Interface Processor
Architecture Reference Manual

IAPX 432

intel

iAPX 432 INTERFACE PROCESSOR
ARCHITECTURE REFERENCE MANUAL

Order Number: 171863-003

Release 2.0 and 2;1 Components

. Copyright © 1982 Intel Corporation
_: Inte! Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel 1literature may be
obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. Intel

Corporation assumes no responsibility for any errors that may appear in
this document. Intel Corporaticn makes no commitment to update nor to

keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software 1license, or as
defined in ASPR 7~104.9(a) (9).

No part of this document may be copied or reproduced in any form or by
any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
and may be used only to identify Intel products:

BXP Intellink Micromap
CREDIT iosp MULTIBUSR

iR iPDS Multichannel
ICE iRMX MULTIMODULE
iCs iSBCR Plug~A~Bubble
ipR iSBX PROMPT

iMMX iSXM Promware
Insite Library Manager RMX/80
intelR McSR System 2000R
Intelevision Megachasis UPI
IntellecR Micromainframe

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a
numerical suffix.

Ada is a registered trademark of the Department of Defense (Ada Joint
Program Office).
VAX and VMS are registered trademarks of Digital Equipment Corporation.

dml 8206

ii

REVISION HISTORY DATE

Original Issue; Release 1.1 Components 07/81
Update Errata and Terminology 12/81
 Update to Release 2.0 and 2.1 Components 12/81

a 1 o EEESY e
Integrate Change Sets 1 and 2 into
nd Reprint

e
i

&
R

]

iit

PREFACE

This manual describes the Intel iAPX 432 Interface Processor (IP),
which is similar in many respects to the Intel iAPX 432 General Data
Processor (GDP), but different in others. Unique features and
functions of the IP are presented and, where appropriate, contrasted
with those of the GDP. However, rather than duolicate all of the
general 432 information contained in the companion documents listed
below, this manual relies on the noted references for descriptions
of those features of 432 architecture which are common to both
processors.

Chapters 1 through 6 of this manual describe how the Interface
Processor (IP) and the Attached Processor (AP) cooperate to form a
logical I/0 processor for a 432 system.

Detailed representations for system objects, as well as descriptions
of IP windows, functions, faults, interrupts, initialization, and
implementation notes mav be found in the appendices.

Related Literature

As a orerequisite to an understanding of the discussion herein, it
is assumed that the reader has acquired a good command of the
general concepts and architecture of the iAPX 432 system as provided
in the following documents offered by Intel.

° The INTEL 432 System Summary, Manager's Perspective, Order
Number 171867, provides the broad picture of the 432, It
should be read as a first introduction to the 432 system.

e The Introduction to the iAPX 432 Architecture, Order Number
171821, restricts discussion to general architecture
features which distinguish the 432.

° The iAPX 432 General Data Processor Architecture Reference
Manual, Order Number 171860, provides detailed information
on one type of 432 processor, a General Data Processor
(GDP). Its glossary is a concise summary of the most
important terminology which is required when reading the
Interface Processor manual.

iv Change 1

Change Activity

This revision level ~003 manual is the manual that results from
integrating Change Sets 1 and 2 (described below) into the revision
level ~001 manual. There is no need to request these change sets in
order to make the current document complete.

CHANGE 1 (Change Notice 172299~001) raised this manual from revision
level ~001 to revision level ~002. CHANGE 1 affected two areas:

1) Known errata were corrected.
2) Terminology was standardized with that used to describe the

iAPX U432 architecture.

CHANGE 2 (Change Notice 172300~001) raised this manual from revision
level =002 to revision level ~003. CHANGE 2 affected two areas:

1) Documentation was added for both the Release 2.0 and
Release 2.1 IP components.
2) A new "Implementation Notes" appendix was added.

Release 2.0 changes included:

1) Removing the RETRIEVE REFINED OBJECT operator

2) Adding the DISPATCH operator

3) Adding a ready bit to the process status word

4) Adding a process already suspended bit to the processor
status word :

5) Modifying the SET PS MODE function

6) Adding new fault codes

T7) Making some changes in a few system object structures

Release 2.1 changes included:’

1) Adding a fault vector bit to the process status word
Pages containing changes are flagged with "Change n" at the foot of
the page; affected lines are marked with change bars, Unless

otherwise noted, a page marked "Change n" includes any changes from
the previous n~1 notices.

Change 2 v

TITLE

TABLE OF OONTENTS

l. .KEYCmCE?'IS ® 0 9 99 00 S80S SO0 SO0 G T O OO OO SE O eSS0 OSSSSS SRS

1-1.
1-2.
1-3.

Peripheral SUDSYSLEMS ceveeersscrscscessccsoncsccancnncnnas
Basic I/0 Model tescseccecescsceccacscssascsesnsanas
Peripheral Subsystem Interface ...eceeececeneeecccncecnnns
Peripheral Subsystem Interface Hardwareceeeceeeces
Attached ProCeSSOr ceeesecccccossssscsssesssscscnnsnse
Interface ProcesSsor cecescsssasannan ceeescsssse
Peripheral Subsvstem Interface Softwareeeececesces
I/O CONtrOller ceueeeceescscesscssccsscssssassessone
Execution ENvVironmentsS ..eeececcccsccsscsscsccscsses
Functions .eeeceeececnncnns

Data Flow SUMMAIY cvceesececcsooscssscssscscsnasscasace
I/0 EXGMD]E cevesecscoscccsssonssscnsssonnsasnsasan
GDP Process PersoeCtive cceeececsccsccsscsccascscnse
Printer Server Task Perspective
Printer Task (Device Task) Persoective c..eeeecescas
Printer Reply Task Perspective ..veeececscccccsecscees
Suoplementary Interface Processor FacilitieS .eceeececccen.
Physical Reference MOJe ..ccceeccecscscncccccscncannnes
Interconnect ACCESS ceeeecessccccsccasssccsossssscnnosasn

2. OBJECTS AND OPERATORS ..ececeecacsccacascnancnee creecscnscans

2-1.

2-2.
2-3.
2-4,
2-5.
2-6.
2-7.
2-8.

vi

Summary Of Interface Processor Facxlltles
Enviromment c.ceveeeceerseesssscsssesssasescssscsscsnne
IP OperatorsS ceceeeeccsccenccnsecs

Object Addressing and Glohal Storaqe Managementc....

Objects For Program EnvironmentsS eceeeecescecccccssccsssnss

Facilities For Asynchronous Communication ..cececescsccess

Processes and Local Storage Resource Management

Process Scheduling and Dispatching .seeeecececccccseces

Facilities For Object Managementececececcecsscscscsss

Context Environment Manipulation .c..ceeeecececccccscccsess
The Four Entered Access SegmentS ececeesscecccscss
Direct vs. Indirect Accessibility .ececececceeen.

Access SeleCtorS ceeececess ceesecescssasssessssensssnses 2

Entering an AccesS Segment ...ceececesecsccccsccscsssnae
Entering the Global AccesSS Segment eceeecessccsssscssss

PAGE

1-1
1-1
1-4
1-7
1-7
1-7
1-9
1-10
1-10
1-11
1-11
1-13
1-14
1-14
1-16
1-19
1-21
1-21
1-21
1-22
1-22
1-22

Change 1

3. WINDOWS teucecececscacacossscsascssacsssccssssssssascsanansss
3-1. Window AttributesS ..eeeceecces ceesecscsccscesanan cesenncas
WIiNndOW STALUS eeeceesccccsecscscascensccassscsscscsanccoes
Subrange Base Address and Subrange SiZe .ceececsccscese
Object Reference ceceeceesecececcscscscsscsscsscoccsans
DireCtiOn seeceeececceccesessscccsesccsscscsccsscnscasss
Transfer Status s.vevecescecsscccsssscsccssccscscscacss
Transfer MOAE tieeceesccercseessscssscssscssacssnscnnes
OVerlay cecececscesssanses N
3-2. Window Operation cececeeeccccsccesssscscscscsssccscascscans
Address RecOgNition seseeeescesccescsscscsscssscaccasas
Consistency CheCK .ieeecessscessscosssssssssasssaasanse
3-3. Random Mode Data Transfer teecessessccccsssasasns
3—-4, Block Mode.Data Transfer cceeeccecoces sesecsscascsscscscans
Block Mode Attributes c..e... cesssecessssscesossssssacan
Block Mode Consistency ChetKk ceeeieeessssccssssscccnnos
Block Mode Operation eeeesessessccscsscsscsscscesseasnes
Block Mode Termination tecevsessessersssssnsasanas
Block Mode AAAreSSing ccocscecceccecscescassnoscsosscns
3-5. Interconnect Transfers ...ceeceecccsscss cesscsessssssasans

4, FUNCTIONS ceveeecoccescsescsencsscsssccsssossscosccsss cesscas
4-1, Function Facility Interface ceceececececcscsccccccsssccnns
4-2. Function REqUESES ceiveeeceascescsccacesssssssccsscssnnnse
Process Selection ceceececccccacas cteasscssesesccnsacnes
Function OPCOAES ceesesersescsccsnssscsssassescscnanaas
Function OperandS seeeceecceescsscsccsseccsscssssasssas
4-3. Function Executioncece.. casesssesssssscsssasasnsacna
4-4. Function Completionccceiieiiiiiceeiaaceaaaaaaaaaaannn

5. PHYSICAL REFERENCE MODE ccececccocccccccccacscscscsccacacsanse
5-1. Reference Mode SWitChing seeeceecececccsccscecesscscanccnne
5-2. Physical Reference Mode AJAreSSiNg cecececsccccscscccances
5-3. Physical Reference Mode FUNCLIONS .veveeecsccscccccsceacns

Be FAULTS teeveecccccessccccscsscccscasconcncasscssssccncsacesse
6-1. Fault Reporting .eeececececescenne cecessesssesscsnancas ces
PhySical MOJE ceeeeececccsccccccoscsscsccscsacscscancase

Logical Mode eeeevecescess ceseccnsevsane ceecessssaccacs
Categories of ILogical Mode FAUltS .veeeeecscaccsansacne
Context-level Faults ceecsssns
Process—level FAultS ceeeeececcccccccns ceessssesesas
Processor-level FAUultS .eceeeccecescsscccssccccccnas
Window-Mapped Data TransSfer .s.cceeececccccccccocscscnes

6-2, Fault Handling .eeecececescsccococecoscscscscscsssacsnnsas

Change 1

NN

WWwwWwww

5
3-6
3-6
3-6
3-7
3-9
3-9
3-9
3-12
3-14
3-14
3-15
3-15
3-16
3-17
3-20

4-1
4-1
4-4
4-4
4-4
4-6
4-9
4-9

5-1
5-1
5-2
5-2

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-6

vii

APPENDICES

APPENDICES ' Page

A, SYSTEM OBJECT SUMMARY ..vvececcss - |
A-1l. Context ObJECtS ceeeeeeesvcscscscecacscssssascscasassscsas A=l
A-2., Process ODJOCES seceececesssccsscrssscscocnsscosacsoscseese A=3
A-3. ProcessOr ODJECES teeereeecscscsaccsascscsscscscscssssanes AT

B. FUNCTIa‘] Sm ® 00000000 EP PSP INEEOTIOICOIOROEOEOIEBIOIEONNITOSETOTE B_]_

C. FAULT SUMMARY cececceccccoacccocasnncocascconccccnccnacnssees =l
C-1. Fault RepOrting .cceeceececesceccoccosscssacsscsccscssassanas C-1
C-2. Fault Information Ar€as ...eecececececcccsccnssocssanasses C—1
C-3. Object Level Operator FAUltS ...ceeececccccccscsoscascanaaaes C=5
C-4. Non-Instruction Interface FaultS .c.cececesceccccccccasees C-9

D. INTERRUPT HANDLING...c.ccecseeocccccacassssssccassssscassasass DL
E. SYS'Im INITIALIZATIQQ Se s s cerseeeseRcesessssReRRERRERRIERROROORS E—l
E—lc SYStem Reset R N R R R N N N A P A A R N R I A) E—l
E-Zc EStabliShing an ﬁ{&ution EnViroml'Eﬂt ®eevsesssessrrsernee E_2
E~-3. System Startup .vecevececcecscseosscassscesssssacasssssess E=D
F. INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE .eeevesees F-1

Go IMPT.MNI'ATIQ‘] m © 0000000000000 0800000000000 00000CcORTIDS G-l

viii Change 2

3-1.
B-1.

B-3.
D-1.
E-1.

TABLES

Printer E{an'ple I-eqend ® 0 0000000000000 00000000000OGIOEOISOEOOS

IP/GDP System Object COMPAriSON scecevecsccscscccoscssasas
IP/GDP Operator COMPAriSON eeceecescssceccscsscascascacsnas
Direct/Indirect AccessibilityV .ieeeeeececcscscccscoscansas
Window Attribute SUMMArY cececesccsccsecescssscsssscacsons
Alphabetical Index to IP FUNCLIONS sevececscscaccscacccncs
IP Function Summarv by Function Code .ceeeececscccsscscscss
IP Function Summary by Operator ID .s.eecececcccscsccascnne
Interrupt SOUXCES ciceeeeececcescccascccassosssscsnssasscsesnse
Window Configuration FOllowing INIT .ceececececscccacenane

PAGE
1-18

2-5
2-11

B-2
B-3
B-4
D-4
E-7

FIGURES

432 System and Perivheral SubSyStemMS .seeeececrssessssncnse
Basic I/0 Service CYCle ceceeeccscssrcscassascsscascsncnes
Perivheral Subsystem Interface .veeeeesccecescescsscascnne
Peripheral Subsvstem Interface Hardware ...cecececececsess
Interface Processor WindOW .cececeeecescccccocscnsscasssnsns
I/0 Data FlOWw SUMMALY .eesceesecssscssscascnsssscssassnssns
Printer EXamMPle seceecessessessesscasescosscesssscsacsscnas
Example Print Object cceveveccese
MeMOYY OVErlay ceeeeeceseeceaceessacncsnsssccsacnascncssns
Subrange/Window Attributes (Logical Mode) .eeeececcceccess
Valid Window/Object MapPing c.eeeeescscscsccasacscnsssascas
Random Mode TransfersS seeeecesecesscesscessscssscenssonsse
Block Mode Writes—Swept AJAresSSing seeeeccecsscessccsscns
Block Mode Reads——Source AJAreSSing eeeececsccccssccsscces
Function Request Ared c.ceeeeccesscacesssscocssscaasssanse
Function EXample ceeeeccecccssncccscacssoasoscsssssssannas
Function Performance Phases—AP VieW .ceceecerersscsccsnnne
Function Operand TYPES seecececsescscsscsscscsssssscsssanse
Object Selection .seeeeeesccess
Basic IP Function Execution FIOW .eceeceeccscccscssssssces
Fault Reporting State ..ceeeeccsceceacescceccscscscncansnns
Interrupt Handler ...eceviccccccesccccccccscaccacsscaccnnns
Processor Object LoCAtion .eeeeececsccccccccscacecscacnans
Print Example ObJECES ceeeeescessssscosccscscssssncsasnses
IP Performs Blocking RECEIVE ..vesesevecosooscosssasnacnss
GDP Executes SEND and Unblocks RECEIVE .v.ccevescccessccss
IP Responds 0 TPC ..veeeecsccenscescacssocssscsssnsascnss
Window Manipulation eceeeecescescscscsscscsescsssssacacsana
Print REPLY ceeeeececcscaseacasessscsascsssssacsasasscansse

PAGE

1-2
1-5
1-6
1-8
1-12
1-15
1-17
1-20
3-8
3-10
3-11
3-13
3-18
3-19
4-2
4-3
4-5
4-7
4-8
4-10

D-2
E-3
F-2
F-11
F-12
F-13
F-14
F-15

CHAPTER 1
KEY CONCEPTS

This chapter introduces the iAPX 432 Interface Processor (IP). The
first four sections cover the IP as it is used normally in
conmnection with input/output operations. Section 1-1 distinguishes
Peripheral Subsystems (PS), which are responsible for the bulk of
I/0 operations, from the 432 data processing system, and shows how
Interface Processors 1link these together. The second section
reviews the 432's basic model of input/output, pointing out the need
for an interface between a Peripheral Subsystem and the 432 system.
Section 1-2 describes the hardware and software that comprise this
Peripheral Subsystem interface, with particular emphasis on the role
of the IP. In the fourth section the I/O model is summarized and a
simple example implementation is reviewed. The final section of the
chapter introduces physical reference mode and interconnect
addressing, two additional IP facilities that are provided for
special situations.

1-1. PERIPHERAL SUBSYSTEMS

A typical application based on the iAPX 432 microprocessor family
consists of a 432 system and one or more satellite Peripheral
Subsvstems. Figure 1-1 illustrates a hypothetical configuration
which employs two Peripheral Subsystems. The 432 system hardware is
-composed of one or more iAPX 432 General Data Processors (GDPs), one
or more Interface Processors, and a common memory which is shared by
these processors. The 432 system software is a collection of one or
more processes which execute on the GDP(s).

A fundamental principle of the 432 architecture is that the 432
system environment is self-contained; neither processors nor
processes have any direct ocontact with the "outside world."
Conceptually, the 432 system is enclosed by a wall that protects
objects in memory from possible damage by uncontrolled I/O
operations.

1-1

iAPX 432 Interface Processor Architecture Reference Manual

General Data
Processor

Periphera
Subsystem

Interface
Processor
08890014
soevyIajUT

432 System/Peripheral Subsystem Boundary

eneral Dat

Processor

Figure 1-1 432 System and Peripheral Subsystems

1-2

KEY CONCEPTS

In a 432-based system, the bulk of processing required to support
input/output operations is delegated to Peripheral Subsystems; this
includes device control, timing, interrupt handling and buffering.
A Peripheral Subsystem is an autonomous computer system with its own
memory, I/0 devices and controllers, at least one processor, and
software. The number of Peripheral Subsystems employed in any given
application depends on the I/O-intensiveness of the application; the
number may be varied with changing needs, and is independent of the
number of GDPs in the system.

A Peripheral Subsystem resembles a conventional mainframe channel in
that it assumes responsibility for low-level I/O device support and
executes in parallel with 432 system processor(s). Unlike a simple
channel, however, each Peripheral Subsystem can be configured with a
complement of hardware and software resources that precisely fits
application cost and performance requirements. In general, any
system that can ocommunicate over a standard 8- or 16-bit
microcomouter bus, such as Intel's Multibus™ design, may serve as
a 432 Peripheral Subsystem.

A Peripheral Subsystem is attached to the 432 system by means of an
iAPX 432 Interface Processor (IP). At the hardware level, an
Interface Processor presents two separate bus interfaces. One of
these is the standard 432 processor packet bus and the other is a
very general interface that can be adapted to most traditional 8-
and 16-bit microcomputer buses.

The Interface Processor is driven by Peripheral Subsystem software.
To sumport the transfer of information through the wall that
separates a Peripheral Subsystem from the 432 system, the IP
provides a set of software-controlled windows. A window is used to
expose a single object (data structure) in 432 system memory so that
its contents may be transferred to or from the Peripheral
Subsystem. To preserve the integrity of the capability-based
protection mechanisms in the 432 system, the IP only provides the PS
with windowed access to 432 objects which are of system type data

segment.

An Interface Processor additionally provides a set of functions,
which are also invoked by Peripheral Subsystem software. While the
operation of these functions (and the returned results) varies
considerably, they generally permit objects in 432 system memory to
be manipulated as entities, and enable communication between 432
system processes and software executing in a Peripheral Subsystem.

1-3

iAPX 432 Interface Processor Architecture Reference Manual

It is important to note that both the window and function facilities
utilize and strictly enforce the standard 432 addressing and
protection systems. Thus, a window provides protected access to an
object, and a function provides a oprotected way for Peripheral
Subsystem software to interact with the 432 system.

1-2. BASIC I/O MODEL

As figure 1-2 illustrates, input/output operations in a 432 system
are based on the notion of passing messages between 432 system
processes and device tasks located in a Peripheral Subsystem. In’
this manual, a device task is considered to be the hardware and
software in the Peripheral Subsystem which is responsible for
managing an I/0 device. An I/0 device is considered to be either a
consumer or producer of data. Thus an I/0 device may be a real
device (e.g., a terminal), a file, or a pseudo-device (e.g., a
spooler).

A message sent from a GDP process which requests I/O service
contains information that describes the requested operation (e.g.,
"read file XYZ"). The device task interprets the message and
carries out the operation. If an operation generates inout data,
the device task returns the data as a message to the originating
process. The device task may also return a message to positively
acknowledge completion of a request.

A very general and very powerful mechanism for passing messages
between processes is inherent in the 432 architecture. A given
Peripheral Subsystem may, or may not, have its own message facility,
but in any case, such a facility will not be directly compatible
with the 432's. By interposing a Peripheral Subsystem interface at
the subsystem boundary, the standard 432 interprocess communication
system can be made compatible with any device task (see figure 1-3).

e 432 System

KEY CONCEPTS

Service
Order
1 Message

—

Process
Service
Message
0. Process running on GDP needs 1/0 3.
service
1. Process formulates message 4.

describing service, sends it to
device task

2. Device task receives service 5.
order, interprets it

Peripheral Subsystem

Device
Task

Device task transfers data according to

service order parameters

Device task formulates reply message

1/0
Device

containing result of transfer operation, sends

it back to originating process.

Originating process receives reply, interprets

it, executes accordingly

Figure 1-2 Basic I/O Service Cycle

iAPX 432 Interface Processor Architecture Reference Manual

Peripheral Subsystem

432 System

Service
Request
Message

Process

Service
Reply
Message

Service
Request
Message

<«

Peripheral Devi
Subsystem T::;ce
Interface

Service
Reply
Message

Figure 1-3 Peripheral Subsystem Interface

1-6

P

1/0
Device

KEY CONCEPTS

1-3. PERIPHERAL SUBSYSTEM INTERFACE

A Peripheral Subsystem interface is a collection of hardware and
software that acts as an adaptor which enables message-based
communication between a process in the 432 system and a device task
in a Peripheral Subsystem. Viewed from the 432 side, the Peripheral
Subsystem interface appears to be a set of processes. The
Peripheral Subsystem interface may be designed to present any
desired appearance to a device task. For example, it may look like
a collection of tasks.

PERTPHERAL: SUBSYSTEM INTERFACE HARDWARE

The Peripheral Subsystem interface hardware consists of a 432
Interface Processor, an Attached Processor (AP), and memory (see
figure 1-4). To improve performance, these may be augmented by a
DMA controller, The AP and the IP provide complementary
facilities. Considered as a whole, the AP/IP pair may be thought of
as a logical I/0 processor, which supports software operations in
both the 432 system and the Peripheral Subsystem.

ATTACHED PROCESSOR

Most any general-purpose processor, such as an 8085, an iAPX 86 or
an iAPX 88, can be used as an Attached Processor. The AP need not
be dedicated exclusively to working with the Interface Processor.
It may, for example, 2lsc execute device tack software or user
applications. Thus, the AP may be the only processor in the
Peripheral Subsystem, or it may be one of several. To insure
synchronization and coordination, in Peripheral Subsystems with
multiple processors, only one of these should be designated to serve
as the AP. Other processors (or active agents, such as DMA
controllers) may be given access to IP windows, but control of the
Interface Processor should be centralized in the Attached Processor.

As figure 1-4 shows, the AP is "attached" to the Interface Processor
in a logical sense only. The physical connections are standard bus
signals and one interrupt line (which would typically be routed to
the AP via an interrupt controller).

1-7

iAPX 432 Interface Processor Architecture Reference Manual

e 432 System

N\ AN

4
A
Y

Peripheral Subsysten

Optional
DMA
Controller]

!

Logical I/0 Processor

l

|
Attached

Processor l

l

-
(=

432
Interface
Memory Processor

F——4-—---
!
I
I
|

Interrupt &

eng Wa3SASqNS Teasdydiasd

3Io3VUODABQUT KI1owsy-10s890014

PS
Memory

T

Figure 1-4 Peripheral Subsystem Interface Hardware

KEY CONCEPTS

Continuing the notion of the logical I/O processor, the Attached
Processor fetches instructions, provides the instructions needed to
alter the flow of execution, and performs arithmetic, logic and data
transfer operations within the Peripheral Subsystem.

INTERFACE PROCESSOR

The IP completes the logical I/0 processor by providing data paths
between the Peripheral Subsystem and the 432 system. The IP also
provides functions which effectively extend the AP's instruction set
so that software running on the logical I/O processor can operate in
the 432 system. Since these facilities are software-controlled,
they are discussed in the next section.

As figure 1-4 shows, the Interface Processor presents both a
Peripheral Subsystem bus interface and a standard 432 processor
packet bus interface. By bridging the two buses, the IP provides
the hardware link that permits data to flow between the 432 system
and the Peripheral Subsystem.

The Interface Processor connects to the 432 system in exactly the
same way as a GDP. Thus, in addition to being able to access 432
memory, the IP supports other 432 hardware-based facilities,
including interprocessor communication, alarm signaling and
functional redundancy checking.

On the I/O subsystem side, the IP provides a very general bus
interface that can be adapted to any standard 8- or 16-bit
microprocessor bus, including Intel's Multibus™ architecture, as
well as the component buses of the MCS-85 and iAPX 86 families. The
IP is connected to the Peripheral Subsystem bus as if it were a
memory component; it occupies a block of memory addresses up to 64k
bytes long. Like a memory, the IP behaves passively within the
Peripheral Subsystem (except as noted below). It is driven by
Peripheral Subsystem memory references that fall within its address
range.

The IP generally responds like a memory component. The Interface
Processor also supplies an interrupt signal. The Interface
Processor uses this line to notify its Attached Processor that an
event has occurred which requires its attention. Interrupt handling
software on the AP may read status information provided by the IP to
identify the nature of the event.

1-9

iAPX 432 Interface Processor Architecture Reference Manual

To summarize, the Attached Processor and the Interface Processor
interact with each other by means of address references generated by
the AP and interrupts generated by the IP. Since the Interface
Processor responds to memory references, other active Peripheral
Subsystem agents (bus masters), such as DMA controllers, may obtain
access to 432 system memory via the IP's windows.

PERIPHERAL SUBSYSTEM INTERFACE SOFTWARE

I/0 CONTROLLER

The Peripheral Subsystem interface is managed by software, which
this manual refers to as the I/O controller. The I/O controller
executes on the Attached Processor and uses the facilities provided
by the AP and the IP to control the flow of data between the 432
system and the Peripheral Subsystem.

