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PREFACE TO REVISION B 

Revision B modifies the original issue (August 1980) in these 
substantive ways: 

Chapter 1 

Chapter 2 

Chapter 4 

Chapter 7 

INTRODUCTION 

WHAT'S AN OBJECT? 

INTERPROCESS 
COMMUNICATION 

THE I/O SUBSYSTEM 

There is new material introducing 
432 architectural innovations. 

Primitives are not described as 
"simple objects". 

Non-FIFO queuing 
mentioned. There 
RECEIVE OR N 
instruction. 

disciplines are 
is no WAIT TO 

TIME QUANTA 

The I/O example is changed because 
the Interface Processor can't 
create 432 objects, and because 
there can be multiple IP processes. 

There are also these changes in terminology: 

SEND MESSAGE is now SEND. 

WAIT TO RECEIVE MESSAGE is now RECEIVE. 

TRANSFORMER OBJECT is now DESCRIPTOR CONTROL OBJECT. 

LABEL OBJECT is now TYPE DEFINITION OBJECT. 

"Seal" is now "private type". 

"Trademark" is now "public type". 
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INrrRODUCT ION 

This book focuses on objects, and on 
objects support such high-level functions as 
modularity, and type checking. 

how the 432's system 
concurrent processing, 

A broader discussion of the iAPX 432 can be found in: 

Introduction to the iAPX 432 Architecture 
Manual Order Number 1'718201-001 

This book provides a conceptual overview of objects and their use in 
the 432 archi tecture, and does not explain implementation deta i 1s. 
The definitive references for the 432 processors are: 

iAPX 432 General Data Processor 
ArchTFecture-R'e'fe.renceManual
Manual Order Number l71860-obl 

and 

iAPX 432 Interface Processor 
ArctiTtecttireR-e-f"erence-Manual 
Manual Order Number 171863-001 

WHY INVENT A NEW ARCHITECTURE? 

Decreasing hardware costs have changed the economics of complex 
computer systems -- software costs are now a major part of overall 
costs for many systems. As a result, any computer application that 
requires extensive software development needs a computer 
archi tecture designed to reduce soft\"lare costs. In fact, this is 
the fundamental design objective of the 432: 

DEF INE A NEW COr.1PUTER ARCH rrrECTURE 
THAT SIGNIFICANTLY REDUCES THE COST 

OF SOFTWARE. 
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A SOFTWARE-ORIENTED ARCHITECTURE 

The 432 is based on a complete rethinking of what har.dware 
facilities are needed to reduce the costs of software 
development, testing, and maintenance. It is a radical departure 
from conventional architectu~es: 

1. The 432 provides a wide range of system per formance wi thout 
software changes. 432 software runs on 1-, 2-, or 
many-processor systems without software changes. Higher 
performance can often be achieved by simply adding more 
processors. 

2. The 432 standardizes and speeds up important operating system 
functions by placing them in har.dware. These hardware 
functions include storage allocation, and scheduling and 
communications for multiple software tasks. The 432' s 
support of these functions makes possible more dynamic 
information and program structures, with reliability still 
provided by the 432's protection and checking mechanisms. 

3. There are important software errors that are i:~Eo~~i_ble on 
the 432: 

• A module ca.n never 
data outside the 
"need-to-kno\'1. " 

mal ic iously or 
set of data 

accidentally access 
that it has a 

• A module cannot wr i te a data structure that it should 
only read, nor read a data structure that it should only 
tNr i te. 

• A module cannot perform an operation that is not allowed 
for the type of data being operated on (such as 
executing data as instructions). 

The major facilities of a conventional architecture are: 

• the processor registers 

• the various addressing modes 

• the built-in data types (e.g., bytes and words), and the 
built-in operations on those types (e.g., add or compare) 
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The 432 architecture, on the other hand, raises the level of 
the hardware/software interface. It uses the most advanced 
semiconductor technology (over 100, 000 transistors on one chip) 
to implement the most advanced ideas in computer archi tecture. 
The 432's major facilities are ones that conventional systems try 
to provide (but provide inadequately) in operating systems and 
compilers: 

• provide access-checking and protection, 
modularity; 

to enforce 

• provide the execution environment for program modules; 

• provide scheduling and communications for multiple 
software tasks; 

• provide control and dispatching for multiple hardware 
processors. 

ARCHITECTURE 
MODULARITY 
CONCURRENCY 
PROTECTION 

I , \ 

Figure 1.1 -- Two state-of-the-art technologies merge to raise 
the level of the hardware/software interface. 

1-3 



WHAT YOU WILL LEARN 

First you will learn what an object is. The object concept 
is then used to explain the major facilities of the 432 
architecture. 

This book has six other chapters: 

CHAPTER 

2. WHAT'S AN OBJECT? 

3. PROGRAM STRUCTURE 

4. INTERPROCESS COMMUNICATION 

5. TRANSPARENT MULTIPROCESSING 

6. DESIGNING SOFTWARE SYSTEMS 

DESCRIPTION 

How objects evolved, what they 
are, and the symbols we use to 
represent them. 

An overview 
recognized 
structure a 
objects are 
program) • 

of the hardware
objects used to 
program (i.e., what 
used to execute a 

It is often advantageous to 
structure a program so that 
several parts of it can execute 
in parallel. This chapter 
describes the facilities of the 
432 architecture that allow 
these separate parts to 
communicate and synchronize 
with each other. 

Any software written for the 
432 can run on systems wi th 1, 
2, or many processors. No 
software changes are required. 
This chapter explains how we 
did it. 

This chapter descr ibes object
oriented design and the support 
that the architecture provides 
for it. This method can reduce 
software costs. 
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CHAPTER 

7. THE I/O SUBSYSTEM 

DESCRIPTION 

This chapter describes the 
physical parti tioning of a 432 
system into major functional 
blocks (i.e., processors, 
memory, and I/O subsystems), 
and explains how I/O is handled 
by decentralized I/O subsystems. 

This booklet is an "Object Primer" because all of these 
facilities are based on objects; this is why objects are 
explained before any of the other facilities. 

SELF-TESTS 

The Object Primer is designed for self-teaching, and includes 
a one-page quiz at the end of each subsequent chapter, with 
answers when you turn the page. 
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Chapter 2 

WHAT'S AN OBJECT? 

This chapter answers that question by covering these subjects: 

• PRIMITIVE DATA TYPES 

• 432 PRIMITIVE DATA TYPE SUPPORT 

• EVOLUTION OF OBJECTS 

• DEFINITION OF OBJECTS 

• SYMBOLS FOR OBJECTS 
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PRIMITIVE DATA TYPES 

To know what a certain pattern of bits in a computer memory 
means, you must know what type of information it is; i.e., is it 
an integer, a character, or a real? For example, consider the 
following 8-bit value: 

0100 0001 

If this is an ASCII character it means: 'A' 
If this is an integer it means: 65 

In short, the data's type determines how the data is interpreted. 

Integers, characters, and reals are examples of very simple 
data called ££lmitives. Primitives have three important 
characteristics: 

PRIMITIVES 

• Are data structures that contain information in an 
organized manner. 

• Have a set of basic operations 
directly manipulate the data 
INTEGER, or MULTIPLY REAL. 

defined for them that 
structure, e.g., ADD 

• Each primitive can be referenced (addressed) as one 
thing; you don't need to reference each of the parts. 

In the 432, these simple data structures are called 
primitives to differentiate them from the more complex structures 
called objects. Just as there are different types of primitives 
(integer s , ---reals, etc.), there are different types of obj ects. 
I'll discuss the precise differences between an object type and a 
primitive type in a moment, but for now just visualize an object 
type as a more complex pr imi ti ve data type. Let's take a side 
track for a moment to look at the support the 432 provides for 
pr imi ti ve data types, then I I 11 come back to the defini tion of 
object types. 
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432 PRIMITIVE DATA TYPE SUPPORT 

The 432 supports these eight primitive data types: 

1) ~CHARACiER 
8 BITS 

2) ~~T IIlTE~ER'16 BITS 

3) (SI-ORT (;f:2l'lt~ 16 BITS 

4) INTEGER I 32 8ITS 

5) ORDINAL I 32 BITS 

6) SHORT REAL I 32 IITS 

7> REAL I U 8ITS 

S) TEMPORARY REAL I 80 IITS 

Figure 2.1 -- Primitive data types 

This support includes more than 150 unique* 
these eight types. Figure 2.2 on the next page 
operators available for these types. 

operators 
summarizes 

for 
the 

*System management and branching operators are not included in 
this count. Instructions which are the same for two different 
data types (e.g., MOVE INTEGER a~d MOVE ORDINAL) are only counted 
once. Also, all instructions have multiple addressing modes but 
are only counted once. 
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OPERATOR ~I .J 5HO~t Q~DIOAL 
SHoaT IHttcu S<lO.T I ITtJ<~~lY 

Ill: .'C7I:I i Ql~ I"AL IHi'L~tl ltAL UAL 

~~ I KOVE X X X X X X X X 

~~< SAVE X X X X X X X X 

~ ZERO X X X X X X X X 

~~ \ ONE X X X X X 

AND X X X 
en co: 

OR ° X X X 
f4 

~ XOR X X X 
~ 
0 

-_ ... _-_. 
. ~~.----; -~~ -------C-· .... ··· .. ---~'--=-r T--oJ 

x;'mR X - -. I - - -
< ----·X =r--~:- -- '~""'---'-'l'--r--'-' .. --~ Col .... COMPLEr-ENT X X - - - -0 

3 
ADD X X X X X X 

SUBTRACT X X X iC X X 

VI 
It: 

