which resource (e. g., processor, bus, or 
memory) has failed. Third, the I/O subsystem reinitializes the system 
using the configuration control within the BIU and MCU to configure out 
the failed resource. The system is up and running without human 
intervention after only a short period of down time. 

The basic configuration is the lowest cost alternative, but for some 
applications it is desirable to be able to have a very high degree of 
confidence that calculations are performed correctly. A QMR system 
will do this since all components have a checker that alerts the system 
if a mistake is made. But a QMR configuration may be overkill for some 
applicati.ons that can tolerate an occasional system failure, as long as 
they are confident that the computations are correct when they do 
complete. FRC configurations offer an alternative between the basic 
and QMR approaches. Adding a second set of checker components to each 
module improves the error detection capabilities of the system, 
providing "high-confidence" computing. No single hardware failure will 
go undetected and corrupt the results of a critical computation. FRC 
insures that any error is caught before it can propagate to another 
module in the system. FRC alone does not provide automatic hardware 
recovery like a QMR system, but it does detect errors as soon as they 
occur so that the system does not become corrupted. It is then the 
responsibili ty of system software to implement a "self-healing" 
strategy where the faulty resource is disabled and the system 
reini tialized. 

The software configurability of a BIU/MCU system allows a system to use 
a combination of the above strategies. Software can configure a system 
as a full QMR system in the morning for critical applications, and then 
switch to an FRC-only system in the afternoon. This doubles the system 
throughput (twice as many processors are working in parallel) without 
making any hardware changes. 

LATENT FAULTS 

Earlier sections of this chapter have discussed how hardware faults are 
detected and handled by the interconnect architecture as it operates. 
The interconnect system can be used to detect another class of faults 
known as latent faults. Latent faults can exist in a part of the 
system which is normally dormant. Under normal operation of the 
system, it would take a long time before the fault reached an interface 
where it would be detected by the other mechanisms. The iAPX 432 
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interconnect system can be used to exercise the normally dormant parts 
of the system ina strategy to uncover the latent faults. Table 1-2 
summarizes some of the areas in which latent faults may exist and the 
methods used to uncover the faults. 

Table 1-2. Exercising Latent Faults 

DORMANT AREA EXERCISE 

Memory Locations MCU periodically reads every array 
location (scrubbing). 

Detection Mechanisms Software* periodically forces error 
conditions into the detection mechanisms. 

Reporting Mechanisms Software* periodically initiates and 
observes error reports. 

Recovery Mechanisms Software* periodically invokes recovery 
operations. 

*Special commands to support exerclslng 
dormant areas are provided in BIUs and 
MCUs. 

FAULT-TOLERANT SYSTEM DESIGN RESPONSIBILITIES 

The interconnect architecture and the VLSI components provide a stable 
base for developing fault-tolerant iAPX 432 systems. The iAPX 432 
interconnect components address the issues concerning fault tolerance 
which are encountered when constructing the iAPX 432 central system. 

A number of system-wide issues remain the responsibility of the iAPX 
432 system designer. These issues include: 

• A fault-tolerant I/O system 

• Fault-tolerant power supplies and distribution method 

• A fault-tolerant method for clock generation and distribution 

• The electrical and physical provisions for on-line repair 

• Environmental issues, such as system cooling 
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SUMMARY 

The iAPX 432 interconnect architecture provides a standard VLSI method 
for constructing multiple processor VLSI computer systems. The iAPX 
432 interconnect architecture is implemented by a pair of VLSI 
components, the Bus Interface Unit (BIU) and the Memory Control Unit 
(MCU). Together with iAPX 432 processors, these components permit the 
construction of modular, extensible, multiprocessor computer systems. 
The components are designed to support the construction of fully 
fault-tolerant iAPX 432 systems. However, there is no penalty in 
performance or in cost for those applications that do not require fault 
tolerance. 

The 432 fault-tolerant mechanisms are designed to provide a flexible 
and complete solution to the problems of fault-tolerant hardware. For 
basic systems (those without checkers for error detection or QMR for 
recovery), a user may decide to use only a few detection mechanisms and 
provide recovery only for transient errors. This functionality comes 
at no additional· charge in the VLSI interconnect system. To reduce 
maintenance costs and increase system avai labi Ii ty, a system may use 
all of the detection mechanisms (i.e., may add checker components) but 
may not add any extra recovery capability (i.e., may not marry 
self-checking modules into a fault-tolerant QMR module). Continuous 
oper.ation is available to the user who adds the extra recovery 
capabilities. 

None of the fault-tolerant mechanisms reduce system performance. 
Systems that do not require the highest level of fault tolerance are 
not penalized in any way (cost, size, or performance) for the unused 
fault-tolerant capabilities. Increased levels of fault tolerance are 
achieved by replicating the iAPX 432 VLSI components. The hardware 
fault tolerance in the iAPX 432 is transparent to application 
software. The system's fault-tolerant capabilities may be changed 
without any changes to the application software system. 
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A MODEL FOR FAULT HANDLING 

CHAPTER 2 
FUNDAMENTAL FAULT HANDLING CONCEPTS 

To provide a conceptual framework for our thinking, this chapter 
presents a model for systems under fault conditions. Our first 
observation is that a fault handling cycle has three phases: a fault 
is generated, detection of the fault occurs, and then a recovery 
procedure is activated. Fault generation ranges from hardware errors 
to software bugs. We define the detection phase to include detection, 
diagnosis, logging, and reporting of the fault. During this phase, 
system resources detect the presence and extent of the failure and pass 
this information on to the recovery mechanisms. After fault detection, 
recovery mechanisms are employed to mask the effects of the fault from 
the rest of the system and possibly isolate and repair the faulty 
subsystem. 

Next, we assume that a system is made up of a hierarchy of these fault 
handling cycles. Al though the definition of the levels varies 
depending on system design and the technology of implementation, we 
believe that these levels exist in every system. For clarity, five 
levels that exist in most current systems are described below: 

1. Component Level. This is the lowest level of hardware that 
will be considered in the system. Failures are generated by 
faults within the component itself. An example of such a 
failure is the loss of a memory bit within a RAM chip. This 
could be detected by employing checksums across the internal 
rows of storage cells in the chip. Recovery might be 
implemented by an on-board associative memory, which provides 
back-up storage for bad cells in the normal array. By 
employing fault handling strategies such as the ones 
mentioned, higher levels in the system may be totally unaware 
that a fault occurred. 

2. Module Level. Thi s level is composed of a group of 
interconnected components (such as a GDP, IP, or memory 
module). The failures at this level are generated by the 
components or the signal paths connecting the components. An 
example of such a failure at this level would be the loss of a 
memory bi t in a 32-bi t word of a memory array (e.g., a bad 
solder joint at a RAM data-out pin). This could be detected 
by employing parity to cover single failures wi thin a memory 
word. Recovery could be accomplished by replacing the parity 
bit with a single error-correcting Hamming code (ECC). 
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3. Hardware System Level. Thi s level consists of a network of 
interconnected modules. Failures may occur when either a 
module or the interconnect network fails. An example of such 
a failure might be an incorrect response from the memory 
module. This could be detected by duplicating the memory 
module and comparing the outputs. Recovery is possible if a 
third memory module is added and majority voting is performed 
at the outputs. 

4. System Software Level. The operating system is responsible for 
providing expanded service to the application software. 
Failures may occur when defects exist in the algorithms. An 
example might be allowing a deadlock situation to occur. This 
can be detected by utilizing some secondary routines which 
monitor the operation of the system resources. Recovery might 
be accomplished by changing some of the previous resource 
allocation decisions. 

5. Application Level. This level completes the system 
description. This software may have defects in its algorithms 
or specifications. The human interface of the system may even 
be used to detect and recover from application failures. 

We also assume that these system levels are connected. Failures that 
occur at one level may flow up to higher levels if either the detection 
or recovery at that level is inadequate to handle the fault. Each time 
a failure is reflected up, the detection mechanisms at the next level 
will treat the failure as if it were originally generated at the higher 
level. This treatment causes a loss of information about the fault by 
potentially masking the true cause of the failure, as well as by 
increasing the amount of the system which must be considered suspect. 
An example of fault detection being reflected up is an undetected 
memory error that appears as an invalid data structure at one of the 
software levels. An example of recovery being reflected to higher 
levels is an uncorrectable memory error in an application program 
segment. It may be possible for the operating system or the user to 
handle this fault. Recovery can also be reflected up because of 
improper detection or incorrect operation of the recovery mechanisms. 
An example of this is a 3-bi t memory error that is detected as a 
single-bit error by the Hamming code and subsequently "corrected." 

The model we have constructed is pictured in Figure 2-1. 

We deduce from the model several key points about system fault 
handling. Faults can occur at many different levels in the system. 
Each level has its own characteristics: different detection and 
recovery strategies will be appropriate for di fferent levels. Faults 
not handled at one level will propagate up to the higher levels in the 
system. Higher levels have more complex environments, which make 
recovery a more complex and slow task: failure modes increase in 
complexity, the interaction between subsystems grows, and the original 
source of the failure becomes more ambiguous. Thus, faults should be 
handled at the lowest possible level. 
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Figure 2-1. Fault Handling Model F-041B 

PHILOSOPHY 

The goal of the iAPX 432 fault handling approach is to provide 
general-purpose, adaptable, and software-transparent fault-tolerant 
capabili ties. Our design philosophy has two fundamental pr inciples. 
First, the number of hardware errors which will be reflected up to the 
software levels of the system must be minimal. Second, all of the 
fault handling mechanisms must be designed as independent and 
orthogonal capabilities. 

Figure 2-2 shows the location of the barrier that prevents hardware 
failures from being reflected into higher layers of the system. It is 
important to note that it is impossible for any system to detect and 
recover from all failures that might occur. However, the iAPX 432 
hardware reduces the rate of failures reflected into the software to 
such a low level that in virtually every fault-tolerant application the 
software system can ignore errors reflected up by the hardware. (At 
this time we do not have enough data to publish an absolute value for 
the rate of fai"lures reflected into the software. However, we have 
done enough modeling to confirm that the rate is extremely low.) 
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Figure 2-2. Separation of HW and SW Layers F-0419 

The reflection of errors needs to be minimized to prevent information 
overload at higher levels in the system structure. If all failures are 
allowed to propagate to the top, the system becomes overloaded and 
loses its ability to react to the fault conditions. The complexity of 
the failure modes may make implementation impossible or force a 
reduction in the completeness of fault coverage or generality of 
operation. 

By performing detection and recovery from hardware failures at a low 
level in the system, a more general and complete solution is possible. 
This approach divides the responsibilities for fault tolerance, 
allowing faster, simpler, and more general solutions to fault detection 
and fa ul t recover y. The mechani sms for detection and recover y from 
software errors need only address the set of faults that can be 
generated at those levels. (For example, the capability-based 
addressing mechanism in the iAPX 432 processors addresses only errors 
in the software system. If it were possible for memory errors to 
propagate up to thi s level, then the mechani sm would need to be much 
more elaborate. It would need to support the updating and accessing of 
two sets of object and access descriptors in case there were a failure 
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in a memory location containing a needed descriptor.) By controlling 
and reducing the amount of errors reflected up to the next level, 
parallel and independent development may proceed on different levels 
(hardware, system software, applications). The designers at one level 
can assume that lower levels will always provide consistent and correct 
operation. 

All of the fault handling mechanisms are designed to be orthogonal. 
Expansion of bus bandwidth, logical resources, detection capabilities, 
or redundancy may be done without any side effects on the rest of the 
system. Minimi zing the interaction between these variables provides 
the system with a very flexible and modular basis for growth and 
adaptation to the application environment. System capabilities may be 
added or removed without any impact on the application software. There 
is no penalty in performance, cost, or system size for those 
fault-tolerant mechanisms not used in a system. 

Al though all of the hardware fault handling occurs without software 
assistance, software remains responsible for managing the overall 
fault-tolerant policy. This division of labor allows the software to 
tailor the resources of a system to the needs of an application without 
gl vlng up any of the benefits derived from placing the fault handling 
mechanisms in the hardware. Software may also periodically test the 
detection and recovery mechanisms while the system is on-line. This 
allows any latent errors in the system to be uncovered before another 
error forces the system to face a double-failure condition. 

IMPLEMENTATION 

Three basic principles form the foundation for the implementation of 
the iAPX 432 fault handling mechanisms. First, the fault-tolerant 
functionali ty is achieved by replication of VLSI components. Second, 
the machine is partitioned into a set of confinement areas. These 
areas form the basi s for error detection and recovery. Third, only 
bus-oriented communication paths are used to provide system 
interconnection. 

VLSI replication is fundamental to achieving effective use of VLSI 
technology. To be successful, each VLSI component must reach 
high-volume production. In the iAPX 432, this high-volume production 
is achieved by building a wide range of systems from a small set of 
VLSI components. The same components provide modular expansion of 
performance, memory storage, detection, and recovery capabilities. 
There are no special-purpose components aimed solely at fault-tolerant 
functions. 

The purpose of a confinement area is to limit damage from error 
propagation and to localize the faulty area for recovery and repair. A 
confinement area is defined as a unit (module or memory bus) of the 
system which has a limited number of tightly controlled interfaces. 
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Detection mechanisms are placed at every interface to ensure that no 
inconsistent data can leave the area and corrupt other confinement 
areas. When an error occurs in the system, it is immediately isolated 
to a confinement area. The error is known to be in that confinement 
area, and all other confinement areas are known to be error-free. 

By defining confinement areas, we provide a conceptual framework for 
the systematic and coherent placement and definition of the detection 
mechanisms. The confinement areas also provide a conceptual view of 
the system under fault conditions. This clarifies the external 
(software) view of the hardware, and eliminates the need for diagnostic 
probing as a method of fault isolation. 

All communication in the iAPX 432 system is done over buses. There are 
no point-to-point signals or daisy-chained signals. This makes modular 
growth possible, since no signal definition is dependent on the number 
of resources in the system. Thi s approach also makes on-line repair 
possible. The presence or absence of any module cannot prevent 
communication between any other modules. The memory bus defined by the 
BIU and MeU provides a uniform and regularly structured communications 
path that supports the modular expansion of both fault-tolerant and 
standard system capabilities. 
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CHAPTER 3 
FUNDAMENTAL SYSTEM STRUCTURES 

Three basic mechani sms provide hardware fault tolerance for the iAPX 
432: 

1. Error confinement 

2. Error reporting 

3. Error recovery 

This chapter will describe each of these mechanisms at a high level of 
abstraction, providing a full system view of the fault handling 
mechanisms before describing each mechanism in detail. 

In the iAPX 432 there are three distinct steps in responding to an 
error. First, the error is detected and localized to a confinement area 
in the system. Next, the error is reported to all of the modules in 
the system. (This prevents the incorrect data from propagating into 
another confinement area and provides all of the modules with the 
information required to perform recovery.) Finally, the faulty 
confinement area is isolated from the system, and recovery occurs using 
redundant resources available in the system. 

ERROR CONFINEMENT 

Figure 3-1 shows the four types of confinement areas in a iAPX 432 
system. There is a confinement area for each module and memory bus in a 
system. These confinement areas were chosen because modules and memory 
buses are the natural building blocks for iAPX 432 systems. Thus, when 
an error is detected, it is confined to one of the system building 
blocks. This allows the recovery and repair strategies to be built 
around the replacement of system building blocks. When a module or bus 
has its confinement mechanisms activated, it can be viewed as a 
self-checking unit. The operation of a self-checking unit is designed 
so that no inconsi sten t data will be allowed to leave the uni t and 
corrupt another confinement area. Detection mechanisms reside at every 
interface, and all data is checked as it flows across the interface 
between confinement areas. 

The GDP confinement area is exactly the same as the GDP module. The 
only interfaces to a GDP confinement area are the memory buses. The 
BIUs are responsible for checking all of the information that leaves 
the GDP module. No information (control, address, or data) can leave a 
GDP confinement area without first being checked for correctness by one 
of the BIUs in the module. Error detection is performed by duplicating 
the GDP module. 
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Figure 3-1. iAPX 432 Confinement Areas F-0420 

The IP confinement area is exactly the same as the IP module. An IP 
module has interfaces to the memory buses in the system, plus an 
interface to an external I/O subsystem. The interfaces to the memory 
buses are checked by the BIUs in the same manner as those in the GDP 
confinement area. The IP component is responsible for checking any 
data that leaves the confinement area via the peripheral subsystem (PS) 
bus. No information can leave an IP confinement area without first 
being checked for correctness by one of the BIUs or by the IP. The 
peripheral subsystem is not a confinement area. At thi s time, the 
application hardware or software must apply its own detection 
mechanisms to this subsystem. The PS bus represents a firewall between 
the central system and the I/O subsystem. The IP confinement area 
checks data as it leaves the IP; the application HW and SW must check 
data that leaves the I/O subsystem and enters the IP module. Error 
detection is performed by duplicating the IP module. 

The memory confinement area is exactly the same as the memory module. 
A memory module has interfaces to two of the memory buses in the 
system. The MCU is responsible for checking all information that 
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leaves the memory confinement area. No information can leave the 
confinement area wi thout first being checked for correctness by the 
MCU. Error detection is performed by duplicating the MCU and applying 
an ECC code to the memory array. 

Each memory bus confinement area includes a memory bus and the 
interface logic residing in the BIUs and MCUs attached to the memory 
bus. Each memory bus has interfaces to all of the GDP and IP modules 
and to some of the memory modules. Every node (BIU or MCU) that is 
attached to this bus is responsible for checking all of the information 
that flows off the memory bus and into its module. No information can 
leave the memory bus and enter a module without first being checked for 
correctness by either a BIU or an MCU. Error detection is performed 
primarily by parity bits. 

An example processor memory operation may help to clarify the operation 
of the confinement areas. (This example is shown graphically in Figure 
3-2.) Assume a GDP makes a read request to a memory location. That 
request will be mapped to a BIU on the addressed memory bus. As the 
information flows onto the memory bus it wi 11 be checked by the BIU. 
If there has been any failure in the GDP confinement area (GDP, 
processor bus, BIUs, etc.), it will be detected at thi s time. The 
information flows across the memory bus and into the addressed memory 
module. Before the information is accepted by the module, the MCU 
checks it for correctness. If a failure is detected, it is confined to 
the memory bus because the information was valid when it left the GDP 
confinement area. The MCU per forms the memory operation and returns 
data onto the memory bus. As data flows onto the bus it is checked for 
correctness by the MCU. As the data flows into the GDP module from the 
memory bus it is checked for correctness by the BIU before being used 
by the GDP module. 

The confinement area inter faces provide very tight error control and 
isolate the failure to one of the building blocks present in the 
system. The only remaining question concerns checking the detection 
mechanisms. Most of the detection mechanisms are self-checking. (The 
detection circuits are checked as part of normal operation.) Those 
circuits that are not self-checking can be exercised during normal 
system operation to flush out any latent faults. 

REPORTING 

Immediately upon detecting an error, a message is broadcast to all the 
nodes in the system. Thi s error repor t message identi fies the faulty 
confinement area, the type of error that occurred, and whether the 
error is permanent or transient. There are two reasons for sending 
this error report. Fir st, it informs the rest of the system that an 
error has occurred. (This prevents other confinement areas from using 
the inconsistent data.) Second, it provides the necessary information 
for system recovery. After recovery, the error message is recorded in 
a log register in every node in the system. This log is available to 
software and is useful in monitoring the health of the system. 
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POTENTIALLY FAULTY AREA 

ALL OTHER AREAS ARE KNOWN TO BE FAULT-FREE 

Figure 3-2. Confinement Area Operation - An Example F-0421 
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The error messages are broadcast over a set of serial buses, which are 
totally independent from the buses used during normal operation. 
However, this network of serial buses follows exactly the same topology 
as the buses used for normal operation. A failure on one of these 
buses is limited to one of the confinement areas discussed earlier. 
The error reporting circuitry may be tested during normal operation to 
uncover any latent faults. 

RECOVERY 

The recovery process begins after an error report message has been 
broadcast around the system. Recovery is a distributed operation on 
the iAPX 432. Each node in the system reads the error report message 
and decides what recovery action needs to be taken. 

For recovery to be successful, there must be redundant resources 
available in the system. There are five redundancy mechani sms in the 
iAPX 432. Two of these mechanisms provide redundant information useful 
in recovering from transient errors, while the other three mechanisms 
allow recover y from permanent errors in the system. These redundant 
resources cover the entire system and allow recovery from any detected 
error. The presence of redundant resources has no impact on system 
performance. 

For transient errors: 

• Each BIU maintains an internal buffer, which allows outstanding 
processor requests to be retried if a transient error occurs. 

• A single-bi t correcting ECC code is applied to each word in the 
memory arrays. Although this provides redundancy for both 
permanent and transient errors, its primary purpose is to correct 
soft errors that occur in DRAMs. 

For permanent errors: 

• Every module in the system may be paired with another module of the 
same type. This module pair operates in lock step and provides a 
complete and current backup for all of the state information in the 
module. This mechanism is known as module shadowing. 

• Each memory bus in the system may be paired wi th another memory 
bus. During normal operation the buses run independently. Both 
contribute to the total bandwidth available in the system. However, 
if one bus fails, the other bus is capable of handling the bus 
requests that normally would have been handled by the failed bus. 

• Inside of each memory module a spare bit may be added to each word 
in the memory array. If one bit in the array fails, the spare bit 
can be switched in to replace the failed bit. 
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For transient errors, all of the outstanding accesses will be retried, 
and the MCUs will return corrected data if there are any single-bit 
errors in the memory arrays. 

For permanent errors, the redundant resource is switched in to replace 
the failed unit. This switch is done on a node-by-node basis; there is 
no centralized element that controls the switch. Each node knows which 
module or memory bus it is backing up (shadowing). If the error report 
identifies its partner as the faulty unit, then it becomes active and 
takes over operation for the faulty unit. After the resource switch is 
complete, all of the outstanding accesses are retried. This allows 
operation to resume at a point before the failure corrupted data. 

These reconfiguration and recovery actions are performed by the 
hardware without any software intervention. After recovery is 
complete, the hardware informs the system software of the error and 
subsequent recovery actions. System software now makes policy 
decisions regarding the optimum system configuration, given the 
resources remaining in the system. These policy decisions are carried 
out while normal system operation continues. 

Figures 3-3 and 3-4 show two examples of recovery operations. 
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Figure 3-3. Permanent Bus Error Recovery F-0422 
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EXAMPLE OF MODULE RECONFIGURATION 
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Figure 3-4. Permanent Module Error Recovery 

SUMMARY 

F-0423 

The iAPX 432 fault-tolerant mechanisms are designed to provide a 
flexible and complete solution to the problems of fault-tolerant 
hardware. For basic systems, a user may decide to use only a few 
detection mechanisms and provide for transient errors only. This 
functionality is included at no extra cost jn the VLSI interconnect 
system. To reduce maintenance costs and increase system availability, 
a system may use all of the detection mechanisms, without adding any 
extra recovery capability. Nonstop operation is available to the user 
by adding the extra recovery capabilities. 

None of the fault-tolerant mechanisms reduce system performance. 
Systems that do not require the highest level of fault tolerance are 
not penalized in any way -- in cost, size, or performance -- for the 
unused fault-tolerant capabilities. Increased levels of fault 
tolerance are achieved by replicating the iAPX 432 VLSI components. 
The hardware fault tolerance in the iAPX 432 is transparent to 
application software. The system's faul t-toleran t capabilities may be 
changed without any changes to the application software system. 
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INTRODUCTION 

CHAPTER 4 
OVERVIEW OF THE FAULT HANDLING MECHANISMS 

The previous chapter described the general structure of the fault 
handling mechanisms. This chapter moves one level deeper into the 
implementation of the mechanisms. 

CONFINEMENT AREAS/DETECTION MECHANISMS 

This section describes the actual construction of the confinement areas 
described in the previous chapter. With the confinement areas defined, 
detection mechanisms that provide a high level of fault coverage and 
are cost-effective for the given confinement area were selected. 
Because the confinement areas are independent units, there is no 
requirement for using the same detection mechanisms in all of the 
confinement areas. The iAPX 432 system uses five types of detection 
mechanisms. 

1. Parity 

2. Loopback check 

3. Hamming code (ECC) 

4. Functional Redundancy Check (FRC) 

5. Timeout 

The loopback check and FRC are explained in more detail in the 
following paragraphs. The reader is assumed to be familiar with the 
other three detection mechanisms. 

The loopback check is used to supplement the parity detection mechanism 
on the memory buses. The parity detection mechanism assumes that 
failures on the signal lines are independent events. Because TTL 
dri vers are used to interface to the memory bus, there are failures 
that violate this assumption. A single failure (power, enable, etc.) 
could cause inconsistent data to be generated by all of the drivers in 
a package. The loopback check provides a detection mechanism that can 
detect these common mode failures, which are undetectable by parity. 

Figure 4-1 shows the basic loopback concept. One spare buffer is 
reserved out of each package housing the buffers that drive the memory 
bus. Each interface will normally consist of three TTL packages. The 
BIU or MCU sends an oscillating signal through all of the spare 
dri verso The oscillating signal is then fed back to the BIU or MCU. 
This received signal will oscillate correctly only if all of the spare 
drivers in the memory bus interface are operating correctly. Any 
single failure that corrupts all of the drivers in a package will be 
detected by the BIU or MCU by way of the loopback check. 
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The use of encoding techniques for reduction of information redundancy 
is not a practical proposition when the information undergoes 
transformation. To provide error detection for data transformation, 
the iAPX 432 system hardware provides complete duplication of all 
circuitry that transforms data. Additional circuitry compares the 
results generated by the two data transformations and detects any 
errors. This detection mechanism is called Functional Redundancy 
Checking (FRC). 

In order to provide FRC, the hardware is divided up into blocks of 
functionali ty which may include any number of components and 
interconnections. Each block is then duplicated and equipped with 
comparison logic. One of the pair is selected to be the master; the 
other becomes the checker. Selection is done at initialization time. 
The master and checker run in clock cycle lock step. All of the 
comparison and error detection logic is located inside the iAPX 432 
system VLSI components. 

The master block is responsi ble for carryi ng out the normal operation 
of the system. (For example, it behaves just like conventional 
circuitry.) The checker block has its outputs disabled, and instead of 
presenting its output it checks the output of its master. It is 
responsible for duplicating the operation of the master and using its 
comparison circuitry to detect any inconsistency between the master and 
its checker. Figure 4-2 is a block diagram of the FRC detection 
mechanism. 

This method of checking will detect any operational error occurring in 
either the master or the checker block of functionality. It will not, 
however, cope with errors occurring in both blocks simultaneously 
(e.g., a design fault). 

The only circuitry that must be relied on in the event of a failure is 
the comparison and fault reporting logic of the checker. Periodic 
testing of this circuitry during the normal operation of the system 
will uncover latent failures in this critical block of circuitry. 

GDP CONFINEMENT AREA 

The GDP confinement area is formed by applying the FRC and loopback 
check detection mechanisms at every memory bus interface. The GDP 
confinement area is shown in Figure 4-3. It is important to note that 
FRC is applied at a module level, rather than at the component level 
(as was done in earlier releases of the IP and GDP components). All 
logic in the module operates normally except for the memory bus 
interface drivers in the checker BIUs. 

Each checker BIU constantly monitors all of the signals at the memory 
bus interface. If there is ever a disagreement between the master and 
checker BIUs, then an error has occurred in the confinement area. The 
FRC mechanism will detect errors in either the master or checker blocks 
of logic. This includes the GDP, the processor bus, the support logic, 
and the BIUs (except for memory bus arbitration logic, which is 
included in the memory bus confinement area). 
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The loopback check, which is used at each memory bus interface, will 
detect failures in the TTL buffers interfacing this module to the 
memory bus. 

By applying these two detection mechanisms a GDP module can be made 
into a self-checking unit. No information can leave the module without 
being checked for correctness. 

IP CONFINEMENT AREA 

The IP confinement area is shown in Figure 4-4. This confinement area 
is identical to the GDP confinement area except for the addition of an 
~nterface to the peripheral subsystem. The IP confinement area is 
established by using the FRC and loopback detection mechanisms. 
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The interfaces between the IP module and the memory buses are handled 
in exactly the same way the GOP module handles the interfaces. A 
firewall is established between the IP module and the I/O subsystem by 
applying the FRC detection mechanism to this interface. The checker IP 
has its PS bus drivers disabled. The checker IP constantly monitors 
the PS bus for errors. If there is ever a disagreement between the 
master and checker IPs, then an error has occurred in this confinement 
area. This FRC mechanism will detect errors in either the master or 
checker blocks of logic. This includes the IP, processor bus, support 
logic, and the BIUs. It is important to realize that only the PS 
interface of the checker IP is in checker mode. The processor bus 
interface of the IP operates normally. There is no check on the 
operation of the I/O subsystem. This check must be performed by 
application hardware and software. 

By applying these two detection mechanisms, an IP module can be made 
into a self-checking unit. No information can leave the module without 
being checked for correctness. 

MEMORY CONFINEMENT AREA 

Figure 4-5 shows the memory confinement area. FRC, loopback check, and 
ECC detection mechanisms are used to form the confinement area. FRC 
covers the operation of the MCU because it does data transformation. A 
single-bi t correcting, double-bit detecting Hamming code is used to 
cover the memory array. 

MEMORY BUS 

MEMORY BUS 

Figure 4-5. Memory Confinement Area F-0433 
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Because the MCU interfaces directly to two memory buses, the detection 
mechanisms are applied in a slightly different manner. FRC is used to 
check the outputs from the master MCU in exactly the same way as was 
done with the BIUs in processor modules. The loopback check on memory 
modules must check two sets of buffers. Those drivers on the active 
bus must all be operating correctly, and those drivers on the back-up 
bus must all be turned off. The MCU loopback check tests both sets of 
buffers. The final step in sealing this interface of the confinement. 
area is to prevent the memory module from ever corrupting data on both 
memory buses to which it is attached. The TTL buffers, which isolate 
the MCUs from the each memory bus, can be activated only if both MCUs 
agree on which bus to activate. Because of this reliability 
buttressing, no single failure can cause both sets of memory bus 
buffers to be active at the same time. This prevents a failure in the 
memory bus interface from corrupting both the primary and the back-up 
memory buses. 

FRC is also applied at the interface between the MCU and the memory 
array. The checker constantly monitors all of the array signals to 
make sure that the master MCU is correctly managing and accessing the 
array. If the master MCU ever attempts to perform an incorrect 
operation with the array, it will be caught by the checker MCU. 

A 7-bit ECC code is used for detecting errors which occur within the 
RAM array. The ECC code is computed from the data to be stored and the 
address of the storage location. The ECC coding allows the MCU to take 
the following actions: 

• All single-bit errors in the data can be corrected. 

• All single-bit errors in the address can be detected. 

• All double-bit errors in data or the address can be detected. 

• Multiple-bit (odd numbers of) errors are detected. 

This detection mechanism is implemented totally wi thin the MCU. ECC 
coverage is applied to refresh accesses as well as all normal 
accesses. On each refresh request, one location in the row is actually 
read and the ECC is checked. If a correctable error is found, the MCU 
corrects the data and writes the corrected value back to the array. 
This refresh operation is called scrubbing. Scrubbing is used to 
detect any latent faults that may exist in memory locations 
infrequently accessed by software. Because scrubbing is a part of the 
refresh operation, this function is available without any additional 
performance impact and without any software intervention. This 
virtually eliminates the possibility of double-bit errors in the memory 
array. 

Error coverage is further amplified because the MCU performs all write 
operations as read-modify-wri te (RMW) operations. This allows the MCU 
to check that it has reached the correct memory address (by checking 
the ECC code) before it changes the data value in the array. This 
prevents valid data in one location from being overwritten by data 
intended for another location because of an address line failure. 
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These detection mechanisms provide a complete check on the operation of 
the memory module. They check that the memory operation is correctly 
carried out and that the correct data is accessed from the correct 
location. Data cannot leave the confinement area without passing 
through these checks. 

MEMORY BUS CONFINEMENT AREA 

Figure 4-6 shows the memory bus confinement area. The confinement area 
includes the backplane signals, the TTL buffers, and the arbitration 
sections of the BIUs and MCUs attached to this bus. Parity and 
duplication (FRC) are the detection mechanisms used in this confinement 
area. 
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Figure 4-6. Memory Bus Confinement Area F-0434 

Two interlaced parity bits are appended to the address/data and control 
lines on the memory bus. The parity bits are checked for validity by 
all nodes on the bus on every clock cycle. The parity bits will detect 
the following failures: 

• All single-bit errors 

• Multiple-bit (odd numbers of) errors 

• Double-bit errors, when each parity bi t covers only one of the 
errors (e.g., adjacent signal lines) 

• Stuck-at-zeroes 
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The arbitration lines and circuitry are duplicated. One arbitration 
network is used by masters, while the other network is used by 
checkers. The masters are responsible for driving both arbitration 
networks. Any single error in the arbitration signals or in the 
arbitration state machines in the components will be detected. The 
error will be detected as an FRC error on the arbitration line outputs 
from the master. 

These detection mechanisms check that the memory bus 
transmits information between modules. Information can 
memory bus confinement area only after being checked by 
attached to the bus. 

OTHER POINTS OF INTEREST 

correctly 
leave the 
the nodes 

At the interfaces between confinement areas it 
failure to be detected as multiple errors. 
errors are given priorities based on the error 
priority (from highest to lowest): 

is possible for a single 
To solve this problem, 
type. This is the basic 

1. Module error (highest) 

2. Arbitration error 

3. Parity error 

This ordering reflects the fact that a module failure may also appear 
as an arbitration or parity error. However, a bus failure can never 
appear as a module error. Thus, whenever a failure appears as multiple 
errors, only the highest priority error is reported. 

Both the processor buses and the memory buses have timeouts. These 
timeouts are used to check for configuration errors. They are not used 
in the establishment of the confinement areas. The only type of error 
which uses a timeout is when an access is made to a nonexistent 
resource. This is a software configuration error, not a hardware 
error. Any error in the hardware will be detected by the mechanisms 
used to establish the confinement areas. 

ERROR REPORTING 

Error reporting is the backbone of fault isolation and recovery. When 
an error is detected, the node detecting the error reports the type and 
location of the error to all the other nodes in the system. (Note that 
errors detected at an IP:PS interface are not reported over the error 
reporting network. These errors are reported to t.he AP by means of an 
interrupt.) The error reporting system is designed so that, 
independent of the error in the system, each node not only receives an 
error report, but is guaranteed to receive the same error report. 
Error information is uniformly logged in all of the nodes in the 
system. With this information, each node then independently proceeds 
with the appropriate recovery procedure. 
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TOPOLOGY OF THE REPORTING NETWORK 

The reporting network follows the same matrix topology as the normal 
data paths. There is an error reporting line associated with each 
memory bus and processor bus in the system. Figure 4-7 provides an 
overview of the topology. Each BIU is connected to one Bus Error 
Reporting Line (BERL) and one Module Error Reporting Line (MERL). Each 
MCU has connections to two BERLs, but at any instant only one of the 
connections is active. Because the error reporting system is 
fundamental to the correct operation of a fault-tolerant system, error 
detection and masking mechanisms are built into each error report 
line. These mechanisms guarantee that the error report network will 
function correctly in the presence of single failures. 
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Figure 4-7. Reporting Network Topology F-0435 
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In summary, the error reporting network has the following important 
characteristics: 

1. No single-point dependencies. No single failure can prevent 
the correct reporting of the error. This is achieved by the 
topology and by the redundancy provided for each error report 
line. The worst-case failure will destroy one MERL and one 
BERL. The system will correctly report and isolate the 
failure. 

2. The error reporting topology allows graceful degradation. Each 
error reporting line resides in one of the confinement areas 
established for the system. Thus, as a system grows or 
degrades, the error reporting network changes with the 
system. The system's fault-tolerant capability will never be 
artificially limited by the error reporting network. 

ERROR REPORTING PROTOCOL 

The error reporting protocol is designed to ensure that all of the 
nodes in the system receive error messages in a timely manner and that 
if multiple error messages are broadcast, one and only one message is 
received by the nodes in the system. The propagation of error messages 
is shown in Figure 4-8. 

• Phase 1. The node detecting the error sends an error report 
message along its BERL. The delay on this transmission is critical 
to guarantee that a confinement area does not operate on incorrect 
data. All nodes on this bus stop operation immediately upon the 
start of the error report message. The nodes attached to other 
buses need not be informed of the error immediately. The corrupt 
information can enter a module only by means of one of the nodes on 
the bus where the error was detected. Thus, fast message 
propagation is important only over that BERL line. 

• Phase 2. After the complete error report message has been received 
over BERL, all the BIUs on this bus rebroadcast the message on 
their MERLs. The MERL message does not stop the operation of the 
BIUs on other buses. The MCUs do not receive any MERL messages. 