432 hardware imposes no constraints on the structure of the I/0
controller. To help simplify software organization and
modification, implementors may wish to consider organizing it as a
collection of tasks running under the control of a multitasking
operating system (such as iRMX-80TM, iRMX-88TM, or
iRMX-86T™), This type of organization supports asynchronous
message-based communication within the I/O controller, similar to
the 432's intrinsic interprocess communication facility. Extending
this approach to the device task as well results in a consistent,
system-wide communication model. However, communication within the
I/0 controller and between the I/O controller and device tasks, is
completely application-defined. It may also be implemented via
synchronous procedure calls, with "messages" being passed in the
form of parameters.

However it is structured, the I/O controller interacts with the 432
system through facilities provided by the Interface Processor.
There are three of these facilities: execution environments,
windows, and functions.

1-10

KEY CONCEPTS

EXECUTION ENVIRONMENTS

The Interface Processor provides a process addressing environment
within the 432 system which supports the operation of the I/0
controller in the 432 system. This environment is embodied as a set
of system objects that are used and manipulated by the IP. At any

ti‘n‘}e’ +the T/0 contrall r i revresent: in 429 rv ks TD nrocess

I &/ W LAV &l Tl A WRIL Y oy Al

objects and associated context objects. Like a GDP, the IP itself
is represented by a processor object. Representing the IP and its
controlling software like this creates an execution environment that
is analogous to the environment of a process running on a GDP. This
environment provides a standard framework for addressing, protection
and communication within the 432 system.

Like a GDP, an IP supports multiple process enviromments. The I/O
controller selects the enviromment in which a function is to be
executed. This permits, for example, the establishment of separate
environments oorresponding to individual device processes in the
Peripheral Subsystem. If an error occurs while the IP controller is
executing a function on behalf of one device task of the I/0
controller, that error is confined to the associated process, and
processes associated with other device tasks are not affected.

WINDOWS

Every transfer of data between the 432 system and a Peripheral
Subsystem is performed via an IP window. A window defines a

correspondence, or mapping, between 2 subrange of consecutive
Peripheral Subsystem memory addresses (within the range of addresses
occupied by the IP) and an object of system type data segment in 432
system memory (see figure 1-5). When an agent in the Peripheral
Subsystem (e.g., the IP controller) reads a windowed address, it
obtains data from the associated object; writing into a windowed
address transfers data from the Peripheral Subsystem to the windowed
object. The action of the IP, in mapping the Peripheral Subsystem
address to the system object, is transparent to the agent making the
reference. As far as it is concerned, it is simply reading or
writing memory.

1-11

iAPX 432 Interface Processor Architecture Reference Manual

«¢—Peripheral Subsystem Memory Space———>» | «—— 432 System Memory Space e

X

Normal Memory Reference EEgEd>

Local Memory Addresses =

Y IP window maps a subrange
of peripheral subsystem addresses
onto an object in 432 memory

&
Interface Processor Addresses e

1
Subrange | Object

i
[e ow - o -

Windowed Memory Reference m

Le
<

Figure 1-5 Interface Processor Window

1-12

KEY CONCEPTS

Since a window is referenced like memory, any individual transfer
may be between an object and PS memory, an object and a PS processor
register, or an object and an I/0 device. The latter may be
appealing from the standpoint of "efficiency," but it should be used
with caution. Using a window to directly "connect" an I/O device
and an object in 432 memory has the undesirable effect of
propogating the real-time constraints imposed by the device beyond
the subsystem boundary into the 432 system. It may seriously
complicate error recovery as well. Finally, since there is a finite
number of windows, most applications will need to manage them as
scarce resources which will not always be instantly available. This
means that at least some I/O device transfers will have to be
buffered in PS memory until a window becomes available. It may be
simplest to buffer all I/O device transfers in memory, and use the
windows to transfer data between PS memory and 432 system memory.

There are four IP windows which may be mapped onto four different
objects. The I/0 controller may alter the windows during execution
to obtain access to different objects. References to windowed
subranges may be interleaved and may bhe driven by different agents
in the Peripheral Subsystem. For example, the Attached Processor
and a DMA controller may be driving transfers concurrently, subject
tc the same bus arbitration constraints that would apply if they
were accessing memory.

FUNCTIONS

A fifth window. the control window. provides the IP controller with
access to the Interface Processor's function request facility. The
IP controller requests the execution of an IP function by writing
operands and an opcode into predefined locations in the control
window's subrange. This procedure is very similar to writing
comnands and data to a memory-mapped peripheral controller (e.g.,
floppy disk controller). Upon completion of the function, the IP
interrupts the AP and provides status information which the IP
controller can read through the control window. The IP can respond
to transfer requests to the other four windows while it is executing
a function. In addition, data transfers through windows 0 through 3
may be interleaved with function request sequences through the
control window.

1-13

iAPX 432 Interface Processor Architecture Reference Manual

The IP's function set permits the I/0 controller to:
e alter windows;
® exchange messages with GDP processes via
the standard 432 interprocess communication
facility;
e manipulate objects.

These functions may be viewed as extensions to the Attached
Processor's instruction set, which permit the I/O controller to
operate in the 432 system.

The ocombination of the IP's function set and windows, the AP's
instruction set, and possibly additional facilities provided by a
Peripheral Subsystem operating system, permits great flexibility in
designing I/0 models. By using the more sophisticated IP functions,
powerful I/0 controllers can be built which are capable of relieving
the 432 system of much I/O-related processing. On the other hand,
by utilizing only a subset of the available IP functions, relatively
simple I/0 controllers can also be constructed.

1-4. I/0 MODEL SUMMARY

DATA FLOW SUMMARY

Figure 1-6 summarizes the relationship of the hardware and software
components that cooperate to move data between an I/0 device and 432
system memory. Notice how the Peripheral Subsystem interface not
only bridges the 432 system/Peripheral Subsystem boundary, but also
can "hide" the characteristics of the one from the other. As far as
a device task is concerned, its job is to move data between memory
and an I/0 device; it may be completely unaware that it is connected
to a 432 system. This means that existing device tasks may be
utilized in a 432 system with little or no modification, and that
programmers working on device tasks need not be trained in the
operation of the 432. Similarly, a GDP process which needs an I/O
service need have no knowledge of the details and characteristics of
the target I/0 device. As far as it is concerned, it "performs" I/0
in the same way it communicates with a co-operating process; by
sending and receiving messages via the standard 432 interprocess
communication facility.

1-14

KEY CONCEPTS

&= Peripheral Subsystem i l <« Peripheral Subsystem Interface —— l — 432 System ——p»

Port Object
|

Input se——— $——————Qutput
!
Message ,
1/0 Object
or) »{ Object |gm———m——in j
™ sutter |* > o (Message)[$——| Object
Action l Copy Data Jl Copy Data] [Copy -Reference ” Copy Reference [
Data
Location [P—.S.I/O Space] lP.S. Memory l [432 System Memory l
Sg}‘gi’ll.,l_f“gl Device Task J [IP Controller l L GDP Process 1
Supporting :
Hardware lDev;ce Controller/ (2)] L AP + IP (3) j [GDP I
Notes: (1) Only object reference is moved to and from port.

(2) Supporting processor is defined by application;
may be AP, a separate processor, may include a

DMA controller.
(3) May also include a DMA controller.

Figure 1-6 I/0 Data Flow Summary

1-15

iAPX 432 Interface Processor Architecture Reference Manual

I/0 EXAMPLIE

To illustrate the operation of the 432 I/O model more specifically,
this section provides a simple example which shows how line printer
output might be implemented. Of course, the example describes only
one of many possible approaches that might be taken. Furthermore,
the example does not show all the detail of a typical
implementation, with the Peripheral Subsystem supporting transfers
to and from a number of devices concurrently.

In this example, all Peripheral Subsystem software is assumed to be
implemented as a collection of tasks running under the control of a
multitasking operating system. This OS is assumed to allow tasks to
communicate with one another in a fashion that is analogous to the
432 interprocess communication facility. The mechanisms provided by
the 0OS are messages, mailboxes, a TRANSMIT operator and an ACCEPT
operator. Messages are arbitrary data structures in memory, and
mailboxes are queue structures that hold tasks waiting for messages
or messages waiting for tasks. When executed by a task, TRANSMIT
moves a message from a task to a mailbox and ACCEPT moves a message
from a mailbox to the issuing task if a message is available; if
mot, the task is queued at the mailbox until another task TRANSMITs
a message to the mailbox. In other words, mailboxes are analogous
to 432 ports and TRANSMIT and ACCEPT are analogous to the 432 SEND
and RECEIVE operators.

Figure 1-7 shows the overall structure of the example system and the
flow of data from one element to another (see also table 1-1).
Basically, a GDP process wishing to print data on the line printer
sends a message containing the data to the Peripheral Subsystem task
which controls the printer; when the data has been printed, the
printer task returns the message as a positive acknowledgement to
the originating process. The process may then send more data by
writing it into the message and sending it off again. In practice,
there might be a pool of these messages, with several cycling
through the system at one time.

1-16

KEY CONCEPTS

432 Memory | Peripheral Subsy Memory -

432'syse I peripheral y Inter: ipheral Subsy

Print Request Port

IP Controller

Printer

Server
Task

GDP
Process Printer
Task >
G
Q‘,\ Printar scozer
Reply g
L1 Task
SED,
!

1
W

Figure 1-7 Printer Example

1-17

iAPX 432 Interface Processor Architecture Reference Manual

&

Table 1-1 Printer Example Legend

Item

Print_object

Print_request port
Print_reply port

SEND/RECEIVE

Print_order mailbox

Print_response mailbox

TRANSMIT/ACCEPT

Description

Object (message) describing print
operation from requesting process's
point of view (see figure 1-8).

432 communications port assigned by
convention to queue print objects.

432 commnications port where GDP
process waits for result of operation.

432 operators (GDP instructions, IP
functions) provided for interprocess
communication.

0S message queue defined to hold print
messages waiting for printer task.

0S message queue defined to hold print
messages already processed by the
printer task. :

0S operators analogous to 432 SEND and
RECEIVE operators.

1-18

KEY CONCEPTS

Figure 1-8 shows how the message sent by the GDP process might be
organized. It consists of two parts, an object reference part and a
text part. The object references are for the text part of the object,
the 432 port at which the process will wait for the message to be
returned, and a reference for the process itself (GDP or IP). This
last reference is mnot strictly necessary in the example, but is
provided to show one way in which a message may identify its
originator.

The text part of the message contains a command field which specifies
what is to be done (e.g., print one page), a status field which
reflects the disposition of the print request, and the data to be
printed.

With the exception of the status information, all data in the message
is provided by the GDP process; the status field is updated by the
printer task.

The next three sections describe the operation of the example system
as seen by the GDP process, the printer task, and the IP controller.
These descriptions present an overview of the operations. For more
detail on how these activities relate to IP facilities, please refer
to Appendix F, (Interprocess Communication Example), which refines the
printer example.

GDP Process Perspective

To direct output to the line printer, a GDP process builds a print
object and sends it as a message to the print request port. The port
is the process's "connection" to the line printer. After it has sent
the message, the process is free to continue running. When it cannot
proceed further without acknowledgement of the print operation, the
process attempts to receive a message from the print reply port it
specified in the print object. When the operation has been completed,
the process will receive the message. It then inspects the status
field and takes appropriate action, perhaps writing new data into the
print object and sending it off again.

1-19

jAPX 432 Interface Processor Architecture Reference Manual

Text-——)ﬁ.
Print Data

Object References

Progess

Originating ._}_,,
oy

Print Reply Port @@~ Status

Text ‘ Command

Figure 1-8 Example Print Object

1-20

KEY CONCEPTS

Printer Server Task Perspective

The printer server task mav be viewed as a "front end" to the
printer task which is responsible for translating the message sent
by the GDP process into the form expected by the printer task. The
printer server loops through the following steps:

2.

RECEIVE a message from the print_request port.

When the message (a print object) is received, obtain an
access selector for the message text.

Using the access selector, oven a window onto the message
text.

Copy the message text from 432 memory to PS memorv through
the open window.

Close the window. :

TRANSMIT a message with a reference to the print text to
the printer task.

Repeat from step 1.

Printer Task (Device Task) Perspective

The printer task runs in an endless loop repeating the following

steps:
l .
2 L]

ACCEPT a message from the print_order mailbox;

Interpret the message;

Transfer the data from the message to the printer, taking
care of all device control (e.g., interrupts);

Update the status field of the print message with the
result of the operation;

TRANSMIT the updated orint message to the print_response
mailbox;

Repeat from steo 1.

Printer Reply Task Perspective

The printer reply task may be viewed as a "back end" to the printer

task.
1.
1.
2.

Change

It runs in an endless loop as follows:

ACCEPT a message from the print_response mailbox.

Open a window onto the print object in the 432 system.
Formulate a orint reply message and deposit it in the orint
object through the open window.

Close the window.

SEND the print_object to the printer reply port in the 432
system.

Repeat from step 1.

1-21

iAPX 432 Interface Processor Architecture Reference Manual

1-5. SUPPLEMENTARY INTERFACE PROCESSOR FACILITIES

The preceding sections have described the Interface Processor as it
is used most of the time. The IP provides two additional
capabilities which are typically used less frequently, often only in
exceptional circumstances. These are physical reference mode and
interconnect access.

PHYSICAL REFERENCE MODE

An IP normally operates in logical reference mode. This mode is
characterized by its object-oriented addressing and protection
system. When an IP running in logical mode opens a window, it
utilizes an access selector to specify a particular 432 data
segment. There are times when logical referencing is impossible
because the objects used by the Thardware to perform
logical-to-physical address development are absent (or, less likely,
are damaged). In these situations the IP can be used in physical
reference mode.

An IP which is operating in physical reference mode circumvents the
protection mechanisms of the 432 system. WNo distinction is made
between data segments and access segments in physical reference
mode. The IP provides a reduced set of functions in this mode.
Windows map directly onto oontiguous segments of 432 physical memorv
(rather than object structures in 432 memory). The IP controller
selects a segment by specifying a 24-bit physical address when it
establishes a window. The IP interprets subsequent subrange
references as 16-bit displacements from the segment's base address.
This simple base-plus-displacement addressing 1is similar to
traditional computer addressing techniques.

Physical reference mode is most often employed during system
initialization to load images of objects from a Peripheral Subsystem
into 432 memory. Once the required objects are available,
processors can begin normal logical reference mode operations.
Iogical mode cannot be used until the object tables required for
logical-to-physical address translation have been constructed and
loaded into 432 memory.

INTERCONNECT ACCESS

In addition to memory, the iAPX 432 architecture defines a second,
independent address space called the processor-memory interconnect
address space. The interconnect address space allows interconnect
ob] to be maintained which may contain one or more interconnect
gglsters. Interconnect registers are double-byte quantities which
are aligned on double-byte boundaries. With the exception of a few
reserved addresses, the definition and use of interconnect locations
is not pre-defined for the IP. Appendix E of this manual suggests
how the interconnect may be utilized during the initialization of
variable-configuration systems.

1-22 Change 1

KEY CONCEPTS

The IP (like a GDP) requires two register locations in the
interconnect space to be defined for any system:
e. the processor ID register (interconnect address 0)
[the interprocessor communication (IPC) register
(interconnect address 2)

The remainder of the interconnect address space may be used to store
or acquire other information such as configuration parameters, error
logging registers, and other application-specific quantities.

Window 1 is software-switchable between the memory and the
interconnect spaces. In logical reference mode, the interconnect
space is addressed in the same object-oriented manner as the memory
space, with the IP automatically performing the logical-to-phvsical
address development. To access the interconnect space, the I/0
controller must specify an access selector for an interconnect
object which exposes a segment of the interconnect space to the IP.
The normal window addressing scheme is then used to locate
individual interconnect registers within the object. Switching
window 1 to interconnect access mode gives the IP access to
interconnect objects. This operation is equivalent to the MOVE TO
INTERCONNECT and MOVE FROM INTERCONNECT operators of the GDP.

In ohysical reference mode, the interconnect space is addressed as a
linear array of even—addressed, double-byte, interconnect
registers. As with physical reference mode memory accesses, the
switchable window 1s set up with a 24-bit physical base address.
Peripvheral subsystem references to the corresponding subrange are
likewise interpreted by the IP as 16-bit displacements from the base
address to individual interconnect registers.

Change 1 1-23

CHAPTER 2
OBJECTS AND OPERATORS

This chapter describes the 432 enviromment as it ampears to the I/O
controller software. It points out what the I/O controller can, and
cannot, do in the 432 svstem. The first section broadly comwares
the facilities provided by the Interface Processor to those
available on the General Data Processor. The remaining sections
describe Interface Processor facilities provided for:
addressing and protection;
ohjects for program environments;
facilities for asynchronous communication;
processes and storage resource management;
facilities for process scheduling and

disvatching.

Because a great many facilities are common to both processors, this
chapter adopts the aporoach of describing IP facilities that are
different or unique, and referring the reader to the iAPX 432
General Data Processor Architecture Reference Manual, Order Number
71860, for descriptions of identical features.

2-1. SUMMARY OF IP FACILITIES

This section surveys the Interface Processor by comparing it to the
General Data Processor. When reading this section, it is useful to
recall the notion, introduced in chaoter 1, of the AP/IP pair
co-operating as a logical I/0 processor. In this arrangement, the
Attached Processor fetches instructions, oprovides arithmetic,
logical, and flow-of-control overations, and generates Peripheral
Subsystem address references. The Interface Processor completes the
lJogical I/O processor hy supplving the facilities for operation
within the 432 system, plus the window mechanism for transferring
data between the two systems. Windows are discussed in detail in
chapter 3.

Change 1 2-1

iAPX 432 Interface Processor Architecture Reference Manual

To permit the I/O controller to function in the 432 system as well
as in the Peripheral Subsystem, the IP provides an environment, and
operators that it executes within this environment. The environment
is embodied in the system objects that the Interface Processor
recognizes and manipulates, while the operators take the form of
function requests issued by the IP controller and executed by the
IP. (Like a GDP, the IP verforms other overations in response to
interprocessor communications; these are normally transparent to the
AP, however.)

The standard 432 object-oriented addressing and protection systems
underlie all IP facilities. The IP uses the same
descriptor-controlled, segment-based address development mechanism
as the GDP. It performs type and rights checking identically.
Addressing and protection apply to both the transfer of data through
windows and the execution of functions.

ENVIRONMENT

Table 2-1 lists all 432 system objects and compares the IP's
implementation of them with that of the GDP (see Appendix A for IP
svstem object structures). For the most part these objects are
handled identically bv both machines; the variances noted in the
table stem from the different orientation and design of the two
machines. The IP does not implement instruction segments, for
example, because its Attached Processor takes care of instruction
fetching.

IP processor, process and context objects are similar in purpose to
the corresponding GDP structures, but are implemented somewhat
differently. Importantly, the processor and process objects are
compatible with the standard 432 processor and interprocess
communication facilities. The 1IP supports multinle process
environments; a separate process can be associated, for example,
with each Peripheral Subsystem device task. Each process has a
single context object which defines the process's current access
environment (i.e., the objects that are instantaneously accessible),
ard records status information.

2-2 Change 1

OBJECTS AND OPERATORS

Table 2-1 IP/GDP System Object Comparison

Object IP Implementation
Processor Object similar
Process Object similar
Context Object similar
Operand Stack none
Instruction Segment none
Object Table identical
Domain identical
Port identical
Carrier identical
Storage Resource none
Type Definition identical
Communication Segment identical
Tyoe Controller identical
Refinement Controller identical
Legend:
identical IP and GDP implementations are identical
similar While conceptually similar, IP implements object
differently than GDP
none IP does not implement object
IP OPERATORS

Table 2-2 compares the operators available in the IP's function set
to those provided in the GDP's instruction set. Since windows are
unique to Interface Processors, the ALTER MAP AND SELECT DATA
SEGMENT function has no counterpart in the GDP. Conversely, the IP
has no functions for performing arithmetic (except for the exclusion
function INDIVISIBLE ADD SHORT ORDINAL) or logical operations on
numeric or character data types, nor any operators to alter the flow
of execution (e.g., branch or call functions). To the extent that
these classes of operators are needed in a Peripheral Subsystem
interface, they can be provided by the combination of the Attached
Processor's instruction set and the IP's window facility. For
example, by opening a window on a message received from a GDP
process, the I/O controller can use AP instructions to test and
branch on the value of a message field read through the window.

Change 1 2-3

iAPX 432 Interface Processor Architecture Reference Manual

Through its windows, an IP provides the basic ability to read and
write the contents of objects composed of data segments. However,
using its function request facility an IP can manipulate an access
descriptor which references an object. The IP can examine a complex
(multi-segment) object, gaining access to its component segments.
It can perform type and rights manipulation on both
hardware-recognized typed objects as well as software-recognized
types. When manioulating software-recognized tvpes, an I/0
controller is acting as a type manager and its actions must be
coordinated with the 432 type manager which has created the object.

The Interface Processor vprovides the I/O controller with both
process and processor communication facilities. Interprocess
communication is asvnchronous and is performed with the aid of
ports, system objects which provide synchronization and queuing for
messages. Any object may be sent as a message from a process to a
port. Interprocessor communication messages are predefined. Some
of them apply to all classes of 432 processors, and others are
specific to a particular class (e.g., IP or GDP) of processor. The
I/0 controller can send one of these messages to an individual
orocessor, or it can broadcast a message to all processors in the
432 system.

OBJECTS AND OPERATORS

Table 2-2 IP/GDP Operator Comparison (Part 1 of 2)

Operator Implementation
WINDOW DEFINITION OPERATOR

Alter Map and Select Data Segment Ip
ACCESS DESCRIPTOR MOVEMENT OPERATORS

Copy Access Descriptor GDP+IP

Null Access Descriptor GP+IP
RIGHTS MANIPUILATION OPERATORS

Amplify Rights GDP+IP

Restrict Rights GDP+IP
TYPE DEFINITION MANIPUIATION OPERATORS

Create Public Type GDP

Create Private Type GDP

Retrieve Public Tvpe Representation GDP+IP

Retrieve Type Representation GDP+IP

Retrieve Type Definition GDP+IP
REFINEMENT OPERATORS

Create Refinement GDP

Create Typed Refinement GDP
SEGMENT CREATTION OPERATORS

Create Data Seament GDP

Create Access Segment GOP

Create Typed Segment GDP

Create Access Descriptor ‘ GDP
ACCESS INSPECTION OPERATORS

Inspect Access Descriptor GDP+IP

Inspect Object GDP+IP
ACCESS INTERLOCK OPERATORS

Lock Obiject GDP+IP

Unlock Object GDP+IP

Indivisibly Add Short Ordinal GDP+IP

Indivisibly Add Ordinal GDbP

Indivisible Insert Short Ordinal similar

Indivisible Insert Ordinal GDP
CONTEXT OPERATORS

Enter Access Segment GDP+IP

Enter Global Access Segment GDP+IP

Set Mode - GDP

Call GDP

Call with Message GDP

Return GDP
PERTPHERAL SUBSYSTEM MODE OPERATOR

Set Peripheral Subsystem Mode IP

Change 2 2-5

iAPX 432 Interface Processor Architecture Reference Manual

Table 2-2 continued IP/GDP Operator Comparison (Part 2 of 2)

PROCESS COMMUNICATION OPERATORS

Send GDP+IP
Receive GDP+1P
Conditional Send GDP+IP
Corditional Receive GDP+IP
Surrogate Send GDP+IP
Surrogate Receive GDP+IP
Delav GDP
Read Process Clock GDP
Dispoatch IP
PROCESSOR COMMUNICATION OPERATORS
Send to Processor GDP+IP
Broadcast to Processors GDP+IP
Read Processor Status GDP+IP
INTERCONNECT OPERATORS
Move to Interconnect GDP*
Move from Interconnect GDP*
BRANCH OPERATORS GDP
CHARACTER OPERATORS GDP
SHORT-ORDINAL OPERATORS GDP
SHORT-INTEGER OPERATORS GDhP
ORDINAL OPERATORS GDP
INTEGER OPERATORS GDP
SHORT-REAL, OPERATORS GDP
REAL OPERATORS GDP
TEMPORARY REAL, OPERATORS GDhP
Legend:
GDP+IP IP and GDP Implementations are identical
IP IP implements operator, GDP does not
GDP GDP implements operator, IP does not

similar While conceptually similar, IP implements operator
differently than GDP
* Window 1 of IP provides equivalent interconnect access

Change 2

OBJECTS AND OPERATORS

2-2. OBJECT ADDRESSING AND GLOBAL STORAGE MANAGEMENT

Object addressing on the IP follows the same three level sequence as
on a GDP. The steps taken to address an object are:

1. Given an access descriptor, a processor uses the directory
index field to index the object table directory and gain a
storage descriptor for the object table which contains an
object reference for the desired object.

2. With the storage descriptor for the object table and the
segment index field of the access descriptor, the processor
locates a storage descriptor for the requested object.

3. The storage descriptor for the object contains the base and
length information required to locate the object in 432
memory. - ‘ '

An IP can be directed to manipulate objects in 432 memory, just as
other 432 processors, but lacks any facility to create objects. All
original objects used by an IP must be predefined and loaded into
432 memory at system initialization time. Additional objects, which
may be required, must be created by a GDP process (e.g. the storage
manager) .

A 432 operating svstem type manager might maintain a template for a
prototvpe IP process. When it received a request for a new IP
process from the I/O controller the GDP would build one using the
prototype and then return it via the standard communication port
mechanism. ‘

2-3. OBJECTS FOR PROGRAM ENVIRONMENTS

The IP supports the same program environment hierarchy (process,
context, domain) as a GDP but implements each level differently.

The IP does not require that a domain object be implemented but the
context object contains a slot for an access descriptor for a domain
object should one be required. When implemented, IP domains do not
contain instruction segments (since the 1IP does not fetch
instructions) or operand stack segments. The domain may be used to
store some static information which may be required by a process.

An TP context is a refinement of an IP process object. Each IP
process is bound to a single ocontext for the lifetime of the
process. An enviromment is changed by invoking the ENTER ACCESS
SEGMENT or ENTER GLOBAL ACCESS SEGMENT functions.

iAPX 432 Interface Processor Architecture Reference Manual

2-4, FACILITIES FOR ASYNCHRONOUS COMMUNICATION

The IP offers the same set of operators for asynchronous
interprocess communication as does a GDP, with the exception that
the DELAY operator is not implemented. The DELAY operator, used in
scheduling to delay a process from being dispatched (on a GDP), is
not required by an IP where process scheduling and dispatching is
performed by the I/0 controller.

2-5. PROCESSES AND LOCAL STORAGE RESOURCE MANAGEMENT

The IP performs no process scheduling or local storage resource
management. Muiltiple IP process objects may coexist in 432 memorv.
I/0 controller software must select a process enviromment in which
an IP function is to be performed.

Unlike the GDP, where a process mav be composed of multiple
contexts, an IP process is bound to a single context during its
lifetime. In fact, the context is a refinement of an IP process
object. Further, since no local storage management is performed by
an IP, the size of a process's context is static over the life of
the process.