MULTIPLY X X X X X 
0 

~ DIVIDE X X X X X 

w Rt.'lAINDER X X X X X 0-

°tC 
Col INCREMENT X X X X X ... 
t DECREMENT >: X X X X :a: 
~ NEGATE X X X X X .... co: 
< ABSOLUTE VALUE X X X 

SQUARE ROOT X 

GIl EXTRACT X X It: 
C\o 

~~~. INSERT X X 
"'W 

0- SIGNIFICANT BIT X X 
° 

EQUAL X X X X X X X X 
GIl 
It: llOT EQUAL X X X X X 0 
f4 

~ EQUAL ZERO X X X X X r- X X 
W 
0-

° NOT EQUAL ZERO X X X X X 
:z 
° GREATER THAN X X X X X X X X ., 
.... e: GREATER THAN OR EQUAL X X X X X X < X X 
0-
:a: 
° Col 

POSITIVE X X X X X 

NEGATIVE X X X X X 

CONVERT TO: CHARACTER X 

SHORT 
X X ., ORDINAL 

.: 
0 
f4 CRDIHAL X X X 
~ 
w SHORT 0- X o. INTEGER 
:z 
° INTEGER X X X ... 
VI 
It: 

SHORT w X > REAL 7-
0 
Col 

REAL X 

TEllPORARY X X X X X X 
RCAL 

Key x = This operator is available for the given data type. 

* & This operator is available for the glven data type and for 
c~erations where one of the operands is a temporary -real. 

• This operator is not available and would not be useful if 
it were. 

(blank)= This opp.rator is not available. 

Figure 2.2 Primitive operator summary 
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EVOLUTION OF OBJECTS 

OBJECTS RAISE THE LEVEL OF 
THE HARDWARE/SOFTWARE INTERFACE. 

This is easy to understand if you look at the history of 
computer development. 

Early machines had very simple hardware operations such as 
"move byte" and "add integer" which manipulated hardware
recognized data types such as bytes and integers. The hardware 
on these early machines was not capable of manipulating floating
point numbers. If you needed floating-point you had to implement 
it in the software. 

As technology progressed and computer hardware gained 
functionality, more complicated operations such as floating-point 
add, multiply, divide, etc., were moved into the hardware. This 
increase in hardware functionality increased the speed with which 
more complicated operations (such as floating-point) could be 
handled, and eliminated the need to program these operations in 
software. Of course, moving "software" into hardware had other 
benefits, e.g., the enforcement of standard programming methods. 

The 432 carries this progression one step further by placing 
system management operations (such as process scheduling, memory 
management, and interprocess communication) into the hardware 
where they can be handled quickly and more securely. 

Just as moving floating-point operations into the hardware 
meant that the hardware had to manipulate the data structures 
used to represent floating-point numbers, moving system 
management operations into the 432 hardware means that the 432 
has to manipulate the data structures associated wi th process 
scheduling, memory managment, and interprocess communication. 
These data structures are called objects. 
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The following chart summarizes the evolution of object
oriented machine~. 

HARDWARE OPERATIO~S HARDWARE-RECOGNIZED DATA TYPES 

• MOVE BYTE • BYTES I BYTE I 
EARLY 

MACHINES • ADD INTEGER • INTEGERS I INTEGER I 

• DIVIDE FLOATING • FLOA TI NG PO I NT ; FLOATING POINT I 
POINT 

ARRAY 

• INDEX INTO AN • ARRAYS ~ 17 ARRAY 

• DISPATCH PROCESS • PROCESSES ~ICATIOO 
PORT r-£SSAGE 

432 OBJECT-

ORIENTED • SEND MESSAGE • COMMUN ICATION 

~ PORT 
MACHINE 

Figure 2.3 -- The evolution of objects 

Examples of some of the objects used by different 432 system 
management operations can be found in the following chart: 

OPERATION OBJECTS ----
• Process scheduling • Process object 

• Processor object 

• Dispatching port object 

• Dynamic memory allocation • storage resource object 

• Interprocess communication • Communication port object 

Figure 2.4 -- Some objects 

Don"t worry if the object names (such as dispatching port) 
sound mysterious; their functions are explained later. The 
important point to remember now is that objects are simply data 
structures in memory which may be manipulated in controlled ways 
by hardware and/or software. 
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This brings up an important point. Not all objects are 
manipulated only by hardware operations; some are manipulated by 
a combination of hardware and software operations and some are 
manipulated only by software operations. Wherever possible, 
frequently-used or time-critical operations have been placed in 
the hardware and less-frequently-used operations have been left 
to the software 

DEFINITION OF OBJECTS 

The early part of this chapter explained that primitives have 
three important characteristics. What are those three 
characteristics? (Fill in the blanks.) 

(1) 

(2) 

(3 ) 

(Check your answers by reviewing page 2-2) 

An object has these same three characteristics plus one more: 
An object has a label that tells its type. 

This label is used to check an object's type before i.t is 
used in an operation. I'll say more about type checking in 
Chapter 6. The important thing to remember is that the 
difference between an object and a pr imi tive is that an object 
has a label which tells its type. A pr imi tive does not have a 
label. In summary: 

AN OBJECT 

• Is a data structure that contains information in an 
organized manner. 

• Has a set of basic operations defined for it that directly 
manipulate the data structure. (The 432 hardware ensures 
that these are the only operations that can directly 
manipulate the data structure.) 

• Can be referenced (addressed) as one thing; you don't need 
to reference each of the parts. 

• Has a label that tells the object's type. 

Figure 2.5 -- Object characteristics 
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SYMBOLS FOR OBJECTS 

This book uses various symbols to represent objects. 

For example, the rather shapeless symbol: 

Figure 2.6 -- Any object 

represents an object when we don't know or don't care what its 
type is. More definite symbols such as: 

Commun i ca t ion 
Port Object 

Figure 2.7 -- Specific object types 

represent specific types of objects. Remember that all of the 
above symbols represent objects (data structures) - not chunks of 
silicon. 
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The one symbol which represents silicon is the processor 
symbol: 

Figure 2.8 -- Physical processor 

which represents a physical processor - not a data structure (not 
an object). 

The other symbol which is used frequently is the arrow: 

Figure 2.9 -- Object reference 

which represents a protected object reference. 

The 432 is different from most machines because it has an 
object-oriented addressing and protection mechanism. This method 
of addressing allows a program to address an object only if it 
has a reference for it. You'll learn more about this when I talk 
about a procedure's access environment in the next chapter. For 
now, the important thing to remember is that the arrow represents 
an object reference which gives a program the ability to access 
the object pointed to by the reference. 
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For example, the figure: 

Figure 2.10 

Commun i ca t ion 
Port Object 

indicates that the process object can access the communication 
port object because it has a reference for it. 

OBJECTS VS. SEGMENTS 

An object is a data structure of arbitrary complexity. What 
I mean by "arbitrary complexity" is that an object does not have 
to occupy a contiguous set of memory locations. An object can 
look like this: 

Figure 2.11 -- An object can contain several segments. 

Where each of the rectangles in Figure 2.11 represents a 
different physical region in memory. 

A set of contiguous memory locations (a rectangle in Figure 
2.11) is called a segment. Segments should not be confused with 
objects. An object can be a segment, several segments, or part 
of a segment. 
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The term segment is used to talk about the physical structure 
of data in memory, i.e., where the structure is located. 

The term object is used to talk about the logical structure 
of data in memory, i.e., how the memory is used. 

Every bit, byte, and word of information in memory is 
contained in an object of some kind. That same bi t, byte, or 
word of information is also contained in a segment. 

Segments are not discussed in this book; I only talk about 
objects in this book. I'm warning you about the difference 
between segments and objects because it is easy to confuse the 
two terms. 
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1. Integer s, 
of 

"WHAT'S AN OBJECT?" QUIZ 

characters, and reals are all examples 

Communication ports and dispatching ports are both examples 
of 

2. Objects came about as part of the "natural" evolution of more 
powerful computers. Explain. 

3. Circle the correct answer. 
performed by the: 

• Hardware 

• Software 

Explain. 

Operations on objects are 

4. What are the four character istics of an object? Which of 
these four is not a characteristic of a primitive? 
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KEY TO "WHAT'S AN OBJECT?" QUIZ 

1. Integers, characters, 
primitives. 

and reals are all examples of 

Communication ports and dispatching ports are both examples 
of objects. 

2. Objects came about as part of the "natural" evolution of more 
powerful computers. Explain. 

As our ability to build computer hardware has improved, we've 
moved functionali ty from the software to the hardware. As 
we've done this, the hardware has corne to recognize more 
complex data types. An example of this is moving the 
functionality for floating point operations into the hardware 
-- the hardware had to "learn" to recognize the structure of 
a floating point number. The 432 has moved operating system 
and high-level language operations (e.g., process scheduling) 
into the hardware -- thus the 432 had to "learn" to recognize 
the data structures needed for these operations. We call 
these more complex structures "objects". 

3. Circle the correct answer. Operations on objects are 
performed by the: 

Explain. 

The 432 hardware recognizes many objects and has many 
instructions for manipulating them. In general, these 
hardware operations are the ones executed frequently (so they 
need to be fast) and the ones that are sensi tive (so they 
need to be protected). 

This is not to say, however, that software cannot manipulate 
objects -- it can. In fact the 432 includes a mechanism for 
defining additional "software instructions" for manipulating 
objects. This mechanism is covered in Chapter 6. 

4. What are the four character istics of an object? Which of 
these four is not a characteristic of a primitive? 

The four characteristics of an object are: 
• it is a data structure that contains information in an 

organized manner; 
• it has a set of operations that manipulate it; 
• it can be referenced (addressed) as one thing; 
• it has a label that tells its type. 

Primitives have the first 3 characteristics, but do not have 
a type label. 
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Chapter 3 

PROGRAM STRUCTURE 

This chapter is an overview of the structure of a 432 
program. Later chapters fill in some of the details and explain 
how some of the objects are used. The major purpose of this 
chapter is to put it all into perspective so you can see how the 
pieces fit together. 

CHAPTER ORGANIZATION 

You start your journey through the structure of a program 
with the: 

• Physical processors .••. the chunks of silicon that 
fetch and execute instructions 

Along the way you briefly explore each of the objects which make 
up a program: 

• Processor objects • • • • . contain information about the 
state of a particular physical 
processor 

• Process objects . . • . • . contain information about a 
particular "unit of work for a 
processor" (process) 

• Context objects . . are activation records 
instances of procedures 

• Instruction objects . • • • contain the 
are fetched 
processor 

instructions 
and executed 

for 

that 
by a 

• Data objects contain the data manipulated by 
a program 
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At this point, you may wonder "Why haven't I seen a 
discussion of program structure in the descriptions of other 
architectures?" The reason is simple. In most machines this 
structure is part of the operating system or the language 
run-time environment. But the 432 is not a "flat" machine: these 
structures are part of the 432 architecture and are recognized by 
the hardware. 

The structure of a program starts with: 

PHYSICAL PROCESSORS 

Figure 3.1 -- A physical processor 

This symbol (Figure 3.1) represents a physical processor. 
The physical processor is not an object (it is not a data 
structure), although, as you'll see in the 'next section, there is 
an object called a processor object. The physical processor, 
however, is made of silicon, sits inside a package on a printed 
circuit board, and fetches and executes instructions. 

3-2 



PROCESSOR OBJECTS 

Each physical processor has, in memory, a processor object 
information about a 
running or halted, 

and references for 

(see Figure 3.2). This is used to record 
particular processor such as whether it is 
diagnostic and machine check information, 
other objects which the processor needs. 

A Processor Object: 

• Is a hardware-recognized 
data structure in memory 

MEMORY SPACE 

• Each processor has one 

• Contains information like: 

• Processor status (e.g., 
running, halted, etc.) 

• Diagnostic and 
check information 

• References 
objects 

for 

machine 

other 

Figure 3.2 -- The processor object is part 
of the structure of a program. 

For those of you familiar with earlier mainframe 
implementations, some of them used low-order memory to record 
diagnostic and status information about the processor. But they 
had a problem when they started to build a mul tiprocessor system 
-- each processor though t tha tit should use the same set of 
locations 1n low-order memory. One way that the problem was 
solved was by creating two separate banks of low-order memory and 
adding special instructions to the processors for switching 
between the two banks of low~order memory. 

The 432 has taken this concept of storing diagnostic and 
status information about a processor and generalized it for use 
wi th mul tiple processor s. Each processor has its own processor 
object (see Figure 3.3) which can be located anywhere in memory 
and can be dynamically relocated if necessary. Each processor 
addresses its processor object using an on-chip reference for the 
processor object. 
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MEMORY SPACE 

Figure 3.3 -- Each processor has its own processor object. 

(Note: For those of you wondering about the chicken-and-the-egg 
problem, the processor loads its processor object reference in a 
rather straightforward manner at initialization time.) 

In summary, processor objects are really simple. The 
important thing to remember is that a processor object contains 
information about a particular physical processor. 
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PROCESSES 

The next stop on thi s journey through 
program is the process, and, you guessed it, 
that contain information about processes 
objects. But before I talk about the kind 
in a process object, I'll define "process": 

the structure of a 
the data structures 

are called process 
of information found 

PROCESS A unit of work for a processor, i.e., the 
smallest unit of programming activity which 
can be scheduled to run on a processor 

Figure 3.4 -- Multiple processes can take turns 
on a/processor. 

In a system wi th two processes that are ready to run, they 
can either: 

• "take turns" executing on a single processor (i.e., 
timeshare), or 

• execute at the same time if there are two processors 
available. 

As an example, consider a single processor timesharing system 
wi th two users (Bob and Tom) si tting at the terminals. Bob is 
edi ting some text and Tom is compiling a COBOL program. In the 
example, there are two processes taking turns using the 
processor. Bob's editing process and Tom's COBOL compiler 
process are scheduled to share the processor on a timeshar ing 
basis (see Figure 3.5). 
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Figure 3.5 -- Timesharing processes 

Bob and Tom have separate processes that share the same 
processor, but the two processes are completely unrelated; they 
do not work together to accomplish a common end. The next 
example examines a single program with three processes that work 
together. 

In industrial control applications, there are many events 
which can take place simul taneously. Structur ing the program to 
reflect this natural parallelism makes it easier to understand 
and debug. 

The industr ial control program example uses three separate 
processes. The first monitors all the sensors and performs 
preliminary pre-processing of the data. This is called the 
sensor monitor process. 

The second process recei ves the pre-processed data from the 
sensor moni tor process and uses it to make control decisions. 
This is called the control decision proces~. 

The third process receives commands from the control decision 
process and translates them into specific instructions for each 
of the servo devices that position the controls. This is called 
the servo controller process. 

This program structure is summarized in Figure 3.6. 

Sensor 
Input High level 

Q)ntrol 
Camrmds 

Specific 
Servo 

Instructions 

Figure 3.6 -- The structure of an example industrial 
control 'program 
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Note that these three processes can execute in parallel. 
While the sensor moni tor is prepar lng a message for the control 
decision process, the control decision process can be computing 
the action required by data received earlier. At the same time, 
the servo controller can be carrying out the commands it received 
earlier. The program is structured so that three different parts 
can be executing on different processors at the same time. 

However, the hardware used to execute this industrial control 
program could be a single processor that shares its time among 
the three processes. Or, if more computational power is required 
to make the control program execute faster, a second or third 
processor can be added to execute more than one process at the 
same time (see Figure 3.7). 

Process 1 

Sensor 
Monitor 

Process 3 

Process 2 

Control 
Decisions 

Figure 3.7 -- A 3-process industrial control program running on 
2 processors 
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This is called transparent multiprocessing because processors 
can be added without making any software changes. There is more 
about it in Chapter 5. For now, just realize that a process is 
the unit of work that can be scheduled to run on a processor. 

PROCESS OBJECTS 

A process object is the data structure in memory that 
contains information about a particular process. There IS one 
for each process in the system and it contains information like 
how the process should be scheduled and what the process status 
is (running, waiting, etc.) (see Figure 3.8). 

MEMORY SPACE 

Process Object 

• Hardware-recognized 
object 

• One for each process 
r-----__ ~ in the system 

• Contains 
like: 

information 

• Process status, 
e.g. , running/ 
waiting/etc. 

• How the process 
should be scheduled 

Figure 3.8 --The process object is part of the 
structure of a program. 

Figure 3.8 shows that the processor object contains an object 
reference for the process object currently running on the 
processor. This is important because the 432' s object-oriented 
addressing and protection mechanism does not allow a processor to 
access an object unless it has an object reference for it. 

This object reference from the processor object to the 
process object is not fixed. It is changed dynamically as the 
processor switches among different processes. 

As an example, reconsider Bob and Tom, the two users 
timesharing at computer terminals. In Figure 3.9 at Time 1, 
Bob's process is running and the processor object has a reference 
for Bob's process. At Time 2, Tom's process is running and the 
processor objeqt has a reference for Tom's process. 
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TIme: 

TIme: 

Kemory Space 

Memory Space BOB; 

Bob's 
Process 
RunnIng 

Tom's 
Process 
Running 

Figure 3.9 -- Tom and Bob taking turns on 
a single proce~sor 

Note also that the process object contains the status 
information showing whether its process is running or waiting. 

One last note about Figure 3.9 -- it is oversimplified. It 
does not show how the object reference gets swi tched from Tom's 
process to Bob's process, so don't get confused. The processor 
at Time 2 doesn't just arbitrarily give itself the ability to 
execute a different process. The details of how this works are 
explained in Chapter 5, "Transparent Multiprocessing". For now, 
just remember one thing: 

A processor object has a reference for the process 
object of the process currently being executed. This 
reference changes dynamically as the processes being 
executed change. 

Figure 3.9 shows how Bob and Tom can both share one 
processor. Figure 3.10 shows how things are structured if 
Bob and Tom each have their own processor. There is a 
processor object for each processor and each processor 
object has a reference for the process currently running on 
its processor. 
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Figure 3.10 -- A two processor system 

PROCEDURES 

Each process is made up of one or more procedures and, as you 
might expect, the 432 has a hardware-recognized object that 
represents a procedure. It is called a context object, but 
before I explain what a context object is I need to say a few 
things about procedures. 

A procedure is a collection of instructions to per form some 
operation, such as sine of x. A procedure is called wi th some 
parameters, performs some operation, and optionally returns a 
result. 

In a computer system, several processes that need to perform 
the same operation (e.g., sine of x), and they may want to shar~ 
the same procedure. Procedures are shared among several 
different processes by giving each process a "copy" (an instance) 
of the procedure. Actually, each "copy" does not duplicate all 
of the information because some of the information (e.g., the 
instructions) can be used simultaneously by more than one 
process. Each instance of a procedure (each "copy") is called a 
context. 
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CONTEXT OBJECTS 

A context object is the hardware-recognized data structure 
that contains information about a particular instance of a 
procedure. For example, the context object contains the 
instruction pointer (This points to the current instruction that 
is being executed. It is roughly equivalent to a program counter 
on more conventional machines.), the stack pointer, and the list 
of objects. that the procedure can access. 

}IEMORY SPACE 

CONTEXT OBJECT 

• a hardware-recognized object 

• contains information about an instance of a procedure,e.g.: 

• the instruction pointer for this context 
• the stack pointer for this context's stack 
• the return link to the calling context 
• references for all the objects that can be accessed by 

this context 

Figure 3.11--The context object is part of the 
structure of a program. 

The last bullet in Figure 3.11 deserves special attention: 

• The context object contains a reference for all the 
obje~ts used by the procedure (see Figure 3.12). 
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Context 
Object 

List of object 
references for objects 
that will need to be accessed 
by the procedure 

If an object isn't referenced, 
it can't be accessed. 

Figure 3.12 -- A context lists the objects accessible by an 
instance of a procedure. 

The complete list of objects accessible by a procedure is 
called its access environment. Remember, the 432's 
object-oriented protection mechanism does not allow a program to 
access an object unless it has a reference for it. Well, all the 
objects referenced by a context object are part of the context's 
access environment. Any object listed in the access environment 
(i.e., that has an object reference in the context object or in 
one of the objects referenced by the context object) can be 
accessed; all objects that are not listed cannot be accessed. 

When one procedure calls another procedure, the access 
environment changes because the called procedure has a different 
context, i.e., a different list of objects which can be accessed 
(see Figure 3.13). 
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Access Environment Access Environment 
of Procedure A of Procedure B 

\ ...... j,.;~~~~~;;.:.:..... /(;::ed:-:B'! 
• Context· I Context \ 

: Object ____ CAL_L ___ :> l Object : 

....... .;' 

I 
/ 

I Note: Not 
I shown are: 

·1 • object 
I reference 

that "A" 
1 needs to call 
I "B" 
I • object 
I reference 

created during 
/ call so "B" 

can return to 
"An 

Figure 3.13 -- The access environment changes 
with each procedure call. 

Note that this means that the 432 has a finer "protection 
granularity" than most machines. The protected access 
environment is at the procedure level, not at the process or job 
level as on most machines that have protection. We' 11 look at 
the advantages this provides in Chapter 6. 

In summary, then, a context is the root of the access 
environment for an instance of a procedure. It contains 
a list of references for all the objects used by this 
particular instance of the procedure. 

Note that in Figure 3.11 one of the things contained by the 
process object is a reference for the current context object. I 
say current, because this reference---changes dynamically as 
procedures are called and return. 

Here is an example. In Figure 3.14.A, the MAIN procedure is 
running. Note that the process object has a reference for the 
context being executed. 
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In Figure 3.l4.B, MAIN has called the procedure SUB using the 
CALL CONTEXT WITH MESSAGE operator. This single hardware 
instruction did four things: 

• SUB is now the current context being executed, as indicated 
by the reference from t"he process object to SUB. 

• The access environment was changed. The objects listed in 
MAIN's context cannot be accessed now (unless they are also 
listed in SUB's context): only the objects listed in SUB's 
context can be accessed. 

• A return link was created. This is simply an object 
reference in the called context (SUB) for the calling 
context (MAIN). It is used to locate MAIN when SUB 
executes a RETURN instruction. 

• ~ messag~~as pas~~q. There's more about this in a minute. 

The MAIN procedure must have a reference for the subroutine 
SUB in order to call SUB; this reference is not shown in Figure 

-3.15 -- so as not to confuse it with a reference for the context 
object that represents a single activation of SUB. 
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A) BEFORE CALL: 

B) AFTER CALL: (SUB EXECUTING) 

llEMORY SPACE 

C) AFTER RETURN: 

'MAIN: 

j Context 
Ob;ect 

MAIN: 

Context 
Ob"ect 

Return 
Link 

Figure 3.14 -- Structure of a procedure call 
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In Figure 3.l4.C, SUB has returned control to the calling 
procedure MAIN using the RETURN operator. This single hardware 
instruction did three things: 

• MAIN is now the current context being executed as indicated 
by the reference from the process object to MAIN. 

• The access environment was changed. The objects listed in 
SUB's context cannot be accessed now (unless they are also 
listed in MAIN's context); only the objects listed in 
MAIN's context can be accessed. 

• The return link was removed. The object reference to MAIN 
from SUB no longer exists. 

This method of calling procedures and returning has two major 
differences from most machines: 

1. The access environment changes. 

2. The message-passing mechanism is very general. 

Let's look at these differences in more detail. 

The access environment changes. Each procedure has its own 
access environment which is limited to the set of objects needed 
by the procedure. This provides much finer control of protection 
than is found on most other machines. Some of the advantages are 
discussed in a later chapter. 

The message-passing mechanism is very general. The CALL and 
RETURN operators pass messages by moving the object reference for 
the message to the context which is to receive the message. 

Let's look at the CALL CONTEXT WITH MESSAGE operator as an 
example of how messages are passed. In Figure 3.lS.A, the MAIN 
context is executing and has prepared a message. for SUB. Note 
the object reference for the message that is in MAIN's context 
object. 

In Figure 3.lS.B MAIN has called SUB and has passed it the 
object reference for the message. Note that the object reference 
has been removed from MAIN's context and placed in SUB's context. 
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A) BEFORE CALL: 

B) AFTER CALL: (SUB EXECUTING) 

ltEMORY SPACE 

MAIN: 

MAIN: 
i 

Context 
Object 

Figure 3.15 -- CALL CONTEXT WITH MESSAGE 

This is a powerful parameter-passing mechanism because it is 
general. Any object can be a message. For example, if the 
called procedure is sine of x, the message is simple it 
contains the value x. But, what if the called procedure is the 
part of the operating system that schedules processes? The 
message might be a process object that needs to be scheduled. 

In summary, the message-passing mechanism is powerful because 
it is general. It can pass a reference for a simple object that 
contains the parameter values, or it can pass a reference for an 
object that contains many object references (see Figure 3 .16) • 
Messages are discussed in more detail in Chapter 4. 

One final note. This discussion is somewhat simplified, 
because context objects are actually allocated and deallocated by 
the CALL and RETURN instructions. I have not explained this 
because storage allocation and deallocation are beyond the scope 
of this book. If you are interested in this subject, please 
refer to the Architecture Reference Manual. 
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Context 
Object 

MESSAGES 

Exploded view of 
a complex object 

Figure 3.16 -- Any object can be a message. 

INSTRUCTION AND DATA OBJECTS 

You are nearing the end of your journey through the structure 
of a program. We've talked about physical processors, processor 
objects, process objects, and context objects. Now its time to 
talk about the last two objects which are part of the basic 
structure of a program. 

Every computer does two very basic things: 

1. It fetches and executes instructions. 

2. It manipulates data. 

Therefore, a context (an instance of a procedure) needs to be 
able to access objects that contain instructions and data. 

An instruction object is exactly what its name implies -- an 
object that holds instructions. Pretty simple, but two things 
make it interesting: 

1. Instruction objects only hold instructions (and a little 
bit of system information) -- they don't hold data. 

2. Instruction objects are the only type of objects that a 
processor will use as a source of instructions to be 
fetched and executed. 

This second feature is nice because it means that other kinds 
of objects such as data objects, process objects, etc. cannot be 
accidentally mistaken for instructions and executed. This is an 
example of how the 432 uses type checking to produce more 
reliable systems. 

Having instructions isolated in their own object has another 
advantage. All 432 programs are fully reentrant. Instruction 
objects can be shared by several instances of a program. 
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A data object is exactly what its name implies -- an object 
that holds data, e.g., integers, reals, characters, tables, etc. 

"Data object", then, is a very general term. In fact, it is 
so gener al that the 432 provides a mechani sm for gi ving data 
objects (as well as other objects) a software-defined type such 
as "telephone directory" that is more specific than "data 
object". This mechanism is described in Chapter 6, Designing 
Software Systems. 

Figure 3.17 shows the complete structure of a program. Note 
that the context object has references for all the instruction 
and data objects that will be executed/manipulated by this 
instance of the procedure (i.e. this context). 

Memory Space 

Figure 3.17 -- The structure of a program 

When looking at Figure 3.17, remember that this is not a 
stati.c structure it changes dynamically as the program runs 
different processes, as processes execute different contexts, and 
as contexts create and destroy data objects. 

SUMMARY 

You've now had a complete overview of program structure, from 
processors to data objects. Figure 3.18 summarizes the important 
points about each object. 

3-19 



Context 
Object 

PHYSICAL PROCESSOR 
• Made of silicon (not an object) 
• Fetches and executes instructions 

PROCESSOR OBJECT 
• Each processor has one 
• Contains information like: 

• Processor status (e.g., running or 
halted) 

• Diagnostic & machine check 
information 

• A reference for the process 
currently being executed 

PROCESS OBJECT 
• One for each process in the system 
• Contains information like: 

• Process status (e.g., running, 
waiting, etc.) 

• How the process should be scheduled 
• A reference for the context 

currently being executed 

CONTEXT OBJECT 
• One for each instance of a procedure 
• Contains information like: 

• Instruction pointer for this 
context 

• Stack pointer for this context's 
stack 

• Return link to the calling context 
• References for all the objects that 

can be accessed by this context 

INSTRUCTION OBJECT 
• Contains only instructions -- does 

not contain data 
• Is the only type of object that a 

processor will use as a source of 
instructions to be fetched and 
executed 

DATA OBJECT 
• Contains data (e.g., integers, reals, 

characters, or a combination of 
several primitive data types) 

Figure 3.18 -- The objects that make up a program 
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ADVANTAGES AND BENEFITS 

The major advantages of building these structures into the 
architecture are that: 

• Frequently-used 
hardware, and 

operations can be performed by 

• a major portion of the system design is already complete. 

the 

This means that the 432 architecture has the following benefits: 

• Execution of frequently-used operating 
high-level language operations is faster. 

system and 

• The operating system is more secure because support for it 
is built into the hardware. 

• System design is faster because more of it is already done. 
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PROGRAM STRUCTURE QUIZ 

1. These objects are part of a 432 program: 

2. 

• Context Object • Processor Object 
• Instruction Object • Data Object 
• Process Object 

Finish the picture below to show how these objects fit 
together to form the structure of a 432 program. 

~ry Space 

In one sentence, what is a processor object? 
of the kind of information that is found 
object. 

Give 3 examples 
in a processor 

3. In one sentence, what is a process? Give 3 examples of the 
kind of information that is found in a process object. 
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KEY TO PROGRAM STRUCTURE QUIZ 

1. These objects are part of a 432 program: 

2. 

• • 
Context Object 
Instruction Object 
Process Object 

• • 
Processor Object 
Data Object 

• 
Finish the picture below to show how these objects fit 
together to form the structure of a 432 program. 

Memory Space 

In one sentence, what is a processor object? 
of the kind of information that is found 
object. 

A processor object 
information about 
information like: 

is a data 
a specific 

structure 
processo.r.. 

Give 3 examples 
in a processor 

that 
It 

contains 
contains 

• processor status (e.g., running or halted) 
• diagnostic and machine check information 
• an object reference for the process currently being 

executed 

3. In one sentence, what is a process? Gi ve 3 examples of the 
kind of information that is found in a process object. 

A process is a unit of work for a processor, i.e., the 
smallest uni t of programming acti vi ty that can be scheduled 
to run on a processor. 

A process obj ect 
information about 
information like: 

is 
a 

a data structure 
specific process. 

• process status (running, waiting, etc.) 

that 
It 

contains 
contains 

• scheduling parameters that describe how the process 
should be scheduled to run on a processor 

• a reference for the context currently being executed 
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INTERPROCESS COMMUNICATION 

Introduction 

Now that you are familiar with the basic structure of a 432 
program, it is time to consider the support that the 432 provides 
for concurrent programming. 

This chapter discusses programs wi th more than one process, 
i.e., two or more parts that can execute at the same time. 
Special support is required for synchronization and communication 
between concurrent processes, and the 432 provides this support 
in the hardware. 

The major topics covered by this chapter are: 

• 

• 

• 

• 

PROGRAMS WITH MORE 
THAN ONE PROCESS 

COMMUNICATION PORTS 

SEND AND RECEIVE 

.l\N EXAMPLE OF 
INTERPROCESS 
COMMUNICATION 

Sometimes a program has 2 or more 
parts that can execute at the same 
time. This section considers an 
example of such a program and looks 
at the support required. 

Communication ports are the 432 
hardware-defined objects that 
support interprocess communication 
and synchronization. This section 
gives an overview of how they work 
and defines the term ~e?sage. 

This section explains how the SEND 
and RECEIVE operators allow 
processes to communicate by sending 
and receiving messages. 

This section walks through an example 
of how parallel processes 
communicate. 
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PROGRAMS WITH MORE THAN ONE PROCESS 

A process is a unit of work for a processor -- it is the unit 