• Phase 3. All BIUs in the system now know about the error. After 
recel Vlng the complete error report message over MERL, all BIUs 
rebroadcast the message received over MERL on their respective BERL 
lines. All nodes on the bus terminate operation upon receiving the 
start of the error message. All nodes in the system now know about 
the error, and all the nodes on each bus have stopped operation in 
unison. This keeps the integrity of the normal bus protocol 
intact. There is no risk of a BIU retrying an operation that an 
MCU thought had been completed. 

After receiving the complete error report message over BERL, all nodes 
will load this last error message into their error report logs. This 
completes the error reporting cycle. 
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Figure 4-8. Error Report Propagation F-0436 

On top of this basic transmission protocol there exists an arbitration 
mechanism that is used to resolve conflicts in cases where multiple 
nodes detect errors. There are two arbitration mechanisms. The 
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primary one is First In, First Out (FIFO) ordering. With FIFO 
ordering, the first error report message has highest priority. The 
second mechanism handles simultaneous messages. If two error report 
messages are initiated at exactly the same time, then the report with 
the higher priority error type wins the arbitration. (If both error 
reports have the same error type, then the report with the larger 
location identifier wins the arbitration.) 

These two arbitration mechanisms weed out the lower priority error 
reports during the reporting sequence. During phase 1, multiple error 
reports may exist in the system. However, on each bus, arbitration 
will allow only one report to complete successfully. During phase 2 
any conflicts between the error reports on different buses will be 
resolved. At the end of phase 2, arbitration will have eliminated all 
but one error report throughout the system. During phase 2 an MCU may 
begin to generate a new error report in phase 1 (since it is unaware of 
the acti vi ty on MERL). The FIFO ordering arbitration will kill this 
report when the BIUs on this bus enter phase 3. After phase 3, every 
node in the system will have logged the same error message. All 
information about errors lost in the arbitration is also lost. If the 
error is permanent, it is reported again during retry. If the error is 
a transient, then recovery occurs as part of the retry operation for 
the error that has been reported. 

ERROR LOGS 

Each node in the system has an error report log, which holds the most 
recent error report message. This log is accessible by software, and 
it identifies the error type and location of the error. In addition to 
the error report logs, each MCU maintains an array error log. This log 
holds information specific to this memory array. The array error log 
records failures detected by the ECC detection mechanism. The log 
identifies the memory location that failed and the bit within the 
memory word which failed provided that the error was a single-bit error. 

These logs provide the means of communication from the hardware fault 
handling mechanisms to the system software. They allow the software to 
moni tor the health of the system and to properly respond to critical 
error conditions. The information gathered by the detection mechanisms 
and placed in the logs eliminates the need for diagnostic probing as a 
means of fault isolation. 

RECOVERY 

REDUNDANT RESOURCES 

This section covers three topics. The optimization of redundancy to 
handle frequent errors efficiently, the lock step operation of a pair 
of shadowed modules, and graceful degradation policies. 
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Optimization 

Published data plus design experience indicates that systems in the 
field will experience transient failures approximately 10 times as 
frequently as they will permanent failures. Because of the dominance 
of transient errors, special forms of redundancy (retry and ECC) are 
available in the system to address transient errors. This redundancy 
is less expensive than the redundancy required to recover from 
permanent failures. 

In many systems, memory components account for a large portion of 
central system cost and central system failures. To provide 
effective redundancy for this critical section of the system, a spare 
bit is available in each memory array. This mechanism provides a great 
deal of redundancy at far less cost than shadowing the entire memory 
module. 

Since each confinement area has its own independent set of recovery 
mechanisms, these may be mixed and matched to provide the optimal 
tradeoff between cost and fault-tolerant performance for a specific 
application. There is no requirement that all of the confinement areas 
have the same level of redundancy, e.g., full redundancy for the 
processor modules, retry for the buses, and ECC and a spare bit for 
each memory array. Such a system offers a high level of fault 
tolerance with reduced costs. Clearly, there are failures from which 
this configuration could not recover automatically (permanent MCU 
failure). One limitation of the mix-and-match strategy is that all 
processor modules should have the same level of redundancy. Because 
the processors operate as a cooperative pool, the processors manipulate 
data structures that are shared among all processors. Thus, a failure 
in an unprotected processor could stop processing by all processors, 
even if the other processors were protected by full redundancy. If the 
processors were split into separate pools, it might be possible to have 
processor modules with different levels of redundancy. However, 
communication between the two sets would need to be very limited and 
very carefully controlled to avoid any cooperative action between the 
two pools. 

Lock Step Operation 

Module redundancy is achieved by linking together two modules of the 
same type to form a primary/shadow module pair. This primary/shadow 
marriage is performed completely by software. There are no special 
signals to connect the two modules together. During normal operation 
the two modules operate in lock step as a single logical module. This 
provides a complete and current backup for the module and allows 
recovery from any single failure in either module without any 
interruption to the logical software environment. One module in the 
pair will be the active module, while the other one is passive. 
Initially, the primary module is the active module. The active module 
is responsible for driving the memory bus when this module issues a 
request or reply. The passive module monitors the bus and arbitration 
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lines to track the operation of the active module. By tracking the 
active module, the passive module is able to maintain exactly the same 
state information as the active module. Data leaves only by way of the 
active module, but data always enters both modules. 

The roles of active and passive module are switched after each bus 
request (reply for memory modules) issued by this module. This 
Ping-Pong action exercises all of the logic in both the primary and 
shadow modules. Any latent failure that exists in either module will 
be detected immediately. All of the logic to perform this lock step 
operation is contained in the BIU (MGU). Neither the processors nor 
the external TTL is aware that the module is participating as one half 
of a primary/shadow pair. 

It is important to understand that each physical module (primary and 
shadow) remains a self-checking module. Whether active or passive, all 
detection mechanisms remain enabled and are continuously checking the 
operation of the module. Note that the passive module is checking 
itself. It is not performing any type of double check on the operation 
of the active module. It should also be clear that the mechanisms for 
providing redundancy are totally independent from the mechanisms which 
are used to form the confinement areas. 

In the processor modules lock step operation is maintained on a clock 
cycle basis. On every clock edge the primary and shadow modules 
contain exactly the same state information. The memory modules do not 
maintain lock step operation on a clock cycle basis. Refresh 
operations and EGG correction cycles mean that the access time to a 
memory location is variable depending on the state of the memory 
module. Thus, it is not possible to keep the primary and shadow memory 
modules in clock cycle lock step. Instead, the memory modules operate 
in lock step based on bus messages. After each bus reply by the module 
pair, the two memory arrays are guaranteed to have the same state 
information before the next bus request is handled by the module pair. 

The Ping-Pong action of the module pair prevents one of the modules 
from getting behind and dropping data. In the worst case, the passive 
module can be one access behind the active module. After the active 
module has replied to a memory request, the passive module will always 
complete that access, even if another error is reported in the system 
before the access is complete. This is required so that the memory 
modules maintain the same state information. Likewise, if the passive 
module encounters an uncorrectable EGG error after the the active 
module has replied to a memory request, the passive module will 
immediately report a permanent module error. This is required because 
the two arrays now hold different state information. Since the request 
has already been acknowledged, it will not be retried. Thus, there is 
no way to bring the two arrays back into lock step. This added 
complexi ty is needed to free the memory modules from the clock cycle 
lock step requirement. 
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Graceful Degradation 

Because module shadowing is established solely through software 
operations, it allows the user a great deal of freedom in selecting 
graceful degradation policies. Spares may be a part of the system from 
the beginning, or the survivor module in a primary/shadow pair may 
become a spare after a failure. If performance is the absolute goal, 
then performance can be maintained in the presence of a failure by not 
deallocating the surviving module. Because of the fine-grain system 
partitioning, there is only a small probability that a second error 
will strike the surviving module. These tradeoffs are made by the 
system software and can be used to optimize the remaining system 
resources for the application needs of the system. 

Recovery 

This section will describe the recovery sequence at a high level. 
Figure 4-9 shows the recovery sequence. 

The error recovery sequence begins when the nodes in the system receive 
an error report. This error message is logged, and the system becomes 
quiescent, waiting for any transient noise to subside. This delay 
period may be tailored to individual applications by system software. 
The delay, which may range from 20 microseconds to 2 seconds, is long 
enough to handle transients induced by mechanical stress as well as by 
electrical interference. 

At the end of the transient waiting period, all of the accesses 
outstanding in the system are retried. If the same error recurs during 
the retry period, then the error is labeled a permanent error. Based 
on the location and error type information in the error message, the 
faulty resource is isolated from the system, and redundant resources 
are activated to replace the failed unit. This reconfiguration is 
performed in an independent and distributed manner by all the nodes in 
the system. 

After a second transient waiting period, the accesses are retried 
again. When the recovery operation has been completed, the system 
software will be informed of the error and subsequent recovery 
actions. In the case of a permanent error, the BIUs send an IPC 
message to all of the processors in the system. This informs the 
software of the critical system condition immediately. For transient 
errors, system software simply polls the error report logs in the BIUs 
and MCUs. This completes the recovery sequence, and the system resumes 
normal operation. 
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ERROR REPORTED AND LOGGED 

TRANSIENT WAIT 

RETRY ACCESSES 

NO YES 

MARK ERROR AS PERMANENT 

RECONFIGURE RESOURCES 

TRANSIENT WAIT 

RETRY ACCESSES 

RESUME OPERATION 

INFORM SYSTEM SOFTWARE 

Figure 4-9. High-Level Recovery Sequence F-0437 

CONFIGURATION EXAMPLES 

This chapter contains a number of diagrams that provide examples of 
configurations over a wide range of capabilities and physical resources. 
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Figure 4-10 shows the most basic system that can be constructed in an 
interconnect-based iAPX 432 system. The only detection mechanisms are 
parity and retry. If any of the resources should fail with a permanent 
error. the system will be out of service until the module is repaired. 

GDP IF MEMORY 

BIU BID MCU 

BUS 0 

BASIC SYSTEM 

LOGICAL CONFIGURATION PHYSICAL CONFIGURATION 

1 GDP 1 GDP 
1 IF 1 IP 
1 MEMORY ARRAY 2 BIDs 
1 MEMORY BUS 1 MCU 

1 MEMORY BUS 
1 39-BIT-WIDE RAM ARRAY 

Figure 4-10. Basic System F-0438 

Figure 4-11 shows a more flexible iAPX 432 configuration. This system 
has only parity and retry, but it has two of each type of resource. If 
anyone of these resources should fail, software could reconfigure the 
system. The system would be on-line as soon as diagnostics had 
isolated the faulty resource. 
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Figure 4-11. Flexible System F-0439 

Figure 4-12 shows a system capable of a comprehensive deferred 
maintenance strategy. The system is using all of the detection 
mechanisms available in the BIU and MCU, and it has more than one of 
every resource in the system. When an error occurs, it will be 
detected and isolated by the hardware. Software can then rapidly 
reconfigure the system around the faulty module and be on-line again. 
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Figure 4-12. Self-Healing System F-0440 

Figure 4-13 shows a small nonstop system. This system has been 
configured so that every resource in the system has a current and 
complete backup. The system can continue operation in the presence of 
any single failure. All of the detection and recovery mechanisms are 
enabled. 
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Figure 4-13. Small Nonstop System 

Figure 4-14 shows a large nonstop system. 

F-0441 
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PHYSICAL CONFIGURATION 
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48 MCUs 
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Figure 4-14. Large Nonstop System F-0442 

EXAMPLE SYSTEM OPERATION 

This summary provides an example of the operation sequence of a 
fault-tolerant machine. The example is intended to help tie together 
all of the mechanisms presented in the earlier portions of the document. 
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A DAY IN THE LIFE OF AN FT SYSTEM 

1. The system is powered up, and the components receive the INIT 
signal. This places the components in a consistent state with 
each BIU and MCU that has a unique local address. 

2. The initialization software sizes the system, runs confidence 
tests on all of the resources in the system, and reviews the 
past error history in the system health log. The software 
decides which resources are available for use in the system 
configuration. 

3. Based on the needs of the application and the available 
resources in the system, software decides on the optimal 
system configuration. Address ranges are assigned, modules 
are married, and buses are enabled with the correct redundant 
information. (See Chapter 6.) Timeout values are loaded, and 
any of the optional fault-tolerant capabilities are set to the 
desired state. (See Chapter 5.) The memory is loaded with the 
information required to run the basic operating system. The 
system is then ready for logical operation and is in a fully 
fault-tolerant state. The software that performs this step is 
probably split between the AP and the GDPs. 

4. The system is passed to the operating system, and normal 
operation begins. 

5. During normal operation a background task that is constantly 
checking for latent errors in the system is run. This 
software uses the various commands to the BIU and MCU to 
verify the correct operation of the detection and recovery 
mechanisms. (See the "Management and Testing" sections in 
Chapters 5 and 6.) This software also polls the error report 
logs to check on any transient error conditions that may have 
been reported. (See Chapters 7 and 8.) Infrequently used 
operations in the processors may also be tested during this 
time. 

6. An error occurs and is detected by the hardware. (See Chapter 
5.) 

7. An error report message is broadcast throughout the system, 
identifying the type of error and the location at which the 
error was detected. (See Chapter 7.) 

8. The system becomes quiescent and waits for any transient to 
subside. (See Chapter 8.) 

9. All accesses outstanding in the system are retried. If the 
error does not recur, then normal operation will resume. If 
the error recurs, then the recovery operation proceeds to the 
next stage. (See Chapter 8.) 

4-23 



Overview of Fault Handling Mechanisms iAPX 432 Interconnect ARM 

4-24 

10. The error recurs, and an error report message is broadcast 
throughout the system. 

11. The system becomes quiescent and waits for any transient to 
subside. During this time each node will take whatever 
recovery action is appropriate, based on the type and location 
of the error. The faulty resource is isolated from the 
system, and redundant resources are activated automatically by 
the hardware. (See Chapter 8.) 

12. All accesses outstanding in the system are retried. Each 
proce~sor in the system receives a reconfiguration IPC from 
its BIU. This sends an interrupt to each AP and will cause 
each GDP to suspend its current process at the earliest 
possible time. The GDPs will then go to their reconfiguration 
dispatching port. (See Chapter 8.) 

13. A process is waiting at the reconfiguration dispatching 
port(s). This process sends a message to higher software 
authorities, notifying them of the system reconfiguration. 
This process may do some basic housekeeping, but it will 
almost immediately send the processors back to their normal 
dispatching ports. (See Chapter 8.) 

14. The system is running normally, but management software must 
make some decisions about the optimal configuration of the 
system (should resources be deallocated, should a spare be 
acti vated, etc.). Once these decision's are made, the software 
may alter the active configuration to put the system in its 
optimal state for continued operation. Normal operation may 
need to be suspended for a brief moment if a spare memory 
module is brought on-line. (See Chapter 10.) 

15. The system returns to normal operation. 
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INTRODUCTION 

CHAPTEH 5 
CONFINEMENT AREAS/DETECTION MECIIANISNS 

This chapter describes details about the detection mechanisms used to 
implement the confinement areas described earlier. There are two 
general topics that need to be discussed before each confinement area 
is described. The first is the handling of the delay between detecting 
an error and receiving the error report message. The second topic is 
layout constraints imposed by the fault handling mechanisms. 

The~e is a three-cycle delay (delay for detection mechanisms and error 
report propagation) from the time data is received until that data can 
be guaranteed correct. Thus, for three cycles, the recel vlng 
confinement area may not use this data to permanently modify state 
information. This only introduces additional delay when data flows 
back to the processor from the BIU. In all other cases this holding 
period is overlapped with other acti vi ty, which will not permanently 
modify state information. 

The correct operation of the FRC detection mechanism places some 
constraints on the physical implementation. All signals that are FRCed 
must follow the layout convention shown in Figure 5-1. These layout 
rules are imposed so that a single break in the line will either be 
caught by FRC or appear as a single input failure in the external 
component. Any time that duplication is used as a detection mechanism, 
the duplicate circuitry cannot have any common components. This would 
introduce common mode failures, which would reduce fault coverage of 
the detection mechanism. 

GDP CONFINEMENT AREA 

Figure 5-2 shows the actual signal connections required to implement 
FRC for the GDP confinement area. The following pins on the master are 
directly connected to the matching pins on the checker: MACDO-15, 
CTLO-2, CHKO-1, and NREQOUT. The FRC check is performed continuously 
on the NREQOUT pin. FRC checking is done on the other signals only 
when this node is driving the memory bus (i.e., when MBOUT is 
asserted). An even parity bit is appended to the 16-bit messages 
broadcast over the MERL line. This parity bit provides error detection 
for single-bit and multiple-bit (odd number of) errors, plus stuck-low 
failures on the MERL line. Figure 5-3 shows the actual signal 
connections required to implement the loopback buffer check for the GDP 
confinement area. 
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Figure 5-1. Layout Rules for FRCed Sicnals F-0443 
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Figure 5-2. FRC Details for the GDP Confinement Area ~~44 
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MBOUT BIU 
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BCHK 

MEMORY BUS BUFFERS 

LOOPBACK PATH 

ERROR 

PROM 

BIU 

CHECKER 

BCHK 

Figure 5-3. Buffer Check Detection Mechanism 

MANAGEMENT AND TESTING 

F·0446 

The FRC checking may be selectively enabled under software control 
using the Disable MACD Bus FRC Detection bit. At initialization, FRC 
checking is automatically enabled. At initialization time, bit 0 on 
the local processor bus specifies whether this processor module (i.e., 
all BIUs on this processor bus) should be a master or a checker. 
Software cannot convert two master GDP modules into a single 
self-checking module. This requires reinitializing the components. 

Buffer checking may be selectively enabled at initialization time by 
setting the BUFCHK Enable bit in the Interconnect Device Type 
register. This bit is loaded in from bit 6 on the local processor bus 
at initialization; it cannot be modified by software. 
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MERL parity checking is always enabled. 

Two interconnect register operations are provided to test the detection 
mechanisms in the GDP confinement area. First, software may toggle the 
master/checker function of the nodes in the system. This operation 
checks that the checker has not inadvertently become a master. An 
inadvertent master will be detected by an FRC error after the toggle 
operation, because now this module will have two checkers and no 
masters. The toggle operation is controlled by the master/checker 
toggle bit in the Diagnostics register. The correct assignment of 
master and checker functionality is also tested by the Test Error 
Report command, which is directed explicitly to either the master or 
checker. (See Chapter 7.) Lack of response from the checker indicates 
that the checker is not operating correctly. 

The second interconnect register operation is the Test Detection 
command. This request may not be performed using the "my-BIU" 
addressing mode. The BIU responds to this request by returning data 
from its Test Detection Data register. When this data is driven onto 
the memory bus, one side of each FRC detector is inverted, forcing an 
error at every FRC bit comparator. (Note that correct data is driven 
out onto the memory bus. This test is confined to the node addressed 
by the Test Detection command.) Errors are also forced into the buffer 
check error circuitry, the MERL parity detection circuits, and the 
NREQOUT FRC circuit. All of these detection mechanisms must report an 
error. If anyone of them does not report an error, then this is 
detected and reported as a module error. If all of the detection 
mechanisms are working correctly, then a NO ERROR error report will be 
broadcast. Software may write different data patterns into the Test 
Detection Data register to provide a more complete test sequence over 
the FRC detection circuitry. Even if a detection mechanism is disabled 
during normal operation, it will be checked by the Test Detection 
command. This approach means that the same test and exercise software 
may be used in systems with different detection capabilities. The test 
plan does not need to consider what detection mechanisms are enabled. 

These tests provide very high, but not 100%, fault coverage for the 
detection mechanisms used in this confinement area. There are a few 
PLA minterms that are not tested; these represent the only hard core 
circuitry in the confinement area. Table 5-1 is a summary of the 
management and testing capabilities available in the GDP confinement 
areas. 

IP CONFINEMENT AREA 

The IP confinement area has been shown in Figure 4-4. This confinement 
area is identical to the GDP confinement area except for the addition 
of an interface to the peripheral subsystem. Thus, the same detection 
mechanisms used in the GDP module provide detection coverage for the 
interfaces to the central system. 
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Table 5-1. GDP Confinement Area Management and Testing Summary 

MANAGEMENT 

Function 

Memory Bus FRC 
Buffer Check 
MERL Parity 
Master/Checker Function (BIU) 

Function 

Memory Bus FRC 
Buffer Check 
MERL Parity 
Master/Checker Function (BIU) 

Initialization 

Enabled 
ACD6 
Enabled 
ACDO 

TESTING 

Test Strategy 

SW Writeable 

Yes 
No 
No 
Toggleable 

Test Detection Command 
Test Detection Command 
Test Detection Command 
Toggle M/C, Test Report Command 

Errors are detected at the PS interface by applying FRC on the PS side 
of the IP. One PS interface operates as the checker while the other IP 
performs as the master. Any failure in the IP components, the local 
processor bus, the BIUs, or the TTL support and buffering components 
will be detected as data flows across this interface. The following 
pins are directly connected together on the PS side of the IP 
components: ADO-15, INT, INH1, BIU#, DEN#, HLD, and NAK#. The checker 
samples these outputs at one time during the window in which they are 
valid. The AP may be sampling these signals at different times, since 
this is an asynchronous interface. The FRC comparators on pins ADO-15 
are activated only when the IP is driving data on the bus. The FRC 
check on the control signals is done on every clock cycle. If an error 
is detected, it is signaled by asserting the HERROUT signal, which 
causes an interrupt in the AP. The rest of the system is unaware of 
the failure because the error is not reported over the central system 
error reporting network. 

MANAGEMENT AND TESTING 

The detection mechanisms are managed and tested in the manner described 
earlier for the GDP confinement area. The FRC detection mechanisms on 
the PS interface may be selectively enabled at initialization. During 
initialization, a one on the HERROUT pin will force the PS interface 
into checker mode. 
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The detection mechanisms in the IP cannot be directly tested by 
software. The corruption of data to test the detection circuits would 
have to be done by external logic under the control of the AP. The 
master /checker function of an IP cannot be toggled. Table 5-2 is a 
summary of the management and testing capabilities available in the IP 
confinement areas. 

MEMORY CONFINEMENT AREA 

This confinement area is actually split into two parts, the RAM array and 
the MCU/memory bus. 

Table 5-2. IP Confinement Area Mangement and Testing Summary 

MANAGEMENT 

Function 

Memory Bus FRC 
Buffer Check 
MERL Parity 
Master/Checker Function (BIU) 
Master/Checker Function (IP) 

Function 

Memory Bus FRC 
PS Bus FRC 
Buffer Check 
MERL Parity 
Master/Checker Function (BIU) 
Master/Checker Function (IP) 

Initialization 

Enabled 
Enabled 
ACD6 
ACDO 
HERROUT 

TESTING 

Test Strategy 

SW Writeable 

Yes 
No 
No 
Toggleable 
No 

Test Detection Command 
External logic/AP SW 
Test Detection Command 
Test Detection Command 
Toggle M/C, Test Report Command 
PS Bus FRC Test 

FRC is applied to both the memory bus and the RAM array interface. On 
the memory bus side, the MACDO-15, CTLO-2, and CHKO-l pins are checked by 
FRC. These pins are directly tied together between the master and 
checker. FRC checking is active whenever the MCU is driving the memory 
bus. On the array side, the SLADO-19, RAS#, DEIN#, WE#, and REFRESH pins 
are FRCed. The SLAD bus pins are checked whenever the MCU is driving 
them; the control pins are checked continuously. All of these pins are 
tied together between the master and checker. The ABCHK pin comes from 
the TTL logic, which derives the CASH signal from RAS# driven out of the 
MCU. The ABCHK signal can be used to check that the external TTL and the 
lines between the TTL and the RAMs are functioning correctly. ABCHK is a 
feedback signal from the array control. It is the logical OR of the CASH 
and WE# control signals to the array. Figure 5-4 shows the actual 
connections required for FRC on the array interface. 
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Figure 5-4. Details of SLAD FRC Detection F-0446 

The MCU buffer check loopback test provides error detection for the 
external buffers on both buses attached to the MCU. This checks that 
the buffers on the currently active bus are enabled and driving in the 
correct direction, and that the buffers on the inactive bus are 
disabled. This check acts as an indirect FRC on the BUSSEL signals 
from the MCUs. Unlike the BIU, both master and checker MCUs are always 
receiving the results of the buffer check. This guarantees that an 
error in the bus interface will always be reported to any receiving 
confinement areas within the three clock window. This problem can 
occur if the two MCUs disagree on which bus is the active bus. The 
error must be reported over both buses immediately to guarantee the 
error report response time since it is not known which bus is actually 
the active bus. Figure 5-5 shows the details of the MCU buffer check 
connection. The MCU buffer check requires external logic because of 
the interface to two buses. On the active bus, the buffer check needs 
to ensure that all of the buffers are active. On the passive bus, the 
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Figure 5-5. MCU Buffer Check Connection F-0447 

buffer check needs to ensure that none of the buffers are active. This 
information can easily be combined by some logic (shown here as an 
error detection PROM), which also knows the current state of the buses 
and the buffer check signal. The delay through the external logic may 
force the use of a latch to meet MCU timing requirements. 

Figure 5-6 shows the connection of BUSSEL to the memory bus buffers. 
BUSSEL is driven by both the master and the checker. These two BUSSEL 
signals are ANDed together externally before being used as an enable 
signal to the bus buffers. This reliability buttressing is done to 
guarantee that no single failure can corrupt both of the buses attached 
to the MCU. Any failure in the BUSSEL signals or the external logic 
will be detected by the buffer check mechanism. 
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Figure 5-6. MCU Memory Bus Buffer Logic F-0448 

These detection mechanisms plus the testing functions specified below 
provide 100% fault coverage for single failures in the MCUs, memory bus 
buffers, and BUSSEL logic, or in the TTL logic, which generates CAS. 
The TTL latches and buffers on the other SLAD signals are checked as 
part of the RAM array. An error detected by the buffer check mechanism 
or FRC on the memory bus side is reported as a module error. An error 
detected by FRC on the RAM array interface is reported as an unsafe 
module error. This error report type is required because unknown 
damage may have been done to the array contents. The control signals 
have an immediate impact on the RAM chips; thus, we cannot guarantee 
that an MCU failure has not corrupted data in the memory array. This 
report is critical because, even if the failure were transient, the 
corrupt data might not be detected on a later access. (For example, 
the master MCU converts a read operation into a write operation. The 
write is performed correctly by the MCU, using garbage data from its 
input queue. Once the checker detects the error by means of the FRC on 
the SLAD interface, it is too late to prevent the writing of data into 
the array. If this data were accessed at a later time, it would appear 
valid because the location would have a valid ECC code.) 
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The locks necessary for the correct operation of RMW sequences are held 
in the MCUs. There is no timeout associated with the locks. Any 
hardware failure will be detected by one of the other detection 
mechanisms. These are short-term locks used solely by the processor 
microcode. Software does not use these locks; it is impossible for a 
software error to cause the incorrect usage of the RMW locks. 

MEMORY ARRAY 

A Hamming code has been selected for error detection and correction 
within the memory storage array. Seven check bits are appended to the 
4-byte storage array and are computed from the data to be stored and 
the address of the storage location. This encoding will ensure that: 

• All single-bit errors in the data can be corrected. 

• All single-bit errors in the address can be detected. 

• All double-bit errors in data or the address can be detected. 

• Multiple-bit (odd numbers of) errors are detected. 

This detection mechanism is implemented totally wi thin the MCU. ECC 
coverage is applied to refresh accesses as well as all normal 
accesses. On each refresh request, one location in the row is actually 
read and the ECC is checked. If a correctable error is found, the MCU 
corrects the data and writes the corrected value back to the array. 
This refresh operation is called scrubbing. Scrubbing is used to 
detect any latent faults that may exist in memory locations 
infrequently accessed by software. Scrubbing guarantees an access to 
every memory location every few seconds. This virtually eliminates the 
possibility of double-bit errors in the memory array. 

This coverage is further amplified by performing all write operations 
as read-modify-wri te (RMW) operations. This action allows the MCU to 
check that it reached the correct memory address (by checking the ECC 
code) before it changes the data value in the array. The steps in an 
array write operation are listed below: 

• Send address. 

• Read in data and ECC checksum. 

• Check ECC verifying address. 

• Send write data to the array. 

This detection mechanism provides coverage for all single and double 
failures except incorrect operation of a complete TTL buffer package 
(which may be detected depending on data pattern and failure mode). 
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Failures detected by the ECC code will be reported as either a 
correctable ECC error or an uncorrectable ECC error, depending on the 
type of error. If an uncorrectable ECC error is detected by the 
passive module in a primary/shadow pair, and the active module has 
already replied, then the error will be reported as an unsafe module 
error. This must be done because the original access will not be 
retried. If the access were a scrub access, then the error would be 
reported only if the ECC error log were empty. This mechanism prevents 
a single permanent failure from putting the system into an infinite 
error reporting loop. 

During normal operation, memory data is returned to the BIU before the 
ECC check has been completed. If an error is detected, it will be 
reported before the data is passed from the BIU to the processor. 
Having the BIU hold the data decreases the memory access time by 
overlapping data transmission and error checking. During retry 
operation, the memory data is not returned until after the ECC check 
has been completed. This is called staged operation. When memory 
accesses are being staged, correctable ECC errors are corrected in the 
MCU, and the corrected result is passed on to the requesting BIU. No 
error report is generated for correctable errors detected during 
staging. (Reporting of scrub errors is the same as during normal 
operation.) This approach allows permanent single-bit RAM errors to be 
handled by retry. 

MANAGEMENT AND TESTING 

Setting up a master/checker pair of MCUs is done at initialization. 
During initialization, the BCHKIN/M pin becomes an input. External 
logic pulls the line low (to zero) if this component is to be a checker 
MCU, or high if the node is to be a master. Buffer checking is also 
selectively enabled during initialization time. The BCHK Enable bit is 
loaded from SLAD15 during the D1 time slot. This bit can be read by 
software from the Interconnect Device Type Register (bit 10). The ECC 
and FRC detection are enabled at initialization. Software may 
selecti vely disable these detection mechanisms by setting the correct 
bits in the diagnostic register (Disable MACD Bus FRC Detection, 
Disable SLAD Bus FRC Detection, Disable ECC Error Reporting). When ECC 
error reporting is disabled, the ECC log will still be updated if an 
ECC error occurs. Additional bits allow software to selectively enable 
scrubbing and to force the MCU to always run in the staged mode of 
operation. 

Six commands are available to test the detection mechanisms in the 
memory confinement area. The Toggle Master/Checker bit in the 
diagnostic register and the Test Reporting command are used to check 
the operation of the checker in the way described under the GDP 
confinement area. The MCU also has a Test Detection command, which 
performs a function similar to its counter part in the BIU. Commands 
are always sent using the BIU/MCU register address space. This is true 
even when the command causes a memory operation as part of the response 
to the command. The Test Detection command to an MCU will cause a 

5-11 



Confinement Areas/Detection Mechanisms iAPX 432 Interconnect ARM 

memory read to be done to the address held in array address-high 
register and the array address-low register. The FRC comparators on 
the SLAD bus are checked as the address is sent to the array by 
inverting the internal side of the comparators. (See Figure 4-2 shown 
previously.) 

The array control line FRC circuitry is sampled twice during this time 
to check the comparators in both signal polarities. While the array 
access is being performed, the BUSSEL signal from the checker is 
inverted for two clocks. This checks that the buffer check external 
logic and MCU detection mechanisms are working correctly by forcing a 
disagreement between master and checker BUSSEL values. (Any 
information lost while these buffers are disabled will be recovered 
during the retry period, which always follows a Test Detection 
command.) The MCU will then return the low-order double byte of data 
from the array to the BIU. While this data is being driven onto the 
memory bus, the memory bus FRC comparators are checked by inverting the 
internal side of the comparators. If all of the FRC comparators detect 
errors and the buffer check detects an error, then a NO ERROR error 
report will be sent. If some detection mechanism has failed, then a 
MODULE error report will be sent. Even if a detection mechanism is 
disabled during normal operation, it will be checked by the Test 
Detection command. This approach means that the same test and exercise 
software may be used in systems with different detection capabilities. 
The test plan does not need to consider which detection mechanisms are 
enabled. 

The ECC circuits are checked by writing bad data into the memory 
array. This is done by anyone of three commands (Array High Access, 
Array Low Access, ECC Access). These commands use the high and low 
Array Address registers as an address and provide direct access to all 
the bits in the memory array (high double byte, low double byte, ECC 
bits and the spare bit). Software sets up the address registers and 
then writes any arbitrary data pattern to either the data or ECC 
portions of the selected memory word. The correct operation of the ECC 
mechanism both during scrubbing and during normal access is checked by 
the FRC check on the operation of the MCU. Software can also monitor 
the ECC log in the MCU to check that the expected error was reported by 
the MCUs. 

These commands provide very high coverage for latent faults that may 
exist in the error detection mechanisms. Table 5-3 provides a summary 
of the management and testing capabilities in the MCU confinement area. 
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Table 5-3. Memory Confinement Area Management and Testing Summary 

Function 

Memory Bus FRC 
Buffer Check 
SLAD Bus FRC 
ECC Detection 
Scrubbing 
Master/Checker Function 

Function 

Memory Bus FRC 
Buffer Check 
SLAD Bus FRC 
ECC Detection 

MANAGEMENT 

Initialization 

Enabled 
SLAD15/D1 
Enabled 
Enabled 
Disabled 
BCHKIN/M 

TESTING 

Test Strategy 

SW Writeable 

Yes 
No 
Yes 
Yes 
Yes 
Toggleable 

Test Detection Command 
Test Detection Command 
Test Detection Command 
Array Access/FRC/ECC log 

Scrubbing 
Master/Checker Function 

Array Access/FRC/ECC log 
Toggle M/C, Test Report Command 

MEMORY BUS CONFINEMENT AREA 

Figure 4-6, shown earlier, displays the memory bus confinement area. 
The confinement area includes the TTL buffers and the arbitration 
sections of the BIUs and MCUs attached to this bus. Parity is used for 
the detection of errors on the memory bus. Two check bits are appended 
to the 19 bits (16 data, 3 control) of information. One parity bit 
covers the even-numbered signals (10 signals and odd parity), while the 
other parity bit covers the odd-numbered signals (9 signals and even 
parity). This interlaced parity scheme is used to provide more 
complete coverage of bridging faults between adjacent signal lines. 
This detection mechanism provides the following coverage: 

• All single-bit errors are detected. 

• Multiple-bit (odd numbers of) errors are detected. 

• Double-bit errors are detected when each parity bit covers only one 
of the errors (i.e., adjacent signal lines). 

• Stuck-at-zeroes are detected. 

It is important to realize that a failure in the parity generation or 
detection logic may be flagged as a parity error. 
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The three arbitration lines (NREQII, RQII, and CONTII) are duplicated. 
Figure 5-7 shows the detailed connections for the arbitration network. 
MBOUT is included in the arbitration section because it is effectively 
a "grant" signal from the arbitration circuits. 

MASTER BIU CHECKER BIU 

'""' 
MBOUT 

'""' ::0 ::0 
0 "" '""' "" + 

0 "" '""' "" 0- 0- ::0 
'""' 

0- 0- ::0 
'""' '" '" 0 "" z '" '" "" 0 Z 

Po: Po: 0- 0- 0 Po: Po: 0- 0- 0 
Z Z Po: Po: U Z Z Po: Po: U 

7 ~7 ~ lm ~ 7 ~7 ~ 7 4 
~ 

~ REF 

NREQII 

i 
RQII 

i 
CaNTil 

i 

t~' t
m 

"" "" t "" "" 0-
'""' 0-

'""' Po: Z Po: Z 
0 0 
u u 

MBOVT 
MASTER MCV CHECKER MCV 

Figure 5-7. Details of Arbitration Detection Mechanism F-0449 

The value of the MBOUT and RQOUT signals are dependent on the previous 
values of the three arbitration lines plus the state of the memory 
bus. The arbitration state machine in the master is using inputs that 
are isolated from the inputs used by the checker's state machine. Any 
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single error in the arbitration 
machines will be detected as 
signals. It is impossible to 
failure on the arbitration lines 

lines or any of the arbitration state 
an FRC error on the MBOUT or RQOUT 
distinguish the difference between a 
and a failure in a state machine. 

There is also an error reporting line (BERL or Bus Error Report Line) 
associated with the memory bus. An even parity bit is appended to the 
16-bit serial message broadcast on BERL. This provides fault coverage 
for single-bit and multiple-bit (odd numbers of) errors, plus stuck-low 
failures. 

These mechanisms combine to provide 100% fault coverage for single 
failures and very high fault coverage for common multiple failures. It 
is important to remember that failures that cause a whole buffer 
failure receive 100% coverage by the buffer check detection circuits. 