2-6. PROCESS SCHEDULING AND DISPATCHING

Generally, software in the I/O controller is responsible for all IP
process scheduling and dispatching. A process is selected and hound
to an IP processor object when an IP function is invoked. The
process selection index field in the IP's function request facility
specifies which process is to be selected. Since the IP is not
self-dispatching, a strategy routine in the I/0 controller has
responsibility for multiplexing the various IP processes over time.
The IP does not maintain a process clock. Process time management
is performed by the I/0 controller.

Consistent with 432 philosophy, the IP provides the mechanisms for
process scheduling and dispatching but the policy for deployment is
totallv under the direction of I/O controller software.

2-7. FACILITIES FOR OBJECT MANAGEMENT

The IP provides a spectrum of facilities which may be used for
securely managing objects: communications ports, windows, and
indivisible short ordinal operations.

The IP offers the same asynchronous communication port mechanisms as
a GDP. Communications ports may be used by vrocesses to
asynchronously send and receive messages (objects).

l‘i)
(¢5]

Change 1

OBJECTS AND OPERATORS

Contained in each object's storage descriptor is an I/0 lock (the
windowed bit), which is applied by the IP when a window is opened on
the object. This lock serves two purposes: first it guarantees
that only one IP window can be opened on a particular 432 object at
a time; second it prevents movement of the object {e.g. by a memory
compaction process) while it is mapped through a window.

The transfer of data between the PS and the 432 system is a three
step process. First, the IP controller ovens a window onto the 432
object which is to be used in the transfer. 1In the process of
opening the window the IP sets the windowed bit in the affected
object. Second, the data transfer phase is entered and a PS
processor transfers data between the 432 object and the PS memorv.
Finally, when the transfer is completed, the IP controller closes
the window and the IP clears the windowed bit in the 432 object.
The storage manager in the 432 system may query the windowed bit
field but this field is not hardware-interpreted by a GDP.

As primitives in the IP hardware function set, two indivisible
operators are provided which can be used to guarantee mitually
exclusive access to short ordinal fields within 432 objects. These
two overators, INDIVISIBLE ADD SHORT ORDINAIL and INDIVISIBLE INSERT
SHORT ORDINAL, apoly an indivisible hardware overation to the
specified short ordinal value. For instance, these operators might
be employed to provide a counting semaphore. These operators
provide only the hardware-specific mutual exclusion mechanisms and
must be supplemented by a coordinated software discipline between
processes which utilize the semaphore. For a discussion of the
read-modify-write memory requirements for these operators, see the
Intel iAPX 43203 Interface Processor Data Sheet, Order Number 171874.

2-8. CONTEXT ENVIRONMENT MANIPULATION

The I/0O controller, by manipulating the context of an IP process,
can access the objects which are available to the process. Like a
GDP, the IP allows a context to reference any object for which it
holds an access descriptor. Entered access segments contain access
descriptors for all the objects which may be manipulated from a
specific process's context by an I/0 controller.

The Four Entered Access Segments

Of all the access segments which can be referenced from a context,
the IP provides direct access to a set of four entered access
segments. The entered access segments are referenced by access
descriptor slots 4, 5, 6, and 7 in the context access segment. Note
that descriptor slot 4 contains the access descriptor for the
context access segment itself, since the context AS also serves as
entered access segment 0.

Change 1 2-9

1APX 432 Interface Processor Architecture Reference Manual

Direct vs. Indirect Accessibility

If a cooy of an access descriptor for an object is in one of the
four entered access segments, the object it references is directly
accessible. To reference such an object, two values must be
specified: v
® The number (0 to 3) of the entered access segment in which
the access Aescriptor is located, and
® The index (0 to 16383) of the access descriptor within the
specified entered access segment

When viewed from the standpoint of the 432 system and the Peripheral

Subsystem, there are actually several perspectives on accessibility
as shown in Table 2-3.

A processor (GDP or IP) in the 432 system can directly reference anv
object for which it holds an access descriptor in one of its entry
access lists. 1In addition, by traversing access paths, the 432
processor can manipulate objects which are indirectly accessible.

If a copy of the access descriptor is not currently in one of the
four entered access segments, the desired object may be indirectly
accessible. The target object may be part of a complex object
structure which must be traversed by following the appropriate
access path. Once the particular access descriptor for the object
has been located, the object may be made directly accessible by
entering the access segment into one of the reuseable entered access
segments (1-3). Entered access segment 0 is always reserved for the
original oontext access segment. An access segment of process
globals may be entered into one of the other three access lists by
the ENTER GLOBAL ACCESS SEMENT function. Together, these two
access segments provide access to all the objects which a context
can reference.

An AP has a different view of accessibilitv. The AP can onlv access
432 data through IP windows which are opened onto 432 data segments.
When a window is open, the AP can use its native data manipulation
operators to modify the information through the window. When the AP
must reference data in a segment which is indirectly accessible, it
issues a function request to the IP to traverse an access path to
the segment. When the data segment has been made directly
accessible for the AP, the IP interrupts the AP.

2-10 Change 1

OBJECTS AND OPERATORS

Table 2-3 Direct/Indirect Accessibility

Viewpoint of IP/GDP in 432 System

Directly Accessible 432 Information

® access descriptors All access descriptors in the four Entered
Access Segments.

e data All objects of type data segment referenced
by access descriptors in the four Entered
Access Segments.

Indirectly Accessible 432 Information
® Information, data or access, which can be reached via access

path manipulation (i.e. by following a chain of access
descriptors using the ENTER ACCESS SEGQMENT function).

Viewpoint of AP in Peripheral Subsvstem
(Controlling an IP operating in logical reference mode)

Directly Accessible 432 Information

® access descriptors NONE, the AP cannot directly alter access

. .
AnfAarmakiAn
ded P NS L AL NI L S

® . data all objects of type data segment for which a
window is currently opened. Note, this
implies the object is directly accessible to
the IP.

Indirectly Accessible 432 Information

e Objects of type data segment which are directly accessible to
the IP but which have not been mapped through a window. These
objects can be made directly accessible by issuing an IP
function request which opens a window to the object.

® Access descriptors in the Entered Access Segments. These can
never be made directly accessible to the AP but can be
manipulated via the IP function request facility.

e Information, data or access, which can be reached via access
path manipulation (i.e. by following a chain of access
descriptors using the ENTER ACCESS SEGMENT function provided bv
the IP function request facility). Note that two levels of
indirection are involved, traversing the path of access
descriptors and the use of the IP function request facility.

Change 1 2-11

iAPX 432 Interface Processor Architecture Reference Manual

Access Selectors

An access selector identifies an object by specifying an access
descriptor contained in one of the four entered access segments.
The access selector consists of a double-byte quantity composed of
two fields:

l. The low order two bits of the access selector specify which
entered access segment holds the desired access descriptor
and are coded as follows:

00 - Entered Access Segment 0 (Context Access Segment)
Ol - Entered Access Segment 1
10 - Entered Access Segment 2
11 - Entered Access Segment 3

2. The high order 14 bits represent a scaled index into the
specified entered access segment.

An access selector allows access to any of the 16,384 (214

access descriptors from each of the 4 entered access segments. An
IP can potentially reference 65,536 (216) objects directly.

Entering an Access Segment

The instruction ENTER ACCESS SEGMENT allows the I/O controller
software to enter a given access segment into Entered Access Segment
l, 2, or 3. ENTER ACCESS SEGMENT requires two operands:
® An access descriptor for the access segment to be entered
into EAS]1, EAS2, or EAS3, and
° An unsigned integer value designating the destination
entered access segment (EAS), which must be 1, 2, or 3.

Entering the Global Access Segment

Each IP process maintains a global access segment which is alwavs
accessible to the I/0 controller via the ENTER GLOBAL ACCESS SEGMENT
function. Immediate entry of the global access segment allows an
I/0 controller to gain access to the set of process globals. The
I/0 controller needs only to specify which of the three available
entered access segments is to be used when requesting this function.

2-12 Change 1

CHAPTER 3

The Interface Processor window mechanism provides the Peripheral
Subsystem with protected access to the contents of objects located
in the 432 system. There are five windows, labeled 0-4. Each
window can be used to access one (single segment) object. To
prevent the possible manipulation of access descriptors as ordinary
data and corruption of the protection mechanisms, the windowed
object must be of base type data segment. Access descriptors, the
basis for the 432 protection system, may he manioulated only by IP
operations supplied by the IP function request facility. These
operations are described in the next chapter.

All TP windows are similar in that they support the transfer of data
across the subsystem boundary; this chapter first describes the
characteristics common to all windows. The first section covers the
attributes that define windows; these are generally specified when
the window is opened with the ALTER MAP AND SELECT DATA SEGMENT
function. The second section describes the overation of a data
transfer through a window that has been defined with a given set of
attributes.

Three of the windows have special capabilities; these are covered
after the basic properties of all windows have been described.
Window 0 may be used to perform high speed block transfers. Window
1 may be opened onto the processor-memory interconnect address space
and thus provide access to interconnect objects. Window 4——the
control window——is dedicated to providing the data path for the
Interface Processor function facility; this is covered in chapter 4.

Throughout this chapter conditions for correct use of windows are
described. When any of these conditions are violated, the Interface
Processor detects a fault. The IP's fault detection, reporting and
handling facilities are covered in chapter 6.

3-1

iAPX 432 Interface Processor Architecture Reference Manual

3-1. WINDOW ATTRIBUTES

Each window has a set of attributes which define its state at a
given moment; these are summarized in table 3-1. The IP sets the
attributes of all five windows when it performs processor
qualification. The attributes of the control window are obtained
from wvalues recorded in the processor object. Processor
qualification closes windows 0-3.

Processor qualification is performed explicitly when the Interface
Processor responds to a "suspend and fully requalify processor"
interprocessor communication (IPC). The IP performs processor
qualification implicitly in response to the startup IPC it receives
during system initialization (see appendix E). Thus, window 4 may
be made to come up with any set of attributes by encoding the
desired values in the processor object image that is loaded during
initialization.

Having entered logical reference mode, the I/O controller can change
the attributes of windows 0-3 with the ALTER MAP AND SELECT DATA
SEQMENT function. Unlike the other windows, window 4's attributes
may not be altered during normal execution; its attributes are
fixed once logical mode is entered. The IP can be commanded to
reenter physical mode by a special IPC from a 432 processor,
including itself. Any processor with an access descriptor for a
processor object with broadcast rights can send the "enter physical
mode" IPC to all processors in the 432 system. GDPs ignore this
interprocessor message.

WINDOW STATUS

A window must be open for it to be used to transfer data. An open
window establishes an active mapping between a set of addresses in
the Peripheral Subsystem and an object in the 432 system; other
attributes provide further mapping information.

A closed window is inactive, and has no other attributes. A window
may be closed to prevent further access to an object, or to change
the attributes of a window. Closing a window which overlays PS
memory (see OVERIAY in this section) enables access to the PS memory.

When a window detects a fault, the IP records in 432 memory the
fault information describing the circumstance, changes the state of
the affected window to the faulted state, and interrupts the AP, In
the faulted state the IP will continue to acknowledge transfers
through the window though no data will actually be moved to/from the
432 system (see the description of XACK/ and NAK/ in the Intel iAPX
43203 Interface Processor Data Sheet, Order Number 171874). This
state is entered to allow DMA-type controllers to proceed safely in
the presence of a window fault.

3-2

Table 3-1 Window Attribute Summary

Attribute Description
Window Status Window is open/closed/faulted

Subrange Base Address Start of windowed subrange in the PS

Subrange Size Length of windowed subrange in the PS

Object Reference Access Selector for windowed 432 obiject

Base Displacement Displacement in bytes into windowed 432
object

Direction Read/write permission for windowed

object. When the window is being opened
this attribute is the ©permission
requested by the I/O controller. After
the window has been opened ‘this
attribute is the permission that has

been granted.
Transfer Status Transfer in progress/terminated/faulted
Mode Window 0: random/black mode

Window 1: memory/interconnect mode
Window 2-4: always in random mode

Overlay Windowed subrange does/does not overlay
memory

Block Mode Attribute Description (applies only to window 0)

Byte Count Count of the number of bytes to be
transferred.
Note: In block transfer mode, the base displacement of

window 0 specifies the initial address within the
windowed object from which coonsecutive information
transfer will begin.

Change 2 3-3

iAPX 432 Interface Processor Architecture Reference Manual

SUBRANGE BASE ADDRESS AND SUBRANGE SIZE

A window's subrange is defined bv a subrange base address and a
subrange size, in bytes. The subrange is the contiguous set of
Peripheral Subsystem memory addresses that are mapped by the
window. A Perivheral Subsystem bus master that references an
address in a subrange accesses the corresponding object in the 432
system.

A PS subrange is defined in terms of powers of 2. The subrange size
of a random mode window mav be specified as any power of 2 from
20 through 219 (i.e., 1 through 32k bytes). When window O
is used in block mode it may sequentially access an object as large
as 64K bytes. When the target object is not an integral power of 2
in length, the subrange will normally be specified as the next
higher power of 2. The subrange may also be smaller than the target
object, if access to the full extent of the object is not required.

Note that the size of the window is the lesser of the size of the
subrange and the size of the object. That is, a window never
orovides access to 432 system memory beyond the extent of the
windowed object, regardless of the relationship of subrange size to
object size. The IP's protection system restricts a larger subrange
to behaving as though it is exactlv the same size as the windowed
object. Any attempt to access locations beyond the extent of an
object will cause the IP to generate a fault.

A subrange's base address is specified as an offset in bytes from
the beginning of the IP's 64K bvte range in the PS. The subrange
base address bears a definite relationship to the subrange's size.
Given a subrange 20 pytes long, its base address must be on a
21 pyte boundary. For example, the base address of a 4K
subrange must be evenly divisible by 4K. This relationship may also
be expressed as: the base address of a 2" hyte subrange,
expressed in binary, must contain at least n low-order zero bits.

The following constraints apply to all active subranges:
® 1o subranges may overlap, i.e. no two subranges
may include the same Peripheral.Subsystem address
o all subranges must "fit" within the range
of addresses (up to 64K) that the IP
occupies in the Peripheral Subsystem memory space.

An open window's object reference begins as an access selector and
is converted by the IP into an access descriptor for the windowed
432 object. Each open IP window must map a different object in 432
memory, and each object must be represented as a single segment of
base type data segment (functions may be used to manipulate
multi-segment objects to gain access to their individual segments).
No more than one window can be ovened on an object, regardless of
whether there are multiple IP's in the system. Even if one IP
window is opened on a refinement of an obiect no other window will
be allowed access to the base object or any refinement of the object.

When a window is opened on an object, the IP makes the object
inaccessible to other IPs by setting the windowed bit in the base
object's object table entry; the windowed bit in the base object is
set when a window is opened on a refinement. The object may,
however, remain accessible to GDP processes holding object
references for it. If the Peripheral Subsystem requires exclusive
access to an object, it must do so by means of a convention. For
example, if the object has been defined with a lock field, the IP
controller can use the LOCK OBJECT function to prevent GDP processes
(which observe the convention) from accessing the object. An
alternate convention might be used for objects which do not contain
lock fields. For example, a GDP process sending an object to the
I/0 controller could agree not to access the object, or pass a
reference for it to another process, until the I/O controller sends
the object as a message back to the GDP process.

The IP supports the 432 philosophy that software should have access
to the minimum set of objects needed to perform its function.
Therefore, the I/0 controller can only open a window on an object
for which an access descriptor exists within a current context's
access environment. Typically, an I/0O service request message from
a 432 processor will contain access descriptors for the objects that
need to be transferred or accessed.

Change 1 3-5

iAPX 432 Interface Processor Architecture Reference Manual

DIRECTION

The direction attribute specifies whether the windowed obiject mav be
read, written, both read and written, or neither read nor written.
When the window is opened the IP checks the requested direction
attribute with the access rights granted bv the object reference.
The access rights requested in the direction attribute must be equal
to, or logically less than, the rights granted by the object
reference. For example, if the object reference indicates that the
object may be read, then the permissable direction attributes are
read, or neither read nor write; requesting the ability to write, or
to read and write the object would be illegal.

Once a window has been successfully opened, the IP checks every
subsequent subrange address reference to insure that it conforms to
the direction attribute, otherwise an active window fault occurs.
(The IP's read/write line identifies the type of access being
attempted.) This permits the IP controller to open a window for
reading with the assurance that a mis-programmed DMA controller will
not be able to write into it.

TRANSFER STATUS

An open window may take one of four states:

transfer in progress;

transfer terminated by fault;

transfer terminated by count runout; (block mode only)
transfer termination forced; (block mode only).

The IP controller will open a window with the status attribute set
for "in progress". If the IP detects a fault associated with an
active window, it will change the status attribute to "terminated by
fault". A random mode window which is closed (set invalid) with a
transfer status of "in progress" is considered to have terminated
normally since there is no means for an IP to predict when a random
mode transfer is finished. The remaining two states are associated
with window 0 block mode transfers only and are described in section
3-3.

TRANSFER MODE

Windows 0 and 1 have alternate transfer modes that may be selected
by setting the mode attribute when the window is opened. Window O
may be opened in block mode, which permits buffered high speed
transfers of contiguous blocks of data; this is described in section
3-3. Window 1 may be opened onto the interconnect address space;
this is described in section 3-4. The transfer mode attribute has

no meaning for windows 2-4, which support random transfers to 432
system memory only; the random transfer mode is described in section
3-2. Attempting to set the transfer mode of windows 2-4 will cause
a fault.

OVERLAY

Some Peripheral Subsystems (e.g., those based on processors with
limited address spaces) may not be able to dedicate a block of
memory space for exclusive use as IP window subranges. Such systems
may elect to co-locate all or part of the IP's range with real PS
memory. If a window is then opened with the overlay attribute, the
IP will iphibit the co-located memory from responding to memory
references in the subrange. Closing a window that overlaid memory
re-enables the memory to respond to subsequent address references in
that subrange. Thus, when the IP and PS memory both occupy the same
addresses, memory will respond to all references except those that
fall in the subrange of a window open with the overlay attribute.

Figure 3-1 illustrates a hypothetical configuration in which a bank
of memory and an Interface Processor both occupy a 64K byte block of
addresses in the Peripheral Subsystem memory space. A window with a
subrange base address of 32K and a subrange size of 4K has been
opened with the overlay attribute set. Any address reference
falling in the subrange will cause the IP to respond rather than the
co-located memory. Any address reference outside the subrange will
select the memory rather than the IP.

The overlay facility is implemented by an inhibit signal that the IP
asserts when it recognizes an address reference that falls in an
overlaid subrange. (See the iAPX 43203 Interface Processor Data
Sheet, Order No. 171874, for a description of this signal). Use of
the overlay facility slows IP response time somewhat.

Note that opening a window with the overlay attribute set when there
is no co-located memory is safe, but it slows IP response
unnecessarily. On the other hand, opening a window without
specifying overlay when there is co-located memory will produce an
undefined result when both ocomponents attempt to respond to a
subsequent address reference that falls in the overlaid subrange.

iAPX 432 Interface Processor Architecture Reference Manual

64K
36K Subrange of window opened
‘/(with overlay attribute set
32K
g
Memory IP

Enabled addresses

Disabled addresses

Figure 3-1 Memorv Overlay

3-2. WINDOW OPERATICN

This section describes the IP's response to an address reference
that falls into the windowed subrange of an open window. The
discussion oovers random mode transfers to and from ordinary .
memory-based objects; the special cases of block mode, interconnect
objects and function requests are covered in subsequent sections.

ADDRESS RECOGNITION

The Interface Processor monitors all Peripheral Subsystem address
references that fall into its range. It compares each address
presented on the Peripheral Subsystem bus to the subranges of all
open windows. If an address falls into a subrange, the 1IP
recognizes the reference and responds as described below. If the
address does not fall into an active subrange, the IP ignores the
reference and does not respond.

CONSISTENCY CHECK

Given that it has recognized an address reference, the IP checks it
for consistency before performing the actual transfer. There is a
series of these checks which are equivalent to the steps carried out
by a GDP when an instruction attempts to access data in an object.
Although they are described here as a sequence, the hardware is able
to perform some of the checks in parallel.

The IP 1insures that the transfer direction (as indicated by its
read/write 1line) is <consistent with the window's direction
attribute. The IP computes the PS transfer displacement, that is,
the position of the item (byte or double-byte) relative to the base
address of the PS subrange. The visible object length is the
difference between the 1length of the object and its base
displacement (see Figure 3-2). The transfer displacement must be
less than or equal to the visible object length. The sum of the
physical base address and the transfer displacement must be less
than -the largest physical 432 memory address (224-1). (A memory
bounds error would indicate erroneous information in the object
table.) If any of these checks fails, the IP detects a fault and
does not perform the transfer. Figure 3-2 1illustrates the
constraints which the IP applies when the consistency check is
performed. Several examples of wvalid mappings of window onto
objects are shown in Figure 3-3.

iAPX 432 Interface Processor Architecture Reference Manual

PS ADDRESS SPACE 432 ADDRESS SPACE

64K -
Byte -
Range WINDOW _-f "~
-
L SUBRANGE .- - VISIBLE
Access —>
Transfer -
.fbisplacemen’c L
- Displacement
X e ———

Adjusted
Object
Length

Initial Computations

e Adjusted Object Length = Object Length - Base Displacement

e Visible Object Length = Minimum (Adjusted Object Length, Byte

Count) for block mode operation.

e Visible Object Length = Minimum (Adjusted Object Length,

Subrange Size) for random mode operation.

® Physical Base Address = Base Address + Base Displacement

® During block transfers in logical mode (window O only), the byte

count must be less than the Visible Object Length.

Constraints During Data Transfer

e Transfer Displacement must be less than the Visible Object Length

® P121Zsical Base Address + Transfer Displacement must be less than
224

Figure 3-2 Subrange/Window Attributes (Logical Mode)

3-10

MAPPED

IP WINDOW 432 OBJECT

Y aad

Y /777

hNNNN
~

NANNN

WINDOW = OBJECT

WINDOW =< OBJECT

WINDOW = REFINEMENT

OBJECT == WINDOW

WINDOW > REFINEMENT

= PORTION OF OBJECT INACCESSIBLE TO IP

~ PORTICN OF WINDOW INACCESSIBLE TO AP

Figure 3-3 Valid Window/Object Mapping

3-11

iAPX 432 Interface Processor Architecture Reference Manual

3-3. RANDOM MODE DATA TRANSFER

Given that an IP address reference has passed the consistency
checks, the IP finishes the Peripheral Subsystem bus cycle just as a
memory component would, accepting data from the bus in a write
operation, and placing data on the bus in a read operation.

It follows from the preceding discussion of transfer displacement
computation that random mode transfers are always between
corresponding relative locations of the windowed subrange and the
windowed object. That is, the displacement of a transferred byte or
double-byte is identical within the windowed object and the windowed
subrange. For example, assume a PS subrange of 128 bytes at base
address 4096 mapped onto a 432 object 100 bytes long with a base
displacement of 0. If a Peripheral Subsystem bus master initiates a
bus cycle that decodes as "read one byte from location 4096", the IP
will return the object byte whose displacement is zero, the first
byte in the object. If a subsequent bus cycle indicates "write a
double-byte into location 4100", then the IP will accept a
double-byte from the bus and write it into the object at a
displacement of four. If another bus cycle attempts to "read one
byte from location 4197", the IP will fault and will not perform the
transfer, since the subrange transfer displacement exceeds the
bounds of the object.

Random mode is so-called because no ordering is implied between
successive references to a windowed subrange. Any location may be
read or written (assuming validitv checks are passed) at any time.
Figure 3-4, Random Mode Transfers, illustrates the effect of
different address references when a window is opened for reading and
writing in random mode.

A window opened in random mode may be remapped onto a new 432 data
segment with a single invocation of the IP function ALTER MAP AND
SELECT DATA SEGMENT. When executing this function the IP will first
close the window and then reopen it on the newly select data segment.

Byte displacement-\\~

4103 R "(7)
Gﬂ——-ﬁ:——é (6)

(5)
(4)
W (3)
(2)

W (1)

(0)

4096 - e e e
Windowed Windowed
Suhrange Chisct
Legend
Reference Sequence: @ @ @
Subrange Address Referenced: 40499 4997 4102
Reference Operation: Read Byte | Write Byte|Read Double-byte
Object Byte Accessed (disp.) 3 1 6,7

Figure 3-4 Random Mode Transfers

3-13

iAPX 432 Interface Processor Architecture Reference Manual

3-4. BLOCK MODE DATA TRANSFER

Window 0 can be opened in random mode or in block mode. Block mode
allows the Peripheral Subsystem to take advantage of software
instructions (e.g. iAPX 86 string operations) and devices such as
DMA controllers, which are capable of generating consecutive address
references at high speed. Block mode also permits the transfer of a
large amount of data through a small PS address subrange. For
example, the full content of any object may be transferred through a
one-byte or double-byte PS subrange. This helps to keep more of the
IP's range available for use with random mode windows.

While block mode is well-suited for the high speed transfer of large
blocks of data, it provides less addressing flexibility than random
mode. When window 0 is opened in block mode, the direction
attribute can specify reading or writing, but not both. To change
access directions requires closing and re-opening the window. Block
mode also implies serial addressing of the windowed object. The
block of data to be read or written is defined when the window is
opened, and the whole block is transferred in sequence.

BLOCK MODE ATTRIBUTES

Window 0 has an additional attribute, byte ocount, which is
applicable only when it is opened in block mode. The byte count
specifies the size of the block that is to be moved through the
window. The value of this attribute may range from 0-65,535; the
value represents one less than the number of bytes to be transferred
(@ byte count of 0 indicates that a one-byte block is to be
transferred). The byte count is independent of the subrange size.
However, the IP checks to insure that the sum of the base
displacement plus the byte count does not exceed the length of the
target object.

The base displacement attribute locates the first byte of the block
relative to the beginning of the windowed object. A value of zero
indicates that the block starts at the lowest address of the
object. The base displacement and byte count essentially define a
refinement of the object.

3-14

BLOCK MODE CONSISTENCY CHECK

Since the byte count and base displacement effectively predefine the
“transfer from the perspective of the 432 object, the IP can perform
most of the required consistency checks when the window is opened.
The only checks made during a transfer are direction and byte count.

BLOCK MODE OPERATION

From the point of view of the Peripheral Subsystem bus, a block
transfer proceeds much like a random transfer, except that, like a
fast memory, the IP provides much better response time in block
mode. The IP acts as a passive agent on the PS bus, all block
transfer activitvy being driven by an active PS processor or DMA
controller. When an address reference falls within window O0's
subrange, the IP accepts or supplies a byte or double-byte according
to the type of PS bus cycle. Note, however, that in block mode, IP
acknowledgement of a write operation does not neccessarily imply
that the data has actually been written into the windowed object.