of software that can be schepuled to run on a processor. A 
program is a collection of instructions and data that runs on a 
processor and tells it what to do to provide some service, such 
as computing a sine, fir ing a missile, or managingari"airline 
reservation system. A program can be a process, part of a 
process, or several processes. 

The important difference between the two terms is that the 
term E!.,9.gram is used when we are describing a unit of software 
that provides some service, and the term process is used when we 
are talking about a uni t of software that is schedulable. A 
process is always a program, i.e., it always provides a service, 
but a program is not always a process. A process is always 
schedulable; a program may be schedulable, may not be schedulable 
by itself, or may have several parts (processes) each of which is 
schedulable. 

Here is an example to clarify the distinction between the two 
terms. The example involves the totally automated "office of the 
future" where all the people have been replaced by computer 
programs. REPORTER is a program that continuously produces 
reports describing the accomplishments of this automated office. 

The REPORTER program is made up of 2 smaller programs called 
ROGER and PATTY. The first program, ROGER, is a wr iter program 
which writes the reports and then gives them to the second 
program, PATTY. PATTY is a secretarial program which types the 
reports and then gives them back to ROGER for proofreading. When 
a .report is correct, Roger can print it (not shown). 

Reporter Program 

Figure 4.1 -- The Reporter program 
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Figure 4.1 shows 
shows three programs: 

this office of the future. Note that it 
REPORTER, ROGER, and PATTY. 

ROGER and PATTY, in addition to being programs, are also 
processes, i.e. , they can be independently scheduled for 
execution on a processor. If there are two processors in our 
system, both ROGER and PATTY can be executing at the same time on 
different processors. PATTY can be typing ROGER's first report 
at the same time that ROGER is writing a second report. 

When a program is made up of more than one process 
REPORTER program), a mechanism is needed for 
processes to communicate with each other.. In 
program, ROGER needs to communicate with PATTY to 
reports to type, and PATTY needs to communicate 
give him typed reports to proofread. 

COMMUNICATION PORTS 

the 
the 

give 
with 

432 processes communicate 
communicat~o!! por,!:. ~bjects. 

with each other 

This is the symbol 
for communication ports: 

Commun i ca t ion 
Port Object 

Figure 4.2 -- A communication port 

(like the 
separate 
REPORTER 

her draft 
ROGER to 

by using 

For example, communication ports can be used to implement the 
REPORTER program. 
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Commun i ca t ion 
Port Object 

PATTY'S IN-BASKET 

Commun i cat ion 
Port Object 

ROGER'S IN-BASKET 

Figure 4.3 -- The Reporter program 

In Figure 4.3, communication ports are used as .. in-baskets" 
for ROGER and PATTY. Whenever ROGER finishes wr i ting a report, 
he puts it in PATTY's in-basket. Reports accumulate in PATTY's 
in-basket (in a first-in-first-out (FIFO) queue) until she is 
ready to type one. Whenever PATTY needs work, she removes a 
report from her in-basket, types it, and places the typed report 
in ROGER's in-basket. When ROGER is ready to proofread a report, 
he removes a typed report from the FIFO queue of reports in his 
in-basket. (The 432 also supports other (non-FIFO) queuing 
disciplines, but they are not covered in this primer). 

The communication port acts as a buffer between the two 
asynchronous processes, allowing each to proceed at its own 
pace. ROGER does not need to wai t until PATTY finishes typing 
Report 1 in order to place Report 2 in her in-basket. 
Similarily, PATTY does not need to worry about what ROGER is 
doing. She just keeps typing a report until she finishes. When 
she is done, she puts it in ROGER's in-basket and takes another 
draft from her in-basket. 

Communication ports are a very powerful and flexible 
mechanism for interprocess communication because they can be used 
to send just about any kind of message between two processes. In 
the REPORTER program, the draft reports and the typed reports are 
objects that are sent as messages. But, communication ports 
allow any object to be a message. This includes all 
hardware-defined objects (e.g., process objects and context 
objects) as well as all software-defined objects (e.g., reports 
and telephone books). 
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Context 
Object 

Figure 4.4 -- Any object can be a message. 

There are two kinds of hardware operators that manipulate 
messages and communication ports -- SEND and RECEIVE. The next 
two sections take closer looks at these operators and at examples 
of how they are used. 

SEND and RECEIVE 

When ROGER wants to give a message to PATTY, he sends it to 
her by putting it in her in-basket. Later, when PATTY is ready 
to receive the message, she removes it from her in-basket. The 
432 hardware operation that places the message in the in-basket 
is called SEND. Figure 4.5 gives a conceptual explanation of 
what the instruction does. 
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OPERANDS ACTION INSTRUCTION 

SEND MESSAGE, COMMUNICATION PORT THE MESSAGE IS QUEUED 
AT THE COMMUN I CAT ION 
PORT 

, 

Before SEND instruction Execution 

COr.1lT1lJnicat ion 
Port Object 

Commun j ca t ion 
Port Object 

After SEND instruction Execution 

Cornmun i ca t ion 
Port Object 

Note: Object references are not shown in this conceptual diagram. 

Figure 4.5 -- SEND instruction 

The SEND instruction has 2 operands: the message being sent 
and the communication port it is being sent to. Figure 4.5 
summarizes the action of the instruction. Before SEND is 
executed, the process has a message it wants to send. After SEND 
is executed, the message has been sent to the specified 
communication port (the message is not actually copied; only an 
object reference is copied). 
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INSTRUCTION 

RECEIVE 

OPERAND 

COMMUNICATIONS PORT 

Commun i ca t ion 
Port Object 

ACTION 

MESSAGE IS REMOVED FROM 
THE PORT AND GIVEN TO 
THE PROCESS 

Before RECEIVE instruction Execution After RECEIVE instruction Execution 

Communication 
Port Object 

Commun i ca t ion 
Port Object 

Figure 4.6 -- RECEIVE instruction (message waiting) 

The RECEIVE instruction has one operand: the communication 
port where the message is to be received. Figure 4.6 summarizes 
the action of the instruction if there is a message wai ting. 
Before RECEIVE is executed, there is a message wai ting in the 
communication port (placed there earlier by a SEND instruction). 
After RECEIVE is executed, the message is moved from the port to 
the process executing the RECEIVE. 

The RECEIVE instruction is straightforward if there is a 
message wai ting in the communication port -- the message simply 
moves from the port to the process executing the RECEIVE 
instruction. What happens if there are no messages wai ting in 
the communication port? 
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If the communication port is empty the 
process wa its "i ns i de" the commun i cat ion 
port until a message arrives. 

Before RECEIVE Execution After RECEIVE Execution 

Communication 
Port Object 

Commun i cn t ion 
Port Objr-ct 

Figure 4.7 -- RECEIVE instruction (no message waiting) 

If a process executes a RECEIVE instruction and the 
communication port is empty, the process waits "inside" the 
communication port until a message is sent. Remember that 
messages are objects and that a process is just a special type of 
obj ect. Therefore, processes can queue up wai ting for messages 
just like messages can queue up waiting to be received by 
processes. 

Execution of instructions from the waiting process stops 
until a message is sent to the port. When a message is sent to a 
port that has a waiting process, the message is immediately given 
to the waiting process so that it can begin execution again. 

Note that while a process wai ts at a communication port the 
processor that is executing the process may not. It can 
immediately begin executing some other process that is ready to 
execute. How processors handle this scheduling and dispatching 
of processes is covered in Chapter 6. 

Actually, RECEIVE is only one of several receive 
instructions. It is useful when you want a process to stop and 
wait when there a~e no messages. But, sometimes it is useful for 
a process to receive a message if there is one, but to continue 
doing something else if there is not. The CONDITIONAL RECEIVE 
instruction allows it to do just that. 

The SEND instruction may also require the executing process 
to wai t "inside" the communication port -- if the part of the 
port that holds messages (the port message buffer) is "full" and 
cannot accept any more messages when the SEND is issued. When 
this happens, the SENDing process waits until some other process 
executes a RECEIVE on the port, removing a message and freeing a 
slot in the message buffer. The SEND is then completed and the 
SENDing process no longer wai ts at the port. Just as there are 
variants of RECEIVE which do not wait if the port is empty, there 
are variants of SEND (e.g., CONDITIONAL SEND), that do not wait 
if the port is full. 
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The next section returns to the REPORTER program and looks at 
an example showing how communication ports and the SEND and 
RECEIVE operators are used. 

AN EXAMPLE OF INTERPROCESS COMMUNICATION 

The example program has much the same structure as the 
REPORTER program discussed earlier, but wi th one sl ight 
difference: a second secretarial process named TOM. TOM does 
the same work as PATTY and even uses the same instruction objects 
as PATTY. The only difference is that there are now 3 processes 
(ROGER, PATTY, and TOM) that can execute at the same time instead 
of just 2 (ROG~R and PATTY). ROGER does not care who types his 
reports; both PATTY and TOM are equally competent. 

SECRETARIES' 
IN-BASKET 

Communication 
Port Object 

ROCER'S 
IN-8ASKET 

Figure 4.8 

In Figure 4.8, you will note that both PATTY and TOM share 
one secretarial in-bask~t. Whenever ROGER wants a report typed, 
he places it in the secretarial in-basket and either PATTY or TOM 
removes it, types it, and places it in ROGER's in-basket. 

In reading the example, please remember two things: First, 
the diagrams show obj ects being moved around. Actually, only 
references for the objects are moved; the objects themselves stay 
in the same locations. 
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Second, unlike most of the diagrams in earlier chapters, the 
diagrams in this example do not show object references. The 
object references are described later, but are left out of this 
example for simplicity. 

Figure 4.9.1 is the first "snapshot" of what is happening as 
the modified REPORTER program executes. Note that the program 
has been executing for some time, because ROGER has already 
written 4 reports and is now writing Report 5. 

TIME: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

Commun i ca t ion 
Port Object 

ROGER'S 
IN-BASKET: 

Communication 
Port Object 

PATTY: 

Three processes are executing 
concurrently: 

Two reports are in communication 
ports: 

1. ROGER writing Report 5 1. Report 4 has been written. 
2. PATTY typing Report 3 2. Report 1 has been typed. 
3. TOM typing Report 2 

Figure 4.9.1 

At Time 1 (Figure 4.9.1), there are three processes running 
in parallel. ROGER is wr i ting Report 5, PATTY is typing Report 
3, and TOM is typing Report 2. Report 4 has been wr i tten by 
ROGER and is ready to be typed by either PATTY or TOM. Report 1 
has been written by ROGER and typed by either PATTY or TOM; it is 
now ready for ROGER to proofread. 
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At Time 2 (Figure 4.9.2), TOM has finished typing Report 2, 
so he executes a SEND instruction to send the report to the 
communication port which is being used as ROGER's in-basket. 
This instr.uction moves the report from TOM's process to ROGER's 
in-basket. 

Time: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

ROGER'S 
IN-BASKET: 

Commun i ca t ion 
Port Object 

PATTY: 

TOM: 

Figure 4.9.2 - TOM finishes Report 2 and sends it to 
ROGER's in-basket. 
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Now that TOM has finished with Report 2, he is ready to type 
another report. In Figure 4.9.3, TOM executes a RECEIVE 
instruction and receives a message (Report 4) from the 
secretaries' in-basket. TOM can now start typing Report 4. 

Time: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

ROGER'S 
IN-BASKET: 

Commun i ca t ion 
Port Object 

PATTY: 

Figure 4.9.3 -- TOM looks for more work in the secretaries' 
in-basket and receives Report 4. 

At Time 4 (Figure 4.9.4), TOM is typing Report 4, ROGER is 
writing Report 5, and PATTY has finished typing Report 3. PATTY 
executes a SEND instruction and sends Report 3 to ROGER's 
in-basket. 
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Time: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

ROGER'S 
IN-BASKET: 

Communication 
Port Object 

TOM: 

Figure 4.9.4 -- PATTY finishes Report 3 and sends it to 
ROGER'S in-basket. 

There are now 3 reports queued in ROGER's in-basket. When 
ROGER is ready to proofread, he will execute a RECEIVE 
instruction to remove a report from his in-basket. He will 
receive reports one at a time (one every time he executes a 
RECEIVE) in the same order that they were sent to the port. 
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Now that PATTY has finished typing Report 3 and has sent it 
to ROGER's in-basket, she is ready to type another report. At 
Time 5 (Figure 4.9.5), PATTY executes a RECEIVE instruction to 
get another report from the secretaries' in-basket. But this 
time the communication port is empty. Because there is nothing 
for PATTY to receive, she "climbs inside" the secretaries' 
in-basket to wai t for a message. Remember that processes are 
objects and can be queued up to wait for messages, just as 
messages are objects and can be queued up to wai t for processes 
to receive them. 

Time: 

Q 
PATTY: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

Commun i ca ti on 
Port ObJect 

WAITING 

ROGER'S 
IN-BASKET: 

Communication 
Port Object 

, , 

TOM: 

- I 

Figure 4.9.5 -- PATTY looks for more work in the secretaries' 
in-basket, but finds it empty, so she 
"climbs inside" the in-basket to wait for a 
message. 
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At Time 6 (Figure 4.9.6), only 2 processes are executing: 
ROGER is writing Report 5, and TOM is typing Report 4. PATTY is 
not executing right now, because she does not have anything to 
type. PATTY is wai ting in the secretar ies' in-basket and will 
not start executing until ROGER sends a report to the 
secretaries' in-basket. 

Time: 

PATTY: 

ROGER: 

SECRETARIES' 
IN-BASKET: 

WAITING 

ROGER'S 
IN-BASKET: 

Communlcatron 
Port Object 

• Two processes are executing 
concurrently: 

1. ROGER is \'Jorking on Report 5. 
2. TOM is working on Report 4. 

Fiqure 4.9.6 
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• PATTY is waiting for 
a message. 



At Time 7 (Figure 4.9.7), ROGER has finished writing Report 5 
and has executed a SEND instruction to send it to the 
secretaries' in-basket. PATTY, who has been waiting in the 
in-basket for a message, receives Report 5 immediately. 

Time: 

o 2 

I 3 
7 6 54 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

I , I 
______ ...1 

ROGER'S 
IN-BASKET: 

Communication 
Port Object 

TOM: 

Figure 4.9.7 -- ROGER finishes Report 5 and sends it 
to the secretaries' in-basket where 
PATTY receives it immediately. 

There are now 3 processes executing: 1) ROGER, which will 
either start writing another report or proofread one of the 
reports that is already typed; 2) TOM, \'1hich is still typing 
Report 4; and 3) PATTY, which has just received Report 5 and is 
starting to type it. 
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Finally, at Time 8 (Figure 4.9·.8), TOM and PATTY are typing 
Reports 4 and 5, and ROGER is executing a RECEIVE instruction to 
receive Report 1 for proofreading. 

Time: SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

ROGER'S 
IN-BASKET: 

Communication 
Port Object 

1. PATTY is working on Report 5. 
2. TOM is working on Report 4. 
3. ROGER receives Report 1. 

Figure 4.9.8 

PATTY: 

TOM: 

This concludes our example of interprocess communication; you 
should now have a good conceptual view of how processes use 
communication ports and SEND and RECEIVE operators to communicate 
with each other. 

IT'S ALL DONE WITH OBJECT REFERENCES. 

This section takes a closer look at the structure involved in 
interprocess communications, using the same REPORTER program 
example. 
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Figure 4.10 is a more detailed view of part of the REPORTER 
program. For simplicity, ROGER's in-basket is left out. For 
clarity, all the domain objects, instruction objects, and 
processor objects are left out. These objects are needed to run 
the program, but they are not needed to understand what's going 
on. 

At Time 1 (Figure 4.10.1), ROGER is writing Report 1. Note 
that ROGER's process object has a reference for the current 
context, and the current context is able to access Report 1 
because it has an object reference for it. This context can also 
access the communication port serving as the secretaries' 
in-basket, and can therefore send a message to this port. Note 
that PATTY's current context has an object reference for the 
secretaries' in-basket communication port and can therefore 
receive a message from this port. 

At Time 2 (Figure 4.10.2), ROGER has finished writing Report 
1 and has already sent it to the secretar ies' in-basket. Note 
that the report itself has not moved, but the object reference 
for it has. ROGER can no longer access Report 1 because he no 
longer has a re fer ence for it. PATTY cannot access Repor t 1 
either because she does not have a reference for it. 

At Time 3 (Figure 4.10.3), PATTY has executed a RECEIVE 
instruction. Note that Report 1 has not moved, but the object 
reference for it has. The object reference is no longer queued 
in the port; it is now in PATTY's context object. PATTY can now 
access the report. 
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Time: 
ROGER: 

Figure 4.10.1 

BEFORE THE MESSAGE IS SENT 

Context 
Object 

SECRETARIt:S' 
IN-BASKET: 

COr.JTIun i ca t i on 
Port Object 

Context 
Object 

Time: 
~FTER MESSAGE IS SENT, BUT BEFORE MESSAGE IS RECEIVED 

ROGER: 

Figure 4.10.2 

Time: 

ROGER: 

Figure 4.10.3 

Context 
Object 

COII"07.un i ca t ion 
Port O!>jec:t 

Context 
Object 

AFTER MESSAGE IS RECEIVED 

SECRETARlt~' 
!N-BASKET: 

COr.JTIuniCirion 
Port Object 

Context 
Object 

Figure 4.10 -- It's all done with object references. 
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INTERPROCESS COMMUNICATION QUIZ 

1. The SEND and RECEIVE operators allow communication between 
concurrent 

2. Which of the following objects cannot be a message? Why? 

a. Communication port object 
b. Process object 
c. Context object 
d. Domain object 

3. What happens when a SEND instruction is executed? 
the operands and the operation.) 

(Describe 

4. What happens when 
(Explain both cases: 

wai ting. ) 

a RECEIVE instruction 
(1) message waiting and 
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KEY TO INTERPROCESS COMMUNICATION QUIZ 

1. The SEND and RECEIVE operators allow communication between 
concurrent processes 

2. Which of the following objects cannot be a message? Why? 

a. Communication port object 
b. Process object 
'c. Context object 
c. Domain object 

All of the items listed are objects and any object can be a 
message. Therefore, all of the items above can be messages. 

3. What happens when a SEND instruction is executed? 
the operands and the operation.) 

(Describe 

4. 

Operands: the message to be sent and the communication 
port it is to be sent to 

Action: The object reference for the message is moved 
from the context executing the send to the 
communication port specified as an operand. 

What happens when 
(Explain both cases: 

wai ting. ) 

a RECEIVE instruction 
(1) message waiting and 

is executed? 
(2) no message 

Operand: the communication port from which the message 
is to be received 

Action: (1) Message waiting - The object reference 
for the message is 
moved from the 
communication port to 
the context object of 
the context executing 
the RECEIVE. 

(2) No message waiting- An object reference 
for the process 
executing the RECEIVE 
instruction is copied 
into the communi
cation port. When a 
message is sent to the 
port, execution 
continues as in (1) 
above and the object 
reference for the 
process is deleted 
from the port. 
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TRANSPARENT MULTIPROCESSING 

The 432 is specially designed to support parallel execution 
of programs by multiple processors. 

The earlier chapters of this book talked about two of the 
objects in the 432 architecture that support multiple 
processors. The first object discussed was the processor 
object!. Chapter 3 explained that the 432 keeps processor
specific information in a processor object associated wi th each 
processor. This allows a system to have many processors without 
the problem many third-generation mainframe computers had, where 
each processor expected its diagnostic information and processor 
status to be kept in a particular physical memory location. 

The second object discussed was the communication port. 
Chapter 4 talked about the support this object provides for 
communication between concurrent processes. When there is more 
than one processor in a system, it makes sense to structure a 
program so that it can run on more than one processor at a time. 
If you do, the program will run faster when additional processors 
are added. The interprocess communication facili ties are 
important tools in structuring a program for simultaneous 
execution on multiple processors. 

This chapter covers a third object that supports multiple 
processors: the dispatching port. The facili ties provided by 
this object allow any software that executes on a 432 system to 
be run on systems with 1, 2, or many processors. Absolutely no 
software changes are required to move programs from single
processor systems to multiple-processor systems or vice versa. 
This is called transparent multiprocessing: The number of 
processors in a system is totally transparent to the software. 

Transparent multiprocessing offers many advantages to users 
of 432 systems. The most obvious advantage is the flexibili ty 
provided by a machine that offers a range of performance. 
Processors can be added to or removed from a configuration to 
tune it to meet the desired performance or price. 

A second advantage is that multiprocessor systems are 
inherently more reliable. I f one processor fai Is, the rest of 
the system may be able to continue running. 
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This chapter has six sections that describe how dispatching 
ports support transparent multiprocessing: 

• THE THREE STAGES OF PROCESSOR MANAGEMENT 

This section explains what the 432 does to manage 
multiple processors. The rest of this chapter explains 
how the 432 manages multiple processors. 

• POLICY MAKING 

This section explains how the policy decisions are made 
that determine how processes share processors. 

• SCHEDULING 

Scheduling and dispatching are the mechanisms that 
implement the policy. Scheduling is determining the 
order of process execution that implements the policy. 
This section explains how the 432 hardware performs 
process scheduling. 

• DISPATCHING 

Dispatching is assigning 
processor for execution. 
432 hardware does this. 

• A DISPATCHING EXAMPLE 

a process to a particular 
This section explains how the 

This section reviews the REPORTER program example from 
the last chapter and walks through an example of how the 
432 scheduling and dispatching mechanisms work. 

• DISPATCHING PORTS AND PROGRAM STRUCTURE 

This section explains how dispatching ports fit into the 
basic program structure described in Chapter 3. 
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THE THREE STAGES OF PROCESSOR MANAGEMENT 

Before I explain how the 432 manages multiple processors and 
multiple processes, I would like to sidetrack for a minute and 
explain what it does. 

The effective management of multiple processors and processes 
requires three things: 

• Policy Making 

• Scheduling 

• Dispatching 

policy making is setting the criteria that determine how 
processes share the processors. For example, a first-come, 
first-served policy allows the first process that is ready to run 
to grab a processor and use it until it is finished. If a second 
process is ready to run, it must wai t until the first process 
completes before it gets a chance to run on the processor. 

Another example of a scheduling policy is round-robin. With 
a round-robin policy, when a process is ready to run, it is 
placed at the end of the queue of processes wai ting to run. 
Processes are removed from the front of the queue and given a 
short turn on a processor. If a process uses up the time 
allocated for its turn before it is finished running, it is 
placed at the end of the queue and the second process in the 
queue is given a chance to execute. The first process will get a 
second turn after all of the other wai ting processes have had a 
first turn. 

There are many other policies (priori ty, deadline, weighted 
round-robin, etc.), and no one policy is perfect for all 
applications. Many different policies can be used wi th a 432. 
The important thing to remember is that policy making determines 
how processes share processors. 

The second element of processor management is scheduling. 
Both scheduling and dispatching are part of the mechanism that 
carries out the policy. Scheduling is the ordering of processes 
to run on processors in a manner that realizes the policy. For 
example, suppose there are two processes, Ann and Bob, in a queue 
waiting for execution by a processor. If a third process, 
Charlie, becomes ready to run, the round-robin policy can be 
implemented by scheduling Charlie to run after Ann and Bob. If 
Ann is still ready to run after she uses up her turn on the 
processor, the round-robin policy can be implemented by 
scheduling Ann to run after Bob and Charlie. 

Thus, scheduling is the ordering of processes to run on 
processors in a manner that implements the policy. 
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The third element of processor management is dispatching. 
Dispatching is the assignment of processes to processors in the 
order in ~hich the processes have been scheduled. In the example 
above, Ann has been scheduled to execute ahead of Bob and 
Charlie, but she has not been told which processor will execute 
her process. Ann is dispatched when she is assigned to a 
particular processor, e.g., if Processor 4 is looking for work 
and Ann is first in line, then Ann will be dispatched to begin 
execution on Processor 4. 

In summary, the three elements of processor management are: 

Policy Making - Setting the policy that determines how 
processes share the processors 

Scheduling - Queueing the processes to run on a 
processor in an order that implements 
the policy 

Dispatching - Assigning (in the order scheduled) the 
processes to particular processors for 
execution 

Having covered what the 432 needs to do in order to manage 
processes and processors, you can now look at how policy making, 
scheduling, and dispatching are done on the 432.---

Before going on, I should warn you that this chapter covers 
only the facili ties provided for short-term process/ processor 
management (policy making, scheduling, and dispatching) and does 
not cover long-term process/processor management. Short-term 
process/processor management is handled by the hardware, while 
long-term process/processor management is handled by software. 

Let me explain what I mean by short-term process/processor 
management. Multi-user or multi-process systems need a mechanism 
for giving several users many small slices of processor time, so 
that each user si tting at a terminal has a reasonable response 
time for his/her requests. These time slices are typically 10 to 
100 milliseconds long, and it is not unusual for a process to run 
for only a fraction of its allocated time. 

Computers which do not provide a hardware mechanism for 
performing process switching must do so using software. Because 
this software is typically executed every 10 milliseconds or so, 
it can use a large share of the processor's time. It is not 
unusual for a processor to spend 30% or more of its time 
executing short-term scheduling software. This is why the 432 
provides short-term scheduling hardware. Short-term scheduling 
is done so often that it makes sense to make it as fast as 
possible. 
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Long-term scheduling (anything over 3 seconds or so) is done 
much less frequently (about once per 100-1,000 short-term 
schedu1ings in a time-sharing system and even less often in other 
types of systems), so it has been left for the software. 

POLICY MAKING 

All policy making (i.e., deciding how processes share 
processors) is done by software. This is because it 1S very 
important for policies to be flexible. Different applications 
require di fferent policies, and some applications require 
different policies under different conditions. 

But, while it is important to keep the policy flexible by 
placing it in the software, it is also desi rab1e to make the 
implementation of the policy efficient by moving the mechanism 
that carries out the policy into the hardware. 

This has been done with the 432. The policy is set by 
operating system software, but the mechanism for scheduling and 
dispatching is built into the hardware. 

Policy decisions made by the operating system are 
communicated to the hardware scheduling and dispatching 
mechanisms by means of scheduling parameters. The operating 
system sets scheduling parameters to tell the hardware how the 
processes should share the processor (5). Figure 5.1 shows that 
the scheduling parameters for a par ticular process are part of 
the information contained in the process object. 

of Scheduling Parameters: 

1. How quickly the process should 
get a turn on a processor 

2. How long a turn the process can 
have 

3. How many turns the process gets 
before the policy software 
reviews its scheduling 
parameters 

Figure 5.1 -- A process object contains scheduling parameters. 

By setting these parameters to different values, the policy 
software can use the scheduling and dispatching hardware to 
implement a wide variety of policies. Figure 5.2 shows an 
operating system process (called POLICY PROCESS) setting the 
scheduling parameters on PROCESS A. Note that POLICY PROCESS can 
access the process obj ect of PROCESS A because it has an obj ect 
reference for it. 
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POLICY 
PROCESS: 

I'm the process 
being managed. The 
software is setting 
scheduling parameters. 

Figure 5.2 -- Policy software sets the scheduling parameters. 

Notes: 1. This diagram is somewhat simplified. Actually, the 
POLICY PROCESS process object has an object reference 
for its current context, and the current context has 
the object reference for PROCESS A. I have left out 
the context object in Figures 5.2 and 5.3 to make them 
simpler. 

2. POLICY PROCESS itself also has scheduling 
parameters that must be set, but I am not going to 
discuss the "chicken and the egg" problem. 

SCHEDULING 

The last section discussed how the first element of 432 
process/processor management (i.e., policy making) is handled by 
the operating system software. This section and the next section 
explain how the 432 hardware mechanisms perform scheduling and 
dispatching. 

Once the policy software has finished setting a process's 
scheduling parameters, it is ready to hand the process to the 
hardware for scheduling and dispatching. It does this by sending 
the process as a message (using the same SEND operator described 
in Chapter 4) to a hardware-defined object called a dispatching 
porJ. Figure 5.3 shows an operating system POLICY PROCESS 
sen ing PROCESS A to a dispatching port for scheduling and 
dispatching. 
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Time: 

Policy 
Process& 

Time: 

Policy 
Process: 

Dispatching Port 

The policy software just 
finished setting my 
scheduling parameters; 
I'm being sent to the 
dispatching port. 

Dispatching Port 

Pigure 5.3 -- Processes are sent to dispatching ports for 
scheduling and dispatching-
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Dispatching ports are where processes "line up" (are 
scheduled) for execution on a processor. The first process in 
line is the first process that will be assigned to a processor. 

Dispatching ports are very similar to communication ports as 
you will see in a minute. But first, I'll explain one of the 
differences. 

Messages sent to a communication port are normally placed in 
a first-in-first-out (FIFO) queue. When a process is sent to a 
dispatching port, its scheduling parameters are used to determine 
where it belongs in line. It may be placed anywhere in the line: 
the front, the back, or somewhere in the middle. Its posi tion 
totally depends on its scheduling parameters and the scheduling 
parameters of the other processes in line at the port. This is 
illustrated in Figure 5.4. 

Scheduling is done by the Ha"rdware. 

432 hardware uses the scheduling parameters to determine 
the order in which processes should run on the next available 
processor. 

Dispatching Port 

Line Up by 
Parameters 

I 
Order of queue 
is not FIFO Used by hardware to 

process's place 

Figure 5.4 -- Processes ·line up· (are scheduled) for processors 
at dispatching ports. 
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In summary, a process is scheduled as soon as it is sent to 
the dispatching port. The hardware compares its scheduling 
parameters with the scheduling parameters of the other processes 
already lined up at the port, and schedules the process by 
placing it in line at the appropriate position. 

DISPATCHING 

Figure 5.4 shows two processes lined up at a dispatching 
port. They have already been scheduled because they are already 
lined up in the order in which they will execute on a processor. 
All that remains to be done is to dispatch the processes, i.e., 
assign them to a physical processor for execution. 

We have already seen that sending a process to a dispatching 
port is very similar to sending a message to a communication 
port. As we will see in a minute, a processor dispatching a 
process from a dispatching port is very similar to a process 
receiving a message from a communication port. Dispatching ports 
are the "meeting places" for processes and processors. Processes 
"stand in line" at dispatching ports to wait for service by a 
processor, and processors go to dispatching ports when they need 
a process to execute (see Figure 5.5). 

Dispatching Port 

• PROCESSES "stand in line" here for service by a PROCESSOR. 

• PROCESSORS "stand in line" here for PROCESSES to serve. 

Figure 5.5 -- Dispatching ports are .aeti~g places for processes 
and processors. 
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When a processor needs a process to execute, it simply 
removes the first process in line at its dispatching port and 
begins to execute it. If there are no processes wai ting at the 
dispatching port, then the processor wai ts at the dispatching 
port until one is sent to the port (just like a process waits for 
a message at a communication port), see Figure 5.6. 

IF THERE ARE NO PROCESSES FOR A PROCESS TO EXECUTE ••••• 

Dispatching Port 

THE PROCESSOR WAITS AT THE DISPATCHING PORT UNTIL A PROCESS COMES. 

Figure 5.6 -- A processor waitinq for a process 

Figure 5.6 is a conceptual view of a processor waiting at a 
dispatching port. Figure 5.7 shows what really happens. An 
object reference for the waiting processor's processor object is 
queued at the dispatching port. 

Dispatch i n9 Port 

Pigure 5.7 -- A processor waitinq for a process 

5-10 



A DISPATCHING EXAMPLE 

This section returns to the REPORTER program example 
discussed in the last chapter and adds more detail. This time, a 
dispatching port is included to see how it works. Figure 5.8 
shows the structure of the REPORTER program and the dispatching 
port: There are three processes (ROGER, PATTY and TOM), two 
processors (1 and 2), and one dispatching port. 

Dispatching Port 

Communication 
Port Object 

SECRETARIES' 
IN-BASKET 

Comrnun i ca t ion 
Port Object 

ROGER'S 
IN-BASKET 

Figure 5.8 -- The Reporter program 

Watch for two things in this example: 

• There are two reasons for a processor to switch 
processes, i. e., stop executing one process and start 
executing another~ What are these two reasons? 

• The 432 hardware performs scheduling and dispatching, 
yet there are no 432 instructions called SCHEDULE or 
DISPATCH. Why? 

The example begins with Figure 5.9.1. This figure does not 
show all the objects in Figure 5.8. I have left out ROGER's 
in-basket because it is not used in this example. 
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At Time 1 (Figure 5.9.1), there are two processes executing. 
ROGER is executing on Processor 1 and TOM is executing on 
Processor 2. PATTY is not executing; she is waiting in the 
secretaries' in-basket for a report to type. TOM is ready to 
type another report and has just started to execute a RECEIVE 
instruction. 

Time: 

Dispatching Port 

SECRETARIES' 
IN-BASKET: 

PATTY: 

TWO PROCESSES ARE EXECUTING 

• ROGER is executing on 
Processor 1. 

• TOM is executing on 
Processor 2. 

ONE PROCESS IS WAITING 

• PATTY is waiting for 
a report to type . 

Pigure 5.'.1 

5-12 



