
intef

iAPX 432
Interface Processor
,Architecture Reference Manual

171863-003

iAPX 432 INTERFACE PROCESSOR

ARCHITECTURE REFERENCE MANUAL

Order Number: 171863-003

Release 2.0 and 2:1 Components

l
Copyright e> 1982 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

Additional copies of this manual or other Intel literature may be
obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document -is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in
this document. Intel Corporation makes no commitment to update nor to
keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use
circuitry other than circuitry embodied in an Intel product.
circuit patent licenses are implied.

of any
No other

Intel software products are copyrighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by
any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
and may be used only to identify Intel products:

BXP
CREDIT
iR
ICE
iCS
imR
iMMX
In site
intelR
Intelevision
IntellecR

Intellink
iOSP
iPDS
iRMX
iSBCR

iSBX
iSXM
Library Manager
McsR
Megachasis
Micromainframe

Micromap
MULTIBUSR
Multichannel
MULTIMODULE
Plug-A-Bubble
PROMPT
Promware
RMX/80
System 2000R
UPI

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a
numerical suffix.

Ada is a registered trademark of the Department of Defense (Ada Joint
Program Office).

VAX and VMS are registered trademarks of Digital Equipment Corporation.

dml 8206

ii

REV. REVISION HISTORY DATE

-001 Original Issue; Release 1. 1 Components 07/81

-002 Update Errata and Terminology 12/81

-003 Update to Release 2.0 and 2.1 Components 12/81

-'"'"'.) TW"\-I- ,....rr.,.. .,....f..,.,., f"k,.......,..,.. - '-'-"-,..... 1
__ "')

~ """'- ,,_..,..._._, "0 10 "')
-vv.:J .1.u "c51 a"c vuaue;,c oJC'°"i:> I QIJU C:. .LU \IV 1·1au ua.1. VO/UC.

and Reprint

I

111

PREF.ACE

This manual describes the Intel iAPX 432 Interface Processor (IP),
which is similar in many respects to the Intel iAPX 432 General Data
Processor (GDP), b.lt different in others. Unique features and
functions of the IP are presented and, where appropriate, contrasted
with those of the GDP. HONever, rather than dtn?licate all of the
general 432 information contained in the companion documents listed
belCM, this manual relies oo the noted references for descriptions
of those features of 432 architecture which are conm:m to ooth
processors.

Chapters 1 through 6 of this manual descr i.be how the Interface
Processor (IP) arrl the Attached. Processor (AP) cooperate to form a
lCXJical I/O processor for a 432 system.

Detailed representations for system objects, as well as descriptions
of IP windows, functions, faults, interrupts, initialization, and
implementation notes may be fourrl in the appendices.

Related Literature

As a orerequisite to an understanding of the discussion herein, it
is assumed that the reader has ccquired a gcx:Xl a:mnarrl of the
general conceots and architecture of the iAPX 432 system as provided
in the follCMing documents offered by Intel.

•

•

•

iv

The INrEL 432 Svstem Summarv, Manager's Pergpective, Order
Number 171867, provides the broad picture of the 432. It
stnuld be read as a first introduction to the 432 system.

The Introduction to the iAPX 432 Architecture, Order Number
171821, restricts discussion to general architecture
features which distinguish the 432.

The iAPX 432 General Data Processor Architecture Reference
Manual, Order Number 171860, provides detailed information
on one type of 432 processor, a General Data Processor
(GDP) • Its glossary is a concise surrmary of the rcost
~rtant terminology which is required when readinq the
Interface Processor manual.

Change 1

Change Activity

This revision level -003 manual is the manual that results from
integrating Change Sets 1 and 2 (described below) into the revision
level -001 manual. There is no need to request these change sets in
order to make the current document complete.

CHANGE 1 (Change Notice 172299-001) raised this manual from rev1s1on
level -001 to revision level -002. CHANGE 1 affected two areas:

1) Known errata were corrected.
2) Terminology was standardized with that used to describe the

iAPX 432 architecture.

CHANGE 2 (Change Notice 172300-001) raised this manual from revision
level -002 to revision level -003. CHANGE 2 affected two areas:

1) Documentation was added for both the Release 2.0 and
Release 2.1 IP components.

2) A new "Implementation Notes" appendix was added.

Release 2.0 changes included:

1) Removing the RETRIEVE REFINED OBJECT operator
2) Adding the DISPATCH operator
3) Adding a ready bit to the process status word
4) Adding a erocess already suspended bit to the processor

status word
5) Modifying the SET PS MODE function
6) Adding new fault codes
7) Making some changes in a few system object structures

Release 2.1 changes included:

1) Adding a fault vector bit to the process status word

Pages containing changes are flagged with "Change n" at the foot of
the page; affected lines are marked with change bars. Unless
otherwise noted, a page marked "Change n" includes any changes from
the previous n-1 notices.

Change 2 v

TITLE

1. I<EY' crnc,:EP'IS • • • • • • • • • • • • • • • • • • 0 •

1-1.
1-2.
1-3.

1-4.

1-5.

Peripheral Subsystems ••••••••••••••••••••••••••••••••••••
Basic I/O fvbd.el
Peripheral Subsystem Interface •••••••••••••••••••••••••••

Peripheral Subsystem Interface Hardware •••••••••••••••
Attached Processor
Interface Processor

Peripheral Subsvstem Interface Software •••••••••••••••
I/o C..ontroller
Execution Environments •••••••••••••••••••••••••••••
WindCJVIS •••••••••••••••••••••••
Ftlrlctions ••••••••••••••••••••.•••••••••••••••••••••

I .1'0 ~e 1 SllltlTI.&y •
Ilctta FlCJN Stnmta.rv •••••••••••••••••••••••••••••••••••• •
I /0 Exann;>le ••••••••••••••••••••••••••••••.•.••••••••••

GDP Process Persoective ••••••••••••••••••••••••••••
Printer Server Task Persoective ••••••••••••••••••••
Printer Task (Device Task) Persoective •••••••••••••
Printer Reply Task Perspective •••••••••••••••••••••

Suoolementary Interface Processor Facilities •••••••••••••
Physical Reference Mode •••••••••••••••••••••••••••••••
Intero:>nnect Access

2. CB'10C'IS AN'D OPERA':C'ORS •••••••••••••••••••••••••••••••••••••••
2-1. Sunmarv Of Interface Processor Facilities ••••••••••••••••

2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

Envi rCX1111.ent •••
IP ClJ?er a tors •..........••••.•••••.•••.••.•••.•••••••••

Object Addressing and Global Storage Management ••••••••••
Objects For Program Environments •••••••••••••••••••••••••
Facilities For Asynchrornus Comnunication ••••••••••••••••
Processes and local Storage Resource Management ••••••••••
Process Scheduling an<l Disr;:>atching •••••••••••••••••••••••
Facilities For Object Management •••••••••••••••••••••••••
Context Environment Manipulation •••••••••••••••••••••••••

'!he Four Entered Access Segments ••••••••••••••••••••••
Direct vs. Indirect Accessibility •••••••••••••••••••••
kcess Se lee tors ••••••••••••••••••••••••••••••••••••••
Entering an Access Segment ••••••••••••••••••••••••••••
Enterinq the Global Access Segment ••••••••••••••••••••

PAGE

1-1
1-1
1-4
1-7
1-7
1-7
1-9
1-10
1-10
1-11
1-11
l-13
1-14
1-14
l-l6
1-19
1-21
l-21
1-21
1-22
1-22
l-22

2-1
2-1
2-2
2-3
2-7
2-7
2-8
2-8
2-8
2-8
2-9
2-9
2-10
2-12
2-12
2-12

vi Chanqe 1

3. ~ .. .
3-1.

3-2.

3-3.
3-4.

3-5.

WindON Attributes
Wind0ii1 Status ••••••••••••••••••••••••••••••••• _ ••••••••
Subrange Base Address arrl Subrange Size •••••••••••••••
()f:)ject Reference ••••••••••••••••••••••••••••••••••••••
Direction
Transfer Status ••••••••••••••••••••••eeeeeeeeeeeeeeeee
Transfer Moae
Oler lay .. .

Win~ Q:>eration •••
Address Recognition ••••••••••••••••••••••••••••••••••• Consistencv Check

Random MJde Data Transfer
Block Mode.Data Transfer

Block M::>de Attributes •••••••••••••••••••••••••••••••••
Block M::>de Consistency Check
Block MJde ~ration ••••••••••••••••••••••••••••••••••
Block~ Termination ••••••••••••••••••••••••••••••••
Blcx:::k MXle Addressinq

Interconnect Transfers •••••••••••••••••••••••••••••••••••

3-1
3-2
3-2
3-4
3-5
3-6
3-6
3-6
3-7
3-9
3-9
3-9
3-12
3-14
3-14
3-15
3-15
3-16
3-17
3-20

4. ~oos . 4-1
4-1.
4-2.

4-3.
4-4.

Function Facility Interface ••••••••••••••••••••••••••••••
Function Reql.Iests ••

Process Selection •••••••••••••••••••••••••••••••••••••
Function OocOO.es ••••••••••••••••••••••••••••••••••••••
Fuoction Operarrls

Function Execution •••••••••••••••••••••••••••••••••••••••
Fuoction Completion

5. PHYSICAL REFERENCE KDE
5-1.
5-2.
5-3.

Reference Mode Switching
Physical Reference ~e Addressing •••••••••••••••••••••••
Physical Reference Mode Functions ••••••••••••••••••••••••

6. FAULTS ..
6-1.

6-2.

. .. . Fault Reoortinq
Physical M:rle •••
~ical ~e
Categories of I.Dgical M:rle Faults •••••••••••••••••••••

Context-level Faults
Process-level Faults •••••••••••••••••••••••••••••••
Processor-level Faults •••••••••••••••••••••••••••••

Wirrlow~pped Data Transfer
Fault Handling

Change 1

4-1
4-4
4-4
4-4
4-6
4-9
4-9

5-1
5-1
5-2
5-2

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-6

vii

APPENDICES

APPENDICES

SYS'!™ 00.J"EX::'I' S~ ••••••••••••••••••••••••••••••••••••••• A.
A-1.
A-2.
A-3.

Context Objects ••
Process Objects
Processor ·OIJjects ••

B. ~ICJ\J S~ ••

C. FAlJI..T ~y •••
C-1.
C-2.
C-3.
C-4.

Fault ReJ?Qrtirig ••
Fault Information Areas
Object Level Operator Faults •••••••••••••••••••••••••••••
Non-Instruction Interface Faults •••••••••••••••••••••••••

Page

A-1
A-1
A-3
A-7

B-1

C-1
C-1
C-1
C-5
C-9

D. IN'IBRR.JPI' FIA?\JDL~. • D-1

SY"S'r™. IN'ITI.AI..I ZMIOO ••••••••••••••••••••••••••••••••••••••• E.
E-1.
E-2.
E-3.

E-1
E-1
E-2
E-5

System Reset •••
Establishing an Ex:ecution Environm=nt ••••••••••••••••••••
System Startup

F. INI'ERPIO:ESS CCMIDNICATICN AND DISPA'!OIING EXAMPLE •••••••••• F-1

G. ~~TICJ\J '00'!'.ES •• G-1

viii Change 2

TITLE

1-1.
2-1.
2-2.
2-3.
3-1.
B-1.
B-2.
B-3.
D-1.
E-1.

TABLES

PAGE

Printer Exarrple Legend ••••••••••••••••••••••••••••••••••• 1-18
IP/GDP System Object Conparison •••••••••••••••••••••••••• 2-3
IP/GDP Operator Canoarison • 2-5
Direct/Iila.irect Accessibility •••••••••••••••••••••••••••• 2-11
Window Attribute Summary ••••••••••••••••••••••••••••••••• 3-3
Alphabetical Index to :rP Functions ••••••••••••••••••••••• B-2
IP-Function Sunmarv by Function Code ••••••••••••••••••••• B-3
IP Function Sunmary by Qperator ID ••••••••••••••••••••••• B-4
Interrupt Sources •• D-4
Window Configuration Followinq !NIT •••••••••••••••••••••• E-7

ix

I

TITLE

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
6-1.
D-1.
E-1.
F-1.
F-2.
F-3.
F-4.
F-5.
F-6

x

FIGURES

432 System and Peripheral Subsystems •••••••••••••••••••••
Basic I/O Service Cycle ••••••••••••••••••••••••••••••••••
Perioheral Subsystem Interface •••••••••••••••••••••••••••
Peripheral Subsystem Interface Hardware ••••••••••••••••••
Interface Processor Window •••••••••••••••••••••••••••••••
I/O Data FlCIVI StlJTlllarv ••••••••••••••••••••••••••••••••••••
Pr inter ExaITIJ'.)le ••
Exarrple Print Object •••••••••••••••••••••••••••••••••••••
~i:rory Ov'er lay •••
Subrange/Window Attriootes (IDgical lt>de) ••••••••••••••••
Valid Winr1<YN/Object Mapping
Ra.nron M::>d.e Transfers ••••••••••••••••••••••••••••••••••••
Block M::>d.e Writes--Swept Addressing ••••••••••••••••••••••
Block M::>d.e Reads--Source Addressing ••••••••••••••••••••••
Function Request Area ••••••••••••••••••••••••••••••••••••
Function Exanple •••
Function Performance Phases-AP View ••••••••••••••••••••••
Function Of?er and 'l'y)?es •••••••••••••••••••••••••••••••••••
Object Selection •••
Basic IP Function Execution FlaY' •••••••••••••••••••••••••
Fault Reporting State ••••••••••••••••••••••••••••••••••••
Interrupt Handler ••
Processor Object Location ••••••••••••••••••••••••••••••••
Print ExaTTple Objects ••••••••••••••••••••••••••••••••••••
IP Performs Blocking REC:EIVE
GDP Executes SEND and Unblocks ROCEIVE •••••••••••••••••••
IP ReS{X)nds to Il'C •••••••••••••••••••••••••••••••••••••••
Wind<YN Mani-pulation ••••••••••••••••••••••••••••••••••••••
Pr int Reply ••

PAGE

1-2
1-5
1-6
1-8
1-12
1-15
1-17
1-20
3-8
3-10
3-11
3-13
3-18
3-19
4-2
4-3
4-5
4-7
4-8
4-10
6-5
D-2
E-3
F-2
F-11
F-12
F-13
F-14
F-15

CHAPTER l
KEY crncEPTS

This chapter introduces the iAPX 432 Interface Processor (IP). The
first four sections oover the IP as it ·is used normally in
connection with inµit/output operations. Section 1-1 distinguishes
Peripheral Subsystems (PS) , which are responsible for the bulk of
I/O operations, fran the 432 data processing system, and shows how
Interface Processors link these together. The second section
reviews the 432's basic model of inµlt/outp.it, pointing out the need
for an interface between a Peripheral Subsystem and the 432 system.
Section 1-3 describes the hardware and software that corrprise tM.s
Peripheral Subsystem interface, with particular emphasis on the role
of the IP. In the fourth section the I/O nndel is summarized and a
sirrple exanple implementation is reviewed. The final section of the
chapter introduces physical reference nnde and interconnect
addressing, two additional IP facilities that are provided for
special situations.

1-1. PERIPHERAL SUBSYSTEMS

A typical application based on the iAPX 432 microprocessor family
consists of a 432 system and one or rcnre satellite Peripheral
Subsvstems. Fiaure 1-1 illustrates a hvoothetical confiauration
which employs ~ Peripheral Subsystems. The 432 system hardware is

· composed of one or m::>re iAPX 432 General Data Processors (GDPs) , one
or more Interface Processors, and a corrm:>n memory which is shared by
these processors. The 432 system software is a collection of one or
rcnre processes which execute on the GDP(s).

A fundamental principle of the 432 architecture is that the 432
system environment is self-contained.; neither processors nor
processes have any direct contact with the "outside world."
Conceptually, the 432 system is enclosed by a wall that protects
objects in menory from possible damage by uncontrolled I/O
operations.

1-1

iAPX 432 Interface Processor Architecture Reference Manual

432
Memory

432 System/Peripheral Subsystem Boundary

Figure 1-1 432 System and Peripheral Subsystems

1-2

KEY CCECEPTS

In a 432~based system, the bulk of processing required to support
i~t/outµ:it operations is delegated to Peripheral Subsystems; this
includes device control, t:iming, interrupt handling arrl buffering.
A Peripheral Subsystem is an autononous canputer system with its own
memory, I/O devices arrl controllers, at least one processor, and
software~ The nUillber of Peripheral Subsystems ercployed in any given
ai;plication deperrls on the I/0.-intensiveness of the a:pplicationi the
rnnnber may be varied with changing needs, and is independent of the
number of GDPs in the system.

A Peripheral Subsystem resembles a conventional mainframe channel in
that it assumes responsibility for low-level I/O device suJ?POrt and
executes in parallel with 432 system processor(s}. Unlike a simple
channel, hC7flever, each Peripheral Subsystem can be configured with a
conplement of hardware and software resources that precisely fits
application cost arrl performance requirements. In general, any
system that can corrmunicate over a standard 8- or 16-bi t
microccrcputer oos, such as Intel's Multibus'IM design, may serve as
a 432 Peripheral Subsystem.

A Peripheral Subsystem is attached to the 432 system by means of an
iAPX 432 Interface Processor (IP). At the hardware level, an
Interface Processor presents two separate bus interfaces. One of
these is the standard 432 processor packet bus and the other is a
very general interface that can be adapted to nnst traditional 8-
and 16-bit microcanp.lter buses.

The Interface Processor is driven by Peripheral Subsystem software.
'Ib snTYlOrt: t:hP t.r~nsf Pr nf i nfnrm~ti nn t.hrnnoh thP w~ 11 th~t

- ---.L.:.1..--·-- ---- -------·----- -- ----·--------------- -------J-- ---- ------ ------

separates a Peripheral Subsystem from the 432 system, the IP
provides a set of software-controlled windows. A window is used to
expoSe a single object (data structure) in 432 system mercory so that
its contents may be transferred to or from the Per:i.pheral
Subsystem. To preserve the integrity of the capability-based
protection mechanisms in the 432 system, the IP only provides the PS
with windowed access to 432 objects which are of system type data
segment~

An Interface Processor additionally provides a set of functions,
which are also invoked by Peripheral Subsystem software. While the
operation of these functions (and the returned results) varies
considerably, they generally permit objects in 432 system memory to
be manipulated as entities, and enable ccmnunication between 432
system processes and software executing in a Peripheral Subsystem.

1-3

iAPX 432 Interface Processor Architecture Reference Manual

It is important to note that both the window and function facilities
utilize and strictly enforce the standard 432 addressing and
protection systems. Thus, a window provides protected access to an
object-, and a function provides a protected way for Peripheral
Subsystem software to interact with the 432 system.

1-2. BASIC I/O MODEL

As figure 1-2 illustrates, inµJt/output operations in a 432 system
are based on the notion of passing messages between 432 system
processes and device tasks located in a Peripheral Subsystem. In·
this manual, a device task is considered to be the hardware and
software in the Peripheral Subsystem which is responsible for
managing an I/O device. An I/O device is considered to be either a
consumer or producer of data. Thus an I/O device may be a real
device (e.g., a termina1', a file, or a pseudo-device (e.g., a
spooler).

A message sent from a GDP process which requests I/O service
contains information that descri'bes the requested operation (e.g.,
"read file XYZ"). The device task interprets t..he message and
carries out the operation. If an operation generates in'9'Jt data,
the device task returns the data as a message to the originating
process. The device task may also return a message to positively
acknowledge ~letion of a request.

A very general and very powerful mechanism for passing messages
between processes is inherent in the 432 architecture. A given
Peripheral Subsystem may, or may not, have its own message facility,
rut in any case, such a facility will not be directly corrpatible
with the 432's. By interposing a Peripheral Subsystem interface at
the subsystem boundary, the standard 432 interprocess ccmnunication
system can be made cnnpatible with any device task (see figure 1-3).

l-4

432 System

©
Process

O. Process running on GDP needs I/O
service

1. Process formulates message
describing service, sends it to
device task

2. Device task receives service
order, interprets it

Service
Order

Message

I

Peripheral Subayatem ------------------

Device
Task
~ - -\::J

3. Device task transfers data according to
service order parameters

4. Device task formulates reply message
containing result of transfer operation, sends
it back to originating process.

S. Originating process receives reply, interprets
it, executes accordingly

Figure 1-2 Basic I/O Service Cycle

1-5

I
!>roce:;!:l

1-6

iAPX 432 Interface Processor Architecture Reference Manual

432 System

Service
Request
Message

Service
Reply

Message

Figure 1-3

-------.Peripheral Subsystem ------------

Peripheral
Subsystem
Interface

Service
Request
Message

Service
Reply

Message

Peripheral Subsystem Interface

Device
Task

1-3. PERIPHERAL SUBSYS'l™ IN'IERFACE

A Peripheral Subsystem interface is a collection of hardware and
software that acts as an adaptor which enables message-based
conmunication between a process in the 432 system and a device task
in a :Peripheral Siib5yst.eme Viewed fran the 432 side, the Peripheral
Subsystem interface appears to be a set of processes. The
Peripheral Subsystem interface may be designed to present any
desired appearance to a device task. For example, it may look like
a collection of tasks.

PERIPHERAL SUBSYSTEM INTERFACE HARDWARE

The Peripheral Subsystem interface hardware consists of a 432
Interface Processor, an Attached Processor (AP) , and merorv (see
figure 1-4) • 'lb improve performance, these may be augmented by a
~ controller. Th~ AP and the IP provide complementary
facilities. Considered as a whole, the AP /IP pair may be thought of
as a logical I/O processor, which supp:>rts software operations in
both the 432 system and the Peripheral Subsystem.

ATI'ACHED Pia::FSSOR

Most any general-?Jrpose processor, such as an 8085, an iAPX 86 or
an iAPX 88, can be used as an Attached Processor. The AP need not
be dedicated exclusively to \'K>rking with the Interface Processor.
Toi- ,.,,~.,.7 {:,.......,. 0"~"""'10 ~1 C!I"'\ o"or•n+-o Ao<r7;,..o f-::u::!v C::!nTf-w::llro l"'\r n~~r
..a. '-' .1.1.UwA. .:1. ,,.- '-'"~\.oiol.&l.'t"'"...&...,.,.,_ I ~~ ""-'-.'-"-"""-""" "-'- ..,_""'- Y ..a.""'- '-'._.._a• --- -•• -- - -- -- -·-

applications. Thus, the AP may be the only processor in the
Peripheral Subsystem, or it may be one of several. 'lb insure
synchronization and coordination, in Peripheral Subsystems with
multiple processors, only one of these should be designated to serve
as the AP. Other processors (or active agents, such as rMA
controllers) may be given access to IP windCMs, but control of the
Interface Processor s'tx:>uld be centralized in the Attached Processor.

As figure 1-4 shows, the AP is "attached" to the Interface Processor
in a logical sense only. The physical connections are standard bus
signals and one interrupt line (which \'K>uld typically be routed to
the AP via an interrupt controller).

1-7

432

Memory

1-8

iAPX 432 Interface Processor Architecture Reference Manual

432 System

"Cl ...,
0
Q
(1)
Ul
fJl
0
l"'I
I s:

!ll
::I
0 ...,
'<
H
::J
rr
(1) ...,
0
0
::J
:;)
(1)
0
rr

Peripheral Subsystem

Interface
Processor

't1
(!)
11

Optional
DMA

ontrolle

~ __,. _......,

::r
Ill
t1
Ill

~~Attached
~ ~!Processor
rt
Ill
EJ Interrupt

'------~ t:I i-----..:....---1

; -------
PS

Memory

-t

l Logical I/O Processor

~

Figure 1-4 Peripheral Subsystem Interface Hardware

Continuing the notion of the logical I/O processor, the Attached
Processor fetches instructions, provides the instructions needed to
alter the flow of execution, and-performs arithmetic, logic and data
transfer operations within the Peripheral Subsystem.

The IP conpletes the 103ical I/O processor by providing data paths
between the Peripheral Subsystem and the 432 system. The IP also
provides functions which effectively extend the AP's instruction set
so that software ruming on the logical I/O processor can operate in
the 432 system. Since these facilities are software-controlled,
they are discussed in the next section.

As figure 1-4 shows, the Interface Processor presents ooth a
Peripheral Subsystem bus interface and a standard 432 processor
packet bus interface. By bridging the two buses, the IP provides
the hardware link that permits data to flow between the 432 system
and the Peripheral Subsystem.

The Interface Processor connects to the 432 system in exactly the
same way as a GDP. Thus, in addition to being able to access 432
merrory, the IP supports other 432 hardware-based facilities,
including interprocessor corrmunication, alarm signaling and

. functional redundancy checking.

On the I/O subsystem side, the IP provides a very general bus
intPrfa~ that ~an hP- aaant@d to anv standard 8- or 16-bit
mic~op~<Xesso~ hi~~ includin9 Intel' s ~l tibus'IM architecture, as
well as the component buses of the MCS-85 and iAPX 86 families. The
IP is oonnected to the Peripheral Subsystem bus as if it were a
memory component; it occupies a block of memory addresses up to 64k
bytes long. Like a menory, the IP behaves passively within the
Peripheral Subsystem (except as noted below). It is driven by
Peripheral Subsystem mercory references that fall within its address
range.

The IP generally responds like a merrory canponent. The Interface
Processor also supplies an interrupt signal. The Interface
Processor uses this line to notify its Attached Processor that an
event has occurred which requires its attention. Interrupt handling
software on the AP may read status information provided by t.he IP to
identify the nature of the event.

1-9

iAPX 432 Interface Processor Architecture Reference Manual

To surrmar ize, the Attached Processor and the Interface Processor
interact with each other by means of address references generated by
the AP and interrupts generated by the IP. Since the Interface
Processor responds to memory references, other active Peripheral
Subsystem agents (bus masters), such as I:MA controllers, may obtain
access to 432 system memory via the !P's windows.

PERIPHERAL SUBSYSTEM INTERFACE SOFIWARE

I/O CCNrIDLIER .

The Peripheral Subsystem interface is managed by software, which
this manual refers to as the I/O controller. The I/O controller
executes on the Attached Processor and uses the facilities provided
by the AP and the IP to control the flON of data between the 432
system and the Peripheral Subsystem.

432 hardware inposes oo constraints on the structure of the I/O
controller. To help sirrplify software organization and
modification, implementors may wish to consider organizing it as a
collection of tasks running under the control of a nultitasking
operating system (such as iRMX-SO'IM, i~-88'IM, or
iRMX-86'IM) • This type of organization supports asynchronous
message-based conmunication within the I/O controller, similar to
the 432 's intrinsic interprocess conmunication facility. Extending
this ai;.proach to the device task as well results in a consistent,
system-wide conmunication nodel. H<:Mever, conmunication within the
I/O controller and between the I/O controller and device tasks, is
completely application-defined. It may also be :inplemented via
synchroID.ls procedure calls, with ''messages" being passed in the
form of parameters.

H<:Mever it is structured, the I/O controller interacts with the 432
system through facilities provided by the Interface Processor.
There are three of these facilities: execution environments,
wi:n.da-lS, and furctions.

1-10

EXECUTICN ENVIRCNMENTS

The Interface Processor provides a process addressing environment
within the 432 system which suwarts the operatioo of the I/O
controller in the 432 system. This environment is embodied as a set
of system objects that -are used and mahi?Jlated by the IP. At any
rime rho T /n ~nr't'"'"', , e"" ; (:! 't'"O~'t'"OC:!Onred ;d ~., TnO~'t'"1:,. h,. T'D ~""ocess
W~•S.: , ~.&:'- ~/"" W.&..&.._.L.'\J..&..._. .L ..a....;;J .L"4;;t'.J..~U\;;.1.I."- ..a...&..&. ~._,~ .l.iL~L....,.L.J. "-'i ~.a. t'.L.""""'

objects arrl associated context objects. Like a GDP, the IP itself
is represented by a orocessor object. Representing the IP and its
controlling software like this creates an execution environment that
is analogous to the environment of a process running on a GDP. This
environment provides a standard frarnE:.1W0rk for addressing, protection
and conmunication within the 432 system.

Like a GDP, an IP suwarts multiple process environments. The I/O
controller selects the environment in which a function is to be
executed. This permits, for example, the establishment of separate
environments corresponding to individual device processes in the
Peripheral Subsystem. If an error occurs while the IP controller is
executing a function on behalf of ooe device task of the I/O
controller, that error is confined to the associatoo process, and
processes associated with other device tasks are not affected.

Every transfer of data between the 432 system and a Peripheral
Subsystem is performed via an IP windCM. A windCM defines a
correspondence,. or :mapping,. between a subra11ge of consecutive
Peripheral Subsystem memory addresses (within the range of addresses
occupied by the IP) and an object of system type data segment in 432
system memory (see figure 1-5). When an agent in the Peripheral
Subsystem (e.g. , the IP controller) reads a windowed address, it
obtains data from the associated object; writing into a windowed
address transfers data from the Peripheral Subsystem to the windowed
object. The action of the IP, in mapping the Peripheral Subsystem
address to the system object, is transparent to the agent making the
reference. As far as it is concerned, it is simply reading or
writing merrory o

1-11

iAPX 432 Interface Processor Architecture Reference Manual

~Peripheral Subsystem Memory Space__. (+- 432 System Memory Space --+

Local Memory Addresses

(

IP window maps a subrange

onto an object in 432 memory
_

1

of peripheral subsystem addresses

Interface Processor Addresses ._ ____ ...,. ___ _

1-12

I

Subrange 1

••
Object

Figure 1-5 Interface Processor Window

KEY CCNCEP'IS

Since a wind<M is referenced like memory, any individual transfer
may be between an object and PS merrory, an object and a PS processor
register, or an object and an I/O device. T'ne latter may be
appealing from the standpoint of "efficiency," but it should be used
with caution. Using a wind<:M to directly "connect" an I/O device
and an object in 432 tnerrory has the undesirable effect of
prQEX>gating the real-time constraints imposed by the device beyond
the subsystem boundary into the 432 system. It may seriously
complicate error recovery as well. Finally, since there is a finite
number of windcws, rcost applications will need to manage them as
scarce resources which will not always be instantly available. This
means that at least some I/O device transfers will have to be
buffered in PS memory until a win<bl becanes available. It may be
simplest to buffer all I/O device transfers in merrorv, and use the
winda-ls to transfer data between PS memory and 432 system memory.

There are four IP windows which may be mapped onto four different
objects. The I/O controller may alter the wind<:Ms during execution
to obtain access to different objects. References to windowed
subranges may be interleaved and may be driven by different agents
in the Peripheral Subsystem. For example, the Attached Processor
and a IJ.11\ controller may be driving transfers concurrently, subject
to t.11e same bus arbitration constraints that would apply if tJ1ey
were accessing mercory.