The IP employs an on-chip first-in-first-out (FIFO) buffer to
achieve high speed block transfers in buffered mode. Since a block
mode transfer is predefined by window 0's attributes, the IP is able
to optimize the transfer using the FIFO hardware assistance. The
Interface Processor buffers block mode transfers to improve response
to Perivheral Subsystem transfer requests and to reduce its
utilization of the 432 processor vacket bus.

In a block read operation, the Interface Processor pre-fetches an
eight-byte block of data from the windowed object in one 432
processor packet bus transaction. It holds the block in an internal
buffer and supplies bytes or double-bytes from the buffer as
requested by Peripheral Subsystem bus cycles. When the buffer has
enough free space, the IP prefetches another block.

In a block mode write operation, the IP accepts bytes or
double-bytes from the Peripheral Subsystem bus and buffers them
internallv. When the buffer accumulates more than eight bytes, the
IP post-stores an eight-byte block in the windowed object in a
single processor packet bus operation.

3-15

iAPX 432 Interface Processor Architecture Reference Manual

Completing a block mode write transfer which is shorter than the
byte count is a two—-step process. First, the AP must issue an ALTER
MAP AND SELECT DATA SEGMENT function with the entry state operand to
"force termination" on window 0. This causes the IP to empty its
FIFO to 432 memory. Then, the AP must issue an additional. ALTER MAP
AND SELECT DATA SEGMENT function with an entry state operand to set
window 0 invalid (close the window). If the AP attempts to close a
block mode window without first forcing termination, the IP will
generate a fault, interrupt the AP, and preserve the block mode
window. When the transfer length is the same as the byte count
attribute, the IP automatically takes care of the last block which
will be short if the transfer size is not a multiple of eight.

BLOCK MODE TERMINATION

A block mode transfer will terminate normally when all bytes have
been transferred, or it may terminate prematurely should a fault
occur. In hoth cases, the IP updates the transfer status attribute
and issues an interrupt request to notify the Attached Processor.
Following termination, anvy address reference falling in the subrange
of window 0 will cause the window to fault and enter the error
state. In the error state, requests for data transfer will be
acknowledged (negatively) by the IP, but no data will be
transferred. This prevents a DMA controller, for example, from
continuing to transfer data after a fault has been detected. The
faulted window cannot be re-used until it is closed and re-ovened.

The IP tracks the progress of a block transfer by means of an
on—chip byte counter. The IP sets this counter equal to the byte
count attribute when the window is opened and decrements it with
each byte transferred. When the on-chip counter underflows (is
decremented from zero) all bytes have been transferred and the
overation is terminated normally.

The IP will terminate a block transfer prematurely if it detects a
fault during the transfer. 1In addition, the I/O controller may
itself force termination before the transfer has been completed.
This is done by executing an ALTER MAP AND SELECT DATA SEGMENT
function with the transfer status attribute set to "termination
forced." Finally, termination may be forced by the IP's receipt of
of any the interprocessor communication messages (IPC's) "suspend
and fully requalify processor", "close windows", or "close windows
and enter physical mode".

3-16 Change 1

BLOCK MODE ADDRESSING

As mentioned earlier, in a block mode transfer the IP determines the
displacement of a transfer into the windowed object by means of its
on-chip displacement counter. Unlike random mode, then, the object
displacement is independent of the subrange displacement. This
gives rise to two addressing techniques that may be used by the
Peripheral Subsystem in block mode: swept and source/sink.

In swept addressing, the Peripheral Subsystem bus master driving the
transfer operation "sweeps" serially (from low addresses to high)
through a block of addresses in the windowed subrange. That is, the
address references will be n, n+l, n+2... or n, n+2, n+4... for 8-
and 16-bit Peripheral Subsystem buses respectively. The range of PS
addresses swept is equal to the number of bytes transferred, so the
subrange must be at least as large as the number of bytes
transferred. Figure 3-5 illustrates swept addressing in a block
mode write operation.

In source/sink addressing, the master driving the transfer
repeatedly addresses a single location in the windowed subrange.
For a read operation, this single (byte or double-byte) location
acts as a data source; for a write operation, the location serves as
a data sink. By permitting the transfer of large blocks (up to 64K
bytes) of data through a single location, source/sink addressing
conserves "subrange space." To transfer 32K bytes in random mode
requires setting up a 32K byte subrange, leaving only half of the
IP's range available for concurrent use with other windows. Only a
byte or double-byte of the range is needed to perform the same
transfer in block mode using source/sink addressing. Figure 3-6
shows how source addressing works in a block mode read operation.

Note that the IP has no knowledge of the addressing technique used
in a block mode transfer. It simply considers any address reference
in window 0's subrange as a signal to transfer the next byte or
double-byte.

3-17

iAPX 432 Interface Processor Architecture Reference Manual

4103 (7)

g (Base
l Displacement)

4096 (0)

Windowed Windowed
Subrange Object

Legend @ @ @

Reference Sequence:

Subrange Address Referenced: 4099 4100 4101
Reference Operation: Write Byte|Write Byte|Write Byte
Object Byte Accessed (disp.): 3 4 5

Figure 3-5 Block Mode Writes - Swept Addressing

3-18

Bx}e displacemenﬁz
(7)
(6)
(5)
(4)

4096
(3)
Windowed (2)
Subrange
1) 3
1) 2 (Base
S (#) Displacement)
Windowed
Chject
Legend
Reference Sequence: N
Subrange Address Referenced: 4996 4@96 4096
Reference Operation: Read Byte | Read Byte |Read Byte
Object Byte Accessed (disp.): 2 3 4

Figure 3-6 Block Mode Writes - Source Addressing

3-19

iAPX 432 Interface Processor Architecture Reference Manual

3-5. INTERCONNECT TRANSFERS

Window 1 may be opened onto either the 432 memory space or the 432
processor-memory interconnect space. The address space is selected
by the transfer mode attribute when window 1 is opened; it may be
changed at any time by closing the window and re-opening it with the
transfer mode set differently. Both address spaces appear identical
to the Peripheral Subsystem; interconnect objects may be read and
written in exactly the same fashion as memory objects.

3-20

CHAPTER 4
FUNCTTONS

This chapter describes the ocommon facility that supports the
execution of all Interface Processor functions. The first section
shows how window 4 is used to provide access to the facility. The
next section explains how a function is requested by writing
operands and an opcode through the window. The last two sections
describe how the IP executes a requested function and returns status
information upon completion of the operation.

4-1. FUNCTION FACILITY INTERFACE

Management of the IP function facility centers on the function
request area of the processor data segment (see figure 4-1). Both
the I/O controller software and the Interface Processor itself
update and use the information recorded in this area via the control
window. Briefly, the IP records the status of the function request
facility in the function state field; the I/O controller may obtain
status information by reading this field. The IP controller
requests execution of a function by writing operands and an
identifiying opcode into the function request area, and the IP reads
these fields to obtain the information it needs to execute the
function. Finally, the execution of some functions produces a value
which the IP records 1in the return-vaiuve field, where the 1P
controller can inspect it. Upon completion of any function, the IP
updates the status .information and interrupts its Attached
Processor. If desired, successful function completion interrupts
can be disabled, thereby allowing only interrupts for unsuccessful
completion to reach the AP.

In logical mode, the control window (window 4) is permanently opened
onto the processor data segment and its mapping cannot be changed by
an ALTERMAP function request. By reading and writing the
corresponding PS memory subrange locations, the IP controller
obtains access to fields in the function request area located in 432
memory. Notice that this interface mechanism is similar to a
conventional memory-mapped peripheral device controller; the
function request area fields are read and written like command, data
and status registers.

Figure 4-2 illustrates the effect of executing a function, ALTER MAP
AND SELECT DATA SEQYENT, which in this case alters the map of window
0 and selects a different 432 data segment. Window 4, the control
window, is the only one through which function requests may be
issued. Windows 0 through 3 are available for data transfer between
a PS processor and 432 memory.

4-1

iAPX 432 Interface Processor Architecture Reference Manual

(Double-byte Displacement)-\

\
15 g
25
bt Return-value P~

]

g 16

a 15
e
o
et

%DU Operands

Q
ol
o
1]
rr
h

o 9
[+1]

(reserved) Opcode 8

Function State 7

Process Selection Index 6

:J-‘

Processor Data Segment

Figure 4-1 Function Request Area

IP WINDOWS 432 SYSTEM

FUNCTION
REQUEST
4 FACILITY

Ip

PROCESSOR
DATA SEGMENT

1 .
2y _ N _ D
L R | c
1 I | B

a

ORIGINAL MAPPING

DATA
SEGMENTS

FUNCTIONS

IP WINDOWS 432 SYSTEM

ALTER MAP PR | PR
AND FUNCTION
SELECT]'> REQUEST
DATA
SEOMERT a]__ PACILITY

Ip
:.JPROCESSOR
DATA SEGMENT

DATA
3 5| SEGHENTS
2 D
) - _ C
~
~
~
¥ T B
~
~ -~ > ~
~
~
~ A

J

ALTERED WINDOW # MAP

Figure 4-2 Function Example

4-3

iAPX 432 Interface Processor Architecture Reference Manual

4-2. FUNCTION REQUESTS

The performance of a function may be considered from the AP point of
view as a sequence of three phases, as shown in figure 4-3. The IP
controller, running on the AP, performs the first ophase, requesting
the execution of a function.

The IP executes functions serially; requesting execution of a
second function before a prior function has been completed produces

an undefined result. The function completion state subfield of the
functlon state field (see appendix A) indicates the IP's readiness
to accept a function request. A typical IP controller
implementation will assign responsibility for requesting functions
to a single routine (task) which will serialize the requests.

Given appropriate Peripheral Subsystem bus arbitration, function
requests (which are identical to all windowed transfers) may be
issued concurrently with other window activities. For example,
consider a DMA controller driving a block mode transfer through
window 0. If the DMA controller relinquishes the Peripheral
Subsystem bus between transfer cycles, the IP controller (running on
the Attached Processor) can use the bus for a function request (or
for any other purpose).

PROCESS SELECTION

The IP controller must specify that a function be performed in one
of the IP process environments which exist in the 432 system. To
select a process, the IP controller must deposit a process selection
index into a designated slot in the function request facility area
of the processor data segment. With this index, and the process
list in the IP's processor object, a process object can be located.
The IP will attempt to qualify and lock the specified process as
soon as a function opcode is written.

FUNCTION OPCODES

Each function is uniquely identified by a one-byte opcode (see
appendix B). The act of writing into the opcode field triggers the
execution phase of function performance. Therefore, the function's
operands must be in place in the function request area before the
opcode is transferred.

FUNCTIONS

[

L

L

I A
Read

function
state

In
progress

yes

Rrquest
Phase
Write
operands
Write
opcode
A
A
l--- -_-\
r Y
, FPerform Execution
\ other N Phase
\\processing/ -
RO | ’
L] - .
Interrupt : _____ _,.l Y
from 1P | a4
temm————— Read
function
state
T
faulted Invoke Conpletion
Completion fault
Phage
handler

Figure 4-3 Function Performance Phases - AP View

4-5

iAPX 432 Interface Processor Architecture Reference Manual

FUNCTION OPERANDS

An Interface Processor function may require from zero to seven
double-byte operands. The IP controller specifies a function's
operands by writing values into locations of the operands field in
the function request area. The first operand goes in the
lowest-addressed location of the field and the remaining operands
are written to successively higher-addressed locations (in some
cases, one or more operand slots may be reserved and are skioped
over). Each opcode implicitly identifies the number of operands
required, so unused high-order locations in the operands field need
not be initialized. See Appendix B for the function summarv.

Interface processor functions accept three types of operands as
illustrated in figure 4-4; all operand types are stored as
double-bytes.

A short ordinal is a a 16-bit unsigned binary integer (range
0-65,535). This type of operand is typically used to specify a
length, a displacement, an index, etc. For example, when the ALTER
MAP AND SELECT DATA SEGMENT function is used to open a window, it
requires a short ordinal operand that specifies the size of the
subrange.

A bit field is a string of 16 bits that is divided into a number of
subfields. The length, position and definition of each subfield
varies according to the function. Subfields in a bit field overand
to the ALTER MAP AND SELECT DATA SEGMENT function, for example,
specify transfer mode, memorv overlay, etc.

An access selector identifies an access descriptor for an object
that is the function's actual operand. Figure 4-5 illustrates how
the IP uses an access selector operand to obtain access to an
object. The low-order subfield of the access selector identifies
one of the four currently entered access segments associated with
the selected context. The high-order subfield indexes one of the
access descriptors in the entered access segment. The selected
access descriptor refers, via the object table, to the object that
is the actual function operand. This three-level address
develooment is identical to GDP addressing. Note that the IP also
performs the standard 432 type, rights and bounds checking as it
develops the object's physical address from the access selector.

4-6 Change 1

FUNCTIONS

Short Ordinal

(16-bit unsigned integer)

Bit Field

fS g
~

-

\
15 g
BRI BEEEE RN
L O I T T O I O O I
i L it i i 18 1.3 i
- v 7

i

\.
15

1]

Change 1

(Subfields defined by function)

Access Selector

I
\-—--Ente:ed Access Segment Identifier

g# = Context Access Segment

gl = Entered Access Segment 1

19 = Entered Access Segment 2
" 11 = Entered Access Segment 3
Access Descriptor Index

(14-bit unsigned integer)

F-0264

Figure 4-4 Function Operand Types

iAPX 432 Interface Processor Architecture Reference Manual

15 g
5000000()000001'1(1 Access Selector Operand
\
\\ \ Entered Access Segment Identifier
\ \
\ Access Desc_z_’iptor_Index \
\ X
F 2= =] e A = =
0 o \@ ol o)
O o| ‘w ° O
O] O] w O O
Context Access Segment Entered Access Entered Access Entered Access
Segment 1 Segment 2 Segment 3

roTT = ~\

‘Object Table)

< Mapping /

A= 5
Selected
Object
F-0265

Figure 4-5 Object Selection

4-8 Change 1

FUNCTIONS

4-3, FUNCTIN EXEdJTICN

The IP performs the actual execution of a function independent of
the IP controller. Therefore the IP controller (an Attached
Processor with associated IP control software) is free do other work
after it has requested execution of a function (except that it must
refrain from requesting a second function).

Although the IP's execution of any given function necessarily
varies, figure 4-6 shows the basic sequence of steps that is common
to most functions. Note that the IP checks for faults throughout
execution.

Function execution begins when the IP detects that the opcode field
of the function request area mapped by window 4 has been written.
The IP sets the state of window 4 to "in-progress" during the
function execution process to indicate that the function request
facility is "in use". The IP reads the opcode from the function
request area and decodes it. After decoding the opcode, the IP
fetches the operands required by the function from the function
request area. It then performs the operation and updates
destination operands with the result(s). If the function produces a
return-value, the IP writes it into the corresponding field of the
function request area.

The IP terminates execution by updating the function completion
state subfield and generating an interrupt (see appendix D for
~ information on discriminating IP interrupts). The function
completion state subfield indicates successful or faulted
execution. The IP records additional information in one or more of
the context, process and processor objects when it detects a fault
during execution of a function.

4-4, FUNCTION COMPLETION

Normally the IP controller will use the IP's interrupt to detect
function completion; it may also poll the function completion state
subfield. In any case, the function completion state subfield must
be examined to determine if the function completed successfully or
faulted.

iAPX 432 Interface Processor Architecture Reference Manual

Qualify
Selected
Process

|

Dacode
Opcode

Perform
operation

Perform
Operation fault
OK? response

Update
destinations

Update
Return-value

e
e
Update
function
completion
state

l

Generate
AP

interrupt

Figure 4-6 Basic IP Function Execution Flow

4-10

FUNCTIONS

Successful execution of a function typically causes the alteration
of a destination operand (that is, an actual operand; the operands
field of the function request area is never changed by function
execution). In addition, or alternatively, some functions produce a
return-value. For example, the READ PROCESSOR STATUS function
returns the current values of the IP's system clock and status. The
IP writes return-values into the results field of the function
request area, where they may be inspected through window 4. The
low-order byte of any return-value is stored in the lowest-addressed
location of the field and any additional bytes are stored in
consecutively higher locations. When the length of the return—value
is less than the length of the return-value field, the content of
excess high-order locations is undefined.

Appendix B ©provides the format and interpretation of the
return-values produced by all functions. Several functions produce
a standard tvpe of return-value called a boolean. This is a
one-byte value that indicates "true" or "false." The low-order bit
of the value "true" is 1 and the low-order bit of the value "false"
is 0. 1In either case the value of the upper seven bits of a bhoolean
is undefined. '

If a function faults, the contents of the return-value field is
undefined. If a function completes successfully, but it does not
produce a return-value, then the IP does not alter the content of
the return—-value field.

Change 1 4-11

CHAPTER 5
PHYSICAL REFERENCE MODE

The preceding chapters of this manual have implicitly described the
Interface Processor's logical reference mode, its normal mode of
operation. The IP also provides physical reference mode. Physical
reference mode 1is distinguished from logical reference mode by
direct 24-bit base-plus-displacement addressing and a limited subset
of functions. It may be characterized as a vowerful and rudimentary
tool to be utilized in exceptional circumstances such as system
initialization (see appendix E} and post-mortem diagnostics. This
chapter first describes reference mode switching—how physical mode
is entered and exited. The second section covers addressing and
functions in physical reference mode.

5-1. REFERENCE MODE SWITCHING

An Interface Processor can switch from physical reference mode to
logical reference mode (and vice versa) only under carefully
controlled circumstances.

An Interface Processor enters vhysical reference mode in response to
assertion of its INIT line durlng system initialization (see iAPX
43203 VLST Interface Processor Data Sheet, Order No. 171874) or upon
receiving an "enter vhysical reference mode" IPC when in logical
mode. Since a "send to processor" IPC requires an access descriptor
with the proper right for the target processor's processor object,
the ability of 432 software to place an IP in physical reference
mode can be limited by restricting distribution of this right in IP
processor object references. However, any 432 orocess with an
access descriptor for a processor obiect with "broadcast to
processors" rights can vlace all IPs into physical mode by
broadcasting the "enter physmal reference mode" IPC. Thus,
processors should only be granted broadcast rights with careful
precautions. Table E-1 shows the attributes of the IP windows after
entering phvsical reference mode.

An Interface Processor exits vhysical reference mode and enters
logical reference mode when it receives a local IPC (it ignores
global IPCs in physical mode). This local IPC is considered a
startuo IPC. The response of the IP is to qualify the processor,
enter logical mode, and then respond to the IPC.

Change 1 | 5-1

iAPX 432 Interface Processor Architecture Reference Manual

5-2. PHYSICAL REFERENCE MODE ADDRESSING

In physical reference mode the object reference attribute of a
window is replaced by a 24-bit segment base address. Upon
recognition of a subrange address reference the IP determines the
transfer displacement as in logical reference mode. It forms the
transfer address by adding the displacement to the segment base
address. The 432 transfer length is always set to 216 bytes so
that no length of transfer faults can occur. No system objects are
used in physical reference mode addressing.

Note that in physical reference mode, window 0 may be opened in
either random or block transfer mode and window 1 may be opened onto
either 432 memory space or the interconnect address space. An IP
operating in physical mode may also change the characteristics of
window 4, the control window.

5-3. PHYSICAL REFERENCE MODE FUNCTIONS

The IP controller may request execution of four functions in
physical reference mode. These correspond closely, but are not
alwavs identical, to logical reference functions. The request,
execution, fault handling, and completion phases of physical
reference mode operations are similar to the logical reference mode
counterparts.

See the function summary in Appendix B for detailed descriptions of
the operation of these functions.

The physical reference mode functions are
SET PERTPHERAL SUBSYSTEM MODE;

READ PROCESSOR STATUS

SEND TO PROCESSOR

ALTER MAP AND SELECT PHYSICAL SEMMENT.

5-2 Change 1

CHAPTER 6
FAULTS

This chapter describes IP faults, exceptional conditions which can
occur as the IP performs functions. In general, the IP fault
philosophy follows that of the GDP: the processor detects and
contains faults so they do not affect other processes or processors
in the 432 system. The response to a fault, i.e. fault handling,
is not predefined and may be tailored through software to the needs
of the 432 system user. The IP's dual role in the 432 system and in
the Peripheral Subsystem requires that the strategy for handling
faults is somewhat different than for the GDP.

6-1. FAULT REPORTING

When a fault occurs, the IP records information about the fault in a
fault information area. Faults are distinguished by a fault code
and an operator ID recorded in the fault information area. The
fault codes are specified in Apoendix C. The operator IDs are
soecified in Appendix B. The overator ID designates the IP function
which was executing when the fault was encountered. A unique
opverator ID corresponds to each IP function code. Note that the
values for the function codes are not the same as the wvalues for the
ocorresponding operator IDs. T :

When the IP has deposited the information in the respective fault
information area and updated the function state, the IP interrupts
the AP to inform it of the fault. The AP may check the function
state field of the function request facility to acquire the field of
bits which contains the fault level. If the IP has faulted, the AP
examines the corresponding fault information area for more detail.

For faults which occurred during the execution of a function with a
sequence of steps, 1like SEND or RECEIVE, the IP records the
execution state when the function faulted. This information allows
the time when the fault occurred to be specified more precisely.
Then, software which handles the fault can respond in the most
appropriate manner. The execution state information is necessary
for software completion of a vartially executed function.

6-1

iAPX 432 Interface Processor Architecture Reference Manual

The IP records fault information in various areas of IP process and
processor objects (refer to Appendix A for detailed description of
these fault information areas). There are three categories of IP
operation in which faults may be generated: physical reference
mode, logical reference mode, and window-mapoed data transfer. Each
of these modes utilizes specific fault information areas to report
faults.

PHYSICAL MODE

Information about faults which occur in physical reference mode is
recorded in the processor fault information area of the IP processor
object. The function state is set to "context-level fault" when a
physical reference mode fault is encountered and an AP interrupt is
generated.

LOGICAL MOCDE

Information about faults which occur in logical reference mode is
recorded in appropriate portions of the IP process and processor
objects. Each IP process object contains two fault information
areas: one for context-level fault information and one for
orocess—level fault information. The IP processor object contains a
fault information area for processor-level fault information.

Depending on the severity level (context, process, or processor) of
a fault and the current state of the process and processor, an IP
selects an area to be used to record the fault information. The
method an IP uses to decide the appropriate site to record fault
information is shown in Figure 6-1. Successive faults, encountered
during fault recording, reflect the fault state to higher levels of
severity until, finally, an IP can no longer continue and must issue
the FATAL signal (see iAPX 432 VISI Interface Processor Data Sheet,
Order Number 171874).

CATEGORIES OF LOGICAL MODE FAULTS

There are three categories of logical mode faults, 1listed in
increasing order of severity:

e Context-level faults

® Process-level faults
® Processor-level faults

6-2 Change 1

FAULTS

Context~Level Faults

Context-level faults are the least severe of the IP logical mode
faults. A context-level fault arises from exceptions which can be
confined to the context in which the IP is operating. The IP may
fault when attempting to execute a function or during the movement
of data through one of the windows. One example of a ”c'cmtext—level"
fault is the cordition which occurs when a reguest to the function
facility contains an erroneous function code. In this case, the IP
can detect and report the fault before any execution of a function

is begun.

When the IP detects a ocontext-level fault, it places information
about the fault in the context-level fault information area of the
process object, sets the function state to "context-level fault",
and interrupts the Attached Processor. A context-level fault can
only be generated by an IP which is bound to a process. If a second
fault occurs while handling a context-level fault it is handled like
a process-level fault.

Response to context-level faults can usually be performed by IP
controller software running in the .Peripheral Subsystem. The
conditions which generated these faults are contained in a limited

1. AN

portion of the IP's 432 environment.

Process-Level Faults

Process-level faults are generated when an exceptional condition is
Aatantad nl«nnh nrn‘h-nh-n e 'Fnr-l-'har hu > nvmﬂ-'lnh 1n tha -F::n'H-aA Nnranaca

e ot

environment. Some situations when process-level faults are
generated are:

® System level consistency failures.

-® Normal requests to the operating system interface.

® User errors, which may be misuse of the operating system
interface.

When an IP encounters a process-—level fault, the IP:

® Records information about the fault in the IP process'
process—level fault information area.

® SENDs the faulted process to a fault port.

® Updates the function state to "process-level fault".

® Interrupts the Attached Processor.

If a second fault occurs while the IP is handling a process-level
fault, this is considered a processor-level fault. If the IP
encounters a fault of process-level severity when it is not bound to
a process, the IP treats the situation as a processor-level fault.

6-3

iAPX 432 Interface Processor Architecture Reference Manual

The fault port is serviced by a 432 fault handling process where one
of four actions may be taken:

® Correct the reason for the fault and complete any partially
performed function by completing the unfinished steps.

® Correct the reason for the fault, rewind any partially performed
function steps, and then retry the function.

® Decide to reflect the process-level fault to the context-level.

® "Crash" the system.

The first two actions represent the method that an operating system
can use to extend the 432 architecture. For example, an operating
system's virtual memory implementation oonsiders a "storage not
associated" fault as a normal occurrance and retrieves the missing
memory segment. With the segment available, the fault handler can
decide to simulate the completion of the function or unwind the
partially completed function and rerun it.

Processor-Level Faults

Processor-level faults, the most severe level of faults, occur when
an IP detects a condition which jeopardizes further operation by the
processor. Bus errors and alarms are examples of such occurrences.
In response to the first processor-level fault encountered, the IP
reports the fault in the fault information area of the processor
data segment, updates the processor status to "faulted", and signals
an interrupt to inform the attached processor. If a second
processor-level fault occurs before the AP has recorded the fault
information, the IP closes all five of its windows into 432 memory,
including the control window, signals that a €fatal error has
occurred and indicates that the Peripheral Subsystem should be reset
(see FATAL/ and PSR pin descriptions in the iAPX 43203 Interface
Processor Data Sheet, Order Number 171874).

WINDOW-MAPPED DATA TRANSFER

Information about faults which occur during data transfer through
the windows is recorded in the mapping facility fault information
area oontained in the IP processor object. This information is
accessible to the AP through the control window. Each window (0
through 4) has a separate fault information area. When the fault
occurs, the IP deposits the fault information, closes the window,
puts the window in the error state, and interrupts the Attached
Processor. Only open windows can generate window mapping faults.