Because this confinement area involves components that also reside in 
other confinement areas, the reporting of errors must be very carefully 
controlled to guarantee that the fault is correctly isolated from the 
rest of the system. At the interfaces between confinement areas it is 
possible for a single failure to be detected as multiple errors. To 
sol ve this problem, errors are given priori ties based on the error 
type. This is the basic priority, from highest to lowest: 

• Module error 

• Arbitration error 

• Parity error 

This ordering reflects the fact that a module failure may also appear 
as an arbitration or parity error. However, a bus failure can never 
appear as a module error. Thus, whenever a failure appears as multiple 
errors, only the highest priority error is reported. The following 
paragraphs enumerate the failures that may cause conflicting errors to 
be reported. 

If a node detects a parity error, the actual failure must reside in one 
of the following places: 

• Memory bus lines on the backplane 

• TTL buffers on another module 

• Signal lines between VLSI and TTL on another module 

• TTL buffers and lines on this module 

• Parity detection circuits in this node 

• An arbitration error, resulting in two nodes driving the bus 

• Parity generation circuits at the node driving the bus 
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If the failure occurs in the parity generation logic. this failure is 
detected by FRC in that module. If the failure occurs in the signal 
lines between the VLSI component and the TTL buffers on another module. 
this will be detected by FRC or buffer checking in that module. Both 
errors are reported as module errors and have priority over parity 
errors. If the failure is an arbitration error. it will be reported as 
either a bus arbitration error or a bus/module-high error. These error 
reports have priority over parity error reports. Thus. the errors that 
remain have occurred either on the memory bus and its TTL buffers or in 
the node which detected the error. It is important to note that even 
if the error has occurred in this node. it does not cause any failure 
inside that module's confinement area. The failure is localized to the 
memory bus interface. 

If the error is detected by a BIU. then a BUS PARITY error is 
reported. This report correctly isolates the error to this bus 
confinement area. If the error is detected by an MCU. it will be 
reported as a bus/module-low error. This error report has lower 
priority than the BUS PARITY error report. If both a BIU and an MCU 
detect a parity error. the BUS PARITY error report will win reporting 
arbitration. This correctly isolates the error to this bus confinement 
area because the error must be in the backplane or in the TTL buffers 
on another node. If only the MCU reports the error. the failure cannot 
be localized to a single confinement area. Both the memory module and 
the bus are identified as having failures. The module confinement area 
is also identified in this case because MCUs have contact with two 
memory buses. Since the failure may in fact be in the MCU's parity 
detection circuitry. the MCU must not be allowed to use this second 
bus. This is not a problem for BIUs. since they are connected only to 
a single bus. 

If a node detects an arbitration error. the actual failure must reside 
in one of the following places: 

• The arbitration lines on the backplane 

• The external TTL logic on another module 

• The sjgnal lines between the TTL and the VLSI on another module 

• The TTL or signal lines in this module 

• The arbitration state machine in the master in this module 

If it existed in the signal lines on another module. the failure would 
have been detected as an arbitration error by that module during a 
previous cycle. Thus. the failure is localized to this node or the 
signal lines and their associated support TTL logic. If the error is 
detected by a BIU. then the failure is localized to the bus confinement 
area and a BUS ARBITRATION error report is generated. If the error is 
detected by an MCU. then error cannot be isolated to a single 
confinement area. A BUS/MODULE-HIGH error report is broadcast because 
the failure may be in either the bus or memory confinement areas. If 
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both a BIU and MCU detect an error, the BUS ARBITRATION error report 
has higher priority. The error must be in the bus confinement area. 
because the MCU has no outputs into arbitration network, thus a failure 
in the MCU cannot cause another node to see an arbitration error. The 
error is in the arbitration lines or the associated TTL support logic 
in a processor module. 

If a parity error is detected on the BERL line then the actual failure 
must reside in one of the following places: 

• The parity generator on the node generating the BERL message 

• The parity detector at this node 

• The signal lines between the VLSI and the TTL on another node 

• The TTL buffers on another node 

• The TTL or signal lines on this node 

Once again the mechanisms must differentiate between failures at the 
MCU and other types of failures. This case is slightly different from 
the previous cases because error messages are not a part of normal 
system operation. BIUs will report this type of error as a BERL parity 
error, while MCUs report it as bus/module-high. The BERL parity error 
has higher priority. Also the MCU's have some special detection 
circuitry that allows them to detect if their BERL (between the VLSI 
and the TTL) is stuck asserted (low). The combination of these two 
mechanisms allows the failure to be isolated to the correct area. 

A bad parity generator will be detected during testing of the error 
reporting network. (See Chapter 7 for details.) A bad parity detector 
is isolated because the MCU will label this a bus/module error. Bad 
signal lines will be detected by the special "stuck asserted" circuitry 
in the MCU. This will force the MCU to stop operation, thus resulting 
in an FRC error or a buffer check error. If the failure is in the TTL 
buffers or the signal lines, the BIU report will have higher priority 
and the error will be correctly isolated to the bus confinement area. 
If the failure is in the MCU's TTL input buffers, then the error will 
be detected only by the MCU and thus labeled bus/module. 

The memory bus protocol includes a timeout (called the pipeline 
timeout). The length of the timeout is controlled by the Timeout 
Duration register in each node. Software controls the length of the 
timeout (which may range from 16 microseconds to 2 seconds). 

The timeout is used during initialization. The function is to catch 
errors in the configuration established by the system software. The 
timeout is not used to detect hardware failures; any failure in the 
hardware will be detected by another detection mechanism. Timeouts do 
not cause error report messages to be generated. They simply act as 
pseudoreplies in each node; then normal bus operation can continue. 

5-17 



Confinement Areas/Detection Mechanisms iAPX 432 Interconnect ARM 

The node that has been waiting for the reply will send a bus error 
sequence to its processor. In physical mode. the IP will pass this 
report on to the AP as an interrupt. In all other cases. the processor 
(IP or GDP) will not be able to recover from this error condition. 
Once again. in systems with hardware error detection. this timeout will 
occur only because of a software failure. 

All hardware failures will be detected by one of the detection 
mechanisms used to form the confinement areas. In non-fault-tolerant 
432 systems, the timeout may also catch hardware failures and prevent 
the bus from hanging up. 

MANAGEMENT AND TESTING 

The memory bus parity detection is under software control. It is 
enabled at initialization and software may change the Disable MACD Bus 
Parity Detection bit in the diagnostic register at any time. The FRC 
detection in the arbitration lines is also under software control. It 
is enabled at initialization, and software may change the Disable MACD 
Bus FRC Detection bit at any time. The BERL parity detection is always 
enabled. 

All of these detection mechanisms are checked by the Test Detection 
command. (This command was explained in detail in the module 
confinement area descriptions.) When the node being tested returns the 
read data onto the memory bus, the 2 parity check bits sent to the 
pari ty checker are inverted. All of the arbitration FRC comparators 
are fed inverted signals on their internal inputs, and a BERL parity 
error is forced internally. Different data patterns may be used to 
exercise the parity tree thoroughly. As a normal part of system 
operation, the memory bus parity generator is constantly checked by all 
of the parity checkers on the bus. Even if a detection mechanism is 
disabled during normal operation, it will be checked by the Test 
Detection command. This approach means that the same test and exercise 
software may be used in systems with different detection capabilities. 
The test plan does not need to consider which detection mechanisms are 
enabled. 

These test commands provide very high coverage for any latent failures 
that may exist in the detection circuitry. Table 5-4 gives a summary 
of the management and testing capabilities of the memory bus 
confinement area. 

The bus confinement area is the only confinement area that does not 
naturally present itself as a repair area. Because this confinement 
area may include multiple boards and a backplane, some diagnostic 
probing will be required before it is possible to identify a board that 
needs to be repaired. 
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Table 5-4. Bus Confinement Area Management and Testing Summary 

MANAGEMENT 

Function 
Memory Bus FRC (Arbitration) 
Memory Bus Parity 
MERL Parity 
Master/Checker Function (BIU) 

Function 
Memory Bus FRC (Arbitration) 
Memory Bus Parity 
MERL Parity 
Master/Checker Function (BIU) 

Initialization 
Enabled 
Enabled 
Enabled 

SW Writeable 
Yes 

ACDO 

TESTING 

Test Strategy 

Yes 
No 
Toggleable 

Test Detection Command 
Test Detection Command 
Test Detection Command 
Toggle M/C, Test Report Command 
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COMPONENT SUMMARY 

Tables 5-5, 5-6, and 5-7 give a summary by component of the FRCed pins 
and the type of error report generated by errors detected at each pin. 

Table 5-5. Summary of BIU FRC Detection 

I MERLII VSS2 
0 CLRPUOUT CLKB I 
0 MERLOUTII CLKA I 
0 ICSOUTII BERLOUTII I/O 
0 ICS BERL211 I 
I PRQ BERL1# I 
I/O MMAH# INITII I 
I/O MMALII VCC2 
I VCCO VSS1 
I/O ACD15 MBOUT I/O ** 
I/O ACD14 CTL2 I/O ** 
I/O ACD13 CTL1 I/O ** 
I/O ACD12 CTLO I/O ** 
I/O ACD11 MACD15 I/O ** 
I/O ACD10 MACD14 I/O ** 
I/O ACD9 iAPX 43204 MACD13 I/O ** 
I/O ACD8 BIU MACD12 I/O ** 
I/O ACD7 MACD11 I/O ** 
I/O ACD6 MACD10 I/O ** 
I/O ACD5 MACD9 I/O ** 
I/O ACD4 MACD8 I/O ** 
I/O ACD3 MACD7 I/O ** 
I/O ACD2 MACD6 I/O ** 
I/O ACD1 MACD5 I/O ** 
I/O ACDO MACD4 I/O ** 

VSSO MACD3 I/O ** 

* 0 NREQOUT MACD2 I/O ** 
I NREQII MACD1 I/O ** 

** 0 RQOUT MACDO I/O ** 
* 0 BCHK CHK1 I/O ** 

VCC1 CHKO I/O ** 
I RQII CONTII I 

LEGEND 

I = Input 
0 = Output 
I/O = Input/Output 

* = FRC Error causes a module error 
** = FRC Error causes a bus error 
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Table 5-6. Summary of MCU FRC Detection 

* 0 REFRESH VSS2 

* I ABCHK CLKB I 

* 0 WEll CLKA I 

* 0 DEINO BERLOUTO 0 

* 0 RASII BERL211 I 
VCCO BERL 1/1 I 

* I/O SLAD19 INITII I 

* I/O SLAD18 VCC2 

* I/O SLAD17 VSS1 

* I/O SLAD16 MBOUT 0 *** 

* I/O SLAD15 CTL2 I/O ** 

* I/O SLAD14 CTL1 I/O ** 

* I/O SLAD13 CTLO I/O ** 

* I/O SLAD12 MACD15 I/O ** 

* I/O SLAD11 MACD14 I/O ** 

* I/O SLAD10 iAPX 43205 MACD13 I/O ** 

* I/O SLAD9 MCU MACD12 I/O ** 

* I/O SLAD8 MACD11 I/O ** 

* I/O SLAD7 MACD10 I/O ** 

* I/O SLAD6 MACD9 I/O ** 

* I/O SLAD5 MACD8 I/O ** 

* I/O SLAD4 MACD7 I/O ** 

* I/O SLAD3 MACD6 I/O ** 

* I/O SLAD2 MACD5 I/O ** 

* I/O SLAD1 MACD4 I/O ** 

* I/O SLADO MACD3 I/O ** 
VSSO MACD2 I/O ** 

I BCHKIN/M MACD1 I/O ** 
0 BUSSEL MACDO I/O ** 
0 BCHK CHK1 I/O ** 

VCC1 CHKO I/O ** 
I RQII CONTO I 

LEGEND 

I = Input 
0 = Output 
I/O = Input/Output 

* = FRC Error causes an unsafe module error 
** = FRC Error causes a module error 
*** = FRC Error causes bus/module error 
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Table 5-7. Summary of IP FRC Detection 
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* 0 INT 
0 ALE 
0 OE 

* 0 INH1 
VSS 

* 0 XACKII 

* 0 DENII 

* 0 HLD 
I HDA 
I SYNC 

* 0 NAKII 
0 BOUT 
I ICS 
0 PRQ 

VCC 
I/O ACD15 iAPX 43203 
I/O ACD14 IP 
I/O ACD13 
I/O ACD12 
I/O ACD11 
I/O ACD10 
I/O ACD9 
I/O ACD8 
I/O VSS 
I/O ACD7 
I/O ACD6 
I/O ACD5 
I/O ACD4 
I/O ACD3 
I/O ACD2 
I/O ACD1 
I/O ACDO 

LEGEND 

I 
o 
I/O 

* 

= Input 
= Output 
= Input/Output 
= FRC Error causes a HERR signal 

AD15 I/O * 
AD14 I/O * 
AD13 I/O * 
AD12 I/O * 
AD11 I/O * 
AD10 I/O * 
AD9 I/O * 
AD8 I/O * 
VCC 
AD7 I/O * 
AD6 I/O * 
AD5 I/O * 
AD4 I/O * 
AD3 I/O * 
AD2 I/O * 
AD1 I/O * 
ADO I/O ** 
VSS 
PSR 0 * 
BHEN# I 
WR# I 
CS/I I 
ALARMII I 
CLRII I 
HERR/M#(PS) 
FATAL/I/MII (ACD) 
PCLKII I 
INITH I 
VCC 
CLKA I 
CLKB I 
VSS 



OVERVIEW 

CHAPTER 6 
REDUNDANCY 

The previous chapter described the confinement areas established in the 
iAPX 432 central system. Each module and bus in the system can now be 
viewed as a self-checking module. When an error occurs, it will be 
detected and isolated to a single confinement area (sometimes two 
confinement areas, one module and one bus). Once the error has been 
isolated to a confinement area, recovery may occur if there are 
redundant resources in the system. This section deals with 
establishing redundant resources that can be used to recover from 
hardware failures without any impact on logical software operation. 

There is an important distinction between redundant resources and 
alternate resources. Redundant resources provide a complete and 
current backup for the resources in the system. When a failure occurs, 
the backup can mask the fault from the rest of the system. This 
recovery occurs automatically under the control of the hardware. 
Alternate resources provide multiple modules capable of performing the 
same tasks. However, there is no complete and current backup for the 
resources in the system. Alternate resources allow reconfiguration 
around failures, but do not mask the failure from the rest of the 
system. Alternate resources can be used to achieve deferred 
maintenance capabilities. Some examples are given in the 
"Configuration Examples" section of Chapter 4. 

The mechanisms and resources used for redundancy are totally orthogonal 
to the mechanisms and resources used for detection. When configuring a 
system, the designer may make totally independent decisions about which 
detection mechanisms and which redundant resources to include in the 
system. It is important to understand that adding redundancy for 
recovery does not degrade or improve any of the detection capabilities 
or performance characteristics of the machine. 

Each of the self-checking modules and buses can be paired wi th an 
identical back-up module or bus. This feature is known as shadowing, 
allows continued operation in the presence of any single failure. A 
physical constraint is that there cannot be any common components 
shared between a module or bus and its back-up resource. Any common 
components would introduce common mode failures from which the system 
could not recover. Modules can be paired wi th any other identical 
module. No predetermined electrical connections are required; 
shadowing is done by means of logical configuration information. The 
two modules in the pair then operate in lock step, providing a complete 
and current backup of all state information in the case of a failure. 
Module shadowing for all three module types will be described in the 
following sections. 

Buses can also be paired together to provide redundant bus channels. 
However, since buses hold no state information, during normal 
operation, both buses in a pair may be used to carry traffic. Thus, 
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the back-up bus capability carries no penalty of decreased bus 
bandwidth. The mechani sms for establi shing and maintaining redundant 
operation reside totally in the BIU and fJlCU. The GDP and IP are 
unaware that they are operating in a redundant configuration. 

REDUNDANCY FOR TRANSIENT ERRORS 

RETRY BUFFERS 

When a processor makes a request, all of the information associated 
with the request (address, control, and data) is stored in retry 
buffers in the BIUs attached to the processor. Thi s information is 
held until the access is finished. If a transient error occurs during 
this access, the BIUs will retry the entire access. This allows 
recovery from transient errors on the memory bus and in the memory 
module. The chapter on isolation and recovery explains the retry 
sequence in detail. 

This buffering is always enabled. It adds no delay to the access 
latency for a processor request. The correct operation of the buffer 
is tested by software issuing a Test Report command (interconnect 
register write -- data may have any value) to any node in the system. 
The command will cause a retry of all accesses in the system. If any 
buffer has failed, it will be detected by FRC in the module. 

MEMORY ARRAY -- CORRECTION BY WAY OF ECC CODE 

The 7-bit Hamming code described in the section on memory module 
confinement areas also provides correction for single-bi t failures in 
the memory array. This redundant information can be used to correct 
permanent as well as transient array failures. Because of the high 
soft error rates of dynamic RAM components, this redundancy is intended 
to handle only transient errors. Other forms of redundancy are 
available to handle permanent errors in the memory array. The 
management and testing of the ECC mechanism is described in the 
previous chapter on detection mechanisms. 

GDP MODULE REDUNDANCY 

This section will describe the three phases of shadow operation 
(startup, lock step operation, and deactivation) for the GDP modules, 
plus the management and testing of the mechanism. 

STARTUP 

Any two GDP modules may be paired together (married) to form a shadowed 
module. This is possible because all GDP modules have identical 
interfaces. Startup is entirely a software operation, which is 
performed by a processor other than the two about to be married. This 
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start-up procedure is 
on-line during normal 
start-up sequence is to: 

the same whether 
system operation. 

done 
The 

at initialization or 
basic function of the 

1. Have the primary/shadow processors use the same processor 
object so that every reference is identical. 

2. Synchronize and coordinate the primary/shadow processors at 
the microinstruction level to guarantee that memory references 
occur on the same clock cycle. 

3. Make each physical processor module aware of its partners, so 
that, in the event of a failure, the correct recovery 
operations will take place. (Only the BIUs, not the GDPs and 
IPs, are aware of their partners.) 

The start-up sequence is listed below. 

1. The two processors involved in the marriage are stopped in a 
stable state. If both processor s are running, then stoppage 
can be accomplished by sending the local IPC stop to both 
processors. If a module has failed or is in an unknown state, 
then a different procedure must be used. First the IPC 
register in the BIUs must be cleared. Then a Clear PU command 
is issued to each processor module. These two steps put the 
processors in a known and stable state. 

2. IPCs to the two processors are disabled ei ther by locking up 
both global and local IPCs or by software convention (such as 
assuring that nothing will generate an IPC). 

3. The Processor ID in the primary-elect BIUs is 
selected value for the primary/shadow pair. 
made by writing to the Processor ID regi ster 
BIUs attached to this processor. 

changed to the 
Thi s change is 
in all of the 

4. The Processor ID in the shadow-elect BIUs is changed to the 
selected value for the primary/shadow pair. Note that these 
two modules now have the same processor ID, glvlng both 
modules the same processor object and allowing them to respond 
in unison to IPCs. IPCs are addressed by using the processor 
ID as an address. 

5. The logical module ID of the primary-elect BIUs is set to the 
selected value for the primary/shadow pair. This is done by 
writing to the Logical ID register in all of the BIUs attached 
to this processor. 

6. The logical module ID in the shadow-elect BIUs is set to the 
selected value for the primary/shadow pair. (Note that these 
two modules will now be using the same ID -- the logical 
module ID -- when they arbitrate for the bus. This will allow 
the two modules to track each other's operation over the 
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6-4 

memory bus. All logical lOs in the system must be unique. 
Normally the logical 10 will also be unique from all physical 
lOs, but this is not required. The logical 10 may be the same 
as either of the physical lOs of the two modules being 
married. If the logical 10 is the same as one of the physical 
lOs, then that module must be the first one of the pair to 
have its married bit set.) 

7. The BIUs in the shadow-elect module are marked as shadows by 
setting the shadow bi t in the State regi ster in all the BIUs 
in this module. This operation is accomplished by reading the 
State register, setting the shadow bit in this memory image of 
the State register, then writing back the new value into the 
State register. 

8. The physical module 10 (from the Interconnect Device 10 
register) of the shadow-elect module is loaded into the Spouse 
10 register of all the BIUs in the primary-elect module. 

9. The physical module 10 (from the Interconnect Device 10 
register) of the primary-elect module is loaded into the 
Spouse 10 register of all the BIUs in the shadow-elect module. 

10. The BIUs in the primary-elect module are marked as married by 
setting the married bit in the State register in all the BIUs 
in this module. This operation is accomplished by reading the 
State regi ster, setting the married bi t in thi s memory image 
of the State register, then writing back the new value into 
the State register. (Note that this module will now act like 
the primary module in a married pair. It will use the logical 
10 to recognize interconnect register accesses, and it will be 
the active module until after the first bus request by this 
module. ) 

11. The BIUs in the shadow-elect module are marked as married by 
setting the married bit in the State register in all the BIUs 
in this module. (Note that this module will now act like the 
shadow module in a married pair. It will use the logical 10 
to recognize interconnect register accesses, and it will 
remain passive until after the first bus request by the 
primary.) The two modules are now locked together and 
operating as a primary/shadow pair, blended into a single 
logical uni t. There is no independent access to the physical 
modules. 

12. A Clear PU command (an interconnect register wr i te operation 
with any value in the data field) is sent to the married 
pair. This command is sent to only one BIU, not every BIU in 
the module. (Note that thi s means one BIU in the primary and 
one BIU in the shadow.) It may be addressed to anyone of the 
BIUs in the module. This command causes the BIU to assert the 
CLRPUOUT signal, which is connected to the processor's CLEAR 
pin. This forces the processor to a known state and 
synchronizes the primary and shadow processor modules. (Note 
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that BIUs are synchronized by letting them both reach the idle 
state. However, the processors are in a two-instruction 
microcode loop when idle. Thus, they must be explicitly 
synchronized.) The number of processors in the system (used 
for broadcast IPC) is reduced by one, and IPCs are enabled. 

13. A local IPC is sent to thi s processor ID. 
processor pair. 

Thi s resets the 

14. A local start-up IPC is sent to this processor ID. This 
causes the processor pair to read in their processor ID from 
the BIUs and then requalify all processor information. (Note 
that this requalification is done by a single logical 
processor, not two independent processors.) The processor 
will then respond to whatever command has been placed in the 
local communication segment (Stop, Dispatch, etc.). 

LOCK STEP OPERATION 

During normal operation the two modules operate in lock step as a 
single logical module. This provides a complete and current backup for 
the module and allows recovery from any single failure in either module 
wi thout interruption to the logical software environment. <A1e module 
in the pair will be the active module, while the other one is passive. 
Ini tially, the primary module is the active module. The active module 
is responsible for driving the memory bus when this module issues a 
request or reply. The passive module moni tors the bus and arbitration 
lines to track the operation of the active module. By tracking the 
active module, the passive module is able to maintain exactly the same 
state information as the active module. Data leaves only by way of the 
active module, but data always enters both modules. 

The roles of active and passive modules are swi tched after each bus 
request issued by this module. This Ping-Pong action exercises all of 
the logic in both the primary and shadow modules. Any latent failure 
that exists in either module will be detected immediately. All of the 
logic to perform this lock step operation is contained in the BIU. 
Neither the processors nor the external TTL is aware that the module is 
participating as half of a primary/shadow pair. It is important to 
understand that each physical module (primary and shadow) remains a 
self-checking module. Whether active or passive, all detection 
mechani sms remain enabled and are continuously checking the operation 
of the module. Note that the passive module is checking itself. It is 
not performing any type of double check on the operation of the active 
module. 

DEACTIVATION 

Deactivation is not recovery. The recovery mechanisms are described in 
a later chapter. Deactivation allows a primary/shadow pair of modules 
to be stopped and logically split apart during normal operation. The 
steps of deactivation follow. 
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1. The processor is stopped in a stable state by the "stop" local 
IPC. 

2. IPCs to the processor are disabled either by locking up both 
global and local IPCs or by software convention. 

3. The married bit (State register) in the BIUs is reset. Note 
that this bit will be reset simultaneously in both the primary 
and shadow modules. After it is reset, both modules will 
become active, each capable of responding to requests on its 
own. The interconnect registers in the two modules may now be 
addressed individually by software using the physical module 
ID. However, the two modules are still using the same logical 
ID for arbitration. 

4. Reset the shadow bit (State register) in the BIUs in the 
ex-shadow module. 

5. Assign the BIUs in the ex-shadow module a new logical module 
ID for use in arbitration. (Note that the primary could also 
have its logical ID changed.) 

6. Assign a new Processor ID in the ex-shadow module BIUs. (Note 
that the primary could also have its processor ID changed.) 

7. The n umber of processor s in the system (used for global IPC) 
is increased by one, and IPCs are enabled. 

8. A local start up IPC is sent to both processor IDs. The 
start-up IPC causes the processor ID to be read in from the 
BIUs. Afterwards, all processor information is requalified. 

MANAGEMENT AND TESTING 

The redundancy mechanism is managed by way of the start-up and 
deacti vation procedures described in thi s section. These procedures 
allow this redundancy to be invoked or terminated at any time during 
the life of the system. 

The mechanisms are self-testing. The correct operation is verified 
simply by using the mechanism. Any failure will be caught by the 
detection mechanisms in the module. Remember that both the primary and 
shadow modules are self-checking modules using master/checker GDP pairs. 

IP MODULE REDUNDANCY 

On the central system side, IP shadowing is done identically to GDP 
module shadowing. On the PS side, there is no VLSI support for 
shadowing. The external support logic must provide the functionality 
to achieve shadowing on the PS interface. Even if the PS interface 
does not offer total redundancy into the I/O system, IP module 
shadowing is important. 
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IPs, like GDPs, perform complex operations over system objects in the 
central system. Module shadowing guarantees that no object will be 
left in an inconsistent state because of a failure in the IP module. 
Wi thout module shadowing, it is possible for an IP failure to cause a 
system crash when an object is left in an inconsistent state. 

STARTUP AND DEACTIVATION 

The external logic can use signals from the AP plus the CLEAR PU signal 
from the BIUs to trigger functions for startup and deactivation. The 
IP is unaware of primary/shadow or active/passive designation, and thus 
cannot be used to help control the external logic. The external logic 
could be as simple as connecting the primary and shadow IPs to a single 
bus that attaches to a single AP or as complex as extending shadowing 
on into the AP subsystem itself. Startup and deactivation require a 
coordinated effort between software in the peripheral subsystem and 
software in the central system. 

LOCK STEP OPERATION 

The IPs must be kept in lock step for the correct operation of the 
mechanisms on the BIUs. The two IPs cannot have independent 
asynchronous inter faces to the PS because the two IPs could react to 
asynchronous signals over di fferent time intervals, thus losing lock 
step operation. To achieve lock step operation, the synchronization 
must be done in a cooperative manner that guarantees that both the 
primary and the shadow module will respond just as they do to the 
signals from the PS. 

MANAGEMENT AND TESTING 

On the central system side, the management and testing are carried out 
in the same manner as for GDP modules. On the PS side, these issues 
are dependent on the implementation of the external logic and 
software. The PS interface will probably have substantially less 
management and testing flexibility than the central system interface. 

MEMORY MODULE REDUNDANCY 

Wi thin memory modules there are two forms of redundancy. A spare bit 
in the memory array is used to provide redundancy for any single 
failure in the RAM components. Module shadowing is available to 
provide redundancy for any single failure anywhere in the memory module. 

SPARE BIT 

The memory array that interfaces to the MCU logically contains 39 bits 
of information (32 data bits plus 7 ECC bits). The physical interface 
to the MCU can actually handle 40 bits of information. This last bit 
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is the spare bit. (The array is ordered with the spare bit as the 
low-order bit, followed by the data word, then the EGG bits as the 
high-order bits.) The Spare Bi t Select register in the MGU controls 
the use of the spare bit. This register is managed entirely by 
software; there is no automatic handling of this register by the 
hardware. The Spare Bit Select register identifies the bit to be 
replaced by the spare bit. If the register has a value other than 0 to 
38, then the spare bit is not in use. 

The operation of the spare bit is checked by swi tching it into the 
array. When the swi tching is done, the MGU should report a burst of 
single-bi t errors in the bi t location just covered by the spare bit. 
These errors occur as scrubbing moves through the array and updates the 
spare bit to match the value that should exist in that bit location. 
If a double-bit error is encountered, the word can be fixed by 
swi tching out the spare bit and correcting the single-bit error that 
remains. The first burst of errors indicates that the switch was done 
correctly. Software then clears the EGG error log register (Array 
Error Log-Low and Array Error Log-High). After a delay, the log is 
checked. If the spare RAM component is working correctly, there will 
be no errors in the log. If there is a failure in the MGU which causes 
incorrect operation, this will be detected by FRG. If the spare RAM 
chip or signal lines fail to work properly, this will be detected by 
EGG. If the memory module is shadowed, this test may be performed 
on-line, because the shadow module can take over if a double-bit error 
is encountered. If the module is not shadowed, then the system can be 
either stopped for a few seconds or exposed to the very small 
probability of encountering a double-bit error. 

MEMORY MODULE SHADOWING 

Establishing a back-up module for a memory module is done in a way very 
similar to one by which the processor modules are married. The 
following sections will specify the steps taken during startup, lock 
step operation, and deactivation. 

The start-up sequence is listed below. 
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1. All accesses to the two memory modules involved in the 
marriage are stopped. This must be done by the system 
software: it has nothing to do with the physical memory 
modules. This quiescent state can be reached in two basic 
ways. The system could be stopped while the two modules are 
linked together. (The procedure wi 11 take approximately one 
second to complete.) Or the system software could use its 
memory management routines to make this portion of memory 
unaccessible. There are two problems with the second 
approach. First, certain objects (known as frozen memory) 
must always be accessible. Second, memory interleaving means 
that a very large block of memory (1 or 2 Megabytes) would 
have to be deallocated. These two problems make stopping the 
system the preferred approach. 
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2. The two memory arrays must be made to hold identical 
contents. Thi s can be done in two ways. If the memories do 
not hold any data, then both arrays can be cleared using the 
Clear Memory command. Thi s will take approx imately 40 
milliseconds if the two arrays contain 256K bytes of 64K 
RAMs. The second approach is to copy the data from one array 
into the other. This will take approximately 800 milliseconds 
for 256K byte arrays. 

3. The MCUs in the shadow-elect modules are marked as shadows by 
setting the shadow bit in the State register in each MCU. 
This operation is accomplished by reading the State register, 
setting the shadow bit in this memory image of the State 
register, and then wr iting back the new value into the State 
register. 

4. The memory address range for the primary-elect module is set 
to the selected value for the primary/shadow pair by wri ting 
to the Memory Start and End register. 

5. The memory address range for the shadow-elect module is set to 
the selected value for the primary/shadow pair by wr iting to 
the Memory Start and End register. 

6. The MCUs in the primary-elect module are marked as married by 
setting the married bit in the State register. This operation 
is accomplished by reading the State register, setting the 
married bi t in this memory image of the State register, then 
writing back the new value into the State register. (Note 
that this module will now act like the primary module in a 
married pair. It will be the active module until after the 
first memory reply by this module.) 

7. The MCUs in the shadow-elect module are marked as married by 
setting the married bi t in the State register. (Note that 
this module will now act like the shadow module in a married 
pair. It will remain passive until after the first memory 
reply by the primary.) 

The two modules are now locked together and operating as a 
primary/shadow pair. These two physical modules operate as a shadow 
pair only for memory array accesses. They retain distinct interconnect 
register address ranges and may be accessed independently. 

Unlike the processor modules, the primary and shadow memory modules do 
not operate in cycle-by-cycle lock step. Instead, the modules are 
synchronized at the level of messages on the memory bus. Both modules 
recogni ze bus requests addressed to them and carry out the required 
action on the memory array. The active module is responsible for 
generating the reply message. (Remember, each MCU will always reply to 
interconnect register accesses and commands independent of its 
acti ve/passi ve status.) The acti ve/passi ve roles are swi tched after 
each reply to a memory access request. 
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The lock step constraint is loosened for memory modules so that the two 
arrays may be managed independently. This is needed to handle 
si tuations like ECC data correction or refresh, which may not occur 
simultaneously in both modules. Loosening of the lock step operation 
is possible because memory modules never generate bus request 
messages. Cycle-by-cycle lock step operation is required to track the 
operation of the arbi tration network for request messages because the 
arbitration lines carry only a partial decoding of the arbitration 10. 
The arbitration for replies is fully decoded (the address in the 
request message is combined with FIFO ordering of replies) and thus 
does not require cycle-by-cycle lock step operation. 

Because the two modules are not operating in lock step, it is possible 
for the passive module to fall behind the active module. Because the 
active/passi ve role is reversed after every reply, a module can never 
be more than one access behind the operation of its partner. (The 
reply to the second access is made by the slow module, thus the system 
waits until it has caught up before continuing.) To accommodate this 
variance, the MCU's input buffer can hold four requests even though the 
bus pipeline is limited to three outstanding requests. If the passive 
module is behind (i.e., the active module has sent its reply message, 
but the passive module has not completed its array access) when an 
error is reported, it will complete the final access required to catch 
up to the active module before stopping. The passive module is 
responsible for monitoring the bus and tracking the state of the active 
module. The passive module will always remain in step with the active 
module at a memory bus level. The passive module takes special steps 
to guarantee that the RMW lock and the array contents are always 
consistent with the state of the active module. These steps ensure 
that the two arrays always have identical information content. 

It is important to understand that each physical module (primary and 
shadow) remains a self-checking module. Whether active or passive, all 
detection mechanisms remain enabled and are continuously checking the 
operation of the module. Note that the passive module is checking 
itself. It is not performing any type of double check on the operation 
of the active module. Any latent failure in ei ther module will be 
detected immediately. 
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Memory module shadowing is deactivated in the following way: 

1. All accesses to the memory modules are stopped. This must be 
done by the system software; it has nothing to do with the 
physical memory modules. 

2. The married bit (State register) in the MCUs is reset. Note 
that this bit must be reset separately for both the primary 
and shadow modules. After the bit is reset, both modules will 
become active. 

3. Reset the shadow bit (State register) in the MCUs in the 
ex-shadow module. 

4. The two modules can now be assigned independent address ranges 
and begin operation as independent units. 

MEMORY BUS REDUNDANCY 

All the memory buses in the system are physically identical. However, 
when a system is operational, each bus handles a unique address range. 
The memory buses have been designed so that it is possible to pair 
together two memory buses and have them act as redundant or alternate 
resources for each other. 

Because the bus does not hold state information, both buses may be used 
to transmit data during normal operation. There is no degradation of 
system throughput to achieve memory bus redundancy. The following 
paragraphs describe the memory bus, BIU, and MCU characteristics that 
allow this redundancy. 

BUS CHARACTERISTICS 

• The address field sent on a memory bus is unique on a system-wide 
basis. When the BIU does address manipulation for interleaving, it 
does not strip out any of the bits; it only reorders them. This 
action allows address spaces from multiple buses to be combined 
onto one bus wi thout redefining any of the address recognition 
logic. 

BIU CHARACTERISTICS 

• The BIU is capable of recogmZlng processor requests for two 
address ranges. These two address ranges are called the primary 
address range and the back-up address range. Either or both sets 
of these address ranges may be enabled at any time. The 
constraints and limi tations on them is described in later 
paragraphs in this section. 
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• Buses are reconfigured as part of the retry sequence (which is 
described in the Chapter 8). During this sequence. the BIUs are 
able to recompute address recognition for any processor request 
that will be retried. 

• BIUs in a processor module record the status of partially completed 
MMA accesses (Multiple Module Access - accesses which span two 
memory buses). This allows partially completed MMAs to be retried 
correctly. Two signals are used to transmit this information. 
MMAH/I tracks the high-order half of the MMA access; MMALII tracks 
the low-order half of the MMA access. These signals are asserted 
(low) at the beginning of the access and released when that portion 
of the MMA has been completed. If an error report that invalidates 
the access is received then the MMA line will be asserted for one 
cycle. Thi s action informs the other BIUs in the module that the 
access has been cancelled. The MMAH/I and MMAL/I signals are 
moni tored by all the BIUs in the module. Internal state 
information on the completion status of the operation is kept so 
that. in the case of a bus reconfiguration. the access can be 
retried in the proper way. 

MCU CHARACTERISTICS 

• Each MCU has a physical connection to two buses. At any instant 
only one of these connections may be active. The MCU signal BUSSEL 
is used to select the currently active bus. (Chapter 5 explained 
attaching the MCU to two buses.) 

• Bus reconfiguration may occur during the retry sequence. MCUs are 
capable of switching their physical bus connections as part of the 
retry sequence. 

• The locks associated wi th RMW operations are held in the MCUs. 
Thus. when the MCUs swi tch buses as part of bus reconfiguration. 
all of the state information regarding RMW operations automaticallY 
moves to the new bus. (The lock is held with the data that has 
been locked.) 