FUNCI'ICNS

A fifth window. the control window. nrovines thP- IP rnntrollP-r with
access to the Interface Processor's function request -facility. The
IP controller requests the execution of an IP function by writing
operands and an opcode into predefined locations in the control
window's subrange. This procedure is very similar to writing
corrmands and data to a memory-mapped peripheral controller (e.g.,
flog:>y disk controller) • tlp:)n oornpletion of the function, the IP
interrupts the AP and provides status information which the IP
controller can read through the control window. The IP can resp::>nd
to transfer requests to the other four windows while it is executing
a function. In addition, data transfers through windows 0 through 3
may be interleaved with function request sequences through the
control window.

1-13

iAPX 432 Interface Processor Architecture Reference Manual

The IP's function set permits the I/O controller to:
• alter windows;
• exchange messages with GDP processes via

the standard 432 interprocess communication
facility;

• mani ?Jlate objects.

These functions may be viewed as extensions to the Attached
Processor's instruction set, which permit the I/O controller to
operate in the 432 system.

The combination of the IP' s function set and windows, the AP' s
instruction set, arrl possibly additional facilities provided by a
Peripheral Subsystem operating system, permits great flexibility in
designing I/O models. By using the more sophisticated IP functions,
pc1Nerful I/O controllers can be built which are capable of relieving
the 432 system of much I/0-related processing. On the other harrl,
by utilizing only a subset of the available IP functions, relatively
simple I/O controllers can also be constructed.

1-4. I/O M)DEL Sl.JM.1ARY

Figure 1-6 sunmarizes the relationship of the hardware and software
carponents that cooperate to nove data between an I/O device arrl 432
system menory. Notice h.Jw the Peripheral Subsystem interface rot
only bridges the 432 system/Peripheral Subsystem boundary, b..lt also
can "hide" the characteristics of the one from the other. As far as
a device task is concerned, its job is to nove data between memory
and an I/O device; it may be completely unaware that it is oonnected
to a 432 system. This means that existing device tasks may be
utilized in a 432 system with little or oo m:xlification, and that
progranmers working on device tasks need not be trained in the
operation of the 432. Similarly, a GDP process which needs an I/O
service need have ro kn<XYledge of the details arrl characteristics of
the target I/O device. As far as it is concerned, it "performs" I/O
in the same way it canmunicates with a co-operating process; by
sending and receiving messages via the standard 432 interprocess
comnunication facility.

1-14

KEY CCNCEPTS

- Peripheral Subsystem_,_ Peripheral Subsystem Interface_... , ,.._ 432

~(l)

System-+

Action

Data
Location

Input ..
~ I '----output

I

I Message B R o;v~ce ti .. __ o_r_-~··------• Object ""C:'-----11••1cM~~~:~!).1"'4----1•~ Object Buffer

I d

~-------c_o_PY __ D_a_t_a ______ {J~ _____ c_o_P_Y_D_a_t_a _____ I ~j __ c_o_P_Y __ ·R_e_f_e_r_e_nc_e __ ~J~j __ c_o_P_Y __ R_e_f_er_e_n_c_e _____ [