6-4

FAULTS

“"FATAL"
A
LT FLT FLT FLT
processor processor processor processor
ipsor.psor ipsor.psor ipsor.psor ipsor.psor
A
FLT FLT FLT PROCESSOR
FAULT
process process
iprcs.pres. ipres.pres.
FLT
context
iprcs.cixt. 7
PROCESS
FAULT
CONTEXT
FAULT
FAULT INFORMATION AREAS
. REFLECTED
LEGEND: T FAULT
: NO 4
FAULTED RESUME pres reserve
STATE RECORDING NORMAL ctxt psor

SUCCESSFUL
YES

OPERATION

iprcs object

ipsor object

Figure 6-1 Fault Reporting State

iAPX 432 Interface Processor Architecture Reference Manual

6-2. FAULT HANDLING

When an IP process encounters a process-level fault, it is
automatically sent to a 432 fault port to await service. A fault
handling 432 process is designated to service the faulted processes
waiting at the fault port. By design, IPs and GDPs share a common
base architecture, so IP faults may often be handled by software
similar to that used to service GDP faults. In cases where unique
IP attention is required, a special fault port must be constructed
to which faulted IP processes may be selectively re-sent and then
serviced by AP and/or GDP software.

APPENDIX A
SYSTEM OBJECT STRUCTURES

The object structures of Interface Processors are described below.
The only object structures described are for those whose form or
interpretation differ from GDP object structures. Note that the
values found in the length fields in the various objects described
below are encoded as "actual length minus 1" in bytes. Also note
that the object indices referred to below are of the same format as
access selectors with the entered access segment index subfield
uninteroreted. The displacement subfield is interpreted as an index
into the associated domain access segment.

A-1. CONTEXT OBJECTS

In the most general terms, contexts for Interface Processors and
General Data Processors serve the same purpose. They are used to
represent an access enviromment in which process execution can take
place. On closer inspection, however, the differences are
significant. For example, with Interface Processors there is no
concept of a sequential instruction stream. Instead the onlv
instructions executed by Interface Processors are functions
requested, one at a time, by software executing on the associated
Attached Processor. At a mundane level, this means that Interface
Processor contexts need not provide access to instruction segments
or overand stacks. More significantly, without a sequential
instruction stream there are no concepts of intracontext or
intercontext control flow either. This results in the binding
between Interface Processor processes and contexts being static. In
fact, oontext access and data segments are refinements of the
corresponding process access and data segments respectively.

Given these differences, an Interface Processor context represents
the access enviromment available within the 432 system to the
logical process being executed on the logical processor comprised of
the Interface Processor and the associated Attached Processor. The
overators provided by the Attached Processor affect the contents of
data segments in this enviromment via the address mapoing facility
of the Interface Processor. The operators provided by the Interface
Processor affect this enviromment via the function request facility
of the Interface Processor.

iAPX 432 Interface Processnr Architecture Reference Manual

A oontext object is represented by a context access segment and an
associated context data segment.

Context Access Segments
Diagrammatically, a context access segment is structured as shown

below.

entry

8 domain AD —4+—> defining domain

AS AD —}—» entered access segment 3

AS AD —~1—> entered access segment 2

AS AD —~— entered access segment 1

oontext AD —4—» context

AD -T—> message
AD —t—p reserved
context AD —+—> reserved

access
segment — (data seg. AD =p—» context data segment

The context access segment, context data segment, and domain access
descriptors in the context must be created without delete rights.
(Note that the defining domain access descriptor is not interpreted
by the hardware, but is preserved for software use.) The entered
access segment entries never bear delete rights.

The representation rights field of a context access segment access
descriptor is interpreted in the same manner as for all objects of
base type access segment. The type rights field of a context access
segment access descriptor is uninteroreted.

Context Data Segments

The only processor interoreted field in the context data segment is
the process status field which contains a combination of process and
context status. The form and interpretation of this field are
described in the process data segment section.

The reoresentation rights field of a context data segment access
descriptor is interpreted in the same manner as for all objects of
base type data segment. The tvpe rights field of a context data
segment access descriptor is uninterpreted.

A-2 Change 2

SYSTEM OBJECTS STRUCTURES

A-2. PROCESS OBJECTS

Logically, a process 1is the execution by a wprocessor of an
instruction stream within a specific enviromment. In a combined
Attached Processor/Interface Processor system, the IP process object
extends the execution environment of an AP process to logically
include a specific domain in the 432 address space. The execution
point moves, of course, as each instruction is executed because a
new instruction is automatically specified. Occasionally, as the
result of instruction execution, a new instruction stream within the
Attached Processor software is specified. Unless the AP process
should indicate its termination, the execution point continues to
move in this manner forever. There is thus a close and long-term
asscciation between the enviromment provided by an interface
process and a particular AP process. When a new AP process specifies
a function request, an Interface Processor makes the associated
interface process' execution enviromment available.

" A process object is represented by a process access segment and an
associated process data segment.
Process Access Segments

The hardware-recognized internal structure of a process access
segment is shown below.

1APX 432 Interface Processor Architecture Reference Manual

I
|

entry
refined
context
access
segment
12
11 carrier AD -}—» surrogate carrier
carrier AD =4—> current carrier
port AD —4— current port
AD ——> current message
AD ——» reserved
port AD —4—» fault port
port AD —4—> dispatching port
carrier AD ~4——» process carrier
AD =t reserved
AS Aap ——> global access segment
process context AD ——> context
access
segment = (data seg. AD —— process data segment

The representation rights field of a process access segment access
descriptor is interpreted in the same manner as for all objects of
base type access segment. The type rights field of a process access
segment access descriptor is uninterpreted.

A-4 Change 1

SYSTEM OBJECT STRUCTURES

Process Data Segments

The basic structure of a process data segment is shown below.

= = double bvte
displacement
refined
= context =
data
sSegment ,
94 I
process
= fault =
information
81
context
= fault =
information
68
= reserved =
9
process ID 8
= reserved =
2
process process status
data
segment =——>- object lock 0

The format and interpretation of the object lock field is the same
as for GDPs.

Change 2 A-5

iAPX 432 Interface Processor Architecture Reference Manual

For Release 2.0, the organization of the process status field is
interpreted as shown below.

xIx 9 bits xlxixixlx

- bound

e waiting for message
process faulted

b ready

ocontext faulted

reserved

null surrogate destination
first port done

The bound bit is interpreted as follows:

0 - this process is not bound to a processor
1 - this process is bound to a processor

The interpretation of the context and process faulted subfields
are as follows:

0 - not faulted
1 - faulted

The readv bit is interpreted as follows:

0 - this process is not usahle for function invocation
1 - this orocess is usable for function invocation

The format and interpretation of the waiting for message, null
surrogate destination, and first port done subfields are the same
for IPs as thev are for GDPs.

For the process ID field, the high-order 14-bit subfield contains
the actual process ID. The low-order 2-bit subfield must be zero.

Fault information for context, process, and processor level faults
has the same organization. Process oObjects contain fault
information for context and process level faults. Processor objects
contain fault information for processor level faults. Access to the
context fault information is made available to a context via the
software convention of vroviding a refinement for it in a known
entry of the process global access segment. The process fault
information area in the process object is used when a process-level
fault occurs and a orocess is bound to the processor. The processor
fault information area in the processor object is used when a
process level fault occurs and a process is not bound to the
processor. The organization of the fault information area is
described in Appendix C, the Fault Summarv.

A-6 Change 2

SYSTEM OBJECT STRUCTURES

The representation rights field of a process data segment access
descriptor is interpreted in the same manner as for all objects of
base type data segment. The tvpe rights field of a process data
segment access descriptor is uninterpreted.

For Release 2.1, the organization of the process status field is
shown below.

xIx 8 bits IxIxixlxixix

L bound

bee waiting for message
process faulted

readv

context faulted

fault vector

reserved

null surrogate destination
first port done

These status fields are interpreted as for Release 2.0, with the
exception of the fault vector field, which is interpreted as follows:

0 - this process may have process level faults

1 - treat all process level faults as context level faults
(If the context is already faulted, this becomes a
processor level fault)

A-3. PROCESSOR OBJECTS

An 432 Interface Processor consists of two cooperating processing
elements: a mapping facility and a function request facility. The
mapping facility translates Peripheral Subsystem addresses into 432
system addresses. The function request facility executes the
operator set described in Appendix B. The mapping facility and the
function request facility can run in parallel.

A processor object is represented by a processor access segment, an
associated processor data segment.

Processor Access Segments

Processor access segments are organized as shown below.

Change 2 A-7

iAPX 432 Interface Processor Architecture Reference Manual

entry
process
= gelection =
list
21
20
— b
data

— segments -

AD st reserved
AD ~—t—p reserved
AD —t— reserved

port AD —t-» normal dispatching port

carrier AD =t—> surrogate carrier

carrier AD =4=—» current carrier

port AD ~p—» current port

AD -4 current message

processor AD » processor object

data seg. AD =—4—» control window

carrier AD =}—» processor carrier

objtab dir AD =+—> object tabhle directory

comn. seg. AD =+—>» global communication segment

comm. seg. AD » local communication seqment
processor carrier AD » current process carrier
access
segment =——» 0 data seg. AD » processor data segment

Change 2

SYSTEM OBJECT STRUCTURES

The representation rights field of a processor access segment access
descriptor is interoreted in the same manner as for all objects of
base type access segment. The low order bit of the tvpe rights
field of a processor access descriptor is interpreted as follows:

0---an -interprocessor message may not be broadcast via the
global communication segment of this processor

1 - an interprocessor message may be broadcast via the global
communication segment of this processor

The mid-order bit of the tvpe rights field of a processor access
descriptor is interpreted as follows:

0 - an interprocessor messade may not be sent to this
processor via the local communication segment of this
DrOCessor

1 - an interorocessor message may be sent to this processor
via the local communication segment of this processor

The high-order bit of the type rights field of a processor access
descriotor is interpreted as follows:

0 - this access descriptor may not be used by SET PS MODE
or DISPATCH

1 - this access descriptor may be used by SET PS MODE or
DISPATCH -

The carrier AD field identified as the "current process carrier" in
Release 2.0 becomes the carrier AD for the "dispatched process
carrier" in Release 2.1. Thus, in Release 2.1, the carrier to the
process being dispatched, via DISPATCH or IPC 0 (Wake-up), is
available for fault handling.

Processor Data Segments

The intended use of this data segment is as instance specific
control information, for recording a cooy of the processor-resident
information contained in the function request facility and the
maoping facility, for recording fault information, and as randomly
addressable scalar working storage. The cooy of processor-resident
information in the processor data segment is wodated by the
processor whenever a significant state change to that information
occurs (i.e., function completion or block transfer completion).
The area above double-byte displacement four is made visible to
Attached Processor software through the control window (window 4).

The information in the processor data segment is organized as shown
~in the diagram below.

Change 2 ' ' A-9

iAPX 432 Interface Processor Architecture Reference Manual

double byte
= = displacement
control
= window =
area
4
reserved
cur. prcs idx.
processor psor status
data
Segment — object lock 0

The processor status field is shown below.

8 bits [xlxixlxlx|xxx

l-— processor state

process already suspended
b faulted

reference mode
e stoppEd

broadcast accept. moie
vrocessor ID

The processor state subfield is interpreted as follows:

000 - idle
001 - process execution
010 - 111 - reserved

The vrocess already suspended subfield is used internally for the
implementation of the DISPATCH opetator.

The interpretation of the faulted subfield is as follows:

0 - not faulted
1 - faulted

The reference mode subfield specifies whether the references in
function requests are logical or physical. In logical reference
mode, function request references are relative to the four—component
access enviromment generated by the current context. In physical
reference mode, function request references are simply 24-bit
vhysical addresses.

A-10 Change 2

SYSTEM OBJECT STRUCTURES

The reference mode subfield is interpreted as follows: l

0 - using phvsical mode
1 - using logical mode

The stopped bit is interpreted as follows:

0 - ruming
1 - stooped

The broadcast acceptance mode bit is interpreted as follows:

0 - broadcast interprocessor messages are not being
accepted and acknowledged

1 - broadcast interprocessor messages are being accepted
or acknowledged

Note that the vprocessor ID fields in the processor data segment and
the local communication segment are filled in by the associated
processor at initialization time from externally read information.

The representation rights field of a processor data segment access
descriptor is interpreted in the same manner as for all segments of
base tvoe data segment. The tyoe rights field of a processor data
segment access descriptor is uninterpreted.

Control Window Area -

The oontrol window area oonsists of several major subareas and
several minor ones. The primary purpose of these areas is to-
provide Attached Processor software access to state information
describing recent state changes in the function request facility and
the mapping facility and occurrances of asynchronous events.

Change 2 A-11

iAPX 432 Interface Processor Architecture Reference Manual

double byte
= = displacement
76
processor
= fault =
information
64

selected state | 63

selected idx. 62

61
maoping
facility
= fault =
information
52
mapping
= facility =
28
reserved 27

IPC fun. req. 26

function

request
facility

]
]

reserved

reconfig. state

disp. state

alarm state

control IPC state
window
area e PS state 0

A-12 Change 2

SYSTEM OBJECT STRUCTURES

Peripheral Subsystem State Field -

The organization of the Peripheral Subsystem state field is shown
below.

12 bits jxyixx

X
l— write sample delav
b xack delav
interrupt inhibit
reserved

The write sample delay field and the xack delay field program the
characteristics of the IP component interface to the Peripheral
Subsystem. (See the iAPX 43203 VLSI Interface Processor Data Sheet,
Order Number 171874, for details.) Several combinations of the XACK
delay/write sample delay subfields are illegal:

XACK Write Sample

01l 1
10 0
11 0
11 1

In Release 2.0, if the interrupt inhibit field is a 1, the IP
inhibits normal function completion interrupts hut continues to pass
all other interrupts to the AP. If the interruot inhibit field is
0, the IP reports context, process, and processor faults, as well as
normal function completion, with an interrupt.

In Release 2.1, if the interruot inhibit field is set to 1, the IP
inhibits both normal function completion interrupts and context,
process, or processor level fault interrupts. In such cases the
function state word in the function request area must be checked to
detect any of the above interrupts. However, IPCs, processor
initialization, active window faults, and processor fatal faults
will still cause interrupts.

IPC State Field -

The IPC state field is used to indicate that the ovrocessor has
responded to an interprocessor communication signal and signalled
the associated Peripheral Subsystem via interrupt. It has the
following organization.

14 bits [xlx

L Tlocal IPC response
te—— global IPC response
e reserved

Charge 2 A-13

iAPX 432 Interface Processor Architecture Reference Manual

With either IPC response flag, a value of zero indicates that no
such response has occured and a value of one indicates that such a
response has occured.

Alarm, Dispatching, and Reconfiguration State Fields -

The alarm, dispatching ("select process"), and reconfiguration state
fieélds are used to indicate that the orocessor has responded to that
tyoe of signal amd signalled the associated Peripheral Subsystem via
interrupt. Each has the following organization.

15 bits |x

l—- response

b reserved

With the resoonse flag, a value of zero indicates that no such
resoonse has occured and a value of one indicates that such a
response has occured.

Function Request Facility Area -

The function request facility is the part of the Interface Processor
which accepts function requests and performs the requested function.
The function request facility area of the processor data segment
contains a copy of the processor-resident information related to the
current or most recent function requested. As shown.helow, the area
consists of five contiguous parts. The first part contains the
process selection index for the execution enviromment in which the
function should be performed. The second part contains the function
state information. The third wvart contains the oo-code of the
operator requested. The fourth vart contains the operands operated
upon in verforming the requested function. The fifth part is used
to record the result of the requested function.

= = double bvte
displacement
25
function
result
16
operands
9
overator 8
function state | 7
prcs idx. 6

A-14 Chanqe 2

SYSTEM OBJECT STRUCTURES

Function State Field -

The function state field is used to describe the current state of
the function request facility. It has the following organization.

8 bits IR ¥ XXX

I—— function completion state
b SEND completion state
RECEIVE completion state
fault level

reserved

The interpretation of the function completion state subfield is as
follows:

0000 - function completed
0001 - function in progress
0010 - 1111 - reserved

The interpretation of the SEND or RECEIVE completion state subfields
is as follows:

0 - completed
1 - blocked

The fault level subfield indicates whether a fault which has occured
is context-level, process-level, or wprocessor-level. The fault
handler requires this information in order to know where the fault
information has been stored. The interpretation of the fault level
subfield is as follows:

00 - none

01 - context-level fault
10 - process-level fault
11 - processor-level fault

Mapping Facility Area -

The mapping facility oonsists of five map entries capable of
supporting the random mapping of five non-overlapping address
subranges from the Peripheral Subsystem into correspondmg 432 data
segments. One of these map entries (entry 0) is capable of
supporting block transfer as well as random mapping. One map entry
(entry 1) is capable of supporting mapping into the 432
interconnection address space as well as random mapping. One map
entry (entry 4) and its associated Peripheral Subsystem address
subrange always maps onto the processor data segment. The two major
purposes of this subrange are to capture references to the function
request facility and to allow Attached Processor software to read

A-15

iAPX 432 Interface Processor Architecture Reference Manual

current status information. When operands are read from this
subrange or written into this subrange, the processor data segment
is accessed. Data written into the part of the subrange
representing the function request facility is capotured when no
function is in progress. During function execution, Attached
Processor software must not make further function requests.

At the base of the mapping facility area, the extra information for
supporting block transfer via map entry 0 is recorded in a data
structure with the following organization.

= = double bvyte
displacement
reserved 31
P. S. disp.
432 dismo.

block count 28

When the transfer mode subfield of the entry state field for map
entry 0 indicates that it is in block transfer mode, the
processor-resident copy of the block count field indicates the
number of bytes remaining to be transferred for transfer termination
to occur normally (i.e., upon oount runout). Whenever normal
transfer termination occurs, both copies of the block count field
are zero. Whenever normal transfer termination does not occur, such
as in the case of faults, both copies of the block count field
indicate the number of remaining, but not transferred, bvtes.

When the transfer mode subfield of the entry state field for map
entry 0 indicates that it 1is 1in block transfer mode, the
processor-resident copy of the 432 displacement field indicates the
displacement into the associated data segment of the next hyvte to be
transferred.

When the transfer mode subfield of the entry state field for map
entry 0 indicates that it is in block transfer mode, the
processor-resident copy of the Peripheral Subsystem displacement
field indicates the displacement into the associated Peripheral
Subsystem address range of the next byte to be transferred.

Any difference between the values of the two displacement fields
accounts for data in the processor-resident buffers which was not
successfully transfered.

Note that the values returned in the count and displacement fields

just described are encoded as "actual length," as opposed to "actual
length minus 1."

A-16 Change 2

SYSTEM OBJECT STRUCTURES

Above the block transfer information, a copy of the information
contained in each of the processor-resident map entries (0 through
4) 1is represented by a data structure with the following
organization. Note that when an Interface Processor makes the
transition from physical reference mode to logical reference mode,
the memorv-resident map entry information for entry 4 is "read only"
and is used to. establish the maoping for that entry when the
processor enters logical mode.

= = double byte
displacement
base disp. 3

mask

base address

entry state 0

The entry state field is used to describe the current state of the
given map entrv. It has the following organization.

9 hits x|xx]xx|xlx

L map valid

t—— transfer mode
e transfer direction
transfer state
memory overlav
reserved

The 1-bit map valid subfield indicates whether or not this map entrv
is currently in use. If the bit is zero, this map entry is not used
in Peripheral Subsystem address inspection. If the bit is one, this
map entry is used in Peripheral Subsystem address inspection. The
processor-resident cooy of this subfield is checked by the mapping
facility each time a Peripheral Subsystem address is received for
inspection.

For map entry 0, the 1-bit transfer mode subfield indicates whether
this map entry is in random or block transfer mode. A value of zero
indicates that this map entry is in random mode. A value of one
indicates that this map entry is in block transfer mode. For map
entry 1, the 1-bit transfer mode subfield indicates whether this mao
entry maps Perivheral Subsvstem addresses into the 432 address space
or the interconnection address space. A value of zero indicates
that this map entry is in 432 mapping mode. A value of one
indicates that this map entrv is in interconnection mapping mode.
For the remaining mao entries, the setting of this subfield causes a I
fault.

Change 2 ' A-17

iAPX 432 Interface Processor Architecture Reference Manual

The 2-bit transfer direction subfield indicates the types of
read/write requests from the associated Peripheral Subsystem which
are valid with respect to this map entry. The low order bit of the
transfer direction subfield is interpreted as follows:

0 - reading may not occur
1 - reading may occur

The high order bit of the transfer direction subfield is interpreted
as follows:

0 - writing mav not occur
1 - writing mav occur

Note that both bits may not be set when setting block transfer mode.

The 2-bit transfer state subfield indicates the state of the
transfer. It is encoded as follows:

00 - transfer in progress
01 - transfer terminated upon count runout
10 - transfer termination forced

11 - transfer termination upon fault

The 1l-bit memory overlay subfield indicates whether or not the
Peripheral Subsystem address subrange associated with this map entry
overlays ohysical memory in the Perivheral Subsystem. If physical
memory is overlayed, whenever an address is mapped via this entrv a
Peripheral Subsystem bus protocol is employed which prevents that
overlaved memorvy from responding. A value of zero indicates that no
memory is overlaved. A value of one indicates that memory is
overlaved.

The base address field is used to specify the starting address of
the Peripheral Subsystem address subrange mapped by this map entry.
Subranges are 2**n bytes in length with n being in the range zero to
sixteen. A subrange of a given power of two in size must appear on
an addressing boundarv of the same power of two (e.qg., a 16 byte
subrange must begin on a 16 byte boundary). Stated another way, a
subrange of 2**n bytes in length will thus have a starting address
containing at least n trailing zeros. Base addresses are always an
integer multiple of an integer power of two (i.e., m*2**n), The n
is as described above. The m is any integer such that the above
conditions hold and the value of the starting address is limited to
the range 0 to 65,535.

The mask field contains a mask which is used to specify the size of
the Peripheral Subsystem address subrange to be mavoed by this map
entry. The mask is oomposed of two oontiguous bit string
subfields. The higher-order bit string contains all ones. The
lower-order bit string ocontains all zeros. The maoped address
subrange is 2**(number of zeros in the lower-order bit string) bytes
in length beginning at the starting address.

A-18

SYSTEM OBJECTS STRUCTURES

The base displacement field contains the byte displacement into the
432 segment used to construct a refinement of a data segment. See
Figure 3-2 for an illustration of the role of a window's base
displacement in forming a refinement.

 Mapping Facility Fault Information Area -

The mapping facility fault information area consists of an entry
fault code and fault displacement pair for each map entry.
Diagrammatically, the fault information for each map entry appears
as shown below.

fault disp

fault code

Each entry fault code field is used to record the cause of the last
fault associated with that map entry. It has the following
organization.

x| 6 bits xlxixixixIxixixix

l— read/write

e bus error

e 3CCESS rights
segment bound

e MemOry over flow

access direction

post termination

partial block overflow

block overflow

reserved

block termination

(internal use)

The 1-bit read/write subfield indicates whether the associated fault
was caused by a read request or a write request. A value of zero
indicates that the fault was caused by a read request. A value of
one indicates that the fault was caused by a write request.

The 1-bit bus error subfield indicates whether or not the associated
fault was caused by a 432 bus error. A value of zero indicates that
the fault was not caused by a bus error. A value of one indicates
that the fault was caused by a bus error.

A-19

iAPX 432 Interface Processor Architecture Reference Manual

The 1-bit segment bound subfield indicates whether or not the
associated fault was caused by a segment bounds violation. A wvalue
of zero indicates that the fault was not caused by a segment bounds
violation. A value of one indicates that the fault was caused by a
segment bounds violation.

The 1-bit memory overflow subfield indicates whether or not the
associated fault was caused by a memory overflow. A memory overflow
occurs when the sum of the physical base address in bytes of a
segment being accessed plus the byte displacement to the operand
being accessed exceeds 16,777,215 (i.e. 2**24-1), A value of zero
indicates that the fault was not caused by a memory overflow. A
value of one indicates that the fault was caused by a memory
over flow.

The 1l-bit access direction subfield indicates whether or not the
associated fault was caused by an access direction error. An access
direction error occurs when the transfer direction subfield of the
corresponding map entry state indicates that the requested access
direction (either read or write) is invalid. A value of zero
indicates that the fault was not caused by an access direction
error. A value of one indicates that the fault was caused by an
access direction error.

The 1l-bit post termination subfield indicates whether or not the
associated fault was caused by a post termination error. A post
termination error occurs when an access is attempted after a
transfer via the associated map entry has terminated. A value of
zero indicates that the fault was not caused by a post termination
error. A value of one indicates that the fault was caused by a post
termination error.

The 1-bit partial block overflow subfield indicates whether or not
the associated fault was caused by a partial block overflow. A
partial block overflow occurs when there is one byte left to be
transfered in a block and a double-byte request is made. A value of
zero indicates that the fault was not caused by a partial block
overflow. A value of one indicates that the fault was caused by a
partial block overflow.

The 1l-bit block overflow subfield indicates whether or not the
associated fault was caused by a block overflow. A block overflow
occurs when the block count is zero, the Peripheral Subsystem
attempts an access, and the map entry state has not yet been
updated. A value of zero indicates that the fault was not caused by
a block overflow. A value of one indicates that the fault was
caused by a block overflow.

A-20

SYSTEM OBJECT STRUCTURES

Selected Index and Selected State Fields -

The selected index and selected state fields are filled in by the
processor from information found in the process carrier data segment
at process selection time, i.e when a "select process" IPC is
received. The selected index is a process selection index used to
commmnicate to Attached -Processor software which process from the
process selection list has just been bound to the processor. The
selected index is obtained from the double byte quantitv located at
a displacement of eight double bytes into the process carrier data
segment. The selected state is uninterpreted by processors and is
obtained from the double byte quantity located at a displacement of
nine double bytes into the process carrier data segment.

Processor Fault Information Area

The organization of the processor fault information area is
described in Appendix C.

Local and Global Communication Segments

Both local and global communication segments used by IPs have the
same format and interpretation as the corresponding objects emploved
bv GDPs.

IPC Message Field

The IPC message field contains one of the following function request
encodings. Message codes 0 through 7 represent IPC messages which
are common between GDPs and IPs. Message codes 15, 16, and 17 are
messages specific to Interface Processors. Message codes 9 through
14 are defined for GDPs but are unused by IPs.

0 - Select Process - causes the processor to examine its carrier
to determine if a process was received. If
a process was received, the oprocess is
selected, the dispatching flag is set, and
the selected state and selected index fields
are copied from the process carrier data
segment to the control window. The current
process index field is invalidated when this
IPC is received.

1 - Start Processor
2 - Stop Processor

3 - Set Broadcast Acceptance Mode

Change 1 A-21

iAPX 432 Interface Processor Architecture Reference Manual

>
|

Clear Broadcast Accevtance Mode

Ul
i

Flush Object Table (Release 2.0)

In Release 2.1, IPC 5 becomes "Flush Object Table and
Invalidate Process Selection Index." 1In Release 2.1, use of
this IPC will force requalification of the process object if
the same process is used on the next operator.