At Time 2 (Figure 5.9.2), TOM'S RECEIVE instruction has been 
partially executed. Because there were no messages in the 
communication port, TOM'S process has been queued up behind 
PATTY'S process to wait for a message. At this point, Processor 2 
is finished with TOM'S process. There is nothing more for 
Processor 2 to do until TOM receives a message. Therefore, 
Processor 2 goes to the dispatching port to hunt for another 
process that is ready to execute. 

Time: 

Dispatching Port 

SECRETARIES' 
IN-BASKET: 

-----~--
TOM: ,t Pro~ess , , 

ObJect' , 

, 
I 

' .. ----' , 

Figure 5.9.2 - TOM is queued to wai t for a message 1e 
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At Time 3 (Figure 5.9.3), Processor 2 has checked the 
dispatching port and found it empty, i.e., no processes are ready 
to run. Processor 2 has, therefore, "climbed inside" the 
dispatching port to wai t for a process that is ready to run. 
Processor 1 is still executing ROGER's process. 

Time: 

G Dispatching Port 

SECRETARIES' 
IN-BASKET: 

PATTY TOM 

Figure S.9.3 -- Processor 2 is waiting for a process that is 
ready to execute. 
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At Time 4 (Figure 5.9.4), ROGER finishes writing Report 1 and 
sends it to the secretaries' in-basket, where both PATTY and TOM 
are waiting for a report to type. Processor 2 is idle; it is 
waiting for a process to run. 

Time: 

ROGER: 

Dispatching Port 

SECRETARIES' 
IN-BASKET: 

Figure 5.9.4 -- ROGER sends Report 1 to the secretaries' 
in-basket. 
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A t Time 5 (Figure 5.9.5), ROGER'S SEND instruction has been 
partially executed. The message (Report 1) has been given to 
~ATTY'S process, which was first in line at the port, and PATTY 
1S now ready to run. As part of the SEND instruction, Processor 
1 moves PATTY'S process to the dispatching port so that it can be 
scheduled to run on a processor. But, when Processor 1 moves 
'PATTY to the dispatching port, it finds Processor 2 waiting for a 
process to execute. Processor 1 gives PATTY'S process to 
Processor 2 and tells it to start executing PATTY. 

Time: 

Q 

• 

, , 
SECRETARIES' 

IN-BASKET: 

,.-----r--' , Process I , 

, Object' ._----, 
PATTY 

... -------

• When ROGER sends Report 1 to the secretaries' 
in-basket, it is given to PATTY. 

• PATTY is now ready to run and is moved to the 
dispatching port, where Processor 2 is waiting. 

Figure 5.9.5 

Note that ROGER'S processor, Processor 1, not only sends the 
message to the communication port, it also gives the message to 
the first process wai ting in line and moves that process to the 
dispatching port so that it can be scheduled and dispatched. In 
this case, because Processor 2 is waiting for a process to 
execute, Processor 1 also gi ves the process to Processor 2 and 
tells it to start working. Note that, during this time, ROGER'S 
processor, Processor 1, is really working for PATTY'S process so 
that it can get started. After Processor 1 gets PATTY started, 
it goes back to work for ROGER. 
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At Time 6 (Figure 5.9.6), there are two processes executing. 
ROGER is still executing on Processor 1 and PATTY is now 
executing on Processor 2. TOM is still not ready to execute; he 
is waiting in the communication port for a report to type. 

Time: 

Dispatching Port 

SECRETARIES' 
IN-BASKET: 

• PATTY is now running on Processor 2. 

• ROGER is still running on Processor 1. 

• TOM is still waiting for a report. 

Pigure 5.9.6 
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At Time 7 (Figure 5.9.7), ROGER'S process is in the middle of 
executing a SEND instruction to send Report 2 to the 
communication port being used as the secretaries' in-basket. 
When Processor 1 moved the message to the communication port, it 
discovered that TOM was waiting for a message and therefore gave 
it to TOM. This made TOM ready to run, so Processor 1 moved TOM 
to the dispatching port for scheduling and dispatching. Note 
that moving TOM to the dispatching port and scheduling him for 
execution is all part of the SEND instruction. 

Time: 

o 2 
I 3 

7 6 54 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object ,- -- - - ... --, 

TOM: I Process, , 
, Object' , ,1,. • ____ , , 

I ' 
I 

, 
---- .... _, 

• ROGER sends Report 2 to the secretaries' in-basket. 

• TOM is given Report 2 and is now ready to run. 

• TOM is moved to the dispatching port to wait for a 
processor. 

Figure 5.9.7 

Here is another example where ROGER'S processor, Processor 1, 
has gone to work for another process (TOM'S) in order to get it 
scheduled and dispatched. This time, however, there was no 
processor wai ting to execute the process, so Processor 1 had to 
be content with simply scheduling TOM so that the next processor 
that comes to the dispatching port looking for work will find TOM 
waiting and ready to r~n. 
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At Time 8 (Figure 5.9.8), TOM'S process is waiting in the 
dispatching port, Processor 1 is still executing ROGER'S process 
and Processor 2 is still executing PATTY'S process. Note that 
the major difference between Time 6 and Time 8 is that TOM is now 
ready to run and is wai ting in a dispatching port. Whenever a 
process is ready to run (but a processor is not available) it 
waits in a dispatching port. Whenever a process is not ready to 
run -- because it is wai ting for a message from another process 
-- it waits in a communication port. 

Time: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

• ROGER is still running on Processor 1. 

• PATTY is still running on Processor 2. 

• TOM is waiting for a processor in the 
dispatching port. 

Figure 5.9.8 

There have been two examples of what happens when a process 
is sent to a dispatching port. Either a processor is waiting at 
the port and starts executing the process immediately, or a 
processor is not waiting at the port and the process lines up to 
wait for a processor. 

In both of the examples examined so far where a process was 
moved to a dispatching port, the process was moved because it had 
recei ved a message and had become ready to run. In the next 
section of this example we will take a look at another reason for 
a process to be moved to a dispatching port -- because its time
slice expires. 
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At Time 9 (Figure 5.9.9), ROGER has used up his time-slice -
it is time for another p-rocess to get a share of the processor. 
Processor 1 has been keeping track of how long ROGER has been 
running and has noticed that ROGER has completed the amount of 
time specified by the scheduling parameter in ROGER'S process 
object that tells how long a time-slice ROGER gets. 

Processor 1 finishes the current instruction it is executing 
for ROGER and then places ROGER in the dispatching port. In the 
example, ROGER'S and TOM'S scheduling parameters indicate that 
ROGER should be scheduled to run after TOM, so ROGER'S process is 
placed second in line at the dispatching port. 

Time: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

• ROGER uses up his time period on Processor 1 • 

• ROGER is moved to the dispatching port to wait 
in line for another turn on a processor. 

Pigure 5.9.9 

5-20 



At Time 10 (Figure 5.9.10), ROGER has been inserted into the 
queue of waiting processes at the dispatching port. Processor 1 
now needs a process to run, so it goes to the front of the queue 
at the dispatching port and removes TOM'S process for execution. 

Time: 

Dispatching Port 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

• Processor 1 now needs more work and goes to the 
dispatching port to find it . 

• TOM is first in line and is removed from the 
dispatching port to run on Processor 1. 

Pigure 5.9.10 
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At Time 11 (Figure 5.9.11), there are two processes running. 
TOM is running on Processor 1 and PATTY is still running on 
Processor 2. ROGER is ready to run, and would be able to run if 
there were a third processor in the system. But, since there are 
only 2 processors in this example, ROGER must wai t his turn at 
the dispatching port. 

Time: 

SECRETARIES' 
IN-BASKET: 

Communication 
Port Object 

• TOM is now running on Processor 1. 

• PATTY is still running on Processor 2. 

• ROGER is ready for execution and is waiting in 
the dispatching port. 

Figure 5.9.11 
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EZ-S 

1. A. The process being run executes a RECEIVE 
instruction on an empty communication port 
and must wait for a message. 

1. B. The process being 
slice. 

run uses up its time-

2. Process scheduling is done automatically 
whenever a process is sent to a dispatching 
port. Process dispatching is performed 
automatically by a processor whenever it needs 
to switch process.es. There is no need to have 
SCHEDULE and DISPATCH instructions because the 
processor is" smar t enough" to know when it 
needs to schedule and dispatch processes. 
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DISPATCHING PORTS AND PROGRAM STRUCTURE 

Now that you know what dispatching ports are and how they 
work, you can see how they fi t into the basic program structure 
described in Chapter 3. 

By now it should be very clear that a 432 object cannot be 
accessed by a program unless the program has an object reference 
for it. This brings up two questions. First, how does a 
processor know which dispatching port to use when it is ready to 
dispatch a new process? Simple; one of the pieces of information 
that a processor keeps in its processor object is an object 
reference for its dispatching port (see Figure 5.10); it 
"follows" this reference to find its dispatching port. 

Second question; how does a processor know which dispatching 
port to use when it needs to send a process to the' process's 
dispatching port (e.g. to which dispatching port should a 
processor send a process that it finds waiting in a communication 
port when it is moving a message to the port)? Once again it is 
very simple. Every process obj~ct contains an object reference 
for its dispatching port (see Figure 5.10). The processor 
"follows" this reference to find its dispatching port. 

Pigure 5.10 

Dispatching Port 

Bach processor object and each proce88 object 
haa a reference for a di8patchinq port. 
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In the paragraphs above I have used phrases like "the 
processor's dispatching port" and "the process's dispatching 
port" . These imply that there may be more than one dispatching 
port per system which lS true; a system can have several. 
Usually, however, there is only one "central" dispatching port. 
All the processes that are ready to run go to this dispatching 
port, as do all of the processors that are looking for work. 
This sort of scheme minimi zes the problem that can occur wi th 
mul tiple dispatching ports where processes are wai ting ready to 
run at one port while processors are idle wai ting for a process 
to run at another port. 

Actually, the statement that there is usually only one 
dispatching port per system is a bit oversimplified. To be more 
precise, the statement should be: There is usually only one 
dispatching port for each type of processor. The 432 
architecture not only allows for multiple processors; it allows 
for multiple types of processors. Different types of processors 
have different instruction sets and therefore different types of 
processes. It is important to run the right type of process on 
the right type of processor, so there must be at least one 
dispatching port for each type of processor. 
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TRANSPARENT MULTIPROCESSING QUIZ 

1. What happens at dispatching ports? 

2. What determines the order in which processes are run on a 
processor? 

3. What happens if there are no processes for a processor to run? 

4. What does the word "transparent" mean in the phrase 
"transparent multiprocessing"? 

5. Processor management requires three things. Define each and 
tell where it is done by the 432 - in the hardware or the 
software. 

Done By 

Hardware Software 

1. policy Making 0 0 
2. Short-Term 0 0 Scheduling 

3. Dispatching 0 0 
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KEY TO TRANSPARENT MULTIPROCESSING QUIZ 

1. What happens at dispatching ports? 

Ready-to-run processes meet processors looking for work. 

2. What determines the order in which processes are run on a 
processor? 

The scheduling parameters in the process object which were 
set by the policy software 

3. What happens if there are no processes for a processor to run? 

The processor waits at the port until a process arrives. 
When a process arrives, the processor starts processing it. 

4. What does the word "transparent" mean in the phrase 
"transparent multiprocessing"? 

It means that absolutely no changes need to be made to either 
applications or operating system software (no changes to any 
software) when additional processors are added to the system:-

5. Processor management requires three things. Define each and 
tell where it is done by the 432 - in the hardware or the 
software. 

1. 

2. 

3. 

Policy Making 

Short-Term 
Scheduling 

Dispatching 

Done By 

Hardware Software 

o 

o 

o 
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How the processes 
share the processors, 
e.g., round-robin, 
first-come, first
served, etc. 

Ordering processes 
to run on processors 
in a manner that 
realizes the policy. 

Assigning processes 
(in order) to run on 
particular processors. 



Chapter 6 

DESIGNING SOFTWARE SYSTEMS 

Chapter 3 descr ibed how hardware-def ined objects provide the 
basic structure for all 432 programs. This chapter shows how the 
432 allows additional objects to be defined in software and used 
to build modular, structured software systems. 

This chapter has three major sections: 

• DESIGN METHOD 

The 432 supports an object-oriented design method that 
is very different from (and much better than) 
conventional design methods. This section compares the 
methods and shows the advantages of the obj ect-or iented 
approach. 

• DOMAINS 

Domains are one of the architecture's 
support the object-oriented design method. 
descr ibes domains and how they are used 
static structure of a program. 

• TYPE CHECKING 

facilities to 
This section 

to bui ld the 

Type checking is the archi tecture' s second facili ty to 
support the object-oriented design method. This section 
descr ibes type checking and how it fulfills two 
important needs. 
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1. DESIGN METHOD 

This section describes the 432's object-oriented design 
method and compares it to a more conventional method. 

There are three subsections in this section: 

• THE SOFTWARE PROBLEM 

Why we need a good design method 

• COMPARING 2 METHODS 

The major difference between an object-oriented design 
method and a conventional design method is the criteria 
used to di vide a system into modules. This subsection 
compares the different cr iter ia by looking at a sample 
system that has been "modularized" twice: once 
conventionally, and once with an object-oriented method. 

• THE OBJECT-ORIENTED METHOD 

How the object-oriented method works and its major 
advantages 

THE SOFTWARE PROBLEM 

Managing complexity is one of the major problems facing 
today's system designers. As computers become more powerful, 
they are used for more challenging tasks. As a result, the 
software that controls today' s computers has become very 
complicated. 

The need for complex computer programs creates a need for a 
design method that allows effective management and production of 
large complex software systems. Historically, projects producing 
large software systems have had problems meeting schedules, 
producing reliable software, and producing maintainable software 
that can be changed and expanded as the system evolves. 

The architecture of the 432 is designed around a better 
design method -- in fact, support for it is an integral part of 
the architecture. We call it an object-oriented design method, 
for reasons that you will understand shortly. 

The easiest way to see how an object-oriented method differs 
from conventional methods is to study a sample system designed 
twice; once using a conventional design method and once using an 
object-oriented design method. This is done in the next section. 
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COMPARING TWO METHODS 

This comparison of the two methods is a paraphrase of an 
article written by D. L. Parnas of Carnegie-Mellon University 
(liOn The Criteria To Be Used In Decomposing Systems Into 

Modules", D.L. Parnas, December 1972, Communications of the ACM). 

Summa~ 

This section discusses modularization as a way to improve the 
flexibili ty and comprehensibili ty of a system while shortening 
its development time. The effectiveness of a modularization 
depends on the criteria used in dividing the system into 
modules. A system design problem 1S presented and both a 
conventional and object-oriented decomposition are described. It 
is shown that the object-oriented decomposition has distinct 
advantages for the goals outlined. The criteria used in arriving 
at the decompositions are discussed. 

Introduction 

A lucid statement of the philosophy of modular programming 
can be found in a 1970 textbook on the design of system programs 
by Gouthier and Pont (1, para. 10.23), which I quote below: l 

A well-defined segmentation of the project effort 
ensures system modularity. Each task forms a 
separate, distinct program module. At 
implementation time, each module and its inputs 
and outputs are well-defined, there 1S no 
confusion in the intended interface with other 
system modules. At checkout time the integr i ty 
of the module is tested independently; there are 
few scheduling problems in synchronizing the 
completion of several tasks before checkout can 
begin. Finally, the system is maintained in 
modular fashion; system errors and deficiencies 
can be traced to specific system modules, thus 
limiting the scope of detailed error searching. 

lRepr inted by permission of Prentice-Hall, Englewood 
Cliffs, N.J. 
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Usually nothing is said about the cr iter ia used in di viding 
the system into modules. This section discusses this issue and, 
by means of examples, suggests some criteria to be used in 
decomposing a system into modules. 

A Brief status Report 

The major advance in the area of modular programming has been 
the development of coding techniques and assemblers which (1) 
allow one module to be written with little knowledge of the code 
in another module, and (2) allow modules to be reassembled and 
replaced without reassembly of the whole system. This facility 
is extremely valuable for the production of large pieces of code, 
but the systems most often used as examples of problem systems 
are highly-modular i zed programs and make use of the techniques 
mentioned above. Clearly, something is wrong with the way we are 
designing systems. We are not getting the benefits we expected. 

The benefits expected of modular programming are: 

1. Managerial development time 
because separate groups can work 
little need for communication; 

should be shortened 
on each module wi th 

2. Product flexibility -- it should be possible to make 
drastic changes to one module wi thout needing to change 
others; 

3. Comprehensibil i ty -- it should be possible to study the 
system one module at a time. The whole system can 
therefore be better designed because it is better 
understood. 

The next several sections compare a conventional design 
modularization with an object-oriented design modularization. As 
you will see, the object-oriented modularization has all of the 
benefits listed above while the conventional modularization does 
not. 

What is Modularization? 

Below are several partial system descriptions called 
modularizations. In this context, "module" is considered to be a 
responsibility assignment rather than a subprogram. The 
modularizations include the design decisions which must be made 
before the work on independent modules can begin. Quite 
different decisions are included for each alternative, but in all 
cases the intention is to describe all "system level" decisions 
(i.e., decisions which ~ffect more than one module). 

6-4 



The Ex~mple System: A KWIC Index Pr?duction System 

A KWIC index program is exactly what its name implies -- a 
quick, automated way to produce an index. Every year, a 
tremendous number of technical journals are produced and KWIC 
index programs are used to produce indices that enable users to 
scan for key words in journal titles. 

Here is a simple example of how it works. Suppose we have 
two titles as input to the KWIC index program: 

TITLE DOCUMENT NUMBER 

X-ray Emmission By Quasars. [1] 
X-ray Diffraction Techniques. [2] 

The KWIC index produced would be: 

X-ray Emmission 
X-ray 
X-ray 

X-ray Emmission By 
X-ray Diffraction 

By 
Diffraction 
EffimIsSIon-
Quasars. 
TechnIques. 
!.:-ray 
X-ray 

Quasars. 
Techniques. 
By Quasars. 

[1] 
[2] 
[2] 
[1] 
[2] 

Emmission By Quasar s. [1] 
Diffraction Techniques. [2] 

The center column of the KWIC index is an alphabetical 
listing of all the words in all the titles. The far right-hand 
column gives a reference number for a separate bibliography that 
includes information such as the author's name and where the 
article was published. 

As an example of how one uses a KWIC index, say you are 
interested in locating articles on X-ray diffraction. The first 
thing you would do is think of key words that might appear in 
titles, e.g., "x-ray" and "diffraction". The second step is to 
scan the center column for ti tIes containing these key words. 
The final step is to select interesting titles and use the 
document number in the right hand column to locate the full 
reference in the bibliography. 

The output format shown above, where the key words are in the 
center, is only one of several ways to format the output from a 
KWIC index program. It is probably one of tqe most useful 
formats for actually using a KWIC index, but it is not the most 
useful for describing how a KWIC index is produced. As a result, 
the remainder of this document displays KWIC indices in a 
different format. 
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This format has two minor differences. First, it leaves off 
the document number. This makes the diagrams simpler. Second, 
and more important, the column of alphabetized words appears on 
the left of the page instead of in the center. Words in the 
title that occur before the key word are added at the end of the 
line. Thus, the KWIC index above would appear as: 

~ 
Diffraction 
Emmission 
Quasars. 
Techniques. 
X-ray 
X-ray 

Quasars. X-ray Emmission 
Techniques. X-ray 
By Quasars. X-ray 
X-ray Emmission By 
X-ray Diffraction 
Emmission By Quasars. 
Diffraction Techniques. 

This is a small system. Except under extreme circumstances 
(huge data base, no supporting software), such a system could be 
produced by a good programmer within a week or two. 
Consequently, none of the d i fficul ties moti vating modular 
programming are important for this system. Because it is 
impractical to treat a large system thoroughly, we must go 
through the exercise of treating this problem as if it were a 
large project. One modularization is given which typifies 
conventional approaches, and another which uses an object
oriented approach. 

Conventional Modularization 

The modules descr ibed below fi t together to produce a KWIC 
index program. The function of this program is summar ized by 
Figure 6.1. The original data file containing the titles is read 
by the KWIC index program which in turn produces a file wi th a 
KWIC index. 

INPUT FILE: 

X-ray Emnission by Quasars 

X-ray Diffraction Techniques 

KWIC 
INDEX 

PROGRAM 

OUTPUT FILE: 

~ Quasars. X-ray Emmission 
Dlffraction Techniques. X-ray 
E~~ission by Quasars. X-ray 
ouasars:-x-ray E~roission by 
Technl0ues. X-ray Diffraction 
X~~~ En~ission by Quasars. 
X-ray Diffraction ~echniqucs. 

Figure 6.1 -- Overview of KWIC index program 

As I explain the modules that make up this program, you get a 
closer look at the intermediate steps involved in producing a 
KWIC index'. 
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!QEut Module. This module reads the data lines from the 
input medium and stores them in a TITLE TABLE in main memory f.or 
processing by the remaining modules. The characters are packed 
four to a word, and an otherwise unused character is used to 
indicate the end of a word. Figure 6.2 summarizes the action of 
this module. 

INPUT FILE: 
(Secondary Storage) 

X-ray Emnission by Quasars 

X-ray Diffraction Techniques 

INPUT 
MODULE 

TITLE TABLE: 
(Main MeJtk)ry) 

X-ray. Emmission by Quasars 

X-ray Diffraction Techniques 

Figure 6.2 -- The conventional input module 

Circular Shift Module. This module is called after the input 
module has completed its work. It takes each title that has been 
placed in the TITLE TABLE by the input module and computes all 
the circular shifts of that title. For example, the title: 

X-ray Diffraction Techniques 

becomes: 

X-ray Diffraction Techniques. 
Diffraction Techniques. X-ray 
Techniques. X-ray Diffraction 

One way to store this information would be to build an array 
containing all the circular shifts of the lines. But, this is 
expensive because it requires storing quite a ~ew characters in 
memory. To conserve memory, the circular shifter builds a table 
with two columns. The first column gives the line number for the 
original title and the second column gives the character 
displacement wi thin the line of the word that is first for that 
particular circular shift. 

For example, the ti tIe "X-RAY DIFFRACTION TECHNIQUES" is the 
second title in the TITLE TABLE and its words start at the 
following displacements: 

I 7 19 

LINE #2: J, t. . * h . X-ray D1ffract1on Tec nlques. 

6-7 



is: 
Thus, the table representing the circular shifts of this line 

LINE # 

2 
2 
2 

SHIFT TABLE "TRANSLATION" OF SHIFT TABLE 
CHARACTER DISPLACEMENT 

1 X-ray Diffraction Techniques 
7 Diffraction Techniques. X-ray 
19 Techniques. X-ray Diffraction 

Figure 6.3 summarizes the action of the 
module. The titles in the TITLE TABLE are 
produce the SHIFT TABLE. 

circular shifter 
used as input to 

TITLE TABLE: 

X-ray. Emmission by Quasars 

X-ray Diffraction Techniques 

CIRCULAR 
SHIFT 
MODULE 

SHIFT-TABLE: 

Line' Start Char 

1 1 
1 7 
1 17 
1 20 
'2 1 
2 7 
2 19 

Figure 6.3 -- The conventional circular shift module 

By using the SHIFT TABLE and the TITLE TABLE, all the 
possible circular shifts can now be listed: 

X-ray Emmission By Quasars. 
Emmission By Quasars. X-ray 
~ Quasars. X-ray Emmission 
Quasars. X-ray Emmission By 
!-ray Diffraction Techniques. 
Diffraction Techniques. X-ray 
Techniques. X-ray Diffraction 

All that is left to do is to alphabetize the list of circular 
shifts and write them to the output file. 
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Alphabetizing Module. This module is called after the 
circular shifter completes its work. It takes as input the 
arrays produced by the input module and the circular shift 
module, i. e., the TITLE TABLE and the SHIFT TABLE. From this 
information, it produces an alphabetized list- of all the circular 
shifts (a KWIC index). Once again, the module could store this 
information as an array of characters, but that would be 
inefficient. Instead, it produces an ALPHABETIZED SHIFT TABLE 
that is in the same format as the SHIFT TABLE produced by the 
circular shifter, but wi th the entr ies in alphabetical order. 
Figure 6.4 summarizes the action of this module. 

TITLE TABLE: 

X-ray. Emmission by Quasars 

X-ray Diffraction Techniques 

.-
_S_H_I_F_T_-_T_A_B_L_E_: ...... '" _----.m-_ ~ ALPHABETIZING 

~ MODULE 
/""'--'.--1 

~ Start Char 

1 1 
1 '7 
1 1'7 
1 20 
2 1 
2 '7 
a 19 

ALPHABETIZED 
SHIFT-TABLE: 

Line t Start Char 

1 1'7 
2 '7 
1 '7 
1 20 
2 19 
1 1 
2 1 

Figure 6.4 -- The conventional alphabetizing module 

There is now an alphabetized list of circular shifts stored 
in an internal format as an ALPHABETIZED SHIFT TABLE and a TITLE 
TABLE. All that is needed to produce a KWIC index is to wr i te 
this information to the output file in the desired format. 

Output Module. This module is called when the alphabetizing 
module completes its wor k. It takes as input the ALPHABETIZED 
SHIFT TABLE and the TITLE TABLE and produces a nicely formulated 
output listing (KWIC index). Figure 6.5 summarizes the operation 
of this module. 

6-9 



TITLE TABLE: 

X-ray. Emmission by Quasars 

X-ray Diffraction Techniques 

ALPHABETIZED 
SHIFT-TABLE: ~--------....------.... OUTPUT 
Lii

e
, sta:i Char / __ .M.O_D.U.L.E __ .---" 

1 20 
2 19 
1 1 
2 1 

OUTPUT FILE: 

~ Quasars. X-ray Emrnission 
D1ffraction Techniques. X-ray 
En~ission by Quasars. X-ray 
Quasars. X-ray E~mission by 
~echnioues. X-ray Diffraction 
X-~~ Emmission by Quasars. 
i=ray Diffraction Techniques. 

Figure 6.5 -- The conventional output module 

All the modules needed to do actual manipulation of the data 
have been described, but one more module is needed to coordinate 
the first four. 

Master Control Module. This module does Ii ttle 
control the sequencing among the other four modules. 
handle error messages, space allocation, etc. 

more than 
It may also 

Figure 6.6 summar i zes the sequencing per formed by the master 
control module. There are four steps: 

1. The input module reads the input file and produces a 
TITLE TABLE. 

2. The circular shift module produces a SHIFT TABLE from 
the TITLE TABLE. 

3. The alphabeti zing module produces an ALPHABETIZED SHIFT 
TABLE from the SHIFT TABLE and the TITLE TABLE. 

4. The output module writes a KWIC index to the output file 
using the ALPHABETIZED SHIFT TABLE and the TITLE TABLE. 
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CONVENTIONAL MODULARIZATION INPUT FILE: 

INPUT 
MODULE 

CIRCULAR 
SHIFT 
MODULE 

O ALPHABETIZING 
MODULE 

-+-

----... ~ 

OUTPUT 
MODULE 

Line t Start Char 

1 1 
1 7 
1 17 
1 20 
2 1 
2 7 
2 19 

Line t Start Char 

1 17 
2 7 
1 7 
1 20 
2 19 
1 1 
2 1 

-
X-ray EmMission by Quasars. 

X-ray Diffraction Techniques. 

TITLE TABLE: 

X-ray, Enunission by Quasars. 

X-ray Diffraction Techniques. 

OUTPUT FILE: 

~ Quasars. X-ray Emmission 
DIffraction Techniques. X-ray 
Emmission by Quasars. X-ray 
Quasars. X-ray Emmission by 
Technioues. X-ray Diffraction 
X-~~J[ Emmission by Ouasars. 
i=ray Diffraction Techniques. 

Figure 6.6 -- These modules directly manipulate 
shared data structures. 
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This concludes the description of the conventional 
modularization. Obviously, I have not presented all the details 
(e.g., core formats, pointer conventions) needed to begin 
programming, but there is enough information for comparison with 
the object-oriented approach. 

This conventional approach is a modularization in the sense 
meant by all proponents of modular programming. The system is 
divided into a number of modules with well-defined interfaces; 
each one is small enough and simple enough to be thoroughly 
understood and well programmed. Exper iments on a small scale 
indicate that this is approximately the decomposition which would 
be proposed by most programmers for the task specified. 

Object-Oriented Modularization 

The object-oriented modularization has several things in 
common wi th the conventional modular i za tion. It uses the same 
data structures as the conventional modular i zation and it also 
uses the same algorithms. The difference between the two 
approaches is in how the program is broken up into work 
assignments, i.e., how it is modularized. 

In the conventional decomposition the criterion used to 
modularize the program was to make each major proceSSIng step a 
module. One might say that to get the first decomposition, one 
makes a flowchart. This is the most common approach to 
decomposi tion or modular i zation. It is an outgrowth of 
programmer training which teaches us that we should begin wi th a 
rough flowchart and move from there to a detailed 
implementation. The flowchart was a useful abstraction for 
systems with on the order of 5,000-10,000 instructions, but as we 
move beyond that, it does not appear to be sufficient; something 
additional is needed. 

The object-or iented decomposi tion uses the hiding of design 
decisions as the criterion for modularization. As you will see, 
each module in the object-oriented decomposition hides one design 
decision. 

For example, in the conventional decomposition there are four 
modules (input, circular shift, alphabeti zing, and output) that 
directly manipulate the ti tIe table. All of these modules are 
aware of the design decision to represent the ti tIe table by an 
array in main memory, i.e., their correct operation depends on 
the structure of the title table. In the object-oriented 
approach, there is only one module that directly manipulates the 
title table. This module hides the structure of the title table 
(i.e., the fact that it is an array in main memory and not on 
file on disk) from the other modules in the system. All the 
other modules are completely independent of the structure of the 
title table. 
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This approach continues the trend toward structured 
programming. The first major step by proponents of structured 
programming was to add structure to the control flow of a 
program. This effort involved replacing the "GO TO" of 
FORTRAN-like programming languages with more structured control 
statements such as the "WHILE DO" and CASE OF" statements in 
Pascal. 

The second major step in structured programming is to 
structure the knowledge of how data is represented within a 
machine. This step is taken by the object-or iented approach to 
program decomposition. The knowledge of how data is represented 
(i.e., is it an array, or a linked list? Is it in main memory or 
on disk?) is confined to one module. All other modules are 
written to be independent of the way the data is structured. 

In a moment you will see why the object-oriented approach is 
advantageous, but first the object-oriented modularization of the 
KWIC index program is given. The object-oriented modularization 
has six modules. 

Title Storage Module. This module manages an object (a data 
structure) containing the original titles read in from secondary 
storage. This object is called the TITLE OBJECT. It 1S 

structured the same way as the ti tIe table in the conventional 
modularization, i.e., it is an array of characters with 
characters packed four to a word and an otherwise unused 
character used to indicate the end of a word. However, though it 
is structured like the title table, there are two major 
differences that makes it an object and not just a data structure. 

1. It has a label that tells its type, i.e., "TITLE OBJECT". 

2. It has a set of operations defined for it that are the 
only operations permitted on the object. 

The title storage module provides a set of procedures 
available to other modules that use the TITLE OBJECT. These 
procedures are the only way that other modules can use the TITLE 
OBJECT. Other modules cannot di rectly access the TITLE OBJECT. 
As an example, consider the following procedures provided by the 
title storage module: 
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CHAR (t,w ,c) -

SETCHAR (t,w,c,d) -

WORDS (t) -

DELINE (t) -

DELWORD (t,w) -

This procedure returns the cth 
character of the wth word of the tth 
title in the TITLE OBJECT. 

This procedure 
cth, character 
the value d. 

This procedure 
words in the 
OBJECT. 

sets the tth, wth, 
in the TITLE OBJECT to 

returns the 
tth title of 

number of 
the TITLE 

This procedure deletes the tth title 
of the TITLE OBJECT. 

This procedure deletes the wth word in 
the tth title of the TITLE OBJECT. 

The title storage module provides some other procedures, but 
I think you get the idea. Other modules that use the TITLE 
OBJECT do so by calling the procedures provided by the ti tIe 
storage module. They never manipulate the data structure 
directly, -- only through. the procedures provided by the ti tIe 
storage module. 

You can visualize the title storage module as a "black box" 
(see Figure 6.7) that hides the representation of the TITLE 

OBJECT (i.e., hides the fact that it is structured as a table in 
main memory instead of a linked list or a random access disk 
file) . The buttons on the front of the box are the procedures 
provided by the title storage module for manipulating the TITLE 
OBJECT hidden inside the box. Other modules using the TITLE 
OBJECT call these procedures instead of manipulating the TITLE 
OBJECT themselves. 
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m CHAR 

SETCHAR 

Push button WORDS 
to select 
procedure DELINE 

DELWORD 

Figure 6.7 -- A module in the object-oriented decomposition 
can be viewed as a black box that hides a 
design decision. 

Input Module. This module hides the input format. It reads 
the original lines from the input media and calls procedures 
provided by the ti tIe storage module to store the lines inside 
the title object. 

Master Control Module. This module is similar to the master 
control module described for the conventional modularization. It 
controls the sequencing of the other modules. 

As an example, consider the sequencing of the modules that 
have already been described. One of the first things the master 
control module does is call the input module. The input module 
then reads the input fi Ie and stores the ti tIes in the TITLE 
OBJECT by calling the procedures (e.g., SETCHAR) provided by the 
title storage module. When the input module has finished, it 
returns to the master control module. 
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Now that the titles are stored in the title object, the next 
step 'is to produce all the circular shifts of the ti tIes. To do 
that, a data structure is needed to contain the circular shifts 