The hardware imposes two constraints that limit how buses may be 
combined to form redundant bus pairs. Hardware requires that a bus 
request have a single destination. Thus. a single memory request may 
not go to two MCUs. This imposes restrictions on the redundancy 
because the recovery actions will place MCUs onto the same bus that 
used to be on separate buses. Moreover. BIUs have only a single 
address recognition register (Memory Start and End register). The 
address space for a bus can be expanded only during recovery or only by 
changing the interleaving type from four-way to two-way. Buses are 
always paired in the same way (0 and 2. 1 and 3. 4 and 6. 5 and 7). No 
other pairings are possible. The options available for bus redundancy 
are listed in Table 6-1. 
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Table 6-1. Memory Bus Redundancy Options 

Number of Buses 

2 
2 

3 

4 
4 

4 

6 or 8 

Interleaving 

One-way 

<Ale-way 
Two-way 

One-way 
Two-way 
(64 bytes) 
Four-way 

Redundant Configuration 

Not Possible 

<Ale bus plus a spare 
Deferred maintenance only 

Not possible 

Two buses plus two spares 
Two buses plus two spares 

Four buses each with a backup 

Combinations of two- and four
bus configurations 

Interleaving, which must be present, prevents the hardware recovery 
actions from violating these constraints. However, in some deferred 
maintenance environments it is desirable to enforce the single 
request-single destination rule by software rather than hardware. Such 
a case arises when a two-bus system is converted into a one-bus 
system. For the hardware to guarantee correct operation, a single bus 
must have only one MCU. In a deferred maintenance environment, all the 
MCUs on both buses could be moved to one bus. In this situation, 
software must guarantee that a single access does not address multiple 
memory arrays. The recommended approach is to turn off all 
interleaving, and guarantee correct operation by careful allocation of 
memory. The memory management routines must guarantee that no free 
block of memory contains locations from more than one memory array. 
Since interleaving is turned off, thi s breaks the memory space into 
physical chunks that will most likely be 256K to 512K bytes long. 

With two buses in the system, the redundant configuration requires that 
one of the buses be a spare. Only one of the two buses can be active 
at any time. With four buses it is now possible to have bus redundancy 
without sacrificing any bus bandwidth. Buses 0 and 2 are paired, and 
buses 1 and 3 are paired. Thus, the paired buses do not have adjacent 
address spaces. (Any MMA access will address one module in each pair 
of buses.) A BIU can now cover the expanded address range by switching 
from four-way interleaving to two-way interleaving. 

Two-way interleaving needs some further explanation. Two-way 
interleaving may be done on 64-byte boundaries or 128-byte boundaries. 
If the interleaving is done on 64-byte boundaries, buses 0 and 1 are 
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interleaved. This allows construction of nonstop systems based on 
two-way interleaving (two active buses with two spare buses). The more 
useful configuration utilizes interleaving on 128-byte boundaries. 

This interleaving is done across buses a and 2, allowing the 
construction of two bus systems capable of deferred maintenance. This 
is possible because the MCUs may be moved between the two buses by 
software and because ei ther 0 f the buses may act as the IPC bus. 
Nonstop operation is not possible in this configuration with two-way 
interleaving. 

MANAGEMENT AND TESTING 

There are three sets of bits that control memory bus redundancy: the 
redundant bus enable bit, bus state bits, and interleaving control bits. 

• Redundant Bus Enable bit. This bit resides in the Interconnect 
Device Type register. Its value is determined at ini tiali zation 
time. This bit must be set if the system is to be able to recover 
from failures that may occur before the software initialization 
sequence has been completed. Thi s bit must also be set if the 
system wishes to have bus redundancy without four-way interleaving 
during normal operation. 

• Bus State bits. These 4 bits represent the state variables for the 
state machine that controls bus recovery. These bits describe the 
state for a pair of buses. Buses are always paired in the same way 
(0 and 2, 1 and 3, 4 and 6, 5 and 7). No other pairings are 
possible. Table 6-2 describes each of the states. Bus State bits 
are directly wri teable, but only for diagnostic or initialization 
purposes. These bits should never be changed by direct register 
access during normal system operation. Special commands (described 
below) direct the hardware to change these bits in a manner that is 
guaranteed to work during normal operation. Figures 6-1 and 6-2 
show the state diagrams for the bus recovery state machine. 

• Interleaving Control bits. In the MCU there is one control bit, 
Four-Way Bus Interleave Mode, which is located in the State 
register. This bit is set if the BIUs are doing four-way 
interleaving. It is used only for bus recovery and has no impact 
on address recognition. In the BIU the Interleave register holds 
the Interleaving Control bi ts. The 3 low-order bits determine the 
type of bus interleaving being per formed by the BIU (00: one-way, 
01: two-way on 64-byte boundaries, 10: two-way on 128-byte 
boundaries, 11: four-way on 64-byte boundaries). These bits are 
used for address recognition as well as for bus recovery. The 
third bit in this set is used to contol interleaving in the memory 
modules and has no impact on bus switching. 

6-14 



iAPX 432 Interconnect ARM Redundancy 

Table 6-2. Description of the Bus States 

Enable my primary address range. 
Enable my back-up address range. 

~---------------- My back-up bus's primary address range is 

I 
enabled. 

I
~-------------- My primary bus's backup address range is 

enabled. 

ABC D State State Description 

o 0 0 0 NULL Neither of the buses in this pair is active. 
This is the initialization state if the 
Redundant Bus Enable is off. In this state 
no memory accesses can be performed. 

1 0 0 0 PRIMARY UP The bus to which this node is attached is 
active. The second bus in the pair is not 
active. This is the normal state for half of 
the buses in a system that has bus 
redundancy, but is not four-way interleaved. 

o 0 1 0 BACKUP UP The other bus in this bus pair is not active, 
and the bus to which this node is attached is 
not active. This is the normal state for 
half the buses in a system that has bus 
redundancy but is not four-way interleaved. 

1 0 1 0 NORMAL Both buses in this pair are active. This is 
the normal mode of operation for a pair of 
buses in a four-way interleaved system. This 
is the initialization state if the Redundant 
Bus Enable is on. In thi s state both buses 
can perform all types of bus accesses. 

o 1 0 1 INTERCHANGE Both buses in this pair are active. However, 
they are both using their back-up address 
ranges. This is used to test that the bus 
recovery mechanisms work correctly. There is 
no impact on the system operation. Thus, 
thi sis identical to the normal state except 
that the address ranges covered by the two 
buses have been interchanged. 

o 0 1 1 PRIMARY DOWN This bus is not working, but the back-up bus 
has taken over the address range previously 
handled by the bus. This is the state of all 
the nodes on a bus after the bus has had a 
permanent failure. 

1 1 0 0 BACKUP DOWN The other bus in this bus pair has failed. 
This bus is handling the address ranges 
normally covered by both buses. Thi sis the 
state of all the nodes on a bus after its 
partner bus has failed. 
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AN: := 
AB: := 
DN: := 
DB: := 
1 00 

00 = 

6-16 

(INIT • REDUNDANT) + BROKEN MODULE 

ATTACH NORMAL BUS 
ATTACH BACKUP BUS 
DETACH NORYL.A.L BUS 
DETACH BACKUP BUS 
INTERCHANGE COMi'fAND 

Figure 6-1. State Diagram for Four-Way Interleaved Bus Recovery 
F-0450 
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(INIT • REDUNDANT) + BROKEN MODULE 

AN: := ATTACH NORMAL BUS 
AB: := ATTACH BACKUP BUS 
DN: := DETACH NORMAL BUS 
DB: := DETACH BACKUP BUS 
I: := INTERCHANGE COMMAND INIT . REDUNDANT 
RED::= REDUNDANT BUS BIT 
SPARE::= BUS ID BIT 1 ON BIU, FALSE ON MCU 

Figure 6-2. State Diagram for Two-Way Interleaved Bus RecoverYF-0451 

Four special commands -- Toggle, Attach, Detach, and Interchange -- are 
provided to set up and test the memory bus redundancy mechanisms. 
These commands may be sent to any node in the system for the purpose of 
changing the bus configuration. As part of these commands, an error 
report message will be generated, and the retry procedure will be 
performed. By going through this sequence, the bus configuration may 
be changed without any danger of dropping an access that may have been 
in progress. 
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The operation of these commands is described below. 

1. Toggle. This command is used as part of the software 
i ni tiali zation sequence to assign memory modules to buses for 
normal operation. This command toggles the value of the 
middle bi t in the physical bus ID (Interconnect Device ID 
register) of the MCU that received the command. (This command 
may be sent only to MCUs.) At hardware initialization, the 
MCU is assigned a bus ID. Thi s bus may not be appropriate 
once software understands the total system resources 
available. Toggle is then used to distribute memory modules 
between the two buses of a bus pair. The command does not 
have any effect on the bus state machine. 

2. Attach. This command is used to activate a bus and may be 
sent to any node. The bus that will be activated is the 
back-up bus for the bus connected to the node r ecei ving the 
command. (If the command is sent to a node on bus 2, then bus 
a will be attached.) The command must be sent to the back-up 
bus because the deactivated bus has been isolated from the 
system and thus cannot propagate any error report messages 
(including ATTACH). See Figures 6-1 and 6-2 for the exact 
impact of this command. 

3. Detach. This command is used to deactivate a bus and may be 
sent to any node. The bus that will be deactivated is the the 
bus connected to the node receiving the command. Detach 
allows software to perform exactly the same recovery sequence 
that the hardware automatically takes if it detects a 
permanent bus error. 

4. Interchange. This command is used to check whether the 
redundant bus and recovery mechani sms are working correctly. 
It causes all buses in the system to reverse roles with their 
back-up buses. If a bus does not have a back-up bus, then 
Interchange has no effect on that bus. This command allows 
testing of all of the logic and signal paths associated with 
both buses. Invoking Interchange in no way reduces the 
system's ability to respond to error conditions. 

In a four-way interleaved system, only the toggle command would be used 
during software ini tiali zation. The bus state machine is ini tiali zed 
to the correct state by the hardware. If four-way interleaving is not 
used, then software must perform the following sequence (in addition to 
the toggle sequence) for each bus pair in the system. 

1. Detach the spare bus in the pair. 

2. Attach the spare bus in the pair. 

These two steps cycle the state machine to the correct state for normal 
operation. At this time the software may assign memory address ranges 
to the SIUs and MCUs. 
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OVERVIEW 

CHAPTER 71 
ERROR REPORTING 

Error reporting is the backbone of fault isolation and recovery. When 
an error is detected, the node detecting the error reports the type and 
location of the error to all the other nodes in the system. (Note that 
errors detected at an IP:PS interface are not reported over the error 
reporting network. These errors are reported to the AP by way of an 
interrupt.) The error reporting system is designed so that, 
independent of the error in the system, each node not only receives an 
error report but is guaranteed to receive the same error report. This 
error information is uniformly logged in all of the nodes in the 
system. With this information, each node then independently proceeds 
with the appropriate recovery procedure. 

TOPOLOGY OF THE REPORTING NETWORK 

The reporting network follows the same matrix topology as the normal 
data paths. There is an error reporting line associated with each 
memory bus and processor bus in the system. (Figure 4-7 provides an 
overview of the topology.) Each BIU is connected to one BERL and one 
MERL. Each MCU has connections to two BERLs, but at any instant only 
one of the connections is active. The selection between the two BERLs 
uses BUSSEL, the same signal that provides memory bus selection for the 
MCU. Because the error reporting system is fundamental to the correct 
operation of a fault-tolerant system, error detection and masking 
mechanisms are built in to each error report line. The detection 
mechanisms were described in Chapter 5; the redundancy and recovery 
mechanisms are described in the following paragraphs. 

Redundancy is provided to guarantee that, independent of a failure, the 
error report network will always function correctly. Each BERL line 
has a back-up line, and every logical BERL (one per memory bus) is 
actually implemented as a pair of physical signals. Thus, any single 
failure in the lines will be masked by the operation of the redundant 
line. Figure 7-1 shows the connection of the two BERLs, which form a 
single logical BERL line. Because of pin limitations, each component 
has only a single BERL output. If this pin fails "stuck-off," that 
node will be unable to report any of the errors it detects. This 
latent fault can be uncovered for using the Test Report command. Any 
other single failure, including "stuck-on" failures in the BERL 
outputs, will not prevent the reporting of any error in the system 
(including an error in this BERL). The BERL input circuitry is 
responsible for correctly interpreting the error message in the 
presence of failures in the BERL line. If one line has an error 
(detected by parity or incorrect start bit sequence), it will be 
ignored and the message received from the other line will be used. If 

7-1 



Error Reporting iAPX 432 Interconnect ARM 

Figure 7-1. BERL Redundancy 
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both lines have errors, this is automatically converted into an error 
message related to BERL failures. By having two inputs and two signal 
lines, it can be guaranteed that a node will never be isolated from the 
error reporting system (Le., not see an error report broadcast by 
another node). 

The redundancy for MERL lines is achieved implicitly, rather than by 
adding explicit redundancy. All that is required for correct error 
reporting in the system is one correctly operating MERL. We are 
guaranteed to have multiple MERL lines in any functional system because 
each processor module must have one MERL for the master half and one 
MERL for its checker half. Thus, a single failure cannot corrupt both 
MERL lines. At least one of the MERL lines provides correct 
propagation of the error report message. In systems that do not have 
self-checking modules, the system is still guaranteed to have a minimum 
of two MERL lines because every functional system must have two 
processors (one GDP and one IP). 
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Figures 7-2 and 7-3 show the exact connection of each node to the 
appropriate error reporting lines. The MCU connection to the two BERL 
lines is critical. Both the master and the checker must be able to 
report an error even if they have a disagreement on BUSSEL. (Otherwise 
BUSSEL errors could not be reported.) Yet. some type of reliability 
buttressing is required to prevent a failure in one of the MCUs from 
corrupting the operation of both of the memory buses to which it is 
connected. The circuit shown in Figure 7-3 provides this capability. 
As long as there are no BUSSEL failures. the flip-flops are 
transparent. If a BUSSEL error occurs. then the value of BUSSEL used 
by the external buffers is latched and held at the last known 
consistent value. If the flip-flops or XOR logic fails. this will be 
detected as a stuck-off BERLOUT pin by the Test Report command. Any 
other failure will be detected by causing a single line failure during 
an error report. 

__ --------~tffiRL# 
MERLOUT# BIU 

·BERLOUT# BERLltt BERL2# 

Figure 7-2. BIU Interfaces to Error Reporting Network F-0453 
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Figure 7-3. MCU Interfaces to Error Reporting Network ~~~ 

In summary, the error reporting network has the following important 
characteristics. 

7-4 

1. No single-point dependencies. No single failure can prevent 
the correct reporting of the error. The topology and the 
redundancy provided for each error report line are 
responsible. The worst-case failure will destroy one MERL and 
one SERL. However, the system will correctly report and 
isolate the failure. 

2. Error reporting topology that allows graceful degradation. 
Each error reporting line resides in one of the confinement 
areas established for the system. Thus, the error reporting 
network changes with the system as it grows or degrades. The 
system's fault-tolerant capability will never be artificially 
limited by the error reporting network. 
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ERROR MESSAGE FORMAT 

The format of the error report message is given below. It is followed 
by a description of each of the fields in the message. 

Message format 

Start Field 

Sequence Field 

Error Type Field 

Node ID Field 

Node ID 

Parity Field 

START 2 bits 
SEQUENCE 1 bit 
ERROR TYPE 4 bits 
NODE ID 9 bits 
PARITY (EVEN) 1 bit 

These bits indicate the beginning of an error report 
message. While the line is idle, it has the value 
zero (high). The first bit of a message is a one 
(low), the second bit is a zero (high). This 2-bit 
sequence is used to prevent stuck-low failures from 
generating erroneous error reports. A stuck fault 
will generate only a single transition, while an 
error message requires a double transition to start 
( 1-0-1 ). 

This bit indicates if this message is the original 
error report (0), or if it is being rebroadcast to 
propagate the error report message ( 1 ) • The 
sequence field is used by the MCUs to track the 
propagation of error report messages. 

These 4 bits specify the type of error detected. 
The field is fully encoded; thus, each error message 
specifies one of sixteen possible error types. Each 
of the possible error types is described in a 
following section. 

This field will hold the node ID of the node that 
detected the error. The node ID is made up from two 
subfields, a bus ID and a module ID. The node ID 
specifies the physical interconnect location of this 
node. The node ID cannot be modified by software. 

Bus ID 
Module ID 

3 bits (values 0-7) 
6 bits (values 0-62; 63 is not valid) 

This 1-bit field terminates the report message. The 
bit provides even parity over the message. (Even 
parity was chosen so that a stuck line -- (all ones) 
-- fault could be detected by the parity mechanism.) 
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ERROR REPORTING PROTOCOL 

The error reporting protocol is designed to ensure that all of the 
nodes in the system receive the error message in a timely manner and, 
if multiple error messages are broadcast, that one and only one message 
is received by the nodes in the system. The propagation of error 
messages is shown in Figure 7-4. 

~-L~-L--~----BEllO 

PHASE 1 

+ ........... --.;...r-~I-- BEll2 BIU (1,2) DETECTS AN ERROR 

-I-~-I-~-----H- BEll3 

~~~~--~----BEllO 

~~~~--;+o~,_. BEllI PHASE 3 

ALL BlUs KNOW 
-+~-;. .... --.... ~~ BEll2 ABOUT THE ERROR 

-+ ........ -+ ........ --+t---- BEllO 

Figure 7-4. Error Report Propagation 

PHASE 1 

PHASE 2 

ALL MODES ON BUS 1 
KNOW ABOUT ERROR 

F-0436 

The node detecting the error sends an error report message along its 
BERL. The sequence field is a zero, indicating that this is the first 
BERL message in the error reporting sequence. All nodes on the bus 
terminate operation upon receiving a correct 2-bi t start sequence at 
the beginning of an error message. The delay on this transmission is 
critical to guarantee that a confinement area does not operate on 
incorrect data. The node detecting an error will send the start bit of 
an error report message no later than one clock after the last cycle of 
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the MACD bus message. The receiver of a MACD bus message waits for two 
clock cycles after the end of the bus message before using the message 
it received. This protocol guarantees that only valid data will be 
allowed to enter a confinement area. 

The nodes attached to other buses need not be informed of the error 
immediately. The corrupt information can enter a module only by way of 
one of the nodes on the bus where the error was detected. Thus, fast 
message propagation is important only over that BERL line. 

PHASE 2 

After the complete error report message has been received over BERL, 
all the BIUs on this bus rebroadcast the message on their MERLs. This 
time, the sequence field is a one, indicating that this is not the 
first step in the error reporting sequence. The error report over MERL 
informs the BIUs on the other buses that an error has occurred. This 
information does not affect the normal operation of the BIUs. 

PHASE 3 

All BIUs in the system now know about the error. After receiving the 
complete error report message over MERL, all BIUs rebroadcast the 
message received over MERL on their respective BERL lines. The 
sequence field is a one, indicating that this is the second BERL 
message in the error reporting sequence. All nodes on the bus 
terminate operation upon receiving a correct 2-bi t start sequence at 
the beginning of an error message. All nodes in the system now know 
about the error and all the nodes on each bus have stopped operation in 
unison. This action keeps the integrity of the normal bus protocol 
intact. There is no risk of a BIU retrying an operation that an MCU 
thought had been completed. 

After receiving the complete error report message over BERL, all nodes 
load the last error message into their error report logs. This error 
message is known to be the last step in the sequence because it is a 
BERL message and because the sequence bit is set to one. The error 
reporting cycle is now complete. 

On top of this basic transmission protocol there exists an arbitration 
mechanism that is used to resolve conflicts in cases where multiple 
nodes detect errors. There are two arbitration mechanisms. The 
primary one is FIFO ordering, in which the first error report message 
in a group has highest priority. The other mechanism is priority 
ordering, which is used when two error report messages are initiated at 
exactly the same time. In this scheme, the report with the higher 
priority message will win the arbitration. The implementation of these 
two arbitration mechanisms is described below. 
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FIFO ORDERING 

The sequence field and the error report line used for a message (BERL 
or MERL) are also used to track the error reporting phases described 
earlier. The error report that has progressed the most, has highest 
priority For example, a MERL message has priority over a phase 1 BERL 
message). Once an error reporting phase has begun over a given line 
(e.g., phase 1 on BERL for bus 2), no other reports in that same phase 
are allowed on the line. Special circuits at the BERL and MERL 
receivers are responsible for blocking this node's BERL and MERL 
outputs if another error report message started prior to the one this 
node wanted to send. These special circuits prevent two messages from 
being combined to form an incorrect message. The message that starts 
first is received by all nodes on this bus. 

PRIORITY ORDERING 

During the transmission of an error report, a node may continue to 
broadcast only if the bit received in the last time interval was the 
bit it sent. Because the error report line is a wired-OR signal, a one 
(low) will override a zero (high) on the line. Thus, messages are 
ordered first by error type (because it is broadcast first), then by 
the ID of the node that detected the error. 

These two arbitration mechanisms weed out the lower priority error 
reports during the reporting sequence. During phase 1, multiple error 
reports may exist in the system. However, on each bus, arbitration 
will allow only one report to successfully complete. During phase 2, 
any conflicts between the error reports on different buses will be 
resolved. At the end of phase 2, arbitration will have eliminated all 
but one error report throughout the system. During phase 2, an MCU may 
begin to generate a new error report in phase 1 (since it is unaware of 
the acti vi ty on MERL). The FIFO ordering arbitration will kill this 
report when the BIUs on the bus enter phase 3. After phase 3, every 
node in the system will have logged the same error message. All error 
information lost in the arbitration remains lost. If the error is 
permanent, it will be reported again during retry. If the error is a 
transient. then recovery occurs as part of the retry operation for the 
other error. 

All nodes in the system will leave phase 3 of reporting and enter the 
recovery procedure at the same time. There are two cases when nodes in 
the system may not finish reporting at the same time. If a BERLOUT 
driver has stuck-on, then the bus on which the failure occurred will 
finish one cycle earlier than the other buses. If an MCU generates an 
error report while the BIUs are in phase 2 of another report, the bus 
with the late report may be up to 19 cycles behind the other buses. 
These skew problems are allowed to exist (Le., they are treated as 
double-error conditions) because of the extremely low probability of a 
failure occurring as a result of the skew. Chapter 8 describes this 
skew problem in detail. 
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The only item left for the protocol to handle is error conditions. 
Clearly understanding the correct handling of errors in the error 
reporting lines requires an understanding of the recovery procedures. 
Thus, this section may be easier to grasp once Chapter 8, which 
discusses recovery, is read. 

An error detected while a report is in progress may not be reported 
immediately. If the failure were immediately reported, all nodes might 
not log the same information. It is critically important to keep all 
the logs consistent because recovery is performed independently by each 
node, and different log values could cause inconsistencies in the 
system state. (For example, one BIU detects a MERL parity error while 
recei ving a report over MERL. If it broadcasts a MERL parity error 
error report on BERL, then only that bus will have logged a MERL error 
report. If the error is reported again during the permanent error 
window, then only this bus will mark the MERL error as permanent. This 
will cause different reconfiguration action by those nodes seeing a 
permanent MERL error.) To prevent this inconsistency, errors that 
occur on the error reporting lines during error report transmission are 
handled in two steps. 

When the error is detected, an internal flip-flop that will cause the 
error to be reported during the next error reporting cycle (one 
flip-flop for BERL errors and one for MERL errors) is set. If this 
node does not have a va li d message to propagate, it wi 11 send a NO 
ERROR error message. This informs all the nodes that an error occurred 
but has no impact on the recovery procedures. 

At the end of a reporting cycle, each node checks its MERL and BERL 
error flip-flops. If either one is set, then the node sets an override 
flip-flop. (There is only one flip-flop per node.) This will allow 
the node to broadcast a MERL or BERL error if it detects an error 
during the next error reporting cycle. The override flag guarantees 
that if the error condition is permanent, the error will be correctly 
reported. There is no danger of an inconsistent system state because 
this node is reporting the error at the very first opportunity during 
the next reporting cycle. All nodes will see this error report. 
(Assume, for example, that one node has a bad parity checker on its 
MERL input. On a routine error report, this node detects a MERL parity 
error. It will propagate a NO ERROR error report. During the next 
error reporting cycle, this node will generate a MERL ERROR error 
report. Once again it will detect a MERL error, but this time it will 
propagate a MERL error because the override is set. All of the nodes 
will see a MERL ERROR error report. On the next reporting cycle, a 
MERL error is again reported and logged by every node. This time it is 
labeled permanent, and the module is deallocated.) 
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DEFINITION OF ERROR TYPES 

The error type field in the error message has 4 bits. The 16 error 
types are defined in Table 7-1. For cross-referencing. the detection 
mechanisms that can cause that error report are also listed and listed 
in priority order. (BERL error. code 1111. is the highest priority 
error type.) 

Error Type 

BERL 

MERL 

Unsafe Module 

Bus Arbitration 

Bus/Module-High 

No Error 

Module 

Bus Parity 

Bus/Module-Low 

Uncorrectable 
ECC 
Correctable ECC 

Test Report 
Interchange 
Attach 
Detach 
Toggle 

7-10 

Table 7-1. Error Type Field Definition 

1111 (15) 

1110 (14) 

1101 (13) 

1100 (12) 

1011 (11) 

1010 (10) 

1001 (9) 

1000 (8) 

0111 (7) 

0110 (6) 

0101 (5) 

0100 (4) 
0011 (3) 
0010 (2) 
0001 (1) 
0000 (0) 

Detection Mechanisms 

BIU: BERL parity or sequence error 
MCU: None 
BIU: MERL parity or sequence error 
MCU: None 
BIU: None 
MCU: FRC on array side 
BIU: FRC on RQOUT or MBOUT 
MCU: None 
BIU: None 
MCU: BERL parity or sequence error 
FRC on MBOUT 
BIU/MCU: Sucessful Test Detection 
command or error report error and 
override Not Set 
BIU: FRC on MACD or on NREQOUT 
MCU: FRC on MACD 
BIU: MACD bus parity error 
MCU: None 
BIU: Any error when this module is 
broken 
MCU: MACD Bus Parity Error or any 
error when this module is broken 
BIU: None 
MCU: Uncorrectable ECC Error 
BIU: None 
MCU: Correctable ECC Error 
BIU/MCU: Command 
BIU/MCU: Command 
BIU/MCU: Command 
BIU/MCU: Command 
BIU/MCU: Command 



iAPX 432 Interconnect ARM Error Reporting 

The error type serves two purposes. First, together with the node ID, 
it identifies the confinement area in which the failure occurred. 
Second, it provides additional information to help field service staff 
repair the failure. The major considerations involved in establishing 
the error types are listed below. 

• A single failure may trigger multiple detection mechanisms in 
several nodes. The error types must ordered such that the true 
failure is correctly identified. 

• MCUs have connections to two buses and may switch buses in response 
to a failure. If a failure is in the MCU, it must not be allowed 
to switch buses and corrupt the back-up bus. If there is a failure 
in the MCU' s MACD bus interface, both the bus and the module 
confinement areas will be identified as faulty. (See Chapter 5 for 
details about MCU error isolation.) 

• Buses are a more critical resource than modules. When an error 
could be isolated by deallocating either a bus or a module, the 
module will be deallocated. Module shadowing is more flexible than 
MACD bus redundancy, and module repair is easier than bus repair. 

Table 7-2 explains the motivation for all the error types and their 
placement in the priority list. 

Error Type 

BERL 

MERL 

Unsafe Module 

Bus 
Arbitration 

Bus/Module
High 

Table 7-2. Motivation for Error Types 

Confinement Area 

Bus 

Module 

Module (Unsafe) 

Bus 

Bus and Module 

Motivation 

Critical resource damaged. 

Critical resource damaged. 

Memory array that may hold 
corrupt data. Module must be 
killed immediately. 

Must be higher priority than 
MACD FRC and MACD parity 
because an arbitration 
failure's side effects could 
also cause these mechanisms 
to report errors. 

An MCU error report. Must be 
lower than BERL and bus 
arbitration but higher than 
MACD FRC and MACD parity. 
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No Error 

Module 

Bus Parity 

Bus/Module
Low 

Uncorrectable 
ECC 

Correctable 
ECC 

Test Report 

Interchange 

Attach 

Detach 

Toggle 

ERROR REPORT LOG 

iAPX 432 Interconnect ARM 

Table 7-2 - Continued 

No Error 

Module 

Bus 

Bus and Module 

Module 

Module (Cor ECC) 

No Error 

Bus (All) 

Bus (Return) 

Bus 

No Error 

Special testing procedure. 
This code is used to allow 
testing of all of the bits in 
the error type field. 

Identifies a confinement 
area. Must be higher 
priority than MACD parity 
error because a module 
failure at the MACD interface 
could also cause MACD parity 
mechansims to detect errors. 

Identifies a confinement area. 

MCU parity error must be lower 
priority than BIU parity 
error. Allows a node that 
cannot shut down to be 
isolated from the system. 

Extra information. 

Extra information. 

Extra information. 

Special testing procedure. 

Special management procedure. 

A management facility. 

Extra information. 

There is an error report log in every node in the system. These logs 
are accessible to software, and they represent the primary form of 
communication between the hardware fault handling mechanisms and the 
software routines responsible for system management. When software 
reads an error log, it may read any log in the system. All logs will 
hold exactly the same information, except when a node is broken. A 
broken node will continue to detect errors and update its own log but 
cannot report the errors since it is isolated from the the rest of the 
system. The organization of the error log is described on the 
following pages. 
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Log Format 

Permanent/Transient Field 

Error Count Field 

Error Reporting 

PERMANENT/TRANSIENT 
ERROR COUNT 

1 bit (MSB) 
2 bits 

ERROR TYPE 4 bits 
NODE ID 9 bits 

This bit indicates whether a permanent or 
a transient error was reported. The bit 
is a one if a permanent error was 
reported; it is set by the recovery 
procedures operating in each node. (See 
Chapter 8 for details about the control of 
this bit.) If multiple error reports occur 
and any of the errors was labeled a 
permanent error this field will be a one. 

This 2-bi t field is incremented each time 
an error is reported. The counter does 
not wrap around; if it reaches the value 
three, it stops until explicitly cleared. 
The counter is cleared by the INTERCHANGE 
error report. The error count field is 
used to identify an overflow condition to 
the software system. None of the other 
fields may be modified by software. When 
the count field has a value of zero, the 
other fields hold the information about 
the Interchange command. There is no 
error information in the log. 

Value Implication 

o No error information 

A single error report 

2 A single error if permanent bit 
is set and error type is not 
unsafe module; otherwise two 
errors have occurred 

3 Multiple error reports 

The error report log holds information 
relevant to the most recent error report. 
Except for the count field, all 
information associated with previous error 
reports is lost. 
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Error Type Field 

Node 10 Field 

iAPX 432 Interconnect ARM 

This field is identical to the error type 
field in the error report message. If 
multiple error reports occur, this field 
will hold the error type of the most 
recent error reported. 

This field is identical to the node 10 
field in the error report message. 

The error report logs are used independently by the hardware and 
software. The hardware recovery procedures use the error type and node 
10 fields in determining which recovery actions should be performed. 
This information always reflects the latest error report information. 
The hardware reacts immediately to each error report; thus, it never 
encounters an overflow condition. 

The software system uses all of the log contents to monitor the health 
of the hardware system. Because the software system is only loosely 
bound to the fault handling mechanisms in the hardware, the count field 
is used to provide some synchronization information to the software. 
The rest of the log contents informs the software about the failure 
that was detected and the recovery actions that were invoked. The 
hardware updates the log as a single quantity; thus, if software reads 
the log as a single 16-bit quantity it will always receive correct and 
consistent information. 

Software may clear the error count field by issuing an Interchange 
command. This command causes the interchange error report to be 
broadcast. The error report will cause all of the nodes in the system 
to clear their error count fields. This is the only way in which 
software may modify the contents of the error report log. The 
Interchange command also sets the permanent bit. 

At initialization time the count field is zero and the 
permanent/transient bit is set to transient. The error type field is 
not modified, so that error information will be available after a 
system crash. 

This capability allows the diagnostic software in non-fault-tolerant 
configurations to utilize the information collected by the hardware. 
It also means that after cold start in fault-tolerant configurations 
the error log should not be read until an Interchange command has been 
issued. Otherwise, the master and checker nodes may have different 
values in their logs, which will result in an FRC error. 

ARRAY ERROR LOG 

Each MCU has an array error log, which is used to log any failures 
detected by the ECC detection mechanism. Unlike the error report logs, 
the array error logs hold information that is local to this memory 
module. These logs never hold any information about memory arrays in 
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other modules. The format of the array error log is described in the 
following paragraphs. The 32-bit register is divided into two 16-bit 
registers in the MCU. 

Log Format 

Scrub Error Flag 

ECC Syndrome 

FBE Flag 

SCRUB ERROR FLAG 1 bit (MSB) 
ECC SYNDROME 7 bits 
FBE FLAG 1 bit 
LOF OVERFLOW FLAG 1 bit 
UNGORRRETABLE ERROR 1 bit 
CORRECTABLE ERROR 1 bit 
ERROR LOCATION 20 bits 

This bit is set if the logged error resulted 
from a scrub operation. It is valid only if 
either the uncorrectable error flag or the 
correctable error flag is set. Scrub errors 
will be logged and reported over the error 
reporting network only if the array error log 
is empty (both correctable and uncorrectable 
error flags are reset). This prevents a hard 
failure in the array from needlessly saturating 
the system with error reports. 

This field contains the syndrome that was 
calculated from the failed location. If a 
single-bi t failure has occurred, the syndrome 
identifies which bit failed. If a double-bit 
failure has occurred, the syndrome does not 
hold any useful information. If the syndrome 
has an odd number of ones, then it is a 
syndrome from a single-bit error. Note that 
the validity of the syndrome can be known only 
by counting the ones in the syndrome. None of 
the flags in the log provide this information. 
(Some types of uncorrectable errors are 
single-bit errors.) Table 7-3 gives the 
mapping between syndrome values and failed bit 
locations. All values not listed in the table 
represent multiple-bit errors. This field is 
valid only if the log is not empty. 

This bit is set whenever a Force Bad EGC (FBE) 
operation is performed. The FBE flag is always 
valid independent of the state of the other 
bits in the log, and it may be cleared by 
software. See Chapter 8 for a complete 
description of FBE operation. 

7-15 



Error Reporting iAPX 432 Interconnect ARM 

Table 7-3. Syndrome Bit Mapping 

SYNDROME FAILED SYNDROME FAILED SYNDROME FAILED 
VALUE BIT VALUE BIT VALUE BIT 

01 EO 31 A1 61 D17 
02 E1 32 D26 62 D10 
04 E2 34 D12 64 D24 
07 D7 38 A19 67 A7 
08 E3 3B D27 68 A17 
OB A 11 3D D13 6B D11 
OD D29 3E D6 6D AO 
OE D22 

10 E4 40 E6 70 A18 
15 A5 43 A3 73 D19 
16 D30 45 D21 75 D5 
19 D9 46 D14 76 A8 
1A D2 49 DO 79 A9 
1C D28 4A A10 7A A2 
1F D31 4C A4 7C D20 

4F D15 7F FBE 

20 E5 51 D1 
23 D3 52 D8 
26 A14 54 A12 
29 D25 57 D23 
2A D18 58 A16 
2C D4 5B D16 
2F A15 5D A13 

5E A6 

Note: Syndrome value is in hexadecimal. 

Failed bit codes: 
AO •• A19 
DO •• D31 
EO •• E6 
FBE 

Log Overflow Flag 

7-16 

Address bits 
Data bits 
ECC bits 
Force Bad ECC 

The log can hold the information for only one 
error. If an ECC error is detected and the 
array error log is not empty, then this bit is 
set. The log is empty if both the correctable 
error flag and the uncorrectable error flag are 
reset. All information about these later 
failures is lost. The log holds only the 
information relevant to the first error that 
was detected. The log overflow flag bit may be 
cleared by software. 



iAPX 432 Interconnect ARM Error Reporting 

Uncorrectable Error 

Correctable Error 

Error Location 

This bit is set if the logged error was 
uncorrectable. Uncorrectable errors include: 
any failure in the address lines, double-bit 
failures in the array, and unused ECC codes. 
If this bit is set, the log is not empty. The 
uncorrectable error bit may be cleared by 
software. 

This bit is set if the logged error was 
correctable. Correctable errors include 
single-bi t failures in the array. If this bit 
is set, the log is not empty. The correctable 
error bit may be cleared by software. 

This 20-bi t field holds the array address of 
the word that failed. This is not the address 
sent over the memory bus, or the address sent 
out from the processor, it is the local array 
address. It is a word, not a byte address (a 
word is 4 bytes), and the address is 
array-relati ve (that is, the first location in 
each array is location zero.) 

The array error log is updated by hardware but used only by software. 
The correctable and uncorrectable error flags act as synchronization 
locks to guarantee that software always receives consistent data. 
These locks are required because the 32 bits of information can be read 
by software only in two 16-bit accesses. The hardware will modify the 
contents of the syndrome and error location fields only if the log is 
empty. The FBE and overflow flags may be modified even if the log is 
not empty. 