6 - Suspend and Fully Requalify Processor

~
I

Suspend and Requalify Processor

8 - Invalidate Process Selection Index - causes the IP equivalent
of a suspend and
requalify orocess.

9

14 - Unused

15

Close (Invalidate) Windows and Unlock I/0 Tocks
(on windows 0-3)

16 - Generate PS Reset

17 - Close (Invalidate) Windows and Unlock I/O Locks
(on windows 0-3) and Enter Physical Mode

The representation rights of a coommunication segment access
descriptor are interpreted in same manner as for all segments of
base type data segment. The tvoe rights field of a communication
segment is uninterpreted.

A-22 Change 2

APPENDIX B
FUNCTION SUMMARY

Amoendix B summarizes the Interface Processor functions. Three

lists are provided to assist in locating the page which contains a
particular function descriotion.

One list, Table B-l, organizes the function set by alphabetical
order. Table B-2 organizes the function set by increasing function
code number and is particularly useful when debugging IP controller
software. Table B-3 organizes the function set by operator id codes
and is especially useful when debugging IP fault handling software.

The template for function descriptions is shown on vage B-5. All
function descriptions follow this style of presentation.

iAPX 432 Interface Processor Architecture Reference Manual

TABLE B-1

ALPHABETICAL INDEX TO TP FUNCTIONS

HEX DECIMAL
FUNCTION OPERATOR

FUNCTION NAME CODE ID
(Logical Mode Functions)

ALTER MAP AND SELECT DATA SEGMENT 00 0
AMPLIFY RIGHTS 08 8
BROADCAST TO PROCESSORS 18 24
CONDITIONAL RECEIVE 15 21
CONDITIONAL SEND 13 19
COPY ACCESS DESCRIPTOR 04 4
DISPATCH 1B 27
ENTER ACCESS SEGMENT ' 07 7
ENTER GLOBAL ACCESS SEGMENT 06 6
INDIVISIBLE ADD SHORT ORDINAL 19 25
INDIVISIBLE INSERT SHORT ORDINAL 1A 26
INSPECT ACCESS DESCRIPTOR OE 14
INSPECT OBJECT OF 15
LOCK OBJECT 10 16
NULL AQCESS DESCRIPTOR 05 5
READ PROCESSOR STATUS 03 3
RECEIVE 14 20
RESTRICT RIGHTS 09 9
RETRIEVE PUBLIC TYPE REPRESENTATION 0B 11
RETRIEVE TYPE DEFINITION ocC 12
RETRIEVE TYPE REPRESENTATION 121 10
SEND 12 18
SEND TO PROCESSOR 01 1
SET' PERIPHERAI, SUBSYSTEM MODE 02 2
SURROGATE RECEIVE 17 23
SURROGATE SEND 16 22
UNLOCK OBJECT 11 17

(Physical Mode Functions)

PAGE

B-10
B-11
B-12
B-12.5
B-13
B-14
B-15
B-16
B-18

B-19
B-20
B-21
B-22
B-23
B-24
B-27
B-25
B-28
B-29
B-31

B-33

ALTER MAP AND SELECT PHYSICAL SEGMENT 00 0

READ PROCESSOR STATUS ' 03 3 B-21

SEND TO PROCESSOR : 01 1 B-30

SET PERITPHERAL SUBSYSTEM MODE 02 2 B-31

B-2 Chanae 2

FUNCTION SUMMARY

TABLE B-2
TP FUNCTION SUMMARY BY FUNCTION CODE
HEX DECIMAL
FUNCTION OPERATOR
CODE FUNCTION NAME 1D PAGE
(Logical Mode Functions)
00 ALTER MAP AND SELECT DATA SEGMENT 0 B-6
01 SEND TO PROCESSOR 1 B-29
02 SET PERTPHERAL, SUBSYSTEM MODE 2 B-31
03 READ PROCESSOR STATUS 3 B-21
04 QOPY ACCESS DESCRIPTOR 4 B-12
05 NULL ACCESS DESCRIPTOR 5 B-20
06 ENTER GLOBAL ACCESS SEGMENT 6 B-14
07 ENTER ACCESS SEGMENT 7 B-13
08 AMPLIFY RIGHTS 8 B-8
09 RESTRICT RIGHTS 9 B-23
(1):Y RETRIEVE TYPE REPRESENTATION 10 B-25
0B RETRIEVE PUBLIC TYPE REPRESENTATION 11 B-24
ocC RETRIEVE TYPE DEFINITION 12 B-27
OE INSPECT ACCESS DESCRIPTOR 14 B-18
OF INSPECT OBJECT 15 B-17
10 LOCK OBJECT 16 B-19
11 UNLOCK OBJECT 17 B-34
12 SEND 18 B-28
13 CONDITIONAL SEND 19 B-11
14 RECEIVE 20 B-22
15 CONDITIONAL RECEIVE 21 B-10
16 SURROGATE SEND 22 B-33
17 SURROGATE RECEIVE 23 B-32
18 BROADCAST TO PROCESSORS 24 B-9
19 INDIVISIBIE ADD SHORT ORDINAL 25 B-15
1A INDIVISIBLE INSERT SHORT ORDINAL 26 B-16
1B DISPATCH 27 B-12.5
(Physical Mode Functions)
00 ALTER MAP AND SELECT PHYSICAL SEGMENT 0 B-7
01 SEND TO PROCESSOR 1 B-30
02 SET PERIPHERAL SUBSYSTEM MODE 2 B-31
03 READ PROCESSOR STATUS 3 B-21:

Change 2 B-3

iAPX 432 Interface Processor Architecture Reference Manual

TABLE B-3

IP FUNCTION SUMMARY BY OPERATOR ID

DECIMAL HEX
OPERATOR FUNCTION
) FUNCTION NAME CODE PAGE
(Logical Mode Functions)
0 ALTER MAP AND SELECT DATA SEGMENT 00 B-6
1 SEND TO PROCESSOR 01 B-29
2 SET PERTPHERAL SUBSYSTEM MODE 02 B-31
3 READ PROCESSOR STATUS 03 B-21
4 COPY ACCESS DESCRIPTOR 04 B-12
5 NULL ACCESS DESCRIPTOR 05 B-20
6 ENTER GLOBAL ACCESS SEGMENT 06 B-14
7 ENTER ACCESS SEGMENT 07 B-13
8 AMPLIFY RIGHTS 08 B-8
9 RESTRICT RIGHTS 09 B-23
10 RETRIEVE TYPE REPRESENTATION oA B-25
1 RETRIEVE PUBLIC TYPE REPRESENTATION 0B B-24
12 RETRIEVE TYPE DEFINITION oC B-27
14 INSPECT ACCESS DESCRIPTOR 0E B~18
15 INSPECT OBJECT OF B-17
16 LOCK OBJECT 10 B-19
17 UNLOCK OBJECT 11 B-34
18 SEND 12 B-28
19 CONDITIONAL SEND 13 B-11
20 RECEIVE 14 B-22
21 CONDITIONAL RECEIVE 15 B-10
22 SURROGATE SEND 16 B-33
23 SURROGATE RECEIVE 17 B-32
24 BROADCAST TO PROCESSORS 18 B-9
25 INDIVISIBIE ADD SHORT ORDINAL 19 B-15
26 INDIVISIBIE INSERT SHORT ORDINAL 1A B-16
27 DISPATCH 1B B-12.5
(Physical Mode Functions)
0 ALTER MAP AND SELECT PHYSICAL SEGMENT 00 B-7
1 SEND TO PROCESSOR 01 B-30
2 SET PERIPHERAL: SUBSYSTEM MODE 02 B-31
3 READ PROCESSOR STATUS 03 B-21
B-4 Ch

FUNCTION SUMMARY

FUNCTION TEMPLATE
Operator ID: ID

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved ' 14H
operand 0 reserved 124
IP function code OXXH (FUNCTION NAME) 10H
function state reserved OEH
process selection index PROCESS INDEX ocH

Note:

Required operands and available results are indicated bv capital
letters. Other areas are marked reserved.

The IP function code must be written into the function request
facility last, i.e. only after all overands are provided. The
function code occuvies only location 10H. Byte location 11H is
reserved.

The vprocess selection index field is required on all IP function
requests. This value (an access descriptor displacement) is
used as an byte offset into the process selection list of the IP
processor access segment. For example, the process selection
index for orocess number 5 is 0000000000010100g, Since it is
not modified by function execution, it need not be rewritten if
a new function is to be executed in the same vprocess environment
as the previous function.

The function state field, shown as reserved in all function
sumaries, may be examined after the IP receives an interrupt or
it may be polled. The function state field should be set to
zero before a function code is dJdeposited. Interrupts for
successful function completion may he selectivelv Aisabled.

B-5

iAPX 432 Interface Processor Architecture Reference Manual

ALTER MAP AND SELECT DATA SEGMENT
Operator ID: 3

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 BLOCK COUNT 1EH
operand 5 | BASE DISPLACEMENT 1CH
operand 4 SOURCE ACCESS SELECTOR 1AH
operand 3 MASK 181
operand 2 BASE ADDRESS 16H
overand 1 ENTRY STATE 14H
operand 0 WINDOW INDEX 12H
IP function code 000H (ALTER MAP AND
SELECT DATA SEGMENT) 10H
function state reserved OEH
process selection index PROCESS INDEX OCH

ALTER MAP AND SELECT DATA SEGMENT allows an operation to alter the
inter—-address space mapping provided by one of the address subrange map
entries and to associate a given 432 or interconnect data segment with
that address subrange map entry. The first operand is a double byte
specifying which map entrv/data segment, segment Aescriotor register is
to be altered. This ooerator can only be used to affect map entries 0
through 3. The second operand is a double byte containing new entrv
state information. The third operand is a Aouble byte containing the
starting address of the new subrange to be mapped. The fourth overand
is a double byte containing the mask used to specify size of the new
subrange. The fifth operand specifies an access descriptor for the new
data segment. This data segment access descriptor is copied into the
mapped segment entry in the current context associated with the map
entry being altered. The sixth operand is a double byte specifying the
initial displacement into the data segment for the block transfer to
start or wpseudo-refinement. If the new entry state information
svecifies that this entrv is being set up in block transfer mode, the
seventh operand is a double byte containing a count of the number bytes
minus one to be transferred. Note that this operator is unique to 432
Interface Processors. If the new entry state information specifies
that the window is to be closed (set "invalid") then only the first two
overands are required.

B-6 Change 1

FUNCTION SUMMARY

ALTER MAP AND SELECT PHYSICAL SEQMENT
Operator ID: 3

) Hex Byte
Contents Function Request Facility Offset
results 0 through 9 reserved 20H-33H
operard 6 reserved 1EH
operand 5 {PHYSICAL ADDRESS (high 8) ‘1CH
operand 4 |PHYSICAL ADDRESS(low 16) 12H
operand 3 MASK 18H
operand 2 BASE ADDRESS 16H
operand 1 ENTRY STATE 14H
operand 0 WINDOW INDEX | 128 -
IP function code 000H (ALTER MAP AND
SELECT PHYSICAL SEGMENT) 10H
function state reserved \ OEH
process selection index PROCESS INDEX 0CH

ALTER MAP AND SELECT PHYSICAL SEQMENT allows an operation to alter
the inter—-address space mapping provided by one of the address
subrange map entries and to associate a given 432 or interconnect
physical segment with that address subrange map entry. This
physical mode operator 1is the equivalent of the logical mode
operator ALTER MAP AND SELECT DATA SEGMENT, One difference is that
the mapping facilitv area is not updated by this operator. Another
difference is that map entry 4 can be updated by this operator. The
first operand is a double byte specifying which map entry/data
segment, segment descriptor register is to be altered. The second
operand is a double byte ocontaining new entry state information.
The third operand is a double byvte containing the starting address
of the new subrange to be mapped. The fourth overand is a double
byte containing the mask used to specify size of the new subrange.
The fifth and sixth operands are a word (32 bits) containing the
right-justified, 24-bit, physical base address of the segment in the
432 address space. If the new entry state information specifies
that this entry is being set up in block transfer mode, the sixth
operand is also used as a ocount of the number of bytes to be
transferred. If the new entry state information specifies random
mode, then the segment in the 432 address space is set to the
maximum length (65,536 bytes) and the sixth operand is ignored.
Note that this overator is unique to 432 interface processors.

Change 2 B-7

iAPX 432 Interface Processor Architecture Reference Manual

AMPT.IFY RIGHTS
Operator ID: 11

Hex Byte
Contents Function Request Facility = Offset

results 0 through 9 reserved 20H-33H
operard 6 reserved 1EH
operard 5 reserved 1CH
overard 4 reserved 1aH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 | DESC CTRL ACC SELECTOR 149
operand 0 DEST ACCESS SELECTOR 12r
IP function code 008H (AMPLIFY RIGHTS) 10H
function state reserved OEH
process selection index PROCESS INDEX OCH

AMPLIFY RIGHTS allows an operation to alter, under control of a
protected type control object, the set of rights and type control
information in the associated access descriptor. The first operand
contains the access selector for an access descriptor for the given
object. The second operand contains the access selector for a type
control object access descriptor. The resultant new access
descriptor overwrites the original access descriptor for the given
object. Thus, the destination access segment entry is the same as
the source access segment entry.

B-8 Change 1

FUNCTION SUMMARY

BROADCAST TO PROCESSORS
Operator ID: 27

Hex Byte
Contents Function Request Facilitv Offset
results 1 through 9 reserved 22H-33H
result 0 BOOLEAN 20H
operand 6 reserved 1EH
operard 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 DESTINATION PROCESSOR
ACCESS SELECTOR 14H
operand 0 IPC MESSAGE 12H
TP function code 018H (RROANCAST TO
PROCESSORS) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

BROADCAST TO PROCESSORS allows a process to broadcast an
interprocessor message to all the processors in the system,
including the processor it is executing on, via the interprocessor
communication mechanism. The first operand contains the
interprocessor message. The second operand contains the access
selector for an access descriptor for the desired processor object.
The boolean result, which is set to true if the control flags are
deposited, is stored in the function result area.

Change 1 B-9

iAPX 432 Interface Processor Architecture Reference Manual

CONDITIONAL RECEIVE

Operator ID: 24

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 reserved 22H-33H
result 0 BOOLEAN 20H
operand 6 reserved 1E4
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 181
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 PORT ACCESS SELECTOR 12H

IP function code 015H (CONDITIONAL

RECEIVE) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

CONDITIONAL RECEIVE allows a process to check for the availability
of a message at a port and to indivisibly accept it if one is

available.

The first operand is used.

The boolean result, which

is set to true if a message is received, is stored in the function
result area.

B-10

Change 1

FUNCTION SUMMARY

CONDITIONAL SEND
Operator ID: 22

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 reserved 22H-33H

result 0 BOOLEAN 20H
operand 6 reserved ~ 1EH
operand 5 reserved 1cH
operand 4 reserved ; 1AH

operand 3 MESSAGE ACCESS SELECTOR 18H

operand 2 reserved 16H

overand 1 reserved 14H

operand 0 PORT ACCESS SELECTOR 12H

IP function code 013H (CONDITIONAL SEND) 108
function state reserved OEH

process selection index PROCESS INDEX 0CH

CONDITIONAL SEND allows a process to check for the availability of
queue space at a port and to indivisibly deliver a message if space
is available. The first and fourth operands are used. The boolean
result, which is set to true if a message is deposited, is stored in
the function result area.

Change 1 B-11

FUNCTION SUMMARY

DISPATCH (ILogical Mode Only)
Operator ID: 30

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operard 6 reserved 1EH
operard 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 | PROCESSOR ACC SELECTOR 12H
IP function code 01BH (DISPATCH) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

DISPATCH does a surrogate receive from the processor's normal
dispatching port using the vrocessor carrier. If the dispatching
port is empty, the carrier blocks there and the instruction
terminates. (When a process eventually arrives at the dispatch port
to unblock the carrier, a wake-up IPC is given to the processor.)
If DISPATCH succeeds in finding a process at the dispatch port, the
processor continues executing as if a wake-up IPC had been received
(except that no IPC interrupt is generated), with the dispatching
state, selected process index, and function state in the function
request area being updated. (That is, the inhibit semantics still
apply, even if the wake-up request is executed.) The AP can
determine if the dispatch was successful by examining the
dispatching state. The operand contains an access selector for an
access descriptor for the processor object of the processor on which
the operation is being executed. Note that this operator is unique
to 432 interface vprocessors.

Change 2 B-12.5

iAPX 432 Interface Processor Architecture Reference Manual

This page intentionally left blank.

B-12.6 Change 2

iAPX 432 Interface Processor Architecture Reference Manual

QOPY ACCESS DESCRIPTOR
Operator ID: 7

Hex Byte
Contents Function Request Facilitv Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
overand 2 reserved 16H
operand 1 SOURCE ACCESS SELECTOR 14H
operand 0 DEST ACCESS SELECTOR 124

IP function code 004H (COPY ACCESS

DESCRIPTOR) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CcH

COPY ACCESS DESCRIPTOR allows an operation to copy an access
descriptor from a specified entry in any directly accessible access
segment to a specified entry in any directly accessible access
segment. The first operand contains the access selector for the
destination access segment entrv. The second overand contains the
access selector for the access descriptor to be copied.

B-12 Change 1

FUNCTION SUMMARY

ENTER ACCESS SEGMENT
Operator ID: 1

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1cH
overand 4 reserved 1AH
ope‘rand 3 reserved léH
operand. 2 reserved 16H
operand 1 SOURCE ACCESS SELECTOR 144
operand 0 EAS INDEX 128

IP function code 007H (ENTER ACCESS

SEQMENT) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

ENTER ACCESS SEGMENT allows an overation to gain direct access to
the access descriptors in a specified access segment. The first
operand contains the index (range 1 - 3) for the destination access
segment entry (EAS). The second overand contains the access
selector for an access descrivtor for the access segment to be
entered. :

Change 1 B-13

iAPX 432 Interface Processor Architecture Reference Manual

ENTER GLOBAL ACCESS SEGQMENT
Operator ID: 9

Hex Byte
Contents PFunction Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
overand 2 reserved 16H
operand 1 reserved 14H
operand 0 EAS INDEX 12H

IP function code 006H (ENTER GLOBAL

ACCESS SEGMENT) 10H
function state reserved OEH
process selection index PROCESS INDEX OCH

ENTER GLOBAL ACCESS SE®MENT allows an operation to gain direct
access to the access descriptors in the access segment provided
implicitly via the currently associated process object. The operand
contains the index (range 1 - 3) for the destination access segment
entry (EAS).

B-14 - Change 1

FUNCTION SUMMARY

INDIVISIBLE ADD SHORT ORDINAL

Contents

Operator ID: 28

Function Request Facility

results 1 through 9
result 0

operand 6

operand 5

operand 4

operand 3

operand 2

operand 1

operand 0

IP function code

function state

process selection index

reserved

ORIGINAL VALUE

reserved

reserved

reserved

reserved

VALUE

DISPLACEMENT

SOURCE ACCESS SELECTOR

019H (INDIVISIBLE ADD
SHORT ORDINAL)

reserved

PROCESS INDEX

Hex Byte
Offset

22H-33H
20H
1EH
1CH
1aH
18H
leH
14H

12H

10H
OEH

OCH

The result of adding the short-ordinal source value located by the

first two operands (access selector

andd displacement) to the

short-ordinal third overand indivisibly replaces the source value.
The original source value is stored in the function result area.

A short-ordinal overflow fault cannot occur.

Change 1

B-15

iAPX 432 Interface Processor Architecture Reference Manual

INDIVISIBIE INSERT SHORT ORDINAL

Operator ID: 29

Hex Byte
Contents Function Request Facilitvy Offset

results 1 through 9 reserved 22H-33H
result 0 ORIGINAL VALUE 20H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
overand 3 MASK 18H
operand 2 VALUE 16H
operand 1 DISPLACEMENT 14H
operand 0 SOURCE ACCESS SELECTOR 12H

IP function code 01AH (INDIVISIBLE

INSERT SHORT ORDINAL) 10H
function state reserved OEH
process selection index PROCESS INDEX O0CH

The short-ordinal fourth operand is used as a mask (as presented on
the third operand and inverted on the source value).
ORing the short-ordinal source value located by the first two
I operands (access selector and displacement) to the short-ordinal

third operand indivisibly replaces the source value.

source value is stored in the function result area.

B-16

The result of

The original

Change 1

FUNCTION SUMMARY

INSPECT OBJECT
Operator ID: 18 .

Hex Byte
Contents Function Request Facility Offset
results 2 through 9 OBJ TABLE ENTRY IMAGE 24H-33H
results 0 through 1 ACCESS DESCRIPTOR IMAGE 20H-23H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved . lAH‘
overand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 SOURCE ACCESS SELECTOR 124
Ip function code O0FH (INSPECT OBJECT) 10H
function state reserved OEH
process selection index PROCESS INDEX ocH

~ INSPECT OBJECT allows an operation to read the access information
for the first level of any access path to which it holds an access
descrintor. The first operand contains the access selector for an
access descriptor for the level in the access vath which is to be
inspected. The ten double-hyte result is stored in the function
result area.

Change 1 B-17

iAPX 432 Interface Processor Architecture Reference Manual

INSPECT ACCESS DESCRIPTOR
Operator ID: 17

Hex Byte
Contents Function Request Facility Offset
results 2 through 9 reserved 24H-33H
SOURCE ACCESS
results 0 through 1 DESCRIPTOR IMAGE 20H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 SOURCE ACC SELECTOR 12H
IP function code 00OEH (INSPECT ACCESS

DESCRIPTOR) 10H
function state reserved OEH
process selection index PROCESS INDEX 0cH

INSPECT ACCESS DESCRIPTOR allows an operation to inspect an access
descriptor to which it holds access. The first operand contains the
access selector for an access descriptor which is to be inspected.
The ordinal result is stored in the function result area.

B-18 Change 1

FUNCTION SUMMARY

LOCK OBJECT
Operator ID: 19

Hex Byvte
Contents Function Request Facility Offset

results 1 through 9 reserved 22H-33H
result 0 BOOLEAN 20H
operand 6 reserved 1EH
operand 5 | reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 DISPLACEMENT 14H
operand 0 ACCESS SELECTOR 124
IP function code 010H (LOCK OBJECT) 109
function state reserved OEH
process selection index PROCESS INDEX 0CH

LOCK OBJECT allows an operation to lock an object lock located
within a data segment. The first overand contains the access
selector for a data segment access descriptor. The second operand
oontains the displacement within that data seqment of the desired
ohject lock. The boolean result, which is set to true if the object
becomes locked, is stored in the function result area.

Change 1 | B-19

iAPX 432 Interface Processor Architecture Reference Manual

NULL ACCESS DESCRIPTOR
Operator ID: 8

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H~33H
operand 6 reserved 1EH
operand 5 reserved ‘ 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 DEST ACCESS SELECTOR 12H

IP function code 005H (NULL ACCESS

DESCRIPTOR) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

NULL ACCESS DESCRIPTOR allows an operation to overwrite and thus
logically clear a given access descriptor entry. At the same time,
access to any object previously available via that access descriptor

! entry is given up. The operand contains the access selector for the
destination access segment entry.

B-20 Change 1

FUNCTION SUMMARY

READ PROCESSOR STATUS (Logical and Physical Mode)
Operator ID: 6

Hex Byte
Contents Function Request Facility Offset

results 2 through S reserved 24H-33H
result 1 SYSTEM CLOCK 22H
result 0 PROCESSOR STATUS 20H
operand 6 reserved 1EH
operand 5 reserved lCH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 reserved 14H
operand 0 reserved 123

IP function code 003H (READ PROCESSOR

STATUS) . 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

The 16-bit processor status field of the current processor is read
from the processor object, right appended to the current value of
the processor resident system clock, and stored in the function
result area. The processor status field includes both processor
unit number and processor status information.

READ PROCESSOR STATUS is performed the same in both physical and
logical modes.

Change 1 B-21

iAPX 432 Interface Processor Architecture Reference Manual

results 0

RECEIVE

Operator ID: 23

Contents Function Request Facility
through 9 reserved

operand 6 reserven

operand 5 reserved

operand 4 reserved

operand 3 reserved

operand 2 reserved

operand 1 reserved

operand 0 PORT ACCESS SELECTOR

IP function code

function state

process selection index

014H (RECEIVE)

reserved

PROCESS INDEX

Hex Byte
Offset

20H-33H
1EH

1CH
1AH
18H
16H
14H
12H
10H
OEH

0CH

RECEIVE allows a process to receive a message at a specified vort.

The first operand

B-22

is used.

Change 1

FUNCTION SUMMARY

RESTRICT RIGHTS
Operator ID: 12

Hex Byte
Contents Function Reguest Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1aH
operand 3 reserved 18H
overand 2 reserved | 16H
overand 1 TYPE CTRL ACC SELECTOR 144
operand 0 DEST ACCESS SELECTOR 12H
IP function code 009H (RESTRICT RIGHTS) 10H
function state reserved OEH
process selection index PROCESS INDEX 0cH

RESTRICT RIGHTS allows an operation to restrict its access to an
object by altering, under ocontrol of an unorotected tvpe control
object, the access descriptor for that object to have either
restricted rights or restricted rights and restricted type control.
The first operand contains the access selector for an access
descriptor for the given object. The second operand is an
unprotected type control object. The resultant new access
descriptor overwrites the original access descriptor for the given
object. Thus, the destination access segment entry is the same as
the source access segment entry.

Change 1 B-23

iAPX 432 Interface Processor Architecture Reference Manual

RETRIEVE PUBLIC TYPE REPRESENTATION

Ooerator ID: 14

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reservedv 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 TYPE DEF ACC SELECTOR 1l6d
overand 1 SOURCE ACC SELECTOR 14H
operand 0 DEST ACCESS SELECTOR 12H

IP function code 00BH (RETRIEVE PUBLIC

TYPE REPRESENTATION) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

RETRIEVE PUBLIC TYPE REPRESENTATION allows an operation to retrieve
the tvpe representation for a woublic type. The first operand

ocontains the access selector for the destination

retrieved.

B-24

access segment
entry. The second operand contains the access selector for an

access descriptor for the tyoe whose representation is to be

Change 1

RETRIEVE TYPE REPRESENTATICN

Contents

Operator TD: 13

Function Request Facility

results 0 through 9
operand 6
operand 5
operand 4
operand 3
operand 2
overand 1
operand 0

IP function code

function state

process selection index

reserved

reserved

reserved

reserved

reserved

TYPE DEF ACC SELECTOR

TYPE CTRL ACC SELECTOR

DEST ACCESS SELECTOR

00AH (RETRIEVE TYPE
REPRESENTATION)

reserved

PROCESS INDEX

FUNCTION SUMMARY

Hex Byte
Offset
20H-33H
1EH

1CH

1AH

18H

16H

14H

12H

10H
OEH

0CH

RETRIEVE TYPE REPRESENTATION allows an operation to retrieve the
type reoresentation for any type for which it holds appropriate

access to the associated type definition.