I";" S. I/O Spac~ { P. S. Memory I ._l _________ 4_3_2_s_y_s_t_e_m_._M_e_rn_~_r_y _______ __,J

~~~~~;;ing .__ __ D_e_v_i_c_e ___ T_a_sk ___ JI ~l ____________ I_P_c_o_n_t_r_o_l_l_e_r ____________ ___.I Ll __ ~G_D_P_P_r_o_c_e_s_s ____ ~ 

::::;rig Jnevice Controller/ (2) I ._J ______ AP __ +_I_P_C_3> _______ _.l ._I ___ c_o_P ____ __, 

Notes: (1) Only object reference is moved to and from port. 
(2) Supporting processor is defined by application; 

may be AP, a separate processor, may include a 
DMA controller. 

(3) May also include a DMA controller. 

Figure 1-6 I/O Data Flat/ Surrmary 

1-15 



iAPX 432 Interface Processor Architecture Reference Manual 

I/O EXAMPLE 

To illustrate the operation of the 432 I/O nodel rrore specifically, 
this section provides a simple example which shows h<M line printer 
outpit might be implemented. Of course, the example describes only 
one of ptany possible awroaches that might be taken. Furthermore, 
the example does not show all the detail of a typical 
implementation, with the Peripheral Subsystem suwarting transfers 
to and from a number of devices concurrently. 

In this example, all Peripheral Subsystem software is assumed to be 
implemented as a collection of tasks running under the control of a 
multitasking operating system. This Q3 is assumed to allCM tasks to 
corrmunicate with one another in a fashion that is analogous to the 
432 interprocess carmunication facility. The mechanisms provided by 
the OS are messages, mailboxes, a TRANSMIT operator and an ACCEPT 
operator. Messages are arbitrary data structures in memory, and 
mailboxes are queue structures that hold tasks waiting for messages 
or messages waiting for tasks. When executed by a task, TRANSMIT 
rroves a message from a task to a mailbox and ACCEPT rroves a message 
fran a mailbox to the issuing task if a message is available: if 
int, the task is queued at the mailbox until another task TRANSMITS 
a message to the mailbox. In other words, mailboxes are analogous 
to 432 ports and TRANSMIT and ACCEPT are analogous to the 432 SEND 
and REX:EIVE operators. 

Figure 1-7 shows the overall structure of the example system and the 
flCM of data f ran one element to another (see also table 1-1) • 
Basically, a GDP process wishing to pr int data on the line pr inter 
serrls a message containing the data to the Peripheral Subsystem task 
which controls the printer: when the data has been printed, the 
printer task returns the message as a positive acknCMledgement to 
the originating process. The process may then send rrore data by 
writing it into the message and serrling it off again. In practice, 
there might be a pool of these messages, with several cycling 
through the system at one time. 

1-16 



COP 
Proc:e111 

KEY COOCEPTS 

432 Memory Peripheral Sub11y11te• Memory·------------

432 'Sy•t----- -------Peripheral Subsystem Interface--~== I---Peripheral SQbayat.ul -----

Figure 1-7 

IP Controller 

Printer 
Server 

Ta sit 

P,-int-,.,.. 

Reply 
Task 

Printer Example 

Printer 
'l'Hk 

1-17 

8 



iAPX 432 Interface Processor Architecture Reference Manual 

_Table 1-1 Printer Example Legend 

Item 

Print_object 

Print_request_port 

Print_reply_port 

SEND,/RFrnIVE 

Description 

Object (message) describing print 
operation fran requesting process's 
point of view (see figure 1-8). 

432 canmunications port assigned by 
convention to queue print objects. 

432 canmunications port where GDP 
process waits for result of operation. 

432 operators (GDP 
functions) provided 
cxmnunication. 

instructions, IP 
for interprocess 

Print order mailbaK CE message queue defined to hold print 
~ssages waiting for printer task. 

Print_ response_ mailbox CS message queue defined to hold print 
~ssages already processed by the 
printer task. 

TRANSMIT/ACCEPT CS operators analogous to 432 SEND and 
RECEIVE operators. 

1-18 



KEY CCNCEP'IS 

Figure 1-8 shCMS ha-1 the message sent by the GDP process might be 
organized. It consists of two parts, an object reference part and a 
text part. The object references are for the text part of the object, 
the 432 port at which the process will wait for the message to be 
returned, arrl a reference for the process itself (GDP or IP) • This 
last reference is oot strictly necessary in t.he example; b.Jt is 
provided to sha-1 one way in which a message may identify its 
originator. 

The text part of the message contains a conmand field which specifies 
what is to be done (e.g., print one page), a status field which 
reflects the disposition of the print request, and the data to be 
printed. 

With the exception of t.he status information, all data in the message 
is provided by the GDP process; the status field is updated by the 
printer task. 

The next three sections describe the operation of the example system 
as seen by the GDP process, the printer task, and the IP controller. 
These descriptions present an overview of the operations. For nore 
detail on hCJN these activities relate to IP facilities, please refer 
to AH?endix F, (Interprocess Ccrrmunication Example), which refines the 
printer example. 

GDP Process Perspective 

To direct outp.it to the line printer, a GDP process builds a print 
object and serrls it as a message to the pr int_ request _port. The port 
is the process' s "connection" to the line pr inter. After it has sent 
the message, the process is free to continue running. When it cannot 
proceed further without acknowledgement of the print operation, the 
process attempts to receive a message fran the print_reply_port it 
specified in the print object. When the operation has been completed, 
the process will receive the message. It then inspects the status 
field and takes appropriate action, perhaps writing new data into the 
print_object and serrling it off again. 

1-19 



iAPX 432 Interface Processor Architecture Reference Manual 

Text~ 

Cl 
Object References 

Originating ......... 
p 

Print Reply -.. ....... 

Text 

Print Data 

Status 

Command 

Figure 1-8 Example Print Object 

1-20 



KEY CONCEPTS 

Printer Server Task Perspective 

'lbe printer server task mav be viewed as a "front end" to the 
printer task which is responsible for translating the message sent 
by the GDP process into the form expected by the pr inter task. The 
printer server lo::>ps through the following steps: 

1. RFI'!EIVE a message from the print request pert. 
2. When the message (a print objeet) is received, obtain an 

access selector for the message text. 
3. Using the access selector, ot;>en a wincb-l onto the message 

text. 
4. c.opy the message text fran 432 m:mory to PS :merrorv through 

the open windON. 
5. Close the wind<M. 
6. TRANSMIT a message with a reference to the pr int text to 

the printer task. 
7. Rei;>eat from step 1. 

Printer Task (Device Task) Perspective 

'!he printer task runs in an endless loop repeating the following 
steps: 

1. 
2. 

ACCEPT a message from the print_order_mailbox; 
Interpret the message; 
Trar1sfer i:!-ie data fr:0t11 ti1e rriessage to tl1e prir1ter, takirig 
care of all device control (e.g., interrupts); 
Update the status field of the print m:ssage with the 
result of the operation; ~ 

4. 

5. TRANSMIT the updated print message to the print_ response 
mailbox; · · -

6. Repeat from stet;> 1. 

Printer Reply Task Perspective 

The printer reply task may be viewed as a "back end" to the printer 
task. It runs in an endless lo::>p as follONs: 

1. ACCEPT a message from the print_response_mailbox. 
1. Open a wind<::M onto the print_object in the 432 system. 
2. Formulate a 9rint_reply_m:ssage and deposit it in the print 

object through the open windoW. 
3. Close the windoN. 
4. SEND t.he print_object to the printer reply port in t.he 432 

system. 
5. Repeat from steJ'.) 1. 

Change 1 1-21 



iAPX 432 Interface Processor Architecture Reference Manual 

1-5. SUPPLEMENTARY INTERFACE PRO:ESSOR FACILITIES 

The preceding sections have described the Interface Processor as it 
is used nnst of the time. The IP provides two additional 
capabilities which are typically used less frequently, often only in 
excel?tional circumstances. These are physical reference rrode and 
interconnect access. 

PHYSICAL REFERENCE IDDE 

An IP normally o~rates in logical reference rrode. This nnde is 
charac:terized by its object-oriented addressing and protection 
system. When an IP running in logical node o-pens a window, it 
utilizes an access selector to St?ecify a particular 432 data 
segment. There are times when loqical referencing is impossible 
because the objects used by the hardware to perform 
logical-to-physical address development are absent (or, less likely, 
are damaged). In these situations the IP can be used in ohysical 
reference rrode. 

An IP which is operatinq in physical reference rrode circumvents the 
protection mechanisms of the 432 system. No distinction is made 
between data segments and access segments in physical reference 
JOOde. The IP provides a reduced set of functions in this mode. 
Windows map directly onto contiguous segments of 432 physical meTl'Orv 
(rather than object structures in 432 memory). The IP controller 
selects a segment by specifying a 24-bi t physical address when it 
establishes a window. The IP interprets subsequent subrange 
references as 16-bit displacements fran the segment's base address. 
This sinu?le base-plus-displacement addressing is similar to 
traditional computer addressing techniques. 

Physical reference mode is m:>st of ten employed during system 
initialization to load images of objects fran a Peripheral Subsystem 
into 432 memory. Once the required objects are available, 
processors can begin normal logical reference rrode operations. 
IDgical mcrle cannot be used until the object tables required for 
logical-to-physical address translation have been constructed and 
loaded into 432 mennry. 

In addition to merrory, the iAPX 432 architecture defines a second, 
independent ai1dress space called the processor-mennrv interconnect 
address soace. The interconnect address SPace allows interconnect 
objects tO be maintained which may contain one or m:>re interconnect 
registers. Interconnect registers are double-byte quantities which 
are aligned oo double-byte boundaries. With the exception of a few 
reserved addresses, the definition and use of interconnect locations 
is not pre-defined for the IP. Appendix E of this manual suggests 
how the interconnect may be utilized during the initialization of 
variable-configuration systems. 

1-22 Change 1 



The IP (like a GDP) requires ~ register 
interconnect space to be defined for any system: 

e the processor ID register (interconnect 
• the interorocessor conmunication 

(interconnect address 2) 

locations 

address 0) 
(IPC) 

in the 

register 

The remainder of the interconnect address space may be used to store 
or acquire other information such as configuration parameters, error 
l~ging registers, and other application-specific quantities. 

Window 1 is software-switchable between the memo-ry and the 
interconnect spaces. In loqical reference nnde, the interconnect 
space is addressed in the same object-oriented manner as the rne..'lllOry 
space, with the IP automatically performing the logical-to-phvsical 
address develoanent. 'lb access the interconnect space, the I/O 
oontroller must specify an access selector for an interconnect 
object which exposes a segment of the interconnect space to the IP. 
The normal window addressing scheme is then used to locate 
individual interconneet registers within the object. Switching 
window l to interconnect access node gives the IP access to 
interconnect objects. This operation is equivalent to the ~ TO 
INTEOCONNB:T and MOVE FRCM I~ operators of the GDP. 

In ~hysical reference mode, the interconnect space is addressed as a 
linear array of even-addressed, double-byte, interconnect 
registers. As with physical reference mode memory accesses, the 
switchable window is set up with a 24-bit 'f.?hysica1 base address. 
Peripheral subsystem references to the corresponding subrange are 
likewise interpreted by the IP as 16-bit displacements from the base 
address to individual interconnect registers. 

Change 1 1-23 





This chapter describes the 432 environment as it aq:>ears to the I/O 
oontroller ooftware. It points out what the I/O controller can, and 
cannot, do in the 432 svstem. The first section broadly compares 
the facilities provided by the Interface Processor to those 
available on the General Data Processor.. The remaining sections 
describe Interface Processor facilities provided for: 

• addressing and protection; -
• objects for -program environments; 
• facilities for asynchronous conmunication; 
• processes and storage resource management; 
• facilities for process scheduling and 

dispatching. 

Because a great many facilities are comrcon to both processors, this 
chapter acb'pts the ap::>roach of describing IP facilities that are 
different or tmique, and referring the reader to the iAPX 432 
General Data Processor Architecture Reference Manual, Order Number 
l7l860, for descriptions of identical features. 

2-1. SUMMARY OF IP FACILITIES 

This section surveys the Inter face Processor by cornpar inq it to the 
General Data Processor. When reading this section, it is useful to 
recall the notion, introduced in chaoter 1, of the AP/IP pair 
co-operating as a logical I/O processor. In this arrangement, the 
Attached Processor fetches instructions, provides arithmetic, 
logical, am fl<:M-of-control operations, and qenerates Peripheral 
Subsystem address references. The Interface Processor cnmpletes the 
logical I/O processor by suwlving the facilities for operation 
within the 432 system, olus the window mechanism for transferring 
data between the ~ systems. Win&:Ms are discussed in detail in 
chapter 3. 

Change 1 2-1 



iAPX 432 Interface Processor Architecture Reference Manual 

To permit the I/O controller to function in the 432 system as well 
as in the Peripheral Subsystem, the IP provides an environment, and 
ooerators that it executes within this environment. The envi:r.onment 
is embcrlied in the system obiects that the Interface Processor 
rea:>qnizes and manipulates, while the operators take the form of 
function requests issued by the IP controller and executed by the 
IP. (Like a GDP, the IP performs other operations in response to 
interprocessor conmunications; these are normally transparent to the 
AP, however.) 

The standard 432 object-oriented addressing and protection systems 
uniler lie all IP f ac ili ties. The IP uses the same 
descriptor-controlled, segment-based address development mechanism 
as the GDP. It performs type and rights checking identically. 
Addressing and ~rotection aoply to both the transfer of data through 
windows and the execution of functions. 

Table 2-1 lists all 432 system objects and compares the IP's 
i.nplementation of them with that of the GDP (see Aw.end ix A for IP 
svstem object structures) • For the nost part these objects are 
haooled identically by both machines; the. variances noted in the 
table stem from the different orientation and design of the two 
machines. The IP does not inplement instructioo segments, for 
exarrple, because its Attached Processor takes care of instruction 
fetching. 

IP processor, process and context objects are similar in purpose to 
the corresponding GDP structures, b.lt are implemented sanewhat 
differently. Importantly, the ~rocessor and process objects are 
compatible with the standard 432 processor arrl interprocess 
comnunication facilities. The IP suprorts nultiole process 
environments; a separate process can be -associated, for example, 
with each Peripheral Subsystem device task. Each process has a 
single context object which defines the process's current access 
environment (i.e., the objects that are instantaneously accessible), 
arrl records status information. 

2-2 Change 1 



OBJ"ErIS AND OPERATORS 

Table 2-1 IP/GDP Svstem Object cartparison 

Object 

Processor Object 
Process Object 
Context Object 
Operand Stack 
Instruction Segment 
Object Table 
D:lnain 
Port 
Carrier 
Storage Resource 
Type Definition 
Comnunication Segment 
Type Controller 
Refinement Controller 

Legend: 

IP Implementation 

similar 
similar 
similar 
none 
none 
identical 
identical 
identical 
identical 
none 
identical 
identical 
identical 
identical 

IP and GDP imJ?lementations are identical identical 
similar While conceptually similar, IP implements object 

differently than GDP 
none IP does not implement object 

IP OPERATORS 

Table 2-2 compares the QT?erators available in the IP's function set 
to those provided in the GDP' s instruction set. Since windONs are 
unique to Interface Processors, the ALTER MAP AND S~ mTA 
SEQ.1ENT function has no counterpart in the GDP. Conversely, the IP 
has no functions for performing arithmetic (except for the exclusion 
function INDIVISIBLE ADD SHORr ORDINAL) or logical operations on 
numeric or character data types, nor any operators to alter the flow 
of execution (e.g., branch or call functions) • To the extent that 
these classes of operators are needed in a Peripheral Subsystem 
interface, they can be provided by the combination of the Attached 
Processor's instruction set and the IP's wind™ facility. For 
example, by opening a wind™ on a message received f ram a GDP 
process, the I/O oontroller can use AP instructions to test and 
branch on the value of a message field read through the wind™· 

Change 1 2-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Through its windows, an IP provides the basic ability to read and 
write the contents of objects corrposed of data segments. However, 
using its function request facility an IP can manipulate an access 
descriptor which references an object. The IP can examine a COI11J?lex 
(multi-segment) object, gaininq access to its COinJ?Onent seqments. 
It can perform type and rights manipulation on both 
hardware-recognized typed objects as well as software-recognized 
types. When mani'9lllating software-recngnized types, an I/O 
controller is acting as a type manager and its actions must be 
coordinated with the 432 type manager which has created the object. 

The Interface Processor provides the I/O controller with both 
Process and. Processor canmunication facilities. Interprocess 
Corrmunication is asynchronous and is performed with the aid of 
ports, system objects which Provide synchronization and. queuing for 
messages. 'Any object may be sent as a message from a process to a 
port. Interprocessor corrmunication messages are Predefined. Some 
of them apply to all classes of 432 processors, and others are 
soecific to a particular class (e.g., IP or GDP) of processor. Th'? 
I/O controller can send one of these messages to an individual 
processor, or i.t can broadcast a message to all processors in the 
432 system. 

2-4 



CBJECl'S AND OPERATORS 

Table 2-2 IP/GDP Operator Canoarison (Part 1 of 2) 

Operator 

WINOOW DEFINITIOO OPERATOR 
Alter Map arrl Select Data Segment 

AOCESS DESCRIPI'CR MJVEMENT OPERATORS 
Cow Access Descriptor 
Null Access Descriptor 

RIGH'IS MANIPUIATICN OPERATORS 
Amplify Rights 
Restrict Rights 

TYPE DEFINITIOO MANIPUIATICN OPERATORS 
Create Public TYJ?e 
Create Private Type 
Retrieve Public Tvpe Representation 
Retrieve Type Re~resentation 
Retrieve Type Definition 

REFINEMENI' OPERATORS 
Create Refinement 
Create Typed Refinement 

SEG1ENI' CF.FAT!CN OPERA...'T'QRS 
Create Data Segment 
Create Access Segment 
Create Typed Segment 
Create Access Descriptor 

ACCESS INS~ICN OPERATORS 
Insoect Access Descriotor 
Inspect Object 

AOCESS INTERLOCK OPERATORS 
lock Object 
Unlock Object 
Irrlivisibly Add Short Ordinal 
Indivisiblv Add Ordinal 
Irrlivisible Insert Short Ordinal 
Irrlivisible Insert Ordinal 

COO'IEXT OPERATORS 
Enter Access Segment 
Enter Global Access Segment 
Set t-hde 
Call 
Call with Message 
Return 

PERIPHERAL SUBSYSTEM KDE OPERATOR 
Set Peripheral Subsystem Mode 

Change 2 

Inplementation 

IP 

GDP+IP 
GDP+IP 

GDP+ IP 
GDP+IP 

GDP 
GDP 
GDP+IP 
GDP+IP. 
GDP+ IP 

GDP 
GDP 

GDP 
GDP 
GDP 
GDP 

GDP+IP 
GDP+IP 

GDP+IP 
GDP+IP 
GDP+IP 
GDP 
similar 
GDP 

GDP+IP 
GDP+IP 
GDP 
GDP 
GDP 
GDP 

IP 

2-5 



2-6 

iAPX 432 Interface Processor Architecture Reference Manual 

Table 2-2 continued IP/GDP Ooerator Comoarison (Part 2 of 2) 

PRtXESS a:MMUNICATICN OPERATORS 
Send 
Receive 
Conditional Send 
Comi.tional Receive 
Surrogate Send 
Surroqate Receive 
Delav 
Read Process Clock 
DiSl;)atch 

P:RC:nSSOR a:MMUNICATICN OPERATORS 
Send to Processor 
Broadcast to Processors 
Read Processor Status 

IN'IERCONNECI' OPERATORS 
lt>ve to Interconnect 
f'.bve from Interconnect 

BRANCH OPERATORS 
CHARACTER OPERATORS 
SHORr-ORDINAL OPERATORS 
SIDRr-INTOOER OPERATORS 
ORDINAL OPERATORS 
INI'EGER OPERATORS 
SHORI'-REAL OPERATORS 
REAL OPERATORS 
'I'EMPOOARY REAL OPERATORS 

Legend: 

GDP+IP 
GDP+IP 
GDP+IP 
GDP+IP 
GDP+IP 
GDP+IP 
GDP 
GDP 
IP 

GDP+IP 
GDP+IP 
GDP+IP 

GDP* 
GDP* 
GDP 
GDP 
GDP 
GDP 
GDP 
GDP 
GDP 
GDP 
GDP 

GDP+IP 
IP 

IP and GDP Implementations are inentical 
IP implements operator, GDP does not 

GDP GDP implements operator, IP does not 
similar While conceptuallv similar, IP implements OJ?erator 

differently than GDP 
* Window 1 of IP l;)rovides equivalent interconnect access 

Change 2 



CBJECI'S AND OPERA'IORS 

2-2. Cl3JOCT ADDRESSING AND GLCBAL SI'ORAGE MANAGEMENr 

Object addressing on the IP follc:Ms the same three level sequence as 
on a GDP. The steps taken to address an object are: 

1. Given an access descriptor, a processor uses the dir.ectorv 
index field to index the object table directory and gain a 
storage descriptor for the object table which oontains an 
object reference for the desired object. 

2. With the storage descriptor for the object table and the 
segment index field of the access descriptor, the processor 
locates a storage descriptor for the requested object. 

3. The storage descriptor for the object contains the base and 
length information required to locate the object in 432 
memory. 

An IP can be directed to manipulate objects in 432 m=rrory, just as 
other 432 processors, but lacks any facility to create objects. All 
original objects used by an IP must be predefined and loaded into 
432 memory at system initialization time. Additional objects, which 
may be required, must be created by a GDP process (e.g. the storage 
manager). 

A 432 operating system type manager might maintain a template for a 
J?rototvpe IP process. When it received a request for a new IP 
process from the I/O controller the GDP would build one using the 
prototype and then return it via the standard comnunication J?Qrt 
mechanism. 

2-3. CBJECI'S FOR POOGRAM ENVIRONMENTS 

The IP supports the same program environment hierarchy (process, 
context, domain) as a GDP but ~lements each level differently. 

The IP does not require that a danain object be implemented but the 
context object contains a slot for an access descriptor for a domain 
object should one be required. When implemented, IP danains do not 
contain instruction segments (since the IP does not fetch 
instructions) or operand stack segments. The danain may be used to 
store some static information which may be required by a process. 

An IP oontext is a refinement of an IP process object. Each IP 
process is boond to a single oontext for the lifetime of the 
process. An environment is changed by invoking the ENTER ACCESS 
SEGiFNl' or ENl'ER GLCBAL ACCESS SEXMENT functions. 

2-7 



iAPX 432 Interface Processor Architecture Reference Manual 

2-4. FACILITIES FOR ASYOCHRCNXJS a:M-IDNICATICN 

The IP offers the same set of operators for asynchronous 
interprocess comnunication as does a GDP, with the exception that 
the DELAY O'J?erator is not implemented. The DELAY operator, used in 
scheduling to delay a process from being dispatched (on a GDP) , is 
not required by an IP where process scheduling and dispatching is 
performed by the I/O controller. 

2-5. P~SES AND I.OCAL S'IDRAGE RESOURCE MANAGEMENT 

The IP perfoans no process scheduling or local storage resource 
management. Multiple IP process objects may coexist in 432 mennrv. 
I !O controller oof tware must select a process environment in which 
an IP function is to be performed. 

Unlike the GDP, where a Process mav be comoosed of llllltiple 
contexts, an IP process is bound to a single context during i.ts 
lifetime. In fact, the context is a refinement of an IP process 
object. Further, since no local storage management is performed by 
an IP, the size of a process's context is static over the life of 
the process. 

2-6. Pro::ESS SCHEDULING AND DISPA'ICHIN3 

Generally, ooftwar.e in the I/O controller is responsible for all IP 
process scheduling and dispatching. A process is selected and bound 
to an IP processor object when an IP function is invoked. The 
process selection i.ndex field in the IP' s function request facHi ty 
specifies which process is to be selected. Since the IP is not 
self-dispatching, a strategy routine in the I/O rontroller has 
responsibility for multiplexing the various IP processes over time. 
The IP does not maintain a process clock. Process time management 
is performed by the I/O controller. 

Consistent with 432 philosophy, the IP provir1es the mechanisms for 
process scheduling and dispatching but the p:?licv for deployment is 
totally under the direction of I/O controller software. 

2-7. FACILITIES FOR OBJOCT MANAGEMENT 

The IP provides a spectrum of facilities which may be used for 
securely managing objects: cx:mnunications ports, wind<Ms, and 
indivisible short ordinal operations. 

The IP offers the same asynchronous corrnnunication port mechanisms as 
a GDP. Canmunications p:>rts may be used by processes to 
asynchronously send and receive messages (objects). 

" ,.,, L.-o Change l 



Contained in each object's storage descriptor is an I /0 lock (the 
windowed bit), which is applied by the IP when a window is opened on 
the object. '!'his lQG)< serves two purposes: first it guarantees 
that only one IP window ca~ be opened on a particular 432 object at 
a time; second it prevents rrovement of the object (e.g. b'f a meiTDry 
compaction process) while it is mapped through a window. 

The transfer of data between the PS and the 432 system is a three 
step process. First, the IP controller ooens a window onto the 432 
object which is to be used in the transfer. In the process of 
opening the window the IP sets the windowed bit in the affected 
object. Second, the data transfer phase is entered and a PS 
processor transfers data between the 432 object and the PS rcennrv. 
Finally, when the transfer is completed, the IP controller closes 
the window and the IP clears the windowed bit in the 432 object. 
The storage manager in the 432 system may query the windowed bit 
field but this field is not hardware-interpreted by a GDP. 

As primitives in the IP hardware function set, two indiv:i.sible 
operators are provided which can be used to guarantee mutually 
exclusive access to short ordinal fields within 432 objects. These 
two operators, INDIVISIBLE ADD SHORI' ORDINAL and INDIVISIBLE INSERI' 
SHORI' ORDINAL, a'Pt?lY an indivisible hardware operation to the 
specified short ordinal value. For instance, these o-perators might 
be employed to provide a counting semaphore. These operator.s 
provide only the hardware-specific mutual exclusion mechanisms and 
must be suwla"'iiente1 by a coordinated scft:...;a:re discipline between 
processes which utilize the semaphore. For a discussion of the 
read-modify-write memory requirements for these operators, see the 
Intel iAPX 43203 Interface Processor Data Sheet, Order Number 171874. 

2-8. CONTEXT ENVIRCNMENT MANIPUIATICN 

'the I/O controller, by manipulating the oontext of an IP process, 
can access the objects which are available to the process. Like a 
GDP, the IP allONs a context to reference any object for which it 
holds an access descriptor. Entered access .segments contain access 
descriptors for all the objects which may be manipulated from a 
specific process's context by an I/O controller. 

The Four Entered Access Segments 

Of all the access segments which can be referenced from a context, 
the IP provides direct access to a set of four entered access 
segments. The entered access segments are referenced by access 
descriptor slots 4, 5, 6, and 7 in the context access segment. Note 
that descriptor slot 4 oontains the access descriptor for the 
context access segment itself, since the context AS also serves as 
entered access ~nt 0. 

Change 1 2-9 



iAPX 432 Interface Processor Architecture Reference Manual 

Direct vs. Indirect Accessibility 

If a copy of an access descriptor for an object is in one of the 
four entered access segments, the object it references is directly 
accessible. To reference such an object, two values m..ist be 
specifieii: 

• The number (0 to 3) of the entered access segment in which 
the access nescriptor is located, and 

• The index (0 to 16383) of the access descriptor within the 
specified entered access segment 

When viewed frcm the standpoj_nt of the 432 system and the Peripheral 
Subsystem, there are actually several perspectives on accessibility 
as shown in Table 2-3. 

A processor (GDP or IP) in the 432 system can directly reference anv 
object for which it holds an access .descriptor in one of its entry 
access lists. In addition, by traversing access paths, the 432 
processor can manipulate objects which are indirectly accessible. 

If a copy of the access descriptor is not currently in one of the 
four entered access seqments, the desired object may be indirectly 
accessible. The target object may be part of a complex object 
structure which must be traversed by following the appropriate 
access path. Once the particular access nescriptor for the object 
has been located, the object may be made airectly accessible by 
entering the access segment into one of the reuseable entered access 
segments (1-3). Entered access segment 0 is always reserved for the 
original oontext access segment. An access segment of· process 
globals may be entered into one of the other three access lists by 
the ENI'ER GLOBAL ACCESS SEGIBNT function. Together, these two 
access segments provide access to all the objects which a context 
can reference. 

An AP has a nifferent view of accessibilitv. The AP can onlv access 
432 data through IP windows which are o-pen0:1 onto 432 data segments. 
When a window is open, the AP can use its native data manipulation 
operators to mc:rlify the information through the windCM. When the AP 
must reference data in a segment which is indirectly accessible, it 
issues a function request to the IP to traverse an access path to 
the segment. When the data segment has been made directly 
accessible for the AP, the IP interrupts the AP. 

2-10 Change 1 



CBJECrS AND OPERATORS 

Table 2-3 Direct/Indirect Accessibility 

Viewpoint of IP/GDP in 432 System 

Directly Accessible 432 Information 

• access descriptors All access descriptors in the four Entered 
Access Segments. 

• data All objects of type data segment referenced 
by access descriptors in the four Entered 
Access Segments. 

Indirectly Accessible 432 Information 

• Information, data or access, which can be reached via access 
path manipulation (i.e. by following -a chain of access 
descriptors using the ENTER ACCESS SmIBNT function). 

Viewpoint of AP in Peripheral Subsvstem 
(Controlling an IP operatinq in logical reference node) 

Directly Accessible 432 Information 

• access descriptors NOOE, the AP cannot directly alter access 

• - data 

; .... -4=,. ............ .,,. .... ; ,..,.,... 
•.L.&..&...'-'.L...ll.1(...1.'-..&........,-J,.&.• 

all objects of type data seqment for which a 
windCM is currently opened. Note, this 
implies the object is directly accessible to 
the IP. 

Indirectly Accessible 432 Information 

• Objects of type data segment which are directly accessible to 
the IP bJt which have not been mapped through a windav. These 
objects can be made directly accessible by issuing an IP 
function request which opens a windCM to the object. 

• Access descriptors in the Entered Access Segments. These can 
never be made directly accessible to the AP bJt can be 
manipulated via the IP function request facility. 

• Information, data or access, which can be reached via access 
path manipulation (i.e. by following a chain of access 
aescr iptors using the ENTER ACCESS SEG1ENI' function provided bv 
the IP function request facility) .. Note that two levels of 
indirection are involved, traversing the path of access 
descriptors and the use of the IP function request facility. 

Change 1 2-11 



iAPX 432 Interface Processor Architecture Reference Manual 

Access Selectors 

An access selector identifies an object by specifying an access 
descriptor contained in one of the four entered access segments. 
The access selector consists of a double-byte quantity comoosed of 
two fields: 

1. The 10>1 order two bits of the access selector specify which 
entered access seqment holds the desi r.ed access descriptor 
and are coded as follows: 

00 - Entered Access Segment 0 (Context Access Segment) 
01 - Entered Access Segment 1 
10 - Entered Access Segment 2 
11 - Entered Access Segment 3 

2. The high order 14 bits represent a scaled index into the 
specified entered access segment. 

An access selector allCMs access to any of the 16,384 (214) 
access aescr iptors f ran each of the 4 entered access segments. An 
IP can potentially reference 65,536 (216) objects directly. 

Entering an Access Segment 

The instruction ENI'ER ACCFSS SEXMENT allc:Ms the I/O controller 
software to enter a given access segment into Entered .Access Seqment 
1, 2, or 3. ENI'ER ACCESS S:f!D\1ENT requires two ooerands: 

• An access descriptor for the access segment to be entered 
into FASl, FAS2, or FAS3, and 

• An unsigned integer value designating the destination 
entered access seqment (EAS), which must be 1, 2, OJ:" 3. 

Entering the Global Access Segment 

Each IP process maintains a global access segment which is always 
accessible to the I /0 controller via the ENTER GLCBAL ACCESS SEGIBNr 
function. Imnediate entry of the global access segment allows an 
I/O controller to gain access to the set of 9rocess globals. The 
I/O controller needs only to specify which of the three available 
entered access segments is to be used when requesting this function. 

2-12 Change 1 



The Interface Processor windovl mechanism provides the Peripheral 
Subsystem with protected access to the oontents of objects located 
in the 432 system. There are five windows, labeled 0-4. Each 
window can be used to access one (single segment) object. To 
prevent the possible manipulation of access descriptors as ordinary 
data and oorruption of the protection mechanisms, the wind<::Med 
object must be of base type data segment. Ar"...cess descriptors, the 
basis for the 432 protection system, may he manipulated only by IP 
operations supplied by the IP function request facility. These 
operations are described in the next chapter. 

All IP windaNs are similar in that they support the transfer of data 
across the subsystem boundary; this chapter first describes the 
characteristics CXJlllk)n to all windows. The first section covers the 
attributes that define windOlls; these are gener.ally specified when 
the windOI/ is opened with the ALTER MAP AND SEIBCI' Jl.?\TA ~"'I' 
function. The second section describes the operation of a data 
transfer through a window that has been defined with a given set of 
attributes. 

Three of the windows have special capabilities; these are covered 
after the basic properties of all windaNs have been dPscribed. 
Window 0 may be used to perform high speed block transfers. Window 
1 may be opened onto the processor-memory interconnect address space 
and thus provide access to interoonnect objects. Window 4-the 
control window-is dedicated to providing the data path for the 
Interface Processor function facility; this is covered in chapter 4. 

Throughout this chapter conditions for correct use of windows are 
described. When any of these conditions are violated, the Interface 
Processor detects a fault. The IP' s fault detection, reporting and 
handling facilities are covered in chapter 6. 

3-l 



iAPX 432 Interface Processor Architecture Reference Manual 

3-1. WINOOW ATrRIBUTES 