of the titles. This means that another module is needed to hide 
the representation of this data structure, because the 
representation of each data structure is a design decision that 
needs to be confined wi thin a module. This module is descr ibed 
before more of the sequence of execution is explained. 

Circular Shifter Module. This module manages the SHIFTED 
TITLE OBJECT. The users of this module view the SHIFTED TITLE 
OBJECT as an array that contains all the circular shifts of the 
titles contained in the title object. 

For example, if the TITLE OBJECT contains the titles: 

X-ray Emmission By Quasars. 
X-ray Diffraction Techniques. 

then other modules using the SHIFTED TITLE OBJECT view it as 
containing all the circular shifts of these titles: 

X-ray Emmission By Quasars. 
Emmission By Quasars. X-ray 
By Quasars. X-ray Emmission 
Quasars. X-ray Emmission By 
x=ray Diffraction Techniques. 
Diffraction Techniques. X-ray 
Techniques. X-ray Diffraction 

The circular shifter module provides a set of procedures 
available to other modules that use the SHIFTED TITLE OBJECT. As 
with the title storage module, these procedures are the only way 
that other modules can use the SHIFTED TITLE OBJECT; they cannot 
manipulate it directly. 

Here are a few examples of the procedures provided by the 
circular shifter module: 
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CSCHAR (t,w,c) -

CSSETCHAR(t,w,d} -
CSWORDS (t) 
etc. 

CSSETUP -

This procedure is very similar in 
function to the CHAR procedure in the 
ti tIe storage module. The only 
difference is that this procedure 
returns a character from the SHIFTED 
TITLE OBJECT while CHAR returns a 
character from the TITLE OBJECT. 

The circular shifter module has a full 
complement of procedures for manipulating 
the SHIFTED TITLE OBJECT. They are all 
similar to the procedures provided by 
the title storage module except they 
manipulate the SHIFTED TITLE OBJECT 
instead of the TITLE OBJECT. 

Before the procedures for reading and 
manipulating the SHIFTED TITLE OBJECT 
can be used, some initialization needs 
to be done, i.e., all the circular 
shifts of the ti tIes must be created. 
The CSSETUP proced ur e does th is. It is 
called once, before any of the other 
procedures are used, and it ini tiali zes 
the object. I will explain this a bi t 
more when I resume explaining the 
sequence of execution. 

From the discussion so far, it would appear that the circular 
shifter maintains the SHIFTED TITLE OBJECT as an array of 
characters, because this is the view presented to other modules 
using the SHIFTED TITLE OBJECT. Yet, earlier, in the explanation 
of the conventional modularization, I explained that while it is 
possible to maintain this information as an array of characters, 
in practice it requires too much storage. The object-oriented 
modularization faces the same limit, and it uses the same 
solution -- stor ing the information as an array of line numbers 
and starting characters. 

Internal to the circular shifter module, and hidden from all 
users of the module, is a shift table. It has the same structure 
as the shift table in the conventional modularization -- a column 
of line numbers and column of starting-character numbers. 

Also internal to the circular shifter module is an object 
reference for the title storage module. This means that the 
circular shifter module can use the TITLE OBJECT by calling the 
procedures provided by the ti tIe storage module. The circular 
shifter module must be able to do this because it does not keep a 
copy of the actual titles itself -- it uses the TITLE OBJECT for 
this purpose. All the circular shifter module has is the shift 
table that describes all the possible shifts of the titles in the 
TITLE OBJECT. 
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Figure 6.8 illustrates the difference between the users 
abstract view of the object and the actual representation of the 
object. The user "sees" an array of characters because this is 
the view presented by the procedures in the circular shifter 
module. But, the information is actually represented by a shift 
table and a reference for the title storage module. 

A MODULE HIDES THE DATA'S REPRESENTATION 

SHIFTED TITLE OBJECT: 

X-ray Ernmission by Quasars. 
Emnussion by Quasars. X-ray 
~ Quasars. X-ray Emmission 
Quasars. X-ray Emmission by 
X-ray Diffraction Techniques. 
Diffraction techniques. X-ray 
!echniques. X-ray Diffraction 

t 
USER'S ABSTRACT 
VIEW OF THE DATA 

CIRCULAR SHIFTER 
MODULE 

o CSCHAR 

o 
etc. 

/ 
DATA1S REPRESENTATION 
HIDDEN INSIDE MODULE 

Figure 6.8 -- Knowledge of the data's representation is 
confined within a single module. 
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The circular shifter module effectively hides the 
representation of the SHIFTED TITLE OBJECT from other modules 
that use it. It does this by presenting the other modules wi th 
an abstract view of the object, i.e., to them it looks like an 
array of characters. But, internally, the SHIFTED TITLE OBJECT 
is represented by the shi ft table: a set of indices for the 
TITLE OBJECT. 

Return for a moment to the sequence of program execution. 
When the sequence was left, the master control module had called 
the input module, and the input module had transferred the titles 
from the input file to the TITLE OBJECT. The input module never 
directly manipulated the TITLE OBJECT it only used the 
procedures provided by the title storage module. 

Now that the input module has finished storing the titles and 
has returned to the master control module, the circular shifts 
can be created. To do this, the master control module calls the 
CSSETUP procedure in the circular shifter module. The CSSETUP 
procedure computes the circular shifts of the ti tIes stored in 
the TITLE OBJECT (using only the procedures provided by the title 
storage module to manipulate the TITLE OBJECT) and stores the 
appropriate indices to the TITLE OBJECT in its shift table. When 
CSSETUP is finished initializing the shift table, it returns to 
the master control module. 

Now that the shift table has been initialized, all the other 
procedures provided by the circular shifter can be used. These 
procedures create the view of working with an abstract data type 
called a SHIFTED TITLE OBJECT that looks like a character array 
of all the circular shifts of the ti tIes. The user has this 
abstract view even though the SHIFTED TITLE OBJECT is actually 
represented by the shift table's indices and the TITLE OBJECT. 

Now that all the circular shifts of the titles are available, 
all that is needed is to alphabetize them and write them to the 
output file. An alphabetized list of the circular shifts 
requires another data structure and thus another module to manage 
it. 

Alphabetizer Module. This module manages the ALPHABETIZATION 
OBJECT, which provides the user with information about the 
alphabetical order of the circular shifts. 
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The alphabetizer module has two procedures: 

• ALPH This procedure is similar to the CSSETUP 
procedure in the circular shifter module. It is 
called to initialize the alphabetizer module. 
When it is called, it builds an alphabetized 
shift table which is used by the second 
procedure. This alphabetized shift table has the 
same structure as the alphabetized shift table in 
the conventional modularization, but it is 
constructed by using the circular shifter module 
to manipulate the SHIFTED TITLE OBJECT instead of 
directly manipulating the shift table like the 
conventional modularization. 

• ITH (i) - Thi s procedure allows the user to alphabetically 
access the circular shifts provided by the 
circular shifter module. It does this by 
returning the index t for the line in the SHIFTED 
TITLE OBJECT that is ith in the alphabetical 
order. For example, if the call ITH (1) returns 
the index 3 it means that the 3rd line in the 
SHIFTED TITLE OBJECT is the 1st line in the 
alphabetical ordering of the SHIFTED TITLE OBJECT. 

Fig u r e 6 . 9 i 11 u s t rat est he" b 1 a c k bo x" view 0 f the 
alphabetizer module. 

ALPHABETIZER 
MODULE 

(J) ALPH 

() ITH 

Fiqure 6.9 -- The alphabetizer module hides the 
alphabetization desiqn decisions. 
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Output Module. This module creates the output fi Ie 
containing the KWIC index. It does this by using procedures 
provided by the alphabetizer module and the circular shifter 
module. It calls procedures in the circular shifter module to 
find out what the circular shifts are and it calls ITH(i) within 
the alphabetizer module to find out which circular shift comes 
first, which comes second, etc. 

Note that this module hides the format of the output file 
from the other modules. If you want to change the format of the 
output, the changes necessary will be confined to the output 
module. 

That completes the descr iption of all of the modules 
object-oriented modularization of the KWIC index program. 
review, here is the sequence of program execution. 

in the 
As a 

!l-lNPUT. The master control module calls the input module. The 
lnput module reads the input file and uses the procedures 
provided by the ti tIe storage module to store the ti tIes in the 
TITLE OBJECT. 

2) CIRCULAR SHIFT. The master control module calls the CSSETUP 
procedure in the circular shifter module which computes all the 
circular shifts of the ti tIes. The circular shifter stores the 
description of the circular shifts in a comp~ct internal format, 
but hides this internal representation from users of the SHIFTED 
TITLE OBJECT by providing a set of procedures that lets the users 
view the SHIFTED TITLE OBJECT as a character array., The CSSETUP 
procedure, as well as all of the other procedures in the circular 
shifter module, use the information stored in the TITLE OBJECT, 
but they do not access it directly. They use the procedures 
provided by the title storage module. 

3) ALPHABETIZATION. After the circular shifts have been created, 
the master control module calls the ALPH procedure in the 
alphabetizer module which computes the alphabetical order of the 
circular shifts. During this computation, the ALPH procedure 
makes use of the information stored in the SHIFTED TITLE OBJECT 
by using the procedures provided by the circular shifter module 
-- it ne~er manipulates the SHIFTED TITLE OBJECT directly. Once 
ALPH is finished, the procedure ITH can be used to determine the 
alphabetical order of the circular shifts. 

4) OUTPUT. Now that the circular shifts are alphabetized, all 
that remains to be done is to print the KWIC index on the output 
file. The output module accomplishes this by calling procedures 
in the alphabetizer module and the circular shifter module. The 
output module calls the procedure ITH in the alphabetizer module 
to find out the order of the circular shifts, and then uses 
procedures in the circular shifter module to find out what the 
words are in that particular circular shift. 
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Figure 6.10 summarizes the object-oriented modularization. 
Each module is shown as a box (an object) with a set of object 
references for all the modules that it uses. The numbers shown 
(1-4) correspond to the sequence of calls by the master control 

module as described above. 

INPUT 
MODULE 

o IN 

OBJECT-ORIENTED MODULARIZATION 

KWIC 
(Master c;;?J 
Control 
Module) 

ALPHABETIZER 
MODULE ~ 

OALPH ~ 
o ITH 

~~C;;?J 
OCSAR 
OSE'l'C 

etc. 

OUTPUT 
MODULE 

o OUT 

Fiqure 6.10 These modules share information by usinq 
8ervices (procedures) provided by other 
modules instead of directly manipulatinq 
shared data structures. 

As you may have guessed by now, the 432 has a hardware
recognized object type that represents a module. It's called a 
"domain object" and it is covered in the next section of this 
chapter. 

For now, the important thing to notice is the difference 
between Figure 6.10 and Figure 6.6. In the conventional 
modular ization (Figure 6.6), modules share information by 
directly manipulating shared data structures. In the 
object-oriented modularization, modules share information by 
using services (procedures) provided by other modules. 
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That concludes the 
modularization. Now it 
modularization. 

description 
is compared 

of the object-or iented 
with the conventional 

Comparison of the Two Modularizations 

General. The major difference between the two design methods 
is that the object-or iented approach makes a specific attempt to 
"hide" design decisions that are likely to change, while the 
conventional approach makes no such attempt. 

One of the best metrics to measure the ability of a design to 
hide major design decisions is to count the number of modules 
that manipulate each data structure. Because data structures are 
likely to change when design decisions change, it is desirable to 
minimize the number of modules that directly manipulate each data 
structure. Minimizing the number of modules that need to 
"understand" how the data is structured minimizes the number of 
modules that need to be changed if the structure of the data 
changes. 

Note the difference between the term manipulate and the term 
use. Manipulate means direct access to the physical data 
structure by a module. Manipulate means that a module is 
dependent upon the physical representation (e.g., a memory
resident table or a random access disk file) chosen. Use means 
indirect access to the data structure through procedures that 
hide its representation. Designing modules to use data 
structures instead of manipulate them means that the way the data 
is represented can change wi thout changing the modules that use 
it. 

Figures 6.11 and 6.12 illustrate how the two modularizations 
differ in the number of data structures directly manipulated by 
each module. Each arrow from a module points to a data structure 
that it manipulates. 

In Figure 6.11, you can see that the conventional 
modularization distributes the knowledge of the data's 
representation among many modules. Most data structures are 
directly manipulated by several different modules. 

In Figure 6.12, you can see that qui te the opposi te is true 
for the object-oriented decomposition. This method centralizes 
knowledge of the data's representation wi thin a single module. 
Although each data structure may be used by many modules, only 
one module has the detailed knowledge of the data's structure 
required to manipulate it directly. This module provides the 
other modules with procedures for using the data structure. 
Because the other modules use the data by calling these 
procedures, changing the structure of the data only requires 
changing these procedures, not all the modules that use them. 
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CONVENTIONAL MODULARIZATION 

DOES NOT CONFINE KNOWLEDGE OF THE DATA STRUCTURES 

MODULES 

INPUT 
MODULE 

CIRCULAR 
SHIFT 
MODULE 

ALPHABETIZING 
MODULE 

OUTPUT 
MODULE 

MASTER 
CONTROL 
MODULE 

~ 

DATA STRUCTURES 

INPUT 
FILE 

TITLE 
TABLE 

SHIFT 
TABLE 

ALPHABETIZED 
SHIFT TABLE 

OUTPUT 
FILE 

ARROWS POINT TO ALL THE DATA STRUCTURES THAT ARE DIRECTLY 
MANIPULATED BY A MODULE. 

Figure 6.11 -- Conventional modularization distributes knowledge 
of the data structures throughout many modules. 
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OBJECT-ORIENTED MODULARIZATION 
CONFINES KNOWLEDGE OF EACH DATA STRUCTURE TO ONE MODULE 

MODULES 

INPUT 
MODULE 

TITLE 
STORAGE 
MODULE 

CIRCULAR 
SHIFTER 
MODULE 

ALPHABETIZER 
MODULE 

OUTPUT 
MODULE 

MASTER 
CONTROL 
MODULE 

.. 

~I 

.. 

.. 

DATA STRUCTURES 

INPUT 
FILE 

TITLE 
OBJECT 

SHIFTED TITLE OBJECT 

ALPHABETIZATION 
OBJECT 

OUTPUT 
FILE 

ARROWS POINT TO ALL THE DATA STRUCTURES THAT ARE DIRECTLY 
MANIPULATED BY A MODULE. 

Pigure 6.12 -- Object-oriented modularization centralizes 
knowledge of a data structure into a 
single module. 
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Now that you've seen the general differences between the two 
modularizations, specific differences are covered in the areas of: 

• Changeability 
• Independent development 
• Comprehensibility 

Changeability. There are a number of design decisions which 
are questionable and likely to change under many circumstances. 
Here is a partial list: 

1. The decision to have all lines stored in core: For 
large jobs it may prove inconvenient or impractical to 
keep all of the lines in core at anyone time. 

2. The decision to pack the characters four to a word: In 
cases where we are working wi th small amounts of data, 
it may prove undesirable to pack the characters; time 
will be saved by a character per word layout. In other 
cases, we may pack, but in different formats. 

3. The decision to make an index for the circular shifts 
rather than actually store them as such: Again, for a 
small index or a large core, writing them out may be the 
preferable approach. Al ternati vely, we may choose to 
prepare nothing dur ing CSSETUP. All computation could 
be done during the calls on the other functions such as 
CSCHAR. 

4. The decision to alphabeti ze the list once, rather than 
either (a) search for each item when needed, or (b) 
partially alphabetize: In a number of circumstances, it 
would be advantageous to distribute the computation 
involved in alphabetization over the time required to 
produce the index. 

5. Input format. 

By looking at these changes you can see the differences 
between the two modular i zations. Each change is confined to a 
single module in the object-oriented modularization, but usually 
requires changes to several modules in the conventional 
modularization. Here are some specific examples: 

Change 1 -- Title storage 

Changing the decision to keep all ti tIes resident in memory 
effects every module except the master control module in the 
conventional modularization. All of them directly manipulate the 
title table and expect it to be resident at all times (see Figure 
6.11) . 
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In the object-oriented decomposition, this change is confined 
to the ti tIe storage module because it is the only module that 
directly manipulates the TITLE OBJECT (see Figure 6.12). All the 
other modules use the procedures provided by the ti tIe storage 
module to manipulate the TITLE OBJECT. They do not need to be 
changed as long as the revised title storage module continues to 
provide the same set of procedures. 

Change 2 -- Character Packing 

This change has an effect similar to the first change. 
Changing the number of characters packed to a word changes the 
representation of the ti tIe table. Therefore, all modules that 
depend upon the representation of the title table will need to be 
changed. 

This involves changing every module in the conventional 
modular i zation, but only the ti tIe storage module needs to be 
changed in the object-oriented decomposition. 

Change 3 -- Writing Out the Circular S?ifts 

Earlier, I explained that the decision had been made to 
represent the circular shifts as a set of indices to the original 
titles instead of storing the circular shifts as characters. If 
we decide to change this decision, and store the circular shifts 
as characters instead of indices to the original tables, we would 
have to change all the modules that directly manipulate the data 
structures used to represent the circular shifts. In the 
conventional modularization this means changing three modules: 
circular shift, alphabetizing, and output. In the object
oriented modularization, only the circular shifter needs to be 
changed. 

Change 4 -- Delayed Alphabetization 

In the conventional modular i zation, the alphabeti zing module 
builds an alphabetized shift table that is also manipulated by 
the output module. The output module expects the alphabetized 
shift table to be complete when it is called, thus both the 
alphabetizing and the output module must be changed if we decide 
to delay alphabetization or to only partially alphabetize. 

In the object-oriented modularization, the design decision of 
when to alphabetize the titles has been confined to the 
alphabetizer module. Not only has the alphabetizer module hidden 
the representation of the alphabetization object, it has also 
hidden the decision of when it is alphabetized. Thus, only the 
alphabetizer module needs to be changed in the object-or iented 
modularization. 
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Change 5 -- Input Format 

This change is especially interesting because It is the only 
change that is confined to one module in both modular izations. 
If you return to Figures 6.11 and 6.12 for a moment you should be 
able to see why this is true. In both modu1arizations, the input 
file is directly manipulated by only one module. The difference 
between the two approaches is that the hiding happened by chance 
in the conventional modu1arization, but was planned in the 
object-oriented modu1arization. 

This concludes the comparison 
support for changeability. This 
Figure 6.13. 

of the two modu1arizations' 
comparison is summarized in 
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CHANGE 

(1) TITLE STORAGE -
Store only some of 
the titles in main 
memory. Swap to and 
from disk storage 
as needed. 

(2) CHARACTER PACKING -
Store one character 
per word instead 
of packing four to 
a word. 

(3) WRITING OUT THE 
CIRCULAR SHIFTS -
Store circular 
shifts as char
acters instead of 
making an index. 

(4) DELAYED 
ALPHABETIZATION -
Search for each 
item as needed, 
or partially 
alphabetize the 
list instead of 
alphabetizing the 
whole list at once. 

(5) INPUT FORMAT -

COMMENTS -

MODULES CHANGED 
IN CONVENTIONAL 
MODULARIZATION 

• INPUT 
• CIRCULAR SHIFT 
• ALPHABETIZING 
• OUTPUT 

• INPUT 
• CIRCULAR SHIFT 
• ALPHABETIZING 
• OUTPUT 

• CIRCULAR SHIFT 
• ALPHABETIZING 
• OUTPUT 

• ALPHABETIZING 
• OUTPUT 

• INPUT 

Most changes 
involved more 
than one module. 

MODULES CHANGED IN 
OBJECT-ORIENTED 
MODULARIZATION 

• TITLE STORAGE 

• TITLE STORAGE 

• CIRCULAR SHIFTER 

• ALPHABETIZER 

• INPUT 

All changes were 
confined to one 
module. 

r---------------------------------------------------------------------------
Figure 6.13 -- The object-oriented approach confines 

changes to fewer modules. 
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Independent Development. In the conventional modularization, 
the interfaces between modules are the fairly complex formats and 
table organizations described above. These represent design 
decisions which cannot be taken lightly. The table structure and 
organization are essential to the efficiency of the various 
modules and must be designed carefully. The development of the 
formats is a major part of module development, and that part must 
be a joint effort among the several development groups. 

In the object-oriented modularization, the interfaces are 
more abstract: they consist pr imar ily in the function names and 
the numbers and types of the parameters. These are relatively 
simple decisions and the independent development of modules 
should begin much earlier. 

Comprehensibili ty. To understand the output module in the 
conv,entional modularization, it is necessary to understand 
something of the alphabetizer, the circular shifter, and the 
input module. There are constraints on the tables used by the 
output module that only make sense because of the way that the 
other modules work. There will be constraints on the structure 
of the tables due to the algor i thms used in the other modules. 
The system will only be comprehensible as a whole. This is not 
true in the second, object-oriented modularization. 

SUMMARY 

The important difference between the two methodologies is: 

• 
THE CRITERIA USED FOR DECOMPOSITION 

Conventional 
module. 

Make each major step in the processing a 

• Object-Oriented -- Hide each design decision wi thin a 
single module. 

Hiding the representation increases the independence of each 
module. If the modules that use the title storage module do not 
know how it represents the TITLE OBJECT, then they cannot be 
written to depend upon the representation of the TITLE OBJECT. 

It is this independence that gives modular programming its 
benefits of flexibility, comprehensibility, and shorter 
development time: flexibili ty, because the representation of an 
object can be changed by changing only one module -- the module 
that hides the representation: comprehensibility, because a 
programmer only needs to understand one module at a time; 
shorter development time, because each module is a responsibility 
assignment and can be developed totally independently of the 
other modules once the interface has been defined. 
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WHAT'S NEXT? 

This section has compared two design methods and explained 
the advantages of obj ect-or iented design, but has not related 
this to the architecture of the 432 micromainframe. 

The next two sections of this chapter explain how the 432 
architecture supports the object-oriented design method by 
providing two facilities: domains and type checking. 
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2. DOMAINS 

This section describes domains one of the 432 
architectural facilities that supports the object-oriented design 
method. The 3 subsections are: 

• DOMAIN OBJECTS 

What a domain object is and how it fits into the basic 
program structure described in Chapter 3 

• NETWORKS OF DOMAINS 

How domains are used to construct the static structure of a 
program 

• CALLING A PROCEDURE IN A DIFFERENT DOMAIN 

An example explaining the change in access environments that 
occurs when a procedure calls another procedure that is in a 
different domain 

DOMAIN OBJECTS 

The 432 architecture supports the object-oriented design 
method by providing a hardware-recognized object type (called 
domain) that represents a module. These objects are called 
domains because the modules they represent confine knowledge of 
the object structure wi thin a specified "domain". Figure 6 .14 
shows the two symbols used to represent domains in this book. 

o 
Q) 

o 

DomaIn Object 

IN 

Domain Object 

Pigure 6.14 -- ~e 2 .ymbo18 for a domain object 
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Structurally, a domain is a very simple object. It is just a 
list of object references for all, the static objects in the 
module. These static objects include: 

• The instruction objects for the procedures in the domain 

• The object being managed (e.g., the SHIFTED TITLE OBJECT 
in the CIRCULAR SHIFTER domain) 

• Any other static objects containing information used by 
the procedures (e.g., constants, usage statistics) 

By "static", I mean information that needs to persist between 
calls to a procedure. As an example, consider a sine routine 
that computes the sine of a number by interpolating a sine 
table. The sine table is static -- we do not want to throw it 
away when the procedure returns -- we want to save it to use the 
next time the procedure is called. 

In contrast, some var iables are dynamic. The storage used 
for them can be recycled (deallocated) when the procedure is 
exited. When the procedure is called again, storage for the 
dynamic var iables is simply reallocated. Dynamic var iables are 
things like loop counters that need to be reinitialized anyway. 

A domain is a list of object references for all the static 
obj ects used by a module (not just one procedure -- the whole 
module) • A context object (described in Chapter 3) is also a 
list of object references, but it is for all the dynamic objects 
used by a procedure (not the whole module -- just one procedure). 

Figure 6.15 summar i zes the basic program structure descr ibed 
in Chapter 3. 

Memory Space 

Context 
Object 

Pigure 6.15 -- ~e basic structure of a program 
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Figure 6.16 shows the more detailed program structure. The 
domain object and the static objects it references are (usually) 
created at compile-time. Contexts and the dynamic objects they 
reference are (usually) created at run-time. 

When a program calls a procedure, the 432 CALL CONTEXT 
instruction creates a context for the procedure, then calls the 
procedure. When the procedure returns, the context object and 
all the /dynamic objects it references are deallocated and their 
storage reclaimed for further use. The domain object and all the 
static objects it references are retained. 

Memory Space 

(Stat Ie) 

Figure 6.16 -- Domains are packages for the 
static objects used by a module. 
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NETWORKS OF DOMAINS 

The static structure of a 432 program is represented by a 
networ k of domains a networ k of modules. The KWIC INDEX 
example is used to show how this works. 

Each module in Figure 6.17 is represented by a domain, and 
each domain hides the representation of an object. For example, 
the TITLE STORAGE domain hides the representation of the TITLE 
OBJECT, and the CIRCULAR SHIFTER domain hides the representation 
of the SHIFTED TITLE OBJECT. 

Some of the domains make use of objects in other domains to 
create a more complex object. The CIRCULAR SHIFTER, for 
instance, uses the TITLE STORAGE domain's TITLE OBJECT to create 
the more complex SHIFTED TITLE OBJECT. 

If a module uses the procedures provided by a second module, 
then it needs to have a reference for the domain that represents 
the second module. Figure 6.17 shows the network of domains that 
forms the static structure of the KWIC index program. Each 
domain has object references for the other domains it needs to 
use. Once again, the 432' s "need to know" addressing mechanism 
is used. A module can only use a procedure if it has a reference 
for the domain that contains the procedure. 
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INPUT 
MODULE 

o IN 

OBJECT-ORIENTED r10DULARIZATION 

KWIC 
(Haster ~ 
Control 
Module) 
o KWIC 

CIRCULAR 
SHIFTER ~ 
~10DULE ~ 

OCSCHAR 
O>CSSETUP 

etc. 

TITLE 
STORAGE 
MODULE 

o CHAR 
OSETC 

etc. 

OUTPUT 
r~ODULE 

o OUT 

Figure 6.17 -- These modules share information by using 
services (procedures) provided by other 
modules instead of directly manipulating 
shared data structures. 

For example, the INPUT domain has an object reference for the 
TITLE STORAGE domain because it uses the TITLE OBJECT contained 
by the TITLE STORAGE domain to store the lines it reads from the 
input device. The output module has a reference for both the 
ALPHABETIZER and the CIRCULAR SHIFTER module because it uses 
both. It calls the ALPHABETIZER to determine the order of the 
lines, and it calls the CIRCULAR SHIFTER to find out what each 
line contains. 
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Figure 6.17 is also a good illustration of how domains hide 
the representation of an object. Each domain is drawn as a 
"black-box" with buttons on the front to select the desired 
procedure. This is how domains are viewed by other domains that 
use them. The INPUT domain uses the TITLE STORAGE domain, it 
depends upon the TITLE STORAGE domain to provide the procedures 
CHAR, SETCHAR, etc., but it does not care how the TITLE OBJECT is 
represented or what algorithms are used to manipulate it. 

The domains in Figure 6.17 are viewed from the "outside", 
i.e., from the perspecti ve of the user. Domains can also be 
viewed from the "inside", i.e., from the perspective of a 
procedure executing inside of its own domain. Figure 6.18 shows 
a black box that has been slid open. This symbol is used when 
viewing a domain from the "inside". 

a 
o 
Q) 

"OUTSIDE" 

IN 

Domain Object 

o 
o 
o 

"INSIDE" 

Domain Object 

Figure 6.18 -- Two ways to view a domain 

A procedure that is executing inside a domain needs to be 
able to access some objects that we do not want procedures 
outside of the domain to be able to access. For example, 
consider the TITLE OBJECT inside the TITLE STORAGE domain. 
Procedures that are inside the domain (e.g. CHAR, SETCHAR, etc.) 
must be able to access the TITLE OBJECT because-these procedures 
directly manipulate the object. But, procedures outside of the 
domain (e.g., procedures like CSSETUP or ALPH that are inside 
other domains) should not be able to directly access the object, 
because these procedures may only manipulate the TITLE OBJECT by 
calling procedures in the TITLE STORAGE module. 
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On the other hand, there are some objects referenced by the 
domain that procedures outside of the domain must be able to 
access. These objects include the instruction objects for the 
procedures that are available to users of the domain (e.g., users 
of the line storage domain can call the procedures CHAR, SETCHAR, 
etc. ) . 

To both provide access (to services) and prevent access (to 
internals), a domain's list of object references is divided into 
two parts: a public part and a private part (see Figure 6.19). 
Objects in the private part of the list can only be accessed by 
procedures inside the domain. Objects in the public part of the 
domain can be accessed by procedures inside the domain plus all 
procedures outside the domain that have a reference for the 
domain. 

Visual ize 
these as the 
buttons on the 
front of the 
boxes in 
Figure 6.9 

Domain Object 

These are 
PUBLIC object 
re fe rences. 

These are 
PRIVATE object 
references. 

F~gure 6.19 -- A domain ia • list of object references 
for all objects in a module. 

As an example, look at the domain object for the TITLE 
STORAGE module defined earlier. This domain (see Figure 6.20) 
has a public reference for each of the procedures available to 
other modules using the TITLE STORAGE MODULE, and a private 
object reference for the TITLE OBJECT. The procedures are 
available for use by the other modules, but the TITLE OBJECT is 
hidden. 
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In this example, the particular representation chosen for the 
TITLE OBJECT requires a SWAP procedure. SWAP is used by all of 
the public procedures to move parts of the object to and from 
secondary storage. This procedure is part of the module, but it 
should be hidden from the users of the module; therefore its 
reference is placed in the private part of the domain object. 

TITLE STORAGE DOMAIN: 

Domain Object 

CHAR 

SWAP 

Instruction 
Object 

SETCHAR 

Note: Although the title storage module has several other 
public procedures (e.q., WORDS, DELINE), the diagrams 
in this section, for simplicity, only show two 
public references. 

Figure 6.20 -- The title storaqe domain 
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CALLING A PROCEDURE IN A DIFFERENT DOMAIN 

Here is an example of what happens when a procedure in one 
domain calls another procedure in a different domain. Pay 
particular attention to the complete change in access 
environments that occurs when leaving one domain and enter ing 
another. 

The example comes from the KWIC index program. At Time 
Period 1 in Figure 6.21.lA, the CSCHAR procedure within the 
CIRCULAR SHIFTER DOMAIN is executing. ICSCHAR is the name I have 
given to the context object for this instance of the CSCHAR 
procedure. You can tell that this is the current context being 
executed by this process because the process object always has a 
reference for the current context being executed and that 
reference is pointing to lCSCHAR. 

In Figure 6. 2l.1A, the CIRCULAR SHIFTER domain has public 
object references for the CSCHAR and CSSETUP instruction 
objects. This makes sense because these procedures are publicly 
available to all programs that can reference the domain. The 
CIRCULAR SHIFTER DOMAIN also has private object references for 
the SHIFTED TITLE OBJECT and the TITLE STORAGE DOMAIN OBJECT. 
Both of these objects are hidden from procedures outside of the 
CIRCULAR SHIFTER DOMAIN, but are available for use by all the 
procedures in the domain (including eSCHAR) . 

Note that because the CIRCULAR SHIFTER DOMAIN has a reference 
for the TITLE STORAGE DOMAIN, all of the procedures in the 
CIRCULAR SHIFTER DOMAIN can access all the objects referenced by 
the public part of the TITLE STORAGE DOMAIN. These public 
objects include the procedures that the circular shifter will use 
to manipulate the TITLE OBJECT hidden in the private. part of the 
TITLE STORAGE DOMAIN. 
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Time: 

o 
lCSCHAR: 

I'm the object 
reference for lCSCHAR's 
domain of execution. 

CIRCULAR 
SHIFTER: 

I'm the current context being 
executed by this process. I' 
executing inside the CIRCULAR 
SHIFTER domain. 

I'm a domain that can be used 
by any procedure inside the 
lCSCHAR domain. Note that they 
can only access objects listed in 
my public part. 

TITLE 

Domain Object 

a CHAR 

o SETCHAR 

etc. 

I'm the domain of execution for 
the lCSCHAR context. All my 
object references, both public 
and private,can be used by 
lCSCHAR to access objects. 

Pigure 6. 21.1A 
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Figure 6.21.lB shows the objects referenced by the TITLE 
STORAGE DOMAIN, both public and pr i vate. The references for the 
CHAR, SETCHAR, etc. procedures are in the public part, and can be 
accessed from inside the CIRCULAR SHIFTER DOMAIN. The references 
for the TITLE OBJECT and the SWAP procedure are in the pr iva te 
part, and can only be accessed from a procedure inside the TITLE 
STORAGE domain. How does the CSCHAR procedure call the CHAR 
procedure, which is in a different domain? 

The first thing to do is create a context for the CSCHAR 
procedure. A context object is needed to hold the references for 
the dynamic objects, and to contain system information like the 
return link to the calling procedure. A context for a procedure 
is created by executing a CALL CONTEXT instruction. This 
instruction both creates and calls a context. It allocates the 
storage for the context object, initializes the system 
information it contains, and then transfers control to the newly
created context. 
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Time: 

lCSCHAR: 
We're in the private part 
of the TITLE STORAGE domain. 
We cannot be executed now 
because the current context 
is not inside our domain. 

TITLE STORAGE: 