The first operand

contains the access selector for the destination access segment
entry. The second operand contains the access selector for an

access descriptor for the type whose representation

is to be

retrieved. The third operand contains the access selector for an
access descriptor for the associated type definition.

Change 1

B-25

iAPX 432 Interface Processor Architecture Reference Manual

This page intentionally left blank.

B-26 Change 2

FUNCTION SUMMARY

RETRIEVE TYPE DEFINITION
Operator ID: 15

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 | SOURCE ACCESS SELECTOR 148
operand 0 DEST ACCESS SELECTOR 12H

IP function code 00CH (RETRIEVE TYPE

DEFINITION) 10H
function state reserved 0FH
process selection index PROCESS INDEX | 0cCH

RETRIEVE TYPE DEFINITION allows an operation to retrieve an access
descriptor for the type definition associated with a tvpe. The
first operand oontains the access selector for the destination
access segment entry. The second operand contains the access

selector for an access descrintor for the tvype.
L]

Change 1 B-27

iAPX 432 Interface Processor Architecture Reference Manual

SEND
Operator ID: 21

Hex Byte
Contents Function Request Facility Offset
results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1aH

operand 3 MESSAGE ACCESS SELECTOR 18H

operand 2 reserved 16H

operand 1 reserved 14H

operand 0 PORT ACCESS SELECTOR 124

IP function code 012H (SEND) 104
function state reserved OEH

process selection index PROCESS INDEX 0CH

SEND allows a process to send a specified message to a specified
vort. The first and fourth operands are used.

B-28 Change 1

FUNCTION SUMMARY

SEND TO PROCESSOR (Logical Mode)
Operator ID: 4

Contents Function Request Farility E%gte
results 1 througﬁ 9 reserved 22H—33H
result 0 BOOLEAN 20H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
overand 2 reserved 164
operand 1 DEST PROCESSOR ACC SEL 14H
operand 0 IPC MESSAGE 12H
IP function code 001H(SEND TO PROCESSOR) 10H
function state reserved OEH
process selection ihdex PROCESS INDEX 0CH

SEND TO PROCESSOR allows a process to send an interprocessor message
to one specific processor, including the processor it is executing
on, via the interprocessor communication mechanism. The first
operand contains the interprocessor message. The second operand
contains the access selector for an access descriptor for the
desired processor object. The boolean result, which is set to true
if the control flags are deposited, is stored in the function result
area.

Change 1 B-29

iAPX 432 Interface Processor Architecture Reference Manual

SEND TO PROCESSOR (Physical Mode)
Operator ID: 4

Hex Bvte
Contents Function Request Facility Offset

results 1 through 9 reserved © 22H-33H
result 0 BOOLEAN 20H
overand 6 reserved 1EH
overand 5 reserved 1CH
operand 4 reserved 1AH
operarnd 3 reserved 18H
operand 2 PHYSICAL ADDR (high 8) 16H
operand 1 PHYSICAL ADDR (low 16) 14H
operand 0 IPC MESSAGE 124
IP function code 001H(SEND TO PROCESSOR) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

SEND TO PROCESSOR allows external processor software to send an
interorocessor message to one specific processor, including the
processor it is executing on, via the interprocessor communication
mechanism. The first operand contains the interprocessor message.
The second overand is a word (here shown as two consecutive double
bytes) containing the right-justified, 24-bit, physical base address
of the 432 memory segment which contains the image of the IP's
processor object. The boolean result, which is set to true if the
control flags are deposited, is stored in the function result area.
This physical mode operator is the equivalent of the logical mode
operator SEND TO PROCESSOR.

B-30

FUNCTION SUMMARY

SET PERTPHERAL SUBSYSTEM MODE (logical and Physical Mode)
Operator ID: 5

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H~33H
operand 6 reserved 1EH
operard 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 PROCESSOR ACC SEL 14H
overard 0 | PS MODE 12H
IP function code 002H (SET PS MODE) 10H
function state reserved OEH
process selection index PROCESS INDEX 0CH

SET PERIPHERAL SUBSYSTEM MODE allows an operation to change the mode
settings for the oonnected peripheral subsystem, both on the
processor and in the peripheral subsystem status field of the
processor data segment. Checks are also made for certain illegal
combinations of XACK delay and Write Sample Delay. The first
operand contains a set of new peripheral subsystem mode flags. The
second operand, which is used only in logical mode, contains an
access selector for an access descriptor for the processor object of
the processor on which the operator is being executed. Note that
this operator is unique to 432 Interface Processors.

SET PERIPHERAL SUBSYSTEM MODE when performed in physical mode is of
the same form and vrovides the same function as SET PERIPHERAL
SUBSYSTEM MODE performed in logical mode, except that the second
operand is not used.

Change 2 B-31

iAPX 432 Interface Processor Architecture Reference Manual

SURROGATE RECEIVE
Operator ID: 26

Contents Function Request Facility

Hex Byte
Offset

results 0 through 9 reserved

operard 6 reserved

operard 5 reserved

operand 4 reserved

operand 3 reserved

operand. 2 CARRTER ACCESS SELECTOR

operand 1 DEST ACCESS SELECTOR

operand 0 PORT ACCESS SELECTOR

IP function code 017H(SURROGATE RECEIVE)

function state reserved

process selection index PROCESS INDEX

20H-33H

1EH
1CH
1aH
18H
16H
14H
12H
10H
OEH

OCH

SURROGATE RECEIVE allows a process to wait, via a surrogate carrier,
at a port for a message from some process. The first three overands

are used.

B-32

Change 1

Contents

FUNCTION SUMMARY

SURROGATE SEND

Operator ID: 25

Function Request Facility

o

results 0 through

()

operand

overand 5

e

operand
operand 3

operand 2

operand 1

operand 0
IP function code
function state

process selection index

reserved

reserved

reserved

reserved

MESSAGE. ACCESS SELECTOR

CARRIER ACCESS SELECTOR

DEST ACCESS SELECTOR

PORT ACCESS SELECTOR

016H (SURROGATE SEND)

reserved

PROCESS INDEX

Hex Bvte

Offset

18H
16H
14H
12H
10H
OEH

OCH

SURROGATE SEND allows a process to send, via a surrogate carrier, a

specified message to a specified port.

Change 1

All four operands are used.

B-33

iAPX 432 Interface Processor Architecture Reference Manual

UNLOCK OBJECT
Operator ID: 20

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 reserved 20H-33H
operand 6 reserved 1EH
operand 5 reserved 1CH
operand 4 reserved 1AH
operand 3 reserved 18H
operand 2 reserved 16H
operand 1 DISPLACEMENT 14H
operand 0 | ACCESS SELECTOR 12H
IP function code 011H (UNLOCK OBJECT) 10H
function state reserved OEH
process selection index PROCESS INDEX O0CH

UNLOCK OBJECT allows an operation to unlock an object lock located
within a data segment. The first operand contains the access
selector for a data segment access descriptor. The second operand
oontains the displacement within that data segment of the desired
object lock.

B-34 Change 1

APPENDIX C
FAULT SUMMARY

C-1. FAULT REPORTING

Both logical and vhysical mode faults are rvreported in fault
information areas as described below. The fault information area
for oontext, process, and processor level faults has the same
organization. Process objects contain fault information for context
and process Jevel faults which occur in logical mode. Processor
objects contain fault information for orocessor level faults which
occur in logical mode. The process level fault information area in
the process object is used when a orocess level fault occurs and a
process is bound to the vprocessor. The vrocessor level fault
information area in the processor object is used when a process
level fault occurs and a process is not bound to the processor.
Physical mode faults, which are all treated as context level faults,
are reported in the processor fault information area.

C-2. FAULT INFORMATION AREAS

The fault information area is a 13 double-byte record organized as
follows.

iAPX 432 Interface Processor Architecture Reference Manual

= = double bvte
displacement

execution statel n+12

operator id

system timer

psor status

cxt/prcs status

PS status

fault fault code
information
area fault AS/disp

reserved

dir index

obj index

temoB

temoA n

The tempA and tempB fields contain the values of the corresponding
on-chip registers at the time of the fault. (Whether the fault is
associated with object qualification or object table qualification,
the Adirectory index and object index still specifv the object, and
the interpretation of the fault access selector/displacement field
will vary depending on the fault, as discussed below under System
Type Or Object Table Entrv (OTE) Type Faults.)

The fault code, together with the operator id indicates the nature
of the fault. The fault code field has the following format:

XRRXXXKK 000K

RR TYPE Faults

10 MA Memorv Access Faults

11 S Test System Tyoe or Object Table Entry Type Faults
0x FF All other faults

c-2 Change 2

FAULT SUMMARY

The Peripheral Subsystem status, context/process status, processor
status, and system timer fields oontain the values of the the
corresponding on-chip registers at the time of the fault. The
operator ID, which differs from the oocode field in an instruction,
specifies the operator that causes the fault. If a fault occurs
during instruction decoding, the operator ID is zero. The operator
ID value of each operator is the same as the index found in Appendix
B (Tables B-1, B-2, and B-3).

The execution state indicates the vhase of execution when the fault
occured. It is used to identify fault handling strategies in the
more complex operators. A value of zero indicates the instruction
can be re-executed with no rewind necessary. A non-zero execution
state occurs with vort and IPC operations only. The semantics of
each execution state in the port operators is described in the 432
GDP Architecture Reference Manual. The organization of the
execution state field is shown below.

8 bits 8 bits

execution state
reserved

Memory Access Faults

The fault code format for the ZZ field specifies the type of memory
access attempted. The encoding of the ZZ field is specified below.

ZZ Access Type
x10TTTTT OXMWBBBB Access Memory
X10TTTTIT 10MWBBBB Access Interconnect
x10TTTIT 11MWBBBB Access Access Segment

The TTTIT field specifies the type of memorvy access fault. The
encoding of the TITIT field is specified below. Note that
combinations of these encodings can occur.

pooodl AR Access Rights Fault

xxx1x SB Segment Bounds Fault

®X1xx MO Memory Overflow Fault
(physical address >= 2*%*24)

X1xxx BE Bus Error Fault

Ixxxx WR Test Write Rights Fault

The M field specifies whether the fault was on a read-modify-write
access. A value of zero indicates a normal access. A value of one
indicates a read-modify-write access.

Change 2 Cc-3

iAPX 432 Interface Processor Architecture Reference Manual

The W field specifies whether the fault was on a read or write
access. A value of zero indicates a read access. A value of one
indicates a write access.

The faulted displacement is recorded in the fault displacement (in
access memory, or interconnect), and in the object index field of
the fault access selector (in access access segment).

The BBBB field, which designates which segment was being accessed
when the fault occurred, is defined as follows:

BBBB Segment Name

0000 Context AS
0001 Entry AS 1
0010 Entry AS 2
0011 Entry AS 3
0100 Object Table Directory
0101 Object Table
0110 Processor AS
0111 Processor DS
1000 Context DS
1001 Process AS
1010 Process DS

1011 WorkA
1100 WorkB
1101 WorkC
1110 WorkD

1111 Mapping Facility

System Type Or Object Table Entry (OTE) Type Faults

The fault code format for system type or object table entry type
faults is as follows:

D11xxxxx QPPKKKKK

The D field indicates whether the fault resulted from testing the
system type or the object table entry type. The D field is defined
as follows:

0 - System type test
1 - OTE type test

The Q field indicates whether the fault is associated with object
table qualification. It thus determines the meaning of the Fault
Access Selector/Displacement field in the fault data area as follows:

0 - The fault did not occur during object table
‘ qualification and the Fault Access
Selector/Displacement field contains the object
indices in the associated descriptor.
1 - The fault occurred during object table qualification
and the Fault Access Selector/Displacement field
contains the directory index.

C-4 Change 2

FAULT SUMMARY

The D field determines two alternate interpretations of the KKKKK
field as follows:

D=0 (fault because of system type test) and the KKKKK field

encodes the expected value of the System Type field in the
faulted object table entry:

KKKKK System Type

00000 Generic Access or Data Segment
00010 Domain Access Segment or Object Table Data Segment
00011 Instruction Data Segment
00100 Context Access or Data Segment
00101 Process Access or Data Segment
00110 Processor Access or Data Segment
00111 Port Access or Data Segment
01000 Carrier Access or Data Segment
01001 SRO Access or Data Segment
01010 TDO Access Segment or PCO Data Segment
01011 Type Control Data Segment
01100 Refinement Control Data Segment
D=1 (fault because of object table entry type test) and the

KKKKK field encodes the expected values of the
least-significant 5 bits of the object table entry. Their
meaning is thus determined by the expected Entry type of
the object table entry. Letting KKKKK be subdivided into
ABVEE, these subfields are then interpreted as follows:

A: Allocated

0 - No
1 = Yes
B: Base Type
0 - Data
1 - Access

V: Access Descriptor Validity
0 - Not Valid
1 - Valid

EE: Entry Type
-00 - Free Entry or Header Entry
01 - Type Descriptor
10 - Refinement Descriptor
11 - Storage Descriptor

The PP field encodes the processor class for System Type test faults
as follows:

00 - A1l
01 - GDP
10 - IP

'Change 2 C-5

iAPX 432 Interface Processor Architecture Reference Manual

All. Other Faults
The fault code format for all other faults is as follows:
%00 xXTTEEEE

The TT and EEEE fields specify the fault level and the fault type.
The TT bits are interpreted as follows:

TT Fault Level

00 Context Level Faults

01 Process Level Faults (grouo 1)
10 Process Level Faults (group 2)
11 Processor Level Faults

There are 16 fault types within each of the 4 fault level groups.
The ENCODING column of the tables in the following sections (C-3,
C-4) contains the TT and EEEE fields if the type is FF (all other
faults).

C-3. OBJECT LEVEL OPERATOR FAULTS

Faults Common To All Operators Or Sub-operations

The following faults can occur anywhere during the execution of an
operator or sub-operation (which includes instruction decoding,
process dispatching, binding etc.). These faults are not explicitly
referenced in the later sections. :

FAULT GROUPS JTYPE] ENCODING

Memory Reference Faults =2
Access Rights Fault
Segment Bound Fault
Memory Over flow Fault
Bus Error Fault
Test Write Rights Fault

Invalid Oocode Fault 00 1100

A 4 REB85%

Processor Stopped Fault 11 1101

-

Object Table Cache Qualification Faults =B
Object Table Entry Type Fault
Object Svstem Type Fault

10010111
10000010

A 4

(Access) Seament Altered Faults =3
F»0Object Oualification Faults

C-6 Change 2

FAULT SUMMARY

Sub-operations Faults

FAULT GROUPS TYPE] ENOODING
Store Access Descriptor Faults
Level Fault : FF | 01 0100
Destination Delete Rights Fault FF | 01 0011
Object Qualification Faults =
BAccess Descriptor Validity Fault FF | 01 0000
Object Table Entry Type Fault TS | 00010111
TS | 00011111
Memorv Over flow Fault FF | 01 1011
Read Mrite Rights Fault FF | 01 0110
Port Operation Faults
>»0Object Qualification Faults (Carrier AS) TS { 00001000
=»Object Qualification Faults (Carrier DS) TS | 00001000
2»0Object Qualification Faults (Port AS) TS § 00000111
F»0Object Qualification Faults (Port DS) TS | 00000111
Send Rights Fault FF | 01 1110
Carrier Lock Fault FF { 01 1001
Wakeup IPC Fault FF | 11 0100
Port Lock Fault FF | 01 1010
Carrier Queued Fault FF | 11 0110
Context Qualification Faults =
>»0Object Qualification Faults (Context AS) TS | 00000100
=»0Object Qualification Faults (Context DS) TS } 00000100
=Entered Access Segment Qualification Faults
(EAS 1, 2, and 3)
Process Binding and Qualification Faults =
=2»0Object Qualification Faults (Process AS) TS § 00000101
=2»0Object Qualification Faults (Process DS) s | 00000101
Process Level Objects Lock Fault FF { 11 0010
Process Not Ready Fault FF | 11 0110
P»Context Qualification Faults
Processor Binding and Qualification Faults =
»0Object Qualification Faults (Processor AD) TS } 00000101
0Object Qualification Faults (Processor DS) TS | 00000101
Control Window Mask/Base Incompatability Fault FF | 11 1000
Processor Object Lock Fault Fatal
Cannot Lock Processor Carrier Fault FF | 11 0000

iAPX 432 Interface Processor Architecture Reference Manual

Operator Faults

OPERATOR TYPE] ENCODING
Alter Map and Select Data Segment
Interconnect Descriptor Fault FF | 00 0100
Windowed and Object Table Entry Validitv Fault FF | 00 0101
Transfer Direction Fault FF | 00 0110
Length Validity Fault FF | 00 0111
. Window Subrange Overlap Fault FF | 00 1000
Incomplete Block Transfer Fault FF | 00 1001
Operand Validity Fault FF | 00 1010
Forced Termination Fault FF | 00 1011
Cooy Access Descriptor
=>»Store Access Descriptor Faults
Null Access Descriptor
Destination Delete Rights Fault FF | 01 0011
Amplify Rights
Type Control Object Rights Fault FF | 01 0110
»Object Qualification Faults (Descriptor Ctl Obj) TS | 00001011
Source Object Validity Fault FF | 01 0101
Type Fault FF | 01 1000
Race Condition Fault (the access descriptor was FF | 01 1000
changed before the amplified value is stored back)
Restrict Rights
no explicit fault cases
Retrieve Public Type Representation
Source Object Validitv Fault FF | 01 0101
Object Table Entry Type Fault TS | 00010111
=»Store Access Descriptor Faults
Retrieve Type Representation
Type Definition Validitv Fault FF | 01 0110
Source Object Validity Fault FF | 01 0101
Object Table Entry Type Fault TS { 00010111
Type Definition System Rights Fault FF | 01 0110
Private Type Retrieve Rights Fault FF] 01 0111
Type Fault FF | 01 1000
= Store Access Descriptor Faults
Retrieve Type Definition
Source Object Validity Fault FF | 01 0101
Object Table Entry Type Fault TS | 00010111
»Store Access Descriptor Faults

c-8

Change 2

FAULT SUMMARY

Inspect Access Descriptor
no explicit fault cases

Inspect Object

Access Path Object Descriptor Type Faults FF | 01 0101
Lock Obiject , L

=20bject Qualification Faults (Data Segment)

Source Object Access Rights Fault FF | 01 0110

Unlock Object
»Object Qualification Faults (Data Segment)
Source Object Access Rights Fault
Object Tock ID or Type Fault

01 0110
01 1001

43

Indivisibly Add Short Ordinal
Indivisibly Insert Short Ordinal
no explicit fault cases

Enter Access Segment
Enter Global Access Segment
Entry Index Range Fault
Access Segment Read Rights Fault
»0Object Qualification Faults (Access Segment)

01 0101
01 0110

R

Set PS Mode
Set PS Rights Fault
Illegal Combinations Fault

00 1101
00 1100

R

Send

Receive

Conditional Send

Conditional Receive
Port Tvpe Rights Fault FF | 01 0110
=>»Port Operation Faults

Surrogate Send
Surrogate Receive

Surrogate Carrier Validity and System Rights Fault FF | O1 0101
Port Type Rights Fault FF | 01 0110
»Port Operation Faults

Send to Processor

Broadcast to Processors
Processor System Rights Fault FF {| 01 0110
=2»Object Oualification Faults (Processor AS) TS | 00000110
»0bject Qualification Faults (Commo Segment) TS | 00001010
Communication Segment Lock Fault FF | 01 1001

Change 2 c-9

iAPX 432 Interface Processor Architecture Reference Manual

Read Processor Status
no explicit fault cases

Dispatch

Processor Carrier Alreadv Encueued Fault FF | 00 1110
Dispatch Rights Fault FF | 00 1101
=2»Port Operation Faults
C-4. NON-INSTRUCTION INTERFACE FAULTS
OPERATOR TYPE] ENCODING
Initialization =
=>»0Object Qualification Faults (Processor AS) TS | 00000110
»0Object Qualification Faults :

(object table directory) TS | 00000010
=»»0Object Qualification Faults (Processor DS) TS | 00000110
Processor Object Lock Fault FF | 11 0001
=»IPC Faults
BaseMask Incompatibalitv Fault FF | 11 1000

IPC Faults =
=20Object Qualification Faults (Commo Segment) TS { 00001010
Communication Segment Lock Fault FF | 11 0011
Response Count Fault FF | 11 0010
Process Binding =
2»Ohject Qualification Faults (Carrier AS) TS | 00001000
0Object Qualification Faults (Carrier DS) TS | 00001000
Process Object Lock Fault FF | 11 0001
»Process Qualification Faults
=»Port Operation Faults
Process Selection =
>»0Object Qualification Faults (Carrier AS) TS | 00001000
=»0Object Qualification Faults (Carrier DS) TS | 00001000
=>»=Port Operation Faults

C-10 Change 2

APPENDIX D
INTERRUPT HANDLING

.
o=l e —~— mwemamde el ey ER =Y

face Processor detects an event that may require
attention from the IP controller, it records the nature of the event
in the current IP processor data segment and emits a pulse on its
interrupt line. There are several different types of events which
may be sources of interrupts, and their occurrence and timing is not
necessarily predictable. In this sense IP interrupts are similar to
several I/0 devices that are wire-ORd to a common interrupt line.

b e

TaTl o T -
Wnenever cne .incer

Thus, the IP controller must respond to an interrupt by "polling"
the possible interrupt sources to determine which event has actually
occurred. It may do this by examining fields of the IP processor
data segment through the control window (window 4). The 1IP
controller (and related hardware, such as latches and Intel 82594
interrupt controllers) must also accommodate the possibility that
the IP may detect a second event at anv time, including while the IP
controller is handling a previous interrupt. The IP responds to all
such events identically, noting the event in the IP processor data
segment and emitting an interrupt pulse. Again, this is analagous
to tving multiple independent I/O devices to one interrupt line.

The principal requirement of IP interrupt handling hardware and
software, then, is to field interrupt requests that may be
closely-spaced, and tO respord irndividually to the different types
of events that an interrupt may signal.

Figure D-1 shows one approach to the overall design of an IP
interrupt handler. This strategy assumes that hardware latches the
IP's interrupt request pulse. As soon as it is invoked, the
interrupt handler masks further IP interrupt requests and resets the
hardware latch. This insures that a second request is unlikely to
be missed, and prevents the interrupt handler from being reentered.
Then the enviromment of the interrupted routine is saved and
higher-priority interrupts are enabled, so that the interrupt
handler itself can be interruoted if necessary.

D-1

iAPX 432 Interface Processor Architecture Reference Manual

Mask IP
interrupt

Reset latch

Save
interrupted
environment

Enable
higher-
priority
Anterrupts

Reset
Respond to event

event indicator

Next
indicator

More

ves
indicators

Restore
interrupted
environment

Unmask
IP
interrupt

Return

Figure D-1 Interrupt Handler

INTERRUPT HANDLING

The central logic of this approach assumes that there is a "list" of
possible interrupt sources to be scanned, and that passing through
this list may uncover one (the usual case), multiple, or zero events
that require responses. To illustrate the second two cases, assume
that the possible events are labelled A through K, and that the
interrupt handler tests for A, then B, and so on. Assume also that
event B occurs followed quickly by event J. The interrupt handler
is imvoked for event B, shortly thereafter the IP updates J's
indicator and emits a second interrupt pulse, which is latched. The
handler scans its list of event indicators, finds that both B and J
have occurred and responds to them both. Reaching the end of the
list, the interrupt handler enables the IP interrupt and returns.
Immediately, J's latched interrupt request is recognized and the
handler is invoked again. This time, however, it will find no
events indicated in the IP processor data segment, since it
responded to both B and J in the previous invocation. It will
simply clear the interrupt latch, pass through the list, unmask the
IP interrupt, and return, effectively making a null response.

Table D-1 lists the IP processor data segment subfields that the IP
interrupt handler must examine to determine the source of an
. interrupt. Note that as soon as the handler recognizes that an
event indicator is "on", it should turn it "off" by indivisibly
zeroing the field wusing the INDIVISIBLE INSERT SHORT ORDINAL
function. This is necessary to prevent the interrupt handler from
being misled in its next invocation.

D-3

iAPX 432 Interface Processor Architecture Reference Manual

Table D-1 Interrupt Sources

Processor Data
Segment Subfield Value

Event

Function state field

00005

0lp

105
115

Function completion state subfield

Function completed normallg
(this interrupt may be masked)

Fault level subfield

Context-level fault
Process-level fault
Processor—-level fault

Entry state field (One per map entry)

0lp
105
115
Local IPC response 1

Global IPC response 1

Alarm response 1
Reconfiquration 1
response

Dispatching response 1p

Notes:

Transfer state subfield

Transfer terminated by byte count(1)
Transfer termination forced(1l,3)
Transfer terminated by fault(2)

IP has responded to local IPC
IP has responded to global IPC
IP has responded to a alarm request

IP has responded to a reconfiguration
request

IP has received a "select process" IPC

(1) Applies to window 0, buffered mode only.
(2) Separate indications are provided for each transfer window.
(3) Only done via the ALTER MAP AND SELECT DATA SEGMENT function.

D-4

APPENDIX E
SYSTEM INITIALIZATION

System initialization may be considered as a sequence of activities
that brings a 432-based system from an arbitrary state to a known
state where execution can begin. Although the initialization
sequence will vary widely among applications, this appendix outlines
the basic procedure. The first section describes how the system may
be reset to a known state. The second section shows how an
Interface Processor rumning in physical reference mode may be used
to initialize memory and interconnect components thereby
establishing an enviromment in which execution can take place. The
final section discusses system startup, the procedure for commencing
execution.

E-1. SYSTEM RESET

Most systems include a reset switch that is used to initialize the
system after power-up and to restart the running system if
necessary. In a 432 system, the INIT pins of all IPs (see iAPX
43203 VISI Interface Processor Data Sheet, Order No. 171874, for
details)and GDPs, and the RESET (or- equivalent) pins of all
Peripheral Subsystem components must be activated when a full system
reset is performed. However, system designers may also decide to
provide the option to selectively initialize elements of a 432
system.

Although this is subject to variation, a typical Attached Processor
responds to a reset pulse by aborting any current operation,
disabling interrupts and then vectoring execution to the code
located at some predefined address (typically in non-volatile
memory). The code will normally initialize I/O devices and enable
interrupts, at which point normal execution begins. The 432 makes
no special demands of the Peripheral Subsystem except that it should
be prepared to handle an interrupt request from the IP shortly after
system reset.