Each window has a set of attributes which define its state at a 
given manent; these are sumnarized in table 3-1. The IP sets the 
attributes of all five windows when it performs processor 
qualification. The attributes of the control windoo are obtained 
from values recorded in the processor object. Processor 
qualification closes windows 0-3. 

Processor qualification is performed explicitly when the Interface 
Processor responds to a "suspend and fully requalify processor" 
interprocessor cx:>rrmunication {!PC). The IP performs processor 
qualification implicitly in response to the startup IPC it receives 
during system initialization {see appendix E) • Thus, window 4 may 
be made to cane up with any set of attributes by encoding the 
desired values in the processor object image that is loaded during 
initialization. 

Having entered logical reference m:x:le, the I/O CX)ntroller can change 
the attritutes of windows 0-3 with the AL'IER MAP AND SELECI' DATA 
SEG1ENI' function. Unlike the other windows, window 4' s attributes 
may not be altered during normal execution; its attributes are 
fixed once logical node is entered. The IP can be c:omnanded to 
reenter physical mode by a special IPC fran a 432 processor, 
in::!luding itself. Any processor with an access descriptor for a 
processor object with broadcast rights can serrl the "enter physical 
m:x:le" IPC to all processors in the 432 system. GDPs ignore this 
interprocessor message. 

WINOOW STATUS 

A wirrlow nn.ist be ~ for it to be used to transfer data. An open 
windCM establishes an active mapping between a set of addresses in 
the Peripheral Subsystem and an object in the 432 system; other 
attributes provide further mapping information. 

A closed window is inactive, and has no other attributes. A window 
may be closed to prevent further access to an object, or to change 
the attributes of a wind.CM. Closing a window which overlays PS 
memory (see OVERIAY in this section) enables access to the PS rnerrory. 

When a window detects a. fault, the IP records in 432 rnenory the 
fault information describing the circumstance, changes the state of 
the affected window to the faulted state, and interrupts the AP. In 
the faulted state the IP will continue to ack110t1ledge transfers 
through the windCM though no data will actually be noved to/from the 
432 system {see the description of XACK/ ar.rl NAK/ in the Intel iAPX 
43203 Interface Processor Data Sheet, Order Number 171874). This 
state is entered to allCM 1>1A-type controllers to proceed safely in 
the presence of a window fault. 

3-2 



Table 3-1 Wind0t1 Attribute Stmmary 

Attrihlte 

Window Status 

Subrange Base Address 

Subrange Size 

Object Reference 

Base Displacement 

Direction 

Transfer Status 

Overlay 

Block ~ Attribute 

Byte C.ount 

Description 

Window is open/closed/faulted 

Start of windowed subranqe in the PS 

Length of wind0t1ed subrange in the PS 

Access Selector for windowed 432 object 

Displacement in bytes into windowed 432 
object 

Read/write permission for windowed 
object. When the windoN is being opened 
this attribute is the permission 
requested by the I/O controller. After 
the window has been opened this 
attribute is the l;)ermission that has 
been qranted. 

Transfer in progress/terminated/faulted 

Windc'w 0 ~ ra.11dcm/block nnde 
Window 1: memory/interconnect mode 
Window 2-4: always in random node 

Windowed subrange does/does not over lay 
rrercory 

Description (awlies only to window 0) 

Count of the number of bytes to be 
transferred. 

Note: In block transfer node, the base dis-placement of 
windoN 0 specifies the initial address within the 
windowed object fran which cnnsecutive information 
transfer will begin. 

Change 2 3-3 



iAPX 432 Interface Processor Architecture Reference Manual 

SUBRANGE BASE ADDRESS AND SUBRANGE SIZE 

A window's subrange is defined by a subrange base address and a 
subrange size, in bytes. The subrange i.s the contiguous set of 
Peripheral Subsvstem mercorv addresses that are mapped by the 
windcw. A Peripheral Subsystem bus master. that references an 
address in a subrange accesses the oorresponding object in the 432 
system. 

A PS subrange is defined in terms of pc:Mers of 2. The subrange size 
of a randan mode window may be specified as any power of 2 from 
20 through 215 (i.e., l through 32k bytes). When window 0 
is used in block mode it may sequentially access an object as large 
as 64K bytes. When the target object is not an lntegral pa-ler of 2 
in length, the subrange will normally be specified as the next 
higher pcMer of 2. The subrange may also be smaller than the tarqet 
object, if access to the full extent of the object is not required. 

Note that the size of the winoow is the lesser of the si.ze of the 
subrange and the size of the object. That is, a windoo never 
provides access to 432 system rnercorv bevond the extent of the 
windowed object, regardless of the relationship of subrange size to 
object size. The !P's protection system restricts a larqer subrange 
to behaving as though it is exactly the same size as the windowed 
object. 'Anv attempt to access locations bevond the extent of an 
ob]ect will cause the IP to qenerate a fault. -

A subrange's base address is specified as an offset in bytes from 
the beginninq of the !P's 64K byte range in the PS. The subrange 
base address hears a definite relationship to the subrange's size. 
Given a subrange 2n bvtes lonq, its base address must be on a 
2n byte bamdary. For exarrple, the base address of a 4K 
subrange must be evenly divisible by 4K. This relationship may also 
be expressed as: the base address of a 2n bvte subrange, 
expressed in binary, :nust contain at least !!. 10t1-0rder zero bits. 

The foll°'1ing cnnstraints apply to all active subranges: 

3-4 

• no subranges may overlap, i.e. oo two subranges 
may include the same Peripheral.Subsystem address 

• all subranges must "fit" within the ranqe 
of addresses (up to 64K) that the IP 
occupies in the Peripheral Subsystem memory space. 



An open windCM' s object reference begins as an access selector and 
is converted by the IP into an access descriptor for the windowed 
432 ob~ect. Each ooen IP window must mao a different obiect in 432 
memory; and each ob]ect must be represe~ted as a- single ... se9ment of 
base type data segment (functions may be used to manipulate 
multi-segment objects to gain access to their individual segments). 
No nore than one window can be ooened on an object, regardless of 
whether there are multiple !P's in the system. Even if one IP 
window is opened on a refinement of an obiect no other window will 
be allowed aecess to the base object or any refinement of the object. 

When a windoo is opened on an object, the IP makes the object 
inaccessible to other IPs by setting the windowed bit in the base 
object's object table entry; the windowed bit in the base object is 
set when a window is opened on a refinement. The object may, 
:towever, remain accessible to GDP processes holding object 
references for it. If the Peripheral Subsystem requires exclusive 
access to an object, it must do so by means of a convention. For 
exa."l'ple, if the object has been defined wit.11 a lock field, the IP 
a:>ntroller can use the LCXl{ OBJECI' function to prevent GDP processes 
(which observe the convention) fran accessing the object. An 
alternate convention might be used for objects which do not contain 
lock fields. For example, a GDP process sending an object to the 
I/O oontro ller oould agree not to access the object, or pass a 
reference for it to another orocess. until the I/0 controller sends 
the object as a message back to the GoP process. 

The IP sui:POrts the 432 philosophy that software should have access 
to the minimum set of objects needed to perform its function. 
Therefore, the I/O controller can only open a windoo on an object 
for which an access descriptor exists within a current context's 
access environment. Typi.cally, an I/O service request message fran 
a 432 processor will oontain access descriptors for the objects that 
need to be transferred or accessed. 

Change 1 3-5 



iAPX 432 Interface Processor Architecture Reference Manual 

DIROCTICN 

The direction attribute s-oecifies whether the windowed object mav be 
read, written, bot.11 read and written, or neither read nor written. 
When the windCM is opened the IP checks the requested direction 
attrioote with the access rights granted bv the object reference. 
The access rights requested in the direction attribute must be equal 
to, or logically less than, the rights granted by the object 
reference. For example, if the object reference indicates that the 
object may be read, then the permissable direction attributes are 
read, or neither read nor write; requesting the ability to write, or 
to read and write the object would be illegal. 

Once a window has been successfully opened, the IP checks every 
subsequent subrange address reference to insure that it conforms to 
the direction attribute, otherwise an active window fault occurs. 
(The IP's read/write line identifies the type of access being 
attempted.) This permits the IP controller to open a window for 
reading with the assurance that a mis-progranmed Il4A controller will 
not be able to write into it. 

TRANSFER STATUS 

An open window may take one of four states: 
• transfer in progress; 
• transfer terminated by fault; 
• transfer terminated by count runout; (block :rrode only) 
• transfer termination forced; (block rrode only). 

The IP controller wi U open a windCM with the status attribute set 
for "in progress". If the IP detects a fault associated with an 
active windc:M, it will change the status attribute to "terminated by 
fault". A randan nnde window which is closed (set invalid) with a 
transfer status of "in progress" is considered to have terminated 
normally since there is no neans for an IP to predict when a randan 
mode transfer i.s finished. The remaininq h«) states are associated 
with window 0 block rrode transfers only and are described in section 
3-3. 

TRANSFER MJDE 

Windc:Ms 0 and 1 have alternate transfer rrodes that may be selectea 
by setting the rrode attribute when the window is ol;)ened. Window 0 
may be opened in block node, which permits buffered hiqh speed 
transfers of contiguous blocks of data; this is described in section 
3-3. WindCM 1 may be opened onto the interconnect address space; 
this is described in section 3-4. The transfer m::rle attribute has 

3-6 



oo meaning for windONS 2-4, which suwart random transfers to 432 
system me.'tOry only; t.~e randan transfer m:xle is described in section 
3-2. Attempting to set the transfer mode of winCk:Ms 2-4 will cause 
a fault. 

OVERIAY 

Sane Peripheral Subsystems (e.g., those based on processors with 
limited address spaces) may not be able to dedicate a block of 
merrory space for exclusive use as IP window subranges. Such systems 
may elect to co-locate all or part of the IP's range with real PS 
merrory. If a window is then opened with the overlay attribute, the 
IP will inhibit the co-located memory from responding to memory 
references in the subrange. Closing a window that overlaid mennry 
re-enables the memory to respond to subsequent address references in 
that subrange. Thus, when the IP and PS mennry both occupy the same 
addresses, memory will respond to all references except those that 
fall in the subrange of a window open with the overlay attribute. 

Figure 3-1 illustrates a hypothetical configuration in which a bank 
of merrory and an Interface Processor both occupy a 64K byte block of 
addresses in the Peripheral Subsystem memory space. A window with a 
subrange base address of 32K and a subrange size of 4K has been 
opened with the overlay attrih.tte set. "Any address reference 
falling in the subrange will cause the IP to respond rather than the 
co-located memory. "Any address reference outside the subrange will 
select the rnenory rather than the IP. 

The overlay facility is i.nq;>lemented by an inhibit signal that the IP 
asserts when it recognizes an address reference that falls in an 
overlaid subrange. (See the iAPX 43203 Interface Processor Data 
Sheet, Order No. 171874, for a description of this signal). Use of 
the overlay facility slows IP response time scmevhat. 

Note that opening a window with the overlay attribute set when there 
is oo co-located memory is safe, but it slows IP response 
unnecessarily. On the other hand, opening a windcM without 
specifying overlay when there is co-located memory will produce an 
undefined result when both components attempt to respond to a 
subsequent address reference that falls in the overlaid subrange. 

3-7 



3-8 

iAPX 432 Interface Processor Architecture Reference Manual 

-G

4

K-:11111111 

::;::;:;::: -36K- :-:-:-:-:·js1:11>range of windo':' opened 

1111111111 with overlay attribute set 

-~-:::::::::: 

Memory IP 

[] Enabled addresses 

lliIJ Disabled addresses 

Figure 3-1 Mennrv Overlay 



3-2. WINIXM OPERATICN 

This section describes the IP' s response to an address reference 
that falls into the windowed subrange of an open windav. The 
discussion covers randan node transfers to and from ordinary 
memory-based objects; the special cases of .block mode, interconnect 
objects and function requests are cnvered in subsequent sections. 

ADDRES.S RE<DGNITICN 

The Interface Processor m::mitors all Peripheral Subsystem address 
references that fall into its range. It canpares each address 
presented on the Peripheral Subsystem bus to the subranges of all 
open windows.. If an address falls into a subrange, the IP 
recognizes the reference and responds as described belCM. If the 
address does not fall into an active subrange, the IP ignores the 
reference and does not respond. 

CCNSIS'IENCY QOCK 

Given that it has recognized an address reference, the IP checks it 
for consistency before performing the actual transfer. There is a 
series of these checks which are equivalent to the steps carried out 
by a GDP when an instruction attempts to access data in an object. 
Although they are described here as a sequence, the hardware is able 
to perform sane of the checks in parallel. 

The IP insures that the transfer direction (as indicated by its 
read/write line) is consistent with the windCM's direction 
attribute. The IP computes the PS transfer displacement, that is, 
the position of the item (byte or double-byte) relative to the base 
address of the PS subrange. The visible object length is the 
difference between the length of the object arrl its base 
displacement (see Figure 3-2) • The transfer displacement rrust be 
less than or equal to the visible object length. The sum of the 
physical base address and the transfer displacement rrust be less 
than -the largest physical 432 rnerrory address (224_1). (A rnenory 
bounds error YK>uld indicate erroneous information in the object 
table.) If any of these checks fails, the IP detects a fault and 
does not perform the transfer. Figure 3-2 · illustrates the 
constraints which the IP applies when the consistency check is 
performed. Several examples of valid mappings of windav onto 
objects are shown in Figure 3-3. 

3-9 



IP 
64K 
Byt 

Rang 
e 
e 

Access 

iAPX 432 Interface Processor Architecture Reference Manual 

PS ADDRESS SPACE 432 ADDRESS SPACE 

-1'9 ---------. ~ 

SUBRANGE 

LENGTH 
...ti.. 

I 
_t Transfer 

Displacement 

___ .-i ______ l 
Initial Canputations 

• Adjusted Object Length = Object Length - Base Displacement 

• Visible Object Length = Minimum (Adjusted Object Length, Byte 
Count) for block mode operation. 

• Visible Object Length = Minimum (Adjusted Object Length, 
Subrange Size) for randan rocrle operation. 

• Physical Base Address = Base Address + Base Displacement 

• During block transfers in logical mode (window 0 only), the byte 
count must be less than the Visible Object Length. 

Constraints During Data Transfer 

• Transfer Displacement nust be less than the Visible Object Length 

• 

3-10 

Physical Base Address + Transfer Displacement nust be less than 
221!_1 

Figure 3-2 Subrange/Window Attributes (I.Dgical M:>de) 

Adjusted 
Object 
Lenqth 



MAPPED 
IP WINDOW 432 OBJECT 

11----11 

LL ___ u 

D----H ____ LJ 

D----c·/// 
~ .=c, =-- cmo. 

//// 

~----o L_J ___ _ 

--- - .... 
-----

WINDOW • OBJECT 

WINDOW<OBJECT 

WINDOW a REFINEMENT 

OBJECT ...:: WINDOW 

WINOOW > REFINEMENI' 

m - PORTION OP OBJECT INACCESSIBLE TO IP 

rn - PORTION OF WINDOW INACCESSIBLE TO AP 

Figure 3-3 Valid Window/Object Mapping 

3-11 



iAPX 432 Interface Processor Architecture Reference Manual 

3-3. RANOCM KDE DATA TRANSFER 

Given that an IP address reference has passed the consistency 
checks, the IP finishes the Peripheral Subsystem bus cycle just as a 
merrory component would, accepting data fran the bus in a write 
operation, arrl placing data on the bus in a read operation. 

It foll~s fran the preceding discussion of transfer displacement 
call?ltation that random mode transfers are always between 
corresponding relative locations of t.11e windowed subrange and the 
windcMed object. That is, the displacement of a transferred byte or 
double-byte is identical within the wind<:Med object and the wi~ed 
subrange. For example, assume a PS subrange of 128 bytes at base 
address 4096 mapped onto a 432 object 100 bytes long with a base 
displacement of O. If a Peripheral Subsystem bus master initiates a 
b.ls cycle that decodes as "read one byte fran location 4096", the IP 
will return the object byte whose displacement is zero, the first 
byte in the object. If a subsequent bus cycle indicates "wrj_te a 
double-byte into location 4100", then the IP will accept a 
double-byte fran the b.ls and write it into the object at a 
d:tsplacement of four. If another bus cycle attempts to "read one 
byte fran location 4197", the IP will fault and will not perform the 
transfer, since the subrange transfer displacement exceeds the 
l:ounds of the object. 

Randan rrode is so-called because no ordering is implied between 
successive references to a windowed subrange. 'Any location may be 
read or written (assuming validitv checks are passed) at any time. 
Figure 3-4, Random M:>de Transfers, illustrates the effect of 
different address references when a window is opened for reading and 
writing in randan m:xle. 

A window opened in rand.an node may be remapped onto a new 432 data 
segment with a single invocation of the IP function ALTER MAP AND 
SEI..i'ECI' DA.TA SEX:}.1ENI1. When executing this function the IP will first 
close the wind~ and then reopen it on the newly select data segment. 

3-12 



41 03 -------
.... 
~ 3 

....._ --- l 

- -- -
Byte displacement~ 

..-

J -

-

{7) 

(6) 

(5) 

{4) 

{ 3) 

----·-...... 1 :~: 
{O) ____ ___, 40:6 :I =====:I_ ~-- ___ _ 

Windowed 
~nh1'"::antT~ ------";}-

Legend 

Reference Sequence: 
Subrange Address Referenced: 
Reference Operation: 
Object Byte Accessed (disp.) 

Windowed 
n'h4 ..,.,...+. 
.....,....,J'-'"WI',..., 

G) 
4,99 

Read Byte 
3 

CV G) 
4,97 4102 

Write Byte Read Double-byte 
1 6,7 

Figure 3-4 Randan lvbde Transfers 

3-13 



iAPX 432 Interface Processor Architecture Reference Manual 

3-4. BUD< KDE ni\TA TRANSFER 

WindcM 0 can be opened in randan rrode or in block trode. Block IOOde 
allows the Peripheral Subsystem to take advantage of software 
instructions (e.g. iAPX 86 string operations) and devices such as 
OM?\ controllers, which are capable of generating consecutive address 
references at high speed. Block m:>de also nermits the transfer of a 
large am:>unt of data through a small PS address subrange. For 
example, the full content of any object may be transferred through a 
one-byte or double-byte PS subrange. This helps to keep m:>re of the 
IP's range available for use with randan mode windows. 

While block mode is well-suited for the high speed transfer of large 
blocks of data, it provides less addressing flexibility than rand.an 
node. When window 0 is opened in block IOOde, the direction 
attrib..tte can specify reading or writing, but not l:oth. To change 
access directions requires closing and re-opening the wind<:M. Block 
roode also implies serial addressing of the windowed object. The 
block of data to be read or written is defined when the window is 
opened, and the whole block is transferred in sequence. 

BLCCK M:>IE ATI'RIBUTES 

Window 0 has an additional attrib..tte, ~ count, which is 
applicable only when it is opened in block node. The byte count 
specifies the size of the block that is to be noved through the 
window. The value of this attribute may range fran 0-65,535: the 
value represents one less than the number of bytes to be transferred 
(a byte oount of 0 indicates that a one-byte block is to be 
transferred). The byte count is independent of the subrange size. 
Hc:Mever, the IP checks to insure that the s1.1n of the base 
displacement plus the byte oount does not exceed the length of the 
target object. 

The base displacement attribute locates the first byte of the block 
relative to the beginning of the windowed object. A value of zero 
indicates that the block starts at the lCMest address of the 
object. The base displacement and byte count essentially define a 
refinement of the object. 

3-14 



BLOCK M:DE CCNSIS~Y CHOCK 

Since the byte count and base displacement effectively predefine the 
transfer from the perspective of the -432 object, the IP can perform 
nost of the required consistency checks when t..he window is opened; 
The only checks made dut"ing a tr.ansfer are direction and byte count. 

BI.lX!K TC)E OPERATIOO 

From the J)Oint of view of the Peripheral Subsystem bus, a block 
transfer pt"oceeds much like a random transfer, except that, like a 
fast merrory, the IP provides much better response time in block 
:roode. The IP acts as a passive agent on the PS b.ls, all block 
transfer activity being driven by an active PS processor or ™A 
controller. When an address reference falls within window O's 
subrange, the IP accepts or supplies a byte or double-byte according 
to the type of PS bus cycle. Note, however, that in block :rcode, IP 
acknowledgement of a write <Jperation does not neccessarily imply 
that the data has actually been written into the windowed object. 

The IP emolovs an on-chip first-in-first-out (FIFO) buffer to 
achieve high si>eea block transfers in buffered IOC>de-:--Since a block 
node transfer is predefined by window O's attributes, the IP is able 
to optimize the transfer using the FIFO hardware assistance. The 
Interface Processor buffers block rrode transfers to improve response 
to PPrinhPr~l Snh!=;V!=;.t_pm tr;:m!=;.fpr rPOllP!=;.t!=;. 21m to :reduce its 
utili~atio~--~-f th~--4-32- p~0ces-St;~-P.~~ket- fu~-~ --

In a block read operation, the Interface Processor pre-fetches an 
eight-byte block of data from the windowed object in one 432 
processor packet oos transaction. It holds the block in an internal 
buffer and supplies bytes or double-bytes from the buffer as 
requested by Peripheral Subsystem bus cycles. When the buffer has 
enough free space, the IP prefetches another block. 

In a block node write operation, the IP accepts bytes or 
double-bytes from the Peripheral Subsystem bus and buffers them 
internallv. When the buffer accumulates rrore than eight bytes, the 
IP post-stores an eight-byte block in the windowed object in a 
single processor packet bus operation. 

3-15 



iAPX 432 Interface Processor Architecture Reference Manual 

Completing a block nnde write transfer which is shorte-r than the 
byte count is a two-step process. First, the AP must issue an ALTER 
MAP AND SELECI1 DArm SEG1ENl1 function with the entry state operand to 
"force termination" on window O. This causes the IP to empty its 
FIFO to 432 memory. Then, the AP must issue an additional ALTER MAP 
AND S~ DATA S~ function with an entrv state operand to set 
window 0 invalid (close the window) • If the AP attempts to close a 
block node window without first forcing termination, the IP will 
generate a fault, interrupt the AP, and preserve the block node 
window. When the transfer length is the same as the byte count 
attrirute, the IP autanaticallv takes care of the last block which 
will be short if the transfer size is not a multiple of eight. 

BLOCK MODE '!EBMINATICN 

A block node transfer will terminate normally when all bytes have 
been transferred, or it may teoninate prematurely should a fault 
occur. In both cases, the IP up:iates ·the transfer status attribute 
and issues an interrupt request to notify the Attached Processor. 
Follcwing termination, any address reference falling in the subrange 
of windcM 0 will cause the window to fault and enter the error 
state. In the error state, requests for data transfer will be 
acknowledged (negatively) by the IP, h.tt no data will be 
transferred. This prevents a D-1A controller, for example, fran 
continuing to transfer data after a fault has been detected. The 
faulted wind0A1 cannot be re-used until it is closed and re-ooened. 

The IP tracks the progress of a block transfer by means of an 
on-chip byte counter. The IP sets this counter equal to the byte 
count attribute when the windc:M is opened and decre:-..ments it with 
each byte transferred. When the on-chi1? counter underflows (is 
decremented from zero) all bvtes have been transferred and the 
OT;>eration is terminated normally. 

The IP will terminate a block transfer prematurely if it detects a 
fault during the transfer. In addition, the I/O controller may 
itself force termination before the transfer has been completed. 
This is done by executing an ALTER MAP AND SELECI1 DATA SEG1EN'l1 
function with the transfer status attribute· set to "termination 
forced." Finally, termination may be forced by the IP's receipt of 
of any the interprocessor communication rressages {IPC' s) "suspend 
and fully requalify processor", "close windows", or "close windows 
and enter physical rrode". 

3-16 Chanqe l 



BLOCK KlE ADDRESSING 

As mentioned earlier, in a block nnde transfer the IP determines the 
displacement of a transfer into the windowed object by means of its 
on-chip displacement cnunter. Unlike randan node, then, the object 
(lisplacement is ___ independent of the ___ subrange displacement. This 
gives rise to two addressing techniques that may be used by the 
Peripheral Subsystem in block mode: S\\lept arrl source/sink. 

In swept addressing, the Peripheral Subsystem bus master driving the 
transfer operation "sweeps" serially (fran lON addresses to high) 
through a block of addresses in the windowed subrange. That is, the 
address references will be n, n+l, n+2 ••• or n, n+2, n+4 ••• for 8-
and 16-bit Peripheral Subsystem buses respectively. The range of PS 
addresses swept is equal to the number of bytes transferred, so the 
subrange must be at least as large as the number of bytes 
transferred. Figure 3-5 illustrates swept addressing in a block 
node write operation. · 

In source/sink addressing, the master driving the transfer 
repeatedly addresses a single location in the windowed subrange. 
For a read operation, this single (byte or double-byte) location 
acts as a data source; for a write operation, the location serves as 
a data sink. By permitting the transfer of large blocks (up to 64K 
bytes) of data through a single location, source/sink addressing 
conserves "subrange space." To transfer 32K bytes in randan node 
requires setting up a 32K byte subrange, leaving only half of the 
!P's range available for cnncurrent use with other windows. Only a 
byte or Cbuble-byte of the range is needed to perform the same 
trai-iSfer ir1 block rrl.Jde using source/sink addressing. .r-igure 3-6 
shONS hON source addressing works in a block mode read operation. 

Note that the IP has no knowledge of the addressing technique used 
in a block mode transfer. It simply considers any address reference 
in window O's subrange as a signal to transfer the next byte or 
double-byte. 

3-17 



iAPX 432 Interface Processor Architecture Reference Manual 

----------41 03 

Byte displacement") 

(7) 

(6) 

3-18 

.... 

-

4 096 

Windowed 
Subrange 

3 

2 

1 

- - - - - -
Windowed 
Object 

(5) 

(4) 

(3) 

c2> T 
3 

(1) ! 
(0) -

(Base 
Displacement) 

Legend 
G) @ 0 Reference Sequence: 

Subrange Address Referenced: 4J99 4100 4101 
Reference Operation: Write Byte Write Byte Write Byte 
Object Byte Accessed (disp.): 3 4 5 

Figure 3-5 Block M:>de Writes - Swept Addressing 



4096 

Legend 

,,_ ____ ,,--
Windowed 
Subrange 

' ' 

Reference Sequence: 

,, ,_ 

' ' 

,_ ,, 

' 

,. 

' ' 

"" 

' 

Subrange Address Referenced: 
Reference Operation: 
Object Byte Accessed (disp.): 

By_!=e displacement' 
, ,_ (7)M 

' 

(6) --------t 

' 
, ____ _ 

(5) 

(4) 

( 3) 

(2) 

(l) T~Base 
(g) 1 Displacement) 

Windowed 
,..,.'L..:--.J... 
VU.JC'l.i'-

G) 
4996 

Read Byte 
2 

_G) 
4996 

Read Byte 
3 

Figure 3-6 Block M:)de Writes - Source Addressing 

3-19 



iAPX 432 Interface Processor Architecture Reference Manual 

3-5. IN'I'ERCCNNECI' TRANSFERS 

Window 1 may be opened onto either the 432 rnenory space or the 432 
processor-memory interconnect space. The address space is selected 
by the transfer node attribute when window 1 is opened; it may be 
changed at any time by closing the windON and re-opening it with the 
transfer node set differently. Both address spaces appear identical 
to the Peripheral Subsystem; interconnect objects may be read and 
written in exactly the same fashion as mercory objects. 

3-20 



T'nis cliapter describes the corrmon facility that SufPOrts the 
execution of all Interface Processor functions. The first section 
shows ha-1 winda-1 4 is used to · provide access to the facility. The 
next section explains tXJW a function is requested by writing 
operands and an opcode through the windCM. The last two sections 
describe tXJW the IP executes a requested function and returns status 
information upon canpletion of the operation. 

4-1. FUNCI'ICN FACILITY INTERFACE 

Management of the IP function facility centers on the function 
request area of the processor data segment (see figure 4-1). Both 
the I/O controller software and the Interface Processor itself 
update and use the information recorded in this area via the control 
window. Briefly, the IP records the status of the function request 
facility in the function state field: the I/O controller may obtain 
status information by reading this field. The IP controller 
requests execution of a function by writing operands and an 
identif iying opcode into the function request area, and the IP reads 
these fields to obtain the information it needs to execute the 
function. Finally, the execution of sane functions produces a value 
which the IP records in the return-value field, where the IP 
controller can inspect it. Upon oompletion of any function, the IP 
updates the status -information arrl interrupts its Attached 
Processor. If desired, successful function completion interrupts 
can be disabled, thereby allowing only interrupts for unsuccessful 
oompletion to reach the AP. 

In logical nnde, the control window (window 4) is permanently opened 
onto the processor data segment and its mapping cannot be changed by 
an ALTERMAP function request. By reading and writing the 
corresponding PS memory subrange locations, the IP controller 
obtains access to fields in the function request area located in 432 
memory. Notice that this interface mechanisn is similar to a 
conventional mercory-rnapped peripheral device controller: the 
function request area fields are read and written like corrmand, data 
and status registers. 

Figure 4-2 illustrates the effect of executing a function, ALTER ~ 
AND SELECI' DATA SECNENT, which in this case alters the map of window 
0 and selects a different 432 data segment. Window 4, the control 
windCM, is the only one through which function requests may be 
issued. Wirrlows 0 through 3 are available for data transfer between 
a PS processor and 432 memory. 

4-1 



4-2 

iAPX 432 Interface Processor Architecture Reference Manual 

(Double-byte Displacement>-, 

15 g \ 

-1·1::1:··: !il ''<: :: jji ::'.t 
t ...,...... Return-value -..._

25 

Operands 

(reserved) Opcode 

16 
15 

9 

8 

Function State 7 

Process Selection Index 6 

WI ' I ·f 
Processor Data Segment 

Figure 4-1 Function Request Area 



IP WINDOWS 432 SYSTEM 

IP 
.....,....,..._..., PROCESSOR 

DATA SEG..MENT 

0 ------o 
.......... _ ---

0 --- ---o 
--- ------

0 --- ---o 
----- -----

0 --- ---o 
--- ----

~ D 

DATA 
SEGMENTS 

FONCI'ICNS 

IP WINDOWS 432_ SY_STEM 

ALTER MAP 

.:~ -+l~~-4-+-l~~~--~--~t-~~ 
IP 

._..,... ...... i.1PROCESSOR 
DATA SEGME?<T 

ORIGINAL MAPPING ALTERED WINDOW ~ MAP 

Figure 4-2 Function Example 

4-3 



iAPX 432 Interface Processor Architecture Reference Manual 

4-2. FUNCrICN RE(UFSTS 

The performance of a function may be considered from the AP point of 
view as a sequence of three phases, as shown in figure 4-3. The IP 
controller, running on the AP, performs the first phase, requesting 
the execution of a function. 

The IP executes functions serially: requesting execution of ~ 
second function before ~ prior function has been completed produces 
an undefined result. The function completion state subfield of the 
function state field (see appendix A) indicates the IP' s readiness 
to accept a function request. A typical IP controller 
implementation will assign responsibility for requesting functions 
to a single routine (task) which will serialize the requests. 

Given ai;propriate Peripheral Subsystem b.ls arbitration, function 
requests (which are identical to all windowed transfers) may be 
issued concurrently with other windoN activities. For example, 
consider a J:l.1A controller driving a block nnde transfer through 
winda-1 O. If the J:l.1A controller relinquishes the Peripheral 
Subsystem bus between transfer cycles, the IP controller (running on 
the Attached Processor) can use the b..ls for a function request (or 
for any other p..irpose). 

PRCCESS SELOCTICN 

The IP controller must specify that a function be performed in one 
of the IP process environments which exist in the 432 system. To 
select a process, the IP controller nust deposit a process selection 
index into a designated slot in the function request facility area 
of the processor data segment. With this index, and the process 
list in the !P's processor object, a process object can be located. 
The IP will attempt to qualify and lock the specified process as 
soon as a function opcode is written. 

FUNCrICN OPOODES 

Each function is uniquely identified by a one-byte op::ode (see 
appendix B). The act of writing into the opcode field triggers the 
execution phase of function performance. Therefore, the function's 
operarrls nust be in place in the function request area before the 
oi:code is transferred. 

4-4 



I 

• • • 

Read 
function 
state 

Write 
operands 

Write 
opcode 

,' Perform \ 
, other ' 
\ processing,' •·-------f \ I 

I ----·--• Interrupt • 
from IP ~ - - .. ---_-_...._ __ _ 

I ·--------- Read 
function 
state 

• • • 

Invoke 
fault 

handler 

Read 
return
val ue 

FONCI'ICNS 

Rl:quest 
Phase 

Execution 
Phase 

Conipletion 
Phaee 

Figure 4-3 Function Performanc-e Phases - AP View 

4-5 



J 

iAPX 432 Interface Processor Architecture Reference Manual 

FUNCTICN OPERANOO 

An Interface Processor function may require from zero to seven 
double-byte operands. The IP controller specifies a function's 
operands by writing values into locations of the operands field in 
the function request area. The first operand goes in the 
lONest-addressed location of the field and the remaining o.perands 
are written to successively higher-addressed locations (in sane 
cases, one or m:>re operand slots mav be reserved and are skipped 
over) • Each opcode linplicitly identifies the number of operands 
required, so unused high-order locations in the operands field need 
not be initialized. See Appendix B for the function surrmary. 

Interface processor functions acce9t three tvpes of operands as 
illustrated in f iqure 4-4; all operarrl types are stored as 
double-bytes. 

A short ordinal is a a 16-bit unsigned binary integer (range 
0-65,535). This type of operand is typically used to specify a 
length, a displacement, an index, etc. For example, when the ALTER 
MAP AND SELECT DATA SEG1ENT function is used to open a windoo, it 