When software wants to read the array error log, it must read the Array 
Error Log - High register first. If the status bits indicate that the 
log is empty, then the syndrome and address fields are invalid. If the 
log is not empty, then the address field may be read. When the 
software is done with its analysis, it clears the error log by 
resetting the overflow, correctable, and uncorrectable flags. This 
sequence guarantees that the address and syndrome the software reads 
will always provide correct and consistent data. However, it is 
possible that additional ECC errors could set the overflow flag and 
that this action would not be noticed by the software. 

MANAGEMENT AND TESTING 

Error reporting is enabled at initialization, but may be disabled by 
software by way of the Disable Error Report bit in the diagnostic 
register in every node. Additionally, software may disable the 
reporting of ECC errors completely or disable only those ECC errors 
detected during scrub accesses. Disable scrub report and log and 
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disable ECC error reporting disables are also located in the diagnostic 
register in MCUs. Under normal operating conditions, none of these 
disables will be asserted. 

The major managerial chore for the software is monitoring the error 
logs in the system. The logs have been designed so that this function 
can be done in a simple and efficient manner. The basic software flow 
of control is given below: 
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1. Read anyone of the error report logs in the system. The 
recommended approach is to read the log using a "my-BIU" 
access to a BIU on a working bus. 

2. If the log is empty (error count is zero), then no errors have 
occurred in the system. There is no need to read any of the 
other logs in the system (including array error logs). If the 
log is not empty, then proceed to the next step in the 
algorithm. 

3. If the error type is correctable ECC or uncorrectable ECC, 
then read the array error log in the MCU at the location 
specified in the node ID field of the error report. 

4. If overflow occurred in the error reporting log and the 
permanent error bit is set, then the software must determine 
what type of reconfiguration has occurred. This check is 
performed by reading the state register in at least one node 
in every module and by reading one node (in a working module) 
on every bus in the system. (The Married bit tells if the 
module still has a shadow, the Enable Local bit tells if the 
module is working, and the Enable Primary and Enable backup 
bits tell if this bus is still working.) 

5. If overflow occurred in the error reporting log, then the 
array logs in all of the MCUs must be checked for error 
activity. 

6. Software now holds all of the available information about the 
failure(s) that occurred. This information can be used to 
update a system health file, invoke other layers of system 
management, etc. 

7. Software's final action is to clear the logs. All of the 
error report logs are cleared by issuing a single Interchange 
command. Each of the array error logs that were not empty 
must be explicitly cleared by writing to the Array Error Log -
High register. While software is clearing the logs, it is 
possible for a transient error to be logged and not noticed. 
It is impossible for software to miss the occurrence of a 
permanent error. Part of the recovery procedure from a 
permanent error causes a reconfiguration IPC message to be 
sent to every processor in the system. (See Chapter 8.) 
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The error reporting mechanisms are tested by the Test Report command. 
This command tests that the addressed BIU or MCU can correctly generate 
an error report message. It tests virtually all of the error report 
generation logic, receiving and sequencing logic, and error report log 
register and logic, and it provides a 100% test on the BERLOUT and 
MERLOUT drivers (i nternal and external). The command also tests that 
every MERL and BERL line in the system is working correctly. Unlike 
the other commands, the data field in the Test Report command is used 
to specify which component should generate the error report. Table 7-4 
defines the allowable data values. 

Table 7-4. Data Field for Test Report Command 

Data Value Component 

o Primary, Checker 
1 Primary, Master 
2 Shadow, Checker (BIU Only) 
3 Shadow, Master (BIU Only) 

Because the primary and shadow MCU modules are individually 
addressable, values 2 and 3 are not used by the MCU. Once the command 
has been issued, the software reads the error report log in the node 
addressed by the command. No type of delay is needed in the software 
because the read is guaranteed to be performed after the error report 
has been completed. The read must not use a "my-BIU" access. If the 
error log holds a test report error type and a node ID for the node 
that was addressed in the command, then the node's BERLOUT buffers and 
its error report log and logic are working correctly. Also, this 
confirms that all of the BERL lines are working correctly. If no error 
has been recorded in the log, this indicates a failure in the node's 
BERLOUT buffer or in its error report generation logic. Any other 
failure in the error reporting network will be correctly isolated and 
reported with the BERL or MERL error types. 

A failure in the error report log will result in a module error when 
the attempt is made to read the log contents. Because the BIUs in a 
primary/shadow pair cannot be independently addressed, it is impossible 
to directly read each log. However, by writing a small loop that reads 
the same log many times, you will have a very high probability of 
reading the logs in both the primary and the shadow. This procedure 
checks all of the logs in the module pair. A complete test can be 
performed by testing the modules while they are not married. 

The log is also checked indirectly by the recovery actions. The 
recovery procedures get their information from the error log, so a 
failure in the log will be reflected by incorrect recovery actions, 
which will be detected by FRC in the module. If the log holds some 
other error type, it is possible that the test report lost in the error 
report arbitration sequence. In this case, the test should be repeated. 
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The correct operation of a MERL line is checked by reading the 
WorkinglMERL register in a BIU. The MERL bit in this register is 
toggled each time an error report message is received over the MERL 
line. The operation of MERL is then checked by reading the value of 
the MERL bit before and after the Test Report command. If the MERL 
line is working correctly, then the two values will be different. 

Because the BIUs in a primary/shadow pair cannot be independently 
addressed, it is impossible to directly check the MERL lines in married 
modules. This is not a major problem because of the massive redundancy 
in the MERL lines. (A system needs only one MERL for correct 
operation, and each married processor has four MERL lines.) The MERL 
lines can be checked in two ways. The first way is to do a 
probabilistic test while the module remains married. This is done 
simply by a tight loop that reads the register a number of times (about 
10). With very high probability, the primary and the shadow each 
respond to at least one of the read requests. Thi s gi ves a complete 
check of the MERL line. A second approach is to split apart the module 
pair for the MERL test. This will give the user a guaranteed check on 
the MERL line. 
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CHAPTER 8 
RECOVERY 

Previous chapters have explained the mechanisms for detecting and 
isolating failures to a confinement area, and the redundancy that can 
be carried in the system. This chapter explains how these capabilities 
can be used to mask the effect of any single failure in the system. 
The recovery procedures are located totally wi thin the BIU and MCU. 
The same recovery algori thm is used independent of the amount of 
detection or redundancy available in the system. 

Figure 8-1 provides a simple view of the recovery procedure. Thi s 
diagram identifies the major steps in the recovery sequence. Each of 
the steps will be described in detail in this chapter. There will be a 
section on: 

• Unsafe module decision 

• Retry sequence 

• Permanent error decision 

• Resource reconfiguration 

• Communication with the system software 

Error detection, reporting, and logging have been discussed in earlier 
chapters. 

The recovery algorithm is executed in parallel by all the BIUs and MCUs 
in the system. There is no global agent responsible for correct 
recovery actions. Each node performs its recovery sequence 
independently from all of the other nodes in the system. The thread 
tying all the recovery actions together is error reporting. The error 
reporting cycle ends with all nodes in uni son, entering recovery in 
lock step. 

UNSAFE MODULE DECISION 

The recovery sequence is the same for all error types except one. 
Unsafe module errors are handled as permanent errors immediately. 
Unsafe module errors can only be reported by MCUs. This error type 
corresponds to a class of errors that corrupt data in the memory array, 
but may not be detected if the access is retried. (Chapter 5 has a 
more complete description of this class of errors.) Because the error 
may not be detected if the access is retried, the unsafe module must be 
immediately isolated from the system. For all other error types, retry 
is the first step in the recovery sequence. 
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ERROR REPORTED & LOGGED 
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RETRY ACCESSES 

YES 

ERROR REPORTED & LOGGED 

CONTINUE NORMAL OPERATION 
WITH AVAILABLE RESOURCES. 

RECONFIGURE RESOURCES 

INFORM SW SYSTEM 

Figure 8-1. Recovery Procedure F-0456 
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The unsafe module decision is made simply by using the error type in 
the error report log. If the error type is unsafe module (code = 13), 
then the BIUs and MCUs will directly enter the reconfiguration 
sequence. In all other cases the nodes will begin the retry sequence 
immediately. 

RETRY SEQUENCE 

The retry sequence is broken into two parts. First, there is a waiting 
period during which the machine is quiescent. This is followed by a 
time window in which the nodes check for the same error to recur and 
all pending accesses are retried. It is important to realize that all 
nodes in the system enter this phase of retry on the same clock cycle. 
(Certain condi tions can cause the nodes to enter retry out of step. 
These conditions were described in Chapter 7. Their effect on retry 
will be described later in this section.) 

The quiescent waiting period is defined by the Timeout Duration 
register in all of the nodes in the system. This register is writeable 
by software. At initialization, the register is set to the value 
zero. All nodes in the system must have the same value in their 
Timeout Duration regi sters. The length of the time delay ranges from 
approximately 16 microseconds to over 2 seconds. The exact formula for 
the time delay is: (Timeout Duration * 2"16 ) + 128 ) * system clock 
period. The Timeout Duration register is 8 bits long (0 to 255). 

The quiescent period allows transients in the system to subside before 
the accesses are retried. During this time there is no activity over 
the memory buses. Processors may generate new requests, but the BIUs 
will stretch the processor until the end of the waiting period. During 
the waiting period, refresh continues normally for the memory arrays. 
Errors are not reported during this time interval. The only type of 
error that will be latched and reported later is an unsafe module error 
at a MCU. All other error conditions will be ignored. (If they have 
affected the state of the module, they will be detected during the 
second phase of retry.) The time interval is adjustable over a wide 
range to allow the waiting period to be tailored to the operating 
environment of the system. The delay is long enough to handle 
transients induced by mechanical stress as well as by electrical 
interference. 

At the end of the quiescent waiting period, all the nodes enter the 
second phase of retry -- the permanent error window. During this time 
interval, all pending memory accesses will be retried, and the system 
will be monitored for a permanent error condition. The access may not 
be retried by the same node. At the start of retry, the primary module 
always becomes the active module. Thi s approach is required to keep 
the primary and shadow modules in step in the presence of bus errors. 
otherwise, both modules might think they are passive. The Timeout 
Duration register also controls the length of the permanent error 
window. The quiescent wai ting period and the perman en t error window 
will always use the same time interval. 
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Every access pending at the start of the permanent error window will be 
retried. This includes those accesses that may have originated while 
the system was in the qUiescent waiting period. During the quiescent 
period, all of the MAGD bus arbitration state information was flushed 
out. There is no bus state left over from the period before the error 
occurred. All of the pending accesses are placed in one of two groups, 
depending on access type. 

The first group holds writes, RMW-wri tes, FBE commands. and RMW-read 
enqueue (if it is an MMA and the other half has been completed). All 
BIUs with an access in thi s group will place their requests in the 
first slot of the time-ordering request queue. The second group 
contains all of the read and RMW-read enqueue requests. All BIUs with 
an access in this group will place their requests in the second slot of 
the time ordering request queue. Priority arbitration will then provide 
a second level of arbitration just as it does during normal operation. 
This sequencing means that all accesses in the first group will be 
completed before any access in the second group is completed. Thi s 
action provides logical order ing for the whole system; but physically, 
this ordering is on a bus-by-bus basis, not system-wide (just like 
normal arbitration ordering). Any request that arrives after the start 
of the permanent error window will be handled normally. None of these 
requests will be completed until all of the retried requests have been 
completed. 

Retry has the following characteristics: 

• The ordering of requests during retry is likely to be different 
from the ordering of requests before the error. 

• All writes will occur before reads. Thi s guarantees that all of 
the read requests will return wi th consistent information. When 
the error occurred, there may have been some half-finished MMA 
accesses. This leaves the system in an inconsistent state. By 
issuing all writes before reads, the system is returned to a 
consistent state before any read access occurs. 

• The uncompleted half of a partially completed RMW-read operation 
will be enqueued before any other RMW-read enqueue operations. 
This is done to guarantee that a deadlock will not occur between 
two RMW requests. (A deadlock could occur if two RMW MMA requests 
spanned the same location, with one request locking the memory on 
one bus, and the other request locking the memory on the second 
bus.) This does not mean there will be only one enqueue during the 
first time period, or that the RMW-read is guaranteed to be 
successful. It simply allows all the requests that have locked 
another resource to have priority over those requests that have not 
been granted a lock, thereby preventing deadlock. 

• There will not be any correctable EGG error reports generated 
during the permanent error window. During the permanent error 
window the MGUs check the EGG code before data is returned to the 
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BIU. If a correctable ECC error is detected, the MCU will correct the 
data before it is sent to the BIU. The error will be logged in that 
particular MCU I S array error log, but no error report message will be 
generated. 

• The completed half of a partially completed RMW-read operation will 
be converted into a normal read access. Because the lock has 
already been set for the RMW operation, if an RMW-read is retried, 
it will never be granted; the location is locked and will never be 
unlocked. 

• The completed half of a partially completed RMW-write operation 
will be converted into a normal write access. This must be done to 
prevent clearing a lock that may have been set by another access. 

Except for the special arbitration sequence for the retried accesses, 
operation during the permanent error window is identical to normal 
operation. The difference is in the response to errors. The permanent 
error window defines the only time period in which an error can be 
labeled a permanent error (except for the unsafe module, which is 
always a permanent error). Because there is no guarantee that the same 
node will retry the access, it is important to have a reasonably long 
permanent error window. This prevents a permanent error from appearing 
as a string of transients. 

Chapter 7 presented two error conditions (stuck-on BERLOUT driver and 
MCU error reports that begin during phase 2 of another error reporting 
cycle -- see page 7-8) that will prevent the system from entering retry 
in lock step. The skew may be from 1 to 19 cycles in length. This 
skew is a problem because of the special arbitration sequence used for 
retried accesses. It is possible for an MMA access to be treated 
differently by the two buses. One bus may place the access wi th 
accesses that will be retried, while the other bus may handle the 
access as a normal access. (Only one of the buses has entered the 
permanent error window.) This action violates one of the rules that 
guarantee consistent data is returned from memory: accesses that span 
two buses must be handled in the same order on both buses. The exact 
conditions necessary for this error to occur are these: 

1. One of the two condi tions that can cause a skew must be 
present. (See page 7-8.) 

2. A processor must make an access in the failure window caused 
by the skew. This condition can occur only if the processor 
does not have an access pending for retrY9 and only if it does 
not make an access for the duration of the quiescent wai ting 
period. This condition cannot be met by a GDP. The 
probability of an IP not making an access during the quiescent 
period (which is probably hundreds of milliseconds long) is 
very small. The failure window is defined as the time 
interval after the first bus has entered retry but before the 
second bus ends its quiescent period. 
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3. The access that hits this failure window (100 nanoseconds to 2 
microseconds long) must be an MMA wri te or an MMA RMW-read 
access. 

4. Thi s location must be a location that is being shared wi th 
other processes. 

5. Another process must have an access pending to this same 
location which will be retried. 

If all of these conditions are present, then it is possible for 
inconsistent data to be read from the memory. The probability of all 
of these occurrences happening is extremely small. Thus, this error 
condi tion is similar to the rare occasions when multiple errors occur 
simultaneously, and the system may not be able to recover properly. 

PERMANENT ERROR DECISION 

Permanent errors are defined as errors that occur twice in a row within 
a specified time interval. The time interval is defined by the 
permanent error window. The second occurrence of an error report must 
have an error type field identical to that of the first report, and the 
node ID field must be a node in the same confinement area as the first 
error report. Thus, bus type errors must have the same bus ID; module 
type errors must have the same module ID; and bus/module type errors 
must have the same node ID (bus and module). Note that it is not 
possible for a correctable ECC error report to be labeled as a 
permanent error because correctable ECC errors are not reported during 
the permanent error window. (The error is simply corrected by the 
MCU. ) 

If an error is identified as a permanent error, then the permanent 
error bi t in the error report log will be set, and the BIUs and MCUs 
will enter the reconfiguration sequence of the recovery algorithm. 

ISOLATION OF FAULTY CONFINEMENT AREA 

Table 7-2, shown previously, lists the error reports and the 
confinement areas each one identifies. Each error report identifies 
either a module, or a bus, or one module and one bus as the areas where 
the fault occurred. Each node reads the node ID field in the error 
report and decides if it is in the faulty confinement area. The 
following paragraphs describe the deactivation of each of the four 
types of confinement areas that exist in an iAPX 432 system. 
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GDP OR IP MODULE 

A processor module is deactivated when all of its BIUs: 

• Disable primary and back-up memory address ranges. 
using the 4 Bus State bits in the State register. 
all reset to zero. 

Recovery 

This is done 
These bits are 

• Disable interconnect register accesses. This is done by clearing 
the Enable Local bit in the State register. 

• Ignore the MERL line. The MERL receiver is disabled in each BIU. 

In this state the module is totally deactivated. No requests of any 
type may be generated by this module. The BIUs will still reply to 
interconnect register and IPC requests issued from other processors. 
The error detection circuits at the MACD interface remain enabled, and 
if an error is detected it will be reported. All errors will have the 
bUs/module error type. 

MEMOR Y MODULE 

A memory module is disabled when the MCU disables its memory address 
range. This is done by clearing the Memory Enabled bi t in the State 
register. The MCU will still respond to interconnect register 
requests. All of the error detection circui ts, except buffer check, 
remain enabled. All errors wi 11 have the bus/module error type. The 
MCU will remain attached to the same MACD bus. 

MEMORY BUS 

A memory bus is disabled when all of the BIUs attached to the bus 
disable their memory address range. This is done by clearing the 
Enable Primary and Enable Backup bits in the State register. 
Interconnect regi ster accesses may still use the bus. The action of 
MCUs depends on the availability of a back-up bus. If possible, the 
MCU will switch to the redundant bus; otherwise, the MCU will clear all 
four of the bus state bits. Error report generation and MERL 
propagation are turned off in all of the BIUs on this bus. This action 
permits error reports on the faulty bus from propagating into the rest 
of the system. MCU error report generation is turned off only when 
both its bus and module are isolated. 

These actions isolate the faulty confinement area from the rest of the 
system. If any of the BIUs or MCUs does not correctly deactivate, it 
will be physically isolated from the system by deactivating the other 
confinement area (bus or module) it touches. This occurs because the 
ERROR REPORT will be of type BUS/MODULE or another BIU in this module 
may generate a module error after a bus has been deactivated. Now the 
failed component is totally isolated from the system by a set of nodes 
known to be good. At this point the bus and the module attached to 
this node have been deactivated. 
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RESOURCE RECONFIGURATION 

After the faulty confinement area has been isolated from the system, 
then ei ther the back-up resources are activated or, if no redundant 
resources are available, the damaged resources are locked. 
Reconfiguration, like all the other aspects of recovery, is done 
independently by each BIU and MCU. There is no central unit 
responsible for reconfiguring the system. All reconfiguration actions 
take place during the first few cycles of the quiescent waiting period. 

ACTIVATE REDUNDANT RESOURCES 

Each BIU and MCU reads its error report log and decides if it is part 
of the redundant confinement area that should be activated to recover 
from the error. 

GOP, IP, OR MEMORY MOOULE CONFINEMENT AREA 

If the module ID in the error report matches the spouse ID in this 
node, and if the married bit in the State register is true, then this 
module is the redundant resource and should be activated. The only 
action required to activate a module is to clear its married bit. This 
will cause the module to be active on every access, rather than 
alternating accesses with its spouse. Thus, the redundant module will 
mask the permanent failure in the spouse module. 

MEMORY BUS CONFINEMENT AREA 

If the bus 10 in the error report matches the bus ID of this node's 
back-up bus, and if either Enable Primary or Enable Backup is set, and 
if either the memory buses are four-way interleaved or there is a 
redundant bus, then this bus is the redundant resource, and it should 
activate its back-up address range. The bus is activated to cover the 
full address range by setting both the Enable Primary and Enable Backup 
bi ts in the State register. MCUs that were attached to the faulty bus 
must switch to the back-up bus. If the MCU's bus 10 matches the bus ID 
in the error report, and if the Bus State bi ts indicate that the 
back-up bus is available, then the MCU will toggle BUSSEL, which will 
cause the MCU to attach to its back-up bus. All MCUs have moved to the 
working bus in the bus pair, and the BIUs are recogni zing the address 
range that used to be covered by two buses. Thus, the back-up bus will 
mask the permanent failure on its partner bus. Figures 6-1 and 6-2 
describe the state machines that control the Bus State bi ts during 
memory bus reconfiguration. 
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LOCK-DAMAGED RESOURCES 

The actions described previously will activate a redundant resource if 
one is available. If none is available, then the system must lock any 
resources that may have been damaged as a result of the error 
condition. Since the faulty confinement areas have already been 
removed from the system, the only resource that may be damaged is a 
memory module corrupted by a partially completed MMA access. If an 
error occurs during an MMA write operation, one of the memory modules 
may hold new data while the other memory module holds old data. Thus, 
this logical memory structure holds inconsistent, and therefore 
corrupt, data. This corrupt memory structure is locked to prevent 
access by other modules. (See Chapter 9 for a complete description of 
this locking operation.) It is important to understand that resources 
can be damaged only if a system is not carrying full redundancy. This 
situation can never occur in a fully redundant system. 

At this point, reconfiguration is complete. The faulty confinement 
areas have been isolated from the system. If redundant resources were 
available, they will have been activated to mask the effects of the 
failure. If redundant resources were not available, any memory 
location that might have been damaged by a partially completed MMA 
write access will have been locked. 

COMMUNICATION WITH SYSTEM SOFTWARE 

If the failure is a transient error, then communication with the system 
software is done only by way of the error report logs. These logs are 
periodically polled as part of the general housekeeping services 
provided by the software. If the failure is a permanent one, it 
requires immediate attention to minimize the system's exposure to 
errors while it is vulnerable to failure (i.e., while at least one 
resource in the system no longer has a redundant back-up resource). 

This action is achieved by an IPC message automatically generated by 
the BIUs. Any time an error condition is labeled a permanent error, 
all of the processors in the system receive a reconfiguration IPC 
message. This is done independently by each BIU in the system; no IPC 
message is actually sent down the memory bus. This IPC causes the GDPs 
to suspend their current processes as soon as possible and then 
dispatch themselves from the reconfiguration dispatching port. At this 
port the software system will have placed a process designed to 
activate other processes that can make management decisions about the 
best mode of operation for the system. When an IP receives a 
reconfiguration IPC, it will send an interrupt to its AP. In this way 
the system software is immediately informed of the vulnerable state of 
the system and can react quickly to degrade the system in the manner 
optimal for the application. 
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RECOVERY IN THE MEMORY ARRAY 

The previous sections have dealt wi th recovery at the level of a 
confinement area. The iAPX 432 also has recovery capability within its 
memory module. There are three basic mechanisms for recovery of errors 
in the memory array: ECC, refresh scrubbing, and a spare memory bit. 

The ECC code, described in the chapter on detection mechanisms (Chapter 
5), is capable of correcting single-bit errors in the memory array and 
of detecting double-bit errors. Normal operation is optimized for 
per formance under error-free condi tions. One aspect of this 
optimization is that memory data is sent over the memory bus before the 
ECC code has been checked. During the permanent error window, the MCU 
operates in staged mode. Staging means that the MCU will return memory 
data only after correcting any correctable errors detected by the ECC 
code. (Correctable ECC errors will not be reported.) This mode of 
operation is needed to correctly handle permanent single-bit failures 
in the RAM array. During retry, the access to the faulty location will 
return valid data to the processor without any error report, thereby 
allowing computation to move forward. 

Scrubbing is a recovery mechanism that is an integral part of refresh. 
IXtring each refresh access, one location in the array is actually 
read. If an error is detected, it is reported, and corrected data is 
wri tten back into the array (i f possible). Thi s provides an ECC check 
on every location in the memory system approximately once a second. 
These frequent ECC checks and corrections virtually eliminate the 
possibili ty of an access encountering a word with a double-bit error. 
By tying scrubbing to refresh, this function is achieved without any 
additional performance degradation or software intervention. 

Each memory array may carry a 
swapped-in to replace the data in 
The spare bit is totally under 
operation and use of the spare bit 

SUMMARY 

spare RAM bit. This bit may be 
any of the normal 39-bi t locations. 
the control of the software. The 

are described in Chapter 6. 

Figure 8-2 gives a detailed flow diagram of the recovery process. If 
possible, error recovery is done by way of retry. Retry will provide 
recovery for the most frequent failure modes (RAM soft errors, noise on 
the backplane, etc.). If retry fails, then it is possible to use a 
redundant resource to mask the fault from the rest of the system. 
Resource reconfiguration can successfully mask any single failure in 
the system. The entire recovery algorithm is implemented in the BIU 
and MCU, and is orthogonal to both detection and redundancy mechanisms. 

There are three significant metrics for judging the effectiveness of 
the recovery strategy: the amount of overhead during normal operation, 
the amount of computation time lost during recovery, and the extent of 
system vulnerability after recovery. 
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ERROR REPORTED AND LOGGED 

CONTINUE OPERATION 

Figure 8-2. Detailed Flow Diagram of the Recovery Process F-04S7 

With the iAPX 432, the only impact on normal operation is an increase 
of about 10% in memory access latency to support ECC. None of the 
other recovery mechani sms impact normal operation. The recovery time 
is adjusted by the Timeout DJration register. By adjusting the length 
of the quiescent waiting period, the recovery time can be traded off 
against the ability of the system to mask transients. When the system 
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is optimized for fast recovery (short timeout duration), the system is 
quiescent for approximately 32 microseconds before operation is 
restored. The system is vulnerable to a second failure until the 
exposed resource is either deactivated or married to a spare module in 
the system. For processors, this exposure is less than a millisecond. 
For memories, the exposure is less than a second. For buses, the 
system may be exposed until the bus can be repaired. It is important 
to remember that the modular nature of the iAPX 432 reduces this 
exposure even further. Dur ing the vulnerable period, only one part of 
the machine -- the confinement area which has failed -- is vulnerable. 
Other processors, or buses, or memories are not vulnerable. The system 
can survive a very large number of multiple faults. However, part of 
the system is vulnerable to a second error, and it needs to be 
deactivated or protected as rapidly as possible. 

Figure 8-3 shows the recovery sequence for four different error cases. 
These diagrams trace the behavior of the system as it responds to an 
error. 

MANAGEMENT AND TESTING 

There are two key management functions that software is required to 
perform: reconfiguration policy, and reviewing the recovery decisions 
made by the hardware. 

Chapter 6, on redundant resources, described all of the procedures used 
to attach or detach redundant resources. There also needs to be a 
process that is always waiting at the reconfiguration dispatching 
port. There is no reason that all of the processors must use the same 
reconfiguration dispatching port. It may be desirable to associate 
each processor with a unique dispatching port for recovery. The 
process waiting at the reconfiguration dispatching port is used to 
notify management software that hardware reconfiguration has occurred. 
After doing this, it will most likely redispatch the processors from 
their normal dispatching ports. This software needs special 
consideration because, while it is running, none of the normal 
operating system functions are available. (Those processes are 
available only at the normal dispatching port.) 

System software must also determine the value for the Timeout Duration 
register. This value controls the length of the quiescent waiting 
period and of the permanent error window. It allows the user to trade 
off error response time against transient error masking. At the 
minimum value, permanent error recovery will occur in approximately 32 
microseconds. However, any transient wi th a duration of more than 16 
microseconds will be classified as a permanent error. As the value of 
the Timeout Duration register grows, the time for permanent error 
recovery grows longer, while longer transient errors will be 
successfully masked. 

8-12 



iAPX 432 Interconnect ARM Recovery 

t. __ E~I~R __ ~_Q~I __ p __ ~I_N _____________________________ ~ ~~~IENT 
TIMEt 

A--I E~I_R ",,--r.;.;-.~ ----IE "---R T<~Q I_p ",,--I N ___ > ~~":"ENI 
START OF p~ ~CONFIGURATION TIME 

1 .. _E--, __ R_T~,..Q--,I __ p-..lIL.-.N _________________________ > ~~~~E MODULE 

~CONFIGURATION TIME 

R R 

START OF P START OF P 
RECONFI GURATION 

E - ERROR DETECTED 
R - ERROR REPORT 
Q - QUIESCENT WAIT 
P - PERMANENT WINDOW 
N - NORMAL OPERATIONS 

El - HIGH PRIORITY TRANSIENT 
E2 - LOW PRIORITY PERMANENT 

R Q P N 

TIME 

Figure 8-3. Example Recovery Sequences 

SIMULTANEOUS 
ERRORS 

F-0458 

8-13 



Recovery iAPX 432 Interconnect ARM 

On top of these basic functions must reside a management strategy that 
describes the action that should be taken when a particular resource in 
the system is deactivated. The hardware has handled the actual 
reconfiguration and maintained the correct operation of the machine, 
but the system software must now decide which configuration is optimal, 
given the reduced resources available to the system. 

The second software function is the review of the hardware 
reconfiguration decisions. The hardware algorithm for classifying 
errors as permanent or transient may not be optimal for a given system 
environment. By looking at the history of errors in the machine, the 
software may be able to spot intermittent failures or transient 
failures which were labeled permanent failures. Thi sis important, 
because there are many transient failures in the processors which 
cannot be recovered from by retry. These failures will be labeled as 
permanent errors. In some environments, software's first response to a 
permanent error in a processor may be to put the deactivated 
confinement area back in service. Only if it fails again will software 
actually consider the error to be permanent. This management software 
is also responsible for activating the spare bit in a memory module 
that has a bad bit. 

Basically, this review process involves using an error history of the 
machine and a special knowledge about the machine environment to 
optimize the recovery procedures in the system. The hardware will 
never allow a faulty confinement area to continue running. However, it 
may deactivate a confinement area that is error-free. (That is, the 
hardware may have labeled a transient error a permanent error.) Some 
errors can be isolated by deactivating either a bus or a module 
confinement area. A particular system application may choose to 
deactivate a different confinement area than the one originally 
deactivated by the hardware. 
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CHAPTER 9 
SPECIAL CASES OF INTEREST 

The fault handling mechanisms address two aspects of initialization: 
checking that the critical initialization data was correctly 
transferred into the components, and providing an external indication 
that the component has received the initialization signal. 

The initialization data is loaded in from the memory bus and the ACD or 
SLAD bus while the INIT signal is asserted. Appendix D, "External 
Initialization," describes all of the initialization parameters. Only 
two of these parameters are critical to the basic operation of the 
fault handling mechanisms: bus ID and module ID. This information 
must be correctly loaded, or the error reporting mechanisms will not 
operate correctly. 

The bus ID is loaded in from the memory bus pins. The 2 parity bits on 
the memory bus are valid during initialization. If there is an error 
in the initialization data, it will be detected by parity. Once the 
bus ID has been correctly loaded in during initialization, any failure 
in the Interconnect Device ID register which corrupts the bus ID will 
result in a module failure (or be uncovered during testing of the error 
reporting circuits). The bus ID is used only to recognize requests on 
the processor bus and to send the node ID in error report messages. 
Thus, the faulty bus ID will lead to an FRC error because of incorrect 
address recognition, or the software checking the error reporting 
network will notice that the node responded to a Test Report command 
with the wrong bus ID in the error report message. 

The module ID not only needs to be loaded correctly, but also needs to 
be checked continuously during normal operation. The module ID is 
loaded from the ACD or SLAD bus during initialization. An even parity 
bi t is appended to the 6-bi tID. This parity bit is stored in the 
Interconnect Device ID register along with the module ID. Any single 
error in the ID during initialization or during normal operation will 
be detected by the parity bit. This more comprehensive coverage is 
required because a faulty module ID occurring during system operation 
would almost certainly lead to a system crash. It would most likely 
lead to a permanent module error being reported with the wrong module 
ID and thus the wrong module (possibly this module's spouse) would be 
killed. 

These conditions call for total shutdown of the node. If a memory bus 
parity error is detected during initialization or if the module ID has 
a parity failure at any time, this node will be immediately locked into 
the initialization state. This disables outputs and turns off all 
address recognition. The node simply disappears from the system. The 
only way to recover the node is to assert the external INIT pin. If 
correct data is reloaded into the internal registers, then the 
component will return to normal operation. 
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These drastic measures are required because this information represents 
the fundamental base on which the rest of the system operation is 
built. If a node disappears, this error will be detected by an FRC 
error in the checker (if the master failed) or by software checking the 
operation of the checker. 

While an MCU or BIU has its INIT pin asserted, the component will 
assert is BCHK signal (low). This signal gives the external world an 
indication that the component is receiving the INIT signal. Normally 
the BCHK signal will either be oscillating or low, depending on the 
state of the BCHK enable. If the component did not receive the 
initialization signal, then external logic can be used to isolate the 
component from the system. This may be useful for on-line repair of 
modules. 

INTERCONNECT REGISTER ACCESSES 

The interconnect register address space is fixed to the physical 
resources in the system. This address space does not change. It is 
unaffected by any of the recovery mechanisms. This allows diagnostics 
and configuration software direct access to a specific physical node 
rather than through a logical mapping, which might change because of 
recovery. A side effect of this approach is that the software may 
address a node that is not accessible (bus switching of MCUs) or use a 
bus that is not reliable. These problems are handled by having a bad 
access flag in the BIUs (in the diagnostic register). 

The bad access flag has two purposes. First it prevents any access 
from hanging up indefinitely. Second, it provides a flag that software 
can check to make sure that all of its interconnect accesses were 
correctly performed. The bad access flag in a BIU is set if a timeout 
occurs on a request from the BIU or if the bus to which the BIU is 
attached is deactivated. If an interconnect register access is 
performed and the bad access flag is set, then the BIU will treat the 
access as a NO-OP, but will acknowledge the processor's request 
normally (returning garbage data if it was a read). A bus error will 
not be signaled to the processor. This mode of operation prevents any 
interconnect access from hanging up under any error conditions. The 
processor will continue as if the access had been carried out correctly. 

Upon completing a series of interconnect accesses, the software must 
check that the accesses were carried out correctly. If the bad access 
flag is cleared, then the accesses were completed correctly. If the 
flag is set, then one or more of the interconnect accesses were not 
carried out. The flag is always accessible to the software by way of a 
"my-BIU" type of register access. This type of access will always 
return valid data. (It is done totally within this processor module.) 
A problem with using the bad access flag is that the process may be 
moved between physical processors during execution. Thus, additional 
information is required to correctly interpret the flag. During normal 
operation the only way the flag can be set is if a permanent error 
occurs. (Timeouts will only occur during system configuration.) 

9-2 



iAPX 432 Interconnect ARM Special Cases of Interest 

This condition can be detected by the software residing in the 
reconfiguration dispatching port and be communicated to the software 
that may be performing interconnect accesses. The software could 
expand a single interconnect access to include a check on the physical 
processor being used. A single interconnect register operation would 
become: Read processor ID (IImy-BIUII), perform interconnect access, read 
bad access (IImy-BIUII), read processor ID ("my-BIU"). If the processor 
IDs were identical, then the bad access flag would be valid. 

Because of the physical implementation of the BIU and MCU, only one 
process may access a node at any given time. If multiple nodes are 
accessing the same node, the results of the accesses are 
indeterminate. Software alone is responsible for guaranteeing that 
this mutual exclusion requirement is met. 

INTERPROCESSOR COMMUNICATION 

Interprocessor Communication (IPC) messages are handled in a special 
way by the BIUs. Logically, all IPCs use bus 0 and the BIUs on bus 0 
are responsible for informing the processor about any IPC messages 
pending for that processor. This information must be duplicated to 
allow for recovery from bus 0 failures. 

Bus 2 is the back-up bus for bus 0; thus, all IPC messages are sent 
over both bus 0 and bus 2. Because two buses are used for the message 
transmission, IPCs are treated like MMA accesses. This guarantees that 
the information in the IPC registers on both buses remains consistent. 
While both BIUs participate on the memory bus side of the IPC message, 
only one of the BIUs actually responds to the request on the processor 
bus. When the processor reads its IPC register, the BIU on bus 0 
responds if its primary address range is enabled, while the BIU on bus 
2 responds if its back-up address range is enabled. During normal 
operation, the BIU on bus 0 will return data on IPC requests. The 
operation of the BIU on bus 2 can be checked by doing an Interchange 
command, which will then cause the BIU on bus 2 to return data on IPC 
requests. The BIU that does not respond on the processor bus updates 
its IPC register to maintain an accurate copy of the state of IPC 
messages. 

Both IPC read and write use the memory bus and are handled as MMA 
accesses over bus 0 and bus 2. This approach utilizes the bus 
arbitration protocol to guarantee that the IPC information is always 
consistent. For example, an IPC read following behind an IPC write 
will return the same data from both IPC registers because the read 
cannot complete until the write has completed. The order of access 
will be the same on both buses. 

MULTIPLE MODULE ACCESS 

Multiple module accesses (MMA) are those accesses that span two memory 
buses. Because the two buses operate independently, an MMA may be in 
different states on each bus when an error occurs. This requires 
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special consideration during recovery. There are two cases of 
interest: Read-Modify-Write (read) requests and write requests. The 
RMW requests were described in Chapter 8. 