~~~~~~~~~~. Domain Object 

We're in the public part of 
the TITLE STORAGE domain. We 
can be accessed now by the 
procedures in the CIRCULAR 
SHIFTER domain. 

Pigure 6.21.18 
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Time: 

1CSCHAR: 2CHAR: Context 
Obj ect 

I 'm a context for the CHAR 
procedure. Context lCSCHAR 
just created me so it can 
call me. I have not been 
called yet. 

1'm the object reference for 
2CHAR ' s domain of execution. 

IN 

:StI~~n#iMn 
etc. 

I'm listed in the private part of the 
CIRCULAR SHIFTER domain. I'm accessible 
nowJ because the current context is 
ins ide my doma in. I n Fig u r e 6. 21 • 3 J 

I'll no longer be accessible
1

because 
the current context will be outside 
of my domain. 

Figure 6.21.2 
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In Figure 6.21.2, the CALL CONTEXT instruction has been 
partially executed. The context object 2CHAR has been created 
for the CHAR procedure, but it has not been called yet. 

Once the context has been created, the CALL CONTEXT 
instruction finishes its execution by transferring control to the 
newly-created context (see Figure 6.21.3). Note that the CALL 
CONTEXT instruction creates a return link from the called context 
(2CHAR) to the calling context (lCSCHAR), and also updates the 
object reference in the process object to point to 2CHAR since it 
is now the current context. 

The CALL CONTEXT instruction changes the access environment. 
Note the substantial difference between the objects accessible to 
the CSCHAR procedure in Figure 6.21.2 before the call and the 
objects accessible to the 2CHAR procedure in Figure 6.21.3 after 
the call. 

Before the call, all the objects listed in the public and 
private parts of the CIRCULAR SHIFTER DOMAIN could be accessed, 
because a procedure inside the CIRCULAR SHIFTER DOMAIN was 
executing. Also, all the objects in the public (but not the 
private) part of the TITLE STORAGE DOMAIN could be accessed 
because the CIRCULAR SHIFTER DOMAIN had an object reference for 
it. 

After the call, the new context is outside of the CIRCULAR 
SHIFTER DOMAIN. It cannot access any of the objects listed in 
the CIRCULAR SHIFTER DOMAIN, not even the objects in the public 
part of the domain. There is not even an object reference for 
the CIRCULAR SHIFTER DOMAIN, so the new context cannot access any 
of the objects listed in it. 

After the call, the new context is not only outside of the 
CIRCULAR SHIFTER DOMAIN, it is inside the TITLE STORAGE domain. 
This means that it can now access all the objects listed in both 
the public and private parts of the TITLE STORAGE DOMAIN. 

This ends the example. This section ends wi th a summary of 
what has been said about domains. 
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Time: 

lCSCHAR: Context 
Object 

IN 

Domain Object 

0 CSSETUP 

0 CSCHAR 

RETURN 

c:J 

I'm the object reference for the current 
context. Note that I'm pointing to a 
different context now than I was before. 

Pigure 6.21.3 
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DOMAINS SUMMARY 

• A DOMAIN is a 432 hardware-recognized object that 
represents an instance of a module. 

• NETWORKS OF DOMAINS form the static structure of a program. 

• DOMAINS HIDE. Only procedures inside the domain can access 
objects listed in the private part of the domain. 

• ACCESS ENVIRONMENTS change when a procedure is called. 

Figure 6.22 
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3. 

This section describes 
archi tectural facili ty that 
method. 

TYPE CHECKING 

type checking the second 432 
suppor ts the obj ect-or iented des ign 

The four subsections in this section are: 

• SELF-MANAGED OBJECTS VS. TYPE MANAGERS 
the need for type checking 

• TYPE DEFINITION OBJECTS 
a way to do type checking 

• HARDWARE SUPPORT FOR TYPES 
how the" architecture supports type checking 

• PRIVATE TYPES 
how type definition objects can improve control of 
access to objects 

SELF-MANAGED OBJECTS VS. TYPE MANAGERS 

Previous sections have discussed modules that contain the 
objects they manipulate. This hides the representation of the 
object because it never leaves the "inside" of the module. This 
kind of module is called a self-managed object, because the 
object cannot be separated from the module that manages i.t. 

There is a second kind of module called a type manager 
module. A type manager module is different from a self-managed 
object because it does not always contain the object it 
manipulates. A type manager allows other modules using the 
object to possess it until it needs to be manipulated. At that 
time, the module using the object passes it to the type manager, 
which per forms the manipulation and then returns the object to 
the module using it. 
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Figure 6.23 contrasts these two kinds of modules. The only 
difference between the two is where the object is located before 
and after the operation is performed. The self-managed object 
keeps the object inside the module at all times; the type manager 
lets the module using the object possess it when its not being 
manipulated by the type manager. 

SELF-MANAGED OBJECT 

me. 

TYPE MANAGER 

CHAR 

SETCHAR 

WORDS 

DEliNE 

o DElWORD 

Piqure 6.23 -- Two ways to build a module 
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The major advantage of type managers is that a new instance 
of the module is not needed for each new instance of the object. 
One module can be used as the type manager for many instances of 
the object. 

As an example, consider a module that manages a user 1 s disk 
file directory. If there are'three users: ANN, BOB, and CAROL, 
using self-managed objects, there must be three instances of the 
FILE DIRECTORY MANAGER each one containing a user's FILE 
DIRECTORY object (see Figure 6.24). using a type manager, there 
are still three FILE DIRECTORY objects, but only one instance of 
the FILE DIRECTORY MANAGER. 

SELF-MANAGED OBJECTS 
require an instance of the domain for each object. 