requires a short ordinal operand that specifies the size of the 
subrange. 

A bit field is a string of 16 bits that is diviaed into a number of 
subfields. The length, position and definition of each subfield 
varies acC'Ording to t..he function. Subfields in a bit field ooerand 
to the AL'IER MAP AND SELECT DATA SEGmNT function, for example, 
specify transfer m:x1e, menorv overlay, etc. 

An access selector identifies an access descriptor for an object 
that is the function's actual ooerand. Figure 4-5 illustrates how 
the IP uses an access selector operand to obtain access to an 
object. The lON-order subfield of- t..he access selector irientifies 
one of the four currently entered access segments associated with 
the selected oontext. The high-order subfield indexes one of t..he 
a~ss descriptors in the entered access segment. The selected 
access descriptor refers, via the object table, to the object that 
is the actual function ooerand. This three-level address 
develOl'.ltlent is identical to GDP addressing. Note that the IP also 
performs the standard 432 type, rights and bounds checking as it 
develops the object's physical address from the access selector. 

4-6 Change 1 



FUNCTICNS 

15 • 
J 

Short Ordinal 

v 
-------(16-bit unsigned integer) 

15 • 

I:;:!; i:;:: ! ! ! ! U Bit Field 

l _____ _ 
- (Subfields defined by function) 

t_s __ _...., ___ 2(j 
I I 

Access Selector 

'-----Entered Access Segment Identifier 
f j • Context Access Segment 
fl • Entered Access Segment 1 
lj • Entered Access Segment 2 
11 • Entered Access Segment 3 

-------Access Descriptor Index 
(14-bit unsigned integer) 

F-0264 

Figure 4-4 Function ~rand Types 

Change 1 4-7 



iAPX 432 Interface Processor Architecture Reference Manual 

15 , 

~OOOOOOOOOOOOlJ1q Access Selector Operand 
\ \ 
, \~~t~=.d_A=.c=.s! ~e_pn!n~ _!d.!n!i_!ier 

\ \ 
\ Access Descriptor Index \ ______ -_- - - - - - - - - - - \ ---~------

L i L 1' L 1 
0 0 \c2> 0 
0 0 {l) 

L 

0 0 0 ci> 
-----------~ ~-----------' 

:L 
0 
0 
0 

Context Access Segment Entered Access 
Segment 1 

Entered Access 
Segment 2 

Entered Access 
Segment 3 

.L 

~-- -- .... 
1object Tabl~1 
\, _~Pi.!:9_ , 1 

Selected 
Object 

Figure 4-5 Object Selection 

F-0265 

4-8 Chanqe 1 



FUNCTIONS 

4-3. FUNCTICN EXEI!JTICN 

The IP performs the actual execution of a function independent of 
the IP controller. Therefore the IP controller (an Attached 
Processor with associated IP oontrol software) is free do other work 
after it has requested exeaition of a fuoction (except that it rrust 
refrairi from requesting a second function}. 

Altoough the IP's executicn of arrf given function necessarily 
varies, figure 4-6 shows the basic sequence of steps that is conmon 
to most furctions. Note that the IP checks for faults throughout 
execution. 

Function execution begins when the IP detects that t..~e opcode field 
of the fuocticn request area mawed by window 4 has been written. 
The IP sets the state of window 4 to "in-progress" during the 
furction execution process to irrlicate that the function request 
facility is "in use". The IP reads the opxxle from the function 
request area arrl decodes it. After deccrling the opcode, the IP 
fetches the aper ands required by the function from the function 
request area. It then performs the operation arrl updates 
destination operands with the result(s). If the function produces a 
return-value, - the IP writes it into the corresponding field of the 
function request area. 

The IP terminates execution by updating the function completion 
state subfield arrl generating an interrupt (see ap;:>endix D for 
information on discriminating IP interrupts). The function 
completion state subfield irrlicates successful or faulted 
execution. The IP records additional information in one or :rrore of 
the context, process arrl processor objects when it detects a fault 
during execution of a function. 

4-4. FUNCTICN <XM?LEI'ICN 

Normally the IP controller will use the !P's interrupt to detect 
furction completion; it may also poll the function a:mpletion state 
subfield. In any case, the function completion state subfield must 
be examined to determine if the furction ccmpleted successfully or 
faulted. 

4-9 



4-10 

iAPX 432 Interface Processor Architecture Reference Manual 

Qualify 
Selected 
Process 

Decode 
Opcode 

Perform 
operation 

Update 
destinations 

Update 
Return-value 

Update 
function 

completion 
state 

Generate 
AP 

interrupt 

no 

Perform 
fault 

response 

Figure 4-6 Basic IP Function Execution Flow 



FUNCTIONS 

Successtul. execution of a function typically causes the altet'ation 
of a destination operand (that is, an actual operand; the operands 
field of the function request area is never changed by function 
execution). In addition, or alternatively, sane functions produce a 
return-value,, For exa.mple: the READ PRO:ESSOR STATUS function 
returns the current values of the IP's system clock and status. The 
IP writes return-values into the results field of the function 
request area, where they may be inspected through window 4. The 
lON-Order byte of any return-value is stored in the lowest-addressed 
location of the field and any additional bytes are stored in 
consecutively higher locations. When the length of the return-value 
is less than the length of the return-value field, the content of 
excess high-order locations is undefined. 

Appendix B provides the format and interpretation of the 
return-values produced by all functions. Several functions produce 
a standard type of return-value called a bcx::>lean. This ls a 
one-byte value that indicates "true" or "false. " The lON-Order bit 
of the value "true" is 1 and the lCM-order bit of the value "false" 
is 0. In either case the value of the upper seven bi ts of a boolean 
is ti11def ined. 

If a function faults, the contents of the return-value field is 
undefined. If a function canpletes successfully, but it does not 
produce a return-value, then the IP does not alter the content of 
the return-value field. 

Change 1 4-11 





QiAPTER 5 
PHYSICAL REFEm=CE M:>DE 

The preceding chapters of this manual have irm?licitly described the 
Interface Processor ' s logical reference nnde, its normal rrode of 
operation. The IP also 'f?t'Ovides physical reference mode. Physical 
reference nnde is distinguished from l~ical reference rrode by 
direct 24-bit base-plus-displacement addressing and a limited subset 
of functions. It mav be characteri.zed as a oowerful and rudimentarv 
tool to be utilized in excel;>tional cir.cumStances such as system 
initialization (see appendix E) and post-rrortem diagnostics. This 
chapter first describes reference mode switching-hav physical mode 
i..s entered and exited. The second section covers addressing and 
functions in physical reference mode. 

5-1. REFERENCE M:IDE SWITCHING 

An Interface Processor can switch from physical reference rrode to 
logical reference mode (and vice versa) only under carefully 
controlled circmnstances. 

An Interface Proee!=;!=;Or enters !lhysical reference nnde in response to 
assertion of its INIT line during system initialization (see iAPX 
43203 VI.SI Interface Processor Data Sheet, Order No. 171874) or upon 
receiving an "enter physical reference mode" IOC when in loqiCal 
:rrode. Since a "send to processor" IPC requires an access descriptor 
wi. th the proper right for the target processor 's processor object, 
the ability of 432 software to place an IP i.n physical reference 
mode can be limited by restricting distribution of this right in IP 
processor object references. HCMever, any 432 t?rocess with an 
access descriptor for a processor object with "broadcast to 
processors" rights can Place all IPs into physical node by 
broaficasting the "enter physical reference mode" IPC. Thus, 
processors should only be granted broadcast rights with careful 
precautions. Table E-1 shCMS the attributes of the IP windCMs after 
entering physical reference node. 

An Interface Processor exits t;>hysical reference node and enters 
logical reference mode when it receives a local !PC (it ignores 
qlobal IPCs in physical node) • This local IPC is considered a 
startU!J IPC. The response of the IP i_s to qualifv the processor, 
enter l~ical node, and then respond to the IPC. 

Change 1 5-1 



iAPX 432 Interface Processor Architecture Reference Manual 

5-2. PHYSICAL REFERENCE MODE ADDRESSim 

In physical reference rrode the object reference attri.bute of a 
windCM is replaced by a 24-bit segment base address. Upon 
recognition of a subrange address reference the IP determines the 
transfer displacement as in logical reference node. It forms the 
tr ans fer address by adding the displacement to the s~nt base 
address. The 432 transfer length is always set to 216 bvtes so 
that no length of transfer faults can occur. No system objects are 
used in physical reference rrode addressing. 

Note that in physical reference mode, window 0 may be opened in 
either randan or block transfer rrode and window 1 mav be ooened onto 
either 432 memory space or the interconnect address spaee. An IP 
operating in physical nnde may also change the characteristics of 
windaY 4, the control winc:kM. 

5-3. PHYSICAL REFERENCE J\DDE FUNCTIONS 

The IP controller may request execution of four functions in 
physical reference m:>de. These correspond closely, but are not 
always identical, to logical reference functions. The request, 
execution, fault handling, and canpletion phases of physical 
reference rno:'ie operations are similar to the logical reference JOOde 
oounteroarts. 
See the function surrmarv in Appendix B for detailed descriptions of 
the operation of these functions. 

The physical reference node functions are 
e SEI' PERIPHERAL SUBSYSTEM M:>DE; 
e READ PRX:ESSOR STATUS 
e SEND TO PRCXXSSOR 
• ALTER MAP AND S~ PHYSICAL SmmNT. 

5-2 Chanqe 1 



CHAPTER 6 
FAULTS 

Th is chapter describes IP faults, exceptional conditions which can 
occur as the IP performs functions. In general, the IP fault 
philorophy follows that of the GDP: the processor detects and 
contains faults so thev do not affect other processes or processors 
in the 432 system. The response to a fault, i.e. fault handling, 
is not predefined and may be tailored through software to the needs 
of the 432 system user. The IP 9 s dual role in the 432 system and in 
the Peripheral Subsystem requires that the strategy for handling 
faults is som~hat different than for the GDP. 

6-1. FAULT REPORI'ING 

When a fault occurs, the IP records information al:x:>ut the fault in a 
fault information area. Faults are distinguished by a fault code 
and an operator ID recorded in the fault information area. The 
fault codes are specified in Appendix C. The operator IDs are 
specified in Appendix B. The operator ID designates- the IP function 
which was executing when the fault was encountered. A unique 
operator ID corresponds to each IP function code. Note that the 
values for the function cones are not the same as the ,,~lnes for the 
corresponding operator IDs. 

When the IP has deposited the information in the respective fault 
information area arrl updated the function state, the IP interrupts 
the AP to inform it of the fault. The AP may check the function 
state field of the function request facility to acquire the field of 
bits which contains the fault level. If t...he IP has faulted, the AP 
examines the corresporrling fault information area for rrore detail. 

For faults which occurred during the execution of a function with a 
sequence of steps, like SEND or RECEIVE, the IP records the 
execution state when the function faulted. This information allows 
the ti.m= when the fault occurred to be specified rrore precisely. 
Then, software which handles the fault can respond in the rrost 
aq:>ropriate manner. The execution state information is necessary 
for software COJn?letion of a J?artially executed function. 

6-1 



iAPX 432 Interface Processor ~rchitecture Reference ~nual 

The IP records fault information in various areas of IP process and 
processor objects (refer to Appendix A for detailed description of 
these fault information areas). There are three categories of IP 
operation in which faults may be generated: physical reference 
mode, logical reference mode, and window-mapeed data transfer. Each 
of these nodes utilizes specific fault information areas to report 
f~l~. . -

PHYSICAL MJDE 

Information about faults which occur in T?hysical reference node is 
recorded in the processor fault information area of the IP processor 
object. The function state is set to "oontext-level fault" when a 
physical reference m:rle fault is encountered and an AP interrupt is 
generated. 

LOGICAL KDE 

Information about faults which occur in logical reference node is 
recorded in appropriate portions of the IP T?rocess and processor 
objects. Each IP T?rocess object contains two fault information 
areas: one for context-level fault information arrl one for 
process-level fault information. The IP processor object contains a 
fault information area for processor-level fault information. 

Depending on the severity level (context, process, or processor) of 
a fault and the current state of the process and processor, an IP 
selects an area to be used to record the fault information. The 
metho:1 an IP uses to decide the appropriate site to record fault 
information is shown in Figure 6-1. Successive faults, encountered 
during fault recording, reflect the fault state to higher levels of 
severity until, finally, an IP can no longer continue and must issue 
the FATAL signal (see iAPX 432 VISI Interface Processor Data Sheet, 
Order Number 171874). 

CA'I'EX30RIES OF LOGICAL IDIE FAULTS 

There are three categories of logical node faults, listed in 
increasing order of severity: 

• Context-level faults 
• Process-level faults 
• Processor-level faults 

6-2 Change 1 



FAULTS 

Context-Level Faults 

Context-level faults are the least severe of the IP logical rrode 
faults. A context-level fault arises fran exceptions which can be 
confined to the oontext in which the IP is operating. The IP may 
fault when attempting to execute a function or during the rrovernent 
of data through one of the wiridows e One example of a context-level 
fault is the condition which occurs whei1 a request to the function 
facility contains an erroneous function code. In this case, the IP 
can detect and report the fault before any execution of a function 
is begun. 

When the IP detects a oontext-level fault, it places information 
alx>ut the fault in the context-level fault information area of the 
process object, sets the function state to "oontext-level fault", 
and interrupts the Attached Processor. A context-level fault can 
only be generated by an IP which is bound to a process. If a second 
fault occurs while handling a context-level fault it is handled like 
a process-level fault. 

Response to oontext-level faults can usually be performed by IP 
controller software running in the .Peripheral Subsystem. The 
oonditions which generated these faults are oontained in a limited 
portion of the IP's 432 environment. 

Process-Level Faults 

Process-level faults are generated when an exceptional condition is 
~o+-°"""+-orl t.Th; rah 1"'\rr1.h; h; +-c -F11r+-hor TD ovOl"'ll1+-; t"'\1"'1 ; n +-ho -F:::1111 l +-orl 1"'\rt"'\rtOC!C! 
'-A'-._.,.,_"""""-"''-"""" ....... ~"".... .I:""' .... ""'"" ........ ....., ... ~ ............... ,_.............. -- ...._... .. '-'-"""'4 ._. .... ._...... ...... .. _.,..._,._. - ........... ..- ,_...._."4 .I:"" .... ._.""..._ __ 

envirorunent. Some situations when process-level faults are 
generated are: 

• System level oonsistency failures. 
· • Normal requests to the operating system interface. 
• User errors, which may be misuse of the operating system 

interface. 

When an IP encounters a process-level fault, the IP: 

• Records information about the fault. in the IP process' 
process-level fault information area. 

• SENDs the faulted process to a fault EQE!:_ • 

• Updates the function state to "process-level fault" • 

• Interrupts the Attached Processor • 

If a second fault occurs while the IP is handling a process-level 
fault, this is considered a processor-level fault. If the IP 
encounters a fault of process-level severity when it is not J:x>und to 
a process, the IP treats the situation as a processor-level fault. 

6-3 



iAPX 432 Interface Processor Architecture Reference Manual 

The fault port is serviced by a 432 fault handling process where one 
of four actions may be taken: 

• Correct the reason for the fault and complete any partially 
performed function by canpleting the unfinished steps. 

• Correct the reason for the fault, rewind any partially performed 
function steps, and then retry the function. 

• Decide to reflect the process-level fault to the context-level. 
• "Crash" the system. 

The first two actions represent the method that an operating system 
can use to extend the 432 architecture. For example, an operating 
system's virtual mennry implementation considers a "storage mt 
associated" fault as a normal occurrance and retrieves the missing 
menory segment. With the segment available, the fault handler can 
decide to simulate the canpletion of the function or unwind the 
partially completed function and rerun it. 

Processor-Level Faults 

Processor-level faults, the nost severe level of faults, occur when 
an IP detects a condition which jeopardizes further operation by the 
processor. Bus errors and alarms are examples of such occurrences. 
In response to the first processor-level fault encountered, the IP 
reports the fault in the fault information area of the processor 
data segment, updates the processor status to "faulted", and signals 
an interrupt to inform the attached processor. If a second 
processor-level fault occurs before the AP has recorded the fault 
information, the IP closes all five of its windows into 432 merrory, 
including the control window, signals that a fatal error has 
occurred and indicates that the Peripheral Subsystem should be reset 
(see FATAL/ arrl PSR pin descriptions in the iAPX 43203 Interface 
Processor Data Sheet, Order Number 171874). 

WINIXM-MAPPED DATA TRANSFER 

Information about faults which occur during data transfer through 
the windows is recorded in the mapping facility fault information 
area contained in the IP processor object. This information is 
accessible to the AP through the control window. Each window ( 0 
through 4) has a separate fault information area. When the fault 
occurs, the IP deposits the fault information, closes the window, 
p.tts the window in the error state, and interrupts the Attached 
Processor. Only open windows can generate window mapping faults. 

6-4 



processor 

ipsor.psor 

process 

I iprcs .pres. 
i. 

context 

.iprcs.ctxt. 

LEGEND: 

FAULTED 
STATE 

• 

~~ 

~~ 

~ 

FLT 

FLT 

J 
' FLT 

CONTEXT 
FAULT 

processor 

i psor. psor I 
i 

process 

i pres . pres . 

REFLECTED 
FAULT 

"FATAL" 

~l 

FLT 

processor 

J 
~ i psor. psor I 
I I 

~ 

FLT 

'~ 
FLT 

. ~ no 

4' PROCESS 

RESUME 
NORMAL 
OPERATION 

FAULT 

FAULTS 

~' '~ 
FLT FLT 

processor 

I I i psor. psor l .J l 

·~ '~ 

FLT PRO 
FAU 

FAULT INFORMATION AREAS 

pres reserved 
ctxt psor 

i prc.s object ipsor object 

Figure 6-1 Fault Reporting State 

6-5 

CESSOR 
LT 



iAPX 432 Interface Processor Architecture Reference Manual 

6-2. FAULT HANDLING 

When an IP process encounters a process-level fault, it is 
autanatically sent to a 432 fault port to await service. A fault 
handling 432 process is designated to service the faulted processes 
waiting at the fault port. By design, IPs and GDPs share a comnon 
base architecture, so IP faults may often be handled by software 
similar to that used to service GDP faults. In cases where unique 
IP attention is required, a special fault port nust be constructed 
to which faulted IP processes may be selectively re-sent and then 
serviced by AP and/or GDP software. 

6-6 



APPENDIX A 
SYSTEM CB.lECI' S'I'RCrURF.5 

The object structures of Interface Processors are described bel0-1. 
The only object structures r:Jescribed are for those whose form or 
interpretation differ fran GDP object structures. Note that the 
values foond in the length fields in the various objects described 
belaY are enc<rled as "actual length minus l" in bytes. Also note 
that the object indices referred to belCM are of the same format as 
access selectors with the entered. access seqment index subfield 
uninterpreted. The displacement subfield is interpreted as cu1 index 
into the asscx:::iated domain access segment. 

A-1. mNI'EXT OBJEC:rS 

In the nost qenera l terms, contexts for Interface Processors and 
General Data Processors serve the same purpose. They are used to 
represent an access environment in which process execution can take 
place. On closer inspection, however, the differences are 
significant. For exarm::>le, with Interface Processors there is no 
concept of a sequential instruction stream. Instead the only 
instructions executed by Interface Processors are functions 
requested, one at a time, by ooftware executing on the associated 
Attached Processor. At a mundane level, this means that Interface 
Processor contexts need not provide access to instruction segments 
or operand stacks. r.t:>re significantlv, without a sequential 
instnction stream there are oo concepts of intr acontext ot 
intercontext oontrol floo either. This ·results in the binding 
between Interface Processor processes and contexts being static. In 
fact, context access and data segments are refinements of the 
corresporrlinq process access and data seqments respectively. 

Given t.11ese differences, an Interface Processor oontext reoresents 
the access environment available within the 432 svstem to the 
logical process being executed on the loqical processor comorised of 
the Interface Processor ancl the associated Attached Processor. The 
ooerators provi~ed by the Attached Processor affect the contents of 
data segments in this environment via the address mappinq facility 
of the Interface Processor. 'I'ne operators proviaed by the Interface 
Processor affect this environment via the function request facility 
of the Interface Processor. 

A-1 



iAPX 432 Interface Processor Architecture Reference Manual 

A context object is represented by a O)ntext access segment and an 
associated oontext aata.segment. 

Context Access Segments 

Dia::Jranmatically, a context access segment is structured as shown 
belON. 

context 
access 

entry 

8 

segment __....... 0 

= 

danain AD 

"PS AD 

AS AD 

AS AD 

context AD 

AD 

AD 

AD 

data seq. AD 

= 

...... - defining danain 

"" -- entered access segment 3 

....llo; entered access seqrnent 2 

..... entered access segment 1 

..... context 

_,., . message 

..... .• reserved 

...... -- reserved 

~"' -- context data segment 

The context access segment, context data segment, and domain access 
descriptors in the context rrust be created without delete rights. 
(Note that the defining domain access descriptor is not interpreted 
by the hardware, rut is preserved for software use.) The entered 
access segment entries never bear delete rights. 

The representation rights field of a context access segment access 
descriT;>tor is interpreted in the same manner as for all objects of 
base type access segment. The type rights field of a context access 
segment access descriptor is uninteroreted. 

Context Data Segments 

The only processor interoreted field in the context data segment is 
the process status field which contains a combination of process and 
context status. The form and interpretation of this field are 
described in the process data segment section. 

The rel?resentation rights field of a context data segment access 
descriptor is interpreted in the same manner as for all objects of 
base type data segment. The tvpe rights field of a context data 
segment access descriptor is uninterpreted. 

A-2 Change 2 



A-2. PRCX:!FSS OBJOCTS 

logically, a process is the execution by a processor of an 
instruction stream within a specific environment. In a· cnnbined 
Attached Processor/Interface Processor system, the IP process object 
extends the execution environment of an AP process to logically 
include a specific danain in the 432 address space. The execution 
ooint rroves, of course, as each instruction is executed because a 
new instruction is automatically specified. Qxasionally, as the 
result of instruction execution, a new instruction stream within the 
Attached Processor software is specified. Unless the AP process 
should indicate its termination, the execution IX>int continues to 
rrove in this manner forever. There is thus a close and long-term 
association be'b#een the environment provided by an interface 
process and a particular AP process. When a new AP process specifies 
a function request, an Interface Processor makes. the associated 
interface process' execution environment available. 

A process object is represented by a process access segment and an 
associated process data segment. 

Process Access Segments 

'!he hardware-recognized internal structure of a process access 
segment is shom belCM. 

A-3 



iAPX 432 Interface Processor Architecture Reference Manual 

process 
access 

entry 

12 

11 

s~nt --. 0 

= 

refined 
context 
access 
segment 

carrier AD 

carrier AD 

port AD 

AD 

AD 

port AD 

port AD 

carrier AD 

AD 

AS AD 

oontext AD 

data seg. AD 

= 

I: 

-- surrogate carrier 

current carrier --~ 
-- current r;:ort 

current ~ssage -"' ~ 

reserved 

fault oort ...... ·-
dispatching p:::>rt __,, 

---
...... process carrier 

-- reserved 

global access segment __. -
oontext ..... . 

process data segment __,, . 

The representation rights field of a process access segment access 
descriptor is interpreted in the same manner as for all objects of 
base type access segment. The type rights field of a process access 
segment access descriptor is uninterpreted. 

A-4 Change 1 



SYS'lm OBJEX:T Sl'RUC'TURES 

Process Data Segments 

'!be basic structure of a process data seqment is shown below. 

process 
data 
segment--~ 

I 
= 

= 

= 

= 

= 

refined 
context 
data 

segment 

process 
fault 

information 

context 
fault 

information 

reserved 

process ID 

reserved 

process status 

object lock 

= double byte 
I disolacement 

I 
= 

94 

= 

81 

= 

68 

= 
9 

8 

= 

2 

0 

The format and interpretation of the object lock field is the same 
as for GDPs. 

Change 2 A-5 



iAPX 432 Interface Processor Architecture Reference Manual 

For Release 2. 0, the orqanization of the process status field is 
interpreted as shCMn bel~. 

9 bits 

bound 
waiting for message 

------ process faulted 
ready 

---------- context faulted 
reserved 
null surrogate destination 
first port done 

The ba.lnd bit is interpreted as follavs: 

0 - this process is not bound to a processor 
1 - this process is bound to a processor 

The interpretation of the context and process faulted subfields 
are as folla-1s: 

O - not faulten 
1 - faulted 

The ready bit is interl?reted as foll0t1s: 

0 - this process is not usable for function invocation 
1 this orocess is usable for function invocation 

The format and interpretation of the waitinq for message, null 
surrogate destination, and first port done subfields are the same 
for IPs as they are for GDPs. 

For the process ID field, the high-order 14-bit subfield oontains 
the actual process ID. The lav-order 2-bit subfield must be zero. 

Fault information for context, process, and processor level faults 
has the same organization. - Process ob]ects contain fault 
information for context and process level faults. Processor objects 
contain fault information for processor level faults. Access to the 
context fault information is made available to a context vi.a the 
roftware convention of t?roviding a refinement for it in a known 
entry of t..he process qlobal access segment. The l;>rocess fault 
information area in the process object is used when a process-level 
f~1lt occurs and a orocess is bound to the orocessor. The orocessor 
fault information area in the processor object is used. when a 
process level fault occurs and a process is not bound to the 
processor. The organization of the fault information area is 
described in Ao,pendix C, the Fault Summarv. 

A-6 Change 2 



SYSTEM OBJECT STRUCTURES 

The representation rights field of a process aata segment access 
descriptor is interoreted in the same manner as for alJ_ objects of 
base ty-pe data sey-ment. The ty-pe rights field of a process data 
segment access descriptor is uninterpreted. 

For Release 2.1; the organization of the process status field i.s .
1
1 

SOOwn bela-T. 

8 bits 

oound 
waiting for messaqe 

I ~I ~rocess faulted 

11 

1 
__ eadv 
context faulted 
fault vector 

------------------ reserved 
~----------------------- null surrogate destination 

- fir.st oort done 

These status fields are inten;>reted as for Release 2; 0 ; with the 
exception of the fault vector field, which is interoreted as follows: 

0 - this process may have process level faults 
1 - treat all process level faults as context level faults 

(If the context is already faulted, this beC'Ollles a 
processor level fault) 

A-3. PROCE.SSOR OBJECTS 

An 432 Interface Processor consists of two cooperating processinq 
elements: a mapping facility arrl a fuoction request facility. The 
mapping facility translates Peripheral Subsystem addresses into 432 
system addresses. The fuoction request facility executes the 
operator set described in Appendix B. The mapping facility and the 
function request facility can run in parallel. 

A processor object is represented by a processor access segment, an 
associated processor data segment. 

Processor Access Segments 

Processor access segments are organized as shown bela-1. 

Change 2 A-7 



A-8 

iAPX 432 Interface Processor Architecture Reference Manual 

= 

entry I 

process 
selection 

processor 
access 

21 

20 

segment ~ 0 

= 
list 

II-

I- ma9}?ed 
data 

I- segments 

lo-

AD 

AD 

AD 

oort AD 

carrier AD 

carrier AD 

oort AD 

AD 

processor AD 

data seg. AD 

carrier AD 

objtab dir AD 

oonm. seg. AD 

COillll. seq. AD 

carrier AD 

data seg. AD 

= 

= 

"""'i 

~ 

-
-

...... - reserved 

........ - reserved 

_,. - reserved 

.... 
~ normal diSJ?atchinq port 

..... surrCXJate carrier 

- current carrier 

~- current -port 

........ current message 

....... processor object 

......... .... oontrol window 

--- processor carrier 

..... - object table directory 

-"' - global conmunication segment 

..... - local conmunication seqment 

...... current process carrier 

.... 
~ processor data segment 

Change 2 



SYS'I™ OBJECT SI'RUCIURES 

The representation rights field of a processor access segment access 
descriptor is interpreted in the same manner as for all objects of 
base ty-pe ac-cess segment. The lCM order bit of the type rights 
field of a processor access descriptor is intetl?reted as follows: 

0 - an ·interprocessor message may not be broadcast·· via the 
global conmunication seqment of this processor 

1 - an interprocessor message may be broadcast via the global 
corrmunication segment of this processor 

The mid-order bit of the type rights field of a processor access 
descriptor is interl?reted as follONs: 

0 - an interprocessor messaqe may not be sent to this 
processor via the local a::>rmn-...mication segment of this 
processor 

1 - an interorocessor message may be sent to this processor 
via the local cornnunication segment of this processor 

The high-order bit of the tYJ?e rights field of a l?r.ocessor access 
descriotor is inten?reted as follONs: 

0 - this access descriptor may not be used by SE'l~PS.....:M)DE 
or DISPA'ICH 

1 - this access descriptor may be used by SET PS IDDE or 
DISPA'ICH - -

The carrier AD field iaentified as the "current l?t'OCess carrier" in 
Release 2. 0 becomes the carrier AD for the "diSl?atched process 
carrier" in Release 2.1. Thus, in Release 2.1, the carrier to the 
process being dispatched, via DISPA'ICH or IPC 0 (Wake-UT?) , is 
available for fault handling. 

Processor Data Segments 

The intended use of this data segment is as instance soecifi.c 
c;:ontrol information, for recording a oow of the T;>rocessor-resident 
information contained in the function request facilitv and the 
maq::>ing facility, for recording fault information, arrl as randomly 
addressable scalar working storage. The oopy of processor-resident 
information in the processor data segment i.s tu?dated }JV the 
processor whenever a significant state change to that information 
occurs (i.e., function ccmpletioo or block transfer canoletion). 
The area above rouble-byte disolacement four is made visible to 
Attached Processor software through the control winiiow (wind.ON 4). 

'Ihe information in the processor data segment is orqanized as shown 
in the diagram belCM. 

Change 2 A-9 



iAPX 432 Interface Processor Architecture Reference Manual 

processor 
data 
segment 

= 

= 
control 
winda-1 

area 

reserved 

cu~. pres idx. 

psor status 

object lock 

double byte 
= disolacernent 

I 
= 

4 

0 

The processor status field is sh<:Mn belo.'1. 

processor state 
------ process already suspended 

faulted 
---------- reference node 

stoq>ed 
------broadcast accept. JJ\Olie 

------------------- orocessor ID 

The processor state subfield is interpreted as folla>1s: 

000 - idle 
001 - process execution 
010 - 111 - reserved 

The orocess already suspended subfield is used internally for the 
implementation of the DISPA'ICH operator. 

The interpretation of the faulted subfield is as follows: 

0 - not faulted 
1 - faulted 

The reference node subfield specifies whether the references in 
function requests are logical or physical. In logical reference 
node, function request references are relative to the four.-component 
access environment generated by the current context. In physical 
reference rrode, function request references are sL"'m?lY 24-bit 
ohysical ad<lresses. 

A-10 Chanqe 2 



SYSTEM OBJECT' STRUCIURES 

The reference m:>de subfield is interpreted as follows: 

0 - using physical rrode 
1 - usinq logical mode 

The stopped bit is interpreted as follcms: 

0 - ruming 
1 - stopped 

The broadcast acceptance rocrle bit is interpreted as follows: 

0 - broadcast interprocessor messages are not being 
accepted and acknowledged 

l - broadcast interprocessor messages are being accepted 
or ackncwledqed 

Note that the processor ID fields in the processor data segment and 
the local corrmunication segment are filled in by the associate<i 
processor at initialization time fran externally read information. 

The representation rights field of a processor data segment access 
descriptor is interpreted in the same mart.T'l.er as for all segments of 
base type data segment. The type rights field of a processor data 
seqment access descriptor is uninterpreted. 

Control Windoo Area -

The oontrol window area oonsists of several major subareas and 
several minor ones. The pr ilnary p..irpose of these areas is to · 
provide Attached Processor software access to state information 
describing recent state changes in the function request facility and 
the mal?Ping facility and occutrances of asynchronous events. 

Change 2 A-11 



I 

A-12 

iAPX 432 Interface Processor Architecture Reference Manual 

contr9l 
window 
area 

= 

= 

= 

= 

= 

processor 
fault 

information 

selected state 

selected idx. 

mat;JPing 
facility 
fault 

information 

mawing 
facility 

reserved 

IPC fun. req. 

function 
request 
facility 

reserved 

reconfig. state 

disp. state 

alarm state 

!PC state 

PS state 

double byte 
= diSPlacement 

I 76 

= 

64 

63 

62 

61 

= 

52 

= 
28 

27 

26 

= 

6 

0 

Change 2 



SYSTEM OBJECI' STRUCTURES 

Peripheral Subsystem State Field -

The organization of the Peripheral Subsystem state field is shown 
belav. 

The write sample delay field and the xack delay field program the 
characteristics of the IP corrponent interface to the Peripheral 
Subsystem. {See the iAPX 43203 VLSI Interface Processor Data Sheet, 
Order Number 171874, for details.) Several combinations of the XP.CK 
delay/write sample delay subfields are illeqal: 

XACK Write Sample --
01 1 
10 0 
11 0 
11 1 

In Release 2.0, if the interrupt inhi.bit field is a 1, the IP 