Write requests are a problem because they may leave the memory data in 
an inconsistent state (part old data, part new data). This failure can 
occur only if a BIU fails before completing its write request, but 
after the other half of the MMA has been completed. If the error is 
permanent and there is no shadow module, then there is no way to 
correct the inconsistent data structure in the memory. A failure in 
the MCU or the memory array can never cause this problem. If the 
failure is in the memory module, no other processor will be allowed to 
access the memory array. 

By monitoring the MMAL and MMAH signals on the processor bus, the BIUs 
can track the progress of the MMA operation on the other bus. If this 
error situation occurs (with the conditions: permanent module error, 
my module, not married, MMA write access, my half complete), the BIU 
that completed its part of the MMA write access must lock the memory 
location on its bus. This is done by issuing a Force Bad ECC (FBE) 
request on the memory bus. This request will cause the MCU to write a 
special ECC code (the complement of the correct ECC code) into the 
addressed location. Any requests to this location will be rejected 
because the special FBE code (an error syndrome of all ones) is 
interpreted as an uncorrectable error. The FBE code will prevent any 
further accesses to the corrupt location. 

It is important to realize that only one of the two locations involved 
in the original MMA access receives an FBE command. The other location 
may be accessed without any problems. This does not cause any logical 
inconsistencies. The only inconsistency occurs when a processor tries 
to access both locations as a single unit. To prevent that, one of the 
locations is forced to have a bad ECC code. 

ACTIVATION OF SPARE RESOURCES 

The iAPX 432' s concept of shadowed, self-checking modules allows a 
number of spare strategies to be used in a system. The first tradeoff 
involves a decision between carrying the extra resources as spares or 
as extra horsepower available to the system. If it is possible to do 
some load shedding in the event of a failure, then spare resources 
probably are a bad idea. Spare resources are activated for three 
reasons: the system management has decided to maintain the old 
performance level, a totally fault-tolerant environment, or both. 
Depending on the resources that are available, these decisions may 
require activating spare resources. Spare resources are activated 
on-line by using the procedures outlined for module shadowing startup 
in Chapter 8. 
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CHAPTER 10 
SOFTWARE INTERFACE SUMMARY 

This section provides a general review of all the registers that play a 
role in the communication between software and the hardware fault 
handling mechanisms. For each register there is a general summary of 
its function, its state after initialization, and any access 
restrictions. For a detailed description of the interconnect registers 
see Appendices A, B, and C of this manual. 

DIAGNOSTIC 

Thi s register holds a set of bits that enable many of the optional 
capabilities in the MCU and BIU components. The register also contains 
a few bits (M/C Toggle, Bad Access) that are used during normal 
operation. This register is initialized to zero, which enables all of 
the detection and reporting mechanisms. There are no restrictions on 
access to this register. 

The specific bit definitions follow. 

• Disable MACD Bus Parity Detection - Self-explanatory. 

• Disable Recovery - The purpose of this bit is to allow a diagnostic 
to run without dying due to some type of fault but still allow 
error reporting and logging. This may be used with a software loop 
to permit observation of the fault by oscilloscope or logic 
analyzer. The Disable Recovery bit disables any type of bus 
swi tching due to error report or interconnect command except for 
Bus Interchange. Additionaly, the Alarm bit in the BIU's IPC 
register cannot be set if recovery is disabled. 

• Di sable Error Report - Thi s bi t prevents a node from reporting 
errors on the error report lines. It does not, however, prevent the 
node from logging its own errors. This feature is useful for 
isolating a bus from the rest of the system so that diagnostic 
software can evaluate the bus without subsequent errors affecting 
the rest of the system. It should be noted that errors reported on 
the error report lines will be responded to normally. 

MCU-Specific Bits 

• Disable Scrubbing ECC Error Report - This bit disables the loading 
of the array error log or error report log or reporting with scrub 
ECC errors. It allows other ECC errors to be logged by preventing 
the log to be filled because of a hard bit failure continually 
caught by scrub. Note, however, that the normal array log status 
bits will prevent scrub errors from being reported if the array log 
is already full. 
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• Disable ECC Error Reporting - This bit disables the reporting of 
ei ther correctable or uncorrectable ECC errors. Even when 
reporting is disabled, errors will continue to be logged in the 
Array Error Log register. 

• Di sable MACD Bus FRC Detection - Self-explanatory. 
noting that MACD FRC errors are reported as module 
SLAD FRC errors are reported as unsafe module errors. 

• Disable SLAD Bus FRC Detection - Self-explanatory. 

It is worth 
errors while 

• Disable ECC Access Correction - In a read access, this bit disables 
the data correction when an access is staged. It does not affect 
error detection or reporting. This will allow the actual data to be 
read by diagnostic software. It must be noted that ECC error 
detection may also need to be disabled so that the BIU will not 
respond to the error report. Since, in a write access, writes are 
of a read-modify-wri te format to the array, this bit will prevent 
the read data from being corrected before the data is written back 
to the array. Note that this could allow undetected data corruption 
to the array if the read data had a correctable error: a new ECC 
code, which matches the word written back to the array, will be 
generated. If the read data had an uncorrectable error, the MCU 
would not write to the addressed location (unless the scrub enable 
bi t were off) and therefore it could not corrupt the data in the 
storage array. 

• Enable Scrubbing - This bit enables data correction during refresh 
cycles. It also ensures that if an uncorrectable error is detected 
during the read portion of an RMW operation, the write portion will 
be aborted -- avoiding corruption of data in the storage array. If 
Enable Scrubbing is off, an uncorrectable error is ignored and the 
new data is written to the storage array. 

• Disable Refresh - This bit totally inhibits refresh cycles from 
occurring. It is useful for certain types of array testing. 

• Continuous Refresh This bit will continuously cause refresh 
requests to be made to the internal array state machine. This 
interrupt request, unlike the refresh interval timeout, has lower 
request priority than an access request or an interconnect access 
request. 

• Enable Bus State Writeability - This bit enables the bus state bits 
in the State register to be written. This special enable is 
provided to safeguard against inadvertantly modifying the bus state 
bi ts when wri ting to the state regi ster, since these bits control 
the BUSSEL pin on the MCU. 
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BIU-Specific Bits 

• Diagnostics Mode - This bit disables the returning of bus error 
back to the processor due to a bus timeout for non-N-Local 
accesses. This allows the diagnostic evaluation of a bus and 
associated address ranges. 

• Bad Access - During interconnect accesses, a permanent module error 
or a perman en t bus error will set thi s bi t. If the Bad Access flag 
is set, all N-Iocal accesses that are not "my-BIU" accesses will be 
ignored, and garbage will be returned to the processor. An 
Interchange command sets the permanent error bit and thus sets the 
Bad Access bit as well. 

ERROR REPORT LOG 

This register holds the information from the most recent error report. 
Only the count and the permanent bit fields are cleared at 
ini tiali zation. Thus, after a crash it may hold information relevant 
to understanding the cause of the crash. If the node is FRCed, this 
register should not be read until at least one Interchange command has 
been sent. The Interchange command is required to set all of the count 
fields to a known value. 

INTERCONNECT DEVICE ID 

This register is of interest only in MCUs: the bus ID resides here. 
If software wants to move an MCU, it toggles the middle bit of the bus 
ID by sending a Toggle command to the MCU it wishes to move. This 
register is read only. 

INTERCONNECT DEVICE TYPE 

Two bits in this register are of interest to the fault handling 
mechani sms: Redundant Bus Enable and BCHK Enable. These 2 bi ts are 
loaded during hardware initialization. This register is read only. 

SPOUSE ID 

This register holds the physical ID of the module that is married to 
this module. It is used in setting up a primary/shadow pair of 
modules. In processor modules, this register must not be written to 
while the module is married. Reading the register will not always 
yield the same value since the primary and shadow have different values 
in the register. The register is initialized to the value zero. 
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STATE 

This register holds all of the relevant state information about the 
module and bus to which this node is attached. This information may be 
altered by the hardware as a result of recovery operations. In 
processor modules, the primary and shadow modules will have di fferent 
values for the shadow bit. Software must not write to this register 
during normal operation. This register must be treated as read-only as 
long as the module is active in the system. Before activating a 
module, the software must double-check that the bits in the state 
register are all consistent with the system state (i.e., that software 
did not overwri te a hardware update). The specific bi t definitions 
follow. 

• Married This bit is used to unify a primary and shadow pair. 

• Shadow - This bi t specifies whether the module will become a 
primary or a shadow when the marr ied bit is set. The designation 
of primary or shadow serves only to determine which of the married 
pair will participate in the first access when Ping-Ponging is 
initiated by the setting of the married bit. 

• Master/Checker Toggle - This bit is used typically by maintainance 
software to swap master and checker to evaluate error report line 
connections and other register information in order to verify the 
correct operation of the checker. If this bi t is zero, then the 
master/checker state is the same as it was at INIT time. If it is a 
one, then the master/checker state is opposite the INIT time 
setting. 

• Bus State Bi ts - These bi ts specify the state of the primary bus 
and the back-up bus (if one exists). Both MCUs and BIUs have a set 
of these bits, as they must both track their primary and back-up 
buses, when bus switching functions operate. 

MCU-Specific Bits 

• Four-Way Bus Interleave Mode - This bit is used by the MCU to track 
BIUs in a system during bus switching. It specifies whether address 
mapping in the system is functioning with four-way interleaving on 
bits 6 and 7. 

• Force Staging Always - A one in this bit causes all read accesses 
to be staged and read data to be corrected if there is a 
correctable error. A zero in thi s bit will cause read data to be 
returned uncorrected and un staged , but will cause errors to be 
reported. If an error occurs and retry is enabled in the system, 
then during the retry period read data will be staged and corrected 
independent of this bit. If this bit is set, no correctable ECC 
errors will be reported. 
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• Warm Start INIT Occurred - This bi t denotes if the last INIT pulse 
was a warm INIT, as specified by the state of the MACD11 pin during 
INIT. A warm INIT will not change the state of the Refresh Address 
register, Refresh Timer register, the Spare Bit Select register, or 
the array error log as would a normal, cold INIT. 

BIU-Specific Bits 

• Disable Retry - This bit disables the retry mechanism after an 
error report. All accesses that are outstanding after the start of 
an error report will always be retried if retry is enabled. If 
this bit is set, accesses that would normally require a retry will 
possibly return corrupted data. Disable Retry could be used by a 
diagnostic program to analyze the actual corrupted data or garbage 
that was received. Disabling retry could also allow the processor 
to run faster, since reply data will not have to be staged in the 
BIU. 

TIMEOUT DURATION 

This register controls the length of three timeouts: the memory bus 
protocol timeout, the quiescent waiting period, and the permanent error 
window. All three are always the same length. The length of the 
timeout can range from approximately 16 microseconds to 2 seconds. The 
exact formula for the time delay is: (Timeout Duration * 2"'16 ) + 128) 
* system clock period. The Timeout Duration register is 8 bits long (0 
to 255). The register is initialized to zero, which provides the 
shortest timeout (16 microseconds). 

ARRAY LOW/HIGH ORDER ADDRESS - MCU 

These registers provide the address used by Interconnect commands that 
access the memory array. These commands are used in testing the 
operation of the MCU. At initialization the low register gets the 
contents of the MACD bus. There are 12 bits that are not defined by 
the hardware and may be used by the system designer to convey 
information to ini tiali zation software. The high register is 
initialized to zero. 

ARRAY ERROR LOG LOW/HIGH - MCU 

These registers hold information about ECC errors that this MCU has 
detected. After a cold INIT, the error status bits (FBE, Correctable 
Error, Uncorrectable Error, Additional Error, and Scrub Error) are 
cleared. In an FRCed system, an ECC error must be generated (to update 
the fields this register) before it may be read from the master/checker. 
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SPARE BIT SELECT - MCU 

This register controls the spare bit multiplexing in the MCU. Values 
between 0 and 38 provide for the replacement of an array bit by the 
spare bit. All other values have no affect on the array operation. 
The register is initialized to all ones. 

LOGICAL lO - BIU 

This register holds the ID that will always be used during 
arbi tration. The logical ID replaces the module ID for interconnect 
register accesses when a processor module is married. The value in 
this register must be unique in the system. All of the BIUs in one 
module must have the same logical ID. At initialization, this register 
is loaded with a reverse image of the module ID. (MSB of the module ID 
is the LSB of logical lO, LSB of module ID is the MSB of logical lO, 
etc.) This provides a good arbitration distribution in sequentially 
numbered modules. 

TEST DETECTION DATA REGISTER - BIU 

This register is used to provide the read data during Test Detection 
commands. This register may be used as a general-purpose scratch 
register by software. At initialization this register gets the 
contents of the MACD bus. There are 12 bits that are not defined by 
the hardware and may be used by the system designer to convey 
information to initialization software. 

WORKING/MERL - BIU 

This register is used to monitor the operation of the processor and the 
module's MERL line. This register is initialized to zero. 

COMMANDS 

Commands use the interconnect register address space. Instead of 
accessing a register, they cause a function to occur within the MCU or 
BIU. Commands still have a read or write specification. All commands 
that generate error reports cause the full recovery sequence, just like 
a true error. The commands that generate error reports are 
acknowledged before the error report and, thus, they will not be 
retr ied. 
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BUS INTERCHANGE [WRITE] 

This command interchanges the address ranges of all the bus pairs in 
the system. It also resets the count fields in the error logs and sets 
the permanent bit. This command is used to test the operation of the 
back-up address recognition and bus swi tching logic. The command is 
sent to any node in the system. If a bus is not paired, then no bus 
swi tching will occur. Thi s command generates an error report message 
with error type interchange. 

DETACH [WRITE] 

This command allows a bus to be deallocated from the system while the 
system is on-line. The command is sent to any node on the bus that is 
to be deallocated. This command generates an error report message with 
error type detach. 

TEST DETECTION [READ] 

Thi s command tests all of the detection mechanisms in the addressed 
node. All detection mechanisms are tested independent of the state of 
the detection enables. Thi s command generates an error report 
message. If there is a failure in the detection mechanisms, then the 
report will have a module error type. If no failures occur, then the 
error type will be no error. 

TEST REPORT [WRITE] 

This command is used to test a specific component's ability to generate 
error report messages. The data field in the command speci fies which 
component will respond to the command (0 primary/checker, 1 
primary/master, 2 - shadow/checker, 3 - shadow/master). Only values 
zero and one are valid on the MCU. This command generates an error 
report message with error type TEST REPORT. 

ACCESS DATA LOW/HIGH [READ/WRITE] - MCU 

These two commands are provided to allow software direct access to the 
32 data bits in the array. The location accessed is determined by the 
low/high order array address registers. 
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ACCESS ECC BITS [READ/WRITE] - MCU 

This command is provided to allow software direct access to the ECC 
bits in the array. The location accessed is determined by the low/high 
order array address registers. This command allows direct access to 
the ECC bits in the memory array. It will be used for memory testing 
and diagnostics. 

CLEAR LOCATION [WRITE] - MCU 

This command allows a location with bad ECC to be initialized to a zero 
data value with good ECC. The location accessed is determined by the 
low/high order array address registers. 

CLEAR MEMORY [WRITE] - MCU 

This command is identical to Clear Location, except it clears the 
entire array. A reply is sent before the MCU has completed the 
command. The MCU will remain busy until it has completed this 
command. The programmer must beware that bus timeouts might occur if 
memory accesses are issued before the MCU has completed the Clear 
Memory command. 

TOGGLE PRIMARY AND BACK-UP BUS ID [WRITE] - MCU 

This command is used to assign a memory module to its alternate bus. 
This is different from a bus switch. The MCU will identify the new bus 
as its primary bus. This is useful during initialization or during 
software recovery from a permanent error. This command generates an 
error report message with an error type of no error. An error report 
is issued in order to allow the MCU to become synchronized wi th the 
arbitration on its new bus. 

CLEAR PU [WRITE] - BIU 

This command is used to synchronize the processor (GDP or IP) 
components when two modules are being married. This operation is 
required because the processors have a two-cycle idle loop. Thus, idle 
processors are not guaranteed to be in lock step. 

SOFTWARE SUPPORT 

There are two basic levels of software support required by the hardware 
mechani sms. At one level the software is providing management and 
policy decisions. On the second level the software is completing 
faul t-tolerant functionality by providing capabilities that could not 
be placed in the hardware. This section does not describe any of the 
general system support software that may also be present (e.g., system 
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confidence, off-line diagnostics). This view of software is from the 
bottom, looking up. The software may be implemented in modules that 
are organized differently, based on a top-down, system capability view. 

Management software includes: 

• Configuration and graceful degradation policy. This software is 
responsible for establishing the system configurations that most 
closely match the needs of the application. This includes 
reconfiguration decisions made after a permanent error as well as 
the normal initialization decisions. This is the software that 
marries modules and establishes back-up buses. 

• System health monitor. This software provides a long-term record of 
failures in the system. This information may be used by other 
software modules or by the field maintenance team. 

Low-level software includes: 

• On-line testing for latent errors in the system. This software 
completes the functionality of the hardware detection mechani sms. 
This software exercises the detection and recovery mechanisms as 
well as the infrequently used operations in the processors. In 
thi sway, latent errors are exposed and configured out of the 
system before the system is placed in a potentially dangerous 
double-error situation. 

• The process that waits at the reconfiguration dispatching port. 
This module completes the process of sending a message about system 
reconfiguration to the appropriate policy software. This software 
may also make some preprogrammed configuration decisions. This is 
a very small module, but it must run in an environment that does 
not have normal operating system support. 

• Review the permanent/transient decisions made by the hardware. 
Using information from the system health log, this software may act 
to reverse decisions made by the hardware. This software can use 
information not available to the hardware. For instance, 
information about the environment of the system, application needs, 
and long-term error history may all be used by this s ftware to 
optimize system operation. 

• On-line diagnostics which isolate errors in a bus confinement area 
to a replaceable module. The bus confinement area is the only 
confinement area that does not map nicely with a repair area. 
Diagnostic probing may be required to isolate the failure to a 
replaceable module. In the worst case, isolating the repairable 
unit may require physical extraction of modules from the bus. 
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Figure 10-1 provides a general diagram of the relationship between the 
hardware mechanisms and the support software. 
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APPLICATION 
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Figure 10-1. Software Support F-0459 
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INTRODUCTION 

APPENDIX A 
iAPX 43204/43205 REGISTER SUMMARY 

Each iAPX 43204 Bus Interface Unit (BIU) and each iAPX 43205 Memory 
Control Unit (MCU) occupies a 32 double-byte register location of iAPX 
432 interconnect address space. This address space is accessed by way 
of the iAPX 432 instructions Move to Interconnect and Move from 
Interconnect. Each register is a double-byte quantity aligned to a 
double-byte boundary. Each register has a name and a hexadecimal 
register number; e.g., the Interconnect Device Type register is MCU 
Register 01. See Appendix E, "Address Formats," for more information 
on how interconnect registers are addressed. 

The BIU supports two registers dedicated to the speci fic processor to 
which it is attached. These two registers are normally accessed only 
by the iAPX 432 processor through two double-byte registers located in 
the processor-local, or P-Iocal, address space. One register contains 
the processor ID (P-Iocal byte address 0). The other contains the 
interprocessor communication interface (P-Iocal byte address 2). 

The similarities between the register sets of the BIU and MCU may be 
observed from the side-by-side register summaries show in Tables A-1 
and A-2. Appendixes Band C provide more detail about the individual 
registers. 
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Table A-1. iAPX 43204 Bus Interface Unit Register Summary 

N-local P-local 
Address Address BIU Register Page 

1F Attach Command B-29 
1E Detach Command B-28 
1D Bus Interchange Command B-27 
1C Test Report Command B-26 
18 Test Detection Command B-25 
1A Activity B-24 
19 ***RESERVED*** 
18 Clear Processor Uni t Command B-23 
17 ***RESERVED*** 
16 ***RESERVED*** 
15 * * * RESERVE D* * * 
14 ***RESERVED*** 
13 ***RESERVED*** 
12 ***RESERVED*** 
11 ***RESERVED*** 
10 ***RESERVED*** 
OF ***RESERVED*** 
OE ***RESERVED*** 
OD Interleave B-22 
OC 01 Interprocessor Communication B-20 
OB Test Detection Data B-19 
OA 00 Processor ID B-18 
09 Memory Start and End B-17 
08 Timeout Duration B-16 
07 Diagnostic B-14 
06 State B-11 
05 Spouse ID B-10 
04 Logical ID B-9 
03 * * * RESERVE D* * * 
02 Interconnect Device ID 8-8 
01 Interconnect Device Type B-7 
00 Error Report Log B-3 

A-2 



iAPX 432 Interconnect ARM iAPX 43204/43205 Register Summary 

Table A-2. iAPX 43205 Memory Control Unit Register Summary 

N-local 
Address 

1F 
1E 
1D 
1C 
1B 
1A 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
OF 
OE 
OD 
OC 
OB 
OA 
09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

MCU Register 

At tach Command 
Detach Command 
Bus Interchange Command 
Test Report Command 
Test Detection Command 
***RESERVED*** 
Clear Location Command 
Clear Memory Command 
Toggle Normal and Back-up Bus Command 
Access ECC Bits Command 
Access Data High Command 
Access Data Low Command 
***RESERVED*** 
Refresh Address Decrementer 
Array Address Si ze 
Refresh Interval Decrementer 
Refresh Interval 
Array Error Log High 
Array Error Log Low 
Array High-Order Address 
Array Low-Order Address 
Spare Bit Select 
Memory Start and End 
Timeout Dlration 
Diagnostic 
State 
Spouse ID 
***RESERVED*** 
***RESERVED*** 
Interconnect Device ID 
Interconnect Device Type 
Error Report Log 

Page 

C-39 
C-38 
C-37 
C-36 
C-35 

C-34 
C-33 
C-32 
C-31 
C-30 
C-29 

C-28 
C-27 
C-26 
C-25 
C-23 
C-22 
C-21 
C-20 
C-19 
C-18 
C-17 
C-15 
C-12 
C-11 

C-10 
C-7 
C-3 
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APPENDIX B 
iAPX 43204 BIU REGISTERS 

Appendix B describes the set of Interconnect registers supported by 
each iAPX 43204 Bus Interface Unit (BIU) component. Some of the BIU 
registers provide access to the data that the BIU provides or 
requires. BIU commands are intiated by interconnect access to other 
registers. 

Many of the registers have fields (a bit or a group of bits) that are 
labeled "reserved." Reserved fields may not be modified. The value of 
the information read from reserved fields is undefined and should be 
masked off before any comparisons are performed. BIUs always return 
consistent values in reserved fields (zeroes in the current 
implementation) to prevent errors in systems employing Functional 
Redundancy Checking (FRC). 

A summary of the BIU interconnect registers is provided on page B-2. 
Following the summary, shown in Table B-1, each register is described 
individually. 
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Table B-1. BIU Register Summary 

N-local P-local 
Address Address BIU Register Page 

1F Attach Command B-29 
1E Detach Command B-28 
1D Bus Interchange Command B-27 
1C Test Report Command B-26 
1B Test Detection Command B-25 
1A Activity B-24 
19 ***RESERVED*** 
18 Clear Processor Uni t Command B-23 
17 ***RESERVED*** 
16 ** * RESER VED** * 
15 ***RESERVED*** 
14 ***RESERVED*** 
13 ***RESERVED*** 
12 ***RESERVED*** 
11 ***RESERVED*** 
10 ***RESERVED*** 
OF ***RESERVED*** 
OE ***RESERVED*** 
OD Interleave B-22 
OC 02 Interprocessor Communication B-20 
08 Test Detection Data B-19 
OA 00 Processor ID B-18 
09 Memory Start and End B-17 
08 Timeout Duration B-16 
07 Diagnostic B-14 
06 State B-11 
05 Spouse ID B-10 
04 Logical ID B-9 
03 ***RESERVED*** 
02 Interconnect Device ID B-8 
01 Interconnect Device Type B-7 
00 Error Report Log B-3 
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H 
A 

15 

BIU Register 00 
Error Report Log 

HH HHHH HHH 
AA AAAA AAA 

1413 12 9 8 6 

HHHHHH 
AAAAAA 

5 0 

H: Hardware-alterable 
A: Alterable by software 

with Bus Interchange, 
Detach, At tach, 
Test Report, or 
Test Detection 
command 

Reported module 10 
Reported bus 10 
Reported error type 
Error count 
Permanent 

The mmmmmm field contains the module 10 of the reporting source. 

The bbb field contains the bus 10 of the reporting source. 

The tttt field contains the type code for the reported error. The 
error types and encodings are summarized in Table B-2. 
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Table B-2. BIU Error Report Types 

tttt Code Message Type BIU Error 

1111 BERL Parity BERL Error 
1110 MERL Parity MERL Error 
1101 Unsafe Module n/a 
1100 Bus Arbitration Bus Arbitration 
1011 Bus/Module-High n/a 
1010 No Error Command Report 
1001 Module Module 
1000 Bus Parity Bus Parity Error 
0111 Bus/Module-Low Broken Module 
0110 Uncorrectable ECC n/a 
0101 Correctable ECC n/a 
0100 Test Report Command Report 
0011 Interchange Command Report 
0010 Attach Command Report 
0001 Detach Command Report 
0000 Toggle n/a 

The cc field contains the value of a counter which increments each time 
an error report is logged by the BIU. If the cc counter reaches the 
maximum count of three, it will hold the value three until it is 
explicitly cleared. These bits may be used by software to track 
accesses to the error report logs. The cc counter is cleared during 
initialization and by the Bus Interchange command. 

The p field indicates whether an error is permanent (p=l) or transient 
(p=O). This information is used to determine if the BIU must switch to 
a new bus or module and whether the BIU must enter broken bus or broken 
module mode. The first report of any error is labeled transient 
(p=O). If a second report of the same error (e.g., the second error is 
of the same type and from the same location -- reported module ID -- as 
the first error occurs during the transient error window), the error is 
labeled permanent (p= 1). The p field is set to transient (p=O) during 
ini ti ali zation. 

Table B-3 indicates how a BIU will respond to permanent and transient 
errors for each of the types of errors. 

B-4 



iAPX 432 Interconnect ARM iAPX 43204 BIU Registers 

Table B-3. BIU Error Recovery Mechanisms 

Recovery Action 

Transient Permanent 
Code Message Type ( p=O) (p= 1) 

1111 BERL Parity Retry Bus Switch 
1110 MERL Parity Retry Module Switch 
1101 Unsafe Module (Note 5) Module Switch 
1100 Bus Arbitration Retry Bus Switch 
1011 Bus/Module-High Retry Bus/Module Switch 
1010 No Error None n/a 
1001 Module Retry Module Switch 
1000 Bus Parity Retry Bus Switch 
0111 Bus/Module-Low Retry Bus/Module Switch 
0110 Uncorrectable ECC Retry/Stage Module Swi tch 
0101 Correctable ECC Retry/ Stage n/a 
0100 Test Report None n/a 
0011 Interchange n/a Bus Exchange 
0010 Attach Attach Bus n/a 
0001 Detach Detach Bus n/a 
0000 Toggle None n/a 

Note that: 

• Any error report will cause all outstanding requests to retry, and 
all memories will stage data for a reply. "Retry," "None," or 
"Stage" indicate the mechanism required, since all three will 
function after an error report. 

• All bus switches are followed by a retry and transient error window. 

• Any error 
classi fied 
error. 

reports during 
as permanent or 

a transient error window will be 
transient based on the last reported 

• The bus switch or module switch will occur only if the appropriate 
interconnect register fields are enabled. 

• An UNSAFE MODULE report is always considered a permanent error. 
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SPECIAL CONSIDERATIONS 

At initialization time, the cc field (error count) and the p field 
(permanent) are set to zero. The tttt field (reported error type), the 
bbb field (reported bus ID), and the mmmmmm field (reported module ID) 
are not modified by the initalization so that error information will be 
available after a system crash. After a cold-start initialization in a 
system using FRC (Functional Redundancy Checking), the error log should 
not be read until a Bus Interchange command has been issued. 
Otherwise, the master and checker nodes may have di fferent values in 
their error report logs and thereby cause an FRC error. 
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BIU Register 01 
Interconnect Device Type 

II III 
15 13 1211 10 8 7 6 5 4 3 2 

I xxx I bb I ppp I xx I vvl f J 
o 

ddd I 
L 

iAPX 43204 BIU Registers 

I: Setup during initialization 

Device type 
F field 
Device version 
Reserved 
Processor type 
Board type 
Reserved 

The ddd, f, and vv fields of the Interconnect Device Type register are 
fixed within the BIU at the time of manufacture. 

The ddd field contains the interconnect device type. For a BIU, the 
value of the ddd field is 001. 

The f field always contains the value one (1). 

The vv field contains the device version number for the BIU. 

The ppp and bb fields of the Interconnect Device Type register are 
loaded from the ACD (processor Address, Control, and Data) bus when 
the BIU is initialized. The ppp field is loaded with the value of 
ACD5 ••• ACD3 when the BIU is initialized. The bb field is loaded with 
the value of ACD7 •• ACD6 when the BIU is initialized. The ppp field 
indicates the type of the processor to which the BIU is connected. 
General Data Processors (GDPs) formed from iAPX 43201/43202 components 
are indicated with type ppp=001. Interface Processors (IPs) formed 
from iAPX 43203 components are indicated with type ppp=010. The ppp 
field is not interpreted by the BIU but may be read by initialization 
software to determine the type of processor resources in the system. 

The bb field indicates the type of board on which the BIU resides. 
The least significant bit of the bb field (bO) indicates if the BIU is 
to enable (bO=1) or disable (bO=O) buffer checking. The most 
significant bi t of the bb field (b1) indicates if a redundant bus is 
available (b1=1). The bb field is loaded with the value of 
ACD7 ••• ACD6 when the BIU is initialized. 
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15 

BIU Register 02 
Interconnect Device ID 

III 111111 
11 10 8 7 6 5 0 

iAPX 432 Interconnect ARM 

I: Setup during initialization 

Module ID 
Reserved 
Bus ID 
Reserved 

The mmmmmm field contains the module ID. These bi ts are loaded from 
the processor ACD bus, bits ACD13 ••• ACD8, during initialization. The 
initialized module ID is identical to the value of the least 
significant 6 bits of the initialized processor ID (BIU Register OA). 
The mmmmmm field defines a unique module position across all of the 
memory buses. The module ID field is read-only. The BIU uses its 
module ID when it decides whether to participate in interconnect 
accesses. 

During initiali zation, the BIU loads an internal flip-flop with a bit 
(from the processor bus ACD1 bit position) that corresponds to even 
par ity across the mmmmmm fi eld • Thi s fl ip-flop is not vi si ble by 
interconnect access. If the BIU detects that the parity across the 
module ID (mmmmmm field) and flip-flop is not even, then the BIU will 
permanently assert INIT wi thin the chip. By reporting errors with an 
incorrect module ID this parity mechanism prevents a module with a 
corrupt module ID from causing collapse of the system. Externally, a 
BIU ceases to toggle the BUFCHK output when the internal INIT signal is 
asserted. 

The bbb field contains the bus ID code, which indicates the bus to 
which the BIU is attached. In configurations that support bus 
switching, the back-up bus ID is formed by complementing the middle bit 
of the bbb field. 
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15 

BIU Register 04 
Logical IO 

650 
WWWWWW 
nnn 

xxxxxxxxxx 

W: Writeable by interconnect access 
I: Setup during initialization 

Logical ID 
Reserved 

The LLLLLL field contains the logical IO for the BIU. When the BIU is 
ini tiali zed. the logical IO is loaded with the value of the module IO 
from the Interconnect Device IO register (B1U Register 02). However. 
the significance of the module 10 bits is reversed during the 
initializing load of the logical 10 field. This reassignment provides 
one type of load balancing since the B1U uses the value of the logical 
10 field when arbitrating for use of the MACO bus. When it is 
performing shadowed operation (with its married bit set in the State 
register) the B1U uses the value of the logical 10 field (rather than 
its module 10) to decide when to participate in interconnect accesses. 
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15 

BIU Register 05 
Spouse ID 

WWWWWW 
000000 

650 

xxxxxxxxxx 

iAPX 432 Interconnect ARM 

W: Writeable by interconnect access 
Setup during initialization 

Spouse ID 
Reserved 

The ssssss field contains the module ID for the spouse (other partner) 
in the primary/shadow pair of modules for systems employing shadowing. 
The ssssss field is initialized to 0000000, and should be modified to 
the module ID of the actual spouse before the married bit is set in the 
State register (BIU Register 06). Once a BIU is married to its spouse, 
this register must be treated as read~nly. Furthermore, interconnect 
reads of this register will return different values, since the married 
pair is performing Ping-Pong operation and since the spouse IDs of the 
primary and shadow are different. 

The value of the ssssss field is matched against the reported module ID 
of an error report to determine if its spouse has an error. If the 
spouse reports a permanent module error, this BIU divorces itself 
(clears the married bit in the State register, BIU Register 06) and 
assumes responsibility for all future activities of the module. 
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15 

BIU Register 06 
State 

H HHHH 
W WWWW 

1 OIOI 
8 7 6 

xxxxxxxx 

W 

0 
3 2 

H 
W W 

0 0 
0 

iAPX 43204 BIU Registers 

H: Hardware-alterable 
W: Writeable by interconnect 

access 
Setup during 

Married 
Shadow 
Disable retry 
Bus state 

ini tiali zation 

Disable interconnect access 
Reserved 

The m field contains the married bit, which indicates whether this BIU 
is married to another BIU (m= 1) to form a primary/shadow pair. Before 
the m bit is set, the spouse ID (BIU Register 04) must be configured 
with the module ID of the BIU which is the spouse. When a BIU is 
married, it performs in the following manner. 

• The married BIU checks error reports of permanent module errors to 
determine if the module ID of the reporter is the same as that of 
its spouse. When the BIU detects that a permanent module error has 
occurred in its spouse, the BIU will reset its married bit. 

• The BIU and its married spouse begin Ping-Pong operation in which 
the partners alternately service the interconnect and memory 
accesses requested by the processor. The designated primary BIU 
will service the first access request. 

• When married, BIUs respond to interconnect accesses based on the 
value of their logical ID rather than their module ID. Since the 
logical IDs of the married BIUs must be identical, the primary and 
shadow BIUs alternately service interconnect access requests. 

• The activity between a married pair of BIUs can be synchronized 
wi th the Clear Processor Uni t command. 
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The s field indicates whether the BIU wi 11 become a shadow (s= 1) or a 
primary (s=O) unit when the married bit is set. 

The r field indicates whether the BIU will disable (r= 1) or enable 
(r=O) the retrying of accesses after an error report. All accesses 
that are outstanding after the start of an error report will be retried 
if retry is enabled (r=O). When retry is disabled (r=1) the BIU will 
not stage data. The data received by means of the memory bus, possibly 
incorrect, is immediately presented to the processor without awaiting a 
possible error report. 

The bbbb field contains the bus state code. The individual bits of the 
bbbb field have the following names: 

• Bit 0 - Enable Normal (EN) 

• Bit - Enable Backup (EB) 

• Bit 2 - Backup's Enable Normal (BEN) 

• Bit 3 - Backup's Enable Backup (BEB) 

EN and BEN are loaded with the value of ACD7 (enable redundant bus) 
when the BIU is ini tiali zed. Thus, a BIU without a redundan t bus is 
ini tialized to the value bbbb=OOOO, and a BIU with a redundant bus is 
initialized to the value bbbb=0101. The seven valid combinations of 
the bbbb field are indicated in Table B-4. 

Table B-4. Bus State Field Encoding 

bbbb Field 
State In terpretation 

BEB BEN EB EN 

0 0 0 0 0 Null State 
0 0 0 1 1 This node's normal bus is up. 
0 1 0 0 2 This node's back-up bus is up. 
0 1 0 1 3 Normal four-way Address Interleaving mode. 
1 0 1 0 4 Interchanged four-way Address Interleaving. 
1 1 0 0 5 Normal bus is down. 
0 0 1 1 6 Back-up bus is down. 
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In states 2, 4 and 5, a BIU will operate on its back-up bus. In all 
other states, a BIU will operate on its normal bus. In state 0, the 
null state, the BIU will not use the memory bus for memory accesses, 
al though interconnect accesses are allowed. The response of a BIU to 
the commands Attach, Detach, and Bus Interchange depends on the bus 
state and the system configuration (four-way, redundant bus). The 
allowed state transitions of the bus state field are described in 
Appendix F. 

The i field determines whether the BIU is disabled (i=1) or enabled 
(i =0) from generating access requests on the memory bus to either the 
memory or the interconnect address spaces. When accesses are disabled 
(i = 1) the BIU also di sables the MERL (Module ERror Line ) receiver, 
thereby ignoring any MERL-type stuck faults. The i field is reset on 
permanent module failures. 
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15 

BIU Register 07 
Diagnostic 

w w W W W W W 
o 0 0 0 0 0 0 

765 4 321 0 

W: Writeable by interconnect access 
Setup during initialization 

xxxxxxxxx 

Disable MACD bus parity detection 
Disable recovery 

~--- Toggle master/checker role 
Disable error report 
Diagnostics mode 
Disable MACD FRC 

~----------- Bad access 
Reserved 

The a field determines if detection of MACD bus parity errors is to be 
disabled (a=1) or enabled (a=O). 