ANN'S BOB'S CAROL'S 
FILE DIRECTORY FILE DIRECTORY FILE DIRECTORY 
MANAGER: MANAGER: MANAGER: 

Domain Objec:t DoNln ObJec:t Domain ObJec:t 

Q) LOOKUP ~ o LOOKUP 6/ o LOOKUP 6/ 
Q) INSERT o INSERT o INSERT 

o DElETE o DELETE o DELETi: 

TYPE MANAGERS 
require only 1 instance of the domain for any number of objects. 

ANN'S: ~~::5. 

DoooIln ObJec:t 

j Ql LOOKUP ./'.J) 
o INSERT W 
o DELETE 

0> CREATE 
DIRECTORY 

CAROL'S : ~~5 

Figure 6.24 -- Two kinds of modules 
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Note that with a type manager, the CREATE DIRECTORY procedure 
can be in the file directory manager along with the other 
procedures. This procedure is used to create a new directory 
object whenever a new user is added. 

Type manager s pr esen t some problems, though. For example, 
how does the type manager check to insure that the object it is 
given to manipulate is indeed an object of the type it 
manipulates? For example, how does a type manager for file 
directories know that it is given a file directory object to 
manipulate and not something else, like a process object or a 
context object? 

A second problem is controlling access to the object. This 
is no problem with the self-managed object, because other modules 
never possess the object. But, with type managers, other modules 
do possess the object. How can the type manager insure that 
other modules cannot manipulate the object? 

The following sections explain how the 432 solves these 
problems. 

LABELS 

Chapter 2 stressed that every object has a label that tells 
its tvpe. Note that each of the symbols used to represent an 
object ·has a label (see Figure 6.25). 

EVERY OBJECT HAS A LABEL THAT TELLS ITS TYPE. 

LABELS ARE SHADED. 

Figure 6.25 -- Labels 
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These labels are used to solve the first problem discussed in 
the last section -- insuring that the object to be manipulated is 
of the proper type. 

For example, when a processor executes any hardware 
instruction that manipulates objects, it checks these labels 
before it executes the instruction. This is called type 
checki~g. Consider the SEND instruction explained in Chapter-4: 
This instruction is supposed to contain a reference for a 
communication port object as one of its parameters. When the 
processor executes the instruction, it checks the type label on 
this object to make sure it is indeed a communication port. If 
it is not, the instruction faults l and does not execute. 

Software can also check the labels on these hardware-defined 
objects to make sure the object it manipulates is of the proper 
type. In fact, software can even create and check labels for 
software-defined object types. This means that software-defined 
object types, like title objects, can be given a type label that 
can be checked by the type manager before it manipulates the 
object. 

Figure 6.26 compares a "normal" operation with an object of 
the correct type with an "illegal" attempt to perform the 
operation on the wrong object type. When the wrong type is used, 
the error is detected before the operation is performed, and the 
"illegal" object is left in its original state. 

lThe 432 has an extensive fault-handling mechanism. For 
details, see the Architecture Reference Manuals. 
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"NORMAL" OPERATION 

CHAR 

SETCHAR 

WORDS 

DELINE 

DEU/ORD 

INCORRECT rVPE 

CHAR 

SETCHAR 

WORDS 

DEliNE 

DElIJORD 

I I m unchanged. 
The error was 
detected early 
before' could 
be "damaged". 

Pigure 6.26 -- Type checking helps detect errors. 
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Clearly, labels solve the first problem. By using labels, 
the type of the object given to the type manager can be checked. 
But, wha t about the second problem: how to make sure that only 
the type manager can manipulate an object when other modules are 
permitted to possess it? Answer: by using labels. This is 
explained in the "Private Types" subsection. But first, I will 
cover how labels are implemented on the 432. 

HARDWARE SUPPORT FOR LABELS 

The 432 uses two mechanisms to implement labels. The first 
is used to label hardware-defined object types and is highly 
optimized for speedy execution. The second mechanism extends the 
first mechanism to provide a general and flexible facility for 
software-defined object types. 

The labeling mechanism for hardware-defined object types is 
built-in to the object-oriented addressing mechanism of the 432. 
Every object has a label that tells its hardware type. This type 
can be very specific, such as "context object", "processor 
object", or "domain object", or the type can be rather general, 
such as "data object". The important point is that every object 
has this kind of label even if it is not very specific. 

In addition to the label giving the hardware type, an object 
can have an optional label that describes its software-defined 
type. This is the second labeling mechanism provided by the 
432. It extends the hardware-defined type mechanism by enabling 
software to give any hardware-defined type (such as "data 
object") , a more speci fic software-defined type (such as 
"document object"). 

Figure 6.27 -- A type definition object 
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A software-defined type is represented by a type defini tion 
object (Figure 6.27 shows the symbol for a type definition 
object) • The implementation view in Figure 6.28 shows a data 
object with the type definition object that says it is a document 
object. Note that the type definition object is actually a 
separate object. The object-oriented addressing mechanism has a 
special facility for keeping track of which type definition 
obj ect types wh ich obj ect. For the purposes of th is book, it 
suffices to draw a typed object as one object, as is shown in the 
conceptual view of Figure 6.28. 

IMPLEMENTATION VIEW CONCEPTUAL VIEW 

Figure 6.28 -- Two ways to draw an object with a 
software-defined label 

The 432 archi tecture includes hardware support for creating 
and checking both hardware- and software-defined types. This 
insures that types are unforgeable. A type manager that creates 
DOCUMENT OBJECTS, types them, and gi ves them away, can be 100% 
confident that no other module has the ability to type an object 
as a DOCUMENT OBJECT. Other modules may be able to read the 
type, and tell that the object is a DOCUMENT OBJECT, but they 
cannot type any object as a DOCUMENT OBJECT. 

I won't go into the details of how the 432 makes types 
unforgeable, but conceptually it is similar to our abili ty to 
possess a piece of paper that is typed as a one-dollar bill. We 
can read the type on the paper and tell it is a one-dollar bill, 
yet we cannot type other pieces of paper as one-dollar bills. 
The reason we cannot type other pieces of paper is that we do not 
possess the object needed to do that a printing press. 
Wi thout the pr inting press, we cannot type paper as one dollar 
bills. 

The 432 makes types unforgeable in a similar manner. To make 
a type definition object, you need an object called a descriptor 
control object. Without the descriptor control object, the 
hardware will not let you make type defini tion objects. The 
ability to make type definition objects is controlled by 
carefully controlling the distribution of descriptor control 
objects. 
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PRIVATE TYPES 

Because types are unforgeable, they can also be used to 
control access to typed objects. Types let a type manager give 
an object away to other modules without giving away the ability 
to manipulate the object. 

There are two different kinds of types because types are used 
for two different reasons. The first reason for using types has 
been covered -- type checking -- making sure the object that is 
going to be manipulated is of the proper type. These types are 
called "public types" because they allow a type manager to stamp 
its unforgeable type on the objects it manipulates. 

The second kind of label is called a "private type". A 
private type is like a public type in many ways. A private type 
is unforgeable and identifies an object's type. Any procedure 
that has a reference for a pUblic-type or private-type object can 
read the type of the object. 

A private type has one additional property that a public type 
does not. An object of a private type cannot be accessed unless 
the procedure accessing the object possesses a matching type 
definition. 

The object's type definition acts like a lock. A procedure 
that has an object reference for a private object cannot access 
the object until it unlocks it. The object can only be unlocked 
if the procedure has an object reference for a type definition 
that matches the type definition that is locking the object. 

Figure 6.29 illustrates how a procedure locks an object. 
There is an instruction (RETRIEVE TYPE REPRESENTATION) to lock an 
obj ect so that it can be accessed in a normal manner. This 
instruction requires as an operand a reference for a type 
definition object to be used as a key to unlock the object. 
Figure 6.30 shows what happens when a procedure tries to use the 
wrong "key" -- the object stays locked. 
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RETRIEVE TYPE REPRESENTATION uses 
a type definition as a key to 
unlock access to the private 
object. 

Jf 
RETRIEVE TYPE 
REPRESENTATION 

~ 

After the instruction, the 
procedure can access the object. 

Figure 6.29 -- Successful RETRIEVE TYPE REPRESENTATION 

What happens when a procedure 
tries to "break into" a private 
object by using the wrong type 
definition to unlock the object? 

I 
"UNSEAL" 

.~ 

After the instruction, the 
procedure still cannot access 
the object. 

Figure 6.30 -- Unsuccessful RETRIEVE TYPE REPRESENTATION 
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Here are five points to remember about type checking. 

• TYPE MANAGERS are used to keep objects outside of their 
modules when they are not being manipulated. 

• HARDWARE TYPE CHECKS all hardware-defined objects before 
using them in an operation. 

• HARDWARE SUPPORTS SOFTWARE-DEFINED TYPES with a mechanism 
that makes software-defined types unforgeable. 

• PUBLIC TYPES are software-defined types 
hardware to: 

that allow 

• TYPE-CHECK a software-defined object type. 

• PRIVATE TYPES are software-defined types that allow 
hardware to: 

• TYPE-CHECK a software-defined object type. 

• CONTROL ACCESS. A module can give away an object 
without giving away the ability to access it. 

Figure 6.31 
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4. DESIGNING SOFTWARE SYSTEMS SUMMARY 

DESIGN METHOD 

• The OBJECT-ORIENTED DESIGN METHOD uses information 
~iding as the cr i,ter ia for modular i za tion. This 
Increases the independence of modules, making them more 
flexible, more comprehensible, and quicker to program. 

• TYPE MANAGERS are modules that package all knowledge of 
an object type. They contain all the procedures that 
directly manipulate objects of the type managed, plus 
all the static information shared by the type manager's 
procedures. 

DO~1AINS 

• A DOMAIN is a 432 hardware-recognized object that 
represents an instance of a module. 

• NETWORKS OF DOMAINS form the static structure of a 
program. 

• DOMAINS HIDE. Only procedures inside the domain can 
access objects listed in the private part of the domain. 

• ACCESS ENVIRONMENTS can change drastically when a 
procedure inside a different domain is called. 

TYPE CHECKING SUMMARY 

• TYPE MANAGERS are used to keep objects outside of their 
modules when they are not being manipulated. 

• The HARDWARE TYPE-CHECKS all hardware~defined objects 
before using them in an operation. 

• The HARDWARE SUPPORTS SOFTWARE-DEFINED TYPES with a 
mechanism that makes software-defined types unforgeable. 

• PUBLIC TYPES are software-defined types that allow 
hardware to: 

• TYPE-CHECK a software-defined object type. 

• PRIVATE . TYPES are software-defined types that allow 
hardware to: 

• TYPE-CHECK a software-defined object type. 

• CONTROL ACCESS. A module can gi ve away an obj ect 
wIthout giving away the ability to access it. 

Figure 6.32 
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DESIGNING SOFTWARE SYSTEMS QUIZ 

1. What is the difference between conventional and object
oriented modularizations? 

2. What is a domain? 

3. What is the difference between a procedure that is executing 
wi thin a domain and a procedure that has a reference for a 
domain? 

4. What is the difference between a self-managed object and a 
type manager? 

5. How can a module possess an object wi thout being able to 
manipulate it? 
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KEY TO DESIGNING SOFTWARE SYSTEMS QUIZ 

1. What is the difference between conventional and object
oriented modularizations? 

A conventional modular i zation is decomposi tion by flowchart, 
i . e., each major step in the processing is a module. The 
object-oriented modularization isolates each design decision 
that is likely to change within a module. An object-oriented 
modularization is easier to develop, easier to understand, 
and easier to change. 

2. What is a domain? 

A domain is a hardware-recognized object used to represent a 
module. It is a list of all the static objects used by the 
module, e.g., procedures and static data. 

3. What is the difference between a procedure that is executing 
wi thin a domain and a procedure that has a reference for a 
domain? 

A procedure executing within a domain has access to the 
objects listed in both the public and pr i vate parts of the 
domain. A procedure that is not executing within a domain, 
but does have an object reference for it, can only access the 
objects listed in the public part of the domain. 

4. What is the difference between a self-managed object and a 
type manager? 

Self-managing objects and type managers are both modules. 
The difference is that a self-managing object module always 
contains the object it is managing. A type manager, on the 
other hand, only contains the object while it is being 
manipulated. One type manager can be used to manage several 
objects because the selected object is given to the type 
manager when manipulation is required: a single self-managing 
object, however, can only manage one object, itself. 

5. How can a module possess an object wi thout being able to 
manipulate it? 

A module can possess a private type object without being able 
to manipulate it. To manipulate a private type object, a 
module must be able to unlock it. A private object can only 
be unlocked if the module possesses a matching type 
definition that can be used as a key to unlock the object. 
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This chapter has four sections that describe the I/O 
subsystem of the 432 micromainframe: 

• 432 SYSTEM ORGANIZATION 

This section explains hO\,l the I/O subsystem fits into 
the physical organization of a 432 system. 

• I/O SUBSYSTEM ORGANIZA~ION 

This section describes the physical organization of the 
I/O subsystem. 

• THE INTERFACE PROCESSOR 

Interface processors connect I/O subsystems to 432 
systems. This section descr ibes the functions provided 
by interface processors. 

• AN I/O EXAMPLE 

This section contains a simple example that illustrates 
how a GDP process can communicate with an I/O subsystem 
to perform I/O. 
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432 SYSTEM ORGANIZATION 

This section gi ves you an overview of how a 432 system is 
physically organized, i.e., how it is partitioned into functional 
blocks such as processors, memory, I/O systems, and buses. 

Figure 7.1 illustrates a minimal 432 system. 
into three major parts: 

It is divided 

• A data processing system that handles all 
processing operations, i.e., everything but I/O 

the data 

• An I/O subsystem that handles all I/O processing operations 
and is fully compatible with Intel's broad family of 
peripherals 

iAPX 412 
GENERALIZED DATA 
PROCESSOR (GOP) 

PACKET BUS 

lAPX 432 
S1'ORAGE 

MODULE 

r-- - I/O PROCESSOR - - - - - - MESSAGE-DRIVEN I DATA PROCESSING 
I 

.. --~--~------I 
I 

lAPX 412 
INTERFACE PROCESSOR 

UP) 

ATTACHED PROCESSOR I f 
(AP) 

lAPX 86, iAPX 186, 1------------- ---
etc. 

I INTERRUPT-DRIVEN _ __ ..J I/O PROCESSING 
1 ___ _ 

LOCAL 
STORAGE 

MULTIBUS, or Component. Bu. 

PERIPHERAL 
CONTROLLER 

Figure 7.1 -- System organization 
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This system organization has three important advantages: 

• In.terrup~~_.~re--.i.§..~lated within the I/O subsystem. 

• Both I/O ~!!<!_ dt~~_e'£<2<2~.§..~!.n9.._E~~<2£.~~~~~._~£~_.~~~~~§..!.?le. 

• Attached processing by Intel's existing 
ffiTCroprocessors-ana-peripherals is supported. 

line of 

Interrupts are isolated within the I/O subsystem. Interrupts 
are interesting because of "thei r "tvlo-faced" nature. They are 
undesirable, but essential. Historically interrupts have been a 
source of system reliability problems. Because of their random 
nature, interrupts can cause very complex and unpredictable 
interactions to occur. This problem is manageable in smaller 
systems, but becomes much more difficult to deal with in large 
complex systems. On the other hand, interrupts are necessary for 
interfacing to today's peripherals and real-time environments. 

The system organization of the 432 micromainframe 
accommodates the two-faced nature of interrupts. By supporting 
interrupts, the 432 retains the ability to interface to today's 
peripherals and real-time systems. By confining interrupts 
within an interrupt-driven I/O subsystem and by using 
message-dr i ven communication in the data processi ng system, the 
432 limits the size of the system that is affected by the 
interrupts (see Figure 7.1). This improves the reliability of 
the overall system and makes it easier to debug. 

Independent extensibility of I/O and data processing 
performance. The 432 provides a rari"ge--ofboth -I/O and-data 
processl-ncj-performance because additional I/O subsystems and data 
processors can be added as necessary. 

Chapter 5 explained how the 432 schedules and dispatches 
processes on multiple GDPs in a way that allows the same software 
to run on systems with 1, 2, or many processors, called 
transparent multiprocessing. Figure 7.2 illustrates how multiple 
processors are configured in a system. Additional data 
processors, storage modules, and I/O subsystems can be added as 
needed to achieve the desired performance. 
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• MULTIPLE 
DATA PROCESSORS 

• MULTIPLE 
I/O SUBSY'STEMSI 

iAPX 432 
CDP 

LOCAL 
STORAGE 

••• iAPX 432 
COP 

PACKET-BUS 

• • • 

iAPX 432 
STORAGE ••• 

MODULE 

LOCAL 
STORAGE 

iAPX 432 
STORAGE 

MODULE 

AP 
(iAPX 86, 
186, etc.) 

Figure 7.2 -- Performance extensibility 

Transparent multiprocessing for generalized data processors 
not only provides "instant" breadth of product line by 
simplifying the construction of systems with different levels of 
performance, it also allows performance to be a design variable. 
The configuration of a system can be tuned to meet its data 
processing needs by adding data processors as needed, and can be 
independently tuned to meet its I/O requirements by adding 
additional I/O subsystems. 

Fully independent and decentralized I/O subsystems. These 
subsystems completely off-load I/O processing functions (e.g., 
setting up DMA transfers, polling devices) from the data 
processing system, allowing generalized data processors to spend 
more of their time processing data instead of managing complex 
I/O details. 

The level of function handled by the I/O subsystem can be 
varied by the system designer. For example, if the application 
requires an inexpensive I/O subsystem, the designer can elect to 
use an 8085 as the attached processor (AP) and limi t the I/O 
subsystem functions to a fairly low level, such as setting up DMA 
transfers and polling devices. Higher-level functions such as 
file management can be performed by the data processing system. 
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On the other hand, if the application requires a complex I/O 
subsystem, the system designer can use an iAPX 86 or 186 as the 
attached processor. Nith thi.s increased processing power, the 
I/O subsystem can off-load more functions from the data 
processing system, e.g., part of the file management function 
could be performed by the I/O subsystem instead of the data 
processing system. 

The abili ty to support multiple I/O subsystems allows each 
subsystem's hardware and soft\vare configuration to be optimized 
for specific types of I/O. Figure 7.3 shows one example. I/O 
subsystem #1 is configured to handle hi.gh speed disk drives that 
make DMA transfers, while I/O subsystem #2 is configured to 
manage 15 terminals using a polling protocol. Note that this 
independent and decentralized I/O structure is very similar to 
the channel structure found on many of today's mainframe 
computers. 

iAPX 432 
GD!' 

PACKET BUS 

, 
OpUmi;ed tor 

high speed DMA Transfers 

iApx 432 
STORAGE 

MODULE 

,------------v'----------, Optimized to handle 
a polling protoeol 

Figure 7.3 -- Optimized I/O subsystems 
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Attached processing. The design of the 432 allows Intel's 
existing line of microprocessors (e.g., 8085) to be attached as 
subsystems to the 432 micromainframe. Thus, programs written for 
other Intel processors can be run on an attached processor in a 
432 system, preserving the software investment. 

In summary, the four major advantages of the 432' s system 
organization are: 

• Interrupts are isolated within the I/O subsystem. 

• Both ,I/O and da~.rocessing performance are extensible. 

• I/O subsystems are fully independent and decentralized. 

• A~hed processing by Intel's existing 
mlcroprocessors and peripherals is supported. 

I/O SUBSYSTEM ORGANIZATION 

line of 

Now that you have had an overview of the 432 system 
organization, the remainder of the chapter focuses on the I/O 
subsystem and how it interfaces with the data processing system. 
This section covers how the I/O subsystem is organized, the next 
section explains the functions provided by the IP, and the final 
section gives an example of an I/O transfer. 

A 432 I/O subsystem has 4 parts: 

• An attached processor (AP), e.g., an iAPX 86, 186, 8085, 
8080, etc. 

• 432 interface processor (IP) 

• Local memory 

• Peripheral controllers, e.g., 8271 floppy disk controller 

An attached processor is half of the per ipheral subsystem's 
I/O processor (the IP is the other half). The AP is the 
"intelligence" that manages an I/O subsystem. An AP does things 
like polling devices, responding to interrupts, and setting up 
and moni tor ing DMA transfers -- in general, all the busy work 
associated with controlling a group of peripheral controllers. 

APs may also handle additional functions such as file 
debuffering, packing of logical records into physical records 
(blocks), and unpacking of blocks into logical records. As 

mentioned before, it is up to the system designer to decide where 
to distribute the functionality. 
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An interface processor (IP) is the second half of an I/O 
subsystem's I/O processor. An IP is a br idge between the "I/O 
world" and the "data processing world". IPs can be used to 
connect the 432 packet bus to either the 8086 component bus or to 
the Mul ti bus. The next section is a closer look at how the IP 
works. 

Local memory is used by the AP for two things. First, it is 
used to contain the programs that run on the AP. Second, it can 
be used as a buffer for data being moved from a peripheral to the 
data processing system's main memory or vice-versa. 

Peripheral controllers are devices like 8271 
controllers or 8275 CRT controllers that handle 
requirements of specific I/O devices. 

THE INTERFACE PROCESSOR 

floppy disk 
the control 

This section covers the facilities provided by the interface 
processor. It starts off by explaining: 

• The structure of an IP program 

and then describes the three major facilities provided by the IP: 

• Mapping memory locations 

• Extending-the AP instruction set 

• Initialization and diagnostic support 

The Structure of an IP "Program" 

Chapter 3 described the structure of a program for a 432 
GOP. A 432 IP program has a similar structure. 

Figure 7.4 illustrates the structure of an IP program. Note 
that an IP has a processor object, a process object, and a 
context object just like a GOP does. 

432 
Kenory Space 

Figure 1.4 -- ~. atructure of an IP ·program· 
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IP processor, process, and context objects are similar to 
their GOP counterparts in many ways. Much of the information 
they contain is the same, because the objects fulfi 11 much the 
same function. But, they are not identical: some of the 
information they contain is specific to the particular type of 
processor (IP). 

One of the similarities shown Figure 7.4 is that an IP 
context object has a list of references for data objects that can 
be accessed by the context. The IP uses the same protection 
mechanisms as a GOP. The IP can only access objects for which it 
has an object reference. Thus, an AP using an IP's mapping 
facilities to access 432 memory can only access objects that are 
referenced by the IP program. 

One of the differences shown in Figure 7.4 is that an IP 
cont;ext object does not have a. reference for an IP instruction 
object. This is because IPs are slave processors: they do not 
fetch their own instructions. They accept and execute 
instructions one at a time from the attached processor. 

The fact that IPs do not fetch and execute their own 
instructions has several other implications. In general, it 
means that IP program structure is much more static, i.e., less 
likely to change as the program executes.. Here are two examples: 

Fi rst, there are no CALL CONTEXT instructions to change the 
current context within the current process. Each IP process has 
only a single, fixed context. 

The reason i~ straightforward. Contexts are swi tched 
whenever the flow of control changes from one procedure to 
another. But the IP does not have any flow of control because it 
does not fetch its own instructions. It accepts them one at a 
time as requests from the AP. Thus, the IP never really needs to 
change contexts, so it does not. 

However, the IP may change processes, and when it does so, 
the new process has a new process object and context object 
associated with it. This implicitly switches the current context. 

A second example of the IP's more static program structure is 
process switching. Process switching is not done automatically, 
as on the GOP, but is controlled by the AP software. For 
example, when the AP software detects that a' SENO or RECEIVE 
involving one process has blocked, then the AP can swi tch to 
another process by changing the IP's current process reference . 

. When a process running on a GOP needs to communicate with the 
I/O subsystem, it does so by sending a message to a communication 
port that is used by the I/O subsystem as an "in-basket" for 
requests from the GOPs. When the GOP executes a SEND instruction 
to send a message to the communication port, one of two things 
happen, depending on the state of the communication port. 
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If the IP process is not waiting at the port for a message, 
then the GDP simply queues the message at the port. The 
execution of this instruction is exactly the same as if the GDP 
had sent a message to another GDP process. 

But, \~hat happens if the IP process is .ready to receive a 
message and is waiting at the communication port? If the message 
was being sent from one GDP process to another GDP process, the 
message would be given to the waiting process which would then be 
sent to its dispatching port. It works the same way when the IP 
process is waiting to receive a message. The message is given to 
the IP process which is then sent to the IP dispatching port. 

But why does the IP need separate process and context 
objects? After all, there is a one-to-one correspondence between 
them. When a message is sent from a GDP process to an IP 
process, the GDP uses the same SEND instruction it uses to send 
messages to other GDP processes. This means the GDP expects the 
IP process to be structured in much the same way a GDP process is 
structured, i.e., IP processes need to be structured to be 
compatible with the GDP mechanisms that interface with the IP. 
One of the implications of these compatibility constraints is 
that the IP needs separate process and context objects. 