inhibits normal function canpletion interrlJl?ts but continues to pass 
all other interrupts to the AP.,. If the interrtmt inhibit field is 
0, the IP reports context, process, and processor faults, as well as 
normal function completion, with an interrupt. 

In Release 2.1, if the interrupt inhibit field is set to 1, the IP 
inhibits both normal function oompletion interrupts and context, 
process, or processor level fault interru.pts. In such cases the 
function state word in the function request area must be checked to 
detect any of the atove interrUJ?ts. However, !PCs, processor 
initialization, active window faults, and processor fatal faults 
will still cause interrupts. 

IP: State Field -

The !PC state field is used to indicate that the orocessor has 
reSf?Onded t.o an interprocessor oorrmunication signal arrl. signalled 
the associated Peripheral Subsystem vi.a interrupt. It has the 
following organization. 

Change 2 

14 bits 

local IPC resoonse 
global !PC response 

....., ____ reserved 

A-13 



iAPX 432 Interface Processor Architecture Reference Manual 

With either IPC res?Jnse flag, a value of zero indicates that no 
such response has occured arrl a value of one indicates that such a 
res?Jnse has occured. 

Alarm, Disr;atchi.ng, and Reconfiguration State Fields -

The alarm, dispatching ("select process"), arrl reconfiguration state 
fields are used to indicate that the orocessor has resoonded to that 
tyr:>e of signal am signalled the associated Per ioheral . Subsystem via 
interrupt. Each has the follONing organization. 

15 bits 

response 
--------- reserved 

With the response flaq, a value of zero indicates that no such 
resoonse has occured arrl a value of one indicates that such a 
res"POnse has occured. 

Function Request Facility Area -

The function request facility is t...he part of the Interface Processor 
which accepts function requests and performs the requested function. 
The function request facility area of the processor data segment 
contains a cor;,., of the processor-resident information related to the 
current or nost recent function requested. As shown,helON, the area 
consists of five contiguous oal'.:'ts. The first part contains the 
process selection index fot" the execution envirornnent in which the 
function should be performed. The second part contains the function 
state information. The third oa.rt oontains the oo-code of the 
operator requested. The fourth oart contains the operands operated 
upon in oerforminq the l:'equested function. 'rhe fifth part is used 
to record the :r:-esult of the requested function. 

= 

function 
result 

operands 

operator 

function state 

pres idx. 

= 

A-14 

= double bvte 
nisolacement 
25 

16 

9 

8 

7 

6 

= 

Chanqe 2 



SYSTEM OBJECr SI'RUCI'URES 

Function State Field -

The function state field is used to describe the current state of 
the fun::::tion request facility. It has the following organization. 

a bits H+lxxxxl 
1 1 

I I function·OOITIP __ letion state ~ SEND completion state 
REX:!EIVE cnmpletion state 

- fault level ..______________ reserved 

The interpretation of the function completion state subfield is as 
follONS: 

0000 - function completed 
0001 - function in progress 
0010 - 1111 - reserved 

The interpretation of the SEND or REX:!EIVE cx:>rnpletion state subfields 
is as follows: 

O - oo~leted 
l - blocked 

The fault level subfield indicates whether a fault which has occured 
is context-level, process-level, or orocessor-level. The fault 
handler requires this information in order to know where the fault 
information has been stored. The interpretation of the fault level 
subfield is as foll<:Ms: 

00 - none 
01 - oontext-level fault 
10 - process-level fault 
11 - processor-level fault 

Mawing Facility Area -

The mapping facility oonsists of five map entries capable of 
suµ;>orting the randan mapping of five non-overlapping address 
subranges fran the Peripheral Subsystem into oorresponding 432 data 
segments. One of these map entries (entry 0) is capable of 
supporting block transfer as well as random ~ing. One map entrv 
(entry 1) is capable of supporting map0ing into the 432 
interconnection address space as well as random mapping. One map 
entry (entry 4) and. its associated Peripheral Subsystem address 
subrange always maps onto the t;>rocessor data segment. The two major 
purposes of this subrange are to capture references to the function 
request facility and to allCM Attached Processor software to read 

A-15 



iAPX 432 Interface Processor Architecture Reference Manual 

current status information. When operands are reaCi from this 
subrange or written into this subrange, the processor data segment 
is accessed. Data written into the part of the subrange 
representing the function request facility is captured when no 
function is in progress. During function execution, Attached 
Processor software must not make further function requests. 

At the base of the mapping facility area, the extra information for 
supporting block tr ans fer via map entry 0 is recorded in a data 
structure with the following organization. 

= 

reserved 

P. S. disp. 

432 diso. 

= double bvte 
displacement 
31 

blcx::k count 28 

= = 

When the transfer node subfiela of the entry state field for map 
entrv 0 indicates that it is in blcx::k transfer m:>de, the 
processor-resident oopy of the block oount field indicates the 
number of bytes remaining to be transferred for transfer termination 
to cx::cur normallv (i.e., UJX>n oount runout) • Whenever normal 
transfer termination occurs, both oopies of the block count field 
are zero. Whenever normal transfer termination does not occur, such 
as in the case of faults, both copies of the block count field 
indicate the number of remaining, but not transferred, bytes. 

When the transfer node subfield of the entry state field for map 
entrv 0 indicates that it is in blcx::k transfer node, the 
Processor-resident COP! of the 432 displacement field indicates the 
displacement into the associated data segment of the next byte to be 
.transferred. 

When the transfer node subfield of the entry state field for map 
entrv 0 indicates that it is in block transfer m:>de, the 
processor-resident oopy of the Peripheral Subsystem displacement 
field indicates the displacement into the associated Peripheral 
Subsystem address range of the next byte to be transferred. 

'An.y difference between the values of the two displacement fields 
accounts for data in the Processor-resident buffers which was not 
successfully transfered. · 

Note that the values returned in the count and diST;>lacement fields 
just described are encoded as "actual length," as opposed to "actual 
length minus 1. " 

A-16 Change 2 



SYS'l»i O~ STRUCI'URES 

Ab:>ve the block transfer information, a copy of the information 
contained in each of the processor-resiiient map entries (0 through 
4) is represented by a data structure with the followinq 
organization. Note that when an Interface Processor makes the 
transition from physical reference mode to logical reference mode, 
the mercorv-resident map entry information for entry 4 is "read only" 
arrl is- used to. estah] ish -·the maoping for that ent...-y when the 
processor enters logical nnde. 

= 

base disp. 

mask 

base address 

= Cbuble byte 
dist;>lacement 
3 

entry state 0 

= = 

The entry state field is used to describe the current state of t.he 
given map entry. It has the following organization. 

mat;> valid 
transfer mode 
transfer direction 
transfer state 

------------ merrory overlay 
reserved 

The 1-bit map valid subfield indicates whether or not this map entrv 
is currently in use. If the bit is zero, this map entry is not used 
in Peripheral Subsystem address insoectfon. If the bit is one, this 
map entry is used·· in Peripheral Subsystem address inspection. The 
processor-resident cor:yy of this subfield is checked by the mappinq 
facility each time a Peripheral Subsystem address is received for 
inspection. 

For map entry 0, the 1-bit transfer node subfield indicates whether 
this map entry is in randan or block transfer nnae. A value of zero 
indicates t..hat this map entry is in randan node. A vaJ_ue of one 
indicates that this map entrv is in block transfer mode. For map 
entry 1, the 1-bit transfer rrOae subfield indicates whether this mao 
entry ma~s Perioheral Subsvstem addresses into the 432 address space 
or the interconnection address space. A value of zero irrl icates 
that this map entry is in 432 mapping mode. A value of one 
indicates that this map entrv is in interconnection mapping m::rle. 
For the remaining man entries, the setting of this subfield causes a 
fault. 

Change 2 A-17 



iAPX 432 Interface Processor Architecture Reference Manual 

The 2-bit transfer direction subfield indicates the types of 
read/write requests from the associated Peripheral Subsystem which 
are valid with respect to this map entry. The lCM order bit of the 
transfer direction subfield is inter?retea as foll<:Ms: 

0 - reading may not occur 
l - reading may occur 

The high order bit of the transfer direction subfield is interpreted 
as follows: 

0 - writing may not occur 
1 - writing may occur 

Note that both bits may not be set when setting block transfer node. 

The 2-bit transfer state subfield indicates the state of the 
transfer. It is eno:Xied as follCMs: 

00 - transfer in progress 
01 - transfer terminated u?Jn cnunt runout 
10 - transfer termination forced 
11 - transfer termination utnn fault 

The 1-b:i.t memory overlay subfield indicates whether or not the 
Perioheral Subsystem address subrange associated with this map entrv 
overlays ?hysical memory in the Peripheral Subsvstem. If -physical 
merrnrv is overlayed, whenever an address is mapped via this entrv a 
Per. iphera 1 Subsystem bJ.s protocol is employed which prevents that 
overlaved merrory from responding. A value of zero indicates that no 
memory is over layed. A value of one indicates that memory is 
overlayed. 

The base address field is used to specify t.'1e startinq address of 
the Peripheral Subsystem address subrange mapped by this map entrv. 
Subranges are 2**n bytes in length with n being in the range zero to 
sixteen. A s1.ibrange of a given power of two in size must appear on 
an addressing boundarv of the same pawer of two (e.q., a 16 byte 
subr anqe must begin on a 16 byte boundary) • Stated another way, a 
subrange of 2**n bytes in lenqth will thus have a startinq address 
containing at least n tt"ailing zeros. Base addresses are always an 
integer multiple of an integer pot1er of two (i.e., m*2**n). 'I'ne n 
:i.s as described aoove. The m is any inteqer such that the above 
cnnditions hold and the value of the starting address is limited to 
the ranqe 0 to 65,535. 

The mask field contains a mask which is used to sr;>ecify the size of 
the Peripheral Subsystem address subranqe to be maooed by this map 
entry. The mask is oomposed of two contiguous bit str inq 
subfiel<ls. The higher-order bit string contains all ones. The 
looer-order bit string contains all zeros. The maooed address 
subranqe is 2**(number of zeros in the lower-or<ler bit string) bytes 
in length beginning at the starting address. 

A-18 



The base displacement field contains the byte displacement into the 
432 segment used to oonstruct a refinement of a data segment. See 
Figure 3-2 for an illustration of the role of a windON's base 
displacement in forming a refinement. 

Mawing Facility Fault Information Area -

The mapping facility fault information area oonsists of an entry 
fault code and fault displacement pair for each map entry. 
Diagranmatically, the fault information for each map entry appears 
as shown bela-1. 

= = 

fault disp 

fault code 

= = 

Each entry fault code field is used to record the cause of the last 
fault associated with that map entry. It has the follCMing 
organization. 

H 6 bits 

I I I I I I I I I 
read/write 
bus error 
access rights 
segment bound 

----- menory overflCM 
---------- access direction 

------- post termination 
------- partial block overflow 

-------- block overflCM · 
-----------------· reserved 

-------------------------- block termination 
(internal use) 

The 1-bit read/write subfield irrlicates whether the associated fault 
was caused by a read request or a write request. A value of zero 
irrlicates that the fault was caused by a read request. A value of 
one irrlicates that the fault was caused by a write request. 

The 1-bit bus error subfield indicates whether or not the associated 
fault was caused by a 432 bus error. A value of zero irrlicates that 
the fault was not caused by a bus error. A value of one indicates 
that the fault was caused by a bus error. 

A-19 



iAPX 432 Interface Processor Architecture Reference Manual 

The 1-bit segment bound subfield indicates whether or not the 
associated fault was caused by a segment bourrl.s violation. A value 
of zero irrl.icates that the fault was not caused by a segment bounds 
violation. A value of one irrl.icates that the fault was caused by a 
segment bounds violation. 

The 1-bit :menory overflav subfield indicates whether or not the 
associated fault was caused by a memory overflav. A memory overflav 
occurs when the sum of the physical base address in bytes of a 
segment being accessed plus the byte displacement to the operand 
being accessed exceeds 16, 777 ,215 (i.e. 2**24-1). A value of zero 
irrlicates that the fault was not caused by a memory overflow. A 
value of one irrl.icates that the fault was caused by a menory 
overflow. 

The 1-bi t access direction subfield indicates whether or not the 
associated fault was caused by an access direction error. An access 
direction error occurs when the transfer direction subfield of the 
corresporrl.ing map entry state irrl.icates that the requested access 
direction (either read or write) is invalid. A value of zero 
irrlicates that the fault was not caused by an access direction 
error. A value of one indicates that the fault was caused by an 
access direction error. 

The 1-bit post termination subfield indicates whether or not the 
associated fault was caused by a post termination error. A post 
termination error occurs when an access is attempted after a 
transfer via the associated map entry has terminated. A value of 
zero irrlicates that the fault was not caused by a post termination 
error. A value of one irrlicates that the fault was caused by a post 
termination error. 

The 1-bit partial block overfl<JVI subfield irrlicates whether or not 
the associated fault was caused by a partial block overflow. A 
partial block overflc:M occurs when there is one byte left to be 
transfered in a block arrl a double-byte request is made. A value of 
zero irrlicates that the fault was not caused by a partial block 
over flc:M. A value of one irrlicates that the fault was caused by a 
partial block overflc:M. 

The 1-bit block overflav subfield indicates whether or not the 
associated fault was caused by a block overflew. A block overflow 
occurs when the block oount is zero, the Peripheral Subsystem 
attempts an access, and the map entry state has not yet been 
updated. A value of zero irrlicates that the fault was not caused by 
a block overflc:M. A value of one irrlicates that the fault was 
caused by a block overflav. 

A-20 



Selected Index and Selected State Fields -

The selected index and selected state fields are filled in by the 
pr<A...~ssor f ran information found in the process carrier data segment 
at process selection time, i.e when a "select process" IPC is 
received. The selected index is a process selectioo index used to 
-oonmunicate to Attached Processor software which -process from the 
orocess selection list has just been bound to the processor. The 
Selected index is obtained fran the double byte quantitv located at 
a d isµlacement of e iqht double bytes into the process carrier data 
segment. The selected state is uninterpreted by processors and is 
obtalned fran the double byte quantity located at a displacement of 
nine double bytes into the process carrier data segment. 

Processor Fault Information Area 

The organization of the processor fault information area is 
described in Apperrlix C. 

U:>cal and Global Carmunication Segments 

Both local arrl global oomnunication segments used by IPs have the 
same format and interpretation as the corresponding objects emploved 
by GDPs. 

IPC Message Field 

The IPC message field contains one of the following function request 
enccrlings. Message codes 0 through 7 represent IPC messages which 
are oorrm:>n between ~Ps and IPs. Message oodes 15, 16, and 17 are 
messages Sl?ecific to Interface Processors. Message codes 9 through 
14 are nefined for GDPs but are unused by IPs. 

0 - Select Process - causes the processor to examine its carrier 
to determine if a process was received. If 
a process was received, the process is 
selected, the dispatching flag is set, and 
the selected state and selected index fields 
are oopied fran the process carder data 
segment to the control windav. The current 
process index field is invalidated when this 
IPC is received. 

1 - Start Processor 

2 - Stop Processor 

3 - Set Broadcast Acceptance M:>de 

Change 1 A-21 



iAPX 432 Interface Processor Architecture Reference Manual 

4 - Clear Broadcast Acce~tance Mode 

5 - Flush Object Table (Release 2.0) 

In Release 2.1, IPC 5 becomes "Flush Object Table and 
Invalidate Process Selection Index. " In Release 2. 1, use of 
this IPC will force requalification of the process object if 
the same process is used on the next operator. 

6 - Suspend and Fully Requalify Processor 

7 - Suspend and Requalify Processor 

8 - Invalidate Process Selection Index - causes the IP equivalent 
of a suS?end and 
requalify orocess. 

9 - 14 - Unused 

15 - Close (Invalidate) Wind<:Ms and Unlock I/O Iccks 
(on winnows 0-3) 

16 - Generate PS Reset 

17 - Close (Invalidate) Wind<:Ms and Unlock I/O Leeks 
(on winnows 0-3) and Enter Physical ~ 

The representation rights of a oommun ication segment access 
descriptor are interpreted in same manner as for all seqments of 
base type data segment. The tvoe rights field of a oommunication 
segment is uninterpreted. 

A-22 Change 2 



Atnem ix B SLUllllar izes the Interface Processor functions. Three 
lists are provided to assist in locating the page which oontains a 
particular ·-function description. 

One list, Table B-1, organizes the function set by alphabetical 
order. Table B-2 organizes the function set by increasing function 
cnde number and is particularly useful when debugging IP controller 
s::>ftware= Table B-3 organizes the function set by operator id codes 
and is especially useful when debugging IP fault handling software. 

The template for function descriptions is shown on oaqe B-5. All 
function descriptions folla.v this -style of presentation. · 

B-1 



iAPX 432 Interface Processor Architecture Reference Manual 

TABLE B-1 

ALPHABEI'ICAL INDEX TO IP FUNCTICNS 

HEX DECIMAL 
FUNCI'ICN OPERATOR 

FUNCTICN NAME COOE ID PAGE 

(Ioq ica 1 rvbde Functions) 
ALTER MAP AND SELECT DATA SEXMENT 00 0 B-6 
AMPLIFY RIGHTS 08 8 B-8 
B:OOAOCAST TO PID2ESSORS 18 24 B-9 
CCNDITICNAL ROCEIVE 15 21 B-10 
CDNDITICNAL SEND 13 19 B-11 
COPY AOCFSS DESCRIPI'OR 04 4 B-l2 
DISPATCH lB 27 B-12.5 
EN'IER ACCESS SEG1ENr 07 7 B-13 
ENI'ER GI.ffiAL ACnSS SEXMENT 06 6 B-14 
INDIVISIBLE ADD SHORr ORDINAL 19 25 B-15 
INDIVISIBLE INSERI' SIDRr ORDINAL lA 26 B-16 
lliSPECI' AOCFSS DESCRIPTOR OE 14 B-18 
lliSP:oc'I' CBJECT OF 15 B-17 
LCCK OOJECr 10 16 B-19 
NULL Aen'SS DE.SCRIPI'CR 05 5 B-20 
READ PRCCESSOR STATUS 03 3 B-21 
R"EX:EIVE 14 20 B-22 
RESI'RICT RIGHTS 09 9 B-23 
REI'RIEVE PUBLIC TYPE REPRESENrATIOO OB 11 B-24 
REI'RIEVE TYPE DEFINITIOO oc 12 B-27 
REI'RIEVE TYPE REPRESENI'ATIOO OA 10 B-25 
SEND 12 18 B-28 
SEND 'ro PID2ESSOR 01 1 B-29 
SEI' PERIPHERAL SUB.SYS'IEM MODE 02 2 B-31 
SURIDGATE ~IVE 17 23 B-32 
SURK>GATE SEND 16 22 B-33 
UNLOCK OBJECT 11 17 B-34 

(Physical Mode Functions) 
ALTER MAP AND SELECT PHYSICAL SECMENI' 00 0 B-7 
READ PRCCESSOR STATUS 03 3 B-21 
SEND TO P:ro:ESSOR 01 1 B-30 
SE!' PERIPHERAL SUBSYSTEM MODE 02 2 B-31 

B-2 Chancre 2 



FUNCTION SUMMARY 

'!'ABIE B-2 

IP FUNCI'ICN SUMMARY BY FUNCTICN CODE 

I HEX DECIMAL 
FUNCTICN OPERATOR 
CDDE FUNCTION NAME ID PAGE 

(IDgical Mode Functions) 
00 ALTER MAP AND SELECT DATA SEGmm' 0 B-6 
01 SEND TO PRCCESSOR 1 B-29 
02 SEI' PERIPHERAL SUBSYSTEM MJDE 2 B-31 
03 READ PROCESSOR STATUS 3 B-21 
04 OJPY Ao:ESS DESCRIPTOR 4 B-12 
05 NULL ACCESS DESCRIProR 5 B-20 
06 ENI'ER GLCBAL ACCESS SEGIBNr 6 B-14 
07 EN'IER ACCESS SEG1ENl1 7 B-13 
08 AMPLIFY RIGHI'S 8 B-8 
09 RESTRICT RIGHTS 9 B-23 
OA REI'RIEVE TYPE REPRESENTATIOO 10 B-25 
OB REI'RIEVE PUBLIC TYPE REPRESENTATICN 11 B-24 
oc REI'RIEVE TYPE DEFINITION 12 B-27 
OE INSPECI' ACCESS DESCRIPI'OR 14 B-18 
OF INSPECr OBJECI1 15 B-17 
10 LCO< OBJECT 16 B-19 
11 UNLOCK OBJFCI' 17 B-34 
12 SEND 18 B-28 
13 CONDITICNAL SEND 19 B-11 
14 RECEIVE 20 B-22 
15 mIDITICNAL ROCEIVE 21 B-10 
16 SUROOGA'IE SEND 22 B-33 
17 SURROGATE ROCEIVE 23 B-32 
18 BRJAOCAST TO PRCCESSORS 24 B-9 
19 INDIVISIBIE ADD SIDRI' ORDINAL 25 B-15 
Li\ INDIVISIBIE INSERI' SHORr ORDINAL 26 B-16 
lB DISPATCH 27 B-12.5 

(Physical Mode Functions) 
00 ALTER MAP AND SELECT PHYSICAL SEG1mr 0 B-7 
01 SEND TO PRCCESSOR 1 B-30 
02 SRI' PERIPHERAL SUBSYSTEM M:>DE 2 B-31 
03 READ P~ STATUS 3 B-21' 

Change 2 B-3 



i.APX 432 Interface Processor Architecture Reference Manual 

TABLE B-3 

IP FUNCTICN SUMMARY BY OPERATOR ID 

DOCIMA.L HEX 
OPERATOR FUNCI'ION 
ID FUNCTICN NAME CDDE PAGE 

(IDgical Mode Functions) 
0 ALTER MAP AND SELECT DATA SEG1ENI' 00 B-6 
1 SEND TO P~OR 01 B-~9 
2 SET PERIPHERAL SUBSYSTEM IDDE 02 B-31 
3 RFAD PROCESSOR STATUS 03 B-21 
4 CDPY Acn'SS DESCRIPrOR 04 B-12 
5 NULL Ao:::ESS DESCRIProR 05 B-20 
6 ENI'ER GLOBAL ACCESS S:E:G1ENI' 06 B-14 
7 EN'1ER AOCESS SECMNr 07 B-13 
8 AMPLIFY RIGHI'S 08 B-8 
9 RESI'RICT RIGHTS 09 B-23 

10 REI'RIEVE TYPE REPRESENTATIOO OA B-25 
11 REI'RIEVE PUBLIC TYPE REPRESENTATION OB B-24 
12 REI'RIEVE TYPE DEFINITICN oc B-27 
14 INS~ ACCESS DESCRIProR OE B-18 
15 lliSPErr mJEcr OF B-17 
16 LOCK OBJFCI' 10 B-19 
17 UNLOCK OBJECI' 11 B-34 
18 SEND 12 B-28 
19 CXJNDITICNAL SEND 13 B-11 
20 RECEIVE 14 B-22 
21 ClJNDITICNAL RECEIVE 15 B-10 
22 SURK>GA'IE SEND 16 B-33 
23 SURROGATE RECEIVE 17 B-32 
24 BIDAOCASI' TO PRD:ESSORS 18 B-9 
25 INDIVISIBIB AID S!DRI' ORDINAL 19 B-15 
26 INDIVISIBLE lliSERT SHORr ORDINAL lA B-16 
27 DISPATCH lB B-12.5 

(Physical Mode Functions) 
0 ALTER MAP AND SELECT PHYSICAL SEG1ENI' 00 B-7 
1 SEND TO P~OR 01 B-30 
2 SET PERIPHERAL SUBSYSTEM KDE 02 B-31 
3 READ PRCCFSSOR STATUS 03 B-21 

B-4 Change 2 



FUNCI'ICN TF.MPIATE 
Operator ID: ID 

RJNCTIOO SlM1ARY 

Contents Function Request Facility 
Hex Byte 
Off set 

results 0 through 9 "-'-' ___ y ""'"-· 20H-33H 

ooeram 6 reserved lEH 

operam s reserved lCH 

operand 4 reserved lAH 

operand 3 reserved 18H 

operand 2 reserved 16H 

operand 1 reserved 14H 

operand 0 reserved 12H 

IP function code OXXH (FL"t~ICN NAi\IB) lOH 

function state reserved OEH 

process selection index PRXFSS INDEX O~d 

Note: 

Required operanrls and availabl~ results are indicatea. bv capital 
letters. Other areas are marked reserved. 

'1'.he IP function code must be written into the function request 
facilitv last, i.e. onlv after all ooerands are provided. The 
function code OCCUl'.)ies only location lOH. Byte location llH is 
reserved. 

The or.ocess selection index field is required on all IP function 
requests. This value (an access descriptor displacement) is 
used as an byte offset into the process selection list of the IP 
Processor access segment. For example, the process selection 
index for orocess number 5 is 000000000001010~. Si.nee it is 
not mo1ified by function execution, it need not be rewritten if 
a new function- is to be executed in the same process environment 
as the previous function. 

The function state field, shown as reserved in all fu.nction 
stmmaries, may be examined after the IP receives an interrupt or 
it may be p:>lled. The function state field should be set to 
zero before a function code is deoosited. Interrupts for. 
successful function completion ma.y he selectivelv ·Hsabled. 

B-5 



iAPX 432 Interface Processor Architecture Reference Manual 

ALTER MAP AND SELECT DATA SEG1ENr 
q:;,erator ID: 3 

Contents Function Request Facility 

results 0 through 9 reserved 

operand 6 BUD< CDUNI' 

operand 5 BASE DISPIACEMEN"r 

operan:l 4 SOURCE ACCESS SELECTOR 

operand 3 MASK 

operand 2 BASE ADDRESS 

operand 1 ENTRY STATE 

operand 0 WIN1XM INDEX 

IP function co1e OOOH {ALTER MAP AND 
SELECr Il2-\TA SEXMENI1) 

function state reserved 

process selection index PRCCESS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

ALTER MAP AND SELECr DATA SEG1.ENI' allows an ooeration to alter the 
inter-address space mapping provided bv one of the address subrange map 
entries and to associate a given 432 or interconnect data segment with 
that address subrange map entry. The first operand is a double byte 
si?eCifying which map entrv/aata segment, segment ~escriptor register is 
to be altered. This operator can only be used to affect map entries 0 
through 3. The second operand is a double byte containing new entrv 
state information. The third operana is a aouble byte containing the 
starting address of the new subranqe to be mapped. The fourth Ot)erand 
is a double byte containing the mask used to specify size of the n~ 
subrange. The fifth operand specifies an access descriptor for the new 
data segment. This data segment access descriptor is copied into the 
mapped segment entry i.n the current context associated with the map 
entry being altered. The sixth operand is a double byte ST;>ecifying the 
initial displacement into the data segment for the block transfer to 
start or pseudo-refinement. If the new entry state information 
soecifies that this entrv is bei.ng set up i.n block transfer m:Xle, the 
seventh operand is a n.ouble byte containing a count of the number bytes 
minus one to be transferred. Note that this operator is unique to 432 
Interface Processors. If the new entry state information specifies 
that the window is to be closed {set "invalid") then only the first two 
ooerands are required. 

B-6 Change 1 



AL'IER MAP AND SELECI' PHYSICAL SEG1ENT 
q;>erator ID: 3 

Contents Function Request FaciJity 

results 0 through 9 reserved 

operarrl 6 reserved 

operarrl 5 PHYSICAL ADDRESS(high 8) 

operand. 4 PHYSICAL ADDRESS (lCM 16) 

operand 3 ~K 

OJ?erand 2 BASE ADDRESS 

operarrl. 1 mI'RY STATE 

operarrl 0 WINOCM INDEX 

IP function co1e OOOH (ALTER MAP AND 
SELECT' PHYSICAL SEG1ENT) 

function state reserved 

orocess selection index P~S INDEX 

FUNCTIOO S'C.M1AH.Y 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

ALTER MAP AND SELECT PHYSICAL SEG1ENT allCMS an ooeration to alter 
the inter-address space mapoing provided by one of the address 
subrange map entries and to associate a given 432 or interconnect 
physical seqment with that address subrange map entry. This 
physical rrode operator is the equivalent of the logical rcode 
operator AL'IER MAP AND SELECI' DATA SEG1ENI'. One difference is that 
the mapping facility area is not updated by this ooerator. Another 
difference is that map entry 4 can be updated by this operator. The 
first operand is a double byte specifying which maJ? entry/data 
segment, segment descriptor register is t.o be altered. The second 
operand is a double byte oontaining new entry state information. 
The third operarrl is a double byte containing the starting address 
of the new subrange to be mapped. The fourth ooerand is a double 
byte containing the mask used t.o specify size of the new subrange. 
The fifth and sixth operands are a word (32 bits) oontaininq the 
right~justified, 24-bit, physical base address of the segment in the 
432 address space. If the new entry state information specifies 
that this entry is being set up in block transfer node, the sixth 
operand is also used as a oount of the number of bytes to be 
transferred. If the new entry state information specifies random 
:m:rle, then the segment in the 432 address space is set to the 
maximum l~ngth (65,536 bytes) arrl the sixth operarrl is ignored. 
Note that this operator is unique to 432 interface processors. 

Change 2 B-7 



iAPX 432 Interface Processor Architecture Reference Manual 

AMPLIFY RIGH'IS 
Operator ID: 11 

Contents Function Request Facility 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

O?erand 3 reserverl 

operand 2 reserved 

aper.and 1 DESC CI'RL ACC SELECI'OR 

operand 0 DE.ST AOCESS SELirroR 

IP function code 008H (AMPLIFY RIGHTS) 

function state reserved 

process selection index PRCCFSS INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

121-I 

lOH 

OEH 

OCH 

AMPLIFY RIGHTS allCMS an operation to alter, under control of a 
protected type control object, the set of rights and type oontr.ol 
information in the associated access descriptor. The first operan<l 
o.:>ntains the access selector for an access descriptor for the given 
object. The second operand contains the access selector for a type 
o.:>ntrol object access descriptor. The resultant new access 
descriptor overwrites the original access descri~tor for the given 
object. Thus, the destination access segment entrv is the same as 
the source access segment entry. 

B-8 Change 1 



BROAOCASI' TO PRO:ESSORS 
Operator ID: 27 

FUNCI'ICN SUMMARY 

C.ontents Function Request Faci.litv 
Hex Byte 
Off set 

results 1 through 9 

result 0 

oper.and 6 

operand 5 

operand 4 

operand 3 

aper.and 2 

operand 1 

o~rand 0 

IP function cod.e 

function state 

process selection index 

reserved 22H-33H 

BOOLF'.AN 20H 

reserved lEH 

reserved lCH 

reserved lAH 

reserved 18H 

reserved 16H 

DESTINATICN PRO:FSSOR 
ACCESS SELECroR 14H 

IPC MESSAGE 12H 

018H (BOOPt_IC_~~ 'IO 
PRCX:ESSORS) lOH 

reserved OEH 

PRCX:ESS INDEX OCH 

BIDAOCAST TO PRCX:ESSORS all™s a process to broadcast an 
interprocessor message to all the processors in the system, 
including the processor it is executing on, via the interprocessor 
comnunication mechanism. The first operand contains the 
interprocessor message. The second operand contains the access 
selector for an access descriptor for the desired processor object. 
The b:x>lean r.esult, which i.s set to true if the control flags are 
deposited, is stored in the function result area. 

Change 1 B-9 



iAPX 432 Interface Processor Architecture Reference Manual 

CONDITIOOAL RECEIVE 
Operator ID: 24 

Contents Function Request Facility 

results 1 through 9 

result 0 

operand 6 

operand 5 

operand 4 

operand 3 

operand 2 

operand 1 

operand 0 

IP function coie 

function state 

process selection index 

reserved 

BOOLEAN 

reservea 

r.eserved. 

reserved 

reserved 

l'.:'eserverl 

reserved 

PORI' ACCESS SELECroR 

015H (COODITIOOAL 
RECEIVE) 

reserved 

P:occESS INDEX 

Hex Byte 
Off set 

22H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

CONDITICNAL RECEIVE all0t1s a Process to check for t.he avai.lability 
of a message at a -port and to indivisibly accept i.t if one is 
available. The first operand is used. The boolean result, which 
is set to true if a message is received, is stored in the function 
result area. 

B-10 Change 1 



CClIDITIONAL SEND 
Operator ID: 22 

Contents Function Reouest FaciHtv 

results 1 through 9 reserved 

result 0 BCOLFAN 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 MESSAGE ACCESS SELECTOR 

operand 2 reserved 

operand 1 reserved 

operand 0 PORI' ACCESS SELECI'OR 

IP function code 013H (CCNDITICNAL SEND) 

function state 

process selection index 

I reserved 

PRCOSS INDEX 

Hex Byte 
Off set 

22H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

CCNDITIONAL SEND allows a process to check for the availability of 
queue st;>ace at a p::>rt and to indivisibly deliver a message if space 
is available. The first and fourth operands are used. The l:xx:>lean 
result, which is set to true if a message is deoosited, is stored in 
the furction result area. 

Change 1 B-11 



DISPA'ICH (!.J?g ical ~e Only) 
Operator ID: 30 

Contents Function Request Facilitv 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

opera.11d 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand 1 reserved 

operand 0 PRCX~ESSOR ACC SELECI'OR 

IP function ccrle OlBH (DISPA'ICH) 

fun::tion state reserved 

process selection index PRCX:ESS INDEX 

FUNCI'ION SUMMARY 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

DISPA'ICH does a surrogate receive from the processor's normal 
dispatching port using t.he nrocessor carrier. If the disoatchinq 
port is empty, the carrier blocks there arrl the ins-truction 
terminates. rAhen a process eventually arrives at the dispatch p:'.)rt 
to tmblock the carrier, a wake-up IPC is given to the processor.) 
If DISPATCH succeeds in findinq a process at the dispatch J.X)rt, the 
processor continues executing as if a wake-up IPC had been received 
(except t.hat no !PC interrupt is generated) , with the dispatching 
state, selected process index, and function state in the function 
request area being updated. ('I'nat is, the inhibit semantics still 
aq>l y, even if the wake-t;> request is executed.) The AP can 
determine if t.he disr;>atch was successful by examining the 
dispatching state. The operand contains an access selector for an 
access descriptor for the processor object of the processor on which 
the operation is being executed. Note that this operator is unique 
to 432 interface processors. 

Change 2 B-12.5 



iAPX 432 Interface Processor Architecture Reference Manual 

'I'nis paqe intentionally left blank. 

B-12. 6 Change 2 



iAPX 432 Interface Processor Architecture Reference Manual 

OOPY Acn:8S DESCRIPIDR 
Operator ID: 7 

Contents Function Request Facilitv 

results 0 through 9 

operand 6 

operand 5 

operand 4 

operand 3 

ot;>erand 2 

operand 1 

operand 0 

IP function code 

function state 

process selection index 

reserved 

reserved 

reserved 

reserve1 

reserved 

reserved 

SOURCE ACCESS SELECTOR 

DESI' ACCESS SELECTOR 

004H (COPY ACCESS 
DESCRIPIOR) 

reserved 

PRCX::ESS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

COPY ACCESS DFSCRIPIOR allows an operation to coov an access 
descriptor fran a specified entry in any directly accessible access 
segment to a specified entry in anv directly accessible access 
segment. The first operand contains the access selector for the 
destination access segment entry. The seoond aper and contains the 
access selector for the access descriptor to be C'Ol?ied. 

B-12 Chanqe l 



FUNCTICN SUMMARY 

~erator ID: 10 

Contents Function Request Facilib1 

results 0 throuqh 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 I reserved 

operand 3 reserved 

operand. 2 reserved 

operand 1 SOURCE ACCESS SELECIDR 

operand 0 FAS INDEX 

IP function code 007H (ENTER ACCESS 
SEGiENI') 

function state reserved 

prcx:ess selection index I P~S INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

ENTER A<XESS S~ allaYs an ooeration 1;.o gain direct access to 
the access descriptors in a specified access segment. The first 
operand contains the index (range 1 - 3) for the destination access 
segment entry (FAS). ~ second operarrl contains the access 
selector for an access descriotor for the access segment to be 
entered. ·· 

Change 1 B-13 



iAPX 432 Interface Processor Architecture Reference Manual 

ENTER GLOBAL ACCESS SEXMENT 
Operator ID: 9 

Contents Function Request Facility 

results 0 throuqh 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand l reserved 

operand 0 FAS INDEX 

IP function co:le 006H (ENTER GLOBAL 
ACCESS SE(}.fENI') 

function state reserved 

process selection index PRXESS INDEX 

Hex Bvte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

ENTER GLOBAL ACCESS SEXMENT allows an ooeration to gain direct 
access to the access descriptors in the ·access segment provided 
ill1J?licitly via the currently associated process object. The ooerand 
contains the index (range 1 - 3) for the destination access segment 
entry (FAS) • 

B-14 Change 1 



FUNCI'ICN SUMMARY 

INDIVISIBIB ADD SHOR:r ORDINAL 
Operator ID: 28 

Contents Function Request Facilitv 

results 1 through 9 reserved 

result 0 ORIGINAL VALUE 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved · 

operand 3 reserved 