E-1

iAPX 432 Interface Processor Architecture Reference Manual

An Interface Processor responds to an INIT pulse by aborting any
current operation, entering physical reference mode, configuring its
windows as shown in table E-1, clearing broadcast acceptance mode,
and then issuing an interrupt request to its Attached Processor.
The interrupt request signals the IP controller that the Interface
Processor has initialized itself and will accept subrange address
references, including physical reference mode function requests
written through window 4. Any attempt by the IP controller (or any
active agent in the Peripheral Subsystem) to reference a subrange
prior to receiving the IP's interrupt request produces an undefined
result. An IP switches from physical to logical reference mode upon
receipt of the startup IPC as defined below.

A General Data Processor responds to an INIT pulse by aborting any
current activity and then waiting in a quiescent state for the
startup IPC. The startup IPC is defined as the first local IPC
received following an INIT pulse; a GDP will ignore any intervening
global IPC,

To summarize, shortly after system reset, Attached Processors (and
Peripheral Subsystems) will be able to run as desired, IPs will be
able to run in physical reference mode, and GDPs will be waiting for
a signal to begin execution.

E-2. ESTABLISHING AN EXECUTION ENVRIONMENT

Prior to starting any GDP (or switching any IP to logical reference
mode) an environment in which the processor can execute must be
created in 432 memory. This environment consists of a set of
interrelated system objects; a minimal environment, sufficient to
start one process rumning on a GDP, coould be characterized as
follows:
e the initial object table directory (loaded

at physical address 8);
an object table;
a processor object;
a dispatching port;
a process object (queued at the dispatching port).

E-2

SYSTEM INITIALIZATION

== £ Processor
‘Object

(n) | Storage Descriptor (Processor Number n) 4/’

Processor
Object

))
(¢
b))
|\

(Processor Number 1) _/f

(1) Storage Descriptor

(#) | Object Table Header

Object Table

(1) Storage Descriptor

(7) | Object Table Header

<—-Physical Address 8
Initial Object Table Directory

Figure E-1 Processor Object Location

iAPX 432 Interface Processor Architecture Reference Manual

Note that the term "processor object" above is meant to include
communication segments, and a processor carrier, in addition to
processor access and data segments. Likewise, "process object"
includes a daomain, instruction segments, context objects, etc. This
environment may be extended to include more processors, processes,
ports and so on, as is appropriate for a given application.

The initial execution environment may not pre-exist in 432
non-volatile memory, since the processors routinely update the
objects during execution. Therefore, the initial environment must
be loaded from a Peripheral Subsystem (where it may, in fact, reside
in non-volatile storage). One Peripheral Subsystem will typically
be designated to load the initial enviromment in physical reference
mode; in this discussion this Peripheral Subsystem is referred to as
the initializing AP.

At no time during system initialization should more than one
Peripheral Subsystem be updating 432 system memory. In most
applications, the remaining Peripheral Subsystems will refrain from
accessing the 432 system until their IPs have switched to logical
reference mode. It is possible, however, for a second Peripheral
Subsystem to read 432 system memory while still in physical
reference mode; some applications may wish to designate a second
Peripheral Subsystem to monitor the activity of the initializing AP
in this way.

Some systems will need to perform a number of preliminary activities
before the initial enviromment can be loaded. These activities,
which will be defined by each application, may include:
® ascertaining the system configuration
(i.e., the number and type of processors
present, and the amount of memory
available);
e verifying that system components
are operational;
e initializing registers located in the
interconnect space (e.g., address range
or error count registers in memory
controllers);
® initializing error checking and correcting
(ECC) memory.

Windows 0 and 1 may be useful in connection with these preliminary
activities. Window 1 could be used to read system configuration
information encoded in predefined registers of the interconnect
address space, for example. Window 1 may also be used to initialize
registers in memory controllers, provided these registers are
located in the first 32K bytes of the interconnect address space.

E-4

SYSTEM INITIALIZATION

Before any function request is made by the IP, enough 432 memory
must be initialized to allow IP execution. This is necessary
because the IP will attempt to update the segment mapped by window 4
in response to the function request. Once this path to memory has
been established, window 1 can be opened onto another 32K byte
segment by the ALTER MAP AND SELECT PHYSICAL SEGMENT function if
additional interconnect components need to be referenced; this
should normally be necessary only in very large systems.

If a system employs error checking and correcting memory (ECC) that
does not initialize itself, the initializing AP can initialize it if
the memory is organized in units eight or fewer bytes wide. Window
0 comes up in block mode set for a 64K byte transfer starting at
physical address 0. Any data written through this window (e.g. all
zero bits) is written by the IP in eight-byte blocks. The window
can be moved through the entire memory space in 64K byte segments.

Once the system configuration has been established, the interconnect
path set up and memory initialized, the initializing AP can load the
initial execution environment. The simplest and fastest way to do
this is to write all the required binary images through window 0.
An alternative is to locad the minimal object set required to support
one IP in logical reference mode, and possibly one GDP. The rest of
the environment (other processes, etc.) can then be loaded in
logical reference mode by the initializing AP working alone, or
under the direction of a GDP process. This approach has the
advantage of getting the system into logical reference mode as soon
as possible, where operations are inherently more protected than in
physical reference mode.

E-3. SYSTEM STARTUP

Each processor in the system must be started independently by
sending it a startup IPC (the first local IPC after INIT). At least
one 432 processor, perhaps its own IP, must be started by the
initializing AP using the SEND TO PROCESSOR function (physical
mode). The remaining processors must be started one at a time, and
this can be done by the initializing AP, or by a processor already
started by it. Note that the initializing AP (as well as all IPs)
remains in physical reference mode until it receives a startup IPC.

GDPs and IPs respond to the startup IPC identically except that the
IP additionally switches to logical reference mode. The basic
response is to first qualify its execution environment and then to
interpret the IPC and respond to it normally. The processor
qualifies its execution environment by first reading a unique
processor ID contained in the low order byte of interconnect
register 0.

E-5

iAPX 432 Interface Processor Architecture Reference Manual

Having established its identity, the processor proceeds to locate
its processor object. It does this by assuming that the initial
object table directory is located at physical memory address 8 (see
figure E-1). A segment header field of eight bytes precedes the
initial object table directory. It further assumes that the first
storage descriptor in the directory locates an object table
containing storage descriptors for processor objects. Using its
processor ID as an index, the processor selects the storage
descriptor from the object table which 1locates its processor
object. After qualifying its processor object, the IP is able to
find its local communcation segment, where it examines the IPC
message field. Now in logical reference mode, the IP can respond to
the IPC message and perform all normal operations.

As usual, an IP will generate an interrupt after it responds to the
IPC message. This second interrupt following reset indicates to the
IP controller software that the IP is in logical reference mode and
that normal execution may begin. Note that window 4 will then be
configured as defined by the attributes encoded in the 1IP's
processor object. Since window 4 provides the data path to the
function request facility, the other windows may be configured
immediately by means of the ALTER MAP AND SELECT DATA SEGMENT
function.

E-6

SYSTEM INITIALIZATION

Table E-1

Window Configuration Following INIT

Attribute
Window Status

Transfer Mode

Subrange Base Address

Subrange Size
Segment Base
Segment Length
Direction
Transfer State

Overlay

Window 0
Open

Block
07E00y
00100y

0

65,535
Write

In Progress

Yes

Window 1
Open
Interconnect
08000y

08000y
0

65,535
ReadMrite
In Progress

Yes

Open
Random
07F00g

00100y
0

65,535
Read/Mrite
In Progress

Yes

E-7

APPENDIX F
INTERPROCESS COMMUNICATION AND DISPATCHING
EXAMPLE

In Chapter 1, a printer example was used to demonstrate the flow of
data between 432 processes and AP tasks. In this appendix, the
printer example is again discussed. However, this time the view
taken is that of a programmer writing an Attached Processor task to
direct an IP to accomplish printer output. The program contained in
this appendix is written in a PL/M-86-like dialect typical of the
development enviromment which will be at the disposal of the AP
program developer. This program is included to clarify an earlier
example and is not suggested as a scheme for actual implementation.

The program example which follows assumes that a set of 432 system
objects preexists in 432 memory. These objects are illustrated in
Figure F-1. This system contains:

e IP processor object;

@ a print request port to which a 432 process (GDP or IP) can send
print requests;

® a print reply port to which an IP process can return the status
of the print action;

e an IP dispatching port where IP processes await service.

® several IP processes are shown, though only one is required for
the purposes of the example;

® one print object, a simple data segment, which carries printer
data and is reused when returning printer status.

There are four main sections to this program:

Variable declarations;
Utility procedures;
Initialization;

Print driver body.

In the variable declarations section, notice that the control
window, window 4, is declared as a structure whose components are
defined from the definition in Appendix A. This program assumes
that window 4, the control window, is opened onto the function
request facility in the IP's processor object. It also assumes that
all initialization has been performed and that the IP is operating
in logical reference mode.

iAPX 432 Interface Processor Architecture Reference Manual

4

432 OBJECTS
. » [PROCESS NHL
#—————————| PROCESS N| |
#——————3|PROCESS N-L_
pu CONTEXT |~
Ip ip Y
PROCESSOR PROCESSES & 2,
OBJECT b
g
s’
P PRINT.
DISPATCHING REQUEST
PORT PORT
%
PRINT
OBJECT
)
432 PROCESS

Figure F-1 Print Example Objects

2.
I

PHYSICAL PROCESSORS

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Procedures in the utilities section demonstrate how a programmer can
construct facilities to invoke IP functions. Recall from the
function summary in Appendix B that an AP requests an IP function by
writing a process selection index, all required operands, and
finally depositing a function code into the appropriate slots in the
function request -facility (frf). - The IP begins execution of the
function only after the function code has been written. This is
demonstrated by the procedures Open window and Close _window.

The initialization section of the program points out some
simplifying assumptions which are made for the purpose of this
example. First, interrupts are disabled. This converts the three
tasks of the printer example (printer server task, printer task, and
printer reply task) of Chapter 1 into sequential tasks rather than
concurrent tasks. It also makes it easier to demonstrate changes in
the state of the system and illustrate them with the accompanying
figures. Second, the call on the Dispatch procedure assumes that
only one IP process exists in the 432 system. The IP supports
multiple process environments but only one is required in this
example.

The print driver body contains an aggregation of code which
accomplishes the three tasks of the Chapter 1 example. Notice that
the three tasks are performed sequentially.

Imbedded in the program text are references to Figures 2 through 6
which depict the state of the 432 system objects and the logical I/O
processor (the IP/AP pair).

iAPX 432 Interface Processor Architecture Reference Manual

Printer_task:
Procedure;

/***************************************i********/
/* */
/* Data Structures and Constants */
¢ 3 *

/**/

/**/

/* Declare the 256 byte structure for the Control Window and map it heginning at */
/* an offset of 07F00H into the 64K byte segment which is reserved for the IP. */
/* For the purposes of this example, the base of the IP's reserved area is at location*/
/* 080000H of the Attached Processor memory space */

/**/

Declare IP base literally '080000H';
Declare Window_4 structure (

ps_state word,
ipc_state word,
alarm_state word,
disp_state word,
reserved 1 word,
frf pres idx word,
frf function state word,
frf operator word,
frf operand (7) word,
frf_result (10) word,
ipc_fun req word,
reserved 2 word,
mf_block_count word,
mf 432 dlsp word,
mf] - ps_disp word,
reserved 3 word,
mf_window_info (5) structure (
entry state word,
mask word,
base disp word) ,
mf_fault information (14) byte,
selected idx word,
selected state word,
psor_fault information (13) byte,
reserved 4 (2) word) at (IP base + 07FO0H);

Declare subrange (1024) byte at (IP_base + 4096);
/* byte array comprising windowed subrange */

Declare offset word; /* offset into subrange */

Declare true literally '0001H'; /* Logical value true */
| Declare false literally '0000H'; /* Logical value false */
F-4

Change 1

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

/**/

J*
T
I
/%
/ %
/%
/x
Ve
/%
7*
%
/%

Seven access selectors are required. One for the message slot in the Context */
Access Segment, since this is where the hardware will put the Access */
Descriptor (AD) for the Print Request Message following the Receive instruction. */

*
One for the Print Request Port and one for the Print Reply Port. We assume */
that at system initialization ADs for these ports were stored in slots nine */
and ten of the Context Access Segment in Process Object 1.

*/

One for the IP Dispatching Port, one for the IP Processor Carrier data segment, */
one for the IP Processor Carrier access segment, and for a null access descrivtor. */
These are required so that blocking Receives and blocking sends can be handled. */
We assume ADs for these objects are stored in slots eleven, twelve, and thirteen, */

/* respectively of the Context Access Seqment in Process Object 1 at initialization. */
/**/

Declare message_acc_sel literally
Declare redquest port _acc_sel literally
Declare reply port acc_sel literally
Declare dispatchir ng_t OOrt_acc_se literally
Declare psor_carrier_as acc ¢ sel literally
Declare psor_carrier_¢ ds ace._ " sel literally
Declare null_destination_acc sel literally

'001100B’ ;
100100B;
'101000B' ;
'101100B';
'110000B' ;
'110100B';
'111000B';

/**/

/*

The process selection index for process number 1.

Note that this mumber is a byte */

/* index into the process selection list in the IP processor access segment.
/**/

Declare process_1

literally '0000000000000100B';

/**/

/*
/*
/*

Utility Procedures

*/
*/
*/

7**/

Await_function completion:

Procedure;

/**/

/* This procedure busy waits for the previous function request to complete. It */
/* Spins waiting for the function completion field of the function state to */

/* equal zero.

/**/

Do While (Window_4.frf function state and 000FH) <> 0; End;

End

Await_function completion;

Change 1

iAPX 432 Interface Processor Architecture Reference Manual

Dispatch:
Procedure;
Jhkkkkkkkhkkdkhhkhkkhkhhkkhkkhkhhkhhkkdkhhkhhkdkhkkhkkhkhhkhkhhkhhkkhdkkdhhkkhkkhkhhkhkhikkikkhkkhkihkk /
/* This procedure hangs the IP's processor carrier on the IP's dispatching */
/* port. This allows blocking sends and receives to be handled. */

/* This example assumes that the IP processor carrier blocks at the dispacthing */
/* port. No "select process" IPC is received if the Surrogate Receive does not */
/* block. */

/**/

Window_4.disp_state = false;

/* Unlock the IP's processor carrier. */
Window_4.frf prcs.idx = process 1; /* Use process object 1. */
Window_4.frf operand(0) = psor_carrier ds_acc_sel; /* Data segment */
Window_4.frf operator = 0llH; /* Unlock function code. */

Call Await_function completion;

/* Hang processor carrier on the dispatching port. */
Window 4.frf prcs idx = process 1; /* Use process object 1. */
Window_4.frf operand(0) = dispatching_port_acc sel; /* vort */
Window 4.frf operand(2) = null_destination acc_sel; /* destination */
Window_4.frf operand(3) = psor_carrier_as acc_sel; /* carrier */
Window_4.frf operator = O0l7H: * Surrogate teceive */

/* function code. */
Call Await function completion;
End
Dispatch;
Open_window:
Procedure;

/**/

/* Open a window to the message, Figure F-5 */
/**/

Window_4.frf precs_idx = process_1; /* process object index */
Window 4.frf operand(0) = 3; /* window index */
Window_4.frf operand(l) = 0000101B; /* entry state */
Window 4.frf operand(2) = 4096; /* base address */
Window_4.frf operand(3) = 1111110000000000B; /*t mask */
Window_4.frf operand(4) = message acc_sel; /* data segment */
Window_4.frf operand(5) = 0; /* base displacement */
Window_4.frf operator = O00H; /* Rlter Map and Select Data */

Call Await_function completion;
End /* Segment function code */
Open_window;

F-6 Change 1

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Get_print message:
Procedure;
/**/

/* Attempt to Receive a message from the Print Request Port, Figure F-2 */
/**i*********/

Window 4.frf prcs_idx = process_l1: /* Use process object 1. */
Window 4. frf operand(0) = request port acc sel; /* port */
Wlndw 4.frf ¢ - operator = 014H; /* Receive function code. */

Call Await_function completion;

If (Window 4.frf function state and 0020H) <> 0 Then

Do/**t************************i******/
/* Receive instruction blocked, no outstanding print requests */
/* Busy wait until a GDP process sends a print request to the print */
/* request port. See Figure F-3 for the SEND unblocking the blocked RECEIVE */
/* Such an event will trigger an interrupt in the AP */
/* (which we have disabled) and set Window_4.disp state true */
/* indicating the nature of the interrupt. ' */
/* See Figure F-4 for details on the wakeup IPC and subsequent interrupt. */

/**/

Do while not Window_4.disp_state; End;

/**/

/* At this point Window_4.selected idx contains the index of the */
/* process object which was dispatched. Since we are using onlv process *x/
/* object one, the selected index will equal one. Window 4.selected state */
/* contains software defined information concerning the action taken, */
/* if any, bv software in completing this instruction. */
/**/
Call Dispatch; /* Hang IP processor carrier on dispatching port. */
End;
End;

End
Get_print message;
Close window;

Change 1 F-7

iAPX 432 Interface Processor Architecture Reference Manual

Close_window:

Procedure;

/***********************************i**/

/* Close window, note only two operands are required. */
/**/

Window_4.frf prcs idx = process 1; /* process object index */
Window_4.frf operand(0) = 3; /* window index */
Window_4.frf operand(l) = 0000100B; /* entry state */
Window_4.frf operator = 000H; /* Alter Map and Select Data */

/* Segment function code */
Call Await_function completion;
Emi

Close window;

TNTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Return print message:
Procedure;

/**/

/* Send message to Print Reply Port. See Figure F-6 */
/**/

Window _4.frf prcs idx = process 1; /* process object index */
Window_4.frf.operand(0) = reoly port acc sel; /* port */
Window_¢ ; 4,frf - operand(l) = message_acc_sel; /* message ‘ */
Window 4. frf operator = 016H; /* Send function code */

Call Await function completion;
If (Window 4.frf function state and 0010H) <> 0 Then

lb/**’k*************/
/* Send instruction blocked, wait for a GDP process to receive a */
/* message from the Print Reply Port. Busv wait for a GDP process */
/* to receives a message fram the Print Reply Port. Such an event ;
/* will trigger an AP interrupt and set Window _4.disp state true */
/* to indicate the nature of the interrupt. */

/**********************i******i***i******/

Do While not (Window_4.disp state = 1); End;

/**/

/* Bt this point Window_4.selected idx contains the index of the */
/* orocess object which was dispatched. Since we are using only process */
/* object one, the selected index will equal one. Window_4.selected state */
/* contains software defined information concerning the action taken, if */
/" d.!lY' LN su:.cwacc .l.ll WWJLEELIH L.ll.l.b .l.Ile.LubC.Lul. .'.‘-/I

/**/

Call Dispatch; /* Hang IP processor carrier on dispatching port. */
End;
End;
End
Return print_message;

Change 1 F-9

iAPX 432 Interface Processor Architecture Reference Manual

Call Disable_Interrupts; /* Busy waiting will be used, not the interrupt mechanism
/* Also assume that no faults will occur

/**/
’* */

/* Initialization */
*

/*********************************#*******k******/

Call Dispatch;

Do While

Call Get_print_message;
Call Open window;

Do offset = 0 to 1023;
Call Print (subrange(offset)):

End;

/**/

/% */
* Print Driver Body */
/* *
/**/
true; /* loop forever

Call Close_window; /* Close the window.

Call Return print message;

End;
End
Printer_task;

F-10

/* Receive a message from the Print Request Port.
/* Open a window onto the message.
/* Read and print the contents of the message

/* using the mapped subrange and the AP's native
/* instruction. Assume Print is a system routine.

/* Send the message to the Print Reply Port.

*/

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

IP
DISPATCHING
PORT -
P
=9 -
-~
/J
° » 7 i
ICARRIER] Ip Ip;
PROCESSOR PRO?ESS
OBJECT
¥
&
PRINT PRINT
REQUEST REPLY
PORT PORT
CARRIER
432
PROCESS
PRINT
OBJECT

Figure F-2 IP Performs Blocking Receive

IP

SR

(3‘5_9_

"RECEIVE"
function

F-11

iAPX 432 Interface Processor Architecture Reference Manual

1p
DISPATCHING
PORT Ip —
=]
N V4
S— S
CARRIER | I Ip R
[
' PROCESSOR PROCESS 7
OBJECT S
<
oY
/
7/
/
i /
/
|
PRINT 1
REQUEST |
PORT |
| |
N |
CARRIER |
| S —— t(C\ I
%
|
]
432
PROCESS
PRINT
OBJECT

Figure F-3 GDP Executes SEND and Unblocks RECEIVE

F-12

1P
DISPATCHING
PORT

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

SELECTED
STATE

4

/

'd

INTERRUPT
~ T TS

~
N

L |

EARRIER

SELECTED
INDEX

Ip
PROCESSOR
OBJECT

1P
PROCESS

Ip

=

Ap

]

PRINT
REQUEST
PORT

Figure F-4 IP Responds to IPC

PRINT
REPLY
PORT

432
PROCESS

PRINT
OBJECT

F-13

iAPX 432 Interface Processor Architecture Reference Manual

(D

(WINDOW
"ALTER MAP AND
IP SELECT DATA
PROCESS SEGMENT" function
® Y
PRINT PRINT
REQUEST REPLY
PORT PORT
(o
CARRIER
o
{
432
PROCESS
yvy
PRINT
OBJECT

Figure F-5 Window Manipulation

F-14

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

IP
PROCE%ﬁ

PRINT
REQUEST
PORT

PRINT
REPLY
PORT

432
PROCESS

o

Ip

I

PRINT
OBJECT

"SEND"
function

Figure F-6 Print Reply

F-15

APPENDIX G
IMPLEMENTATION NOTES
December, 1981

PORT OPERATION

The queue values placed in carriers are assumed by the microcode to
be in the correct range (less than 2**14 and greater than or equal
to =2**14), Incorrect deadline calculation will result from
out-of-range values.

WINDOW OPERATIONS

If a fault occurs when executing an alter map operator in logical
mode, the window should be invalidated before retry is attempted,
since, depending on the type of fault, the I/O lock for the obiject
that the window was to have pointed to mav have already been set.

The base_disp pseudo-refinement mechanism is used when setting up
all random windows; this includes window 0 in random mode and window
1 in interconnect mode. Therefore, a base disp of zero should he
specified when initializing a window for interconnect access. (Note:
this pseudo-refinement only works in logical mode.)

When an invalidate windows IPC or a resume vhysical reference mode
IPC is executed, or a fatal error occurs, all windows are
immediately invalidated. If window 0 is open in block transfer
mode, then the invalidation mav terminate this window in the middle
. Ll e £ . mm e mdlToe T mmdsan Llia 2aafacmald i amcwsmasmbler d3a =laa
UL LD LLdllidigl y PUDSDLULY 1LUDLIN LIRS LILLUmnaL Lol CULLTLILLY il L
buffer. - Also, no information is written into the window status area
on the number of blocks already transferred.

To avoid fatal errors, the processor data segment has to be large
enough to accommodate the control window. '

Forced termination is only valid for window 0 in buffer mode.

The mapping facility areas in the control window display the actual
block count (not block count minus one); this is also true for the
read and write counts.

The reserved field of the window 0 maoping facility area is actually
written with the block count. This has been done to allow
deterministic testing of the chip.

When force terminating window 0 (block mode), the updated entry
state in the mapoing facility area of the control window will onlv
show a change in the transfer state field, the original values for
transfer direction, validity, and mode will remain intact.

Change 2 G-1

iAPX 432 Interface Processor Architecture Reference Manual

The windowed bit is checked and set several microcycles after the data
segment being windowed has been qualified. Consequently, when
invalidating objects (clearing the storage allocated bit), software
should wait at least 50 microcycles before checking the windowed bit of
an invalidated data segment.

DISPATCH

When the dispatch operator executes and finds a vrocess at the dispatch
port, the current process 1is suspended before process selection
(wake-up) is executed. At this time, any faults that occur will be
processor level faults, since no process is currently bound.

Since a faulted process is not executable, it is possible to get into a
situation where all processes are faulted and no functions can be
executed via the control window on the IP.

For Release 2.1, which adds a fault vector bit, at least one process
should have the fault vector bhit set in the the vprocess status.

FAULT HANDLING

Context and Process level faults which occur when a vrocess is not
bound to the processor are treated as processor level faults.

GENERAL

The IP INSERT SHORT ORDINAL omerator takes slightlv different inout
data from the GDP INSERT SHORT ORDINAL overator; please refer to
appendix B of this document.

The first reserved slot in the IP processor object (bvte displacement
28) has been changed to psor obj__ad and should contain an AD to the
processor object itself.

The most significant 10 bits in the operator ID double-hyte in the
fault information area are undefined and can take arbitrary values. The
least significant 6 bits contain the ID code itself.

It is advisable that IP process objects be frozen, since when a
selection of an unfrozen process is attempted, a processor level fault
occurs and the AP must ship the process off explicitly to the fault
port.

The context faulted bit in the process context status is onlv cleared
when the microcode context fault handling routine exits normally. If a
process fault occurs, e.g. address development, then the process is
sent to the fault port with both context and process faulted bits set.
Thev should, therefore, he cleared hy the vrocess fault handler.

G-2 Change 2

TMPLEMENTATION NOTES

When qualifying the control window refinement of the processor data

segment, neither the tvoe of the refinement nor the tvoe of the base
ohject is tested.

If a fault occurs during processor qualification, it is considered a
physical mode fault and the processor returns to ohysical- mode. (The
processor is set to logical mode at the wverv end of processor
qualification.) However, the processor object may have been locked and
the control window mav have already been changed.

The RETRIEVE _TYPE DEFINITION OPERATOR returns an exact image of the
AD which is™ in the type descriotor. Any rights which are placed into
that AD will also be in the AD that is returned when the operator is
executed. '

Change 2 G-3

iAPX 432 INTERFACE PROCESSOR

= ® ARCHITECTURE REFERENCE MANUAL
| 171863-003

REQUEST FOR READER’S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. !f you have any comments on the product that this publication describes, please contact
your intei represeniative. if you wish to order pubiications, contiact the intei Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

la dlic A e —leambd dii;m - F R L o A P el praprape Py
1D UHD WIT 1yl yype b puviivauvll vk youl neeus:’

o
publications are needed?

w

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITYy STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. O

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

M e
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO 79 BEAVERTON OR

POSTAGE WiLL BE PAID BY ADDRESSEE

Intel Corporation

SSO Technical Publications WW1-487
3585 SW 198th Ave

Aloha. OR 97007

intel

INTEL CORPORATION, 3585 SW 198th Avenue, Aloha, Oregon 97007 * (503) 681-8080

Printed in U.S.A./Y130/2K/0882/0LI

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12.5
	B-12.6
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	G-01
	G-02
	G-03
	G-04
	replyA
	replyB
	xBack