Structuring an IP program similar to a GDP program has two 
advantages. First, it simplifies the interface between 
processors by allowing a GDP to interface with IPs by using the 
same mechanisms it uses to interface with other GDPs. In other 
words, a GDP does not need to "know" a different program 
structure for IPs. The second advantage is that the structure of 
an IP program is easy for people to learn, because it is very 
similar to the structure of a GDP program. 

In summary, this subsection has described the similarities 
and differences bet\veen the IP's program structure and a GDP's 
program structure. In general, the two program structures are 
very similar. This makes it easier to interface GDP and IP 
processors and also makes it easier to understand the IP program 
structure. But, there are some differences between the two 
program structures. First, the IP program structure tends to be 
much more static, because IPs do not fetch and execute their own 
instructions. Second, some of the information recorded in 
processor objects, process objects, etc., is processor-specific 
and thus is slightly different for GDPs and IPs. 

This concludes the discussion of IP program structure. The 
next three subsections explain the three major facilities 
provided by an IP: mapping memory locations, extending the AP 
instruction set, and initialization and diagnostic support. 
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MaPE.ing Memory Locations (Wi.~Q.ows) 

A pr imary function is to provide protected windows into the 
432 address space. Figure 7.4 shows how this windowing works. 
Locations within the AP address space are mapped by the IP into 
the 432 address space. Whenever an AP (or any other device in 
the I/O subsystem) reads or writes to these mapped locations, the 
IP acts as a memory controller, grabs the bus, prevents access to 
any RAM or ROM in the AP subsystem that has the same address, and 
instead performs the read or wr i te using the mapped address in 
the 432 address space. This mapping is called a "wi ndo,., " because 
it allows an attached processor a protected view of 432 memory. 

MAPPABLE 
AP 

ADDRESS 
SPACE 

Reads and writes 
to mapped addresses 
in AP address 
space are inhibited. 

Data is read from 
and written to 
memory at mapped 
address in 432 
address space. 

432 
VIRTUAL 
ADDRESS 

SPACE 

Figure 7.5 -- The IP maps addresses from the AP address 
space to the 432 address space. 
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Here is a simple example with one window. Locations 512 
through 767 (decimal) in the AP address space are mapped to a 256 
byte segment in the 432 address space (i.e., byte 512 in the AP 
address space maps to byte 0 in the 432 segment, byte 513 maps to 
byte 1, etc. -- see Figure 7.6). 

AP ADDRESS 
SPACE 

AP can use 
additional 
addresses, 
but they 
cannot be 
mapped 

65,535 WINDOW 
~ \ 

, I ..... ____ -...J'\' 
~ I \ 

, I " ..,-
256 

Byte 
....I-

I 
1\\ 

I \ , 

64KB 
MAPPABLE 

o 

Note: The mappable 
address space can be 
hard-wired to ~tart 
on any 64K byte boundary 

, , 
\ \ 
\ 
\ , 

432 
VIRTUAL 
ADDRESS 

SPACE 

-,-
256 
ytes 
-I-

Piqure 7.6 -- A window maps addresses from the AP address 
space to the 432 address space, 
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If the AP executes MOVB AX,512, it normally moves a byte from the 
AX register to location 512 in the AP address space. However, 
wi th the window set up, the byte is moved to byte 0 in the 432 
segment. TheIP monitors the I/O subsystem bus and when it sees 
an address that it is mapping, it per forms the read or wr i te 
using the mapped location in 432 memory. To the AP, however, it 
seems as if part of 432 storage has been moved into its address 
spac~. 

The example can be extended to consider what happens when a 
per iphera1 device makes a trans~er to the 432. One way to do 
this is to buffer the transfer ln the local storage of the I/O 
subsystem as illustrated in Figure 7.7. After the peripheral 
device has completed the transfer, the attached processor can set 
up a mapping and transfer the data to 432 storage. 

1APX 432 
GOP 

PACKET BUS 

lAPX 432 
STORAGE 

MODULE 

r -- - - I/O-pROcESSoR - - - - -I 
I . iAPX .. 32 ATTACHED PROCESSOR I 
I (AP) 

INTERFACE PROCESSOR lAPX 86, lAPX 186, I 
(IP) I etc. I 

L ___________ ---~ 

MULTI BUS or Components Bus 

14 ~ • • 4 • • • • • __ ......1 '-__ _ 

LOCAL 
STORAGE 

PERIPHERAL 
CONTROLLER 

Figure 7.7 -- Unmapped data transfer 
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Memory mapping is performed in a way that preserves the 
integrity of the 432's object-oriented protection mechanism. As 
described in Chapter 3, a GOP context object contains a list of 
object references for all the objects that the context can 
access. The same is true for the IP context object. Only 
objects with object references in the context object may be 
accessed. To set up a map from the AP address space to the 432 
address space, there must be an object reference for the 
locations selected in the 432 address space. Locations that lie 
outside of the objects referenced by the context object cannot be 
addressed because a map cannot be set up. 

So far, the discussion of the IP has been limited to examples 
with a single window. In a running system it is often desirable 
to have several windows, thus a single IP can map to four 
different windows for data transfer at a time (see Figure 7.9). 
Each window can map a segment from 1 to 32K bytes long. These 
maps are set up and changed programmatically using one of the 
IP's instructions. A fifth window is defined for control of the 
IP by the AP, but this window cannot be changed by IP 
instructions. Each window requires 2 to the n bytes (n = 0 to 
15) in the AP address space, and windows may not overlap in the 
AP address space. 

AP 
ADDRESS 

SPACE 

-- ........... 
-----

~~I-----------
WINDOW 0 , --...... -...-., , , .... 

432 
VIRTUAL 
ADDRESS 

SPACE 

, " , , 

"','lit ··t " ... J_ .................. __ _ 

Figure 7.9 -- A single IP can map 4 data-transfer windows 
at a time. 
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Extendin~e Attached proces?or's Instruction Set 

To effectively interface with GDPs, an I/O subsystem must be 
able to execute the 432's object-oriented instructions such as: 
SEND, RECEIVE, RETRIEVE TYPE DEFINITION, etc. The interface 
processor provides the I/O subsystem with these operations by 
extending the instruction set of the attached processor. The AP 
and IP work together as a team the AP executes the arithmetic 
and logical operations and the IP executes the 432' s high-level 
object-oriented instructions. 

The IP executes 432 instructions as a slave processor for the 
AP. The IP itself does not fetch and execute a stream of 
instructions -- instead it executes instructions one at a time 
when commanded to by the AP. When it finishes executing an 
instruction, it interrupts the AP to signal that it is finished 
and waits until it is commmanded to execute another instruction. 

The AP commands the IP to execute an instruction by wr i ting 
the operands and opcode for the desired instruction into a 
function request area located in the IP's context object. The IP 
starts execution of the requested instruction as soon as the 
opcode is written into the function request area. Once it starts 
executing an instruction, no other instruction should be written 
until it finishes the current instruction. When it finishes 
executing the instruction, it records status information (e.g., 
operation successful, operation faulted) in its context object 
and interrupts the AP to let it know it is finished. 

To gi ve the IP a command, the AP must be able to wr i te into 
the function request area in the IP' s context object. It does 
this by using the memory mapping facilities described in the last 
sub-section. One of the five memory windows (WINDOW 4) is always 
used to map part of the IP's context object into the AP address 
space. This window allows the AP to give the IP a command and to 
read status information. Thus, to give the IP a command all the 
AP has to do is write the operands and the opcode to the 
addresses that are mapped to the function request area in the 
IP's context object (see Figure 7.10). 
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As an example, consider what happens when the I/O subsystem 
wants to receive a message: 

1. The AP causes the IP to execute a RECEIVE instr uction. 
It does this by writing the operands for the instruction 
and the opcode for the instruction into the function 
request area of the IP' s context object. The context 
object resides in 432 physical memory, but the AP can 
wr i te to it because Map 4 is always set up to map an 
address subrange from the AP address space to the' 
context object. 

2. Once the AP has written the command into the IP's 
function request area, the AP is free to go off and 
perform other duties. The IP will interrupt it when the 
RECEIVE is completed. 

3. As soon as the AP has finished writing the operands and 
opcode into the function request area, the IP begins to 
execute the instruction. Note that the IP can only 
perform one function at a time. The AP may not request 
another function until this one completes. 

4. In a moment, I will explain what happens if a message is 
not waiting in the communication port. For now, assume 
that a message is waiting in the port. The IP performs 
the receive operation, removing the object reference 
from the communication port and moving it to the IP' s 
context object. (Note: To be able to access the 
message that has been received, AP software must request 
the IP to set up a map to it. It does this by 
commanding the IP to execute an UPDATE WINDOW 
instruction. ) 

5. When the IP is finished with the instruction, it records 
the status of the instruction (e.g. , instruction 
successful, instruction faulted) in its context object, 
and interrupts the AP. 

6. The AP examines the status information recorded by the 
IP in its context object to determine if the operation 
was successful. 

7. Because the IP has completed the instruction, the AP can 
now command it to execute another instruction by writing 
the next instruction into the function request area. 

The AP causes the IP to execute other instructions in a 
similar manner. These instructions include some of the 432's 
object-oriented instructions for interprocess communication, 
interprocessor communication, etc., plus an instruction for 
setting up and changing the mapping windows. 
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One IP instruction that is a bit unusual is the RECEIVE 
instruction. This instruction is straightforward when a message 
is waiting in the communication port, but is unusual when a 
message is not wai ting in the communication port. Consider what 
happens when the communication port is empty: 

1.-3. These steps are the same as in the example above. The AP 
gives the IP the command and the IP begins to respond. 

4. When the IP finds out that the communication port does 
not contain a message, it queues up the IP process object 
to wait for a message. So far so good. This is the same 
action taken by a GDP when it finds an empty 
communication port. But now there is a problem. The IP 
can only execute one instruct ion at a time and it is 
stuck in the middle of a RECEIVE instruction waiting for 
a message to arrive. 

5. This problem is easily resolved. The IP writes status 
information in its context object that indicates that it 
is waiting for a message, and then it interrupts the AP. 

6. When the AP responds to the interrupt and checks the 
status, it learns that the IP did not find a message. 
And, since the IP has, for now, stopped executing the 
RECEIVE instruction, the AP can gi ve it other commands 
such as CONDITIONAL SEND or UPDATE WINDOW. Normal use of 
the IP resumes with only one restriction. One IP process 
can only be waiting for one message at a time~ i.e., the 
AP cannot request a second RECEIVE instruction until the 
first one completes (or is cancelled by the IP), or until 
the AP switches to another IP process. 

7 . When a message is sent to the port wi th the wai ting IP 
process, the standard action described in Chapter 4 is 
taken. The message is given to the IP process, and the 
IP process is sent to the IP dispatching port. Wai ting 
at the IP dispatching port IS the processor object for 
the IP that initially executed the RECEIVE. This causes 
the processor performing the SEND to signal the IP (using 
a hardware interprocessor bus signal) that it has a 
process that requires service. 

8. When the IP receives the interprocessor signal, it first 
finishes the instruction it is executing (if any). The 
AP must then cause the IP to execute a SURROGATE RECEIVE 
(not covered here) on the IP's dispatching port to pick 
up the now ready IP process. If the AP has switched the 
IP to another process, the IP's process reference must be 
changed back to the process just received at the IP' s 
dispatching port. The IP now finishes the RECEIVE, 
stores status information that indicates that the RECEIVE 
is complete, and then interrupts the AP. 
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9. The AP inspects the status and learns that a message has 
been received. Because the previous RECEIVE is now 
complete, the AP can once again ask the IP to execute a 
RECEIVE. 

extends the 
remember is 

instructions 
area. These 
instructions 

communication 
and chang i ng 

This concludes the discussion of how the IP 
instruction set of the AP. The important point to 
that the IP is a slave to the AP and executes 
whenever the AP loads the IP' s function request 
instructions include the relevant object-oriented 
provided by the GDP (e.g., interprocess 
instructions) plus the instruction for setting up 
the mapping windows. 

Initialization and Diagnostic support 

Interface processors and their associated I/O subsystems have 
a second important role to play in addition to their normal I/O 
duties. The 432 generalized data processors (GOPs) require 
several data structures existing in memory before they are 
"turned on." Most of these structures are the ,kind that need to 
be modified during program execution and, therefore, cannot 
pre-exist in ROM. These structures include GOP processor 
objects, GOP process objects, and other structures discussed in 
Chapter 3. There must be a way to load the 432' s main memory 
wi th these structures, and then signal the GOPs to begin their 
processing. Interface processors and their associated I/O 
subsystem are used to do this. 

Previous sections have discussed the IP in its logical 
addressing mode. This mode uses the 432's object-oriented 
addressing and protection mechanism just like the GOP, and is 
ideal for most operations performed by the IP. There is a 
problem in trying to use logical addressing for ini tialization. 
Logical addressing requires the existence of several data 
structures in memory (e.g., object references and a physical 
memory management table). At initialization these structures do 
not exist, so logical addressing cannot be used. There must be 
another way to address memory. 

The other way to address memory is called physical addressing 
mode. Physical addressing is similar to logical addressing in 
several ways. Windows are created into the 432's memory that map 
addresses from the AP address space. The AP accesses 432 memory 
by addressing the mapped areas in its address space. 
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The difference between the logical and physical addressing 
modes is in how the windows are set up. With logical addressing, 
you are not concerned about where the object resides in 432 
phys i cal memor y . When you set up a wi ndow , you give the IP a 
logical address (an object reference) and it figures out where 
the object is physically located. With physical addressing, the 
map is set up by telling the IP the desired physical address in 
432 memory. 

In physical address mode the AP/IP is not constrained by the 
432 ',S object-or iented protection mechanism. This allows it to 
ini tialize memory wi th all the structures required to start up 
the 432 GDPs. After the structures are moved into place in 432 
memory by the AP/IP in physical mode, it switches to logical mode 
and signals the GDPs that they can begin processing. 

Physical mode can 
performing diagnostic 
occurs that damages 
addressing, an AP/IP 
diagnosis and repair. 

also be used by an AP/IP subsystem that is 
functions. If, for some reason, a failure 

the data structures used for logical 
can be used in physical mode to attempt 

The physical mode is a very privileged state of operation 
because it allows the AP/IP unconstrained access to all of the 
432 memory, i . e., it completely over r ides all of the obj ect
oriented protection mechanisms. Because of this, there is a 
mechanism controlling the ability of an AP program to place an IP 
in physical mode. 

To place an IP in physical mode, the IP context must have an 
obj ect reference for that IP' s processor object. Thus, an AP 
cannot place its IP in physical mode unless the IP context object 
contains an object reference for the IP's processor object. For 
example, a mul tiple-user system can be conf igured so that only 
the I/O subsystem used by the system operator has an object 
reference for its IP processor object and can be placed in 
physical mode. 

In summary, physical mode allows the I/O subsystem to access 
432 main memory without the restrictions of the object-oriented 
addressing and protection mechanism. This is useful for 
initialization and diagnostics, but must be controlled to insure 
the integrity of the object-oriented protection mechanism. 
Therefore, a control mechanism is provided to prevent an IP from 
accidentally or maliciously being used in physical mode. 
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To help you understand how the 432 performs I/O, this section 
walks through a simple example that illustrates one technique for 
performing I/O. In the example, a process running on a 432 GOP 
provides th~ physical device number and physical address of the 
data to be read into memory, and a buffer object to hold the 
incoming data. The I/O subsystem takes it from there -- setting 
up the peri.pheral controllers and monitoring the transfer. All 
higher-level functions, such as managing files, maintaining 
directories, and translating logical file names into physical 
device numbers and addresses, are handled by the 432 data 
processing system. 

It is important to note that the amount of functionality 
placed in the I/O subsystem is a design decision. This example 
moves minimal functionality to the I/O subsystem to make the 
example easy to explain. In many applications, the I/O subsystem 
will provide more functionality; for example, an extremely 
functional I/O subsystem may manage files, maintain directories, 
and translate logical file names into physical device numbers and 
addresses. This off-loads ~70rk from the data processing system 
by allowing it to make I/O requests at a higher level, e.g., READ 
FILE OATA.F4 instead of READ DEVICE 3 TRACK 5 SECTOR 2. 

Chapter 4 presented an example of interprocess communication 
where several processes running on one or more 432 GOPs 
communicated wi th each other by placing messages in in-baskets. 
The I/O exa.mple below a.lso involves interprocess communication, 
but this time one of the processes is r.unning on a 432 GDP and 
the other is running on the attached processor in the I/O 
subsystem. 

The GOP process communicates wi th the I/O process by placing 
messages in the IP "in-basket." The attached processor uses the 
receive instructions provided by the IP to receive these 
messages, which usually request some sort of I/O activity. When 
the AP finishes the I/O for the GOP proces/s, it sends the GOP 
process a reply message using the GOP process's in-basket. 

The example below has eight different steps. Each step 
corresponds to one of the frames in Figure 7.8. As you read the 
example, it is recommended that you flip back and forth betv~een 
the text and the frames of Figure 7.8 that follow the example. 
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1. In Figure 7.11.1, the GOP process is ready to ask the I/O 
subsystem to read a block of data. The message it has 
prepared for the I/O subsystem tells it to do two 
things. First, read a block of data from address 0145 in 
the I/O subsystem and deposit it in a buffer in the 432's 
main memory. Second, send the buffer as a message to the 
communication port pointed to by the object reference in 
the message object. In Figure 7.11.1, the GOP process is 
executing the SENO instruction, sending the message to 
the communication port used by the I/O subsystem. 

2. Now that the GOP process has made its I/O request by 
sending the message to the I/O subsystem, it is ready to 
wai t for the reply (i. e., the buffer full of data from 
address 0145). In Figure 7.11.2, the GOP process is 
executing a RECEIVE instruction that will cause it to 
wai t in its in-basket until the I/O subsystem sends the 
reply. 

3. In Figure 7.11.3, there are two important things to 
observe. First, notice that the GOP process has finished 
executing its RECEIVE instruction and is "inside" the 
communication port waiting for the I/O subsystem's reply. 

Second, notice that the I/O subsystem is executing a 
RECEIVE instruction. The AP has commanded the IP to 
execute a RECEIVE instruction by wr i ting the instruction 
into the function request area located in the IP's 
context object. Note that the context object is located 
in the 432 memory space, and is accessible by the AP 
because of the mapping facili ties provided by the IP. 
Window 4 is always used to map part of the AP' s address 
space to the context object. This allows the AP to read 
and write the IP context object by reading and writing 
the mapped locations in its address space. 

4. In Figure 7.11.4, the IP has finished executing the 
RECEIVE instruction. Note that the IP is now able to 
access the message object, because the RECEIVE 
instruction has moved an object reference for the message 
from the communication port to the IP's context object. 
The IP has also recorded status information in its 
context object indicating that the RECEIVE was 
successful, and has interrllpted the AP to let it know 
that the IP completed the instruction. 

5. The AP responds to the IP's interrupt by checking the 
status information in the context object. The status 
information tells the AP that the RECEIVE was successful 
and that the IP is waiting for another instruction. 
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At this point, the AP can interpret the message to learn 
what it should do. But, the message is in the 432's 
address space, which means that the AP software must 
cause the IP to set up a map so that the AP can read the 
message. 

In Figure 7 .11. 5, the AP has caused the IP to set up 
Window 3 to map part of the AP address space to the 
message object. The AP software now interprets the 
message and learns that it should read a, block of data 
into the buffer provided and then send the buffer back to 
the GDP process. 

6. The next thing the I/O subsystem needs to do is open a 
window to the buffer. To do this, the AP first commands 
the IP to copy the object reference for the buffer object 
from the message object into the IP's context object. 
Note that the I/O subsystem can only access this buffer 
because it now has an object reference for the buffer. 
The AP then commands the IP to set up Window 2 to map the 
buffer into the AP address space. 

Now that the buffer is mapped, the AP can proceed wi th 
the I/O transfer. AP software accomplishes this by 
calling an I/O dr i ver for the device requested. The AP 
and I/O subsystem perform all the functions required to 
move data from the I/O device to the buffer. Depending 
on the I/O subsystem configuration, the AP may poll the 
device, be interrupt-driven, or simply set up a DMA 
transfer using an 8089. 

7. When the AP has finished filling the buffer, it is ready 
to send the buffer to the GDP process that requested the 
read. Note that one of the pieces of information in the 
message sent to the I/O subsystem by the GDP process was 
an object reference for the communication port where it 
expected the reply. Figure 7.11.7 shows the IP executing 
a SEND instruction to send the buffer to the port 
specified by this Object reference. 

8. In Figure 7.11.8, the SEND instruction has finished 
executing. The GDP process has received the buffer and 
can now proceed with its execution. 

Note: Figure 7.11 shows objects being moved about wi thin the 
432 memory. This is an illustrative aid only, actually 
only object references are moved, and the objects 
themselves (e.g., the buffer object) are not physically 
relocated. ---
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As a review, 
processor s (GOP, 
7 .12) . 

take a quick look at what each of the three 
IP, AP) does in the example below (see Figure 

The process running on the 432 GOP does not perform I/O 
directly. It sends an I/O request to the I/O subsystem (the IP 
and AP), proceeds asynchronously until it needs the data it 
requested, and then wai ts to rece i ve the reply message from the 
I/O subsystem. 

The 432 IP provides services for the software running on the 
attached processor. It extends the instruction set of the AP 
wi th high-level 432 instructions such as SEND and RECEIVE, and 
provides the AP with protected access to 432 storage. 

The AP software is divided into two parts: a peripheral 
interface executivei and I/O drivers (see Figure 7.12). The 
executi ve rece i ves the request message from the GOP process by 
the message after requesting the IP to set up a map to it; gets 
access to the buffer by requesting to IP to COpy ACCESS 
DESCRIPTOR for the buffer into the IP context object; sets up a 
window to the buffer by asking the IP to execute an UPDATE WINDOW 
instruction; and then calls the I/O driver for the device 
requested. The I/O driver sets up the device, monitors the 
transfer, and returns completion information to the executive. 
The executive then sends the buffer to the GOP process as a reply 
by causing the IP to execute a SEND instruction. 
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Requeata .. Interrupt. 
432 ATTACHED 
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PROCt:SSOR Request SOFTWARE 

(IP) .. /
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The example above describes a very simple situation where a 
GOP process sends a request to the I/O subsystem. The reverse is 
also possible, i.e., the I/O subsystem can send a message to a 
GOP process that asks the GOP process to take some action. 

SUMMARY 

The 432 micromainframe is divided into two major parts: 

• The data processing system made up of one or more 
general data processors 

• One or more I/O subsystems controlled by attached 
processors 

The four major advantages of this organization are: 

• Both I/O and data processing performance are extensible. 

• I/O subsystems are fully independent and decentr al i zed. 
They can work in parallel with the data processing 
system, thus off-loading much of the I/O burden from the 
generalized data processors. 

• System reliability is improved because interrupts are 
isolated to' a relatively small portion of the system. 

• Intel's existing line of microprocessors 
connected as attached processors. 

can be 

Interface processors connect I/O subsystems to the data 
processing system by providing three important facilities: 

• Windows that map addresses from the AP address space 
into the 432 address space 

• Addi tional instructions that extend the instruction set 
of the attached processor with object-oriented 
instructions such as·SENO 

• Initialization and diagnostic support that enable an I/O 
subsystem to initialize and diagnose the 432 system 
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I/O SUBSYSTEM QUIZ 

1. What are the three major facilities provided by the interface 
processor? 

2. List three pieces of informat ion contained in an IP context 
object. 

3. How do GDPs perform I/O? 
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KEY TO I/O SUBSYSTEM QUIZ 

1. What are the three major facilities provided by the interface 
processor? 

• Mapping memory addresses from the AP address space into 
the 432 address space 

• Extending the AP instruction set with object-oriented 
instructions such as SEND 

• Initialization and diagnostic support 

2. List three pieces of informa.tion contained in an IP context 
object. 

• Object references for all the objects that can be 
addressed by the I/O subsystem 

• A function request area where the AP writes instructions 
it wants the IP to execute 

• Status information that tells the AP if the instruction 
it requested was completed successfully 

3. How do GDPs perform I/O? 

They don' 1::. GOP processes send messages to I/O subsystems 
asking them to do the I/O. The I/O subsystems per form the 
requested I/O and send reply messages ,to the GOP processes. 
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