operand 2 VALUE 

operand 1 DISPIACEMENI' 

operand 0 SOURCE ACCESS SELECIDR 

IP function code 019H (INDIVISIBLE ADD 
SHOR:r ORDINAL) 

function state reserved 

process selection index PR<XESS INDEX 

Hex Byte 
Off set 

22H-33H 

20H 

lEH 

lCH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

The result of adding the short-ordinal source value located by the 
first two operands (access selector and displacement) to the 
short-ordinal t.1-iird · operand indivisibly replaces the source value. 
The original source value is stored in the function result area. 

A short-ordinal overflow fault cannot occur.. 

Change 1 B-15 



iAPX 432 Interface Processor Architecture Reference Manual 

INDIVISIBI.E INSERI' SHORI' ORDINAL 
Operator ID: 29 

Contents Function Request Facility 

results 1 through 9 reserved. 

result 0 ORIGINAL VALUE 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 MASK 

operand 2 VALUE 

operand 1 DISPIACEMENI' 

operand 0 SOURCE ACCT$ SEJ.E.CIDR 

IP function code OlAH (INDIVISIBLE 
INSERr SHORI' ORDINAL) 

function state reserved 

process selection index PR:CESS INDEX 

Hex Byte 
Off set 

22H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lO'fJ 

OEH 

OCH 

The short-ordinal fourth operand is used as a mask (as oresented on 
the third ooerand and inverted on the source value). The result of 
ORing the ~short-ordinal source value located by the first two 
operands (access selector and displacement) to the short-ordinal 
third oµerand indivisibly reolaces the source value. The original 
source value is stored in the function ~esult area. 

B-16 Change l 



INSP~OBJECT 

Operator ID: 18 

FUNCI'ICN SUMMARY 

Contents Function Reauest Facilitv 
Hex· Byte 
Off set 

results 2 through 9 

results 0 through 1 

operand 6 

operand 5 

operand 4 

operand 3 

operand 2 

operand 1 

operand 0 

IP function code 

function state 

process selection index 

OBJ TABLE ENI'RY IMAGE 

ACCESS DESCRIPIDR IMAGE 

reserved 

reserved 

reserved 

reserved 

reserved 

reserved 

SOURCE ACCESS SELEcrOR 

OOFH (INSPECT OBJECT) 

reserved 

PROCESS INDEX 

24H-33H 

20H-23H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

INSPECT' OBJECT allows an operation to read the access information 
for the first level of any access path to which it holds an access 
descriptor. The first operand contains the access selector for an 
access descriptor for the level in the access oath which is to be 
inspected. The ten double-byte result is stored in the function 
result area. 

Change 1 B-17 



iAPX 432 Interface Processor Architecture Reference Manual 

INSPECr ACCESS DESCRIPTOR 
Operator ID: 17 

Contents Function Request FaciJ.ity 

results 2 through 9 reserved 

SOURCE Ace&c;s 
results 0 through 1 DESCRIP'IDR IMAGE 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

ooerand 1 reserved 

operand 0 SOORCE A<:r. SELECIDR 

IP function code OOEH (INSPECT ACCESS 
DESCRIPIDR) 

function state reserved 

pr.ocess selection index P~SS INDEX 

Hex Byte 
Offset 

24H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

INSPEX::T ~s DFSCRIPI'OR allCMs an ooeration to inSl;)ect an access 
descriptor to which it holds access. The first operarrl contains the 
access selector for an access descriptor which is to be inspected. 
The ordinal result is stored in the function result area. 

B-18 Chanqe 1 



LOCK OBJECT 
Operator ID: 19 

FUNCTIOO SUMMARY 

C..ontents Function Request Facility 
Hex Byte 
Off set 

results 1 through 9 reserved 22H-33H 

result 0 BOOLEAN 20H 

operand 6 reserved lEH 

operand 5 reserved lCH 

operand 4 reserved lAH 

operand 3 reserved 18H 

operand 2 reserved 16H 

operand 1 DISPI.ACEMENI' 14H 

operand 0 ACCESS SELECIDR 12H 

IP function cod.e OlOH (LOCK OBJECT') lOH 

function state reserved OEH 

process selection index PROCESS INDEX OCH 

LOCK CEJECI' allows an operation to lock an object lock located 
within a data segment. The first ooerand contains the access 
selector for a data segment access aescr iptor. The secona operand 
oontains the displacement within that data seqment of the desired 
ohj ect lock. The }:xx) lean result, which is set to true if the object 
becanes locked, is storeii in the function result area. 

Change 1 B-19 



i.APX 432 Interface Processor Architecture Reference Manual 

NULL ACCESS DESCRIPI'OR 
Operator ID: 8 

Contents Function Request Facilitv 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

opet'and l reserved 

operand 0 DEST ACCESS SELOCIDR 

IP function code 005H (NULL ACCESS 
DESCRIFIOR) 

function state reserved 

process selection index PROCESS INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

NULL AOCESS DFSCRIPIDR allows an operation to overwrite and thus 
logically clear a given access descriptor entry. At the same time, 
access to any object previously available via that access descriptor 
entry is given up. The operand contains the access selector for the,, 
destination access segment entry. 

B-20 Change l 



FUNCTICN SUMMlffiY 

READ PROCESSOR STATUS (IDgical and Physical ~e) 
Q;>erator ID: 6 

Contents Function F.equest Facility 

results 2 through 9 reserved 

result 1 SYSTEM cux;~ 

result 0 P~ESSOR STATUS 

operand 6 ed reserv .. 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand 1 reserved 

operand 0 reserved 

IP function e<Xle 003H (RFAD PRCOSSOR 
STA'IUS) 

function state reserved 

Hex Byte 
Off set 

24H-33H 

22H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

process selection index PRCXESS INDEX OCH 

The 16-bit processor status field of the current processor is read 
fran the processor object, right appended to the ·current value of 
the processor resident system clock, and stored in the function 
result area. The processor status field includes ooth processor 
unit number and processor status information. 

READ PRCOSSOR STATUS is performed the same in both physical and 
logical nodes. 

Change 1 B-21 



iAPX 432 Interface Processor Architecture Reference Manual 

RECEIVE 
Operator ID: 23 

Contents Function Request Facility 

results 0 throuqh 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand 1 reserved 

operand 0 PORI' ACCESS SELFrIDR 

IP function code 014H (RECEIVE) 

function state reserved 

process selection index PRCO?SS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

RECEIVE allows a process to receive a messaqe at a specified port. 
The first operand is used. 

B-22 Change 1 



,.,,.....,..i-,... .... .i- ... 
'....V11\...C11\...0 

results 0 through 9 

operand 6 

operand 5 

operand 4 

operand 3 

operand 2 

operand l 

operand 0 

IP function code 

function state 

FUNCI'ICN SUMMARY 

RESI'RICT RIGHTS 
Operator ID: 12 

'C'. .. nc .... .; ,.......,. Req ........ ,... .... 'Cl ....... ~,.; ....... 
.._- u1 \....LVl 1 ~ uc;::n • .i: a\JJ._LJ. ~v 

reserved 

reserved 

reserved 

reserved 

reserved 

reserved 

TYPE CTRL ACC SEI.ECTOR 

DEST ACCESS SEI.ECTOR 

009H (RFSTRicr RIGHTS) 

reserved 

Hex Byte 
r'\.t=.t=,... ..... 1.
VLL;:::JC~ 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

process selection index I PRCX::&SS INDEX OCH 

RESTRICT RIGHTS allows an operation to restrict its access to an 
object by altering, under oontrol of an unprotected tvpe oontrol 
object, the access descriptor for that object to have either 
restricted rights or restricted rights and restricted type control. 
The first operarrl contains the access selector for an access 
descriptor for the qiven object. The second operand is an 
unprotected type control object. The resultant new access 
descriptor overwrites the original access descriptor for the given 
object. Thus, the destination access segment entry is the sa"Ile as 
the source access segment entry. 

Change 1 B-23 



iAPX 432 Interface Processor Architecture Reference Manual 

REI'RIEVE PUBLIC TYPE REPRESENTATION 
~rater ID: 14 

Contents Function Request Fae i1 i tv 

results 0 throuqh 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 TYPE DEF AC.C SELECIDR 

operand 1 SOURCE ACC. SELECroR 

operand 0 DESI' ACCESS SELECIDR 

IP function code OOBH (REI'RIEVE PUBLIC 
TYPE REPRESENl'ATICN) 

function state reserved 

process selection index P~SS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

1AH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

REI'RIEVE PUBLIC TYPE REPRESENTATICN allows an aper ation to t"etrieve 
the type representation for a oublic type. The first operand 
contains the access selector for the destination access seqment 
entry. The second opet"and contains the access selector for an 
access descriptor for the tvpe whose representation is to be 
retrieved. 

B-24 Change 1 



RErRIEVE TYPE REPRE.SENTATICN 
Operator ID: 13 

Contents Function Request Facility 

results 0 through 9 reserved. 

ope:rarrl 6 reservea 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 TYPE DEF ACC SELECI'OR 

operand 1 TYPE CI'RL ACC. SELECI'OR 

operand 0 DEffi' ACCE....c:;s SET~R 

IP function code OOAH (RErRIEVE TYPE 
REPRESENTATICN) 

function state reserved 

process selection index PRXF.SS INDEX 

FUNcrION Stff1ARY 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

REI'RIEVE TYPE REPRESENI'ATION alloos an operation to retrieve the 
type re-presentation for any type for which it holds awropriate 
access to the associated type definition. The first operand 
contains the access selector for the destination access segment 
entry. The second onerand contains the access selector for an 
access descriptor for the type whose representation is to be 
retrieved. The third operand contains the access selector for an 
access descriptor for the associated type definition. 

Change 1 B-25 



iAPX 432 Interface Processor Architecture Reference Manual 

'Ibis page intentionally left blank. 

B-26 Change 2 



FUNCI'ICN SUMMARY 

REI'RIEVE TYPE DEFINITICN 
Q;>erator. ID: 15 

C-entents Function Hequest Facility 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand 1 SOURCE ACCESS SELECI'OR 

operand 0 DEST ACCESS SELECI'OR 

IP function code OOCH · (REI'RIE.VE TYPE 
DEFINITICN) 

function state 

process selection index 

reserved 

t PRXESS INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OF.Ji 

OCH 

RErRIEVE TYPE DEFINITICN allows an ooeration to retrieve an access 
descriptor for the type definition associated with a type. The 
first operand a:>ntains the access selector for the destination 
access segment entry. The second operand contains the access 
selector for an access descri9tor for the tvpe • 

• 

Cha11ge 1 B-27 



iAPX 432 Interface Processor Architecture Reference Manual 

SEND 
Operator ID: 21 

Contents Function Request Facility 

results 0 throuqh 9 

operand 6 

operand 5 

operand 4 

operand 3 

operand 2 

operand 1 

operand 0 

IP function code 

function state 

process selection index 

reserved 

reserved 

reserved 

reserved 

MESSAGE ACCESS SELECTOR 

reserved 

r.eserved 

PORI' ACCESS SELECTOR 

012H (SEND) 

reserved 

PROCESS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SEND all<:JWS a process to send a specified messaqe to a specified 
1?0rt. The first and fourth operands are used • 

• 

B-28 Change 1 



FUNCTIOO SlM1ARY 

SEND TO PROCESSOR (logical M::>de) 
q,erator ID: 4 

Contents Function Request Facilitv 

results 1 through 9 

result 0 

operand 6 

operarrl 5 

operand 4 

operand 3 

oy;>erand 2 

operand 1 

operand 0 

IP f unctioo code 

function state 

process selection index 

reserved 

BOOLEAN 

reserved 

reserved 

reserved 

reserved 

reserved 

DEST PROCE.SSOR "ACC SEL 

IPC MFSSAGE 

OOlH (SEND TO PROCE.SSOR) 

reserved 

PROCESS INDEX I 

Hex BYte 
Off set 

22H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SEND TO PROCE.SSOR allows a process to send an inteI1?rocessor message 
to one specific processor, including the processor it is executinq 
on, via the interprocessor cannunication mechanism. The first 
aper and contains the interprocessor message. The second aper and 
contains the access selector for an access descriptor for the 
desired processor object. The boolean result, which is set to true 
if the control flags are deposited, is stored in the function result 
area. 

Chanqe 1 B-29 



iAPX 432 Interface Processor Architecture Reference ManuaJ_ 

SEND 'ID PID:ESSOR (Physical Mode) 
Operator ID: 4 

Contents Function Request Facility 

results l through 9 reserved 

result 0 BOOLEAN 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 PHYSICAL ADDR (hiqh 8) 

operand 1 PHYSICAL ADDR (lCM 16) 

operand 0 !PC MESSAGE 

IP function code OOlH (SEND TO PRCX!ESSOR) 

function state reserved 

process selection innex PRCCESS INDEX 

Hex Bvte 
Off set 

22H-33H 

20H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SEND TO PRCX:ESSOR allows external processor software to send an 
inten;>rocessor message to one specific processor, including the 
processor it is executing on, via the interprocessor cnmmunication 
mechanism. The first operand contains the interprocessor message. 
The second operand is a word ( here shown as tw:> consecutive double 
bytes) oontaining the riqht-justified, 24-bit, physical base address 
of the 432 memory segment which contains the linage of the !P's 
processor object. The toolean result, which is set to true if the 
control flaqs are deposi.ted, is stored in the function result area. 
This physical node operator is the equivalent of the logical node 
operator SEND TO PRCX:ESSOR. 

B-30 



SE!' PERIPHERAL SUBSYSTEM MODE (logical and Physical M:>de) 
Operator ID: 5 

Contents Function Request Facilit-v 

results 0 through 9 

operand 6 

operarrl 5 

operand 4 

Ol;)erand 3 

operand 2 

operand 1 

operand 0 

IP function code 

function state 

process selection index 

reserved 

reserved 

reserved 

:reserved 

reserved 

reserved 

PROCESSOR ACC SEL 

PS MODE 

002H ( SEI' PS MODE) 

reserved 

P~ESS INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SEr PERIPHERAL SUBSYSTEM MODE allows an operation t.o change the :erode 
settings for the oonnected peripheral subsystem, both on the 
processor and in the peripheral subsystem status field of the 
processor data segment. Checks are also made for certain illegal 
combinations of XACK delay and Write Sample Delay. The first 
operand oontains a set of new peripheral subsystem node flags. The 
second operand, which is used only in logical mode, contains an 
access selector for an access descriptor for the processor object of 
the processor on which the operator is being executed. Note that 
this operator is unique to 432 Interface Processors. 

SEr PERIPHERAL SUBSYSTEM MOOE when J;>erformed in physical mode is of 
t.he same form and i;>rovides the same function as SEr PERIPHERAL 
SUBSYSTEM MODE -performed in loqical mode, except that the second 
operand is not used. 

Change 2 B-31 

l 



iAPX 432 Interface Processor Architecture Reference Manual 

SURRCX;ATE RECEIVE 
Operator ID: 26 

Contents Function Request Facility 

results 0 through 9 reserved 

operarrl 6 reserved 

oper.arrl 5 reserved 

operand 4 reserved 

operand 3 reserved 

operanch 2 CARRIER ACCESS SELECrOR 

operand 1 DE.Sr ACCESS SELECTOR 

operand 0 PORI' ACCESS SELECTOR 

IP functioo code Ol 7H ( SURI(x;A'IE RECEIVE) 

functioo state reserved 

process selection index P~ESS INDEX 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

1_8H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SlJRRX;A.'IE RECEIVE allows a process to wait, via a surrogate carrier, 
at a port for a message from some process. The first three operands 
are used. 

B-32 Change 1 



FUNCTICN SUMMARY 

SUROOGATE SEND 
Operator ID: 25 

Contents Function Request Facilitv 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

opera11d 4 reserved 

operand 3 MESSAGE ACCESS SELECTOR 

ooerand 2 CARRIER ACCESS SELECTOR 

operand 1 DESI' ACCESS SELECTOR 

operand 0 PORI' ACCESS SELECTOR 

IP function code 016H (SUROOGATE SEND) 

function state reserved 

process selection index f P~ INDEX 

Hex Bvte 
Off set 

20H-33H 

lEH 

lCH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

SUROOGATE SEND allows a process to send, via a surrogate carrier, a 
specified message to a specified p::>rt. All four operands are used. 

Change 1 B-33 



iAPX 432 Interface Processor Architectu~e Reference Manual 

UNLOCK OBJECT 
Operator ID: 20 

Contents Function Request Facility 

results 0 through 9 reserved 

operand 6 reserved 

operand 5 reserved 

operand 4 reserved 

operand 3 reserved 

operand 2 reserved 

operand 1 DISPIACEMENI' 

operand 0 ACCESS SELF.C'IDR 

IP function code OllH (UNLOCK OBJECI') 

function state reserved 

process selection index PROCESS INDEX 

Hex Byte 
Off set 

20H-33H 

lEH 

lCH 

lAH 

18H 

16H 

14H 

12H 

lOH 

OEH 

OCH 

UNLOCK OBJECI' allows an operation to unlock an object lock located 
within a data segment. The first operand contains the access 
selector for a data segment access descriptor. The second ooerand 
contains the displacement within that data segment of the desired 
object lock. 

B-34 Change 1 



C-1. FAULT REPORTING 

APPENDIX C 
FAULT Sur+mRY 

Both l~ical and physical rrnde faults are reported in fault 
information areas as rlescribed belcM. The fault information area 
for oontext, process, and processor level faults has the same 
organization. Process objects contain fault information for context 
and process level faults which occur in logical rro1e. Processor 
objects contain fault information for orocessor level faults which 
occur in logical node. The Process level fault information area in 
the process object is used when a process level fault occurs and a 
process is bound to the Processor. The Processor level fault 
information area in the prOcessor object is- used. when a process 
level fault occurs and a 9rocess is not OOu.nd to the processor. 
Physical mode faults, which are all treated as context level faults, 
are re}?Jrted in the processor fault information area. 

C-2. FAULT INFORMATI<l-1 AR.FAS 

The fault information area is a 13 double-byte record orqanized as 
foHows. 

C-1 



iAPX 432 Intet'face Processor Architecture Reference Manual 

fault 
information 
area 

= 

= 

execution state 

operator id 

system timer 

psor status 

ext/pres status 

PS status 

fault code 

fault AS/disp 

reserved 

dir index 

obj index 

tempB 

temr;>A 

= doubie bvte 
displacement 

n+12 

n 

= 

The tempA and tempB fields contain the values of the corresponding 
on-chip registers at the time of the fault. (Whether the fault is 
associated with object qualification or object table qualification, 
the dit'ectory index and object index still specifv the object, and 
the inten;>retation of the fault access selector/di.Sl?lacement field 
will vary deperrling on the fault, as discussed belo.'1 under System 
Type Or Object Table Entrv (OTE) Type Faults.) 

The fault code, together with the operator id indicates the nature 
of the fault. The fault code field has the following format: 

C-2 

RR TYPE 

10 
11 
Ox 

MA 
'IS 
FF 

Faults 

Menorv .~ess Faults 
Test System Tvi;>e or. Object Table Entry Type Faults 
All other faults 

Chanqe 2 



FAULT SUMMARY 

The Peripheral Subsystem status, context/process status, processor 
status, and system timer fields oontain the values of the the 
corresponding on-chip 1"."egisters at the time of the fault. The 
operator ID, which differs from the oocode field in ai:1 instruction, 
specifies the operator that causes the fault. If a fault occurs 
during instruction decoding, the operator ID is zero. The operator 
ID value of each operat<;>r is the-sa"lle as the index-fourrl in .Appendix 
B (Tables B-1, B-2, and B-3). 

The execution state indicates the ohase of execution when the fault 
occured. It is used to identify -fault handling strategies in the 
nnre complex operators. A value of ze!'.'o indicates the instruction 
can be re-exectited with ro rewirrl necessary. A non-zero execution 
state occurs with oort and IPC operations only. The semantics of 
each execution state in the port operators is _described in the 432 
GDP Architecture Reference ~.ianual. The organization of the 
execution state field is shown belCM= 

8 bits 8 bits 

._______ execution state .,____________________ reserved 

Memory Access Faults 

The fault code format for the zz field specifies the tvoe of mercorv 
access attempted. The enc00ing of the ZZ- field is specified belCM ... 

zz Access Type 

xlOTITIT O~BB Access Merrory 
xlOTITIT lOMWBBBB Access Interconnect 
xlOTI'I'IT llMWBBBB Access Access Segment 

The TITIT field specifies the tyr?e of memory access 
encoding of the TITIT field is specified belCM. 
canbinations of these encodings can occur. 

xxxxl 
xxxlx 
xxlxx 

xlxxx 
lxxxx 

AR 
SB 
M) 

BE 
WR 

Access Rights Fault 
Segment Bounds Fault 
~rrory Overflow Fault 
(physical address >= 2**24) 
Bus Error Fault 
Test Write Rights Fault 

fault. 
Note 

The 
that 

The M field specifies whether the fault was on a read-modify-write 
access. A value of zero indicates a normal access. A value of one 
irrlicates a recrl-modify-write access. 

Change 2 C-3 



iAPX 432 Interface Processor Architecture Reference Manual 

The W field specifies whether the fault was on a read or write 
access. A value of zero indicates a read access. A value of one 
indicates a write access. 

The faulted displacement is recorded in the fault displacement (in 
access memory, or interconnect), and in the object index field of 
the fault access selector (in access access segment). 

The BBBB field, which designates which segment was being accessed 
when the fault occurred, is defined as follows: 

BBBB Segment Name 

------------
0000 Context AS 
0001 Entry AS 1 
0010 Entry AS 2 
0011 Entry AS 3 
0100 Object Table Directory 
0101 Object Table 
0110 Processor AS 
0111 Processor DS 
1000 Context DS 
1001 Process AS 
1010 Process DS 
1011 WorkA 
1100 WorkB 
1101 WorkC 
1110 WorkD 
1111 Mapping Facility 

System Type Or Object Table Entry (OTE) Type Faults 

The fault code format for system type or object table entry type 
faults is as follows: 

D11xxxxx QPPKKKKK 

The D field indicates whether the fault resulted from testing the 
system type or the object table entry type. The D field is defined 
as follows: 

0 System type test 
OTE type test 

The Q field indicates whether the fault is associated with object 
table qualification. It thus determines the meaning of the Fault 
Access Selector/Displacement field in the fault data area as follows: 

0 

C-4 

The fault did not occur during object table 
qualification and the Fault Access 
Selector/Displacement field contains the object 
indices in the associated descriptor. 
The fault occurred during object table qualification 
and the Fault Access Selector/Displacement field 
contains the directory index. 

Change 2 



FAULT SUMMARY 

The D field determines two alternate interpretations of the KKKKK 
field as follows: 

D=O (fault because of system type test) and the KKKKK field 

0::1 

encodes the expected value of the System Type field in the 
object table entry: faulted 

KKKKK System Type --
00000 
00010 
00011 
00100 
00101 
00110 
0011'1 
01000 
01001 
01010 
01011 
01100 

Generic Access or Data Segment 
Domain Access Segment or Object Table Data Segment 
Instruction Data Segment 
Context Access or Data Segment 
Process Access or Data Segment 
Processor Access or Data Segment 
Port Access or Data Segment 
Carrier Access or Data Segment 
SRO Access or Data Segment 
TOO Access Segment or PCO Data Segment 
Type Control Data Segment 
Refinement Control Data Segment 

(fault because of object table entry type test) and the 
field encodes the expected values of the 

least~significant 5 bits of the object table entiy. Their 
meaning is thus determined by the expected Entry type of 
the object table entry. Letting KKKKK be subdivided into 
ABVEE, these subfields are then interpreted as follows: 

KKKKK 

A: Allocated 
0 - No 
1 - Yes 

B: Base Type 
0 - Data 
1 - Access 

V: Access Descriptor Validity 
O - Not Valid 
1 - Valid 

EE: Entry Type 
-00 - Free Entry or Header Entry 
01 - Type Descriptor 
10 - Refinement Descriptor 
11 - Storage Descriptor 

The PP field encodes the processor class for System Type test faults 
as follows: 

Change 2 

00 
01 
10 

All 
GDP 
IP 

C-5 



iAPX 432 Interface Processor Architecture Reference Manual 

All Other Faults 

The fault code format for all other faults is as follows: 

xOXXXXXK xx'l'l'EEEE 

The 'IT and EEEE fields specify the fault level and the fault type. 
Th~ TI' bits are interpreted as follows: 

'IT Fault Level 

00 Context Level Faults 
01 Process Level Faults (group 1) 
10 Process Level Faults (group 2) 
11 Processor Level Faul ts 

'I'nere are 16 fault types within each of the 4 fault level groups. 
The ENCODING column of the tables in the following sections (C-3, 
C-4) contains the 'IT and EEEE fields if t..he type is FF (all other 
faults). 

C-3. OBJECT LEVEL OPERATOR FAULTS 

Faults Conman To All Operators Or Sub-operations 

'1'he folla.-tin.g faults can occur anywhere dur inq the execution of an 
operator or sub-operation (which includes instruction decoding, 
process dispatching, binding etc.) • These faults are not explicitly 
referenced in the later sections. 

FAUT-'T GIDUPS 

Mercory Reference Faults ~ 
Access Rights Fault 
Segment Bound Fault 
~mory OverflCM Fault 
Bus Error Fault 
Test Write'Riqhts Fault 

Invalid Oocode Fault 

Processor Stowed Fault 

Object Table Cache Qualification Faults ~ 
Chiect Table Entry rrype Fault 
Object Svstern Type Fault 

(Access) Seqrnent Altered Faults ~ 
~Object-Qualification Faults 

C-6 

TYPE ENOJDING 

AR 
SB 
m 
BE 
WR 

FF 00 1100 

FF 11 1101 

TS 10010111 
TS 10000010 

Chanqe 2 



Sub-iJperations Faults 

FAULT GroUPS 

Store Access Descriptor Faults ~ 
Level Fault 
~stination Delete Rights Fault 

Object Qualification Faults ~ 
Access Descri9tor Valinitv Fault 
Object Table Entry Type Fault 

~morv OverflON Fault 
Read/W~ite Rights Fault 

Port Operation Faults ~ 
~Object Qualification Faults (Carrier AS) 
~ject Qualification Faults (Carrier DS) 
~Object Qualification Faults (Port AS) 
~Object Qualification Faults (Port DS) 
Send Riqhts Fault 

Carrier Lock Fault 
Wakeup IPC Fault 
Port ~k Fault 
Carrier Queued Fault 

Context Qualification Faults ~ 
~Object Qualification Faults (Context AS) 
~Object Qualification Faults (Context DS) 
..........._'Cl-.L---.::1 7\----- ("1----.L ,..._ __ ,.:.c.: __ .L..: __ L.'1---,.L-
---- .Wlll...e.LCU £"ll..."\.,;e;:::>>:> ~ll~lll... \,lUQ..L.L.L.L\.,.;Ql...J.Vll J.: QU.Ll...>:> 

(FAS l, 2, and 3) 

Process Birrling and Qualification Faults ~ 
~Object Qualification Faults (Process AS) 
~bject Qualification Faults (Process DS} 
Process Level Objects IDck Fault 
Process Not Ready Fault 
~Context Qualification Faults 

Processor Binding and Qualification Faults ~ 
~Object Qualification Faults (Processor AD) 
~Object Qualification Faults (Processor DS) 
Control Window Mask,/Base Incornpatabilitv Fault 
Processor Object Lock Fault · · 
Cannot IDck Processor Carri.er Fault 

Change 2 

FAULT SUMMARY 

TYPE ENOJDING 

FF 01 0100 
FF 01 0011 

FF 01 0000 
TS 00010111 
'IS 00011111 
FF 01 1011 
FF 01 0110 

TS 00001000 
TS 00001000 
TS 00000111 
TS 00000111 
FF 01 1.110 

FF 01 1001 
FF 11 0100 
FF 01 1010 
FF 11 0110 

TS 00000100 
TS 00000100 

TS 00000101 
TS 00000101 
FF 11 0010 
FF 11 0110 

TS 00000101 
TS 00000101 
FF 11 1000 

Fatal 
FF 11 0000 

C-7 



i.APX 432 Interface Processor Architecture Reference Manual 

Operator Faults 

OPERATOR 

Alter Map and Select Data Segment 
Interconnect Descriptor Fault 
Windowed and Object Table Entry Validi.tv Fault 
Transfer Direction Fault · 
Length Validity Fault 

. WindGT Subrange Overlap Fault 
Iocomplete Block Transfer Fault 
Operarrl Validity Fault 
Forced Termination Fault 

Coff'! Access Descriptor 
~Store Access Descriptor Faults 

Null Access Descriptor 
Destination Delete Rights Fault 

Amplify Rights 
Type Control Object Rights Fault 
~Object Qualification Faults (Descriptor Ctl Obj) 
Sa.lrce Object Validitv Fault 
Type Fault 
Race Condition Fault (the access descri~tor was 

changed before the arrplified value is stored back) 

Restrict Rights 
no explicit fault cases 

Retrieve Public ~ Representation 

Source Object Validitv Fault 
Object Table Entry Type Fault 
=>Store Access Descriptor Faults 

Retrieve Type Representation 
Type Definition Validi.tv Fault 
Source Object Validity Fault 
Object Table Entr.y Type Fault 
Type Definition Svstern Rights Fault 
Private Type Retrieve Rights Fault 
Type Fault 
=>Store Access Descriptor Faults 

Retrieve Type Definition 
Source Object Validity Fault 
Object Table Entry TyP.e Fault 
=>Store Access Descriptor Faults 

C-8 

TYPE ENCDDING 

FF 00 0100 
FF 00 0101 
FF 00 0110 
FF 00 0111 
FF 00 1000 
FF 00 1001 
FF 00 1010 
FF 00 1011 

FF 01 0011 

FF 01 0110 
TS OOOOlOll 
FF 01 0101 
FF 01 1000 
FF 01 1000 

FF 01 0101 
TS 00010111 

FF 01 0110 
FF 01 0101 
TS 00010111 
FF 01 0110 
FF 01 0111 
FF 01 1000 

FF 01 0101 
TS 00010111 

Change 2 



IIlST;>eCt Access Descriptor 
rP explicit fault cases 

Inspect Object 
.Aa:ess Path Object Descriptor Type Faults 

lock Object 
~Object Qualification Faults (Data Segment) 
Source Object Access Riqhts Fault 

Unlock Object 
~Object Qualification Faults (Data Segment) 
Source Object Access Rights Fault 
O::>iect Icck ID or Tvpe Fault 

Irrlivisibly Add Short Ordinal 
Indivisibly Insert Short Ordinal 

rP explicit fault cases 

Enter Access Segment 
Enter Global Access Segment 

Entry Index Range Fault 
.Access Segment Read Rights Fault 
~Object Qualification Faults (Access Segment) 

Set PS Mode 
Set PS Rights Fault 
Illegal c.anbinations Fault 

Send 
Receive 
Conditional Send 
Conditional Receive 

Port Tvpe Rights Fault 
~Port Operation Faults 

Surrogate Send 
Surrogate Receive 

Surrogate Carrier Validity and System Riqhts Fault 
Port Tvpe Rights Fault 
~Port.Operation Faults 

Seoo to Pt"ocessor 
Broaocast to Processors 

Processor System Riqhts Fault 
~Object Qualification Faults (Processor AS) 

~Object Qualification Faults (ColllIO Segment) 
Canmunication Segment L::ck Fault 

Change 2 

FAULT SUMMARY 

FF 01 0101 

FF 01 0110 

FF 01 0110 
FF 01 1001 

FF 01 0101 
FF 01.0110 

FF 00 1101 
FF 00 1100 

FF 01 0110 

FF 01 0101 
FF 01 0110 

FF 01 0110 
TS 00000110 
TS 00001010 
FF 01 1001 

C-9 



iAPX 432 Interface Processor Architecture Reference Manual 

Read Processor Status 
no explicit fault cases 

Dispatch 
Processor Carrier Already Enqueued Fault 
Dispatch Rights Fault 
~Port Operation Faults 

C-4. ~-INSTIUCTICN INTERFACE FAULTS 

OPERA'I'OR 

Initialization ~ 
~Object Qualification Faults {Processor AS) 
~ject Qualification Faults 

(object table directory) 
~Object Qualification Faults {Processor. DS) 
Processor Object L:x:=k Fault 
~IPC Faults 
Base/Mask Incompatibalitv Fault 

IPC Faults ~ 
~Object Qualification Faults (Corrrlo Seqment) 
Corrmunication Segment I.oc~ Fault 
Response C.ount Fault 

Process Birrlinq ~ 
~Object Qualification Faults {Carrier AS) 
~Object Qualification Faults (Carrier DS) 
Process Object L:x:=k Fault 
~Process Qualification Faults 
~Port Ooeration Faults 

Process Selection ~ 
~Object Qualification Faults {Carrier AS) 
~Object Qualification Faults (Carrier DS) 
~Port ~ration Faults 

c-10 

FF 00 1110 
FF 00 1101 

TYPE ENCODING 

TS 00000110 

TS 00000010 
TS 00000110 
FF 11 0001 

FF 11 1000 

TS 00001010 
FF 11 0011 
FF 11 0010 

TS 00001000 
TS 00001000 
FF 11 0001 

TS 00001000 
TS 00001000 

Chanqe 2 



APPENDIX D 
INTERRlJPI' HANDLING 

w"henever the Interface Proc-essor detects ai1 event that may require 
attention from the IP controller, it records the nature of the event 
in the current IP processor data segment and emits a pulse on its 
interrupt line. There are several different types of events which 
may be sources of interrupts, and their occurrence and timing is not 
necessarilv predictable. In this sense IP interrupts are sLmilar to 
several I/O devices that are wire-ORd to a comnon interrupt line. 

Thus, the IP controller must resoond to an interrupt by "rolling" 
the l?QSsible interrupt sources to determine which event has actually 
occurred. It may cb this by examining fields of the IP processor 
data segment through the control wind.Oil (window 4) . The IP 
controller (and related hardware, such as latches and Intel 8259A 
interrupt controllers) must also accommodate the possibility that 
the IP may detect a second event at any time, including while the IP 
controller is handling a previous interrupt. The IP responds to all 
such events identically, noting the event in the IP processor data 
segment and emitting an interrupt pulse. Again, this is analagous 
to tying multiple independent I/O devices to one interrupt line. 

The principal requirement of IP interrupt handling hardware and 
software, then, is to field interrupt requests that may be 
_, ___ , __ ---- -·-~ ---~ •·- ---------~ .! __ .!I.! __ .,! .=t ___ ,, __ L- Ll.-.- ..:l.!.C.C----.L. .L.----

(_;_LlJ::)t=.Ly-:::;pdc:eu, dilU LU Le:::>_!:JUil..l .LilU.LV .LUUct.Ll..Y l..U l..l!e U.Ll..Lt:Lt:lll. 1..y~.::> 

of events that an interrupt may signal. 

Figure D-1 shCMs one ay;proach to the overall design of an IP 
interrupt handler. This strategy assumes that hardware latches the 
IP' s interrupt request pulse. As soon as it is invoked, the 
interrupt handler masks further IP interrupt requests and resets the 
hardware latch. This insures that a secorrl request is unlikelv to 
be missed, and prevents the interrupt handler fran beinq reentered. 
Then the envirornnent of the interrupted routine is saved and 
higher-priority interrupts are enabled, so that the interrupt 
handler itself can be interrupted if necessary. 

D-1 

I 



D-2 

iAPX 432 Interface Processor Architecture Reference Manual 

yes 

Enter 

Mask IP 
interrupt 

Reset latch 

Save 
interrupted 
environment 

Enable 
higher

pr io ri ty 
interrupts 

Restore 
interrupted 
environment 

Unmask 
IP 

interrupt 

Return 

Respond to 
event 

Figure D-1 Interrupt Handler 

Reset 
event 

indicator 



INTERRI.JPl' HANDLING 

The central logic of this awroach assumes that there is a "list" of 
pcssible interrupt sources to be scanned, and that passing through 
this list may uncover one (the usual case), multiple, or zero events 
that require responses. To illustrate the second two cases, assume 
that the possible events are labelled A through K, and that the 
interrupt handler tests _for A, then B, and so _on. Assume also that 
event B occurs folla<1ed quickly by event J. The interrupt handler 
is invoked for event B, shortly thereafter the IP updates J; s 
irrlicator arrl emits a secorrl interrupt pulse, which is latched. The 
handler scans its list of event indicators, finds that ooth B and J 
have occurred and responds to them both. Reaching the errl of the 
list, the interrupt handler enables the IP interrupt and returns. 
Imnediately, J's latched interrupt request is reoognized and the 
handler is invoked again. This time, however, it will find no 
events indicated in the IP processor data segment, since it 
responded to both B and J in the previous invocation. It will 
simply clear the interrupt latch, pass through the list, unmask the 
IP interrupt, and return, effectively making a null response. 

Table Irl lists the IP processor data segment subfields that the IP 
interrupt handler must examine to determine the source of an 
interrupt. Note that as soon as the handler reoognizes that an 
event indicator is "on", it should turn it "off" by indivisibly 
zeroing the field using the INDIVISIBLE INSERr SHOR!' ORDINAL 
function. This is necessary to prevent the interrupt handler from 
being misled in its next invocation. 

D-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Processor Data 
Segment Subfield 

Function state field 

Table D-1 Interrupt Sources 

Value Event 

Function completion state subfield 
OOOOs Function completed normally 

(this interrupt may be masked) 

Fault level subfield 
Ols Context-level fault 
10s Process-level fault 
lls Processor-level fault 

Entry state field (One per map entry) 
Transfer state subfield 

Ols Transfer terminated by byte oount(l) 
lCJs Transfer termination forced(l,3) 
lls Transfer terminated by fault(2) 

LJ:)cal IPC response ls 

Global !PC response ls 

Alarm response ls 

Reconfiguration ls 
response 

Dispatching response ls 

Notes: 

IP has responded to local !PC 

IP has responded to global IPC 

IP has responded to a alarm request 

IP has responded to a reconfiguration 