The b field determines if the BIU is to disable (b=1) or enable (b=O) 
its fault recovery mechanisms. If recovery is disabled, the BIU will 
continue to detect, report, and log errors, but automatic bus switching 
is not allowed (except for the explicit Interchange command). 

The value of the c field allows software to modify the master/checker 
relationship from the one set on initialization. The c field 
determines whether the BIU should operate with a reversed (c= 1) or 
assigned (c=O) FRC master/checker role. For example, a BIU which was 
assigned on initialization to act as a master FRC device can be 
commanded to reverse roles (c=1) and operate as a checker. This 
capabili ty allows software to swap master and checker BIUs to verify 
correct operation of the original checker. 

The d field determines whether the BIU disables (d= 1) or enables (d=O) 
error reporting. When error reporting is disabled, the BIU will 
continue to log its own errors and receive error reports from other 
agents. 

The e field determines whether the BIU enables (e=1) or disables (e=O) 
diagnostic mode. In diagnostic mode, the BIU does not report bus 
errors caused by the timeout of non-N-local accesses. Thus, the 
diagnostic mode permits the evaluation of a memory bus and its 
associated address ranges. 
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The f field determines whether the BIU disables (f=1) or enables (f=O) 
the detection of FRC errors on the MACD bus. 

The g field indicates if a bad access (g=1) has occurred. A bad access 
is detected when a permanent module error or a permanent bus error 
occurs during an interconnect access. When the bad access flag is set 
(g= 1) , all general interconnect access to the BIU is denied, 
interconnect access reads will return indeterminate data, but the BIU 
will continue to respond to "my-BIU" interconnect accesses. 
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BIU Register 08 
Timeout Duration 

HHHHHHHH 
WWWWWWWW 
00000000 

15 8 1 0 

eeeeeeee 

H: Hardware-alterable 
W: Writeable by interconnect access 

Setup during initialization 

Timeout duration MSB 
~-------------- MSB of the 24-bit timeout decrementer 

A timeout decrementer in the BIU is used to regulate the bus timeouts 
and the transient error window. When a timing function begins, the BIU 
loads the 24-bit timeout decremeter. The value from the timeout 
duration field is loaded into the most significant 8 bits of the 
decrementer, and the value 128 is loaded into the least significant 16 
bi ts. As the decrementer operates (once each component clock cycle), 
the value of the 8 most significant bits may be read from the eeeeeeee 
field of the timeout duration register. 

During initialization, the timeout duration MSB is set to the value 
zero. Thus, the shortest timeout (128 clock cycles) will be employed 
during the period when the system configuration is being determined. 
Once configuration is complete, the timeout duration must be lengthened 
so that normal accesses may complete before the decremeter has expired. 
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BIU Register 09 
Memory Start and End 

wwwwwwww WWWWWWWW 
00000000 00000000 

15 8 7 0 

eeeeeeee 

W: Writeable by interconnect access 
Setup by initialization 

~--- Memory start address 
Memory end address 

The memory start address and the memory end address define the range on 
the most signi ficant 8 bits of the 24-bi t physical memory address, 
which the BIU will recognize as a memory access request. An iAPX 432 
processor issues the physical memory addresses to the BIU by means of 
the ACD bus. 

The first physical memory address supported by the BIU is defined by 
the 24-bit address: 

23 16 15 o 

ssssssss 0000000000000000 BIU starting physical address 

The last physical memory address supported by the BIU is defined by the 
24-bit address: 

23 16 15 o 

eeeeeeee 1111111111111111 BIU ending physical address 

Thus, if the memory start and end addresses are identical, the BIU 
supports 64K bytes of memory. 
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15 

BIU Register OA 
Processor ID 

8 7 

WWWWWWWW 
IIIIIIII 

o 

W: Writeable by interconnect access 
I: Setup during initialization 

by means of the ACD bus 

xxxxxxxx 

L... __ Processor ID 
L-______________ Reserved 

The processor ID register contains the unique 8-bit number that 
identifies the processor connected to the BIU. The BIU uses the 
processor ID to acquire the interprocessor communication (IPC) messages 
with a matching ID which are carried on the memory bus. This ID also 
is accessed by the iAPX 432 processor to locate objects unique to the 
particular processor (e.g., processor objects). 

The processor ID field is loaded with the value of ACD15 ••• ACD8 when 
the BIU is initialized. The processor ID of zero (00000000) is 
reserved and indicates the broadcast address when an interprocessor 
communication is sent to all processors. 
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BIU Register OB 
Test Detection Data 

WWWWWWWWWWWWWWWW 
MACD15 •• MACDO 

W: Writeable by interconnect access 
Setup during initialization 

15 a 

~-------- Test detection data 

The Test Detection Data register supplies the data returned in response 
to the Test Detection command. Diagnostic software can use this 
register to generate the data required to test the MACD data paths, one 
at a time. The register may also be used as a general-purpose 16-bi t 
work register. The Test Detection Data register is loaded with the 
value on the MACD bus, MACD15 ••• MACDO, when the BIU is initialized, 
allowing customer-defined information to be captured. 
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BIU Regi ster OC 
Interprocessor Communication 

Note that: 

The format of the Interprocessor Communication register is different 
for read and wri te accesses. In normal system operation this register 
must be accessed only by an iAPX 432 processor by means of its P-local 
address space. Interconnect access to this register is provided for 
testing purposes and off-line diagnostics. 

15 

xxxxxxxxxxxxx 

H 
o 

3 2 

H 
o 
1 

H 
o 
o 

H: Hardware-alterable 
Setup during initialization 

READ FORMAT ONLY 

Local IPC received 
Global IPC received 
Reconfigure IPC received 
Reserved 

The R field indicates that the BIU has received a reconfigure IPC 
message (R=1) for the iAPX 432 processor. 

The G field indicates that the BIU has received a global IPC message 
(G= 1) • 

The L field indicates that the BIU has received a local IPC message 
(L= 1) in which the destination ID matched the processor ID in BIU 
Register OA. 

The iAPX 432 processor will be signaled if any of the 3 IPC bi ts has 
been set. As the processor responds, by reading the Interprocessor 
Communication register, the most significant active bit will be 
cleared. This implies that reconfigure IPCs have highest priority, and 
local IPCs have the lowest priority. The IPC register must be read 
once for each active IPC indicator. The BIU will notify the iAPX 432 
processor of an IPC arrival once for each active IPC indicator. 
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WWWWWWWW 

15 8 7 

xxxxxxxx 

o 

W: Writeable by interconnect access 
(processor dedicated) 

WRITE FORMAT ONLY 

Destination processor ID 
Reserved 

An iAPX 432 processor writes to the Interprocessor Communication 
register to send the notification of an IPC to the destination 
processor (s) indicated by the dddddddd field. The destination ID of 
00000000 is reserved to indicate that all processors are to receive the 
IPC. Thus, no processor may be given a processor ID of zero. This 
information is provided by an iAPX 432 processor when the Send to 
Processor instruction or the Broadcast to Processors instruction is 
executed, and is not normally written otherwise. 
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BIU Regi ster OD 
Interleave 

iAPX 432 Interconnect ARM 

www 
000 

W: Writeable by interconnect access 
Setup during initialization 

15 

xxxxxxxxxxxxxx 

3 2 0 

Interleave mask 
Reserved 

The mmm field determines the type of address interleaving that the BIU 
is to perform. The values of the mmm field and the corresponding 
interleaving action is summarized in Table B-5. The reordered address 
column indicates how the BIU will reorder bit positions in the 24-bi t 
physical memory address from the processor to prepare the address for 
presentation on the memory bus. 

Table B-5. Reordered Addresses with Interleaving 

mmm Interleaving Action Reordered Address 

000 No Interleaving 23 ••• 0 
001 Interleaving on Address Bit 6 6,23 •• 7,5 •• 0 
010 Interleaving on Address Bit 7 7,23 •• 8,6 •• 0 
011 Interleaving on Address Bits 6 and 7 7 •• 6,23 •• 8,5 •• 0 
100 RESERVED 
101 Interleaving on Address Bi ts 6 and 8 8,6,23 •• 9,7,5 •• 0 
110 Interleaving on Address Bits 7 and 8 8 •• 7,23 •• 9,6 •• 0 
111 Interleaving on Address Bi ts 6, 7, and 8 8 •• 6,23 •• 9,5 •• 0 
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BIU Register 18 
Clear Processor Unit 

iAPX 43204 BIU Registers 

An interconnect access write to BIU Register 18 will cause the BIU to 
execute the Clear Processor Uni t command. Thi s command is used to 
synchronize the operation of the primary and shadow BIUs in systems 
that employ shadowing. When this command is issued, the primary and 
shadow BIUs must have the same logical ID (BIU Regi ster 04), and the 
married bit must be set in the State register (BIU Register 06). 
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BIU Register 1A 
Activity 

W 
H H 
o 0 

15 2 1 0 

xxxxxxxxxxxxxx 

iAPX 432 Interconnect ARM 

W: Writeable by interconnect access 
H: Hardware-alterable 

Setup during initialization 

MERL propagated 
PRQ Working 
Reserved 

An interconnect access read of the Activity register (BIU Register 1A) 
provides 2 bits of information about activity of the BIU. The p and m 
fields are cleared during initialization. 

The m field toggles each time the BIU has successfully propagated a 
MERL error report. 

The p field is set each time the processor activates the PRQ signal 
(Processor Request) for the BIU. The p field can be cleared by an 
interconnect access write to this register with the p field set to zero. 
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BIU Register 1B 
Test Detection Command 

An interconnect access read of BIU Register 1B commands the BIU to test 
all its error detection circuits: parity, buffer checking, and FRC. 
The Test Detection command will execute whether error detection is 
enabled. The BIU performs the command by executing the following 
sequence of steps. 

When the command is received, the BIU requests an interconnect access 
read of its own Test Detection Data register (BIU Register OB) by means 
of the memory bus. The BIU responds to the memory bus request by 
placing the Test Detection Data register data on the memory bus. 
Within the BIU, every FRC circuit, MACD bus parity detector, and buffer 
check circuit is provided the complement of the data sent to the memory 
bus. The data in the Test Detection register is also issued to the 
processor to complete the original interconnect access read request. 
The BIU checks that each detection comparator on the memory bus detects 
an error. If any comparator fails to generate an error, the BIU will 
issue a MODULE ERROR report. If each comparator operates correctly, 
the BIU will issue a NO ERROR report. 

Note that the data path of the memory bus may be tested one bit at a 
time by issuing multiple Test Detection commands and appropriately 
varying the data in the Test Detection Data register. 

The Test Detection command cannot be issued to a "my-BIU" interconnect 
address (module ID= 111111) since "my-BIU" accesses are serviced without 
the use of the memory bus. 
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BIU Regi ster 1C 
Test Report Command 

iAPX 432 Interconnect ARM 

An interconnect access wr i te to BIU Regi ster 1C commands the BIU to 
test the MERL (Module ERror Line) and BERL (Bus ERror Line) error 
reporting paths. The BIU returns a memory bus reply message before the 
command is performed. The BIU responds to the command by sending the 
test report error report message over its MERL and BERL reporting 
circuits. 

The data associated with thi s command selects which component should 
respond in FRCed and (J-tR configurations. The least signi ficant 2 bits 
of the data control the selection: 00 selects the primary/checker, 01 
selects the primary/master, 10 selects the shadow/checker, 11 selects 
the shadow/master. 
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BIU Register 1D 
Bus Interchange Command 

An Interconnect register write to BIU Register 1D causes all nodes in 
the system to interchange buses, i.e., to swi tch to their redundant 
buses. This command allows softWare to test that each bus and its 
error recovery mechanisms is working correctly. If a bus does not have 
a back-up bus, the command has no effect. 

The BIU will acknowledge receipt of the command, by means of a memory 
bus reply. before the command is executed. The BIU will transmit a 
"bus interchange" error report after the command is executed. Error 
report logs (the cc field of the Error Report Log, BIU Register 00) are 
cleared when a bus interchange error report is received. The data 
associated with the Interconnect register write is ignored. 
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BIU Register 1E 
Detach Command 

iAPX 432 Interconnect ARM 

An Interconnect register write to BIU Register 1E detaches 
(deactivates) the bus to which the BIU is attached. The BIU will 
acknowledge the receipt of the command, by means of a memory bus reply, 
before it is performed. The BIU will issue a detach error report after 
the command is per formed. When a bus is detached it can no longer 
carry memory requests but will continue to support interconnect access 
requests. The data associated with the wri te to this interconnect 
register is ignored. 

The Detach command allows software to perform exactly the same recovery 
sequence that the hardware automatically takes if it detects a 
permanent bus error. 
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BIU Register 1F 
Attach Command 

iAPX 43204 BIU Registers 

When an interconnect access write is performed on BIU Register 1F, the 
BIU will attach (activate) a bus that had previously been out of 
service. The At tach command can onl y be issued to a BIU that is 
operating on a working back-up bus. 

The BIU acknowledges receipt of the command. by means of a memory bus 
reply, before it is performed. The BIU transmits an attach error 
report after the command is completed. The data associated wi th the 
write to this Interconnect register is ignored. 
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INTRODUCTION 

APPENDIX C 
iAPX 43205 MCU REGISTERS 

Appendix C describes the set of interconnect registers supported by 
each iAPX 43205 Memory Control Unit (MCU) component. Some of the MCU 
registers provide access to data that the t1CU provides or requires. 
MCU commands are initiated by interconnect access to other registers. 

Hany of the registers have fields (a bit or a group of bits), which are 
labeled "reserved." Reserved fields may not be modified. The value of 
the information read from reserved fields is undefined and should be 
masked off before any comparisons are performed. MCUs always return 
consistent values in reserved fields (zeroes in the current 
implementation) to prevent errors in systems employing Functional 
Redundancy Checking (FRC). 

A summary of the MCU interconnect registers is provided on page C-2. 
Following the summary, each register is described individually. 
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N-Local 
Address 

1F 
1E 
1D 
1C 
1B 
1A 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
OF 
OE 
OD 
OC 
OB 
OA 
09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

Table C-1. MCU Register Summary 

MCU Register 

Attach Command 
Detach Command 
Bus Interchange Command 
Test Report Command 
Test Detection Command 
***RESERVED*** 
Clear Location Command 
Clear Memory Command 
Toggle Normal and Back-up Bus Command 
Access ECC Bits Command 
Access Data High Command 
Access Data Low Command 
***RESERVED*** 
Refresh Address Decrementer 
Array Address Size 
Refresh Interval Decrementer 
Refresh Interval 
Array Error Log High 
Array Error Log Low 
Array High-Order Address 
Array Low-Order Address 
Spare Bit Select 
Memory Start and End 
Timeout Duration 
Diagnostic 
State 
Spouse ID 
***RESERVED*** 
***RESERVED*** 
Interconnect Device ID 
Interconnect Device Type 
Error Report Log 

Page 

C-39 
C-38 
C-37 
C-36 
C-35 

C-34 
C-33 
C-32 
C-31 
C-30 
C-29 
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C-27 
C-26 
C-25 
C-23 
C-22 
C-21 
C-20 
C-19 
c-18 
C-17 
C-15 
C-12 
C-11 

C-10 
C-7 
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H 
0 
A 

15 

MCU Register 00 
Error Report Log 

HH 
00 
AA 

1413 

HHHH HHH HHHHHH H: Hardware-alterable 
Setup during initialization 

AAAA AAA AAAAAA A: Alterable by software 

12 

by means of Bus Interchange, 
Detach, Attach, 
Test Report, or 
Test Detection 
command 

9 8 6 5 0 

Reported module ID 
Reported bus ID 

~----------------- Reported error type 
Error count 
Permanent 

The mmmmmm field contains the module ID of the reporting source. 

The bbb field contains the bus ID of the reporting source. 

The tttt field contains the type code for the reported error. The 
error types and encodings are summarized in-Table C-2. 
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Table C-2. MCU Error Report Types 

tttt Code t1essage Type MCU Error 

1111 BERL Parity n/a 
1110 MERL Parity n/a 
1101 Unsafe 1'1odule Array FRC Error 
1100 Bus Arbitration n/a 
1011 Bus/Module-High BERL or Bus Arbitration 
1010 No Error Command Report 
1001 Module l10dule 
1000 Bus Parity n/a 
0111 Bus/Module-Low Broken Module or 

Bus Parity 
0110 Uncorrectable ECC ECC 
0101 Correctable ECC ECC 
0100 Test Report Command Report 
0011 Interchange Command Report 
0010 Attach Command Report 
0001 Detach Command Report 
0000 Toggle Command Report 

The cc field contains the value of a counter that increments each time 
an error report is logged by the MCU. If the cc counter reaches the 
maximum count of three, it will hold the value three unti 1 it is 
explicitly cleared. Software may use these bits to track its accesses 
to the Error Report Logs. The cc counter is cleared during 
initialization and whenever the Interchange command is executed. 

The p field indicates whether an error is permanent (p=l) or transient 
(p=O). This information is used to determine whether the MCU should 
switch to a new bus or module and then whether the MCU should enter 
broken bus mode or broken module mode. The first report of any error 
is labelled transient (p=O). If a second report of the same error 
(e.g., the second error is the same type and from the same location, or 
reported module ID, as the first error) occurs during the transient 
error window, the error is labeled permanent (p= 1) • The p field is 
cleared during initialization and whenever the Bus Interchange command 
is executed. 

Table C-3 indicates how an MCU will respond to permanent and transient 
errors for each of the types of errors. 
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Table C-3. MCU Error Recovery Mechanisms 

Recovery Action 

Transient Permanent 
Code Message type (p=O) (p= 1) 

1111 BERL Parity Retry Bus Switch 
1110 MERL Parity Retry Module Switch 
1101 Unsafe Module (Note 5) Module Switch 
1100 Bus Arbitration Retry Bus Switch 
1011 Bus/Module High Retry Bus/Module Switch 
1010 No Error None n/a 
1001 1-1odule Retry Module Switch 
1000 Bus Parity Retry Bus Switch 
0111 Bus/Module Low Retry Bus/Module Switch 
a 11 a Un correctable ECC Retry/Stage r10dule Switch 
0101 Correctable ECC Retry/Stage n/a 
0100 Test Report None n/a 
00 11 Interchange n/a Bus Exchange 
0010 Attach Attach Bus n/a 
0001 Detach Detach Bus n/a 
0000 Toggle None n/a 

Note that: 

• Any error report will cause all outstanding requests to retry, and 
all memories will stage data for a reply. "Retry," "None," or 
"Stage" above only indicates which mechanism is required, since all 
three will occur after an error report. 

• All bus switches are followed by a retry and transient error window. 

• Any error 
classified 
error. 

reports during 
as permanent or 

a transient error window will be 
transient based on the last reported 

• The bus switch or module switch will occur only if the appropriate 
interconnect register fields are enabled. 

• An unsafe module report is always considered a permanent error. 
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Special Considerations 

At initialization time, the cc field (error count) and the p field 
(permanent bit) are set to zero. The tttt field (reported error type), 
the bbb field (reported bus ID), and the mmmmmm field (reported module 
ID) are not modified by the initialization so that error information 
will be available after a system crash. After a cold-start 
initialization in a system using FRC, the error log should not be read 
until a Bus Interchange command has been issued. Otherwise, the error 
report logs of the master and checker nodes may have different values, 
which will result in an FRC error. 
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II 

MCU Register 01 
Interconnect Device Type 

II II I I I 

1514 1312 1110 9 8 7 

I 

6 5 4 3 2 0 

I tt I pp I bb I cis I r I e I vv I f I ddd I 
L 

I: Setup during 
initialization 

Device type 
F field 
Device version 
E field 
Speed read 
Array speed 
Boundary check 
Board type code 
Partial RAM type 
RA~l type 

The ddd, f, and vv fields of the Interconnect Device Type register are 
fixed within the MCU at the time of manufacture. 

The ddd field contains the interconnect device type. For an MCU, the 
ddd field is 000. 

The f field always contains the value one (1). 

The vv field contains the device version number for the MCU. 

The e, r, s, c, bb, pp, and tt fields of the Interconnect Device Type 
register are loaded from the SLAD bus when the MCU is initialized. The 
e field is loaded with the value from SLAD4 during the D2 phase of 
initialization. The r field is loaded with the value from SLAD5 during 
the D2 phase of initialization. The s field is loaded with the value 
of SLAD2 during the D2 phase of initialization. The c field is loaded 
with the value from SLAD3 during the D2 phase of initialization. The 
bb field is loaded with the value of SLAD16 •• 15 during the D1 phase of 
initialization. The pp field is loaded with the value of SLAD18 .. 17 
during the D1 phase of initialization. The tt field is loaded with the 
value of SLAD1 •• 0 during the D2 phase of initialization. 

The e field must be set to zero when the MCU is initialized. 
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The r field indicates if the HCU is to access the storage array in 
Speed Read mode. When r= 1, the MCU performs accesses to the storage 
array assuming that Ripplemode™ dynamic RAMs (DRAMs) are present. 
When r=O, the MCU performs accesses with standard multiplexed DRAM 
function. 

The s field indicates the characteristics that the MCU is to use when 
accessing the external memory array. The s field indicates whether the 
MCU will access the storage array with nominal (c=l) or extended (c=O) 
access time. Extended access time lengthens the nominal access time by 
one component clock cycle. 

The c field indicates whether the MCU should perform boundary checking 
on the row addresses for the storage array. Boundary checking detects 
when a row boundary is crossed so that the MCU may strobe a new address 
into the row address latches in the DRAM components. When c=l, 
boundary checking is performed. When c=O, it is disabled. When the 
MCU is not in Speed Read mode (that is, r=O) the c field must be set to 
one. 

The bb field contains the board type code. The least significant bit 
of the bb field determines if the MCU is to exercise the optional 
external buffer checking logic. If enabled (bO=l), the MCU will 
perform the buffer checking, and if disabled (bO=O) the MCU will 
perform no checks. The most significant bit of the bb field indicates 
if there is a spare, unused bus to which the MCU can switch for error 
recovery. If a spare bus is available (b 1 = 1) , the t1CU must be 
connected to two memory buses, a normal bus and a back-up bus. 

The pp field contains the partial RAM type. The value of pp specifies 
how the MCU maps 2 address bits from the memory bus into 2 bits of the 
storage array address. When 64K RAMs are used in the storage array, 
memory bus physical address bits A 15 and A 14 are mapped. When 256K 
RAMs are used in the storage array, memory bus physical address bits 
A17 and A16 are mapped. 

Memory Storage 
Bus Mapping 

11 00 01 
10 01 00 
01 10 11 
00 11 10 
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Array 

10 
11 
00 
01 

1 1 
10 
01 
00 

L Partial type 11, good RAM 
or bad quarter (11) 
Partial type 10, bad quarter (10) 
Partial type 01, bad quarter (01) 
Partial type 00, bad quarter (00) 
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The following diagram illustrates one such storage array remapping. 
This example shows how a RAM array constructed of chips that have a 
defecti ve quarter (partial type 10) can have storage array addresses 
reassigned by the MCU in order to allow quarters 00, 01, and 11 to be 
addressed linearly. The Memory Start and End register (MCU Register 
09) must be programmed with corresponding start and end addresses for 
the storage array. 

11 11 *10* Bad quarter 

*10* Bad quarter 10 11 

01 

00 

RAM chip 

01 

00 

00 

01 

Remapped quarters 
for partial type 10 

I I Physical quarters of RAM ~MCU storage array address 

The tt field contains the RAM type code and indicates the type of RAM 
chips that comprise the storage array. The tt field indicates how the 
memory bus address bits are to be positioned in the address that is 
presented to the storage array. The following diagram indicates 
mappings for the three valid tt field values: tt=OO for 256K dynamic 
RAMs and static RAMs, tt=01 for 64K dynamic RAMs, and tt=10 for 16K 
dynamic RAMs. The tt code of 11 is undefined. The numbers in the body 
of the table correspond to the bit positions of the memory bus address 
which are mapped onto the corresponding SLAD bus bit position. The 
memory bus address bit positions denoted here reflect any modification 
that might occur as a result of partial type mapping. 

SLAD Bus Bit Position 

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

tt Bank Column Address Bank Row Address 

10 15 14 19 17 13 12 11 10 9 8 7 18 16 6 5 4 3 2 1 0 

01 17 16~ 1. 13 12 11 10 9 8 ~ 6 5 4 3 2 1 0 

00 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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15 

MCU Register 02 
Interconnect Device ID 

T 
III 

11 10 8 7 
I 
6 

II II II 
5 0 

iAPX 432 Interconnect ARM 

T: Toggleable by MCU command 
I: Setup during initialization 

r.1odule ID 
..... ----- t10dule ID even parity 

Reserved 
Bus ID 
Reserved 

The mmmmmm field contains the module ID. 
SLAD6 •. SLAD1 during the D1 phase of MCU 

This field is loaded from 
initialization. The mmmmmm 

field defines a unique module position across all of the memory buses. 
The module ID field is read-only. The MCU uses the module ID when it 
decides whether to participate in interconnect accesses. 

The p field contains the module ID even parity bit. This bit is loaded 
from SLAD7 during the D1 phase of MCU initialization. If the MCU 
detects that the parity across the module ID (mmmmmm field) and the p 
field is not even, then the MCU will permanently assert INIT within the 
chip. This parity mechanism prevents a module with a corrupt module ID 
from causing collapse of the system due to reporting errors with an 
incorrect module ID. Externally, an MCU ceases to toggle the BUFCHK 
output when the internal INIT signal is asserted. 

The bbb field contains the bus ID code, which indicates the HCU' s 
normal bus. In configurations that support bus switching, the back-up 
bus ID is formed by complementing the middle bit of the bbb field. 
During software-controlled initialization or reconfiguration, the 
middle bit of the bbb field may be toggled by MCU interconnect register 
access (Toggle Normal and Back-up Bus command) to redefine the normal 
bus ID. When an MCU switches to its back-up bus, the bbb field 
continues to indicate the MCU's normal bus ID. The MCU output signal 
BUSSEL <BUS SELect) is a function of the middle bi t of the bbb field 
and the bus state bits in the State register (MCU Register 06). 
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15 

MCU Register 05 
Spouse ID 

6 

WWWWWW 
000000 

5 0 

W: Writeable by interconnect access 
I: Setup during initialization 

xxxxxxxxxx 

Spouse ID 
~-------------- Reserved 

The ssssss field contains the module ID for the spouse (other partner) 
in the primary/shadow pair of modules for systems employing shadowing. 
The ssssss field is initialized to 000000. The ssssss field should be 
modified to the module ID of the actual spouse before the married bit 
is set in the State register (MCU Register 06). Once a MCU is married 
to its spouse, this register must be treated as read-only. 
Furthermore, interconnect reads of this register will return different 
values since the married pair is performing Ping-Pong operation and 
since the spouse IDs of the primary and shadow are different. 

The value of the ssssss field is matched against the reported module ID 
of an error report to determine if its spouse has an error. If the 
spouse has reported a permanent module error, this MCU will divorce 
itself (clear the married bit in the State register, MCU Register 06) 
and assume responsibility for all future activities of the module. 
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15 

MCU Register 06 
State 

H 
W W 

I a a 

1 1 10 9 8 

I xxxxx I w I f I i 

H HHHH H 
\-/ W W 

CCCC 

a 0101 a a 

7 6 3 2 a 

I e I bbbb I x I s I m I 
L 

iAPX 432 Interconnect ARM 

H: Hardware-alterable 
W: Writeable by 

interconnect access 
C: Conditional 

writeability 
I: Setup during 

ini tialization 

Married 
Shadow 
Reserved 
Bus state 
Memory enabled 
Four-way bus 
Interleave mode 
Force staging 
Warm start INIT 
Reserved 

The m field contains the married bit, which indicates whether this MCU 
is married (m:1) to another MCU to form a Primary/Shadow pair. Before 
the m bit is set, the spouse ID (MCU Register 04) must be configured 
with the module ID of the MCU which is the spouse. When a MCU is 
married, it performs in the following manner. 

• The married MCU checks error reports of permanent module errors to 
determine if the module ID of the reporter is the same as that of 
its spouse. If the MCU detects that a permanent module error has 
occurred in its spouse, the MCU will reset the married bit. 

• The MCU and its married spouse begin a Ping-Pong operation in which 
the partners alternately handle memory replies. The designated 
primary MCU will handle the first reference. Even though they are 
married, the primary and shadow MCUs respond individually to 
interconnect accesses, since each MCU contains the unique ECC error 
log information for the storage array it controls. 
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• Married MCUs do not operate in lock step because the acti vi ty in 
their separate storage arrays (ECC errors, refreshing, and 
scrubbing) is not identical. Ping-Pong operation keeps the married 
MCU pair in loose synchronization, since their alternating replies 
are ordered by the sequence of ordered memory bus requests. 

The s field indicates whether the MCU module will become the shadow 
(s=1) or the primary (s=O) when the married bit is set (m=1). 

The bbbb field contains the bus state code. The individual bits of the 
bbbb field have the following names: 

• Bit 0 Enable Normal (EN) 

• Bit Enable Backup (EB) 

• Bit 2 -- Backup's Enable Normal (BEN) -- a copy of the enable 
normal bit for this bus's back-up bus 

• Bit 3 -- Backup's Enable Backup (BEB) -- a copy of the enable 
back-up bit for this bus's back-up bus 

EN and BEN are loaded with the value of SLAD12 (REDUNDANT BUS enable) 
during the D1 phase of MCU initialization. Thus, an MCU without a 
redundant bus is initialized to the value bbbb=OOOO, and an MCU with a 
redundant bus is initialized to the value bbbb=O 101. The seven valid 
combinations of the bbbb field are indicated in Table C-4. 

Table C-4. Bus State Codes 

bbbb Field 
State Interpretation 

BEB BEN EB EN 

0 0 0 0 0 Null State. 
0 0 0 1 1 This Node's Normal Bus Is Up. 
0 1 0 0 2 This Node's Back-up Bus Is Up. 
0 1 0 1 3 Normal Four-Way Address Interleaving Mode. 
1 0 1 0 4 Interchanged Four-Way Address Interleaving. 
1 1 0 0 5 Normal Bus Is Down. 
0 0 1 1 6 Back-up Bus Is Down. 
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In states 2, 4, and 5 above, an MCU will operate on its back-up bus. 
In all other states, an MCU will operate on its normal bus. In state 
0, the null state, the MCU does not participate in any memory accesses 
but continues to respond to interconnect accesses. The response of an 
MCU to the commands Attach, Detach, and Interchange depends on the bus 
state, the device type (fault-tolerant or standard), and the system 
configuration (four-way, redundant bUs). The state transitions of the 
bus state field are described in Appendix E. 

The i field indicates whether four-way bus interleaving (i=1) is being 
employed in the system. The MCU bases some bus switching decisions on 
the value of the i field. 

The f field indicates whether the MCU is to stage data (f= 1) for all 
memory read accesses or return data immediately (f=O). When data 
staging is forced (f=1) the MCU performs a storage array read and ECC 
correction before any data is returned by means of the memory bus. 

When no data staging is forced (f=O) the MCU performs a storage array 
read and immediately returns data before ECC correction is performed. 
In this case, the BIU that requested the data must buffer it and await 
a possible error report from the MCU before returning the data to the 
processor that requested it. Should the MCU detect an ECC error, the 
BIU would be informed by means of an error report and might retry the 
access. On the retry, the MCU will stage data automatically. 

The w field indicates whether the last INIT pulse was a warm start 
(w= 1) or a cold start (w=O). The w field is loaded from the value on 
the MACD11 pin during INIT. A warm start will not change the state of 
the Refresh Address Decrementer regi ster, the Refresh Interval 
Decrementer register, the Spare Bit Select register, or the Array Error 
Log register. 
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MCU Register 07 
Diagnostic 
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MCU Register Summary 

W: Writeable by interconnect access 
Setup during initialization 

Disable MACD bus parity detection 
Disable recovery 
Toggle master/checker role 
Disable error report 
Disable scrub report and log 
Disable ECC error reporting 
Disable MACD bus FRC detection 
Disable SLAD bus FRC detection 
Disable ECC access correction 
Enable scrubbing 
Disable refresh 
Enable continuous refresh 
Enable bus state modification 
Test mode 
Reserved 

The a field determines if detection of MACD bus parity errors is to be 
disabled (a=1) or enabled (a=O). 

The b field determines whether the MCU is to disable (b= 1) or enable 
(b=O) its fault recovery mechanisms. If fault recovery is disabled, 
the MCU wi 11 continue to report and log errors; but automatic bus 
switching is not allowed (except for the explicit Bus Interchange 
command). The value of the c field allows software to modify the 
master/checker FRC relationship from the one that was set on 
initialization. 

The c field determines whether the MCU should operate with a reversed 
(c=1) or an assigned (c=O) FRC master/checker role. For example, an 
MCU that was assigned on initialization to act as a master FRC device 
can be commanded to reverse roles (c=1) and operate as a checker. This 
capabili ty allows software to swap master and checker MCUs to verify 
correct operation of the original checker. 

The d field determines whether the MCU disables (d=1) or enables (d=O) 
error reporting. When error reporting is disabled, the MCU will 
continue to log its own errors and receive error reports from other 
agents. 
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The e field determines whether the MCU disables (e=l) or enables (e=O) 
the logging and reporting of ECC errors that occur while scrubbing 
memory. The reporting and logging of scrub errors might be disabled 
(e= 1) to stop the reports of a known hard-bit failure in the storage 
array, which will be detected on each scrubbing pass. 

The f field determines whether the MCU disables (f=l) or enables (f=O) 
the reporting of correctable and uncorrectable ECC errors. 

The g field determines whether the MCU disables (g=l) or enables (g=O) 
the detection of FRC errors on the memory address, control, and data 
(MACD) bus. 

The h field determines whether the MCU disables (h=l) or enables (h=O) 
the detection of FRC errors on the SLAD bus. 

The i field determines whether the MCU disables (i=l) or enables (i=O) 
ECC access correction. If ECC access correction is disabled (i=l), the 
MCU will not correct data read from the storage array, although 
detected ECC errors will continue to be reported and logged. For write 
accesses (a read-modify-write cycle in the storage array), an MCU with 
its ECC correction disabled (i=l) operates in the following manner: 
read the storage array with no ECC correction on data, form the 
composite data (modify), write the composite data to the storage array 
with the new ECC code (if an uncorrectable error did not occur -- see 
the j field for more details). 

The j field determines whether the MCU enables (j=l) or disables (j=O) 
scrubbing of the storage array. The j field also controls whether the 
wri te portion of a storage array RM\i cycle should be aborted when an 
uncorrectable error is detected in the read portion of the access. 
When j=l, an uncorrectable error in the read cycle of the request will 
be logged and reported and the write cycle will be aborted. When j=O, 
an uncorrectable error will be logged and reported but the write cycle 
will not be aborted. 

The k field determines whether the MCU disables (k=l) or enables (k=O) 
refreshing of the storage array. 

The 1 field determines whether the MCU enables (1=1) or disables (1=0) 
continuous refreshing of the storage array. Continuous refresh forces 
a refresh cycle whenever the storage array is not being accessed. 
Access to the storage array is permitted on a priority basis. 
Continuous refresh cycles (lowest priority) have less priority than 
memory bus accesses. Memory bus access cycles have less priority than 
refresh cycles that are requested by expiration of the refresh interval 
decrementer. 

The m field determines whether the MCU enables (m=l) or disables (m=O) 
modification of the bus state field in the state register (MCU Register 
06). The t field is used by Intel for testing purposes. A user must 
never set the t field to a one. 
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MCU Register 08 
Timeout Duration 
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H: Hardware-alterable 
W: Writeable by interconnect access 

Setup during initialization 

Timeout duration MSB 
MSB of the 24-bit timeout decrementer 

A timeout decrementer is used to regulate bus timeouts and the 
transient error window. When a timing function begins, the MCU loads 
the 24-bit timeout decrementer. The value from the timeout duration 
MSB field is loaded into the most significant 8 bits of the 
decrementer, and the value 128 is loaded into the least significant 16 
bits. As the decrementer operates, the value of the 8 most significant 
bits may be read from bits 8 through 15 of the Timeout Duration 
register. 

During initialization, the timeout duration MSB is set to the value 
zero. Thus, the shortest timeout (128 clock cycles) will be employed 
during the period when the system configuration is being determined. 
Once configuration is complete, the timeout duration must be lengthened 
so that normal accesses may complete before the decrementer has expired. 
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MCU Register 09 
Memory Start and End 
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W: Writeable by interconnect access 
Setup during initialization 

Memory start address 
Memory end address 

The memory start address and the memory end address define the range on 
the most significant 8 bits of the 24-bit memory bus address, which the 
MCU will recognize as an access request. Note that the 24-bit memory 
bus address is not necessarily the same as the physical address from 
the processor since a BIU may have modified the address for 
interleaving. 