request 

IP has received a "select process" !PC 

(1) Applies to window O, buffered node only. 

D-4 

(2) Separate irrlications are provided for each transfer windON. 
(3) Only done via the ALTER M1\P AND SELECI' Dl\TA SEG1ENI' function. 



. ~ 

n APPENDIX E 
SYSTEM INITIALIZATICN 

System initialization may be considered as a sequence of activities 
that brings a 432-based system fran an arbitrary state to a known 
state where execution can begin. Although the initialization 
sequence will vary widely arcong applications, this appendix outlines 
the basic procedure. The first section describes hCM the system may 
be reset to a known state. The second section shows how an 
Interface Processor running in physical reference mode may be used 
to initialize mennry and interconnect components thereby 
establishing an envirornnent in which execution can take place. The 
final section discusses system startup, the procedure for corrmencing 
execution. 

E-1. SYSTEM RESEI' 

M:>st systems include a reset switch that is used to initialize the 
system after pc:Mer-up arrl to restart the running system if 
necessary. In a 432 system, the !NIT pins of all IPs (see iAPX 
43203 VLSI Interface Processor Data Sheet, Order No. 171874, for 
details) and GDPs, and the RF.SE!' (or· equivalent) pins of all 
Peripheral Subsystem canponents nust be activated when a full system 
reset is performed. However, system designers may also decide to 
provide the option to selectively initialize elements of a 432 
system. 

Although this is subject to variation, a typical Attached Processor 
resporrls to a reset 'J?Ulse by aborting any current operation, 
disabling interrupts and then vectoring execution to the cnde 
located at some predefined address (typically in non-volatile 
rnenory) • The oode will oorrnall v initialize I/O devices and enable 
interrupts, at which point normal execution begins. The 432 makes 
oo special demands of the Peripheral Subsystem except that it should 
be prepared to handle an interrupt request f ran the IP shortly after 
system reset. 

E-1 



iAPX 432 Interface Processor Architecture Reference Manual 

An Inter face Processor responds to an INIT pulse by aborting any 
current operation, entering physical reference mode, configuring its 
wirrlows as shown in table E-1, clearing broadcast acceptance node, 
arrl then issuing an interrupt request to its Attached Processor. 
The interrupt request signals the IP controller that the Interface 
Processor has initialized itself arrl will accept subrange address 
references, including physical reference nnde function requests 
written through window 4. 'Any atterrpt by the IP controller (or any 
active agent in the Peripheral Subsystem) to reference a subrange 
prior to receiving the IP's interrupt request prcrluces an undefined 
result. An IP switches from physical to logical reference node upon 
receipt of the startup IPC as defined bela-1. 

A Gener al Data Processor responds to an INIT pulse by aborting any 
current activity arrl then waiting in a quiescent state for the 
startup IPC. The startup IPC is defined as the first local IPC 
received following an INIT pulse: a GDP will ignore any intervening 
global IPC. 

'lb surrmar ize, shortly after system reset, Attached Processors (and 
Peripheral Subsystems) will be able to run as desired, IPs will be 
able to run in physical reference node, and GDPs will be waiting for 
a signal to begin execution. 

E-2. ESTABLISHING AN EXOCUTIGa ENVRICNMENI' 

Prior to starting any GDP (or switching any IP to logical reference 
nnde) an environment in which the processor can execute nust be 
created in 432 memory. This environment consists of a set of 
interrelated system objects: a minimal environment, sufficient to 
start one process ruming on a GDP, could be characterized as 
folla-1s: 

• the initial object table directory (loaded 
at physical address 8): 

• an object table: 
• a processor object: 
• a dispatching port: 
• a process object (queued at the dispatching port). 

E-2 



J: l 

(n} Storage Descriptor 

1 

(1) Storage Descriptor 

(~} I Object Table Header I 

Object Table 1 
(1) Storage Descriptor ~ 

(~) Object Table Header 

SYSTEM INITIALIZATICN 

Processor 
·object 

(Processor Number n) 

Processor I 
Object 

(Processor Number 1) 

'-'------------------~cr--Physical Address 8 

Initial Object Table Directory 

Figure E-1 Processor Object IDCation 

E-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Note that the term "processor object" above is meant to include 
comnunication segments, arrl a processor carrier, in addition to 
processor access and data segments. Likewise, "process object" 
includes a dcmain, instruction segments, context objects, etc. This 
environment may be extended to include mre processors, processes, 
ports and so on, as is appropriate for a given application. 

The initial execution environment may oot pre-exist in 432 
non-volatile memory, since the processors routinely update the 
objects during execution. Therefore, the initial environment nust 
be loaded fran a Peripheral Subsystem (where it may, in fact, reside 
in oon-volatile storage). One Peripheral Subsystem will typically 
be designated to load the initial environment in physical reference 
:rocrle; in this discussion this Peripheral Subsystem is referred to as 
the initializing AP. 

At oo time during system initialization should nore than one 
Peripheral Subsystem be updating 432 system memory. In most 
applications, the remaining Peripheral Subsystems will refrain from 
accessing the 432 system until their IPs have switched to logical 
reference node. It is {X)Ssible, however, for a second Peripheral 
Subsystem to read 432 system memory while still in physical 
reference node; some applications may wish to designate a second 
Peripheral Subsystem to monitor the activity of the initializing AP 
in this way. 

Sane systems will need to perform a number of preliminary activities 
before the initial environment can be loaded. These activities, 
which will be defined by each application, may include: 

• ascertaining the system configuration 
(i.e. , the number and type of processors 
present, and the anount of memory 
available); 

• verifying that system cnmponents 
are operational; 

• initializing registers lc:x:=ated in the 
interconnect space (e.g., address range 
or error count registers in merrory 
controllers); 

• initializing error checking and correcting 
(~) memory. 

Windavs 0 and 1 may be useful in connection with these preliminary 
activities. Wind.oil 1 could be used to read system configuration 
information encoded in predefined registers of the interconnect 
address space, for example. Wind0r1 1 may also be used to initialize 
registers in merrory controllers, provided these registers are 
located in the first 32K bytes of the interconnect address space. 

E-4 



SYSTEM INITIALIZATIOO 

Before any function request is made by the IP, enough 432 memory 
must be initialized to allCM IP execution. This is necessary 
because the IP will attempt to update the segment mapped by windCM 4 
in response to the function request. Once this path to menory has 
been established, windCM .1 can be opened onto another 32K byte 
segment by the ALTER MAP AND SELECT PHYSICAL SEG1F.NI' function if 
additional interconnect caiPonents need to be referenced; this 
sh:>uld normally be necessary only in very large systews. 

If a system employs error checking arrl correcting memory (:OCC) that 
does not initialize itself, the initializing AP can initialize it if 
the memory is organized in units eight or fewer bytes wide. Window 
0 comes up in block node set for a 64K byte transfer starting at 
physical address 0. Any data written through this window (eeg~ all 
zero bits) is written by the IP in eight-byte blocks. The window 
can be rroved through the entire memory space in 64K byte segments. 

Once the system configuration has been established, the interconnect 
path set up arrl memory initialized, the initializing AP can load the 
initial execution environment. The simplest and fastest way to do 
this is to write all the required binary images through windCM 0. 
An alternative is to load the minimal object set required to support 
one IP in logical reference mode, arrl possibly one GDP. The rest of 
the environment l ot:ner processes, etc.) can then be loaded in 
logical reference mode by the initializing AP working alone, or 
under the direction of a GDP process. This approach has the 
advantage of getting the system into logical reference mode as soon 
as p::>Ssible, where operations are inherently m:>re protected than in 
physical reference mode. 

E-3. SYSTEM STARI'UP 

Each processor in the system must be started independently by 
serrling it a startup IPC (the first local IPC after INIT). At least 
one 432 processor, perhaps it~ CMn IP, must be started by the 
initializing AP using the SEND TO PRCCESSOR functicn (physical 
node). The remaining processors must be started one at a time, and 
this can be done by the initializing AP, or by a processor already 
started by it. Note that the initializing AP (as well as all IPs) 
remains in physical reference mode until it receives a startup IPC. 

GDPs and IPs respond to the startup IPC identically except that the 
IP additionally switches to logical reference node. The basic 
response is to first qualify its execution environment and then to 
interpret the IPC arrl resporrl to it normally. The processor 
qualifies its execution environment by first reading a unique 
processor ID contained in the lCM order byte of interconnect 
register 0. 

E-5 



iAPX 432 Interface Processor Architecture Reference Manual 

Having established its identity, the processor proceeds to locate 
its processor object. It does this by assuming that the initial 
object table directory is located at physical menory address 8 (see 
figure E-1). A segment header field of eight bytes precedes the 
initial object table directory. It further asst.nnes that the first 
storage descriptor in the directory locates an object table 
containing storage descriptors for processor objects. Using its 
processor ID as an index, the processor selects the storage 
descriptor from the object table which locates its processor 
object. After qualifying its processor object, the IP is able to 
find its local conmuncation segment, where it examines the !PC 
message field. Now in logical reference mode, the IP can respond to 
the !PC message and perform all oormal operations. 

As usual, an IP will generate an interrupt after it responds to the 
IPC message. This second interrupt following reset indicates to the 
IP controller software that the IP is in logical reference mode and 
that oormal execution may begin. Note that window 4 will then be 
configured as defined by the attributes encoded in the !P's 
processor object. Since window 4 provides the data path to the 
function request facility, the other windows may be configured 
inmediately by means of the ALTER MAP AND SELECI' I:i\TA SEG1ENI' 
fuoction. 

E-6 



SYSTEM INITIALIZATICN 

Table E-1 Window Configuration Following INIT 

Attrioote Windav 0 Wind<:M 1 Wind<:M 4 

Wirrlow Status Open Open Open 

Transfer MJde Block Interconnect Random 

Subrange Base Address 07EOOH 08000H 07F00H 

Subrange Size OOlOOH 08000H OOlOOH 

Segment Base 0 0 0 

Segment Length 65,535 65,535 65,535 

Direction Write Read/Write Read/Write 

Transfer State In Progress In Progress In Progress 

Overlay Yes Yes Yes 

E-7 





·1·-~~--~--~----APPEND--IX_F __ _ INTERPRCCE'SS CGMJNICATICN AND DISPA'IOII~ 
EXAMPLE 

In Chapter 1, a printer example was used to demonstrate the flCM of 
data between 432 processes and AP tasks. In this ~ndix, the 
printer example is again discussed. HCMever, this time the view 
taken is that of a progranmer writing an Attached Processor task to 
direct an IP to accomplish printer outp.it. The program contained in 
this appendix is written in a PL;M-86-like dialect typical of the 
developnent environment which will be at the disposal of the AP 
program developer. This program is included to clarify an ear lier 
example and is not suggested as a scheme for actual implementation. 

The program exanple which follCMs assumes that a set of 432 system 
objects preexists in 432 memory. These objects are illustrated in 
Figure F-1. This system contains: 

• IP processor object; 
• a print request port to which a 432 process (GDP or IP) can send 

print requests; 
• a print reply port to which an IP process can return the status 

of the print action; 
• an IP dispatching port where IP processes await service. 
• several IP processes are shCMn, though only one is required for 

.Ll-- -------- -.C: .1-1-- _____ , - -
WlC 1A!L f:A-'OCi.:> U.L WlC ChO.lllp.LC j 

• one print object, a simple data segment, which carries printer 
data and is reused when returning printer status. 

There are four main sections to this program: 

• Variable declarations; 
• Utility procedures; 
• Initialization; 
• Print driver body. 

In the variable declarations section, rntice that the control 
windCM, windCM 4, is declared as a structure whose canponents are 
defined from the definition in Appendix A. This program assumes 
that windCM 4, the control windCM, is opened onto the function 
request facility in the IP's processor object. It also assumes that 
all initialization has been performed and that the IP is operating 
in logical reference node. 

F-1 



F-2 

iAPX 432 Interface Processor Architecture Reference Manual 

IP 
PROCESSOR 
OBJECT 

IP 
DISPATCHING 
PORT 

PRINT 
OBJECT 

CONTEXT 

PRINT
REQUEST 
PORT 

432 OBJECTS 

432 PROCESS 

Figure F-1 Print Exanple Objects 

IP AP 

PHYSICAL PROCESSORS 



INTERPIO:E.SS aMIDNICATICN AND DISPA'IOIING EXAMPLE 

Procedures in the utilities section demonstrate hoN a programner can 
construct facilities to invoke IP functions. Recall from the 
fuoctioo sumnary in Awerrlix B that an AP requests an IP function by 
writirg a process selection index, all required operands, and 
finally depositing a function code into the ai;propriate slots in the 
function request facility (frf). · The IP begins·· execution· of the 
function only after the function code has been written. This is 
derronstrated by the procedures Open_window and Close_window. 

The initialization section of the program points out sane 
simplifying assumptions which are made for the p.Jrp:>Se of this 
example. First, interrupts are disabled. This converts the three 
tasks of the printer example (printer server task, printer task, and 
printer reply task) of Chapter 1 into sequential tasks rather than 
o.:>ncurrent tasks. It also makes it easier to derronstrate changes in 
the state of the system and illustrate them with the accompanying 
figures. Second, the call on the Dispatch procedure assumes that 
only one IP process exists in the 432 system. The IP suH?Qrts 
multiple process environments but only one is required in this 
example. 

The print driver body contains an aggregation of ccx:le which 
accomplishes the three tasks of the Chapter l example. Notice that 
the three tasks are performed sequentially. 

Imbedded in the program text are references to Figures 2 through 6 
which depict the state of the 432 system objects and the logical I/O 
processor (the IP/AP pair). 

F-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Printer task: 
Procedure; 

/************************************************! 
~ *I 
/* Data Structures and Constants */ 
~ *I 
/************************************************/ 

/**************************************************************************************/ 
I* Declare the 256 byte structure for the Control Windc:M and map it heginning at */ 
/* an off set of 07FOOH into the 64K byte segment which is reserved for the IP. */ 
/* For the p.lqnses of t.his example, the base of the IP's reserved area is at location*/ 
/* 080000H of the Attached Processor memory space. *.I 
!**************************************************************************************! 
Declare IP base literally '080000H'~ 
Declare Wi~ 4 structure ( 

ps_state 
ip::: state 
alarm state 
disp state 
reserved 1 
frf prcs-idx 
frf-fun::::tion state 
frf-ooerator-
frf-oPerand (7) 
frf-result (10) 
iJ;C-fun req 
reserved 2 
mf block - oount 
mC432 aTsp 
mfys_disp 
reserved 3 
mf winacM info (5) structure ( 

entry state 
mask -
base diso 

mf fault information (14) 
seiected-idx 
selected-state 
psor fault information (13) 
reserved_4-(2) 

word, 
word, 
word, 
word, 
word, 
word, 
word, 
word, 
word, 
word, 
wora, 
word, 
worr'.l, 
word, 
word, 
word, 

word, 
word, 
word) , 
byte, 
word, 
word, 
byte, 
word) 

Declare subrange (1024) byte at (IP base + 4096); 

at (IP_ base + 07FOOH) ; 

- /* byte array com::>rising windCMed subrange */ 
Declare offset word; /* offset into subrange */ 

Oeclat'e true 
Declare false 

F-4 

literally 'OOOlH'; I* Logical value true 
literally 'OOOOH'; /* logical value false 

*I 
*I 

Change 1 



INTERPOCCESS cor.MJNICATICN AND DISPA'IOIING EXAMPLE 

/**************************************************************************************! 
/* Seven access selectors are required. One for the message slot in the Context */ 
I* Access Seqment, since t.his is where the hardware will PJt the Access */ 
/* Descriptor (AD) for the Print Request Message followinq the Receive instruction. * / 
~ ~ 
/* One for the Print Request Port and one for the Print Rel:)ly Port. We assume */ 
/* that at system initialization ADs for these ports were stored in slots nine */ 
I* and ten of t.l1e Context Access Segment in Process Object 1. * / 
/* *I 
/* One for the IP Dispatching Port, one for the IP Processor Carrier data seqment, */ 
/* one for the IP Processor Carrier access segment, and for a null access nescriotor. */ 
/* These are required so that blocking Receives and blocking sends can be handled. */ 
/* We assume ADs for these objects are sto:l'.'e0 in slots eleven, twelve, and thirteen, */ 
/* respectively of the Context Access Seqment in Process Object 1 at initialization. */ 
/**************************************************************************************/ 

Declare message ace sel 
Declare request-pert ace sel 
Declare replv oort aec sel 
Declare di$patching_oort_acc_sel 
Declare osor carrier as ace sel 
Declare psor-carrier-ds-acc-sel 
Declare nun:=aestination_a~_sel 

literally 'OOUOOB'; 
literally '100100B'; 
literally 'lOlOOOB'; 
literally 'lOllOOB' i 
literally 'llOOOOB': 
literally '110100B': 
literally 'lllOOOB'; 

!**************************************************************************************/ 
/* The l?rocess selection inde.x for l?t'OCess rn.nnber 1. Note that this number i.s a byte *I 
/* index into the process selection list in the IP orocessor access segment. */ 
/**************************************************************************************! ! , 

Declare process_! literally 'OOOOOOOOOOOOOlOOB': 

/************************************************/ 
/* *I 
I* Utility Procedures */ 
~ *I 
/************************************************.! 

Awai.t function ccmoletion: 
ProCeaure: - -

/**********************************************************************************/ 
/* This procedure b.lsy waits for the previous function request to ccmolete. It */ 
/* Spins waiting for the function canpletion field of the function state to */ 
/* equal zero. */ 
/**********************************************************************************/ 

lb While (Wirl<'bl 4.frf function state and OOOFH) <> O; End; 
Errl - - -

Await_function_completion; 

Change l F-5 



iAPX 432 Interface Processor Architecture Reference Manual 

DiST?atch: 
Procedure; 

!**********************************************************************************! 
/* This procedure hanqs the IP's processor carrier on the IP's dispatching */ 
/* port. 'Ibis allc:Ms blocking sends and receives to be handled. */ 
/* 'Ibis example assumes that the IP processor carrier blocks at t~e diS?acthing */ 
/* port. No "select orocess" IPC is received if the Surrcqate Receive aces not */ 
/* block. */ 
/**********************************************************************************/ 

Windc:M_4.disp_state = false; 

/* Unlock the IP's processor carrier. 
Windc:M_4.frf_prcs.idx. = process_l; 
Windc:M 4.frf operand(O) = psor carrier ds ace sel; 
WindOH~). frCoperator = OllH; - - - -

Call Await_function_cnnpletion; 

I* Hang processor carrier on the dispatching port. 
Windc:M_4.frf_prcs_idx = l?rocess_l; 
Windc:M_4.frf_operand(O) = diSJ:)atching_port_ace_sel; 
Windc:M 4.frf operand(2) = null destination ace sel; 
WindON-4.frf~operand(3) = PSOr-carrier as ace Sel; 
Wi~4.frf=operator = Ol7H; - - - -

Call Await furction o:mpletion; 
End - -

/* Use process object 1. 
/* Data seqment 
/* Unlock function code. 

!* Use process object 1. 
I* oort 
/* destination 
/* carrier 
/* Surroqate receive 
I* function code. 

*! 
*/ 
*/ 
*I 

*! 
*I 
*I 
*/ 
*/ 
*I 
*/ 

Dispatch; 

Cben windcM: 
·· Prccedure; 

/************************************************************************************/ 
/* Open a win&::M to the messaqe, Figure F-5 */ 
/************************************************************************************/ 

Windc:M 4.frf pres idx 
Windc:M-4.frf~ooer°ina(O) 
Windc:M-4.frf-operand(l) 
Window-4.frf-ooerand(2) 
WindcM-4.frf-o!>erand(3) 
Window-4.frf~operand(4) 
Window-4.frf-operand(5) 
Window:4.frf=operator 

= process l; 
= 3; -
= 0000101B; 
= 4096; 
= llllllOOOOOOOOOOB; 
= message ace sel; 
= O; - -
= OOOH; 

Call Await furction o:mpletion; 
End - -

Open_windc:M; 

F-6 

I* orocess object index *I 
/* windc:M index */ 
/* entry state */ 
/* base address */ 
/r mask */ 
I* data segment *I 
/* base displacement */ 
/* Alter Map and Select Data *I 

/* Seqment function code *I 

Change 1 



INTERPIU:ESS CXMw11JNICATICN AND DISPA'IOIING EXAMPLE 

Get print message: 
Procedure; 

/**********************************************************************************/ 
/* Atterrpt to Receive a message fran the Print Request Port, Figure F-2 */ 
/**********************************************************************************/ 

Windc:M 4.frf pres idx = process l; 
WindCM=4. frCoperaoo (Ol = request_port_acc_sel; 
WindCM~4.frf_operator = 014H: 

I* Use process object 1. 
I* oort 

*i 
*/ 
*/ /* Receive function code. 

Call Await_function_oompletion; 

If (Windc:M 4.frf function state and 0020H) <> 0 Then 
Do - - -

/*********-Ir********************************************************************/ 
/* Receive instruction blocke<'l, ro outstanding odnt requests */ 
/* Busy wait until a GDP process sends a orint request to the print */ 
i* request port. See Figure F-3 for the SEND unblocking the blocked RECEIVE *i 
!* Such an event will trigger an interrupt in the AP */ 
/* (which we have disabled) am set Window 4.disp state true */ 
/* indicating the nature of the interrupt.- - */ 
/* See Figure F-4 for details on the wakeup IPC and subsequent interrupt. *I 
/******************************************************************************/ 

Do While not Windc:M_4.disp_state; End; 

/******************************************************************************! 
/* At this point Window 4.selected idx contains the index of the */ 
/*process object which-was dispatched. Since we are using onlv process */ 
/* object one, the selected index will equal one. Window 4.selected state */ 
I* contains software defined information concerning the aetion taken-;- */ 
/* if any, bv oof tware in canpleting t.his instruction. */ 
/******************************************************************************/ 

Call Dispatch; 
End; 

!* Hang IP processor carrier on dispatchinq port. */ 

End; 
End 

Get_print_message: 
Close_window: 

Change 1 F-7 



iAPX 432 Interface Processor Architecture Reference Manual 

Close window: 
ProCeaure; 

/**********************************************************************************/ 
/* Close windc:M, note only t\\10 operands are required. *I 
/**********************************************************************************/ 

Window 4. fr f _pres idx 
Window-4. frf ooerand (0) 
Windc:M-4.frf~oi)erarrl(l) 
Windo'1=4.frf=operator 

= process_l; 
= 3; 
= OOOOlOOB; 
= OOOH; 

Call Await function a:xnpletion; 
Errl - - . 

/* orocess object index */ 
/* window index */ 
/* entrv state */ 
/* Alter Map and Select Data *I 
/* Segment function cone */ 

Close_window; 

F-8 



INTERPR:CESS CCMl.JNICATICN AND DISPA'IOUNG EXAMPLE 

Return_print....:tnessage: 
Procedure~ 

/**********************************************************************************/ 
/* Send message to Print Reply Port. See Figure F-6 *I 
/**********************************************************************************! 

Window_4.frf_prcs_idx 
Window_4.frf.operand(0) 
Windc:M 4.frf operarrl(l) 
Window:4.frf:e>Perator 

= process l; 
= reoly_fort_acc_sel; 
= messaqe ace sel; 
= 016H; - -

/* process obiect index 
/* oort 
!*message 
I* Send function oode 

*! 
*! 
*/ 
*/ 

Call Await_furx::tion_ccmpletion; 

If (Window_4.frf_function_state and OOlOH) <> 0 'lben 
I)) 

!******************************************************************************/ 
/* Send instruction blocked, wait for a GDP process to receive a */ 
I* m=ssage fran the Print Reply Port. Busv wait for a GDP orocess */ 
/* to receives a message fran the Print Reply Port. Such an event */ 
/* will trigger an AP interrupt and set Window 4.disp state true */ 
/* to indicate the nature of the interrui:>t. - - */ 
!******************************************************************************/ 
Ih l~ile not (Window_4.disp_state = 1): End; 

/******************************************************************************/ 
/* At this point WindcM 4.selected idx contains the index of the */ 
/* process object which-was dispatched. Since we are usinq onlv Process */ 
I* object one, the selected index will equal one. Window_4.selected_state */ 
/*contains software defined information concerning the· action taken, if */ 
,~ ----- , ___ --~· -- -- .! ______ .. _.,! ____ ... _!_ .!.-•--·-··.!--

/ •• cu1y, UV ::UL l:Wdlt: J.Il UAlllJJ.t!"C.l.IlY (.U.l.::; .1.n::;t;;.L LK.;"C.l.Ullo •• f 

/******************************************************************************/ 

Call Dispatch; 
End; 

/* Hang IP processor carrier on dispatching port. */ 

Errl; 
End 

Return_print_m=ssage; 

Change 1 F-9 



iAPX 432 Interface Processor Architecture Reference Manual 

/************************************************/ 
/* v 
/* Initialization */ 
/* v 
/*****************************************•******/ 

can Disable_Interrupts; /* Busy waiting will be used, not the interrupt mechanism */ 
/* Also assume that oo faults will occur */ 

can Dispatch; 

/************************************************/ 
/* v 
/* Print Ori ver Body *I 
/* v 
/************************************************/ 

O:> While true; 

Call Get _print_ nessage; 

can Open_ windc:M; 

O:> offset = 0 to 1023; 
call Print (subrange (offset)); 

Errl; 

can c1C:se_windotl; 

call Return_print_message; 
Ero; 

Errl 
Printer_task; 

F-10 

/* loop forever *I 

/* Receive a message fran the Print Request Port. */ 

/* Open a wirrlow onto the message. *I 

/* Read and print the contents of the nessage */ 
/* using the ma~ subrange arrl the AP's native */ 
/* instruction. Assume Print is a system routine. */ 

/* Close the windcw. */ 

/* Send the message to the Print Reply Port. */ 



IP 
DISPATCH! G 

PORT 

INTERPRXESS CXMIDNICATICN AND DISPATCHING EXAMPLE 

IP 
PROCESSOR 

OBJECT 

~ 

IP/ 
PROFESS 

;. 

#7 ----
PRINT 

REQUEST 
PORT 

I 
·;..._ _ _., 

CARRI&, 

432 
PROCESS 

.,,,,. .,,,,. 

PRINT 
REPLY 
PORT 

-- -

PRINT 
OBJECT 

IP 

Figure F-2 IP Performs Blocking Receive 

--EJ 
•RECEIVE" 
function 

F-11 



iAPX 432 Interface Processor Architecture Reference Manual 

IP 
DISPATCHING 

PORT IP AP 

(i---
41 

4/ 
, - ... 

CARRIER 
,,.., 

IP ~/ IP ~~/ • PROCESSOR PROCESS 
~~IV OBJECT 

~s/' 
~'?/ 

/ 

1 / 
/ 

/ 
/ 

( 
I 

PRINT I PRINT 
REQUEST I REPLY 

PORT 
I 

PORT 

I 
I --CARRIER I 

_., 
~ If' ... ~ I 

0 
I 

l 

432 
PROCESS 

_.. -.-

PRINT 
OBJECT 

Figure F-3 GDP Executes SEND and Unblccks RECEIVE 

F-12 



IP 
DISPATCHING 

PORT 

..... -

SELECTED 
STATE 

SELECTED 
INDEX 

IP 
PROCESSOR 

INTERP~ CDMJN!CATICN AND DISPATCHING EXAMPLE 

INTERRUPT ,-- .._' ,, .... , 
--~---''~/_.., ---~'--~--i 

IP AP 

IP 
PROCESS 

'-
OBJECT 

I J 

PRINT 
REQUEST 

PORT 

,..--:nnTr-n 
l</'\l\l\11.:l\ 

STATE 

INDEX 

) 

432 
PROCESS 

.. 

PRINT 
REPLY 
PORT 

PRINT 
OBJECT 

• 

Figure F-4 IP Responds to IPC 

F-13 



F-14 

iAPX 432 Interface Processor Architecture Reference Manual 

PRINT 
REQUEST 

PORT 

IP 
PROCESS 

CARRIE 

432 
PROCESS 

PRINT 
REPLY 
PORT 

PRINT 
OBJECT 

IP 

WINDOW 

"ALTER MAP AND 
SELECT DATA 
SEGMENT" function 

Figure F-5 WindCM Manipulation 



PRI?>.'fT 
REQUEST 
PORT 

INTERPIU:ESS CGMJNICATICN AND DISPATCHING EXAMPLE 

.-... 
432 

PROCESS 

PRINT 
REPLY 
PORT 

,~ 

PRINT 
OBJECT 

IP 

•sEND" 
£unction 

Figure F-6 Print Reply 

AP 

F-15 





APPENDIX G I J:MPLEMEtilI'ATIOO NJrES 
December, 1981 

PORI' OPERATICN 

The queue values ~laced in carriers are assumed by the micrcx..---ode to 
be in the ·correct ranqe (less than 2**14 and greater than or equal 
to -2**14). Incorrect deadline calculation will result from 
out-of-range values. 

WINOOW OPERATIONS 

If a fault occurs when executing an alter map operator in l~ical 
mode, the windo.'1 should be invalidated befor.e retry is attempted, 
since, depending on the type of fault, the I/O lock for the obiect 
that the windCM was to have pointed to mav have already been set. 

The base_disp pseudo-refinement mechanism is used when settinq up 
all rand.an windows; this includes winday 0 in random mode and windoo 
1 in interconnect node. Therefore, a base 1isP of zero should be 
specified when initializing a window for interconnect access. (Note: 
this pseudo-refinement only \-JOrks in loqical node.) 

When an invalidate windCMs !PC or a resume Physical reference nx:rle 
!PC is executed, or a fatal error occurs, all windCMs are 
irrmediately invalidated. If window 0 is open in block transfer. 
node, then t.he invalidation mav terminate t.his window in the middle 
-..C .L.1.- .!. - _._ _____ ..c __ _ ___ ,!,_, __ , __ .: __ LL- .: -.C---L.: _,_, -·-----.1-1T.. ..; ...... .a-i..-.,..., 
U.L L.!1-L>::I l..LC:Ul:::>.Ll:::!L, J::JU:::>:::>.LU.l._y ..LUt:::l.Ll~ 1-l!C J.11.LVL!LICU .. J.\J!l \....ULL"'=ll"-·'-}' .LU \...U.;::; 

buffer. · Also, no information is written into the winoCM status area 
on the number of blocks already transferred. 

To avoid fatal errors, the processor data segment has to be large 
enough to accorrmoc:1ate the control window. 

Forced termination is only valid for window 0 in buffer node. 

The mapping faci Uty areas in the control windON disolay the actual 
block count (not block count minus one); this is also true for the 
recrl and write counts. 

The reserved field of the window 0 mapping facility area is actuallv 
written with the block count. 'Ihis has been done to alloo 
deterministic testing of the chip. 

When force terminating window 0 (block rrode) , the updated entrv 
state in the mapping facility area of tl-ie control windcM will only 
slnw a chanqe in the transfer state fieln, the oriqinal values for. 
transfer direction, validity, arrl rrcde will remain intact. 

Change 2 C":rl 



iAPX 432 Interface Processor. Architecture Reference Manual 

The windCMed bit is checked and set several rnicrocycles after the data 
segment being windowed has been qualified. Consequently, when 
invalidating objects (clearing the storage allocated bit), software 
should wait at least 50 rnicrocycles before checking the windCMed bit of 
an invalidated data segment. 

DISPATCH 

When the dispatch operator executes and finds a orocess at the disoatch 
port, the current·· process is suspended before process selection 
(wake-up) is executed. At t.his time, any faults that occur will be 
processor level faults, since no process is currently bound. 

Sirce a faulted process is not executable, it is l;X)Ssible to get into a 
situation where all processes are faulted arrl no functions can be 
executed via the control windav on the IP. 

For Release 2.1, which adds a fault vector bit, at least one process 
shoul~ have the fault vector bit set in the the orocess status. 

FAULT HANDLTI\G 

C.ontext and Process level faults which occur when a Process is not 
bound to the processor are treated as processor level faults. 

GENERAL 

The IP INSERI' SJDRI' ORDINAL ooerator takes slightlv different inout 
data fran the GDP INSERI' SHOR!' ORDINAL ooerator; please refer to 
Al:;.pendix B of this document. 

The first reserved slot in the IP processor object (bvte disolac~ment 
28) has been changed to pso:r_obj_ad and should contain an AD to the 
processor object itself. 

The nnst significant 10 hits in the operator ID double-bvte in the 
fault information area are undefinen and -can take arbitrarv values. The 
least significant 6 bits contain the ID code itself. -

It is advisable that IP process objects be frozen, since when a 
selection of an unfrozen process is attempted, a processor level fault 
occurs arrl the M! rrust ship the process off explicitly to the fault 
port. 

The context faulted bit in the process context status is onlv cleared 
when the microcode context fault handling routine exits nor..mally. If a 
process fault ocqurs, e.g. address develooment, then tl-\e process is 
sent to the fault port with both context and process faultecl°bits set. 
Thev sh:>uld, therefore, be cleared by the process fault handler. 

G-2 Change 2 



IMPLEMENI'ATIOO IDIBS 

When qualifying the control wintJc:M :refinement of the processor rl.ata 
segment, neither the tvPe of the refinement oo:r the tvoe of the base 
oh]ect is tested. ··· 

If a fault occurs during processor qualification, it is considered a 
physical m.:>de fault ·and the processor returns to ohvsical mode. (The 
processor is set to l<XJical node at the verv en~ of processor 
qualification.) HCMever, the processor object may have been locked and 
the control windav rnav have already been chanqed. 

The REI'RIEVE TYPE DEFINITICN OPERATOR returns an exact imaqe of the 
AD which is 1n the tvpe descriptor. Any riqhts which are oiacea into 
that AD will aloo be in the AD that is returnerl when the ooerator is 
executed. 

Chanqe 2 G-3 





iAPX 432 INTERFACE PROCESSOR 
ARCHITECTURE REFERENCE MANUAL 

171863-003 

REQUEST FOR READER'S COMMENTS 

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel 
product users. This form lets you participate directly in the publication process. Your comments will help 
us correct and improve our publications. Please take a few minutes to respond. 

Please restrict your comments te> the usapility_, accuracy, readability, organization, and completeness of 
this publication. If you have any comments on the product that this publication describes, please contact 
your intei representative. if you wish to order pubiications, contact the intei Literature Department (see 
page ii of this manual). 

1. Ple_ase describe any errors you found in this publication (include page number). 

2. Does the publication cover the information you expected or required? Please make suggestions for 
improvement. 

3. ;s this the iight type of pubBcation foi youi needs? is ii at tile right ievei? Vvilat other types oi 
publications are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ---------

DATE ----------NAME--------------------------~ 

TITLE-----------------------------------~ 
COMPANYNAME/DEPARTMENT ___________________________________ _ 

ADDRESS------------------------------------~ 

CITY------------------ STATE -------
(COUNTRY) 

Please check here if you require a written reply. D 

ZIP CODE -------



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible. 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 79 BEAVERTON OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
SSO Technical Publications WW1 -487 
3585 SW 198th Ave 
Aloha,. OR 97007 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



INTEL CORPORATION, 3585 SW 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080 

Printed in U.S.A./Y130/2K/0882/0LI 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12.5
	B-12.6
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	G-01
	G-02
	G-03
	G-04
	replyA
	replyB
	xBack