The first memory bus address supported by the MCU is defined by the 24 
bit address: 

23 16 15 o 

ssssssss 0000000000000000 MCU memory bus starting address 

The last memory bus address supported by the MCU is defined by the 24 
bit address: 

23 16 15 o 

I eeeeeeee I 1111111111111111 I MCU memory bus ending address 

Thus, if the memory start and end addresses are identical, the memory 
size is 64K bytes. 
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MCU Register OA 
Spare Bit Select 

xxxxxxxxxx 
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W: Writeable by interconnect access 
Setup during initialization 

Spare bit select 
Reserved 

The spare bit select field specifies the bit position in the storage 
array which is to be replaced with the spare RAM chip. With the spare 
RAM chip, the MCU can be commanded to repair any single hard failure in 
the storage array. When a cold INIT occurs, the MCU sets the spare bit 
select field to 63 (all ones) to signify that no spare RAM chip is 
selected. 

Physically, the storage array must be organized in the following manner. 

6 

38 
39 

o 
31 

32 31 
33 32 

o 
o 

o 

I eeeeeee I dddddddddddddddddddddddddddddddd I s I 
L 

ECC position 
Data position 
Swap code 
RAM chip 

Spare bit 
32-bit data 

~----------------------------------------- ECC bits 

The sssssss field must be programmed with the swap code for the RAM 
chip that is to be replaced. For example, sssssss=OOOOOOO (swap code 
0) will cause the MCU to replace data bit 0 (RAM chip 1) with the spare 
RAM chip. With sssssss=0100000 (swap code 32) the MCU will replace ECC 
bit 0 (RAM chip 33) with the spare RAM chip. 
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!-ICU Register OB 
Array Low-Order Address 

W~~W W: Writeable by interconnect access 
MACD15 .. 0 Setup during initialization 

15 0 

~---------Low-order address 

The 16-bi t low-order address is the least significant 16 bits of a 
20-hit address used by the MCU to perform a Clear Location, Access ECC 
Bi ts, or Access Data command. The most significant 4 bits of the 
20-bit address are contained in the Array High-Order Address register 
(MCU Register OC). 

When IN IT occurs, the Array Low-Order Address register is loaded with 
the 16 bits on the MACD bus. MACD11 (warm-start bit) and MACD10 •. MACD8 
(bus number) have assigned roles but the remainder may be defined by 
the user. 

The Array Low-Order Address register may also be used as a 
general-purpose 16-bit register. 
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MCU Register DC 
Array High-Order Address 
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W: Writeable by interconnect access 
Setup during initialization 

High-order address 
Reserved 

The high-order address field contains the most significant 4 bits of a 
20-bi t storage array address used by the MCU to perform the Clear 
Location, Access ECC Bits, and Access Data commands. The low-order 16 
bi ts of the 20-bi t storage array address are provided by the Array 
Low-Order Address register (MCU Register DB). 

The high-order address field is set to zero when INIT occurs. 

Recall that the address presented to the MCU on the MACD bus may be 
different from the address that a BIU receives (from its associated 
processor) if the BIU is performing interleaving. 
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MCU Register DD 
Array Error Log-Low 

HHHHHHHHHHHHHHHH H: Hardware-alterable 
15 D 

Low-order error address 

iAPX 432 Interconnect ARM 

The 16-bit low-order error address is the least significant 16 bits of 
the 2D-bit storage array address at which an ECC error occurred. The 
Array Error Log-High register (MCU Register DE) contains additional 
information about the ECC error. 
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MCU Register Summary 

H: Hardware-alterable 
W: Writeable by 

interconnect access 
Setup during cold 
initialization 

High order error address 
Correctable error 
Uncorrectable error 
Additional unlogged error 
FBE executed 
ECC error syndrome 
Scrub error logged 

The high-order error address contains the most significant 4 bits of 
the 20-bit storage array address at which the error occurred. The high 
order error address is set to zero when INIT (cold initialization) 
occurs. The least significant 16 bits of the storage array address are 
contained in the Array Error Log-Low register (MCU Register aD). 

The c field indicates if a correctable ECC error (c= 1) has occurred. 
Correctable errors may arise from single-bit errors in either the data 
or the ECC fields of the storage array. Single-bit errors in the 
address field are considered uncorrectable errors. 

The u field indicates if an uncorrectable ECC error (u=1) has occurred. 
Uncorrectable errors arise either from double-bit errors in the data or 
ECC fields of the storage array or from single-bit errors in the 
address field of an access. The single-bit address errors are fixed by 
a retry of the access by the BIU that requested it. 

When the MCU detects an ECC error (either correctable or uncorrectable) 
the storage array address of the error is latched into the Error Log 
register along with the ECC syndrome bits and an indication if the 
error was caused by a scrubbing operation (s = 1) or a normal memory 
access (s=O). 
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The a field (additional unlogged error) indicates if two or more ECC 
errors have occurred (a=l) before software has serviced the error log. 
The MCU sets the a field to one when an ECC error occurs, and either 
the c field or the u field is already set to one. The MCU inhibits new 
error address, syndrome information, and scrub indicator from being 
loaded into the Error Log register so that the information about the 
first ECC error is retained. 

The f field indicates when a Force Bad ECC (FBE) command has been 
executed (f= 1). The ECC syndrome field will contain all ones for an 
error logged as a result of the FBE command. 

The eeeeeee 
calculated 
encountered. 

field contains the ECC 
for the storage array 

error syndrome 
location where 

bits which 
the error 

were 
was 

The s field indicates if the ECC error occurred during the scrubbing of 
a storage array location (s= 1). If an ECC error occurred, but was 
associated with a normal memory access, the scrub error logged field 
will be cleared (s=O). 
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15 

MCU Register OF 
Refresh Interval 
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W: Writeable by interconnect access 
Setup during initialization 

~--- Refresh interval count 
Reserved 

The refresh interval count determines the nominal time between refresh 
cycles for the storage array. When the refresh interval decrementer 
(MCU Register 10) counts to zero, the decrementer is reloaded with the 
refresh interval count (rrrrrrrr field). Each MCU component clock 
cycle decrements the count in MCU Register 10. 

Upon initialization, the refresh interval count is loaded with the 
binary value 01001101 (77 decimal). This value will provide the 
storage array RAM chips with 128 refresh cycles about every 2 
milliseconds (exactly 1.9712 milliseconds) for an MCU that is operated 
with a 5-MHZ clock. Any changes in the MCU component clock or the type 
of RAM chip refresh cycles requires that software modify the refresh 
interval count from the default value. 

If it is necessary that memory data be preserved during initialization, 
the length of IN IT must be included in the calculation for the revised 
refresh interval. The HCU will not refresh the storage array during 
INIT. Furthermore, the MCU will not begin the INIT sequence until it 
completes any storage cycle that may be in progress. For example, when 
using a 5-MHz (200-nanosecond) MCU with 64K dynamic RAMs with 128 
cycle/2 millisecond refreshing, the MCU must perform 128 refresh cycles 
in each refresh period. The time available for refresh in each refresh 
period is: 

Time For Refresh = (2 milliseconds) - time (INIT) - time (write cycle). 

The refresh interval value for this example would be calculated: 

Refresh Interval = Integer ((Time For Refresh/128) / 200 nanoseconds). 

C-25 



MCU Register Summary iAPX 432 Interconnect ARM 

i1CU Register 10 
Refresh Interval Decrementer 

HHHHHHHH H: Hardware-alterable 
WWWWWWWW W: Writeable by interconnect access 

15 8 7 0 

xxxxxxxx 

Refresh interval 
Reserved 

The rrrrrrrr field indicates the number of MCU component clocks 
remaining until the next refresh request. 

This register holds its current value (does not decrement) during 
initialization. After initialization, the Clear Memory command must be 
issued to load the Refresh Interval register into the refresh interval 
decrementer. This preconditioning of the refresh interval decrementer 
must be performed in a FRC system before it can be read error-free. 

Note that the disable refresh field in the Diagnostic register (MCU 
Register 07) does not disable the decrementation of the rrrrrrrr 
field. Only refresh requests from the decrementer are disabled. 
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MCU Register 11 
Array Address Size 
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W: Writeable by interconnect access 
I: Initialized from SLAD bus 

Reserved 
~------------- Array address size 

Reserved 

The ssssss field specifies the amount of memory which is scrubbed by 
the MCU. The Array Address Size register works in conjunction with the 
refresh address decrementer (MCU Register 12). 

The ssssss field is loaded into the top 6 bits of the 20-bit refresh 
address decrementer when the decrementer count reaches zero or when the 
Clear Memory command is issued. The low-order 14 bits of the refresh 
address decrementer are all set to one when the decrementer reloads. 
The ssssss field value plus one specifies the number of regions (each 
containing 16K storage array locations) that will be scrubbed. 

The ssssss field is loaded from the SLAD15 •• SLAD10 field of the SLAD 
bus during the D1 phase of MCU initialization 
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MCU Register 12 
Refresh Address Decrementer 
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H: Hardware-alterable 
A: Alterable by Clear Memory command 
tv: Writeable by interconnect access 

~------ Refresh address decrementer 
least significant 14 bits 

~------------------ Reserved 

The least significant 14 bits of a 20-bit refresh address decrementer 
are accessible through this register. The upper 6 bits of the refresh 
address decrementer may be cleared by an interconnect access 
double-byte write to MCU Register 12. (A byte write to this register 
will modify only a portion of the register.) The upper 6 bits of the 
refresh address decrementer are loaded from the Array Address Size 
register (MCU Register 11) during cold-start initialization, each time 
the decrementer reaches the count of zero, and whenever the Clear 
Memory command is issued. The Clear Memory command also loads the 
least significant 14 bits of the refresh address decremeter with all 
ones. 
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MCU Register 14 
Access Data-Low Command 

WWWWWWWWWWWWWWWW W: Writeable by interconnect access 
15 0 

Array data low 

Interconnect access of MCU Register 14 commands the MCU to read or 
write the least significant 16 bits of one of the 32-bit storage array 
locations. The Array Low-Order Address (MCU Register OS) and the Array 
High-Order Address (MCU Register OC) specify the location of the 
storage array which is to be accessed. 

For an interconnect read of MCU Register 14, the storage array is read 
and the least signi ficant 16 bits of data are returned with no ECC 
correction taking place. This allows direct access to the least 
significant 16 bits of the storage array location. Any errors detected 
during the operation will be logged and reported. 

For an interconnect write to MCU Register 14, the storage array is read 
and any errors in the most significant 16 bits of the location are 
corrected. Then the composite 32-bit value is written to the array 
with correct ECC bits. Any errors detected during the operation will 
be logged and reported. 

Recall that ECC correction and the reporting of ECC errors can be 
disabled via the Diagnostic register (MCU Register 07). 
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MCU Register 15 
Access Data-High Command 

WWW\OOJWWVIWWWWWWW W: Wr i teable by interconnect access 
15 0 
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~-------- Array data high 

Interconnect accesses to MCU Register 15 command the MCU to read or 
wri te the most significant 16 bits of one of the 32-bi t storage array 
locations. The Array Low-Order Address (MCU Register DB) and the Array 
High-Order Address (MCU Register DC) specify the location of the 
storage array to be accessed. 

For an interconnect access read of MCU Register 15, the storage array 
is read, and the most significant 16 bits of data are returned with no 
ECC correction taking place. This allows direct access to the most 
significant 16 bits of the storage array location. Any errors detected 
during the operation will be logged and reported. 

For an interconnect access write to MCU Register 15, the storage array 
is read and any errors in the least significant 16 bits of the location 
are corrected. Then the composite 32-bit value is written to the array 
wi th correct ECC bits. Any errors detected during the operation will 
be logged and reported. 

Recall that ECC correction and the reporting of ECC errors can be 
disabled via the Diagnostic register (MCU Register 07). 
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MCU Register 16 
Access ECC Bits Command 

~vWW\fWW1v W: Writeable by interconnect access 
15 7 6 0 

xxxxxxxxx 

ECC bits 
~-------------- Reserved 

The Access ECC Bits command may be used to directly access the 7 ECC 
bi ts associated with each location in the storage array. The Array 
LO\r/-Order Address (MCU Register OB) and the Array High-Order Address 
(MCU Register OC) specify the storage location to access. 

An interconnect access read of MCU Register 16 causes the MCU to read 
the storage array with no ECC checking or correction. The value of the 
ECC bits for the addressed storage location is returned by means of a 
memory bus reply. 

An interconnect access write to MCU Register 16 causes the MCU to read 
the storage array, check and correct the 32 bits of data, and then 
write the ECC bits provided by the interconnect access to the storage 
array with the data. 
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MCU Register 17 
Toggle Normal and Back-up Bus Command 

An interconnect access write to MCU Register 17 will cause the MCU to 
toggle the middle bit of the bus ID field of the Interconnect Device ID 
register (MCU Register 02). The value of the data written to MCU 
Register 17 is ignored. 

The MCU will perform the command by the following sequence of 
operations: 
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• Immediately acknowledge acceptance of the command by means of 
the memory bus 

• Internally modify the middle bit of the bus ID field, thereby 
switching to the alternate bus 

• Report a "toggle error" on the bus to flush the bus pipeline 
and cause each outstanding access to be retried 
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MCU Register 18 
Clear Memory Command 

MCU Register Summary 

An interconnect access write to MCU Register 18 causes the MCU to clear 
the storage array by writing data zeroes to all locations. The MCU 
utilizes the refresh address decrementer to generate the required 
sweeping address sequence. 

The MCU performs the Clear Memory command in the following sequence: 

• Immediately acknowledge the acceptance of the command via a memory 
bus reply. 

• Load the array address size (MCU Register 11) into the most 
significant 6 bits of the 20-bit refresh address decrementer. Load 
ones into the least significant bits of the 20-bit refresh address 
decrementer. Load the Refresh Interval register (MCU Register OF) 
into the refresh interval decrementer (partly accessible by means 
of MCU Register 10). 

• Clear all storage locations. 

The value of the data that accompanies the interconnect access write to 
MCU Register 18 is ignored. Though it will continue to accept memory 
requests until the MACD pipeline is filled, the MCU will not reply to 
the requests until the Clear Hemory command has been completed. 

The user must guarantee that the Timeout Duration register (MCU 
Register 08) contains a sufficient time length for this operation to 
complete. 
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MCU Register 19 
Clear Location Command 

An interconnect access write to MCU Register 19 causes the MCU to clear 
one location of the storage array. The storage location to be cleared 
is specified by a 20-bit address formed from fields of the Array 
High-Order Address register (MCU Register OS) and the Array Low-Order 
Address register (MCU Register OA). The addressed location is cleared 
by writing a zero to each of the 32 data positions and by computing and 
storing 7 ECC bits (based on the 32 bits of data and 20 bits of storage 
array address). The data that accompanies the intclconnect access 
write is ignored by the MCU. The interconnect access write is 
acknowledged by means of the memory bus after the Clear Location 
command has been performed. 
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MCU Register 18 
Test Detection Command 

An interconnect access read of MCU Register 18 causes the MCU to 
execute the Test Detection command. This command may be issued to 
check that all the detection circuits (FRC circuits. MACD bus parity 
circuits. and buffer checking circuits) are operating correctly. 

The FRC circuits contain comparators (exclusive-OR gates) that check 
that the external signals bear the same information that internal 
circuits computed. The MCU tests the FRC circuits by issuing 
information on its external signal paths. providing the complement of 
the information to internal FRC circuits. and checking that all FRC 
comparators indicate an error. The MCU checks the MACD bus parity bits 
and the buffer checking logic in a similar fashion. 

The MCU exercises the storage array side signals by issuing a storage 
array read of the location addressed by the contents of the Array 
High-Order Address (MCU Register OC) and the Array Low-Order Address 
(MCU Register 08). The MCU exercises the memory bus signals. including 
parity. by returning the 2 least significant bytes of the data returned 
from the storage array. 

If any FRC comparator fails to indicate an error or the buffer checking 
logic fails. the MCU will issue a MODULE ERROR error report. Otherwise 
the MCU will issue a NO ERROR error report. 
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MCU Register 1C 
Test Report Command 

iAPX 432 Interconnect ARM 

An interconnect access write to MCU Register 1C causes the MCU to 
execute the Test Report command. The MCU acknowledges the command by 
means of a memory bus reply before the command is executed. The MCU 
performs this command by sending the TEST REPORT error report by means 
of the Module Error Report Line (MERL) and Bus Error Report Line (BERL) 
circuits. The least significant bit of the data associated with the 
interconnect access write controls whether the master (MACDO = 0) or 
the checker (MACDO = 1) generates the report. 
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MCU Register 1D 
Bus Interchange Command 

An interconnect register write to MCU Register lD causes all nodes in 
the system to interchange buses, i. e., to switch to thei r redundant 
buses. This command allows software to test that each bus, and its 
error recovery mechanisms, is working correctly. If a bus does not 
have a back-up bus, the command has no effect. 

The MCU will acknowledge receipt of the command, by means of a memory 
bus reply, before the command is executed. The MCU will transmit a BUS 
INTERCHANGE error report after the command is executed. The error 
report counters (cc field of the error report log, MCU Register 00) are 
cleared when a BUS INTERCHANGE error report is recei ved. The data 
associated with the interconnect register write is ignored. 

C-37 



MCU Register Summary 

MCU Register lE 
Detach Command 

iAPX 432 Interconnect ARM 

An Interconnect register write to MCU Register lE detaches 
(deactivates) the bus to which the MCU is attached. The MCU will 
acknowledge receipt of the commmand before executing it. The MCU will 
issue a DETACH error report after the command is performed. When a bus 
is detached, it can no longer support memory requests, but it will 
continue to support interconnect access requests. The data associated 
with the write to this interconnect register is ignored. 

The Detach command allows software to perform exactly the same recovery 
sequence that the hardware automatically follows if it detects a 
permanent bus error. 
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MCU Register IF 
Attach Command 

MCU Register Summary 

When an Interconnect register write is performed on MCU Register IF, 
the MCU will attach (activate) a bus which had previously been out of 
service. The Attach command can be issued only to an ~1CU that is 
operating on a working back-up bus. 

The MCU acknowledges receipt of the command, by means of a memory bus 
reply, before it is performed. The MCU transmits an ATTACH error 
report after the command is completed. The data associated with the 
write to this interconnect register is ignored. 
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APPENDIX D 
EXTERNAL INITIALIZATION 

Appendix D describes the information that each BIU and MCU acquires 
from external logic when the device is initialized. This information 
transfer allows the required configuration data and optional 
customer-defined parameter s to be loaded into fields of Interconnect 
registers in order to specify the actual hardware environment. Once 
the devices are ini tiali zed, the information may be accessed by the 
usual Interconnect register operations. 

For each component type, the physical location of each field of the 
initialization parameters is presented. Then a cross-reference is 
provided to locate the destination field in the interconnect registers 
that receive the parameters. Further information about initialization 
is provided in the applicable register descriptions for the BIU 
(Appendix B) and MCU (Appendix C). 
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BIU EXTERNAL INITIALIZATION PARAMETERS 

During ini tiali zation, the BIU acquires ini tiali zation parameters that 
are present on its processor side (ACD15 •• ACDO signals) and its memory 
bus side (MACD15 •• MACDO signals). 

On the processor-side, the BIU acquires the following information. 

15 8 7 6 5 

IIIIIIII 

3 2 o ACD signals 

Master 
Module ID pari ty 
Reserved 
Processor type 
Board type 
Processor ID 

On the memory bus side, the BIU acquires the following information. 

15 11 10 8 7 o MACD signals 

Reserved 
L-____________ Bus ID 

Reserved 

Two valid memory bus parity bits must also be presented to the BIU that 
receives this data. 

D-2 



iAPX 432 Interconnect ARM External Initialization 

BIU INITIALIZATION PARAMETER DESTINATIONS 

The BIU initiali zes various fields of its interconnect registers with 
fields of the initialization parameters. 

The 16-bit value on MACD15 .• MACDO is loaded into the Test Detection 
Data register (BIU Register OB). 

The M field is loaded into the internal master flip-flop, which 
determines if the BIU is to be a master (M=l) or checker (M=O) device 
for FRC purposes. The state of the master flip-flop may not be read by 
interconnect register access. The master/checker role of the BIU may be 
reversed from this assigned role by setting the Toggle Master/Checker 
bit in the BIU Diagnostic register (BIU Register 07). 

The E field is loaded into an internal flip-flop in the BIU. This 
flip-flop contains the even parity bit for the module ID. 

The PPP field is loaded into the Processor Type field of the 
Interconnect Device Type register (BIU Register 01). 

The TT field is loaded into the Board Type field of the Interconnect 
Device Type register (BIU Register 01). 

The 11111111 field is loaded into the processor ID field of the 
Processor ID register (BIU Register OA). The least Significant 6 bits 
of the 11111111 field (ACD13 •• ACD8) are loaded into the module ID field 
of the Interconnect Device ID register (BIU Register 02). The least 
significant 6 bits of the 11111111 field (ACD13 •• ACD8) are also loaded 
into the logical ID field of the Logical ID register (BIU Register 04) 
in reversed bit order. The BBB field is loaded into the Bus ID field 
of the Interconnect Device ID register (BIU Register 02). 

Any information present in reserved fields of the external parameters 
is ignored by the BIU. 
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MCU EXTERNAL INITIALIZATION PARAMETERS 

The MCU acquires external initialization parameters from both its 
memory bus side (MACD15 .• MACDO signals) and its storage array side 
(SLAD19 •• SLADO signals) during ini tiali zation. The storage array side 
information is presented in two phases (D1 and D2). 

On the memory bus side, the MCU acquires the following information. 

15 12 11 10 8 7 a l'1ACD signals 

Customer-defined value1 
Bus ID 

~----------------- Warm start 
Customer-defined value2 

The 2 valid MACD bus parity bits mu~t also be presented to the MCU when 
the above data is generated. 

On the storage array side, the MCU acquires the following information. 

19 1817 1615 14 9 8 7 6 

I x I TT f BB I AAAAAA I x I p I 

19 5 4 3 2 

xxxxxxxxxx 

a SLAD signals during D1 

14MMMMM I x I 

a 

L Reserved 
Module ID 
Module ID parity 
Reserved 
Storage array size 
Board type code 
Partial RAH type 
Reserved 

SLAD signals during D2 

RAM type 
RAM speed 
Boundary check 
E field 
Speed read 

~------------------------- Reserved 
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MCU INITIALIZATION PARAMETER DESTINATIONS 

The MCU loads fields of the ini tiali zation parameters into specific 
fields of its interconnect registers. 

The value on MACD15 •• MACDO is loaded into the Array Low-Order Address 
register (MCU Register OB). 

The BBB field is loaded into the Bus ID field of the Interconnect 
Device ID register (MCU Register 02). 

The W field is loaded into the Warm-Start INIT field of the State 
register (MCU Register 06). 

The MMMMHM field is loaded into the module ID field of the Interconnect 
Device ID register (MCU Register 02). 

The P field is loaded into the module ID even parity field of the 
Interconnect Device ID register (MCU Register 02). 

The AAAAAA field is loaded into the array address size field of the 
Array Address Size register (MCU Register 11). 

The BB field is loaded into the board type code field of the 
Interconnect Device Type register (MCU Register 01). 

The TT field is loaded into the partial RAM type field of the 
Interconnect Device Type register (HCU Register 01). 

The RR field is loaded into the RAM type field of the Interconnect 
Device Type register (MCU Register 01). 

The S field is loaded into the array speed field of the Interconnect 
Device Type register (MCU Register 01). 

The C field is loaded into the boundary check field of the Interconnect 
Device Type register (MCU Register 01). 

The E field is loaded into the E field of the Interconnect Device Type 
register (MCU Register 01). 

The R field is loaded into the speed read field of the Interconnect 
Device Type register (MCU Register 01). 

Any information presented in reserved fields of the external parameters 
is ignored by the MCU. 

D-5 





INTRODUCTION 

APPENDIX E 1 
ADDRESS FORMATS 

Appendix E describes the format of addresses in the interconnect 
archi tecture. The interconnect architecture supports three distinct 
address spaces: the P-local (processor-local) , N-local (general 
interconnect register access), and physical memory address space. 

P-LOCAL ADDHESSES 

The P-local (short for Processor-local) address space is independent of 
the Interconnect system-and allows a processor to obtain its processor 
ID and to use the interprocessor communication (IPC) facility. The 
P-local address space is normally accessed only by an iAPX 432 
processor. The format of a P-local address, appearing on the ACD bus 
between a processor and its associated BIU follows: 

23 21 20 8 7 

xxxxxxxxxxxxx 

o 

P-local address format 

Processor register 
Reserved 
P-local designator 

The RRRRRRRR field indicates which processor register is to be 
accessed. Currently, two of the RRRRRRRR codes are assigned and the 
remainder are reserved. RRRRRRRR=OOOOOOOO provides access to the 
processor ID register, which is also accessible as BIU Register OA of 
the N-local address space. RRRRRRRR=00000010 provides access to IPC 
regi ster, which is also accessible as BIU Regi ster OC 0 f the N-local 
address space. P-local accesses are generated by specifying the 
P-local address format with the iAPX 432 Move to Interconnect and Move 
from Interconnect instructions. 
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N-LOCAL ~DDRESSES 

The N-Iocal (short for Node-local) address space provides access to 
interconnect registers in any interconnect component located at a node 
in the system. The format of an N-Iocal address, as it appears on the 
ACD bus and on the MACD bus, follows: 

23 21 20 15 14 10 9 7 6 o 

I 111 I xxxxxx J RRRRR 1 BBB I MMMMMM I b , 

L 
N-Iocal address format 

Byte select 
Module 
Bus 
Register 
Reserved 
N-Iocal designator 

The byte select field indicates if the access is to begin on the even 
(b=O) or odd (b=1) interconnect address boundary. 

The module field indicates which module is addressed. The module 
address of -"Ill ones (111111 binary or 63 decimal) is reserved as the 
"my-BIU" address and allows direct access to registers in the same 
module as the processor. Access of a "my-BIU" address does not 
generate a memory bus interconnect register access. 

The bus field indicates which bus is to be used for the access. 

The register field corresponds to the number of the interconnect 
register to be accessed. For example, the Interconnect Device ID 
register (BIU Register 02 or MCU Register 02) of an interconnect 
component is accessed with RRRRR=00010. 

N-local accesses are generated by specifying the N-Iocal address format 
wi th the iAPX 432 Move to Interconnect and Move from Interconnect 
instrllct.ions. 

PHYSICAL MEMORY ADDRESSES 

The physical memory address format is a 24-bi t binary byte address. 
Note that a memory address from a processor may be modi fied by a BIU 
before it is presented to the memory bus if interleaving is used. 

23 0 

AAAAAAAAAAAAAAAAAAAAAAAA Physical Memory Address Format 

'------- Physical f1emory Address 
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APPENDIX F I 
MEMORY BUS 

Appendix F describes the iAPX 432 interconnect system memory bus and 
the protocol that governs communication between iAPX 432 BIUs and 
MCUs. First, the memory bus message formats are described. Then, the 
algorithms that regulate the use of the memory bus are provided. 
Finally, the state diagrams that describe automatic bus switching are 
presented. 
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MEMORY BUS MESSAGE TYPES 

There are three categories of memory bus messages: 

1. Requests 
2. Replies 
3. Bus Notifications 

Each BIU and MCU on a memory bus maintains a three-level pipeline of 
unsatisfied requests. Each memory bus request message deposits one 
entry into the pipeline. Each memory bus reply message removes one 
entry from the pipeline. The entries in the pipeline are serviced on a 
first come-first served (FCFS) basis. The order of requests and 
replies is always rigorously preserved. Bus notification messages do 
not affect the state of the pipeline. 

The format for each of the three memory bus message types is presented 
in the following pages. The message format tables indicate the values 
on the high- and low-order byte positions of the memory bus (MACD 
signals). and the corresponding bus control code for each step in a 
message transfer. The progression of time (0 •• C-1 where C is the 
number of bus cycles required to complete the message) is indicated in 
the T field of the tables. 

The following abbreviations are used in the message format tables: 

F-2 

MADRB(n) - Memory Address Byte "n". 
DATAB(n) - Data Byte "n". 
IADRB(n) - Interconnect Address Byte "n". 
T - Bus Time. 
IDLE - Data bus is high-impedance. 
DDDDDDDD - Destination processor ID for 

interprocessor communication. 
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The eee field indicates the value of the three BUSeTL signals that 
control the activity on the memory bus. The activity of the eee field 
is indicated in the message format tables. The interpretation for the 
eee field follows. 

eee Interpretation 

111 Idle 

001 Request 
000 Request 

011 Reply 
010 Reply 
110 Reply 

101 Reply 

MAeD data bus is high-impedance. 

Normal. 
Last cycle warning. 

Normal. 
Last cycle warning. 
First cycle of write acknowledge. 
Non-data reply (last cycle significance). 
Last cycle of a RMW Read Reply. 

101 Other Other replies and acknowledges. 
100 Bus Notification 

: Last cycle warning. 

The LLLL field indicates the number of bytes of memory data to be 
transferred by a memory access. The encoding of the LLLL field follows. 

LLLL Memory Access Length 

0000 byte 
0001 2 bytes 
0010 3 bytes 
0011 4 bytes 
0100 5 bytes 
0101 6 bytes 
0110 7 bytes 
0111 8 bytes 
1000 9 bytes 
1001 10 bytes 
1010 11 bytes 
1011 12 bytes 
1100 13 bytes 
1101 14 bytes 
1110 15 bytes 
1111 16 bytes 
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The B field indicates the number of bytes of information to be 
transferred by an interconnect access. If B=O, 1 byte of Interconnect 
register data will be transferred. When B=O, the least significant bit 
of the 24-bit interconnect address indicates whether the upper or lower 
byte of the Interconnect register is to be transferred. If B= 1, 2 
bytes of Interconnect register data will be transferred. When B=1, the 
24-bit interconnect address must be aligned to a double byte boundary; 
i.e., the least significant bit of the interconnect address must be 
zero. 

The following tables summarize the information sequences for the three 
types of memory bus (or MACD bus) messages. Table F-1 describes the 
memory bus request message formats. Table F-2 describes the reply 
message formats. Table F-3 describes the bus notification message 
formats. 
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Table F-1. Memory Bus Request Message Formats 

Upper Lower 
CCC MACD Byte MACD Byte T Request Message 

2 0 15 8 1 0 

000 OOOOLLLL MADRB(2) 0 Memory Read Request 
001 MADRB(1) MADRB(O) 1 

000 0001LLLL MADRB(2) 0 Memory RMW Read Request 
001 MADRB( 1) MADRB(O) 1 

001 00 1 OLLLL MADRB(2) 0 Memory Write Request 
001 MADRB( 1) MADRB(O) 1 
001 DATAB( 1) DATAB(O) 2 

· · · · · · · · 000 DATAB(N-3) DATAB(N-4) C-2 
001 DATAB(N-1) DATAB(N-2) C-1 

001 0011LLLL MADRB(2) 0 Memory RMW Write Request 
001 MADRB(1) MADRB(O) 1 
001 DATAB( 1) DATAB(O) 2 

· · · · · · · · 000 DATAB(N-3) DATAB(N-4) C-2 
001 DATAB(N-1) DATAB(N-2) C-1 

000 0100000B IADRB(2) 0 Interconnect Read Request 
001 IADRB( 1) IADRB(O) 1 

001 0101000B IADRB(2) 0 Interconnect Write Request 
000 IADRB( 1) IADRB(O) 1 
001 DATAB( 1) DATAB(O) 2 
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Table F-2. Memory Bus Reply Message Formats 

Upper Lower 
CCC MACD Byte MACD Byte T Request Message 

2 0 15 8 7 0 

Read Replies 

010 DATAB( 1) DATAB(O) 0 Read Reply 
111 IDLE IDLE 1 1 or 2 Bytes 

011 DATAB( 1) DATAB(O) 0 Read Reply 

· · · · More than 2 Bytes 

· · · · 011 DATAB(N-5) DATAB(N-6) C-3 
010 DATAB(N-3) DATAB(N-4) C-2 
011 DATAB(N-l) DATAB(N-2) C-1 

RMW Read Replies 

010 DATAB( 1) DATAB(O) 0 Memory RMW Read Reply 
101 IDLE IDLE 1 

011 DATAB( 1) DATAB(O) 0 Memory RMW Read Reply 

· · · · · · · · 011 DATAB(N-3) DATAB(N-4) C-3 
010 DATAB(N-l) DATAB(N-2) C-2 
101 IDLE IDLE C-1 

Other 

110 11111111 11111111 0 Write Acknowledge 
111 IDLE IDLE 1 

110 11111111 11111110 0 Memory RMW Write Acknowledge 
111 IDLE IDLE 1 

110 11111111 11111100 0 Memory RMW Locked Read Reply 
111 IDLE IDLE 1 
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Table F-3. Memory Bus Notification Message Formats 

Upper Lower 
CCC MACD Byte MACD Byte T Bus Notification Message 
2 0 15 8 7 0 

100 00000000 DDDDDDDD 0 Interprocessor Communication 
111 IDLE IDLE 1 

100 11111111 11111111 0 RMW Enqueue 
111 IDLE IDLE 1 
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.2 CYCLES REMAIN 

>2 CYCLE REQUEST 

< -2 CYCLE REQUEST 

,. 2 BYTES· RMW 

,.. 2 BYTE REPLY 

< - 2 IIYTE REPLY 

WRITE ACKNOWLEDGE 

}tACO - OFFFFH 

RMW WRITE ACKNOWLEDGE 

HACD - OFFrEH 

RMW READ-LOCKED REPLY 

MACD • OFFrCH 

IPe 

NACD - ()(x)()()()()()DDDDDDDD 

IUS HOTIFlCATlON 

!tACD - OFFFFH 

NO IUS MESSAGE 

NEXT BUS MESSAGE SLOT 

Figure F-1. State Diagram for MACD Bus Messages/Control Codes ~ooo. 
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BUS SWITCHING 

The BIUs and MCUs in a system are capable of automatically switching 
memory buses when an error occurs. Each BIU and MCU contains a state 
machine that monitors the current state of the bus and of the error 
report logs to determine if and when to switch to an alternate bus. 
Interconnect components may be commanded to switch buses by means of 
the Attach, Detach, and Bus Interchange commands. 

The three diagrams on the following pages present state transition 
diagrams that describe bus switching activity. In Figure F-2, the 
fully general version of the bus switching state machine is provided. 
Figure F-3 shows simplified versions of bus switching activity in a 
large continuous processing system and in a mlnlmum continuous 
processing system. In Figure F-2, F-3, and F-4 the four-digit binary 
number inside each state element corresponds to the 4-bi t bus state 
code located in the State register (BIU Register 06 and MCU Register 
06). 

Other configurations are possible, but they will not perform automatic 
bus switching. In these cases, bus switching must be performed under 
program control by direct access of the Bus State bits in the State 
register. This direct control of bus switching must be performed only 
when the interconnect system is in a quiescent state. 
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LEGEND: AN - ATTACH FR~ NORMAL BUS 
AB - ATTACH FROM BACKL'P BUS 
DN - DETACH FROM NORMAL BUS OR PERMANENT BrS ERROR 
DB - DETACH FROM BACKUP BUS OR PERHANE~T BllS ERROR 
RED - REDUNDANT Bt.:S IS ENABLED 

iAPX 432 Interconnect ARM 

1 - INTERCHANGE BrSSES 
SPARE - SPARE BCS AVAILABLE 
4WAY - FOl'R WAY II\T£RLE..;,n:-':G 
PME - PERMA.."lEKT MODL'U ERROl'. 
INIT - INITlAlIZATlO:\ 

Figure F-2. General State Machine for Memory Bus Switching F-0003 
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AN::= ATTACH NORMAL BUS 
AB::= ATTACH BACKUP BUS 
DN::= DETACH NORMAL BUS 
DB::= DETACH BACKUP BUS 
I:: = INTERCHANGE COMMAND 

Memory Bus 

Figure F-3. State Machine for Large Continuous Processing System 
F-0450 
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LEGEND: .u; - ATTACH FROM NORMAl ilL'S 
AS - ATTACH FROM BACKLTP Res 
ON - DETACH FROM NORMAl BUS OR PERMANENT BUS ERROR 

DB - DETACH FROM BACKUP BUS OR PERMANENT BUS ERROR 
1 - INTERCHANGE BL'SSES 
RED - REOL'NDANT Bes IS ENABLED 
SPARE - SPARE Bl'S IS AVAILABLE 

2 BUSSl:.S (0 At\O 2) 
I GOP Al\D 1 I P 
REDUNDA.q BL'S HABLED 
NO INTERLEAVI};G 

Figure F-4. State Machine for Minimum Continuous Processing System 
F-0002 
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